
www.allitebooks.com

http://www.allitebooks.org

Mastering Jenkins

Configure and extend Jenkins to architect, build,
and automate efficient software delivery pipelines

Jonathan McAllister

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

Mastering Jenkins

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Production reference: 1211015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-089-1

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

[FM-3]

Credits

Author
Jonathan McAllister

Reviewers
Thomas Dao

Takafumi Ikeda

Stefan Lapers

Riddhi M. Sharma

Donald Simpson

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Vinay Argekar

Content Development Editor
Amey Varangaonkar

Technical Editor
Siddhesh Patil

Copy Editors
Sonia Mathur

Karuna Narayanan

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

Cover Image
Stephanie McAllister

www.allitebooks.com

http://www.allitebooks.org

[FM-4]

Foreword

Agile practices are gaining influence within diverse companies worldwide, yet not
without a cultural and technological tension between delivery teams and various
groups within their organizations.

This tension is partly born of a natural instinct to reject new ideas, but more
importantly due to a disbelief that these practices will live up to their claim of
delivering business value at a faster rate with better quality.

Although this book is not entirely focused on project management per se, it does lay
the foundation for the success of modern product development by creating the case
for Continuous Build, Integration, Delivery, and Deployment solutions.

Continuous practices help ensure that the software is being compiled and
tested properly and is always in a deployable state, not only on the developer's
workstation. Continuous integration will ensure that the different subsystems
function correctly according to the expectations set in code and by the business.
Continuous delivery ensures that the artefacts created in the previous steps can
be reused and deployed to higher environments to showcase the product to its
stakeholders, whereas continuous deployment pushes these artefacts to production
for quick assessment of a hypothesis.

Creating a delivery pipeline is at the core of our ability to develop business value
with a cadence that is desired by product owners. This is achieved thanks to
something we never had the luxury of having previously: the ability to fail fast
because we could not hope for anything better than being able to quickly test a
hypothesis by deploying it, assessing its impact, and reverting or pivoting when
misguided or misinformed about our market conditions.

Producing software in this manner cannot be achieved without automation. This
provides a safety net for developers as they adapt or refactor code; it scales the
regression test cases as the product evolves and grows and, perhaps as importantly,
describes and executes server provisioning, configuration, and the deployment of its
applications.

www.allitebooks.com

http://www.allitebooks.org

[FM-5]

A product's success is based on fast feedback, whether good or bad, and this book
details the practical ways of using Jenkins, its plugins, and ecosystem to assure
fast feedback for architects, developers, testers, the product's stakeholders, and by
extension, its customers.

It is therefore essential to master the pipeline architecture and automation in order to
give businesses the tools that shorten the time between concept to cash, in addition
to creating low-ceremony deployments as part of the standard software development
lifecycle.

Taken holistically, this book will not only teach you about deployment pipelines
using Jenkins, but will also prepare you for the cultural change to DevOps, which
will improve your product development methods even further.

Itamar Hassin
Thought Leader and Project Lead, ThoughtWorks

[FM-6]

About the Author

Jonathan McAllister has been creating software and automation since he was
a child. However professionally he leverages 10 years of experience in software
development, test, and delivery practices. During his career, he has architected and
implemented software build, test, and delivery solutions for cutting-edge technology
organizations across diverse technology stacks. Jonathon has most recently
been focusing on build pipelines, continuous integration, continuous delivery,
microservice architecture, process, and the implementation of highly scalable
automation solutions for some of the industry's most notable companies, including
Microsoft, Merck, and Logitech.

His focus is entirely on designing scalable software build, delivery, and test pipelines
in an effort to streamline releases through standardization and help develop
strategies that can elevate revenue through modern continuous practices.

As a successful entrepreneur, writer, and business consultant, Jonathan has had
the unique opportunity to oversee and implement efficient delivery pipelines at
organizations of varying technologies, stacks, and cultures.

Riddhi contributed to the technical content in Chapter 5, Advanced
Automated Testing, specifically in relation to the integration of MSTest
with Jenkins. We would like to thank him for his efforts in this area.

[FM-7]

About the Reviewers

Thomas Dao has worked in the IT industry for over two decades. His domains
include Unix administration, Build/Release, Java/Android development, and so on.

Takafumi Ikeda works as a sales engineer at GitHub. Before joining GitHub,
he worked as a scrum master and a DevOps for many projects. Takafumi is also
the author of a book that focused on DevOps. This book received an award in the
Japanese market in 2014, and was also translated into Chinese and Korean and
published in the Asian market. He has made several presentations as a speaker at
several technical conferences in Japan and other Asian countries.

Stefan Lapers started his career almost 20 years ago as an IT support engineer.
Thereafter, he quickly grew into Linux/Unix system engineering and software
development.

Over the years, he accumulated experience in deploying and maintaining hosted
application solutions while working for reputed customers such as MTV, TMF,
and many others. In recent years, he was involved in multiple development projects
and their delivery as a service on the Internet.

He enjoys spending his spare time with his family and in building and flying
remote-controlled helicopters.

[FM-8]

Riddhi M. Sharma is a senior software engineer and a technology enthusiast at
Physicians Interactive. She holds extensive experience that encompasses multiple
areas of technology, such as Cloud, Agile (Continuous Integration/Delivery),
and software development. Riddhi is also focused on digital marketing research/
strategy and growth hacking and has expertise in Salesforce's exact target marketing
platform. He loves to explore product ideas, connect to the community at technical
events, and speak on emerging technologies.

I would like to thank Jonathan McAllister for his passion and valuable
contribution to the Jenkins community with his excellent book called
Mastering Jenkins. I would also like to thank the entire Packt team for
their great efforts on this book and high standards of work.

Donald Simpson is an information technology consultant based in Scotland, UK.
He specializes in helping organizations improve the quality, and reduce the cost,
of software development through build automation. Donald has also designed and
implemented continuous integration solutions for a broad range of companies and
agile projects. He can be reached at www.donaldsimpson.co.uk.

www.donaldsimpson.co.uk

[FM-9]

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[FM-11]

To my wife Stephanie who dared me to dream and reach for the stars. May she come to know
that she is the only star I'll ever need. To my children Adrian, Bryce, Caden and Devin who
have taught me the meaning and the purpose of my existence.

[i]

Table of Contents
Preface	 vii
Chapter 1: Setup and Configuration of Jenkins	 1

The Jenkins platform architecture and configuration techniques	 3
Jenkins on Microsoft Windows	 4

Configuring the JVM and Java arguments–port, JRE, and memory	 7
Jenkins on Linux and UNIX	 9

Configuring the JVM	 9
Running Jenkins behind an NGINX reverse proxy	 11

Running Jenkins behind an Apache reverse proxy	 13
Disaster recovery in Jenkins	 16

Jenkins snapshot backups	 16
Setting up a Jenkins mirror – rsync	 18

Jenkins on Mac OS X	 22
The Jenkins LTS release line	 23
Jenkins XML configuration files	 25

Summary	 28
Chapter 2: Distributed Builds – Master/Slave Mode	 29

Understanding the master and slave architecture	 30
Creating slave nodes in the UI	 33

Choosing a launch method	 36
Slave agent via Java Web Start	 36

Prerequisites	 37
The Jenkins Java Web Start launch page	 38
Headless slave agents via the command line	 41

Slave agents on Windows via WMI and DCOM	 42
Troubleshooting Windows DCOM and CIFS errors	 46

Slave agents via SSH tunneling	 49

Table of Contents

[ii]

Administering Jenkins slaves	 51
The node administration dashboard	 51
Preventative monitoring	 52
Managing individual slave nodes	 53

Labels, groups, and load balancing	 54
Attaching a slave to a group by creating a label	 55
Attaching a slave to many groups	 56
Restricting slave execution to global or tied jobs	 57
Jenkins plugins that support distributed builds	 58

Summary	 58
Chapter 3: Creating Views and Jobs in Jenkins	 59

The Jenkins user interface	 60
The main header	 61
The configuration panel	 63
The job table	 64
RSS feeds	 66
The Jenkins build queue and executor status panel	 67

Jobs in Jenkins	 68
Freestyle projects in Jenkins	 69

Project options	 73
Advanced project options	 76
Source code management	 77
Build triggers	 79
Build steps	 80
Post-build actions	 81

Maven projects	 81
Build triggers	 83
Build step	 83
Advanced options	 83
Post-build steps	 85

Monitoring external jobs	 85
Multiconfiguration jobs in Jenkins – matrix jobs	 86

Configuration matrix	 87
Slaves	 87
Label expression	 88
User-defined axes	 89

Creating views	 90
Filtering jobs by regular expression	 92

Summary	 93

Table of Contents

[iii]

Chapter 4: Managing Views and Jobs in Jenkins	 95
Managing Views in Jenkins	 96

Altering the default "View"	 96
Customizing the basic content of a View	 98
Advanced customization of a "Views" content	 100

Navigating a job's project page	 102
The Configuration panel	 104
The Build History panel	 105
The project overview – central panel	 107

Job execution	 108
The Job Execution Configuration panel	 109
The Status panel	 110
The Console Output	 110
Summary	 111

Chapter 5: Advanced Automated Testing	 113
Quality assurance initiatives and test automation terminology	 114
The Software Development Lifecycle	 119
Connecting product codes to tests	 122
Baking quality into the product	 124

Efficient automated test architecture	 124
Automated testing in Jenkins	 127
Unit tests in Jenkins through MSTest	 133

How to set up MSTest agents	 134
Running automated tests via MSTest	 135

A example MSTest execution	 135
Running MSTests and reporting the results in Jenkins	 136

Publishing test results in Jenkins	 138
Organizing test jobs	 138

Distributed testing solutions	 139
The Selenium Grid	 140
Parallel down-stream jobs	 141

Summary	 142
Chapter 6: Software Deployments and Delivery	 143

Standardizing build outputs	 145
Architecting a packaging scheme	 146

Implementing a Definitive Media Library	 149
Publishing assets to a DML	 150

Jenkins' archive the artifacts post-build action	 151
Publishing to Artifactory	 153
Publishing via Maven	 155
Pushing a Docker container	 156

Table of Contents

[iv]

Automated deployments	 158
Retrieving build artifacts and packages	 160

Fetching artifacts via archive artifacts	 160
Fetching artifacts from Artifactory	 161
Fetching artifacts via Maven	 163
Verifying package integrity	 164

Executing deployment automation	 168
Leveraging Jenkins slave nodes for deployment	 170

Summary	 173
Chapter 7: Build Pipelines	 175

The value proposition of build pipelines	 176
Architecting a build pipeline	 180

The first segment of the build pipeline	 181
Additional pipeline segments	 183
The complete pipeline 	 184
Visualizing the final pipeline	 185
Alterations for shrink-wrapped and embedded projects	 186

Implementing build pipelines in Jenkins	 186
Upstream jobs – triggered	 187
Downstream jobs – via post build actions	 188
The Parameterized Trigger plugin	 189
The Promoted build plugin	 191
The Post-Build Tasks plugin	 194
The Delivery Pipeline plugin	 195
Connecting two Jenkins instances – development and production	 200

Summary	 202
Chapter 8: Continuous Practices	 203

Kaizen – Continuous Improvement	 204
Kanban	 208

Continuous Integration	 209
What Continuous Integration is not	 210
Code-based branching techniques	 213

Branch by abstraction	 214
Feature toggles	 215
Fail fast and recover even faster	 217
Distributed Version Control	 217
Continuous Integration in Jenkins	 218

SCM polling	 218
Running a Jenkins job via the SVN post-commit hooks	 220
Triggering a Jenkins job via GitHub push	 223

Table of Contents

[v]

Continuous Delivery	 225
The principles of Continuous Delivery	 227
Continuous Delivery in Jenkins	 228

Rapid feedback loops	 228
Quality gates and approvals	 230
Build pipeline workflow and visualization	 232

Continuous Deployment	 234
Continuous Deployment in Jenkins	 236

Summary	 237
Chapter 9: Integrating Jenkins with Other Technologies	 239

Jenkins and Docker – Linux guide	 240
Running Jenkins inside a Docker container – Linux	 242
Dynamic Jenkins slave nodes using Docker	 244

Pre-requisite requirements	 245
Implementation tutorial	 245

Integrating Jenkins with Ansible – Linux and Windows	 249
Jenkins and Artifactory	 257
Jenkins and Selenium Grid	 260

Spinning up a Selenium Grid	 261
Writing tests and integrating them into Jenkins	 263

Jenkins and Jira	 268
Summary	 270

Chapter 10: Extending Jenkins	 271
Setting up the development environment	 272
Creating a Jenkins plugin skeleton	 279
The plugin skeleton	 283
Importing a Maven-generated skeleton into IntelliJ	 285
The architecture of Jenkins plugins	 289

Understanding the Jenkins job lifecycle	 292
Using overrides	 293
Working with describables and descriptors	 294

Jelly tags and files	 295
Compiling and installing an HPI plugin	 296
Summary	 297

Index	 299

[vii]

Preface
Jenkins is a highly acclaimed award-winning build and automation orchestration
solution. It represents the cumulative efforts of hundreds of open-source developers,
quality assurance engineers, and DevOps personnel worldwide. What makes
this solution uniquely innovative is it is continuously updated, improved upon,
and supported by this cohesively vibrant open-source community. It is through
this open-source development effort that Jenkins has remained in the forefront of
Continuous Integration, and Continuous Delivery practices.

The Jenkins platform bridges engineering disciplines, quality assurance landscapes,
and business interests in an effort to connect traditionally isolated factions and
transform them into cohesive engineering teams. Over the years it has vaulted
in popularity and gained notoriety as an industry standard tool. Through its
extensibility and collaboration initiatives its adoption rate has grown exponentially
and now touts well over 100K installations worldwide.

I was formally introduced to Jenkins in 2008 when it was still Hudson. It was
during this era that Hudson was just beginning to gain momentum by engineering
groups outside of the Java development community. The software configuration
management team I worked for was looking to implement a standardized
architecture and delivery service solution across a large number of diversely
acquired technology stacks. This began our quest to solidify a set of standards
in build and delivery that could be applied across these diverse technology stacks
and scale.

These experiences provided me with a pretty solid understanding of continuous
integration, continuous delivery, build pipelines, automated testing, and the
capabilities of Jenkins. By 2012 we were able to scale our implementations across a
multitude of technology stacks of varying size and scope. All of these experiences
would eventually culminate in me writing this book.

Preface

[viii]

What this book covers
This book represents the amalgamation of a decade's worth of professional
research, development, and automation engineering at numerous organizations
with diverse technology disciplines. I wrote this book in an effort to provide a
practical implementation guide for continuous integration, continuous delivery, and
continuous deployment. With this book, my objective was to provide readers with
some of the tools they will need while architecting, evangelizing, and implementing
complete end-to-end build pipeline solutions at organizations of varying sizes and
engineering topologies.

Chapter 1, Setup and Configuration of Jenkins, aims to teach reader how to manage
instances of Jenkins of any size or scale. This is not an easy feat because Jenkins is
highly diverse and supports almost any platform. You will learn about the initial
setup, backup strategies, configuration techniques, best practices, and how to
horizontally scale and properly manage the service.

Chapter 2, Distributed Builds – Master/Slave Mode, provides you with a complete
guide on how to set up distributed build solutions and slave agents. This is a critical
implementation and helps you understand when Jenkins needs to expand and
support larger audiences and more diverse technology stacks.

In Chapter 3, Creating Views and Jobs in Jenkins, and Chapter 4, Managing Views and
Jobs in Jenkins, we aim at documenting the knobs and dials that Jenkins provides
on the dashboard, and the contained views and jobs. This is fundamental Jenkins
knowledge and the goal here is to provide a solid understanding of the Jenkins
platform.

Chapter 5, Advanced Automated Testing, talks about how to improve quality assurance
efficiency. It teaches you how to architect and implement automated testing solutions
that provide business value. This is crucial to any continuous solution because the
pipeline must remain efficient and free of bottlenecks. Implementing automated
testing is always a gentle balancing act. There is a trade-off between the time spent
executing test automation and ensuring the rapid velocity of delivery.

Automated deployments are a cornerstone of continuous practices and build
pipelines. Chapter 6, Software Deployments and Delivery, discusses how to implement
scalable automated deployment jobs in Jenkins. This includes upstream and
downstream jobs and how to manage them through naming conventions. In this
chapter, we will discover some tips and tricks aimed at helping to keep deployments
nimble and releases efficient.

Preface

[ix]

Chapter 7, Build Pipelines, introduces the concept of a build pipeline and teaches you
how to develop and scale them. Build pipelines are a foundational requirement of
continuous delivery and continuous deployment. This chapter has been written in
an effort to provide you with a set of scalable practices that can be applied across a
multitude of technology stacks.

Chapter 8, Continuous Practices, defines continuous integration, continuous delivery,
and continuous deployment. It provides a practice implementation guide for each.
Jenkins has evolved and extended dramatically and now supports a complete array
of continuous practices. This chapter aims to convey a set of defined implementation
approaches to continuous integration, continuous delivery, and continuous
deployment with examples for each. Jenkins integrates extraordinarily well with
hundreds of diverse technologies.

Chapter 9, Integrating Jenkins with Other Technologies, introduces some of the more
exciting automation technologies, such as Docker, Ansible, Selenium, Artifactory,
and Jira. This chapter shows you how to interconnect them through Jenkins. The
ability to extend Jenkins through its plugin architecture is one of the primary reasons
that it has become so popular.

Chapter 10, Extending Jenkins, aims at writing a set of basic how-to articles. It describes
how to begin to write plugins, how to extend Jenkins with extension points, and how
to manipulate the Jenkins system even further.

I hope you will embark on a journey with me in discovering Jenkins, mastering
the concepts that surround build pipelines and implementing automation at scale.
Writing a book is something I have dreamed of doing for many years. I hope that
you will gain as much in reading the book as I have gained by writing it.

What you need for this book
An existing installation of Jenkins is recommended (but not needed). Beyond that,
we have provided examples in the following programming languages:

•	 Ruby v1.93
•	 Java
•	 C# (via MSBuild)
•	 JavaScript
•	 Bash/Dash + Expect
•	 Ansible YAML

Preface

[x]

Who this book is for
This book is intended for novice and intermediate-level Jenkins enthusiasts who are
in a unique position to implement and evangelize continuous integration practices,
continuous delivery solutions, and as a result build pipelines.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "For example if the Jenkins system is
configured to utilize a context path of http://localhost:8080/jenkins"

A block of code is set as follows:

<arguments>-Xrs –Xmx512m -Dhudson.lifecycle=hudson.lifecycle.
WindowsServiceLifecycle -jar "%BASE%\jenkins.war" --httpPort=8080</
arguments>

Any command-line input or output is written as follows:

$Jenkins-Mirror>sudo su – root

$Jenkins-Mirror>cat /tmp/id_rsa.pub >> ~/.ssh/authorized_keys

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
the Recovery tab as shown"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xi]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/
support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[xii]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

The Website
When this book, I decided it would be valuable to set up a website dedicated
to supporting its readers. Please feel free to visit and drop me a line with any
comments or questions. The URL is provided below:

http://www.masteringjenkins.com/

Questions
You can contact us on our Mastering Jenkins website at or you can submit questions
to the publisher at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.masteringjenkins.com/

[1]

Setup and Configuration
of Jenkins

Welcome to Mastering Jenkins. In this book, we will journey into the world of build
pipelines, automated testing, product delivery, and automation. Together we
will discover innovative ways to integrate Jenkins into the last mile of software
development, while furthering our knowledge of modern software engineering and
delivery practices. We will also discover scalable solutions that will help us catch
defects faster and deliver reliable software releases at higher velocities.

Our quest to master Jenkins will take us on an adventure in software engineering,
quality assurance, operations, architecture, and business process. These diverse
engineering and business disciplines uniquely tie together in software delivery
pipelines. By thought leading an organization and evangelizing good software
development practices, we can implement diversely scalable pipelines across
any number of technology stacks. As a result, an organization can outpace and
outmaneuver its competition.

Sprinkled throughout the pages of this book, you will discover some Zen proverbs,
which will be used to enlighten our journey. In literary works and historical texts,
Zen proverbs can be found in books that date back as early as the Tang dynasty
[618–907 AD]. During this period, Zen proverbs and Koans were widely adopted by
Buddhist monks as a way of promoting enlightenment through critical thinking and
self-discovery. These were further used as a way of teaching patience, persistence,
and enlightenment.

"If you are planning for a year, sow rice. If you are planning for a decade, plant a
tree. If you are planning for a lifetime, educate people." -- A Chinese Proverb

Setup and Configuration of Jenkins

[2]

This proverb instills values of planning, forethought, and education. These values
are key components to engineering, and encourage a plan for future sustainability. In
Jenkins, we can apply this concept to the architecture of software delivery pipelines.
When advocating for any cross-discipline collaborative cross-discipline practices we
will need to evangelize good architecture, plan the implementation properly, define
conventions, build a scalable solution, and then educate the user base. By doing this,
we can prevent most long-term Jenkins management nightmares by making it easier
to navigate and maintain. Due to the highly configurable nature of Jenkins, and the
various moving parts of the SDLC structuring the system carefully and organizing it
should be a constant consideration.

In this chapter, we will begin our journey by discovering proven Jenkins
management techniques that can help us provide a stable and scalable Jenkins
experience. Together we will learn to adjust Jenkins to fit unique organizational
requirements and provide better performance and fewer maintenance headaches.
Let's begin!

In this chapter, our focus will be on the following topics:

•	 The Jenkins platform architecture
•	 Jenkins on Microsoft Windows
•	 Configuring the JVM and Java arguments
•	 Jenkins on Linux and Unix
•	 Running Jenkins behind an NGINX reverse proxy
•	 Running Jenkins behind an Apache reverse proxy
•	 Creating and managing Jenkins backups
•	 Setting up a Jenkins mirror
•	 Jenkins on Mac OSX
•	 The Jenkins LTS release line
•	 Jenkins XML configuration files

Chapter 1

[3]

The Jenkins platform architecture and
configuration techniques
Jenkins, as you are probably aware, was built using Java. It's cross platform and
supports a wide variety of engineering patterns and technologies. It can effectively
support organizations of all sizes. Jenkins offers endless automation possibilities and
even has a vibrant plugin ecosystem.

In this section, we will cover configuration techniques aimed at advancing our
knowledge of the Jenkins architecture. Together, we will lay a foundation for reliable
automation and future scalability by learning how to configure the Jenkins main
operating environment.

Jenkins offers a cross-platform user experience by running on a Java Virtual
Machine (JVM). A JVM is a powerful virtualization technology used to execute Java
bytecode instructions, and provides a consistent software platform regardless of the
host OS.

The Jenkins community has created native installation packages for Microsoft
Windows, Mac OS X, Linux, and Unix. If Jenkins is not already installed (this book
assumes it is), it's highly recommended that you use one of the community-provided
packages if possible. If a native package is not available, Jenkins an most likely still
be configured to run, providing that the host operating system supports any of the
following web architectures:

•	 Apache Tomcat v5.0+
•	 JBoss Application Server 4.2+
•	 IBM WebSphere 7.0.0.7+
•	 WebLogic

It's recommended that you install Jenkins as a system service. There are
many available options to accomplish this task on the most popular OS
platforms. Additionally, it's important to automatically launch Jenkins
during the boot-up phase of the machine.

Setup and Configuration of Jenkins

[4]

Jenkins on Microsoft Windows
The initial installation of Jenkins on Microsoft Windows is straightforward. The
Microsoft Windows Jenkins MSI package comes complete with the Java Runtime
Environment (JRE) prerequisite and Microsoft .NET 2.0 framework. This bundling
provides a seamless Jenkins installation experience, and alleviates the need for any
external prerequisite software installations.

By using the MSI installation package, the Jenkins installation wizards will
automatically install itself as a Windows service. By installing Jenkins as a Microsoft
Windows service it will become easier to manage and control. Windows services
provide an easy way to specify what the system should do when Jenkins crashes.

Once Jenkins has been installed we will want to verify that Jenkins has properly been
installed and configured as a Windows service. To do this we will need to open the
Services area in the Control Panel and locate the entry for Jenkins. To navigate to the
Windows services management area, go to Start-> Control Panel -> Administrative
Tools -> Services.

If Jenkins is installed properly as a Windows service, we will see an entry for it listed
in the Windows Services panel, as shown in the following screenshot:

Figure 1-1: The Windows Services panel

Chapter 1

[5]

The Windows service properties dialog displays the available options for Windows
services. From this screen, we can modify how the service is started, what user
account the service runs under, and even manage how Microsoft Windows recovers
the Jenkins service if it encounters any problems.

To open the Windows service properties panel for Jenkins, double-click on the
Jenkins entry on the main Windows Services panel. Windows will then display the
Jenkins Properties dialog, as shown here:

Figure 1-2: The Jenkins Properties dialog

Setup and Configuration of Jenkins

[6]

Let's make Jenkins more fault tolerant. To do this, we need to modify the Jenkins
Windows service definition and implement a more reliable way for our Jenkins
service to recover from failure. Click on the Recovery tab, as shown here:

Figure 1-3: The Recovery tab in the Jenkins Properties dialog

From here, we can direct Microsoft Windows to automatically restart the Jenkins
service if it fails. In the example shown in the preceding screenshot, we have
implemented fault tolerance for Jenkins by updating the fields in the dialog.

To proceed update your Jenkins service to reflect the above implementation.
Click on Apply and restart the Jenkins service.

Chapter 1

[7]

Configuring the JVM and Java
arguments–port, JRE, and memory
Java web-ui applications, including Jenkins, run on port 8080. To change this
listening port, we need to modify the Java startup configuration file.

In Microsoft Windows, we can customize all of the Java JVM options by modifying
the Jenkins.xml configuration file. The primary Jenkins configuration file can be
found at $JENKINS_HOME/jenkins.xml.

On Microsoft Windows, the $JENKINS_HOME directory and primary XML
configuration file can usually be found in one of the following locations:

•	 C:\Program Files\Jenkins\jenkins.xml

•	 C:\Program Files (x86)\Jenkins\jenkins.xml

The primary XML configuration file contains a number of settings and options
that pertain to the JVM. One of these settings is the listening port. Let's proceed in
changing the listening port. We will walk through these steps together.

1.	 Edit the primary XML configuration file in a text editor and locate the
<arguments> node. An example of the argument node is shown here:
<!-- if you'd like to run Jenkins with a specific version of Java,
specify a full path to java.exe.
 The following value assumes that you have java in your PATH.
-->
 <executable>%BASE%\jre\bin\java</executable>
 <arguments>-Xrs -Xmx256m -Dhudson.lifecycle=hudson.
lifecycle.WindowsServiceLifecycle -jar "%BASE%\jenkins.war"
--httpPort=8080</arguments>

2.	 Change the value for –httpPort and save the configuration file.
3.	 Restart the Jenkins service and verify that Jenkins is running on the preferred

port.

When customizing the Jenkins listener port, it is a requirement that
the port Jenkins binds to is not in use by another service (including
IIS, Apache, and so on).

Now that we have completed the adjustments to the listening port, let's take a look at
some of the other available JVM options.

Setup and Configuration of Jenkins

[8]

A default Jenkins installation is allocated 256 MB of memory. The initial memory
allocated is sufficient for basic operations. As a Jenkins instance grows and becomes
more complex it will inevitably run out of memory. Before we start to see build
failures related to Java heap space, or PermGen memory we should allocate
additional memory to Java and Jenkins.

Java v1.7, and earlier, uses permanent generation memory and maximum permanent
generation memory allocations. With the advent of Java v1.8, Oracle has replaced the
permanent generation memory options with metaspace memory options. This has
added a bit of confusion surrounding how to properly manage memory in Java. To
better understand the JVM and its memory knobs, let's take a look at the following
table. It describes what each of the available memory options:

Setting Name Example Argument Description
Initial heap size -Xms = 512 Sets the initial Java heap size
Maximum heap size -Xmx = 1024m Sets the max Java heap size
Initial permanent
generation memory

-XX:PermSize = 512m Sets the initial available
permanent generation
memory

Maximum permanent
generation memory

-XX:MaxPermSize =
1024m

Sets the highest amount of
PermGen memory that can
be allocates

Maximum metaspace -XX:MaxMetaspaceSize
= 1024m

Sets the max metaspace
amount (similar to PermGen
but dynamic by default)

Java memory arguments and descriptions for Windows

Allocating too little memory may cause Jenkins and Java to throw memory errors.
However, allocating too much memory will degrade the operating system's
performance. It is important to adjust these settings carefully, and find a balance
suitable for the target system. These settings will need to be customized to fit your
specific hardware and operating system configuration. Here is an example to
increase the maximum heap size:

<arguments>-Xrs –Xmx512m -Dhudson.lifecycle=hudson.lifecycle.
WindowsServiceLifecycle -jar "%BASE%\jenkins.war" --httpPort=8080</
arguments>

While customizing the Java options, there are a number of things to keep in mind.
Here are a few tips and notes on allocating memory to Microsoft Windows and Java:

•	 Microsoft Windows has a required overhead for the OS. Be sure to leave
enough RAM available for the OS to function properly (more than 128MB).

Chapter 1

[9]

•	 The larger the initial heap and/or maximum heap memory size, the larger
the permanent generation memory allocation will need to be. This is because
the permanent generation memory stores data about the contents of the heap.

•	 The metaspace switch is only available in Java v1.8 or higher versions.
•	 The permanent generation memory has been deprecated and removed in

Java v1.8.
•	 The memory values you specify must be a multiple of 1,024 and greater than

1 MB.

Jenkins on Linux and UNIX
Jenkins offers a wide spectrum of support for the Linux and Unix operating systems.
Its cross-platform capabilities have made it a very popular automation tool. The
Jenkins community has created native installation packages for most Linux and Unix
distributions. Currently, there are installation packages available for the following
Linux and Unix flavors:

•	 Ubuntu/Debian
•	 Red Hat/Fedora/CentOS
•	 OpenSUSE
•	 FreeBSD
•	 Solaris/OpenIndiana
•	 Gentoo
•	 Docker

The easiest way to install Jenkins on a Linux or Unix system is to use a standard
package manager, such as YUM, OpenCSW, IPS, or Aptitude. For the purpose of
brevity, we will focus primarily on CentOS (YUM) and Debian oriented (APT)
distributions.

Configuring the JVM
On Linux and Unix hosts, configuring the JVM memory parameters involves
modifying the service scripts that initialize the Jenkins daemon. For Debian/Ubuntu
systems, the file you will need to modify is usually located in /etc/default/
Jenkins.

Setup and Configuration of Jenkins

[10]

For CentOS-based systems, the file you will need to modify is usually located in
/etc/sysconfig/Jenkins.

Regardless of the operating system, the setting that lets us adjust the JVM options is
the 'JAVA_ARGS=' property.

With the advent of Java 1.8, as mentioned earlier, there are some new and deprecated
memory settings. The definitions of available memory options are described in table
below:

Title Example Arg Description
Initial heap size -Xms = 512 Sets the initial Java heap size
Maximum heap size -Xmx = 1024m Sets the max Java heap size
Initial permanent
generation memory

-XX:PermSize = 512m Sets the initial available
permanent generation
memory

Maximum permanent
generation memory

-XX:MaxPermSize =
1024m

Sets the highest amount of
PermGen memory that can
allocated

Maximum metaspace -XX:MaxMetaspaceSize
= 1024m

Sets the max metaspace
amount (similar to PermGen,
but dynamic by default)

Java memory arguments and descriptions for Linux (same as Windows)

Adjusting the memory setting for Java in Linux is simply a matter of adapting the
JAVA_ARGS= property to contain the correct switches. An example of how to change
the initial heap size property is shown here:

JAVA_ARGS=-Xmx=512m

Once you have completed the modifications to fit your hardware configuration, you
will need to restart the Jenkins service to make it take effect.

Memory allocation tip
The larger the initial heap and/or maximum heap memory size, the
larger the permanent generation memory allocation will need to be.
This is because the permanent generation memory stores data about the
contents of the heap. These memory settings are designed to let you
customize the JVM environment that Jenkins operates in.

Chapter 1

[11]

Running Jenkins behind an NGINX
reverse proxy
One of the newer web server solutions to take the Internet by storm is NGinX
(pronounced Engine X). Developed in 2004 under the supervision of Igor Sysoev,
NGINX was created to facilitate scalability and the load-balancing requirements
of high-traffic web sites. Since its inception, this tool has gained wide acceptance
and notoriety. Let's look at how to apply a reverse proxy to Jenkins. This can be
accomplished in a straightforward manner. Let's take a few minutes to look at how
to achieve this.

If NGINX has not already been installed on the target system, the first step will be to
install it. NGINX can easily be installed onto an Ubuntu/Debian or CentOS-based
system using the following terminal commands:

CENTOS#> yum install nginx

DEBIAN#> apt-get install nginx

Upon completing the installation of the NGINX web server, verify that the
installation was successful by executing the nginx –v command. This will display
the version information for the NGINX web server on the terminal and provide us
with the assurance that it is installed properly.

Now that the NGINX web server has been installed onto the target system, the
system will need to be configured to act as a reverse proxy for the Jenkins JVM. To
accomplish this, simply update the nginx configuration files to contain a proxy pass.
The configuration files for nginx on Ubuntu can be found in the following location:

/etc/nginx/sites-enabled/default

An example (provided at http://www.jenkins-ci.org) of a Jenkins proxy pass entry
with Jenkins running under a subdomain (Jenkins.domain.com) is provided below.

server {
 listen 80;
 server_name jenkins.domain.com;
 return 301 https://$host$request_uri;
}

server {

 listen 80;
 server_name jenkins.domain.com;

 location / {

http://www.jenkins-ci.org

Setup and Configuration of Jenkins

[12]

proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_

for;
proxy_set_header X-Forwarded-Proto $scheme;

Fix the "It appears that your reverse proxy set up is broken"
error.

proxy_pass http://127.0.0.1:8080;
proxy_read_timeout 90;

proxy_redirect http://127.0.0.1:8080 https://jenkins.
domain.com;
 }
 }

Once the configuration file has been updated, save the file to the disk, and restart
nginx with the following command:

#>sudo service nginx restart

For the Jenkins UI and the NGINX reverse proxy to properly integrate, the context
paths of Jenkins and the NGINX subdirectory must match. For example, if the
Jenkins system is configured to use a context path of http://localhost:8080/
jenkins, the proxy pass context defined in the web server's configuration file must
also reflect the /Jenkins suffix.

To set the context path for Jenkins, add the --prefix= entry to the JENKINS_ARGS=
property. An example of this configuration entry is provided below.

--prefix=/Jenkins
--prefix=/somecontextpathhere

The JENKINS_ARGS configuration line is located inside the Jenkins startup bash/dash
script. This file is typically found in one of the following locations on the filesystem
(dependent on the Linux distribution):

/etc/default/Jenkins

/etc/sysconfig/Jenkins (line 151)

Once everything has been configured, restart the NGINX and Jenkins services to
finalize the implementation of the reverse proxy redirect solution.

After this has been completed, navigate from a web browser to your Jenkins URL
on port 80, and verify that the Jenkins UI behaves properly.

Chapter 1

[13]

Running Jenkins behind an Apache reverse
proxy
The Apache HTTP Server Project (referred to as Apache) was first released to the
public in April 1995. Apache represents a cornerstone of the Internet and is highly
acclaimed. Since its initial release, Apache has become one of the most widely
adopted web server platforms around the world. Apache thrives to this day, and has
a vast array of modules that extend its functionality.

Running Jenkins on a nonstandard web port is a limitation that you may wish to
address. It requires users to specify the port as part of the URL, which can become
a hassle to manage. To address this concern, it's useful to run Jenkins behind an
Apache proxy. Apache provides an extensive set of features that can benefit Jenkins
users. Some benefits of this solution include:

•	 Running Jenkins on port 80 (privileged port workaround)
•	 Adding SSL support for your Jenkins instance
•	 Running Jenkins from a different context, either /Jenkins or /ci
•	 Running Jenkins side by side with other web apps, http://jenkins.foo.

com

On Linux and Unix hosts, all TCP and UDP ports lower than 1024 are considered
privileged. A privileged port is one where the services exposed are running under
a privileged user account (typically, root). Running Jenkins as root is considered
dangerous and is, therefore, not recommended. The prescribed user account under
which the Jenkins service executes is jenkins.

The privileged port restriction can create a bit of a problem for Jenkins
administrators. We may want Jenkins to be accessible on standard web port 80,
but still want to run it under the Jenkins user account. By running Jenkins behind
Apache, we can address this issue while still adhering to best practices.

One possible solution is to run Jenkins behind Apache and use mod_proxy to
internally redirect traffic. This solution will allow us to get Jenkins to respond to
requests on a privileged port without executing it as the root user, or changing its
port configuration.

Apache's mod_proxy operates by forwarding incoming TCP/UDP port 80 requests to
Jenkins on port 8080. Any responses from Jenkins are forwarded back to port 80. This
creates a seamless experience for web users, while allowing Jenkins to remain on its
original port.

http://jenkins.foo.com
http://jenkins.foo.com

Setup and Configuration of Jenkins

[14]

To configure Jenkins to use Apache's mod_proxy module, we will need a basic
installation of the Apache web server (http://www.apache.org). If Apache is
not already installed on your system, you can use the standard package manager
for your Linux or Unix distribution to install it. Here are some example terminal
commands to install Apache on Linux:

• Debian/Ubuntu
$> sudo apt-get update

$> sudo apt-get install apache2

Installs Apache2 in -> /etc/apache2

• CentOS/Fedora

$> sudo yum install httpd

Installs Apache2 in -> /etc/httpd

Once Apache is installed on the host, we will need to ensure that mod_proxy is
installed and loaded also.

On RHEL-/CentOS-based systems, mod_proxy is typically installed at the same time
as Apache. For Debian-based systems, you may need to install the Apache mod_
proxy module specifically. You can look at your Apache modules folder on your
system to see whether the mod_proxy.so and mod_proxy_http.so files are present.

To ensure mod_proxy is operating properly we need to ensure that Apache loads the
mod_proxy.so and mod_proxy_http.so modules when Apache initializes. Apache's
configuration file is usually httpd.conf or apache2.conf, depending on your
system. Let's open up the Apache configuration file in an editor (vi, nano, and so on)
and ensure that we have the proper LoadModule directives.

Next we will want to direct Apache to load our mod_proxy modules. The proper
Apache configuration lines are provided below.

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so

If the preceding lines do not exist (or are commented out) in
your Apache configuration file, you will need to add them or
uncomment them.

http://www.apache.org

Chapter 1

[15]

Once the LoadModule changes to the Apache configuration file have been completed,
we will need to configure the port 80 VirtualHost XML block and create a reverse
proxy. An example of an Apache virtual host entry for a Jenkins instance and proxy
running on port 80 is provided below.

<VirtualHost *:80>
ServerAdmin webmaster@localhost
ProxyRequests Off
ProxyPreserveHost On
AllowEncodedSlashes On

 <Proxy *>
 Order deny,allow
 Allow from all
 </Proxy>

 ProxyPass / http://localhost:8080/ nocanon
 ProxyPassReverse / http://localhost:8080/
</VirtualHost>

Now that the virtual host configuration entries have been added, save the
configuration file to disk and restart Apache. Depending on the distribution, the
commands necessary to restart Apache may vary slightly. Examples for CentOS and
Debian are provided here:

•	 CentOS:
$> sudo service httpd restart

•	 Debian/Ubuntu:

$> sudo service apache2 restart

If this is a root level (/) proxy pass, make sure you have a tailing
slash in your ProxyPass and ProxyPassReverse directives.

For the Jenkins UI and the Apache reverse proxy to properly integrate, the context
paths of Jenkins and the Apache subdirectory must match. For example, if the
Jenkins system is configured to utilize a context path of http://localhost:8080/
jenkins, the proxy pass context defined in the Apache configuration file must also
reflect the /Jenkins suffix.

Setup and Configuration of Jenkins

[16]

To set the context path for Jenkins, add the --prefix= entry to the JENKINS_ARGS=
property. An example of this configuration entry is provided below.

--prefix=/Jenkins
--prefix=/somecontextpathhere

The JENKINS_ARGS configuration line is located inside the Jenkins startup bash/dash
script. This file is typically found in one of the following locations on the filesystem
that houses Jenkins (depending on your Linux distribution):

/etc/default/Jenkins

/etc/sysconfig/Jenkins (line 151)

Once everything has been configured, restart the Apache one more time as well
as the Jenkins service to finalize the implementation of the reverse proxy solution.
To verify everything is functioning properly navigate from a web browser to your
Jenkins URL on port 80 and verify that the Jenkins UI behaves as expected.

Disaster recovery in Jenkins
Operating a Jenkins master from a single machine inherently creates a Single
Point of Failure (SPOF). If the Jenkins master was lost for any reason, rebuilding it
could be time consuming and may not be very easy. If the Jenkins master is lost or
destroyed, there may be a crippling impact on your organization's ability to build,
test, or release. Let's address this and create a disaster-recovery plan for Jenkins to
ensure a high level of availability and quick turnaround time for any failures that
may occur.

Jenkins snapshot backups
Snapshot backups of the $JENKINS_HOME directory can provide a level of fault
tolerance, and offer an effective solution for system-wide backups. There are a
number of Jenkins plugins that can effectively assist us in creating snapshot backups.
The most popular backup plugins include BackUp, thinBackup, and SCM Sync
configuration. You will need to choose the one that best suits your specific needs.

All of the above listed plugins are available from the Jenkins Manage Plugins screen.
You can access this area by opening Jenkins, logging in as an administrator, and then
going to Jenkins -> Manage Jenkins -> Manage Plugins -> Available plugins.

Chapter 1

[17]

The following screenshot shows some of the available backup plugins on the Jenkins
Manage Plugins screen:

Figure 1-4: The Manage Jenkins screen

Installing any of the available backup plugins (or any plugin for that matter) can
be accomplished by simply marking the appropriate checkbox and clicking on the
Download now and install after restart button.

Once the plugin has been installed, it is highly recommended that you read any
usage instructions and documentation. A direct link to the documentation for
all Jenkins plugins can be found at https://wiki.jenkins-ci.org/display/
JENKINS/Plugins.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

https://wiki.jenkins-ci.org/display/JENKINS/Plugins
https://wiki.jenkins-ci.org/display/JENKINS/Plugins
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Setup and Configuration of Jenkins

[18]

Setting up a Jenkins mirror – rsync
If resources are available, another disaster-recovery option might be to set up a
Jenkins mirror. A Jenkins mirror replicates a primary Jenkins instance in real time
onto another host. This way, if there is an outage on the primary Jenkins instance, we
can simply alternate traffic over to the mirror.

To implement a Jenkins mirror, we can use rsync to create a synchronized duplicate
of the $JENKINS_HOME directory structure; this includes synchronizing all content,
configuration files, and data onto our mirror. The Jenkins master can then be
swapped with the mirror if there is a failure, or even if the primary instance is
undergoing maintenance that requires downtime.

To begin the implementation of a Jenkins mirroring solution, we will need two
systems with matching configurations (OS, disk, RAM, and so on). The first system
will have Jenkins installed and may already be in production use. This system will be
referred to as the Jenkins-Primary.

The second system will need to be preconfigured with a basic installation of Jenkins
(which will be replaced later). This system will be referred to as the Jenkins-Mirror.
Once Jenkins is installed on the Jenkins-Mirror, we will need to shut down the
Jenkins service.

Shutting down the Jenkins service can be accomplished by executing the following
command:

$> sudo service jenkins stop

Our next step in creating a Jenkins mirroring solution is to install the rsync and
openssh-clients packages on both hosts (primary and mirror). Rsync is a widely
utilized file and folder synchronization tool that replicates files, folders, and data
across devices. It has the ability to synchronize entire folder structures or just the
deltas. This makes it an optimal tool for our implementation of the Jenkins mirroring
solution. The openssh-clients package works in tandem with rsync and enables
rsync to perform its synchronization tasks over the SSH protocol. Let's take a minute
to get these installed on the Jenkins primary and mirror systems.

To install rsync and OpenSSH, execute the following commands for your target OS:

• RHEL/CentOS:
$> sudo yum install rsync

$> sudo yum install openssh-clients

Chapter 1

[19]

•	 Debian/Ubuntu:

$> sudo apt-get install rsync

$> sudo apt-get install openssh-clients

Once rsync has been installed, let's verify that it is operating properly. Execute the
following commands in the command-line terminal:

$> which rsync

$> rsync --version

If everything is functioning correctly, RSYNC will return an output similar to the
examples provided here (for both primary and mirror):

•	 Jenkins-Mirror:
[root@jenkinsmirror jenkins]# which rsync

/usr/bin/rsync

[root@jenkinsmirror jenkins]# rsync --version

rsync version 3.0.6 protocol version 30

Copyright (C) 1996-2009 by Andrew Tridgell, Wayne Davison, and
others.

•	 Jenkins-Primary:

[root@jenkinsprimary jenkins]# which rsync

/usr/bin/rsync

[root@jenkinsprimary jenkins]# rsync --version

rsync version 3.0.6 protocol version 30

Copyright (C) 1996-2009 by Andrew Tridgell, Wayne Davison, and
others.

Now that we have verified that the necessary packages are installed, it is time to
perform an initial pull of the $JENKINS_HOME directory from the Jenkins-Primary
server over to the Jenkins-Mirror. To accomplish this, we need to use the command
sudo to access the root user account on the Jenkins-Mirror, and have rsync fetch the
contents from the Jenkins-Primary.

Enter the following commands into the terminal on the Jenkins-Mirror (replace
jenkinsprimary in the following command with your Jenkins-Primary IP address):

$> sudo su - Jenkins
$> sudo rsync -avuh --delete -e ssh root@jenkinsprimary:/var/lib/
jenkins/* /var/lib/jenkins

Setup and Configuration of Jenkins

[20]

The initial pull of the $JENKINS_HOME directory and its contents may
take some time, depending on the size and network connection speed.
Upon completion, you should see something similar to the following
message in your terminal:
sent 3.55M bytes received 77.70G bytes 15.78M bytes/sec
total size is 79.64G speedup is 1.02

Once rsync has completed, we need to verify that the initial transfer was successful
by starting the Jenkins service on the Jenkins-Mirror. We should inspect it to make
sure it looks identical to the Jenkins-Primary server. Enter the following commands
into the command line terminal to fire up Jenkins on the Jenkins-Mirror:

$> sudo service jenkins start

Once the initial pull of the $JENKINS_HOME directory has been verified, we need
to implement SSH key-based authentication so that we can execute our rsync
commands without password prompts and manual intervention.

To get SSH key-based authentication implemented we will need to create SSH keys
and share them across our server solutions. This includes the Jenkins-Primary and
Jenkins-Mirror hosts.

It is important to mention that this step may not be necessary if your host
already has the RSA or DSA keys generated for the root user account.

To connect from Jenkins-Primary to Jenkins-Mirror with SSH-key based
authentication, use the following commands:

$Jenkins-Primary>sudo su – root

$Jenkins-Primary>ssh-keygen –t rsa

$Jenkins-Primary>scp ~/.ssh/id_rsa.pub root@jenkins-mirror:/tmp/

$Jenkins-Mirror>sudo su – root

$Jenkins-Mirror>cat /tmp/id_rsa.pub >> ~/.ssh/authorized_keys

To connect from Jenkins-Mirror to Jenkins-Primary with SSH-key based
authentication, use the following commands:

$Jenkins-Mirror>sudo su – root

$Jenkins-Mirror>ssh-keygen –t rsa

$Jenkins-Mirror>scp ~/.ssh/id_rsa.pub root@jenkins-primary:/tmp/

$Jenkins-Primary>sudo su – root

$Jenkins-Primary>cat /tmp/id_rsa.pub >> ~/.ssh/authorized_keys

Chapter 1

[21]

Once the SSH keys are generated, we need to create a line item in the authorized_
keys file to implement SSH-keybased authentication. An example of the line item in
the authorized_keys file is shown below.

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEA/QIL17A1XSjDLZVqf49F0Y785Foq4
A6UaBAaVQApB0yyOXVIwqu2H035nI4zDlhymgii6zfHeylHgKrjJyS2MLoiO0pFo4
XEFo2UNoy8CXKPJR+Sf9WeWjSvvoX3OE0YTfiFDMb29MvIc+bfUKRoAPeCqj4s81
Vf/v3f3JteT7ExQAN22AjUNceiIr2bxLbr7I8bMdN4886gtXYFPAtkQ3YXe1S
Wb3xlYDtL8jtAl39Cw5FSCkQM5ToLYsk95+0DAAfNAeUx/sWYVrKU+AvrkMran
JdmOa86vEnuhqOaGD3r2y+AVuLGid1r3Mcg7VrJBs0oKlj4OH9vNZF68x
CQdw== root@example.com

Once this step has been completed successfully, we should have the proper
prerequisites in place to connect bidirectionally via SSH without being prompted for
a password.

Let's test this functionality by executing the following commands on both the
Jenkins-Primary and Jenkins-Mirror hosts:

$Jenkins-Mirror>ssh root@jenkins-primary

$Jenkins-Primary>ssh root@jenkins-mirror

Once the SSH key authentication has been verified, we will need to implement our
synchronization solution on a schedule. Once the authentication has been verified,
we will need to implement our syncing on a scheduled basis for this we will use
the CRON tab. Finally, we can configure our CRON tab to execute rsync. This will
enable the Jenkins-Mirror to automatically retrieve the filesystem deltas (once every
30 minutes). To achieve this, we need to open the crontab on the mirror (crontab –e)
and add a directive, like the one shown here:

*/30 * * * * /usr/bin/rsync -avuh --delete -e ssh root@
jenkinsprimary:/var/lib/jenkins/* /var/lib/jenkins

Once the crontab entry has been input and saved, we should see data transferred
from the Jenkins-Primary server to Jenkins-Mirror every 30 minutes.

It is highly recommended that the $JENKINS_HOME folder contents
be committed to source control, in addition to the mirroring option
provided earlier. This will ensure that changes to the jobs are tracked
and recoverable on the mirror if they were to be corrupted for any
reason.

Setup and Configuration of Jenkins

[22]

Jenkins on Mac OS X
For Mac OS X users, the Jenkins community provides a native PKG installer. This
installer has a similar guided installation wizard as the Microsoft Windows one, and
allows us to specify the traditional installation details. For users who wish to alter the
Jenkins listening port or memory options, some command-line magic will be required.

To alter the Jenkins listening port, we need to explicitly define the port in the
following properties file:

 /Applications/Jenkins/winstone.properties

To accomplish this we will need to create the winstone.properties file if it does
not already exist on our host, and detail the httpPort parameter inside it. An
example of how to set httpPort in the winstone.properties file is shown here:

httpPort=80

Once created, the winstone.properties file will automatically load and override
the default Jenkins port with the one specified within.

The winstone.properties file is not limited to simply altering the Jenkins listening
port. There are other options available for customization as well. These options include
logfile, httpListenAddress, and more. To obtain a complete list of the available
override options, you can run the following commands from your OS X terminal:

cd /Applications/Jenkins
java –jar Jenkins.war --help

The JVM runtime memory settings (Heap memory, PermGen, and so on) are stored
in a standard properties file format (org.jenkins-ci.plist). The launch daemon
retrieves the values stored in this properties file. If no such file exists, the system
will use the built-in defaults. On Mac OS X, this plist file will typically reside in the
following location:

/Library/Preferences/org.jenkins-ci.plist

Adjusting the Java memory options for Jenkins involves modifying the appropriate
property entries inside the org.jenkins-ci.plist file. To modify this file, we can
use the OS X defaults command. This command allows us to read and write entries
in the plist file without fear of corruption or improper formatting. A few example
descriptions and use cases for this command are detailed in the sections below.

To view all settings in the plist file, execute the following command in the
command-line terminal:

sudo defaults read /Library/Preferences/org.jenkins-ci

Chapter 1

[23]

The output of the preceding command will look like this:

{

 heapSize = 512m;

 minHeapSize = 256m;

 minPermGen = 256m;

 permGen = 512m;

 tmpdir = "/Users/Shared/Jenkins/tmp";

}

To retrieve the value of the heapSize setting from the plist file, execute the
following command in the command-line terminal:

sudo defaults read /Library/Preferences/org.jenkins-ci heapSize

The output of the preceeding command will look like this:

512m

To set the value of the heapSize setting in the plist file, execute following
command in the command-line terminal:

sudo defaults write /Library/Preferences/org.jenkins-ci heapSize 1024m

If any alterations are made to the org.jenkins-ci.plist file, make sure you restart
Jenkins for them to take effect. To restart Jenkins from the OS X command line
terminal enter the following commands in the terminal:

sudo launchctl unload /Library/LaunchDaemons/org.jenkins-ci.plist

sudo launchctl load /Library/LaunchDaemons/org.jenkins-ci.plist

The Jenkins LTS release line
The Jenkins community recognizes that installing an edge release may be risky,
and upgrading weekly (the default option) may pose a bit of an overhead in
maintenance. For the more conservative users, the Jenkins Long-Term Support
(LTS) release may be a more viable option. The Jenkins LTS release is delivered
once every 12 weeks (instead of every week) and is selected by community vote.
The Jenkins LTS release represents a community-voted selection of the most stable
Jenkins release within the past 12 weeks.

Setup and Configuration of Jenkins

[24]

In this section of Mastering Jenkins, you will learn about the Jenkins LTS release
and understand how to convert an existing edge Jenkins installation over to the
LTS release line. The Jenkins platform features a streamlined upgrade process,
and typically provides all upgrades through the Jenkins UI. To convert a Jenkins
installation over to the LTS line, there are two options available:

•	 Uninstall and replace the existing latest and greatest installation with the LTS
package (immediate, but nuclear, option)

•	 Convert an existing installation and point it to the LTS update URL (waits for
the next LTS release)

This section will focus on converting an existing installation over to the LTS release
line. We can do this by pointing our Jenkins instance to the LTS update URL. This
is because uninstalling and reinstalling the Jenkins platform is a straightforward
process and is already documented in a number of places.

To migrate our Jenkins installation to the LTS release line, we will need to modify
hudson.model.UpdateCenter.xml, located in $JENKINS_HOME, to point our Jenkins
instance to the LTS release update center URL. The Hudson.model.UpdateCenter.
xml file is what Jenkins uses to determine where it should look for updates to the
system. The contents of this XML file are shown here:

<?xml version='1.0' encoding='UTF-8'?>
<sites>
 <site>
 <id>default</id>
 <url>http://updates.jenkins-ci.org/stable/update-center.json</url>
 </site>
</sites>

As you may have guessed already, the node in the XML that we will need to alter is
the <url> node. The Jenkins LTS release has its own update center URL. Let's replace
the existing update center URL with the one shown here:

http://updates.jenkins-ci.org/stable/update-center.json

Once the file is modified and saved, we need to restart the Jenkins service to
complete the switchover to the LTS release line for all future updates.

The LTS release comes out every 12 weeks. We will need to wait
for this cycle to complete before our Jenkins instance is completely
switched over.

http://updates.jenkins-ci.org/stable/update-center.json

Chapter 1

[25]

The Jenkins LTS release is also available as a Docker container. This means that if the
target setup is new, we can leverage the LTS Docker container (if desired) to perform
the duties of the Jenkins master. Details on the Jenkins official LTS Docker container
can be found at the following URL:

http://jenkins-ci.org/content/official-jenkins-lts-docker-image

Jenkins XML configuration files
Configuration data in Jenkins is persisted to disk via XML files. These XML files
contain information describing how the Jenkins instance will behave. Understanding
how Jenkins implements configuration XML files and manages the data they contain
can prove to be valuable in debugging issues and keeping the system stable.

In Jenkins, persistent configuration data is serialized into XML and subsequently
written to disk. The primary Jenkins subsystem serializes its data into config.xml
files. These config.xml files govern the overall Jenkins system and describe how
Jenkins will behave upon startup. The primary config.xml configuration file can be
found in the following location:

$JENKINS_HOME/config.xml

An example of this configuration file is provided here (taken from an Apple OS X
installation of Jenkins):

<?xml version='1.0' encoding='UTF-8'?>
<hudson>
 <disabledAdministrativeMonitors/>
 <version>1.0</version>
 <numExecutors>2</numExecutors>
 <mode>NORMAL</mode>
 <useSecurity>true</useSecurity>
 <authorizationStrategy class="hudson.security.AuthorizationStrategy
$Unsecured"/>
 <securityRealm class="hudson.security.SecurityRealm$None"/>
 <disableRememberMe>false</disableRememberMe>
 <projectNamingStrategy class="jenkins.model.ProjectNamingStrategy$De
faultProjectNamingStrategy"/>
 <workspaceDir>${ITEM_ROOTDIR}/workspace</workspaceDir>
 <buildsDir>${ITEM_ROOTDIR}/builds</buildsDir>
 <markupFormatter class="hudson.markup.EscapedMarkupFormatter"/>
 <jdks/>
 <viewsTabBar class="hudson.views.DefaultViewsTabBar"/>
 <myViewsTabBar class="hudson.views.DefaultMyViewsTabBar"/>
 <clouds/>

http://jenkins-ci.org/content/official-jenkins-lts-docker-image

Setup and Configuration of Jenkins

[26]

 <slaves>
 <slave>
 <name>Windows 2012</name>
 <description></description>
 <remoteFS></remoteFS>
 <numExecutors>1</numExecutors>
 <mode>NORMAL</mode>
 <retentionStrategy class="hudson.slaves.
RetentionStrategy$Always"/>
 <launcher class="hudson.plugins.sshslaves.SSHLauncher"
plugin="ssh-slaves@1.9">
 <host></host>
 <port>22</port>
 <credentialsId>0bb868e0-2cd6-4ab2-9781-a373d914cb85</
credentialsId>
 <maxNumRetries>0</maxNumRetries>
 <retryWaitTime>0</retryWaitTime>
 </launcher>
 <label>Windows Build Pool</label>
 <nodeProperties/>
 <userId>anonymous</userId>
 </slave>
 </slaves>
 <scmCheckoutRetryCount>0</scmCheckoutRetryCount>
 <views>
 <hudson.model.AllView>
 <owner class="hudson" reference="../../.."/>

 <name>All</name>
 <filterExecutors>false</filterExecutors>
 <filterQueue>false</filterQueue>
 <properties class="hudson.model.View$PropertyList"/>
 </hudson.model.AllView>
 <listView>
 <owner class="hudson" reference="../../.."/>
 <name>Build.TestApp</name>
 <filterExecutors>false</filterExecutors>
 <filterQueue>false</filterQueue>
 <properties class="hudson.model.View$PropertyList"/>
 <jobNames>
 <comparator class="hudson.util.CaseInsensitiveComparator"/>
 </jobNames>
 <jobFilters/>
 <columns>

Chapter 1

[27]

 <hudson.views.StatusColumn/>
 <hudson.views.WeatherColumn/>
 <hudson.views.JobColumn/>
 <hudson.views.LastSuccessColumn/>
 <hudson.views.LastFailureColumn/>
 <hudson.views.LastDurationColumn/>
 <hudson.views.BuildButtonColumn/>
 </columns>
 <recurse>false</recurse>
 </listView>
 </views>
 <primaryView>All</primaryView>
 <slaveAgentPort>0</slaveAgentPort>
 <label></label>
 <nodeProperties/>
 <globalNodeProperties/>
</hudson>

As we can see, the nodes defined in the XML file provide configuration definitions
for the overall Jenkins system. The nodes govern the overall behavior of the Jenkins
system. Some of the configuration highlights include:

•	 Number of executors on the master
•	 Workspace folder definitions
•	 Security authorization strategy
•	 Master/slave definitions
•	 View definitions (the tabs on the main Jenkins dashboard)
•	 Slave agent ports

The second configuration XML we will investigate is dedicated to Jenkins jobs. These
configuration files are located in $JENKINS_HOME/jobs/<JOBNAME>/config.xml.
Each config.xml file belongs to a unique job defined in Jenkins. An XML DOM
derived from the JenkinsExample job is provided here:

<?xml version='1.0' encoding='UTF-8'?>
<project>
 <actions/>
 <description></description>
 <keepDependencies>false</keepDependencies>
 <properties/>
 <scm class="hudson.scm.NullSCM"/>
 <canRoam>true</canRoam>
 <disabled>false</disabled>

Setup and Configuration of Jenkins

[28]

 <blockBuildWhenDownstreamBuilding>false</
blockBuildWhenDownstreamBuilding>
 <blockBuildWhenUpstreamBuilding>false</
blockBuildWhenUpstreamBuilding>
 <triggers/>
 <concurrentBuild>false</concurrentBuild>
 <builders/>
 <publishers/>
 <buildWrappers/>
</project>

As we can see from the sample config.xml provided, the Project XML DOM
contains persistent data about a given job, its build steps, and any related
automation. This includes information related to SCM solutions, triggers,
builders, publishers, buildWrappers, and more.

It is highly recommended that all Jenkins configuration files are
committed to source control. This will ensure that changes and
history are preserved properly. This solution will also provide the
ability to revert changes to a Jenkins job when needed.

Summary
In this chapter, we have focused on techniques that taught us how to create and
manage a Jenkins instance. This represents the foundation for automation. By
mastering these configuration solutions, you have learned ways in which you can
make your Jenkins system stable and scalable. In this chapter, we have discussed
port changes, memory management, backups, LTS release migration, RSYNC
mirroring, and configuration data.

From here, we will move on to discover the power of Jenkins slave agents, complete
job management, UI administration, and much more. As we progress through
our journey, we will delve into the exciting features Jenkins provides, and begin
leveraging Jenkins to automate additional aspects of the SDLC.

[29]

Distributed Builds – Master/
Slave Mode

A basic Jenkins installation operates as a standalone entity. A single Jenkins
master can be responsible for source control polling, LDAP authentication, job
execution, test report parsing, and more. As the role Jenkins plays in an organization
expands, we may be asked to provide support for additional build environments,
automated test execution solutions, configuration management solutions, and
even deployments. To extend Jenkins and support these types of additional
responsibilities, Jenkins features an elegant distributed build solution. This feature
can be leveraged to help offload some of the work and to position Jenkins as a
scalable, cross-platform solution.

"If you always give, you will always have."

 – Chinese proverb

Distributed builds in Jenkins are supported by slave agent services running on
unique devices, which coins the term master and slave mode. The master/slave
mode architecture can assist us in scaling Jenkins from a single, overworked master
instance to a load-balanced distributed build pool. The master/slave mode solution
enables the Jenkins administrator to connect additional devices (of many kinds) to
the master instance and uniquely tie job executions to the connected slaves.

Distributed Builds – Master/Slave Mode

[30]

In this chapter of Mastering Jenkins, we will discover how to scale our Jenkins
installation and scale it to support additional hardware and operating system
configurations. The topics that we will cover in this chapter will include:

•	 The Jenkins master/slave architecture
•	 How to create slave nodes in the user interface
•	 Understanding slave agent launch mechanisms
•	 Slave label, grouping, and load balancing
•	 Useful slave agent-related Jenkins plugins

After completing this chapter, we will have a solid grasp of how to evolve a
simple Jenkins installation into a scalable distributed master and slave solution.

Understanding the master and slave
architecture
A standalone Jenkins instance can grow fairly quickly into a disk-munching,
CPU-eating monster. To prevent this from happening, we can scale Jenkins by
implementing a slave node architecture, which can help us offload some of the
responsibilities of the master Jenkins instance. Let's clarify this concept. A Jenkins
slave node is simply a device configured to act as an automation executor on behalf
of the master. The Jenkins master simply represents the base installation of Jenkins.
The master will continue to perform basic operations and serve the user interface,
while the slaves do the heavy lifting.

This distributed computing model will allow the Jenkins master to remain responsive
to users, while offloading automation execution to the connected slave(s). To illustrate
the concept of a master, and slave mode architecture let's look at an example. Figure 2-1
shows a Jenkins master and three slave nodes of varying OS types:

Chapter 2

[31]

Figure 2-1: A Jenkins master connected to three slave node devices

The Jenkins slave agent can run on virtually any Java (JRE) capable device that has
a network connection. This cross-platform connectivity model spans across devices
of varying hardware types, processor architectures, and operating systems. This
includes Windows, Mac OS X, Linux, Unix, and embedded devices. The architecture
described in the preceding figure is a very simple example of a cross-platform
distributed Jenkins solution. By design, this architecture can expand and contract as
needed.

Distributed Builds – Master/Slave Mode

[32]

With all of the added capabilities that the Jenkins master and slave solution
offers, it is important to know that the Jenkins master will continue its assigned
responsibilities and will offload them only when specified. It is also important to
know that, even after slaves are created, the Jenkins master will continue to own
certain tasks that are designated solely to the master. Even when slave agents
are connected to the master, the master will continue to manage some of the less
resource-intensive work. Some responsibilities that are specific to the Jenkins master
and cannot not be delegated to the slave nodes include:

•	 SCM polling (SVN, GIT, Perforce, and so on)
•	 Job scheduling
•	 LDAP authentication
•	 Build output, reporting, and notifications
•	 Job history and build logs
•	 Executing jobs/tasks tied to the master

This may seem a bit confusing, but it doesn't need to be. To help clarify let's
illustrate the architecture in better detail. Figure 2-2 shows a Jenkins master and slave
architecture with a set of diagrams depicting the responsibilities of each:

Figure 2-2: Expanded Jenkins master and slave connectivity diagram

Chapter 2

[33]

As we can see, there will continue to be a set of core responsibilities that the Jenkins
master continues to perform. Jenkins slave nodes will manage resource-intensive
automation execution, while the Jenkins master will maintain the lighter tasks, such
as serving the user interface, performing source control polling, and delivering
notifications.

It is important to note that, in order for the Jenkins master to offload
automation to any connected slave devices, the slave nodes or jobs in
Jenkins must be configured to explicitly to do so.

Creating slave nodes in the UI
In this section, we will learn how to define a new slave node through the Jenkins user
interface. The Jenkins administration area provides a node management dashboard,
which provides us with the ability to create new slave devices, remove old ones, and
edit the ones in use. Let's jump right in and learn how to create a new slave node.

To get started, navigate to the following location:

Jenkins | Manage Jenkins | Manage Nodes | New Node

Once the screen has loaded Jenkins will present us with the new node basic
configuration form. This basic configuration form allows us to specify some high-
level configuration details about our new slave node. It lets us select either Dumb
Slave or Copy Existing Node (as shown in Figure 2-3). The copy existing node option
will only be present if we have slaves already defined in Jenkins. In our example
we entered Microsoft Windows Slave Node 01 for the node name, and selected
Dumb Slave as the type. Once the fields have been configured click OK to proceed
to the Detailed node configuration form.

Figure 2-3: New node configuration form

Distributed Builds – Master/Slave Mode

[34]

The following screenshot outlines the detailed node configuration form that Jenkins
presents us with. This form provides us with the ability to specify the network
connection information, node labels, JVM options, and other important configuration
criteria regarding our new slave node. At a minimum, we need to provide the slave
node's name, description, remote root directory path, and launch method:

Figure 2-4: Detailed slave node configuration form

The information we specify on the detailed node configuration form will have a
profound impact on the slave node's behavior. It is important to fully understand
the fields available, their functionality, and their impact on the slave node. For
edification, this table details each of the available configuration options in the
detailed slave node configuration form:

Field Name Example input Description

Name My Test Slave Node A simple name for the slave
node

Description Executes on behalf of our
master, as an additional worker

This field simply attaches
a longer description to the
node (hint IP address).

Chapter 2

[35]

Field Name Example input Description

of executors 5 Defines how many parallel
jobs can run at one time on
the node

Remote root
directory

C:\Jenkins\ Defines where the slave
node, its workspace, and
files will live on the remote
system

Labels Windows Build This is the label or group
that the slave belongs to. We
can have multiple slaves in
a label to load balance

Usage Utilize this slave node as much
as possible

Controls how Jenkins
utilizes this node (important
for labels and groups, or
general purpose jobs)

Launch method Launch slave agents via Java
Web Start

The installation, and
connection method used to
manage the slave node

Availability Keep this slave online as much
as possible

Describes when to enable or
disable this slave node (on
a schedule, on demand, or
always on)

Environment
variables

PATH=/usr/bin Describes and preset
environment variables to
be propagated to the slave
node.

Tool locations GRADLE_HOME=/home/gradle Describes any tool locations
Jenkins will need to know
about

Jenkins slaves can be configured to operate in any number of ways. Initially we will
want to simply get the node up and running. We can later adjust any settings or
minor configuration items to fine-tune the node. One of the key items we will need to
define is the launch method.

Distributed Builds – Master/Slave Mode

[36]

Choosing a launch method
Jenkins true power lies in its ability to operate, and scale across OS platforms and
architectures. Launching a slave node agent and attaching it to the Jenkins mater can
be accomplished in a number of ways. Each method has its own use cases, benefits,
and potential drawbacks. The one we select will be largely dependent on the target
operating system, or environment. When creating a Jenkins slave node we will want
to choose wisely. The Jenkins new slave node configuration screen provided us with
the following available launch methods.

•	 Launch slave agents via Java Web Start (preferred)
•	 Launch slave agents on Unix machines via SSH
•	 Let Jenkins control this Windows slave as a Windows service (using DCOM

and WMI is sometimes error prone)
•	 Launch slave via execution of command on the Master

Two of the most commonly used launch methods for slave nodes include SSH and
Java Web Start. These two options are the least error-prone and offer the quickest
implementation path. While these two options are the most popular, it is important
to understand all of the available options in greater detail. Let's take a minute to go
over them.

Once the slave node has been created and installed, the slave
operates through a small slave.jar file, which maintains an open
bi-directional communication link to the Master. This connection
mechanism is the same regardless of the launch method selected.

Slave agent via Java Web Start
The Java Web Start framework (JavaWS) is a proprietary Oracle framework,
which was released in 2004 as part of the J2SE v1.4 release. For those familiar with
Windows Click Once JavaWS is eerily similar. The Java Web Start framework is
generally used to launch, and install Java applications directly from a web browser.
The Java Web Start technology differs from a Java applet as it provides the user
the capability to install a Java application onto a target machine from inside or
outside of the web browser. Java applets on the other hand only reside inside of the
web browser, and cannot be installed a permanent software program on the target
machine.

Chapter 2

[37]

The Jenkins development community has graciously provided an easy-to-use Java
Web Start solution to assist in the installation and connection of freshly created slave
nodes to the Jenkins master. Upon initialization of the Java Web Start wrapper, the
Java Web Start framework will download and install a small slave agent (slave.
jar) daemon onto the host machine. Once downloaded and installed, the slave.
jar agent establishes a communication channel to the Jenkins master and waits for
orders.

In this section of Mastering Jenkins we will discuss how to connect Jenkins slave
nodes to a Jenkins master using the Java Web Start framework.

Prerequisites
Jenkins slave agents connected through Java Web Start require simple prerequisite
setup configurations. For Java Web Start applications to function properly, it is
important to ensure that Oracle Java v1.7 (as of May 2015) or newer is installed on
the target slave host and is not disabled by the security settings of your preferred
web browser. It is also recommended that the javaws command be accessible via the
command-line terminal.

The Java Web Start launch option supports both a web browser and the command
line. Each of these mechanisms will initialize, install, and launch the slave agent
daemon. If we opt for the web browser method, we may need to pre-configure the
web browser's security settings, and mime types to support it.

Each web browser has a slightly different approach to mime types, and security.
To assist Oracle has graciously provided detailed instructions on how to enable
Java Web Start for most popular web browsers. You can find these instructions at
https://java.com/en/download/help/enable_browser.xml.

For Java Web Start from the command line, we will need to ensure that the javaws
command is accessible; this often means defining the default path system variable to
include the JAVA_HOME location. Please refer to the following Oracle documentation
on Java Web Start for further information:

https://docs.oracle.com/javase/7/docs/technotes/guides/javaws/
developersguide/faq.html

https://java.com/en/download/help/enable_browser.xml
https://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html
https://docs.oracle.com/javase/7/docs/technotes/guides/javaws/developersguide/faq.html

Distributed Builds – Master/Slave Mode

[38]

The Jenkins Java Web Start launch page
To connect a slave agent to the Jenkins master using Java Web Start (JavaWS), we
will need to launch the Java Web Start installer. Upon initialization Java Web Start
will prompt us to accept the security warning prompt, and install the slave agent
daemon on the host. Once the slave agent has been installed it will proceed to
automatically connect to the Jenkins master.

The launch button for Java Web Start can be found in the Jenkins user interface
(administration area) via the following workflow:

Jenkins | Manage Jenkins | Manage Nodes -| <NodeName>

The JavaWS connection status screen provides the list of available launch
mechanisms. From this screen, we will be able to select how to launch the slave
agent:

Figure 2-5: The slave connection status screen

As illustrated in the preceeding figure there are three approaches available to us to
launch a slave agent. Let's take a minute to go over each of these options in detail
and learn how to use them.

Chapter 2

[39]

JavaWS via a web browser
One available option presented on the connection screen provides the ability to
launch the slave agent daemon directly through a web browser. To accomplish this,
we simply need to log on to the slave node (RDP, VNC, and so on), open a browser,
log on to the Jenkins master, and initiate the Java Web Start launcher. While this may
seem complicated, there is no need for concern. We will walk through the process
step by step.

To get started, open a web browser session (on the slave node) and navigate to the
Jenkins master. Then, log in as an administrator and navigate to the slave node
connection status screen via the following navigation workflow:

Jenkins | Manage Jenkins | Manage Nodes | (Your Node Name)

Once the navigation to the node configuration screen has been completed, we are
again presented with the Slave connection status screen (Figure 2-5).

Let's proceed in launching the slave agent by clicking the orange Launch button
(with the Java symbol). This will trigger the initialization of the Java Web Start
process. Once Java Web Start has initialized, follow the prompts to complete the
installation, and launch the Jenkins slave agent as shown in Figure 2-6 and Figure 2-7:

Figure 2-6: Launching the Java Web Start framework

Now that the Jenkins slave agent has launched, our friendly Jenkins concierge will
greet us.

Distributed Builds – Master/Slave Mode

[40]

One handy feature provided by the Jenkins slave agent service for Microsoft
Windows users is the ability to create a Windows service for the attached slave
agent. Figure 2-7 illustrates this installation option. This handy feature alleviates
the need to trigger the Java Web Start process every time the host is rebooted.

Figure 2-7: A connected Java Web Start slave agent

Congratulations! We have now completed the initial installation of the slave agent
using the web browser.

JavaWS via the command line
If a browser-based installation is not desired, we can leverage the javaws via the
command line. This serves as an easy alternative for installing a Jenkins slave agent
onto a target host. Lets spend a couple of minutes learning how this works.

To begin, log in to the slave device as an administrator and open a command-line
terminal session.

Once the terminal is open, let's make sure Java Web Start is enabled. Input the
javaws help command (javaws --help). If successful, we should be presented with
a simple help screen detailing the available options for the javaws command.

Next we will want to perform the actual Java Web Start installation process. Input
the command provided on the Java Web Start connection status screen (Figure 2-7)
to begin the installation process. We have provided an example of this command
below.

#>javaws http://<pathtojenkins>/slave-agent.jnlp

Chapter 2

[41]

Upon successful launch, you will be greeted by the friendly Java Web Start
installation wizard. Follow the wizard to complete the setup of the Jenkins slave
node. Once complete, the Jenkins slave agent should be online and communicating
with the Master.

Headless slave agents via the command line
While Jenkins offers a complete command-line solution for slaves based on Java Web
Start, sometimes Java Web Start is not an option. A headless slave agent is one where
Java is used to connect the Jenkins slave.jar daemon to the Jenkins master entirely
from the command line and the Java .jar file without leveraging javaws or any
intermediary launcher. This benefits those who wish to harness the command line
and not be bothered by user interface prompts, security settings, and web browsers.
This solution is also valuable for users who may wish to leverage the OpenJDK and
Java hotspots alternatives.

To get started, we will need to ensure that Oracle Java 1.7 or OpenJDK 7 has been
installed on the slave host and is accessible from the command line. We will also
need to download the slave.jar file from the Jenkins master onto the slave. The
slave.jar file is available as a web-accessible artifact via the Jenkins Master. This
file can be downloaded at http://<masterjenkinsurl>:8080/jnlpJars/slave.
jar.

We will want to store the downloaded slave.jar file in a desired location for the
new Jenkins home.—for example, C:\Jenkins\slave.jar or /var/lib/Jenkins/
slave.jar.

Once the slave.jar is in place on the slave host, open a terminal session (on the
slave host), and enter the following Java command into the terminal window
(replacing Test%20Slave%20Node with the name of your specific slave node and
localhost:8080 with the URL of your Jenkins master):

#> java -jar slave.jar -jnlpUrl http://localhost:8080/computer/Test%20
Slave%20Node/slave-agent.jnlp

If you get stuck, you can copy-and-paste the full command displayed on your slave
node's connection status page in Jenkins.

Distributed Builds – Master/Slave Mode

[42]

Upon execution of the command, the slave agent will fire up and automatically
connect to the Jenkins master. At this point, the headless Jenkins slave agent is ready
for use. The detailed output from the terminal should look similar to the screenshot
provided in Figure 2-8:

Figure 2-8: Connected slave agent terminal output

Slave agents on Windows via WMI and DCOM
Over the next few pages, we will dive in and learn how to effectively create, manage,
and maintain slave nodes on Microsoft Windows using the DCOM, WMI, and CIFS
protocols. Before we begin the installation process for a Windows slave node using
DCOM, CIFS, and WMI, it is important to define each of these technologies and their
roles in the Jenkins slave node service operation.

•	 DCOM: The Microsoft Distributed Component Object Model (DCOM) is
designed to allow software components to communicate across networked
computers. The server process launcher initializes COM and DCOM servers
in response to an object call.

•	 WMI: The Microsoft Windows Management Instrumentation (WMI) is
used to automate administrative functions on a Microsoft Windows system
via a script. WMI scripts can be local or triggered remotely using Windows
Remote Management.

Chapter 2

[43]

•	 CIFS: Is an acronym, which stands for Common Internet file system. It is
used to share files across corporate networks or the Internet.

Implementing a Jenkins slave node using the previously described DCOM, CIFS and
WMI technologies may require modifications to the Windows registry. The security
implications of such modifications are not widely known, and the implementation
of this type of slave service has created some trouble for Jenkins users. To address
this, and make it easier for Jenkins users to get slave agents setup and running on
Microsoft Windows, the Jenkins community has created a Java Web Start option.
Therefore it is recommended that the Java Web Start option be utilized if this method
poses any problems.

To begin configuring a WMI / DCOM based slave node we will need to first install
the JAVA JRE v1.7, or later on the target host. The Java JRE or JDK can be obtained
by downloading it from Oracle's website (http://www.oracle.com).

Next we will need to enable the DCOM service on the target Windows host. To
accomplish this, open the Windows Services manager (services.msc) and start the
DCOM Server Process Launcher service as shown in Figure 2-9:

Figure 2-9: Start the DCOM Server Process Launcher service

http://www.oracle.com

Distributed Builds – Master/Slave Mode

[44]

Once the DCOM Server Process Launcher service has been enabled and started, we
will need to also enable WMI Remoting Service, as shown in Figure 2-10:

Figure 2-10: Start the Windows Management Instrumentation service.

Once the two services have been started we will need to connect the host to
the Jenkins master. This is accomplished directly on the Jenkins master in the
administration area. On the Jenkins administration page, navigate to Jenkins ->
Manage Jenkins -> Manage Nodes -> <Test Slave Node> -> Configure. This
will navigate us to our pre-created slave node.

Once we have navigated to the node configuration page we will need to configure
the Jenkins master to connect to the slave host, and install the Jenkins slave agent
as a Windows service. This is illustrated in Figure 2-11:

Chapter 2

[45]

Figure 2-11: Windows DCOM slave configuration form

To configure the Windows DCOM slave, start by altering the Launch method and
selecting Let Jenkins control this Windows slave as a Windows service. Once
the Launch method drop-down has been changed, we will need to configure the
following required fields, which tell Jenkins about our new slave.

•	 Administrator user name
•	 Password
•	 Host (DNS or IP address)
•	 Run service as (Use Local System User is the default)

Once the detailed node configuration form has been completed, click Save to
complete the node-creation process and launch the slave service process. If
everything was successful the Jenkins master will perform the following tasks.

1.	 Initialize the connection to the slave via DCOM and WMI.
2.	 Check if Java exists on the target host (install the JDK if no Java was found).
3.	 Copy jenkins.exe over to the target host.
4.	 Copy Jenkins.exe.config over to the target host.

Distributed Builds – Master/Slave Mode

[46]

5.	 Create the Jenkins slave Windows service and start it.
6.	 Wait for the port.txt file to be created (defines the port Jenkins will

communicate on).
7.	 Connect to the Jenkins slave over the port defined in the port.txt file

created by the slave service.

Once the node has been successfully installed and subsequently connected, the
Jenkins master will list the slave as online (Figure 2-12).

Figure 2-12: Connected slave node

Troubleshooting Windows DCOM and CIFS errors
As we discussed earlier in this chapter, the DCOM, WMI, and CIFS slave node can be
error-prone. Initiating a TCP connection into a Windows host for the sole purpose of
remote control will almost always require alterations to the security configuration of
the target host. If the Jenkins slave agent fails to connect or initialize, we will need to
debug the issue. The most obvious location to gather information about a failure is in
the connection logs. To get started, navigate to Jenkins | Manage Jenkins | Manage
Nodes | <Your Slave Node Name> | Log.

From the log viewer, we should see the error message being returned to the Jenkins
master. Errors from DCOM and WMI can be generic-looking and may differ based
on hardware, kernel, or Windows architecture. Let's discuss some of the common
pain points and learn the associated workarounds that could possibly allow us
to configure our Windows slave node using the DCOM, CIFS, and WMI launch
method.

Error – access denied
This error is generic in nature but usually is the result of connectivity problems from
the Jenkins master to the slave agent. Such connectivity errors may be caused by
firewalls, port blocking, or security settings.

Chapter 2

[47]

Example:

Connecting to 10.10.10.1

ERROR: Access is denied. See http://wiki.jenkins-ci.org/display/JENKINS/
Windows+slaves+fail+to+start+via+DCOM for more information about how to
resolve this.

org.jinterop.dcom.common.JIException: Message not found for errorCode:
0x00000005

Workaround 1
Possible cause: Is Windows Firewall blocking the port?

Sometimes, Windows firewall will block the incoming connection requests from the
Jenkins master. To check if the firewall is indeed the issue, we can try the following
workaround:

1.	 Disable the Windows Firewall service or configure it to allow inbound
connections.

2.	 Create a Windows Firewall rule for Jenkins and set Allow Edge Traversal.
Specifically, allow inbound connections through the Microsoft Windows
Firewall on these ports:

°° TCP ports 139, 445
°° UDP ports 137, 138

3.	 Add the following patches to the Microsoft Windows Registry (proceed at
your own risk):
Patch 1:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
Policies\System
Create or modify 32-bit DWORD: LocalAccountTokenFilterPolicy
Set the value to: 1

Patch 2:

Find: HKEY_CLASSES_ROOT\CLSID\ {76A64158-CB41-11D1-8B02-
00600806D9B6}
Right click and select 'Permissions'
Change owner to administrators group.
Change permissions for administrators group. Grant Full Control.
Change owner back to TrustedInstaller (user is "NT Service\
TrustedInstaller")
Restart Remote Registry Service

Distributed Builds – Master/Slave Mode

[48]

4.	 Try connecting the Jenkins slave again.

To debug this specific issue more efficiently, we can attempt a
connection from the master to the slave using TCP dump. TCP dump is a
tool widely used by Jenkins administrators to debug connectivity issues.
Please refer to the Windows slaves troubleshooting page at at https://
wiki.jenkins-ci.org/display/JENKINS/Windows+slaves+fa
il+to+start+via+DCOM.

Workaround 2
Possible cause: Is the Microsoft Visual C++ runtime library missing?

The Jenkins slave service may require that the Microsoft Visual C++ runtime library
be installed on the system using these steps:

1.	 Download and install the Microsoft Visual C++ runtime library.
2.	 Try connecting the Jenkins slave again.

Error – no more data available
This type of error may seem generic in nature, however it is usually thrown when
the Jenkins master tries to reach out to the slave node, and no communication
channel can be established. The resulting error code listed will often be similar to the
nondescript error displayed here.

Installing the Hudson slave service

No more data is available. [0x00000103]

org.jinterop.dcom.common.JIException: No more data is available.
[0x00000103]

at org.jinterop.winreg.smb.JIWinRegStub.winreg_EnumKey(JIWinRegStub.
java:390)

https://wiki.jenkins-ci.org/display/JENKINS/Windows+slaves+fail+to+start+via+DCOM
https://wiki.jenkins-ci.org/display/JENKINS/Windows+slaves+fail+to+start+via+DCOM
https://wiki.jenkins-ci.org/display/JENKINS/Windows+slaves+fail+to+start+via+DCOM

Chapter 2

[49]

Workaround
Possible cause: Is Microsoft Visual C++ runtime library missing?

For the Jenkins slave service to leverage the DCOM, CIFS, and WMI protocols, it
is required that the Microsoft Visual C++ 2008 runtime libraries be installed on
the system. One obvious workaround is to install this package and try again. The
Microsoft C++ runtime library dependency can be found at the following URL:

http://www.microsoft.com/en-us/download/details.aspx?id=5582

More information is available for troubleshooting Windows slave agent
connectivity issues on the Jenkins community website wiki. Please visit
the following URL for more information:
https://wiki.jenkins-ci.org/display/JENKINS/Windows+sl
aves+fail+to+start+via+DCOM

Slave agents via SSH tunneling
The widely preferred approach for Jenkins slave nodes on Linux, Unix, and OS X
hosts is to leverage SSH tunneling. This launch method starts by sending commands
over an SSH connection, which downloads the slave.jar and launches the slave
agent on the host. For the installation process to work, Java 1.7 or later must be
installed; the slave host needs to be reachable from the master, and the account
specified in Jenkins will need to have SSH logon rights for the target machine.

The SSH launch method provides a number of valuable features that make this an
attractive option when connecting Jenkins slave agents to the master. These benefits
include:

•	 More reliable connectivity and stability
•	 Encrypted communications
•	 Auto restart and reconnect functionality
•	 No need for slave services or init.d scripts

http://www.microsoft.com/en-us/download/details.aspx?id=5582
https://wiki.jenkins-ci.org/display/JENKINS/Windows+slaves+fail+to+start+via+DCOM
https://wiki.jenkins-ci.org/display/JENKINS/Windows+slaves+fail+to+start+via+DCOM

Distributed Builds – Master/Slave Mode

[50]

To use the SSH launch method, select Launch slave agents on Unix machines via
SSH, SSH authorized user credentials, Host IP address, and click the SAVE button to
create the new slave node. Once the slave has been saved, Jenkins will automatically
attempt to connect to the slave and install the slave agent using SSH and the
credentials provided. Figure 2-13 shows an example of the configuration page for an
SSH slave node:

Figure 2-13: SSH Host and Credentials Section

When configuring a new SSH slave node, the best approach for configuring
authentication is to use the Jenkins credential management system. This will store
the login and password information for the SSH slaves in Jenkins directly. The
Jenkins credential management system allows the Jenkins administrator to manage
credentials and later reuse them when executing jobs, connecting SSH slave agents,
and connecting Jenkins to third-party services. To add usernames and passwords to
the credentials manager, navigate to the credential management system and select
add credentials in the UI:

Manage Jenkins | Manage Credentials | Add credentials

Once any credentials have been added, they will appear as available credentials in
the SSH Host Credentials dropdown (shown in Figure 2-13).

Alternatively, you can elect to add the credentials for the SSH slave directly in the
detailed slave configuration page via the Add button (also shown in Figure 2-13).

Upon saving the configuration for an SSH slave node, Jenkins will immediately
attempt to connect to and install the slave agent service on the target host.

Chapter 2

[51]

Detailed logs related to the connection can be viewed by clicking the button
on the left-hand side of the slave node status screen. If everything was successful, the
logs will contain text similar to the following:

JNLP agent connected from /127.0.0.1
<===[JENKINS REMOTING CAPACITY]===>Slave.jar version: 2.49
This is a Unix slave
Slave successfully connected and online.

Administering Jenkins slaves
As Jenkins administrators it is our responsibility to monitor, and maintain the Jenkins
master and slave nodes in our build farm. Jenkins features a comprehensive set of
tools, and services that takes most of the guesswork out of managing a distributed
Jenkins implementation. In this section we will discuss the ins and outs of maintaining
a healthy Jenkins master and slave architecture.

The node administration dashboard
The Jenkins node administration page allows us to add, remove, control, and
monitor the Jenkins master and any attached slave devices. Figure 2-14 illustrates this
Jenkins node administration page:

Figure 2-14: Node administration dashboard

Distributed Builds – Master/Slave Mode

[52]

Also featured on the slave node administration page is a detailed status and
configuration side panel. The configuration panel allows the Jenkins administrator to
configure warning thresholds and define new slave nodes.

Non-administrative users can view the status of slave devices by looking at the Build
Executor Status panel.

Figure 2-15 illustrates both of these side panels in detail:

Figure 2-15: Offline slave node marked with an X

Preventative monitoring
From the slave node administration dashboard, we can see that Jenkins tracks slave
node architecture, clock difference, free disk space, free swap space, free temp space,
and response time. These metrics can provide insights into the overall health of the
slave agents. To customize these settings, click the Configure button located on the
left-hand side of the slave node administration dashboard. Figure 2-16 illustrates
the available options presented to us when we navigate to the preventive node
monitoring configuration page:

Chapter 2

[53]

Figure 2-16: Preventative node monitoring configuration page

As we can see from the preceding screenshot, we can set the threshold settings for
connected slave nodes. Upon changing and applying any values for these thresholds,
Jenkins will actively monitor the slave agents based on the updated values. If
the values for a given threshold are unmet, the Jenkins master will automatically
disconnect the offending slave node that specified criteria.

Managing individual slave nodes
To manage an individual slave node connected to the Jenkins master, navigate to the
Jenkins slave node dashboard as shown in Figure 2-14. Once there, click on the name
of the desired node to navigate into that target slave devices status page, as shown in
Figure 2-17.

Figure 2-17: Slave node status and configuration

Distributed Builds – Master/Slave Mode

[54]

Once Jenkins has loaded the status page for the desired slave node, we can see that
the left-hand side panel shows quite a few options. Let's define each of these options
and learn what they do:

•	 Back to List: Navigates back to the node administration dashboard.
•	 Status: Navigates us back to the status page for the current selected slave

node.
•	 Delete Slave: Removes the slave from the Jenkins master and severs any ties

between the slave and the master.
•	 Configure: Navigates us to the detailed node configuration page.
•	 Build History: Displays a set of historical timelines of jobs that have run on

this slave node.
•	 Load Statistics: Shows key metrics and resource utilization in graph form.

It has three timespan view options: Short, Medium, and Long. These options
allow us to adjust the timespan of the graph accordingly.

•	 Script Console: Jenkins features a robust built-in scripting system called
Groovy. With this console, you can run arbitrary one-off scripts directly on
the slave node. You will learn more about writing Groovy scripts for Jenkins
later.

•	 Log: Displays in real time the connection status between the Jenkins master
and the slave node. These logs can be very valuable when troubleshooting
connectivity issues.

Labels, groups, and load balancing
When creating a new slave node, Jenkins allows us to tag a slave node with a label.
Labels represent a way of naming one or more slaves. We leverage this labeling
system to tie the execution of a job directly to one or more slave nodes.

By leveraging the labeling system described above we can begin to create very
powerful load-balanced Jenkins solutions. When Jenkins discovers a job execution is
pending, which is tied to a label, it will attempt to locate any available slave nodes
tagged with that label that are not in use. If any nodes with that label are free Jenkins
will run the job on the available node. If no nodes are available, Jenkins will queue
the job for the next available node that has the specified label. Figure 2-18 illustrates
a simple label containing two Microsoft Windows slaves tagged with the label
Windows.

Chapter 2

[55]

Figure 2-18: A basic Windows build pool

Attaching a slave to a group by creating a
label
By labeling multiple slave nodes with the same label, we can create groups. Groups
of devices can prove to be handy when offloading automation. Creating a group of
slave nodes simply means that they share a common label.

Let's imitate the Windows example from the preceding screenshot and create a
Windows group with two connected slave nodes. For the sake of brevity, we will
presuppose that we already have the two Windows slaves connected to the Jenkins
master. To add each of these to the Windows group, we will simply modify the
detailed configuration for each node and specify Windows in the Labels field, as
shown in Figure 2-19:

Figure 2-19: Adding a Windows label to a slave node

Once the Windows label has been added to the slave nodes, Jenkins will
automatically create the group containing our two slave nodes.

Distributed Builds – Master/Slave Mode

[56]

Once the group has been created, Jenkins will proudly display the group (or groups)
that a slave node belongs to in the node connection status page as shown in
Figure 2-20:

Figure 2-20: A A slave node in one group (based on a label)

Attaching a slave to many groups
Through Jenkins label and grouping system, Jenkins provides a mechanism by
which jobs can run on one or many slave nodes (load balancing). For example, some
automation jobs may require an x64 processor or may only build on an Ubuntu 12
system. By attaching labels to our slave nodes, the slave node group possibilities we
can create are infinite. The Jenkins labelling system allows us to attach a slave node
to one or many groups. Once the labels are setup, we can tie job execution of a job
to one or many labels as well. To have a Jenkins slave node belong to more than one
group, all we have to do is add a space in the label name. Jenkins will determine each
word as a separate label, as demonstrated in Figure 2-21:

Figure 2-21: Attaching a slave node to multiple groups

Chapter 2

[57]

After the slave node has been saved, Jenkins will recognize it as belonging to
multiple groups. We can see this in action in Figure 2-22, which shows a slave node
as a member of a Windows group and the x86 group:

Figure 2-22: A slave node belonging to two groups

Restricting slave execution to global
or tied jobs
Since the Jenkins master is also a job executor, we may wish to attach a slave as
an available global executor or keep it available for tied jobs only. This allows us
to offload heavy lifting to the slaves if we choose to do so. To support this, we can
further adjust the way Jenkins executes jobs through the Usage dropdown in the
detailed node configuration page for a given slave device. The usage dropdown
options are described in Figure 2-23:

Figure 2-23: Usage dropdown in the detailed configuration form

As we can see we can make our slave a General executor (always available for job
execution), or keep it out of the general execution pool, and restrict it to tied job
requests only. The sky is the limit. In our examples we discussed only a few simple
connectivity options, however this system can potentially scale to hundreds or even
thousands of slave nodes and a highly adaptable architecture. It is up to you to
determine how big you want to make your specific slave node implementation. Just
start simple, and plan it well.

Distributed Builds – Master/Slave Mode

[58]

Jenkins plugins that support distributed
builds
Since its initial inception, the Jenkins community has furthered the build out of the
master/slave architecture by implementing a number of plugins, which provide
connectivity to popular cloud technology stacks. The master/slave architecture
has been extended to provide direct integration with Amazon EC2, Microsoft
Windows Azure, ElasticBox, and more. When creating a master/slave solution,
and deciding on architecture, it is prudent to check for plugins that can extend your
implementation and make it more robust.

At the time of writing this book, some of the more notable master/slave distributed
build extension plugins for Jenkins include:

•	 Amazon EC2 plugin
•	 Microsoft Azure
•	 Swarm
•	 Docker plugin
•	 Hadoop plugin
•	 CloudBees Cloud Connector plugin
•	 Selenium plugin
•	 vSphere Cloud plugin

Summary
In this chapter, we learned how a distributed Jenkins system works. We learned
how to create and maintain slave nodes in Jenkins. We also developed our skills and
learned how to scale our slave nodes to fit a development organization of any size.
The master/slave node concept is really one of Jenkins shining points, it's a true
distributed computing platform, and can be leveraged to create some really awesome
solutions.

In the next chapter, we will begin to dissect views and Jenkins jobs. Together,
we will begin to leverage the automation capabilities of this powerful platform.

[59]

Creating Views and
Jobs in Jenkins

At the heart of the Jenkins platform is the main dashboard, tab based views, and
build jobs. In this chapter of Mastering Jenkins, we will dive into creating and
organizing jobs and views within the Jenkins system. By mastering these features,
we can begin to explore some of the more advanced capabilities Jenkins provides.
While reading this chapter, it is a good idea to adopt practices that assist in making
your unique configuration more effective and skip over the ones that don't.

"Yesterday I was clever and wanted to change the world. Today I learned wisdom
and only wish to change myself." - Rumi

The majority of this chapter will center around understanding the Jenkins
dashboard, creating views, and defining jobs

Our objective will be to completely understand these foundational principles so that
we can build on them in later chapters, and take our Jenkins implementations to the
next level. The topics we will cover in this chapter will include the following:

•	 The Jenkins user interface
•	 Creating custom views
•	 Creating Jenkins jobs

Creating Views and Jobs in Jenkins

[60]

The Jenkins user interface
In Jenkins the dashboard represents the primary entry point into the Jenkins system.
Upon loading Jenkins we are presented with a screen that allows us to create new
jobs, schedule the execution of existing jobs, navigate into defined jobs on the system,
and more. Let's drill-down into the capabilities of the main dashboard and dissect
some of the functionality.

The user interface of Jenkins can be logically divided into four primary content
areas: the Header, the Job Table, the Configuration Panel, and the Build Queue
and Executor Status Panel. Figure 3-1 illustrates each of these four content areas.

Figure 3-1: The Jenkins dashboard

As we can see from the preceding screenshot, this specific Jenkins implementation is
pretty slim; it has only one job and one view defined. Your specific Jenkins instance
will probably be more complex. Let's take a quick tour of each of the previously
described content areas and learn about the roles they play within Jenkins.

Chapter 3

[61]

The main header
The main header in Jenkins provides a lot of valuable functionality and information.
The main header includes UI navigation breadcrumbs, an editable description link,
the enable/disable auto refresh switch, and a comprehensive context search solution.
Let's look at each in greater detail.

•	 Breadcrumbs: The breadcrumbs system provides a visual orientation
indicator and navigation history. Each of the crumbs displayed provides
a link that allows the user to navigate to specific pages within the current
hierarchy quickly.

•	 Edit Description: The editable description link provides us with the ability to
add descriptive text to our dashboard, view, job, or build. This can be handy
for attaching notes or information that can be reviewed later.

•	 Enable/Disable Auto Refresh: The auto refresh switch will enable/disable
the auto page refresh feature. This is a browser-based refresh alternative and
can help alleviate the need to click the refresh button repeatedly.

•	 The Context Search Box: This is prominently displayed in the top-right
corner of every page. It serves as both a text-based search solution and a
quick-jump context navigation bar. Figure 3-2 illustrates the Jenkins UI
for the Context Search box.

Figure 3-2: Search box

The Search box is designed to help save time and increase efficiency when searching
for content and navigating the user interface. We can leverage it as a simple search
solution to locate information based on an inputted search term, or we can leverage
it as a powerful quick-jump context navigation solution. Let's look at the quick jump
option in greater detail.

The quick-jump navigation solution is handy for quickly navigating to specific pages
and content within the Jenkins platform via keywords. Let's look at some examples
of the context search feature and learn how it can be used.

Creating Views and Jobs in Jenkins

[62]

Jumping to a page using the context search solution can be accomplished by simply
specifying the Jenkins page. Below are three examples of this feature:

•	 Job Name: Here, we can specify the name of a job directly in the search box
to immediately navigate to that project's overview page.

°° Input example: myproject
°° Result: Navigates the user to the project's overview page for the

specified job, myproject

•	 Job Name + configure: Here, we can specify the word configure (with a space
separator) after a job name to navigate directly to a job's configuration page.

°° Input example: myproject configure
°° Result: Navigates to the job configuration page for myproject

It is important to note that the context search box is case-sensitive. This
can be disabled on a per-user basis via their profile. To make the search
case-insensitive, navigate to the user's profile configuration page and
untick the Case-sensitivity checkbox.

The context search feature supports the concept of sub-contexts. This additional
feature allows us to drill into subpages directly by specifying additional keywords.
For example, we can tell Jenkins to automatically navigate to a specific build's
console output display. We accomplish this by specifying the job name and a few
additional search parameters, more specifically the build number (in numeral
format) and the key word console. To better clarify this functionality, let's look at a
simple example.

•	 Job Name + build number + console: Here, we can specify the keyword
console in conjunction with the build number and job name to navigate
directly to the console output log for a given build.

°° Input example: myproject 1234 console
°° Result: Navigates the user to the console output for build 1234 on

the Jenkins job, myproject

The search solution also has the ability to understand pointer-based input
parameters, including last build, last stable build, last failed build, and so on. This allows
the Jenkins user to navigate to information quickly without the need to research
individual data points.

Chapter 3

[63]

The configuration panel
The configuration panel in Jenkins is always located in the top-left corner just below
the header. Upon entry into the Jenkins platform, the configuration panel provides
initial top-level configuration options. Each subpage within Jenkins will have its own
configuration panel options and context-specific configuration knobs. For example,
if we are on a job status page, the configuration panel will look much different than
if we are on the main dashboard. The next screenshot illustrates the main dashboard
configuration panel and the stock configuration items available:

Figure 3-3: The top-level Jenkins configuration panel

We can see from the preceding screenshot that there are a number of available
configuration options on the configuration panel. Let's take a look at the default
items presented in the configuration panel on the main Jenkins dashboard. These
represent the entry point into the Jenkins system:

•	 New item: This option is used to create new Jenkins jobs.
•	 People: This option navigates to the user configuration dashboard where

user accounts can be viewed or modified.
•	 Build history: This option navigates to a dashboard that represents a view of

the build jobs the system has executed, their statuses, and their trends.
•	 Manage Jenkins: This is the entry point into the administration area of Jenkins.

The administration area of Jenkins provides a plethora of configuration options
and settings, which can be adjusted to suit individual requirements.

•	 Credentials: This option navigates to the Credentials dashboard. The
Credentials dashboard offers the ability to create, remove, update, and delete
user account credentials. The Jenkins system can use these for configuration
and automation tasks.

Creating Views and Jobs in Jenkins

[64]

The job table
The job table in Jenkins illustrates the jobs defined within the Jenkins system along
with some basic status information. As our Jenkins implementation matures,
the number of jobs will inevitably expand. This will make keeping the system
maintainable increasingly important. To help organize a growing list of jobs, views
(tabs) can be created and configured to display subsets of the jobs defined within the
Jenkins system.

Implementing a structured approach to creating jobs and views in Jenkins can help
keep things organized and easier to maintain. It is a wise idea to settle on a naming
convention for the defined jobs in the Jenkins system and enforce this. This can help
us avoid a chaotic implementation and prevent confusion. By creating and enforcing
a naming convention for our jobs, we can automatically filter the contents of a view
by regular expressions or definitions. Figure 3-4 shows an illustration of a Jenkins job
table with three jobs: a build job, a deployment job, and a smoke test job.

Figure 3-4: A basic view with three jobs

From the preceding screenshot, we can quickly visualize the health of our jobs. We
can also see when they last succeeded and how long they took to execute.

Chapter 3

[65]

Organizing jobs by pipeline step and name
One of my favorite organizational methods is to name the jobs by
category and project name prefixes. I will typically prefix the job name
with the role it's going to play in the build and delivery pipeline, and
project name. Here is an example:
build.myproject: This prefix delineates a build/compile job for
myproject

test.myproject: This prefix describes a job designed to execute smoke
tests
monitor.envname: This prefix describes a job designed to monitor an
environment's health
deploy.envname.myproject: This prefix describes a job that will
perform a deployment to an environment
provision.envname: This prefix describes a job that will run a chef,
puppet, cfengine, or ansible script to provision an environment
(in preparation for deployment)

Now that we have an understanding of the purpose of the job table, let's take a
moment to drill into the job table and understand the default columns.

•	 Status of the last build: This details the most recent status of the job. Jenkins
defaults to red for failure, blue for success, and yellow for unstable.

•	 Weather report: This shows the aggregated report of recent builds.
•	 Name: This is the name of the job. This can be optionally sorted by clicking

on the Name label.
•	 Last success: This describes how long ago the last successful execution of this

job was.
•	 Last failure: This describes how long ago the last failure of the build job was.
•	 Last duration: This describes the run time length of the most recent execution

of the build job.
•	 Table footer: This contains the RSS feeds and the footer of the jobs table,

links to the Legend, and associated RSS feed. It is situated just below the job-
listing table in the user interface.

•	 Legend: This link navigates us to a graphical legend that displays all relevant
icons on the dashboard and their respective definitions.

Creating Views and Jobs in Jenkins

[66]

If green and red are more desirable than the traditional blue,
you might consider using the Green Balls plugin as an alternative
solution. This plugin can be found by searching the available
plugins provided by the Jenkins plugin center.

RSS feeds
Just below the jobs table on the Jenkins dashboard resides a set of RSS feed links. RSS
feeds provide a fluid data source, which streams up-to-the-minute details about jobs,
and statuses in Jenkins. These details include job status, recently executed jobs, and
more. The following screenshot illustrates the RSS feed links provided by Jenkins via
the main dashboard:

Figure 3-5: RSS feed links

As we can easily see from the preceding screenshot, Jenkins provides a handy RSS
feed icon next to each available RSS feed. This makes identifying RSS feeds easier as
we dive into the subsystems of the Jenkins platform.

Understanding RSS feeds in Jenkins is an important learning exercise as there are a
number of useful additions to the Jenkins platform that make use of these RSS feeds.
Let's take a minute to see what data streams each of the RSS feeds provides on the
main Jenkins dashboard:

•	 RSS for all: This is a simple RSS feed describing all jobs and their statuses
•	 RSS for failures: This is an RSS feed describing all jobs with a failed status
•	 RSS for just latest builds: This is an RSS fee describing the most recently

executed jobs

Using the RSS feeds available within Jenkins, we can subscribe our favorite RSS
feed reader to these feeds or connect them to a build notification program. Build
notification programs are available for most popular operating systems and can
help us keep an eye on the Jenkins system without the need to constantly reload
the Jenkins user interface. In case you're curious about build notification programs,
see the following list of some of the available build notification programs and their
respective links.

Chapter 3

[67]

•	 Mac/OS X—Jenkins notifier for Mac OS X at https://wiki.jenkins-ci.
org/display/JENKINS/Jenkins+Notifier+for+Mac+OS+X

•	 Windows—Desktop notifier for Jenkins at https://wiki.jenkins-ci.org/
display/JENKINS/Desktop+Notifier+for+Jenkins

•	 Android mobile—Hudson monitor for Android at https://wiki.jenkins-
ci.org/display/JENKINS/Hudson+Monitor+for+Android

•	 iOS Mobile—Jenkins notifier, which is available on the App Store

A complete list of the available integration technologies and tools can
be found at https://wiki.jenkins-ci.org/display/JENKINS/
Use+Jenkins (under the Tools section).

The Jenkins build queue and executor status
panel
The build queue and executor status panel provides us with visibility into current job
executions and queued automations on the Jenkins system. This is a handy solution
for determining the current load on the Jenkins system and can help us keep jobs
from hanging or getting stuck in the queue. The next screenshot illustrates the Build
Queue and Build Executor Status panels:

Figure 3-6: The Build Queue and Build Executor Status panels

https://wiki.jenkins-ci.org/display/JENKINS/Jenkins+Notifier+for+Mac+OS+X
https://wiki.jenkins-ci.org/display/JENKINS/Jenkins+Notifier+for+Mac+OS+X
https://wiki.jenkins-ci.org/display/JENKINS/Desktop+Notifier+for+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Desktop+Notifier+for+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Hudson+Monitor+for+Android
https://wiki.jenkins-ci.org/display/JENKINS/Hudson+Monitor+for+Android
https://wiki.jenkins-ci.org/display/JENKINS/Use+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Use+Jenkins

Creating Views and Jobs in Jenkins

[68]

By clicking on the Build Executor Status link located on the top of the Build
Executor Status panel, Jenkins will navigate us directly to the slave node dashboard,
which lists the master Jenkins executor and any defined slave nodes.

By clicking on any of the listed executor node names inside the Build Executor
Status panel, Jenkins will navigate us to the status of that respective device.

The Build Queue section displays jobs that have been triggered for execution, but do
not have an available executor. Jobs listed in the queue can be clicked on directly. By
clicking on a queued item, Jenkins will navigate us back to the originating Jenkins
job that triggered its addition to the queue.

For jobs we would like to cancel (either queued or running), we can click on X, which
is prominently displayed next to each item in the table.

Jobs in Jenkins
To facilitate the creation of new jobs, the Jenkins platform provides a handy New
Item menu link on the main Jenkins dashboard. This link represents the entry point
into job creation. In this section of Mastering Jenkins, we will learn the various job
types we can create in Jenkins and what makes each project type unique.

Upon clicking on the New Item link from the main dashboard, Jenkins will navigate
us to the basic job configuration page where we can define the name of the job
and select the appropriate project type. This screenshot illustrates the basic job
configuration page we just described:

Figure 3-7: New item basic configuration page

Chapter 3

[69]

Each of the options presented in the new item basic configuration page represents a
unique type. The selection made on this page will have a profound impact on how
the job will function. Let's discuss each of the available job types and learn about the
individual options prescribed for each job:

•	 Freestyle project: This provides the ability to create a completely custom job
that can behave in any way we choose.

•	 Maven project: This is designed specifically for JAVA Maven projects. It
utilizes Production and Operations Management Society (POMS) and
provides an easy to use interface for execution of Maven targets.

•	 Multiconfiguration project: This is designed for projects that have multiple
configurations (x86, x64, and so on). It allows you to specify a single job with
multiple output types.

•	 Copy existing job: This allows the user to duplicate the contents of an
existing job and alter the name.

•	 External job: This allows the user to trigger and monitor an external Jenkins
job. This external job type is particularly handy when there are multiple
Jenkins instances (for example, a development Jenkins instance and a
production Jenkins instance) that are responsible for production deployments.

For each of the job types, Jenkins provides a detailed job-configuration
page, which allows us to define and customize the functionality of
the job. Some of the configuration options described in the freestyle
project type are common to all job types. For the sake of brevity, the
job types described after the freestyle project job type detail only the
customization options that are unique to that project type.

Freestyle projects in Jenkins
The freestyle project is the most commonly utilized job type in Jenkins. This job type
contains a number of configuration options, and buttons, which we can use to define,
and execute automation steps. Let's discuss how to implement a freestyle project
in Jenkins.

Creating Views and Jobs in Jenkins

[70]

To create a freestyle project type in Jenkins, toggle the Freestyle project option on
the basic job configuration page and specify a unique job name. Upon inputting
these details into Jenkins, we can click on the OK button to continue. Jenkins will
then navigate us to the detailed job configuration page, as shown in Figure 3-8a
and Figure 3-8b.

Figure 3-8a: A detailed job configuration page

Chapter 3

[71]

Figure 3-8b illustrates the lower portion of the detailed job configuration page, with a
sample Execute shell build step:

Figure 3-8b: Lower portion of detailed job configuration page

Creating Views and Jobs in Jenkins

[72]

The detailed job configuration page provides a configurable user interface where we
can specify and manage a job's information, source control modules, and automation
steps. At first glance, this page may look a bit daunting; however if we look a bit
more closely, we can see that the configuration options presented are organized by
category. These categories are described below.

•	 Project details: This provides a basic set of options that define the general
properties of the job in Jenkins

•	 Advanced project options: These are advanced options that can be tweaked
to customize the behavior of your job in Jenkins

•	 Source code management: This defines configurations related to source
control (many options)

•	 Build triggers: This section defines upstream jobs, build scheduling (CRON),
and continuous integration options (SCM polling)

•	 Build steps: These include automation steps to execute as part of the build
•	 Post-build actions: These include any steps to execute once the build has

completed

Jenkins adheres to a job lifecycle process. The job execution lifecycle is a set of
governing phases a job will pass through prior to and during its execution. The
defined phases in the job execution life cycle include the following.

1.	 Polling.
2.	 Pre SCM.
3.	 SCM.
4.	 Pre build.
5.	 Build steps.
6.	 Post build.

The preceding phases we just described represent automation execution segments,
organized by functionality. These help us determine the order our automation will
run in. Additionally, when it is time to extend Jenkins through the use of plugins,
groovy scripts, or related additions, understanding these life cycle steps will prove
crucial.

When creating a Jenkins job, it is equally important to completely understand the
various categories and available configuration options available. Let's break down
the freestyle project to better understand its capabilities.

Chapter 3

[73]

Project options
The project information section contains detailed information about the present
job. The options available within the project information section includes critical
descriptive information, definitions of where the job will run, what input parameters
the job requires for execution, and how the job will be listed on the Jenkins
dashboard. It is important to explore the options available in this section in detail
and completely understand the configurations available to us. The following table
describes a brief overview of each of the available configuration options presented in
the top most section of the detailed job configuration page:

Field Input type REQ. Description
Project name Text YES This is the name that will be used by Jenkins

to describe the job. This name is also used
upon execution to define the WORKSPACE
folder the job will use to store any temporary
files during its run.

Description Text box NO This is an optional description for the job.
This information will be displayed just below
the project name on the job's status page.

Discard old
builds

Toggle NO This is the frequency at which build history is
pruned. These logs can grow significantly. It
is wise to set this option to a reasonable time
frame.

This build is
parameterized

Toggle +
choice

NO This option lets you create input parameters
for the job. The input parameters specified
will be passed into any automation steps as
environment variables.

Disable build Toggle NO This disables the job until the checkbox is not
ticked.

Execute
concurrent
builds if
necessary

Toggle NO This allows for parallel builds to run on
multiple executors if they are available (load
balancing).

Restrict where
this project can
be run

Toggle + Text
field

NO This allows you to specify a label or executor
that the job will run on. This feature is highly
useful to create a build farm of multiple
architectures or platforms.

Creating Views and Jobs in Jenkins

[74]

Defining build parameters
One of the most notable configurations available in the job configuration page is the
This build is parameterized checkbox. This option allows us to add and define the
input parameter criteria for the job. These parameters will then be passed into the
jobs executing automation as environment variables. To better illustrate this concept,
Figure 3-9 illustrates a sample build job configured with parameters that prompt
for job specific information prior to execution. The inputs defined in our example
include compiler flags, build mode, and build notes (however, it could be any bit of
useful information):

Figure 3-9: Running a Jenkins job with the required parameter inputs

Build parameters can be of varying types, and are specified in the job's configuration
page. To illustrate this Figure 3-10 shows the job configuration implementation from
the backend configuration perspective.

Chapter 3

[75]

Figure 3-10: Defining a Jenkins job with the required parameter inputs

Jenkins provides a number of parameter types out-of-the-box. These parameter types
define the input fields that will be displayed to the user when the Build Now button
is clicked. The following input options are built into Jenkins as available parameter
types.

•	 Boolean parameter
•	 CVS symbolic name parameter
•	 Choice parameter
•	 Credentials parameter
•	 File parameter
•	 Password parameter
•	 Run parameter
•	 String parameter
•	 Text parameter

Creating Views and Jobs in Jenkins

[76]

Advanced project options
The Advanced project options configuration section in the detailed job configuration
page allows us to specify advanced configuration items for our Jenkins jobs. These
are reserved for more advanced users and are very useful. It would be wise to
explore this section in detail as it contains configuration options for upstream
and downstream job execution (which is discussed in greater depth in Chapter 7,
Build Pipelines) as well as CI quiet period wait times, and more. The description
information for each of these available options is provided below.

Field Name Input Type REQ. Description
Quiet period Check box +

Text field
NO This option can prevent Jenkins from

prematurely attempting a build when a
checkin hasn't been completed or is done in
multiple checkin steps. See the help icon in
Jenkins for additional use cases.

Retry count Check box +
Text field

NO The source control checkout retry count
option will tell Jenkins to retry a failed
checkout of the source code x number of
times before giving up.

Block build
when upstream
project is
building

Check box NO This option tells Jenkins to wait until any
upstream-dependent jobs that are running
have completed prior to executing this job.

Block build
when
downstream
project is
building

Check box NO This option tells Jenkins to wait until any
downstream-dependent jobs have completed
prior to reporting the status of this job.

Use a custom
workspace

Text box NO This text box allows you to specify a custom
workspace folder name for the job.

Keep the
build logs of
dependencies

Check box NO This check box prevents Jenkins from log
rotating any dependent jobs logs.

Chapter 3

[77]

Source code management
The source code management section of the detailed job configuration page describes
the mechanism Jenkins will utilize when retrieving source code content from a
source control management system. This section of the detailed job configuration
page presents us with a number of available options we can choose from to define
our source control retrieval mechanism, and regulate the granularity of the pull.
Jenkins will present us with the following choices, which we can select from to define
our source control solution:

•	 None: No source checkout required.
•	 CVS (Concurrent Versioning System): One of the first widely adopted

source control systems. It has since evolved into more modern version
control strategies, such as SVN.

•	 SVN (Subversion): This is recognized as one of the most popular source
control systems in use today.

The Jenkins platform, by default, features source control modules for CVS and
SVN. To add support for Git, Perforce, Mercurial, and other modern source control
systems we will need to install the appropriate plugin to support it. As a result of
the comprehensive nature of source control management, this section will primarily
focus on SVN and Git since these are the most popular systems in use today. Let's
spend a few minutes looking at how to utilize SVN and Git in Jenkins.

Source control via SVN
•	 Repository URL: This is the URL for the SVN repository you would like

to attach to the Jenkins job. This URL requires an http or https prefix. The
URL can contain subfolders as required, for example, http://svn.myorg.
com/myrepo/trunk/asf/ant/. If additional checkout modules are required
by your Jenkins job, you can click on the Add more locations… button to
specify additional SVN locations.

•	 Local module directory (optional): This field allows you to specify the local
checkout subdirectory relative to the job's workspace.

•	 Repository depth: This specifies the shallow checkout option in Jenkins.
This option allows you to restrict Jenkins from utilizing full recursion when
checking out a source tree. The default option is Infinity.

http://svn.myorg.com/myrepo/trunk/asf/ant/
http://svn.myorg.com/myrepo/trunk/asf/ant/

Creating Views and Jobs in Jenkins

[78]

•	 Ignore externals: This option is used by Jenkins to prevent SVN from checking
out attached external modules that are connected to the SVN source location.

•	 Checkout strategy: This option allows you to specify how Jenkins will
perform the checkout of the source tree. More specifically, it allows you to
select from one of the following options:

°° Use svn update as much as possible
°° Always checkout a fresh copy
°° Emulate clean checkout by first deleting unversioned/ignored files,

then update using svn update (one of the best ways to handle large
source trees)

°° Use svn update as much as possible, with svn revert before update

•	 Repository browser: This specifies which SVN repository browser to link
the job to. The Jenkins platform supports Assembla, CollabNet, FishEye,
ViewSVN, and many more.

Advanced SVN options
The SVN module in Jenkins supports highly configurable filters, which can be
applied to polling and checkouts in SVN. These filters allow you to ignore checkins
with specific commit messages, include checkins with specific folder structures,
exclude the triggering of the job based on checkins by a specific usernames, and
more. If you're looking to filter your job trigger based on a specific file or include a
specific folder, this area should have the option you're looking for.

Source control via Git–requires the Git plugin
Git is a modern distributed version control solution that is increasingly becoming
popular. To support Git in Jenkins, we will at a minimum need to install the Git
plugin onto our Jenkins system. These options require the Git plugin and include the
following:

•	 Repository URL: This is the URL of the Git repository to clone. If more than
one repository is required, you could use the respective Add Repository
button to define additional repositories.

•	 Branches to build: This set of fields allows you to specify one or more
branches to checkout as part of the initial pull from the repository. The
default is master.

•	 Repository browser: This specifies the default repository browser to use for
this Git repository. Jenkins supports AssemblaWeb, Kiln, TFS, github-web,
and many more.

Chapter 3

[79]

One of the more popular Git development patterns is to leverage short-
lived feature branches, coupled with a pull request to facilitate code
reviews and integration. The Jenkins community has created a pull
request builder plugin to facilitate this exact workflow and provide
continuous build support. The plugin can be found at https://wiki.
jenkins-ci.org/display/JENKINS/GitHub+pull+request+bu
ilder+plugin.

Additional behaviors
The additional behaviors buttons in the Git source control management area contains
a plethora of additional functionality we can leverage to gain more granular control
over the Git clone and checkout process. It is highly recommended that you explore
this area in detail as each option has features that can aid in obtaining the perfect
checkout and clone results for your organization's source control implementation.

Build triggers
Build triggers are events fired that result in the execution of a build job. The build
triggers section of the detailed job configuration page provides us with the ability to
specify criteria Jenkins will listen for. The configurations made to the build triggers
section of the detailed job configuration page will define the specifics of the events
that Jenkins will use to trigger the execution of the job. Some examples of common
build triggers include:

•	 SCM changes (polling or push)
•	 Upstream job completion
•	 Timer scheduling
•	 Manual scheduling of a build (build button)

Beyond the basic build triggers listed earlier, the Jenkins community has provided a
number of additional plugins that can also be leveraged to trigger the execution of a
job. Here are some of the more popular plugins:

•	 Parameterized trigger plugin
•	 Trigger/call builds on other projects
•	 Promoted builds plugin
•	 URL trigger plugin
•	 RabbitMQ trigger plugin

https://wiki.jenkins-ci.org/display/JENKINS/GitHub+pull+request+builder+plugin
https://wiki.jenkins-ci.org/display/JENKINS/GitHub+pull+request+builder+plugin
https://wiki.jenkins-ci.org/display/JENKINS/GitHub+pull+request+builder+plugin

Creating Views and Jobs in Jenkins

[80]

Build steps
Build steps in Jenkins define the automation and sequences that will occur during
the run of a job. Upon executing a job, Jenkins will execute the defined build
steps specified within the build steps section in the same order in which they are
listed. Let's take a look at some automation steps we can define in the detailed job
configuration page:

•	 Execute Windows batch command: This build step will allow you to input
MS-DOS batch-compliant commands. Upon execution Jenkins will convert
the inputted text into a .bat file and execute it on the target executor
(master/slave etc.).

•	 Execute shell: This build step will allow you to input a set of Unix shell bash
commands or bash script code. Upon execution Jenkins will convert the
inputted text to a shell-compliant script and execute it on the target executor
(master/slave etc.).

•	 Invoke Ant: Jenkins provides tight coupling with Java technologies, such
as Ant. By implementing this build step, you can tell Jenkins to call a
specific Ant target within an Ant build script. Upon execution Jenkins
will initiate Ant (defined in the main Jenkins configuration area) and
call your specified target.

•	 Invoke top-level Maven targets: Jenkins' close integration with Maven is
equally as comprehensive as its integration with Ant. Using this build step
you can target a specific Maven lifecycle task.

Additional build steps can be made available via the vast array
of plugins available for Jenkins. For example, Ruby scripts can be
executed via the Ruby plugin, whereas MSBuild is supported via
the MSBuild plugin.

Chapter 3

[81]

Post-build actions
Post-build actions in Jenkins execute upon completion of the primary build steps.
Post-build actions are handy for notification and tasks that are not necessarily
dependent upon successful completion of each build step executed. Some examples
of post-build steps are:

•	 Archive the artifacts
•	 Build other projects
•	 Publish the JUnit test result report
•	 Publish JavaDoc
•	 Notifications

Additional post-build steps may become available as you install plugins and
customize your Jenkins instance. If you need a task to execute regardless of the
overall build status (successful, failed and so on) the post-build action section
is the preferred area to work in.

Maven projects
The Jenkins platform integrates very tightly with Java projects. Jenkins supports
Maven 2/3 POMS directly out of the box and even offers a Maven project type (for
creating build jobs specific to Maven) and primary configuration options in the
master setup area, where we can specify the default Maven installation location the
jobs will use.

By utilizing the Maven project job type in Jenkins, we can compile source code,
execute tests, incorporate dependencies, and much more. Let's learn how to harness
the tight integration with Maven and Jenkins. To get started, let's walk through
the Maven job project type in Jenkins and discover some of the special integration
features.

Creating Views and Jobs in Jenkins

[82]

When implementing the Maven job type, there are a number of obvious Maven-
specific features that will give us a notable advantage over the standard freestyle
project type. These include:

•	 Automatic parsing of POM project files
•	 Coupling of the Maven run to Jenkins with automatic determination and

execution of the subsequent steps
•	 Automatic determination of dependencies between projects

To begin, create a new Jenkins job using the New Item link on the main dashboard,
and select Maven as the project type. This is shown in Figure 3-11.

Figure 3-11: A basic job configuration page (Maven selected)

Upon clicking on OK, Jenkins will navigate us over to the detailed project
configuration page. Once Jenkins has loaded the detailed job configuration page for
our Maven project, we are presented with a number of configuration options, which
are again divided into sections. The configuration sections for a Maven project in
Jenkins are strikingly similar to the ones available for the freestyle project type, but
with some notable differences.

Chapter 3

[83]

Build triggers
The build triggers section of the detailed job configuration page contains one notable
Maven specific option:

•	 Build whenever a snapshot dependency is built: This checkbox tells Jenkins
to automatically trigger a build for this job if another job contains a reference
in its POM to the artifacts produced by this job

Build step
The Maven project type in Jenkins features one Maven-specific build step. This build
step features the ability to execute Maven and specify the relevant Maven project
options and goals. Let's take a look at the Maven build step and some of its available
options.

•	 Maven version: To have Jenkins execute goals on a Maven project, you will
need to specify any Maven installations you may have. Maven installations
can be configured in the main Jenkins configuration area, which you can
access by navigating to Manage Jenkins -> Configure System. Each Maven
installation configured will be displayed in the <Maven Version> dropdown.

•	 Root POM: If preferable, we could specify a subfolder for Jenkins to search
for the top-level pom.xml file. This option may be useful if your source
control system contains the POM inside a subfolder or if you have multiple
source control modules you are checking out from your SCM.

•	 Goals and options: This option allows you to specify the goals you would
like to execute during your Maven project build, for example, clean install.

Advanced options
In addition to the default Maven options presented within the build step and build
triggers, there are a number of advanced options that can be configured. Let's take a
look at the advanced options and some of the customizations we can implement.

•	 MAVEN_OPTS: This specifies the JVM options Jenkins passes to Maven
upon execution.

•	 Incremental build—only build changed modules: This option allows you to
speed up your build process by only building items that have changed.

•	 Disable automatic artifact archiving: If this item is checked, Jenkins will not
archive artifacts generated during the execution of this project.

Creating Views and Jobs in Jenkins

[84]

•	 Disable automatic site documentation artifact archiving: By checking
this box, we are effectively telling Jenkins not to archive all artifacts of a
Maven site.

•	 Disable automatic fingerprinting of consumed and produced artifacts:
By selecting this option, we are instructing Jenkins to not automatically
determine the fingerprints for an artifact and record it.

•	 Enable triggering of downstream projects: Jenkins provides the ability to
chain jobs together. This becomes highly useful for Java projects as a typical
Maven project has more than one build dependency.

•	 Build modules in parallel: This enables multithreaded compilation of
modules.

•	 Use private Maven repository: When selected, Jenkins will force Maven to
use the .repository file as the local maven repository definition.

•	 Resolve dependencies during POM parsing: This option will configure
the Jenkins job to automatically resolve and retrieve dependencies defined
within the Maven POM file.

•	 Run headless: If a build does not require direct access to the desktop
(Windows), this option can be selected to remove the desktop interaction for
the process.

•	 Process plugins during POM parsing: Self-documenting.
•	 Use custom workspace: Jenkins allocates a workspace for each job. This

workspace serves as the home location for source code files and artifacts
during the execution of the job. Using this option, you can specify a custom
workspace location on the target executor.

•	 Settings file: The settings.xml file is used to specify configuration for
Maven. By customizing this field, we can specify an alternate location where
Jenkins and Maven will look for this file.

•	 Global settings file: This dropdown allows the user to specify one of two
options:

°° Use default Maven global settings
°° Global settings file on filesystem

Chapter 3

[85]

Post-build steps
The Maven project type in Jenkins features a unique set of post-build actions. This
feature supports the conditional execution of post-build steps based on specified
criteria. The available options include the following:

•	 Run only if build succeeds
•	 Run only if build succeeds or is unstable
•	 Run regardless of build result

The integration of Jenkins with Maven is quite unique. This is because at its root
Jenkins was designed to support Java development solutions. For additional
information related to Jenkins and Maven please consult the Maven Project
plugin wiki page located at https://wiki.jenkins-ci.org/display/JENKINS/
Maven+Project+Plugin.

Monitoring external jobs
The Jenkins platform features a wide variety of project types and a diverse set of
automation solutions. One of the lesser-known jobs that Jenkins offers allows us to
monitor an outside job/process for completion. By harnessing this feature, we can tie
Jenkins to other build systems, automations, or applications that reside outside the
Jenkins ecosystem, and have them report back to our monitor an external job project in
Jenkins.

Let's take a few minutes to learn how to implement a Jenkins job that monitors an
external process and reports back upon completion. To begin, create a new Jenkins
job using the New Item link on the main dashboard and specify External Job as the
job type. Once created, you may notice there are very few detailed configuration
options for this specific job type. This is because the way this job type will receive its
status is by waiting for a job-specific callback from the Jenkins core.

https://wiki.jenkins-ci.org/display/JENKINS/Maven+Project+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Maven+Project+Plugin

Creating Views and Jobs in Jenkins

[86]

External job types rely on the Jenkins core automation engine to execute processes
from the command line and report status back to the Jenkins system. Let's consider
the following command-line example excerpts provided by the Jenkins community:

•	 For Debian/Ubuntu:
$> sudo apt-get install jenkins-external-job-monitor

$> export JENKINS_HOME= http://user:pw@yourjenkinsurl/path/to/
jenkins/

$> java -jar /path/to/WEB-INF/lib/jenkins-core-*.jar "job name"
<program arg1 arg2...>

•	 For Windows:

C:\> SET JENKINS_HOME=http://user:pw@myserver.acme.org/path/to/
jenkins/

C:\> java -jar \path\to\WEB-INF\lib\jenkins-core-*.jar "job name"
cmd.exe /c <program arg1 arg2...>

In the preceding examples, the external job-monitoring project type allows us to
initiate a shell command or script using the java command and the Jenkins core
subsystems. Once the shell command has completed, Jenkins will report the status
back to the job name specified via the command line. This type of solution allows
users to connect Jenkins with other build solutions easily and maintain the status
within the specified Job.

Multiconfiguration jobs in Jenkins – matrix
jobs
A multi configuration project in Jenkins is valuable for instances where a build
or automation task has multiple steps that are very similar in nature except for a
few key pivot points. A multi configuration project may be useful when there are
multiple input flags of a similar nature. Such projects might be based on a Debug or
Release compiler flag, or a specific architecture definition (x86 or x64).

It is important to note that this type of project in Jenkins sacrifices some amount of
customization that would otherwise be available in a free style project in exchange
for some basic conventions. In return the user gains the ability to create an axis, and
reduce redundancy across multiple jobs.

Chapter 3

[87]

Configuration matrix
The configuration matrix is the defining feature of the multi configuration job in
Jenkins. This feature allows us to specify steps within the job that would regularly be
duplicated and allows us to parameterize these via an axis.

At the core of the multi configuration project in Jenkins is the user-defined axis.
Using the Add Axis drop-down menu, we can select from the available axis types
and define build slaves, label expressions, or user-defined custom options. We can
consider an axis in the Jenkins multi configuration project as a pivot point and allow
one job to do the work of many.

Slaves
The slave option on the Add Axis dropdown provides us with the ability to restrict
the execution of the parallel build steps to the defined slave nodes on the Jenkins
system. The displayed input is in tree-form with checkboxes that can be ticked to
allocate slave node devices to the execution pool. This is illustrated in Figure 3-12.

Figure 3-12: Add axis— the slaves option

Creating Views and Jobs in Jenkins

[88]

Label expression
A label expression axis allows us to define slave nodes or executors directly by the
group name that the job will run on. This is similar in nature to the Restrict where
this project can be run option we discussed earlier in the freestyle project, but it lets
the individual legs of the axis define the slave devices they will run on.

This screenshot illustrates the Label expression option with a label defined as
WindowsSlavesGroup:

Figure 3-13: A label expression definition

Chapter 3

[89]

User-defined axes
The user-defined axis is probably one of the most useful features of the multi-
configuration job in Jenkins. This option allows us to specify a set of values and a
key that will be used to iterate over a job step multiple times. To better illustrate, let's
consider the following ant commands and see how we can make use of an axis to
reduce duplication of our Jenkins jobs:

#>ant set-target-foo debug compile

#>ant set-target-bar debug compile

#>ant set-target-foo release compile

#>ant set-target-bar release compile

Instead of defining multiple build steps or jobs, we can utilize the Add Axis feature
to call one build step multiple times with a unique parameter passed into each call.
This is simply an iterator that passes in a unique value per execution. By selecting
the user-defined Axis option from the Add Axis dropdown, we can specify a name
(variable) and a set of whitespace values (or values separated by carriage returns)
that will define the passed-in parameters.

Once the axis values have been defined, we can access them via a standard
environment variable parameter in the build step, as illustrated here:

#>ant $target $releasetype compile

As we can see in our example $release and $releasetype contain the pre-defined axis
variables we described via our white space values above.

It may take some experimentation to get multi-configuration jobs defined and
working properly in a manner that is suitable for your specific needs. Once inputted
and configured properly, multi-configuration jobs can become an invaluable tool
within your Jenkins arsenal.

Creating Views and Jobs in Jenkins

[90]

Creating views
Views in Jenkins allow us to organize jobs and content into tabbed categories, which
are displayed on the main dashboard. As a Jenkins instance expands, it is logical to
create associated views for appropriate groups and categories. For example it may be
a good idea to create a Build view, which displays build-specific jobs within it. Let's
spend a few minutes discovering how to implement a new view within Jenkins and
learn ways to filter its content.

To implement a new view, there is a tab icon with a plus sign located on the main
Jenkins dashboard, as illustrated in Figure 3-14:

Figure 3-14: Creating a new view

Upon clicking on the + tab, Jenkins will navigate us to the basic view configuration
page. From this page, we will need to specify a name and view type for our new
view. The default view type available in Jenkins is the List view. This view type
contains a list of jobs. Additional view types may become available if/when any
plugins that support creating additional view types are installed onto the Jenkins
system. For now we will stick to the List view view type. Once the view type has
been defined, click on OK to proceed to the detailed view configuration page, which
is illustrated in Figure 3-15.

Chapter 3

[91]

Figure 3-15: A detailed view configuration sample page

The detailed view configuration page contains a number of options that we can
use to customize the look, feel, and content of the view. To better understand the
switches and knobs available, let's walk through each of the sections displayed
within the detailed view configuration page:

•	 Basic Details: The Basic Details section of the detailed view configuration
page contains fields that define the header content of the view (name and
description), as well as some basic filtering options for the jobs that can be
listed (Filter build queue and Filter build executors).

•	 Job Filters: The Job Filters section of the detailed view configuration page
contains a set of more advanced filter options, which can help narrow down
the list of jobs that the tab will contain. Such items include Status Filter,
filter by job name (check the appropriate boxes for the jobs to list), and use
regular expressions.

Creating Views and Jobs in Jenkins

[92]

•	 Columns: Now that we have the jobs that we want to list on the view, we
may want to customize the columns in the job table. To accomplish this, there
is a handy columns section that we can utilize to detail the columns that will
be displayed. The available columns include:

°° Status
°° Weather
°° Name
°° Last success
°° Last failure
°° Last duration
°° Build button

Filtering jobs by regular expression
One of the more valuable features we can leverage when creating views is regular
expression filtering. This solution allows us to specify a naming convention filter
specification for the view. It exists in regular expression form and will cause Jenkins
to filter the Jenkins jobs displayed in the view based on the match results of the
regular expression entered. This screenshot illustrates the configuration field that
allows us to input a regular expression filter:

Figure 3-16: Regular expression filtering

Chapter 3

[93]

Filtering by regular expression is quite easy. Let's look at some examples:

•	 .*MyProjectName.*: This filters Jenkins jobs in the view to include all
projects that contain the text, MyProjectName

•	 (?!MyProjectName.*).*: This filters Jenkins jobs in the view to exclude all
projects that contain the text, MyProjectName

•	 (?![0-9].*).*: This filters Jenkins jobs to exclude all projects containing
0–9 numerical digits

As we can see, through the implementation of regular expression filtering we can
enforce naming conventions and keep our Jenkins instance organized.

Summary
In this chapter, we learned more about dashboards, views, and project types in
Jenkins. We learned some valuable tools available to create them. You learned
about Java properties files and understood how we can begin to leverage them to
pass build data from one job to another. In the next chapter, you will learn about
managing build jobs, views, and dashboards.

[95]

Managing Views and
Jobs in Jenkins

Managing views and jobs in Jenkins is typically a responsibility assigned to the
Jenkins administrator. To assist us in this responsibility, our friendly Jenkins
concierge features a number of investigative tools that we can leverage to debug
any issues that may arise. In this chapter, we will get acquainted with some of the
features Jenkins provides to administrators. We will learn to better navigate the
Jenkins user interface and also learn how to trace job failures, sleuth slave node
outages, and analyze health trends.

Learning to effectively navigate and manage a Jenkins instance is a skill that will be
honed over time and generally comes through the experience of doing it. Experience
can teach what no teacher could have taught. Wisdom evolves through these
experiences and comes from practice. As you spend more time practicing and honing
your Jenkins skills, you will learn how to effectively manage a Jenkins instance of
any size.

"Tell me, I'll forget, Show me, I may remember, But involve me and I'll
understand." – Chinese Proverb

Together, we will discover some lesser known features, and learn how to harness
them to better manage the information housed in Jenkins. Additionally, we will walk
through a number of tutorials on views and jobs in Jenkins, and learn how to better
navigate the Jenkins platform.

Managing Views and Jobs in Jenkins

[96]

To begin let's discuss the areas of focus for this chapter. This chapter will focus on
the following topics:

•	 Managing Views in Jenkins
•	 Navigating a job's project page
•	 Drilling into a job's execution

Managing Views in Jenkins
Views are represented as tabs in the Jenkins platform on the main dashboard
and are positioned at the top of the dashboard. Each tab is the manifestation of a
view defined in the Jenkins system. The primary purpose of views is to display an
organized subset of the jobs defined. Views can help us organize the jobs within
Jenkins by category, state, or regular expression. A relatively new Jenkins installation
may not require a structured organizational system but, as the number of jobs grows
organically, organizing the jobs by category will become more and more important.
In this section of Mastering Jenkins, we will learn how to manage views and discover
some tips and tricks we can leverage to optimize our Jenkins installation.

Altering the default "View"
The default behavior of the Jenkins platform is to list all jobs defined in the Jenkins
system on the main dashboard. The All tab displays every project currently defined
in Jenkins in one all-encompassing list. As jobs become deprecated and projects
are no longer actively developed, it is prudent to migrate projects off the primary
dashboard view and onto views that are dedicated to specific categories. To better
illustrate this concept, Figure 4-1 shows a set of categorized views in Jenkins
organized by job type or pipeline:

Figure 4-1: An example of categorized views in Jenkins

Chapter 4

[97]

As we can see, creating views can help ensure that users can quickly locate the jobs
that matter to them, and avoid hunting for specific jobs on the primary entry points
in Jenkins.

This solution can help dramatically organize active jobs in Jenkins. While this is a
step in the right direction, there could still be a problem managing a growing list
of historically deprecated jobs and data. Let's learn a quick trick we can employ to
help better manage historical or deprecated jobs on the Jenkins dashboard. The best
way to pair down the number of jobs displayed on the main Jenkins dashboard is
to create a new default view containing only the active jobs on the system. Once
the new Active jobs view has been created, we will continue to allow the All tab to
contain a complete list of jobs on the system, however Jenkins users would not need
to wade through a lot of clutter to find what they are looking for. After the new
default view has been implemented we could switch out the primary entry point tab
that Jenkins will display, which would provide a nice clean dashboard containing
ONLY the active jobs on the system.

The following screenshot illustrates an example of the approach we just discussed
and uses an Active Projects view integrated into Jenkins as the primary entry point.

Figure 4-2: An alternate view example

Once the new Active Projects view has been created, we will want to set it as
the default view for the Jenkins system. Jenkins provides a handy Default view
configuration option located in the main Jenkins administration configuration page.
This option will become available when more than one view exists on the system.
To alter the default view, the Jenkins administrator will have to navigate to the
Jenkins -> Manage Jenkins -> Configure System page to begin making the
necessary adjustment.

Managing Views and Jobs in Jenkins

[98]

Once you navigated to the primary Jenkins configuration page, we need to locate the
Default view configuration option. This is illustrated in Figure 4-3:

Figure 4-3: Altering the default view

Once the drop-down option has been changed, Jenkins will automatically use the
selected view instead of the default All view when users navigate to Jenkins. This
solution can help hide deprecated jobs that have become obsolete and take up
valuable dashboard space.

Restrict project naming
Jenkins allows the administrator to restrict the naming of jobs based
on specific patterns. To implement name restrictions use the Restrict
project naming checkbox. By using this solution, you can enforce
a set of naming conventions for Jenkins jobs. This option is worth
exploring in greater depth.

Customizing the basic content of a View
As we mentioned earlier, the available views are displayed in the uppermost sections
of the Jenkins dashboard and are shown as tabs. To modify the contents of a view
in Jenkins, click on the desired view. Then click on the Edit View link from the
configuration panel on the left-hand side, as shown in Figure 4-4:

Chapter 4

[99]

Figure 4-4: The Edit View link on the Jenkins dashboard

Upon clicking on the Edit View option for the selected view, Jenkins will navigate
us to the detailed configuration page for that view. From this configuration page, we
can customize the view and make alterations. Let's take a moment to detail out the
customization options available from the Edit View configuration page.

The Edit View configuration page is divided into three primary categories. The
categories include a general configuration options section, Job Filters, and Display
Columns. Let's look at each category in greater depth.

From the general configuration section at the top, we can modify basic configuration
details such as the name of the view, the description, and some basic view filter
toggles, which filter the jobs displayed within the view.

The Job Filters section is just below the general configuration area. It provides a
more granular filtering system that allows us to delineate the projects that our view
will display. The most useful of these filters is probably the regular expression
filtering option, which provides a unique way to select jobs that will be displayed
via regular expression.

Managing Views and Jobs in Jenkins

[100]

Just below the Job Filters section is the Columns section. This area allows us to alter
the columns displayed in the view. The columns selected will describe the projects
listed as well as the relevant status information. From this section you can define the
columns displayed within the view. Adding preferred columns from the drop-down
menu provided or deleting them using the Delete button allows us to modify which
view columns are displayed. The columns available include:

•	 Status
•	 Weather
•	 Name
•	 Last success
•	 Last failure
•	 Last duration
•	 Last stable
•	 Build button

Advanced customization of a "Views" content
The Jenkins platform provides a lesser known but very powerful solution to modify
the content of a view via the view's description text box. The description text box
originally was designed to display a simple text description on the header of a job or
view. By adjusting the Jenkins global security settings, we can configure Jenkins to
support and serve rich HTML content directly in the header. This provides us with
an incredible amount of control over a view's content. While this feature allows for a
number of unique customizations, it is important to note that it may also create some
inherent security vulnerabilities. Therefore we discourage anyone from using this
solution on a public or Internet accessible Jenkins instance.

To get started, we will need to alter the security settings in Jenkins. The first step in
enabling HTML content in the Jenkins description text box is to configure Jenkins to
not escape raw HTML tags. To implement HTML support in descriptions, navigate
as the Jenkins administrator from the main Jenkins dashboard over to the configure
security area located in the Jenkins administration area. You can navigate to:

Jenkins | Manage Jenkins | Configure Global Security

Once the global security settings page has loaded, locate the Markup Formatter
drop-down menu and select Raw HTML from the available options, as illustrated in
Figure 4-5.

Chapter 4

[101]

Figure 4-5: The Raw HTML option

Once the modification to the Markup Formatter setting has been made, click Save to
confirm the alterations to the security configurations. At this point we should be able
to add raw HTML elements to Jenkins description boxes.

Alternative: Jenkins Anything Goes plugin
If the preceding solution does not work on your specific Jenkins
instance, you can consider using the Anything Goes plugin to
accomplish the same task.

Now that the proper security settings are in place, we should be prepared to add
custom HTML content in our Jenkins description boxes.

Let's begin by learning how to add a simple CPU load graph, which displays the
load statistics for the Jenkins master at the top of the view. The following screenshot
illustrates a set of Load Statistics, which will display on the main Jenkins dashboard
after we have completed the proceeding tutorial:

Figure 4-6: Embedding HTML charts in views

Managing Views and Jobs in Jenkins

[102]

To begin the implementation of the load statistics graph start by creating a new view
titled Load Stats and configure it to display all Enabled jobs via the Job Filters
configuration section. Once the view has been created and displays the appropriate
jobs, we will want to edit the view and modify the description to contain a simple set
of HTML tags. The complete HTML content for the description is provided below.

<h2>Load Statistics</h2>
<img src="/computer/(master)/loadStatistics/graph?type=min&width=500&h
eight=200" type="image/svg+xml" />

Once the content of the description box has been set, click Save to complete the
implementation. Once the configuration has been saved we should see a nice
diagram detailing the master instance's Load Statistics on the Load Stats view.

This lesser known feature provides us with a significant amount of flexibility.
It allows us to implement dramatic view customizations and can radically alter
the content of the views on the Jenkins dashboard. This section only highlighted
one potential customization. However, there are hundreds more possible. With
embeddable HTML, the sky is the limit.

Navigating a job's project page
Now that we have a solid grasp of managing views in Jenkins, let's turn our focus
over to Jobs. In this section, we will learn to navigate the job overview page. There
are a lot of options and indicators available, and it is important to understand each
of these as they can assist us in tracing issues, debugging build failures, and
identifying relavant information quickly.

The job overview page contains configuration options and job execution details for
the specified Jenkins job. The interface includes information regarding execution
status, build history, last execution times, and SCM polling data. The optional
configurations available on the left hand panel include the ability to edit jobs
definitions, a button to delete the job from the Jenkins system, a recent changes link,
and more. Let's look into the job overview page in greater depth and see how it
works.

To navigate to a job overview page in Jenkins, simply click on the preferred job
from the main Jenkins dashboard, and Jenkins will load the overview page for the
specified job. Figure 4-7 illustrates an example of a project overview interface for a
freestyle job titled HelloWorld:

Chapter 4

[103]

Figure 4-7: The HelloWorld project overview page

As we can see from the preceding screenshot, the job overview page contains three
unique display panels. Each panel contains relevant project information related to
the selected job's configuration and status.

These panels can be described as follows:

•	 The configuration panel (upper-left)
•	 The build history panel (lower-left)
•	 Project overview (central)

In our HelloWorld project, there are a number of features that allow us to trace the
history and configuration details of the job. Let's take a few minutes to walk through
each of the options available on this page and see what role each plays in our
Jenkins ecosystem.

Managing Views and Jobs in Jenkins

[104]

The Configuration panel
The Configuration panel contains job-level features that are useful for managing the
configuration of a Jenkins job. The following table illustrates the options available
with their respective icons and descriptions:

Icon Title Description
Back to dashboard Navigates back to the main Jenkins dashboard

Status Refreshes the job status page

Changes Navigates to the recent SCM changes page

Workspace Navigates to the workspace interactive browser

Build now Schedules a build

Build with
parameters

Schedules a build with specified parameters

Delete project Deletes the current project from the Jenkins
system

GitHub polling
log *if SCM
polling enabled

Navigates to the GitHub polling history page (this
option will only be available if the GitHub plugin
in Jenkins is installed and SCM polling is enabled)

Chapter 4

[105]

Subversion polling
log *if SCM
polling enabled

Navigates to the subversion polling history page.
(this option will only be available if SCM polling
is enabled and Subversion is specified as the SCM
module the job will use)

*Maven projects
only—provides a
list of modules

This option provides a list of modules defined in a
Maven POM (Maven projects only)

Configure Allows the Jenkins user with the appropriate
permissions to configure the job and edit the
detailed job configuration information

The Build History panel
The Build History panel represents a visual history of builds that have taken place
during the course of a job's lifetime in Jenkins. For matrix job types, this option
presents a drill-down-style navigation system to navigate into the matrix axis
below. Regardless of the job type, the build history can be granularly managed by
a retention system that can be implemented through the log rotation configuration
option, which is located in the job's detailed configuration area. This feature allows
us to configure a retention policy for the job's build history by altering the log
rotation option. This will tell Jenkins to automatically remove outdated or stale
executions from the build history panel based on the configuration specified.
(for example, 10 days or the last 30 builds).

The numerical list in the build history panel displays the most recent build
executions and their associated status information (Failed/Success). The Build
History panel serves as a primary indicator for historical status, build execution
time, current execution status, and more. Let's dive deeper into the build history
panel and see how it can enrich our Jenkins experience. Figure 4-8 provided below
illustrates the current Build History panel connected to a project defined in Jenkins:

Figure 4-8: The Build History panel

Managing Views and Jobs in Jenkins

[106]

The header of the Build History panel (illustrated in Figure 4-9) prominently features
an icon indicator, which relays the historically calculated health of the Jenkins job as
well as a trend link, which provides trend details related to the job.

Figure 4-9: The Build History header

The health of a Jenkins job in the build history panel is converted to a weather icon,
with possible statuses, including sunny, cloudy, rainy, or stormy. This health metric
is determined based on past successes and failures, which are translated into trends.
For a detailed history of the job, we can click on the trend link on the header to
navigate to a detailed timeline page which provides complete historical data related
to the job. The stability of the job (in percentage form) is the metric that is leveraged
to determine the health weather icon on the Build History panel.

Customizing each build's line entry in the history
Each execution of a job will result in an additional line being added to
the build history panel. By altering a given build's description, we can
embed custom data into this column. It may be wise to include useful
information, such as version information, to make this panel easier
to read.

Jenkins features an interactive user interface to display in real time any currently
running executions of a job. An example of this is illustrated in the following
screenshot:

Figure 4-10: The currently running job indicator

Chapter 4

[107]

As we can see from the preceding screenshot, the job status indicator displays a
progress bar when the current job is running. The progress bar displayed estimates
the job's completion time based on a calculated average of previous executions. If a
job execution is in progress and another execution is scheduled, the Build History
panel will display the queued item, as illustrated in Figure 4-11:

Figure 4-11: Pending job execution

We can also see from the preceding screenshot that, if the current job has an
execution in progress, the Build History panel provides an easy way to terminate
the current execution (marked by a red X). The panel also offers and efficient way
to navigate directly to the console output of the presently running execution (by
clicking on the status bar) where we can see the live console output contents for the
running job.

The project overview – central panel
The project overview panel provides basic details about the job and its most recent
executions, including:

•	 A link to the workspace browser (depends on the current security settings)
•	 A link to the SCM change log of the project
•	 An option to set the description
•	 A button to disable the project from future execution

Managing Views and Jobs in Jenkins

[108]

•	 A few useful RSS feed links to stream pertinent data about the job
•	 Test automation trend graphs (if you have that configured)

This section is fairly simple in nature, but it will grow to become more and more
important as we dive into individual job executions in the next section.

Job execution
When a job execution fails, the Jenkins system provides a set of comprehensive
tools that can help us investigate the details of the failure. To get the most out of the
Jenkins system, users will need to become familiar with the basic operations of the
project status page and learn how to investigate build information efficiently.

The first step in investigating any job run failures is to understand the contents of the
Build History panel and locate the build that requires further investigation. Failed
builds are noted with a red sphere next to the associated execution, and successful
executions are noted with a blue sphere (unless you are using the greenballs plugin).
You can click on executions from the Build History panel to navigate to the detailed
execution status page for the specified run, as shown in Figure 4-12:

Figure 4-12: The detailed execution status page

Upon navigating to the detailed status page, there are a few panels and options that
will immediately become helpful and allow us to manage and investigate the job.
Specifically, these areas include:

•	 The job execution configuration panel (left panel)
•	 Status panel (center panel)
•	 The console output (icon and link)
•	 The SCM changes (icon and link)

Chapter 4

[109]

Let's take a few minutes to learn the ins and outs of the available options on the job
execution status page.

The Job Execution Configuration panel
The job execution configuration panel provides options to investigate and manage
individual job runs. It contains links to see any SCM changes that went into a job
run, view the console output of the job run, edit a description note pertaining to a
job run, or delete the run entirely from the system. Let's take a minute to look at the
individual options available in the job execution configuration panel:

Icon Title Description
Back to project Navigates back to the project status page

Status Refreshes the job run status page

Changes Navigates to the recent SCM changes page

Console output Navigates to the console output of the job

Edit build
information

Allows us to specify a small note about the run
of the job

Delete build Deletes the build from the job history

Managing Views and Jobs in Jenkins

[110]

The Status panel
The status panel for a given build number provides a brief overview of a job's
execution. The information provided on the status panel is intended to act as a
cursory overview page. It includes details surrounding the execution time of the job,
details related to SCM changes (latest only), execution timings, and any descriptions
provided after the build completed. The following screenshot illustrates an example
of the status panel for Build #4:

Figure 4-13: A status panel example

The Console Output
The Console Output will contain the complete text log of output from the execution,
including any clues surrounding failure status. The following screenshot illustrates a
simple example of the console output log:

Figure 4-14: Example console log output

Chapter 4

[111]

In addition to the graphical Console Output log illustrated earlier, Jenkins features
a plain text option, which can be useful when the console log contains special
characters or has grown to larger sizes. To navigate to the plain text console output,
click on the View as plain text link, as shown in Figure 4-15:

Figure 4-15: View as plain text link

Jenkins features a comprehensive SCM change log to assist us in locating any specific
SCM changes applicable to a given build. To view the changes that have recently
been integrated, we can utilize the Changes link, which is also located on the left-
hand configuration panel.

Disabling failed jobs
It is usually a good idea to disable a Jenkins job once a failure has
been identified. This will give you time to investigate and fix the
issue (or find the person who can) without Jenkins automatically
triggering additional builds while the job remains in a failed state.

Summary
In this chapter, we discovered how to manage jobs and views in Jenkins. We learned
some tips and tricks to customize views and descriptive headers, and we discussed
how to best investigate failed builds.

In the next chapter, we will discover advanced automated testing techniques. We
will begin to learn how to integrate industry-proven testing infrastructures into our
Jenkins platform.

[113]

Advanced Automated Testing
Advancements in information technology, and telecommunications have fueled
Internet businesses worldwide. These advancements have catalyzed one of the
most complex, and competitive economies in modern history. It is through this
competitive marketplace that cloud computing, and Software as a Service (SaaS),
were born. These business ventures have vaulted from once risky endeavors into
industry-proven vertical markets, with the potential for high yield returns. What's
interesting about these particular vertical markets is that they are only feasible if an
organization can come up with an innovative idea, and manage the costs associated
with software engineering, quality assurance, delivery, and operations. In an effort
to mitigate the costs involved, these business ventures typically employ strict
standards, cutting-edge automation, and stringent quality control practices.

In the ongoing effort to drive efficiency, businesses are beginning to leverage
adaptations of Six Sigma, Continuous Improvement, Agile, A/B Testing, and other
innovative engineering process paradigms in an effort to identify value added
features, increase efficiency, control research and development expenditures,
improve production process, and meet customer demands effectively. While the
aforementioned practices are innovative and cutting-edge, legacy software solutions
can still make use of them. That being said, the implementation of innovative
automated testing strategies for legacy projects is not going to happen overnight.

"Be not afraid of growing slowly, but instead be afraid of standing still" – Chinese
proverb

To bridge the gap between immature quality assurance initiatives and highly
efficient automated solutions that provide tangible business value we will need a
roadmap. Our strategic roadmap will need to combine people, process, and product
with automation to provide business value, and alleviate bottlenecks.

Advanced Automated Testing

[114]

In this chapter of Mastering Jenkins we will focus on automated quality assurance. We
will learn how to implement automated quality initiatives via Jenkins, and discover
some of the fundamental practices involved in creating scalable quality assurance
solutions. More specifically the topics we will cover in this chapter will include the
following:

•	 Quality assurance initiatives and test automation terminology
•	 The software development lifecycle
•	 Connecting product code to tests
•	 Baking quality into the product code
•	 Automated testing in Jenkins
•	 Unit tests in Jenkins through MSTest
•	 Organizing test jobs
•	 Distributed testing solutions

Quality assurance initiatives and test
automation terminology
Quality assurance can often seem like a mystical religion that engineering pays lip
service to, in an effort to appease the business and add a quality approved seal to a
product. Traditional implementations of manual quality assurance initiatives often
feel very abstract and repetitive. Quality assurance is simply the practice of verifying
functional requirements, and identifying defects, in an effort to create and preserve
market credibility. In the end poorly created software products have no credibility,
and zero hopes of competing against similar products that are functional. Adopting,
and implementing innovative automated quality assurance solutions, and coupling
those with automated testing apparatuses, can provide significant business value.
These solutions increase businesses credibility, and promote customer reliance on the
software products delivered.

Chapter 5

[115]

Automated testing further assists the business by removing the human equation
from manual error-prone testing practices, reduces the man hour cost of executing
test plans, and provides a living audit of the code base. When automated test
systems are architected properly they have the potential to identify defects, prevent
regressions, and catch performance failures prior to delivery to the end customer.

Let's consider some key questions that may come up when implementing a quality
assurance initiative based on automation.

•	 Where will the automated tests run? What will they run against?
•	 Will any group of automated tests potentially clog the development or

delivery pipelines or decrease efficiency? How will we address this?
•	 When are the automated tests going to run? As part of the build (Unit Tests)?

Against the UI (Functional/Acceptance/Regression)? Are they simply basic
sanity tests (Smoke)? Do the tests validate application performance (Stress)?

•	 Are the tests white box or black box? Do we want black box tests to run on
the deployment environment? Or from another location?

•	 Will there be a data impact as a result of the test execution? How will the
system reset?

•	 How long is a reasonable time for the tests to run, and still provide value?
When should a test be removed from the pool?

By asking these questions we can begin to narrow down an automated quality
assurance initiative into ideas and concepts, and start to think about conventions.
By performing a little bit of upfront work in defining the test cases, scenarios, suites,
and automated testing roles we can help ensure the future scalability of the delivered
assets, and provide a comprehensive testing solution that creates business value.
Now that we have a basic idea of some high-level QA considerations, let's take a
minute to define some quality assurance, and automated testing terminology:

Advanced Automated Testing

[116]

•	 Unit tests: Unit tests can be described as tests that run directly on the build
machine during the build process and are designed to validate the I/O of
classes, methods, objects, and functions. Properly constructed unit tests
serve as a direct audit of the code base. They can assist development in
identifying deprecated code segments, faulty classes and methods, and
unstable software bits. The best-practice adherence to unit testing is to ensure
that, if any unit tests fail to execute, the build should fail as a result. When
a unit test does fail it should become an urgent task to address the failure.
Constructing a unit test solution does not need to be complex. A simple setup
and teardown apparatus can get us 90% of the way there. To better illustrate
this, Figure 5-1 describes a simple example of a unit test suite.

Figure 5-1: A unit test structure

•	 Smoke / BVT (Build Verification tests): Smoke tests (more commonly
known as build verification tests) validate basic operational functionality
of a software project. Generally these tests attempt to identify simplistic
operational failures that are catastrophic, and prevent the software from
being considered viable for further testing. These sanity tests will typically
execute immediately after a deployment or installation of a software project
onto a centralized environment and verify that the software meets the most
minimal functionality requirements. These tests are intended to be fast
running, few in number, and should not be destructive to any data layers. If
any of the smoke tests fail then immediate action should be taken to address
the failures. Figure 5-2 describes a very basic smoke test flow chart.

Chapter 5

[117]

Figure 5-2: A basic smoke test workflow

•	 Functional tests: Functional (or acceptance) tests validate the operability of
a software project, and ensure the implementation of the software project is
in line with functional requirement specifications, and business initiatives.
In a best-case scenario the same developers who write the application code
will assist in writing the functional test suites. The reason developers should
assist is to ensure a 1:1 match of code developed to tests created (similar in
nature to test-driven development).

•	 Regression tests: Regression tests aim to reproduce defects identified by
users in the field. The ultimate goal of a regression test is to automate the
reproduction of a defect, and ensure that the defect does not re appear.
Advanced regression testing solutions should aim to provide a system that
can visually reproduce a defect for developers based on the entry of a bug
tracking ticket identification number. In such a system a developer would
simply enter the bug ID into the automated test case execution system,
which would then illustrate the steps needed to reproduce a bug on
a given environment.

•	 Capacity tests: Capacity tests are tests designed to simulate stress and
load on an application suite. These tests help ensure that the software can
withstand real-world use and abuse. Testing application load and stress
capabilities can be accomplished via the implementation of valid use case
scenarios, which are then replicated and distributed across
multiple simulators.

Advanced Automated Testing

[118]

•	 Black Box tests: Black Box tests execute from that same perspective as the
end consumer of the software. They have no visibility into the internals of a
software project or the system it runs on and can only see the software from
the consumer's perspective. It is important to note that the consumer of a
software project may be a human, a service, a process, or another automation
source. Figure 5-3 illustrates black box tests:

Figure 5-3: A simple black box test

•	 White Box tests: White box tests are tests that have the ability to see into
the internals of a software application and can validate file structures,
application process ID's, and other internally available information related
to the software. White box tests may also have the ability to see into the
system that the software is running on and can verify lower-level operational
capabilities of the software itself. Figure 5-4 provides a high-level overview
diagram that describes white box testing:

Figure 5-4: White Box testing

Chapter 5

[119]

•	 A/B testing: Understanding customer usage and acceptance of new features
within a software project has been a business hurdle for many years. A/B
testing allows business interests to propose new features to end-users, collect
usage data metrics through analytics, and provide feedback related to the
adoption of a proposed feature. These experiment-driven testing solutions
allow the business to decide through data metrics when a feature creates
customer value, and when it does not, thus allowing the business to focus
on features that drive revenue. More advanced implementations of A/B
testing solutions allow the business to incrementally expose users to a feature
hypothesis and collect real-time feedback on its adoption.

The Software Development Lifecycle
The Software Development Lifecycle (SDLC) can be described as the unique
phases a software project journeys through from birth to release. A traditional
SDLC includes planning, engineering, and test and release phases. These phases are
designed to be circular in nature and future iterations of the project will inherently
repeat the previously taken SDLC steps. Figure 5-5 illustrates a traditional SDLC:

Figure 5-5: The Software Development Lifecycle

Advanced Automated Testing

[120]

The model described earlier illustrates a traditional waterfall approach to software
development. In a continuous delivery or continuous deployment model, the
iterations are much smaller, and an automated pipeline will need to be carefully
created to support the higher velocity of releases in conjunction with dynamic
automated testing.

To support the above stated modern continuous practices the SDLC will need to be
expanded to reflect the shift towards continuous integration, continuous delivery,
and continuous deployment. The proposed alterations to the SDLC will aim to
illustrate pre-production environments, delivery phases, and delineated test buckets.
An adapted SDLC would need to appropriately reflect the process of executing
an incrementally more aggressive set of test suites for each defined deployment
phase in the delivery process. If all of these changes sound a bit confusing, don't
worry; we are going to cover them step by step. Figure 5-6 illustrates an example of
an expanded SDLC, which can support short incremental continuous testing and
deployment cycles:

Figure 5-6: Continuous Software Development Lifecycle

Chapter 5

[121]

The expanded SDLC illustrated earlier intends to better encapsulate a delivery
pipeline. As such this enhanced SDLC model would be more viable for continuous
delivery or continuous deployment and may not be suited to waterfall development.
The diagram provided previously should also support an expanded or contracted
SDLC (depending on organization size and maturity). The deployment and testing
phases illustrated earlier can be inserted or removed as necessary to fit with an
organizations logical business requirements and size.

When applying continuous integration or deployment, automated testing
implementations should execute a different set of automated tests for each pre-
production deployment. This is in an effort to progressively validate the quality of
the software project during each subsequent phase of the SDLC. A list of progressive
testing buckets is provided below.

•	 Unit tests
•	 Functional Tests
•	 Regression Tests
•	 Acceptance Tests
•	 Performance/Capacity Tests
•	 BVT/Smoke Tests (after every deployment)

Now that we have some of the basic concepts illustrated in our SDLC, and have
learned how to expand it to fit with an evolving automated testing solution, let's
define some best practices that can help us achieve the best results.

•	 When implementing automated testing solutions try to ensure that the
number of technologies implemented is kept to a minimum.

•	 Define pre-production environments and their purpose. It is important to
note that production doesn't have to be specific to web projects. It is simply a
declaration of released status.

•	 Settle upon an automated deployment technology.
•	 Identify test buckets dedicated to each pre-production environment

(functional, regression, capacity and so on).

Advanced Automated Testing

[122]

•	 Create a repeatable engineering process with room for a backlog and strategy
for crisis management.

•	 Automate everything—From build processes, to test execution, to test
notification systems, deployments, and server provisioning.

•	 Don't allow emergencies to dictate process. Embrace failure as part of the
process and create mechanisms to recover quickly.

In up coming sections we will outline some best practices around automated testing
and development patterns in an effort to support continuous integration, continuous
delivery, or continuous deployment. Jenkins provides great support for all of these
practices and by implementing good architecture the sky is the limit.

Connecting product codes to tests
When in grade school we all learned the concepts surrounding the scientific
method. It involved formulating a hypothesis, and validating our hypothesis by
gathering supporting proof. As a software project matures, learning to apply the
scientific method to automated testing will become increasingly important. The
implementation of these principles is actually quite simple. The code change or
feature represents the hypothesis and the validation of the hypothesis is the test(s)
written, which prove it. In a standard Test Driven Development (TDD) model, tests
are written prior to the code change. This is a very powerful model with very visible
benefits. As powerful as TDD is it's import to mention that strict enforcement of
writing tests prior to implementation can lead to arbitrary restrictions in prototyping,
and may not work effectively in all cases. The important thing to adhere to is simply
a consistent incremental approach to writing tests for each change committed.

Many organizations have migrated their development resources into hybrid cross-
functional teams (DevOps, DevQualOps etc.) in an effort to facilitate the creation of
software, encourage quality and validation, and help manage ongoing maintenance
of a software solution. Test-driven development specifically purports to ensure there
is functional validation of a given code hypothesis as part of the engineering process.
Figure 5-7 illustrates a basic approach to Test Driven Development with an added
step of building and packaging the binary assets and tests together.

Chapter 5

[123]

Figure 5-7: The Test Driven Development paradigm

Applying a form of Test Driven Development after implementing a clearly
architected test execution system with rapid feedback loops can provide a solid
foundation for a software project to grow upon. While it's no silver bullet it can help
us to unify engineering, quality assurance, and operations personnel. Once adopted,
the business can move to release strategically or at a preferred cadence instead of an
arbitrary deadline created by engineering.

This alluring business and engineering paradigm indeed alters the day-to-day
engineering culture and operating efficiency surrounding software development,
test, and delivery. Each of these once segregated groups will inherently evolve
and increasingly emphasize standardization and cross-discipline approaches to
delivering software. As a result the organization will need to foster a collaborative
approach to delivery. This means implementing standards and conventions. In turn
they will be able to develop, and deliver high-quality solutions faster and outwit
the competition.

The value that test-driven development provides an organization can be easily
quantified. Developers will begin to think more like testers, and will aim to find
new and creative ways to validate their code hypotheses. Testers will begin to think
more like developers and will increasingly look for new and innovative automated
approaches that can aid in their testing efforts. Initial implementations of TDD will
by nature cause a short-term decrease in development cadence and feature velocity,
but long term it will lead to fewer defects in the software project, and encourage a
level of quality in the code created. This is often referred to as crafting code.

Advanced Automated Testing

[124]

Baking quality into the product
Automated testing development is in many ways similar to product-based software
development. The end goal of an automated testing solution is to validate the
viability of another software project. The only real difference is the target audience of
the solution created. Just as product code adheres to standards and quality rigor so
should the respective test harnesses, and test suites. This helps ensure that test code
is managed in much the same way as product code. This shift in mindset raises the
software process and architectural considerations. Let's identify some best practices
that should be adhered to for testing solutions.

•	 All test code should be committed to source control. It would be wise
additionally to create a test directory structure along side the product
being tested. This helps ensure that the test code is kept in lockstep version
with the product code. Some software frameworks already support this
convention directly. Some examples include Ruby on Rails, Java Maven,
Play, and Ember.js.

•	 Test code may or may not be compiled: however, syntax errors should be
checked during the build process and any errors should be considered valid
reasons to fail the build.

•	 Test code should be versioned and managed in the same fashion as product
code. This will help match the version of a software project to a version of
the test automation. By implementing this type of solution, an organization
can go back in time and see what the status of the tests were at the time of a
previous release.

•	 Tests should be packaged alongside binary assets. When moving towards a
DevOps culture the product packages typically flow from one environment
to another. Adopting this process would allow the test suites to do the same.

Efficient automated test architecture
Creating automated tests can be a high value addition to any software project. When
automated tests are architected carefully the automation can facilitate speedy QA
cycles with minimal human intervention. When automated tests are not carefully
architected they can be a huge choke point for software releases. If automated testing
takes in excess of 72 hours to complete, the end results become ambiguous and the
value of the automated testing solution is lost.

Chapter 5

[125]

Organizing tests to provide business value without bottlenecking software delivery
can be a balancing act. As a best practice we will want to keep in mind the cost
associated with each test and understand any velocity implications to the release
process. When architecting an automated test solution consider the following
pyramid, which is designed to showcase a comparative proportion of tests.

Figure 5-8: Test coverage pyramid

While the general value of automated testing is well observed throughout the
software development community, the implementation details and reasoning are
often conflicting. This has led to a disparate fragmentation on best practices and
implementation guidelines. Regardless of the implementation specifics there are
considerations to be made in relation to test decay, timely execution, and as a result
a direct impact on scalability.

Advanced Automated Testing

[126]

The best practice recommendation outlined in Continuous Delivery specifies that
quality requirements should increase as the software project approaches release.
The solution that best adheres to this is test buckets, which ensure that there is
no duplicated execution of automated tests (except smoke). If the deployment or
subsequent test execution takes too long to execute, the pipeline gets backed up
and the rapid feedback loop looses its value. The preventative solution is to clearly
define automated test buckets, and implement a progressive deployment and testing
system. To better illustrate the concept of test buckets Figure 5-9 shows a simple
automated test pipeline with explicitly defined test buckets.

Figure 5-9: A sample test pipeline with buckets

From the above diagram we can see that the test suites are organized into test
buckets, which are then executed after a software deployment to a pre-production
environment. This helps prevent duplicate test runs and facilitates efficiency in
executing automated tests.

Smoke test tip
It is highly recommend that a simplistic smoke test suite be created
and executed immediately after the deployment to an environment.
The smoke tests will validate the viability of the environment and
determine if it is worth testing further.

Now that we have a better understanding of the architecture we want to create let's
dig in to some Jenkins specific implementation examples and see how we can apply
our newly acquired knowledge.

Chapter 5

[127]

Automated testing in Jenkins
The Jenkins community has developed numerous plugins that support a wide array
of automated testing tools, patterns, and reporting solutions. The diverse nature of
these plugins makes Jenkins an ideal automated testing tool. Each solution will have
its own unique benefits and drawbacks. These should be carefully considered prior
to implementing any automated solutions in Jenkins. Basic automated test reporting
is a straightforward process, which Jenkins can assist us with by collating automated
test reports, graphing successes and failures, and determining regressions. All of
these help provide insight on the underlying quality of a software project.

One of the more common implementations surrounding automated testing is to
utilize a testing technology that employs JUnit or xUnit reporting. These formats
are built into Jenkins directly. Jenkins is however not limited to these report formats.
Many other formats and testing solutions are available via the plugin ecosystem.
To begin with, let's take a minute to look at some of the more popular solutions
Jenkins supports.

•	 WATIR (JUnit)
•	 WATIN (NUnit)
•	 Node.JS + Grunt (xUnit)
•	 Ember Test (embtest xUnit)
•	 CPPUTest (xUnit)
•	 Ruby Unit Tests (CI Report gem)
•	 RSpec (Behavior Driven Development (BDD) testing framework)
•	 Jasmine (BDD Testing framework)
•	 TestNG
•	 QUnit

As we can see there are numerous test frameworks that provide direct support for
executing automated tests and reporting the results. For a more comprehensive list
please utilize the Jenkins plugin documentation located at the following URL:

https://wiki.jenkins-ci.org/display/JENKINS/Plugins

Let's dive in and learn a bit about the JUnit and xUnit formatting, which is the most
popularly leveraged Jenkins reporting solution. In the next section we will learn how
to execute tests and publish test reports in the JUnit and xUnit formats.

https://wiki.jenkins-ci.org/display/JENKINS/Plugins

Advanced Automated Testing

[128]

JUnit and xUnit test results are based on an XML DOM structure, which illustrates
the following information in a nested XML tree format:

•	 Test suite(s) and respective name
•	 Number of tests in the suite(s)
•	 Number of test cases executed
•	 Number of test cases skipped
•	 Number of test cases failed
•	 Test execution time
•	 Error and exception data

The basic XML structures for these results are strikingly similar in nature and data
content. Below are examples of xUnit report formats, and JUnit report formats
respectively.

•	 xUnit:
<?xml version="1.0" encoding="UTF-8"?>
<testsuite name="myXUnitTests" tests="1" errors="1" failures="0"
skip="0">
 <testcase classname="test_suite.TestA"
 name="test_A" time="0">
 <error type="exceptions.TypeError"
message="SomeException">
 Traceback (most recent call last):
 ...
 TypeError: SomeException message
 </error>
 </testcase>
</testsuite>

•	 JUnit:

<?xml version="1.0" encoding="UTF-8"?>
<testsuites>
 <testsuite name="JUnitExampleReport" errors="0" tests="0"
failures="0" time="0" timestamp="2015-05-24 10:23:58" />
 <testsuite name=" JUnitExampleReport.constructor" errors="0"
skipped="1" tests="3" failures="1" time="0.006" timestamp="2013-
05-24T10:23:58">
 <properties>
 <property name="project.jdk.classpath" value="jdk.
classpath.1.8" />

Chapter 5

[129]

 </properties>
 <testcase classname="JUnitExampleReport.constructor"
name="should default value to an empty string" time="0.006">
 <failure message="test failure">Assertion failed</
failure>
 </testcase>
 <testcase classname="JUnitExampleReport.constructor"
name="should default consolidate to true" time="0">
 <skipped />
 </testcase>
 <testcase classname="JUnitXmlReporter.constructor"
name="should default useDotNotation to true" time="0" />
 </testsuite>
</testsuites>

To facilitate data parsing and rendering of test results; Jenkins offers plugins for both
xUnit and JUnit report parsing. These plugins are respectively titled:

•	 JUnit Plugin (comes with the Jenkins default install)
•	 xUnit Plugin

The JUnit Plugin comes pre-installed with the stock Jenkins setup and therefore
does not need to be explicitly installed. Conversely the xUnit plugin will need to be
explicitly installed prior to use (Jenkins Administration -> Plugins).

Once the proper plugins have been installed we will need to configure our build job
to properly identify, and consume any test reports created during the execution of
the tests. To do this we will need to navigate in the Jenkins UI to the preferred job
and click the Configure link to load the detailed configuration page for the job. This
screen is illustrated in Figure 5-10.

Figure 5-10: The Jenkins Job configuration page

Advanced Automated Testing

[130]

The xUnit plugin provides the option to parse test report files either in the build
phase OR as a post build action. This allows a bit of extra flexibility surrounding
actions that may occur prior to or after the processing of the results (hint: sending
email test reports to developers, or ensuring failed tests don't fail the build). To
configure Jenkins to parse xUnit results during the main build process, simply add
the Process xUnit test result report build step to the main Jenkins job configuration.

To configure Jenkins to parse either JUnit or xUnit results as a post build action,
simply add a post build action step by clicking on the Add post build Action button
at the bottom of the configuration page, as illustrated in Figure 5-11.

Figure 5-11: Add post-build action to publish a test report

Once the proper build or post build steps have been added we will be given the
opportunity to configure various options regarding where and how Jenkins will
process the results.

Chapter 5

[131]

Figures 5-12 and Figure 5-13 illustrate examples of the configuration panels presented
to us after adding a xUnit or JUnit post build step.

Figure 5-12: Configuration options for xUnit Test report

As we can see from the above xUnit configuration screen we can configure
PASS/FAIL thresholds, skipped test thresholds, and timing margins for the parsed
xUnit results.

Figure 5-13: Configuration options for JUnit Test report

Advanced Automated Testing

[132]

As we can see from the above JUnit Report parsing options, the plugin provides us
with the ability to specify file search locations for our test results, and health report
amplification factors. Amplification factors allow us to specify a percentage of failed
tests, which we can use to gauge the health of the software project and ensure failing
tests have the appropriate impact on the jobs PASS/FAIL status.

After implementing the configuration settings to implement either xUnit or JUnit
parsing we will want to execute the job and verify that Jenkins is properly publishing
the automated test results. After the job has been executed successfully we should
see a new Test Results link presented to us in the middle of our Jenkins project
overview page as shown in Figure 5-14.

Figure 5-14: Latest Test Result overview

By clicking on the Latest Test Result link Jenkins will navigate us to a drilled down
report of our latest test execution as shown in Figure 5-15:

Figure 5-15: Sample test drill down

Chapter 5

[133]

As Jenkins collates trends surrounding additional test executions it will begin to
graph the results directly on the project page. This graphing widget is a hugely
valuable feature. The graphs that Jenkins provides deliver a glance overview of
trends related to test execution. These graphs even feature the ability to drill into the
quality metrics and isolate regressions, new failures, and more. Figure 5-16 shows an
example of a test automation graph feature in Jenkins, which is green and red due to
the greenballs plugin.

Figure 5-16: Test Result trend

Now that we have a handle on capturing automated test results and graphing the
information in Jenkins using xUnit and JUnit let's spend some time discussing the
finer points of MSTest and Unit tests. This will be highly valuable for Microsoft
Windows and .NET users.

Unit tests in Jenkins through MSTest
As we mentioned earlier, unit testing provides developers with a formalized way to
write code documentation, and encourages better coding practices. Unit testing is
simply breaking down the functionality of a program into unit-testable behaviors,
which can be repeatedly executed to verify the behavior of the code in response to
standards, boundaries, and data inputs.

Advanced Automated Testing

[134]

TDD, Test Driven Development or TFD, Test First Development, as we mentioned
earlier, is a development technique where developers repeat a process of three
activities, which are tightly interwoven.

•	 Testing: Creating automated tests
•	 Coding: Writing minimal code to just pass those tests
•	 Design: Refactoring code to improve internal implementation without

changing the external contract

At the time of writing, there are numerous Unit testing frameworks available. The
most notable are MSTest, JUnit, CUnit, and NUnit, which are available for .NET,
JAVA, Linux, and Windows respectively. In the next section we will take a look
at how to execute MSTest-based unit tests and learn how to publish the results in
Jenkins.

How to set up MSTest agents
To integrate Jenkins with MSTest, the first step is to install the Visual Studio Test
Agents onto the Jenkins build server, or slave. When installing test agents, it is
important to note that it has to the same version of Visual Studio used on the
developer workstations. To proceed, download and install the agents using any
of the following links:

•	 Agents for Microsoft Visual Studio 2013: http://www.microsoft.com/en-
gb/download/details.aspx?id=40750

•	 Agents for Microsoft Visual Studio 2015: https://www.microsoft.com/en-
us/download/details.aspx?id=48152

Once installed MSTest.exe will be located in the following location on the
build server:

C:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\MSTest.
exe

Once installed it can be used to run tests from the command line. In the next
section we will discover the basic parameters and command line entries needed to
accomplish this.

http://www.microsoft.com/en-gb/download/details.aspx?id=40750
http://www.microsoft.com/en-gb/download/details.aspx?id=40750
https://www.microsoft.com/en-us/download/details.aspx?id=48152
https://www.microsoft.com/en-us/download/details.aspx?id=48152

Chapter 5

[135]

Running automated tests via MSTest
The MSTest.exe program has several options available that we can use to customize
the behavior of our test run. (To see a complete options/summary type MSTest /h
or /?).

To run MSTest.exe, we need to specify either a test metadata file or a test container,
using either the /testmetadata option or the /testcontainer option, respectively.

•	 The /testmetadata:[file name] option can be used only once per
command, and indicates one test metadata file.

•	 The /testcontainer:[file name] option can be used multiple times per
command, and indicates multiple test containers. It needs to include the path
to the folder in which the metadata file or test container resides.

•	 The /category:[test category filter] option allows us to select tests
that reside categories to run.

•	 The /resultsfile:[file name] option allows us save the test run results
a specified result file.

Additionally we will need to specify on the command line the binary files that
contain the tests that we want to run. Using default value (***test*.dll) we
can tell the build agent to search recursively for any .DLL files that match our glob
pattern of *test*.dll housed in the binaries subdirectory of the build agent's
working directory. To better clarify the execution of this let's look at an example.

A example MSTest execution
The following is an example MSTest execution:

C:\>cd C:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE

C:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE>MSTest.
exe /testcontainer:"C:\Program Files (x86)\Jenkins\jobs\Build.
ExampleProj\workspace\source\ExampleProj \bin\Release\ExampleProj.Tests.
dll" /resultsfile:"C:\Program Files (x86)\Jenkins\jobs\Build.ExampleProj\
workspace\source\Build\Tests.Results.trx"

Advanced Automated Testing

[136]

Running MSTests and reporting the results in
Jenkins
The purpose of integrating unit tests into Jenkins is that it gives immediate feedback
on the operability of the code created, provides an audit of the code base, and helps
to flag potential issues and defects as early in the development cycle as possible.

The test projects defined in the Visual Studio .SLN file will compile every time the
Visual studio solution is built. This means that any unit test compilation failures will
also fail the build. Once the test DLLs have been built we will want to execute those
in Jenkins. This will allow us to track the PASS/FAIL trends, and begin to capture
code coverage metrics. In order to run the unit tests we can implement them via the
following steps in Jenkins.

1.	 Writing an MSbuild script to execute MSTest.exe with parameters and
automatically locate the pre-built test dlls:
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="ExecuteMSTest" xmlns="http://schemas.
microsoft.com/developer/msbuild/2003">

 <PropertyGroup>
 <MsTestExePath>C:\Program Files (x86)\Microsoft Visual
Studio 10.0\Common7\IDE\mstest.exe</MsTestExePath>
 <MsTestResultPath>$(WORKSPACE)\MyResults.trx</
MsTestResultPath>
 <Configuration>Release</Configuration>
 </PropertyGroup>

 <Target Name="ExecuteMSTest">

 <ItemGroup>
 <MSTestAssemblies Include="$(WORKSPACE)**\
bin\$(Configuration)*.Test.dll"/>
 </ItemGroup>

Chapter 5

[137]

 <PropertyGroup>
 <MsTestCommand>"$(MsTestExePath)" @
(MSTestAssemblies->'/testcontainer:"%(FullPath)"', ' ') /
resultsfile:"TestResults\Results.trx""</MsTestCommand>
 </PropertyGroup>

 <Exec Command="$(MsTestCommand)" ContinueOnError="true" />

 </Target>

</Project>

2.	 Using Execute Windows batch command in the Jenkins job configuration as
a post-build action:

Figure 5-17: Execute Windows batch command window

Update the batch command to contain the below example:
"C:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\
IDE>MSTest.exe" /testcontainer:"C:\Program Files (x86)\Jenkins\
jobs\Build.ExampleProj\workspace\source\ExampleProj \bin\Release\
ExampleProj.Tests.dll" /resultsfile:"C:\Program Files (x86)\
Jenkins\jobs\Build.ExampleProj\workspace\Tests.Results.trx"

In the above example the command will execute MSTest test cases that reside
inside the ExampleProj.Tests.dll test binary, and automatically save the
test results into the Jenkins workspace.

Advanced Automated Testing

[138]

Publishing test results in Jenkins
To integrate the MSTest results into Jenkins, we can use the MSTest plugin to map
the MSTest format results to a format that Jenkins natively understands (Junit XML
results). The plugin is available from the Manage Plugins screen (Jenkins, Manage
Jenkins, Manage Plugins, click the Available tab).

After the plugin installs successfully, there is a new entry in the Post-build Actions
section of the job configuration. Select Publish MSTest test result report in the
Post-build Actions and enter the path **/*.trx we used above for the results
output location as shown in the following figure:

Figure 5-18: Publish MSTest test result report in Post-build Actions

When the Jenkins build job runs again, a new Test Results area will be displayed
on the run summary screen that indicates we don't have any failing tests. Clicking
the Test Result link for more details will navigate us to a page, that will show the
test results parsed from the results file. This will include information on all of the
running tests and their execution times. In addition to the test information, there
will also be a new menu item on the left side named History for the build. Clicking
on this will show historical information on the test runs, including a graph of the
execution times and test counts.

Organizing test jobs
As our test implementations in Jenkins mature, we will want to ensure that
the system remains organized. This will help keep things easy to navigate, and
manageable for novice users. One easy way to help assist in keeping the system
maintainable is to implement a naming convention for automated test jobs.

Chapter 5

[139]

An example of how to do this is illustrated below:

Figure 5-19: Test job naming convention based on pipeline

Upon implementing a naming convention, we can leverage views and regular
expressions to display those jobs in a unified manner and enforce our naming
convention. The filtering of test jobs can be configured through views and regular
expressions. While keeping the naming conventions enforced will provide a level of
scalability" there are always additional measures that can be taken.

Another approach is to leverage the Categorized View plugin, which allows us to nest
jobs together and provides an easy way to group similar jobs. For more information
on the Categorized View plugin please visit the following URL:

https://wiki.jenkins-ci.org/display/JENKINS/Categorized+Jobs+View

These are just some of the possible implementations that can help enable a scalable
approach to software testing and delivery by using naming conventions. It is
important for you to select an approach that works best for your organization.

Distributed testing solutions
Implementing simple stand-alone test jobs in Jenkins is easy; however it's not very
scalable. For tests that are long-running or require a significant amount of computing
resources we will want to implement a more scalable automated testing solution.
Fortunately there are a several ways to accomplish this. In this section of Mastering
Jenkins we will learn some tricks we can employ to assist us when the need arises to
scale our automated testing solutions.

https://wiki.jenkins-ci.org/display/JENKINS/Categorized+Jobs+View

Advanced Automated Testing

[140]

The Selenium Grid
One potential automated testing solution that can effectively scale and parallelize
automated tests is a Selenium grid (Web Driver). The Selenium grid was
conceptualized via Dan Fabulich, and Nelson Sproul (with help from Pat Lightbody)
in 2005. It wasn't until 2008 however that the Selenium grid as we know it came into
fruition. It was further enhanced into the Selenium WebDriver, which is the popular
implementation used today. Used by popular companies such as eBay, Google,
Merck, Yahoo and others, this solution can potentially handle hundreds of thousands
of test executions by distributing the testing suites across a grid of connected
machines. Generally Selenium is designed to provide automated testing for web
applications; however it has been adapted to facilitate automated testing solutions
for mobile and embedded products as well. To implement this type of solution we
will need to spin up a Selenium grid. Detailed instructions on how to create and
configure a Selenium grid can be found at the link below (and are provided in detail
in Chapter 9, Integrating Jenkins with Other Technologies):

Once a grid has been set up and is operational, there are a number of ways to trigger
the execution of automated tests. Some prefer to simply check out the tests from
source control, while others prefer utilizing a packing method. The more scientific
method is to package the automated tests along with the build output and store
them in an artifact repository. By creating some automation, which packages both
the compiled code and the tests, we maintain the historical testability of the packages
created and released. This provides a simple way to see how the test automation
functioned at the time the build was created. Additionally it allows us to go back
in time and validate the build output without searching through source control or
hunting down deprecated dependencies. While this is not the only solution, it is
definitely one worth considering.

To execute the tests contained in a package or source control, simply create
automation to fetch the package (or tests) onto the grid hub, and call the test harness.
To make the solution even more scalable, we can attach the grid hub as a slave node
to our Jenkins master and capture the test result output via normal methods such as
Surefire reports, TestNG reports and so on. This solution is by far the most scalable.
Grid nodes can be enabled on just about any machine or device with a web interface.
When implementing a Selenium testing solution remember that, the more machines
that are attached to the grid, the more scalable the solution.

To facilitate high availability of a Selenium grid solution there are some interesting
tactics that can be proposed. One interesting proposition is to encourage personnel
to attach their work machines to the Selenium grid when they are not online or in
the office. This will allow a Selenium grid to expand by an order of magnitude and
enable parallel test execution across the machines connected to the grid.

Chapter 5

[141]

Parallel down-stream jobs
If a Selenium grid is not something that suits you, all is not lost. Jenkins can be
configured to provide a quasi grid of its own. By coupling the Jenkins master/slave
architecture with some downstream job magic we can implement a distributed
testing harness.

To get started we will need the following ingredients:

•	 A Jenkins master instance
•	 At least 2 slave nodes connected to the master with the capability to execute

the automated tests (Cucumber, JUnit, xUnit, CPPUnit and so on.)
•	 A set of automated tests with a command line option to specify a specific test

suite(s) to execute
•	 The Jenkins Join plugin installed

The basic architecture we will be shooting for with this implementation is pretty
simple. Figure 5-20 describes the basic architecture for our intended solution.

Figure 5-20: Distributed slave test architectures

The basic flow of the system will be to trigger downstream projects and pass to them
the relevant details regarding which tests to execute, which environment to execute
the tests against, and then collate the results in the upstream job. The magic of this
solution is the ability to trigger downstream jobs simultaneously.

Advanced Automated Testing

[142]

To implement this, simply specify each downstream job via a comma-separated list,
in the top most parent job. This is defined in the job's configuration, and is added as
a post-build step to trigger Build other projects. An example of this configuration is
shown in Figure 5-21:

Figure 5-21: Build other projects

One the parent job has been configured properly we will next create the logical
downstream jobs (each one attached to a different slave node) and have them bubble
up the test reports. This can be accomplished via the Build Flow Test Aggregator
plugin. Details of this plugin can be found at https://wiki.jenkins-ci.org/
display/JENKINS/Build+Flow+Test+Aggregator+Plugin.

Once configured, the final step in this configuration is to test the solution and verify
the results are correctly aggregated.

Summary
To begin the implementation of a truly scalable testing solution the key is
standardization. This simplifies and solidifies a common set of core technologies,
processes, and validation criteria for a software project. Indeed, introducing
standards at an organization that has none is going to be an up-hill battle. Jenkins
does provide all of the tools necessary to implement and build even the most
complex systems. Even though Jenkins is highly configurable the more simplistic the
implementation, the more likely it is to be successful. The key to a successful testing
solution is to not to implement a custom-made highly adaptive solution but instead
to remove the custom parts and substitute them with a set of conformity-driven
standards, repeatable and known software engineering test processes,
and automation.

In this chapter we discovered automated testing solutions in Jenkins. We learned
how to create a scalable unit test solution. We covered how to implement a
distributed testing apparatus and how to architect our test buckets. We even learned
how to implement automated testing in MSTest, and briefly touched on A/B testing.

In the next chapter of Mastering Jenkins we will shift our focus over to deployments and
delivery. We will learn some new and creative approaches to automating deployments
and delivering our valuable software assets through the Jenkins platform.

https://wiki.jenkins-ci.org/display/JENKINS/Build+Flow+Test+Aggregator+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Build+Flow+Test+Aggregator+Plugin

[143]

Software Deployments
and Delivery

As the Internet of Things increases the number of connected devices, IT operations
personnel have been tasked with maintaining the existing scaled infrastructure as
well as engineering new and innovative approaches to deliver software without risk.
On the other side of the fence, software engineers have also been busy employing
new and creative techniques to increase collaboration, control costs, and decrease
production deployment failures. These two seemingly equidistant efforts have led to
significant advancements in the exciting field of release engineering.

One of the more recent evolutions in release engineering combines traditionally
segregated IT and development resources into hybrid cross-functional DevOps
teams. DevOps-oriented teams are aimed at bridging the gap between traditional
operations personnel, quality assurance engineers, and software engineers, all in an
effort to employ modern, delivery practices and streamline the release of software
assets. It is through these cross-functional teams that organizations have successfully
implemented high-quality scalable software deployment procedures.

"The person who says it cannot be done, should not interrupt the person doing it"

 – Chinese proverb

In this chapter of Mastering Jenkins, we will discover some of the leading trends in
deployment automation. We will illustrate tactics, recipes, and tutorials that we can
leverage when implementing an automated deployment solution. Our objectives for
this chapter will be to cover the following topics:

•	 Standardizing build outputs
•	 Architecting a package scheme
•	 Implementing a Definitive Media Library (DML)

Software Deployments and Delivery

[144]

•	 Publishing assets to a DML
•	 Jenkins archive artifacts post-build action
•	 Publishing via Maven
•	 Publishing to Artifactory
•	 Pushing a Docker container
•	 Automated deployments
•	 Retrieving build artifacts and packages
•	 Fetching artifacts via archive the artifacts
•	 Fetching artifacts from artifactory
•	 Fetching artifacts via Maven
•	 Verifying package integrity
•	 Jenkins fingerprints
•	 MSBUILD via custom c# task
•	 Linux/Unix BASH
•	 Executing deployment automation
•	 Leveraging Jenkins slave nodes for deployment

Upon completing this chapter, we should have a solid grasp of how to architect
and implement automated deployments across any number of technology stacks
and disciplines in Jenkins. Irrespective of the architecture, platforms, or technology,
the deployment phase of a software solution, website, embedded product, or a
desktop application is arguably one of the most important phases of the software
development lifecycle. The reason is simple: the deployment of a software project
represents the initial experience a user will have with the software, and the path to
future releases. A successful deployment signifies the beginning of business value
and represents a precursory return on engineering investments.

Chapter 6

[145]

Standardizing build outputs
The build process (especially the packaging and publishing phases) marks a
foundational corner stone for automated deployments. For this reason, it is important
to understand the basic lifecycle of a typical build process. The aim of the build
process is generally to automate the validation of compilation quality of source-
controlled assets, automate the creation of viable artifacts, and provide a software
product that engineering can potentially hand to the business. While the technology
stack may vary across organizations, typical build processes will follow a similar set
of automation patterns. Let's look at the basic flow of a generic build process:

1.	 Obtain a clean copy of the source code from source control.
2.	 Fetch any dependencies (preferably from an artifact repository).
3.	 Version stamp any necessary code (may be a pre-compile or post-compile

step, depending on the technology stack).
4.	 Compile the source code and verify syntax.
5.	 Execute unit tests (unit-based validation of objects, methods, and classes).
6.	 Collate compiled objects, binaries, or deliverables into a common

output directory.
7.	 Create a package containing the binaries and deliverables.
8.	 Publish a versioned deliverable to an artifact repository.

The last two steps in the preceding process are arguably the most important ones
when it comes to delivery and deployment. Properly architecting a deployable
package and placing this package into an easily automatable location is paramount
for deployments. The question remains though: how do we know what architecture
to use for our packages? Let's dig a bit deeper.

To elaborate on what we discussed earlier, a basic build system implements a set
of automated processes for a software project in an effort to not only automate the
compilation of the software, but to answer some basic questions related to the code
base. The questions asked and answered by the build system are as follows:

•	 Is the source control system accessible to the build machine and
appropriate users?

•	 Does the code contained in source control meet basic structural standards?
•	 Does the source code committed to the code base compile at the time build

was initiated, or does it have any obvious syntax errors?
•	 Is the build environment in a working state?
•	 Does the software pass basic unit test execution?

Software Deployments and Delivery

[146]

As we look to Jenkins and automate deployments to pre-release and production
environments, we are essentially posing additional questions (our processes and
automation should provide the answers provide the answers):

•	 Is the pre-production and production environments in a usable state?
•	 Does the software project install?
•	 Does the software project meet quality assurance standards?
•	 Where can engineers go to test integrated development efforts?

Leveraging automation to answer these questions can help software engineers,
quality assurance resources, and management better understand the current
implementation and quality of the software solution. By automating deployments of
a software project to a prerelease environment, we can provide a preflight instance of
an application that can be tested at any time.

Architecting and implementing an automated deployment solution in Jenkins can
be a complex endeavor. Varying technology stacks (C#, C++, Java, Ruby on Rails,
and so on) coupled with undefined engineering processes, can make deployment
implementations virtually impossible. Standardizing the output of the build process
into unified packages can help alleviate 90 percent of the complexity related to
deployments. The way this is accomplished is by implementing on a set of basic
standards and conventions regardless of platform, architecture, or technology stack.
While this will inherently sacrifice some amount of flexibility, we will gain a set of
known structures that are predictable, and can be automated against. Let's take a few
minutes to learn how we can do this.

Architecting a packaging scheme
To begin to understand how to implement delivery package architecture, we need
to start at the source code level. Software code (including deployment automation,
tests, and related apparatuses) should be managed in the same logical source control
repository that the software source code is kept in, and preferably packaged as part
of the build process, to keep it in lock step release synchronization with the product.
This enforces the idea that as software project's code base evolves, the deployment
automation, automated testing solutions, test cases, and related infrastructure code
will evolve in lockstep as well.

Chapter 6

[147]

By storing product code, tests, and automation in the same source line in a
predefined structure, we can eventually package the entire software solution's
output during the build process. This allows us to create a snapshot in time, which
will include a one-to-one match of binaries, deployment automation, database
changes, and tests. Implementing this type of software development pattern has a
number of benefits. Let's look at a few of them:

•	 The final deployable package will contain everything necessary to install
the component or software project onto a given environment (this can make
disaster recovery easier)

•	 The final deployable package will contain all testing apparatuses and
database schema scripts needed to pass quality control gates (this makes
going back in time and running tests against an older package possible)

•	 The software project could be easily be rolled backwards or forwards (by
simply executing the automation inside a versioned package)

The following diagram shows a simple source control timeline. It describes the
lockstep evolution of product code, automation, and tests with regard to packaging:

Product Code:

Tests:

Automation:

5/14
9:00 AM 11:00 AM 3:00 PM

V1.0.0.1 V1.0.0.2 V1.0.0.3

Suggested Packaging Scheme

Zip Zip Zip

5/15

Figure 6-1: Suggested packaging scheme

Software Deployments and Delivery

[148]

One way to look at this packaging solution is to imagine a shrink-wrapped
electronics product one might purchase at a big-box store. The package purchased
typically includes everything needed to get up and running. This includes the
product itself and instructions on how to use it. Often, you can even locate the
quality control seals on the product. This proposed solution is really no different.

Build and deployment best practice
The goal of any build system should be to create a package that can be
deployed repeatedly. The common phrase is build once, deploy many.

The packaging solution described previosly features a number of advantages over
simply storing deployment automation and quality assurance test cases in segregated
source control repositories. Let's look at a few of these advantages in greater detail:

• It removes the need to rebuild, reminimize, or recompile the code and tests
prior to deployment

• It maintains a separation of concerns, follows continuous delivery best
practices, and provides a definitive source of truth for releases

• It alleviates the error prone nature of running updated tests against previous
releases or builds

• It organizes the outputs of engineering groups into a unified solution that
encourages (if not enforces) collaboration

To help visualize the packaging objectives we are looking to achieve, let's
look at an example of a unified standards based package. The following screenshot
illustrates an example folder tree of a ZIP package, which contains the application,
tests, deployment automation, and documentation. Its end contents signify a
collaboratively developed deployment package:

Figure 6-2: Package contents

Chapter 6

[149]

As we can see from the preceding example, our package's file name and format
is also standardized. In our example, the final output is a ZIP with the AppName-
#.#.#.#.zip naming convention. Your specific package implementation may
vary in architecture (Zip, Tar, and so on) depending on technology stack,
architecture, and convention. The final output and resulting package should be a
single version-stamped deliverable, which follows the same patterns across all
software projects that will have automated deployments.

Snapshots and Releases Tip
When implementing a package system, you may consider creating
two or more identical packages: one for snapshots, which represents
the latest build, and an additional item, which might represent
the latest released version. This can be helpful when performing
automated deployments and managing dependencies, as the packages
could then be retrieved easily, without the need to specify a version
number, and could be fetched via a simple static URL.

Strictly defined standards provide the foundation for automated deployments,
automated testing, and traceability. In the end, we cannot automate what is not
well defined.

Implementing a Definitive Media Library
A De initive Media Library (DML) a term coined by ITIL and often referred to
as a DML is recognized as a single source of truth for company software assets,
dependencies, and third-party libraries. By nature a DML ensures assets are backed up,
checksum verified, and managed appropriately. By implementing an artifact repository,
or binary asset management system, that facilitates the aquisition of individually
versioned packages, dependencies, or Docker containers, engineering id in effect
organizing and showcasing software development outputs, intellectual property, and
releases.

This type of solution organizes software assets in a centralized location that
automation and the business can consume. An artifact management solution also
provides the organization with the tools necessary to create a library of deployable
entities and third-party dependencies. An additional benefit of this solution is that
most modern DML solutions provide optional license-verification solutions that can
help ensure that engineering is complying with applicable laws and regulations and
not violating copyright rules. By leveraging an artifact management solution, the
organization can better understand what they are developing and releasing.

Software Deployments and Delivery

[150]

At the time of the writing of this book, there are a number of widely available
artifact management solutions. Some popular binary asset management solutions
worth noting include Artifactory, Nexus, and Origin. Each of these provides an easy
implementation path and asset management services. The respective links for each of
these products are listed below:

•	 Jenkins directory (archive artifacts)
•	 Artifactory at http://www.jfrog.com
•	 Nexus at http://www.sonatype.com
•	 Archiva at http://archiva.apache.org
•	 Origin at http://www.exeterstudios.com

Coupling a binary asset management solution with Jenkins can create the foundation
for a highly scalable delivery pipeline. Having the packages available through
an easily automated solution, can provide a solid foundation for automated
deployments. Let's spend a few minutes looking at how to publish our software
assets to a DML.

Publishing assets to a DML
When publishing a package to a definitive media library, the commonly used phrase
is to deploy it. Simply defined, it's the process by which we upload and archive
packages (or dependencies) to an artifact repository. The word deploy seems like a
misnomer here, since we are not really installing a software solution onto a device
or system, so it may seem a bit confusing. However, it's a generally accepted term,
which uniquely describes the operation we are performing. Each DML solution has
its own unique ways by which artifacts are published to the DML. Let's take a look
at how to implement the publishing of packages using Jenkins and other popular
technologies. The DML options we will cover include the following popular artifact
management solutions.

•	 Jenkins directly (archive artifacts)
•	 Jenkins Artifactory plugin (available via the Jenkins plugin ecosystem)
•	 Maven deploy (requires Apache Maven and Nexus, Artifactory, Archiva,

and Origin)
•	 Docker registry (push pull or a Jenkins plugin)

http://www.jfrog.com
http://www.sonatype.com
http://archiva.apache.org
http://www.exeterstudios.com

Chapter 6

[151]

Jenkins' archive the artifacts post-build action
Jenkins features an easy-to-use built-in artifact management solution. By leveraging
this feature, Jenkins can capture build packages, manage digital fingerprints of
binaries, facilitate downstream job deployments, manage dependencies, and more.
Let's spend a few minutes walking through this unique feature and learn how it can
be harnessed to store and track build artifacts.

To capture and store artifacts internally, Jenkins has a built-in file globing system,
which allows us to specify a file mask that Jenkins will use to locate artifacts and
archive them. This handy feature is located within the detailed job configuration
page as a post-build action and is appropriately titled Archive the artifacts. Figure
6-3 illustrates the Archive the artifacts post-build action.

Figure 6-3: Archive the artifacts

Upon initial glance at the options available within the Archive the Artifacts post
build action, we can see a few key configuration fields and a number of useful
toggles. Let's look at each of the available options and some examples to see what
they do:

Name Example Description
Files to archive folder/foo/bin/**/*.zip A relative workspace folder and

file mask, which Jenkins will use
to locate artifacts to capture and
archive

Excludes folder/foo/bin/**/
exception*.zip

A relative workspace folder and
file mask, which Jenkins will
ignore when archiving

Software Deployments and Delivery

[152]

Name Example Description
Do not fail the build
if archiving returns
nothing

Check/Toggle This allows Jenkins to ignore no
files found type returns from a
file mask search

Fingerprint all
archived artifacts

Check Enables Jenkins MD5 finger
prints, which track the CRC
integrity of the captured artifacts

Archive artifacts
only if build is
successful

Check Tells Jenkins to only execute this
step if the build was successful

Use default
excludes

Check Tells Jenkins to ignore common
source-control files

As we can see from the preceding table, the Archive the artifacts solution can be
quite powerful. One of the most useful options described in the preceding table
is the fingerprinting system. This feature provides traceable CRC checksums
for any captured artifacts and creates a verifiable chain of trust for the artifacts
Jenkins archives.

Enabling log rotation for jobs that utilize archiving of artifacts
When using the Archive the artifacts solution provided by Jenkins,
it is important to enable log rotations. This feature must be enabled
on the detailed job configuration page at the top. It tells Jenkins
to remove outdated builds based on a specified log rotation
configuration. It will also ensure that the Jenkins disk space does not
get over utilized.

Upon implementing the Archive the artifacts post-build configuration, Jenkins will
(on the next build run) automatically search the project's workspace for the defined
file mask and capture any files found that match the configured file mask criteria.
These artifacts will then be available directly in the Jenkins UI within each build, as
shown in Figure 6-4.

Figure 6-4: Archive the artifacts in Jenkins Job UI

Chapter 6

[153]

When implementing the Archive the Artifacts post build action in conjunction with
a Master and Slave node solution, any artifacts identified and archived will be
automatically replicated to the Jenkins master instance. This can be very helpful
when configuring downstream jobs to retrieve the artifacts that Jenkins has archived.
One a set of build artifacts has been archived, they will become available for direct
download. The standard pattern for the download link is http://<JenkinsURL>/
job/<JobName>/<BuildNumber>/artifact/<PATHTOFILE>/FileName.ext.

Publishing to Artifactory
Prior to deploying a software project to an environment or system, we will need to
learn how uploading or deploying a package to the artifact repository works. To
better understand the architecture, let's take a look at how Jenkins can be leveraged
to publish versioned artifacts to an artifact repository in Artifactory. Figure 6-5 shows
the basic upload architecture in relation to Jenkins:

Deploy

Central Artifact Repository
{HTTP}

lib

app

Jenkins

Figure 6-5: Artifactory architecture

To facilitate the architecture described above, we will need to install the Jenkins
Artifactory plugin. This plugin is openly available in the plugin administration
area within Jenkins.

Software Deployments and Delivery

[154]

The Jenkins Artifactory plugin operates using a file mask matching system titled
Published Artifacts, which can be configured in the target job's detailed job-
configuration page. This solution allows us to specify criteria for published artifacts.
Jenkins will search for these artifacts and upload any matches found to the specified
Artifactory repository. To better illustrate how to configure Jenkins to search for a
file mask, Figure 6-6 shows an example configuration page and a file mask of *.zip
to search for within the /Build/Artifacts folder, which is relative to the jobs
$WORKSPACE location.

Figure 6-6: Publishing artifacts to Artifactory

A properly configured Jenkins job coupled with the integrated Artifactory plugin
will create a system that automatically captures any matching artifacts and uploads
them to an Artifact repository. Upon successful implementation, the job's console
output logs will reflect the capturing of the artifacts as shown below.

For pattern: /Build/Artifacts/*.zip 2 artifacts were found Deploying
artifact: http://artifactory.mycompany.com:8080/artifactory/target/
folder/Artifacts/myPackage-1.0.0.0.zip Deploying artifact: http://
artifactory.mycompany.com:8080/artifactory/target/folder/Artifacts/
myPackage-1.0.0.0.zip Deploying build info to: http:// artifactory.
mycompany.com:8080/artifactory/api/build Archiving artifacts

Chapter 6

[155]

Publishing via Maven
For Java development groups that leverage Maven, capturing build results and
deploying outputs or Maven build artifacts is equally straightforward. Artifacts
can be published to multiple DML solutions, including Sonatype Nexus, Apache
Archiva, Exeters Origin, and others via a simple deploy target, which is embedded
directly within the Maven architecture. This solution has no direct dependency on
a Jenkins plugin and has no other special automation requirements. To configure
Maven to deploy an artifact to these tools, we will need to update the Maven POM.
XML file and add the distributionManagement element to the XML document. Below
is an example of how to configure Maven to deploy artifacts to an artifact repository
solution such as Nexus. In our example, we are running Sonatype Nexus at nexus.
mycompany.com:

<distributionManagement>
 <repository>
 <id>deployment</id>
 <name>Company Artifacts</name>
 <url>http://nexus.mycompany.com/nexus/content/repositories/
Artifacts/</url>
 </repository>
</distributionManagement>

Some artifact repositories require authentication to deploy. If your artifact repository
requires specific authentication to deploy, you may need to specify the following
authentication data in your ~/.m2/settings.xml file. An example of how to
accomplish this is provided in the XML settings document below:

<servers>
 <server>
 <id>deployment</id>
 <username>mydeployautheduser</username>
 <password>password123</password>
 </server>
</servers>

After the initial configuration and POM settings have been updated, commanding
Maven to publish artifacts to the artifact repository should be as simple as calling the
deploy task. Below is an example of this command:

$> mvn deploy

There are many more options available to deploy artifacts in Maven. A complete
documentation set is provided at https://maven.apache.org/plugins/maven-
deploy-plugin/.

https://maven.apache.org/plugins/maven-deploy-plugin/
https://maven.apache.org/plugins/maven-deploy-plugin/

Software Deployments and Delivery

[156]

Pushing a Docker container
For Docker users, the output of the build may actually be a prebaked virtualized
container. This type of solution provides a unique feature-rich method to build
out a completely live environment through automation. It allows development
to implement and engineer the container, which is then handed directly to
quality assurance to be validated. This solution ensures that an apples-to-apples
analysis of an application can be done and removes any ambiguity in deployment
methodologies or environment setup. For a complete and detailed documentation
of the Docker container solution you can visit Docker's website at http://www.
docker.com.

When Docker is in use, formalization of standards surrounding the containers,
registries, build recipes, and deployment automation that manages the solution will
become increasingly important. Either way, once the container has been created,
leveraging Jenkins to store the container in a central registry can be accomplished
fairly easily. Below is an example shell script that automates the pulling, building,
and pushing of a container to a Docker registry:

$> docker pull ubuntu
$> docker run –I –t ubuntu /bin/bash
$> docker commit
$> docker push yourregistryurl.com/ubuntu

As we can see from the preceding example, containers (and their content) are
managed in much the same way as the source code is. This is by design. It allows
for optimal traceability of changes to the container to have a historical timeline. To
accomplish this, Docker leverages a tagging solution.

When simple shell scripts are not sufficient to manage Docker containers, the Jenkins
community has graciously provided a Docker build-step plugin. The Docker build-
step plugin features a number of useful Docker-oriented capabilities directly within
a Jenkins job. Additional information for this plugin can be found on the Jenkins
community website at https://wiki.jenkins-ci.org/display/JENKINS/
Docker+build+step+plugin.

Installing the Docker build-step plugin into Jenkins can be accomplished via the
traditional manage plugins area located within the administration area of the Jenkins
user interface.

http://www.docker.com
http://www.docker.com
https://wiki.jenkins-ci.org/display/JENKINS/Docker+build+step+plugin
https://wiki.jenkins-ci.org/display/JENKINS/Docker+build+step+plugin

Chapter 6

[157]

Once the plugin has been successfully installed onto a Jenkins system, an Execute
Docker container build step will appear within the detailed job configuration page
for all Freestyle jobs. Figure 6-7 illustrates this build step:

Figure 6-7: Execute Docker container build step

The available choices in the Docker command dropdown include the following:

•	 Commit changes in a specified container
•	 Create a new container from image
•	 Create an image from Docker file
•	 Create the exec command
•	 Kill container(s)
•	 Pull image from a repository
•	 Push image to a repository
•	 Remove container(s)
•	 Remove all containers
•	 Restart container(s)
•	 Start container(s)
•	 Stop container(s)
•	 Stop all containers
•	 Start/stop all containers created from specified image
•	 Start the exec command

Software Deployments and Delivery

[158]

Recently, Docker has gained a lot of notoriety. It is quickly becoming a preferred
approach to building and serving micro-service architectures. It provides a robust
solution that provides a feature-rich way to develop and deliver software and alleviates
environment variances. It is important to note that at the time of the writing of this
book, Docker is a strictly Linux-based virtualization solution. Docker has been in public
talks with Microsoft with regards to providing a Windows implementation of the
Docker container architecture, but no specific implementation has yet been delivered.

Automated deployments
Now that we have a solid understanding of how to prepare a software project for
deployment by architecting a package solution and leveraging a DML, we will
need to define our delivery system. The most widely accepted approach in modern
software build and delivery is to apply a manufacturing assembly-line paradigm to
the software-release process. This methodology is prevalent at countless software-
engineering organizations and seemingly transcends any specific development
paradigms, including agile, lean, or waterfall. It can also be universally applied
across numerous technology stacks, including Linux, Windows, Mac, iOS, Android,
Embedded, Firmware, and so on.

In an assembly-line approach to software releases, pre-built packages (or containers)
flow down the assembly line, are inspected by relevant stakeholders, and are
eventually handed to the business for release. Packages will traditionally start in
a development environment and pass through various quality-control groups,
thus incrementally exposing the risk of a bad build or defective solution. This flow
eventually leads to a release. If a defect is identified while in the assembly line or a
failure is discovered, the assembly line stops, and changes are implemented to rectify
the failure. After a solution to a defect has been implemented, the assembly-line flow
resets, and movement begins again. Figure 6-8 illustrates the assembly-line approach
to software delivery.

Software Factory

BUILD DEPLOY TEST RELEASE

Notify Notify Notifyapp

Figure 6-8: Example of a software assembly line

Chapter 6

[159]

When implementing any automated deployment solution, deployment automation
phases need to be standardized as much as possible. The goal is to create strictly
adhered-to release and deployment processes and technology conventions from
which automation can be created. This allows Jenkins to orchestrate the delivery
aspects and perform deployments. It is important to keep in mind that we can only
automate what is well defined and known about. Below is a list of basic deployment
steps, which can serve as a template for creating deployment automation.

1.	 A Jenkins deployment job will be triggered, which will be responsible
for the deployment.

2.	 Jenkins will need to either push the package to a targeted environment
or perform the following steps on the target environment itself (via slave
nodes). The deployment job will need to perform the execution of the
following actions:

°° Identify the version of the software to be deployed
°° Download the versioned package from the DML
°° Verify the CRC fingerprints of the deployable entity
°° Extract the contents of the package into a temporary folder on the

deployment environment.
°° Execute the deployment automation in the package to install the

software.
°° Verify that the deployment was successful through basic sanity tests

3.	 Jenkins will need to determine whether the deployment was a success or a
failure due to recognized return codes.

The assembly line approach to software releases helps ensure that appropriate
stakeholders are notified of software builds that matter to them, ensure that,
resources are not wasted in testing bad builds, and risk is exposed incrementally.
Modern implementations of this assembly-line solution leverage digital approval
processes to promote builds from one logical group to another. The first step in
implementing this type of assembly-line process is to automate the retrieval of
deployable entities from the DML.

In the upcoming sections of this chapter, we will walk through each of the
deployment steps and learn how to implement them using Jenkins and related tools.
Let's get started.

Software Deployments and Delivery

[160]

Retrieving build artifacts and packages
In order to perform a deployment of a software project onto a target system, we need
access to the artifacts produced by the build job. As we mentioned earlier, artifacts
come in many shapes and sizes. Some artifacts are simple libraries or dependencies,
and others are complete deployment packages.

Retrieving artifacts from a DML via a deployment job can be accomplished easily.
When automating the retrieval of an artifact we will need to either by leverage
the Archived Artifacts within Jenkins directly, or utilize a third-party artifact-
management software solution. The method you select is highly dependent on the
architecture of your DML (which we discussed earlier). Let's look at each of the
possible approaches in detail and learn how to automate the retrieval of artifacts.

Fetching artifacts via archive artifacts
When a downstream job needs to retrieve archived artifacts stored within the Jenkins
system itself, Jenkins features a few options. Jobs in Jenkins provide a simple build
step to copy artifacts from another project. This build step is available within the
detailed job configuration page for a preferred job. Figure 6-9 illustrates the copy
artifacts build step:

Figure 6-9: Copy artifacts build step

Chapter 6

[161]

From the preceding illustration, we can see that there are a number of configuration
options available in the copy artifacts build step. Let's spend a minute going over
each of the available configuration options in greater detail. The following table
describes each of the options available in detail and provides a simple example for
each option:

Option Name Example Value Description
Project name build.myproject-

production
Identifies the Jenkins job name from
which the build artifacts will be
retrieved

Which build Latest successful build Provides a number of drop-down
options to customize the retrieval of
artifacts, for example, Latest

Artifacts to copy module/dist/**/*.zip Specifies the file mask for Jenkins to use
when locating artifacts to import

Target directory Foo/bar/libhome/ Specifies the relative path to the Jenkins
workspace where the copied artifacts
will be placed

Parameter filters BUILD_MODE=release Jobs may be filtered to select only builds
matching particular parameters

After implementing the copy artifacts build step, Jenkins will automatically fetch
and provide the specified artifacts in the Target directory specified. This solution
offers a feature-rich yet straightforward mechanism to pull artifacts from one job
over to another.

When implementing this solution on a master and slave node Jenkins system, this
option is a highly scalable solution to deploy packages or dependencies to a target
slave node from within Jenkins. We will discuss some tips and tricks surrounding
this type of implementation further down in this chapter (leveraging slave nodes for
deployment).

Fetching artifacts from Artifactory
Artifact repositories provide a scalable source of truth for build packages,
dependencies, and binary libraries. An artifact-management system can be
automated against easily and will typically feature an API that allows programmatic
access to upload, download, and search binary assets.

Software Deployments and Delivery

[162]

The following diagram describes the basic architecture of an artifact repository and
shows you how it can be leveraged to service automated deployment operations:

app app app app

DEV ENV QA ENV UAT ENV PROD / RELEASE

Central Artifact Repository
{HTTP}

Figure 6-10: Automation of Artifact repository

Downloading packages from an Artifactory repository via automation is not a
difficult exercise. To illustrate the various ways to download stored packages via
automation, we have provided some basic command-line examples, which automate
the fetching of packages on Linux, Windows, and Mac OSX, respectively:

Linux via WGET:

#> wget –O $WORKSPACE/binarypackagefoo-1.0.0.0.tar.gz http://artifacts.
mycompany.com:8081/Artifactory/simple/binarypackagefoo-1.0.0.0.tar.gz

Linux via CURL:

#> curl –o $WORKSPACE/binarypackagefoo-1.0.0.0.tar.gz –remote-name
http://artifacts.mycompany.com:8081/Artifactory/simple/binarypackagefoo-
1.0.0.0.tar.gz

Microsoft Windows via Powershell:

C:\> powershell –Command (new-object System.Net.WebClient).
DownloadFile('http://artifacts.mycompany.com:8081/Artifactory/simple/
binarypackagefoo-1.0.0.0.zip','C:\%WORKSPACE%\binarypackagefoo-
1.0.0.0.zip')

Chapter 6

[163]

Windows via MSBUILD + Extension Pack:

<WebDownload FileName="$(WORKSPACE)\binarypackagefoo-1.0.0.0.zip"
FileUri=" shttp://artifacts.mycompany.com:8081/artifactory/simple/
binarypackagefoo-1.0.0.0.zip">

Mac OS X via Curl:

#> curl –o $WORKSPACE/binarypackagefoo-1.0.0.0.tar.gz –remote-name
http://artifacts.mycompany.com:8081/Artifactory/simple/binarypackagefoo-
1.0.0.0.tar.gz

Fetching artifacts via Maven
Artifact repositories also provide a scalable solution to resolve Maven dependencies.
Resolving dependencies in Maven can be done via a simple update of the POM file.
To better illustrate this concept, we have provided an example below:

<repositories>
 <repository>
 <id>central</id>
 <url>http://[host]:[port]/artifactory/libs-release</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>snapshots</id>
 <url>http://[host]:[port]/artifactory/libs-snapshot</url>
 <releases>
 <enabled>false</enabled>
 </releases>
 </repository>
</repositories>
<pluginRepositories>
 <pluginRepository>
 <id>central</id>
 <url>http://[host]:[port]/artifactory/plugins-release</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>snapshots</id>
 <url>http://[host]:[port]/artifactory/plugins-snapshot</url>
 <releases>

Software Deployments and Delivery

[164]

 <enabled>false</enabled>
 </releases>
 </pluginRepository>
</pluginRepositories>

In the preceding example, we simply created pointers to an Artifactory-based Maven
repository. However, this type of solution will work for Archiva, Nexus, and other
similar binary repository solutions.

Now that we have covered the basics on uploading and downloading binaries
through a DML, let's look at the phases that will need to occur after the package
has been fetched onto the target deployment system.

Verifying package integrity
The next logical step in our deployment automation is to validate the integrity of
the package that was downloaded through CRC checksums. Popular DML solutions
assist in this fingerprinting effort by generating MD5 and SHA1 checksum files or
providing fingerprints (directly in Jenkins). These fingerprints are associated with
each binary stored in the DML. Checksum files and fingerprints provide a hashed
computational CRC of the binary item.

To validate the CRC of the package downloaded, we will need to compare the
previously stored fingerprint-identification content against a freshly calculated
one for the target binary. This can be accomplished in a straightforward manner.
Coding a simple MD5 or SHA1 verification solution can be done in most popular
programming languages that support MD5 or SHA1 calculations. Here are some
examples of how to validate a package's integrity in Jenkins (via fingerprinting), in
.NET MSBUILD for Microsoft Windows, and BASH for Linux.

Jenkins fingerprints
Jenkins automatically calculates the MD5 fingerprints (when fingerprinting is
enabled via the Archive the artifacts post-build step) for internally stored artifacts.
An internally stored artifact in Jenkins is simply one that was captured via the
Archive the artifacts post-build action. When fingerprinting is enabled, Jenkins will
automatically fingerprint all artifacts captured within a given job's execution, and
their respective MD5 checksums will be available via the user interface.

Chapter 6

[165]

After successfully fingerprinting an archived artifact, Jenkins provides a Nifty user
interface option where we can view the fingerprints. This option is available by
clicking on a specified build number from a Jenkins job and then clicking on the See
Fingerprints menu option on the left-hand side. Figure 6-11 illustrates this feature in
detail:

Figure 6-11: Recorded fingerprints

An additional benefit of the Jenkins fingerprinting feature is its ability to track
an artifacts usage across multiple Jenkins jobs. This can be handy to determine
which jobs have consumed specific artifacts. To implement this feature, we need to
configure the Record fingerprints of files to track usage post-build step located on
the preferred detailed job configuration page. Figure 6-12 illustrates this post-build
step in action:

Figure 6-12: Record fingerprints of files to track usage

Upon implementing this post-build action; Jenkins will begin tracking any jobs that
consume the captured artifacts. This traceability information will become visible via
the Recorded Fingerprints page we described in Figure 6-11.

Software Deployments and Delivery

[166]

MSBUILD via custom C# task
<UsingTask TaskName="MD5Verification" TaskFactory="CodeTaskFactory" As
semblyFile="$(MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.dll">
 <ParameterGroup>
 <MD5PackagePath ParameterType="System.String" Required="true" />
 <MD5FileContents ParameterType="System.String" Required="true"
/>
 <MD5RequiredHASH ParameterType="System.String" Required="true"
/>
 </ParameterGroup>
 <Task>

 <Using Namespace="System.IO" />
 <Using Namespace="System.Text.RegularExpressions" />
 <Using Namespace="System.Security.Cryptography"/>
 <Using Namespace="Microsoft.Build.Framework" />
 <Code Type="Fragment" Language="cs">

 <![CDATA[

 // -- Get MD5 value for each of our items
 FileStream file = new FileStream(MD5PackagePath.ToString(),
FileMode.Open);
 String MD5Required = MD5RequiredHASH.ToString();
 MD5 md5 = new MD5CryptoServiceProvider();
 byte[] retVal = md5.ComputeHash(file);
 file.Close();

 StringBuilder MDHASH = new StringBuilder();
 for (int i = 0; i < retVal.Length; i++)
 {
 MDHASH.Append(retVal[i].ToString("x2"));
 }

 Log.LogMessage(MessageImportance.Normal, "------------------
------------------------------------");
 Log.LogMessage(MessageImportance.Normal, "Verifying MD5
CheckSums ");
 Log.LogMessage(MessageImportance.Normal, "------------------
------------------------------------");

Chapter 6

[167]

 Log.LogMessage(MessageImportance.Normal, "Package Location:
"+ MD5PackagePath +" \nFresh MD5: " + MD5FileContents + "\nArtifactory
MD5: " + MDHASH + "\nUser Specified MD5:" + MD5Required);

 int MD5Compare = String.Compare(MD5FileContents.ToString(),
MDHASH.ToString());
 int MD5REQCompare = String.Compare(MD5Required.ToString(),
MDHASH.ToString());
 if ((MD5Required != null) && (((MD5REQCompare == 0) &&
(MD5Required != "OFF")) || (MD5REQCompare != 0) && (MD5Required ==
"OFF")) && (MD5Compare == 0)) {

 Log.LogMessage(MessageImportance.Normal, "MD5 Verified
Successfully");

 } else {

 Log.LogMessage(MessageImportance.High, "MD5 Verification
FAILED!");
 throw new Exception("Could not verify the MD5's the
package downloaded is corrupt.");

 }

]]>

 </Code>
 </Task>
 </UsingTask>

Linux / Unix BASH script
#!/bin/bash
echo "Calculating MD5 comparisons"
if [-z $2]; then
 echo "file + sum file needed"
 echo "usage: 0? "
 exit
fi

export fsum=$(cat $2)
export csum=$(md5sum $1 | awk '{print $1}')

echo "MD5 File CheckSum Value: $fsum"

Software Deployments and Delivery

[168]

echo "MD5Sum Calculated Value: $csum"

if ["$csum" == "$fsum"]; then
 echo "MD5 Verification Successful!";
else
 echo "MD5 Verification Failed!"
fi

Executing deployment automation
In the previous sections, we discovered some basic approaches to package
architecture. We discussed how to implement a DML and how to leverage it to
publish and retrieve packages. We also learned how to ensure package integrity via
CRC checksums. Now that we have all of the precursory deployment steps in place,
we will finish our deployments by executing automation to perform a deployment.

Deployment automation can come in many forms. If you're a Windows aficionado,
leveraging a bash script might not work out very well. The same could be said if
you're a Linux user and are attempting to use MSBuild to manage deployments. At
a minimum, you will want to create the right number of Jenkins jobs to facilitate the
execution of the deployment automation while keeping the system fluid. In addition,
these jobs will need to properly determine the success or failure of the deployment.
They should also provide the ability for them to be executed individually to deploy a
specific version of the targeted software via a button click.

When implementing deployment jobs in Jenkins, we will need to be able to parse
user-specified version numbers (to support out of band deployments) and act on
those inputs. This is where build parameters can provide a huge amount of value.
The following screenshot illustrates a basic set of parameters in a Jenkins deployment
job, which will allow the user to input version number and artifact repository:

Chapter 6

[169]

Figure 6-13: Basic set of parameters in a Jenkins deployment job

After these elements have been defined, whenever the job is executed via user input,
the VERSION and ARTIFACTREPO variables will be available to the automation via
environment variables. This should make fetching a specific version of a deployment
package a bit easier.

When calling a deployment job via a build or otherwise upstream job, passing
variables between jobs, such as version or artifact repository will become
increasingly important. This can be accomplished via the trigger/call
parameterized builds on other projects' plugin. Download and install the plugin
onto your Jenkins instance. Installation details for this plugin can be found
on the Jenkins wiki at https://wiki.jenkins-ci.org/display/JENKINS/
Parameterized+Trigger+Plugin.

https://wiki.jenkins-ci.org/display/JENKINS/Parameterized+Trigger+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Parameterized+Trigger+Plugin

Software Deployments and Delivery

[170]

Once the plugin has been installed, and plugin is available, triggering a downstream
Jenkins job and passing variable data, such as VERSION or ARTIFACTREPO, is
straightforward. This plugin provides the ability to pass parameters via a properties
file, which would typically be created during the build process. Java property files
provide a unique way to mange key value pair data, which can then be passed from
one job to another using the trigger/call parameterized builds on other projects
plugin. For more information on properties' files and their format requirements,
look at the Java documentation at http://docs.oracle.com/cd/E23095_01/
Platform.93/ATGProgGuide/html/s0204propertiesfileformat01.html.

Upon initialization of a downstream deployment Jenkins job, the deployment
automation should have all the necessary data available to perform the deployment,
either from values defined upon execution, or data passed in through properties file
or otherwise.

Leveraging Jenkins slave nodes for
deployment
When a deployment environment is not significantly sizable, it may be worth
considering leveraging Jenkins slaves to facilitate automated deployments onto
target systems. We discussed the setup and configuration of Jenkins slave systems
earlier in Chapter 2, Distributed Builds – Master/Slave Mode. However, it is worth
exploring this solution for automated deployments in this section as well.

In this section, we will focus on one of the more unique methods we can employ
for automated deployments. We can leverage the Jenkins master to control and
distribute software to connected slave devices using this methodology. This can
be particularly useful when deploying a desktop client application or embedded
solution. However, it is not limited to those architecture types specifically.

While writing the deployment automation itself will be left to you, the connectivity
to the remote device would be entirely managed by Jenkins. In addition to this,
Jenkins can serve as a poor man's monitoring solution for the deployment nodes.
The architecture of such a solution is illustrated in Figure 6-14.

http://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0204propertiesfileformat01.html
http://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0204propertiesfileformat01.html

Chapter 6

[171]

Jenkins
Master

DEV
Slave01

PROD
Slave03

QA
Slave02

Figure 6-14: Master-slave deployment architecture

When using a master and slave node deployment solution, the implementation
would require a number of deploy jobs defined within the Jenkins system to be
explicitly tied to target deployment machines or devices (slaves). Tying a job to a
specific device is accomplished via the restrict where this job can run option located
on the detailed job configuration page for the preferred job. The automation in
each deployment job would simply need to fetch a deployment package, verify the
checksum, extract the contents, and execute the deployment steps defined within.
Jenkins would then report back to the success or failure of the automation. Once
implemented, this could eaily be connected as a promotion step using the Promoted
Builds plugin.

When setting up a Jenkins slave node deployment system, Jenkins provides a
number of useful built-in features to facilitate monitoring of disk space, swap space,
CPU load, and more. These can be very handy when the environments require a
solid availability schedule.

Software Deployments and Delivery

[172]

Tying a Jenkins job to a specific set of slaves is easy and can be accomplished through
the Restrict where this project can be run option on the job configuration page, as
shown in the following screenshot:

Figure 6-15: Tying Jenkins job to slaves

Executing automation on those slaves can also be implemented in a straightforward
manner. The Execute Shell or Execute Windows Shell build steps provide
a straightforward mechanism to write and execute automation on a targeted
deployment node. You can follow these basic steps when deploying an application
onto a slave node:

1.	 Download the deployment package from the DML (you could use copy the
artifacts here if you use Jenkins as your DML).

2.	 Verify that the CRC checksums for the package are downloaded.
3.	 Extract the deployment package (unzip, tar, and so on).
4.	 Execute the deployment scripts embedded in the package.
5.	 Run application startup sequences.

The preceding list simply provides a basic set of guidelines. Diverse technology
stacks and setups will obviously vary. For additional information on passing
version information from one job to another, refer to Chapter 7, Build Pipelines. For
additional information surrounding the Jenkins master and slave setups, see Chapter
2, Distributed Builds – Master/Slave Mode.

Chapter 6

[173]

Summary
Today, there are various methods and means to facilitate automated deployments for
a software project. Whatever the technology is, we can learn and innovate creative
ways to attach that to Jenkins. By attaching our deployments to Jenkins, we can
move Jenkins into the realm of an automation orchestration platform and out of the
realm of grandma's build tool. Whichever way you decide to implement automated
deployments, be sure to try and facilitate the following best practice features:

•	 Deploying any version of a software solution should be as easy as a
button click

•	 Rolling forward or backward in time should also be a button click
•	 Maintaining your environmental configurations in code form

(infrastructure as code)

In this chapter of Mastering Jenkins we discovered some innovative ways we
can approach software delivery and some tricks we can leverage to automate
deployments. We learned about packaging, and versioning our tests as well as
automation scripts. We covered artifact repositories and how to leverage an artifact
repo to facilitate scalable deployment solutions. Finally we learned new ways to
leverage the master and slave solution to facilitate additional deployment scenarios.

In the next chapter we will discover build pipelines. Build pipelines in Jenkins
provide a scalable way to connect jobs together, and pass data between them. In
the next chapter we will begin to understand how to connect build operations, to
deployments, and tie them together with automated testing verification. This will be
a fun journey, so let's get going.

[175]

Build Pipelines
Build pipelines were conceived in software engineering in the 2012 book titled
Continuous Delivery authored by Jez Humble, and David Farley. Since the release
of this revolutionary book, there have been numerous technology organizations
that have implemented build pipelines, to increase the efficiency of their software
delivery process. While the idea of a build pipeline is new in software engineering,
it is not an entirely new concept. The principles of build pipelines have been in place
in the manufacturing industry for some time now, where they are better known as
factory assembly lines. In manufacturing practices, organizations have effectively
reduced costs in engineering and delivery, which as a result allowed them to
become more competitive. Modern manufacturing processes, coupled with efficient
automation, reduces the manpower required to assemble and deliver a product.
This, in turn, reduces a company's operating expenses, and increases profit margins.

"Even the palest ink is brighter than the most retentive memory" – Chinese proverb

Implementing build pipelines in Jenkins takes careful architectural planning and
strategy coupled with highly efficient automation applied across all engineering
disciplines. In order to implement a build pipeline solution, an organization will
need to focus its efforts on the following areas:

•	 Conventions and standards (convention over configuration)
•	 Automation
•	 Efficient automated testing
•	 Defining pipeline conventions and structure

Build Pipelines

[176]

In this chapter, we will discover how to leverage Jenkins and architect highly
efficient build pipelines. This is in an effort to facilitate efficient software delivery,
and catch software defects prior to release, which can save an organization money.
Build pipelines in Jenkins, when implemented correctly, can help encourage
collaboration, increase throughput, and provide rapid feedback on quality. Build
pipelines, by nature, transcend Agile and Waterfall software development paradigms.
For management, this will provide a direct visibility into the development and
delivery process, and encourage software assets to be always releasable. For the
Jenkins enthusiast, learning how to create build pipelines will provide the teach
us new ways to leverage Jenkins as a complete software development lifecycle
orchestration tool, and ensure repeatability of our software delivery processes.

In this chapter of Mastering Jenkins, we will cover the following high-level topics:

• Business value propositions for build pipelines (to sell to management)
• Architecting a build pipeline
• Implementing build pipelines in Jenkins

Tying business capital into inefficient software assembly lines impedes market
viability, reduces working capital, and restricts the business's ability to compete.
Replacing unknown or costly development and release paradigms with automation,
conventions, and efficiency can help streamline the manual error-prone processes.

The value proposition of build pipelines
For software organizations, defects can be extremely costly. For each defect
identified, the amount of time spent by engineering, quality assurance, and
related teams to rectify it is equivalent to the amount of time and resources that
are distracted from feature development and strategic business initiatives. It is, by
nature, a one to one ratio. Identifying and addressing defects earlier in the software
development lifecycle by through the use of build pipelines can save multitudes of
time, resources and solidify business credibility.

Over the years, there have been a number of independent research studies conducted
to better quantify the relative costs associated with software development efforts
including bug fixing, software architecture, project management, and so on. The
most notable research into defect analysis, specifically, was conducted by Barry
Boehm in 2007 and is illustrated in Figure 7-1.

Chapter 7

[177]

Figure 7-1: Relative cost of bug fixes

His research, derived from related Defense Advanced Research Projects Agency
(DARPA) investigations, describes the relative costs associated with fixing defects
in relation to the software development lifecycle. This research is quite startling
for SaaS engineering organizations. It describes the phases within the software
development lifecycle where a software defect becomes increasingly expensive
to address.

The value proposition of build pipelines is that software development resources,
quality assurance personnel, and the related ancillary teams have to collaborate to
build, deploy, and test a complete software project in pre-production environments,
and then automatically flow the results into well-formed releases. By implementing
this type of a solution through automation, the organization will be able to identify
defects before they pose a risk to credibility or become a catastrophy. To better
understand the chart in the preceding image, let's take a quick look at how an
inefficient, risky development practice might impact a business.

Defects identified by end users, customers, or consumers of a software solution are
costly and damage the reputation of the business and its products. When multitudes
of defects are identified after a software project has been released, the credibility of
the business suffers, and acquiring new clientele becomes increasingly difficult.

Build Pipelines

[178]

To highlight the high cost of defect resolution, let's take a minute to identify
the associated scope and costs. For each defect identified in a software project
post-release, the defect itself will inherently be triaged and managed by numerous
stakeholders. For example a single defect identified after a release could potentially
navigate the following workflow.

1.	 The defect is identified by customer(s) who opens a support request with the
company's support representative (1 man hour per report)

2.	 Customer Support works with the customer to either verify the issue, or
work around it (one man hour)

3.	 If the issue is a valid defect, support contacts QA for bug verification and
prioritization of the remedy (one man hour)

4.	 QA reproduces the bug, and opens a bug report for a development resource
(one man hour)

5.	 Development prioritizes the bug report, addresses the issue, and passes the
verification back to QA for additional testing (two man hours)

6.	 Ops deploys the updated software or re-releases it (one man hour)
7.	 Support verifies that the issue is properly addressed and contacts the

customer(s) (one man hour)

In the preceding workflow, we can see how a single defect can add up to many
man hours, which can make them expensive to fix. Additionally, we can see
approximately how many company resources will be actively engaged in the
resolution of a defect. Could it be possible to attach a dollar amount to each bug
addressed by the engineering team? Let's take a minute to investigate, and see if we
can define (in dollars and cents) the cost associated with addressing a defect in a
software project.

Chapter 7

[179]

The following diagram illustrates an example (with the dollar amounts) attached to
each engineering resource segment:

Figure 7-2: Customer-identified defect resolution flow

Based on the preceding data, a single defect could at a minimum amount to $220.00
(or more) in man-hours alone. To showcase how we derived that figure, let's look at
an example of man-hours to dollar conversions for a single defect, and the calculated
costs associated with it, as given in Figure 7-3.

Figure 7-3: Sample bug fix costs

Build Pipelines

[180]

By implementing build pipelines, the idea is to catch defects earlier in the
engineering process, know about them sooner, and reduce the amount of manpower
invested in rectifying them. A build pipeline aims to solve engineering frustrations
by outlining a set of pre-release processes and verification steps that assist in this
effort. The earlier these defects are identified, the fewer resources needed to assist in
their management and resolution, thus saving the organization effort, time,
and money. While failure within a software project is inevitably part of the equation.
Costly failures do not need to be.

To assist in identifying software defects earlier, well-defined pre-production
environments should be introduced for testing and identifying the potential
integration, stress, or production rollout defects prior to release. The pre-production
environments that are introduced should match the configuration and implementation
of the production or release systems as closely as possible.

It is important to note that the term production is loosely described, and
may represent a web server, database server, embedded device, or a
desktop system. It may even represent manufacturing or a CDN. On
the other hand, the term "release" is simply defined as available for
customer consumption.

To better grasp the idea of this whole solution, let's take a few minutes to learn how
to architect a build pipeline, and what its individual components are.

Architecting a build pipeline
Build pipelines are the progression of logical development, quality and delivery
steps; these steps define the way a software project will be built, delivered, and
tested. By implementing build pipelines, we are crafting a solution where build
packages or containers flow through repeatable delivery processes in a continuous
manner. Gates are added to the pipeline to ensure that quality metrics are collected,
and integration defects are identified. Each gate defined in the pipeline represents
a go/no-go determination. Eventually, the automation solution vets and releases
a build through the complete pipeline and into a production or released status.

As we hinted earlier, production does not always need to apply to cloud-based
software or rack-mounted servers. The production or released status of a build
pipeline simply represents the end goal. For embedded solutions or shrink-wrapped
software, build pipelines can still provide high levels of value, and can further the
organization's business agenda by providing an always releasable software solution,
which can then be strategically marketed.

Chapter 7

[181]

To begin our quest in architecting a build pipeline in Jenkins, let's take a look at the
way to organize our delivery solution. We will do this by dividing the build pipeline
into segments, each of which represents the deployment and test iterations of the
SDLC that we described earlier in Chapter 5, Advanced Automated Testing.

The first segment of the build pipeline
The first segment of a build pipeline is a bit unique, as it contains the build process,
source code verification, unit tests, static code analysis, packaging, initial integration
deployment steps, and a run of automated tests. The maturity of your specific
implementation may vary, and it is OK if it initially lacks some of the more advanced
features such as static code analysis. Let's take a moment to look at an example of the
first segment of a build pipeline so we can begin to understand the flow of automation,
and integration initiatives and flow. Figure 7-4 illustrates this in better detail:

Figure 7-4: First segment of Build Pipeline

In the example provided above, we have illustrated two basic software components
that will inevitably interact with each other. As such they each have their own
build pipeline which feed into an integration environment. From the two distinct
components (apples and oranges) provided in the preceding illustration, we can
see clearly that the apple and orange components each flow through their own
build processes and subsequently flow into an Integration Environment. The
Integration Environment is designed to provide a unified pre-production integration
environment where the interaction and compatibility of the components can
be tested. After the components have been deployed and tested (hopefully via
automated testing apparatuses), they are presented with a quality gate.

Build Pipelines

[182]

This initial integration build pipeline segment gives development personnel a chance
to review the quality and interaction between the connected components prior to
delivering them to quality assurance. Through the implementation of the Integration
Environment, the development organization can gain insight into the interaction
of individual components with the other components installed on the system. By
setting up an automated deployment into the integration environment, which closely
mirrors production, we can assist development in catching the integration defects,
encourage the implementation of better architecture, and avoid exposing bad build
artifacts to quality assurance personnel.

To facilitate the quick recovery of any defects identified, the implementation of a
build pipeline notification (feedback loop) solution should be implemented after each
logical pipeline segment completes. For example after the completion (or failure) of
build and unit test procedures, a notification should be triggered to the respective
stakeholders. After deployment or testing of the integration environment completes
another notification should be triggered providing relevant status of the deployment
and pass/fail rate related quality metrics. This practice should continue logically as
the pipeline segments progress.

Failures in the pipeline (DEV Code, QA Test Code, or
Automation code)
 If any specific automation fails, the best practice is to identify
the failure, and to address it as an immediate need. It is OK to
fail. Failing simply means the pipeline catching defects prior
to production. The key is to simply continue to improve the
application code, test code, automation code, and notification
systems with the eventual goal being to catch defects earlier in the
SDLC through automation.

The first segment of the build pipeline will most definitely gain the most foot
traffic. As the development, QA, DevOps, and related teams commit the code into
the same source control repository mainline, the resulting commits should trigger
the execution of the pipeline in Jenkins. Each pipeline segment in Jenkins should
include a complete build, deployment, and testing solution. The more frequent the
commits, the higher the level of collaboration, and the more intelligent the software
architecture will become.

Now that we understand the architecture of the first leg of a build pipeline, we will
most definitely want to create additional legs. Logically, each additional leg will
position itself to the right of the previous leg. Implementing additional legs in a
build pipeline can be accomplished in a fashion similar to the first but with a
truncated set of steps. In the next section, we will discover how to implement
additional pipeline segments.

Chapter 7

[183]

Additional pipeline segments
The creation of additional segments is accomplished in a fashion similar to the first
minus the build and the unit test portions. Each additional pipeline segment will by
nature have an expanded audience and involve additional resources in the delivery
process. When adding additional segments to a build pipeline each subsequent
segment should have a defined purpose and value proposition. Additional segments
of a build pipeline should either aim to expand the user validation scope or provide
scalability testing facilities. To better define how to architect additional pipeline
segments Figure 7-5a describes the basic flow:

Figure 7-5a: Basic flow of the pipeline

Subsequently, after each leg is executed, additional segments of the pipeline will
logically connect to the right of the previous segment. This type of implementation
requires a set of common automations that can be leveraged across the various
segments without too much customization (except in the areas of testing and
deployment location). To clarify this a bit, the following diagram illustrates the
50,00 foot overview of a build pipeline:

Figure 7-5b: High-level view of a Build pipeline

Build Pipelines

[184]

From the preceding diagram, we can see that the build passes through Build Phase,
Integration Phase, QA Legs, Stage, and into Production.

When implementing a set of standardized environments,
it is considered a best practice to also create a staging
environment. The staging environment should mimic
production completely, and should be kept off-limits by the
engineering personnel. The staging environment will represent
the last chance to catch deployment automation failures or
inconsistencies, and therefore should remain sterile.

Each additional pipeline section that is created should automate, at a minimum,
the following:

•	 Automated continuous AND/OR push button deployments to the
environment (any version)

•	 Automated testing of the environment after the deployment has been
completed with an initial set of smoke tests to verify the basic operational
status as a precursor

•	 A complete notification solution (feedback loops) to facilitate the
communication of failures and successes to the proper stakeholders
of the pipeline segment.

The complete pipeline
The goal of a build pipeline is to allow builds to flow through it continuously in
a similar manner to water flowing through a plumbing system; fluid and always
available. The end destination is the deployment and/or release of changes
contained in the builds into production. Production is an obvious term for web
based software, but how about shrink-wrapped solutions or embedded products?
These too can be released into production. For software organizations that provide
shrink wrapped solutions, or embedded technologies this final destination would
represent simply the availability of a releasable package to the business, which
could then be selectively released (say to a CDN) when business interests choose
to do so. Regardless of weather or not the software project is deployed onto a
multi-server cloud installation or released to an embedded manufacturing company,
build pipelines provide a set of processes for, automated delivery and validation.

Chapter 7

[185]

When a software project is shipped the final steps taken that provide general
availability of the software represent the beginning of return on investment, in
engineering costs. If the software project has numerous defects, regressions, or lacks
quality the ROI, and potential profitability of the business will be damaged. By
implementing a build pipeline we can facilitate faster process flows, more efficient
development patterns, higher quality releases, and scalable automation. The more
agility the organization has to outmaneuver the competition in strategic business
goals the more likelihood there will be for a profitable business.

Visualizing the final pipeline
Now that we have a better understanding of the architecture of the pre-production
automation and how to architect the individual legs let's take a look at a
completed build pipeline. The deployment to production of a software project
should be architected and implemented in the same fashion as the pre-production
deployments, complete with automated (non-destructive) smoke, and functional
tests, and validations.

The final leg of the pipeline implementation and definition of our production rollout
solution should simply be a logical progression and replica of what was already
performed within the pre-production environments.

To illustrate basic deployment workflow let's take a look at an example of a
complete build pipeline from beginning to end. Figure 7-6 illustrates an example
of an integrated component based pipeline, which might be logically expanded or
contracted based on architecture, technology stack, or development process:

Figure 7-6: Production rollout example flowchart

Build Pipelines

[186]

Alterations for shrink-wrapped and
embedded projects
For embedded and shrink-wrapped software projects, obviously a deployment
onto a cloud or server infrastructure is not going to be the natural course of action.
Instead, the software is released into a business holding area (CDN/DML), or
provided to a manufacturer for mass production. Build pipelines continue to have
much value in this type of a development ecosphere. Build pipelines allow the
business to have an always-releasable build, and not have to depend on engineering
for viable release candidates. Figure 7-7, depicts a general overview of this type of
release activity:

Figure 7-7: Embedded and shrink-wrapped software releases

The process for embedded and shrink-wrapped software will probably be unique
to your own specific hardware and software implementation requirements. Having
said that, pending software releases should be handled with care and tested via
automation just prior to being placed on a CDN or in a DML storage solution.

Implementing build pipelines in Jenkins
At this point, we should have a solid understanding regarding the architecture of a
build pipeline. To help get builds flowing through pipelines in Jenkins, let's take a
look at some useful strategies, Jenkins plugins, and practices that can assist us when
implementing build pipelines.

Due to the highly customizable nature of the build pipelines in Jenkins, there are lots of
ways to achieve the same goal. Most low-level automation implementations are highly
dependent on the technology stack, organization, and the platform. In this section of
Mastering Jenkins, we will aim to provide Jenkins-specific guidance, applicable tips,
techniques, and guidelines to leverage some plugins instead of an all-encompassing
guide which would most certainly miss the mark for many readers.

Chapter 7

[187]

The following sections are organized by topic and may not be suitable for all
implementations of a build pipeline. Although we've tried to select the most
applicable solutions, relevant plugins, and valuable techniques, you can take note
of the important sections and discard the ones that are of little value to your specific
implementation or solution.

Upstream jobs – triggered
The most widely-utilized mechanism for triggering downstream jobs (jobs which
execute after the a specified job has completed) is to leverage the default feature
provided by Jenkins—the triggering of a job contingent on another job. This solution
will allow Jenkins to can automatically trigger a job based on another job's status and
execution criteria. This is conveniently available in the detailed job configuration,
under the Build Triggers section. Figure 7-8 shows an example of triggering a
downstream job based on the completion of another dependent job:

Figure 7-8: Creating a build trigger based on an upstream job

An additional option that this solution provides is the ability to skip triggering based
on build stability. The radio buttons shown in the preceding screenshot provide
a simple way to skip triggering if the targeted build job does not meet stability
requirements.

Build Pipelines

[188]

Once the configuration has been saved, the downstream job will automatically
identify the upstream job that it is dependent on, and listen for trigger events.
Additionally, the linking of the jobs will now be visible via the job overview page
as illustrated in the following screenshot:

Figure 7-9: Linking of jobs

Downstream jobs – via post build actions
The Jenkins system, by default, also provides a linking solution in the post-build
phase, of a job's execution. This downstream job solution allows us to trigger another
job AFTER the current one has completed. To implement this, we will need to define
a post-build action in the detailed job configuration page of the current job. For
example, if we want job foo to trigger job bar, we would define the link as a post-build
action within the detailed job configuration page for job foo. Figure 7-10 illustrates the
configuration of the post-build action that will trigger the bar.project.

Figure 7-10: Configuring the post-build step

Chapter 7

[189]

Once the configuration has been saved, Jenkins will begin triggering the
downstream job immediately after each execution based on the criteria specified
in the post build action.

In a similar manner as upstream jobs, the Jenkins job, which contains a post-build
action step to trigger a down-stream job, will provide links to the downstream jobs
directly in the job overview page. This is illustrated in Figure 7-11.

Figure 7-11: The Jenkins job providing direct links to downstream jobs

When implementing upstream and downstream jobs, the possibilities are endless.
Just make sure to keep the system organized and well-defined to prevent the
tangling of dependent jobs.

The Parameterized Trigger plugin
Arguably one of the most valuable plugins that Jenkins offers is the parameterized
trigger plugin. This plugin provides a scalable approach for triggering other Jenkins
jobs, and passing variable-based parameters to them. This becomes even more useful
when we pass the details surrounding the build or deployment packages or the
version information to targeted downstream jobs. The home page for this plugin
can be found at the following link:

https://wiki.jenkins-ci.org/display/JENKINS/
Parameterized+Trigger+Plugin

Once this plugin has been installed onto a Jenkins system, it will be accessible via the
following detailed job configuration options:

•	 As a build step in a Jenkins project
•	 As a post-build action
•	 As a promotion step via the Promoted Build plugin

https://wiki.jenkins-ci.org/display/JENKINS/Parameterized+Trigger+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Parameterized+Trigger+Plugin

Build Pipelines

[190]

The parameterized triggers plugin provides the ability to initiate downstream jobs,
pass parameters (in multiple formats), and hinge the success of the calling Jenkins
job based on the result of the triggered job. This may sound more complicated
than it really is. Let's take a quick look at an example. Figure 7-12 illustrates a basic
configuration of a downstream triggered project:

Figure 7-12: Trigger parameterized job configuration

The configuration options seen in the preceding screenshot showcase only the most
basic capabilities of the plugin. One of the more robust features of the parameterized
triggers plugin is the ability to pass parameters via the Oracle Java properties files
from one job to another.

A Java properties file is simply a basic text file containing equals-delimited variables.
Below is an example of a very basic Java properties file:

APPNAME=myproject
VERSION=1.0.0.0
DEPLOYSCRIPT=deploy.yml

Chapter 7

[191]

A handy use for a Java properties file is to archive build-related
metadata. For example, you may wish to define artifact URLs or
the version information in the build.properties file and then
pass that information from one Jenkins job to another. Leveraging
this plugin in conjunction with a properties file creates a robust
way of passing variable data from one job to another.

When leveraging a properties file, the downstream job will receive these data points
as environment variables that can be automated against. This provides a nice way of
aggregating the metadata from one job and passing it to another.

The Promoted build plugin
The Promoted build plugin is also arguably one of the most valuable plugins within
the Jenkins plugin ecosystem. Build promotions represent an easy way for the
stakeholders to bless a specific build as viable for further testing or release. This
process is one of the core aspects of a build pipeline (quality gate). By promoting
builds through a build pipeline, continuous delivery practices can be coupled with
manual verification processes in an aim to eventually remove the gates and facilitate
true continuous delivery.

Builds could flow from one logical group within engineering to another, and
dedicated assignees would be assigned the rights to promote builds. This allows for
an engineering team to visually inspect a build and act as a verification gate before
allowing it to flow to the next logical build pipeline segment. The workflow of a
promotion process via the promoted builds plugin might look something like what is
described in Figure 7-13 below:

Figure 7-13: Promoted build example

Build Pipelines

[192]

Notice that, in the case of our screenshot, the promoted builds plugin, which is
illustrated via the graphical stars in the build history, looks nothing like the build
pipeline architecture that we discussed earlier in the chapter. When we drill into a
specific Promoted build, we are presented with the relevant detailed information
surrounding the promotion. To access the details surrounding the promotion, the
Promoted builds link should be available to the left of any build IDs that have been
promoted. This navigation option is illustrated in Figure 7-14.

Figure 7-14: The navigation option

As we drill into a given build, we can expose the additional information surrounding
the promotion. Figure 7-15 illustrates a Promoted build, #234, that has passed the
development phase of the build pipeline and is awaiting QA verification:

Figure 7-15: A Promoted build that has passed the development phase

Chapter 7

[193]

Each promotion step provides the option for a colored star that can be used to notate
the success of the promotion process in the build history. In reality, the promoted
build plugin simply acts as a wrapper for software process and automation and
provides a way to gate the execution of the automation on properly authenticated
button clicks.

Configuring build promotions in Jenkins via the Promoted build plugin is actually
quite easy. The promotion processes are described in the detailed job configuration
page, where any number of promotions and sub steps can be defined. Let's take a
look at an example configuration:

Figure 7-16: Example of Promotion Pipeline Segment configuration

The preceding example describes a basic promotion (quality gate approval)
implementation that triggers a downstream job deploy.mysoftwareapp.int as part
of the promotion process. In this example configuration, we hinge the execution of
the Promotion Process on a manual approval step.

Build Pipelines

[194]

Additional segments in the build pipeline can be set up as promotion steps each with
required dependencies on the previous promotions defined in the job configuration.
This allows us to define a specific ordering of our downstream jobs, and will tell
Jenkins to prevent a promotion step from taking place if the pre-requisite promotion
steps have not been executed and completed successfully.

To implement this functionality, simply mark the checkbox and specify a definition
for the required upstream promotion steps to define the behavior. The following
screenshot illustrates an example of the approval configuration and the required
upstream promotions as part of the workflow:

Figure 7-17: Promotion step configuration

The Post-Build Tasks plugin
When implementing feedback loops (automated notification systems to communicate
status), often it may be logical to execute a script or to send an e-mail based on the
status of a downstream job. In this case, using a post-build action in Jenkins may be
a logical solution. But how do we communicate a failed-status e-mail or a successful
one? The solution for this lies in the Post-Build Tasks plugin. To implement post-
build tasks in Jenkins, we will need to ensure that we have the Post-Build Task plugin
installed. This handy plugin can trigger conditional script operations, based on text or
a regular expression, matching the job's status in the console log. If you don't have the
plugin installed on your Jenkins system, you can procure it at the following URL:

https://wiki.jenkins-ci.org/display/JENKINS/Post+build+task

https://wiki.jenkins-ci.org/display/JENKINS/Post+build+task

Chapter 7

[195]

Once installed, we can create post-build operational tasks as shown in the following
screenshot:

Figure 7-18: Post-build operational tasks

The log regex matching provided by the post build task plugin provides the ability
to match regular expressions as well as raw text from the console log. This feature
allows us to set up any number of automation sequences or notifications (hint*)
based on the downstream job or automation outputs.

The Delivery Pipeline plugin
The Delivery Pipeline plugin in Jenkins provides a high-level, real-time overview status
of a build pipeline. The plugin includes complete linking information surrounding
the upstream and downstream jobs as well as live execution indicators, and more.
Historically, in Jenkins the only plugin to provide such details was the build pipeline
plugin; however, the improved functionality of the Delivery Pipeline plugin makes
this a solution worth looking into when developing build pipelines in Jenkins. The
Delivery Pipeline plugin documentation can be found at the following URL:

https://wiki.jenkins-ci.org/display/JENKINS/Delivery+Pipeline+Plugin

https://wiki.jenkins-ci.org/display/JENKINS/Delivery+Pipeline+Plugin

Build Pipelines

[196]

To begin using the delivery pipeline plugin, we will first need to install it from the
Jenkins administration UI (plugin manager). Once a build pipeline has been created,
we can better visualize it by creating a new Delivery Pipeline View. To implement
this, we will start by creating a new view in Jenkins and selecting Delivery Pipeline
View from the available radio selections as shown in Figure 7-19.

Figure 7-19: Creating the Delivery Pipeline View

Upon creating the pipeline view, we are presented with a number of configuration
options. Let's take a look at some of the key options and learn what they do.

The first thing we will need to specify when configuring the Delivery Pipeline View
is the starting point. This is accomplished by selecting the job name from the initial
job dropdown. Once that item has been selected, there may be some additional items
you might wish to configure. A complete overview of the configuration options
available (including the initial job option) is described in the Figure 7-20.

Chapter 7

[197]

Figure 7-20: Delivery Pipeline configuration

Another useful feature is the URL for custom CSS file option. This allows us to
customize the look and feel of a pipeline view to fit with any color themes we may
wish to support.

The Enable start of new pipeline build toggle provides a Build Now button directly
in the view for the pipeline. This allows direct execution of the pipeline and the sub-
automation jobs at the click of a button.

The Display aggregated pipeline for each pipeline toggle is a beneficial combined
aggregated view of the currently attached downstream jobs in the pipeline. This
provides us with the ability to see the most recent executions of these jobs and their
associated build numbers.

Build Pipelines

[198]

Once the view has been configured to preference and saved, it will automatically
traverse the configuration of the Initial Job and identify its downstream
dependencies. The plugin will perform this sync operation on a scheduled once-a-
minute basis (unless defined otherwise) and illustrate the job and live status within
the view, as shown in Figure 7-21.

Figure 7-21: Delivery Pipeline View

Once configured, this plugin provides a bird's-eye view of a delivery pipeline for a
given software project. Let's spend a few minutes learning how to create a delivery
pipeline using this plugin.

The Continuous Delivery plugin in Jenkins allows us to create views that will connect
build pipeline segments and display them in visual form. After the plugin has been
installed and a build pipeline view has been created, we will need to configure two
defining characteristics that describe our build pipeline. The two configuration
characteristics we will need to input, will identify the beginning and end segments
respectively. From the view configuration page (associated with the delivery
pipeline) we will need to add a component and configure these two endpoints.
Figure 7-22 shows the basic implementation of a delivery pipeline view, including
the name, initial job, and final job.

Chapter 7

[199]

Figure 7-22: Basic implementation of the pipeline

After the initial configuration has been completed, the plugin will traverse the
downstream job dependencies (jobs which are linked together) and automatically
create a basic pipeline view. From here, we will want to specify our pipeline
segments by name. In each of the identified downstream jobs, there will now be an
option to specify a stage and task name, which will define and organize the segments
of the build pipeline. To keep the pipeline segments organized it may be wise to
categorize jobs by segment name. For example CI, INT, QA, and so on. Figure 7-23
illustrates the additional options available within the downstream jobs:

Figure 7-23: The additional options within the downstream jobs

This plugin has a number of handy visualization features that can make the
implementation of build pipelines considerably more user-friendly. For additional
details surrounding this plugin, consult the Jenkins-ci.org plugin wiki page.

Build Pipelines

[200]

Connecting two Jenkins instances –
development and production
In some situations, it may be a wise idea to spin up a production Jenkins instance
to facilitate production deployments. This will help restrict access to production,
and can help segregate production deployments from the earlier segments of the
pipeline. Deployments that flow into the production Jenkins instance would be
triggered by the development Jenkins instance, remain generally isolated from the
engineering personnel, and provide proper connectivity to production from a DMZ
firewall area. Figure 7-24 illustrates an example of such an architecture:

Figure 7-24: Interconnected Jenkins instances

To facilitate automated deployments to a production environment, the production
instance of Jenkins will need to have proper connectivity to the production servers
and should be configured to use matrix-based authentication be pre-configured with
a service account that has access to the appropriate jobs.

To assist in triggering remote Jenkins jobs, there are a couple of methodologies that
we can employ. The first is a Jenkins plugin that is aptly titled Call remote job and can
be found at the following URL:

https://wiki.jenkins-ci.org/display/JENKINS/Call+Remote+Job+Plugin

https://wiki.jenkins-ci.org/display/JENKINS/Call+Remote+Job+Plugin

Chapter 7

[201]

This plugin provides a simple build action to Call remote jenkins job and facilitates
the input of the relevant Jenkins host, job name, and parameters via the configuration
UI as shown in Figure 7-25.

Figure 7-25: Call remote Jenkins job configuration UI

The second option is to use the Jenkins CLI (Command Line Interface) from a script.
Below is an example in Ruby that illustrates how to trigger a remote Jenkins job
using the Jenkins CLI (converting this to a language of your choice should be a fairly
simple task):

FUNC: jenkins_triggerRemoteJenkinsJob(sJenkinsURL, sJobName,
sParameters)
DESC: triggers a remote jenkins job using jenkins cli
--
def jenkins_triggerRemoteJob(sURL, sJobName, sParameters)

puts "Downloading jenkins cli"
 `cd #{ENV['WORKSPACE']} && rm jenkins-cli* && wget http://build.
lifesize.com/jnlpJars/jenkins-cli.jar`

 puts "Executing remote Jenkins Job: #{sJobName}"
 `cd #{ENV['WORKSPACE']} && java -jar 'jenkins-cli.jar' -s #{sURL}
build \"#{sJobName}\" -s --username foouser --password foouser123 -p
VERSION=1.0.0.0 -s
echo The exit code is %errorlevel%`

end

Build Pipelines

[202]

The preceding code can be saved in a .rb file and then called inside a shell script
or via the Ruby plugin, which allows Jenkins to run Ruby code. It could also be
converted, fairly easily, to a programming language of your preference.

Regardless of the option selected, dividing the production-accessible Jenkins
instance from development and build systems is a good idea when the resources
are available.

Summary
In this chapter, we discovered techniques that we can leverage to architect and
implement automated build pipelines. Build pipelines represent the culmination
of collaboration and standards. We learned ways to encourage business buy-in for
build pipelines, and how to architect and implement build pipelines in Jenkins.

At this point we should now have a good understanding of the concepts
surrounding the creation of build-pipelines, automated delivery, and the value
proposition of the implementation. During the course of the chapter, we encouraged
the development of a mindset favoring an increased release velocity through build
pipelines and standardized conventions. The change in mindset will improve quality
by reducing the time to market and risk. Continuing to automate your path towards
automated validation and delivery will undoubtedly not go unnoticed. The reward
lies in the journey.

In the next chapter, we will dive into the underlying principles and practices of
continuous integration, continuous improvement processes, continuous delivery,
and the cadillac of continuous practices—continuous deployment.

[203]

Continuous Practices
Hewlett Packard, The Chrysler Corporation, and the United States Department of
Defense independently conducted research and analytical studies on continuous
practices [including Kaizen (Continuous Improvement), Continuous Integration,
Continuous Delivery, and Continuous Deployment]. The results of this research
generated a wealth of evidence that substantiate the benefits of low-risk,
high-frequency incremental software integrations, which is in stark comparison
to isolated engineering paradigms. The most notable benefits include: improved
business operational efficiency, reduced risk, a notable decrease in integration
defects, and an increase in stability.

Some of the most prominent organizations to adopt and benefit from continuous
practices include Etsy, Netflix, Facebook, Amazon, Google, and Flickr. Despite all
the accolades surrounding continuous practices, practical implementation strategies
using Jenkins, specifically, are a bit sparse. This chapter aims to resolve that
scarcity and provides concrete implementation foundations that can be applied at
organizations of any size.

Two monks were arguing about a flag. One said: "The flag is moving"; the other
said: "The wind is moving". The sixth patriarch happened to be passing by. He told
them: "Not the wind, not the flag; It's the mind that moves." —A Chinese Proverb

In this chapter of Mastering Jenkins, we will discover all things continuous. We
begin with Kaizen (Continuous Improvement), which can assist in identifying and
eliminating inefficient process, unknown standards, and confusing development
patterns. From there we will discover Continuous Integration, Continuous Delivery,
and Continuous Deployment practices. Together we will learn how to architect and
implement strategies for each of these evolutionary software build and delivery
approaches. Through our learning, we will identify some tricks and tips in Jenkins
that we can leverage to build a complete continuous system, complete with rapid
feedback loops, scaled automated no-downtime deployments, and automated
test execution.

Continuous Practices

[204]

Together we will learn the components required to deliver software more efficiently
by leveraging modern continuous practices. By the end of this chapter, you will have
a solid gasp of the steps needed for streamlining engineering efforts and reducing
wasted man-hours by increasing efficiency through rapid iterations, and continuous
practices. The following topics will be covered in this chapter:

•	 Kaizen (Continuous Improvement)
•	 Continuous Integration
•	 Continuous Delivery
•	 Continuous Deployment

The aim of this chapter is to provide a foundation level understanding of the
necessary culture, processes and mindset advances needed to effectively drive and
implement true Continuous Integration, Continuous Delivery, and Continuous
Deployment at scale.

It is important to note that Continuous Integration and subsequent
practices are not for everyone. No one specific practice can pretend to
represent a universal solution that will be applicable to all business
models. The main objective here is to describe these solutions and the
value they can provide an organization.

Let's begin our journey into continuous practices by starting with the Kaizen culture.
It will be through a Kaizen culture initiative that the other continuous practices will
become possible.

Kaizen – Continuous Improvement
In the 1950's, Toyota Motor Corporation began a company-wide endeavor to develop
and deliver automotive solutions that could compete against the well-entrenched
American auto manufacturers of that era. Upon embarking on this journey, Toyota
(the only Japanese auto manufacturer) lacked the manufacturing efficiency required
to adequately expand its business to a global audience. To address these deficiencies,
Toyota innovated Kaizen culture, and implemented Continuous Improvement
initiatives across the organization. This began Toyota's long journey to improve
quality and assembly-line throughput at its production plants. These initiatives
would eventually vault Toyota into global success.

Chapter 8

[205]

"Kaizen is the belief that many small changes over time create huge changes in the
future." -- Toyota.com

The word Kaizen can be directly translated as, to change for the better. Kai is most
commonly translated into English as change, and Zen translates as good. The English
translation of this phrase was eventually varied to become Continuous Improvement,
and the two terms became synonymous. After Kaizen was implemented successfully
at Toyota, it grew in recognition. The term was later introduced to a more global
audience in the 1980's by Masaaki Imai (the primary thought leader of the Kaizen
movement) in his published book The Key to Japan's Competitive Success—ISBN-13:
978-0075543329 . Since its initial inception and recognition at Toyota, Kaizen has
become a guiding principle not only for manufacturing processes, but also for
personal improvement philosophies and engineering development efforts worldwide.

Through the adoption of Continuous Improvement initiatives, Toyota managed to
pivot its business model and adapt to an increasingly competitive marketplace. This
ushered Toyota into a new era of operational efficiency that reduced manufacturing
costs and improved quality. These process improvements eventually guided Toyota
into significant financial profit margins over their direct American competitors
during one of the most tumultuous times in modern financial history. In March,
2007, just prior to the financial banking disasters, Toyota reported a company-wide
profit of $13.7 billion, whereas GM and Ford reported combined financial losses of
-$1.97 billion.

At the time of writing of this book, Continuous Improvement is still touted on
Toyota's website as a fundamental culture initiative. Toyota continues to recognize
Kaizen as its chosen path to quality and innovation in manufacturing for the
foreseeable future.

"Kaizen is the heart of the Toyota Production System. Like all mass-production
systems, the Toyota process requires that all tasks, both human and mechanical,
be very precisely defined and standardized to ensure maximum quality, eliminate
waste and improve efficiency." – Toyota.com

Continuous Practices

[206]

Now that we have some background history of the Continuous Improvement
movement, and the successes of Toyota, let's take a minute to cover some high-level
concepts of Continuous Improvement. These will help us gain a foundational
understanding of this practice. Continuous Improvement is aimed at being an
organization-wide culture initiative. It simply encourages employees to identify
and address inefficiencies and process pain points. A Kaizen culture is built on six
guiding principles. Let's take a look at these in greater detail. The following image
shows a Continuous Improvement wheel, which illustrates the guiding principles
that will help increase efficiency:

Figure 8-1: The Continuous Improvement wheel

When the Continuous Improvement wheel is put in motion, the culture of the
organization will inherently go through a transformation. Continuous Improvement
provides the personnel with an empowering responsibility to identify process
bottlenecks, propose changes, validate the process changes through hypothesis
testing, and effect a tangible change.

Chapter 8

[207]

Continuous Improvement facilitates a sustained grassroots-based shift in the
internal culture, aimed at improving quality and efficiency. It is important to note
that Kaizen, by nature, is not intended for the transformation of an incoherent
software engineering process overnight. Instead, it simply codifies an initiative
to incrementally improve the culture and support a efficiency oriented software
development paradigm, with greater emphasis on cross-functional collaboration.

When implementing Kaizen, there are a few key principles that can help guide the
initiative. These principles are illustrated in Figure 8-2:

Figure 8-2: Kaizen principles

The tactics illustrated in the preeceding figure aim to identify process inefficiencies
and improve them. This will help encourage the development of a business case for
automation and standards. This can be manifested in Jenkins by creating increasingly
efficient build pipeline solutions. Through a shift in mindset and a fundamental
transformation of traditionally isolated software engineering silos, an organization
can explicitly drive automation initiatives, determine the viability of a product
through experiments (to ensure that engineering resources are not wasted), ensure
the product is always releasable through feedback loops, and pivot the business
trajectory through analytics.

Continuous Practices

[208]

To begin, we will need to identify existing processes, and analyze the efficiency of
each. Figure 8-3 (A CMMI Diagram) illustrates a basic approach to identifying and
maturing an organization's development, quality, and delivery processes:

Figure 8-3: Identifying development, quality, and delivery processes

Kanban
Implementing continuous improvement will inevitably touch upon a number of
software development methodologies. It would be wise to begin with an agile
approach to software development in an effort to introduce the basic development
processes and release cadences. Once a consistent cadence has been achieved and
the organization's efficiency has improved somewhat, continuous practices will, in
practice, transcend waterfall and agile. To support a completely continuous system,
we can again look to Toyota's leadership for guidance.

Chapter 8

[209]

Kanban provides a practical engineering solution for managing an influx of requests
and requirements and streamlines development efforts and output to customers.
Kanban logically fits into a Continuous Improvement initiative, and supports all
levels of continuous practices. In a Kanban approach to software development,
work items are identified and prioritized via a defined engineering queue. One by
one, the individual work items (cards) are selected for implementation, and they
subsequently flow through pre-defined implementation phases and moving closer
and closer to released. After completing the release of a work item (card), the work
item would be marked as completed.

A Kanban strategy allows for the backlog to be continually updated and populated
with new issues or technical debt work items. It allows for proper prioritization
of each item and alleviates the need for heavy-handed story points or rushed
implementations which can inhibit quality.

Continuous Integration
Continuous Integration (CI) as an engineering practice has its roots back to the
1980's and now antiquated CVS glory days. Widespread adoption of Continuous
Integration practices didnt really occur until after the introduction of Extreme
Programming (XP) in the year 2000. XP identified Continuous Integration in its
doctrine and continues to be evangelized through the tireless work of Kent Beck,
Martin Fowler, and Don Wells.

The XP approach to CI specifically advocated for trunk-based development (or
very short-lived feature branches), coupled with frequent integrations into a shared
mainline (daily), automatically triggered builds, unit testing, and rapid feedback
loops. Since its inception, there have been many debates and heated discussions by
technologists surrounding best practices, implementation strategies, and branching
patterns. ThoughtWorks best describes Continuous Integration on its website via the
following definition:

Continuous Integration (CI) is a development practice that requires developers to
integrate code into a shared repository several times a day. Each check-in is then
verified by an automated build, allowing teams to detect problems early.

By implementing Continuous Integration, engineering organizations are striving to
improve software quality, reduce merge conflicts, and alleviate integration defects.
Integrating code changes frequently, by utilizing the source control mainline to
communicate software development changes, can help in increasing communication
and identify integration defects earlier in the software development lifecycle.

Continuous Practices

[210]

Prior to the widespread adoption of source control solutions, automated testing,
and Continuous Integration, software organizations would often face complex
and painful integration phases just prior to release. These integration phases were
exacerbated when business units pressured engineering for monetary returns on
investment, and software integration efforts hindered the ROI. During this era, the
software integration phases were long and arduous due to a lack of coordinated
development efforts, isolated engineering development patterns, and conflicting or
overlapping code.

During this era the integration phase of the software development lifecycle posed
the most risk. It often resulted in delayed or failed software launches. The resulting
integration hell cost companies millions of dollars in wasted man-hours, and
often put the livelihood of the organization at risk. Continuous Integration and
modern source control systems were developed to solve these issues by providing
a centralized integration solution, coupled with defined integration processes and
communication apparatuses for development engineers.

Continuous Integration stands in stark contrast to the widely-adopted practice of
feature branch development and obligatory merge techniques (often occurring just
prior to release). By integrating code changes frequently with other developers,
and standardizing on a mainline development paradigm, software development
organizations were able to effectively alleviate most integration risks. This simple,
yet highly effective, strategy also provides predefined input point from which a
software project can be built and released.

What Continuous Integration is not
Over the years, Continuous Integration has been misidentified as the implementation
of build tools such as Jenkins, TeamCity, or CruiseControl, connected via automated
polling and build execution. This reflects an incomplete representation of CI practices.
Jenkins and other similar solutions do offer automated build features including the
ability to execute a build based on a detected change to the software source tree.
However, these implementations fall short in describing Continuous Integration. The
capability of a build system to automatically build based on detected code changes is a
key component of Continuous Integration; however, this is Continuous Integration its
simply an automated build apparatus. Continuous integration has larger implications.

Chapter 8

[211]

Software build such as Jenkins were designed to aid in the practice of Continuous
Integration, and do not represent Continuous Integration itself. To be more explicit,
Continuous Integration is not the implementation of a specific tool or automation
solution. Instead, CI represents the act of Continuously Integrating code changes
across team members in an effort to avoid last-minute, wide-scale merge conflicts
and feature defects due to a lack of communication. Figure 8-4 illustrates a standard
mainline development pattern, that is based on continuous integration:

Figure 8-4: Continuous Integration

Thought leaders including Martin Fowler, Jez Humble, and James Shore, have
expanded this practice, and helped reshape engineering at many organizations
worldwide. While the benefits of CI are quantifiable, the implementation has
remained elusive. Let's consider the following quote from the founder of Continuous
Delivery, Jez Humble:

"Continuous Integration is NOT running Jenkins on your feature branches.
Continuous Integration is a practice where every developer integrates their changes
to the mainline at least once a day" – Jez Humble

Continuous Practices

[212]

This sounds easy enough, but actually, it is arguably the most challenging aspect
of Continuous Integration. Committing to a central mainline development pattern
in ALL cases requires a very high level of collaboration, step-by-step planning, and
communication. These characteristics represent the key differences between a simple
coder and an engineer. The social and communication requirements of Continuous
Integration are often difficult for the traditionally introverted developer, as it exposes
the code in its early stages. The CI anti-pattern is that it's easier and safer to create
code in an isolated feature branch until the development efforts have been completed.
The main issue with this culture is in the procrastination of communication and the
divergence of the feature branch from other source lines over time. Delaying the
integration of code into the mainline for any period of time (by an order of magnitude)
compounds the divergence of the segregated code from the mainline and ALL other
feature branches. This technical debt created by delaying integration efforts will
continue to increase until the feature branch is synced with all active branches. The
complexity of the merge will be compounded when additional developers create new
feature branches, and the code drift across branches becomes greater.

Now that we have a better grasp of the branching practices required for Continuous
Integration, let's take a moment to quickly cover the defining criteria of Continuous
Integration, and identify some guiding points of CI. To practice Continuous
Integration, the software development group must, at a minimum, do the following:

•	 Implement a trunk-based development model (or a highly disciplined,
short-lived feature branch solution), where each developer commits
(or merges) code into the mainline at least once per day

•	 Automate the detection of commits, and initiate a build for every
commit detected

•	 Automate the execution and reporting of unit tests, which must run as part
of the build process and aim to validate the code IO operability

•	 Create a rapid feedback loop system to notify and flag any potential defects
detected by the build process

•	 Place urgency on addressing or reverting any violating code commits that
break the build

Chapter 8

[213]

Implementing true Continuous Integration in practice can be a difficult undertaking
for any organization. Continuous Integration requires a fundamental shift in
developer discipline, communication, and the adoption of good software practices.
Continuous Integration encourages branching in code instead of branching in source
control. By branching in code, long running features can continue to be developed
and shared without the need to create extraneous source control based branches.

Branching and CI
Continuous Integration practices are not opposed to feature branches.
The important requirement is that any branches that are created should
be very short-lived and scoped appropriately. Any branches created
must have frequent merges into the mainline and a short lifecycle. The
anti-pattern of CI is to allow feature branches to grow uncontrollably
into a divergent code base that is so far away from the mainline that it
becomes risky to merge it back into the mainline.

To support Continuous Integration, there are a few well-vetted, guiding software
architectural techniques that can be employed to assist in reducing the risk of
integrating. We will discuss those next.

Code-based branching techniques
To apply Continuous Integration, we will need to learn some development practices
that support this Continuous Integration. One such practice involves creating branches
in code instead of in a source control repository. The most obvious form of code
branching is a simple IF-THEN-ELSE statement. Conditional logic, by nature, allows
us to alter the path of execution and ignore code blocks that do not meet a specified
criteria. This solution represents one very basic example of branching in code.

Branching by abstraction and feature toggles are two additional software
architectural techniques that can be employed to alleviate the need for source control
based feature branches. These two architectural variants allow the development
group to refactor components, prototype new efforts, and implement new
functionality without creating additional development lines in the source control
solution. In this section of Mastering Jenkins, we will learn some tips and techniques
that can be leveraged to reduce risk and keep the mainline stable while providing
support for under-construction development implementations.

Continuous Practices

[214]

Branch by abstraction
Branching by abstraction is an architectural technique designed to facilitate
refactoring efforts and allow replacement parts to co-exist with living
implementations without risk. This architecture allows incomplete efforts to continue
without the need to create and manage a new branch in the source control system.
This code-based branching solution involves creating an abstraction layer, which
can be communicated through. When the development effort on the replacement
component has been completed, the older version of the component would then
be phased out and replaced with the new one. Figure 8-5 illustrates a simple
architectural diagram of a refactoring effort, managed through the branching by
abstraction technique:

Figure 8-5: Branching Abstraction architecture

The practical implementation of this paradigm could be altered a bit and supported
by implementing a component-based folder structure. The following example shows
this altered refactoring effort in the simplest form:

OLD - /opt/myapplication/component/
NEW - /opt/myapplication/component.v2/

Chapter 8

[215]

To swap the components, simply rename them or create a symlink. This solution
could also be implemented by using a feature toggle configuration file that pivots the
implementation through a switch.

Feature toggles
Feature toggles represent a source code branching technique which, enable or disable
functionality based on a condition. By implementing feature toggles, we can hide
incomplete development efforts by setting a configuration value or toggling a switch.
This allows us to effectively decouple the availability or release of a software feature
from the deployment of the software itself.

Most of us use feature toggles all the time, and we don't even realize it. Basic
conditional logic lies at the heart of the feature toggle solution. Consider the
following code example:

If (bToggle == true) {
 …
} else {
 …
}

This simple if/then conditional block is the most basic feature toggle. It simply
identifies if a condition is met, and executes the containing code based on the state
of the toggle. A more modern example of a feature toggle solution for an HTML/
Javascript web project might look like the following:

<script type="text/javascript">
<!--
 function toggle_feature(id)
 {
 var e = document.getElementById(id);
 if(e.style.display == 'block')
 e.style.display = 'none';
 else
 e.style.display = 'block';
 }
//-->
</script>

Click here
to view the prototype effort

<div id="PrototypeFeature">This feature is hidden from view until its
toggled on</div>

Continuous Practices

[216]

Feature toggle branching techniques are not limited to HTML and web-based
development projects. Currently, there are a number of pre-fabricated feature toggle
solutions available for a wide variety of platforms and development languages. Let's
take a look some of the numerous feature toggle frameworks available that can help
us jump-start a branching-in-code initiative:

•	 Feature toggles in Java:
°° Togglz: http://www.togglz.org
°° FF4J: http://www.ff4j.org
°° Fitchy: https://code.google.com/p/fitchy/

•	 Feature toggles in Python:
°° Gargoyle: https://pypi.python.org/pypi/gargoyle
°° Gutter: https://github.com/disqus/gutter

•	 Feature toggles in .NET, C#:
°° FeatureSwitcher: https://github.com/mexx/FeatureSwitcher
°° NFeature: https://www.nuget.org/packages/NFeature/
°° FlipIt: https://github.com/timscott/flipit
°° FeatureToggleNET: https://github.com/jason-roberts/

FeatureToggle

°° FeatureBee: http://www.nuget.org/packages/FeatureBee/

•	 Feature toggles in Ruby and Ruby on Rails:
°° Rollout - https://github.com/FetLife/rollout
°° Feature_flipper - https://github.com/jnunemaker/flipper
°° Flip - https://github.com/pda/flip
°° Setler - https://github.com/ckdake/setler

•	 Feature Toggles in Embedded/C/C++ (Constructs) (coding techniques):

°° Ifdef
°° Make targets

http://www.togglz.org
http://www.ff4j.org
https://code.google.com/p/fitchy/
https://pypi.python.org/pypi/gargoyle
https://github.com/disqus/gutter
https://github.com/mexx/FeatureSwitcher
https://www.nuget.org/packages/NFeature/
https://github.com/timscott/flipit
https://github.com/jason-roberts/FeatureToggle
https://github.com/jason-roberts/FeatureToggle
http://www.nuget.org/packages/FeatureBee/
https://github.com/FetLife/rollout
https://github.com/jnunemaker/flipper
https://github.com/pda/flip
https://github.com/ckdake/setler

Chapter 8

[217]

Fail fast and recover even faster
Through failure and the experience that comes with it, the human race learns to
adapt and evolve (or at least some of us do). What's important is not how many
times we fail; it's how fast we manage to recover and learn from our failures. Failures
in software systems are also a part of the industry. No software project can purport
to be completely free of defects. While failure is inevitable, it does not have to be
expensive. We can fail in a visible and catastrophic manner, or we can fail quietly
with minimal customer impact. These ideas are the cornerstone of continuous
practices. Our aim should be to identify the failures earlier (where possible), hide
failures (where possible) from our customers, and continually improve.

Failures in software manifest themselves in a number of ways, including compilation
errors, failures in viability or user acceptance, failures in processes, or failures in
deployments. There are generally two viable options to consider when presented
with a failure. Fix it, or roll it back.

Identifying failures earlier in the SDLC by continuously integrating, creating build
pipelines for delivery, and limiting commit sizes can provide numerous benefits.
These solutions all provide an apparatus that works to identify failures earlier in
the software development lifecycle, thus saving us from failing in production. By
adopting these practices, we gain significant strides in quality and efficiency. Some
of the notable benefits include the following:

•	 Less time spent debugging and locating the defective code segments due to
smaller commit sizes

•	 Increased levels of collaboration
•	 Quicker recovery times when outages do occur or failures are detected

Distributed Version Control
Distributed Version Control Systems (DVCS) such as Git and Mercurial have become
very popular. These solutions provide a number of welcome features including
lightweight branching, pull-requests for code-review, and distributed repositories.
They are in stark contrast to the traditionally centralized source control solutions such
as SVN or Perforce, as they allow each developer to maintain a uniquely independent
copy of the entire source control repository on their local machine. Distributed source
control systems also create a number of potential pitfalls and trouble areas that can
easily lead to integration problems when not implemented properly.

Continuous Practices

[218]

DVCS indeed creates an interesting quasi anti-pattern related to continuous
practices. The anti-pattern becomes apparent when DVCS is used as a means to
isolate feature work for extended periods of time. This is because DVCS provides a
set of tools that can be leveraged by development to either Continuously Integrate or
Continuously Isolate. Developers have the option to isolate/hide their work from the
mainline IF they choose to do so OR push and pull with a frequency to reduce the
risk of integration problems and collaborate more. It entirely depends on how the
tool is leveraged.

One possible solution to this anti-pattern is to break development work
into manageable sprints that are modularly defined, leverage feature
toggles, and utilize the short-lived feature branches. By implementing
this type of solution, the development organization can connect logically
defined sprint efforts to feature toggles, and integrate the completed work
continuously with the mainline. The completed work would then go-live
via a feature toggle switch when the implementation is complete.

When implementing a branching pattern within an organization (preferably CI
based) it is important to keep it simple and well defined. When no patterns are
implemented or communicated, problems will lie ahead. These problems are
exacerbated when employees quit and take the branching pattern knowledge
with them. Undoubtedly, the more simplistic the approach, the more uniform
the outcome.

Continuous Integration in Jenkins
To initiate the execution of a Jenkins job, Jenkins leverages build triggers.
Build triggers are defined for each job within Jenkins through the detailed job
configuration page (SCM polling, GIT pushes, and so on). Each source control
solution operates a bit differently, but the general implementation of build triggers is
similar for each. Jenkins can either watch for changes, or the source control solution
can be configured to notify (push) Jenkins of a completed commit.

SCM polling
Polling a source control solution for changes can be configured in the job
configuration page. This solution provides a way for Jenkins to reach out to the
source control system and check if there have been any changes since the last poll
execution based on the criteria specified in the job configuration page. To configure
SCM polling, toggle the Poll SCM checkbox. Jenkins will then display the polling
configuration text area, which will allow us to specify our CRON-based polling
criteria as shown in Figure 8-6:

Chapter 8

[219]

Figure 8-6: CRON-based polling criteria

In the preceding screenshot, we configured the Jenkins job to communicate with the
source control system once per hour and looked for identifiable changes that would
then trigger a build. To change the frequency of the polling, simply alter the SCM
polling option and specify an alternate CRON schedule. Below are some examples
for doing this:

Every thirty minutes
H/30 * * * *
Every 3 minutes in the first half of every hour
H(0-29)/3 * * * *
Once every two hours every weekday (perhaps at 10:38 AM, 12:38 PM,
2:38 PM, 4:38 PM)
H 9-16/2 * * 1-5
Once a day on the 1st and 15th of every month except December
H H 1,15 1-11 *

CRON-based polling is well-documented as being resource-intensive
in Jenkins. It adds CPU-intensive tasks to the Jenkins system and is
best substituted (where possible) with push-based notifications or
post-commit hooks.

Continuous Practices

[220]

Running a Jenkins job via the SVN post-commit
hooks
In addition to SCM polling, a Jenkins job can be triggered through an SVN post-
commit hook (push). Commit hooks are shell commands executed automatically by
the SVN software immediately after a commit to the source control system has been
completed. We can leverage the SVN post commit hooks to trigger Jenkins jobs.

The following are two post-commit hook scripts provided by the Jenkins community
to support the triggering of Jenkins jobs via push notifications from SVN. Support
for these solutions can be found at the following reference link: (https://wiki.
jenkins-ci.org/display/JENKINS/Subversion+Plugin).

Windows–VBScript
SET REPOS=%1
SET REV=%2
SET CSCRIPT=%windir%\system32\cscript.exe
SET VBSCRIPT=C:\Repositories\post-commit-hook-jenkins.vbs
SET SVNLOOK=C:\Subversion\svnlook.exe
SET JENKINS=http://server/
"%CSCRIPT%" "%VBSCRIPT%" "%REPOS%" %2 "%SVNLOOK%" %JENKINS%

repos = WScript.Arguments.Item(0)
rev = WScript.Arguments.Item(1)
svnlook = WScript.Arguments.Item(2)
jenkins = WScript.Arguments.Item(3)

Set shell = WScript.CreateObject("WScript.Shell")

Set uuidExec = shell.Exec(svnlook & " uuid " & repos)
Do Until uuidExec.StdOut.AtEndOfStream
 uuid = uuidExec.StdOut.ReadLine()
Loop
Wscript.Echo "uuid=" & uuid

Set changedExec = shell.Exec(svnlook & " changed --revision " & rev &
" " & repos)
Do Until changedExec.StdOut.AtEndOfStream
 changed = changed + changedExec.StdOut.ReadLine() + Chr(10)
Loop
Wscript.Echo "changed=" & changed

https://wiki.jenkins-ci.org/display/JENKINS/Subversion+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Subversion+Plugin

Chapter 8

[221]

url = jenkins + "crumbIssuer/api/xml?xpath=concat(//
crumbRequestField,"":"",//crumb)"
Set http = CreateObject("Microsoft.XMLHTTP")
http.open "GET", url, False
http.setRequestHeader "Content-Type", "text/plain;charset=UTF-8"
http.send
crumb = null
if http.status = 200 then
 crumb = split(http.responseText,":")
end if

url = jenkins + "subversion/" + uuid + "/notifyCommit?rev=" + rev
Wscript.Echo url

Set http = CreateObject("Microsoft.XMLHTTP")
http.open "POST", url, False
http.setRequestHeader "Content-Type", "text/plain;charset=UTF-8"
if not isnull(crumb) then
 http.setRequestHeader crumb(0),crumb(1)
 http.send changed
 if http.status <> 200 then
 Wscript.Echo "Error. HTTP Status: " & http.status & ". Body: " &
http.responseText
 end if
end if

*Nix–Bash
#!/bin/sh
REPOS="$1"
REV="$2"

No environment is passed to svn hook scripts; set paths to external
tools explicitly:
WGET=/usr/bin/wget
SVNLOOK=/usr/bin/svnlook

If your server requires authentication, it is recommended that you
set up a .netrc file to store your username and password
Better yet, since Jenkins v. 1.426, use the generated API Token in
place of the password
See https://wiki.jenkins-ci.org/display/JENKINS/
Authenticating+scripted+clients

Continuous Practices

[222]

Since no environment is passed to hook scripts, you need to set
$HOME (where your .netrc lives)
By convention, this should be the home dir of whichever user is
running the svn process (i.e. apache)
HOME=/var/www/

UUID=`$SVNLOOK uuid $REPOS`
NOTIFY_URL="subversion/${UUID}/notifyCommit?rev=${REV}"
CRUMB_ISSUER_URL='crumbIssuer/api/xml?xpath=concat(//
crumbRequestField,":",//crumb)'

function notifyCI {
 # URL to Hudson/Jenkins server application (with protocol, hostname,
port and deployment descriptor if needed)
 CISERVER=$1

 # Check if "[X] Prevent Cross Site Request Forgery exploits" is
activated
 # so we can present a valid crumb or a proper header
 HEADER="Content-Type:text/plain;charset=UTF-8"
 CRUMB=`$WGET --auth-no-challenge --output-document -
${CISERVER}/${CRUMB_ISSUER_URL}`
 if ["$CRUMB" != ""]; then HEADER=$CRUMB; fi

 $WGET \
 --auth-no-challenge \
 --header $HEADER \
 --post-data "`$SVNLOOK changed --revision $REV $REPOS`" \
 --output-document "-"\
 --timeout=2 \
 ${CISERVER}/${NOTIFY_URL}
}

The code above was placed in a function so you can easily notify
multiple Jenkins/Hudson servers:
notifyCI "http://myPC.company.local:8080"
notifyCI "http://jenkins.company.com:8080/jenkins"

Chapter 8

[223]

Triggering a Jenkins job via GitHub push
With the recent trends in GitHub-based solutions, SCM Polling via Jenkins is no
longer needed (and is strongly advised against). GitHub and other similar GIT
solutions provide direct integration with Jenkins via the API, and can be configured
to push change notifications to the Jenkins subsystems (thus triggering a build).
Let's learn how to connect Jenkins to GitHub and set up an automatic build
trigger solution.

To configure this, we will need to ensure that we have the appropriate
access levels in GitHub, and have the right access to configure a
repository's settings.

Jenkins configurations
To begin, let's start on the Jenkins side of the fence. In Jenkins, we will need to install
the GitHub Jenkins plugin. Details of this plugin can be found at the following URL:

https://wiki.jenkins-ci.org/display/JENKINS/GitHub+Plugin

Once the Jenkins GitHub plugin has been installed, we will need to configure
our job in Jenkins and allow GitHub to notify it after each successful push. This
can be implemented in the detailed job configuration page (for a specified job) by
configuring the Jenkins job to Build when a change is pushed to GitHub. To get
started, tick the checkbox located in the job configuration page as illustrated in
Figure 8-7.

Figure 8-7: Job configuration options

https://wiki.jenkins-ci.org/display/JENKINS/GitHub+Plugin

Continuous Practices

[224]

Now that we have our Jenkins job configured to listen for GitHub push notifications,
we will need to specify the GitHub repository that Jenkins will accept such requests
from. This field is also located in the Jenkins detailed job configuration page and is
illustrated in Figure 8-8:

Figure 8-8: Specifying the GitHub repository during configuration

GitHub configurations:
Now that we have our Jenkins job configured, let's turn our attention to GitHub. To
begin, log in to https://www.github.com with a repository administrator account,
and navigate to the target repository. Once there, click the Settings link on the
right and choose WebHooks & Services from the Options menu on the left-hand
side. Now click Add Service, and select the Jenkins (GitHub plugin) option from
the available services dropdown. The breadcrumb navigation we just described is
illustrated as follows:

MyRepository->Settings->WebHooks & Services->Add Service

After the Jenkins (GitHub plugin) option has been selected, we will see a
configuration page similar to Figure 8-9:

Figure 8-9: GitHub plugin configuration

https://www.github.com

Chapter 8

[225]

After completing the configuration form that is seen in the preceding screenshot,
specify the appropriate URL for Jenkins (this must be accessible through the
Internet). Once this has been configured, click Add service to complete the GitHub
integration, and enable GitHub to begin pushing the changes to Jenkins.

To verify that Jenkins is properly communicating with GitHub, simply try to make
a commit to the repository and verify that Jenkins triggers the appropriate job. Once
completed, we will have successfully integrated Jenkins with GitHub-implemented
automated push notifications.

Continuous Delivery
Continuous Delivery represents a logical extension to Continuous Integration
practices. It expands the automation defined in continuous integration beyond
simply using a shared mainline, building the software project and executing unit
tests. Continuous Delivery adds automated deployments and acceptance test
verification automation to the solution and ensures the software project is in an
always-releasable state. To better describe this process, let's take a look at some basic
characteristics of Continuous Delivery:

•	 The development resources use Continuous Integration to commit changes
to the mainline of the source control solution multiple times per day, and the
automation system initiates a complete build, deploy, and test validation for
each commit

•	 Automated tests should execute against every change deployed, and help
ensure that the software remains in an always-releasable state.

•	 Every committed change is treated as potentially releasable, and extra care
is taken to ensure that incomplete development work is hidden and does not
impact the readiness of the software

•	 Feedback loops are developed to facilitate notifications of failures. This
includes build results, test execution reports, delivery status, and user
acceptance verification

•	 Iterations are short and feedback is rapid, allowing business interests to
weigh in on software development efforts and propose alterations along
the way

•	 Business interests, instead of engineering, will decide when to physically
release the software project; as such, the software automation should
facilitate this goal

Continuous Practices

[226]

As described previously, Continuous Delivery (CD) represents the expansion of
Continuous Integration practices. At the time of writing of this book, Continuous
Delivery approaches have been successfully implemented at scale across numerous
organizations including as Amazon, Wells Fargo, and others. The value of CD
derives from the ability to tie software releases to business interests, collect feedback
rapidly, and course correct efficiently. Figure 8-10 illustrates the basic automation
flow for Continuous Delivery:

Figure 8-10: Continuous Delivery workflow

As we can see in the preceding diagram, this practice allows businesses to rapidly
develop, strategically market, and release software based on pivoting market
demands instead of engineering time frames.

When implementing a continuous delivery solution, there are a few key points that
we should keep in mind:

•	 Keep the build fast
•	 Illuminate the failures, and recover immediately
•	 Make deployments push-button, for any version to any environment
•	 Automate testing and validation operations with defined buckets for each

logical test group (unit, smoke, functional, and regression)
•	 Use feature toggles to avoid branching
•	 Get feedback early and often (automation feedback, test feedback, build

feedback, and UAT feedback)

Chapter 8

[227]

The principles of Continuous Delivery
Continuous Delivery was founded on the premise of standardized and automated
release processes, build pipelines, and logical quality gates with rapid feedback
loops. In a Continuous Delivery paradigm, builds flow from development to QA and
beyond like water in a pipe. The practical application of the Continuous Delivery
principles lies in frequent commits to the mainline, which, in turn, execute the build
pipeline automation suite, pass through automated quality gates for verification, and
are individually signed off by business interests in a completely automated fashion.
The idea of incrementally exposing risk can be better illustrated through a Circle of
Trust diagram, as shown in Figure 8-11:

Figure 8-11: Circle of Trust for code changes

As illustrated in the preceding trust diagram, the number of people exposed to a
build expands incrementally as the build passes from one logical development or
business group to another. This model places emphasis on verification and attempts
to remove waste (time) by exposing the build output only to groups that have a
vested interest in the build at that phase.

Continuous Practices

[228]

Continuous Delivery in Jenkins
Applying the Continuous Delivery principles in Jenkins can be accomplished in
a number of ways. That said, there are some definite tips and tricks that can be
leveraged to make the implementation easier. In this section, we will discuss and
illustrate some easier. Continuous Delivery tactics and learn how to apply them in
Jenkins. Your specific implementation of Continuous Delivery will most definitely
be unique to your organization; so, from this section, take what is useful, research
anything that is missing, and disregard what is useless. Let's get started.

Rapid feedback loops
Rapid feedback loops are a baseline implementation requirement for Continuous
Delivery. Applying this with Jenkins can be accomplished in a pretty slick manner
using a combination of the Email-Ext plugin and some HTML template magic. In
large-scale Jenkins implementations, it is not wise to manage many e-mail templates,
and creating a single transformable one can help save time and effort. Let's take a
look how to do this in Jenkins.

The Email-Ext plugin provides Jenkins with the capabilities of completely
customizable e-mail notifications. It allows the Jenkins system to customize just
about every aspect of notifications and can be leveraged as an easy-to-implement,
template-based e-mail solution. To begin with, we will need to install the plugin
into our Jenkins system. The details for this plugin can be found at the following
web address:

https://wiki.jenkins-ci.org/display/JENKINS/Email-ext+plugin

Once the plug-in has been installed into a Jenkins system, we will need to configure
the basic connection details and optional settings. To begin, navigate to the Jenkins
administration area and locate the Extended Email Notification section.

Jenkins->Manage Jenkins->Configure System

On this page, we will need to specify, at a minimum, the following details:

•	 SMTP Server
•	 SMTP Authentication details (User Name + Password)
•	 Reply-to List (nobody@domain.com)
•	 System Admin Email Address (located earlier on the page)

https://wiki.jenkins-ci.org/display/JENKINS/Email-ext+plugin

Chapter 8

[229]

The completed form should look something like Figure 8-12:

Figure 8-12: Completed form

Once the basic SMTP configuration details have been specified, we can then add
the Editable Email Notification post build step to our jobs (in the detailed job
configuration page), and configure the e-mail contents appropriately. The following
screenshot illustrates the basic configuration options required for the build step
to operate:

Figure 8-13: Basic configuration options

As we can see from the preceding screenshot, environment variables can be piped
into the plugin via the job's automation to define the e-mail contents, recipient list,
and other related details. Through this plugin we can also specify triggers for a
given email template, customize the recipient list, and much more. This plugin
makes for a highly effective feedback loop solution.

Continuous Practices

[230]

Quality gates and approvals
Two of the key aspects of Continuous Delivery include the implementation of end to
end automation and implementing an assembly line approach to software delivery.
As an organization begins a continuous delivery initiative manual intervention will
be required, until automated deployments and testing apparatuses are implemented
and up to par. To help move in the right direction implementing approval based
quality gates can help encourage the adoption and ensure quality requirements are
met. In Jenkins this comes in the form of promoted builds. This requires individuals
to signoff on a given change or release as it flows through the pipeline. Back in the
day, this used to be managed through a Release Signoff sheet, which would often
be maintained manually on paper. In the modern digital age, this is managed
through the Promoted Build plugin in Jenkins, whereby we can add LDAP or Active
Directory integration to ensure that only properly authorized users have the access
to promote builds. We discussed the implementation of the Promoted build plugin
in an earlier chapter. However, there is room to expand this concept and learn some
additional tips and tricks to ensure that we have a solid and secure implementation.

Integrating Jenkins with Lightweight Directory Access Protocol (LDAP) is generally
a straightforward exercise. This solution allows a corporate authentication system
to be tied directly into Jenkins. This means that, once the security integration is
configured in Jenkins, we will be able to login to the Jenkins system (UI) by using
our corporate account credentials. To connect Jenkins to a corporate authentication
engine, we will first need to configure Jenkins to talk to the corporate security
servers. This is configured in the Global Security administration area of the Jenkins
user interface as shown in Figure 8-14:

Figure 8-14: Global Security configuration options

Chapter 8

[231]

The global security area of Jenkins allows us to specify the type of authentication that
Jenkins will use for users who wish to access the Jenkins system. By default, Jenkins
provides a built-in internal database for managing users; we will have to alter this
to support LDAP. To configure this system to utilize LDAP, click the LDAP radio
button, and enter your LDAP server details as illustrated in the following screenshot:

Figure 8-15: LDAP server details

Fill out the form with your company's LDAP specifics, and click Save. If you happen
to get stuck on this configuration, the Jenkins community has graciously provided
additional in-depth documentation. This documentation can be found at the
following URL:

https://wiki.jenkins-ci.org/display/JENKINS/LDAP+Plugin

For users who wish to leverage Active Directory, there is a Jenkins
plugin which can facilitate this type of integrated security solution.
For more details on this plugin, please consult the plugin page at the
following URL:
https://wiki.jenkins-ci.org/display/JENKINS/
Active+Directory+plugin

https://wiki.jenkins-ci.org/display/JENKINS/LDAP+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Active+Directory+plugin
https://wiki.jenkins-ci.org/display/JENKINS/Active+Directory+plugin

Continuous Practices

[232]

Once the authentication solution has successfully been configured, we can utilize it
to set approvers in the promoted builds plugin. To configure a promotion approver,
we will need to edit the desired Jenkins project, and specify the users who should
have the promote permissions. Figure 8-16 shows an example of this configuration:

Figure 8-16: Configuration example

As we can see, the Promoted build plugin provides an excellent signoff sheet
solution. It is complete with access security controls, promotion criteria, and a robust
build step implementation solution.

Build pipeline workflow and visualization
When build pipelines are created initially, the most common practice is to simply
daisy-chain the jobs together. This is a perfectly reasonable initial-implementation
approach but, in the long term, this may get confusing and it may become difficult
to track the workflow of daisy-chained jobs. To assist with this issue, Jenkins offers
a plugin to help visualize build pipelines, appropriately named the Build Pipelines
plugin. Details of this plugin can be found at the following web URL:

https://wiki.jenkins-ci.org/display/JENKINS/Build+Pipeline+Plugin

https://wiki.jenkins-ci.org/display/JENKINS/Build+Pipeline+Plugin

Chapter 8

[233]

This plugin provides an additional view option, populated by specifying an entry
point to the pipeline, detecting upstream and downstream jobs, and creating a visual
representation of the pipeline. Upon the initial installation of the plugin, we can see
an additional option available to us when we create a new dashboard view. This is
illustrated in the Figure 8-17:

Figure 8-17: Dashboard view

After we have created a pipeline view using the build pipeline plugin, Jenkins will
present us with a number of configuration options. The most basic configuration
options required are the name of the view and the initial job dropdown selection
option, as seen Figure 8-18:

Figure 8-18: Pipeline view configuration options

Continuous Practices

[234]

Once the basic configurations have been defined, click the OK button to save the
view. This will prompt the plugin to perform an initial scan of the linked jobs and
generate the pipeline view. An example of a completely developed pipeline is
illustrated in Figure 8-19:

Figure 8-19: Completely developed pipeline

Once the view has been created; it till give us an excellent visual representation of
our build pipeline. There are a number of features and customizations that we could
apply to the pipeline view, but we will let you explore those and tweak the solution
to your own specific needs.

Continuous Deployment
Just as Continuous Delivery represents a logical extension of Continuous Integration,
Continuous Deployment represents a logical expansion of Continuous Delivery
practices. Continuous Deployment is very similar to Continuous Delivery in a lot
of ways, but it has one key fundamental variance: there are no approval gates.
Without approval gates, code commits to the mainline will end up in the production
environment in short order. This type of automation solution requires a high-level of
discipline, strict standards, and rock solid automation. It is a practice that has proven
valuable for the likes of Etsy, Flickr, and many others. This is because Continuous
Deployment dramatically increases deployment velocity. Figure 8-20 describes
both Continuous Delivery and Continuous Deployment, to better showcase the
fundamental difference between, them:

Chapter 8

[235]

Figure 8-20: Differentiation between Continuous Delivery and Continuous Deployment

It is important to understand that Continuous Deployment is not for everyone, and is
a solution that may not be feasible for some software architectures or product types.
For example, in embedded software or Desktop application software, Continuous
Deployment will only be a viable solution with properly architected background
upgrade mechanisms, as we don't want to alienate users due to the frequency of the
upgrades. On the other hand, it's something that could be applied, with excellent
results, to a simple API web service or a SaaS-based web application.

If the business unit indeed desires to migrate towards a Continuous Deployment
solution, tight controls on quality will be required to facilitate stability and avoid
outages. These controls may include any of the following:

•	 The required unit testing with code coverage metrics
•	 The required a/b testing or experiment-driven development
•	 Paired programming
•	 Automated rollbacks
•	 Code reviews and static code analysis implementations
•	 Behavior-driven development (BDD)
•	 Test-driven development (TDD)
•	 Automated smoke tests in production

Continuous Practices

[236]

Additionally, it is important to note that, since a Continuous Deployment solution
is a significant evolutionary step forward, the implementation of the Continuous
Delivery practices will be a prerequisite. This solution will need to be proven stable
and trusted prior to the removal of the approval gates. Once removed, though, the
deployment velocity will significantly increase as a result.

The quantifiable value of Continuous Deployment is well advertised by companies
such as Amazon who realized a 78 percent reduction in production outages, and
a 60% reduction in downtime minutes due to catastrophic defects. That said,
implementing Continuous Deployment will require a buy-in from the stakeholders
and business interests alike.

Continuous Deployment in Jenkins
Applying Continuous Deployment practices in Jenkins is actually a simple exercise
once Continuous Integration and Continuous Delivery have been completed. It's
simply a matter of removing the approve criteria and allowing builds to flow freely
through the environments, and eventually to production. Figure 8-21 illustrates a
basic continuous deployment implementation using the Promoted build plugin
described earlier in the Continuous Delivery section:

Figure 8-21: Promoted build plugin implementation

Once the promotions become automatic, the build automation solutions will
continuously deploy for every commit to the mainline (given that all the automated
tests have been passed).

Chapter 8

[237]

Summary
In this chapter of Mastering Jenkins, we discovered all things continuous. We
learned the history and background of Kaizen, Continuous Integration, and related
disciplines. We should now have a solid understanding of how to advocate for and
develop Kaizen, Continuous Integration, Continuous Delivery, and Continuous
Deployment practices at an organization. We also learned how to connect Jenkins
into SVN and GitHub to facilitate automated, push-based builds. We discovered
examples for maintaining a stable mainline using feature toggles, branching by
abstraction, and automation. From our examples of each, we should be able to
build upon and drive best practice implementations in Jenkins. We also learned
some key differences between each of the Continuous Practices and learned how to
differentiate these in Jenkins.

In the next chapter of Mastering Jenkins, we will learn how to integrate Jenkins into
Selenium, Ansible, Docker, and other highly-valued DevOps solutions. Our journey
will lead us on an adventure in creating a Selenium grid, implementing Jenkins
via Docker containers, and adapting Jenkins to execute scaled deployments using
Ansible. Let's continue forward.

[239]

Integrating Jenkins with
Other Technologies

Jenkins has come a long way since its initial introduction as a unified Java build tool.
It has matured significantly and evolved into a robust automation system and project
orchestration solution. Jenkins has been extended significantly by the open source
community and is now capable of communicating and integrating with numerous
technologies, and platforms. With the advent of these integration capabilities, Jenkins
has seen widespread growth and adoption by organizations worldwide. As Jenkins
enthusiasts, we get to navigate this complex technical landscape and gain experience
in evaluating and integrating Jenkins with a multitude of new technologies. Dabbling
in new technology arenas and innovation is what makes developing pipelines in
Jenkins so exciting.

"When the winds of change blow, some people build walls while others build
windmills" – Chinese proverb

In this chapter of Mastering Jenkins we will discover some creative ways to integrate
Jenkins with newer technologies, while learning about innovative engineering trends.
We will discover some of the latest technologies to hit the market, and see how to
integrate them into Jenkins. Below are the objectives we will cover in this chapter:

•	 Docker containers
•	 Jenkins and Ansible
•	 Jenkins and Artifactory
•	 Jenkins and Selenium
•	 Jenkins and Jira

After completing this chapter of Mastering Jenkins we should have a fundamental
understanding of how to integrate Jenkins into a number of technology solutions.
Let's begin our journey.

Integrating Jenkins with Other Technologies

[240]

Jenkins and Docker – Linux guide
Docker is a hot trend amongst technology enthusiasts, DevOps teams, and software
engineers. It offers a new and innovative lightweight containerized approach
to building and hosting virtualized software solutions. The Docker container
technology allows us to create and deliver completely virtualized containers that
can house a single application, a suite of software services, or a full release. Docker
features source control-like functionality that allows container developers to track
incremental changes, revert changes (if necessary), and share their solutions. The
advantage of this technology over traditional virtualization solutions is that it
offers a less resource-intensive solution for hosting and delivering an application or
environment regardless of the physical server infrastructures.

The Docker technology stack ensures that a container will operate in a predictable
manner regardless of its origin or destination hardware. To accomplish this feat
Docker provides a complete Linux file-system foundation in its base. It then makes
the base level solution available for all containers hosted within. This base includes
tools, network devices, libraries, and related operating system level features that may
be required by any of the attached containers. Docker also provides a lightweight
Linux kernel, shared across all containers on the Docker system. This kernel was
developed to explicitly utilize less memory and fewer system resources.

To better illustrate the architecture of Docker containers, the figure below shows a
high-level overview of the virtualization architecture Docker provides:

Figure 9-1: Traditional virtualization vs Docker

Chapter 9

[241]

As we can see, Docker offers an easily transportable way to develop and deploy a
completely operable solution and define the environment requirements prior to use.
This solution mitigates the infamous it works on my machine straw man argument.
If your team is focusing on a more DevOps-style approach to software delivery,
containers can flow through build pipelines, get validated for quality (bake), ensure
lower risks surrounding infrastructure, and reduce environment variances upon
reaching production.

Docker offers a number of highly valuable features for engineering organizations.
Lets take a moment to look at a few:

•	 Low-risk portable deployments based on baked pre-production testing of the
same content

•	 Clear definitions of Docker container contents
•	 Collaborative sharing (public registry), which allows containers to be

shared easily
•	 Shared kernel and OS solution that eliminates the duplication of OS files
•	 Source control-like functionality and version tracking
•	 A highly extendable tool ecosystem created from the published Docker API

Now that we have a pretty good picture of the Docker virtualization architecture,
and the advantages this technology provides, lets take a few minutes to look at some
use cases and see how we can leverage container-based solutions.

The practical use cases for Docker containers are potentially endless. It can be used
for delivery pipelines, developer programming environments, software debugging,
bug reproduction, build environment hosting, Jenkins master and slave scalability,
low-risk tests of new software solutions, and so much more.

Since Dockers use cases are virtually endless, let's focus on some Jenkins-specific use
cases. More specifically we will focus on tutorials for the following use cases:

•	 Running Jenkins itself inside a Docker container (Linux)
•	 Spinning up Jenkins slave nodes through Docker containers (setup and

teardown automatically)

One of the most beneficial ways Docker can be implemented is for
DevOps deployments. This solution allows Docker containers to flow
with a pre-installed solution from one logical group to another in a
DevOps build pipeline. This is a notable and generally accepted way
to make use of Docker and it is worth researching further as your
development and delivery process matures.

Integrating Jenkins with Other Technologies

[242]

Running Jenkins inside a Docker
container – Linux
Our friendly Jenkins master instance can directly run inside a Docker Container.
In this section we will look at implementing a master Jenkins instance that resides
inside a Docker container. This solution provides a high-level of flexibility for
the Jenkins (master) in the sense that it can be easily backed-up, shared, tested,
and version controlled. It can even be migrated from one location to another with
minimal effort, and provides assured operability. To implement this solution we can
utilize one of the registry provided containers created by the Jenkins community and
available on Docker's central registry. How cool is that!

If you have not taken the opportunity to install Docker, there are a few options
available. The first is to head over to http://www.docker.com and grab it (Windows
and Mac users). For Linux users, the Docker organization has graciously provided
aptitude and yum packages that can be installed from a traditional package
management system. Below are the commands needed to get Docker installed
under CentOS and Ubuntu Linux:

CentOS:

#> Yum install docker

Ubuntu/Debian:

#>apt-get upgrade

#>apt-get install docker

Once Docker has been installed we will need to verify it is functioning properly. To
begin let's open a command line terminal session, and type the following command
into the terminal:

#> Docker info

Once executed Docker should output something like the following to the
terminal display:

Containers: 0
Images: 0
Storage Driver: aufs
 Root Dir: /mnt/sda1/var/lib/docker/aufs
 Backing Filesystem: extfs
 Dirs: 0
 Dirperm1 Supported: true
Execution Driver: native-0.2
Kernel Version: 4.0.5-boot2docker

http://www.docker.com

Chapter 9

[243]

Operating System: Boot2Docker 1.7.0 (TCL 6.3); master : 7960f90 - Thu
Jun 18 18:31:45 UTC 2015
CPUs: 8
…

Once Docker has been verified to be working properly, we can begin checking out
the features that Docker offers. The Docker registry provides a number of pre-made
containers, which can make our lives significantly easier and assist us in getting
started without too much hassle. To make matters even better the Jenkins LTS release
line we discussed earlier in Chapter 1, Setup and Configuration of Jenkins, has been
converted into an official Docker solution. The Jenkins LTS container is also available
directly through the Docker registry. The details are provided below:

Details for this container can be found at the following URLs:
https://registry.hub.docker.com/_/jenkins/

or
https://github.com/jenkinsci/docker

To obtain this pre-made Jenkins container simply type the following into the
command line terminal:

#> docker pull jenkins

Once fetched, the output of the console terminal should reflect something like the
following:

Pulling repository jenkins
f509350ab0be: Pull complete
b0b7b9978dda: Pull complete
6a0b67c37920: Downloading 171.9 MB/199.1 MB
1f80eb0f8128: Download complete
1d1aa175e120: Download complete
1fd02545bba6: Download complete
52b8ae4dbae9: Download complete
…
Status: jenkins:latest: The image you are pulling has been verified.
Important: image verification is a tech preview feature and should not
be relied on to provide security.
Digest: sha256:9ac333ae3271cf19497fd3abd170c42d50c4d2e0c84eca17fa23db
18c455922a
Status: Downloaded newer image for jenkins:latest

https://registry.hub.docker.com/_/jenkins/
https://github.com/jenkinsci/docker

Integrating Jenkins with Other Technologies

[244]

Once the container has been downloaded, we will want to fire it up and enable a
persistent file system volume. This will ensure that any changes we make don't get
automatically wiped upon shutdown. The command to start the Jenkins container
is provided below:

#> docker run --name myjenkins -p 8080:8080 -v /var/jenkins_home jenkins

Once the container has fired up we should be able to access our Jenkins container
via our web browser (http://localhost:8080) as illustrated in Figure 9-2:

Figure 9-2: Jenkins running in a Docker container

Dynamic Jenkins slave nodes using Docker
In addition to being able to host a Jenkins master instance, Docker can be
implemented to provide scalable Jenkins slave nodes. This tutorial aims to facilitate
Docker containers that are automatically provisioned as Jenkins slave nodes, utilized
by a Jenkins master to run an automation routine (build), and then removed one
the build has completed. This type of solution becomes very valuable when there is
a need for a highly scalable build solution that leverages many concurrent builds,
based on a templated OS.

To implement Jenkins slave nodes using Docker containers there are a few pre-
requisite requirements. These are provided in the following section.

Chapter 9

[245]

Pre-requisite requirements
In this section we will discuss the pre-requisite requirements for our Docker
slave node solution. Obviously Docker will need to be installed and functioning
prior to being available for Jenkins use. Beyond the base level Docker installation
requirement we will need to install a couple of Jenkins plugins. The Jenkins plugins
can each be installed from the Jenkins user interface via the plugin management
system.

•	 The Jenkins Docker plugin(http://wiki.jenkins-ci.org/display/
JENKINS/Docker+Plugin)

•	 Jenkins JClouds plugin (http://wiki.jenkins-ci.org/display/JENKINS/
JClouds+Plugin)

Implementation tutorial
Once the pre-requisite requirements have been taken care of, we will want to
grab the ready-made everga/Jenkins-slave Docker image, which can be found
at (https://index.docker.io/u/evarga/jenkins-slave/). To do this via the
command line enter the following input into the terminal:

#> docker pull evarga/jenkins-slave

Once the evarga container has been fetched, we should see the following output on
the terminal from Docker:

Pulling repository evarga/jenkins-slave

8880612971b0: Pulling dependent layers

511136ea3c5a: Download complete

c7b7c6419568: Download complete

70c8faa62a44: Download complete

d735006ad9c1: Download complete

04c5d3b7b065: Download complete

…

Status: Downloaded newer image for evarga/jenkins-slave:latest

Once the Docker image has been fetched and installed properly let's verify the status
via the following command:

#> docker images

http://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/JClouds+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/JClouds+Plugin
https://index.docker.io/u/evarga/jenkins-slave/

Integrating Jenkins with Other Technologies

[246]

Our command's output should look similar to the following.

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

evarga/jenkins-slave latest 8880612971b0 6 months
ago 610.8 MB

Now that we have obtained the evarga/jenkins-slave Docker container, let's
fire up our Docker container. To accomplish this, enter the following command
into the terminal:

#> docker run -i -t evarga/jenkins-slave /bin/bash

root@dd9372b1ec2d:/#

The next step will be to get our freshly obtained Docker image to operate as a
Jenkins slave group. To do this we will need to implement some basic authentication
changes. These changes include the following:

•	 Create SSH Keys for ROOT (required for the Docker Jenkins Plugin)
•	 Add path to the SSH Keys to /etc/ssh/sshd_config and /etc/ssh/ssh_

config

•	 Create authorized_keys file

To create an SSH ROOT key we will need to input the following commands into our
Docker container via the command line:

#> ssh-keygen -t rsa # This will guide us through the generation of SSH
keys located in /root/.ssh

Next we will need to alter the ssh_config, and sshd_config files to point to the
authorized_keys file location. To accomplish input the following into the terminal:

#> echo "AuthorizedKeysFile /etc/ssh/authorized_keys" >> /etc/ssh/sshd_
config

Next we will want to add a simple pointer in our ssh_config file to the RSA key
we generated a moment ago. To do this type the following in the Docker container's
command line terminal:

#> echo "IdentityFile /root/.ssh/id_rsa" >> /etc/ssh/ssh_config

Finally we will want to commit the changes we just made to our Docker container
so that they don't vanish upon restart. To do this we will use the Docker commit
command, which is illustrated below:

#> Docker commit

Chapter 9

[247]

Many of these changes could also be accomplished via a
Docker file. Creating and managing docker files is outside
the scope of this book, however details regarding docker
files can be found on Docker's website.

Now that we have the authentication alterations out of the way we can focus on
the Jenkins Docker plugin, and configure it to utilize our Docker container as a
slave node.

The details of the Jenkins Docker plugin can be found at the
following URL:
https://wiki.jenkins-ci.org/display/JENKINS/
Docker+Plugin

Once the plugin has been installed into Jenkins, Jenkins will provide us with the
ability to create a Docker cloud in the Jenkins configuration area. Navigate to this
configuration section by following the below described navigation steps:

Jenkins->Manage Jenkins->Configure System-> Cloud->'Add New Cloud'-
>'Docker'

In the configuration area Jenkins will provide us with the ability to add a Docker
cloud, which will subsequently display a configuration section similar to the one in
the figure below:

Figure 9-3: The configuration screen

https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin

Integrating Jenkins with Other Technologies

[248]

Once the cloud has been added to the Jenkins configuration, Jenkins will present
us with a number of configuration options. We will need to specify at a minimum
a name for our Docker cloud. Once these changes have been made, click the Add
Template button and proceed to configure the form with the details provided in
Figure 9-4:

Figure 9-4: Docker template configuration

In the Docker Template configuration section we will also want to configure a
label that will be applied to the Docker slave nodes. This is identical in nature to
the slave labels we discussed in Chapter 2, Distributed Builds – Master/Slave Mode. In
our example we set this to dockerpool. We will also want to make sure we specify
jenkins-everga as the ID for the Docker image. Once the configuration details are
in place click the SAVE button to save the Mode configuration changes to disk.

Chapter 9

[249]

The final step necessary to implement dynamic Docker containers as slave-nodes
is to restrict selected Jenkins jobs to execute builds only on the pre-configured
docker-jenkins label. This configuration will need to be performed for each targeted
Jenkins job in the detailed job configuration page. The implementation should look
similar to Figure 9-5:

Figure 9-5: Additional job configuration by setting label expression

It is now time to verify that our setup was successful. Save the job configuration,
and run the Jenkins job we just configured. If it's functioning properly it should
automatically spin up a new instance of the Docker container for every build
executed, and then tear it down once completed.

Integrating Jenkins with Ansible – Linux
and Windows
Ansible is a relatively recent addition to the DevOps landscape. Ansible provides
as an easy to use alternative to traditional configuration management tools such
as Puppet and Chef. Ansible offers a hybrid solution for automating deployments,
executing provisioning automation, and managing the configuration state of
infrastructure through Infrastructure as Code (IaC). Ansible is well known for
its ease of use, powerful technology platform, and a vast array of module-based
technology integrations. Integrating Ansible into Jenkins can provide a number of
additional benefits including push button deployment capabilities, push button
environment server provisioning, and integrated configuration management
solutions. A low learning curve and powerful technology platform make Ansible a
wise choice for any SCM team or DevOps group.

Integrating Jenkins with Other Technologies

[250]

To properly integrate Ansible with Jenkins we need to first understand the basic
technology architecture, and general capabilities of Ansible itself. Ansible can be
used in two distinct ways. The first is a push model in which Ansible utilizes SSH
(Linux), or native PowerShell-Remoting (Windows) communication apparatuses
to reach out to a target configuration item (server), install the Ansible service,
execute a playbook (automation script), and delete the service. The second is a pull
model where an Ansible playbook is executed locally on a target configuration item
(server) and has no requirement for a control server, PowerShell-Remoting, or SSH
communication apparatus. Figure 9-6 illustrates the pull architecture in better detail:

Figure 9-6: The Ansible Pull architecture

Chapter 9

[251]

Through the pull based architecture Ansible will retrieve its playbooks and execution
information from source control. This allows each node to act independently, and
provides a level of autonomy across the solution. An Ansible pull solution is in stark
contrast to the alternative push based architecture, which is described in Figure 9-7:

Figure 9-7: The Ansible Push architecture

As we can see from the push architecture diagram, Ansible will instruct any targeted
hosts to install Ansible as a temporary executor, pass it the necessary playbook, wait
for it to finish execution, and then remove the temporary executor from each of the
given deployment nodes.

Now that we have a basic understanding of the architecture that Ansible utilizes,
let's take a look at integrating Ansible playbooks with Jenkins. There are probably
any number of ways to accomplish the execution of Ansible playbooks via Jenkins,
but for the purpose of brevity we will discuss one specific approach in an effort to
learn the basics.

Integrating Jenkins with Other Technologies

[252]

In the following example we will discover how to create a Jenkins job, which will
provision a target machine (remote IP address) to contain a set of basic compilers
and linker's using an Ansible playbook. While this implementation illustrates a
provisioning, it could be leveraged to execute any playbook on a target system. This
type of solution can be especially handy for creating or enforcing build environment
prerequisite configurations or spinning up a new developer environment from a
fresh OS installation.

To begin we will assume that we have a basic Ubuntu Linux setup and the following
pre-requisites:

•	 An Ansible installation (http://www.ansible.com) installed on our Jenkins
master server (apt-get install Ansible)

•	 A target Debian/Ubuntu @ http://www.ubuntu.com) machine spun up
(with an IP address 192.168.1.5)

•	 A standard sudo account configured on 192.168.1.5 and available for us
to use to login to the machine via the following username/password
credentials:

°° BUILD/BUILD123

Now that we have the pre-requisites out of the way, let's take a look at how to
integrate Ansible into the Jenkins UI by creating a job that will execute a playbook
against a target machine (192.168.1.5) via a button click.

To begin, create a freestyle Jenkins job. For our example we will call it scm.execute.
ansible.playbook as shown in Figure 9-8:

Jenkins -> New Item -> Freestyle project -> scm.execute.ansible.playbook

Figure 9-8: A freestyle Jenkins job example

http://www.ansible.com
http://www.ubuntu.com

Chapter 9

[253]

After naming the job, click the OK button to proceed to the detailed job configuration
page. From there we will define the input parameters of the job, create the shell
execution build steps to call Ansible, and define how Ansible will be called.

From the detailed job configuration page in Jenkins we will want to configure a Jenkins
job effectively execute an Ansible playbook against a target server. Ansible manages
authentication credentials (access to target servers) through SSH keys and individual
server IP addresses in a centralized host file. To make our implementation dynamic we
will need to configure our Jenkins job to alter these inputs. To accomplish this we will
need to add a few configurations to our Jenkins job. First lets add a Execute Shell build
step, and fill it in with the following bash code:

############ Remove then Create Temp.Hosts file with target IP.
file="$WORKSPACE/temp.hosts"
[[-f "$file"]] && rm -f "$file"
echo "[all]" >> $WORKSPACE/temp.host
echo "$ANSIBLETARGETIP" >> $WORKSPACE/temp.host
############ Execute the Ansible Playbook.
export PYTHONUNBUFFERED=1
ansible-playbook -i /$WORKSPACE/temp.hosts /$WORKSPACE/infrastructure/
ansible-playbooks/$ANSIBLEPLAYBOOK.yml --user root --verbose

Now that the build step has been added lets take a minute to review what it does.
The above bash shell script and automation will effectively perform the following
actions as a build step:

1.	 Remove an existing temp.host file that exists in the $WORKSPACE location.
2.	 Create a new temp.host file and concatenate it with the contents of the

variable $ANSIBLETARGETIP (we will define this in a moment).
3.	 Enable Ansible real-time logging (Python buffer).
4.	 Trigger the execution of an Ansible playbook, whose filename will be

dynamically set via the variable $ANSIBLEPLAYBOOK.

Integrating Jenkins with Other Technologies

[254]

Now that we have our bash build step, let's get Jenkins to pass the playbook name
and target IP address dynamically to the shell script. This is accomplished by adding
build parameters to the Jenkins job as shown in Figure 9-9:

Figure 9-9: Adding parameters to the Jenkins job

The above screenshot shows the addition of a simple choice parameter in Jenkins. This
will appear as a dropdown input requirement when we attempt to run the job. The
choice selected is then passed into our automation through the $ANSIBLEPLAYBOOK
environment variable. When we add playbooks to the system we will need to update
the choices appropriately. Each choice represents an Ansible playbook filename (minus
the .YML extension).

Figure 9-10: Adding input for ANSIBLETARGETIP (String)

In the preceeding figure we illustrate the addition of an $ANSIBLETARGETIP
parameter. This parameter will allow us to input the target IP address when running
the Jenkins job. After creating the proper build input parameters, implement a source
control checkout solution in the Jenkins job. This will ensure the job fetches any YML
playbooks from source control and will make them available to our automation.

Chapter 9

[255]

This implementation method is not the only way to tie Ansible into
Jenkins. In recent months the Jenkins community has made a Jenkins
plugin for Ansible available within the plugin ecosystem. It provides a
build step option to execute a playbook against a machine IP. More details
surrounding the new Jenkins Ansible plugin can be found at https://
wiki.jenkins-ci.org/display/JENKINS/Ansible+Plugin.

Now that we have the basic Jenkins Job defined, to execute our playbooks we will
need to provide an automated way for the Ansible control server (also our Jenkins
master) to authenticate with the target machine, and execute the playbook against it
(even if it has never accessed the server before). Typically this is done via the Ansible
inventory file, which manages a hard-coded list of servers and groups. However in
the case of developer build machines, making the inventory dynamic can provide an
easy way to provision a build environment or deployment servers alike.

To accomplish this we can leverage the previously defined Jenkins job parameters,
and a simple expect script as shown below:

#!/usr/bin/expect –f

Get the Target IP address (to connect to)
set nodehostname [lindex $argv 0];

First attempt to use ssh-copy-id to connect to the target without
the need for a password
spawn ssh-copy-id BUILD@$nodehostname
expect {
 ")?" {send "yes\n"; exp_continue}
 word: {send "BUILD123\n"; exp_continue}
 eof
}

Next attempt to ssh to the target as user and alter the root
password
spawn ssh BUILD@$nodehostname -t "sudo passwd root"
expect {
 BUILD: { send "BUILD\n";

 expect {
 password: {send "BUILD123\n";

https://wiki.jenkins-ci.org/display/JENKINS/Ansible+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Ansible+Plugin

Integrating Jenkins with Other Technologies

[256]

 exp_continue
 }}

 }
}

Finally attempt to ssh-copy-id for root so no password is needed
spawn ssh-copy-id root@$nodehostname
expect {
 ")?" {send "yes\n"; exp_continue}
 word: {send "BUILD123\n"; exp_continue}
 eof
}

To make the expect script available to Jenkins, we will need to save it to the Ansible
control (also our Jenkins master) server (in our example we chose to save it to /var/
lib/scripts/ansibleprovision.sh), and have it run as an Execute shell build step
in our build job. Figure 9-11 illustrates the Jenkins job build step required to tie all of
this together:

Figure 9-11: Jenkins job build step

Now that we have the Jenkins playbook execution job created, let's take a look at an
example Ansible playbook. Playbooks in Ansible simply provide automated content in
human-readable YAML form. The following YAML code segment is a simple Ansible
playbook that installs a gcc compiler and git onto an Ubuntu Linux host.

- hosts: apache
 sudo: yes
 tasks:
 - name: Install required system packages.
 apt: pkg={{ item }} state=installed update-cache=yes
 with_items:
 - gcc
 - git-core

Chapter 9

[257]

Once the playbook has been created, commit it to source control and configure the
Jenkins job to fetch it when the job runs. In our example job we titled the provided
playbook provision.build.environment.yml. Once everything has been saved
click the Build with Parameters button to test it out. If everything works as expected
you should be able to quickly point this job at an IP address and run the playbook.

In the above example we learned some of the basics of the Ansible architecture and
discovered an unconventional way to mix it with Jenkins to provide a new level
of automation and configuration management. As you build out your automation
and build pipelines, it may be wise to tie this into you build server provisioning so
that enforcing the build environment of Jenkins slaves is as simple as executing a
playbook against the target system prior to executing the build. This can provide
a pretty handy way of ensuring build environments are always up-to-date before
running the build automation and any compilation steps.

Jenkins and Artifactory
Jfrog's Artifactory (and Sonatype Nexus) have been pivotal advocates for Continuous
Delivery implementations for some time now. Artifactory provides a set of centrally
configurable repositories, which can be leveraged to facilitate uploading, storing,
downloading, and fetching build packages, Docker containers (Docker registries
through Artifactory requires the Pro version), and binary assets. Implementing an
Artifactory based solution (or similar tool) can assist in maturing SCM processes
by ensuring that binary outputs of build processes are backed up, managed, and
available across diverse development teams, sales representatives, or ancillary staff.

In addition to Artifactory acting as a DML and organizing a binary asset collection,
an Artifact repository solution provides an easily automated central source of truth
for all things binary (including dependencies). This allows Artifactory to effectively
manage dependencies, and makes them automatable (via Maven, IVY, or Gradle),
and transparent.

Integrating Jenkins with Other Technologies

[258]

To better understand the basic architecture of Artifactory in conjunction with
Jenkins, the figure below provides a basic architecture illustration:

Figure 9-12: The basic Artifactory architecture

Uploading binary assets from Jenkins is easily accomplished through the Jenkins
Artfiactory plugin, which is freely available at https://wiki.jenkins-ci.org/
display/JENKINS/Artifactory+Plugin.

Once the Artifactory plugin has been installed we will need to be configure it to point
to our Artifactory installation URL and provide the proper credentials necessary
to deploy artifacts into a given repository. These configuration steps will need to be
performed in the main Jenkins configuration area. The navigation steps necessary to
get to the configuration area are as follows:

Jenkins->Manage Jenkins->Configure System->Artifactory

https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin

Chapter 9

[259]

An screenshot of the Artifactory configuration section is provided below:

Figure 9-13: The Artifactory configuration section

Once the plugin has been properly set up we can begin to implement Artifactory
actions within Jenkins jobs. These are defined within the detailed Jenkins job
configuration area in the build environment section, which is illustrated in Figure
9-14:

Figure 9-14: The build environment section

Each of the earlier-illustrated checkboxes expands to a detailed configuration section
with a number of options available. For a complete set of documentation details
regarding each of these checkboxes, the plugin overview page can be consulted. A
link to this page is provided below:

https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin

https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin

Integrating Jenkins with Other Technologies

[260]

Jenkins and Selenium Grid
If your organization is developing SaaS or web applications and has not been
leveraging a Selenium Grid for automated testing you're really missing out on
something special. A Selenium Grid provides a distributed automated testing
solution that executes test cases in parallel. In this section of Mastering Jenking we
will learn how to spin up a Selenium Grid, write basic unit tests, and capture the
results in Jenkins. By learning this we can begin harnessing a Selenium Grid and
help advocate for a scalable automated testing solution within Jenkins.

The architecture of a Selenium Grid is a single hub and multiple connected nodes,
which is very similar in nature to a Jenkins master and slave node solution. The
hub receives a testing manifest and distributes the tests for execution across the
attached nodes. This distributed test architecture allows for multiple tests to execute
in parallel, which reduces test execution time dramatically. To illustrate a Selenium
Grid's architecture, Figure 9-15 describes the basic configuration of a Selenium Grid
and a few connected test nodes of varying operating systems:

Figure 9-15: Selenium distributed architecture

Chapter 9

[261]

The Selenium Grid Hub can be summarily described as a test case dealer. It simply
manages a suite of test cases and hands individual test case executions to available
nodes matching the necessary OS and web browser criteria in parallel on the grid.
The hub will then collate the results and manage the feedback to the calling source.
A Selenium Grid Hub could be described as having the following characteristics:

•	 The hub represents the only entry point into the grid, facilitates the
assignment of tests for execution by the connected nodes, and collates
reporting details

•	 The hub is responsible for maintaining an active connection with any
nodes and manages the distribution of tests to the grid nodes

•	 The hub will typically be an isolated VM or server and should not be
dual-purposed as a node

Selenium Grid nodes could be VMs, computers, available servers, or Docker
containers. Any nodes that have been connected to the Selenium Grid hub are
then leveraged for the execution of automated test cases. Selenium Grid nodes can
physically be any combination of operating systems, web browsers, and platforms
so long as they have the Selenium node service installed. Selenium Grid nodes
by nature are not intelligent and do not represent a usable selenium service by
themselves. To better describe how Selenium Grid nodes operate, lets look at their
characteristics:

•	 A Selenium node does not necessarily need to be of the same architecture or
OS as the hub

•	 There can be one or more selenium nodes connected to a Selenium Grid hub
•	 Selenium nodes have the roll of webdriver defined when launching the

selenium service from the command line

Spinning up a Selenium Grid
In this section we will learn how to spin up a simple Selenium Grid. This involves
ensuring you have the following pre-requisites:

•	 A machine to act as the Selenium Grid HUB (for our example it will be on
IP 192.168.1.2)

•	 A machine to act as a Selenium Grid node (for our example it will be on IP
192.168.1.100)

•	 Java v1.6 or higher on both the Grid HUB, and Grid Node described above

Integrating Jenkins with Other Technologies

[262]

To begin the build-out of our mini Selenium Grid we will first want to configure
the hub to run the Selenium application and assume the role of a grid hub. To
accomplish this we will need to download Selenium onto the server from the
following URL:

http://docs.seleniumhq.org/download/

Once Selenium has been downloaded to the hub server navigate to the download
directory on the hub on the command line and execute the following command:

#> Java –jar selenium-server-standalone-2.4.6.jar –role hub

Once enabled the hub should respond with the following output:

Jun 25, 2015 4:05:00 AM org.openqa.grid.selenium.GridLauncher main
INFO: Launching a selenium grid server
2015-06-25 04:05:13.063:INFO:osjs.Server:jetty-7.x.y-SNAPSHOT
…

Let's make sure that our Selenium Grid is accessible via the grid hub UI. Open a web
browser session and navigate to the following URL:

http://192.168.1.2:4444/

If the grid is up and running it should display a graphical grid status page. Now let's
turn our attention to connecting up a node to the hub we just spun up. To begin the
build-out, start by logging into to the node server and download the Selenium Grid
Java application onto it.

Open a command line terminal, navigate to the folder Selenium was downloaded to,
and type the following into the command line terminal:

#> Java –jar selenium-server-standalone-2.46.0.jar –role webdriver –hub
http://192.168.1.2:4444/grid/register -port 5566

IP Address note: In our example we used 192.168.1.2 for the
hub, and 192.168.1.100 as the webdriver node. In your
example these will probably be different. Be sure to modify the
commands to reflect your local settings as you implement this.

Once the hub and the node are spun up and connected we are ready to create and
execute some Selenium tests on our new mini-grid.

http://docs.seleniumhq.org/download/

Chapter 9

[263]

Writing tests and integrating them into
Jenkins
Now that we have a basic Selenium Grid created we can dig into learning how to
write automated tests, and wire them into Jenkins. Selenium tests can be written
in any number of programming languages such as Ruby, Python, Java, C#, and
more. Selenium itself supports a multitude of platforms and web browsers. In
the upcoming example we will learn how to create a simple Ruby test suite that
attaches to a Selenium Grid, loads a web page, and reports the results. Individual
implementations of Selenium test suites in various programming languages will be
similar and can be researched independently.

Before we begin writing automated tests that connect to Selenium through a Ruby
test suite we will need to install a few Ruby gems. Ruby gems are simply extensions
and provide additional capabilities to the Ruby programming language. Installing a
gem can be accomplished quite easily through the gem command, which will typically
be available alongside Ruby itself. For our example we will need the Selenium
WebDriver, yarjuf, and RSpec gems. These Ruby gems will need to be added to
both our local development environment, and the Jenkins automation environment
respectively. Below are the commands we will need to execute to install our
selenium-webdriver gem, yarjuf gem, and rspec gem.

#> gem install selenium-webdriver

#> gem install rspec

#> gem install yarjuf

The Selenium WebDriver gem provides API level support for the Selenium Grid, and
will allow us to create automated test cases that run on our grid. More information
(including the source code) for this gem can be found at the following URL:

https://github.com/seleniumhq/selenium

The rspec gem offers TDD and BDD testing capabilities to Ruby. It is open-source
and free. Further information on rspec can be found at the following URL:

http://rspec.info

The RSpec JUnit formatter (yarjuf) gem provides JUnit formatted output support
for RSpec tests. This helps make the output Jenkins-friendly and consumable by the
JUnit Test Jenkins plugin. Additional information on this gem can be found at:

https://github.com/sj26/rspec_junit_formatter

https://github.com/seleniumhq/selenium
http://rspec.info
https://github.com/sj26/rspec_junit_formatter

Integrating Jenkins with Other Technologies

[264]

After installing these gems, the output of the gem install commands should reflect
something similar to the following:

Selenium-webdriver:

Parsing documentation for selenium-webdriver-2.46.2

Installing ri documentation for selenium-webdriver-2.46.2

Done installing documentation for websocket, ffi, childprocess, rubyzip,
selenium-webdriver after 56 seconds

5 gems installed

RSpec:

…

Fetching: rspec-3.3.0.gem (100%)

Successfully installed rspec-3.3.0

Parsing documentation for rspec-support-3.3.0

Installing ri documentation for rspec-support-3.3.0

Parsing documentation for rspec-core-3.3.1

Installing ri documentation for rspec-core-3.3.1

6 gems installed

RSpec JUnit Formatter:

Fetching: rspec_junit_formatter-0.2.3.gem (100%)

Successfully installed rspec_junit_formatter-0.2.3

Parsing documentation for rspec_junit_formatter-0.2.3

Installing ri documentation for rspec_junit_formatter-0.2.3

Done installing documentation for rspec_junit_formatter after 0 seconds

1 gem installed

Now that we have the Ruby gems installed, let's look at some Ruby test code. Our
test suite example is provided below.

-- Define required GEMS
require 'rubygems'
require 'selenium-webdriver'
require 'rspec'

Test Suite Definition

Chapter 9

[265]

describe "ExampleSeleniuTestSuite" do

 # -------------------
 # Test Suite Setup (ALL)
 # ----------------
 attr_reader :selenium_driver
 before(:all) do

 # -- Defines the Selenium WebDriver details
 @selenium_driver = Selenium::WebDriver.for(
 :remote,
 url: 'http://10.10.33.231:4444/wd/hub',
 desired_capabilities: :chrome) # you can also use :chrome,
:safari, etc.

 end

 # -------------------
 # Test Case Setup
 # ----------------
 before(:each) do

 # -- Setup browser session (a safe url to start from)
 @selenium_driver.get "http://example.com"

 end

 # -------------------
 # Test Suite TearDown
 # ----------------
 after(:all) do

 # -- Close our Selenium Instance
 @selenium_driver.close

 end

 # -------------------
 # Test Case 1
 # ----------------
 it "can find the right title" do

 @selenium_driver.get "http://www.google.com"

Integrating Jenkins with Other Technologies

[266]

 expect(@selenium_driver.title).to eq('Google')

 end

end

Once you have reviewed the above provided ruby test suite, save it as [gridtest.rb],
commit it to source control, and then test locally by executing the following command
via the command line terminal:

#> rspec gridtest.rb

If everything worked as expected we should see the following output in the
command line terminal:

Finished in 6.02 seconds (files took 1.08 seconds to load)

1 example, 0 failures

Now that we have a basic automated test suite written (and hopefully working), we
can shift focus over to running the tests through Jenkins.

Connecting the above Ruby test suite to Jenkins can be accomplished fairly easily.
To start we will want to make sure the JUnit test report plugin is installed in Jenkins.
More details surrounding this plugin can be found at the URL below:

https://wiki.jenkins-ci.org/display/JENKINS/JUnit+Plugin

First create a freestyle Jenkins job and configure it to pull the source code for the test
suite we just created by adding the appropriate SCM steps to a new freestyle build
job. The SCM step will need to specify the location in your source control system that
the Ruby script was committed to. For the purposes of our tutorial we will refer to
our Jenkins job as test.selenium.grid.

Next we will need to add a build step to execute the Ruby script we created
earlier and execute our tests. Adding an Execute Shell build step and defining the
rspec command are documented below:

#> rspec --format RspecJunitFormatter --out rspec.xml gridtest.rb

https://wiki.jenkins-ci.org/display/JENKINS/JUnit+Plugin

Chapter 9

[267]

Once we have the tests running through Jenkins, we will want to configure our
Jenkins job to search for the XML results after the grid tests have been executed.
This will provide the nice test trend graphs that Jenkins is so famous for. This is
accomplished by adding a Publish JUnit test result report post build action to the
Jenkins job. The configuration details are described in the figure below:

Figure 9-16: Adding a post-build action to the Jenkins job

Finally we can save the Jenkins job, and execute our Selenium Grid tests by clicking
the Build-Now button. If everything went correctly we should see the following
output from the Jenkins console logs and collated test report in Jenkins:

Finished in 6.36 seconds (files took 0.91697 seconds to load)

1 example, 0 failures

Figure 9-17: Jenkins console log output

Integrating Jenkins with Other Technologies

[268]

Jenkins and Jira
Atlassian's Jira (http://www.atlassian.com) has quickly become an industry-wide
powerhouse for tracking Agile efforts, managing development implementation
queues, and providing project management solutions for software teams. In more
recent releases of Jira and Jenkins have been bridged, and Jira now supports a tight
coupling of Jenkins jobs and Jira tickets.

In this section of Mastering Jenkins we will discover how to implement Jenkins
jobs with Jira projects in an effort to increase efficiency and support traceability
throughout our pipelines and engineering landscape.

To begin we will need to have a few pre-requisites in place. Specifically we will need
the following items:

•	 A Jira installation that is web-accessible by Jenkins
•	 Administrative access to Jira and Jenkins
•	 A Jenkins installation which is web-accessible by Jira
•	 Any number of projects in Jenkins, and Jira

To begin our integration efforts lets start by installing the Atlassian marketplace
Jenkins plugin into Jira. This can be done via the Addons tab, which is available
within the administration area of Jira. A screenshot of this plugin and its Install
button is provided below:

Figure 9-18: The Jenkins plugin for JIRA

To continue click the Install button shown in the figure above. Once the installation
process has completed, we will want to configure the plugin to communicate
properly with Jenkins.

http://www.atlassian.com

Chapter 9

[269]

The plugin creates an administration-accessible Jenkins Configuration menu option,
which will be available in the addons area of Jira after the installation has completed.
To configure the plugin we will need to navigate into the Jenkins configuration in
Jira. A screenshot of this menu link is provided below:

Figure 9-19: The menu link in the Jenkins configuration menu

When we click on the Jenkins Configuration link Jira will navigate us to a
tutorial that we will need to follow in order to get the plugin properly working in
conjunction with Jenkins. The tutorial page for configuring the application links is
illustrated below in Figure 9-20:

Figure 9-20: Configuring the application links

Integrating Jenkins with Other Technologies

[270]

Once the tutorial has been followed, Jenkins should be completely integrated into
Jira. Jira itself will provide a number of new features that will allow us to track
Jenkins builds directly. Lets take a look at a few of these features:

•	 Per project CI builds tab (provides an aggregated view of recent builds for
the project)

•	 Per issue/ticket CI builds tab (shows which builds have a given ticket
identified in the commit message)

•	 Real-time updating of tickets and builds in Jira

This solution provides a highly valuable traceability solution for Jira and Jenkins
and integrates these two robust tools. For further documentation on Jenkins and Jira
integrations you can consult the plugin documentation at the following URL:

https://marvelution.atlassian.net/wiki/display/JJI/
Advanced+Application+Links

Summary
In this chapter we discovered some interesting technology stacks and learned
how we can integrate them into Jenkins. We learned about Docker and how to
leverage its scalable container solutions as Jenkins slave nodes, and how to house
the Jenkins master. We learned about Ansible and how we can leverage it to
provision environments on demand. We spent time discussing the implementation
of a Selenium Grid and how to write some tests using it. Finally we spent time in
Jira learning how to integrate Jenkins into this widely adopted Agile bug tracking
solution. When evaluating new technologies we can make Jenkins accomplish just
about anything but the emphasis should be placed on keeping the system stable
and scalable. From here you should be able to research other new technologies and
evaluate them.

In the final chapter of Mastering Jenkins we will discover the Jenkins API, and learn
how to setup a plugin development environment, create a plugin, and install it
into our Jenkins system. This will provide us with much greater control over the
implementation of our Jenkins system. Let's proceed.

https://marvelution.atlassian.net/wiki/display/JJI/Advanced+Application+Links
https://marvelution.atlassian.net/wiki/display/JJI/Advanced+Application+Links

[271]

Extending Jenkins
Jenkins has gained a lot of notoriety is summarily due its highly extensible
architecture, and widely developed plugin ecosystem. The open-source community
to-date has developed hundreds of centrally available plugins, in an effort to
maximize the capabilities of Jenkins, integrate it with other technologies, and provide
tighter coupling with other development-related tooling. The popular catch phrase
surrounding the Jenkins plugin ecosystem is There's a plugin for that, and indeed
there probably is.

"If I have seen further it is by standing on the shoulders of giants." – Sir Issac
Newton

The Jenkins open source development community in conjunction with enterprise
software organizations have introduced a vast collection of ready-made plugins that
can tailor Jenkins to meet almost any organizations' specific tools and processes.
Even with all of the ready-made plugins it may be necessary to implement a custom
plugin for a specific need or solution. Creating plugins for Jenkins provides us with
the ability to customize almost every aspect of the Jenkins system and even extend
plugins that already exist. Developing plugins for Jenkins may sound like a daunting
task at first but with a little effort, research and perseverance we will learn how to
create and deploy custom functionality for the Jenkins system through the Jenkins
plugin architecture.

In this final chapter, we will learn about Jenkins plugin development and the ins-and
outs of the Jenkins plugin architecture. This will help us gain a better understanding
of the Jenkins subsystems and discover some of the available tools we can leverage to
extend Jenkins and integrate it with unique development processes and tools.

Extending Jenkins

[272]

The primary objectives for this chapter will include:

•	 Setting up the development environment (IntelliJ IDEA)
•	 The Plugin skeleton
•	 Importing a Maven-generated skeleton into IntelliJ
•	 Understanding the Architecture of a Jenkins Plugin
•	 Working with Jelly Tags and files

Plug-in development tip
While creating plugins for Jenkins can be fun and intellectually
stimulating, it is important to avoid duplicating the efforts of the Jenkins
open source development community. Be sure to check the plugin
development page to make sure that a given plugin or idea does not
already exist prior to beginning the hard work of implementing a new
one. For a complete list of plugins, please refer to the following URL:
https://wiki.jenkins-ci.org/display/JENKINS/Plugins.

Setting up the development environment
Jenkins, Hudson Plug-in Interface (HPI) plugins are developed primarily using the
Java Development Kit (JDK) in concert with Apache Maven. This set of tutorials
and subsequent sections focuses on using IntelliJ for the plugin development IDE.
However, plugins can in fact be developed using many other IDE's and languages
(JRuby, Eclipse, Groovy, and so on). Since the vast majority of Jenkins plugins
available today have been crafted using the Java JDK and Maven, we will focus on
that particular technology stack.

To get started we will need to configure a basic Jenkins plugin development
environment, including compilers, linkers, and project lifecycle tools. The majority
of this can be accomplished by installing the following items onto the target plugin
development machine:

•	 Maven 3 (http://maven.apache.org/install.html)
•	 Oracle Java JDK 1.7 [http://www.oracle.com/technetwork/java/javase/

downloads/index.html]

Once the Java JDK (1.7+) and Maven automation tools have been installed on the
local machine, we will need to replace the primary Maven settings file, and enable
communication with the Jenkins CI artifact repositories, which will allow Maven to
fetch dependencies and enable HPI goals from the command line.

https://wiki.jenkins-ci.org/display/JENKINS/Plugins
http://maven.apache.org/install.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 10

[273]

The Apache Maven settings file that we will need to modify can be located in one of
the following locations (depending on your OS):

•	 Windows—C:\<PATHTOUSERPROFILE>\.m2\settings.xml

•	 Mac OS X / *NIX - ~/.m2/settings.xml

To update the Maven settings file you can use your favorite text editor (VI, nano,
emacs, Notepad etc.) The contents of the Apache Maven settings.xml file should
reflect the following example, which was taken from https://wiki.jenkins-ci.
org/display/JENKINS/Plugin+tutorial.

<settings>
 <pluginGroups>
 <pluginGroup>org.jenkins-ci.tools</pluginGroup>
 </pluginGroups>

 <profiles>
 <!-- Give access to Jenkins plugins -->
 <profile>
 <id>jenkins</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>
 <repository>
 <id>repo.jenkins-ci.org</id>
 <url>http://repo.jenkins-ci.org/public/</url>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>repo.jenkins-ci.org</id>
 <url>http://repo.jenkins-ci.org/public/</url>
 </pluginRepository>
 </pluginRepositories>
 </profile>
 </profiles>
 <mirrors>
 <mirror>
 <id>repo.jenkins-ci.org</id>
 <url>http://repo.jenkins-ci.org/public/</url>
 <mirrorOf>m.g.o-public</mirrorOf>
 </mirror>
 </mirrors>
</settings>

https://wiki.jenkins-ci.org/display/JENKINS/Plugin+tutorial
https://wiki.jenkins-ci.org/display/JENKINS/Plugin+tutorial

Extending Jenkins

[274]

Once the changes to the XML file have been made, save the file and overwrite your
existing local copy. As we mentioned earlier, the configuration file changes will
enable HPI shorthand support in Maven for command line goals, enable artifact
downloads, and allow us to create Jenkins plugin skeleton structures.

Let's take a minute to verify everything is configured properly. From the command
line, change to a suitable test (something you can get to easily and that isn't critical
for later) directory, and enter the following command into the terminal.

#> mvn hpi:help

As Jenkins plugin developers we will further leverage the HPI
goals to create, compile, debug, and release Jenkins plugins.
Later in this chapter we will learn to use these goals directly
inside the IntelliJ IDEA for proper GUI development.

Once Maven has executed the hpi:help goal Maven will display a detailed help
output for the available HPI goals. Each of these is described next:

[INFO] Scanning for projects...

[INFO]

[INFO] --

[INFO] Building Maven Stub Project (No POM) 1

[INFO] --

[INFO]

[INFO] --- maven-hpi-plugin:1.114-cloudbees-1:help (default-cli) @
standalone-pom ---

[INFO] Maven Jenkins Plugin 1.114-cloudbees-1

 Maven2 plugin for developing Jenkins plugins

This plugin has 14 goals:

•	 hpi:assemble-dependencies

°° Used to assemble transitive dependencies of plugins into one location
°° Unlike other similar mojos in this plugin, this one traverses

dependencies through its graph

•	 hpi:bundle-plugins

°° Takes the current project, lists all the transitive dependencies, then
copies them into a specified directory

°° Used to assemble jenkins.war by bundling all the necessary plugins

Chapter 10

[275]

•	 hpi:create

°° Builds a new plugin template. Most of this is really just a rip-off from
the archetype:create goal, but since Maven doesn't really let one
Mojo calls another Mojo, this turns out to be the easiest.

•	 hpi:custom-war

°° Builds a custom Jenkins war that includes all the additional plugins
referenced in this POM

•	 hpi:generate-taglib-interface

°° Generates the strongly-typed Java interfaces for Groovy taglibs

•	 hpi:help

°° Displays help information on the maven-hpi-plugin
°° Calls mvn hpi:help -Ddetail=true -Dgoal=<goal-name> to

display parameter details

•	 hpi:hpi

°° Builds a war/webapp

•	 hpi:hpl

°° Generates .hpl file

•	 hpi:insert-test

°° Inserts default test suite

•	 hpi:list-plugin-dependencies

°° Lists all the plugin dependencies

•	 hpi:resolve-test-dependencies

°° Places test-dependency plugins into somewhere the test harness can
pick them up

°° See TestPluginManager.loadBundledPlugins() where the test
harness uses it

•	 hpi:run

°° Runs Jenkins with the current plugin project

°° This only needs the source files to be compiled, so run in the compile
phase

°° To specify the HTTP port, use Djetty.port=PORT

Extending Jenkins

[276]

•	 hpi:test-hpl

°° Generate a .hpl file in the test class directory so that test harness can
locate the plugin

•	 hpi:validate

Make sure that we are running in the right environment

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 10.453s

[INFO] Finished at: Mon Jul 27 11:12:46 CDT 2015

[INFO] Final Memory: 9M/124M

[INFO] --

From the above command line output we should be able to gain a basic grasp of
how to manage plugins through the Maven command line, and a pretty good idea
of the available HPI goals (details for each HPI goal were provided earlier). As we
mentioned previously, these HPI-specific goals help us create, debug, and develop
Jenkins plugins. What is important to understand here is that the HPI goals we
executed on the command line are the same set of tasks the IDE will make available.
From here we will shift the focus over to integrating Maven and HPI with a proper
plugin development IDE.

One of the more popular JAVA development IDE's available is IntelliJ IDEA
solution. In this section, we will learn how to create and import a Jenkins plugin into
this popular Java development IDE. Let's take a minute to install it onto the target
development machine.

The IntelliJ IDEA installer can be located at the following URL:

•	 JetBrains ItelliJ IDEA (https://www.jetbrains.com/idea/)

As you may have noticed from the JetBrains website there are two versions of the
IntelliJ IDEA development IDE available. One is the community edition (free), and
the other is the ultimate edition (paid). For the purposes of cost and availability,
we will be continuing this chapter using the free community edition. To proceed,
download the appropriate version of the IDE for your operating system and use the
installation wizard to configure the basic installation.

https://www.jetbrains.com/idea/

Chapter 10

[277]

Once the IDE is installed let's fire it up. Upon initial launch we are presented with
a screen that looks similar to the one illustrated in Figure 10-1 [depending on the
version of IntelliJ installed]:

Figure 10-1: The IntelliJ welcome screen

The IntelliJ development environment has a robust and highly configurable feature
set. It supports many development systems and coding scenarios. To proceed with
Jenkins plugin development we will need to configure the IntelliJ IDE to support
Maven and integrate with our JDK. To begin, though, let's install the Stapler plugin,
which supports Jenkins. To accomplish this, navigate from the splash screen to the
install plugins configuration area by completing the following flow:

Configure->Plugins->Browse Repositories

Extending Jenkins

[278]

Upon completion of the above steps, we are presented with a fairly large list of
available plugins. We can use the search field to find our Stapler plugin. This is
illustrated in Figure 10-2:

Figure 10-2: Stapler plugin installation

To proceed with the installation of the Stapler plugin, click the Install plugin button,
and then click Close. This will prompt the IDE to install the Stapler plugin into its
plugin cache. Upon clicking the Close button, IntelliJ IDEA will prompt us to restart
it, which will finalize the installation of the plugin and make it available for use.

Chapter 10

[279]

After IntelliJ has restarted we will need to configure the Maven Home environment
within the IntelliJ configuration area. IntelliJ provides a pretty comprehensive set of
configuration options, accessible directly from the splash screen. To get to the Maven
options area perform the following navigation steps from the UI.

Configure -> Preferences -> Maven -> Maven home directory

Figure 10-3: Configuring the Maven home directory

In Figure 10-3, we can see a screen that allows us to update the Maven home
directory field, and specify a user settings file. These are unique to your specific
Maven installation. Update the field with the appropriate value for your specific
Maven home location and click the OK button to persist these settings.

Once saved IntelliJ should now be configured to support Jenkins plugin
development via an IDE. In the next sections we will learn about creating Jenkins
plugin skeletons, and how to tie the Maven command line implementation into our
IntelliJ IDE.

Creating a Jenkins plugin skeleton
Prior to launching the IntelliJ IDE and beginning our plugin development, we
will need to generate a plugin skeleton. The Jenkins development community has
graciously provided this skeleton framework as a way to encourage developers to
extend the Jenkins subsystems. The skeleton provides a foundational development
structure for developing Jenkins plugins.

The skeleton framework is simply a set of files, and folders,
that contain the source code for a basic hello world plugin. When
developing a plugin from scratch this handy framework gives us a
great foundational layer that we can start from.

To generate the Jenkins plugin skeleton we will need to command Maven to create
it.. The creation of the skeleton structure is accomplished through the hpi:create
goal on the command line. Let's begin by creating our obligatory Hello Jenkins plugin.
To do this we will need to execute the command shown below:

#>mvn hpi:create

Extending Jenkins

[280]

Once the command has been inputted we should be prompted by Stapler to define
the groupID for the plugin.

Enter the groupId of your plugin [org.jenkins-ci.plugins]:

To proceed input the following and press ENTER:

com.hellojenkins.jenkins.plugins

In Maven a groupID uniquely identifies a project being created and is typically
unique across all projects. The conformity requirements of Java would normally
require us to enter a domain name (in reverse format) that is uniquely owned or
controlled. Since we are performing this exercise merely as an example, this input
parameter has a little less significance than it normally would. If we were to develop
a plugin that was to be distributed within the Jenkins plugin community (within the
available plugins page in Jenkins) it would be in our best interests to come up with a
completely unique domain name.

After the groupID has been entered, Maven should prompt us for the artifactID.
This configuration item is simply the name of the binary file we will be creating
(final distributed filename) minus the version number. To proceed with our plugin
creation tutorial, input the following text and press ENTER:

hellojenkins

Once the basic plugin details have been specified, Maven will proceed to build out
the skeleton framework structures necessary for Jenkins plugin development. The
complete output from Maven is provided below:

[INFO] Defaulting package to group ID + artifact ID: com.hellojenkins.
jenkins.plugins.hellojenkins

[INFO] --

[INFO] Using following parameters for creating Archetype: maven-hpi-
plugin:1.114-cloudbees-1

[INFO] --

[INFO] Parameter: basedir, Value: /Users/admin/Desktop/PlugIns/test

[INFO] Parameter: package, Value: com.hellojenkins.jenkins.plugins.
hellojenkins

[INFO] Parameter: groupId, Value: com.hellojenkins.jenkins.plugins

[INFO] Parameter: artifactId, Value: hellojenkins

[INFO] Parameter: version, Value: 1.0-SNAPSHOT

[INFO] ********************* End of debug info from resources from
generated POM ***********************

[INFO] Archetype created in dir: /Users/admin/Desktop/PlugIns/test/

Chapter 10

[281]

hellojenkins

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 11:05.586s

[INFO] Finished at: Mon Jul 27 11:08:42 CDT 2015

[INFO] Final Memory: 14M/124M

[INFO] --

Once Maven has completed the skeleton creation process, we can take a look at the
plugin folder and file structures it created. Enter either DIR or ls into the command
line terminal and verify there is a folder named hellojenkins.

Once the folder has been verified we can launch the development instance of Jenkins
and see our plugin in action. To accomplish this we will execute the hpi:run goal
from the command line as shown below:

#>mvn hpi:run

If everything fires up as expected Maven will build the plugin, and launch Jenkins
with the helloJenkins plugin pre-installed. The URL to access the development
instance should be http://localhost:8080/jenkins/.

As the development instance of Jenkins fires up, the command line output from the
Maven should look like the following:

[INFO] Scanning for projects...

[INFO]

[INFO] --

[INFO] Building TODO Plugin 1.0-SNAPSHOT

[INFO] --

[INFO]

[INFO] >>> maven-hpi-plugin:1.106:run (default-cli) > compile @
helloJenkins >>>

[INFO]

[INFO] --- maven-hpi-plugin:1.106:validate (default-validate) @
helloJenkins ---

[INFO]

[INFO] --- maven-enforcer-plugin:1.0.1:enforce (enforce-maven) @
helloJenkins ---

[INFO]

Extending Jenkins

[282]

[INFO] --- maven-enforcer-plugin:1.0.1:display-info (display-info) @
helloJenkins ---

[INFO] Maven Version: 3.3.3

[INFO] JDK Version: 1.8.0_20-ea normalized as: 1.8.0-20

[INFO] OS Info: Arch: x86_64 Family: mac Name: mac os x Version: 10.8.5

[INFO]

[INFO] --- maven-localizer-plugin:1.14:generate (default) @ helloJenkins

[INFO]

[INFO] --- maven-resources-plugin:2.5:resources (default-resources) @
helloJenkins ---

[debug] execute contextualize

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] Copying 5 resources

[INFO]

[INFO] --- maven-compiler-plugin:2.5:compile (default-compile) @
helloJenkins ---

[INFO] Nothing to compile - all classes are up to date

[INFO]

[INFO] <<< maven-hpi-plugin:1.106:run (default-cli) < compile @
helloJenkins <<<

[INFO]

[INFO] --- maven-hpi-plugin:1.106:run (default-cli) @ helloJenkins ---

[INFO] Generating ./work/plugins/helloJenkins.hpl

 [INFO] Context path = /jenkins

[INFO] Tmp directory = /Users/Jonathan/Desktop/test/helloJenkins/target/
work

[INFO] Web defaults = jetty default

[INFO] Starting jetty 6.1.1 ...

[INFO] jetty-6.1.1

Jenkins home directory: /Users/Jonathan/Desktop/test/helloJenkins/./work
found at: System.getProperty("HUDSON_HOME")

[INFO] Started SelectChannelConnector @ 0.0.0.0:8080

[INFO] Started Jetty Server

[INFO]: Jenkins is fully up and running

…

Once Jenkins is up and running we should see our plugin installed. This can be
verified within the plugin management area under the Installed tab.

Chapter 10

[283]

When launching the plugin using hpi:run, consider executing
Maven with the debugger enabled. This option can help us see
the action going on inside the Maven processes. To turn on the
debugger simply add Dhudson.maven.debugPort=5001 to
the Maven command line arguments.

The plugin skeleton
In the previous section we commanded Maven to generate a basic plugin skeleton
(hpi:create) structure, and then launched our plugin in a local development
sandbox by executing the hpi:run goal. Now that the skeleton structure has been
created, let's take a look at the contents of the skeleton structure, and learn about the
roles that each of these folders will play in our quest for plugin development:

• ./src

• ./target

• ./work

• ./pom.xml

From the folder structure described above we can see there are a number of
sub-folders, and a POM file. Lets take a minute to examine each of these in
greater detail:

• ./src: This folder contains the source code for the plugin.
• ./target: This folder contains the compiled binary output (*.hpi) and test

execution results output.
• ./work: This folder is created when the plugin is installed into the

sandbox and contains the extracted Java classes and respective temporary
working files.

• pom.xml: This file is the top-level Maven project file, which describes our
plugin and build definitions. For more details on Maven POM files the
following web URL provides detailed documentation https://maven.
apache.org/guides/introduction/introduction-to-the-pom.html.

When we take a closer look at the src/main folder, our Jenkins plugin architecture
takes on a new level of clarity. Inside this folder we can see the underlying code,
graphic resources (if any), jelly files, and general conventions that make up a
Jenkins plugin.

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

Extending Jenkins

[284]

Let's take a quick look at the conventions of the skeleton. Java provides a pre-defined
folder structure to organize source code (code behind) and user interface elements
(resources folder) into logical groupings. This organization methodology can be seen
in Figure 10-4 below:

Figure 10-4: Basic folder structure of a plugin

When a plugin is first generated, the main entry point into the plugin architecture is
described in the <pluginname>.java file generated by the Maven hpi:create goal.
This file contains the class definitions for our plugin, which initially extends only
the Builder extension point. We will discuss extension points and the development
architecture of the plugins in the coming sections. Before we get to development
architecture let's take a few minutes to look at how to import the plugin into our
IntelliJ development IDE.

Chapter 10

[285]

Importing a Maven-generated skeleton
into IntelliJ
Importing a plugin into the IntelliJ IDEA IDE will provide us with a comprehensive
set of development tools and will streamline the development of our plugin. To get
up-and-running we will need to import an already created plugin (either checked
out from GitHub OR created using the mvn hpi:create command). In this section
we will discuss how to import a Maven project (the Jenkins hpi plugin) into a new
project in IntelliJ IDEA and learn how to use the IDE to actively develop it.

Let's learn how to import our helloJenkins plugin into our development IDE. To
accomplish this, first fire up IntelliJIDEA IDE on your local machine. Once fired up,
click the Import Project navigation icon from the Quick Start panel, and navigate to
the helloJenkins project we created earlier using hpi:create command. This flow is
shown in Figure 10-5:

Figure 10-5: Importing a POM from IntelliJ IDEA

Extending Jenkins

[286]

Upon clicking the OK button shown in the previous dialog, IntelliJ will ask if we
want to import an existing Maven or Gradle project, or create a new one from
another existing source. In our case we will want to select Import project from
external model and select Maven as our project type. Once this has been completed
click Next to proceed to the detailed project configuration screen as shown in
Figure 10-6:

Figure 10-6: A detailed import configuration screen

From the detailed configuration screen there are a few configuration options we will
want to set. They are as follows:

•	 Root Directory (path to the Jenkins HPI skeleton folder)
•	 Automatically download: Sources [checked]
•	 Automatically download: Documentation [checked]
•	 Environment settings… [Maven home directory] [Override checked]

Chapter 10

[287]

Once the above configurations have been made, click the Next button to proceed
to the next configuration screen, which will simply prompt us for any profiles we
will want to include when importing. For the profile configuration option, specify
jenkins and click Next. Once the import of the profile has completed, IntelliJ will ask
us to Select Maven projects to import. We should see our plugin already checked
(as we described its home location earlier), and will want to additionally tick the box
Open Project Structure after import. Once this step has been completed, click Next
to proceed to the Project SDK specification screen.

From the project SDK configuration screen we should be prompted to select a target
JDK for our IntelliJ project. Figure 10-7 illustrates Java JDK 1.8 installed and selected:

Figure 10-7: Select a JDK

Extending Jenkins

[288]

Once this screen has been configured, click Next to proceed to the final project
import configuration screen, as shown in Figure 10-8:

Figure 10-8: The final project import configuration screen

Finally we can click the Finish button to finalize the import procedures for our
Maven Jenkins plugin project.

Chapter 10

[289]

IntelliJ at this point will prompt us to do some final processing on the import, and
then navigate to us the project editor screen (shown in Figure 10-9):

Figure 10-9: Project editor screen

At this point, if you see a screen similar to the one above take a moment to
congratulate yourself on achieving the goal of configuring a basic Jenkins plugin
development environment with a unified IDE. It's now time to begin coding and
building our Jenkins plugin.

The architecture of Jenkins plugins
The Jenkins plugin architecture leverages extension points, which essentially provide
implementation hooks for plug-in developers to extend the functionality of a given
Jenkins subsystem, or plugin. Jenkins itself has hundreds of extension points.
Extension points are automatically detected by Jenkins during the loading of the
system.

Extending Jenkins

[290]

The extension point architecture offers an easy way to extend or alter the inner
functionality of an abstract Java class or interface without the need to recompile
the subsystems. Jenkins has numerous extension points and often plugins also
have extension points. The generally accepted development pattern is to locate a
suitable extension point to manipulate, and then extend Jenkins (or a plugin) by
implementing a set of classes and methods that override or modify the existing
functionality. Some of the more common extension points include:

•	 SecurityRealm
•	 Builder
•	 BuildStep
•	 Publisher
•	 Trigger
•	 Recorder
•	 ManagementLink

The extension points we just listed represent only a few of the more popular ones
provided by Jenkins; these are just a few of many. In reality there are too many to
list in this chapter. As we briefly mentioned earlier some plugins define their own
extension points, which allow a given plugin to be extended by another. To say
Jenkins is extensible is definitely an understatement.

For a complete list of extension points, the Jenkins-ci.org web site provides
documentation for each one built into Jenkins. This can be found at the
following URL:

https://wiki.jenkins-ci.org/display/JENKINS/Extension+points

https://wiki.jenkins-ci.org/display/JENKINS/Extension+points

Chapter 10

[291]

If the idea of extension points seems a bit confusing, it doesn't need to be. Let's take
a quick look at a diagramed model, which should help illustrate the concepts of the
Extension Point Architecture (Figure 10-10):

Figure 10-10: Extension point architecture

As we mentioned earlier, extension points in Jenkins are implemented by marking a
Java class with the implements ExtensionPoint marker. This tells Java that the specified
class and its methods can be Extended via the Extends annotation marker. We will
discuss this concept in further detail by showing some code examples in just a
minute. First let's take a moment to understand the basic job lifecycle. This can help
us locate a suitable extension point for plugin development.

It is a general best practice to only extend an existing extension
point, and not wise to override non-extension point class types.
This will help the system remain in a stable state and help
alleviate unknown repercussions.

Extending Jenkins

[292]

Understanding the Jenkins job lifecycle
When learning about creating Jenkins plugins, it's important to fully understand
the Jenkins project lifecycle; that is to say, the phases a job will go through during
execution. By understanding the project's lifecycle we can better identify extension
points that can be leveraged to create a plugin that executes in the right phase.
When a Jenkins job is executed, it transitions through the following steps in
synchronous order:

1.	 Polling.
2.	 Pre SCM.
3.	 SCM.
4.	 Pre Build.
5.	 Build (Builder Extension point).
6.	 Post Build (RecorderNotifier extension point).

Each of the above phases in the lifecycle represents a logical extension point and can
be extended by Jenkins plugins and manipulated to provide additional functionality.

Now that we have a general understanding of the lifecycle, let's look at some code
fragments that extend various extension points within the lifecycle. Classes that have
been extended via a Jenkins plugin will contain the class definition, the extension
point inner class descriptor, and any overrides. To better clarify this, consider the
following code snippet:

public class HelloWorldBuilder extends Builder {

 @Extension // This indicates to Jenkins that this is an
implementation of an extension point. (inner class descriptor)

 public static final class DescriptorImpl extends
BuildStepDescriptor<Builder> {
 }
}

In the above example, we can see that we have a simple class HelloWorldBuilder,
which extends the Jenkins Builder class. Let's take a look at the Builder class source
code for Jenkins provided at:

https://github.com/kohsuke/hudson/blob/7a64e030a38561c98954c4c51c4438
c97469dfd6/core/src/main/java/hudson/tasks/Builder.java

https://github.com/kohsuke/hudson/blob/7a64e030a38561c98954c4c51c4438c97469dfd6/core/src/main/java/hudson/tasks/Builder.java
https://github.com/kohsuke/hudson/blob/7a64e030a38561c98954c4c51c4438c97469dfd6/core/src/main/java/hudson/tasks/Builder.java

Chapter 10

[293]

We can see that the source code contains a class definition as follows:

public abstract class Builder extends BuildStepCompatibilityLayer
implements
Describable<Builder>, ExtensionPoint {
}

This shows the connection between our plugin's extension class and its logical
parent. The important thing to note here is the ExtensionPoint annotation in the
class definition.

Based on what we have seen, we can just as easily create our own extension points
within our plugin. This will allow other plugin developers to create plugins that will
extend ours. To do this we simply need to notate @Extension point above the class
definition as shown below.

@Extension
public class foo extends Bar { ... }

From the above class definition we would be providing an extension point for class
foo, which already extends class Bar. This is very much like stapling one extension
point onto another.

Using overrides
As we briefly mentioned earlier, overrides define replacement methods. Overrides
are simple in nature; they specify a method within a class that will override
the originating definition. Overrides in Jenkins allow the plugin developer to
completely replace an existing method with one of their own. To help clarify this
implementation, consider the following code snippet:

 @Override
 public boolean perform(AbstractBuild build, Launcher launcher,
BuildListener listener) {
 // This is where you 'build' the project.
 // Since this is a dummy, we just say 'hello world' and call
that a build.

 // This also shows how you can consult the global
configuration of the builder
 if (getDescriptor().getUseFrench())
 listener.getLogger().println("Bonjour, "+name+"!");
 else
 listener.getLogger().println("Hello, "+name+"!");
 return true;
 }

Extending Jenkins

[294]

Working with describables and descriptors
When implementing user interface elements in a Jenkins plugin that requires the
persistence of information (say a job configuration or form). Jenkins needs a way to
render the UI, capture, and then persist any data inputted. The development pattern
to facilitate this type of behavior is to use the describable and descriptor annotations,
along with a data-bound object.

To help us grok this pattern, we can consider it very much like a cyclic propagation
of information. When data is inputted into a configuration form, it's persisted as an
instantiated descriptor object, which belongs to our plugin's defining class (eventually
this is bound to an XML file on the disk). This implementation is very similar in nature
to a class and object instance relationship. The main thing to remember here is that a
class is Describable and a Descriptor is the instantiation of the persisted data.

Let's take a look at some code examples to further explain this:

@Extension // This indicates to Jenkins that this is an implementation
of an extension point.
 public static final class DescriptorImpl extends
BuildStepDescriptor<Builder> {

 public DescriptorImpl() {
 load();
 }

}

As we can tell from the code above, the implementation of a Descriptor in the plugin
is simply an extension of the BuildStepDescriptor class. Let's look at a class
declaration and see how it was created:

public abstract class BuildStepDescriptor<T extends BuildStep &
Describable<T>> extends Descriptor<T> {
 protected BuildStepDescriptor(Class<? extends T> clazz) {
 super(clazz);
 }

From the above code segment it is apparent that the Jenkins BuildStepDescriptor
(the originating class) class is Describable and our plugin instantiates this using the
DescriptorImpl method. This is in a lot of ways a similar approach that was used
for UI configuration persistence and fits neatly into the plugin architecture.

Chapter 10

[295]

Jelly tags and files
As our Jenkins development experience progresses, we will need to incorporate user
interface elements into our plugins. User interface interaction is implemented in
Jenkins plugins through the use of jelly files. Jelly is a tag based UI implementation
solution created by Apache, and provides a UI data-binding solution in Jenkins for
plugin developers.

The core documentation for Jelly tags can be located on the Apache web site at:

http://commons.apache.org/proper/commons-jelly/tags.html

The implementation of the Jelly solution in Jenkins adds a couple of conventions. The
first is the entry field, which provides automatic data binding connections for the
jelly entry field and the instance. The second is the implementation of data binding
through the constructor. When the constructor is called it's automatically populated
with data submitted from the form. To provide an example of this consider the
following code snippets provided by the example Jenkins skeleton:

Config.jelly
<?jelly escape-by-default='true'?>
<j:jelly xmlns:j="jelly:core" xmlns:st="jelly:stapler"
xmlns:d="jelly:define" xmlns:l="/lib/layout" xmlns:t="/lib/hudson"
xmlns:f="/lib/form">
 <!--
 This jelly script is used for per-project configuration.

 See global.jelly for a general discussion about jelly script.
 -->

 <!--
 Creates a text field that shows the value of the "name" property.
 When submitted, it will be passed to the corresponding constructor
parameter.
 -->
 <f:entry title="Name" field="name">
 <f:textbox />
 </f:entry>
</j:jelly>

HelloWorldBuilder.java
/ Fields in config.jelly must match the parameter names in the
"DataBoundConstructor"
 @DataBoundConstructor
 public HelloWorldBuilder(String name) {
 this.name = name;
 }

http://commons.apache.org/proper/commons-jelly/tags.html

Extending Jenkins

[296]

As the code purports, the instance of the name variable in our class is automatically
populated when the databoundconstructor is initialized.

As you may have assumed already, the Jelly file implementation is not limited
to simple field-based Web forms. The UI can be populated with any number of
Web-based controls. For a complete set of examples, Jenkins provides an open
source project on GitHub that helps describe each of the available controls
in detail.

https://github.com/jenkinsci/jenkins/tree/master/core/src/main/
resources/lib/form

Compiling and installing an HPI plugin
So far we have learned how to set up the IntelliJ IDE, develop a basic plugin via
extension points, and extend Jenkins. We learned about the project lifecycle and
discovered new ways to extend Jenkins. In this section we will see how to build our
final .HPI and install it onto the Jenkins system. To do this we will want to compile
the plugin using Maven with the install target specified, and then load it into the
Jenkins system. Let's get started.

To generate the final HPI package, open a command line window, navigate to your
plugin directory, and enter the following command into the terminal:

#> mvn package

The compilation and packaging of the plugin take a few minutes to execute and
complete. Once completed our terminal window will contain a set of final output
that should look something like the following:

[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

[INFO] Total time: 04:28 min

[INFO] Finished at: 2015-09-28T12:02:49-05:00

[INFO] Final Memory: 52M/488M

[INFO] ---

We should now see a new target folder listed alongside our POM.XML file. This
folder will house the final .HPI file we will need to install onto the Jenkins system.

https://github.com/jenkinsci/jenkins/tree/master/core/src/main/resources/lib/form
https://github.com/jenkinsci/jenkins/tree/master/core/src/main/resources/lib/form

Chapter 10

[297]

To install this plugin onto a Jenkins system log on to the Jenkins system as an
administrator and navigate to the plugin installation page via the following
navigational steps:

Manage Jenkins -> Manage Plugins -> Advanced (tab)

From here we should be able to upload the plugin to the Jenkins system and install it
in shot via the Upload plugin form presented on the page.

Once the plugin has been uploaded and installed it should be properly listed in the
Installed plugins tab.

Summary
In this chapter of Mastering Jenkins we discovered the details of plugin development
in Jenkins. We learned some of the core concepts required for plugin development,
and learned how to leverage Maven and IntelliJ to build out a robust development
environment.

As our journey into Jenkins comes to an end, we wish you adieu and hope that this
book has provided various useful tidbits that will help better define how to achieve
continuous practices using Jenkins. When implementing build pipelines, start small
grow them organically through proper planning and implementation strategy. Then
innovate them. From here we will part ways with one final quote of wisdom.

"There are only two mistakes one can make along the road to truth; not going all
the way, and not starting."

 – Buddah

[299]

Index
A
Active Directory

URL 231
Ansible

Jenkins, integrating 249-257
URL 252

Apache reverse proxy
Jenkins, executing 13-15

Apache web server
URL 14

Archiva
URL 150

Artifactory
Jenkins, integrating 257-259
URL 258

artifacts
fetching, archive artifacts used 160, 161
fetching, from Artifactory 161-163
fetching, via Maven 163, 164
retrieving 160

automated tests
A/B testing 119
architecture 124-126
black box tests 118
capacity tests 117
executing, via MSTest 135
functional tests 117
implementing 114, 115
in Jenkins 127-133
product code, connecting 122, 123
quality, implementing 124
regression tests 117
smoke / BVT (Build Verification) tests 116
unit tests 116
white box tests 118

B
Behavior Driven Development (BDD) 127
black box tests 118
branch by abstraction 214
Build History panel 105-107
build notification programs

reference link 67
build pipelines

additional segments 183, 184
architecting 180
Delivery Pipeline plugin 195-199
downstream jobs, triggering 187
first segment 181, 182
Jenkins instances, connecting 200-202
other projects, building 189
Parameterized Trigger plugin 189-191
Post Build Tasks plugin 194, 195
production pipeline segments 185, 186
Promoted build plugin 191-194
release management 184
release pipeline segments 185, 186
upstream jobs, triggering 187
value proposition 176-180

build pipelines, Continuous Delivery (CD)
URL 233
visualization 232, 233
workflow 232, 233

build process
about 145
flow 145
packaging scheme, architecting 146-148
standardizing 145, 146

build queue panel 67

[300]

C
Call remote job plugin

URL 200
capacity tests 117
Categorized View plugin

about 139
URL 139

code based branching techniques
about 213
branch by abstraction 214

command line options
used, for launching headless slave

agents 41
used, for launching Java Web Start

(JavaWS) framework 40
Common Internet File System (CIFS)

about 43
errors, troubleshooting 46

Configuration panel
about 63, 104
options 104

console output 110, 111
Continuous Delivery (CD)

about 225
approvals 230-232
build pipelines 232, 233
characteristics 225
implementing 226
in Jenkins 228
principles 227
quality gates 230-232
rapid feedback loops 228, 229

Continuous Deployment
about 234, 235
in Jenkins 236

Continuous Integration (CI)
about 209, 210
and branches 213
code based branching techniques 213
Distributed Version Control Systems

(DVCS) 217
failures, fixing 217
feature toggles 215, 216

implementing 213
in Jenkins 218
Jenkins job, executing via SVN post-commit

hooks 220
Jenkins job, triggering via GitHub push 223
misconception 210-212
SCM polling 218, 219

CRON-based polling 219
CruiseControl 210

D
DCOM

about 42
errors, troubleshooting 46
slave node, launching on Windows 42-46

Defense Advanced Research Projects
Agency (DARPA) 177

Definitive Media Library. See DML
Delivery Pipeline plugin

configuring 195-199
URL 195

deployment automation
about 158
build artifacts, retrieving 160
executing 168-170
Jenkins slave nodes, leveraging for

deployment 170-172
packages, retrieving 160

describables
implementing 294

descriptors
implementing 294

disaster recovery
about 16
Jenkins mirror, setting up 18-21
snapshot backups 16, 17

distributed builds, Jenkins plugins 58
distributed testing solutions

about 139
parallel down stream jobs 141, 142
Selenium Grid 140

Distributed Version Control Systems
(DVCS) 217

[301]

DML
about 149
Artifactory, publishing to 153, 154
Docker container, pushing 156-158
Jenkins Artifactory plugin 153, 154
Jenkins artifacts, archiving 151
Maven, publishing via 155

Docker
Jenkins, integrating 240, 241
URL 242
used, for implementing dynamic Jenkins

slave nodes 244
Docker container

Jenkins, running 242-244
URL 243

downstream jobs
other projects, building 188, 189

dynamic Jenkins slave nodes
implementation tutorial 245-249
implementing, Docker used 244
prerequisites 244

E
Email-Ext plugin

about 228
URL 228

evarga/jenkins-slave
URL 245

executor status panel 67
extension points, Jenkins plugins

about 290
URL 290

Extreme Programming (XP) 209

F
failed jobs

disabling 111
feature toggles

about 215
in C# 216
in Embedded / C / C++ 216
in Java 216
in .NET 216
in Python 216

in Ruby 216
in Ruby on Rails 216
reference link 216

freestyle project
about 69
Advanced project options 76
build parameters, defining 74, 75
build steps 80
build triggers 79
creating 70-72
options 73
post-build actions 81
source code management 77

functional tests 117

G
Git

additional behaviors buttons 79
for source control 78
options 78

GitHub
URL 224

GitHub push
GitHub configurations 224
Jenkins configurations 223
Jenkins job, triggering 223
URL 223

Green Balls plugin 66
groups

about 54
creating, for slave node 56, 57

H
headless slave agents

launching, via command line 41
HPI plugin

compiling 296, 297
installing 296, 297

I
Infrastructure as Code (IaC) 249
IntelliJ IDEA

Maven-generated plugin,
importing 285-289

setting up 272-279

[302]

J
Java Development Kit (JDK) 272
Java Runtime Environment (JRE) 4
Java Web Start (JavaWS) framework

headless slave agents, launching via
command line 41

launching, via command line 40
launching, via web browser 39, 40
launch page 38
prerequisites 37
slave node, launching 36
URL 37

Jelly files 295, 296
Jelly tags

about 295, 296
example 295
URL 295

Jenkins
architecture 3
automated tests 127-133
configuration techniques 3
executing, behind Apache reverse

proxy 13-15
executing, behind NGinX reverse

proxy 11, 12
integrating, with Ansible 249-257
integrating, with Artifactory 257, 259
integrating, with Docker 240, 241
integrating, with Jira 268-270
integrating, with Selenium Grid 260, 261
MSTest results, publishing 138
MSTest results, reporting 136, 137
running, inside Docker container 242-244
Selenium Grid, integrating 263-267
URL 11

Jenkins Ansible plugin
URL 255

Jenkins Artifactory plugin 153, 154
Jenkins Docker plugin

URL 245
Jenkins fingerprints 164
Jenkins instances

connecting 200-202
Jenkins JClouds plugin

URL 245

Jenkins LTS release
installing 24, 25
URL 24

Jenkins mirror
setting up, with rsync 18-21

Jenkins, on Linux and Unix
installation 9
Java JVM, configuring 9, 10

Jenkins, on Mac OS X
installation 22, 23
Jenkins LTS release, using 23-25
XML configuration files 25-28

Jenkins, on Microsoft Windows
installation 4-6
Java arguments, configuring 7, 8
JVM, configuring 7, 8

Jenkins plugins
architecture 289-291
creating 272
describables, implementing 294
descriptors, implementing 294
extension points 290
folder structure 283, 284
job lifecycle 292, 293
overrides, using 293
reference link 273
skeleton, creating 279-283
URL 17

Jenkins slave nodes
leveraging, for deployment 170-172

JetBrains ItelliJ IDEA
URL 276

Jira
Jenkins, integrating 268-270
reference link 270
URL 268

job execution 108
Job Execution Configuration panel 109
jobs

about 68, 69
existing job, copying 69
external job 69
external jobs, monitoring 85, 86
filtering, by regular expression 92, 93
freestyle project 69-72
Maven project 69, 81, 82

[303]

multiconfiguration jobs 86
multiconfiguration project 69
organizing 65
project page, navigating 102, 103
running, via SVN post-commit hooks 220
triggering, via GitHub push 223

job table 64, 65
JUnit Plugin

URL 266

K
Kaizen (Continuous Improvement)

about 204, 205
implementing 207

Kanban 208

L
labels

about 54
creating, for slave node 55, 56

Lightweight Directory Access Protocol
(LDAP)

about 230
URL 231

load balancing 54
Long-Term Support (LTS) 23

M
main header 61, 62
master/slave architecture

about 30-33
distributed build extension plugins 58
slave, creating on master 33-35

Maven
URL 155

Maven 3
URL 272

Maven-generated plugin
importing, into IntelliJ IDEA 285-289

Maven project, jobs
about 81, 82
advanced options 83, 84
build step 83
build triggers 83
post-build steps 85

memory allocation 10
Microsoft Distributed Component Object

Model. See DCOM
Microsoft Windows Management

Instrumentation. See WMI
MSTest

agents, setting up 134
automated tests, executing 135
example 135
executing 136, 137
results, publishing in Jenkins 138
results, reporting in Jenkins 136, 137
test jobs, organizing 138, 139
used, for performing unit tests 133, 134

multiconfiguration jobs
about 86
configuration matrix 87
label expression axis 88
slave option 87
user-defined axis 89

N
Nexus

URL 150
NGinX reverse proxy

Jenkins, executing 11, 12
node administration dashboard 51, 52

O
Oracle

URL 43
Oracle Java JDK 1.7

URL 272
Origin

URL 150
overrides

using 293

P
package integrity

Jenkins fingerprints 164, 165
verifying 164

parallel down stream jobs
using 141, 142

[304]

Parameterized Trigger plugin
about 189
configuring 190
URL 189

Post Build Tasks plugin
configuring 194, 195
URL 194

product code
connecting, to automated tests 122, 123

project overview (central panel) 108
project page, job

Build History panel 105-107
Configuration panel 104, 105
navigating 102, 103
project overview (central panel) 107, 108

Promoted build plugin
configuring 191-194

pull request builder plugin
URL 79

Q
quality assurance

initiatives 114-119

R
rapid feedback loops 228, 229
regression tests 117
regular expression

jobs, filtering 92, 93
rspec gem

about 263
URL 263

RSpec JUnit formatter
about 263
URL 263

RSS feeds 66
rsync

used, for setting up Jenkins mirror 18-21

S
SCM polling

about 218
configuring 219

Selenium Grid
about 140
integrating, into Jenkins 263-267
Jenkins, integrating 260, 261
spinning up 261, 262
tests, writing 263-267
URL 140

Selenium WebDriver gem
URL 263

Single Point of Failure (SPOF) 16
slave.jar file

URL 41
slave node (slave agent)

grouping 54-57
labeling 54-56
launching, on Windows via WMI and

DCOM 42-46
launching, via Java Web Start (JavaWS)

framework 36
launching, via SSH tunneling 49, 50
load balancing 54
usage, restricting 57

slaves
administering 51
configuration options 35
individual slave node, managing 53, 54
node administration dashboard 51, 52
preventative monitoring 52, 53

smoke / BVT (Build Verification) tests 116
snapshot backups 16, 17
Software as a Service (SaaS) 113
Software Development Lifecycle

(SDLC) 119-121
source code management, freestyle project

about 77
via Git 78
via SVN 77, 78

SVN
advanced options 78
for source control 77, 78
URL, for repository 77

SVN post-commit hooks
Jenkins job, running 220
URL 220

[305]

T
TeamCity 210
Test Driven Development (TDD) 122
troubleshooting, DCOM errors

access denied 46-48
no more data available 48, 49
reference link 48, 49

U
Ubuntu

URL 252
unit tests

about 116
performing, through MSTest 133

upstream jobs
triggering 187

user interface
about 60
build queue panel 67
configuration panel 63
executor status panel 67
job table 64, 65
main header 61, 62
RSS feeds 66

V
Views

advanced customization,
of content 100, 102

basic content, customizing 98, 99
creating 90-92
default view, altering 96-98
jobs, filtering by regular expression 92, 93
managing 96

W
white box tests 118
WMI 42

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setup and Configuration
of Jenkins
	The Jenkins platform architecture and configuration techniques
	Jenkins on Microsoft Windows
	Configuring the JVM and Java
arguments–port, JRE, and memory

	Jenkins on Linux and UNIX
	Configuring the JVM

	Running Jenkins behind an NGINX reverse proxy
	Running Jenkins behind an Apache reverse proxy

	Disaster recovery in Jenkins
	Jenkins snapshot backups
	Setting up a Jenkins mirror – rsync

	Jenkins on Mac OS X
	The Jenkins LTS release line
	Jenkins XML configuration files

	Summary

	Chapter 2: Distributed Builds – Master/Slave Mode
	Understanding the master and slave architecture
	Creating slave nodes in the UI

	Choosing a launch method
	Slave agent via Java Web Start
	Prerequisites
	The Jenkins Java Web Start launch page
	Headless slave agents via the command line

	Slave agents on Windows via WMI and DCOM
	Troubleshooting Windows DCOM and CIFS errors

	Slave agents via SSH tunneling

	Administering Jenkins slaves
	The node administration dashboard
	Preventative monitoring
	Managing individual slave nodes

	Labels, groups, and load balancing
	Attaching a slave to a group by creating a label
	Attaching a slave to many groups
	Restricting slave execution to global
or tied jobs
	Jenkins plugins that support distributed builds

	Summary

	Chapter 3: Creating Views and
Jobs in Jenkins
	The Jenkins user interface
	The main header
	The configuration panel
	The job table
	RSS feeds
	The Jenkins build queue and executor status panel

	Jobs in Jenkins
	Freestyle projects in Jenkins
	Project options
	Advanced project options
	Source code management
	Build triggers
	Build steps
	Post-build actions

	Maven projects
	Build triggers
	Build step
	Advanced options
	Post-build steps

	Monitoring external jobs
	Multiconfiguration jobs in Jenkins – matrix jobs
	Configuration matrix
	Slaves
	Label expression
	User-defined axes

	Creating views
	Filtering jobs by regular expression

	Summary

	Chapter 4: Managing Views and
Jobs in Jenkins
	Managing Views in Jenkins
	Altering the default "View"
	Customizing the basic content of a View
	Advanced customization of a "Views" content

	Navigating a job's project page
	The Configuration panel
	The Build History panel
	The project overview – central panel

	Job execution
	The Job Execution Configuration panel
	The Status panel
	The Console Output
	Summary

	Chapter 5: Advanced Automated Testing
	Quality assurance initiatives and test automation terminology
	The Software Development Lifecycle
	Connecting product codes to tests
	Baking quality into the product
	Efficient automated test architecture

	Automated testing in Jenkins
	Unit tests in Jenkins through MSTest
	How to set up MSTest agents
	Running automated tests via MSTest
	A example MSTest execution

	Running MSTests and reporting the results in Jenkins
	Publishing test results in Jenkins

	Organizing test jobs

	Distributed testing solutions
	The Selenium Grid
	Parallel down-stream jobs

	Summary

	Chapter 6: Software Deployments
and Delivery
	Standardizing build outputs
	Architecting a packaging scheme

	Implementing a Definitive Media Library
	Publishing assets to a DML
	Jenkins' archive the artifacts post-build action
	Publishing to Artifactory
	Publishing via Maven
	Pushing a Docker container

	Automated deployments
	Retrieving build artifacts and packages
	Fetching artifacts via archive artifacts
	Fetching artifacts from Artifactory
	Fetching artifacts via Maven
	Verifying package integrity

	Executing deployment automation
	Leveraging Jenkins slave nodes for deployment

	Summary

	Chapter 7: Build Pipelines
	The value proposition of build pipelines
	Architecting a build pipeline
	The first segment of the build pipeline
	Additional pipeline segments
	The complete pipeline
	Visualizing the final pipeline
	Alterations for shrink-wrapped and
embedded projects

	Implementing build pipelines in Jenkins
	Upstream jobs – triggered
	Downstream jobs – via post build actions
	The Parameterized Trigger plugin
	The Promoted build plugin
	The Post-Build Tasks plugin
	The Delivery Pipeline plugin
	Connecting two Jenkins instances – development and production

	Summary

	Chapter 8: Continuous Practices
	Kaizen – Continuous Improvement
	Kanban

	Continuous Integration
	What Continuous Integration is not
	Code-based branching techniques
	Branch by abstraction

	Feature toggles
	Fail fast and recover even faster
	Distributed Version Control
	Continuous Integration in Jenkins
	SCM polling
	Running a Jenkins job via the SVN post-commit hooks
	Triggering a Jenkins job via GitHub push

	Continuous Delivery
	The principles of Continuous Delivery
	Continuous Delivery in Jenkins
	Rapid feedback loops
	Quality gates and approvals
	Build pipeline workflow and visualization

	Continuous Deployment
	Continuous Deployment in Jenkins

	Summary

	Chapter 9: Integrating Jenkins with Other Technologies
	Jenkins and Docker – Linux guide
	Running Jenkins inside a Docker
container – Linux
	Dynamic Jenkins slave nodes using Docker
	Pre-requisite requirements
	Implementation tutorial

	Integrating Jenkins with Ansible – Linux and Windows
	Jenkins and Artifactory
	Jenkins and Selenium Grid
	Spinning up a Selenium Grid
	Writing tests and integrating them into Jenkins

	Jenkins and Jira
	Summary

	Chapter 10: Extending Jenkins
	Setting up the development environment
	Creating a Jenkins plugin skeleton
	The plugin skeleton
	Importing a Maven-generated skeleton into IntelliJ
	The architecture of Jenkins plugins
	Understanding the Jenkins job lifecycle
	Using overrides
	Working with describables and descriptors

	Jelly tags and files
	Compiling and installing an HPI plugin
	Summary

	Index

