
Microsoft
Computer Vision
APIs Distilled

Getting Started with Cognitive Services
—
Alessandro Del Sole

www.allitebooks.com

http://www.allitebooks.org

Microsoft Computer
Vision APIs Distilled

Getting Started with Cognitive
Services

Alessandro Del Sole

www.allitebooks.com

http://www.allitebooks.org

Microsoft Computer Vision APIs Distilled

Alessandro Del Sole				
Cremona, Italy			

ISBN-13 (pbk): 978-1-4842-3341-2		 ISBN-13 (electronic): 978-1-4842-3342-9
https://doi.org/10.1007/978-1-4842-3342-9

Library of Congress Control Number: 2017962422

Copyright © 2018 by Alessandro Del Sole

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this
book is available to readers on GitHub via the book’s product page, located at
www.apress.com/9781484233412. For more detailed information, please visit
www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3342-9
orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com/rights-permissions
www.apress.com/bulk-sales
www.apress.com/9781484233412
www.apress.com/source-code
http://www.allitebooks.org

To my wonderful Angelica, who brings sunshine into my life.

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author��� ix

Acknowledgments��� xi

Introduction��� xiii

■■Chapter 1: Introducing Microsoft Cognitive Services���������������������� 1

Introducing the Microsoft AI Platform�� 1

Introducing Microsoft Cognitive Services�� 2

Introducing Development Tools and Platforms��� 4

Summary�� 4

■■Chapter 2: Getting Started with the Computer Vision API��������������� 5

Understanding the Computer Vision API��� 5

Performing HTTP Requests�� 7

Handling the HTTP Response�� 9

Configuring Your Azure Subscription�� 10

Summary�� 14

■■Chapter 3: Invoking the Computer Vision API from C#������������������ 17

Getting Sample Images�� 17

Creating a C# Console Application��� 18

Creating a Console Application in Visual Studio 2017��� 18

Creating a Console Application in Visual Studio for Mac��� 20

Creating a Console Application in Visual Studio Code��� 23

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

Describing and Analyzing Images�� 25

Describing Images��� 25

Analyzing Images�� 29

Generating Thumbnails�� 32

Tagging Images��� 34

Working with Optical Character Recognition�� 36

Retrieving Handwritten Text�� 39

Working with Domain-Specific Models�� 39

Summary�� 42

■■Chapter 4: Computer Vision on Mobile Apps with Xamarin���������� 43

Creating a Xamarin.Forms Solution��� 43

Configuring Visual Studio 2017 for Xamarin�� 44

Introducing the Computer Vision Client Library��� 45

Creating a Xamarin.Forms Solution in Visual Studio 2017�������������������������������������� 46

Creating a Xamarin.Forms Solution in Visual Studio for Mac���������������������������������� 48

Instantiating the Service Client�� 51

Implementing Image Analysis�� 51

Designing the User Interface��� 56

Implementing Optical Character Recognition��� 57

Designing the User Interface��� 60

Implementing Celebrity Recognition�� 61

Designing the User Interface��� 64

Putting It All Together��� 64

Summary�� 67

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vii

■■�Chapter 5: Computer Vision in Web Apps with ASP.NET
MVC Core��� 69

Creating an ASP.NET MVC Core Application�� 70

Creating the Web Application with Visual Studio 2017�� 70

Creating the Web Application with Visual Studio for Mac�� 72

Creating the Web Application with Visual Studio Code�� 76

Implementing the Controller��� 77

Designing the View��� 80

Testing the Application��� 81

Summary�� 87

Index��� 89

www.allitebooks.com

http://www.allitebooks.org

ix

About the Author

Alessandro Del Sole has been a Microsoft Most Valuable Professional (MVP) since 2008,
and he is a Xamarin Certified Mobile Developer and Microsoft Certified Professional.
Awarded MVP of the Year in 2009, 2010, 2011, 2012, and 2014, he is internationally
considered a Visual Studio expert and a .NET authority. He has authored many books on
programming with Visual Studio, Xamarin, and .NET, and he blogs and writes technical
articles about Microsoft developer topics in Italian and English for many developer sites,
including MSDN Magazine and the Visual Basic Developer Center from Microsoft. He is a
frequent speaker at Microsoft technical conferences.

www.allitebooks.com

http://www.allitebooks.org

xi

Acknowledgments

Writing books is hard work, not only for the author but for all the people involved in the
reviews and in the production process.

Therefore, I would like to thank Joan Murray, Jill Balzano, Laura Berendson, and
everyone at Apress who contributed to publishing this book and made the process much
more pleasant.

A very special thanks to the technical editor, who did an incredible job walking
through every single sentence and every single line of code, providing invaluable
contributions to this book’s contents.

I would also like to thank the Technical Evangelism team of the Italian subsidiary of
Microsoft and my Microsoft MVP lead, Cristina G. Herrero, for their continuous support
and encouragement for my activities.

As the community leader of the Italian Visual Studio Tips & Tricks community
(www.visualstudiotips.net), I want to say “thank you!” to the other team members
(Laura La Manna, Renato Marzaro, Antonio Catucci, Igor Damiani) and to our followers
for keeping our passion strong for sharing knowledge and for helping people solve
problems in their daily work.

Thanks to all my friends, who are always ready to encourage me even if they are not
developers.

Finally, special thanks to my girlfriend, Angelica, who knows how strong my passion
for technology is and who never complains about the time I spend writing.

www.allitebooks.com

http://www.visualstudiotips.net/
http://www.allitebooks.org

xiii

Introduction

Artificial intelligence is growing in importance, and many devices and applications
already use sophisticated algorithms to improve people’s lives and business tasks.

As developers, getting familiar with artificial intelligence is extremely important so
we can start thinking about the next generation of applications and about our customers’
needs. Among others, Microsoft Cognitive Services offer a wide range of sophisticated
algorithms that can be consumed through the standard REST approach. Therefore, they
can be used to develop intelligent cross-platform and cross-device apps, such as mobile
apps and web applications in any programming language and on any development
platform. Specifically, this book covers the Computer Vision API, a service capable of
understanding and interpreting the content of any images, providing a natural language
description that can even be sent to other Microsoft services, such as the Speech API
or the Translation API to make your app speak about the analysis result in a different
language. The Computer Vision service can also analyze images for optical character
recognition to detect print and handwritten words and sentences, and it includes
domain-specific models that help you identify important people or landmarks in a
picture and that in the future could be extended according to your needs.

The Computer Vision API, as well as other Microsoft Cognitive Services, relies on
the REST standard and returns JSON data. This means these powerful services can be
consumed by any application, on any platform, and with any programming languages
and frameworks supporting REST and JSON.

This book is for developers working with the Microsoft stack. You will find
explanations and examples based on C# and .NET. After an introduction to Cognitive
Services in Chapter 1 and to the Computer Vision API in Chapter 2, in Chapter 3 you
will learn how to write C# code that sends images to the Computer Vision service for
analysis, and the code you’ll write can be used across different platforms such as the .NET
Framework, .NET Core, and Xamarin. In fact, Chapters 4 and 5 provide examples of how
to include artificial intelligence based on the Computer Vision API in your iOS, Android,
and Windows 10 mobile apps using Xamarin, and in your web apps using ASP.NET Core.

As you might know, now you can write C# code on Windows, macOS, and Linux
(and its more popular distributions) with the .NET Core cross-platform runtime. For this
reason, you can choose one of the following system configurations:

•	 A Windows PC with Visual Studio 2017

•	 A Mac with Visual Studio for Mac

•	 An Ubuntu or other Linux system with Visual Studio Code
and .NET Core 2.0

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-3342-9_1
http://dx.doi.org/10.1007/978-1-4842-3342-9_2
http://dx.doi.org/10.1007/978-1-4842-3342-9_3
http://dx.doi.org/10.1007/978-1-4842-3342-9_4
http://dx.doi.org/10.1007/978-1-4842-3342-9_5
http://www.allitebooks.org

■ Introduction

xiv

•	 A Windows PC with Visual Studio Code and .NET Core 2.0

•	 A Mac with Visual Studio Code and .NET Core 2.0

Most of C# examples you find in this book are available to all these systems and
configurations, except for the Xamarin example, which you will be able to use only on
Windows and macOS.

After reading this book, you will be able to get started with AI services from Microsoft
and develop your own powerful, intelligent apps.

1© Alessandro Del Sole 2018
A. Del Sole, Microsoft Computer Vision APIs Distilled,
https://doi.org/10.1007/978-1-4842-3342-9_1

CHAPTER 1

Introducing Microsoft
Cognitive Services

Without a doubt, artificial intelligence (AI) is an important part of information technology
today. It certainly will be more and more important in the future, but it’s already being
used in many ways, so you, as a developer, should learn about what tools and services are
available to build next-generation applications.

Most of the world’s software giants offer AI solutions, and Microsoft has an
interesting range of services and tools that will simplify the way you build and implement
solutions based on artificial intelligence. This chapter provides a high-level overview of
what Microsoft provides for AI, with a detailed description of the Cognitive Services APIs.
This serves as the base for the next chapter, where you will walk through the Computer
Vision API.

Introducing the Microsoft AI Platform
Microsoft provides the AI Platform (www.microsoft.com/en-us/AI/ai-platform), a set
of services and tools that applications can consume across platforms. The AI Platform
includes services for creating bots; services for machine learning and deep learning; and
services for analyzing pictures, real-time videos, and speeches.

More specifically, the Microsoft AI Platform includes the following:

•	 The Bot Framework, which allows you to build and connect
conversational bots and create natural interactions with users
(http://dev.botframework.com/).

•	 Cognitive Services, a set of RESTful services capable of
recognizing, understanding, and interpreting the content of
pictures, speeches, live videos, written text, and much more, with
a natural language description (http://azure.microsoft.com/
en-us/services/cognitive-services/).

•	 Azure Machine Learning, a robust cloud platform that helps
developers build their own custom AI solutions (http://
azure.microsoft.com/en-us/services/machine-learning-
services/).

http://dx.doi.org/https://doi.org/10.1007/978-1-4842-3342-9_1
http://www.microsoft.com/en-us/AI/ai-platform
http://dev.botframework.com/
http://azure.microsoft.com/en-us/services/cognitive-services/
http://azure.microsoft.com/en-us/services/cognitive-services/
http://azure.microsoft.com/en-us/services/machine-learning-services/
http://azure.microsoft.com/en-us/services/machine-learning-services/
http://azure.microsoft.com/en-us/services/machine-learning-services/

Chapter 1 ■ Introducing Microsoft Cognitive Services

2

In the next section, you will get an overview of Cognitive Services; then, in Chapter 2,
you will start working with the Computer Vision API, which is the real focus of this book.

Introducing Microsoft Cognitive Services
Microsoft Cognitive Services are RESTful services that allow for natural user interaction
on any platform on any device.

The Cognitive Services APIs perfectly embody the conversation-as-a-platform vision
that Microsoft strongly believes in, by providing a rich set of APIs that allow for processing
human language, sentiments, emotions, physical characteristics, audio, and much more.
At a higher level, the Cognitive Services APIs are grouped into the categories in Table 1-1.

Table 1-1.  Categories of Microsoft Cognitive Services

Service Category Description

Vision These APIs provide image-processing algorithms that help identify,
caption, moderate, understand, and describe pictures and videos
with a natural language description (http://azure.microsoft.
com/en-us/services/cognitive-services/directory/vision/).

Knowledge These APIs help you implement a customer’s knowledge by finding
events, locations, academic papers, and recommendations tailored
to a customer’s needs (http://azure.microsoft.com/en-us/
services/cognitive-services/directory/know/).

Language These APIs are capable of processing natural language, evaluating
sentiments, and understanding a customer’s needs (http://
azure.microsoft.com/en-us/services/cognitive-services/
directory/lang/).

Speech These APIs enable audio processing with speaker recognition,
voice verification, and audio conversion into text (http://
azure.microsoft.com/en-us/services/cognitive-services/
directory/speech/).

Search Based on the Bing search engine services, these APIs allow you
to implement image search, news search, video search, and
autosuggestions (http://azure.microsoft.com/en-us/services/
cognitive-services/directory/search/).

Each category contains a number of specialized sets of APIs. Describing all these sets
is out of the scope of this book; therefore, you can read more by visiting the related web
pages for each category. It is worth mentioning the available APIs in the Vision category,
because this book focuses on the Computer Vision API, included in this category, so that
you have an overview of what these APIs can do. Table 1-2 summarizes the specialized
APIs available in the Vision category.

http://dx.doi.org/10.1007/978-1-4842-3342-9_2
http://azure.microsoft.com/en-us/services/cognitive-services/directory/vision/
http://azure.microsoft.com/en-us/services/cognitive-services/directory/vision/
http://azure.microsoft.com/en-us/services/cognitive-services/directory/know/
http://azure.microsoft.com/en-us/services/cognitive-services/directory/know/
http://azure.microsoft.com/en-us/services/cognitive-services/directory/lang/
http://azure.microsoft.com/en-us/services/cognitive-services/directory/lang/
http://azure.microsoft.com/en-us/services/cognitive-services/directory/lang/
http://azure.microsoft.com/en-us/services/cognitive-services/directory/speech/
http://azure.microsoft.com/en-us/services/cognitive-services/directory/speech/
http://azure.microsoft.com/en-us/services/cognitive-services/directory/speech/
http://azure.microsoft.com/en-us/services/cognitive-services/directory/search/
http://azure.microsoft.com/en-us/services/cognitive-services/directory/search/

Chapter 1 ■ Introducing Microsoft Cognitive Services

3

Table 1-2.  The Vision APIs

API Description

Computer Vision API Provides image-processing algorithms that help you
understand, analyze, and describe images with natural
language response. It includes optical character recognition
(OCR) and celebrity recognition (http://azure.microsoft.
com/en-us/services/cognitive-services/computer-
vision/).

Content Moderator Provides automated content moderation for images, videos,
and text (http://azure.microsoft.com/en-us/services/
cognitive-services/content-moderator/).

Video API Provides powerful APIs that are capable of improving video
quality as well as detecting and identifying faces and other
elements within videos (http://azure.microsoft.com/
en-us/services/cognitive-services/video-api/). This is
currently a preview service.

Video Indexer Allows you to maximize video interactions and insights,
helping make video content more discoverable (http://
azure.microsoft.com/en-us/services/cognitive-
services/video-indexer/). This is currently a preview
service.

Face API Detects, identifies, analyzes, and organizes faces in an
image (http://azure.microsoft.com/en-us/services/
cognitive-services/face/).

Emotion API Detects people’s emotions in an image, based on face
detection (http://azure.microsoft.com/en-us/services/
cognitive-services/emotion/).

Custom Vision Service Enables custom image processing based on tags and
labels (http://azure.microsoft.com/en-us/services/
cognitive-services/custom-vision-service/). This
service is currently in preview.

The Cognitive Services APIs are offered through the Microsoft Azure cloud platform,
including the Computer Vision API discussed in this book. As an implication, you will
need an active Azure subscription to work with such services. You can request a free
Azure trial at http://azure.microsoft.com/en-us/free/. This is also required to
complete the code examples in the next chapter, so in Chapter 2 I will explain how to
configure your Azure subscription to get your personal access keys.

http://azure.microsoft.com/en-us/services/cognitive-services/video-api/
http://azure.microsoft.com/en-us/services/cognitive-services/video-api/
http://azure.microsoft.com/en-us/services/cognitive-services/video-indexer/
http://azure.microsoft.com/en-us/services/cognitive-services/video-indexer/
http://azure.microsoft.com/en-us/services/cognitive-services/video-indexer/
http://azure.microsoft.com/en-us/services/cognitive-services/face/
http://azure.microsoft.com/en-us/services/cognitive-services/face/
http://azure.microsoft.com/en-us/services/cognitive-services/emotion/
http://azure.microsoft.com/en-us/services/cognitive-services/emotion/
http://azure.microsoft.com/en-us/services/cognitive-services/custom-vision-service/
http://azure.microsoft.com/en-us/services/cognitive-services/custom-vision-service/
http://azure.microsoft.com/en-us/free/
http://dx.doi.org/10.1007/978-1-4842-3342-9_2

Chapter 1 ■ Introducing Microsoft Cognitive Services

4

Introducing Development Tools and Platforms
Based on the REST approach and on the JSON standard data exchange format, Cognitive
Services can be potentially consumed by any application, on any device, on any operating
system, and through any development platform and programming language that
supports both REST and JSON.

As a developer working with the .NET technologies, you can consume such services
in any kind of .NET application and with all the .NET languages such as C#, F#, and Visual
Basic. Having said that, you have three major options.

•	 On Windows, you can use Visual Studio 2017 as the development
environment for full support to all the .NET project types. If
you do not have an MSDN subscription, you can download
the Community edition for free (www.visualstudio.com/
downloads/).

•	 On macOS, you can use Visual Studio for Mac as a development
environment supporting cross-platform development with
.NET Core and mobile app development with Xamarin. You can
download the Community edition for free (www.visualstudio.
com/vs/visual-studio-mac/).

•	 On Linux (and its most popular distributions), macOS, and
Windows, you can use Visual Studio Code (http://code.
visualstudio.com) for C# development over .NET Core.

In this book, I will showcase two sample applications based on Xamarin and .NET
Core, so I encourage you to use Visual Studio 2017 on Windows or Visual Studio for Mac
on macOS. If you instead work on Linux, no worries: you will be able to follow all the
examples related to .NET Core by using Visual Studio Code. In all cases, you will be able
to learn how to query the Computer Vision service in C# with a console application in
Chapter 3.

Summary
Microsoft has offered many high-quality and powerful AI services and tools over the
years, and the AI Platform represents the state of the art for Microsoft. This chapter
provided a brief introduction to the AI Platform, describing the tools and services it
includes.

An introduction to Cognitive Services was also provided, along with a mention of
the services offered in the Vision category so that you can better understand how the
Computer Vision API fits into the Microsoft offerings. Finally, you learned what tools
and platforms you need to consume Cognitive Services in your applications. In the next
chapter, you will learn how the Computer Vision API works, and you will learn how to
configure your Azure subscription to get your access keys.

http://www.visualstudio.com/downloads/
http://www.visualstudio.com/downloads/
http://www.visualstudio.com/vs/visual-studio-mac/
http://www.visualstudio.com/vs/visual-studio-mac/
http://code.visualstudio.com/
http://code.visualstudio.com/
http://dx.doi.org/10.1007/978-1-4842-3342-9_3

5© Alessandro Del Sole 2018
A. Del Sole, Microsoft Computer Vision APIs Distilled,
https://doi.org/10.1007/978-1-4842-3342-9_2

CHAPTER 2

Getting Started with the
Computer Vision API

Imagine you want to build apps that help people with disabilities to understand what’s
around them and to read papers on their behalf.

Now imagine you want to build apps that help kids learn about the world from
pictures, making sure that adult content is excluded. Then, imagine you want to build
apps that help people learn a foreign language by providing natural language sentences
that describe an image. Finally, imagine you work on a police force and want to build a
custom solution that helps your department identify criminals based on images.

These are only a few examples of how artificial intelligence could help solve a
number of problems, but they are enough to make you understand the purpose of the
Computer Vision API. Combined with other Cognitive Services APIs, you have infinite
opportunities. This chapter first describes how the Computer Vision API works, and then
it describes how to configure your Azure subscription and expose a Computer Vision API
endpoint that can be consumed by any application.

Understanding the Computer Vision API
As well as with every other cognitive service, the Computer Vision API has its own
portal; you can reach it at http://azure.microsoft.com/en-us/services/cognitive-
services/computer-vision/. Here you will find shortcuts to the documentation and
examples, but I will want focus on the API reference available at http://bit.ly/2sBtryy.
When you open this page, you will see a list of available operations that you can execute
against images.

Technically speaking, with the Computer Vision API, you invoke a RESTful service
by uploading an image or pointing to an existing image URL and sending GET and POST
HTTP requests depending on the type of analysis you want to execute against the image.

The Computer Vision service will return a JSON response that contains the analysis
results. The service URL varies depending on your closest region, and an active Azure
subscription is required to activate the keys you’ll use in the HTTP requests. You will
configure your Azure subscription in the next section; for now focus on the available
types of analysis you can perform on images and their corresponding HTTP requests,
described in Table 2-1.

https://doi.org/10.1007/978-1-4842-3342-9_2
http://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
http://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
http://bit.ly/2sBtryy

Chapter 2 ■ Getting Started with the Computer Vision API

6

Ta
bl

e
2-

1.
 A

va
il

ab
le

 A
n

al
ys

is
 T

yp
es

 w
it

h
th

e
C

om
pu

te
r

V
is

io
n

 A
P

I

Ty
pe

D
es

cr
ip

tio
n

H
TT

P
Ve

rb
En

dp
oi

nt

A
n

al
yz

e
Im

ag
e

A
n

al
yz

es
 a

n
 im

ag
e

fo
r

ad
u

lt
 a

n
d

 r
ac

ia
l

co
n

te
n

t,
fa

ce
 d

et
ec

ti
on

, t
ag

s,
 a

n
d

 d
om

in
an

t
co

lo
rs

P
O

ST
ht
tp
s:
//
[l
oc
at
io
n]
.a
pi
.c
og
ni
ti
ve
.m
ic
ro
so
ft
.

co
m/
vi
si
on
/v
1.
0/
an
al
yz
e[
?v
is
ua
lF
ea
tu
re
s]

[&
de
ta
il
s]
[&
la
ng
ua
ge
]

D
es

cr
ib

e
Im

ag
e

G
en

er
at

es
 a

 d
es

cr
ip

ti
on

 o
f a

n
 im

ag
e

in

h
u

m
an

-r
ea

d
ab

le
 la

n
gu

ag
e

w
it

h
 c

om
p

le
te

se

n
te

n
ce

s

P
O

ST
ht
tp
s:
//
[l
oc
at
io
n]
.a
pi
.c
og
ni
ti
ve
.m
ic
ro
so
ft
.

co
m/
vi
si
on
/v
1.
0/
de
sc
ri
be
[?
ma
xC
an
di
da
te
s]

G
et

 T
h

u
m

b
n

ai
l

G
en

er
at

es
 a

 th
u

m
b

n
ai

l f
ro

m
 th

e
sp

ec
if

ie
d

im

ag
e

P
O

ST
ht
tp
s:
//
[l
oc
at
io
n]
.a
pi
.c
og
ni
ti
ve
.m
ic
ro
so
ft
.

co
m/
vi
si
on
/v
1.
0/
ge
ne
ra
te
Th
um
bn
ai
l[
?w
id
th
]

[&
he
ig
ht
][
&s
ma
rt
Cr
op
pi
ng

Li
st

 D
om

ai
n

 S
p

ec
if

ic

M
od

el
s

G
et

s
th

e
lis

t o
f t

h
e

cu
rr

en
tl

y
su

p
p

or
te

d

d
om

ai
n

-s
p

ec
if

ic
 m

od
el

s,
 s

u
ch

 a
s

th
e

ce
le

b
ri

ty
 a

n
d

 la
n

d
m

ar
k

re
co

gn
iz

er
s

G
E

T
ht
tp
s:
//
[l
oc
at
io
n]
.a
pi
.c
og
ni

ti
ve
.m
ic
ro
so
ft
.

co
m/
vi
si
on
/v
1.
0/
mo
de
ls

O
C

R
P

er
fo

rm
s

op
ti

ca
l c

h
ar

ac
te

r
re

co
gn

it
io

n

ov
er

 a
n

 im
ag

e
an

d
 s

to
re

s
d

et
ec

te
d

 te
xt

 in
to

m

ac
h

in
e-

u
sa

b
le

 c
h

ar
ac

te
rs

P
O

ST
ht
tp
s:
//
[l
oc
at
io
n]
.a
pi
.c
og
ni
ti
ve
.

mi
cr
os
of
t.
co
m/
vi
si
on
/v
1.
0/
oc
r[
?l
an
gu
ag
e]

[&
de
te
ct
Or
ie
nt
at
io
n
]

R
ec

og
n

iz
e

D
om

ai
n

Sp

ec
if

ic
 C

on
te

n
t

A
n

al
yz

es
 a

 p
ic

tu
re

 to
 r

et
ri

ev
e

d
om

ai
n

-
sp

ec
if

ic
 c

on
te

n
t s

u
ch

 a
s

ce
le

b
ri

ti
es

 o
r

la
n

d
m

ar
ks

P
O

ST
ht
tp
s:
//
[l
oc
at
io
n]
.a
pi
.c
og
ni
ti
ve
.m
ic
ro
so
ft
.

co
m/
vi
si
on
/v
1.
0/
mo
de
ls
/{
mo
de
l}
/a
na
ly
ze

R
ec

og
n

iz
e

H

an
d

w
ri

tt
en

 T
ex

t
E

xe
cu

te
s

h
an

d
w

ri
tt

en
 te

xt
 r

ec
og

n
it

io
n

P
O

ST
ht
tp
s:
//
[l
oc
at
io
n]
.a
pi
.c
og
ni
ti
ve
.m
ic
ro
so
ft
.

co
m/
vi
si
on
/v
1.
0/
re
co
gn
iz
eT
ex
t[
?h
an
dw
ri
ti
ng
]

Ta
g

Im
ag

e
G

en
er

at
es

 a
 li

st
 o

f w
or

d
s

th
at

 a
re

 r
el

ev
an

t t
o

th
e

co
n

te
n

t o
f t

h
e

sp
ec

if
ie

d
 im

ag
e

P
O

ST
ht
tp
s:
//
[l
oc
at
io
n]
.a
pi
.c
og
ni

ti
ve
.m
ic
ro
so
ft
.

co
m/
vi
si
on
/v
1.
0/
ta
g

Chapter 2 ■ Getting Started with the Computer Vision API

7

Each of the operations listed in 2-1 is invoked as a specific endpoint. Every time you
want to invoke the Computer Vision service, you will need to replace the [location].
api.cognitive.microsoft.com literal in the URL with one of the following, depending
on the nearest Azure region:

•	 westus.api.cognitive.microsoft.com for the West US region

•	 westus2.api.cognitive.microsoft.com for the West US 2 region

•	 eastus.api.cognitive.microsoft.com for the East US region

•	 eastus2.api.cognitive.microsoft.com for the East US 2 region

•	 westcentralus.api.cognitive.microsoft.com for the West
Central US region

•	 southcentralus.api.cognitive.microsoft.com for the South
Central US region

•	 westeurope.api.cognitive.microsoft.com for the West Europe
region

•	 northeurope.api.cognitive.microsoft.com for the North
Europe region

•	 southeastasia.api.cognitive.microsoft.com for the South
East Asia region

•	 eastasia.api.cognitive.microsoft.com for the East Asia region

•	 australiaeast.api.cognitive.microsoft.com for the East
Australia region

•	 brazilsouth.api.cognitive.microsoft.com for the Brazil South
region

The list of available URLs might vary in the future if the number of regions is
increased or reorganized. You can look at the full list of Azure regions (http://azure.
microsoft.com/en-us/regions/), but keep in mind that not all Microsoft products are
available in all regions, and this is the case with Cognitive Services too.

Performing HTTP Requests
As a general rule, to analyze an image with one of the operations listed in 2-1, you send an
HTTP request to the related endpoint. For example, suppose you want to generate a list of
tags relevant to the content of an image. You would use the following endpoint (replacing
[location] with the Azure region’s domain name):

https://[location].api.cognitive.microsoft.com/vision/v1.0/tag

http://azure.microsoft.com/en-us/regions/
http://azure.microsoft.com/en-us/regions/

Chapter 2 ■ Getting Started with the Computer Vision API

8

Each request will contain the following headers:

•	 Content-Type, an optional string that describes the media
type of the body sent to the API, such as application/JSON or
application/octet-stream

•	 Ocp-Apim-Subscription-Key, a mandatory string that contains a
valid subscription key that provides access to the API and that you
will get through the Azure portal

The request body is normally passed with a POST request and can be either a raw
image binary or an image URL supplied via JSON syntax. For example, if you want to pass
the URL of an existing image, the body of your request will be as follows:

{"url":"http://onewebsite.com/image1.jpg"}

The MIME type for this body is application/JSON. In real-world development, you
will use classes that allow for data exchange through the network, such as HttpClient
in C# and Java, or web debugging applications such as Postman to send your requests,
so you will not need to worry how to manually create headers and request bodies.
For example, you can send a request with Postman and expect a JSON response, as
demonstrated in Figure 2-1, where you can also see where and how to supply the content
type and the subscription key (the latter is partially obfuscated for privacy reasons).

Figure 2-1.  Sending an HTTP request to the Computer Vision API with Postman

Chapter 2 ■ Getting Started with the Computer Vision API

9

In this particular case, you will get a JSON response that contains an array of tags,
each with a name and confidence percentage. You also get additional information, such
as the request’s unique identifier and the image size. Other operations provided by
the Computer Vision API can be invoked in a similar way, changing the endpoint and
providing the required parameters.

Whether you work with a debugging tool like Postman or with specialized classes in
your favorite programming language, you will need to supply the information described
earlier. In the next chapter, you will see how to perform all the available operations
from C# with the HttpClient class and how to parse the JSON response in code. In the
meantime, you can try the API testing console included in the Computer Vision API
portal (available at http://bit.ly/2sBtryy). To accomplish this, select an operation
on the left and then click the button that represents your Azure region near the “Open
API testing console” box. At this point, a series of text boxes will appear, and you will find
guidance of how to fill them out and create a POST request to the service. You will then be
able to see the JSON response if the operation succeeds, or you will see an error message
if it fails.

Handling the HTTP Response
Like any other RESTful service, Computer Vision returns an HTTP code and a description
that allows you to understand whether an operation succeeded or not, and the reason.
Table 2-2 summarizes the most common HTTP status codes that you might get back
when working with Computer Vision.

Table 2-2.  Computer Vision Status Codes

HTTP Status Code Description

200 (Success) The requested operation completed successfully,
and an analysis result was returned as JSON.

400 (Bad Request) The requested operation failed with one of the
following self-explanatory errors: InvalidImageUrl,
InvalidImageFormat, InvalidImageSize,
NotSupportedImage.

415 (Unsupported Media Type) The requested operation failed because the supplied
Content-Type header does not match the image
content.

500 (Internal Server Error) The requested operation failed with one of the
following self-explanatory errors: FailedToProcess,
Timeout, InternalServerError.

401 (Unauthorized) The requested operation could not be executed
because an invalid subscription key was supplied.

www.allitebooks.com

http://bit.ly/2sBtryy
http://www.allitebooks.org

Chapter 2 ■ Getting Started with the Computer Vision API

10

It is important to mention that you could get an error 400 (Bad Request) if the image
you supply does not satisfy these minimum requirements:

•	 The image must be PNG, JPG, BMP, or GIF.

•	 The image must be greater than 50 × 50.

•	 The file size must be less than 4Mb.

So, as a best practice, make sure your applications check whether an image satisfies
the minimum requirements before requesting a Computer Vision analysis operation.

Configuring Your Azure Subscription
Before you can try the Computer Vision API, you need to activate a subscription key in
the Microsoft Azure management portal. Assuming you already have an active Azure
subscription, you can log into the portal at http://portal.azure.com.

Once you have logged in, click New, then click AI + Cognitive Services (see Figure 2-2),
and finally click Computer Vision API.

http://portal.azure.com/

Chapter 2 ■ Getting Started with the Computer Vision API

11

Figure 2-2.  Creating a new Computer Vision API subscription

At this point, you will need to specify a name for the new Computer Vision API
service, the location, the pricing tier, and a resource group. You can enter a name of your
choice, or MyVisionService like in the current example, as demonstrated in Figure 2-3.
Notice that, as the location, you will need to select the nearest Azure region to you. For
the pricing tier, I suggest you to use the F0 plan, which is not charged (click “View full
pricing details” to get more information). For the resource group, you will be allowed to
create a new one or select an existing group. In the current example, I’m creating a new
resource group for convenience. If you are new to Azure, it is worth mentioning that, as

Chapter 2 ■ Getting Started with the Computer Vision API

12

the name suggests, a resource group is a set of cloud resources that can include services,
applications, mobile back ends, SQL databases, AI services, and more. You basically use
resource groups to keep your cloud resources organized.

Figure 2-3.  Supplying information for the new Computer Vision API

Chapter 2 ■ Getting Started with the Computer Vision API

13

When you click Create, the service will be provisioned. In Figure 2-4 you can
see a shortcut called “Show access keys” that you will want to click to generate your
subscription keys, which are required to access the Computer Vision API.

Figure 2-4.  The service details and the “Show access keys” shortcut

When you click “Show access keys,” you will see two autogenerated keys. You will be
able to use them in your HTTP requests interchangeably, and you can regenerate these keys
with the Regenerate Key1 and Regenerate Key2 buttons in the toolbar (see Figure 2-5).

Chapter 2 ■ Getting Started with the Computer Vision API

14

You can copy these keys to the clipboard for later reuse. Obviously, these include
sensitive information, so you should always keep them safe. You do not need any other
configuration to use the Computer Vision API, because you will simply invoke the service
URL, passing the subscription key.

Summary
The Computer Vision API allows you to execute a number of analysis operations on
images. To accomplish this, you invoke an endpoint whose URL varies depending on the
Azure region you want to work with. Generally speaking, you create an HTTP request
where the header contains the subscription key and the content type, whereas the body
contains the image you want to analyze, either as a URL or as binary data.

Figure 2-5.  Displaying access keys

Chapter 2 ■ Getting Started with the Computer Vision API

15

Regardless of the operation you requested, you will receive a JSON response that
contains the analysis result (and that you will need to parse) if the operation succeeds.
If it fails, the service returns the appropriate HTTP status code with a description. The
subscription key you need to invoke the Computer Vision API can be generated in the
Azure management portal, where you get two keys that you can copy to the clipboard or
regenerate at any time. In the next chapter, you will start performing real HTTP requests
against the Computer Vision API service in C#, executing all the available analysis
operations and learning how to parse and interpret the JSON result.

17© Alessandro Del Sole 2018
A. Del Sole, Microsoft Computer Vision APIs Distilled,
https://doi.org/10.1007/978-1-4842-3342-9_3

CHAPTER 3

Invoking the Computer
Vision API from C#

Being RESTful services, all the Cognitive Services APIs, including the Computer Vision
API, can be queried by any programming language that supports HTTP requests and
the JSON format. This chapter is all about C# and explains how to analyze an image with
C# code that can be used across platforms. You will learn how to execute all the analysis
operations that Computer Vision provides, using all the major IDEs from Microsoft.

The first step is setting up your toolbox, and then you will be able to write some code.

■■ Note  Always be careful of how you use Cognitive Services and of the images you
upload. Microsoft has strict terms that you must read before working with the API, available
at http://azure.microsoft.com/en-us/support/legal/cognitive-services-terms.

Getting Sample Images
You are obviously totally free to use your own images for analysis, and I do encourage you
to do so, but in case you do not have any useful image files, I have prepared three for you
that are available on my blog.

•	 A picture of a seaside landscape: http://community.
visual-basic.it/images/community_visual-basic_it/
Alessandro/184/o_SeasideLandscape.jpg

•	 A picture of myself, which will be used to demonstrate face detection:
http://community.visual-basic.it/images/community_visual-
basic_it/Alessandro/184/o_AleDelSole.png

•	 A picture with some printed text, which will be used to demonstrate
optical character recognition: http://community.visual-basic.
it/images/community_visual-basic_it/Alessandro/184/
o_OcrSample.jpg

http://dx.doi.org/https://doi.org/10.1007/978-1-4842-3342-9_3
http://azure.microsoft.com/en-us/support/legal/cognitive-services-terms
http://community.visual-basic.it/images/community_visual-basic_it/Alessandro/184/o_SeasideLandscape.jpg
http://community.visual-basic.it/images/community_visual-basic_it/Alessandro/184/o_SeasideLandscape.jpg
http://community.visual-basic.it/images/community_visual-basic_it/Alessandro/184/o_SeasideLandscape.jpg
http://community.visual-basic.it/images/community_visual-basic_it/Alessandro/184/o_AleDelSole.png
http://community.visual-basic.it/images/community_visual-basic_it/Alessandro/184/o_AleDelSole.png
http://community.visual-basic.it/images/community_visual-basic_it/Alessandro/184/o_OcrSample.jpg
http://community.visual-basic.it/images/community_visual-basic_it/Alessandro/184/o_OcrSample.jpg
http://community.visual-basic.it/images/community_visual-basic_it/Alessandro/184/o_OcrSample.jpg

Chapter 3 ■ Invoking the Computer Vision API from C#

18

Remember to take a look at the Cognitive Services terms of use before you move any
application to production.

Creating a C# Console Application
Because the purpose of this chapter is explaining how to code against the Computer
Vision service in C#, it’s a good idea to use a console application, which is a platform-
independent project type. In the next two chapters, you will see how to create a mobile
app and a web app, respectively.

I will now explain how to create a console application with Visual Studio 2017, Visual
Studio for Mac, and Visual Studio Code.

■■ Note  There are many ways in C# to parse JSON markup into .NET objects, with built-in
types and with third-party libraries. In this book, I will use the popular Newtonsoft.Json
library (https://www.newtonsoft.com/json), which is the de facto standard to work with
JSON in a convenient way.

Creating a Console Application in Visual Studio 2017
Visual Studio 2017 allows you to work with both the .NET Framework and the .NET Core
runtimes. I will create a console application based on the .NET Framework, but keep
in mind that the same steps apply to .NET Core if you have it installed. Remember that
Cognitive Services can be consumed on any platform, which means that applications
based on the .NET Framework (such as Windows Presentation Foundation, Windows
Forms, and ASP.NET) also can leverage Cognitive Services.

In Visual Studio 2017, select File ➤ New ➤ Project. In the New Project dialog, select
the Console App template located under Windows Classic Desktop (see Figure 3-1).

https://www.newtonsoft.com/json

Chapter 3 ■ Invoking the Computer Vision API from C#

19

Name the new project ComputerVisionDemo and then click OK. The Computer
Vision API returns the analysis results in JSON format; therefore, you need a way to parse
the JSON response and use the result in the form of C# objects. To accomplish this, you
can use the popular Newtonsoft.Json library that you can install from NuGet. Right-click
the project name in Solution Explorer and then select Manage NuGet Packages. In the
NuGet user interface, you should already see the library in the list of packages (if you
don’t see it, just type its name in the search box). Select the library and then click the
Install button on the right, as shown in Figure 3-2.

Figure 3-1.  The Console App template in Visual Studio 2017

Chapter 3 ■ Invoking the Computer Vision API from C#

20

When the package has been installed, add the following using directives in your
Program.cs file:

using System.Net;
using System.Net.Http;
using Newtonsoft.Json;
using Newtonsoft.Json.Linq;

These directives are useful to shorten the invocation to objects you need to call the
RESTful service and to work with JSON markup. Everything is now set up in Visual Studio
2017, so let’s move to the Visual Studio for Mac environment.

Creating a Console Application in Visual Studio for Mac
Visual Studio for Mac allows you to build .NET Core applications and provides a console
application template. To create and configure a console application on macOS, follow
these steps:

Figure 3-2.  Installing the Newtonsoft.Json NuGet package

Chapter 3 ■ Invoking the Computer Vision API from C#

21

	 1.	 Click File ➤ New Solution.

	 2.	 In the New Project dialog, select the App item under .NET
Core and then select the Console Application project template,
ensuring C# is the selected language (see Figure 3-3).

	 3.	 Click Next and, if requested, specify the .NET Core version
of your choice. I suggest you use the most recent version
available.

	 4.	 Enter a project name (see Figure 3-4), such as
ComputerVisionDemo; finally, click Create.

	 5.	 When the project is ready, in the Solution pad right-click the
project name and then select Add ➤ NuGet Packages. In the
Add Packages dialog (see Figure 3-5), search for the Json.NET
package and then click Add Package. Notice that this is the
same library discussed previously with Visual Studio 2017, but
here it appears with an alternate display name.

Figure 3-3.  Creating a console app in Visual Studio for Mac

Chapter 3 ■ Invoking the Computer Vision API from C#

22

Figure 3-4.  Assigning a name to the new project

Figure 3-5.  Installing the Newtonsoft.Json NuGet package

Chapter 3 ■ Invoking the Computer Vision API from C#

23

At the top of your Program.cs file, add the following using directives, whose purpose
is to simplify the access to .NET objects you will be using to call the RESTful service and to
work with JSON markup:

using System.Net;
using System.Net.Http;
using Newtonsoft.Json;
using Newtonsoft.Json.Linq;

Creating a Console Application in Visual Studio Code
Visual Studio Code is a popular, cross-platform tool that allows developers to code in
many languages on multiple systems, including Windows, macOS, and Linux (and its
most popular distributions). Especially for Linux-based systems, Visual Studio Code is the
perfect choice to write C# code based on the .NET Core runtime. I will now demonstrate
how to set up a console application on an Ubuntu machine, but the same steps apply to
Windows and macOS if you decide to use Visual Studio Code on those systems.

Ubuntu is probably the most popular desktop client distribution of Linux; therefore,
it is a good choice for demonstration purposes. If it’s not already installed, you will need
to download and install both Visual Studio Code (http://code.visualstudio.com) and
the .NET Core SDK (www.microsoft.com/net/download/core).

■■ Note  If you work on Windows or macOS and want to try Visual Studio Code on Ubuntu,
you can create a virtual machine with this OS. You can download the ISO image for Ubuntu
from Ubuntu.com.

Assuming you already installed Visual Studio Code and .NET Core 2.0 on your
Ubuntu machine, to create a C# console application, follow these steps:

	 1.	 With the help of the Files program, locate your personal folder
(usually /Home/YourName).

	 2.	 Right-click in the folder and then select Open in Terminal.
This will open a Terminal window to the folder.

	 3.	 Create a new directory that will contain the new project with
the following command:

 > mkdir ComputerVisionDemo

	 4.	 Set the newly created directory as the current directory with
the following command:

 > cd ComputerVisionDemo

http://code.visualstudio.com/
http://www.microsoft.com/net/download/core

Chapter 3 ■ Invoking the Computer Vision API from C#

24

	 5.	 Scaffold a new C# console project with the following
command:

> dotnet new console

	 6.	 Open Visual Studio Code with the following command:

> code.

When Visual Studio Code starts, it will open the C# project created previously (see
Figure 3-6).

Figure 3-6.  The new project opened in Visual Studio Code

Visual Studio Code has no built-in NuGet package manager, so you need to manually
edit the project file (.csproj) to add a reference to the Newtonsoft.Json package, which is
required to parse the JSON service returned by the Computer Vision API into C# objects.
To accomplish this, in the Explorer bar, click the ComputerVisionDemo.csproj file and
add the following XML markup to the file:

<ItemGroup>
 <PackageReference Include="Newtonsoft.Json" Version="10.0.3" />
</ItemGroup>

Chapter 3 ■ Invoking the Computer Vision API from C#

25

If you now select File ➤ Save All, Visual Studio Code will ask your permission to
restore the missing dependencies so that the Newtonsoft.Json package is installed. Once
you have done this, open the Program.cs file and add the following using directives:

using System.Net;
using System.Net.Http;
using Newtonsoft.Json;
using Newtonsoft.Json.Linq;

They are useful to shorten the invocation to objects you use to call the RESTful
service and to work with JSON markup.

Describing and Analyzing Images
The Computer Vision API allows you to describe and analyze images. The difference
is simple: describing an image means retrieving a natural language description of the
image content, plus a list of relevant tags and details about the image file, such as size and
format; analyzing an image includes describing an image, but it also allows for retrieving
further details, such as adult and racy content and dominant colors. Let’s start with
describing an image.

Describing Images
The endpoint you use to describe an image is https://[location].api.cognitive.
microsoft.com/vision/v1.0/describe[?maxCandidates], where [location] must
be replaced with the domain name of your closest Azure region (see Chapter 2),
and maxCandidates represents a query string parameter that establishes how many
descriptions should be returned. If this parameter is not specified, the default is 1. Now
suppose you want to use the Computer Vision API to describe the landscape picture I
provided. This could be done with the following code (see comments):

async static Task DescribeImageAsync()
{
 var client = new HttpClient();

 // Return two natural language sentences
 string requestParameters = "maxCandidates=2";

 // Add the subscription key to the header
 client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key",
 "YOUR-KEY-GOES-HERE");

 // Define the API endpoint including the query string parameters
 �string uri = "https://westus.api.cognitive.microsoft.com/vision/v1.0/

describe?" +
 requestParameters;

http://dx.doi.org/10.1007/978-1-4842-3342-9_2

Chapter 3 ■ Invoking the Computer Vision API from C#

26

 HttpResponseMessage response;

 // Construct a well-formed JSON key/value pair that
 // represents the image URL
 JObject imageUrl = new JObject(
 new JProperty("url",
 �"http://community.visual-basic.it/images/community_

visual-basic_it/Alessandro/184/o_SeasideLandscape.
jpg"));

 // You pass the JSON object above as the request body
 using (var content =
 �new StringContent(imageUrl.ToString(), Encoding.UTF8, "application/

json"))
 {
 // Add headers
 �content.Headers.ContentType = new MediaTypeHeaderValue("application/

json");

 // Call the endpoint
 response = await client.PostAsync(uri, content);

 // If successful...
 if (response.StatusCode == HttpStatusCode.OK)
 {
 // Read the resulting HTTP content as a string
 �string jsonResponse = await response.Content.

ReadAsStringAsync();

 �// Generate fully indented JSON markup from the original
response

 var parsedJson = JObject.Parse(jsonResponse);

 Console.WriteLine(parsedJson.ToString());
 }

 }

 Console.ReadLine();
}

Common to all requests, you will use the HttpClient class, supplying the
appropriate headers, and then you invoke its PostAsync method, passing the endpoint
URL and the request body. Notice how the request body is constructed via the JObject
class, which allows you to generate well-formed JSON objects. The JProperty class allows
you to specify a key/value pair, in this case a key/value pair that represents the image
URL. In this case, the code is also supplying the maxCandidates parameter to retrieve
multiple descriptions. PostAsync sends an HTTP POST request to the Computer Vision

Chapter 3 ■ Invoking the Computer Vision API from C#

27

API; and, if the operation completes successfully, the ReadAsStringAsync method from
the Content object (of type HttpContent) returns a JSON string that contains all the
details the service was able to return. For the sake of clarity, an invocation to JObject.
Parse is done to get a fully indented JSON string, which will appear in the Console
window. The previous method must be invoked from the Main method of the Program
class as follows:

static void Main(string[] args)
{
 DescribeImageAsync().Wait();
}

Because you cannot use async and await in the Main method, unless you work with
C# 7.1, the call is actually done synchronously using the Wait method.

■■ Note  C# 7.1 introduces the option to use async and await within the Main method and
requires Visual Studio 2017 version 15.3 and higher. I do not use this language version in
this book so that you will be able to run the sample code without any issues.

For example, the response I got from this RESTful call is as follows:

{
 "description": {
 "tags": [
 "outdoor",
 "boat",
 "scene",
 "water",
 "harbor",
 "filled",
 "ship",
 "dock",
 "carrying",
 "large",
 "small",
 "people",
 "man",
 "docked",
 "many",
 "bunch",
 "group",
 "air",
 "truck",
 "ocean",
 "white",

Chapter 3 ■ Invoking the Computer Vision API from C#

28

 "airplane",
 "plane",
 "body",
 "parked",
 "standing",
 "ramp",
 "board"
],
 "captions": [
 {
 "text": "a group of people on a boat in a harbor",
 "confidence": 0.74378581874407157
 },
 {
 "text": "a boat is docked next to a body of water",
 "confidence": 0.74278581874407157
 }
]
 },
 "requestId": "aed5709e-c6c6-43c7-b583-94a2fe0930ad",
 "metadata": {
 "width": 3840,
 "height": 2160,
 "format": "Jpeg"
 }
}

The first JSON element, called description, exposes a tags array that contains a
list of tags that the service was able to generate based on the picture content. The second
array within description, called captions, contains a list of natural language sentences
generated by the service and a confidence level. The higher the level, the higher the
confidence of accuracy about the generated sentence. The requestId element is a GUID
that uniquely identifies the request, whereas the metadata element contains the image
size and format, with self-explanatory properties. In C#, you have many options to access
and iterate arrays. However, you can also leverage indexers on the JObject instance
to retrieve specific information. For example, the following line retrieves the natural
language sentence for the second caption in the array:

//Return "a boat is docked next to a body of water"
string description = parsedJson["description"]["captions"][1]["text"].
ToString();

As an additional example, you can iterate the list of tags as follows:

foreach(var item in parsedJson["description"]["tags"])
{
 Console.WriteLine(item.ToString());
}

Chapter 3 ■ Invoking the Computer Vision API from C#

29

As you can see, it is outstanding how the Computer Vision API was able to describe
the content of an image with natural language sentences and how it returned tags and
metadata.

Analyzing Images
Analyzing an image basically works like describing an image, but the difference is that
you can retrieve many more details, and therefore you can create more complex query
strings. The endpoint for analyzing an image is https://[location].api.cognitive.
microsoft.com/vision/v1.0/analyze[?visualFeatures][&details][&language],
where [location] must be replaced with the domain name of the closest Azure region.
You can also supply a number of optional query string parameters:

•	 visualFeatures allows you to specify what visual features should
be returned. The list of supported features is provided shortly.

•	 details allows you to include domain-specific details such
as celebrity and landmark names. Supported values are
Celebrities and Landmarks.

•	 language provides an option to specify what language the service
should use to describe the image. At this writing, supported
languages are en (English) and zh (simplified Chinese). If no
language is specified, English is the default.

The following is a list of visual features you can specify for deeper image analysis:

•	 Categories: The service will generate a list of possible categories
for the image.

•	 Tags: The service will generate a list of words related to the image
content.

•	 Faces: The service will retrieve any faces in the image and, if any,
will generate coordinates, age, and gender.

•	 ImageType: The service detects whether an image is clip art or a
line drawing.

•	 Color: The service detects the accent color, dominant color, and
whether the image is black and white.

•	 Adult: The service detects whether the image contains explicit
sexual content.

You can combine multiple visual features by separating them with a comma. For
example, the following code demonstrates how to retrieve visual features on an image
that contains a face:

async static Task AnalyzeImageAsync()
{
 var client = new HttpClient();

Chapter 3 ■ Invoking the Computer Vision API from C#

30

 // Request parameters. Visual features are comma-separated
 �string requestParameters = "visualFeatures=Categories,Description,

Color,Faces,Adult";

 // Request headers
 �client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key",
 �"YOUR-KEY-GOES-HERE");

 string uri =
 �"https://westus.api.cognitive.microsoft.com/vision/v1.0/analyze?"
 + requestParameters;

 HttpResponseMessage response;

 JObject imageUrl = new JObject(
 new JProperty("url",
 �"http://community.visual-basic.it/images/community_

visual-basic_it/Alessandro/184/o_AleDelSole.png"));

 // Request body
 using (var content =
 �new StringContent(imageUrl.ToString(), Encoding.UTF8, "application/

json"))
 {
 �content.Headers.ContentType = new MediaTypeHeaderValue("application/

json");
 response = await client.PostAsync(uri, content);

 if(response.StatusCode == HttpStatusCode.OK)
 {
 �string jsonResponse = await response.Content.

ReadAsStringAsync();

 var parsedJson = JObject.Parse(jsonResponse);
 Console.WriteLine(parsedJson.ToString());
 }

 }

 Console.ReadLine();
}

Chapter 3 ■ Invoking the Computer Vision API from C#

31

The previous code, used to analyze the picture of me I provided, will return the
following JSON:

{
 "categories": [
 {
 "name": "people_portrait",
 "score": 0.91015625
 }
],
 "adult": {
 "isAdultContent": false,
 "isRacyContent": false,
 "adultScore": 0.0095219314098358154,
 "racyScore": 0.0099660586565732956
 },
 "description": {
 "tags": [
 "person",
 "man",
 "outdoor",
 "building",
 "camera",
 "smiling",
 "standing",
 "holding",
 "car",
 "street",
 "bus",
 "sitting",
 "wearing",
 "city",
 "black",
 "glasses",
 "large",
 "woman",
 "dog",
 "phone",
 "white"
],
 "captions": [
 {
 "text": "a man smiling for the camera",
 "confidence": 0.96098232754013913
 }
]
 },
 "requestId": "591dac9c-4729-4964-96f4-726c2c292210",

Chapter 3 ■ Invoking the Computer Vision API from C#

32

 "metadata": {
 "width": 234,
 "height": 234,
 "format": "Png"
 },
 "faces": [
 {
 "age": 37,
 "gender": "Male",
 "faceRectangle": {
 "left": 53,
 "top": 68,
 "width": 134,
 "height": 134
 }
 }
],
 "color": {
 "dominantColorForeground": "White",
 "dominantColorBackground": "Black",
 "dominantColors": [
 "White",
 "Grey"
],
 "accentColor": "8D6B3E",
 "isBWImg": false
 }
}

The JSON markup is pretty simple to understand. In addition to what you already got
by describing an image, here you get physical details about the detected faces, gender,
age, and coordinates for the face position. Also notice the result for the adult element,
where you correctly see that the image does not contain adult or racy content. Just to give
you more precise idea, I’m 40 years old as I write this, but the picture was taken when I
was 35. The service detected a 37-year-old man, which is a good level of approximation.
You can use the same techniques described previously to parse JSON elements and
children into JObject instances to make it easier to access JSON arrays and their
property/value pairs.

Generating Thumbnails
The Computer Vision API makes it easy to generate image thumbnails. The
endpoint is https://[location].api.cognitive.microsoft.com/vision/v1.0/
generateThumbnail[?width][&height][&smartCropping], where [location] is the
domain name of your closest Azure region. The width, height, and smartCropping query
string parameters represent the thumbnail’s width and height and a boolean flag for
enabling smart cropping.

Chapter 3 ■ Invoking the Computer Vision API from C#

33

As you might expect, in this case the Computer Vision service does not return a
plain-text JSON response. The object returned is actually binary data that C# allows you
to wrap into a MemoryStream, which you can then elaborate according to your needs, such
as displaying the stream content as an image directly or creating a file from the stream
using a FileStream. The following code demonstrates how to generate a thumbnail:

async static Task GenerateThumbnailAsync()
{
 var client = new HttpClient();

 // Return two natural language sentences
 string requestParameters = "width=320&height=240";

 // Add the subscription key to the header
 client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key",
 �"YOUR-KEY-GOES-HERE");

 // Define the API endpoint
 �string uri = "https://westus.api.cognitive.microsoft.com/vision/v1.0/

GenerateThumbnail?" +
 requestParameters;

 HttpResponseMessage response;

 // Construct a well-formed JSON key/value pair that
 // represents the image URL
 JObject imageUrl = new JObject(
 new JProperty("url",
 �"http://community.visual-basic.it/images/community_

visual-basic_it/Alessandro/184/o_SeasideLandscape.
jpg"));

 // You pass the JSON object above as the request body
 using (var content =
 �new StringContent(imageUrl.ToString(), Encoding.UTF8, "application/

json"))
 {
 // Add headers
 �content.Headers.ContentType = new MediaTypeHeaderValue("application/

json");

 // Call the endpoint
 response = await client.PostAsync(uri, content);

Chapter 3 ■ Invoking the Computer Vision API from C#

34

 // If successful,
 if (response.StatusCode == HttpStatusCode.OK)
 {
 // Get the thumbnail as a MemoryStream
 �var binaryResponse = await response.Content.ReadAsStreamAsync();
 }

 }

 Console.ReadLine();
}

Notice how this time you invoke ReadAsStreamAsync to parse the response into a
stream object that C# can use.

Tagging Images
The Computer Vision API also allows you to quickly generate tags for an image based
on its content, without performing more detailed analysis. The endpoint for tagging is
available at https://[location].api.cognitive.microsoft.com/vision/v1.0/tag,
and no query string parameters are available. You can write the following code:

async static Task TagImageAsync()
{
 var client = new HttpClient();

 // Add the subscription key to the header
 client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key",
 "YOUR-KEY-GOES-HERE");

 // Define the API endpoint
 �string uri = "https://westus.api.cognitive.microsoft.com/vision/v1.0/

tag";

 HttpResponseMessage response;

 // Construct a well-formed JSON key/value pair that
 // represents the image URL
 JObject imageUrl = new JObject(
 new JProperty("url",
 �"http://community.visual-basic.it/images/community_

visual-basic_it/Alessandro/184/o_SeasideLandscape.
jpg"));

 // You pass the JSON object above as the request body
 using (var content =

Chapter 3 ■ Invoking the Computer Vision API from C#

35

 �new StringContent(imageUrl.ToString(), Encoding.UTF8, "application/
json"))

 {
 // Add headers
 �content.Headers.ContentType = new MediaTypeHeaderValue("application/

json");

 // Call the endpoint
 response = await client.PostAsync(uri, content);

 // If successful,
 if (response.StatusCode == HttpStatusCode.OK)
 {
 // Read the resulting HTTP content as a string
 �string jsonResponse = await response.Content.

ReadAsStringAsync();

 �// Generate fully indented JSON markup from the original
response

 var parsedJson = JObject.Parse(jsonResponse);
 Console.WriteLine(parsedJson.ToString());
 }

 }

 Console.ReadLine();
}

The result you will get is similar to the following JSON:

{
 "tags": [
 {
 "name": "sky",
 "confidence": 0.99912935495376587
 },
 {
 "name": "outdoor",
 "confidence": 0.97800672054290771
 },
 {
 "name": "boat",
 "confidence": 0.94631272554397583
 },
 {
 "name": "scene",
 "confidence": 0.89682495594024658
 },

Chapter 3 ■ Invoking the Computer Vision API from C#

36

 {
 "name": "harbor",
 "confidence": 0.77457839250564575
 }
],
 "requestId": "37a85e3b-3008-4166-ba36-7da2c2a78cd7",
 "metadata": {
 "width": 3840,
 "height": 2160,
 "format": "Jpeg"
 }
}

As you can see, this simplified JSON response contains a tags array, where each
element contains the word and the confidence level. You can still use the JObject class
and the techniques described earlier to access single elements in the array.

Working with Optical Character Recognition
The Computer Vision API provides optical character recognition (OCR). OCR is
powerful: Computer Vision can detect text, and it can detect the language, the position
of the words, the text orientation, and the angle, in degrees, of the detected text with
respect to the closest horizontal or vertical direction. You can leverage OCR by passing
the desired image, either as a binary stream or via a URL, to the following endpoint:
https://[location].api.cognitive.microsoft.com/vision/v1.0/ocr[?language]
[&detectOrientation].

Like with other endpoints, you will replace [location] with the domain name of the
closest Azure region, and you can pass the language and detectOrientation query string
parameters. The first parameter allows you to specify the language for the text you want
to analyze, whereas the second parameter specifies that you also want to retrieve the text
orientation. Notice that providing the language is totally optional, as the Computer Vision
algorithms will automatically detect the language. It is worth mentioning that this service
is powerful enough to retrieve text within other elements in images. In C#, the way you
invoke the service is similar to the previous examples.

async static Task RecognizeTextAsync()
{
 var client = new HttpClient();

 // Add the subscription key to the header
 client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key",
 "YOUR-KEY-GOES-HERE");

 // Define the API endpoint
 �string uri = "https://westus.api.cognitive.microsoft.com/vision/v1.0/ocr";

 HttpResponseMessage response;

Chapter 3 ■ Invoking the Computer Vision API from C#

37

 // Construct a well-formed JSON key/value pair that
 // represents the image URL
 JObject imageUrl = new JObject(
 new JProperty("url",
 �"http://community.visual-basic.it/images/community_

visual-basic_it/Alessandro/184/o_OcrSample.jpg"));

 // You pass the JSON object above as the request body
 using (var content =
 �new StringContent(imageUrl.ToString(), Encoding.UTF8, "application/

json"))
 {
 // Add headers
 �content.Headers.ContentType = new MediaTypeHeaderValue("application/

json");

 // Call the endpoint
 response = await client.PostAsync(uri, content);

 // If successful,
 if (response.StatusCode == HttpStatusCode.OK)
 {
 // Read the resulting HTTP content as a string
 �string jsonResponse = await response.Content.

ReadAsStringAsync();

 �// Generate fully indented JSON markup from the original
response

 var parsedJson = JObject.Parse(jsonResponse);
 Console.WriteLine(parsedJson.ToString());
 }

 }

 Console.ReadLine();
}

The response you get from the Computer Vision’s OCR service for the specified
image looks like the following JSON:

{
 "language": "en",
 "textAngle": -2.0000000000000338,
 "orientation": "Up",
 "regions": [
 {
 "boundingBox": "92,165,467,136",
 "lines": [

Chapter 3 ■ Invoking the Computer Vision API from C#

38

 {
 "boundingBox": "97,165,451,57",
 "words": [
 {
 "boundingBox": "97,165,8,42",
 "text": "I"
 },
 {
 "boundingBox": "126,167,106,44",
 "text": "CAN"
 },
 {
 "boundingBox": "255,171,293,51",
 "text": "RECOGNIZE"
 }
]
 },
 {
 "boundingBox": "92,243,467,58",
 "words": [
 {
 "boundingBox": "92,243,159,46",
 "text": "WHAT"
 },
 {
 "boundingBox": "265,249,108,45",
 "text": "YOU"
 },
 {
 "boundingBox": "393,253,166,48",
 "text": "WRITE"
 }
]
 }
]
 }
]
}

The JSON response consists of the following core elements:

•	 regions: An array of objects where each represents a region of
detected text

•	 lines: An array of objects where each represents a line of text in a
region

•	 words: An array of objects where each represents a single word in
a line

Chapter 3 ■ Invoking the Computer Vision API from C#

39

When you want to parse detected text with OCR, you need to remember this more
complex hierarchy. Of course, you can still use the JObject class to parse the content of
the JSON response as you saw previously.

Retrieving Handwritten Text
The Computer Vision API also offers an interesting service that allows you to retrieve
handwritten text from images. Its behavior is similar to the OCR service, but you
call the following endpoint: https://[location].api.cognitive.microsoft.com/
vision/v1.0/recognizeText[?handwriting]. What you need to do here is supply the
handwriting=true query string parameter to enable handwritten text recognition. If you
don’t specify this parameter, the service will search for printed text via OCR.

Working with Domain-Specific Models
With domain-specific models, Computer Vision algorithms can perform specialized
analysis over specific categories of images. At this writing, the Computer Vision API
offers two domain-specific models out of the box: celebrity recognition and landmark
recognition. The list of domain-specific models will certainly increase in the future, and
you’ll have an option to create your own.

Imagine you want to detect celebrities in a picture. First, you need to retrieve the
list of domain-specific models and get a reference to the celebrity recognition. This
is accomplished with an HTTP GET request against the https://[location].api.
cognitive.microsoft.com/vision/v1.0/models endpoint, like in the following code:

async static Task ListModelsAsync()
{
 var client = new HttpClient();

 // Add the subscription key to the header
 �client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key", "YOUR-KEY-

GOES-HERE");

 // Define the API endpoint
 �string uri = "https://westus.api.cognitive.microsoft.com/vision/v1.0/models";

 HttpResponseMessage response;

 // Call the endpoint
 response = await client.GetAsync(uri);

 // If successful,
 if (response.StatusCode == HttpStatusCode.OK)
 {
 // Read the resulting HTTP content as a string
 string jsonResponse = await response.Content.ReadAsStringAsync();

Chapter 3 ■ Invoking the Computer Vision API from C#

40

 // Generate fully indented JSON markup from the original response
 var parsedJson = JObject.Parse(jsonResponse);
 Console.WriteLine(parsedJson.ToString());
 }

 Console.ReadLine();
}

The previous call will return the following JSON (which might vary in the future):

{
 "models": [
 {
 "name": "celebrities",
 "categories": [
 "people_"
]
 },
 {
 "name": "landmarks",
 "categories": [
 "outdoor_",
 "building_"
]
 }
],
 "requestId": "d7a81873-fdf9-4e48-8247-26b1ec0725b4"
}

As you can see, there is an array called models. For each item in the array, you will
want to check the value of the name property, such as celebrities or landmarks. This
must be passed to the endpoint that performs the actual recognition over an image. The
URL of the endpoint for recognizing domain-specific content is as follows: https://
[location].api.cognitive.microsoft.com/vision/v1.0/models/{model}/analyze.
Here you will need to replace [location] with the domain name of the closest Azure
region and {model} with either celebrities or landmarks. For copyright reasons, I will
neither show figures with celebrities nor point to existing image URLs about celebrities,
but you can use the following code to retrieve the result of celebrity recognition over an
image:

async static Task RecognizeCelebrityAsync()
{
 var client = new HttpClient();

 // Add the subscription key to the header
 �client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key", "YOUR-KEY-

GOES-HERE");

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Invoking the Computer Vision API from C#

41

 // Define the API endpoint
 string uri = "https://westus.api.cognitive.microsoft.com/vision/v1.0/
models/celebrities/analyze";

 HttpResponseMessage response;

 // Construct a well-formed JSON key/value pair that
 // represents the image URL
 JObject imageUrl = new JObject(
 new JProperty("url",
 "IMAGE-URL-GOES-HERE"));

 // You pass the JSON object above as the request body
 using (var content =
 �new StringContent(imageUrl.ToString(), Encoding.UTF8, "application/

json"))
 {
 // Add headers
 �content.Headers.ContentType = new MediaTypeHeaderValue("application/

json");

 // Call the endpoint
 response = await client.PostAsync(uri, content);

 // If successful,
 if (response.StatusCode == HttpStatusCode.OK)
 {
 // Read the resulting HTTP content as a string
 �string jsonResponse = await response.Content.

ReadAsStringAsync();

 �// Generate fully indented JSON markup from the original
response

 var parsedJson = JObject.Parse(jsonResponse);
 Console.WriteLine(parsedJson.ToString());
 }

 }

 Console.ReadLine();
}

The JSON response you get looks like the following:

{
 "requestId": "ab594260-2d70-4919-b997-425cddd9758d",
 "metadata": {
 "width": 960,

Chapter 3 ■ Invoking the Computer Vision API from C#

42

 "height": 540,
 "format": "Jpeg"
 },
 "result": {
 "celebrities": [
 {
 "name": "Celebrity name",
 "faceRectangle": {
 "left": 346,
 "top": 74,
 "width": 75,
 "height": 75
 },
 "confidence": 0.9925701
 }
]
 }
}

The JSON response contains the image information in the metadata item and an
array called celebrities. This contains a list of all the celebrity names that have been
detected in an image, and for each celebrity you can see the coordinates for the face. As
for the other endpoints, you can use the JObject class to parse the JSON result into .NET
objects. Landmarks recognition works in the same way, but instead of the celebrities
array you have one called landmarks.

Summary
The Computer Vision API provides powerful and sophisticated algorithms that allow you
to describe and analyze images with natural language descriptions. To query the service,
you send HTTP POST and GET requests to the various endpoints. In C#, and more
generally in .NET, this can be done with the System.Net.Http.HttpClient class, which
is portable across platforms and therefore can be used on all the .NET platforms and
with all the Microsoft IDEs, such as Visual Studio 2017, Visual Studio for Mac, and Visual
Studio Code.

After creating and configuring a console application on Windows, macOS, and
Ubuntu, you walked through the Computer Vision API capabilities, by first learning
how to describe an image with a natural language, machine-generated description. You
then saw how to retrieve more complex results with image analysis. The discussion then
moved to show how to generate thumbnails and tags, with easy API calls. Moving on, you
saw how the OCR engine is powerful enough to recognize printed text and handwritten
text within images. Finally, you got started with domain-specific models, learning how
to get a list of available models and then how to perform celebrity recognition. In all the
code examples, you used the JObject class to both construct and parse JSON objects.

So far you have seen how to invoke the Computer Vision API, and you learned how
to send requests and parse the JSON response in the form of strings. In the next chapter,
you will start consuming the Computer Vision API with mobile apps using Xamarin.
Forms and a different approach based on the Computer Vision Client Library.

43© Alessandro Del Sole 2018
A. Del Sole, Microsoft Computer Vision APIs Distilled,
https://doi.org/10.1007/978-1-4842-3342-9_4

CHAPTER 4

Computer Vision on Mobile
Apps with Xamarin

Artificial intelligence provides tremendous benefits to users if it is available everywhere.
With mobile devices and mobile apps, this is certainly possible. For this reason, for you,
as a developer, understanding how you can consume Cognitive Services in your mobile
apps is extremely important.

From the point of view of C# development, Xamarin is certainly the technology you
will want to consider for mobile app development. With Xamarin, you can build native
apps for Android, iOS, macOS, and tvOS in C#. Additionally, with Xamarin.Forms, you can
write native apps for Android, iOS, and Windows 10 with a single, shared C# codebase that
allows you to create cross-platform solutions. This chapter introduces you to the wonderful
world of Computer Vision on mobile devices with Xamarin.Forms, and I’m sure you will
immediately perceive the incredible opportunities that AI opens to mobile developers.

■■ Note  In this chapter, you will use emulators to run the iOS, Android, and Windows
10 versions of the sample project. However, for real-world mobile development, I strongly
recommend you work on physical devices.

Creating a Xamarin.Forms Solution
One of the goals of this chapter is to explain how you can consume the Computer Vision
API (and, more generally, Microsoft Cognitive Services) on multiple mobile platforms.
In terms of mobile app development, Xamarin.Forms is certainly the most appropriate
choice since it allows you to create apps for iOS, Android, and Windows 10 from a single C#
codebase. More specifically, you will see how to create an app whose user interface is made
of three tabs, allowing for describing images, recognizing text, and recognizing celebrities.

To build a Xamarin.Forms solution, you need Visual Studio 2017 on Windows or
Visual Studio for Mac on macOS. The free Community edition of both IDEs fully support
Xamarin.Forms development. I will now describe the steps to create and configure a new
sample Xamarin.Forms solution on both systems.

http://dx.doi.org/https://doi.org/10.1007/978-1-4842-3342-9_4

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

44

■■ Note  Because the goal of this chapter is not introducing Xamarin.Forms and rather
is describing how to invoke the Computer Vision API from a Xamarin.Forms solution, a
minimum knowledge of Xamarin.Forms is strongly recommended to complete this chapter. If
you do not have experience with it, you can start for free with my Xamarin.Forms Succinctly
e-book, available at http://bit.ly/2gegT9l. I will assume you know how to create a page
and how to use the Extensible Application Markup Language (XAML) to design a basic user
interface.

Configuring Visual Studio 2017 for Xamarin

■■ Note  If you already installed the Xamarin development tools along with Visual Studio
2017, you can skip this section. You do not need any additional configurations on Visual
Studio for Mac, which already includes all the required tools, assuming you selected the
Xamarin components at installation time.

Before you can get started with Xamarin development in Visual Studio 2017, you
must install the proper tools. To accomplish this, you first need to start the Visual Studio
Installer tool, and then you have to select the “Mobile development with .NET” workload,
as shown in Figure 4-1.

Figure 4-1.  Installing the Xamarin development tools

http://bit.ly/2gegT9l

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

45

At this point, click the “Individual components” tab, locate the Emulators group, and
make sure that at least the following components are selected:

•	 Google Android Emulator

•	 Intel Hardware Accelerated Execution Manager

•	 Windows 10 Mobile Emulator (select the highest Windows
version possible)

When ready, click Modify. The Visual Studio Installer will take a few minutes to
install the selected components. When the installation completes, you can close the
Visual Studio Installer and start Visual Studio 2017.

Introducing the Computer Vision Client Library
In the previous chapter, you saw how to use the System.Net.HttpClient class to
perform HTTP requests against the Computer Vision API service, and then you used
the Newtonsoft.Json namespace to parse the JSON response. This approach is the
most versatile because it can be easily reused across platforms, but it requires you to
implement your own .NET objects to represent the analysis result over images, and it
requires you to manually specify headers, content types, endpoints, and query string
parameters when you create an instance of HttpClient and when you invoke its methods
(typically PostAsync and GetAsync).

Microsoft has also developed a client portable library that encapsulates HTTP
requests into specific methods and that exposes classes that you can use to easily
deserialize the analysis result into .NET strongly typed objects. This library is called
Microsoft.ProjectOxford.Vision.dll and is available as a NuGet package.

■■ Note  Project Oxford was the project name for Microsoft Cognitive Services before it
was released.

In solutions where you work with portable libraries, this library can dramatically
simplify the way you interact with the Computer Vision API. For this reason, it perfectly
fits into a Xamarin.Forms solution, and, in this chapter, you will learn how to use this
library instead of the other approach so that you have full knowledge of all the ways to
query the Computer Vision service. Table 4-1 lists the most important types and members
provided by the library.

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

46

These types and members will be discussed in more detail shortly, when creating the
sample app's pages.

Mentioning this library before creating the Xamarin.Forms solution was necessary
so that you know what it is when installing all the necessary NuGet packages.

Creating a Xamarin.Forms Solution in Visual Studio 2017
In Visual Studio 2017, select File ➤ New ➤ Project. In the New Project dialog, locate the
Cross-Platform node and then select the Cross-Platform App (Xamarin) project template,
as shown in Figure 4-2. Enter ComputerVisionDemo as the project name and then
click OK.

Table 4-1.  Most Important Types and Members in the Microsoft.ProjectOxford.Vision
Library

Name Type Description

VisionServiceClient Class Provides managed access to the Computer
Vision API and allows you to specify a
subscription key

AnalyzeImageAsync Method Allows you to analyze and describe an image

RecognizeTextAsync Method Performs OCR over images containing text

AnalyzeImageInDomainAsync Method Allows you to analyze images based on
domain-specific models such as celebrities
and landmarks

AnalysisResult Class Represents the response for the analysis
result on an image

AnalysisInDomainResult Class Represents the response for the image
analysis based on domain-specific models

VisualFeature Enum Represents information that must be
returned from querying the Computer
Vision service

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

47

Figure 4-2.  Creating a Xamarin.Forms solution

In the next dialog, Visual Studio will ask you to specify the UI technology and
the code-sharing strategy. Select Xamarin.Forms and Portable Class Library (PCL),
respectively (see Figure 4-3).

Figure 4-3.  Configuring a Xamarin.Forms solution

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

48

Click OK when ready. When prompted, select the highest version of Windows 10 you
want to target. After a few seconds, Visual Studio will generate a solution that is made of
the following:

•	 A Portable Class Library (PCL) project that will contain all the
shared code across platforms

•	 A Xamarin.Android project that targets Android devices

•	 A Xamarin.iOS project that targets iOS devices

•	 A Universal Windows Platform (UWP) project that targets
Windows 10 devices and machines

The PCL project is the place where you write all the code that can be shared across
platforms, which includes the user interface and all the code that is not platform-specific.
You will now need a few NuGet packages, which you install by right-clicking the solution
name in Solution Explorer and then selecting Manage NuGet Packages. When the NuGet
user interface appears, you will need to install the following packages:

•	 Microsoft.ProjectOxford.Vision, the client library described
previously. This library has a dependency on the Newtonsoft.Json
package, which will also be installed.

•	 Xam.Plugin.Media, a library that makes it easy to access media
files with cross-platform code.

•	 Xam.Plugin.Connectivity, a library that allows you to check for
Internet connection availability with cross-platform code.

The solution is now set up. A guide about Visual Studio for Mac will be now provided,
and then you will start writing code.

Creating a Xamarin.Forms Solution in Visual Studio for
Mac
In Visual Studio for Mac, select File > New Solution. When the New Project dialog
appears, locate the App node under Multiplatform and select the Blank Forms App
template (see Figure 4-4). Do not choose the Forms App template, as it contains
boilerplate code that is not useful for this example.

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

49

When you click Next, you will be asked to enter a project name (see Figure 4-5). Enter
ComputerVisionDemo and make sure that Use Portable Class Library and “Use XAML
for user interface files” are both selected.

Figure 4-4.  Creating a Xamarin.Forms solution on the Mac

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

50

Remember that Xamarin.Forms solutions created with Visual Studio for Mac do
not support the Universal Windows Platform project type. Click Next and wait for the
solution to be created. Now you need to install some NuGet packages. Differently from
Visual Studio 2017 on Windows, in Visual Studio for Mac you cannot install packages
directly at the solution level. This means you need to install the same NuGet package into
each individual project. To install one or more NuGet packages into a project, you need
to right-click the project name in the Solution pad and then select Add ➤ Add Nuget
Packages. When the Add Packages dialog appears, you can search for and select multiple
packages to be installed into the same project. The packages you need are the following:

•	 Microsoft.ProjectOxford.Vision, the client library described
previously. This package is required only in the PCL project of
your solution and has a dependency on the Newtonsoft.Json
package, which will also be installed.

•	 Xam.Plugin.Media, a library that makes it easy to access media
files with cross-platform code. This package must be installed into
all the projects in the solution.

•	 Xam.Plugin.Connectivity, a library that allows you to check for
Internet connection availability with cross-platform code. This
package must be installed into all the projects in the solution.

Figure 4-5.  Configuring a Xamarin.Forms solution on the Mac

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

51

Once you have completed installing NuGet packages, you are ready to consume the
Computer Vision API from your Xamarin solution.

Instantiating the Service Client
The Computer Vision Client Library provides a class called VisionServiceClient, from
the Microsoft.ProjectOxford.Vision namespace, that allows you to communicate with the
Computer Vision API service in a totally .NET-oriented fashion. You therefore need an
instance of this class, and a good place to create one is in the App class and the App.xaml.
cs file.

This way, you will have a single instance that will serve for multiple requests in
different app pages. The following code demonstrates how to declare and create a shared
instance of the VisionServiceClient class:

using Microsoft.ProjectOxford.Vision;
using Xamarin.Forms;

namespace ComputerVisionDemo
{
 public partial class App : Application
 {
 internal static VisionServiceClient visionClient;
 public App()
 {
 InitializeComponent();

 visionClient = new VisionServiceClient("YOUR-KEY-GOES-HERE",
 �"https://YourAzureRegion.api.cognitive.microsoft.com/vision/

v1.0");
 MainPage = new ComputerVisionDemo.MainPage();
 }
}

Notice how the constructor takes two string parameters: the first parameter
represents your subscription key, and the second parameter is the root service URL,
where you will need to replace the part about the Azure region with one of the URLs
summarized in Chapter 2.

Implementing Image Analysis
The first feature you’re going to implement is to analyze and describe images, taking
advantage of the Computer Vision Client Library. This will be offered through a specific
page, which will be later embedded into the app’s main page.

First, add a new XAML content page to the PCL project. In Visual Studio 2017, you
accomplish this by right-clicking the project name and then selecting Add ➤ New Item.
In Visual Studio for Mac, you accomplish this by right-clicking the project name and then

http://dx.doi.org/10.1007/978-1-4842-3342-9_2

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

52

selecting Add ➤ New File. In both cases, select the ContentPage XAML item template and
call the new page ImageAnalysisPage.xaml. When you add the page, Visual Studio also
generates a C# code-behind file, in this case ImageAnalysisPage.xaml.cs. This is the
place where you will write the code that uploads an image to the Computer Vision service
for analysis and gets a response. This can be done by invoking the AnalyzeImageAsync
method of the VisionServiceClient class, encapsulating the logic as follows:

private async Task<AnalysisResult> AnalyzePictureAsync(Stream inputFile)
{
 // Use the connectivity plugin to detect
 // if a network connection is available
 // Remember a using Plugin.Connectivity; directive
 if (!CrossConnectivity.Current.IsConnected)
 {
 await DisplayAlert("Network error",
 �"Please check your network connection and retry.", "OK");
 return null;
 }

 �VisualFeature[] visualFeatures = new VisualFeature[] { VisualFeature.
Adult,

 �VisualFeature.Categories, VisualFeature.Color, VisualFeature.
Description,

 VisualFeature.Faces, VisualFeature.ImageType, VisualFeature.Tags };

 AnalysisResult analysisResult =
 await App.visionClient.AnalyzeImageAsync(inputFile,
 visualFeatures);

 return analysisResult;
}

This code first checks for Internet connection availability by leveraging the
CrossConnectivity class from the Xam.Plugin.Connectivity library. Then it creates
an array of VisualFeature objects, each representing a piece of information you want
to retrieve from the image. VisualFeature is actually an enumeration, and the array
combines multiple members. This is how VisualFeature is implemented behind the
scenes:

namespace Microsoft.ProjectOxford.Vision
{
 public enum VisualFeature
 {
 ImageType = 0,
 Color = 1,
 Faces = 2,
 Adult = 3,

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

53

 Categories = 4,
 Tags = 5,
 Description = 6
 }
}

The AnalyzeImageAsync method receives two arguments: the input file, which is a
stream, and the array of VisualFeature objects. The result is wrapped into an object of
type AnalysisResult and is defined as follows:

namespace Microsoft.ProjectOxford.Vision.Contract
{
 public class AnalysisResult
 {
 public AnalysisResult();

 public Guid RequestId { get; set; }
 public Metadata Metadata { get; set; }
 public ImageType ImageType { get; set; }
 public Color Color { get; set; }
 public Adult Adult { get; set; }
 public Category[] Categories { get; set; }
 public Face[] Faces { get; set; }
 public Tag[] Tags { get; set; }
 public Description Description { get; set; }
 }
}

Each of this class’s properties is a specialized type. It is a good idea to look at how
they are defined; you need to know where the information you need is actually stored
because you might want to perform data-binding from the user interface to these objects.
In the current sample app, you’ll take into consideration the Color, Adult, Category,
Face, Tags, and Description types. By the way, the sample app will use only a few
properties from these types, so Table 4-2 summarizes the properties that will be used. If
you want to see the full type definition, you can simply right-click the type name in the
code editor and then select Go To Definition.

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

54

You then need some code that allows the user either to pick an existing image from
the device or to take a new picture from the built-in camera. To accomplish this, you
can take advantage of the Xam.Plugin.Media library and write the following code that is
related to two buttons that will be declared soon in the UI (also notice that Indicator1 is
an ActivityIndicator control that will be placed in the user interface in a few moments):

private async void TakePictureButton_Clicked(object sender, EventArgs e)
{
 await CrossMedia.Current.Initialize();

 �if (!CrossMedia.Current.IsCameraAvailable || !CrossMedia.Current.
IsTakePhotoSupported)

 {
 await DisplayAlert("No Camera", "No camera available.", "OK");
 return;
 }

 �var file = await CrossMedia.Current.TakePhotoAsync(new
StoreCameraMediaOptions

 {
 SaveToAlbum = true,
 Name = "test.jpg"
 });

 if (file == null)
 return;

 this.Indicator1.IsVisible = true;
 this.Indicator1.IsRunning = true;

Table 4-2.  Most Common Properties for Image Analysis

Property Class Description Type

AccentColor Color Returns the dominant color in a
picture

string

IsAdultContent Adult Returns true if an image contains
explicit content

bool

IsRacyContent Adult Returns true if an image contains
racy content

bool

Captions Description An array of Caption type made
of a Text string property and a
Confidence double property that
represents the human language
description of an image

Caption[]

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

55

 Image1.Source = ImageSource.FromStream(() => file.GetStream());
 this.BindingContext = await AnalyzePictureAsync(file.GetStream());

 this.Indicator1.IsRunning = false;
 this.Indicator1.IsVisible = false;
}

private async void UploadPictureButton_Clicked(object sender, EventArgs e)
{
 if (!CrossMedia.Current.IsPickPhotoSupported)
 {
 await DisplayAlert("No upload", "Picking a photo is not supported.", "OK");
 return;
 }

 var file = await CrossMedia.Current.PickPhotoAsync();
 if (file == null)
 return;

 this.Indicator1.IsVisible = true;
 this.Indicator1.IsRunning = true;
 Image1.Source = ImageSource.FromStream(() => file.GetStream());

 try
 {
 this.BindingContext = await AnalyzePictureAsync(file.GetStream());
 }
 catch (Exception ex)
 {
 await DisplayAlert("Error", ex.Message, "OK");
 return;
 }
 finally
 {
 this.Indicator1.IsRunning = false;
 this.Indicator1.IsVisible = false;
 }
}

■■ Note  In the previous code, the result of the AnalyzePictureAsync method is assigned
to the BindingContext property directly only for demonstration purposes. In real-world
code, you will want to create a proper view model that will also serve as the data source for
the user interface.

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

56

Here are some points of interest in the previous code:

•	 The CrossMedia class from the Xam.Plugin.Media library allows
you to pick an existing image or take one from the camera with
the PickPhotoAsync and TakePhotoAsync methods, respectively.

•	 TakePhotoAsync allows you to specify a file name and whether the
file should be saved to the Camera Roll.

•	 The selected picture is assigned to the Source property of an
Image control, called Image1, and must be passed as an open
stream to the AnalyzePictureAsync method defined previously.

•	 The instance of the AnalysisResult class returned from
AnalyzePictureAsync is assigned to the page's BindingContext
property as the data source for the user interface. This allows
for data-binding controls to properties in the AnalysisResult
instance, as you will see shortly in the XAML code.

Now let’s see how to allow users to select images and how to display the analysis
results in the user interface for the current page.

Designing the User Interface
The XAML code of the user interface of the current page is simple. A root StackLayout
contains an Image control, where the selected image will be displayed, an
ActivityIndicator control to display a progress indicator, and a ScrollView, whose
content is a set of Label controls bound to properties of the AnalysisResult object, as
well as a ListView control that will display, via data binding, a list of detected tags. The
XAML code looks like the following:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" Title="Analysis"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="ComputerVisionDemo.ImageAnalysisPage">
 <ContentPage.Content>
 <StackLayout Orientation="Vertical">
 �<Button x:Name="TakePictureButton" Clicked="TakePictureButton_

Clicked"
 Text="Take from camera"/>
 �<Button x:Name="UploadPictureButton"

Clicked="UploadPictureButton_Clicked"
 Text="Pick a photo"/>
 �<ActivityIndicator x:Name="Indicator1" IsVisible="False"

IsRunning="False" />
 <Image x:Name="Image1" HeightRequest="240" WidthRequest="320" />

 <ScrollView Padding="10">
 <StackLayout>

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

57

 <StackLayout Orientation="Horizontal">
 <Label Text="Adult content: "/>
 <Label Text="{Binding Adult.IsAdultContent}"/>
 </StackLayout>
 <StackLayout Orientation="Horizontal">
 <Label Text="Racy content: "/>
 <Label Text="{Binding Adult.IsRacyContent}"/>
 </StackLayout>
 <StackLayout Orientation="Horizontal">
 <Label Text="Description: "/>
 <Label Text="{Binding Description.Captions[0].Text}"/>
 </StackLayout>
 <StackLayout Orientation="Horizontal">
 <Label Text="Accent color: "/>
 <Label Text="{Binding Color.AccentColor}"/>
 </StackLayout>
 <StackLayout Orientation="Horizontal">
 <Label Text="Tags: "/>
 <ListView ItemsSource="{Binding Tags}">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <Label Text="{Binding Name}"/>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </StackLayout>
 </StackLayout>
 </ScrollView>
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

Points of interest in the previous XAML code are represented by the Binding
expressions, each pointing to properties of the AnalysisResult class and their child
properties. It’s interesting to mention that the first element in the Description.Captions
array (with index zero) contains the natural language description for the image. You will
now see how to implement optical character recognition.

Implementing Optical Character Recognition
The Computer Vision Client Library also simplifies optical character recognition over
images, and the approach is similar to image analysis, in that you invoke a method called
RecognizeTextAsync from the VisionServiceClient class, passing the image you want
to analyze and getting an object of type OcrResults as a response. Having that said,
add a new XAML content page to the PCL project, called OcrRecognitionPage.xaml.

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

58

In the C# code-behind file, you can write the following method to implement OCR
recognition on an image file passed as a stream:

private async Task<OcrResults> AnalyzePictureAsync(Stream inputFile)
{
 if (!CrossConnectivity.Current.IsConnected)
 {
 �await DisplayAlert("Network error", "Please check your network

connection and retry.", "OK");
 return null;
 }

 OcrResults ocrResult = await App.visionClient.
RecognizeTextAsync(inputFile);
 return ocrResult;
}

As you did previously, you can use the CrossConnectivity class to detect Internet
connection availability. The OcrResults class is more complex than AnalysisResult.
Among other features, it exposes a Regions property of type Region[]. Each Region in
the array represents a region of text the service was able to recognize and exposes a Lines
property of type Line[]. Each line in the array represents a single line in the region and
exposes a Words property of type Word[]. Each Word in the array represents a word in
the line, and its Text property contains the actual word. Because of this more complex
structure, one possible way of retrieving the recognized text is to iterate regions, then
lines, and then words. For example, you can create a number of StackLayout containers
with a number of labels representing the detected text as follows:

private void PopulateUIWithRegions(OcrResults ocrResult)
{
 // Iterate the regions
 foreach (var region in ocrResult.Regions)
 {
 // Iterate lines per region
 foreach (var line in region.Lines)
 {
 // For each line, add a panel
 // to present words horizontally
 var lineStack = new StackLayout
 { Orientation = StackOrientation.Horizontal };

 // Iterate words per line and add the word
 // to the StackLayout
 foreach (var word in line.Words)
 {
 var textLabel = new Label { Text = word.Text };
 lineStack.Children.Add(textLabel);
 }

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

59

 // Add the StackLayout to the UI
 this.DetectedText.Children.Add(lineStack);
 }
 }
}

DetectedText is a root StackLayout container in the UI, and the
PopulateUIWithRegions method will be invoked after retrieving the OCR result with
AnalyzePictureAsync. Now exactly as you did for image analysis, you can implement two
Button.Clicked event handlers, one for picking an image from the device’s disk and one
for taking a picture from the camera:

private async void UploadPictureButton_Clicked(object sender, EventArgs e)
{
 if (!CrossMedia.Current.IsPickPhotoSupported)
 {
 await DisplayAlert("No upload", "Picking a photo is not supported.", "OK");
 return;
 }

 var file = await CrossMedia.Current.PickPhotoAsync();
 if (file == null)
 return;

 this.Indicator1.IsVisible = true;
 this.Indicator1.IsRunning = true;
 Image1.Source = ImageSource.FromStream(() => file.GetStream());

 var ocrResult = await AnalyzePictureAsync(file.GetStream());
 this.BindingContext = ocrResult;

 PopulateUIWithRegions(ocrResult);

 this.Indicator1.IsRunning = false;
 this.Indicator1.IsVisible = false;
}

private async void TakePictureButton_Clicked(object sender, EventArgs e)
{
 await CrossMedia.Current.Initialize();

 �if (!CrossMedia.Current.IsCameraAvailable || !CrossMedia.Current.
IsTakePhotoSupported)

 {
 await DisplayAlert("No Camera", "No camera available.", "OK");
 return;
 }

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

60

 var file = await CrossMedia.Current.TakePhotoAsync(new StoreCameraMediaOptions
 {
 SaveToAlbum = true,
 Name = "test.jpg"
 });

 if (file == null)
 return;

 this.Indicator1.IsVisible = true;
 this.Indicator1.IsRunning = true;

 Image1.Source = ImageSource.FromStream(() => file.GetStream());

 var ocrResult = await AnalyzePictureAsync(file.GetStream());
 this.BindingContext = null;
 this.BindingContext = ocrResult;

 PopulateUIWithRegions(ocrResult);

 this.Indicator1.IsRunning = false;
 this.Indicator1.IsVisible = false;
}

Notice how the result of the OCR is assigned to the BindingContext property of the
page. The reason is that the user interface will data-bind a label to the Language property
of the OcrResults class, which contains the language for the recognized text. Then notice
how an invocation to PopulateUIWithRegions will populate the UI with all the individual
lines of text.

Designing the User Interface
The user interface for this page is even simpler, since it contains the Image control to
display the selected image, two buttons, an ActivityIndicator to display the progress
indicator, a data-bound Label to display the language, and a scrollable StackLayout
that will be populated at runtime with the PopulateUIWithRegions method. The XAML
markup looks like the following:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" Title="OCR"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="ComputerVisionDemo.OcrRecognitionPage">

 <StackLayout Orientation="Vertical">
 <Button x:Name="TakePictureButton" Clicked="TakePictureButton_Clicked"
 Text="Take from camera"/>

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

61

 �<Button x:Name="UploadPictureButton" Clicked="UploadPictureButton_Clicked"
 Text="Pick a photo"/>
 <ActivityIndicator x:Name="Indicator1" IsVisible="False" IsRunning="False" />
 <Image x:Name="Image1" HeightRequest="240" />

 <StackLayout Orientation="Horizontal">
 <Label Text="Language: "/>
 <Label Text="{Binding Language}"/>
 </StackLayout>

 <ScrollView>
 <StackLayout x:Name="DetectedText"/>
 </ScrollView>

 </StackLayout>
</ContentPage>

You’re almost done. The next step is to implement celebrity recognition, and then
you will be able to see the results of your work in action.

Implementing Celebrity Recognition
Celebrity recognition is part of the domain-specific models available in the Computer
Vision API. At this writing, this service supports celebrity and landmark recognition as
domain-specific models. Regarding domain-specific models, the Computer Vision Client
Library provides the VisionServiceClient.AnalyzeImageInDomainAsync method, which
returns an object of type AnalysisInDomainResult.

To understand how it works, add a new page to the PCL project called
CelebrityRecognitionPage.xaml. In the C# code-behind, add the following method:

private async Task<AnalysisInDomainResult> AnalyzePictureAsync(Stream
inputFile)
{
 if (!CrossConnectivity.Current.IsConnected)
 {
 await DisplayAlert("Network error", "Please check your network
connection and retry.", "OK");
 return null;
 }

 AnalysisInDomainResult analysisResult =
 �await App.visionClient.AnalyzeImageInDomainAsync(inputFile, await

GetDomainModel());

 return analysisResult;
}

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

62

As you can see, the AnalyzeImageInDomainAsync method requires the input file as
a parameter but also an object of type Model that represents the domain-specific model
against which the image must be analyzed. In this case, this object is returned by a
method called GetDomainModel, whose code is as follows:

private async Task<Model> GetDomainModel()
{
 ModelResult modelResult = await App.visionClient.ListModelsAsync();
 // At this writing, only celebrity recognition
 // is available. It is the first model in the list
 return modelResult.Models.First();
}

The ListModelsAsync method returns the list of available domain-specific models.
The first model in the list is about celebrities, but you can select a different one. Parsing
the AnalysisInDomainResult object returned at the end of the analysis is more complex
because its Result property is of type object, and therefore you must do some manual
parsing. The result is actually JSON markup that contains an element called celebrities,
which contains an array of celebrity names, each identified by the name property. Put
succinctly, you could use the Newtonsoft.Json.Linq.JObject class to parse JSON
content into string contents as follows:

private string ParseCelebrityName(object analysisResult)
{
 JObject parsedJSONresult = JObject.Parse(analysisResult.ToString());

 var celebrities = from celebrity in parsedJSONresult["celebrities"]
 select (string)celebrity["name"];

 return celebrities.FirstOrDefault();
}

Notice that, for the sake of keeping the UI simple, the previous code is returning
only one celebrity name. You can change the code to remove FirstOrDefault and return
an IEnumerable<string> if you want to handle multiple celebrity names. As you did
previously, you can now handle two Button.Clicked events as follows:

private async void TakePictureButton_Clicked(object sender, EventArgs e)
{
 await CrossMedia.Current.Initialize();

 �if (!CrossMedia.Current.IsCameraAvailable || !CrossMedia.Current.
IsTakePhotoSupported)

 {
 await DisplayAlert("No Camera", "No camera available.", "OK");
 return;
 }

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

63

 �var file = await CrossMedia.Current.TakePhotoAsync(new
StoreCameraMediaOptions

 {
 SaveToAlbum = true,
 Name = "test.jpg"
 });

 if (file == null)
 return;

 this.Indicator1.IsVisible = true;
 this.Indicator1.IsRunning = true;

 Image1.Source = ImageSource.FromStream(() => file.GetStream());

 var analysisResult = await AnalyzePictureAsync(file.GetStream());
 this.CelebrityName.Text = ParseCelebrityName(analysisResult.Result);

 this.Indicator1.IsRunning = false;
 this.Indicator1.IsVisible = false;
}

private async void UploadPictureButton_Clicked(object sender, EventArgs e)
{
 if (!CrossMedia.Current.IsPickPhotoSupported)
 {
 �await DisplayAlert("No upload", "Picking a photo is not supported.",

"OK");
 return;
 }

 var file = await CrossMedia.Current.PickPhotoAsync();
 if (file == null)
 return;

 this.Indicator1.IsVisible = true;
 this.Indicator1.IsRunning = true;
 Image1.Source = ImageSource.FromStream(() => file.GetStream());

 �AnalysisInDomainResult analysisResult = await AnalyzePictureAsync(file.
GetStream());

 this.CelebrityName.Text = ParseCelebrityName(analysisResult.Result);

 this.Indicator1.IsRunning = false;
 this.Indicator1.IsVisible = false;
}

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

64

In this particular case, there is no data binding. There is only a label called
CelebrityName whose Text property is assigned with the result of ParseCelebrityName. If
you change the code to handle multiple celebrity names, you will obviously need multiple
labels or a ListView control.

Designing the User Interface
The XAML code for the user interface of this page is really simple. At the core, you need
an Image control to display the selected image and a Label to display the celebrity name:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" Title="Celebrity"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="ComputerVisionDemo.CelebrityRecognitionPage">
 <StackLayout Orientation="Vertical">
 <Button x:Name="TakePictureButton" Clicked="TakePictureButton_Clicked"
 Text="Take from camera"/>
 <Button x:Name="UploadPictureButton" Clicked="UploadPictureButton_
Clicked"
 Text="Pick a photo"/>
 <ActivityIndicator x:Name="Indicator1" IsVisible="False"
IsRunning="False" />
 <Image x:Name="Image1" HeightRequest="240" />

 <Label x:Name="CelebrityName"/>
 </StackLayout>
</ContentPage>

It’s now time to put all the pages together and see how the app works.

Putting It All Together
The final step in the sample Xamarin.Forms solution is to create a tabbed page that
includes the content pages created previously. To accomplish this, you can change the
content of the MainPage.xaml page from a ContentPage object to a TabbedPage object,
whose XAML markup looks like this:

<?xml version="1.0" encoding="utf-8" ?>
<TabbedPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:ComputerVisionDemo"
 x:Class="ComputerVisionDemo.MainPage">

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

65

 <TabbedPage.Children>
 <local:ImageAnalysisPage />
 <local:OcrRecognitionPage />
 <local:CelebrityRecognitionPage />
 </TabbedPage.Children>
</TabbedPage>

Notice how you add ContentPage objects to the TabbedPage.Children property
and Xamarin.Forms will resolve the appropriate layout based on the system the app is
running on. In the C# code-behind, you need to change the inheritance for the MainPage
object, from ContentPage to TabbedPage, as follows:

public partial class MainPage : TabbedPage
{

 public MainPage()
 {
 InitializeComponent();
 }
}

Now you are ready to test your sample app, but there is a last step you must do,
which is enabling permissions to access the camera and the picture library on the desired
platforms. For the UWP project, you do not need to change the application manifest
since all the necessary permissions are already set. For the Android project, you need
to select the following permissions in the application manifest: CAMERA, INTERNET,
READ_EXTERNAL_STORAGE. For the iOS project, in the Info.plist file you need to include
the NSCameraUsageDescription and NSPhotoLibraryUsageDescription properties with
a string description to support privacy restrictions in iOS 10 and higher. At this point,
select your target platform and start debugging using the toolbar or keyboard shortcuts
available on your system. Figure 4-6 shows an example of image description on the
Windows tablet simulator, whereas Figure 4-7 shows an example of OCR based on the iOS
simulator. For copyright reasons, I will not show the result for celebrity recognition, but
you can try yourself.

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

66

Figure 4-6.  The sample app running on a Windows 10 tablet

Figure 4-7.  The sample app performing OCR on the iPhone

Chapter 4 ■ Computer Vision on Mobile Apps with Xamarin

67

As you can see, depending on the image quality, your app will be able to perform
sophisticated analysis over images. Implementing computer vision in your mobile apps
opens up infinite scenarios and will help you build the next generation of intelligent apps.

Summary
Artificial intelligence is extremely useful on mobile apps, because users can have apps
empowered by intelligent algorithms in their pockets, wherever they go. Based on this,
this chapter introduced how to consume the Computer Vision API on mobile apps
developed with Xamarin.Forms.

You saw how to create a Xamarin.Forms solution on both Visual Studio 2017 and
Visual Studio for Mac and how to configure the solution with the proper NuGet packages.
You then got an overview of a different approach to querying the Computer Vision API,
based on the Computer Vision Client Library, represented by the Microsoft.ProjectOxford.
Vision package, which exposes types and members that allow for executing operations
and retrieving results in a totally .NET-oriented fashion. The discussion then moved to
the practical implementation of the analysis operations, including describing images,
performing OCR, and recognizing celebrities, also leveraging useful Xamarin plug-ins.
The biggest benefit of using the Client Library is that you do not need to perform complex
JSON parsing, as you instead get strongly typed .NET objects to represent the response
returned by the service. Together with the implementation, you saw how to design basic
user interfaces and how to test the sample application in the emulators. The next chapter
gives you instead an overview of another interesting opportunity, which is consuming the
Computer Vision API from ASP.NET web applications.

69© Alessandro Del Sole 2018
A. Del Sole, Microsoft Computer Vision APIs Distilled,
https://doi.org/10.1007/978-1-4842-3342-9_5

CHAPTER 5

Computer Vision
in Web Apps with
ASP.NET MVC Core

Bringing artificial intelligence to mobile apps, as you saw in Chapter 4, is extremely
interesting for many reasons, not only from the point of view of the opportunities you
have as a developer but also because you empower users to do more with a device they
have in their pockets.

However, like in other development scenarios, you should never forget about
people working on PCs in office workstations or home offices. For example, imagine how
artificial intelligence in the healthcare industry could help doctors to identify patients’
symptoms or emotions and generate appropriate reports. This could be done with
mobile devices, but probably doctors work on PCs at their desks, and the environment
is potentially a private intranet, with custom web applications that can connect to a
webcam.

Because Cognitive Services can be consumed by any application on any platform,
they can also be consumed within an ASP.NET web application. By saying ASP.NET,
I mean ASP.NET MVC on the .NET Framework, ASP.NET MVC Core on .NET Core,
and Web API services on both the .NET Framework and .NET Core. In this chapter, I
will demonstrate how to consume the Computer Vision API in an ASP.NET MVC Core
application on Windows, macOS, and Ubuntu. Keep in mind that the same concepts
apply to ASP.NET on the .NET Framework. This chapter’s focus is not on explaining ASP.
NET MVC Core, so you can take a look at the official documentation (http://docs.
microsoft.com/en-us/aspnet/core) for further details.

■■ Note  This chapter assumes you already have configured your development
environment with Visual Studio 2017, Visual Studio for Mac, or Visual Studio Code,
depending on your operating system. Take a look at Chapter 3 for more information on
configuring the development environment.

http://dx.doi.org/https://doi.org/10.1007/978-1-4842-3342-9_5
http://dx.doi.org/10.1007/978-1-4842-3342-9_4
http://docs.microsoft.com/en-us/aspnet/core
http://docs.microsoft.com/en-us/aspnet/core
http://dx.doi.org/10.1007/978-1-4842-3342-9_3

Chapter 5 ■ Computer Vision in Web Apps with ASP.NET MVC Core

70

Creating an ASP.NET MVC Core Application
ASP.NET MVC Core is a lightweight, open source, cross-platform framework that allows
you to build web applications that run on Windows, macOS, and Linux (and its more
popular distributions), using C# and the Model-View-Controller pattern on the .NET
Core runtime. If you have experience with ASP.NET MVC on the .NET Framework, you
will be familiar with its .NET Core counterpart. The goal of this chapter is to explain how
you can create a web application that uploads an image file to the Computer Vision API,
displaying the analysis result on a web page.

I will first explain how to generate a new ASP.NET MVC Core application on the three
operating systems introduced in Chapter 3; then I will explain the C# code you can use to
send the image for analysis and parse and display the response.

Creating the Web Application with Visual Studio 2017
In Visual Studio 2017, select File ➤ New ➤ Project. In the New Project dialog, locate the
.NET Core category. Then select the ASP.NET Core Web Application template, as shown
in Figure 5-1. Call the new project WebComputerVision and then click OK.

Figure 5-1.  The project template for an ASP.NET Core web application

http://dx.doi.org/10.1007/978-1-4842-3342-9_3

Chapter 5 ■ Computer Vision in Web Apps with ASP.NET MVC Core

71

In the next dialog, you will be asked to specify what kind of application you want to
create. Select the Web Application (Model-View-Controller) template (see Figure 5-2) and
then click OK.

Figure 5-2.  Creating an MVC project

■■ Note  Notice how you can configure the authentication mechanism and how you
can enable support for packaging your application into a Docker container. Regarding
authentication, you can select individual authentication (username and password), Office
365 authentication, Windows authentication for intranets, and anonymous authentication
(the default). This is a nice option because Visual Studio will generate the necessary
infrastructure to support authentication.

Once the project has been created, the next step is to add a new web page that will
be used to display the controls required to upload the image and to display the analysis
results. For the sake of simplicity, this page can be added to the Views\Home folder. So,
right-click this folder in Solution Explorer and then select Add ➤ New Item. In the Add
New Item dialog, select the MVC View Page item, as demonstrated in Figure 5-3.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ Computer Vision in Web Apps with ASP.NET MVC Core

72

Make sure the name of the page is Vision.cshtml and then click Add. To avoid
extra complexity, in this case there is no need to add a dedicated controller class; the
HomeController class will be used. This will be demonstrated later. For now, let’s move
on to configuring the project by installing the Newtonsoft.Json NuGet package. Exactly
as you did in Chapter 3, right-click the project name in Solution Explorer and then select
Manage NuGet Packages. When the NuGet window appears, search for the Newtonsoft.
Json package and click Install. This package will be used to deserialize and parse the
JSON response returned by the Computer Vision service.

Creating the Web Application with Visual Studio for Mac
In Visual Studio for Mac, select File ➤ New Solution. In the New Project dialog, locate the
ASP.NET Core Web App project template under .NET Core ➤ App, as demonstrated in
Figure 5-4. When ready, click Next.

Figure 5-3.  Adding an MVC page

http://dx.doi.org/10.1007/978-1-4842-3342-9_3

Chapter 5 ■ Computer Vision in Web Apps with ASP.NET MVC Core

73

■■ Note  If you see two ASP.NET Core Web App templates, select the first one in the list, as
shown in Figure 5-4. The second project template generates a web project based on Razor
views, but I’m not discussing Razor in this book.

If you have multiple versions of .NET Core installed, you will be asked to select the
runtime version. Select .NET Core 2.0 and click Next. In the end, you will be asked to
supply the project name, as shown in Figure 5-5, so enter WebComputerVision and click
Create.

Figure 5-4.  Creating a new ASP.NET MVC Core project in Visual Studio for Mac

Chapter 5 ■ Computer Vision in Web Apps with ASP.NET MVC Core

74

For Visual Studio 2017 on Windows, you need to add a new web page that will
display the user controls required to upload an image and display the analysis results. To
accomplish this, right-click the Views\Home folder in the Solution pad and then select Add
➤ New File. In the New File dialog, select the MVC View Page template, and enter Vision
as the page name, as represented in Figure 5-6; then click New.

Figure 5-5.  Providing a project name

Chapter 5 ■ Computer Vision in Web Apps with ASP.NET MVC Core

75

The last step is to install from NuGet a library that you can use to parse and
deserialize JSON contents. Exactly as you did in Chapter 3, in the Solution pad right-click
the project name and then select Add ➤ Add NuGet Packages. When the NuGet dialog
appears, search for the Json.NET package and then click Add Package (see Figure 5-7).

Figure 5-6.  Adding a new MVC page

http://dx.doi.org/10.1007/978-1-4842-3342-9_3

Chapter 5 ■ Computer Vision in Web Apps with ASP.NET MVC Core

76

■■ Note  Remember that Json.NET and Newtonsoft.Json are the same thing, but Visual
Studio 2017 shows the package ID (Newtonsoft.Json) and Visual Studio for Mac shows the
package name.

Now the project is configured, so you can move on to creating an ASP.NET MVC Core
application on Ubuntu with Visual Studio Code.

Creating the Web Application with Visual Studio Code
As you learned in Chapter 3, you can create .NET applications on Linux and its more
popular distributions using C# and Visual Studio Code. However, the latter has no built-in
options to create a new project, so you have to use the dotnet command-line tool. This
will be demonstrated on Ubuntu. Follow these steps:

	 1.	 With the Files program, open the Home folder and create a new
subfolder called WebComputerVision.

	 2.	 Enter the new folder, right-click, and select Open in Terminal.

Figure 5-7.  Installing the Json.NET package

http://dx.doi.org/10.1007/978-1-4842-3342-9_3

Chapter 5 ■ Computer Vision in Web Apps with ASP.NET MVC Core

77

	 3.	 When an instance of the Terminal is started, type the
following command line, which will scaffold a new, empty
ASP.NET MVC project with the same structure you saw in
Visual Studio 2017 and Visual Studio for Mac:

> dotnet new mvc

	 4.	 Open the new project in Visual Studio Code with the following
command line:

> code.

When Visual Studio Code starts and the new project is opened, accept the prompt to
generate the required assets; then in the Explorer bar, locate the Views\Home folder. Right-
click, select New File, and rename the new file to Vision.cshtml. This file represents a
new web page that will be used to display controls required to upload an image file to the
Computer Vision API and the analysis result.

The next step is adding the Newtonsoft.Json NuGet package to the project. As you
might remember from Chapter 3, to accomplish this, you need to select the .csproj
project file in the Explorer bar, and then you add a PackageReference element as follows:

<ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
 <PackageReference Include="Newtonsoft.Json" Version="10.0.3" />
</ItemGroup>

Now click File ➤ Save All so that Visual Studio Code will be able to restore all
packages and to refresh references. At this point, you have an ASP.NET MVC Core project
configured on all the three major platforms, and you can start writing code in the editor of
your choice.

Implementing the Controller
In an MVC application, URLs are mapped to controllers, which are C# classes that process
incoming requests, handle user input, and execute application logic. When you create a
new ASP.NET MVC Core application with .NET Core, the project contains one controller
class, called HomeController and defined in the HomeController.cs file. This class
exposes methods (technically actions) that are invoked when the user clicks hyperlinks
in the user interface and that therefore are mapped to a page’s content via HTML markup
that you will see in the next section.

For the current example, it is necessary to implement, inside a controller, a method
(the action) that will be mapped to the Vision.cshtml page added previously to the
project. Though common practice in real-world applications, in this particular case
and for the sake of simplicity, it’s not necessary to create a separate controller, so the
HomeController class can be extended for our purposes. Currently, the HomeController
controller contains four action methods: Index, mapped to the Index.cshtml page;

http://dx.doi.org/10.1007/978-1-4842-3342-9_3

Chapter 5 ■ Computer Vision in Web Apps with ASP.NET MVC Core

78

About, mapped to the About.cshtml page; Contact, mapped to the Contact.cshtml page;
and Error, mapped to a generic error page. A new action called Vision will be added to
the controller. The code for the action is simple and looks like the following:

public IActionResult Vision()
{
 ViewData["Message"] = "Picture analysis";

 return View();
}

This method returns to the same-named page, assigning the ViewData dynamic
object with a string that will be displayed in the page. You then need to implement the
real action that will be responsible for sending the HTTP request to the Computer Vision
service, including the image file. In the case of Computer Vision, Face, and Emotion
APIs, the image file must be read as a Stream object, which must be serialized into a
base-64 string and then wrapped into a byte array. So, before you implement the action,
you need some code that reads the image file and serializes it into a byte array. This is
accomplished with the following code:

private string BytesToSrcString(byte[] bytes) => "data:image/jpg;base64," +
Convert.ToBase64String(bytes);

// IFormFile represents a file that can be sent
// with HTTP requests
private string FileToImgSrcString(IFormFile file)
{
 byte[] fileBytes;
 using (var stream = file.OpenReadStream())
 {

 using (var memoryStream = new MemoryStream())
 {
 stream.CopyTo(memoryStream);
 fileBytes = memoryStream.ToArray();
 }
 }
 return BytesToSrcString(fileBytes);
}

Now that you have a way of reading the image file as a stream and of serializing it into
a byte array, you can implement the Vision action as follows (see comments in the code):

private const string apiKey = "YOUR-KEY-GOES-HERE";

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Vision(IFormFile file)

Chapter 5 ■ Computer Vision in Web Apps with ASP.NET MVC Core

79

{
 //put the original file in the view data
 ViewData["originalImage"] = FileToImgSrcString(file);
 string result = null;

 using (var httpClient = new HttpClient())
 {
 �// Request parameters (Replace [location] with the domain name of

your Azure region)
 �string baseUri = "https://[location].api.cognitive.microsoft.com/

vision/v1.0/describe";

 //set up HttpClient
 httpClient.BaseAddress = new Uri(baseUri);
 �httpClient.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key",

apiKey);

 //set up data object
 HttpContent content = new StreamContent(file.OpenReadStream());
 �content.Headers.ContentType = new MediaTypeWithQualityHeaderValue("a

pplication/octet-stream");

 //make request
 var response = await httpClient.PostAsync(baseUri, content);

 // get the string for the JSON response
 string jsonResponse = await response.Content.ReadAsStringAsync();

 // You can replace the following code with customized or
 // more precise JSON deserialization
 var jresult = JObject.Parse(jsonResponse);
 result = jresult["description"]["captions"][0]["text"].ToString();
 }

 ViewData["result"] = result;
 return View();
}

The code here is invoking the endpoint that allows for describing an image, but
of course you can use a different endpoint. Also, notice how the code here is using
deserialization techniques with the JObject class you used in Chapter 3. Of course,
depending on the endpoint you invoke and on the response you expect, you can
implement different deserialization techniques. In this particular case, the first natural
language description returned by the service is retrieved and returned to the caller page,
which is the Vision.cshtml page you added previously and that will be designed in the
next section.

http://dx.doi.org/10.1007/978-1-4842-3342-9_3

Chapter 5 ■ Computer Vision in Web Apps with ASP.NET MVC Core

80

Designing the View
The user interface of the Vision.cshtml page that will be used to select and upload an
image file and to display the analysis results is simple. A Form object contains Label
controls used to display some text, an Input control allows a user to select a file, and
another Input control starts the upload operation; in addition, an Img control is used
to display the selected image, and another Label is used to display the result of the
invocation to the Computer Vision service. The complete markup for the page looks like
the following:

@{
 ViewData["Title"] = "Vision";
}
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>

<div class="row">
 <div class="col-md-12">
 <form asp-action="Vision" enctype="multipart/form-data">
 <div class="form-horizontal">
 <div class="form-group">
 <label for="file">Image</label>
 �<input type="file" name="file" id="file" class="form-

control">
 �<p class="help-block">Images must be up to 4 megabytes

and greater than 50x50</p>
 </div>
 <div class="form-group">
 �<input type="submit" value="Upload" class="btn btn-

primary" />
 </div>
 </div>
 </form>
 </div>
</div>

<div class="row">
 <div class="col-md-12">
 <h4>Original Image</h4>

 </div>
</div>

<div class="row">
 <div class="col-md-12">
 <h4>Result</h4>

Chapter 5 ■ Computer Vision in Web Apps with ASP.NET MVC Core

81

 <label>@ViewData["result"]</label>
 </div>
</div>

Notice how the page can receive data from the related action by using the ViewData
object (in ASP.NET MVC, the @ symbol allows you to include C# code in the markup).
Once you have designed the page, you have to add it to the list of pages available for the
application. To accomplish this, open the _Layout.cshtml file located under Views\
Shared, and add the following line highlighted in bold in the code block that groups the
available pages:

<div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 �<a asp-area="" asp-controller="Home" asp-action="Index">Home

 �<a asp-area="" asp-controller="Home" asp-action="About">About

 �<a asp-area="" asp-controller="Home" asp-action="Contact">

Contact
 �<a asp-area="" asp-controller="Home" asp-action="Vision">

Vision

</div>

Notice how asp-controller specifies the associated controller class (the Controller
literal is omitted) and how asp-action allows you to specify the action in the controller to
be associated to the page. Now that the page is ready, you can test the application.

Testing the Application
Regardless of the development environment and of the operating system you are using,
you can start the application with the debugging tools you already know. For example,
you can press F5 in Visual Studio 2017, press Command+Enter in Visual Studio for Mac,
or click the “Start debugging” button in the Debug pane in Visual Studio Code.

It is important to know that, for local debugging, ASP.NET MVC Core uses a web
server called Kestrel (http://docs.microsoft.com/en-us/aspnet/core/fundamentals/
servers/kestrel). Kestrel is an open source, cross-platform development server that
can be used to host web applications at debugging time, and both Visual Studio for Mac
and Visual Studio Code automatically use Kestrel when you start debugging. Visual
Studio 2017 on Windows is not limited to using Kestrel, and it also allows you to select IIS
Express as the host. For the sake of consistency across platforms, for this example make
sure you select Kestrel as the development server in Visual Studio 2017. To accomplish
this, expand the menu of the Start button and select your project name, as shown in
Figure 5-8.

http://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
http://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel

Chapter 5 ■ Computer Vision in Web Apps with ASP.NET MVC Core

82

When the application starts in debug mode, the .NET Core execution environment also
starts the Kestrel service in a console application. By default, Kestrel works with the http://
localhost:5000 address. However, Visual Studio 2017 allows you to change the port in the
project properties. When the application starts in your browser, it will look like Figure 5-9.

Figure 5-8.  In Visual Studio 2017, selecting the project name enables the Kestrel debugger.

Figure 5-9.  The sample application running

Chapter 5 ■ Computer Vision in Web Apps with ASP.NET MVC Core

83

As you can see, a hyperlink called Vision is available in the upper-right corner. If you
click this hyperlink, the Vision page will appear and will look like Figure 5-10.

Figure 5-10.  The user interface designed to select and upload an image file

Here you can click the Browse button, select an image file, and, when ready, click
the Upload button. If the selected image is valid, the Computer Vision API will return a
description that will be displayed in the page, together with the selected image, as shown
in Figure 5-11.

Chapter 5 ■ Computer Vision in Web Apps with ASP.NET MVC Core

84

Let’s now try to see the behavior of the application by using OCR instead of the
image description. First, in the HomeController.cs file, change the baseUri variable with
the following declaration:

string baseUri = "https://[location].api.cognitive.microsoft.com/vision/
v1.0/ocr";

where [location] must be replaced with the domain name of your Azure region.
Then, replace the following line:

result = jresult["description"]["captions"][0]["text"].ToString();

Figure 5-11.  The result of the analysis returned by the Computer Vision API and displayed
in the web page

Chapter 5 ■ Computer Vision in Web Apps with ASP.NET MVC Core

85

With the following loop that parses regions, lines, and words (see Chapter 3 for a
recap about OCR responses):

foreach(var region in jresult["regions"])
{
 foreach(var line in region["lines"])
 {
 foreach(var word in line["words"])
 {
 result = result + " " + word["text"].ToString();
 }
 }
}

If you now restart the application and select an image that contains text, you will see
how the page correctly shows the result of the OCR recognition, if the operation succeeds.
Figure 5-12 shows an example.

Figure 5-12.  The result of optical character recognition on an image

http://dx.doi.org/10.1007/978-1-4842-3342-9_3

Chapter 5 ■ Computer Vision in Web Apps with ASP.NET MVC Core

86

The last example is instead based on a domain-specific model, in particular on
landmarks recognition. In the C# code, replace the value of the baseUri variable with the
following:

string baseUri = "https://[location].api.cognitive.microsoft.com/vision/
v1.0/models/landmarks/analyze";

As usual, [location] must be replaced with the name of your Azure region.

■■ Note  In the previous chapters, you saw how to perform an HTTP GET request to
retrieve the list of domain-specific models that you can use with the previous endpoint.
Obviously, if you know in advance the exact name of the domain model, like in the current
example, you can avoid the GET request.

Now change the way you parse the JSON response as follows:

result = jresult["result"]["landmarks"][0]["name"].ToString();

Among other things, the JSON response contains an array called result, with as
many landmarks arrays as landmarks that have been detected in a picture; the name
property of each returns the landmark name. If you now restart the application and try to
upload an image with a landmark in it, you will see how the Computer Vision service will
be able to detect the correct information, as demonstrated in Figure 5-13.

Chapter 5 ■ Computer Vision in Web Apps with ASP.NET MVC Core

87

Figure 5-13.  Landmarks recognition

The Computer Vision API can really enhance web applications for both the
enterprise and the world of consumers, with powerful image analysis algorithms that
help you to create next-generation applications. In addition, with .NET Core, all this
power is also available for the macOS and Linux systems.

Summary
In this chapter, you saw how to leverage the power of the Computer Vision API in a web
application built with ASP.NET MVC Core. At the beginning, you saw how to create the
same sample project on three different systems with Visual Studio 2017, Visual Studio for
Mac, and Visual Studio Code.

Then you saw how to implement an action inside a controller to read an image file
from disk and send it to the Computer Vision service for describing its content. Next,
you saw how to design a web page that contains controls to select and upload the image
and that display the analysis result. Finally, you saw how to test the application locally,
demonstrating how powerful web applications that leverage artificial intelligence can be.

89© Alessandro Del Sole 2018
A. Del Sole, Microsoft Computer Vision APIs Distilled,
https://doi.org/10.1007/978-1-4842-3342-9

�       � A, B
AnalyzeImageAsync method, 52–53
AnalyzeImageInDomainAsync method, 62
Array, 40
Artificial intelligence (AI) Platform, 1–3
ASP.NET MVC Core

application testing, 81, 83, 85–86
controller, 77–79
creation

Model-View-Controller, 70
.NET Framework, 70
Visual Studio 2017, 70–72
Visual Studio for Mac, 72–76
Web Application, 76–77

view design, 80
Azure Machine Learning, 1

�       � C, D, E, F, G
C#

console application
ComputerVisionDemo.csproj

file, 24
desktop client distribution of

Linux, 23
Linux-based systems, 23
new project, 24
Program.cs file, 25
Ubuntu machine, 23
Visual Studio 2017, 18–20
Visual Studio for Mac, 20–23

domain-specific models, 39–41
generating thumbnails, 32–33
image analysis, 29, 31–32
image description, 25–26, 28
OCR, 36–39
tagging images, 34–36

Computer Vision API
analysis types, 6
Azure region, 7
Azure subscription

creation, 11
displaying access keys, 13–14
Show access keys, 13
supplying information, 12

C# (see C#)
cognitive service, 5
HTTP requests, 5, 7–8
HTTP response, 9–10
RESTful service, 5

ComputerVisionDemo, 46

�       � H, I
HomeController, 77
HttpClient class, 26

�       � J, K
JProperty class, 26
Json.NET package, 76

�       � L
ListModelsAsync method, 62

�       � M, N
Microsoft cognitive services

AI Platform, 1–3
categories, 2
development tools

and platforms, 4
Vision APIs, 3

Index

■ INDEX

90

�       � O
Optical character recognition (OCR),

36–39, 57–60

�       � P, Q
Portable Class Library (PCL), 47–48

�       � R, S, T
ReadAsStringAsync method, 27
REST approach, 4

�       � U
Universal Windows Platform (UWP), 48

�       � V, W
VisionServiceClient class, 51, 52, 57
Visual Studio Code, 4

�       � X, Y, Z
Xamarin

Android project, 65
celebrity

recognition, 61–64
Cognitive Services, 43
ContentPage object, 64–65
creation

Computer Vision Client
Library, 45–46

Visual Studio 2017, 44, 46–48
Visual Studio for Mac, 48, 50

image analysis
implementation, 51–56

iPhone, 66
OCR, 58–60
service client, 51
TabbedPage object, 64–65
user interface design, 56–57, 60–61

Windows 10 tablet, 66

	Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Introducing Microsoft Cognitive Services
	Introducing the Microsoft AI Platform
	Introducing Microsoft Cognitive Services

	Introducing Development Tools and Platforms
	Summary

	Chapter 2: Getting Started with the Computer Vision API
	Understanding the Computer Vision API
	Performing HTTP Requests
	Handling the HTTP Response

	Configuring Your Azure Subscription
	Summary

	Chapter 3: Invoking the Computer Vision API from C#
	Getting Sample Images
	Creating a C# Console Application
	Creating a Console Application in Visual Studio 2017
	Creating a Console Application in Visual Studio for Mac
	Creating a Console Application in Visual Studio Code

	Describing and Analyzing Images
	Describing Images
	Analyzing Images
	Generating Thumbnails
	Tagging Images

	Working with Optical Character Recognition
	Retrieving Handwritten Text

	Working with Domain-Specific Models
	Summary

	Chapter 4: Computer Vision on Mobile Apps with Xamarin
	Creating a Xamarin.Forms Solution
	Configuring Visual Studio 2017 for Xamarin
	Introducing the Computer Vision Client Library
	Creating a Xamarin.Forms Solution in Visual Studio 2017
	Creating a Xamarin.Forms Solution in Visual Studio for Mac

	Instantiating the Service Client
	Implementing Image Analysis
	Designing the User Interface

	Implementing Optical Character Recognition
	Designing the User Interface

	Implementing Celebrity Recognition
	Designing the User Interface

	Putting It All Together
	Summary

	Chapter 5: Computer Vision in Web Apps with ASP.NET MVC Core
	Creating an ASP.NET MVC Core Application
	Creating the Web Application with Visual Studio 2017
	Creating the Web Application with Visual Studio for Mac
	Creating the Web Application with Visual Studio Code

	Implementing the Controller
	Designing the View
	Testing the Application
	Summary

	Index

