
M A N N I N G

Dominik Picheta

www.allitebooks.com

http://www.allitebooks.org

Nim Reference

Common constructs

const x = 5 Compile-time constant

let y = “Hello” Immutable binding

var z = [1, 2, 3] Mutable variable

proc name(param: int): ReturnType = body

method name(param: float): ReturnType = body

iterator items(list: seq[int]): int = body

template name(param: typed) = body

macro name(param: string): untyped = body

if x > 5:
 body
elif y == "Hello":
 body
else:
 body

case x
of 5:
 body
of 1, 2, 3: body
of 6..30:
 body

for item in list:
 body

for i in 0..<len(list):
 body

while x == 5:
 if y.len > 0:
 break
 else:
 continue

try:
 raise err
except Exception as exc:
 echo(exc.msg)
finally: discard

Input/Output

echo(x, 42, "text") readFile("file.txt")

stdout.write("text") writeFile("file.txt", "contents")

stderr.write("error") open("file.txt", fmAppend)

stdin.readLine()

Type definitions

type
 MyType = object
 field: int

type
 Colors = enum
 Red, Green,
 Blue, Purple

type
 MyRef = ref object
 field*: string

Licensed to <null>www.allitebooks.com

http://www.allitebooks.org

Nim in Action
Licensed to <null>www.allitebooks.com

http://www.allitebooks.org

Licensed to <null>www.allitebooks.com

http://www.allitebooks.org

Nim in Action

DOMINIK PICHETA

M A N N I N G
SHELTER ISLAND
Licensed to <null>www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editors: Cynthia Kane, Dan Seiter,
 Marina Michaels

Technical development editor: Andrew West
Manning Publications Co Review editor: Donna Clements
20 Baldwin Road Project editor: Karen Gulliver
PO Box 761 Copyeditor: Andy Carroll
Shelter Island, NY 11964 Proofreader: Katie Tennant

Technical proofreader: Michiel Trimpe
Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781617293436
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17
Licensed to <null>

http://www.manning.com

contents
preface xi
acknowledgments xii
about this book xiv
about the author xvii
about the cover illustration xviii

PART 1 THE BASICS OF NIM ...1

1 Why Nim? 3
1.1 What is Nim? 4

Use cases 4 ■ Core features 6 ■ How does Nim work? 11

1.2 Nim’s benefits and shortcomings 12
Benefits 12 ■ Areas where Nim still needs to improve 20

1.3 Summary 20

2 Getting started 22
2.1 Nim syntax 22

Keywords 23 ■ Indentation 23 ■ Comments 25

2.2 Nim basics 25
Basic types 25 ■ Defining variables and other storage 30
Procedure definitions 33

2.3 Collection types 39
Arrays 39 ■ Sequences 41 ■ Sets 42
v

Licensed to <null>

CONTENTSvi
2.4 Control flow 43
2.5 Exception handling 47
2.6 User-defined types 49

Objects 49 ■ Tuples 50 ■ Enums 51

2.7 Summary 53

PART 2 NIM IN PRACTICE...55

3 Writing a chat application 57
3.1 The architecture of a chat application 58

What will the finished application look like? 58

3.2 Starting the project 61
3.3 Retrieving input in the client component 63

Retrieving command-line parameters supplied by the user 63
Reading data from the standard input stream 66
Using spawn to avoid blocking input/output 68

3.4 Implementing the protocol 70
Modules 71 ■ Parsing JSON 72 ■ Generating JSON 78

3.5 Transferring data using sockets 79
What is a socket? 82 ■ Asynchronous input/output 83
Transferring data asynchronously 91

3.6 Summary 100

4 A tour through the standard library 101
4.1 A closer look at modules 103

Namespacing 105

4.2 Overview of the standard library 107
Pure modules 107 ■ Impure modules 108
Wrappers 108 ■ Online documentation 108

4.3 The core modules 110
4.4 Data structures and algorithms 111

The tables module 112 ■ The sets module 114
The algorithms 115 ■ Other modules 117

4.5 Interfacing with the operating system 117
Working with the filesystem 118 ■ Executing an external
process 120 ■ Other operating system services 122
Licensed to <null>

CONTENTS vii
4.6 Understanding and manipulating data 122
Parsing command-line arguments 122

4.7 Networking and the internet 126
4.8 Summary 127

5 Package management 128
5.1 The Nim package manager 129
5.2 Installing Nimble 130
5.3 The nimble command-line tool 131
5.4 What is a Nimble package? 131
5.5 Installing Nimble packages 135

Using the install command 135 ■ How does the install
command work? 136

5.6 Creating a Nimble package 139
Choosing a name 139 ■ A Nimble package’s directory
layout 140 ■ Writing the .nimble file and sorting out
dependencies 141

5.7 Publishing Nimble packages 145
5.8 Developing a Nimble package 147

Giving version numbers meaning 147 ■ Storing
different versions of a single package 147

5.9 Summary 148

6 Parallelism 150
6.1 Concurrency vs. parallelism 151
6.2 Using threads in Nim 153

The threads module and GC safety 153 ■ Using thread
pools 156 ■ Exceptions in threads 159

6.3 Parsing data 159
Understanding the Wikipedia page-counts format 160
Parsing the Wikipedia page-counts format 161
Processing each line of a file efficiently 164

6.4 Parallelizing a parser 168
Measuring the execution time of sequential_counts 168
Parallelizing sequential_counts 168 ■ Type definitions
and the parse procedure 169 ■ The parseChunk
procedure 170 ■ The parallel readPageCounts procedure 171
The execution time of parallel_counts 172
Licensed to <null>

CONTENTSviii
6.5 Dealing with race conditions 173
Using guards and locks to prevent race conditions 174
Using channels so threads can send and receive messages 176

6.6 Summary 179

7 Building a Twitter clone 180
7.1 Architecture of a web application 181

Routing in microframeworks 183 ■ The architecture of
Tweeter 185

7.2 Starting the project 186
7.3 Storing data in a database 189

Setting up the types 190 ■ Setting up the database 192
Storing and retrieving data 194 ■ Testing the database 198

7.4 Developing the web application’s view 200
Developing the user view 204 ■ Developing the general view 207

7.5 Developing the controller 210
Implementing the /login route 212 ■ Extending the /
route 214 ■ Implementing the /createMessage route 215
Implementing the user route 216 ■ Adding the Follow
button 217 ■ Implementing the /follow route 218

7.6 Deploying the web application 219
Configuring Jester 219 ■ Setting up a reverse proxy 219

7.7 Summary 221

PART 3 ADVANCED CONCEPTS....................................223

8 Interfacing with other languages 225
8.1 Nim’s foreign function interface 226

Static vs. dynamic linking 227 ■ Wrapping C procedures 228
Type compatibility 231 ■ Wrapping C types 231

8.2 Wrapping an external C library 234
Downloading the library 235 ■ Creating a wrapper for
the SDL library 235 ■ Dynamic linking 236
Wrapping the types 237 ■ Wrapping the procedures 238
Using the SDL wrapper 240
Licensed to <null>

CONTENTS ix
8.3 The JavaScript backend 242
Wrapping the canvas element 243 ■ Using the Canvas
wrapper 246

8.4 Summary 248

9 Metaprogramming 249
9.1 Generics 250

Generic procedures 251 ■ Generics in type definitions 252
Constraining generics 252 ■ Concepts 253

9.2 Templates 254
Passing a code block to a template 256 ■ Parameter
substitution in templates 257 ■ Template hygiene 259

9.3 Macros 260
Compile-time function execution 261 ■ Abstract syntax
trees 262 ■ Macro definition 265 ■ Arguments in
macros 266

9.4 Creating a configuration DSL 267
Starting the configurator project 268 ■ Generating the
object type 270 ■ Generating the constructor procedure 274
Generating the load procedure 275 ■ Testing the
configurator 278

9.5 Summary 278

appendix A Getting help 280
appendix B Installing Nim 282

index 291
Licensed to <null>

Licensed to <null>

preface
Nim has been my labor of love over the years. Gradually, from the time I discovered it,
I’ve become increasingly involved in its development. Although I sacrificed consider-
able time working on it, Nim gave back in the form of experience and knowledge. My
work with Nim has taught me far more than any other work or studies have done.
Many opportunities have also opened up for me, a shining example being this book.

 I never actually thought I would end up writing a book, and until a Manning acqui-
sitions editor got in touch with me, I didn’t realize that I wanted to. While planning
this book, I looked to other books and determined where they fell short. I realized
that this, the first book on Nim, must be written for programmers with a bit of experi-
ence. I decided that I wanted to write a book that teaches programmers about Nim,
but that also teaches other programming concepts that work well in Nim’s particular
programming paradigms. These concepts can also be applied to other programming
languages and have been very useful in my career.

 My other goal for this book was to make it fun and engaging. I decided to do this
by building some chapters around small projects. The projects are designed to be
practical and to teach a number of Nim features and concepts. By following along and
developing these projects, you’ll gain hands-on experience developing Nim applica-
tions. This should put you in a good position to write your own software, which is the
ultimate goal of this book.

 Nim in Action covers a lot, but it can’t cover everything. It shouldn’t be viewed as a
complete Nim reference; instead, it should be considered a practical guide to writing
software in Nim.

 It’s my hope that this book helps you learn Nim and that you find it a useful refer-
ence for many years to come. I and the Nim community are at your disposal and are
available online to help you solve any problems you run into. Thank you for purchas-
ing this book and taking an interest in Nim.
xi

Licensed to <null>

acknowledgments
First, I would like to thank Andreas Rumpf for creating Nim and for both his reviews
and words of encouragement throughout the development of this book. Andreas cre-
ated a one-of-a-kind programming language, and without his commitment to Nim,
this book wouldn’t exist.

 This book wouldn’t be what it is today without the brilliant and passionate people
at Manning publications. I give my thanks to Marjan Bace, who made it possible to
publish this book; my editors Cynthia Kane, Dan Seiter, and Marina Michaels, for
helping me improve my writing; and the production team, including Andy Carroll,
Janet Vail, Karen Gulliver, and Katie Tennant.

 I thank the Nim community and everyone who participated in reviews and pro-
vided feedback on the manuscript, including technical proofreader Michiel Trimpe,
and the following reviewers: Andrea Ferretti, Yuriy Glukhov, Michał Zieliński, Stefan
Salewski, Konstantin Molchanov, Sébastien Ménard, Abel Brown, Alessandro Campeis,
Angelo Costa, Christoffer Fink, Cosimo Attanasi, James Anaipakos, Jonathan Rioux,
Marleny Nunez, Mikkel Arentoft, Mohsen Mostafa Jokar, Paulo Nuin, Peter Hampton,
Robert Walsh, Samuel Bosch, Thomas Ballinger, and Vincent Keller.

 Thanks also to the readers of the Manning Early Access Program (MEAP). Their
corrections and comments on the manuscript as it was being written were invaluable.

 Finally, I’d like to thank my family and friends, who in their own way steered my life
in a positive direction, leading me to authoring this book. First, I thank my mother,
Bogumiła Picheta, for her bravery and hard work, without which I wouldn’t have had
the means to start my programming journey, and I especially thank her for making a
hard decision that turned out to be very beneficial for my future. I would also like to
xii

Licensed to <null>

ACKNOWLEDGMENTS xiii
thank my uncle, Piotr Kossakowski-Stefański, and aunt, Marzena Kossakowska-
Stefańska, for inspiring and challenging me to write software, and also for always being
there to share their advice. Thanks to Ilona, Maciej Sr., and Maciej Jr. Łosinski for my
first exposure to a computer and the internet. And I thank Kazimierz Ś lebioda, a.k.a
Kazik, for the Age of Empires 2 LAN parties and for showing me how delicious chicken
with garlic can be.

 Most of all, I thank my partner, Amy-Leigh Shaw, for always believing in me, and
for her patience and support throughout my work on this book. I love you very much
Amy, and am lucky to have you.
Licensed to <null>

about this book
Nim in Action is a practical way to learn how to develop software using the open source
Nim programming language. This book includes many examples, both large and
small, to show and teach you how software is written in Nim.

 Nim is unique. It’s multi-paradigm, and unlike most other languages, it doesn’t
emphasize object-oriented programming. Because of this, I encourage you to con-
sciously absorb the styles used in this book instead of applying your own. Nim in Action
will teach you a set of best practices and idioms that you’ll also find useful in other
programming languages.

 By learning Nim, you’ll discover a language that straddles the lines between effi-
ciency, expressiveness, and elegance. Nim will make you productive and your end
users happy.

Who should read this book
This is by no means a beginner’s book. It assumes that you know at least one other
programming language and have experience writing software in it. For example, I
expect you to be aware of basic programming language features such as functions,
variables, and types. The fundamentals of programming aren’t explained in this book.

 This book will teach you how to develop practical software in the Nim program-
ming language. It covers features that are present in all programming languages, such
as concurrency, parallelism, user-defined types, the standard library, and more. In
addition, it covers Nim features that you may not be familiar with, such as asynchro-
nous input/output, metaprogramming, and the foreign function interface.
xiv

Licensed to <null>

ABOUT THIS BOOK xv
How the book is organized
The book is divided into three parts and includes a total of nine chapters.

 Part 1 introduces the language and its basic features:

 Chapter 1 explains what Nim is, compares it to other programming languages,
and discusses its strengths and weaknesses.

 Chapter 2 teaches the basics, such as the syntax and fundamental features of
the language. This includes a demonstration of procedure definitions and
exception handling.

Part 2 includes a wide range of examples to show how Nim is used in practice:

 Chapter 3 is where you’ll develop your first nontrivial Nim application. The pri-
mary purpose of this application is communication: it allows messages to be
sent through a network. You’ll learn, among other things, how to create com-
mand-line interfaces, parse JSON, and transfer data over a network in Nim.

 Chapter 4 gives an overview of the standard library, particularly the parts of it
that aren’t covered in other chapters but are useful.

 Chapter 5 discusses package management in Nim and teaches you how to cre-
ate your own packages and make them available to others.

 Chapter 6 explains what parallelism is and how it can be applied to different
programming tasks. You’ll see a parsing example, demonstrating different ways
to parse data in Nim and how parsing can be parallelized.

 Chapter 7 is where you’ll develop your second nontrivial Nim application: a
web application based on Twitter. You’ll learn how to store data in a SQL data-
base and generate HTML.

Part 3 introduces some advanced Nim features:

 Chapter 8 looks at the foreign function interface and shows how it can be used
to make use of C and JavaScript libraries. You’ll develop a simple application
that draws the letter N on the screen, first using a C library and then using
JavaScript’s Canvas API.

 Chapter 9 explains what metaprogramming is, discussing features such as
generics, templates, and macros. At the end of this chapter, you’ll use macros to
create a domain-specific language.

You may wish to skip the first two chapters if you already know the basics of Nim. I rec-
ommend reading the book from beginning to end, and I especially encourage you to
follow along with the examples. Each chapter teaches you something new about Nim,
even if it primarily focuses on a standalone example. If you get stuck, feel free to get in
touch with me or the Nim community. Appendix A contains information on how to
get help, so use it to your advantage.
Licensed to <null>

ABOUT THIS BOOKxvi
Code conventions and downloads
The source code examples in this book are fairly close to the samples that you’ll find
online, but for the sake of brevity, many of the comments were removed. The online
samples include a lot of comments to make them as easy to understand as possible, so
you’re encouraged to take a look at them to learn more.

 The source code is available for download from the publisher’s website at
https://manning.com/books/nim-in-action and from GitHub at https://github.com/
dom96/nim-in-action-code. Nim is still evolving, so be sure to watch the repository for
changes. I’ll do my best to keep it up to date with the latest Nim version.

 This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a mono-spaced
typeface like this, to distinguish it from ordinary text. Sometimes code is also in
bold to highlight code that has changed from previous steps in the chapter, such as
when a new feature is added to existing code.

 In many cases, the original source code has been reformatted for print; we’ve
added line breaks and reworked the indentation to accommodate the available page
space in the book. In rare cases, even this was not enough, and listings include line-
continuation markers (➥). Additionally, comments in the source code have often
been removed from the listings when the code is described in the text.

Book forum
The purchase of Nim in Action includes free access to a private web forum run by Man-
ning Publications, where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum, go
to https://forums.manning.com/forums/nim-in-action. You can also learn more
about Manning’s forums and the rules of conduct at https://forums.manning
.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking him some challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.
Licensed to <null>

https://forums.manning.com/forums/nim-in-action
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about

about the author
DOMINIK PICHETA (@d0m96, picheta.me) is a Computer Science student at Queen’s
University Belfast. He is one of the core developers of the Nim programming lan-
guage and has been using it for most of its history. He also wrote Nimble, the official
Nim package manager, and many other Nim libraries and tools.
xvii

Licensed to <null>

about the cover illustration
The figure on the cover of Nim in Action is captioned “Morlaque de l’Isle Opus,” or “A
Morlach from the Island of Opus.” The Morlachs were a Vlach people originally cen-
tered around the eastern Adriatic port of Ragusa, or modern Dubrovnik. The illustra-
tion is taken from a collection of dress costumes from various countries by Jacques
Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents Pays, published in
France in 1797. Each illustration is finely drawn and colored by hand. The rich variety
of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the
world’s towns and regions were just 200 years ago. Isolated from each other, people
spoke different dialects and languages. In the streets or in the countryside, it was easy
to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly, for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xviii

Licensed to <null>

Part 1

The basics of Nim

This part of the book begins your study of the Nim programming language.
It doesn’t assume you know much about Nim, so chapter 1 begins by looking at
the characteristics of the language, what makes it different from other lan-
guages, and how it’s used in the real world. Chapter 2 looks at some of the most
commonly used elements of any programming language—the syntax, semantics,
and type system—and in doing so teaches you the necessary foundations for writ-
ing simple applications in Nim.
Licensed to <null>

Licensed to <null>

Why Nim?
Nim is still a relatively new programming language. In fact, you’re holding one of
the very first books about it. The language is still not fully complete, but core
aspects, like its syntax, the semantics of procedures, methods, iterators, generics,
templates, and more, are all set in stone. Despite its newness, there has been signif-
icant interest in Nim from the programming community because of the unique set
of features that it implements and offers its users.

 This chapter answers questions that you may ask before learning Nim, such as
why you might want to use it. In this chapter, I outline some of the common practi-
cal uses of Nim, compare it to other programming languages, and discuss some of
its strengths and weaknesses.

This chapter covers
 What Nim is

 Why you should learn about it

 Comparing Nim to other programming languages

 Use cases

 Strengths and weaknesses
3

Licensed to <null>

4 CHAPTER 1 Why Nim?
1.1 What is Nim?
Nim is a general-purpose programming language designed to be efficient, expressive,
and elegant. These three goals are difficult to achieve at the same time, so Nim’s
designers gave each of them different priorities, with efficiency being the most
important and elegance being the least.

 But despite the fact that elegance is relatively unimportant to Nim’s design, it’s still
considered during the design process. Because of this, the language remains elegant
in its own right. It’s only when trade-offs between efficiency and elegance need to be
made that efficiency wins.

 On the surface, Nim shares many of Python’s characteristics. In particular, many
aspects of Nim’s syntax are similar to Python’s, including the use of indentation to
delimit scope as well as the tendency to use words instead of symbols for certain oper-
ators. Nim also shares other aspects with Python that aren’t related to syntax, such as
the highly user-friendly exception tracebacks, shown here:

Traceback (most recent call last)
request.nim(74) request
request.nim(25) getUsers
json.nim(837) []
tables.nim(147) []
Error: unhandled exception: key not found: totalsForAllResults [KeyError]

You’ll also see many differences, especially when it comes to the semantics of the lan-
guage. The major differences lie within the type system and execution model, which
you’ll learn about in the next sections.

CONTRIBUTING TO NIM The compiler, standard library, and related tools are
all open source and written in Nim. The project is available on GitHub, and
everyone is encouraged to contribute. Contributing to Nim is a good way to
learn how it works and to help with its development. See Nim’s GitHub page
for more information: https://github.com/nim-lang/Nim#contributing.

1.1.1 Use cases

Nim was designed to be a general-purpose programming language from the outset. As
such, it consists of a wide range of features that make it usable for just about any soft-
ware project. This makes it a good candidate for writing software in a wide variety of

A little bit about Nim’s history
Andreas Rumpf started developing Nim in 2005. The project soon gained support and
many contributions from the open source community, with many volunteers around
the world contributing code via pull requests on GitHub. You can see the current open
Nim pull requests at https://github.com/nim-lang/Nim/pulls.
Licensed to <null>

https://github.com/nim-lang/Nim/pulls
https://github.com/nim-lang/Nim#contributing

5What is Nim?
application domains, ranging from web applications to kernels. In this section, I’ll dis-
cuss how Nim’s features and programming support apply in several use cases.

 Although Nim may support practically any application domain, this doesn’t make
it the right choice for everything. Certain aspects of the language make it more suit-
able for some categories of applications than others. This doesn’t mean that some
applications can’t be written using Nim; it just means that Nim may not support the
code styles that are best suited for writing some kinds of applications.

 Nim is a compiled language, but the way in which it’s compiled is special. When
the Nim compiler compiles source code, it first translates the code into C code. C is an
old but well supported systems programming language that allows easier and more
direct access to the physical hardware of the machine. This makes Nim well suited to
systems programming, allowing projects such as operating systems (OSs), compilers,
device drivers, and embedded system software to be written.

 Internet of Things (IoT) devices, which are physical devices with embedded elec-
tronics that are connected to the internet, are good targets for Nim, primarily thanks
to the power offered by Nim’s ease of use and its systems programming capabilities.

 A good example of a project making use of Nim’s systems programming features is
a very simple OS called NimKernel available on GitHub: https://github.com/
dom96/nimkernel.

HOW DOES NIM COMPILE SOURCE CODE? I describe Nim’s unusual compilation
model and its benefits in detail in section 1.1.3.

Applications written in Nim are very fast; in many cases, just as fast as applications writ-
ten in C, and more than thirteen times faster than applications written in Python. Effi-
ciency is the highest priority, and some features make optimizing code easy. This goes
hand in hand with a soft real-time garbage collector, which allows you to specify the
amount of time that should be spent collecting memory. This feature becomes
important during game development, where an ordinary garbage collector may slow
down the rendering of frames on the screen if it uses too much time collecting mem-
ory. It’s also useful in real-time systems that need to run in very strict time frames.

 Nim can be used alongside other much slower languages to speed up certain
performance-critical components. For example, an application written in Ruby that
requires certain CPU-intensive calculations can be partially written in Nim to gain a
considerable speed advantage. Such speed-ups are important in areas such as scien-
tific computing and high-speed trading.

 Applications that perform I/O operations, such as reading files or sending data
over a network, are also well supported by Nim. Web applications, for example, can be
written easily using a number of web frameworks like Jester (https://github
.com/dom96/jester). Nim’s script-like syntax, together with its powerful, asynchro-
nous I/O support, makes it easy to develop these applications rapidly.

 Command-line applications can benefit greatly from Nim’s efficiency. Also,
because Nim applications are compiled, they’re standalone and so don’t require any
Licensed to <null>

https://github.com/dom96/nimkernel
https://github.com/dom96/nimkernel
https://github.com/dom96/nimkernel
https://github.com/dom96/jester
https://github.com/dom96/jester
https://github.com/dom96/jester

6 CHAPTER 1 Why Nim?
bulky runtime dependencies. This makes their distribution incredibly easy. One such
application written in Nim is Nimble; it’s a package manager for Nim that allows users
to install Nim libraries and applications.

 These are just a few use cases that Nim fits well; it’s certainly not an exhaustive list.
 Another thing to keep in mind is that, at the time of writing, Nim is still in develop-

ment, not having yet reached version 1.0. Certain features haven’t been implemented
yet, making Nim less suited for some applications. For example, Nim includes a back-
end that allows you to write JavaScript applications for your web pages in Nim. This
backend works, but it’s not yet as mature as the rest of the language. This will improve
with time.

 Of course, Nim’s ability to compile to JavaScript makes it suitable for full-stack
applications that need components that run on a server and in a browser. This is a
huge advantage, because code can easily be reused for both the browser and server
components of the application.

 Now that you know a little bit about what Nim is, its history, and some of the appli-
cations that it’s particularly well suited for, let’s look at some of Nim’s features and talk
about how it works.

1.1.2 Core features

In many ways, Nim is very innovative. Many of Nim’s features can’t be found in any
other programming language. If you enjoy learning new programming languages,
especially those with interesting and unique features, then Nim is definitely the lan-
guage for you.

 In this section, we’ll look at some of the core features of Nim—in particular, the
features that make Nim stand out from other programming languages:

 A facility called metaprogramming, used for, among many things, molding the
language to your needs.

 Style-insensitive variable, function, and type names. By using this feature, which
is slightly controversial, you can treat identifiers in whatever style you wish, no
matter if they were defined using camelCase or snake_case.

 A type system that’s rich in features such as generics, which make code easier to
write and maintain.

 Compilation to C, which allows Nim programs to be efficient and portable. The
compilation itself is also very fast.

 A number of different types of garbage collectors that can be freely selected or
removed altogether.

METAPROGRAMMING

The most practical, and in some senses unique, feature of Nim is its extensive
metaprogramming support. Metaprogramming allows you to read, generate, analyze,
and transform source code. It was by no means a Nim invention, but there’s no other
programming language with metaprogramming that’s so extensive and at the same
Licensed to <null>

7What is Nim?
time easy to pick up as Nim’s. If you’re familiar with Lisp, then you might have some
experience with metaprogramming already.

 With metaprogramming, you treat code as data in the form of an abstract syntax tree.
This allows you to manipulate existing code as well as generate brand new code while
your application is being compiled.

 Metaprogramming in Nim is special because languages with good metaprogram-
ming features typically belong to the Lisp family of languages. If you’re already famil-
iar with the likes of Java or Python, you’ll find it easier to start using Nim than Lisp.
You’ll also find it more natural to learn how to use Nim’s metaprogramming features
than Lisp’s.

 Although it’s generally an advanced topic, metaprogramming is a very powerful
feature that you’ll get to know in far more detail in chapter 9 of this book. One of the
main benefits that metaprogramming offers is the ability to remove boilerplate code.
Metaprogramming also allows the creation of domain-specific languages (DSLs); for
example,

html:
body:

p: "Hello World"

This DSL specifies a bit of HTML code. Depending on how it’s implemented, the DSL
will likely be translated into Nim code resembling the following:

echo("<html>")
echo(" <body>")
echo(" <p>Hello World</p>")
echo(" </body>")
echo("</html>")

That Nim code will result in the following output:

<html>
<body>

<p>Hello World</p>
</body>

</html>

With Nim’s metaprogramming, you can define DSLs and mix them freely with your
ordinary Nim code. Such languages have many use cases; for example, the preceding
one can be used to create HTML templates for your web apps.

 Metaprogramming is at the center of Nim’s design. Nim’s designer wants to
encourage users to use metaprogramming in order to accommodate their style of pro-
gramming. For example, although Nim does offer some object-oriented program-
ming (OOP) features, it doesn’t have a class definition construct. Instead, anyone
wishing to use OOP in Nim in a style similar to that of other languages should use
metaprogramming to create such a construct.
Licensed to <null>

8 CHAPTER 1 Why Nim?
STYLE INSENSITIVITY

Another of Nim’s interesting and likely unique features is style insensitivity. One of the
hardest things a programmer has to do is come up with names for all sorts of identifi-
ers like variables, functions, and modules. In many programming languages, these
names can’t contain whitespace, so programmers have been forced to adopt other
ways of separating multiple words in a single name. Multiple differing methods were
devised, the most popular being snake_case and camelCase. With Nim, you can use
snake_case even if the identifier has been defined using camelCase, and vice versa.
So you can write code in your preferred style even if the library you’re using adopted a
different style for its identifiers.

import strutils

echo("hello".to_upper())

echo("world".toUpper())

This works because Nim considers the identifiers to_upper and toUpper to be equal.
 When comparing identifiers, Nim considers the case of the first character, but it

doesn’t bother with the case of the rest of the identifier’s characters, ignoring the
underscores as well. As a result, the identifiers toUpper and ToUpper aren’t equal
because the case of the first character differs. This allows type names to be distin-
guished from variable names, because, by convention, type names should start with an
uppercase letter and variable names should start with a lowercase letter.

 The following listing shows one scenario where this convention is useful.

type
Dog = object

age: int

let dog = Dog(age: 3)

POWERFUL TYPE SYSTEM

One of the many characteristics that differentiate programming languages from one
another is their type system. The main purpose of a type system is to reduce the
opportunities for bugs in your programs. Other benefits that a good type system pro-
vides are certain compiler optimizations and better documentation of code.

 The main categories used to classify type systems are static and dynamic. Most pro-
gramming languages fall somewhere between the two extremes and incorporate ideas
from both. This is because both static and dynamic type systems require certain trade-
offs. Static typing finds more errors at compile time, but it also decreases the speed at
which programs can be written. Dynamic typing is the opposite.

Listing 1.1 Style insensitivity

Listing 1.2 Style insensitivity and type identifiers

The strutils module defines a procedure called toUpper.
You can call it using snake_case.
As it was originally defined, you can call it using camelCase.

The Dog type is defined with
an uppercase first letter.

Only primitive types such as int
start with a lowercase letter.

A dog variable can be safely defined because
it won’t clash with the Dog type.
Licensed to <null>

9What is Nim?
 Nim is statically typed, but unlike some statically typed programming languages, it
also incorporates many features that make development fast. Type inference is a good
example of that: types can be resolved by the compiler without the need for you to
write the types out yourself (though you can choose to). Because of that, your pro-
gram can be bug-free and yet your development speed isn’t hindered. Nim also incor-
porates some dynamic type-checking features, such as runtime type information,
which allows for the dynamic dispatch of functions.

 One way that a type system ensures that your program is free of bugs is by verifying
memory safety. Some programming languages, like C, aren’t memory safe because
they allow programs to access memory that hasn’t been assigned for their use. Other
programming languages are memory safe at the expense of not allowing programs to
access low-level details of memory, which in some cases is necessary. Nim combines
both: it’s memory safe as long as you don’t use any of the unsafe types, such as ptr, in
your program, but the ptr type is necessary when interfacing with C libraries. Sup-
porting these unsafe features makes Nim a powerful systems programming language.

 By default, Nim protects you against every type of memory error:

 Arrays are bounds-checked at compile time, or at runtime when compile-time
checks aren’t possible, preventing both buffer overflows and buffer overreads.

 Pointer arithmetic isn’t possible for reference types as they’re entirely managed
by Nim’s garbage collector; this prevents issues such as dangling pointers and
other memory issues related to managing memory manually.

 Variables are always initialized by Nim to their default values, which prevents
variables containing unexpected and corrupt data.

Finally, one of the most important features of Nim’s type system is the ability to use
generic programming. Generics in Nim allow for a great deal of code reuse without
sacrificing type safety. Among other things, they allow you to specify that a single func-
tion can accept multiple different types. For example, you may have a showNumber
procedure that displays both integers and floats on the screen:

proc showNumber(num: int | float) =
echo(num)

showNumber(3.14)
showNumber(42)

Here, the showNumber procedure accepts either an int type or a float type. The |
operator specifies that both int and float can be passed to the procedure.

 This is a simple demonstration of Nim’s generics. You’ll learn a lot more about
Nim’s type system, as well as its generics, in later chapters.

COMPILATION

I mentioned in the previous section that the Nim compiler compiles source code into
C first, and then feeds that source code into a C compiler. You’ll learn a lot more
about how this works in section 1.1.3, but right now I’ll talk about some of the many
practical advantages of this compilation model.
Licensed to <null>

10 CHAPTER 1 Why Nim?
 The C programming language is very well established as a systems programming
language and has been in use for over 40 years. C is one of the most portable pro-
gramming languages, with multiple implementations for Windows, Linux, Mac OS,
x86, AMD64, ARM, and many other, more obscure OSs and platforms. C compilers sup-
port everything from supercomputers to microcontrollers. They’re also very mature
and implement many powerful optimizations, which makes C very efficient.

 Nim takes advantage of these aspects of C, including its portability, widespread use,
and efficiency.

 Compiling to C also makes it easy to use existing C and C++ libraries—all you need
to do is write some simple wrapper code. You can write this code much faster by using
a tool called c2nim. This tool converts C and C++ header files to Nim code, which
wraps those files. This is of great benefit because many popular libraries are written in
C and C++.

 Nim also offers you the ability to build libraries that are compatible with C and
C++. This is handy if you want your library to be used from other programming lan-
guages. You’ll learn all about wrapping C and C++ libraries in chapter 8.

 Nim source code can also be compiled into Objective C and JavaScript. The Objec-
tive C language is mainly used for iOS software development; by compiling to it, you
can write iOS applications natively in Nim. You can also use Nim to develop Android
applications by using the C++ compilation backend. JavaScript is the client-side lan-
guage used by billions of websites; it’s sometimes called the “assembly language of the
web” because it’s the only programming language that’s supported by all the major
web browsers. By compiling to JavaScript, you can write client-side applications for
web browsers in Nim. Figure 1.1 shows the available Nim backends.

 You may now be wondering just how fast Nim is at compiling software. Perhaps
you’re thinking that it’s very slow; after all, Nim needs to translate source code to an
intermediate language first. But in fact it’s fairly fast. As an example, the Nim com-
piler, which consists of around 100,000 lines of Nim code, takes about 12 seconds to

Nim compiler

C C++ Objective C JavaScript

Allows

interfacing

with:

Backend:

Figure 1.1 Compilation backends
Licensed to <null>

11What is Nim?
compile on a MacBook Pro with a 2.7 GHz Intel Core i5 CPU. Each compilation is
cached, so the time drops to 5 seconds after the initial compilation.

MEMORY MANAGEMENT

C and C++ both require you to manually manage memory, carefully ensuring that
what you allocate is deallocated once it’s no longer needed. Nim, on the other hand,
manages memory for you using a garbage collector. But there are situations when you
may want to avoid garbage collectors; they’re considered by many to be inadequate
for certain application domains, like embedded systems and games. For this reason,
Nim supports a number of different garbage collectors with different applications in
mind. The garbage collector can also be removed completely, giving you the ability to
manage memory yourself.

GARBAGE COLLECTORS Switching between garbage collectors is easy. You just
need to specify the --gc:<gc_name> flag during compilation and replace
<gc_name> with markandsweep, boehm, or none.

This was just a small taste of Nim’s most prominent features. There’s a lot more to it:
not just the unique and innovative features, but also the unique composition of fea-
tures from existing programming languages that makes Nim as a whole very unique
indeed.

1.1.3 How does Nim work?

One of the things that makes Nim unique is its implementation. Every programming
language has an implementation in the form of an application, which either inter-
prets the source code or compiles the source code into an executable. These imple-
mentations are called an interpreter and a compiler, respectively. Some languages may
have multiple implementations, but Nim’s only implementation is a compiler. The
compiler compiles Nim source code by first translating the code to another program-
ming language, C, and then passing that C source code to a C compiler, which then
compiles it into a binary executable. The executable file contains instructions that
indicate the specific tasks that the computer should perform, including the ones spec-
ified in the original Nim source code. Figure 1.2 shows how a piece of Nim code is
compiled into an executable.

 The compilers for most programming languages don’t have this extra step; they
compile the source code into a binary executable themselves. There are also others
that don’t compile code at all. Figure 1.3 shows how different programming languages
transform source code into something that can be executed.

Executable

Nim code

Nim compiler

C code

C compiler
Figure 1.2 How Nim
compiles source code
Licensed to <null>

12 CHAPTER 1 Why Nim?
Nim connects to the C compilation process in order to compile the C source code
that was generated by it. This means that the Nim compiler depends on an external C
compiler, such as GCC or Clang. The result of the compilation is an executable that’s
specific to the CPU architecture and OS it was compiled on.

 This should give you a good idea of how Nim source code is transformed into a
working application, and how this process is different from the one used in other pro-
gramming languages. Every time you make a change to your Nim source code, you’ll
need to recompile it.

 Now let’s look at Nim’s positive and negative aspects.

1.2 Nim’s benefits and shortcomings
It’s important to understand why you might want to use a language, but it’s just as
important to learn why that language may not be correct for your particular use case.

 In this section, I’ll compare Nim to a number of other programming languages,
focusing on a variety of characteristics and factors that are typically used in such com-
parisons. After that, I’ll discuss some of the areas where Nim still needs to catch up
with other languages.

1.2.1 Benefits

As you read this book, you may wonder how Nim compares to the programming lan-
guages that you’re familiar with. There are many ways to draw a comparison and mul-
tiple factors that can be considered, including the language’s execution speed,
expressiveness, development speed, readability, ecosystem, and more. This section
looks at some of these factors to give you a better idea of the benefits of Nim.

Nim code

Nim compiler

C code

C compiler

Executable

Actions

Python code

Python interpreter

Actions

Java code

Java compiler

JAR file

Actions

Java virtual machine

Figure 1.3 How the Nim compilation process
compares to other programming languages
Licensed to <null>

13Nim’s benefits and shortcomings
NIM IS EFFICIENT

The speed at which applications written in a programming language execute is often
used in comparisons. One of Nim’s goals is efficiency, so it should be no surprise that
it’s a very efficient programming language.

 C is one of the most efficient programming languages, so you may be wondering
how Nim compares. In the previous section, you learned that the Nim compiler first
translates Nim code into an intermediate language. By default, the intermediate lan-
guage is C, which suggests that Nim’s performance is similar to C’s, and that’s true.

 Because of this feature, you can use Nim as a complete replacement for C, with a
few bonuses:

 Nim has performance similar to C.
 Nim results in software that’s more reliable than software written in C.
 Nim features an improved type system.
 Nim supports generics.
 Nim implements an advanced form of metaprogramming.

In comparison to C, metaprogramming in Nim is unique, as it doesn’t use a prepro-
cessor but is instead a part of the main compilation process. In general, you can
expect to find many modern features in Nim that you won’t find in C, so picking Nim
as a C replacement makes a lot of sense.

 Table 1.1 shows the results of a small benchmark test.1 Nim matches C’s speed and
is significantly faster than Python.

In this benchmark, the Nim application’s runtime matches the speed of the C app and
is significantly faster than the app implemented in Python. Micro benchmarks such as
this are often unreliable, but there aren’t many alternatives. Nim’s performance
matches that of C, which is already one of the most efficient programming languages
out there.

NIM IS READABLE

Nim is a very expressive language, which means that it’s easy to write Nim code that’s
clear to both the compiler and the human reader. Nim code isn’t cluttered with the
curly brackets and semicolons of C-like programming languages, such as JavaScript

1 You can read more about this benchmark test on Dennis Felsing’s HookRace blog: http://hookrace.net/
blog/what-is-special-about-nim/#good-performance.

Table 1.1 Time taken to find which numbers from 0 to 100 million are prime

Programming language Time (seconds)

C 2.6

Nim 2.6

Python (CPython) 35.1
Licensed to <null>

http://hookrace.net/blog/what-is-special-about-nim/#good-performance
http://hookrace.net/blog/what-is-special-about-nim/#good-performance
http://hookrace.net/blog/what-is-special-about-nim/#good-performance

14 CHAPTER 1 Why Nim?
and C++, nor does it require the do and end keywords that are present in languages
such as Ruby.

 Compare this expressive Nim code with the less-expressive C++ code

for i in 0 .. <10:
echo(i)

#include <iostream>
using namespace std;

int main()
{

for (int i = 0; i < 10; i++)
{

cout << i << endl;
}

return 0;
}

The Nim code is more readable and far more compact. The C++ code contains many
elements that are optional in Nim, such as the main function declaration, which is
entirely implicit in Nim.

 Nim is easy to write but, more importantly, it’s also easy to read. Good code read-
ability goes a long way. For example, it makes debugging easier, allowing you to spend
more time writing beautiful Nim code, cutting down your development time.

NIM STANDS ON ITS OWN

This has been mentioned already, but it’s worth revisiting to describe how other lan-
guages compare, and in particular why some require a runtime.

 Compiled programming languages such as Nim, C, Go, D, and Rust produce an
executable that’s native to the OS on which the compiler is running. Compiling a Nim
application on Windows results in an executable that can only be executed on Win-
dows. Similarly, compiling it on Mac OS results in an executable that can only be exe-
cuted on Mac OS. The CPU architecture also comes into play: compilation on ARM
results in an executable that’s only compatible with ARM CPUs. This is how things
work by default, but it’s possible to instruct Nim to compile an executable for a differ-
ent OS and CPU combination through a process known as cross-compilation.

 Cross-compilation is usually used when a computer with the desired architecture
or OS is unavailable, or the compilation takes too long. One common use case would
be compiling for ARM devices such as the Raspberry Pi, where the CPU is typically slow.
More information about cross-compilation can be found in the Nim Compiler User
Guide: http://nim-lang.org/docs/nimc.html#cross-compilation.

 Among other things, the JVM was created to remove the need for cross-compilation.
You may have heard the phrase “write once, run anywhere.” Sun Microsystems created

Listing 1.3 Iterating from 0 to 9 in Nim

Listing 1.4 Iterating from 0 to 9 in C++
Licensed to <null>

http://nim-lang.org/docs/nimc.html#cross-compilation

15Nim’s benefits and shortcomings
this slogan to illustrate Java’s cross-platform benefits. A Java application only needs to
be compiled once, and the result of this compilation is a JAR file that holds all the com-
piled Java classes. The JAR file can then be executed by the JVM to perform the pro-
grammed actions on any platform and architecture. This makes the JAR file a platform-
and architecture-agnostic executable. The downside to this is that in order to run these
JAR files, the JVM must be installed on the user’s system. The JVM is a very big depen-
dency that may contain bugs and security issues. But on the other hand, it does allow
the Java application to be compiled only once.

 Python, Ruby, and Perl are similar. They also use a virtual machine (VM) to execute
code. In Python’s case, a VM is used to optimize the execution of Python code, but it’s
mostly hidden away as an implementation detail of the Python interpreter. The
Python interpreter parses the code, determines what actions that code is describing,
and immediately executes those actions. There’s no compilation step like with Java, C,
or Nim. But the advantages and disadvantages are mostly the same as the JVM’s;
there’s no need for cross-compilation, but in order to execute a Python application,
the system needs to have a Python interpreter installed.

Unfortunately, in many cases, virtual machines and interpreters cause more problems
than they solve. The number of common CPU architectures and the most popular OSs
is not that large, so compiling for each of them isn’t that difficult. In contrast, the
source code for applications written in interpreted languages is often distributed to
the user, and they’re expected to install the correct version of the interpreter or vir-
tual machine. This can result in a lot of problems.

 One example of the difficulty associated with distributing such applications is the
recent introduction of Python 3. Because it’s not backward compatible with the previ-
ous version, it has caused many issues for software written originally in Python 2.
Python 3 was released in 2008, and as of this writing, there are still libraries written for
Python 2 that don’t work with the Python 3 interpreter.2 This wouldn’t be a problem
with a compiled language because the binaries would still continue to work.

 The lightweight nature of Nim should make it particularly appealing, especially in
contrast to some of the languages mentioned in this section.

2 See the Python 3 Readiness page for a list of Python 3–ready packages: http://py3readiness.org/.

Write once, run anywhere
Similar to the “write once, run anywhere” slogan, other programming languages
adopted the “write once, compile anywhere” philosophy, giving a computer program
the ability to be compiled on all platforms without the need to modify its source code.
This applies to languages such as C, Pascal, and Ada. But these languages still
require platform-specific code when dealing with more-specialized features of the OS,
such as when creating new threads or downloading the contents of a web page. Nim
goes a step further; its standard library abstracts away the differences between OSs
so you can use a lot of the features that modern OSs offer.
Licensed to <null>

http://py3readiness.org/

16 CHAPTER 1 Why Nim?
NIM IS FLEXIBLE

There are many different styles that software can be written in. A programming para-
digm is a fundamental style of writing software, and each programming language sup-
ports a different set of paradigms. You’re probably already familiar with one or more
of them, and at the very least you know what object-oriented programming (OOP) is
because it’s taught as part of many computer science courses.

 Nim is a multi-paradigm programming language. Unlike some popular program-
ming languages, Nim doesn’t focus on the OOP paradigm. It’s mainly a procedural
programming language, with varying support for OOP, functional, declarative, concur-
rent, and other programming styles.

 That’s not to say that OOP isn’t well supported. OOP as a programming style is sim-
ply not forced on you. Nim supports common OOP features, including inheritance,
polymorphism, and dynamic dispatch.

 To give you a better idea of what Nim’s primary paradigm looks like, let’s look at
the one big difference between the OOP paradigm and the procedural paradigm. In
the OOP paradigm, methods and attributes are bound to objects, and the methods
operate on their own data structure. In the procedural paradigm, procedures are
standalone entities that operate on data structures. This may be hard for you to visual-
ize, so let’s look at some code examples to illustrate it.

SUBROUTINE TERMINOLOGY In this subsection I mention methods and proce-
dures. These are simply different names for subroutines or functions. Method is
the term used in the context of OOP, procedure is used in procedural program-
ming, and function is used in functional programming.

The following code listings show the same application. The first is written in Python
using the OOP style. The second is written in Nim using the procedural style.

class Dog:
def bark(self):

print("Woof!")

dog = Dog()

dog.bark()

type
Dog = object

proc bark(self: Dog) =
echo("Woof!")

let dog = Dog()
dog.bark()

Listing 1.5 Barking dog modeled using OOP in Python

Listing 1.6 Barking dog modeled using procedural programming in Nim

The bark method is associated with the
Dog class by being defined within it.

The bark method can be directly invoked on the
dog object by accessing the method via the dot.

The bark procedure isn’t directly associated with the
Dog type by being defined within it. This procedure
could also easily be defined outside this module.

The bark procedure can still be directly invoked on the
dog object, despite the fact that the procedure isn’t
associated with the Dog type as it is in the Python version.
Licensed to <null>

17Nim’s benefits and shortcomings
In the Python code, the bark method is placed under the class definition. In the
Nim code, the bark method (called a procedure in Nim) isn’t bound to the Dog type in
the same way as it is in the Python code; it’s independent of the definition of the Dog
type. Instead, its first argument specifies the type it’s associated with.

 You could also implement something similar in Python, but it wouldn’t allow you
to call the bark method in the same manner. You’d be forced to call it like so:
bark(dog), explicitly passing the dog variable to the method as its first argument. The
reason this is not the case with Nim is because Nim rewrites dog.bark() to bark(dog),
making it possible for you to call methods using the traditional OOP style without hav-
ing to explicitly bind them to a class.

 This ability, which is referred to as Uniform Function Call Syntax (UFCS), has mul-
tiple advantages. It allows you to create new procedures on existing objects externally
and allows procedure calls to be chained.

CLASSES IN NIM Defining classes and methods in Nim in a manner similar to
Python is also possible. Metaprogramming can be used to do this, and the
community has already created numerous libraries that emulate the syntax.
See, for example, the Nim OOP macro: https://nim-by-example.github
.io/oop_macro/.

Another paradigm that Nim supports is the functional programming (FP) paradigm.
FP is not as popular as OOP, though in recent years it has seen a surge in popularity. FP
is a style of programming that primarily avoids the changing of state and the use of
mutable data. It uses certain features such as first-class functions, anonymous func-
tions, and closures, all of which Nim supports.

 Let’s look at an example to see the differences between programming in a proce-
dural style and a functional one. The following code listings show code that separates
people’s full names into first and last names. Listing 1.7 shows this done in a func-
tional style and listing 1.8 in a procedural style.

import sequtils, future, strutils
let list = @["Dominik Picheta", "Andreas Rumpf", "Desmond Hume"]
list.map(

(x: string) -> (string, string) => (x.split[0], x.split[1])
).echo

Listing 1.7 Iterating over a sequence using functional programming in Nim

Imports the sequtils, future, and strutils
modules. These modules define the map,
->, and split procedures respectively.

Defines new list variable
containing a list of names

The map procedure is used to
iterate over the list.

The map procedure takes a
closure that specifies how to
modify each item in the list.The modified list is then

displayed on the screen.
Licensed to <null>

https://nim-by-example.github.io/oop_macro/
https://nim-by-example.github.io/oop_macro/
https://nim-by-example.github.io/oop_macro/

18 CHAPTER 1 Why Nim?
import strutils
let list = @["Dominik Picheta", "Andreas Rumpf", "Desmond Hume"]
for name in list:

echo((name.split[0], name.split[1]))

The functional version uses the map procedure to iterate over the list variable, which
contains a list of names. The procedural version uses a for loop. Both versions split
the name into a first and last name. They then display the result in a tuple. (I’m throw-
ing a lot of new terms at you here. Don’t worry if you aren’t familiar with them; I’ll
introduce you to them in chapter 2.) The output of the code listings will look similar
to this:

(Field0: Dominik, Field1: Picheta)
(Field0: Andreas, Field1: Rumpf)
(Field0: Desmond, Field1: Hume)

THE MEANING OF FIELD0 AND FIELD1 Field0 and Field1 are just default field
names given to tuples when a field name isn’t specified.

Nim is incredibly flexible and allows you to write software in many different styles.
This was just a small taste of the most popular paradigms supported by Nim and of
how they compare to Nim’s main paradigm. Nim also supports more-obscure para-
digms, and support for others can be introduced easily using metaprogramming.

NIM CATCHES ERRORS AHEAD OF TIME

Throughout this chapter, I’ve been comparing Python to Nim. While Nim does take a
lot of inspiration from Python, the two languages differ in one important way: Python
is dynamically typed and Nim is statically typed. As a statically typed language, Nim
provides a certain level of type safety that dynamically typed programming languages
don’t provide.

 Although Nim is statically typed, it feels very dynamic because it supports type
inference and generics. You’ll learn more about these features later in the book. For
now, think of it as a way to retain the high development speed that dynamically typed
programming languages allow, while also providing extra type safety at compile time.

 In addition to being statically typed, Nim implements an exception-tracking mech-
anism that is entirely opt-in. With exception tracking, you can ensure that a procedure
won’t raise any exceptions, or that it will only raise exceptions from a predefined list.
This prevents unexpected crashes by ensuring that you handle exceptions.

Listing 1.8 Iterating over a sequence using a procedural style in Nim

Imports the strutils module,
which defines the split procedure

A for loop is used to iterate
over each item in the list.

The code inside the for loop is
executed during each iteration; in
this case, each name is split into
two and displayed as a tuple.
Licensed to <null>

19Nim’s benefits and shortcomings
COMPARING DIFFERENT PROGRAMMING LANGUAGE FEATURES

Throughout this section, I’ve compared Nim to various other programming lan-
guages. I’ve discussed efficiency, the dependencies of the resulting software, the flexi-
bility of the language, and the language’s ability to catch errors before the software is
deployed. Based on these characteristics alone, Nim is an excellent candidate for
replacing some of the most popular programming languages out there, including
Python, Java, C, and more.

 For reference, table 1.2 lists different programming languages and shows some of
the features that they do and don’t support.

Table 1.2 Common programming language features

Programming
language

Type
 system

Generics Modules GC Syntax Metaprogramming Execution

Nim Static and
strong

Yes Yes Yes, multiple
and optionala

a Nim supports ref counting, a custom GC, and Boehm. Nim also allows the GC to be switched off altogether.

Python-
like

Yes Compiled
binary

C Static and
weak

No No No C Very limitedb

b Some very limited metaprogramming can be achieved via C’s preprocessor.

Compiled
binary

C++ Static and
weak

Yes No No C-like Limitedc

c C++ only offers metaprogramming through templates, limited CTFE (compile-time function execution), and no AST macros.

Compiled
binary

D Static and
strong

Yes Yes Yes, optional C-like Yes Compiled
binary

Go Static and
strong

No Yes Yes C-like No Compiled
binary

Rust Static and
strong

Yes Yes No C-like Limitedd

d Rust has some support for declarative macros through its macro_rules! directive, but no built-in procedural macros that
allow you to transform the AST except for compiler plugins, and no CTFE.

Compiled
binary

Java Static and
strong

Yes Yes Yes, multiplee

e See the “Oracle JVM Garbage Collectors Available From JDK 1.7.0_04 And After” article on Fasterj: www.fasterj.com/
articles/oraclecollectors1.shtml.

C-like No Executed via
the JVM

Python Dynamic
and strong

N/A Yes Yes Python Yesf

f You can modify the behavior of functions, including manipulating their AST, using the ast module, but only at runtime.

Executed via
the Python
interpreter

Lua Dynamic
and weak

N/A Yes Yes Modula-
likeg

g Lua uses do and end keywords to delimit scope.

Yes via Metalua Executed via
the Lua inter-
preter or Lua
JIT compiler
Licensed to <null>

www.fasterj.com/articles/oraclecollectors1.shtml
www.fasterj.com/articles/oraclecollectors1.shtml

20 CHAPTER 1 Why Nim?
1.2.2 Areas where Nim still needs to improve

Nothing in this world is perfect, and programming languages are no exception.
There’s no programming language that can solve every problem in the most reliable
and rapid manner. Each programming language has its own strengths and weak-
nesses, and Nim is no exception.

 So far, I’ve been focusing on Nim’s strengths. Nim has many more fine aspects that
I haven’t yet mentioned, and you’ll discover them throughout this book. But it would
be unfair to only talk about Nim’s strengths. Nim is still a young programming lan-
guage, so of course it can still improve.

NIM IS STILL YOUNG AND IMMATURE

All programming languages go through a period of immaturity. Some of Nim’s newer
and more-advanced features are still unstable. Using them can result in buggy behav-
ior in the compiler, such as crashes, though crashes don’t happen very often. Impor-
tantly, Nim’s unstable features are opt-in, which means that you can’t accidentally use
them.

 Nim has a package manager called Nimble. Where other programming languages
may have thousands of packages available, Nim only has about 500. This means that
you may need to write libraries for certain tasks yourself. This situation is, of course,
improving, with new packages being created by the Nim community every day. In
chapter 5, I’ll show you how to create your own Nimble packages.

NIM’S USER BASE AND COMMUNITY IS STILL QUITE SMALL

Nim has a small number of users compared to the mainstream programming lan-
guages. The result is that few Nim jobs exist. Finding a company that uses Nim in pro-
duction is rare, but when it does happen, the demand for good Nim programmers can
make the salaries quite high.

 On the other hand, one of the most unique things about Nim is that its develop-
ment is exceptionally open. Andreas Rumpf (Nim’s creator) and many other Nim
developers (including me) openly discuss Nim’s future development plans on GitHub
and on IRC. Anyone is free to challenge these plans and, because the community is
still quite small, it’s easy to do so. IRC is also a great place for newcomers to ask ques-
tions about Nim and to meet fellow Nim programmers.

IRC Take a look at appendix A for details on how to connect to Nim’s IRC
channel.

These problems are temporary. Nim has a bright future ahead of it, and you can help
shape it. This book teaches you how.

1.3 Summary
 Created by Andreas Rumpf in 2005, Nim is still a very new programming lan-

guage; it hasn’t yet reached version 1.0. Because Nim is so new, it’s a bit imma-
ture and its user base is relatively small.
Licensed to <null>

21Summary
 Nim is efficient, expressive, and elegant (in that order).
 Nim is an open source project that’s developed entirely by the Nim community

of volunteers.
 Nim is general-purpose programming language and can be used to develop

anything from web applications to kernels.
 Nim is a compiled programming language that compiles to C and takes advan-

tage of C’s speed and portability.
 Nim supports multiple programming paradigms, including OOP, procedural

programming, and functional programming.
Licensed to <null>

Getting started
In this chapter, you’ll learn about Nim’s syntax, procedures, for loops, and other
basic aspects of the language. Throughout this chapter, we’ll cover a lot of informa-
tion to give you a broad taste of the language.

 Before you begin, make sure you have Nim installed and that it works on your
computer. You’ll also need a text editor to edit Nim code. Take a look at appendix
B for instructions on how to install Nim and other related tools.

2.1 Nim syntax
The syntax of a programming language is a set of rules that govern the way pro-
grams are written in that language. You’ve already had a small taste of Nim’s syntax
in the previous chapter.

This chapter covers
 Understanding Nim basics

 Mastering control flow

 Using collection types

 Handling exceptions

 Defining data types
22

Licensed to <null>

23Nim syntax
 Most languages share many similarities in terms of syntax. This is especially true for
the C family of languages, which happens to also be the most popular—so much so
that four of the most popular programming languages are syntactically heavily
inspired by C.1 Nim aims to be highly readable, so it often uses keywords instead of
punctuation. Because of this, the syntax of Nim differs significantly from the C lan-
guage family; instead, much of it is inspired by Python and Pascal.

 In this section, I’ll teach you the basics of Nim’s syntax. Learning the syntax is a
very important first step, as it teaches you the specific ways in which Nim code should
be written.

2.1.1 Keywords

Most programming languages have the notion of a keyword, and Nim is no exception.
A keyword is a word with a special meaning associated with it when it’s used in a
specific context. Because of this, you may not use keywords as identifiers in your
source code.

STROPPING You can get around this limitation by using stropping. See section
1.2 to learn more.

As of version 0.12.0, Nim has 70 keywords. This may sound like a lot, but you must
remember that you won’t be using most of them. Some of them don’t yet have a
meaning and are reserved for future versions of the language; others have minor use
cases.

 The most commonly used keywords allow you to do the following:

 Specify conditional branches: if, case, of, and when
 Define variables, procedures, and types: var, let, proc, type, and object
 Handle runtime errors in your code: try, except, and finally

You’ll learn exactly what these keywords mean and how to use them in the next sec-
tions of this chapter. For a full list of keywords, consult the Nim manual, available at
http://nim-lang.org/docs/manual.html#lexical-analysis-identifiers-keywords.

2.1.2 Indentation

Many programmers indent their code to make the program’s structure more apparent.
In most programming languages, this isn’t a requirement and serves only as an aid to
human readers of the code. In those languages, keywords and punctuation are often
used to delimit code blocks. In Nim, just like in Python, the indentation itself is used.

 Let’s look at a simple example to demonstrate the difference. The following three
code samples written in C, Ruby, and Nim all do the same thing. But note the differ-
ent ways in which code blocks are delimited.

1 According to the TIOBE Index for December 2016, www.tiobe.com/index.php/content/paperinfo/
tpci/index.html.
Licensed to <null>

http://nim-lang.org/docs/manual.html#lexical-analysis-identifiers-keywords
www.tiobe.com/index.php/content/paperinfo/tpci/index.html
www.tiobe.com/index.php/content/paperinfo/tpci/index.html
www.tiobe.com/index.php/content/paperinfo/tpci/index.html

24 CHAPTER 2 Getting started
if (42 >= 0) {
printf("42 is greater than 0");

}

if 42 >= 0
puts "42 is greater than 0"

end

if 42 >= 0:
echo "42 is greater than 0"

As you can see, C uses curly brackets to delimit a block of code, Ruby uses the keyword
end, and Nim uses indentation. Nim also uses the colon character on the line that pre-
cedes the start of the indentation. This is required for the if statement and for many
others. But as you continue learning about Nim, you’ll see that the colon isn’t
required for all statements that start an indented code block.

 Note also the use of the semicolon in listing 2.1. This is required at the end of each
line in some programming languages (mostly the C family). It tells the compiler
where a line of code ends. This means that a single statement can span multiple lines,
or multiple statements can be on the same line. In C, you’d achieve both like this:

printf("The output is: %d",
0);

printf("Hello"); printf("World");

In Nim, the semicolon is optional and can be used to write two statements on a single
line. Spanning a single statement over multiple lines is a bit more complex—you can
only split up a statement after punctuation, and the next line must be indented.
Here’s an example:

echo("Output: ",
5)

echo(5 +
5)

echo(5
+ 5)

echo(5 +
5)

Because indentation is important in Nim, you need to be consistent in its style. The
convention states that all Nim code should be indented by two spaces. The Nim com-
piler currently disallows tabs because the inevitable mixing of spaces and tabs can have
detrimental effects, especially in a whitespace-significant programming language.

Listing 2.1 C

Listing 2.2 Ruby

Listing 2.3 Nim

Both of these statements are correct because they’ve been split
after the punctuation and the next line has been indented.

This statement has been incorrectly
split before the punctuation.

This statement has not been correctly
indented after the split.
Licensed to <null>

25Nim basics
2.1.3 Comments

Comments in code are important because they allow you to add additional meaning
to pieces of code. Comments in Nim are written using the hash character (#). Any-
thing following it will be a comment until the start of a new line. A multiline comment
can be created with #[and]#, and code can also be disabled by using when false:.
Here’s an example:

Single-line comment
#[
Multiline comment
]#
when false:

echo("Commented-out code")

The first of the two types of multiline comment can be used to comment out both text
and code, whereas the latter should only be used to comment out code. The compiler
will still parse the code and ensure that it’s syntactically valid, but it won’t be included
in the resulting program. This is because the compiler checks when statements at com-
pile time.

2.2 Nim basics
Now that you have a basic understanding of Nim’s syntax, you have a good foundation
for learning some of the semantics of Nim. In this section, you’ll learn some of the
essentials that every Nim programmer uses on a daily basis. You’ll learn about the
most commonly used static types, the details of mutable and immutable variables, and
how to separate commonly used code into standalone units by defining procedures.

2.2.1 Basic types

Nim is a statically typed programming language. This means that each identifier in
Nim has a type associated with it at compile time. When you compile your Nim pro-
gram, the compiler ensures that your code is type safe. If it isn’t, compilation termi-
nates and the compiler outputs an error. This is in contrast to dynamically typed
programming languages, such as Ruby, that will only ensure that your code is type safe
at runtime.

 By convention, type names start with an uppercase letter. Built-in types don’t follow
this convention, so it’s easy for you to distinguish between built-in types and user-
defined types by checking the first letter of the name. Nim supports many built-in
types, including ones for dealing with the C foreign function interface (FFI). I don’t
cover all of them here, but they will be covered later in this book.

FOREIGN FUNCTION INTERFACE The foreign function interface (FFI) is what
allows you to use libraries written in other programming languages. Nim
includes types that are native to C and C++, allowing libraries written in those
languages to be used.
Licensed to <null>

26 CHAPTER 2 Getting started
Most of the built-in types are defined in the system module, which is imported auto-
matically into your source code. When referring to these types in your code, you can
qualify them with the module name (for example, system.int), but doing so isn’t
necessary. See table 2.1 for a list of the basic types defined in the system module.

MODULES Modules are imported using the import keyword. You’ll learn
more about modules later in this book.

INTEGER

The integer type represents numerical data without a fractional component; that is,
whole numbers. The amount of data this type can store is finite, so there are multiple
versions of it in Nim, each suited to different size requirements. The main integer
type in Nim is int. It’s the integer type you should be using most in your Nim pro-
grams. See table 2.2 for a list of integer types.

Table 2.1 Basic types

Type Description and uses

int The integer type is the type used for whole numbers; for example, 52.

float The float is the type used for numbers with a decimal point; for example, 2.5.

string The string type is used to store multiple characters. String literals are created
by placing multiple characters inside double quotes: "Nim is awesome".

bool The Boolean type stores one of two values, either true or false.

char The character type stores a single ASCII character. Character literals are created
by placing a character inside single quotes; for example, 'A'.

Table 2.2 Integer types

Type Size Range Description

int Architecture-dependent.
32-bit on 32-bit systems,
64-bit on 64-bit systems.

32-bit: -2,147,483,648 to
2,147,483,647
64-bit: -9,223,372,036,854,
775,808 to 9,223,372,036,
854,775,807

Generic signed two’s com-
plement integer. Generally,
you should be using this
integer type in most
programs.

int8
int16
int32
int64

8-bit
16-bit
32-bit
64-bit

-128 to 127
-32,768 to 32,767
-2,147,483,648 to 2,147,483,647
-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Signed two’s complement
integer. These types can be
used if you want to be
explicit about the size
requirements of your data.

uint Architecture-dependent.
32-bit on 32-bit systems,
64-bit on 64-bit systems.

32-bit: 0 to 4,294,967,295
64-bit: 0 to 18,446,744,
073,709,551,615

Generic unsigned integer.
Licensed to <null>

27Nim basics
An integer literal in Nim can be represented using decimal, octal, hexadecimal, or
binary notation.

let decimal = 42
let hex = 0x42
let octal = 0o42
let binary = 0b101010

Listing 2.4 defines four integer variables and assigns a different integer literal to each
of them, using the four different integer-literal formats.

 You’ll note that the type isn’t specified for any of the defined variables. The Nim
compiler will infer the correct type based on the integer literal that’s specified. In this
case, all variables will have the type int.

 The compiler determines which integer type to use by looking at the size of the
integer literal. The type is int64 if the integer literal exceeds the 32-bit range; other-
wise, it’s int. But what if you want to use a specific integer type for your variable?
There are multiple ways to accomplish this:

let a: int16 = 42

let b = 42'i8

INTEGER SIZE Explicitly using a small integer type such as int8 may result in
a compile-time or, in some cases, a runtime error. Take a look at the ranges in
table 2.2 to see what size of integer can fit into which integer type. You should
be careful not to attempt to assign an integer that’s bigger or smaller than the
type can hold.

Nim supports type suffixes for all integer types, both signed and unsigned. The format
is 'iX, where X is the size of the signed integer, and 'uX, where X is the size of the
unsigned integer.2

uint8
uint16
uint32
uint64

8-bit
16-bit
32-bit
64-bit

0 to 2550
0 to 65,5350
0 to 4,294,967,2950
0 to 18,446,744,073,709,551,615

Unsigned integer. These
types can be used if you
want to be explicit about
the size requirements of
your data.

Listing 2.4 Integer literals

2 See the Nim manual for more on numerical constants: http://nim-lang.org/docs/manual.html#lexical-
analysis-numerical-constants.

Table 2.2 Integer types (continued)

Type Size Range Description

int16
Uses a type suffix to specify the type of the integer literal
Licensed to <null>

http://nim-lang.org/docs/manual.html#lexical-analysis-numerical-constants
http://nim-lang.org/docs/manual.html#lexical-analysis-numerical-constants

28 CHAPTER 2 Getting started
FLOATING-POINT

The floating-point type represents an approximation of numerical data with a frac-
tional component. The main floating-point type in Nim is float, and its size depends
on the platform.

let a = 1'f32
let b = 1.0e19

The compiler will implicitly use the float type for floating-point literals.
 You can specify the type of the literal using a type suffix. There are two type suf-

fixes for floats that correspond to the available floating-point types: 'f32 for float32
and 'f64 for float64.

 Exponents can also be specified after the number. Variable b in the preceding list-
ing will be equal to 1x1019 (1 times 10 to the power of 19).

BOOLEAN

The Boolean type represents one of two values: usually a true or false value. In Nim,
the Boolean type is called bool.

let a = false
let b = true

The false and true values of a Boolean must begin with a lowercase letter.

CHARACTER

The character type represents a single character. In Nim, the character type is called
char. It can’t represent UTF-8 characters but instead encodes ASCII characters.
Because of this, char is really just a number.

 A character literal in Nim is a single character enclosed in quotes. The character
may also be an escape sequence introduced by a backward slash (\). Some common
character-escape sequences are listed in table 2.3.

let a = 'A'
let b = '\109'
let c = '\x79'

UNICODE The unicode module contains a Rune type that can hold any uni-
code character.

NEWLINE ESCAPE SEQUENCE The newline escape sequence \n isn’t allowed in
a character literal as it may be composed of multiple characters on some plat-
forms. On Windows, it’s \r\l (carriage return followed by line feed),whereas
on Linux it’s just \l (line feed). Specify the character you want explicitly,
such as '\r' to get a carriage return, or use a string.

Listing 2.5 Float literals

Listing 2.6 Boolean literals

Listing 2.7 Character literals
Licensed to <null>

29Nim basics
STRING

The string type represents a sequence of characters. In Nim, the string type is called
string. It’s a list of characters terminated by '\0'.

 The string type also stores its length. A string in Nim can store UTF-8 text, but the
unicode module should be used for processing it, such as when you want to change
the case of UTF-8 characters in a string.

 There are multiple ways to define string literals, such as this:

let text = "The book title is \"Nim in Action\""

When defining string literals this way, certain characters must be escaped in them. For
instance, the double-quote character (") should be escaped as \" and the backward-
slash character (\) as \\. String literals support the same character-escape sequences
that character literals support; see table 2.3 for a good list of the common ones. One
major additional escape sequence that string literals support is \n, which produces a
newline; the actual characters that are produced depend on the platform.

 The need to escape some characters makes some things tedious to write. One
example is Windows file paths:

let filepath = "C:\\Program Files\\Nim"

Nim supports raw string literals that don’t require escape sequences. Apart from the
double-quote character ("), which still needs to be escaped as "", any character
placed in a raw string literal will be stored verbatim in the string. A raw string literal is
a string literal preceded by an r:

let filepath = r"C:\Program Files\Nim"

It’s also possible to specify multiline strings using triple-quoted string literals:

let multiLine = """foo
bar
baz

"""
echo multiLine

Escape sequence Result

\r, \c Carriage return

\l Line feed

\t Tab

\\ Backslash

\' Apostrophe

\" Quotation mark

Table 2.3 Common
character-escape
sequences
Licensed to <null>

30 CHAPTER 2 Getting started
The output for the preceding code looks like this:

foo
bar
baz

Triple-quoted string literals are enclosed between three double-quote characters, and
these string literals may contain any characters, including the double-quote character,
without any escape sequences. The only exception is that your string literal may not
repeat the double-quote character three times. There’s no way to include three double-
quote characters in a triple-quoted string literal.

 The indentation added to the string literal defining the multiLine variable causes
leading whitespace to appear at the start of each line. This can be easily fixed by the
use of the unindent procedure. It lives in the strutils module, so you must first
import it:

import strutils
let multiLine = """foo

bar
baz

"""
echo multiLine.unindent

This will produce the following output:

foo
bar
baz

2.2.2 Defining variables and other storage

Storage in Nim is defined using three different keywords. In addition to the let key-
word, which you saw in the previous section, you can also define storage using const
and var.

let number = 10

By using the let keyword, you’ll be creating what’s known as an immutable variable—a
variable that can only be assigned to once. In this case, a new immutable variable
named number is created, and the identifier number is bound to the value 10. If you
attempt to assign a different value to this variable, your program won’t compile, as in
the following numbers.nim example:

let number = 10
number = 4000

The preceding code will produce the following output when compiled:

numbers.nim(2, 1) Error: 'number' cannot be assigned to
Licensed to <null>

31Nim basics
Nim also supports mutable variables using the keyword var. Use these if you intend on
changing the value of a variable. The previous example can be fixed by replacing the
let keyword with the var keyword:

var number = 10
number = 4000

In both examples, the compiler will infer the type of the number variable based on the
value assigned to it. In this case, number will be an int. You can specify the type explic-
itly by writing the type after the variable name and separating it with a colon character
(:). By doing this, you can omit the assignment, which is useful when you don’t want
to assign a value to the variable when defining it.

var number: int

IMMUTABLE VARIABLES Immutable variables must be assigned a value when
they’re defined because their values can’t change. This includes both const
and let defined storage.

A variable’s initial value will always be binary zero. This will manifest in different ways,
depending on the type. For example, by default, integers will be 0 and strings will be
nil. nil is a special value that signifies the lack of a value for any reference type. You’ll
learn more about this later.

 The type of a variable can’t change. For example, assigning a string to an int vari-
able will result in a compile-time error, as in this typeMismatch.nim example:

var number = 10
number = "error"

Here’s the error output:

typeMismatch.nim(2, 10) Error: type mismatch: got (string) but expected 'int'

Nim also supports constants. Because the value of a constant is also immutable, con-
stants are similar to immutable variables defined using let. But a Nim constant differs
in one important way: its value must be computable at compile time.

proc fillString(): string =
result = ""
echo("Generating string")
for i in 0 .. 4:

result.add($i)

const count = fillString()

PROCEDURES Don’t worry about not understanding the details of procedures
in Nim yet. You’ll be introduced to them shortly.

Listing 2.8 Constant example

This will be initialized to 0.

The $ is a commonly used
operator in Nim that converts
its input to a string.
Licensed to <null>

32 CHAPTER 2 Getting started
The fillString procedure in listing 2.8 will generate a new string, equal to "01234".
The constant count will then be assigned this string.

 I added the echo at the top of fillString’s body, in order to show you that it’s exe-
cuted at compile time. Try compiling the example using Aporia or in a terminal by
executing nim c file.nim. You’ll see "Generating string" amongst the output. Run-
ning the binary will never display that message because the result of the fillString
procedure is embedded in it.

 In order to generate the value of the constant, the fillString procedure must be
executed at compile time by the Nim compiler. You have to be aware, though, that not
all code can be executed at compile time. For example, if a compile-time procedure
uses the FFI, you’ll find that the compiler will output an error similar to “Error: cannot
'importc' variable at compile time.”

 The main benefit of using constants is efficiency. The compiler can compute a
value for you at compile time, saving time that would be otherwise spent during run-
time. The obvious downside is longer compilation time, but it could also produce a
larger executable size. As with many things, you must find the right balance for your
use case. Nim gives you the tools, but you must use them responsibly.3

 You can also specify multiple variable definitions under the same var, let, or
const keyword. To do this, add a new line after the keyword and indent the identifier
on the next line:

var
text = "hello"
number: int = 10
isTrue = false

The identifier of a variable is its name. It can contain any characters, as long as the
name doesn’t begin with a number and doesn’t contain two consecutive underscores.
This applies to all identifiers, including procedure and type names. Identifiers can
even make use of Unicode characters:

var 火 = "Fire"
let ogień = true

Unlike in many other programming languages, identifiers in Nim are case insensitive
with the exception of the first letter of the identifier. This is to help distinguish vari-
able names, which must begin with lowercase letters, from type names, which must
begin with uppercase letters.

 Identifiers in Nim are also style insensitive. This allows identifiers written in
camelCase to be equivalent to identifiers written in snake_case. The way this is
accomplished is by ignoring the underscore character in identifiers, so fooBar is
equivalent to foo_bar. You’re free to write identifiers in whichever style you prefer,

3 With great power comes great responsibility.
Licensed to <null>

33Nim basics
even when they’re defined in a different style. But you’re encouraged to follow Nim’s
style conventions, which specify that variables should use camelCase and types should
use PascalCase. For more information about Nim’s conventions, take a look at the
“Style Guide for Nim Code” on GitHub: https://github.com/nim-lang/Nim/wiki/
Style-Guide-for-Nim-Code.

2.2.3 Procedure definitions

Procedures allow you to separate your program into different units of code. These
units generally perform a single task, after being given some input data, usually in the
form of one or more parameters.

 In this section, we’ll explore procedures in Nim. In other programming languages
a procedure may be known as a function, method, or subroutine. Each programming lan-
guage attaches different meanings to these terms, and Nim is no exception. A proce-
dure in Nim can be defined using the proc keyword, followed by the procedure’s
name, parameters, optional return type, =, and the procedure body. Figure 2.1 shows
the syntax of a Nim procedure definition.

Stropping
As you may recall from section 2.1, there are identifiers in Nim that are reserved.
Such identifiers are called keywords, and because they have a special meaning, they
can’t be used as names for variables, types, or procedures.

In order to get around this limitation, you can either pick a different name or explicitly
mark the identifier using backticks (`). The latter approach is called stropping, and
here’s how it can be used:

var `var` = "Hello"
echo(`var`)

The var keyword is enclosed in backticks, allowing a variable with that name to be
defined.

proc keyword

Procedure name

Parameter

Return type

Procedure body

Name Type

Figure 2.1 The syntax of a Nim procedure definition
Licensed to <null>

https://github.com/nim-lang/Nim/wiki/Style-Guide-for-Nim-Code
https://github.com/nim-lang/Nim/wiki/Style-Guide-for-Nim-Code
https://github.com/nim-lang/Nim/wiki/Style-Guide-for-Nim-Code

34 CHAPTER 2 Getting started
The procedure in figure 2.1 is named myProc and it takes one parameter (name) of
type string, and returns a value of type string. The procedure body implicitly
returns a concatenation of the string literal "Hello " and the parameter name.

 You can call a procedure by writing the name of the procedure followed by paren-
theses: myProc("Dominik"). Any parameters can be specified inside the parentheses.
Calling the myProc procedure with a "Dominik" parameter, as in the preceding exam-
ple, will cause the string "Hello Dominik" to be returned.

 Whenever procedures with a return value are called, their results must be used in
some way.

proc myProc(name: string): string = "Hello " & name
myProc("Dominik")

Compiling this example will result in an error: “file.nim(2, 7) Error: value of type
'string' has to be discarded.” This error occurs as a result of the value returned by the
myProc procedure being implicitly discarded. In most cases, ignoring the result of a
procedure is a bug in your code, because the result could describe an error that
occurred or give you a piece of vital information. You’ll likely want to do something
with the result, such as store it in a variable or pass it to another procedure via a call.
In cases where you really don’t want to do anything with the result of a procedure, you
can use the discard keyword to tell the compiler to be quiet:

proc myProc(name: string): string = "Hello " & name
discard myProc("Dominik")

The discard keyword simply lets the compiler know that you’re happy to ignore the
value that the procedure returns.

When a procedure returns no values, the return type can be omitted. In that case, the
procedure is said to return void. The following two examples return no value:

Order of procedures
Procedures must be defined above the call site. For example, the following code will
fail to compile:

myProc()
proc myProc() = echo("Hello World")

For procedures that have a circular dependency, a forward declaration must be used:

proc bar(): int

proc foo(): float = bar().float
proc bar(): int = foo().int

A future version of Nim will likely remove the need for forward declarations and allow
procedures to be defined in any order.

A forward declaration contains no
procedure body, just the procedure’s
name, parameters, and return type.
Licensed to <null>

35Nim basics
proc noReturn() = echo("Hello")
proc noReturn2(): void = echo("Hello")

It’s idiomatic to avoid writing the redundant void in procedure definitions. The spe-
cial void type is useful in other contexts, such as generics, which you’ll learn about in
chapter 9.

 Nim allows you to cut down on unnecessary syntax even further. If your procedure
takes no parameters, you can omit the parentheses:

proc noReturn = echo("Hello")

RETURNING VALUES FROM PROCEDURES

A procedure body can contain multiple statements, separated either by a semicolon
or a newline character. In the case where the last expression of a procedure has a non-
void value associated with it, that expression will be implicitly returned from that pro-
cedure. You can always use the return keyword as the last statement of your proce-
dure if you wish, but doing so is not idiomatic nor necessary. The return keyword is
still necessary for early returns from a procedure.

 The following code block shows different examples of returning values from
procedures:

proc implicit: string =
"I will be returned"

proc discarded: string =
discard "I will not be returned"

proc explicit: string =
return "I will be returned"

proc resultVar: string =
result = "I will be returned"

proc resultVar2: string =
result = ""
result.add("I will be ")
result.add("returned")

proc resultVar3: string =
result = "I am the result"
"I will cause an error"

assert implicit() == "I will be returned"
assert discarded() == nil
assert explicit() == "I will be returned"
assert resultVar() == "I will be returned"
assert resultVar2() == "I will be returned"
resultVar3 does not compile!

ASSERT The code block showing examples of returning values from proce-
dures uses assert to show the output that you should expect when calling
each of the defined procedures. You’ll learn more about assert when it
comes time to test your code in chapter 3.
Licensed to <null>

36 CHAPTER 2 Getting started
Just like a variable’s default value, a procedure’s return value will be binary zero by
default. Nim supports a lot of different methods of setting the return value, and
you’re free to combine them.

 Every procedure with a return type has a result variable declared inside its body
implicitly. This result variable is mutable and is of the same type as the procedure’s
return type. It can be used just like any other variable; the resultVar and resultVar2
procedures are two examples. You should make use of it whenever you can, instead of
defining your own variable and returning it explicitly.

 The result variable comes with some restrictions when it’s combined with implicit
returns. These restrictions prevent ambiguities. For example, in the resultVar3 pro-
cedure, what do you think should be returned: the last expression, or the value that
result was assigned? The compiler doesn’t choose for you; it simply shows an error so
you can correct the ambiguity.

 So far, I’ve been explicitly specifying the return types of procedures. You may recall
that this isn’t necessary for variable definition. It’s also possible to ask the compiler to
infer the return type of your procedure for you. In order to do this, you need to use
the auto type:

proc message(recipient: string): auto =
"Hello " & recipient

assert message("Dom") == "Hello Dom"

Although this is handy, you should specify the type explicitly whenever possible. Doing
so makes it easier for you and others to determine the return type of a procedure,
without needing to understand the procedure’s body.

WARNING: TYPE INFERENCE Type inference for procedures is still a bit experi-
mental in Nim. You may find that it’s limited in some circumstances, espe-
cially if you’re used to more advanced forms of type inference, such as those
found in Haskell or OCaml.

PROCEDURE PARAMETERS

A procedure with multiple parameters can be defined by listing the parameters and
separating them with the comma character:

proc max(a: int, b: int): int =
if a > b: a else: b

assert max(5, 10) == 10

You don’t need to repeat the types of parameters if they’re specified consecutively:

proc max(a, b: int): int =
if a > b: a else: b

Default parameters can be used to ask for arguments that can be optionally specified
at the call site. You can introduce default parameters by assigning a value to a parame-
ter using the equals character; the type can also be omitted in that case:
Licensed to <null>

37Nim basics
proc genHello(name: string, surname = "Doe"): string =
"Hello " & name & " " & surname

assert genHello("Peter") == "Hello Peter Doe"
assert genHello("Peter", "Smith") == "Hello Peter Smith"

A procedure taking a variable number of parameters can be specified using the
varargs type:

proc genHello(names: varargs[string]): string =
result = ""
for name in names:

result.add("Hello " & name & "\n")

assert genHello("John", "Bob") == "Hello John\nHello Bob\n"

PROCEDURE OVERLOADING

Overloading a procedure is a feature that you may not have come across yet, but it’s
one that’s commonly used in Nim. Procedure overloading is the ability to define dif-
ferent implementations of procedures with the same name. Each of these procedures
shares the same name but accept different parameters. Depending on the arguments
passed to the procedure, the appropriate implementation is picked by the compiler.

 As an example, consider a getUserCity procedure. It may take two parameters:
firstName and lastName.

proc getUserCity(firstName, lastName: string): string =
case firstName
of "Damien": return "Tokyo"
of "Alex": return "New York"
else: return "Unknown"

CASE STATEMENTS Case statements might still be new to you. They’ll be
explained later in section 2.4.

This kind of procedure may be used to retrieve a person’s city of residence from a
database, based on the name specified. You may also wish to offer alternative search
criteria—something more unique, such as an ID number. To do this, you can overload
the getUserCity procedure like so:

proc getUserCity(userID: int): string =
case userID
of 1: return "Tokyo"
of 2: return "New York"
else: return "Unknown"

In this case, the default
value for the surname
argument is used.

In this case, the default value is
overridden with the string literal "Smith".

Initializes the result
variable with a new string

Iterates through each of the
arguments. You’ll learn more about
for loops in section 2.4.

Adds the string "Hello" concatenated
with the current argument and a

newline character to the result variable
Licensed to <null>

38 CHAPTER 2 Getting started
This way, you can reuse the name, but you’re still able to use the different implemen-
tations, as shown here:

doAssert getUserCity("Damien", "Lundi") == "Tokyo"
doAssert getUserCity(2) == "New York

ANONYMOUS PROCEDURES

Sometimes you may wish to pass procedures as parameters to other procedures. The
following listing shows the definition of a new procedure, and how a reference to it
can be passed to the filter procedure.

import sequtils
let numbers = @[1, 2, 3, 4, 5, 6]
let odd = filter(numbers, proc (x: int): bool = x mod 2 != 0)
assert odd == @[1, 3, 5]

These procedures are called anonymous procedures because there’s no name associated
with them. In listing 2.9, the anonymous procedure is highlighted in bold.

THE @ SYMBOL The @ symbol creates a new sequence. You’ll learn more
about it in the next section.

The anonymous procedure gets a single parameter, x, of type int. This parameter is
one of the items in the numbers sequence. The job of this anonymous procedure is to
determine whether that item should be filtered out or whether it should remain.
When the procedure returns true, the item isn’t filtered out.

 The filter procedure is the one doing the actual filtering. It takes two parame-
ters: a sequence and an anonymous procedure. It then iterates through each item and
uses the anonymous procedure it got to see whether it should filter the item out or
keep it. The filter procedure then returns a new sequence that includes only the
items that the anonymous procedure determined should be kept and not filtered out.

 In listing 2.9, the resulting sequence will only contain odd numbers. This is
reflected in the anonymous procedure, which checks whether dividing each item by 2
results in a remainder. If a remainder is produced, true is returned because that
means the number is odd.

 The syntax for anonymous procedures is a bit cumbersome. Thankfully, Nim sup-
ports some syntactic sugar for defining anonymous procedures and procedure types.
The syntactic sugar isn’t part of the language but is instead defined in the standard
library, so to use it you must import the future module. (The syntactic sugar is
defined using macros, which you’ll learn about in chapter 9.)

Listing 2.9 Using anonymous procedures

Definition of an immutable
variable holding a list of numbers

The filter procedure used to
filter out even numbers

Assertion to show
the output
Licensed to <null>

39Collection types
 Compare the following code to listing 2.9, and note the differences shown in bold:

import sequtils, future
let numbers = @[1, 2, 3, 4, 5, 6]
let odd = filter(numbers, (x: int) -> bool => x mod 2 != 0)
assert odd == @[1, 3, 5]

The syntactic sugar doesn’t actually make the definition that much shorter, but it does
remove some of the noise. It can be shortened further using type inference: x => x
mod 2 != 0. But keep in mind that this may not work in some cases. The compiler
may not be able to infer the types for your anonymous procedure. In that case, you’ll
need to explicitly state the types. The -> symbol is used to specify types.

DOCUMENTATION The documentation for each module (available on Nim’s
website: http://nim-lang.org/) contains links under each procedure defini-
tion to the source code for that procedure. Take a look at it to learn more
about the procedures mentioned in this book.

The -> symbol can also be used on its own in place of procedure types. For example,
you can use it when defining a procedure that takes another procedure as a parameter.

 For example, consider the following code:

proc isValid(x: int, validator: proc (x: int): bool) =
if validator(x): echo(x, " is valid")
else: echo(x, " is NOT valid")

It can be rewritten as follows:

import future
proc isValid(x: int, validator: (x: int) -> bool) =

if validator(x): echo(x, " is valid")
else: echo(x, " is NOT valid")

The proc keyword can be omitted, and the : is replaced by the -> symbol.
 This ends the section on Nim basics. So far, this chapter has been very heavy with

information, but don’t worry if you don’t remember everything that you’ve read or
you don’t understand some concepts. The next chapter will put these ideas into prac-
tice and solidify your knowledge. You can also go back over this section at any time.

2.3 Collection types
Collections such as lists, arrays, sets, and more are incredibly useful. In this section, I’ll
talk about the three most commonly used collection types in Nim: the array, seq, and
set types.

2.3.1 Arrays

The array type represents a list of a static number of items. This type is similar to C
arrays but offers more memory safety, as demonstrated in the following example:
Licensed to <null>

http://nim-lang.org/

40 CHAPTER 2 Getting started
var list: array[3, int]
list[0] = 1
list[1] = 42
assert list[0] == 1
assert list[1] == 42
assert list[2] == 0

echo list.repr

echo list[500]

Arrays are value types, just like int, float, and many others, which means they’re allo-
cated on the stack. This is similar to C arrays, but it differs completely from Java’s
arrays, which are reference types and are stored on the heap.

 Arrays are static in size, so an array can’t change its size once it’s declared. This is
why the compiler can give you an error when you try to access an index outside its
bounds. In C, checks for index bounds aren’t made, so it’s possible to access memory
that’s outside the bounds of the array.

 Nim performs these checks at compile time and at runtime. The runtime checks
are performed as long as the --boundsChecks option is not turned off.

WARNING: THE -D:RELEASE FLAG Compiling with the -d:release flag will turn
the bounds checks off. This will result in higher performance but less safety.

An array constructor can be used to assign a list of items to the array when it’s defined:

var list = ["Hi", "There"]

You can iterate over most collection types using a for loop. Iterating over a collection
type will yield a single item from the collection during each iteration. If you prefer to
iterate over each index rather than each item, you can access an array’s bounds using
the low and high fields and then iterate from the lowest index to the highest:

var list = ["My", "name", "is", "Dominik"]
for item in list:

echo(item)

for i in list.low .. list.high:
echo(list[i])

The array contains three elements. Any elements that
have not been set are given a default value.

This will output [1, 42, 0]. The repr procedure converts any
variable into a string, but the resulting string sometimes
contains debug information such as the memory address of
the variable.

Compilation will fail with “Error: index out of bounds.”

Custom array ranges
It’s possible to define arrays with a custom range. By default, arrays range from 0 to
the number specified in the array type, but you can also specify the lower bound, as
in this array of two integers:

var list: array[-10 .. -9, int]
list[-10] = 1
list[-9] = 2

This is useful when your array indices don’t start at 0.

Loops through each item

Loops through each index
Licensed to <null>

41Collection types
2.3.2 Sequences

Arrays are static in size. You can’t add more items to them; you can only overwrite
existing items with new data. This is where Nim’s sequences come in. They’re dynamic
in size and can grow to as many items as needed (within the limits of your memory).
You’ve already seen a few examples of sequences in the previous section.

 Sequences are defined using the seq type:

var list: seq[int] = @[]
list[0] = 1

list.add(1)

assert list[0] == 1
echo list[42]

Sequences are stored on the heap, and as such are garbage collected. This means that
they need to be initialized before they’re used, just like strings.

var list: seq[int]
echo(list[0])

Accessing the items of an uninitialized sequence will result in a segmentation fault at
runtime. Copy the preceding code into your favorite text editor and save it as segfault
.nim. Then compile and run it. If you’re using Aporia, just press F5, or open a termi-
nal and execute nim c -r segfault.nim. You should see that your program crashes
with the following output:

Traceback (most recent call last)
segfault.nim(2) segfault
SIGSEGV: Illegal storage access. (Attempt to read from nil?)

As long as your program isn’t compiled in
release mode, any crashes will display a
traceback that shows the procedure calls
leading up to your program’s crash. In
this case, the 2 in the parentheses corre-
sponds to line 2 in the source code,
echo(list[0]). This hints that list is
nil, and that it must be initialized.

 A sequence can be initialized in two
ways: using the sequence constructor syn-
tax (@[]), as in the previous example, and
using the newSeq procedure. Each is
more or less appropriate, depending on
the use case.

Assigns 1 to the first item in the sequence. This will result
in an index-out-of-bounds exception at runtime because
there are currently no items in the sequence.

Appends 1 as an item to the list sequence

Attempts to access an item that
doesn’t exist. An index-out-of-
bounds exception will be raised.

The sequence constructor
When using the sequence construc-
tor syntax, you must be careful to
specify the type of the sequence.

var list = @[]

This example won’t work because
the compiler has no way of knowing
what type of sequence you want to
define. This isn’t a problem when
you’re constructing a non-empty
sequence: var list = @[4, 8,
15, 16, 23, 42]. In this case, the
compiler knows that the sequence
type is seq[int].
Licensed to <null>

42 CHAPTER 2 Getting started
The newSeq procedure provides another way to construct a sequence. It also offers an
important optimization—you should use it when you know the size of the sequence
ahead of time.

var list = newSeq[string](3)
assert list[0] == nil
list[0] = "Foo"
list[1] = "Bar"
list[2] = "Baz"

list.add("Lorem")

The size of the sequence that you specify in the call to newSeq will correspond to the
number of items that the new sequence will contain. The items themselves won’t be
initialized, and you can still add more items to the sequence if you wish.

 Iterating over a sequence is done in the same way as iterating over an array. But
although sequences do have low and high fields, it’s more idiomatic to use the len
field, which gives you the length of the sequence. The reason for this is that the low
field for sequences is always 0.

let list = @[4, 8, 15, 16, 23, 42]
for i in 0 .. <list.len:

stdout.write($list[i] & " ")

This outputs the following:

4 8 15 16 23 42

The range of iteration is inclusive, so you must subtract 1 from the length of the
sequence in order to iterate fewer times. This is achieved by prefixing the length of the
sequence with the < operator. You can also simply subtract 1, but using the < operator
is more idiomatic.

 You’ve already seen an example of manipulating sequences using the filter pro-
cedure. You can find more procedures that manipulate sequences in the system and
sequtils modules.

2.3.3 Sets

The third collection type that I’ll show you is the set type, which stores a collection of
distinct values. A set[int16], for example, stores a distinct collection of integers. But
because of the nature of sets, only unique numbers can be stored.

 A Nim set’s base type must be an ordinal type, which is a type with values that can
be counted. The char type is ordinal because there’s a clear order for its values: A is
followed by B, B is followed by C, and so on. A string isn’t an ordinal type because
there’s no clear order for a string’s values.

 This restriction only applies to the built-in set type. There’s another set type in the
sets module called HashSet that supports any type as its base type. But the built-in
set type is more efficient and thus should be used whenever possible.

The items will exist but will not be initialized.
You can assign new values to them easily.

The seq can still grow in size; new items can be added.
Licensed to <null>

43Control flow
 The set type is a value type and so doesn’t need to be initialized.

var collection: set[int16]
assert collection == {}

A set is constructed using {}. A list of values is specified inside the curly brackets, and
items are separated by commas.

 A set pays no attention to the order of the items that it stores, so you can’t access
items in it via an index. Sets are useful for cases where you want to check for the pres-
ence of a certain value in a collection—this is where the in keyword comes in.

let collection = {'a', 'x', 'r'}
assert 'a' in collection

Although they’re simple, sets can be used to perform some interesting checks.

let collection = {'a', 'T', 'z'}
let isAllLowerCase = {'A' .. 'Z'} * collection == {}
assert(not isAllLowerCase)

One of the operations that can be performed on sets is the intersection of two sets using
the * operator. This returns a new set containing the values that the intersected sets
have in common. The preceding example uses this to check whether the collection
set contains any uppercase letters. A set constructor can contain ranges of items too: the
range 'A' .. 'Z' is deduced by the compiler to contain all the uppercase letters.

 Sets are often used in the standard library to represent a collection of unique flags.
In other languages such as C, flags may be represented by an integer, which is inter-
preted as a sequence of Boolean bits. Compared to sets, this approach is very unsafe
and often leads to errors.

 I encourage you to experiment with these collection types to gain a deeper insight
into how they work. You’ll be using these types throughout the book and whenever
you write Nim programs.

2.4 Control flow
There are many ways to control the flow of execution in Nim. The most common is
the if statement, which you’ve already seen in action in section 2.1.

 The if statement is a conditional statement: when its condition is true, its body is
executed. Nim’s if statement is similar to the if statement in other languages. It sup-
ports multiple “else if” blocks specified using the elif keyword and an “else” block
using the else keyword.

if age > 0 and age <= 10:
echo("You're still a child")

elif age > 10 and age < 18:
echo("You're a teenager")

else:
echo("You're an adult")
Licensed to <null>

44 CHAPTER 2 Getting started
Switch statements are also supported, although in Nim they’re known as case state-
ments because they begin with the case keyword. They reduce repetition when you
need to handle many different conditions.

case variable
of "Arthur", "Zaphod", "Ford":

echo("Male")
of "Marvin":

echo("Robot")
of "Trillian":

echo("Female")
else:

echo("Unknown")

Where the Nim case statement differs from the ones in other languages is in its lack
of fall-through, which is the continuing execution of further case statements until a
break keyword is used. Fall-through enables multiple values to match the same code
block, but it usually requires a large number of break keywords to be used. Nim still
allows multiple values to match the same code block, but it uses a different syntax.

 An of branch in a case statement can contain a list of values to be matched, as well
as a range, similar to the ranges used in set constructors. For example, matching every
number from 0 to 9 can be done like this: of 0 .. 9:.

 In Nim, every statement can be an expression. One case where this is useful is
when you wish to assign a value depending on a condition:

let ageDesc = if age < 18: "Non-Adult" else: "Adult"

You can use the case statement as an expression in a similar way.
 The flow of your program can also be controlled using loops. There are two loop-

ing statements in Nim. You’ve already seen examples of the for loop. There’s also a
while loop that you can use.

 The while loop is the most basic of the looping statements. It consists of a condi-
tion that gets evaluated before each loop. If that condition is true, the loop continues.

var i = 0
while i < 3:

echo(i)
i.inc

This code would output the following:

0
1
2

Just like in other languages, the continue and break keywords allow you to control a
loop. The continue keyword will skip the current iteration and restart from the top of
the loop body. The break keyword will end the iteration.

Loops while the variable
i is less than 3

Declares a new mutable variable
and assigns it the value 0

Increments the i variable
(adds 1 to its current value)

 Displays the current
value of the variable i
Licensed to <null>

45Control flow
 You can also nest looping statements, and you may wonder how to break out of
multiple loops at once. This can be solved by specifying a label for the break keyword.
The label must be defined by the block keyword, and breaking to that label will cause
the execution to break out of every loop inside that block.

block label:
var i = 0
while true:

while i < 5:
if i > 3: break label
i.inc

Another feature of the block keyword is that it introduces a new scope whenever it’s used.
 Nim supports the concept of iterators. These are similar to procedures, but they

yield values to their caller multiple times, instead of returning just once. An iterator
can be specified in a for statement, and it’s then advanced after each iteration. The
value that it yields is available in the body of the for statement.

iterator values(): int =
var i = 0
while i < 5:

yield i
i.inc

for value in values():
echo(value)

The preceding example produces the following output:

0
1
2
3
4

There are many general iterators that work on sequences and other collection types,
and there are also specific iterators like the walkFiles iterator, which, when given a
pattern, iterates over the files in the current directory that match that pattern. For
example, to find all the files ending with a .nim extension in the current directory,
you’d do something like this:

import os

for filename in walkFiles("*.nim"):

echo(filename)

The for loop in Nim is most similar to the one in Python, as shown in figure 2.2.

Loops while variable i is less than 5
This loop will iterate forever.

Once i is greater than 3, jumps
out of the block named label Increments the variable i

Execution will resume here once break label is called.

Imports the os module that
defines the walkFiles iterator

Iterates over each filename
with the .nim extension

Displays the filename during each iteration
Licensed to <null>

46 CHAPTER 2 Getting started
In Python, you can iterate over any object that defines the __iter__ method, and this
can be done implicitly without needing to call the __iter__ method in the for loop.
Nim supports a similar mechanism:

for item in @[1, 2, 3]:
echo(item)

Nim will implicitly call an iterator by the name of items. Which specific items iterator
will be called depends on the type of the value specified after the in keyword; in this
case it’s seq[int].

 If an items iterator that matches the type can’t be found, the compilation will fail
with a type mismatch error, as in this example:

for i in 5:
echo i

Here’s the compilation output:

file.nim(1, 10) Error: type mismatch: got (int literal(5))
but expected one of:
system.items(a: array[IX, T])
system.items(E: typedesc[enum])
system.items(s: Slice[items.T])
system.items(a: seq[T])
system.items(a: openarray[T])
system.items(a: string)
system.items(a: set[T])
system.items(a: cstring)

The items iterator is only invoked when you specify one variable in the for loop; a
pairs iterator is invoked for two variables. The values that the pairs iterator typically
returns are the current iteration index and the current item at that index:

for i, value in @[1, 2, 3]: echo("Value at ", i, ": ", value)

for keyword

One or more loop variables

in keyword

Iterator call or variable

Loop body

Figure 2.2 for loop syntax in Nim
Licensed to <null>

47Exception handling
The preceding code will produce this output:

Value at 0: 1
Value at 1: 2
Value at 2: 3

There’s no default name for an iterator yielding three values or more.

2.5 Exception handling
Exceptions are yet another method for controlling flow. Raising an exception will
cause the execution of a program to cease until the exception is caught or the pro-
gram exits.

 An exception is an object consisting of a message describing the error that
occurred. A new exception is raised using the raise keyword. You can create new
exceptions using the newException procedure.

 Handling exceptions in Nim is very similar to Python. Exceptions are caught using
a try statement, with one or more except branches specifying the exception type to
be handled.

 One of the most powerful features of Nim is its brilliant tracebacks. When an excep-
tion is raised and not caught, your program will display a stack traceback and quit.

proc second() =
raise newException(IOError, "Somebody set us up the bomb")

proc first() =
second()

first()

The preceding code will produce the following output:

Traceback (most recent call last)
file.nim(7) file
file.nim(5) first
file.nim(2) second
Error: unhandled exception: Somebody set us up the bomb [IOError]

A traceback gives you a list of events leading up to the crash of your program. It’s a
very useful debugging tool. Each line in the traceback is a call to a procedure. The
number in parentheses is the line number where the call was made, and the name on
the right is the procedure that was called.

 These tracebacks will be your best friend throughout your time working with the
Nim programming language.

 In order to stop your program from crashing, you must handle the exceptions and
decide what your program should do when these exceptions occur. You can handle

Listing 2.10 Raising an exception
Licensed to <null>

48 CHAPTER 2 Getting started

Ca
ex
exceptions by wrapping the affected code in a try statement. The top part of a try
statement consists of the try keyword, followed by a colon, which is then followed by
indented code. The bottom part of a try statement consists of one or more except
branches—each except branch matches a specific exception that should be caught. If
an except branch omits the exception type, then all exceptions are caught. When an
exception is matched, the corresponding except branch’s code is executed.

try:

except ErrorType:

except:

Let’s rewrite listing 2.10 to handle the exception by using a try statement.

proc second() =
raise newException(IOError, "Somebody set us up the bomb")

proc first() =
try:

second()
except:

echo("Cannot perform second action because: " &
getCurrentExceptionMsg())

first()

The exception is raised in the second procedure, but because it’s called under the try
statement, the exception is caught. The except branch is then executed, leading to
the following output:

Cannot perform second action because: Somebody set us up the bomb

You should now know the basics of exception handling in Nim and be able to debug
and handle simple exceptions on your own. Exceptions are a very important feature
of the Nim programming language, and we’ll continue to discuss them throughout
this book.

Listing 2.11 The try statements

Listing 2.12 Handling an exception using a try statement

Code statements that will
be checked for exceptions

Code statements that will be executed when the
code under the try raises an ErrorType exception

Code statements that will be executed when the
code under the try raises another type of exception

Raises a new
IOError exception

The try statement will catch any
exceptions raised in its body.

tches all
ceptions

Returns the message of the
exception that was just caught

Displays a message stating that the
second action couldn’t be performed

and displaying the message of the
exception that was caught
Licensed to <null>

49User-defined types
2.6 User-defined types
The ability to define custom data structures is essential in many programming lan-
guages. Defining them in Nim is simple, and although they support some OOP fea-
tures, their semantics don’t unnecessarily bog you down in any OOP concepts.

 Nim features three different kinds of user-defined types: objects, tuples, and
enums. This section explains their main differences and use cases.

2.6.1 Objects

A basic object definition in Nim is equivalent to a C struct type and can be passed to C via
the FFI. All types are defined under a type section. An object definition can be placed
under the type keyword or alongside it. The definition starts with the name of the type,
followed by =, the object keyword, a new line, and then an indented list of fields:

type
Person = object

name: string
age: int

A type section can define multiple types, and you should collect related types under
it. Just like procedures, types must be defined above the code in which they’re used.

 A variable utilizing the Person type can be declared just like any other variable:

var person: Person

You can initialize the Person type using the object construction syntax:

var person = Person(name: "Neo", age: 28)

You can specify all, some, or none of the fields. The type is an object, so its memory
will be allocated on the stack. Data types that are stored on the stack can’t be nil in
Nim, so this extends to the Person type.

 When you’re defining a new variable, you can’t change whether it’s defined on the
stack or on the heap. You must change the type definition itself. You can use the ref
object keywords to define a data type that will live on the heap.

 Types defined with the ref keyword are known as reference types. When an instance
of a reference type is passed as a parameter to a procedure, instead of passing the
underlying object by value, it’s passed by reference. This allows you to modify the orig-
inal data stored in the passed variable from inside your procedure. A non-ref type
passed as a parameter to a procedure is immutable.

type
PersonObj = object

name: string
age: int

PersonRef = ref PersonObj

Listing 2.13 Mutable and immutable parameters

When both non-ref and ref types are defined, the
convention is to use an Obj suffix for the non-ref
name, and a Ref suffix for the ref name.

In this case, you don’t need to repeat the definition.
Licensed to <null>

50 CHAPTER 2 Getting started
proc setName(person: PersonObj) =
person.name = "George"

proc setName(person: PersonRef) =
person.name = "George"

The preceding listing gives you a small taste of the behavior that ref and non-ref
types exhibit. It also introduces the syntax used to access the fields of an object and to
assign new values to these fields.

2.6.2 Tuples

Objects aren’t the only way to define data types. Tuples are similar to objects, with the
key difference being that they use structural typing, whereas objects use nominative typing.

This will fail. You can’t modify a non-ref parameter
because it might have been copied before being passed to
the procedure. The parameter is said to be immutable.

This will work because
PersonRef is defined as a ref.

Nominative vs. structural typing
The key difference between nominative typing and structural typing is the way in which
equivalence of types is determined.

Consider the following example:

type
Dog = object

name: string

Cat = object
name: string

let dog: Dog = Dog(name: "Fluffy")
let cat: Cat = Cat(name: "Fluffy")

echo(dog == cat)

The compiler gives an error because the Dog and Cat types aren’t equivalent. That’s
because they were defined separately with two different names.

Now let’s replace the object with tuple:

type
Dog = tuple

name: string

Cat = tuple
name: string

let dog: Dog = (name: "Fluffy")
let cat: Cat = (name: "Fluffy")
echo(dog == cat)

Error: type mismatch:
got (Dog, Cat)

true
Licensed to <null>

51User-defined types
There are many different ways that tuples can be defined. The two most compact ways
are shown here:

type
Point = tuple[x, y: int]
Point2 = (int, int)

You’ll note that a tuple doesn’t need to define the names of its fields. As long as the
order and type of the values in two tuple types match, their types are considered to be
the same.

let pos: Point = (x: 100, y: 50)
doAssert pos == (100, 50)

When a tuple’s fields have no names, you can still access them by using the indexing
operator: []. When a name is defined, the fields can be accessed in the same way that
object fields can be accessed.

 Nim also supports tuple unpacking. A tuple’s fields can be assigned directly to multi-
ple identifiers. Here’s an example:

let pos: Point = (x: 100, y: 50)
let (x, y) = pos
let (left, _) = pos
doAssert x == pos[0]
doAssert y == pos[1]
doAssert left == x

Tuples are useful for lightweight types with few fields. They’re most commonly used as
a way to return multiple values from procedures.

2.6.3 Enums

An enum or enumerated type is the third and final type that I’ll introduce in this sec-
tion. Nim enums are very similar to ANSI C’s enums. An enum defines a collection of
identifiers that have some meaning attached to them.

 In Nim, enums have an order attached to them, which means they’re ordinal types
and can be used in case statements and as the base type of sets.

In this case, the compiler is happy to compile this code. The resulting executable dis-
plays the message “true,” because the dog and cat variables contain the same data.
The compiler doesn’t look at the names of the type; instead, it looks at their structure
to determine whether they’re equivalent.

That’s the fundamental difference between tuples and objects.

You can specify any name, as long as
the number of fields on the left of the
equals sign is the same as the
number of fields in the tuple.

You can use a single
underscore (_) in order
to discard fields.
Licensed to <null>

52 CHAPTER 2 Getting started

type
Color = enum

colRed,
colGreen,
colBlue

let color: Color = colRed

Listing 2.14 defines a new Color enum. You’ll note that when specifying the values,
you don’t need to prefix them with the name of the enum—I added a prefix to each
value to make them a little bit more distinguishable. There’s a pragma called pure
that makes it mandatory to prefix each of the enum’s values with the name of that
enum, followed by a dot.

type
Color {.pure.} = enum

red, green, blue

let color = Color.red

Depending on your use case, you may wish to prefix the enum values manually with
something that’s shorter than the enum’s name, or you can let Nim enforce the prefix
automatically with the pure pragma.

Enums can be used to create a collection of meaningful identifiers; they’re most com-
monly used to denote flags.

 This section gave you a small taste of the different ways types can be defined in
Nim. Nim’s type system is very powerful, and this was by no means an extensive
description of it all. You’ll find out more about Nim’s type system throughout this
book. Chapter 9, in particular, will introduce you to generics, which are a very power-
ful feature of Nim’s type system.

Listing 2.14 Enumerator type

Pragmas
Pragmas are language constructs that specify how a compiler should process its
input. They’re used in Nim fairly often, and depending on their type, they can be
applied to the whole file or to a single definition.

You can also define your own pragmas using macros, which you’ll learn more about
in chapter 9.

For a list of pragmas, take a look at the Nim manual: http://nim-lang.org/docs/
manual.html#pragmas.
Licensed to <null>

http://nim-lang.org/docs/manual.html#pragmas
http://nim-lang.org/docs/manual.html#pragmas
http://nim-lang.org/docs/manual.html#pragmas

53Summary
2.7 Summary
 Nim uses indentation to delimit scope and uses # for comments.
 The basic types include int, float, char, string, and bool.
 Mutable and immutable variables can be defined using the var and let key-

words, respectively.
 A value assigned to a constant must be computable at compile time.
 Procedures are defined using the proc keyword.
 The result variable is implicitly defined in every procedure with a return type.
 An array stores a constant number of items.
 A sequence can grow dynamically at runtime.
 The flow of your application can be controlled via the if and case statements.
 One or more statements can be executed multiple times with the while

statement.
 Collection types can be iterated through using the for statement.
 A try statement can be used to handle exceptions at runtime.
 Multiple different data types can be defined under a single type section.
 Non-reference types can’t be modified from inside a procedure.
 Tuples can be used to return multiple values from a single procedure.
Licensed to <null>

Licensed to <null>

Part 2

Nim in practice

Now that you know the basics of Nim, you’re ready to move on to writing
some software.

 In chapter 3, you’ll be developing a simple but functional chat application.
This chapter will mainly teach you about asynchronous sockets, but you’ll also
learn something about parsing and generating JSON, reading text from the stan-
dard input stream, and using Nim’s module system.

 Chapter 4 focuses on the standard library, showing you usage examples of
various algorithms and data structures defined there. It also offers a more in-
depth look at the module system.

 Chapter 5 looks at package management, which is extremely common nowa-
days. Package managers are useful because they offer an easy way to install third-
party libraries for use in your applications.

 Chapter 6 is about parallelism. This is an important topic as it allows for some
powerful optimizations, especially in today’s multicore world. In this chapter
we’ll look at a parsing problem that’s easy to parallelize. Different parsing meth-
ods are also demonstrated.

 Chapter 7 leads you through the development of a significantly simplified
Twitter clone. You’ll learn how a web application is created using the Jester web
framework, how HTML can be generated using Nim’s filters, and how to store
data in an SQLite database.
Licensed to <null>

Licensed to <null>

Writing a
chat application
In the previous chapter, you learned the basics of the Nim programming language,
including the syntax, some of the built-in types, how to define variables and proce-
dures, how to use control-flow statements, and much more.

 In this chapter, you’ll build on and solidify that knowledge by developing a fully
functional chat application. You’ll also learn many new concepts that are essential
to the development of certain applications. In particular, you’ll do the following:

 Build a command-line interface, which can be used to ask the user for input.
 Learn how to use sockets to transfer data over networks, such as the internet.

This chapter covers
 Asking the user for input

 Creating a command-line interface

 Parsing and generating JSON

 Transferring data over the network

 Using and creating modules
57

Licensed to <null>

58 CHAPTER 3 Writing a chat application
 Use a JSON parser to build a simple chat protocol. The application will use this
protocol to exchange messages in a standard and consistent manner.

 Learn how to use modules to separate your code into standalone units, which
will make your code more reusable.

With the popularity of the internet, computer networks have become increasingly
important. The most basic feature of the internet is the transfer of data, but imple-
menting this feature isn’t always easy at the programming language level. In creating
this chapter’s chat application, you’ll learn the basics of transferring data between
multiple computers.

 By the end of this chapter, you’ll have successfully written an application consisting
of two different components: a server and a client. You’ll be able to send the client to
your friends and use it to chat with each other in real time over the internet.

 The source code for all the examples in this book is available on GitHub at
https://github.com/dom96/nim-in-action-code.

 Let’s begin by exploring how the application will work and what it will look like.

3.1 The architecture of a chat application
The main purpose of a chat application is to allow multiple people to communicate
using their personal computers. One way to accomplish this is by using a network that
these computers are connected to, like the internet, and sending data over it.

 Unlike applications such as Facebook Messenger or WhatsApp, which are primar-
ily used for one-to-one communication, the chat application developed in this chapter
will primarily support group communication (many-to-many) similar to Internet Relay
Chat (IRC) or Slack. This means that a single message will be sent to multiple users.

3.1.1 What will the finished application look like?

Let’s say I just watched the latest Game of Thrones episode and am now excited to talk
with my friends about it. I’ll call them John and Grace, in case they don’t appreciate
me using their real names in this book. The conversation might go something like this
(no Game of Thrones spoilers, I promise).

Dominik said: What did you guys think about the latest Game of Thrones
episode?
Grace said: I thought Tyrion was really great in it!
John said: I agree with Grace. Tyrion deserves an Emmy for his performance.

At the end of this chapter, you’ll have built an application that will allow this discus-
sion to take place. Let’s see what the finished application will look like in the context
of the preceding conversation.

Listing 3.1 Conversation between me, John, and Grace about Game of Thrones
Licensed to <null>

https://github.com/dom96/nim-in-action-code

59The architecture of a chat application
I first asked John and Grace what they thought of the latest Game of Thrones episode. I
did this by entering my message into the chat application and pressing the Enter key
to send it (figure 3.1).

 Both John and Grace will receive this message on their computers, and the client
application will show it to both of them in the same way (figure 3.2). Note how my mes-
sage is prefixed by “Dominik said,” letting John and Grace know who sent the message.

Grace can now answer my question by typing in her response and pressing Enter; John
and I will receive her reply. This way, we can have a discussion over the internet rela-
tively easily.

 This should give you an idea of what you’re aiming to achieve by the end of this
chapter. Sure, it might not be as impressive as a full-blown application with a graphical
user interface, but it’s a start.

 Now let’s move on to discussing some of the basic aspects of this application, in
particular, its network architecture.

NETWORK ARCHITECTURES AND MODELS

There are two primary network architectures that can be used for this application: peer-
to-peer networking and the client-server model. With peer-to-peer networking, there’s
no server; instead, each client is connected to multiple other clients that then exchange
information between each other. With the client-server model, there’s a single server to
which all the clients connect. The messages are all sent to the server, and the server
redistributes them to the correct clients. Figure 3.3 shows how these models compare.

 The client-server model is the simpler of the two, and because it works well for the
kind of application that you’ll be writing, we’ll use it.

Figure 3.1 My screen after I send the message

Figure 3.2 John’s and Grace’s screens
Licensed to <null>

60 CHAPTER 3 Writing a chat application
Another thing to consider is the transport protocol, which you’ll use to transfer mes-
sages in your application. The two major protocols in use today are TCP and UDP.
They’re used widely for many different types of applications, but they differ in two
important ways.

 The most important feature of TCP is that it ensures that messages are delivered to
their destination. Extra information is sent along with the messages to verify that they
have been delivered correctly, but this comes at the cost of some performance.

 UDP doesn’t do this. With UDP, data is sent rapidly, and the protocol doesn’t check
whether the data arrives at its destination. This makes UDP perform better than TCP,
but data transmission is less reliable.

 Chat applications should be efficient, but reliable delivery of messages is more
important. Based on this aspect alone, TCP wins.

NETWORKING There’s a vast amount of information about networking that’s
outside the scope of this book. I encourage you to research this topic further
if it’s of interest to you.

THE CLIENT AND SERVER COMPONENTS

Now that you know a bit about the networking side of things, let’s look at how the soft-
ware will actually work. The plan is to create two separate applications, or components: a
server component and a client component.

 When the server first starts, it will begin listening for connections from a client on a
specific port. The port will be hardcoded into the server and chosen ahead of time so it
won’t conflict with any other application. I wouldn’t want it to prevent you from enjoying
a good game of Counter-Strike, would I? Once a connection on that port is detected, the
server will accept it and wait for messages from it. A newly received message will be sent
to any other client whose connection was previously accepted by the server.

 When the client first starts, it will connect to the server address that the user speci-
fied on the command line. Once it successfully connects, the user of the client will be
able to send messages to the server by inputting them through the command line.
The client will also actively listen for messages from the server, and once a message is
received, it will be displayed to the user.

 Figure 3.4 shows how the chat application operates in a simple use case involving
three clients. Dom, John, and Grace are all running clients connected to the server. In
the figure, Dom sends a “Hello” message using their client. The server will accept this
message and pass it on to other clients currently connected to it.

Server

Client

Client

Client Client
Client

Client Client

Client

Indicates flow of messages

Client-server Peer-to-peer

Figure 3.3 Client-server
vs. peer-to-peer
Licensed to <null>

61Starting the project
You should now have a good idea of how the chat application will work. The next sec-
tion will show you how to implement it.

3.2 Starting the project
The previous section outlined how the chat application will work. This section
describes the first steps needed to begin the project. This chapter is an exercise, and I
encourage you to follow along, developing the application as you read it.

 You might find this surprising, but starting a project in Nim is very quick and easy.
You can simply open your favorite text editor, create a new file, and start coding.

 But before you do that, you should decide on a directory layout for your project.
This is entirely optional—the compiler won’t mind if you save all your code in
C:\code, but doing so is bad practice. You should ideally create a new directory just for
this project, such as C:\code\ChatApp (or ~/code/ChatApp). Inside the project direc-
tory, create a src directory to store all your source code. In the future you can, when
necessary, create other directories such as tests, images, docs, and more. Most Nim
projects are laid out this way, as illustrated in the following listing. This project is
small, so it will only use the src directory for now.

MyAwesomeApp
├── bin
│ └── MyAwesomeApp
├── images
│ └── logo.png
├── src
│ └── MyAwesomeApp.nim
└── tests

└── generictest.nim

PROJECT DIRECTORY LAYOUT A good project directory layout is very beneficial,
especially for large applications. It’s better to set it up sooner rather than
later. Separating your application source code from your tests means that you
can easily write test code that doesn’t conflict or otherwise affect your applica-
tion. In general, this separation also makes code navigation easier.

Now create a client.nim file in the src directory. This file will compile into a client
executable and act as the client component of the chat application. You’re now ready
to start writing code.

Listing 3.2 Typical directory layout for a Nim project

Server

John

Grace

Hello
Dom said Hello

Dom said Hello

Dom
Figure 3.4 The operation
of the chat application

The root directory of the MyAwesomeApp project

Holds all the executables for this project

Holds all the images for this project

Holds all the Nim source code files
related to this project

Holds all the Nim source code files
that contain tests for the files in src
Licensed to <null>

62 CHAPTER 3 Writing a chat application
 As a small test, begin by writing the following into your new client.nim file, and
then save it:

echo("Chat application started")

To compile your new client.nim file, follow these steps.

1 Open a new terminal window.
2 cd into your project directory by executing cd ~/code/ChatApp, replacing

~/code/ChatApp with the path to your project directory.
3 Compile the client.nim file by executing nim c src/client.nim.

APORIA If you’re using Aporia, you can just press F4 or select Tools > Com-
pile Current File in the menu bar to compile the currently selected tab. You
can also press F5 to compile and run.

If you’ve done everything correctly, you should see the results shown in figure 3.5 in
your terminal window.

OUTPUT DIRECTORY By default, the Nim compiler will produce the execut-
able beside the Nim source code file that was compiled. You can use the -o
flag to change this. For example, nim c -o:chat src/client.nim will place a
chat executable in the current directory.

Assuming that the compilation was successful, the executable that was created by the
compiler can now be started. To execute it, use the ./src/client command, or
.\src\client.exe if you’re on Windows. This should display “Chat application
started” on the screen and then exit.

 You now have a good starting point for further development. We started out slowly,
and so far your application isn’t doing much. But it gives you an idea of how applica-
tion development in Nim should be initiated, and it ensures that the Nim compiler
works correctly on your computer.

 Now that you’ve made a start on this project, let’s move on to the first task: the
command-line interface.

Figure 3.5 Successful compilation of client.nim
Licensed to <null>

63Retrieving input in the client component
3.3 Retrieving input in the client component
Applications typically expect to receive some sort of guidance from the user, such as
the URL of a website to navigate to or the filename of a video to play. Applications
need this guidance because, sadly, they can’t (yet) read our intentions directly from
our brains. They need explicit instructions in the form of commands or mouse clicks.
The simplest way to guide a piece of software is to give it an explicit command.

 The client component of the chat application will need the following input: the
address of the server to send messages to and one or more messages to send to the
server. These are the minimum inputs the user will need to provide to the chat appli-
cation. You need both a way to ask the user for specific input and a way to then get the
data that the user enters using their keyboard.

 Let’s focus on the minimum data that we need from the user. The address of the
server to connect to is somewhat critical, because it’s needed before the client can do
anything. We should ask the user for it as soon as the client starts. Until the client con-
nects to the server, the user won’t be able to send any messages, so asking the user for
a message will come after.

3.3.1 Retrieving command-line parameters supplied by the user

On the command line, there are two ways you can get data from the user:

 Through command-line parameters, which are passed to your application when
it’s started

 Through the standard input stream, which can be read from at any time

Typically, a piece of information such as the server address would be passed to an
application through command-line parameters, because the server address needs to
be known when the application starts.

 In Nim, command-line parameters can be accessed via the paramStr procedure
defined in the os module. But before this procedure can be used, it must be
imported. Let’s extend client.nim so that it reads the first command-line parameter.
Code additions are shown in bold.

import os
echo("Chat application started")
if paramCount() == 0:

quit("Please specify the server address, e.g. ./client localhost")

let serverAddr = paramStr(1)
echo("Connecting to ", serverAddr)

Listing 3.3 Reading command-line parameters

This is required in order to use the paramCount and
paramStr procedures defined in the os module.

Ensures that the
user has specified a
parameter on the
command line

Stops the application
prematurely because it
can’t continue without

that parameter

Retrieves the first parameter
that the user specified and
assigns it to the new
serverAddr variableDisplays the message “Connecting to <serverAddr>” to the

user, where <serverAddr> is the address the user specified
Licensed to <null>

64 CHAPTER 3 Writing a chat application
It’s always important to check the number of parameters supplied to your executable.
The paramCount procedure returns the number of parameters as an integer. The pre-
ceding example checks whether the number of parameters is 0, and if so, it calls the
quit procedure with a detailed message of why the application is exiting. If supplied
with a message, quit first displays that message and then quits with an exit code that
tells the OS that the application failed.

 When the user does supply the command-line parameter, the paramStr procedure
is used to retrieve the first parameter supplied. An index of 1 is used because the exe-
cutable name is stored at an index of 0. The first command-line parameter is then
bound to the serverAddr variable.

WARNING: EXECUTABLE NAME Don’t retrieve the executable name via
paramStr(0), as it may give you OS-specific data that’s not portable. The
getAppFilename procedure defined in the os module should be used instead.

WARNING: ALWAYS USE PARAMCOUNT When accessing a parameter with
paramStr that doesn’t exist (for example, paramStr(56) when paramCount()
== 1), an IndexError exception is raised. You should always use paramCount
ahead of time to check the number of parameters that have been supplied.

The last line in listing 3.3 uses the echo procedure to display the string "Connecting
to " appended to the contents of the serverAddr variable on the screen. The echo
procedure accepts a variable number of arguments and displays each of them on the
same line.

PARSING COMMAND-LINE PARAMETERS Applications typically implement a spe-
cial syntax for command-line arguments. This syntax includes flags such as
--help. The parseopt module included in Nim’s standard library allows
these parameters to be parsed. There are also other, more intuitive packages
created by the Nim community for retrieving and parsing command-line
parameters.

Recompile your new client.nim module as you did in the previous section, and execute
it as you did previously. As you can see in figure 3.6, the application will exit immedi-
ately with the message “Please specify the server address, e.g. ./client localhost.”

 Now, execute it with a single parameter, as shown in the message: src/client
localhost. Figure 3.7 shows that the application now displays the message “Connect-
ing to localhost.”

 Now, try specifying different parameters and see what results you get. No matter
how many parameters you type, as long as there’s at least one, the message will always
consist of "Connecting to " followed by the first parameter that you specified.

 Figure 3.8 shows how the command-line parameters map to different paramStr
indexes.

 Now that the client successfully captures the server address, it knows which server
to connect to. You now need to think about asking the user for the messagethat they
want to send.
Licensed to <null>

65Retrieving input in the client component

Figure 3.6 Starting the client without any parameters

Figure 3.7 Starting the client with one parameter

paramStr(0) paramStr(2) paramStr(n)

paramStr(1) paramStr(3)

Figure 3.8 The supplied command-line parameters and how to access them
Licensed to <null>

66 CHAPTER 3 Writing a chat application
3.3.2 Reading data from the standard input stream

Unlike the command-line parameters, which are passed to the application before it
starts, messages are provided by the user in real time, in response to messages they
receive from other users. This means that the application should ideally always be
ready to read data from the user.

 When an application is running inside of a terminal or command line, characters
can be typed in the terminal window. These characters can be retrieved by the applica-
tion through the standard input stream. Just like in Python, the standard input stream
can be accessed via the stdin variable. In Nim, this variable is defined in the implicitly
imported system module, and it’s of type File, so the standard input stream can be
read from just like any other File object. Many procedures are defined for reading
data from a File object. Typically, the most useful is readLine, which reads a single
line of data from the specified File.

 Add the following code to the bottom of client.nim, and then recompile and run it
(you can do so quickly with the following command: nim c -r src/client.nim
localhost).

let message = stdin.readLine()
echo("Sending \"", message, "\"")

CHARACTER ESCAPE SEQUENCES The last line in listing 3.4 uses a character-
escape sequence to show the double quote (") character. This needs to be
escaped because the compiler would otherwise think that the string literal has
ended.

You’ll see that your application no longer exits immediately. Instead, it waits for you to
type something into the terminal window and press Enter. Once you do so, a message
is displayed with the text that you typed into the terminal window.

 Reading from the standard input stream will cause your application to stop execut-
ing—your application transitions into a blocked state. The execution will resume once
the requested data is fully read. In the case of stdin.readLine, the application
remains blocked until the user inputs some characters into the terminal and presses
Enter. When the user performs those actions, they’re essentially storing a line of text
into the stdin buffer.

 Blocking is an unfortunate side effect of most input/output (I/O) calls. It means
that, sadly, your application won’t be able to do any useful work while it’s waiting for
the user’s input. This is a problem, because this application will need to actively stay
connected to the chat server, something it won’t be able to do if it’s waiting for the user
to type text into the terminal window. Figure 3.9 shows the problem that this causes.

Listing 3.4 Reading from the standard input stream

Reads a single line of text from the
standard input stream and assigns it
to the message variable.

Displays the message “Sending
"<message>",” where <message> is the
content of the message variable, which
contains the line of text the user typed into
their terminal window
Licensed to <null>

67Retrieving input in the client component
Before we move on to solving that problem, there’s something missing from listing
3.4. The code only reads the message once, but the aim is to allow the user to send
multiple messages. Fixing this is relatively simple. You just need to introduce an
infinite loop using the while statement. Simply wrap the code in listing 3.4 in a while
statement as follows:

while true:
let message = stdin.readLine()
echo("Sending \"", message, "\"")

Now compile and run your code again to see for yourself what the result is. You should
be able to input as many lines of text as you wish into the terminal window, until you
terminate your application by pressing Ctrl-C.

 When you terminate your application, you should see a traceback similar to the
following:

Traceback (most recent call last)
client.nim(9) client
sysio.nim(115) readLine
sysio.nim(72) raiseEIO
system.nim(2531) sysFatal
SIGINT: Interrupted by Ctrl-C.

Terminating your application is a very good way to deter-
mine which line of code is currently being executed. In the
traceback, you can see that when the application was termi-
nated, line 9 in client.nim was being executed. This corre-
sponds to let message = stdin.readLine(), which is the
blocking readLine call that waits for input from the user.

 Figure 3.10 shows the current flow of execution in
client.nim. The main thread is blocked as it waits for
input from the user. As a result, the application will sit

"Hi"Status: Waiting for stdin.readLine

Client Message

"Sup"
Message

"You there?"
Message

Status: Sending messages to client

Server

Client is blocked waiting
for user input.

Messages are piling up
because the client isn’t
actively receiving them.

New messages are
arriving from server.

Server is still trying to
send more messages to

the client.

Figure 3.9 Problem caused by the client being blocked indefinitely

The while statement will repeat the statements in its
body as long as its condition is true. In this case, it
will repeat the following two statements until the
application is closed manually by the user.

These two lines will be repeated an
infinite number of times because they’re
indented under the while statement.

Main thread

readLine

echo message

Data fully read

Thread

blocked

Figure 3.10 Blocking execution
of client.nim
Licensed to <null>

68 CHAPTER 3 Writing a chat application
idle until the user wakes it up by typing some text into the terminal window and press-
ing Enter.

 This is an inherent issue with blocking I/O operations. You wouldn’t need to
worry about it if the client only needed to react to the user’s input, but, unfortu-
nately, the client must keep a persistent connection to the server in order to receive
messages from other clients.

3.3.3 Using spawn to avoid blocking input/output

There are a number of ways to ensure that your application doesn’t block when it
reads data from the standard input stream.

 One is to use asynchronous input/output, which allows the application to continue
execution even if the result isn’t immediately available. Unfortunately, the standard
input stream can’t be read asynchronously in Nim, so asynchronous I/O can’t be used
here. It will be used later, when it’s time to transfer data over a network.

 The other solution is to create another thread that will read the standard input
stream, keeping the main thread unblocked and free to perform other tasks. Every pro-
cess consists of at least one thread known as the main thread—all of the code in client
.nim is currently executed in this main thread. The main thread becomes blocked when
the call to readLine is made, and it becomes unblocked when the user inputs a single
line into the terminal. But a separate thread can be created to make the call to read-
Line, in order to leave the main thread active. The newly created thread is the one that
becomes blocked. This approach of using two threads is called parallelism. We won’t
look at the full details of parallelism and how it works in Nim in this chapter, but we’ll
discuss it in chapter 6.

 A procedure can be executed in a new thread using the spawn procedure. Replace
the while statement that you created previously with the following one, but don’t
compile the code just yet:

while true:
let message = spawn stdin.readLine()
echo("Sending \"", ^message, "\"")

The readLine procedure returns a string value, but when this procedure is executed
in another thread, its return value isn’t immediately available. To deal with this, spawn
returns a special type called FlowVar[T], which holds the value that the procedure
you spawned returns.

 The ^ operator can be used to retrieve the value from a FlowVar[T] object, but
there’s no value until the spawned procedure returns one. When the FlowVar[T]
object is empty, the ^ operator will block the current thread until a value has been
stored. If it’s not empty in the first place, the ^ operator will return immediately with
the value. That’s why the preceding code will behave much like the code in listing 3.4.

The spawn keyword is used to call the
readLine procedure. This will spawn a
new thread and execute readLine there.

The value returned from the thread isn’t
immediately available, so you must read
it explicitly with the ^ operator.
Licensed to <null>

69Retrieving input in the client component
 You can also check whether a FlowVar[T] type contains a value by using the
isReady procedure. You can use that procedure to avoid blocking behavior.

 See figure 3.11 to see how the two different threads interact with each other. Com-
pare it to figure 3.10 to see how the execution of the client changed after the intro-
duction of spawn.

 There’s now a secondary readLine thread, but the result is the same. Both the
main thread and the readLine thread become blocked, creating the same results.

Generics
Generics are a feature of Nim that you’ll be introduced to in full detail in chapter 9. For
now, all you need to know is that FlowVar[T] is a generic type that can store values
of any type. The type of the value that’s stored is specified in the square brackets.

For example, the spawn stdin.readLine() expression returns a FlowVar[string]
type because the return type of readLine is a string, and FlowVar wraps the return
value of the spawned procedure.

Applying the spawn call to any procedure that returns a string will return a Flow-
Var[string] value:

import threadpool
proc foo: string = "Dog"
var x: FlowVar[string] = spawn foo()
assert(^x == "Dog")

To successfully compile the preceding example, make sure you use the --threads
:on flag.

Data fully read

readLine thread

return message

Main thread

spawn

^message

echo message

readInput returned

Thread

blocked

Thread

blocked

Figure 3.11 Blocking
execution of client.nim
with spawn
Licensed to <null>

70 CHAPTER 3 Writing a chat application
 Listing 3.5 shows how you can modify client.nim to use spawn, with the changed
lines in bold. One key point to note is that the spawn procedure is defined in the
threadpool module, so you must remember to import it via import threadpool.

import os, threadpool

echo("Chat application started")
if paramCount() == 0:

quit("Please specify the server address, e.g. ./client localhost")
let serverAddr = paramStr(1)
echo("Connecting to ", serverAddr)
while true:

let message = spawn stdin.readLine()
echo("Sending \"", ^message, "\"")

Compilation now requires the --threads:on flag to enable Nim’s threading support.
Without it, spawn can’t function. To compile and run the client.nim file, you should
now be executing nim c -r --threads:on src/client.nim localhost.

NIM CONFIG FILES Flags such as --threads:on can accumulate quickly, but
the Nim compiler supports config files, which save you from having to retype
all these flags on the command line. Simply create a client.nims file (beside
the client.nim file) and add --threads:on there. Each flag needs to be on its
own line, so you can add extra flags by separating them with newlines. To
learn more about this configuration system, see the NimScript page:
https://nim-lang.org/docs/nims.html.

The client application still functions the same way as before, but the changes to the
code that reads the standard input stream will be useful later on in this chapter.

 In the next section, I’ll show you how to add asynchronous networking code, allow-
ing the client application to connect to the server. The server itself will use the same
asynchronous I/O approach to communicate with more than one client at a time.

 You’ve now seen how to read input from the user in two different ways: from
command-line parameters and from the standard input stream while your application
is running. You also learned about the problem of blocking I/O, and I showed you one
way to solve it. Now let’s move on to writing the protocol for your chat application.

3.4 Implementing the protocol
Every application that communicates over a network with another application needs to
define a protocol for that communication to ensure that the two applications can
understand each other. A protocol is similar to a language—it’s a standard that’s mostly
consistent and that can be understood by both of the communicating parties. Imagine
trying to communicate in English with somebody who can speak only Chinese. As in
figure 3.12, you won’t understand them, and they won’t understand you. Similarly, the

Listing 3.5 Spawning readLine in a new thread
Licensed to <null>

https://nim-lang.org/docs/nims.html

71Implementing the protocol
different components in your application must use the same language to understand
each other.

 It’s important to remember that even if protocols are well defined, there’s still
plenty of room for error, such as if the message isn’t transmitted correctly. This is why
it’s vital that the code that parses messages can handle incorrectly formatted messages,
or messages that don’t contain the necessary data. The code that I’ll show you in this
section won’t go to great lengths to verify the validity of the messages it receives. But I
will encourage you later on to add exception-handling code to verify the validity of
messages and to provide the users of your code with better exception messages.

 Code that parses and generates a message is easy to test, so in this section, I’ll also
show you some basic ways to test your code.

 The chat application’s protocol will be a simple one. The information that it will
transfer between clients consists of two parts: the message that the user wants to send
to the other clients, and the user’s name. There are many ways that this information
could be encoded, but one of the simplest is to encode it as a JSON object. That’s what
I’ll show you how to do.

3.4.1 Modules

You’ve already seen many examples of modules, but I haven’t yet explained precisely
what a module is. Your client.nim file is itself a module, and you’ve also imported
modules from Nim’s standard library into your code using the import keyword. The
upcoming message parser should ideally be written in a separate module, so it’s a
good practical example to use as I teach you about modules.

 Many programming languages today utilize a module system. Nim’s module system
is rather simple: every file ending with a .nim extension is a module. As long as the
compiler can find the file, then it can be successfully imported.

 A module system allows you to separate the functionality of your application into
independent modules. One advantage of this is that modules are interchangeable. As
long as the interface of the module remains the same, the underlying implementation
can be changed. Later on, you can easily use something other than JSON to encode
the messages.

 By default, everything you define in a module is private, which means that it can
only be accessed inside that module. Private definitions ensure that the implementa-
tion details of modules are hidden, whereas public definitions are exposed to other

Hello

How are you?

Good protocol

Hi

你好

Bad protocol

Figure 3.12 Good and bad protocols
Licensed to <null>

72 CHAPTER 3 Writing a chat application
modules. In some languages, the public and private keywords are used to specify the
visibility of a definition.1

 In Nim, each definition is private by default. You can make a definition public by
using the * operator. The * can be placed at the end of procedure names, variable
names, method names, and field names.

 The basics of the module system should be easy to grasp. There are some extra
things to be aware of, but this should be enough to get you started writing simple
modules. Chapter 4 looks at modules in more depth.

 To create a module for your new message parser, simply create a new file named
protocol.nim in the src directory beside the client.nim file.

 Listing 3.6 shows the definition of the Message type, which will store the two pieces
of information that a message from the server contains: the username of the client
and the actual message. Both of these definitions are exported using the * marker.

 At the end, the parseMessage procedure is defined. It takes in a data parameter
that contains the raw string received from a server. The parseMessage procedure
then returns a new Message object containing the parsed data. This procedure is also
exported, and together with the Message type it forms the public interface of the
protocol module.

type
Message* = object

username*: string
message*: string

proc parseMessage*(data: string): Message =
discard

Add the code in listing 3.6 to the protocol module you created, and make sure it
compiles with nim c src/protocol.

 Now, let’s move on to implementing the parseMessage procedure.

3.4.2 Parsing JSON

JSON is a very simple data format. It’s widely used, and Nim’s standard library has sup-
port for both parsing and generating it. This makes JSON a good candidate for storing
the two message fields.

 A typical JSON object contains multiple fields. The field names are simple quoted
strings, and the values can be integers, floats, strings, arrays, or other objects.

1 In particular, C++ and Java use the public and private keywords to denote the visibility of identifiers.

Listing 3.6 Message type definition and proc stub

Defines a new Message type. The * export
marker is placed after the name of the type.

Field definitions follow the type definition
and are exported in a similar way.

Defines a new parseMessage
procedure. The export marker is
also used to export it.

The discard is necessary
because the body of a procedure
can’t be empty.
Licensed to <null>

73Implementing the protocol
 Let’s look back to the conversation about Game of Thrones in listing 3.1. One of the
first messages that I sent was, “What did you guys think about the latest Game of Thrones
episode?” This can be represented using JSON like so.

{
"username": "Dominik",
"message": "What did you guys think about the latest Game of Thrones

episode?"
}

Parsing JSON is very easy in Nim. First, import the json module by adding import
json to the top of your file. Then, replace the discard statement in the parseMessage
proc with let dataJson = parseJson(data). The next listing shows the protocol
module with the additions in bold.

import json
type

Message* = object
username*: string
message*: string

proc parseMessage*(data: string): Message =
let dataJson = parseJson(data)

The parseJson procedure defined in the json module accepts a string and returns a
value of the JsonNode type.

 JsonNode is a variant type. This means that which fields in the object can be
accessed is determined by the value of one or more other fields that are always
defined in that type. In the case of JsonNode, the kind field determines the kind of
JSON node that was parsed.

 There are seven different kinds of JSON values. The JsonNodeKind type is an enum
with a value for each kind of JSON value. The following listing shows a list of various
JSON values together with the JsonNodeKind types that they map to.

import json
assert parseJson("null").kind == JNull
assert parseJson("true").kind == JBool
assert parseJson("42").kind == JInt
assert parseJson("3.14").kind == JFloat
assert parseJson("\"Hi\"").kind == JString
assert parseJson("""{ "key": "value" }""").kind == JObject
assert parseJson("[1, 2, 3, 4]").kind == JArray

Listing 3.7 A representation of a message in JSON

Listing 3.8 Parsing JSON in protocol.nim

Listing 3.9 The mapping between JSON values and the JsonNodeKind type

The curly brackets define an object. The username field with
the corresponding value

The message field with the corresponding value
Licensed to <null>

74 CHAPTER 3 Writing a chat application
When you’re parsing arbitrary JSON data, a variant type is required because the com-
piler has no way of knowing at compile time what the resulting JSON type should be.
The type is only known at runtime. This is why the parseJson procedure returns a
JsonNode type whose contents differ depending on the kind of JSON value that was
passed into it.

 The last two JSON values shown in listing 3.9 are collections. The JObject kind rep-
resents a mapping between a string and a JsonNode. The JArray kind stores a list of
JsonNodes.

 You can access the fields of a JObject by using the [] operator. It’s similar to the
array and sequence [] operator but takes a string as its argument. The string
determines the field whose value you want to retrieve from the JObject. The [] oper-
ator returns a JsonNode value.

A little information about variant types
A variant type is an object type whose fields change depending on the value of one
or more fields. An example will make this clearer:

type
Box = object

case empty: bool
of false:

contents: string
else:

discard

var obj = Box(empty: false, contents: "Hello")
assert obj.contents == "Hello"

var obj2 = Box(empty: true)
echo(obj2.contents)

The preceding code shows how an ordinary box that may be empty can be modeled.
The end of the listing shows an erroneous case where the contents of an empty box
are accessed. It should be no surprise that compiling and running that code will result
in an error:

Traceback (most recent call last)
variant.nim(13) variant
system.nim(2533) sysFatal
Error: unhandled exception: contents is not accessible [FieldError]

This is a very simple variant type with only two states. You can also use enum types
in the case statement of a variant type. This is common and is used in the Json-
Node type.

A variant type is defined much
like other object types.

The difference is the case statement
under the definition of the object. This
defines an empty field in this type.

If the empty field is false, the fields defined
under this branch will be accessible.

The contents field will be accessible if empty == false.

No additional fields are defined if empty == true.

When the empty field is set to false
in the constructor, the contents

field can also be specified.

Because obj.empty is false, the
contents field can be accessed.

This will result in an error because
the contents field can’t be

accessed, because empty is true.
Licensed to <null>

75Implementing the protocol

import json
let data = """

{"username": "Dominik"}
"""

let obj = parseJson(data)
assert obj.kind == JObject
assert obj["username"].kind == JString
assert obj["username"].str == "Dominik"

WARNING: THE KIND MATTERS Calling the [] operator with a string on a Json-
Node whose kind field isn’t JObject will result in an exception being raised.

So, how can you retrieve the username field from the parsed JsonNode? Simply using
dataJson["username"] will return another JsonNode, unless the username field
doesn’t exist in the parsed JObject, in which case a KeyError exception will be raised.
In the preceding code, the JsonNode kind that dataJson["username"] returns is
JString because that field holds a string value, so you can retrieve the string value
using the getStr procedure. There’s a get procedure for each of the JsonNode kinds,
and each get procedure will return a default value if the type of the value it’s meant to
be returning doesn’t match the JsonNode kind.

THE DEFAULT VALUE FOR GET PROCEDURES The default value returned by the
get procedures can be overridden. To override, pass the value you want to be
returned by default as the second argument to the procedure; for example,
node.getStr("Bad kind").

Once you have the username, you can assign it to a new instance of the Message type.
The next listing shows the full protocol module with the newly added assignments in
bold.

import json
type

Message* = object
username*: string
message*: string

proc parseMessage*(data: string): Message =
let dataJson = parseJson(data)
result.username = dataJson["username"].getStr()
result.message = dataJson["message"].getStr()

Just add two lines of code, and you’re done.

Listing 3.10 Assigning parsed data to the result variable

Parses the data string
and returns a
JsonNode type, which
is then assigned to the
obj variable

The returned JsonNode
has a JObject kind
because that’s the kind
of the JSON contained
in the data string.

Fields are accessed using the [] operator.
It returns another JsonNode, and in this
case its kind is a JString.

Because the [] operator returns a JsonNode,
the value that it contains must be accessed
explicitly via the field that contains it. In
JString’s case, this is str. Generally you’re
better off using the getStr proc.

Gets the value under the
"username" key and assigns its

string value to the username
field of the resulting Message

Does the same here,
but instead gets the
value under the
"message" key
Licensed to <null>

76 CHAPTER 3 Writing a chat application

You should test your code as quickly and as often as you can. You could do so now by
starting to integrate your new module with the client module, but it’s much better
to test code as separate units. The protocol module is a good unit of code to test in
isolation.

 When testing a module, it’s always good to test each of the exported procedures to
ensure that they work as expected. The protocol module currently exports only one
procedure—the parseMessage procedure—so you only need to write tests for it.

 There are multiple ways to test code in Nim, but the simplest is to use the doAssert
procedure, which is defined in the system module. It’s similar to the assert proce-
dure: it takes one argument of type boolean and raises an AssertionFailed excep-
tion if the value of that boolean is false. It differs from assert in one simple way:
assert statements are optimized out when you compile your application in release
mode (via the -d:release flag), whereas doAssert statements are not.

RELEASE MODE By default, the Nim compiler compiles your application in
debug mode. In this mode, your application runs a bit slower but performs
checks that give you more information about bugs that you may have acciden-
tally introduced into your program. When deploying your application, you
should compile it with the -d:release flag, which puts it in release mode and
provides optimal performance.

Let’s define an input and then use doAssert to test parseMessage’s output.

when isMainModule:
block:

Listing 3.11 Testing your new functionality

The magical result variable
You may be wondering where the result variable comes from in listing 3.10. The
answer is that Nim implicitly defines it for you. This result variable is defined in all
procedures that are defined with a return type:

proc count10(): int =
for i in 0 .. <10:

result.inc
assert count10() == 10

This means that you don’t need to repeatedly define a result variable, nor do you
need to return it. The result variable is automatically returned for you. Take a look
back at section 2.2.3 for more info.

The < operator subtracts 1 from
its input, so it returns 9 here.

The when statement is a compile-time if statement that only
includes the code under it if its condition is true. The isMainModule
constant is true when the current module hasn’t been imported.
The result is that the test code is hidden if this module is imported. Begins a new scope (useful

for isolating your tests)
Licensed to <null>

77Implementing the protocol
let data = """{"username": "John", "message": "Hi!"}"""
let parsed = parseMessage(data)
doAssert parsed.username == "John"
doAssert parsed.message == "Hi!"

Add the code in listing 3.11 to the bottom of your file, and then compile and run your
code. Your program should execute successfully with no output.

 This is all well and good, but it would be nice to get some sort of message letting
you know that the tests succeeded, so you can just add echo("All tests passed!")
to the bottom of the when isMainModule block. Your program should now output that
message as long as all the tests pass.

 Try changing one of the asserts to check for a different output, and observe what
happens. For example, removing the exclamation mark from the doAssert

parsed.message == "Hi!" statement will result in the following error:

Traceback (most recent call last)
protocol.nim(17) protocol
system.nim(3335) raiseAssert
system.nim(2531) sysFatal
Error: unhandled exception: parsed.message == "Hi" [AssertionError]

If you modify the protocol module and break your test, you may find that suddenly
you’ll get such an error.

 You now have a test for the correct input, but what about incorrect input? Create
another test to see what happens when the input is incorrect:

block:
let data = """foobar"""
let parsed = parseMessage(data)

Compile and run protocol.nim, and you should get the following output:

Traceback (most recent call last)
protocol.nim(21) protocol_progress
protocol.nim(8) parseMessage
json.nim(1086) parseJson
json.nim(1082) parseJson
json.nim(1072) parseJson
json.nim(561) raiseParseErr
Error: unhandled exception: input(1, 5) Error: { expected [JsonParsingError]

Uses the triple-quoted string literal syntax to define the data
to be parsed. The triple-quoted string literal means that the
single quote in the JSON doesn’t need to be escaped.

Calls the parseMessage procedure
on the data defined previously

Checks that the username that
parseMessage parsed is correct

Checks that the message that
parseMessage parsed is correct
Licensed to <null>

78 CHAPTER 3 Writing a chat application
An exception is raised by parseJson because the specified data isn’t valid JSON. But
this is what should happen, so define that in the test by catching the exception and
making sure that an exception has been raised.

block:
let data = """foobar"""
try:

let parsed = parseMessage(data)
doAssert false

except JsonParsingError:
doAssert true

except:
doAssert false

An ideal way for the parseMessage proc to report errors would be by raising a custom
exception. But this is beyond the scope of this chapter. I encourage you to come back
and implement it once you’ve learned how to do so. For now, let’s move on to generat-
ing JSON.

3.4.3 Generating JSON

You successfully parsed the JSON, so let’s move on to generating JSON. The protocol
module needs to be capable of both parsing and generating messages. Generating
JSON is even simpler than parsing it.

 In Nim, JSON can be generated in multiple ways. One way is to simply create a
string containing the correct JSON concatenated with values, as you did in your first
test. This works, but it’s error prone because it’s easy to miss certain syntactical ele-
ments of JSON.

 Another way is to construct a new JsonNode and convert it to a string using the $
operator. Let’s do that now. Start by defining a new createMessage procedure, and
then use the % operator to create a new JsonNode object. The following listing shows
how the createMessage procedure can be defined.

proc createMessage*(username, message: string): string =
result = $(%{

"username": %username,
"message": %message

}) & "\c\l"

TABLE CONSTRUCTOR SYNTAX The {:} syntax used in listing 3.12 is called a table
constructor. It’s simply syntactic sugar for an array constructor. For example,
{"key1": "value1", "key2": "value2"} is the same as [("key1", "value1"),
("key2, "value2")].

Listing 3.12 Creating a new message

This line should never be
executed because parseMessage
will raise an exception.

Make sure that the exception that’s
thrown is the expected one.

The $ converts the JsonNode returned
by the % operator into a string.

The % converts strings, integers, floats,
and more into the appropriate JsonNodes.

A carriage return and the line feed characters are
added to the end of the message. They act as
separators for the messages.
Licensed to <null>

79Transferring data using sockets
The % operator is very powerful because it can convert a variety of different value types
into appropriate JsonNode types. This allows you to create JSON using a very intuitive
syntax.

 The $ operator is, by convention, the operator used to convert any type to a string
value. In the case of a JsonNode, the $ operator defined for it will produce a valid
JSON string literal representation of the JsonNode object that was built.

 The addition of the carriage return and line feed, which some OSs use to signify
newlines, will be useful later on when the client and server components need to
receive messages. They’ll need a way to determine when a new message stops and
another begins. In essence, these characters will be the message separators. In prac-
tice, any separator could be used, but the \c\l sequence is used in many other proto-
cols already and it’s supported by Nim’s networking modules.

 Just like with the parseMessage procedure, you should add tests for the create-
Message procedure. Simply use doAssert again to ensure that the output is as
expected. Remember to include \c\l in your expected output. The following code
shows one test that could be performed—add it to the bottom of protocol.nim:

block:
let expected = """{"username":"dom","message":"hello"}""" & "\c\l"
doAssert createMessage("dom", "hello") == expected

Recompile your module and run it to ensure that the tests pass. You can also extend
the tests further by checking different inputs, such as ones containing characters that
have a special meaning in JSON (for example, the " character).

 If all the tests pass, you’ve successfully completed the protocol module. You’re
now ready to move on to the final stage of developing this application!

3.5 Transferring data using sockets
You’re now well on your way to completing this chat application. The protocol mod-
ule is complete and the client module has mostly been completed. Before you finish
the client module, let’s look at the so-far-completely neglected server.

 The server module is one of the most important modules. It will be compiled sep-
arately to produce a server binary. The server will act as a central hub to which all the
clients connect.

 The server will need to perform two primary tasks:

 Listen for new connections from potential clients
 Listen for new messages from clients that have already connected to the server

Any messages that the server receives will need to be sent to every other client that is
currently connected to it.

 Figure 3.4, from earlier in the chapter, showed the basic operation of the server
and the clients. It was a simplified diagram, without any protocol details. Now that

Note that triple-quoted string literals don’t support
any character-escape sequences at all. As a

workaround, I simply concatenate them.
Licensed to <null>

80 CHAPTER 3 Writing a chat application

S
ne

s

you’re familiar with the protocol the chat application will be using, I can show you the
exact messages that will be sent in figure 3.4.

 First, assume that the server has successfully accepted connections from Dom,
John, and Grace. The following events occur:

1 Dom sends a message to the server.

{"username": "Dom", "message": "Hello"}\c\l

2 The server passes this message on to the other clients: John and Grace.
{"username": "Dom", "message": "Hello"}\c\l

The server simply passes any messages that it receives to the other clients. For simplic-
ity, the identity of the clients is not verified, so it’s possible for them to impersonate
other users. At the end of this chapter, we’ll consider ways to improve this application,
and security will be one aspect that you’ll be encouraged to reinforce.

 For now, though, let’s create the server module. You can begin by defining the
types that will be used by it. First, create a new server.nim file in the src directory.
Then, create the types shown in the following listing.

import asyncdispatch, asyncnet

type

Client = ref object

socket: AsyncSocket

netAddr: string

id: int

connected: bool

Server = ref object

socket: AsyncSocket

clients: seq[Client]

The Server and Client types are both defined as reference types, which you might
recall from chapter 2. Being defined this way allows procedures that take these types
as arguments to modify them. This will be essential, because new elements will need to
be added to the clients field when new clients connect.

 The Server type holds information that’s directly related to the server, such as the
server socket and the clients that have connected to it. Similarly, the Client type rep-
resents a single client that connected to the server, and it includes fields that provide
useful information about each client. For example, the netAddr field will contain the
IP address of the client, and the id field will hold a generated identity for each client,

Listing 3.13 Standard library imports and type definitions

Imports the asyncdispatch and asyncnet
modules, which contain the procedures and
types needed to use asynchronous sockets

tarts a
w type
ection

Defines the Client type as a reference type

Specifies the socket belonging to the client; the
AsyncSocket type is an asynchronous socket

The field that stores the address from
which this client has connected

A flag that determines whether
this client is still connected

The identification
number of this client

Defines the Server type
as a reference type

The server socket for accepting
new client connections

A list of Client objects
that have connected
Licensed to <null>

81Transferring data using sockets
allowing you to distinguish between them. The connected flag is important because it
tracks whether the client is still connected. The server needs to know this, because it
shouldn’t attempt to send messages to a disconnected client.

 All that’s left now is to create a constructor for the newly defined Server type.

 For a ref type, such as the Server type, the procedure should be named newServer:

proc newServer(): Server = Server(socket: newAsyncSocket(), clients: @[])

This will create a new instance of the Server type and initialize its socket and clients
sequence. You can now call this procedure and assign it to a new server variable.

var server = newServer()

Constructors in Nim
Constructors in Nim are simply procedures with a specific naming convention. Nim
doesn’t include any special syntax for defining constructors, but it does include some
simple syntax for constructing your custom types, which you may recall from chapter 2.

Tuples can be constructed by placing values in parentheses:
type

Point = tuple[x, y: int]

var point = (5, 10)
var point2 = (x: 5, y: 10)

Objects, including ref objects, can be constructed by calling the type—as if it were
a procedure—and then specifying each field name and value separated by a colon:

type
Human = object

name: string
age: int

var jeff = Human(name: "Jeff", age: 23)
var alex = Human(name: "Alex", age: 20)

There’s no way to override these, so if you need more-complex constructors, you’ll
need to define a procedure. There’s a convention in Nim for naming these constructor
procedures; this table shows these conventions and how they apply to different type
definitions.

Constructor naming conventions

Type definition Name

MyType = object initMyType

MyTypeRef = ref object newMyTypeRef

MyTuple = tuple[x, y: int] initMyTuple
Licensed to <null>

82 CHAPTER 3 Writing a chat application
Add the newServer procedure and server variable definitions below the types created
in listing 3.13. The resulting code gives you a good base to begin adding the network-
ing code to.

 But before we get into that, let’s look at how networking, particularly asynchro-
nous networking, works in Nim. We’ll begin by looking at the basic tool used to trans-
fer data over a network: a socket.

3.5.1 What is a socket?

In almost every programming language, transferring data over a network is done
using network sockets. In Nim, a network socket is represented using the Socket type.
This type is defined in the net module, and a new instance of it can be created using
the newSocket procedure.

 Sockets share some similarities with file descriptors in that they support operations
such as write, read, open, and close. But in practice, sockets differ enough to expose
a different interface. Table 3.1 shows some of the common socket procedures and
their file descriptor equivalents.

Sockets can be customized a great deal by specifying different options in the new-
Socket constructor. By default, the newSocket constructor will create a TCP socket,
which is handy because TCP is the protocol that the chat application will use.

 TCP is a connection-oriented transport protocol that allows the socket to be used
as a server or as a client. A newly created TCP socket is neither until the bindAddr or
connect procedure is called. The former transforms it into a server socket, and the lat-
ter a client socket. We’ll create a server socket first, as that’s what is needed for the
server component of this application.

 A server socket’s main purpose is to listen for new connections and accept them
with as little delay as possible. But before this can be done, the socket must first be
bound to an address and port. Figure 3.13 shows the procedures that need to be
called to successfully create and bind a server socket.

Table 3.1 Common socket procedures

Procedure File equivalent Description

recv read Allows incoming data to be read from the remote side. For TCP
sockets, recv is used, and for UDP sockets, recvFrom is used.

send write Sends data to a socket, allowing data to be sent to the remote
side. For TCP sockets, send is used, and for UDP sockets,
sendTo is used.

connect open Connects a socket to a remote server. This is typically only used
for TCP sockets.

bindAddr None Binds a socket to the specified address and port. When called,
the socket becomes a server socket, and other sockets can con-
nect to it. This is typically only used for TCP sockets.
Licensed to <null>

83Transferring data using sockets
First, every server socket needs to be explicitly bound to a specific port and address.
This can be done using the bindAddr procedure, which takes a port as the first argu-
ment and an address as the second. By default, the address is simply localhost, but
the port must always be specified. You can specify whatever port you wish, but there
are some ports that are often used by other applications, such as port 80, which is used
by HTTP servers. Also, binding to a port less than or equal to 1024 requires administra-
tor privileges.

 Second, before the socket can start accepting connections, you must call the listen
procedure on it. The listen procedure tells the socket to start listening for incoming
connections.

 New connections can then be accepted by using the accept procedure. This proce-
dure returns a new client socket, which corresponds to the socket that just connected
to the address and port specified in the call to bindAddr.

DETAILS ABOUT SOCKETS Don’t worry about remembering all the details in
this section. Use it as a reference together with the next sections, which will
show you how to put this knowledge into practice.

Much like reading data from the standard input, the accept procedure blocks your
application until a new connection is made. This is a problem, but one that’s easy to
solve thanks to Nim’s support for asynchronous sockets. Asynchronous sockets don’t
block and can be used instead of synchronous sockets without much trouble. They’re
defined in the asyncnet module, and I’ll explain how they work in the next section.

3.5.2 Asynchronous input/output

Nim supports many abstractions that make working with asynchronous I/O simple.
This is achieved in part by making asynchronous I/O very similar to synchronous I/O,
so your I/O code doesn’t need to be particularly complex.

Server socket

bindAddr

listen

accept

Client socket

7687.Port"localhost"

Thread

blocked Figure 3.13 The steps needed to
start accepting new connections
on a server socket
Licensed to <null>

84 CHAPTER 3 Writing a chat application
 Let’s first look at the accept procedure in more detail. This procedure takes one
parameter, a server socket, which is used to retrieve new clients that have connected to
the specified server socket.

 The fundamental difference between the synchronous and asynchronous versions
of the accept procedure is that the synchronous accept procedure blocks the thread
it’s called in until a new socket has connected to the server socket, whereas the asyn-
chronous accept procedure returns immediately after it’s called.

 But what does the asynchronous version return? It certainly can’t return the
accepted socket immediately, because a new client may not have connected yet.
Instead, it returns a Future[AsyncSocket] object. To understand asynchronous I/O,
you’ll need to understand what a future is, so let’s look at it in more detail.

THE FUTURE TYPE

A Future is a special type that goes by many names in other languages, including prom-
ise, delay, and deferred. This type acts as a proxy for a result that’s initially unknown, usu-
ally because the computation of its value is not yet complete.

 You can think of a future as a container; initially it’s empty, and while it remains
empty you can’t retrieve its value. At some unknown point in time, something is
placed in the container and it’s no longer empty. That’s where the name future comes
from.

 Every asynchronous operation in Nim returns a Future[T] object, where the T cor-
responds to the type of value that the Future promises to store in the future.

 The Future[T] type is defined in the asyncdispatch module, and you can easily
experiment with it without involving any asynchronous I/O operations. The next list-
ing shows the behavior of a simple Future[int] object.

import asyncdispatch

var future = newFuture[int]()

doAssert(not future.finished)

future.callback =

proc (future: Future[int]) =

echo("Future is no longer empty, ", future.read)

future.complete(42)

Listing 3.14 Simple Future[int] example

The asyncdispatch module
needs to be imported because
it defines the Future[T] type. A new future can be

initialized with the
newFuture constructor.

A future starts out empty; when a future isn’t
empty, the finished procedure will return true.

The callback is given the future
whose value was set as a parameter.

A callback can be set, and it will be
called when the future’s value is set.

The read procedure is used to
retrieve the value of the future.

A future’s value can be set by
calling the complete procedure.
Licensed to <null>

85Transferring data using sockets

ith
s
ing
Futures can also store an exception in case the computation of the value fails. Calling
read on a Future that contains an exception will result in an error.

 To demonstrate the effects of this, modify the last line of listing 3.14 to
future.fail(newException(ValueError, "The future failed")). Then compile
and run it.

 The application should crash with the following output:

Traceback (most recent call last)
system.nim(2510) ch3_futures
asyncdispatch.nim(242) fail
asyncdispatch.nim(267) :anonymous
ch3_futures.nim(8) :anonymous
asyncdispatch.nim(289) read
Error: unhandled exception: The future failed

unspecified's lead up to read of failed Future:
Traceback (most recent call last)
system.nim(2510) ch3_futures
asyncdispatch.nim(240) fail [Exception]

As you can see, the error message attempts to include as much information as possi-
ble. But the way it’s presented isn’t ideal. The error messages produced by futures are
still being worked on and should improve with time. It’s a good idea to get to know
what they look like currently, as you’ll undoubtedly see them when writing asynchro-
nous applications in Nim.

 The preceding exception is caused by calling read on a future that had an excep-
tion stored inside it. To prevent that from occurring, you can use the failed proce-
dure, which returns a Boolean that indicates whether the future completed with an
exception.

 One important thing to keep in mind when working with futures is that unless
they’re explicitly read, any exceptions that they store may silently disappear when the
future is deallocated. As such, it’s important not to discard futures but to instead use
the asyncCheck procedure to ensure that any exceptions are reraised in your program.

THE DIFFERENCE BETWEEN SYNCHRONOUS AND ASYNCHRONOUS EXECUTION

Hopefully, by now you understand how futures work. Let’s go back to learning a little
bit more about asynchronous execution in the context of the accept procedure. Fig-
ure 3.14 shows the difference between calling the synchronous version of accept and
the asynchronous version.

 As mentioned earlier, the asynchronous accept returns a Future object immedi-
ately, whereas the synchronous accept blocks the current thread. While the thread is
blocked in the synchronous version, it’s idle and performs no useful computational
work. The asynchronous version, on the other hand, can perform computational
work as long as this work doesn’t require the client socket. It may involve client sockets
that have connected previously, or it may involve calculating the 1025th decimal digit
of π. In figure 3.14, this work is masked beneath a doWork procedure, which could be
doing any of the tasks mentioned.

unspecified is the name of the
Future. It’s called unspecified
because the future is created w
no name. You can name future
for better debugging by specify
a string in the newFuture
constructor.
Licensed to <null>

86 CHAPTER 3 Writing a chat application
The asynchronous version performs many more calls to doWork() than the synchro-
nous version. It also retains the call to doWork(socket), leading to the same code
logic but very different performance characteristics.

 It’s important to note that the asynchronous execution described in figure 3.14 has
a problem. It demonstrates what’s known as busy waiting, which is repeatedly checking
whether the Future is empty or not. This technique is very inefficient because CPU
time is wasted on a useless activity.

 To solve this, each Future stores a callback that can be overridden with a custom
procedure. Whenever a Future is completed with a value or an exception, its callback
is called. Using a callback in this case would prevent the busy waiting.

EXAMPLE OF ASYNCHRONOUS I/O USING CALLBACKS

The term callback provokes a feeling of horror in some people. But not to worry. You
won’t be forced to use callbacks in Nim. Although the most basic notification mecha-
nism Futures expose is a callback, Nim provides what’s known as async await, which
hides these callbacks from you. You’ll learn more about async await later.

 But although you’re not forced to use callbacks in Nim, I’ll first explain asynchro-
nous I/O by showing you how it works with callbacks. That’s because you’re likely
more familiar with callbacks than with async await. Let’s start with a comparison
between Node and Nim, and not a comparison involving sockets but something much
simpler: the reading of a file asynchronously.

var fs = require('fs');
fs.readFile('/etc/passwd', function (err, data) {

if (err) throw err;
console.log(data);

});

Listing 3.15 Reading files asynchronously in Node

Server socket

accept

Client socket

Thread

blocked

Synchronous

Server socket

accept

Future

Future empty?

true

false

Future.read

doWork(socket)doWork()

Asynchronous

doWork()

doWork(socket)

Client socket

Figure 3.14 The difference between synchronous and asynchronous accept
Licensed to <null>

87Transferring data using sockets
The code in the preceding listing is taken straight from Node’s documentation.2 It
simply reads the contents of the /etc/passwd file asynchronously. When this script is
executed, the readFile function tells the Node runtime to read the file specified by
the path in the first argument, and once it’s finished doing so, to call the function
specified in the second argument. The readFile function itself returns immediately,
and control is given back implicitly to the Node runtime.

 Now compare it to the Nim version.

import asyncdispatch, asyncfile

var file = openAsync("/etc/passwd")
let dataFut = file.readAll()
dataFut.callback =

proc (future: Future[string]) =
echo(future.read())

asyncdispatch.runForever()

The Nim version may seem more complex at first, but that’s because Nim’s standard
library doesn’t define a single readFile procedure, whereas Node’s standard library
does. Instead, you must first open the file using the openAsync procedure to get an
AsyncFile object, and then you can read data from that object.3

 Other than that difference in standard library APIs, the Nim version also differs in
one more important way: the readAll procedure doesn’t accept a callback. Instead, it
returns a new instance of the Future type. The callback is then stored in the Future
and is called once the future completes.

THE EVENT LOOP

In a Node application, the runtime is a form of event loop—it uses native operating
system APIs to check for various events. One of these might be a file being successfully
read or a socket receiving data from the server that it’s connected to. The runtime dis-
patches these events to the appropriate callbacks.

 Nim’s event loop is defined in the asyncdispatch module. It’s similar to Node’s
runtime in many ways, except that it needs to be explicitly executed. One way to do
this is to call the runForever procedure. Figure 3.15 shows the behavior of the run-
Forever procedure.

2 See the Node.js fs.readFile documentation: https://nodejs.org/api/fs.html#fs_fs_readfile_file_options_
callback.

Listing 3.16 Reading files asynchronously in Nim

3 Creating a single readFile procedure would be a fairly trivial undertaking. I leave the challenge of creating
such a procedure to you.

Opens the "/etc/passwd" file
asynchronously and binds it
to the file variable

Asks for all of the contents of the file to be
read, and assigns the resulting Future[string]
type to the dataFut variable

Assigns a new callback to be called
when the future completes

Inside the callback, reads the
contents of the future that
should now be present

Explicitly runs the event loop that’s
defined in the asyncdispatch module
Licensed to <null>

https://nodejs.org/api/fs.html#fs_fs_readfile_file_options_callback
https://nodejs.org/api/fs.html#fs_fs_readfile_file_options_callback
https://nodejs.org/api/fs.html#fs_fs_readfile_file_options_callback

88 CHAPTER 3 Writing a chat application
The Nim event loop puts you in control. The runForever procedure is simply a wrap-
per around the poll procedure, which the runForever procedure calls in an infinite
loop. You can call the poll procedure yourself, which will give you greater control
over the event loop. The poll procedure waits for events for a specified number of
milliseconds (500 ms by default), but it doesn’t always take 500 ms to finish because
events can occur much earlier than that. Once an event is created, the poll proce-
dure processes it and checks each of the currently pending Future objects to see if the
Future is waiting on that event. If it is, the Future’s callback is called, and any appro-
priate values that are stored inside the future are populated.

 In contrast to synchronous I/O, which can block for an unlimited amount of time,
the poll procedure also blocks, but only for a finite amount of time, which can be
freely specified. This allows you to commit a certain amount of time to I/O processing
and the rest to other tasks, such as drawing a GUI or performing a CPU-intensive calcu-
lation. I’ll show you how to utilize this procedure later in the client module, so that
async sockets can be mixed with the readLine procedure that reads the standard
input stream in another thread.

ASYNC AWAIT

There’s a big problem with using callbacks for asynchronous I/O: for complex appli-
cation logic, they’re not flexible, leading to what’s aptly named callback hell. For exam-
ple, suppose you want to read another file after a first one has been read. To do so,
you’re forced to nest callbacks, and you end up with code that becomes ugly and
unmaintainable.

 Nim has a solution to this problem: the await keyword. It eliminates callback hell
completely and makes asynchronous code almost identical to synchronous code.

 The await keyword can only be used inside procedures marked with the {.async.}
pragma. The next listing shows how to read and write files using an async procedure.

runForever

poll

Read/write event

Future.callback()

500 ms

asyncdispatch event loop

Blocked for

up to

500 ms

No events

Figure 3.15 Nim’s asyncdispatch
event loop
Licensed to <null>

89Transferring data using sockets

import asyncdispatch, asyncfile

proc readFiles() {.async.} =
var file = openAsync("/home/profile/test.txt", fmReadWrite)
let data = await file.readAll()
echo(data)
await file.write("Hello!\n")

 file.close()

waitFor readFiles()

Listing 3.17 performs the same actions and more than the code in listing 3.16. Every time
the await keyword is used, the execution of the readFiles procedure is paused until the
Future that’s awaited is completed. Then the procedure resumes its execution, and the
value of the Future is read automatically. While the procedure is paused, the application
continues running, so the thread is never blocked. This is all done in a single thread.
Multiple async procedures can be paused at any point, waiting for an event to resume
them, and callbacks are used in the background to resume these procedures.

 Every procedure marked with the {.async.} pragma must return a Future[T]
object. In listing 3.17, the procedure might seem like it returns nothing, but it returns
a Future[void]; this is done implicitly to avoid the pain of writing Future[void] all
the time. Any procedure that returns a Future[T] can be awaited. Figure 3.16 shows
what the execution of listing 3.17 looks like.

 The waitFor procedure that’s used instead of runForever runs the event loop
until the readFiles procedure finishes its execution. Table 3.2 compares all the dif-
ferent async keywords you’ve seen so far.

Listing 3.17 Reading files and writing to them in sequence using await

Table 3.2 Comparison of common async keywords

Procedure
Controls event
loop directly

Use case Description

runForever Yes Usually used for server applications
that need to stay alive indefinitely.

Runs the event loop forever.

waitFor Yes Usually used for applications that
need to quit after a specific asynchro-
nous procedure finishes its execution.

Runs the event loop until the speci-
fied future completes.

The {.async.} pragma is used to specify that
the readFiles procedure is asynchronous.

Opens the ~/test.txt file
asynchronously in fmReadWrite

mode so that the file can be
read and written to

The await keyword
signifies that
readFiles should be
paused until the file
is fully read.

Displays the
contents of the file

Writes some data to the file. The
procedure is paused until the data
is successfully written to the file.

Runs the event loop
until readFiles finishes
Licensed to <null>

90 CHAPTER 3 Writing a chat application
poll Yes For applications that need precise
control of the event loop. The
runForever and waitFor proce-
dures call this.

Listens for events for the specified
amount of time.

asyncCheck No Used for discarding futures safely, typ-
ically to execute an async proc without
worrying about its result.

Sets the specified future’s callback
property to a procedure that will
handle exceptions appropriately.

await No Used to execute another async proc
whose result is needed in the line of
code after the await.

Pauses the execution of an async
proc until the specified future
completes.

Table 3.2 Comparison of common async keywords (continued)

Procedure
Controls event
loop directly

Use case Description

waitFor readFiles()

openAsync(...)

await readAll()

poll()

poll()

poll()

Read 30% of file

Read 80% of file

Read 100% of file

echo(data)

await write(...)

poll()

Program exit

Written 100% of file

readFiles
paused

readFiles
paused

readFiles
finished

Figure 3.16 The execution of listing 3.17
Licensed to <null>

91Transferring data using sockets
WARNING: PROCEDURES THAT CONTROL THE EVENT LOOP Typically, runForever,
waitFor, and poll shouldn’t be used within async procedures, because they
control the event loop directly.

Now, I’ll show you how to use await and asynchronous sockets to finish the implemen-
tation of the server.

3.5.3 Transferring data asynchronously

You’ve already initialized an asynchronous socket and stored it in the server variable.
The next steps are as follows:

1 Bind the socket to a port such as 7687.4

2 Call listen on the socket to begin listening for new connections.
3 Start accepting connections via the accept procedure.

You’ll need to use await, so you’ll need to introduce a new async procedure. The fol-
lowing code shows a loop procedure that performs these steps.

proc loop(server: Server, port = 7687) {.async.} =
server.socket.bindAddr(port.Port)
server.socket.listen()

while true:
let clientSocket = await server.socket.accept()
echo("Accepted connection!")

waitFor loop(server)

The loop procedure will continuously wait for new client connections to be made.
Currently, nothing is done with those connections, but you can still test that this
works. Add the preceding code to the end of server.nim. Then, compile and run the
server by running nim c -r src/server.

TESTING A SERVER WITHOUT A CLIENT

Your client hasn’t yet been completed, so you can’t use it to test the server. But it’s
fairly easy to use a command-line application called telnet to connect to your new
server.

 On Windows, you may need to enable Telnet in the Windows Features menu—you
can find more information at this link: http://mng.bz/eSor. After enabling the telnet
feature, you should be able to open a new command window, type telnet at the

4 Most of the easy-to-remember ports are used by other applications: https://en.wikipedia.org/wiki/
List_of_TCP_and_UDP_port_numbers.

Listing 3.18 Creating a server socket and accepting connections from clients

Sets up the server socket by
binding it to a port and
calling listen. The integer
port param needs to be cast
to a Port type that the
bindAddr procedure expects.

Calls accept on the server
socket to accept a new client.

The await keyword ensures that
the procedure is paused until a

new client has connected.

Executes the loop procedure and
then runs the event loop until the
loop procedure returns.
Licensed to <null>

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
http://mng.bz/eSor

92 CHAPTER 3 Writing a chat application
prompt, and then connect to your server by executing the open localhost 7687 com-
mand. The server should then output “Accepted connection!”

 On UNIX-like operating systems such as Linux and Mac OS, the telnet application
should be available by default. You can simply open a new terminal window and exe-
cute telnet localhost 7687. The server should then output “Accepted connection!”

CREATING A NEW CLIENT INSTANCE TO HOLD DATA ABOUT THE CLIENT

Now, let’s extend the loop procedure to create a new Client instance and add it to
the clients field. Replace the while loop with the following.

while true:
let (netAddr, clientSocket) = await server.socket.acceptAddr()
echo("Accepted connection from ", netAddr)
let client = Client(

socket: clientSocket,
netAddr: netAddr,
id: server.clients.len,
connected: true

)
server.clients.add(client)

The acceptAddr variant of the accept procedure has been changed to return the IP
address of the client that has connected. It returns a tuple, the first value of which is
the IP address of the client, and the second being the client socket. The preceding
code uses tuple unpacking, which allows for these two values to be assigned immediately
to two different variables.

 When a client successfully connects, the next line writes a message to the terminal
that includes the IP address of the client that just connected. After this, a new instance
of the Client object is created, with each field assigned a new value using a construc-
tor. Finally, the new instance is added to the server’s clients sequence.

 Recompiling this code and repeating the testing steps described in the section titled
“Testing a server without a client” should display “Accepted connection from 127.0.0.1.”
But sending messages won’t yet work.

PROCESSING THE CLIENT’S MESSAGES

Messages typed into the prompt won’t be received by the server yet, even after con-
necting with Telnet, because the messages still aren’t being read from the connected
clients. Let’s implement the server code to do that now.

proc processMessages(server: Server, client: Client) {.async.} =
while true:

let line = await client.socket.recvLine()

Listing 3.19 Creating a new Client instance for each connection

Listing 3.20 Receiving messages from a client

acceptAddr returns a tuple[string,
AsyncSocket] type. The tuple is unpacked
into two variables.

A message is displayed, indicating that a
client has connected and providing its

network address.

Initializes a new instance of the
Client object and sets its fields

Adds the new instance of the
client to the clients sequence

Waits for a single line to

be read from the client

Licensed to <null>

93Transferring data using sockets
if line.len == 0:
echo(client, " disconnected!")
client.connected = false
client.socket.close()
return

echo(client, " sent: ", line)

Make sure you place this processMessages procedure above the loop procedure.
Later, you’ll need to call this procedure from the loop procedure, and this procedure
must be above the call site in order for that to work.

 You may find it strange to see another infinite loop, denoted by the while true
statement, at the top of the procedure body. Surely once this procedure is called, its
execution will never stop. There is truth to that, but note this is an async procedure, so
it can be paused. This procedure will never stop executing, but it will pause its execu-
tion when await client.socket.recvLine() is called. Other pieces of code will be
executing while this procedure waits for the result of client.socket.recvLine().

 The result will contain a single message sent by the client. A single message is guar-
anteed because the message protocol created in the previous section uses newline
characters as delimiters.

 There’s one case that will prevent a full message from being received: the client
disconnecting from the server. In that case, recvLine returns an empty string, which is
why the next line checks the length of the resulting string. If the string is empty, a mes-
sage is displayed on the terminal stating that the client disconnected. The client’s
connected flag is set to false, and the close procedure is called on the socket to free
its resources.

 Finally, assuming that the client hasn’t disconnected, the message that the client
sent is displayed in the terminal.

 If you try to recompile the code now, you’ll find that it doesn’t compile. The error
will be similar to the following:

server.nim(16, 54) template/generic instantiation from here
server.nim(20, 12) Error: type mismatch: got (Client)
but expected one of:
system.$(x: int)
system.$(x: seq[T])
system.$(x: cstring)
system.$(x: bool)
...

This is because of the echo(client, " disconnected!") line, which attempts to dis-
play the Client type in the terminal. The problem is that the echo procedure
attempts to use the $ operator to display all of the procedure’s arguments. If a $ oper-
ator isn’t defined for the type that you pass to echo, you’ll get an error message of this
sort. The fix is to define it.

Most procedures that read data from
a socket may return an empty string,
which signifies that the socket has
disconnected from the server.

Closes the client’s socket
because it has disconnected

Stops any
further

processing
of messages
Licensed to <null>

94 CHAPTER 3 Writing a chat application
 The full code listing for server.nim should now look something like this.

import asyncdispatch, asyncnet

type
Client = ref object

socket: AsyncSocket
netAddr: string
id: int
connected: bool

Server = ref object
socket: AsyncSocket
clients: seq[Client]

proc newServer(): Server = Server(socket: newAsyncSocket(), clients: @[])
proc `$`(client: Client): string =

$client.id & "(" & client.netAddr & ")"

proc processMessages(server: Server, client: Client) {.async.} =
while true:

let line = await client.socket.recvLine()
if line.len == 0:

echo(client, " disconnected!")
client.connected = false
client.socket.close()
return

echo(client, " sent: ", line)

proc loop(server: Server, port = 7687) {.async.} =
server.socket.bindAddr(port.Port)
server.socket.listen()

while true:
let (netAddr, clientSocket) = await server.socket.acceptAddr()
echo("Accepted connection from ", netAddr)
let client = Client(

socket: clientSocket,
netAddr: netAddr,
id: server.clients.len,
connected: true

)
server.clients.add(client)
asyncCheck processMessages(server, client)

var server = newServer()
waitFor loop(server)

The code now includes the definition of $ for the Client type, as well as an async-
Check command that runs the processMessages procedure in the background. These
are both shown in bold. The asyncCheck command can be used to run asynchronous
procedures without waiting on their result.

 This code will call the processMessages procedure for each client that connects
to the server, which is precisely what needs to be done. Each client needs to be

Listing 3.21 The full server implementation so far
Licensed to <null>

95Transferring data using sockets
continuously read from to ensure that any messages it sends are processed. Because
of the nature of async procedures, all of this will be done in the background, with the
execution of loop continuing and thus being ready to accept more connections.

 Recompile the server module again, and then run it and connect to it using
telnet. Type some text into the Telnet window and press Enter; you should see your
server output messages showing the text you entered.

SENDING THE MESSAGES TO OTHER CLIENTS

Lastly, you need to send the messages received from a client to all other clients that
are currently connected to the server. Add the following code to the bottom of the
processMessages procedure, making sure you indent this code so it’s within the
while loop.

for c in server.clients:
if c.id != client.id and c.connected:

await c.socket.send(line & "\c\l")

For completeness, the following listing shows what your processMessages procedure
should now look like. The addition is shown in bold.

proc processMessages(server: Server, client: Client) {.async.} =
while true:

let line = await client.socket.recvLine()
if line.len == 0:

echo(client, " disconnected!")
client.connected = false
client.socket.close()
return

echo(client, " sent: ", line)
for c in server.clients:

if c.id != client.id and c.connected:
await c.socket.send(line & "\c\l")

That’s all there is to the server! It can now receive messages and send them on to
other clients. The problem now is that the client still has no code to connect to the
server or to send messages to it. Let’s fix that.

ADDING NETWORK FUNCTIONALITY TO THE CLIENT

The first network functionality that should be implemented in the client is the ability
for it to connect to the server. Before implementing a procedure to do that, though,

Listing 3.22 Sending messages on to other clients

Listing 3.23 The processMessages procedure after listing 3.22 is inserted

Loops through each of the clients
in the clients sequence Checks that the client isn’t

the client that sent this
message and that the client
is still connected

Sends the message to the client,
followed by the message separator: \c\l
Licensed to <null>

96 CHAPTER 3 Writing a chat application
you must import the asyncdispatch and asyncnet modules. You’ll need to also
import the protocol module you created earlier. You can then create a new async pro-
cedure called connect, as shown here.

proc connect(socket: AsyncSocket, serverAddr: string) {.async.} =
echo("Connecting to ", serverAddr)
await socket.connect(serverAddr, 7687.Port)
echo("Connected!")

while true:
let line = await socket.recvLine()
let parsed = parseMessage(line)
echo(parsed.username, " said ", parsed.message)

You should place this procedure just below the import statement at the top of the file.
It’s fairly simple: it connects to the server and starts waiting for messages from it. The
recvLine procedure is used to read a single line at a time. This line is then passed to
the parseMessage procedure, which parses it and returns an object that allows for spe-
cific parts of the message to be accessed. The message is then displayed, together with
the username of the messenger.

 Before the connect procedure can be called, you must first define a new socket
variable. This variable should be initialized using the newAsyncSocket procedure.
Define it after the serverAddr command-line argument is read, so, after the let
serverAddr = paramStr(1) line. The following code should do the trick: var socket
= newAsyncSocket().

 You can then replace echo("Connecting to ", serverAddr) with a call to connect,
using the asyncCheck procedure to discard the future safely: asyncCheck

connect(socket, serverAddr). This code will run in the background because nei-
ther await nor waitFor is used.

 It’s now time to make the reading of standard input in client.nim nonblocking.
Currently, the while loop that reads the standard input blocks, but for the connect
async procedure to work, the async event loop needs to be executed. This won’t hap-
pen if the thread is blocked, so the while loop needs to be modified to integrate the
standard input reading with the event loop. The following code shows how this can be
done—replace the while loop in client.nim with it.

var messageFlowVar = spawn stdin.readLine()
while true:

if messageFlowVar.isReady():

Listing 3.24 The client’s connect procedure

Listing 3.25 Reading from standard input asynchronously

Connects to the server address
supplied, on the default 7687 port.

Continuously attempts to read a
message from the server.

Uses the parseMessage procedure defined in the
protocol module to parse the received message.

Displays the message
together with the username
of the message sender.

The initial readLine call has been
moved out of the while loop.

The isReady procedure determines whether

reading the value from messageFlowVar will block.

Licensed to <null>

97Transferring data using sockets
let message = createMessage("Anonymous", ^messageFlowVar)
asyncCheck socket.send(message)
messageFlowVar = spawn stdin.readLine()

asyncdispatch.poll()

The readLine spawn call has been modified to prevent the readLine procedure from
being executed multiple times in hundreds of threads. This would happen if the
spawn call was placed inside the while statement because the messageFlowVar would
no longer be read synchronously. Now, there is only ever one readLine running in a
separate thread at one time.

 The while loop uses the isReady procedure to check whether the readLine proce-
dure returned a newly read value from the standard input stream. If so, the message is
sent to the server, and the readLine procedure is spawned again. See figure 3.17,
which shows the execution of both the main thread and the readLine thread. Com-
pare it to figure 3.10, which you saw earlier.

 Waiting on the standard input no longer blocks the main thread, allowing the
event loop the time to check for events by calling the poll procedure.

Sends the message to the server. In this case,
createMessage adds the separator for you.

Uses the createMessage procedure defined in the
protocol module to create a new message. Getting
the user’s name is left as an exercise for you.

Calls the event loop
manually using the
poll procedure

Spawns readLine in
another thread, as
the last one has
returned with data

Figure 3.17 The nonblocking parallel execution of client.nim)

Data fully read

readLine Thread

return message

spawn

isReady

false true

send(message)

Process IO events for up to 500ms

Thread
Blocked

spawn

Main Thread

poll()
Licensed to <null>

98 CHAPTER 3 Writing a chat application
For completeness, here’s the full code listing for client.nim. The changes made in this
section are shown in bold.

import os, threadpool, asyncdispatch, asyncnet
import protocol

proc connect(socket: AsyncSocket, serverAddr: string) {.async.} =
echo("Connecting to ", serverAddr)
await socket.connect(serverAddr, 7687.Port)
echo("Connected!")

while true:
let line = await socket.recvLine()
let parsed = parseMessage(line)
echo(parsed.username, " said ", parsed.message)

echo("Chat application started")
if paramCount() == 0:

quit("Please specify the server address, e.g. ./client localhost")
let serverAddr = paramStr(1)
var socket = newAsyncSocket()
asyncCheck connect(socket, serverAddr)
var messageFlowVar = spawn stdin.readLine()
while true:

if messageFlowVar.isReady():
let message = createMessage("Anonymous", ^messageFlowVar)
asyncCheck socket.send(message)
messageFlowVar = spawn stdin.readLine()

asyncdispatch.poll()

THE FINAL RESULTS

That’s all there is to it! You can now compile both the server and the client, and then
run the server and multiple clients. If you send a message from one client, it should dis-
play in the server window but also in the other clients that are connected to the server.

 There’s one small feature missing, and that’s the user names. Currently, the user
name for each client is hardcoded as "Anonymous". Changing this shouldn’t take too
much work, so I’ll leave it as an optional challenge for you.

 Let’s look back at the original use case: asking John and Grace about Game of
Thrones. The discussion looks like this.

Dominik said: What did you guys think about the latest Game of Thrones
episode?
Grace said: I thought Tyrion was really great in it!
John said: I agree with Grace. Tyrion deserves an Emmy for his performance.

After this discussion takes place, each person’s screen should show the same output,
except that each person’s own messages won’t be prefixed by <name> said where
<name> is their name.

Listing 3.26 The final client implementation

Listing 3.27 Conversation between John, Grace, and me about Game of Thrones
Licensed to <null>

99Transferring data using sockets
To see it in action, try this scenario out for yourself. Set up three clients and send the
messages. The server should display the information in figure 3.18 after this exchange.

 Each client should show a screen similar to the one in figure 3.19.
 If you got lost somewhere along the way, or if you just couldn’t get the code to com-

pile for some reason, take a look at the book’s code examples on GitHub:
https://github.com/dom96/nim-in-action-code.
You can now even send the client binary to one of your friends and have them chat
with you. You may need to do it over your LAN or forward ports on your router for it to
work, though.

 There’s a lot of room for improvement, such as making sure that the clients are
still connected by sending special “ping” messages, or adding the ability to kick users
off the server. I’m sure you’ll come up with other ideas, too.

Figure 3.18 The server’s output

Figure 3.19 The client’s output
Licensed to <null>

100 CHAPTER 3 Writing a chat application
3.6 Summary
 The recommended Nim project directory consists of the src, bin, and tests

directories, storing the source code, the executables, and the tests, respectively.
 Command-line arguments can be retrieved using the paramStr procedure and

counted using the paramCount procedure.
 Standard input, accessed via the stdin global variable, can be read using the

readLine procedure.
 Reading from the standard input stream is a blocking operation, which means

the application can’t do any work while it waits for the data to be read.
 A new thread can be used to perform work while another thread is blocked.
 New threads can be created by using spawn.
 JSON can be generated and parsed using the json module.
 The doAssert procedure is a simple and easy way to create tests.
 A socket allows data to be transferred over the internet, with asynchronous

sockets ensuring that the application doesn’t become blocked.
 Asynchronous procedures can be created using an async pragma.
 A future is an object that holds a value that will be available at some point in the

future.
 The await keyword can be used to wait for the completion of a future without

blocking.
Licensed to <null>

A tour through
the standard library
Every programming language supports the notion of a library. A library is a collec-
tion of prewritten software that implements a set of behaviors. These behaviors can
be accessed by other libraries or applications via a library-defined interface.

 For example, a music-playback library such as libogg might define play and
stop procedures that start music playing and stop it. The libogg library’s interface
can be said to consist of those two procedures.

 A library such as libogg can be reused by multiple applications, so that the behav-
iors the library implements don’t have to be reimplemented for each application.

 A standard library is one that’s always available as part of a programming lan-
guage. A standard library typically includes definitions of common algorithms, data
structures, and mechanisms for interacting with the OS.

This chapter covers
 Understanding the standard library

 Examining modules in depth

 Getting to know the modules in Nim’s standard
library

 Using Nim’s standard library modules
101

Licensed to <null>

102 CHAPTER 4 A tour through the standard library
 The design of a standard library differs between languages. Python’s standard
library rather famously follows the “batteries included” philosophy, embracing an
inclusive design. C’s standard library, on the other hand, takes a more conservative
approach. As such, in Python you’ll find packages that allow you to process XML, send
email messages, and make use of the SQLite library, whereas in C, you won’t.

 The Nim standard library also follows the “batteries included” philosophy. It’s sim-
ilar to Python in that regard, because it also contains packages for processing XML,
sending email messages, and making use of the SQLite library, amongst a wide range
of other modules. This chapter is dedicated to Nim’s standard library and will show
you some of its most useful parts. In addition to describing what each part of the stan-
dard library does, this chapter presents examples of how each module in the standard
library can be used.

 Figures 4.1 and 4.2 show some of the most useful modules in Nim’s standard
library. The difference between pure and impure modules is explained in section 4.2.

system

Core

threads

channels

locks

threadpool

macros

Some useful pure modules

Collections and
algorithms

algorithm

tables

sets

sequtils

String handling

strutils

parseutils

strtabs

unicode

pegs

Operating
system services

os

osproc

times

asyncfile

Parsers

parseopt

parsecfg

json

xmlparser

htmlparser

Internet
protocols

httpclient

asynchttpserver

uri

asyncnet

net

Other modules

math

hashes

md5

colors future

logging

unittest

marshal

Figure 4.1 The most useful pure modules
Licensed to <null>

103A closer look at modules
Let’s begin by looking in more detail at what a module is and how modules can be
imported.

4.1 A closer look at modules
The Nim standard library is made up of modules. A module in Nim is a file containing
Nim code, and by default the code inside a module is isolated from all other code.
This isolation restricts which types, procedures, variables, and other definitions are
accessible to code defined in a different module.

 When a new definition is made inside a module, it’s not visible to any other mod-
ules by default. It’s private. But a definition can be made public, which means that it’s
visible to other modules, using the * character. The following example.nim module
defines a moduleVersion variable that’s made public by the * character.

var moduleVersion* = "0.12.0"
var randomNumber* = 42

You might remember the * character from the previous chapter, where I introduced
the * access modifier and used it to export identifiers from the protocol module.
Let’s now take a look at the different ways that modules can be imported.

 You should remember the basic import keyword, which can be used to import the
example.nim module like so.

import example
echo(moduleVersion)

The import keyword does something very straightforward—it imports all the public
definitions from a specified module. But what might not be immediately obvious is
how it finds the specified module.

 The Nim compiler has a configurable list of directories that it searches for modules.
This list is configured in a configuration file normally named nim.cfg. The compiler
may use multiple configuration files, but there’s one defined by the compiler that’s
always used. It usually resides in $nimDir/config, where $nimDir is the path to the Nim
compiler. Listing 4.3 shows what a small part of the default Nim configuration looks

Listing 4.1 Module example.nim

Listing 4.2 Module main.nim

Some useful impure modules

re db_mysql db_sqlite db_postgres

Figure 4.2 The most useful impure modules

The .nim extension must not be specified.

After importing the example module, you can access
the moduleVersion variable because it’s public.
Licensed to <null>

104 CHAPTER 4 A tour through the standard library
like. In the listing, each line specifies a directory that the Nim compiler will look at
when searching for modules.

path="$lib/pure"
path="$lib/impure"
path="$lib/arch"
path="$lib/core"
...

PROJECT CONFIG FILES You can create a configuration file that’s specific to
your project and use it to customize the behavior of the compiler when com-
piling your project. Create a main.nims file, where main.nim is the name of
the file you’re compiling. The config file must be placed beside your Nim
source code file. You can then place any flags you’d pass on the command
line verbatim in that file, such as --threads:on.

When a module is imported using the import statement, the Nim compiler searches
for files alongside the module that’s doing the importing. If the module isn’t found
there, it searches each of the directories defined in the configuration file. This means
that for the main.nim module in listing 4.2 to compile, the example.nim module in
listing 4.1 should be placed alongside the main.nim module. Figure 4.3 shows how the
compiler searches for modules.

When compiling main.nim, the local example module
and the standard library system module need to be
compiled first, so the compiler will search for those
modules first and compile them automatically.

 Modules can also be placed in subdirectories. For
example, consider the directory structure shown in
figure 4.4.

 With the example module in the misc directory,
the main module needs to be modified as follows.

Listing 4.3 Some of the directories in Nim’s configuration file

$lib is expanded by the Nim compiler to a full path that leads to
the location where Nim’s standard library has been installed.

The configuration file contains many more options.
You may wish to take a look at it to see which bits
of the compiler can be configured.

import foobar main.nim

example.nim

Project directory Stdlib directory

...

impure

pure

Not found

Not found Not found

Figure 4.3 The compiler searches for modules starting in the project’s directory.

main.nim

example.nim

Project directory

misc

Figure 4.4 The example.nim file
has been moved into the misc
directory.
Licensed to <null>

105A closer look at modules

import misc/example
echo(moduleVersion)

The misc directory simply needs to be added to the import statement.

4.1.1 Namespacing

Namespaces are common in many programming languages. They act as a context for
identifiers, allowing the same identifier to be used in two different contexts. Language
support for namespaces varies widely. C doesn’t support them, C++ contains an
explicit keyword for defining them, and Python uses the module name as the name-
space. Just like in Python, namespaces in Nim are defined by individual modules.

 To get a better idea of what namespacing is used for, let’s look at an example use
case. Assume that you wish to load images of two separate formats: PNG and BMP. Also
assume that there are two libraries for reading the two types of files: one called libpng
and the other called libbmp. Both libraries define a load procedure that loads the
image for you, so if you want to use both libraries at the same time, how do you distin-
guish between the two load procedures?

 If those libraries are written in C, they would need to emulate namespaces. They’d
do this by prefixing the procedure names with the name of the library, so the proce-
dures would be named png_load and bmp_load to avoid conflicts. C++ versions of
those libraries might define namespaces such as png and bmp, and the load proce-
dures could then be invoked via png::load and bmp::load. Python versions of those
libraries don’t need to explicitly define a namespace—the module name is the name-
space. In Python, if the PNG and BMP libraries define their load procedures in png
and bmp modules, respectively, the load procedures can be invoked via png.load and
bmp.load.

 In Nim, when a module is imported, all of its public definitions are placed in the
namespace of the importing module. You can still specify the fully qualified name, but
doing so isn’t required. This is in contrast to how the Python module system works.

import example
echo(example.moduleVersion)

The module namespace only needs to be specified when the same definition has been
imported from two different modules. Let’s say a new module called example2.nim
was imported, and example2.nim also defines a public moduleVersion variable. In
that case, the code will need to explicitly specify the module name.

var moduleVersion* = "10.23"

Listing 4.4 Importing from a subdirectory

Listing 4.5 Module example2.nim

Specify the module namespace explicitly by writing
the module name followed by a dot character.
Licensed to <null>

106 CHAPTER 4 A tour through the standard library
import example, example2
echo("Example's version: ", example.moduleVersion)
echo("Example 2's version: ", example2.moduleVersion)

Compiling and running the code in listing 4.6 will result in the following output:

Example's version: 0.12.0
Example 2's version: 10.23

But suppose you attempt to display the value of moduleVersion without qualifying it.

import example, example2
echo(moduleVersion)

In that case, you’ll receive an error:

main.nim(2,6) Error: ambiguous identifier: 'moduleVersion' -- use a qualifier

You can prevent all the definitions from being imported into the importing module’s
namespace by using a special import syntax.

from example import nil
echo(moduleVersion)
echo(example.moduleVersion)

When you use the from statement, the specific definitions that you want imported can
be listed after the import keyword.

from example import moduleVersion
echo(moduleVersion)
echo(example.randomNumber)

Listing 4.6 Disambiguating identifiers

Listing 4.7 Importing modules into their own namespace

Listing 4.8 Importing only some of the definitions from a module

An import statement can
import multiple modules.
You just need to separate
them with a comma.

Imports the example module
without importing any of its
definitions into this file’s namespace This will no longer work

because moduleVersion
is no longer in this file’s
namespace.

The moduleVersion
variable can be
accessed by explicitly
writing the module
namespace.

Imports moduleVersion into this file’s
namespace. All other public definitions need
to be accessed via the example namespace.

The moduleVersion variable
can again be accessed
without explicitly writing
the module namespace.

The randomNumber variable
must be qualified.
Licensed to <null>

107Overview of the standard library
Certain definitions can be excluded using the except keyword.

import example except moduleVersion
echo(example.moduleVersion)
echo(moduleVersion)
echo(randomNumber)

In Nim, it’s idiomatic to import all modules so that all identifiers end up in the
importing module’s namespace, so you only need to explicitly specify the namespace
when the name is ambiguous. This is different from Python, which requires every
identifier that’s imported to be accessed via the module’s namespace unless the mod-
ule is imported using the from x import * syntax.

 Nim’s default import behavior allows flexible Uniform Function Call Syntax
(UFCS) and operator overloading. Another benefit is that you don’t need to con-
stantly retype the module names.

 You might not recall the discussion on UFCS in chapter 1. It allows any procedure
to be called on an object as if the function were a method of the object’s class. The fol-
lowing listing shows UFCS in action.

proc welcome(name: string) = echo("Hello ", name)

welcome("Malcolm")
"Malcolm".welcome()

You should now have a better understanding of Nim’s module system. Let’s go on to
look at Nim’s standard library in greater detail.

4.2 Overview of the standard library
Nim’s standard library is split up into three major categories: pure, impure, and wrap-
pers. This section will look at these categories in general. Later sections in this chapter
explore a few specific modules from a couple of these categories.

4.2.1 Pure modules

A large proportion of Nim’s standard library is composed of pure modules. These
modules are written completely in Nim and require no dependencies; you should pre-
fer them because of this.

 The pure modules themselves are further split up into multiple categories, includ-
ing the following:

 The core
 Collections and algorithms

Listing 4.9 Excluding some definitions when importing

Listing 4.10 Uniform Function Call Syntax

Accessing the moduleVersion variable
via the module’s namespace still works.

Accessing the
moduleVersion variable
without qualifying the
name doesn’t work.

Accessing the
randomNumber
variable without
qualifying the
name does work.

Both syntaxes are valid and
perform the same action.
Licensed to <null>

108 CHAPTER 4 A tour through the standard library
 String handling
 Generic OS services
 Math libraries
 Internet protocols
 Parsers

4.2.2 Impure modules

Impure modules consist of Nim code that uses external C libraries. For example, the
re module implements procedures and types for handling regular expressions. It’s an
impure library because it depends on PCRE, which is an external C library. This means
that if your application imports the re module, it won’t work unless the user installs
the PCRE library on their system.

4.2.3 Wrappers

Wrappers are the modules that allow these external C libraries to be used. They pro-
vide an interface to these libraries that, in most cases, matches the C interface exactly.
Impure modules build on top of wrappers to provide a more idiomatic interface.

 You can use wrappers directly, but doing so isn’t easy because you’ll need to use
some of Nim’s unsafe features, such as pointers and bit casts. This can lead to errors
because in most cases you’ll need to manage memory manually.

 Impure modules define abstractions to provide a memory-safe interface that you
can easily use in your source code without worrying about the low-level details of C.

4.2.4 Online documentation

We’ll start looking at different modules in a moment, but I first want to mention that
the Nim website contains documentation for the full standard library. A list of all
the modules in the standard library can be found in the Nim documentation:
http://nim-lang.org/docs/lib.html. This URL always shows the documentation for
the latest release of Nim, and it contains links to documentation for each module.

Shared libraries
Impure modules such as re use what’s known as a shared library, typically a C library
that’s been compiled into a shared library file. On Windows, these files use the .dll
extension, on Linux the .so extension, and on Mac OS the .dylib extension.a

When you import an impure module, your application will need to be able to find these
shared libraries. They’ll need to be installed via your OS’s package manager or bun-
dled with your application. On Linux, it’s common to use a package manager; on Mac
OS, both methods are fairly common; and on Windows, bundling the dependencies
with your application is popular.

a See Wikipedia’s “Dynamic linker” article: https://en.wikipedia.org/wiki/Dynamic_linker
#Implementations.
Licensed to <null>

https://en.wikipedia.org/wiki/Dynamic_linker#Implementations
https://en.wikipedia.org/wiki/Dynamic_linker#Implementations
https://en.wikipedia.org/wiki/Dynamic_linker#Implementations
http://nim-lang.org/docs/lib.html

109Overview of the standard library
 The documentation for each module provides definitions and links to implemen-
tations of those definitions. It can, for example, link to a line of code where a proce-
dure is implemented, showing you exactly how it functions.

 Every part of Nim is open source, including its standard library, so you can look at
the source of the standard library to see Nim code written by the Nim developers
themselves. This allows you to truly understand the behavior of each part of the stan-
dard library, and you can even modify it to your liking.

 Figure 4.5 shows what the documentation for the os module looks like.
 The Nim documentation also includes a Nimble section,1 with links to community-

created modules. Nimble is a Nim package manager that makes the installation of
these packages easy. You’ll learn more about it in the next chapter.

 The list of Nimble packages is split into official and unofficial lists. The official
packages are ones that are officially supported by the core Nim developers, and as
such they’re far more stable than some of the unofficial packages. The official pack-
ages include modules that used to be part of the standard library but which have been
transferred out in order to make the standard library a bit more lean.

 We’ll now look at the pure modules in a bit more detail. We’ll start with the core
modules.

1 List of Nimble packages: https://nim-lang.org/docs/lib.html#nimble.

Figure 4.5 The documentation for the os module
Licensed to <null>

https://nim-lang.org/docs/lib.html#nimble

110 CHAPTER 4 A tour through the standard library
4.3 The core modules
The most important module in the core of the standard library is the system module.
This is the only module that’s implicitly imported, so you don’t need to include
import system at the top of each of your own modules. This module is imported
automatically because it contains commonly used definitions.

 The system module includes definitions for all the primitive types, such as int and
string. Common procedures and operators are also defined in this module. Table 4.1
lists some examples.

Table 4.1 Some examples of definitions in the system module

Definitions Purpose Examples

+, -, *, / Addition, subtraction, multiplica-
tion, division of two numbers.

doAssert(5 + 5 == 10)
doAssert(5 / 2 == 2.5)

==, !=, >, <, >=, <= General comparison operators. doAssert(5 == 5)
doAssert(5 > 2)

and, not, or Bitwise and Boolean operations. doAssert(true and true)
doAssert(not false)
doAssert(true or false)

add Adds a value to a string or
sequence.

var text = "hi"
text.add('!')
doAssert(text == "hi!")

len Returns the length of a string or
sequence.

doAssert("hi".len == 2)

shl, shr Bitwise shift left and shift right. doAssert(0b0001 shl 1 == 0b0010)

& Concatenation operator; joins two
strings into one.

doAssert("Hi" & "!" == "Hi!")

quit Terminates the application with a
specified error code.

quit(QuitFailure)

$ Converts the specified value into a
string. This is defined in the
system module for some com-
mon types.

doAssert($5 == "5")

repr Takes any value and returns its
string representation. This differs
from $ because it works on any
type; a custom repr doesn’t need
to be defined.

doAssert(5.repr == "5")

substr Returns a slice of the specified
string.

doAssert("Hello".substr(0, 1) == "He")

echo Displays the specified values in
the terminal.

echo(2, 3.14, true, "a string")

items An iterator that loops through the
items of a sequence or string.

for i in items([1, 2]): echo(i)
Licensed to <null>

111Data structures and algorithms
In addition to the definitions in table 4.1, the system module also contains types that
map directly to C types. Remember that Nim compiles to C by default and that these
types are necessary to interface with C libraries. Interfacing with C is an advanced
topic; I’ll go into it in more detail in chapter 8.

 Whenever the --threads:on flag is specified when compiling, the system module
includes the threads and channels modules. This means that all the definitions
found in those modules are available through the system module. These modules
implement threads that provide a useful abstraction for concurrent execution. Con-
currency will be touched on in more detail in chapter 6.

 Other modules in the core category include threadpool and locks, both of which
implement different threading abstractions, and macros, which implements an API for
metaprogramming.

 The main module in the core that you’ll be interested in is the system module.
The others aren’t as important, and you’ll be using them only for specialized tasks like
concurrency.

 You should now have a basic idea of what some of the core modules implement,
particularly the procedures and types defined in the implicitly imported system mod-
ule. Next, let’s look at the modules that implement data structures and common algo-
rithms, and how they can be used.

4.4 Data structures and algorithms
A large proportion of data structures are defined in the system module, including
ones you’ve already seen in chapter 2: seq, array, and set.

 Other data structures are implemented as separate modules in the standard
library. These modules are listed under the “Collections and algorithms” category in
the standard library documentation. They include the tables, sets, lists, queues,
intsets, and critbits modules.

 Many of those modules have niche use cases, so we won’t go into much detail
about them, but we will talk about the tables and sets modules. We’ll also look at
some modules that implement different algorithms to deal with these data structures.

doAssert, assert Raises an exception if the value
specified is false. (assert calls
are removed when compiled with
-d:release. doAssert calls
are always present.)

doAssert(true)

Table 4.1 Some examples of definitions in the system module (continued)

Definitions Purpose Examples
Licensed to <null>

112 CHAPTER 4 A tour through the standard library
4.4.1 The tables module

Assume that you’re writing an application that stores the average life expectancy of dif-
ferent kinds of animals. After adding all the data, you may wish to look up the average
life expectancy of a specific animal. The data can be stored in many different data
structures to accommodate the lookup.

 One data structure that can be used to store the data is a sequence. The sequence
type seq[T] defines a list of elements of type T. It can be used to store a dynamic list of
elements of any type; dynamic refers to the fact that a sequence can grow to hold more
items at runtime.

 The following listing shows one way that the data describing the average life expec-
tancy of different animals could be stored.

var numbers = @[3, 8, 1, 10]
numbers.add(12)
var animals = @["Dog", "Raccoon", "Sloth", "Cat"]
animals.add("Red Panda")

In listing 4.11, the numbers variable holds the ages of each of the animals. The ani-
mals’ names are then stored in the animals sequence. Each age stored in the numbers
sequence has the same position as the animal it corresponds to in animals, but that’s
not intuitive and raises many issues. For example, it’s possible to add an animal’s aver-
age age expectancy to numbers without adding the corresponding animal’s name into
animals, and vice versa. A better approach is to use a data structure called a hash table.

 A hash table is a data structure that maps keys to values. It stores a collection of
(key, value) pairs, and the key appears only once in the collection. You can add,
remove, and modify these pairs as well as look up values based on a key. Hash tables
typically support keys of any type, and they’re typically more efficient than any other
lookup structure, which makes their use popular. Figure 4.6 shows how data about ani-
mals can be retrieved from a hash table by performing a lookup based on a key.

Listing 4.11 Defining a list of integers and strings

Defines a new variable of type
seq[int] that holds some numbers Adds the number 12 to

the numbers sequence
Defines a new variable
of type seq[string] that
holds some animals

Adds the animal "Red
Panda" to the
animals sequence

hash("Dog")animalAges["Dog"] 3

8

1

10

00

01

02

18

19

3

animalAges
hash table

Hash
procedure

Hash table
lookup Result

Figure 4.6 Looking up the value of the key
"Dog" in the animalsAges hash table
Licensed to <null>

113Data structures and algorithms
The tables module implements a hash table, allowing you to write the following.

import tables
var animalAges = toTable[string, int](

{
"Dog": 3,
"Raccoon": 8,
"Sloth": 1,
"Cat": 10

})

animalAges["Red Panda"] = 12

Several different types of hash tables are defined in the tables module: the generic
version defined as Table[A, B]; the OrderedTable[A, B], which remembers the inser-
tion order; and the CountTable[A], which simply counts the number of each key. The
ordered and count tables are used far less often than the generic table because their
use cases are more specific.

 The Table[A, B] type is a generic type. In its definition, A refers to the type of the
hash table’s key, and B refers to the type of the hash table’s value. There are no restric-
tions on the types of the key or the value, as long as there’s a definition of a hash pro-
cedure for the type specified as the key. You won’t run into this limitation until you
attempt to use a custom type as a key, because a hash procedure is defined for most
types in the standard library.

import tables
type

Dog = object
name: string

var dogOwners = initTable[Dog, string]()
dogOwners[Dog(name: "Charlie")] = "John"

Compiling listing 4.13 will result in the following output:

file.nim(7, 10) template/generic instantiation from here
lib/pure/collections/tableimpl.nim(92, 21)

➥ template/generic instantiation from here
lib/pure/collections/tableimpl.nim(43, 12)

➥ Error: type mismatch: got (Dog)

Listing 4.12 Creating a hash table

Listing 4.13 Using a custom type as a key in a hash table

Hash tables are in the tables
module, so it needs to be imported.

Creates a new Table[string, int] out of the
mapping defined in listing 4.11. The key and
value types need to be specified because the
compiler can’t infer them in all cases.

Uses the {:} syntax to define a
mapping from string to int

Adds "Red
Panda"
to the
animalAges
hash table

The type keyword begins a section
of code where types can be defined.

Defines a new Dog
object with a name
field of type string

The initTable procedure can
be used to initialize a new
empty hash table.

Creates a new instance of the Dog object and uses that as the key.
Sets the value of that key in the dogOwners hash table to "John".

This refers to
dogOwners
[Dog(name:
"Charlie")] =
"John", where
you’re trying to use
the Dog as the key.These errors are inside the standard library

because that’s where the call to hash(key) is made.
Licensed to <null>

114 CHAPTER 4 A tour through the standard library
but expected one of:
hashes.hash(x: T)
hashes.hash(x: pointer)
hashes.hash(x: T)
hashes.hash(x: float)
hashes.hash(x: set[A])
hashes.hash(x: T)
hashes.hash(x: string)
hashes.hash(x: int)
hashes.hash(aBuf: openarray[A], sPos: int, ePos: int)
hashes.hash(x: int64)
hashes.hash(x: char)
hashes.hash(sBuf: string, sPos: int, ePos: int)
hashes.hash(x: openarray[A])

The compiler rejects the code with the excuse that it can’t find the definition of a
hash procedure for the Dog type. Thankfully, it’s easy to define a hash procedure for
custom types.

import tables, hashes
type

Dog = object
name: string

proc hash(x: Dog): Hash =
result = x.name.hash
result = !$result

var dogOwners = initTable[Dog, string]()
dogOwners[Dog(name: "Charlie")] = "John"

The code in listing 4.14 shows in bold the additions that make the example compile.
The hashes module is necessary to aid in computing a hash in the hash procedure. It
defines the Hash type, the hash procedure for many common types including string,
and the !$ operator. The !$ operator finalizes the computed hash, which is necessary
when writing a custom hash procedure. The use of the !$ operator ensures that the
computed hash is unique.

4.4.2 The sets module

Now let’s have a quick look at another data structure: the set. The basic set type,
introduced in chapter 2, is defined in the system module. This set type has a limita-
tion—its base type is limited to an ordinal type of a certain size, specifically one of the
following:

 int8, int16
 uint8/byte, uint16
 char

 enum

Listing 4.14 Defining a hash procedure for custom types

Lists all the available definitions of
the hash procedure. As you can see,
there’s no definition for the Dog
type present in that list.

Imports the hashes module, which
defines procedures for computing hashes

Defines a hash procedure for the Dog type

Uses the Dog’s name field to compute a hash

Uses the !$ operator to
finalize the computed hash
Licensed to <null>

115Data structures and algorithms
Attempting to define a set with any other base type, such as set[int64], will result in
an error.

 The sets module defines a HashSet[A] type that doesn’t have this limitation. Just
like the Table[A,B] type, the HashSet[A] type requires a hash procedure for the type
A to be defined. The following listing creates a new HashSet[string] variable.

import sets
var accessSet = toSet(["Jack", "Hurley", "Desmond"])
if "John" notin accessSet:

echo("Access Denied")
else:

echo("Access Granted")

Determining whether an element is within a set is much more efficient than checking
whether it’s within a sequence or array, because each element of a set doesn’t need to
be checked. This makes a very big difference when the list of elements grows, because
the time complexity is O(1) for sets and O(n) for sequences.2

 In addition to the HashSet[A] type, the sets module also defines an Ordered-
Set[A] type that remembers the insertion order.

4.4.3 The algorithms

Nim’s standard library also includes an algorithm module defining a selection of
algorithms that work on some of the data structures mentioned so far, particularly
sequences and arrays.

 Among the most useful algorithms in the algorithm module is a sorting algorithm
defined in the sort procedure. The procedure takes either an array or a sequence of
values and sorts them according to a specified compare procedure.

 Let’s jump straight to an example that sorts a list of names, allowing you to display it to
the user in alphabetical order, thereby making the process of searching the list much easier.

import algorithm
var numbers = @[3, 8, 67, 23, 1, 2]
numbers.sort(system.cmp[int])
doAssert(numbers == @[1, 2, 3, 8, 23, 67])

Listing 4.15 Modeling an access list using a HashSet

2 For more info on time complexity, see the Wikipedia article: https://en.wikipedia.org/wiki/Time_complexity.

Listing 4.16 Sorting using the algorithm module

Imports the sets module where
the toSet procedure is defined

Defines a new
HashSet[string]
 with a list
of names

Checks if John is in the access set, and if he’s
not, displays the “Access Denied” message

If John is in the access set, displays
the “Access Granted” message

Imports the algorithm module, which
defines the sort and sorted procedures

Defines a numbers
variable of type seq[int]

with some values

Sorts the numbers sequence in
place. This uses a standard cmp
procedure for integers defined
in system when sorting.

The numbers sequence is now
sorted in ascending order.
Licensed to <null>

https://en.wikipedia.org/wiki/Time_complexity

116 CHAPTER 4 A tour through the standard library
var names = ["Dexter", "Anghel", "Rita", "Debra"]
let sorted = names.sorted(system.cmp[string])
doAssert(sorted == @["Anghel", "Debra", "Dexter", "Rita"])
doAssert(names == ["Dexter", "Anghel", "Rita", "Debra"])

The code in listing 4.16 shows two different ways that both sequences and arrays can
be sorted: using the sort procedure, which sorts the list in place, and using the
sorted procedure, which returns a copy of the original list with the elements sorted.
The former is more efficient because no copy of the original list needs to be made.

 Note that the sorted procedure returns a seq[T] type, no matter what the input
type is. This is why the sorted comparison must be done against a sequence literal.

 Consider the system.cmp[int] procedure used in the sort call. Notice the lack of
parentheses, (). Without them the procedure isn’t called but is instead passed as a
value to the sort procedure. The definition of the system.cmp procedure is actually
pretty simple.

proc cmp*[T](x, y: T): int =

if x == y: return 0

if x < y: return -1

else: return 1

doAssert(cmp(6, 5) == 1)

doAssert(cmp(5, 5) == 0)

doAssert(cmp(5, 6) == -1)

The cmp procedure is generic. It takes two parameters, x and y, both of type T. In list-
ing 4.16, when the cmp procedure is passed to the sort procedure the first time, the T
is bound to int because int is specified in the square brackets. In listing 4.17, the
compiler can infer the T type for you, so there’s no need to specify the types explicitly.
You’ll learn more about generics in chapter 8.

 The cmp procedure will work for any type T as long as both the == and < operators
are defined for it. The predefined cmp should be enough for most of your use cases,
but you can also write your own cmp procedures and pass them to sort.

 The algorithm module includes many other definitions that work on both arrays
and sequences. For example, there’s a reverse procedure that reverses the order of
the elements of a sequence or array and a fill procedure that fills every position in an
array with the specified value. For a full list of procedures, take a look at the algorithm
module documentation: http://nim-lang.org/docs/algorithm.html.

Listing 4.17 The definition of the generic cmp procedure

Returns a copy of the names array as a sequence with
the elements sorted. This uses the standard cmp
procedure for strings defined in system when sorting.

Defines a new names variable of type
array[4, string] with some values

The names array has
not been modified.

The sorted sequence contains the elements
in ascending alphabetical order.

Defines a new generic cmp procedure taking
two parameters and returning an integer

The sort procedure expects the specified cmp procedure
to return a value that’s larger than 0 when x > y.

Whereas when x == y, sort
expects cmp to return exactly 0.

When x < y, sort expects cmp to
return a value less than 0.
Licensed to <null>

http://nim-lang.org/docs/algorithm.html

117Interfacing with the operating system
4.4.4 Other modules

There are many other modules that implement data structures in Nim’s standard
library. Before you decide to implement a data structure yourself, take a look at the list
of modules in Nim’s standard library (http://nim-lang.org/docs/lib.html). It
includes linked lists, queues, ropes, and much more.

 There are also many more modules dedicated to manipulating data structures,
such as the sequtils module, which includes many useful procedures for manipulat-
ing sequences and other lists. These procedures should be familiar to you if you have
any previous experience with functional programming. For example, apply allows you
to apply a procedure to each element of a sequence, filter returns a new list with ele-
ments that have fulfilled a specified predicate, and so on. To learn more about the
sequtils module, take a look at its documentation: http://nim-lang.org/docs/
sequtils.html.

 This section provided some examples of the most useful data structures and algo-
rithms in Nim’s standard library. Let’s now look at modules that allow us to make use
of the services an OS provides.

4.5 Interfacing with the operating system
The programs that you create will usually require an OS to function. The OS manages
your computer’s hardware and software and provides common services for computer
programs.

 These services are available through a number of OS APIs, and many of the mod-
ules in Nim’s standard library abstract these APIs to provide a single cross-platform
Nim API that’s easy to use in Nim code. Almost all of the modules that do so are listed
under the “Generic Operating System Services” category in the standard library mod-
ule list (https://nim-lang.org/docs/lib.html). These modules implement a range of
OS services, including the following:

 Accessing the filesystem
 Manipulating file and folder paths
 Retrieving environment variables
 Reading command-line arguments
 Executing external processes
 Accessing the current system time and date
 Manipulating the time and date

Many of these services are essential to successfully implementing some applications.
In the previous chapter, I showed you how to read command-line arguments and com-
municate with applications over a network. Both of these are services provided by the
OS, but communicating with applications over a network isn’t in the preceding list
because it has its own category in the standard library. I’ll talk about modules that deal
with networks and internet protocols in section 4.7.
Licensed to <null>

http://nim-lang.org/docs/lib.html
http://nim-lang.org/docs/sequtils.html
http://nim-lang.org/docs/sequtils.html
http://nim-lang.org/docs/sequtils.html
https://nim-lang.org/docs/lib.html

118 CHAPTER 4 A tour through the standard library
4.5.1 Working with the filesystem

A typical filesystem consists primarily of files and folders. This is something that the
three major OSs thankfully agree on, but you don’t need to look far to start seeing dif-
ferences. Even something as simple as a file path isn’t consistent. Take a look at table
4.2, which shows the file path to a file.txt file in the user’s home directory.

Note both the different directory separators and the different locations of what’s
known as the home directory. This inconsistency proves problematic when you want to
write software that works on all three of these OSs.

 The os module defines constants and procedures that allow you to write cross-
platform code. The following example shows how to create and write to a new file at
each of the file paths defined in table 4.2, without having to write different code for
each of the OSs.

import os
let path = getHomeDir() / "file.txt"
writeFile(path, "Some Data")

To give you a better idea of how a path is computed, take a look at table 4.3.

Table 4.2 File paths on different operating systems

Operating system Path to file in home directory

Windows C:\Users\user\file.txt

Mac OS /Users/user/file.txt

Linux /home/user/file.txt

Listing 4.18 Write "Some Data" to file.txt in the home directory

Table 4.3 The results of path-manipulation procedures

Expression Operating system Result

getHomeDir() Windows

Mac OS

Linux

C:\Users\username\

/Users/username/

/home/username/

getHomeDir() / "file.txt" Windows

Mac OS

Linux

C:\Users\username\file.txt

/Users/username/file.txt

/home/username/file.txt

The os module defines the getHomeDir procedure
as well as the / operator used on the second line.

The getHomeDir proc returns the
appropriate path to the home directory,
depending on the current OS. The /
operator is like the & concatenation
operator, but it adds a path separator
between the home directory and file.txt.

The writeFile procedure is defined in the system
module. It simply writes the specified data to
the file at the path specified.
Licensed to <null>

119Interfacing with the operating system
THE JOINPATH PROCEDURE You can use the equivalent joinPath instead of
the / operator if you prefer; for example, joinPath(getHomeDir(),
"file.txt").

The os module includes other procedures for working with file paths including
splitPath, parentDir, tailDir, isRootDir, splitFile, and others. The code in list-
ing 4.19 shows how some of them can be used. In each doAssert line, the right side of
the == shows the expected result.

import os
doAssert(splitPath("usr/local/bin") == ("usr/local", "bin"))
doAssert(parentDir("/Users/user") == "/Users")
doAssert(tailDir("usr/local/bin") == "local/bin")
doAssert(isRootDir("/"))
doAssert(splitFile("/home/user/file.txt") == ("/home/user", "file", ".txt"))

The os module also defines the existsDir and existsFile procedures for determin-
ing whether a specified directory or file exists. There are also a number of iterators
that allow you to iterate over the files and directories in a specified directory path.

import os
for kind, path in walkDir(getHomeDir()):

case kind
of pcFile: echo("Found file: ", path)
of pcDir: echo("Found directory: ", path)
of pcLinkToFile, pcLinkToDir: echo("Found link: ", path)

Listing 4.19 Path-manipulation procedures

Listing 4.20 Displaying the contents of the home directory

Imports the os module to access
the procedures used next.

Splits the path into
a tuple containing

a head and a tail

Removes the first directory specified
in the path and returns the rest

Returns the path to the parent
directory of the path specified

Splits the specified file path into a
tuple containing the directory,

filename, and file extension

Returns true if the specified
directory is a root directory

Imports the os module to access the walkDir
iterator and the getHomeDir procedure

Uses the walkDir iterator to go
through each of the files in your
home directory. The iterator will
yield a value whenever a new file,
directory, or link is found.

When the path references a file, displays
the message "Found file: " together with
the file path

Checks what the path variable references:
a file, a directory, or a link

When the path references either a
link to a file or a link to a directory,
displays the message "Found link: "

together with the link path

When the path references a directory,
displays the message "Found directory: "

together with the directory path
Licensed to <null>

120 CHAPTER 4 A tour through the standard library
The os module also implements many more procedures, iterators, and types for deal-
ing with the filesystem. The Nim developers have ensured that the implementation is
flexible and that it works on all OSs and platforms. The amount of functionality
implemented in this module is too large to fully explore in this chapter, so I strongly
recommend that you look at the os module’s documentation yourself (http://nim-
lang.org/docs/os.html). The documentation includes a list of all the procedures
defined in the module, together with examples and explanations of how those proce-
dures can be used effectively.

4.5.2 Executing an external process

You may occasionally want your application to start up another program. For example,
you may wish to open your website in the user’s default browser. One important thing
to keep in mind when doing this is that the execution of your application will be
blocked until the execution of the external program finishes. Executing processes is
currently completely synchronous, just like reading standard input, as discussed in the
previous chapter.

 The osproc module defines multiple procedures for executing a process, and
some of them are simpler than others. The simpler procedures are very convenient,
but they don’t always allow much customization regarding how the external process
should be executed, whereas the more complex procedures do provide this.

 The simplest way to execute an external process is using the execCmd procedure. It
takes a command as a parameter and executes it. After the command completes exe-
cuting, execCmd returns the exit code of that command. The standard output, stan-
dard error, and standard input are all inherited from your application’s process, so
you have no way of capturing the output from the process.

 The execCmdEx procedure is almost identical to the execCmd procedure, but it
returns both the exit code of the process and the output. The following listing shows
how it can be used.

import osproc

when defined(windows):
let (ver, _) = execCmdEx("cmd /C ver")

else:
let (ver, _) = execCmdEx("uname -sr")

echo("My operating system is: ", ver)

Listing 4.21 Using execCmdEx to determine some information about the OS

Imports the osproc module where
the execCmdEx proc is defined Checks whether this Nim code

is being compiled on Windows

If this Nim code is being compiled
on Windows, executes cmd /C ver
using execCmdEx and unpacks the
tuple it returns into two variables

If this Nim code is not being
compiled on Windows, executes
uname -sr using execCmdEx and
unpacks the tuple it returns into
two variables

Displays the output from
the executed command
Licensed to <null>

http://nim-lang.org/docs/os.html
http://nim-lang.org/docs/os.html

121Interfacing with the operating system
You can compile and run this application and see what’s displayed. Figure 4.7 shows
the output of listing 4.21 on my MacBook.

 Keep in mind that this probably isn’t the best way to determine the current OS
version.

GETTING THE CURRENT OS There’s an osinfo package available online
that uses the OS API directly to get OS information (https://github.com/nim-
lang/osinfo).

Listing 4.21 also shows the use of an underscore as one of the identifiers in the
unpacked tuple; it tells the compiler that you’re not interested in a part of the tuple.
This is useful because it removes warnings the compiler makes about unused variables.

 That’s the basics of executing processes using the osproc module, together with a
bit of new Nim syntax and semantics. The osproc module contains other procedures
that allow for more control of processes, including writing to the process’s standard
input and running more than one process at a time. Be sure to look at the documen-
tation for the osproc module to learn more.

Figure 4.7 The output of listing 4.21

The compile-time if statement
In Nim, the when statement (introduced in chapter 2) is similar to an if statement,
with the main difference being that it’s evaluated at compile time instead of at runtime.

In listing 4.21, the when statement is used to determine the OS for which the current
module is being compiled. The defined procedure checks at compile time whether
the specified symbol is defined. When the code is being compiled for Windows, the
windows symbol is defined, so the code immediately under the when statement is
compiled, whereas the code in the else branch is not. On other OSs, the code in the
else branch is compiled and the preceding code is ignored.

The scope rules for when are also a bit different from those for if. A when statement
doesn’t create a new scope, which is why it’s possible to access the ver variable
outside it.
Licensed to <null>

https://github.com/nim-lang/osinfo
https://github.com/nim-lang/osinfo

122 CHAPTER 4 A tour through the standard library
4.5.3 Other operating system services

There are many other modules that allow you to use the services provided by OSs, and
they’re part of the “Generic Operating System Services” category of the standard
library. Some of them will be used in later chapters; others, you can explore on your
own. The documentation for these modules is a good resource for learning more:
http://nim-lang.org/docs/lib.html#pure-libraries-generic-operating-system-services

4.6 Understanding and manipulating data
Every program deals with data, so understanding and manipulating it is crucial.
You’ve already learned some ways to represent data in Nim, both in chapter 2 and ear-
lier in this chapter.

 The most-used type for representing data is the string type, because it can repre-
sent just about any piece of data. An integer can be represented as "46", a date as
"June 26th", and a list of values as "2, Bill, King, Programmer".

 Your programs need a way to understand and manipulate this data, and parsers
can help with this. A parser will look at a value, in many cases a text value of type
string, and build a data structure out of it. There is the possibility of the value being
incorrect, so a parser will check for syntax errors while parsing the value.

 The Nim standard library is full of parsers. There are so many of them that there’s
a full category named “Parsers.” The parsers available in the standard library can
parse the following: command-line arguments, configuration files in the .ini format,
XML, JSON, HTML, CSV, SQL, and much more. You saw how to use the JSON parser in
chapter 3; in this section, I’ll show you how to use some of the other parsers.

 The names of many of the modules that implement parsers begin with the word
parse, such as parseopt and parsexml. Some of them have modules that implement a
more intuitive API on top of them, such as these XML parsers: xmldom, xmltree,
xmldomparser, and xmlparser. The latter two modules create a tree-like data structure
out of the parsexml module’s output. The former two modules are then used to
manipulate the tree-like data structures. The xmldom module provides a web DOM–like
API, whereas the xmltree module provides a more idiomatic Nim API. The json mod-
ule defines both a high-level API for dealing with JSON objects and a low-level parser
that parses JSON and emits objects that represent the current data being parsed.

4.6.1 Parsing command-line arguments

Describing how each of these modules can be used for parsing would require its own
chapter. Instead, I’ll present a specific data-parsing problem and show you some ways
that this problem can be solved using the modules available in Nim’s standard library.

 The problem we’ll look at is the parsing of command-line arguments. In chapter 3,
you retrieved command-line arguments using the paramStr() procedure, and you
used the returned string value directly. This worked well because the application
didn’t support any options or flags.
Licensed to <null>

http://nim-lang.org/docs/lib.html#pure-libraries-generic-operating-system-services

123Understanding and manipulating data
 Let’s say you want the application to support an optional port flag on the com-
mand line—one that expects a port number to follow. You may, for example, be writ-
ing a server application and want to give the user the option to select the port on
which the server will run. Executing an application called parsingex with such an
argument would look like this: ./parsingex --port=1234. The --port=1234 part can
be accessed with a paramStr() procedure call, as follows.

import os

let param1 = paramStr(1)

Now you’ve got a string value in the param1 variable that contains both the flag name
and the value associated with it. How do you extract those and separate them?

 There are many ways, some less valid than others. I’ll show you a couple of ways,
and in doing so I’ll show you many different ways that the string type can be manipu-
lated and understood by your program.

 Let’s start by taking a substring of the original string value with the substr proce-
dure defined in the system module. It takes a string value, a start index, and an end
index, with both indexes represented as integers. It then returns a new copy of the
string, starting at the first index specified and ending at the end index.

MORE WAYS TO MANIPULATE STRINGS Nim strings can be modified at runtime
because they’re mutable, which means they can be modified in place, without
the need to allocate a new copy of the string. You can use the add procedure
to append characters and other strings to them, and delete (defined in the
strutils module) to delete characters from them.

import os

let param1 = paramStr(1)
let flagName = param1.substr(2, 5)
let flagValue = param1.substr(7)

Figure 4.8 shows how the indexes passed
to substr determine which substrings are
returned.

Listing 4.22 Retrieving command-line arguments using paramStr

Listing 4.23 Parsing the flag using substr

The command-line argument at index 1 will be
equal to "--port=1234", assuming the application
is executed as in the preceding discussion.

Imports the os module, which
defines the paramStr procedure

Gets the substring of
param1 from index 2
to index 5. This will
result in "port".

Gets the substring of
param1 from index 7 to
the end of the string.
This will result in "1234".

param1.substr(2, 5)

- - p o r t = 1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11

param1.substr(7)

0 1 2 3 4 5 6 7 8 9 10 11

param1 =

"port"

"1234"Figure 4.8 The substr procedure
Licensed to <null>

124 CHAPTER 4 A tour through the standard library
The code in listing 4.23 will work, but it is not very flexible. You might wish to support
other flags, and to do that you will need to duplicate the code and change the indices.

 In order to improve this, you can use the strutils module, which contains many
definitions for working with strings. For example, toUpperAscii and toLowerAscii
convert each character in a string to upper- or lowercase, respectively.3 parseInt con-
verts a string into an integer, startsWith determines whether a string starts with
another string, and there are many others.

 There’s a specific procedure that can help you split up the flag string properly, and
it’s called split.

import os, strutils

let param1 = paramStr(1)
let flagSplit = param1.split('=')
let flagName = flagSplit[0].substr(2)
let flagValue = flagSplit[1]

This is still poor-man’s parsing, but it does work. There’s no error handling, but the
code should work for many different flags. But what happens when requirements
change? Say, for example, one of your users prefers to separate the flag name from
the value using the : symbol. This change is easy to implement because the split

3 The procedures are named this way because they don’t support unicode characters. To get unicode support,
you should use the toUpper and toLower procedures defined in the unicode module.

Listing 4.24 Parsing the flag using split

The slice operator
A series of two dots, otherwise known as the .. operator, can be used to create a
Slice object. A Slice can then be fed into the [] operator, which will return a sub-
string. This is similar to the substr procedure, but it supports reverse indexes using
the ^ operator.

doAssert("--port=1234"[2 .. 5] == "port")
doAssert("--port=1234"[7 .. ^1] == "1234")
doAssert("--port=1234"[7 .. ^3] == "12")

Same as using substr(2, 5); returns a
substring from index 2 to index 5

Returns a substring from
index 7 to the end of the
string. The ^ operator
counts back from the end of
the string.

Returns a substring from
index 7 to the end of the
string minus 2 characters

Imports the strutils module, where
the split procedure is defined

Separates the param1 string value
into multiple different strings at the
location where an “=” character
occurs. The split procedure returns
a sequence of strings, in this case
@["--port", "1234"].

Grabs the first string in the
sequence returned by split and
removes the first two characters

Grabs the second string in the
sequence returned by split
Licensed to <null>

125Understanding and manipulating data
procedure accepts a set[char], so you can specify {'=', ':'} and the string will be
split on both = and :.

 The split procedure works very well for parsing something as simple as this exam-
ple, but I’m sure you can imagine cases where it wouldn’t be a good choice. For exam-
ple, if your requirements change so that the flag name can now contain the =
character, you’ll run into trouble.

 We’ll stop here for now. You’ll learn more about parsing in chapter 6, where you’ll
see how to use the parseutils module to perform more-advanced parsing.

 Thankfully, you don’t need to parse command-line arguments like this yourself. As
I mentioned previously, the Nim standard library contains a parseopt module that
does this for you. The following listing shows how it can be used to parse command-
line arguments.

import parseopt

for kind, key, val in getOpt():
case kind
of cmdArgument:

echo("Got a command argument: ", key)
of cmdLongOption, cmdShortOption:

case key
of "port": echo("Got port: ", val)
else: echo("Got another flag --", key, " with value: ", val)

of cmdEnd: discard

This code is a bit more verbose, but it handles errors, supports other types of flags,
and goes through each command-line argument. This parser is quite tedious, and,
unfortunately, the standard library doesn’t contain any modules that build on top of
it. There are many third-party modules that make the job of parsing and retrieving
command-line arguments much easier, and these are available through the Nimble
package manager, which I’ll introduce in the next chapter.

 Compile and run the code in listing 4.25. Try to pass different command-line argu-
ments to the program and see what it outputs.

 This section should have given you some idea of how you can manipulate the most
common and versatile type: the string. I’ve talked about the different parsing mod-
ules available in Nim’s standard library and showed you how one of them can be used
to parse command-line arguments. I also introduced you to the strutils module,

Listing 4.25 Parsing the flag using parseopt

Imports the parseopt module,
which defines the getOpt iterator

Iterates over each command-line
argument. The getOpt iterator yields
three values: the kind of argument that
was parsed, the key, and the value.

Checks the kind of argument that was parsed

If a simple flag with no value was
parsed, displays just the flag name

If a flag with a value was parsed, checks if it’s
--port and displays a specific message if it is,
showing the port value. Otherwise, displays a
generic message showing the flag name and value.

The command-argument parsing
has ended, so this line does nothing.
Licensed to <null>

126 CHAPTER 4 A tour through the standard library
which contains many useful procedures for manipulating strings. Be sure to check out
its documentation and the documentation for the other modules later.

4.7 Networking and the internet
The Nim standard library offers a large selection of modules that can be used for net-
working. You’ve already been introduced to the asynchronous event loop and the
asynchronous sockets defined in the asyncdispatch and asyncnet modules, respec-
tively. These modules provide the building blocks for many of the modules in the stan-
dard library’s “Internet Protocols and Support” category.

 The standard library also includes the net module, which is the synchronous
equivalent of the asyncnet module. It contains some procedures that can be used for
both asynchronous and synchronous sockets.

 The more interesting modules are the ones that implement certain internet proto-
cols, such as HTTP, SMTP, and FTP.4 The modules that implement these protocols are
called httpclient, smtp, and asyncftpclient, respectively. There’s also an
asynchttpserver module that implements a high-performance HTTP server, allowing
your Nim application to serve web pages to clients such as your web browser.

 The main purpose of the httpclient module is to request resources from the
internet. For example, the Nim website can be retrieved as follows.

import asyncdispatch
import httpclient

let client = newAsyncHttpClient()
let response = waitFor client.get("http://nim-lang.org")
echo(response.version)
echo(response.status)
echo(waitFor response.body)

4 For details on HTTP, SMTP, and FTP, be sure to view their respective Wikipedia articles.

Listing 4.26 Requesting the Nim website using the httpclient module

The asyncdispatch module defines an
asynchronous event loop that’s necessary
to use the asynchronous HTTP client. It
defines the waitFor procedure, which runs
the event loop.

The httpclient module
defines the asynchronous
HTTP client and related
procedures.

Creates a new instance of
the AsyncHttpClient type

Requests the Nim website using HTTP
GET, which retrieves the website. The
waitFor procedure runs the event loop
until the get procedure is finished.

Displays the HTTP version that the
server responded with (likely, "1.1")

Displays the HTTP status that
the server responded with. If
the request is successful, it
will be "200 OK".

Displays the body of the response. If
the request is successful, this will be
the HTML of the Nim website.
Licensed to <null>

127Summary
The code in listing 4.26 will work for any resource or website. Today, the Nim website
is served over SSL, you'll need to compile listing 4.26 with the -d:ssl flag in order to
enable SSL support.

 These modules are all fairly simple to use. Be sure to check out their documenta-
tion for details about the procedures they define and how those procedures can be
used.

 There may be protocols that the standard library misses, or custom protocols that
you’d like to implement yourself. A wide range of networking protocols has been
implemented as libraries outside the standard library by other Nim developers. They
can be found using the Nimble package manager, which you’ll learn about in the next
chapter.

4.8 Summary
 A library is a collection of modules; modules, in turn, implement a variety of

behaviors.
 Identifiers in Nim are private by default and can be exported using *.
 Modules are imported into the importing module’s global namespace by

default.
 The from module import x syntax can be used to selectively import identifiers

from a module.
 The standard library is organized into pure, impure, and wrapper categories.
 The system module is imported implicitly and contains many commonly used

definitions.
 The tables module implements a hash table that can be used to store a map-

ping between keys and values.
 The algorithms module defines a sort procedure that can be used for sorting

arrays and sequences.
 The os module contains many procedures for accessing the computer’s filesystem.
 Web pages can be retrieved using the httpclient module.
Licensed to <null>

Package management
Today package managers have a central role in the development of software. This
was not always the case; the Comprehensive Perl Archive Network, or CPAN, was
one of the first large software repositories to have existed solely for a specific pro-
gramming language. It consists of over 150,000 modules of Perl code, making it
one of the biggest software module repositories from a single programming lan-
guage. It’s also one of the earliest examples of such a software repository; its success
has influenced many others. Today, software repositories exist for just about all pro-
gramming languages.

 A package is an abstract term given to a collection of modules; these modules may
form a library or an application. A package manager automates the process of down-
loading, installing, updating, and removing packages. Libraries contain implemen-
tations of different behavior, and can be invoked using a well-defined interface.
These implementations are stored and exposed through one or more modules.

This chapter covers
 Understanding how Nimble helps you develop

software

 Using Nimble packages to develop software

 Creating Nimble packages and publishing them
128

Licensed to <null>

129The Nim package manager
Software repositories distribute a number of different packages, allowing those pack-
ages to be freely downloaded. You could download packages manually, but doing so
would be tedious. For example, a package may have dependencies: other packages
that need to be installed first for the package to work correctly. Package managers
ensure that dependencies are correctly installed automatically. Figure 5.1 shows how
packages, libraries, applications, and software repositories relate to each other.

 Most programming languages have at least one package manager; some have mul-
tiple. Nim’s package manager is important because it’s a tool that gives you access to
the hundreds of open source packages contained in Nim’s package repository.

 This chapter provides an overview of Nimble, the Nim package manager, including
how to install and create packages. Be sure to also take a look at the Nimble documen-
tation: https://github.com/nim-lang/nimble.

5.1 The Nim package manager
There are many package managers in existence today, but not all of them are
designed for the same purpose. Package managers are primarily split into two catego-
ries: system-level and application-level.

 System-level package managers are typically bundled with the OS. They allow the
user to install a popular set of applications and libraries written in many different pro-
gramming languages. Application-level package managers are more specific; they
focus on libraries and applications written in a single programming language.

 Imagine you got a brand-new computer, and you’d like to watch some movies on it.
One of the most widely used applications for watching video is VLC, but it doesn’t
come preinstalled on computers. You can instruct a package manager to install VLC,
together with any missing libraries VLC needs to function. A system-level package
manager would be perfect for this.

Application package

vlc.cpp

vlc_ui.cpp

...

Library package

ogg.h

bitwise.c
...

ogg_stream_init
ogg_stream_pagein
...

Software repository

Firefox

libogg

VLC

libzip

Figure 5.1 Comparison between packages, libraries, applications, and software
repositories
Licensed to <null>

https://github.com/nim-lang/nimble

130 CHAPTER 5 Package management
VLC comes with a library called libvlc; this library allows any application to play video
with the same accuracy as VLC itself. If you wanted to make use of this library in your
Nim application, you’d need a Nim package that implements a Nim interface to that
library. Such a package would be installed via an application-level package manager.

 Figure 5.2 shows examples of some common system-level and application-level
package managers.

 Package managers also differ in the way that they distribute packages. Some dis-
tribute packages in the form of binaries, whereas others distribute the source code. In
the latter case, the packages must then be compiled on the user’s computer using a
compiler.

 Nim’s package manager is called Nimble. Nimble is an application-level package
manager, and it distributes packages in the form of source code. This is similar to
other application-level package managers such as Python’s pip and NodeJS’s npm.
Nimble is already being used by many Nim programmers, even though it’s not yet sta-
ble and there are still some features missing from it. This section will show you how
the current version of Nimble (0.7.2 as of writing) can be used to manage Nim librar-
ies and applications. Keep in mind that Nimble is evolving every day and that some of
the things mentioned in this section may change in the future.

5.2 Installing Nimble
The good news is that you most likely have Nimble installed already. Nim installation
packages have started to include Nimble since around version 0.15.0, so if you have
Nim installed, you should have Nimble installed too.

 You can easily check whether this is the case by running nimble -v in the terminal.
If you see information about Nimble’s version, you have Nimble installed; if you see
something like “command not found: nimble,” you don’t.

 Keep in mind that, in order to install packages, Nimble may execute an external
application called Git, which you must also have installed and available in your path.
For more details, look at the Nimble installation page on GitHub: https://github.com/
nim-lang/nimble#installation.

System-level package managers Application-level package managers

Chocolatey, Steam, Cygwin

apt-get, yum, pacman

Homebrew, MacPorts

Npm, Bower

pip, EasyInstall, PyPM

Nimble

Figure 5.2 System-level vs. application-level package managers
Licensed to <null>

https://github.com/nim-lang/nimble#installation
https://github.com/nim-lang/nimble#installation
https://github.com/nim-lang/nimble#installation

131What is a Nimble package?
5.3 The nimble command-line tool
You should now have Nimble installed on your system. Running nimble in a new ter-
minal window should display a list of commands supported by Nimble. Figure 5.3
shows just a few of these.

nimble will also show the order in which commands should be passed to Nimble. A sin-
gle command is written after nimble, separated by a space. After that come the flags
and parameters passed to that command, each separated by a space. For example, to
search for any packages that relate to Linux, you can execute nimble search linux.
You can also specify a --ver flag, which will show you the available versions of each
package. Figure 5.4 shows the result of a search for “linux” with the --ver flag.

 Note the “versions:” followed by a list of two different versions in figure 5.4. Those
are the versions of the daemonize package that can be installed.

 Nimble’s command-line interface is the primary way of installing, searching for,
upgrading, and removing packages. Before I show you how to install packages,
though, let’s look at what a package actually is.

5.4 What is a Nimble package?
Software is almost always composed of different types of files, including source code,
images, sound, and more. For example, let’s say you’re creating a video game. Video
games require a plethora of resources to function, and these need to be bundled
together with the game’s executable. A package offers a convenient way to bundle
such files together with the software.

 In the simplest sense, a minimal Nimble package is a directory containing a .nimble
file and one or more Nim modules.

Available
commands

Command
params

Command
information

Nimble
command

syntax

Figure 5.3 Some commands that Nimble supports
Licensed to <null>

132 CHAPTER 5 Package management
A .nimble file contains metadata about a package. It specifies a package’s name, ver-
sion, author, dependencies, and more. The .nimble part is just a file extension, and the
filename of every .nimble file is the same as the name of the package. The following
listing shows a simple example of a .nimble file.

Package information
version = "0.1.0"
author = "Andreas Rumpf, Dominik Picheta"
description = "Example .nimble file."
license = "MIT"

Dependencies
requires "nim >= 0.12.0"

The .nimble files use a Nim-based format that supports a subset of Nim’s features. In
addition, the format contains some shortcuts for defining information about the pack-
age. You can freely define variables, procedures, and more within your .nimble files,
and you can even import other modules into them.

Listing 5.1 MyPkg.nimble

Package
metadata

Versions of this package
that can be installed.
Only shown with --ver flag.

Package
name

The URL and type
of the repository
storing this
package

Figure 5.4 Searching for a “linux” package with version information

The name of the package is not specified here;
instead, the filename of the .nimble file is used.

Version strings usually consist of three
digits separated by periods, and they
follow the semantic versioning specification
available at http://semver.org. You can
specify as many digits as you want, but
other characters aren’t supported.

Identifies one or
more authors who
created this package

Specifies that the package requires at
least version 0.12.0 of the Nim
compiler to be successfully compiled
Licensed to <null>

http://semver.org

133What is a Nimble package?
 Nimble also supports the definition of tasks, as follows:

task test, "Run the packages tests!":
exec "nim c -r tests/mytest.nim"

Placing this snippet of code at the end of your .nimble file will allow you to execute
nimble test to run your package’s tests.

 Figure 5.5 shows what the contents of a typical standalone Nimble package look
like. The data specified in this MyPkg.nimble file is mandatory, and there are many
other options you can specify in a .nimble file as well. I can’t list them all here, but
you’ll learn about some of them later in this chapter. For a full list, check out the Nim-
ble documentation on GitHub: https://github.com/nim-lang/nimble#readme.

Assuming you have a Nimble package somewhere on your local filesystem, you can
easily open a terminal in the directory of that package and execute nimble install.
When you do this, Nimble will attempt to install the package contained in the current
directory. This is useful for local packages that you’ve created yourself. But what about
packages that have been created by other developers? Do you need to download these
manually?

 Thankfully, the answer to that question is no. As part of the install command, a
URL can be specified that points to the package you want to install. Currently, this URL
must point to either a Git or Mercurial repository, which brings us to the definition of
an external package: one that can be accessed over the internet. An external Nimble
package is either a Git or Mercurial repository containing a .nimble file and one or
more Nim modules.

MyPkg.nimble

src/mypkg.nim

...

Package name: MyPkg
Version: 0.1.0
Author: Dominik Picheta
Description: ...
License: MIT

Dependencies:

 Nim >= 0.12.0

Figure 5.5 A typical Nimble
package

What are Git and Mercurial?
Git and Mercurial are examples of distributed version control systems (DVCSs). A
DVCS enables a team of software developers to work together on a software project,
and by keeping track of the history of each file, it helps deal with situations where
two or more developers end up editing the same files.
Licensed to <null>

https://github.com/nim-lang/nimble#readme

134 CHAPTER 5 Package management
Git and Mercurial repositories may contain additional information, such as tags.
Repositories containing Nimble packages must contain a tag that identifies each ver-
sion of that package. Figure 5.6 shows how an external Nimble package’s content can
change between revisions.

In the previous section, I showed you how the search command works. With the
--ver flag, the search command lists the tags of each of the package repositories.
Nimble interprets each tag as a version.

 Nimble packages are coupled to repositories because most libraries and applica-
tions are already stored in repositories. Turning a repository into a Nimble package is
easy—the repository just needs a .nimble file. Other package managers store their
packages on a single centralized server, which has its advantages; this is something
that Nimble will eventually also support.

(continued)
A repository is where the history of a software project is stored. These repositories
can be uploaded to a remote server and then subsequently downloaded using the
git or hg command-line tools, for Git and Mercurial, respectively. This allows other
developers to work on the project and upload their changes, which you can then
download.

After a repository is downloaded, the histories of the files can be explored. You can,
for example, see what the state of the repository was a week ago, or back when the
repository was first created.

Package name: MyPkg
Version: 0.1.1
...

https://github.com/dom96/MyPkg.git

HEAD

v0.1.0

77fff838c

ef889a10a

6c6d39d56

c6b4d0e5c

405b86068

MyPkg.nimble

Package name: MyPkg
Version: 0.1.0
...

MyPkg.nimble

Commit
tag

Commit
hash

Reference to the
latest commit in the

current branch

The Nimble package’s
version is updated in the
.nimble file. It can change
together with the package’s
source files between commits.Figure 5.6 An external Nimble package’s evolution
Licensed to <null>

135Installing Nimble packages
5.5 Installing Nimble packages
The installation of Nimble packages is likely the most common task that you’ll use
Nimble for. You saw an example of the install command in the previous section.
This command is the primary means of installing packages.

5.5.1 Using the install command

The install command is powerful. It can do any of the following:

 Install packages on your local filesystem
 Install packages from a specified URL

 Install a package by name
 Install a specific version of a package
 Install multiple packages at once

Installing local packages is simple. Just open a new terminal, cd into the directory
of your local package (by typing cd /home/user/MyPkg, for example), and execute
nimble install.

 To install a package from a URL, open a new terminal and execute nimble
install <your_url_here>, replacing the <your_url_here> with the URL of the pack-
age you want to install. Currently, the URL must point to a non-empty Git or Mercurial
repository.

 Nimble saves you the trouble of remembering a bunch of URLs for different pack-
ages. A package repository that contains a listing of packages created by the Nim com-
munity is available. Nimble downloads this listing, which contains some basic
information about each package, such as the package’s URL and name. Remember
the search command? It searches through this listing, so any of the packages listed in
your search results can be installed by specifying their names after the install com-
mand. For example, to install the daemonize package seen in the search results in fig-
ure 5.4, execute nimble install daemonize.

 A specific version of a package can be installed by using the special @ character
after the name of a package. For example, to install version 0.0.1 of the daemonize
package, execute nimble install daemonize@0.0.1. Alternatively, instead of a spe-
cific version, you can specify a version range. For example, if you want to install the lat-
est version that’s greater than version 0.0.1, you can execute nimble install

daemonize@>=0.0.1. Specifying a repository revision is also supported by using the #
character after the @ character, such as nimble install daemonize@#b4be443.

WARNING: SPECIAL CHARACTERS IN SHELLS Depending on your shell, some of
the characters, such as @, >, or =, may be treated as part of the shell’s syntax.
You may need to escape them or quote the package name and version like so:
nimble install "daemonize@>=0.1.0".

Specifying multiple parameters to the install command will cause Nimble to install
more than one package. The parameters just need to be separated by a space.
Licensed to <null>

136 CHAPTER 5 Package management
5.5.2 How does the install command work?

To learn about what the install command does, let’s look at the previous example
command: nimble install daemonize. Try executing it now if you haven’t already.
You should see output similar to that in figure 5.7.

Nimble’s output is currently rather verbose, but it tries to give as much information
about the installation as possible. The output that you see in your version of Nimble
may be a bit different from figure 5.7, but the key information should remain the
same. The messages shown in figure 5.7 show each of the files from the daemonize
package being copied into /Users/dom/.nimble/pkgs/daemonize-0.0.2/.

 Scroll up in your terminal window, and you’ll see what Nimble does first: it begins
downloading the package. But before that, Nimble needs to know where to download
the daemonize package from, and it determines this by consulting the package list.
Figure 5.8 shows the full installation process and its many subprocesses.

 The package list is currently hosted in a Git repository, and it can be accessed on
GitHub at the following URL: https://github.com/nim-lang/packages. The package-list
repository stores a packages.json file that lists metadata for different packages, including
each package’s name, URL, description, and more. Nimble can read this list, find the
package you specified on the command line, and retrieve that package’s URL. That way
Nimble can determine the location of that package’s repository and can easily download
it. Figure 5.9 shows how the daemonize package is found in the packages.json file.

Shows the files that
are being installed as
part of the package.
This wouldn’t be
shown without the
--verbose flag.

Installation
status message

The --verbose flag
is necessary to show
the additional
status message.

Destination
filename

The filename
being copied

Figure 5.7 The output of nimble install daemonize
Licensed to <null>

https://github.com/nim-lang/packages

137Installing Nimble packages
$ nimble install daemonize

https://github.com/rgv151/daemonize.nim

Find download URL
and repo type for
daemonize package

Download the
repository

$ git clone https://github.com/rgv151/daemonize.nim

Find .nimble file.
Parse it.
Verify version requirements.
Check dependencies.

If dependencies
are not installed,
install them.

daemonize

daemonize.nim

daemonize.nimble

~/.nimble/pkgs/daemonize-0.2.0

daemonize.nim

daemonize.nimble

Copy

Copy

... ...

Copy files in package directory to installation directory

$ nimble install <dependency>

Figure 5.8 The Nimble installation process

$ nimble install daemonize

packages.json

...
{
 "name": "daemonize",
 "url": "https://github.com/rgv151/daemonize.nim",
 "method": "git",
 "tags": ["daemonize", "background", "linux"],
 "description": "This library makes your code run
 as a daemon process on Unix-like systems",
 "license": "MIT",
 "web": "https://github.com/rgv151/daemonize.nim"
},
...

"url": "https://github.com/rgv151/daemonize.nim"
"method": "git"

https://github.com/rgv151/daemonize.nim (git)

Find download URL
and repo type for
daemonize package

Figure 5.9 Finding information about the daemonize package in the packages.json file
Licensed to <null>

138 CHAPTER 5 Package management
PACKAGE LISTS The package list stored in https://github.com/nim-lang/ pack-
ages is the official Nimble package list. As of version 0.7.0, Nimble supports
multiple package lists, so you can easily create and use your own package list
in conjunction with the official one. The “Configuration” section of the Nim-
ble readme explains how this can be done: https://github.com/nim-
lang/nimble#configuration.

The download is done using either Git or Mercurial. As part of the download process,
Nimble parses the tags on the remote repository and determines which satisfies the
version requirements specified by the user. If more than one tag satisfies the version
requirements, it picks the highest version. Figure 5.10 shows how Nimble decides
which commit of a Nimble package to install.

Once the download is complete, the package’s .nimble file is read, and Nimble verifies
the validity of this file. Before installation can commence, the following must be
checked:

 The version field specified in the .nimble file must correspond to the version
that was tagged on the repository.

 The files that will be installed must follow a specific directory layout.
 The correct dependencies specified in the .nimble file must be installed.

Those are some of the most common checks that Nimble performs. If the first two fail,
they’ll result in an error and the package won’t be installed. Missing dependencies will
be installed automatically by Nimble. You’ll learn more about these checks in the next
section, where I’ll show you how to create your own Nimble package.

 Once the package is successfully validated, the installation commences, and Nim-
ble copies all the files in the package to ~/.nimble/pkgs/pkg-ver, where ver is the ver-
sion of the package and pkg is the name of the package.

HEAD

v0.1.0

77fff838c

ef889a10a

6c6d39d56

c6b4d0e5c

405b86068

$ nimble install pkg

v0.2.0

pkg

HEAD

v0.1.0

77fff838c

ef889a10a

6c6d39d56

c6b4d0e5c

405b86068

$ nimble install pkg@#head

pkg

v0.2.0

Reference
explicitly
selected

Latest commit, but
latest tagged version
takes precedence

Not latest
tagged version

Latest
tagged version

Figure 5.10 How Nimble decides which version of a package to install
Licensed to <null>

https://github.com/nim-lang/packages
https://github.com/nim-lang/packages
https://github.com/nim-lang/nimble#configuration
https://github.com/nim-lang/nimble#configuration

139Creating a Nimble package
 That’s a simple overview of the process involved in installing a Nimble package.
This process can become more complicated depending on the options specified in
the .nimble file.

5.6 Creating a Nimble package
You’ve likely encountered situations where some functionality in your application
could be reused in another application. For example, in chapter 3, you developed a
protocol module that defines procedures for encoding and decoding chat messages.
You might want that module to be usable in other applications.

 The easiest way to do so is to create a package out of that module. Your applica-
tions can then add that package as a dependency and use the same module easily.

 Creating a Nimble package out of your Nim library or application has a number of
advantages, such as making the installation of dependencies much easier and allowing
others to use your package as a dependency for their own packages.

 Creating a Nimble package is also fairly straightforward. All you need to do is cre-
ate a .nimble file and you’re good to go. Nimble’s init command makes the creation
of this file easy. The command will ask you some questions about the package and will
create a .nimble file based on your responses. You’ll likely still need to edit the result-
ing .nimble file manually to customize the options further, but once you understand
what those options do, that’s fairly straightforward.

 Once you’ve created a local Nimble package, you might also want to open source it
and publish it in Nimble’s package list. To do this, you’ll need to initialize a new Git or
Mercurial repository. Later in this chapter, I’ll show you how a Nimble package can be
published.

 Let’s create a simple Nimble package.

5.6.1 Choosing a name

A package’s name is very important. It needs to be as short as possible and ideally
should describe what functionality the package implements.

PACKAGE NAME UNIQUENESS When picking a package name, it’s a good idea
to ensure that it’s unique, especially if you intend to publish it to the Nimble
package repository.

You must pick a name that doesn’t contain any hyphens or at symbols (- or @). Those
characters are treated uniquely by Nimble, so they’re disallowed in package names.

 The package that you’ll create as part of this chapter will implement some very sim-
ple procedures for manipulating numbers. You can choose whatever package name
you wish, but throughout this chapter I’ll use the name NimbleExample. If you choose
a different name, you’ll need to adjust the chapter’s example code accordingly.

 To get started, create a NimbleExample directory somewhere on your filesystem. It
will contain the Nimble package.
Licensed to <null>

140 CHAPTER 5 Package management
5.6.2 A Nimble package’s directory layout

All Nimble packages must adhere to a specific directory
layout. This layout is more important for libraries than
applications because an application will be compiled,
and in most cases all that needs to be installed will be
the application’s executable.

 For libraries, the most important rule is to place all
modules in a separate directory named after the package.
So you need to create another NimbleExample directory
inside the NimbleExample directory you’ve already cre-
ated. Any modules placed inside that directory will be
importable with the NimbleExample/ prefix, like this:
import NimbleExample/module.

 One exception to this rule is that you can place a single module containing the pri-
mary functionality of your library in the root directory of your package, but it must
share the name of your package. In this case, the module’s filename would be Nimble-
Example.nim. Figure 5.11 shows what the final directory structure of NimbleExample
will look like.

 For the purposes of this example, create the following math.nim file inside the sec-
ondary NimbleExample directory.

proc add*(a, b: int): int = a + b

The code in listing 5.2 is pretty straightforward. It defines a new add procedure that
adds two integers together. Note the * used to export the procedure; it ensures that
the add procedure can be accessed from other modules. Save the code in listing 5.2 as
math.nim in the NimbleExample/NimbleExample directory.

 There’s an additional convention for modules in a package that are destined to be
used only by that package. They should be placed in a private directory, as is the case
for the utils module defined in listing 5.3. Create a new directory named private in
the NimbleExample/NimbleExample directory, and save the following code as
utils.nim in NimbleExample/NimbleExample/private.

proc mult*(a, b: int): int = a * b

Listing 5.2 The math module

Listing 5.3 The utils module

Defines a new add procedure taking two
integers and returning the sum of those two
integers. The procedure is exported using the *.

Defines a new mult procedure taking two
integers and returning the result when those
numbers are multiplied. The procedure is
exported using the * that follows its name.

Figure 5.11
The NimbleExample directory
layout
Licensed to <null>

141Creating a Nimble package
The code in listing 5.4 is a bit more complicated. It imports two modules defined in
the NimbleExample package. The first is the math module defined in listing 5.2, and
the other is the utils module defined in listing 5.3. Save the code in the following
listing as data.nim in the NimbleExample/NimbleExample directory.

import NimbleExample/math
import NimbleExample/private/utils
let age* = mult(add(15, 5), 2)

The final directory layout should look like what you saw in figure 5.11. Ensure that
your local directory layout is the same.

5.6.3 Writing the .nimble file and sorting out dependencies

Now that the modules are all in the correct directories, it’s time to create the Nimble-
Example.nimble file. You can execute nimble init in the outer NimbleExample
directory to create this file automatically. Figure 5.12 shows an example of what
nimble init asks and the answers needed to generate the NimbleExample.nimble
file shown in listing 5.5.

Package

version = "0.1.0"
author = "Your Name"
description = "Simple package to learn about Nimble"
license = "MIT"

Dependencies

requires "nim >= 0.12.0"

Listing 5.4 The data module

Listing 5.5 The beginnings of NimbleExample.nimble

Imports the math module from the
NimbleExample package

Imports the private utils
module from the

NimbleExample package
Uses the procedures
defined in the utils and
math modules to calculate
the age. The age variable
is exported using the *.

Figure 5.12 The nimble init command
Licensed to <null>

142 CHAPTER 5 Package management
After you execute nimble init or save the contents of listing 5.5 as NimbleExample
.nimble, you should be able to execute nimble install. That should successfully
install your package!

 That’s how simple it is to create a Nimble package. But creating a Nimble package
is just a small first step in developing Nimble packages. Packages evolve and require-
ments change, so how can Nimble help you during development?

 For example, while developing a package, you may realize that you need the func-
tionality of another Nim library. In many cases, this library will be a Nimble package.
For example, you may want to create a version of add for very large integers—ones
bigger than the biggest integer type in Nim’s standard library. The bigints package
provides this functionality.

 Open the math.nim file in the NimbleExample package, and change it so that its
contents are the same as those in the next listing. Changes are highlighted in bold.

import bigints
proc add*(a, b: int): int = a + b
proc add*(a, b: BigInt): BigInt = a + b

Now try to compile it by executing nim c NimbleExample/math. The compiler should
output something similar to “math.nim(1, 8) Error: cannot open 'bigints'.” This
points to the line of code that imports the bigints module. The compilation fails
because the bigints package hasn’t been installed. Install it now by executing nimble
install bigints and compile NimbleExample/math again. This time the compilation
should succeed.

 Does this mean that every user of the NimbleExample package will need to install
the bigints package manually? Currently, yes. But this is where the dependency spec-
ification in the NimbleExample.nimble file comes in—it allows Nimble to install the
dependencies automatically.

 When compiling any Nim source code using the Nim compiler, every package that
you’ve installed using Nimble will be available to that source code. This is why import-
ing the bigints module works as soon as you install the bigints package.

 Nimble supports a handy c command that does exactly what the Nim compiler
does: it compiles the specified file. Try compiling the math.nim file using Nimble by
executing nimble c NimbleExample/math and note the results.

 You may be surprised by the failure in execution, but it illustrates the key difference
between compiling with the Nim compiler directly, and compiling with Nimble. Nimble
doesn’t let you import any modules whose packages you haven’t specified as dependen-
cies in your project’s .nimble file, with the exception of the standard library modules.

Listing 5.6 Using the bigints package in the math module

Imports the bigints module from the bigints
package. There’s no need to explicitly state
the package name and module name.

Defines an add procedure
for the BigInt type defined
in the bigints module
Licensed to <null>

143Creating a Nimble package
Let’s change the NimbleExample.nimble file so that it includes the bigints package
as a dependency. The following listing shows what the NimbleExample.nimble file
should now look like, with the differences highlighted in bold.

Package

version = "0.1.0"
author = "Your Name"
description = "Simple package to learn about Nimble"
license = "MIT"

Dependencies

requires "nim >= 0.12.0", "bigints"

The dependency on bigints in listing 5.7 specifies no requirements on the version of
that package. As a result, Nimble will attempt to install the latest tagged version of that
library, assuming one isn’t already installed.

CUTTING-EDGE DEPENDENCIES Inside your .nimble file’s dependency specifica-
tion, you can write #head after a package’s name, like this: requires
"bigints#head". This will get Nimble to compile your package with the latest
revision of that package available. This is similar to specifying @#head when
installing packages on the command line, as shown in figure 5.9.

Once you change your NimbleExample.nimble file to match listing 5.7, you should be
able to successfully compile the math module using Nimble. Nimble will even automat-
ically install the bigints package for you if it detects that it’s not installed. Figure 5.13
shows the difference between nim c and nimble c, depending on whether the bigints
package has been installed.

 You should now have a basic understanding of how Nimble handles dependencies, and
you should know how to create more Nimble packages. But there’s one piece of knowledge
still missing: the process involved in publishing Nimble packages, which we’ll discuss next.

 But before you move on to the next section, here’s a quick challenge. Write some
simple tests for your Nimble package inside some of the package’s modules. Remem-
ber to put your tests under a when isMainModule: statement; this statement ensures

Listing 5.7 Adding a dependency on the bigints package

Global Nimble packages and the Nim compiler
By default, when installing a package using Nimble, the package is installed into the
current user’s Nimble package store, which is located in ~/.nimble/. Every time you
compile a Nim module using the Nim compiler, that module can import any of the
modules belonging to any of the packages in Nimble’s package store.

If there are two versions of the same package installed, Nim will use the latest one.
Licensed to <null>

144 CHAPTER 5 Package management
that any code in its body is only executed when the math module is compiled directly.
This ensures that tests aren’t executed when the math module is imported in an appli-
cation. Then, run those tests by using Nimble’s c command. For example, nimble c
-r NimbleExample/math, with the -r flag, will run the resulting executable automati-
cally after compilation.

$ nim c math

import bigints

stdlib ~/.nimble/

Before bigints package is installed

(1, 8) Error: cannot open 'bigints'.

$ nimble c math

import bigints

stdlib ~/.nimble/pkgs/bigints-0.

No

$ nimble install bigints

Compilation successf

$ nim c math

$ nimble c math

import bigints

stdlib ~/.nimble/pkgs/bigints-0.

Yes

Compilation successf

$ nim c math

After bigints package is installed

$ nim c math

import bigints

stdlib ~/.nimble/

Compilation successf

Searching for
bigints
module

Searching for
bigints
module

Has bigints dependency, specified
in the .nimble file, been installed?

Has bigints dependency, specified
in the .nimble file, been installed?

Searching for
bigints
module

Searching for
bigints
module

Figure 5.13 nim c vs. nimble c
Licensed to <null>

145Publishing Nimble packages
5.7 Publishing Nimble packages
The process of publishing a Nimble package to the official package list is fairly
straightforward. But before your package is published, it must first be uploaded to a
Git or Mercurial repository hosting service (such as GitHub or Bitbucket) and go
through an approval process.

 The first thing that you need to do is initialize a Git or Mercurial repository in your
package’s directory. We’ll create a Git repository in this example because Git has been
more widely adopted, but the choice of repository type doesn’t matter much. It’s
mostly a matter of preference.

VERSION CONTROL The details of distributed version control, Git, and Mercu-
rial are outside the scope of this book. I recommend you read up on these
technologies further if you’re not familiar with them.

Before you get started, you’ll need to create an account on http://github.com if you
don’t already have one.

 After you have an account set up and are logged in, create a new Git repository on
GitHub by clicking the New Repository button. If you can’t find such a button, go to
this URL: https://github.com/new. You should see something similar to the screen-
shot in figure 5.14.

Figure 5.14 Creating a new repository on GitHub
Licensed to <null>

http://github.com
https://github.com/new

146 CHAPTER 5 Package management
Specify “NimbleExample” as the Repository Name, and then click the green Create
Repository button. You’ll be shown another web page that will let you know how to
create a repository on the command line. The instructions on the web page are very
generic. Listing 5.8 shows commands similar to the ones on the web page but tailored
to successfully upload the NimbleExample package to GitHub. Execute these com-
mands now.

git init
git add NimbleExample.nimble NimbleExample/data.nim NimbleExample/

➥ math.nim NimbleExample/private/utils.nim
git commit -m "first commit"
git remote add origin git@github.com:<your-user-name>/NimbleExample.git
git push -u origin master

Once you successfully execute those commands, navigating to https://github.com/
<your-user-name>/NimbleExample should show you a list of files. These files should
include NimbleExample.nimble, the NimbleExample directory, and its contents.

 There’s only one thing left to do. The package is public, but Nimble has no way to
find it yet because it hasn’t been added to its package list. This means you won’t be
able to install it by executing nimble install NimbleExample.

 Nimble can make use of multiple package lists, but the official package list at
https://github.com/nim-lang/packages is the most widely used. A pull request is cre-
ated whenever a user wants to add a package to this package list, and once that’s done,
the Nim community checks that the package can be added to the package list. Certain
aspects of the package are checked, such as the package’s name, to ensure it doesn’t
clash with the names of any other packages already on the list.

 The pull request can be created manually or with the help of Nimble’s publish
command, which creates the pull request for you automatically.

 Before publishing a package, it’s a good idea to ensure that it can be installed suc-
cessfully. Execute nimble install in the package’s directory to verify that it can be
installed successfully.

 The package is then ready to be published. Execute nimble publish now, and fol-
low the on-screen prompts. The process is somewhat complex as it requires you to cre-
ate a new GitHub access token for Nimble. But once you do so, it streamlines the
process of publishing Nimble packages significantly.

 When your package is accepted and is added to the package list, you’ll be able to
install it by executing nimble install NimbleExample.

 Remember that publishing a Nimble package is only done once. You don’t need to
publish the package again when you develop a new version of it. Instead, the version is
tagged, as you’ll see in the next section.

Listing 5.8 Commands to upload the NimbleExample package to GitHub

Remember to change
<your-user-name>

to your GitHub username.
Licensed to <null>

https://github.com/nim-lang/packages

147Developing a Nimble package
5.8 Developing a Nimble package
Software projects are typically given version numbers to identify their state. As soft-
ware evolves, new developments are marked with increasing version numbers. Nimble
packages are no different.

 The NimbleExample package began its life as version 0.1.0, and if it continues to
be developed, it may someday reach version 1.0 or even 10.3. Versions help the user
distinguish and identify different states of your package.

 Version information for your package is stored in your package’s .nimble file using
the version key. The version must consist of at least one digit, and multiple digits must
be separated by periods. A full line specifying the version could look something like
version = "1.42.5".

5.8.1 Giving version numbers meaning

The way in which version numbers are assigned and incremented differs. In some
cases, the version numbers have little meaning other than signifying that version 1.0
is newer than version 0.5. In others, such as with semantic versioning, the version
numbers tell you more about the API compatibility of different versions of software.

 Semantic versioning is a convention for specifying a three-part version number:
major version, minor version, and patch. The patch is incremented for minor bug fixes
and changes that don’t affect the API of the software. The minor version is incremented
when backward-compatible additions are made to the software. The major version is
incremented when the API of the software changes to something that’s not backward
compatible. The full semantic versioning specification is available at http://semver.org.

 All Nimble packages should use this convention, so if you aren’t familiar with it, be
sure to learn about it.

5.8.2 Storing different versions of a single package

There are some things you need to keep in mind with versioning and Nimble packages.
 A local Nimble package that doesn’t have a Git or Mercurial repository associated

with it has a specific version associated with it. This is the version in the .nimble file.
 A local Nimble package that does have a Git or Mercurial repository associated

with it is the same, but different versions of it can be retrieved because its repository
contains a full history of the package. The retrieval must be done manually for local
packages, whereas for remote packages, Nimble will automatically retrieve the speci-
fied version. All remote Nimble packages are currently stored in such repositories,
and they can be downloaded to create a local repository containing each version of
the Nimble package. Figure 5.15 shows the difference between a Nimble package with
and without a Git repository.

 When developing Nimble packages, it’s important to remember one thing: Nimble
uses the tags in the Nimble package’s repository to retrieve a certain version.
Licensed to <null>

http://semver.org

148 CHAPTER 5 Package management
Whenever you want to release a new version of a package, you need to follow these
steps:

1 Increment the version number in the .nimble file.
2 Commit these changes into your repository; for example, git commit -am

"Version 0.1.2".
3 Tag the commit you just made, using the new version number as the tag name;

for example, git tag v0.1.2.
4 Upload the changes to the remote repository, making sure you upload the tags

as well; for example, git push origin master --tags.

Performing step 1 first is very important. If the name of the tag doesn’t match the ver-
sion specified in the .nimble file at the point in history that the tag corresponds to,
there will be an inconsistency, and Nimble will refuse to install the package.

 The preceding steps for tagging versions are specific to Git. You’ll find that in
order to develop Nimble packages, you’ll need at least a basic knowledge of Git or
Mercurial.

5.9 Summary
 The Nim package manager is called Nimble.
 A Nimble package is any directory or repository, compressed or otherwise, con-

taining a .nimble file and some Nim source code.
 A .nimble file contains information about a package, including its version,

author, dependencies, and more.
 Nimble packages are installed using the nimble install command.
 Nimble packages can be installed from various sources, including the local

filesystem, a Git or Mercurial URL, and a curated list of packages identified by
name.

 Installing a package by name or from a URL will install the latest tagged version
of it; the tip or the HEAD can be installed by appending @#head to the URL or
package name.

NimbleExample.nimble

NimbleExample package

.git

NimbleExample.nimble

NimbleExample package

Local package with no repository Local package with a Git repository

Version 1.0.0 Version 1.0.0
0.1.0 0.2.0 0.3.0

Figure 5.15 Local Nimble package with no repository vs. one with a Git repository
Licensed to <null>

149Summary
 A Nimble package can be created using the nimble init command.
 A Nimble package can be published using the nimble publish command.
 New versions of packages are released by incrementing the version number in

the .nimble file, creating a new commit, and then tagging it as the new version
in Git or Mercurial.
Licensed to <null>

Parallelism
Every computer program performs one or more computations, and these computa-
tions are usually performed sequentially. That is, the current computation has to com-
plete before the next one starts. For example, consider a simple calculation,
(2 + 2) x 4, in which the addition must be computed first, to give 4, followed by the
multiplication, to give 16. In that example, the calculation is performed sequentially.

 Concurrency allows more than one computation to make progress without wait-
ing for all other computations to complete. This form of computing is useful in
many situations, such as in an I/O application like the chat application you devel-
oped in chapter 3. If executed sequentially, such applications waste time waiting on
input or output operations to complete. Concurrency allows this time to be used
for another task, drastically reducing the execution time of the application. You

This chapter covers
 Exploring the importance of parallelism

 Examining concurrency versus parallelism

 Getting to know threads in Nim

 Advanced parsing of data using regular
expressions and other means

 Parallelizing the parsing of large datasets
150

Licensed to <null>

151Concurrency vs. parallelism
learned about concurrency in chapter 3; in this chapter, you’ll learn about a related
concept called parallelism.

 Nim offers many built-in facilities for concurrency and parallelism including asyn-
chronous I/O features in the form of futures and await, spawn for creating new
threads, and more. You’ve already seen some of these used in chapter 3.

 Parallelism in Nim is still evolving, which means that the features described in this
chapter may change or be replaced by more-robust features. But the core concepts of
parallelism in Nim should remain the same, and what you’ll learn in this chapter will
be applicable to other programming languages as well.

 In addition to showing you Nim’s parallelism features, this chapter will lead you
through the implementation of a simple parser, which will show you different meth-
ods for creating parsers. Toward the end of the chapter, you’ll optimize the parser so
it’s concurrent and can be run in parallel on multiple CPU cores.

6.1 Concurrency vs. parallelism
Nowadays, almost all OSs support multitasking, the ability to perform multiple tasks
over a certain period of time. A task is usually known as a process, which is an instance of
a computer program being executed. Each CPU executes only a single process at a time,
but multitasking allows the OS to change the process that’s currently being executed on
the CPU without having to wait for the process to finish its execution. Figure 6.1 shows
how two processes are executed concurrently on a multitasking OS.

 Because CPUs are extremely fast, process A can be executed for 1 nanosecond, fol-
lowed by process B for 2 nanoseconds, followed by process A for another nanosec-
ond.1 This gives the impression of multiple processes being executed at the same
time, even though a CPU can only execute a single instruction at a time. This apparent
simultaneous execution of multiple processes is called concurrency.

1 For simplicity, I’ll ignore the time taken for a context switch here.

Process A

Time (in nanoseconds)

0 1 2 3 4

Process B ...

Process A is
executed first

for 1 ns. Execution of
process A is

paused.

Process B is
executed for

2 ns.

Execution of
process B is

paused.

Execution of
process A is

resumed.

Figure 6.1 Concurrent execution of two processes
Licensed to <null>

152 CHAPTER 6 Parallelism
In recent years, multicore CPUs have become popular. This kind of CPU consists of
two or more independent units that can run multiple instructions simultaneously.
This allows a multitasking OS to run two or more processes at the same time in parallel.
Figure 6.2 shows how two processes are executed in parallel on a dual-core CPU.

 Unlike a single-core CPU, a dual-core CPU can actually execute two processes at the
same time. This type of execution is called parallelism, and it can only be achieved on
multiple physical CPUs or via a simultaneous multithreading (SMT) technology such
as Intel’s Hyper-Threading (HT) Technology. Remember that despite the apparent
similarities between concurrency and parallelism, the two are not the same.

 In addition to processes, the OS also manages the execution of threads. A thread is
a component of a process, and more than one can exist within the same process. It
can be executed concurrently or in parallel, just like a process, although unlike pro-
cesses, threads share resources such as memory among each other.

 To make use of the full power of a multicore CPU, CPU-intensive computations must
be parallelized. This can be done by using multiple processes, although threads are
more appropriate for computations that require a large amount of data to be shared.

 The asynchronous await that you saw used in chapter 3 is strictly concurrent.
Because the asynchronous code always runs on a single thread, it isn’t parallel, which
means that it can’t currently use the full power of multicore CPUs.

PARALLEL ASYNC AWAIT It’s very likely that a future version of Nim will
include an asynchronous await that’s parallel.

Unlike asynchronous await, spawn is parallel and has been designed specifically for
CPU-intensive computations that can benefit from being executed on multicore CPUs.

PARALLELISM IN OTHER PROGRAMMING LANGUAGES Some programming lan-
guages, such as Python and Ruby, don’t support thread-level parallelism due
to a global interpreter lock in their interpreter. This prevents applications
that use threads from using the full power of multicore CPUs. There are ways
around this limitation, but they require the use of processes that aren’t as
flexible as threads.

Process A

Time/nanoseconds

0 1 2 3 4

Process B

...

...

Core #1:

Core #2:

Process A and Process B being
executed at the same time, in parallel
on two different CPU cores.

Figure 6.2 Parallel execution of two processes
Licensed to <null>

153Using threads in Nim
6.2 Using threads in Nim
Now that you’ve learned the difference between concurrency and parallelism, you’re
ready to learn how to use threads in Nim.

 In Nim, there are two modules for working with threads. The threads module
(http://nim-lang.org/docs/threads.html) exposes the ability to create threads manu-
ally. Threads created this way immediately execute a specified procedure and run for
the duration of that procedure’s runtime. There’s also the threadpool module
(http://nim-lang.org/docs/threadpool.html), which implements a thread pool. It
exposes spawn, which adds a specified procedure to the thread pool’s task queue. The
act of spawning a procedure doesn’t mean it will be running in a separate thread
immediately, though. The creation of threads is managed entirely by the thread pool.

 The sections that follow will explain all about the two different threading modules,
so don’t feel overwhelmed by the new terms I just introduced.

6.2.1 The threads module and GC safety

In this section, we’ll look at the threads module. But before we start, I should explain
how threads work in Nim. In particular, you need to know what garbage collector safety
(GC safety) is in Nim. There’s a very important distinction between the way threads
work in Nim and in most other programming languages. Each of Nim’s threads has its
own isolated memory heap. Sharing of memory between threads is restricted, which
helps to prevent race conditions and improves efficiency.

 Efficiency is also improved by each thread having its own garbage collector. Other
implementations of threads that share memory need to pause all threads while the gar-
bage collector does its business. This can add problematic pauses to the application.

 Let’s look at how this threading model works in practice. The following listing
shows a code sample that doesn’t compile.

var data = "Hello World"

proc showData() {.thread.} =
echo(data)

var thread: Thread[void]
createThread[void](thread, showData)
joinThread(thread)

Listing 6.1 Mutating a global variable using a Thread

Defines a new mutable global
variable named data and assigns
the text "Hello World" to it

Defines a new procedure that will
be executed in a new thread. The
{.thread.} pragma must be used
to signify this.

Attempts to display the
value of the data variable

Defines a variable to store the new thread.
The generic parameter signifies the type of
parameter that the thread procedure
takes. In this case, the void means that the
procedure takes no parameters.

The createThread procedure
executes the specified
procedure in a new thread.

Waits for the thread to finish
Licensed to <null>

http://nim-lang.org/docs/threads.html
http://nim-lang.org/docs/threadpool.html

154 CHAPTER 6 Parallelism
THE THREADS MODULE The threads module is a part of the implicitly
imported system module, so you don’t need to import it explicitly.

This example illustrates what’s disallowed by the GC safety mechanism in Nim, and
you’ll see later on how to fix this example so that it compiles.

 Save the code in listing 6.1 as listing01.nim, and then execute nim c --threads:on
listing01.nim to compile it. The --threads:on flag is necessary to enable thread
support. You should see an error similar to this:

listing01.nim(3, 6) Error: 'showData' is not GC-safe as it accesses
➥ 'data' which is a global using GC'ed memory

This error describes the problem fairly well. The global variable data has been cre-
ated in the main thread, so it belongs to the main thread’s memory. The showData
thread can’t access another thread’s memory, and if it attempts to, it’s not considered
GC safe by the compiler. The compiler refuses to execute threads that aren’t GC safe.

 A procedure is considered GC safe by the compiler as long as it doesn’t access any
global variables that contain garbage-collected memory. An assignment or any sort of
mutation also counts as an access and is disallowed. Garbage-collected memory
includes the following types of variables:

 string

 seq[T]

 ref T

 Closure iterators and procedures, as well as types that include them

There are other ways of sharing memory between threads that are GC safe. You may,
for example, pass the contents of data as one of the parameters to showData. The fol-
lowing listing shows how to pass data as a parameter to a thread; the differences
between listings 6.2 and 6.1 are shown in bold.

var data = "Hello World"

proc showData(param: string) {.thread.} =
echo(param)

var thread: Thread[string]
createThread[string](thread, showData, data)
joinThread(thread)

Save the code in listing 6.2 as listing2.nim, and then compile it using nim c
--threads:on listing2.nim. The compilation should be successful, and running the
program should display "Hello World".

Listing 6.2 Passing data to a thread safely

A parameter of type string is
specified in the procedure definition.

The procedure argument is
passed to echo instead of the
global variable data.

The void has been replaced
by string to signify the type
of parameter that the
showData procedure takes.

The data global variable is passed
to the createThread procedure,

which will pass it on to showData.
Licensed to <null>

155Using threads in Nim

G
th
 The createThread procedure can only pass one variable to the thread that it’s cre-
ating. In order to pass multiple separate pieces of data to the thread, you must define
a new type to hold the data. The following listing shows how this can be done.

type
ThreadData = tuple[param: string, param2: int]

var data = "Hello World"

proc showData(data: ThreadData) {.thread.} =
echo(data.param, data.param2)

var thread: Thread[ThreadData]
createThread[ThreadData](thread, showData, (param: data, param2: 10))
joinThread(thread)

EXECUTING THREADS

The threads created in the previous listings don’t do very much. Let’s examine the
execution of these threads and see what happens when two threads are created at the
same time and are instructed to display a few lines of text. In the following examples,
two series of integers are displayed.

var data = "Hello World"

proc countData(param: string) {.thread.} =
for i in 0 .. <param.len:

stdout.write($i)
echo()

var threads: array[2, Thread[string]]
createThread[string](threads[0], countData, data)
createThread[string](threads[1], countData, data)
joinThreads(threads)

Save the code in listing 6.4 as listing3.nim, and then compile and run it. Listing 6.5
shows what the output will look like in most cases, and listing 6.6 shows what it may
sometimes look like instead.

001122334455667788991010

Listing 6.3 Passing multiple values to a thread

Listing 6.4 Executing multiple threads

Listing 6.5 First possible output when the code in listing 6.4 is executed

Iterates from 0 to the length of
the param argument minus 1

Displays the current iteration
counter without displaying
the newline character

oes to
e next

line This time, there are two
threads stored in an array.

Creates a thread and assigns
it to one of the elements in
the threads arrayWaits for all threads to finish
Licensed to <null>

156 CHAPTER 6 Parallelism
012345678910
012345678910

The execution of the threads depends entirely on the OS and computer used. On my
machine, the output in listing 6.5 likely happens as a result of the two threads running
in parallel on two CPU cores, whereas the output in listing 6.6 is a result of the first
thread finishing before the second thread even starts. Your system may show different
results. Figure 6.3 shows what the execution for both the first and second sets of
results looks like.

The threads created using the threads module are considerably resource intensive.
They consume a lot of memory, so creating large numbers of them is inefficient.
They’re useful if you need full control over the threads that your application is using,
but for most use cases the threadpool module is superior. Let’s take a look at how the
threadpool module works.

6.2.2 Using thread pools

The main purpose of using multiple threads is to parallelize your code. CPU-intensive
computations should make use of as much CPU power as possible, which includes
using the power of all the cores in a multicore CPU.

 A single thread can use the power of a single CPU core. To use the power of all the
cores, you could simply create one thread per core. The biggest problem then is mak-
ing sure that those threads are all busy. You might have 100 tasks that don’t all take the
same amount of time to complete, and distributing them across the threads isn’t a triv-
ial job.

Listing 6.6 Second possible output when the code in listing 6.4 is executed

Thread #1 0

0 1

1

Thread #2

2

2

For output: 001122334455667788991010

00

3

3 ...

...

11 22 33 ...

Thread #1 0

0 1

1

Thread #2

For output: 012345678910
 012345678910

0

...

...

1 ...

0 ...

Finish

1

Finish

Figure 6.3 The two possible executions of listing 6.4
Licensed to <null>

157Using threads in Nim
 Alternatively, one thread per task could be created. But this creates problems of its
own, in part because thread creation is very expensive. A large number of threads will
consume a lot of memory due to OS overhead.

WHAT IS A THREAD POOL?
The threadpool module implements an abstraction that manages the distribution of
tasks over a number of threads. The threads themselves are also managed by the
thread pool.

 The spawn command allows tasks, in the form of procedure invocations, to be
added to the thread pool, which then executes the tasks in one of the threads it man-
ages. The thread pool ensures that the tasks keep all the threads busy so that the CPU’s
power is utilized in the best way possible. Figure 6.4 shows how the thread pool man-
ages tasks under the hood.

USING SPAWN

The spawn procedure accepts an expression, which in most cases is a procedure call.
spawn returns a value of the type FlowVar[T] that holds the return value of the proce-
dure that was called. This is an advantage in comparison to the threads module,
where threads can’t return any values.

 The following listing shows the spawn equivalent of the code in listing 6.4.

import threadpool
var data = "Hello World"

proc countData(param: string) =
for i in 0 .. <param.len:

stdout.write($i)
echo()

spawn countData(data)
spawn countData(data)

sync()

Listing 6.7 Executing multiple threads using spawn

Threads

spawn myProc

FlowVar[T]

Newly
spawned

tasks

Tasks
running on

threads

Finished
task Figure 6.4 A Nim thread pool

The threadpool module needs to be
explicitly imported to use spawn.

The procedure passed to spawn
doesn’t need the {.thread.} pragma.

The syntax for spawning the procedure is
much simpler than using createThread.

The sync procedure waits for all
spawned procedures to finish.
Licensed to <null>

158 CHAPTER 6 Parallelism
Save the code in listing 6.7 as listing4.nim, and then compile and run it. Keep in mind
that the --threads:on flag still needs to be specified. The output should be mostly
the same as the output shown in listings 6.5 and 6.6.

 Procedures executed using spawn also have to be GC safe.

RETRIEVING RETURN VALUES FROM THE FLOWVAR TYPE

Let’s look at an example that shows how to retrieve the return values from a spawned
procedure. This involves dealing with the FlowVar[T] type.

 FlowVar[T] can be thought of as a container similar to the Future[T] type, which
you used in chapter 3. At first, the container has nothing inside it. When the spawned
procedure is executed in a separate thread, it returns a value sometime in the future.
When that happens, the returned value is put into the FlowVar container.

 The following listing shows the readLine procedure from chapter 3, which uses a
while loop to read text from the terminal without blocking.

import threadpool, os

let lineFlowVar = spawn stdin.readLine()
while not lineFlowVar.isReady:

echo("No input received.")
echo("Will check again in 3 seconds.")
sleep(3000)

echo("Input received: ", ^lineFlowVar)

Save listing 6.8 as listing5.nim, and then compile and run it. The application will wait
until you enter some input into the terminal. It will check for input every 3 seconds.

 Using the FlowVar type is straightforward. You can read the value inside it with the
^ operator, but this operator will block the thread it’s used in until the FlowVar it’s
called on contains a value. You can check whether a FlowVar contains a value by using
the isReady procedure. Listing 6.8 checks whether the lineFlowVar variable contains
a value periodically, every 3 seconds.

 Keep in mind that listing 6.8 is meant to demonstrate how the FlowVar[T] works.
It’s not meant to be very practical, because the program will only check for input every
3 seconds.

 In this example, you could just as well call readLine on the main thread, since
there’s nothing else running on it. A more realistic example might replace the

Listing 6.8 Reading input from the terminal with spawn

The threadpool module is necessary
for spawn. The os module defines the
sleep procedure.

Adds the readLine procedure to the
thread pool. spawn will return a
FlowVar[string] type that will be
assigned to the lineFlowVar variable.

Loops until lineFlowVar
contains the string value
returned by readLine

Displays some status
messages about what the
program is doing

Suspends the main thread
for 3 seconds; sleep’s
parameter is in ms

When the loop finishes, lineFlowVar
can be read immediately using the ^
operator. This line displays the input
that was read by readLine.
Licensed to <null>

159Parsing data
sleep(3000) statement with another procedure that does some useful work on the
main thread. For example, you might draw your application’s user interface or call
the asynchronous I/O event loop’s poll procedure, as in chapter 3.

6.2.3 Exceptions in threads

The ways exceptions behave in separate threads may be surprising. When a thread
crashes with an unhandled exception, the application will crash with it. It doesn’t mat-
ter whether you read the value of the FlowVar or not.

FUTURE VERSIONS This behavior will change in a future version of Nim, so
that exceptions aren’t raised unless you read the value of the FlowVar.

The following listing shows this behavior in action.

import threadpool

proc crash(): string =
raise newException(Exception, "Crash")

let lineFlowVar = spawn crash()
sync()

Save listing 6.9 as listing6.nim, and then compile and run it. You should see a trace-
back in the output pointing you to the raise statement in the crash procedure.

THE RAISES PRAGMA The raises pragma can be used to ensure that your
threads handle all exceptions. To make use of it, you can define the crash
procedure like so: proc crash(): string {.raises: [].} = … . This will mark
the crash procedure as raising no exceptions. Exceptions that are allowed to
be raised by the procedure can be specified in the square brackets.

In summary, the simplicity of both passing arguments to a spawned procedure and
receiving the procedure’s result makes spawn good for tasks that have a relatively short
runtime. Such tasks typically produce results at the end of their execution, and as such
don’t need to communicate with other threads until their execution stops.

 For long-running tasks that need to communicate with other threads periodically,
the createThread procedure defined in the threads module should be used instead.

6.3 Parsing data
Now that you know how to use threads in Nim, let’s look at a practical example of how
they can be used. The example in this section involves parsers and shows a practical
use case involving Nim’s concurrency and parallelism features.

 A lot of data is generated every day from many different sources and intended for
many different applications. Computers are very useful tools for processing this data,
but in order for that data to be consumed, the computers must understand the format
the data is stored in.

Listing 6.9 Exceptions in a spawned procedure
Licensed to <null>

160 CHAPTER 6 Parallelism
 A parser is a software component that takes data as input and builds a data structure
out of it. The input data is typically in the form of text. In chapter 3, you looked at the
JSON data format and at how it was parsed, using the json module, into a data struc-
ture that could then be queried for specific information.

 There often comes a time when you need to write a custom parser for a simple
data format. There are many ways such a task can be tackled in Nim.

 In this section, I’ll show you how to write a parser for Wikipedia’s page-view data.2

This data is useful for many different applications, but in this section we’ll create an
application that will find the most popular page in the English Wikipedia. In the pro-
cess, you’ll do the following:

 Learn the structure and format of the Wikipedia page-counts files
 Use different techniques to write a parser for the page-counts format
 Read large files by breaking them up into conveniently sized chunks or fragments

WIKIPEDIA API Wikipedia recently introduced a Pageview API (https://wikitech
.wikimedia.org/wiki/Analytics/PageviewAPI) that supplements the raw page-
view data and makes finding the most popular page in the English Wikipedia
much easier. If you’re writing an application that needs to find the most popular
pages on Wikipedia, you may want to use the API instead. Parsing the raw data
manually is less efficient, but you’ll find the example applicable to other tasks.

At the end of this section, I’ll also show you how to parallelize the parser, allowing it to
perform better on systems with multicore CPUs.

6.3.1 Understanding the Wikipedia page-counts format

The raw page-count data can be downloaded from Wikipedia here: https://dumps
.wikimedia.org/other/pagecounts-all-sites/.

 The data files are organized into specific years and months. For example, the page-
count data for January 2016 is available at https://dumps.wikimedia.org/other/
pagecounts-all-sites/2016/2016-01/. The data is then further subdivided into days
and hours. Each file at the preceding URL represents the visitors within a single hour.
The files are all gzipped to reduce their size.

 Download the following file and then extract it: https://dumps.wikimedia
.org/other/pagecounts-all-sites/2016/2016-01/pagecounts-20160101-050000.gz.

FOR WINDOWS USERS On Windows, you may need to install 7-Zip or another
application for extracting gzipped archives.

The file may take a while to download, depending on your internet speed. It’s around
92 MB before extraction, and around 428 MB after extraction, so it’s a fairly large file.
The parser will need to be efficient to parse that file in a timely manner.

2 https://wikitech.wikimedia.org/wiki/Analytics/Data/Pagecounts-all-sites.
Licensed to <null>

https://wikitech.wikimedia.org/wiki/Analytics/PageviewAPI
https://wikitech.wikimedia.org/wiki/Analytics/PageviewAPI
https://wikitech.wikimedia.org/wiki/Analytics/PageviewAPI
https://dumps.wikimedia.org/other/pagecounts-all-sites/
https://dumps.wikimedia.org/other/pagecounts-all-sites/
https://dumps.wikimedia.org/other/pagecounts-all-sites/
https://wikitech.wikimedia.org/wiki/Analytics/Data/Pagecounts-all-sites
https://dumps.wikimedia.org/other/pagecounts-all-sites/2016/2016-01/
https://dumps.wikimedia.org/other/pagecounts-all-sites/2016/2016-01/
https://dumps.wikimedia.org/other/pagecounts-all-sites/2016/2016-01/
https://dumps.wikimedia.org/other/pagecounts-all-sites/2016/2016-01/pagecounts-20160101-050000.gz
https://dumps.wikimedia.org/other/pagecounts-all-sites/2016/2016-01/pagecounts-20160101-050000.gz
https://dumps.wikimedia.org/other/pagecounts-all-sites/2016/2016-01/pagecounts-20160101-050000.gz

161Parsing data
 The file is filled with lines of text separated by newline characters. Each line of text
consists of the following four fields separated by spaces:

domain_code page_title count_views total_response_size

domain_code contains an abbreviated domain name; for example, en.wikipedia.org is
abbreviated as en. page_title contains the title of the page requested; for example,
Dublin for http://en.wikipedia.org/wiki/Dublin. count_views contains the number
of times the page has been viewed within the hour. Finally, total_response_size is
the number of bytes that have been transferred due to requests for that page.

 For example, consider the following line:

en Nim_(programming_language) 1 70231

This means that there was one request to http://en.wikipedia.org/wiki/Nim_(pro-
gramming_language) that accounted in total for 70,231 response bytes.

 The file I asked you to download is one of the smaller files from January 2016. It
contains data about the Wikipedia pages visited from January 1, 2016, 4:00 a.m. UTC,
to January 1, 2016, 5:00 a.m. UTC.

6.3.2 Parsing the Wikipedia page-counts format

There are many different options when it comes to parsing the page-counts format.
I’ll show you how to implement a parser using three different methods: regular
expressions, the split procedure, and the parseutils module.

PARSING USING REGULAR EXPRESSIONS

A common way to parse data is using regular expressions (regexes), and if you’ve ever
dealt with string processing in any way, you’ve likely come across them. Regular
expressions are very popular, and often when developers need to parse a string, they
immediately jump to using regular expressions.

 Regular expressions are by no means a magical solution to every parsing problem.
For example, writing a regular expression to parse arbitrary HTML is virtually impossi-
ble.3 But for parsing a simple data format like the Wikipedia page-counts format, reg-
ular expressions work well.

LEARNING ABOUT REGULAR EXPRESSIONS Explaining regular expressions in
depth is beyond the scope of this chapter. If you aren’t familiar with them, I
encourage you to read up on them online.

Regular expressions are supported in Nim via the re module. It defines procedures
and types for using regular expressions to parse and manipulate strings.

WARNING: EXTERNAL DEPENDENCY The re module is an impure module,
which means it depends on an external C library. In re’s case, the C library is
called PCRE, and it must be installed alongside your application for your
application to function properly.

3 That doesn’t stop people from trying: http://stackoverflow.com/questions/1732348/regex-match-open-tags-
except-xhtml-self-contained-tags.
Licensed to <null>

http://en.wikipedia.org/wiki/Dublin
http://en.wikipedia.org/wiki/Nim_(programming_language)
http://en.wikipedia.org/wiki/Nim_(programming_language)
http://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags
http://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags

162 CHAPTER 6 Parallelism

Let’s focus on parsing a single line first. The following listing shows how you can do
that with the re module.

import re

let pattern = re"([^\s]+)\s([^\s]+)\s(\d+)\s(\d+)"

var line = "en Nim_(programming_language) 1 70231"
var matches: array[4, string]
let start = find(line, pattern, matches)
doAssert start == 0
doAssert matches[0] == "en"
doAssert matches[1] == "Nim_(programming_language)"
doAssert matches[2] == "1"
doAssert matches[3] == "70231"
echo("Parsed successfully!")

WARNING: THE RE CONSTRUCTOR Constructing a regular expression is an
expensive operation. When you’re performing multiple regex matches with
the same regular expression, make sure you reuse the value returned by the
re constructor.

Save listing 6.10 as listing7.nim, and then compile and run it. The program should
compile and run successfully, displaying “Parsed successfully!”

PCRE PROBLEMS If the program exits with an error similar to could not
load: pcre.dll, you’re missing the PCRE library and must install it.

The code for parsing strings with regular expressions is straightforward. As long as
you know how to create regular expressions, you should have no trouble using it.

 The re module also includes other procedures for parsing and manipulating
strings. For example, you can replace matched substrings using the replace proce-
dure. Take a look at the documentation for the re module for more information
(http://nim-lang.org/docs/re.html).

PARSING THE DATA MANUALLY USING SPLIT

You can also parse data manually in many different ways. This approach provides mul-
tiple advantages but also a few disadvantages. The biggest advantage over using regu-
lar expressions is that your application will have no dependency on the PCRE library.
Manual parsing also makes it easier to control the parsing process. In some cases, the
biggest disadvantage is that it takes more code to parse data manually.

Listing 6.10 Parsing data with the re module

A new regex pattern is
constructed using the re
constructor.

This matches array will hold
the matched substrings of line.

The re module defines
the find procedure.

The find procedure is used to find
matching substrings as specified
by the subgroups in the regex.
The substrings are put into the
matches array.

The return value
indicates the starting
position of the matching
string; -1 is returned if
no match was made.

The first matching group will capture the
substring "en", followed by the second

matching group, which will capture
"Nim_(programming_language)", and so on.
Licensed to <null>

http://nim-lang.org/docs/re.html

163Parsing data

",
,
 For such a simple data format as the Wikipedia page-counts format, you can use
the split procedure defined in the strutils module. The following listing shows
how split can be used to parse “en Nim_(programming_language) 1 70231.”

import strutils

var line = "en Nim_(programming_language) 1 70231"
var matches = line.split()
doAssert matches[0] == "en"
doAssert matches[1] == "Nim_(programming_language)"
doAssert matches[2] == "1"
doAssert matches[3] == "70231"

This solution will work very well for this use case, but for more-complex data formats,
you may want a solution that’s more flexible. The most flexible way to parse a string is
to iterate over every character in that string using a while loop. This method of pars-
ing is very verbose, but it’s useful in certain circumstances, such as when parsing more-
complex data formats like HTML. Nim’s parseutils module defines procedures that
make parsing using such methods much easier.

PARSING DATA MANUALLY USING PARSEUTILS

The following listing shows how the parseutils module can be used to parse “en
Nim_(programming_language) 1 70231.”

import parseutils

var line = "en Nim_(programming_language) 1 70231"

var i = 0
var domainCode = ""
i.inc parseUntil(line, domainCode, {' '}, i)
i.inc
var pageTitle = ""
i.inc parseUntil(line, pageTitle, {' '}, i)
i.inc
var countViews = 0
i.inc parseInt(line, countViews, i)
i.inc
var totalSize = 0
i.inc parseInt(line, totalSize, i)

Listing 6.11 Parsing using split

Listing 6.12 Parsing using parseutils

The strutils module defines
the split procedure.

By default, the split procedure splits
the string when it finds whitespace.
The returned sequence will be @["en
"Nim_(programming_language)", "1"
"70231"].

The contents of the resulting
matches variable are the
same as in listing 6.10.

Imports parseutils, which
defines parseUntil

Defines a counter to keep
track of the program’s

current position in the string Copies characters
starting at index i from
the line string to the
string specified in the
second argument, until
line[i] == ' '. The
returned value is the
number of characters
captured, and it’s used
to increment i.

Parses an int starting at index i in the
line string. The parsed int is stored in the
second argument. The returned value is
the number of characters captured.

Defines a string or int variable where
the parsed token will be stored

Skips whitespace character
by simply incrementing i
Licensed to <null>

164 CHAPTER 6 Parallelism
doAssert domainCode == "en"
doAssert pageTitle == "Nim_(programming_language)"
doAssert countViews == 1
doAssert totalSize == 70231

The code in listing 6.12 is far more complex than the previous listing, but it allows for
far greater flexibility.

 The parseutils module also defines many other procedures that are useful for
parsing. They’re mostly convenience wrappers over a while loop. For example, the
equivalent code for i.inc parseUntil(line, domainCode, {' '}, i) is the following:

while line[i] != ' ':
domainCode.add(line[i])
i.inc

Because of the flexibility of this parser, the code can parse the last two fields into inte-
gers in a single step. That’s instead of having to first separate the fields and then parse
the integer, which is inefficient.

 In summary, the split procedure is the simplest approach, but it’s slower than
parseutils because it needs to create a sequence and new strings to hold the
matches. In comparison, the parsing code that uses parseutils only needs to create
two new strings and two new integers; there’s no overhead associated with the creation
of a sequence.

 The regex parsing code is also simpler than parseutils, but it suffers from the
PCRE dependency and is also slower than the parseutils parser.

 This makes the parseutils parser the best solution for this use case, even though
it’s slightly more complex and significantly more verbose. Its speed will come in handy
when parsing the 7,156,099 lines in the pagecounts-20160101-050000 file.

6.3.3 Processing each line of a file efficiently

The Wikipedia page-counts files are large. Each measures around 500 MB and contains
around 10 million lines of data. The pagecounts-20160101-050000 file that I asked you
to download measures 428 MB and contains 7,156,099 lines of page-count data.

 In order to parse this file efficiently, you’ll need to consume the file in fragments.
Reading the full file into your program’s memory would consume at least 428 MB of
RAM, and the actual consumption would likely be far larger due to various overheads.
That’s why it’s a good idea to read large files by breaking them up into conveniently
sized, smaller fragments, otherwise known as chunks.

USING AN ITERATOR TO READ A FILE IN FRAGMENTS

Nim defines an iterator called lines that iterates over each line in a file. This iterator
doesn’t need to copy the full file’s contents into the program’s memory, which makes
it very efficient. The lines iterator is defined in the system module.

 The following listing shows how the lines iterator can be used to read lines from
the pagecounts-20160101-050000 file.
Licensed to <null>

165Parsing data

sed
y
use

.

import os
proc readPageCounts(filename: string) =

for line in filename.lines:
echo(line)

when isMainModule:
const file = "pagecounts-20160101-050000"
let filename = getCurrentDir() / file
readPageCounts(filename)

Save listing 6.13 as sequential_counts.nim, and then compile and run it. The program
will take around a minute to execute because it will display each line of the page-
counts file. You may terminate it by pressing Ctrl-C. As it runs, you can observe the
memory usage, which should remain low.

PARSING EACH LINE

You can now add the parsing code from listing 6.12 to the code in listing 6.13. Listing
6.14 shows how the parser can be integrated into listing 6.13, with the changes high-
lighted in bold.

import os, parseutils
proc parse(line: string, domainCode, pageTitle: var string,

 countViews, totalSize: var int) =
var i = 0
domainCode.setLen(0)
i.inc parseUntil(line, domainCode, {' '}, i)
i.inc
pageTitle.setLen(0)
i.inc parseUntil(line, pageTitle, {' '}, i)
i.inc
countViews = 0
i.inc parseInt(line, countViews, i)
i.inc
totalSize = 0
i.inc parseInt(line, totalSize, i)

proc readPageCounts(filename: string) =
var domainCode = ""
var pageTitle = ""

Listing 6.13 Iterating over each line in a file

Listing 6.14 Parsing each line in a file

The os module defines the
getCurrentDir procedure.

Defines a readPageCounts procedure
that takes the filename of the page-
counts file as an argument

Iterates through each line in the
file located at filename using the
lines iterator

Displays each line that was read

Defines a file constant and assigns
it the name of the page-counts file

Checks whether this module is being
compiled as the main module

Defines a filename
variable and assigns it the
path of the program’s
current working directory
joined with file. The /
operator is defined in the
os module and is used to
concatenate file paths.

Calls the readPageCounts
procedure and passes the
value of the filename
variable as an argument

The variables in which the par
tokens are stored are passed b
reference. This is efficient beca
new strings don’t have to be
allocated for each call to parse

The length of the string is reset to
0. This is much more efficient
than assigning "" because setLen
reuses memory instead of
allocating new strings.

The integer variables are
simply reset to 0.
Licensed to <null>

166 CHAPTER 6 Parallelism
var countViews = 0
var totalSize = 0
for line in filename.lines:

parse(line, domainCode, pageTitle, countViews, totalSize)
echo("Title: ", pageTitle)

when isMainModule:
const file = "pagecounts-20160101-050000"
let filename = getCurrentDir() / file
readPageCounts(filename)

Replace the code in sequential_counts.nim with the code in listing 6.14. The follow-
ing listing shows what some of the output from sequential_counts.nim may look like.

...
Title: List_of_digital_terrestrial_television_channels_(UK)
Title: List_of_diglossic_regions
Title: List_of_dignitaries_at_the_state_funeral_of_John_F._Kennedy
Title: List_of_dimensionless_quantities
Title: List_of_diners
Title: List_of_dinosaur_genera
Title: List_of_dinosaur_specimens_with_nicknames
Title: List_of_dinosaurs
...

The code in listing 6.14 employs a number of optimizations. First, the biggest slow-
downs in Nim applications are often caused by too many variables being allocated and
deallocated. The parse procedure could return the parsed tokens, but that would
result in a new string being allocated for each iteration. Instead, the parse procedure
here accepts a mutable reference to two strings and two ints, which it then fills with
the parsed tokens. A file that takes 9.3 seconds to parse without this optimization takes
7.8 seconds to parse with the optimization. That’s a difference of 1.5 seconds.

 The use of setLen is another optimization. It ensures that the string isn’t reallo-
cated but is instead reused. The parse procedure is executed at least 7 million times,
so a tiny optimization creates massive gains in total execution speed.

FINDING THE MOST POPULAR ARTICLE

Now that the parsing code has been introduced, all that’s left is to find the most pop-
ular article on the English Wikipedia. The following listing shows the finished
sequential_counts application with the latest changes shown in bold.

import os, parseutils

proc parse(line: string, domainCode, pageTitle: var string,
countViews, totalSize: var int) =

var i = 0

Listing 6.15 The output of sequential_counts.nim

Listing 6.16 The finished sequential_counts.nim

Calls the parse
procedure and passes

it the current line
together with

variables where
tokens can be stored

Displays the title of each
page that was found in

the page-counts file
Licensed to <null>

167Parsing data
domainCode.setLen(0)
i.inc parseUntil(line, domainCode, {' '}, i)
i.inc
pageTitle.setLen(0)
i.inc parseUntil(line, pageTitle, {' '}, i)
i.inc
countViews = 0
i.inc parseInt(line, countViews, i)
i.inc
totalSize = 0
i.inc parseInt(line, totalSize, i)

proc readPageCounts(filename: string) =
var domainCode = ""
var pageTitle = ""
var countViews = 0
var totalSize = 0
var mostPopular = ("", "", 0, 0)
for line in filename.lines:

parse(line, domainCode, pageTitle, countViews, totalSize)
if domainCode == "en" and countViews > mostPopular[2]:

mostPopular = (domainCode, pageTitle, countViews, totalSize)

echo("Most popular is: ", mostPopular)

when isMainModule:
const file = "pagecounts-20160101-050000"
let filename = getCurrentDir() / file
readPageCounts(filename)

WARNING: RELEASE MODE Ensure that you compile sequential_counts.nim in
release mode by passing the -d:release flag to the Nim compiler. Without
that flag, the execution time of the application will be significantly longer.

Replace the contents of sequential_counts.nim with the code in listing 6.16, and then
compile it in release mode and run it. After a few seconds, you should see output sim-
ilar to the following.

Most popular is: (Field0: en, Field1: Main_Page, Field2: 271165, Field3: 4791
147476)

The most popular page in the English Wikipedia is in fact the main page! This makes
a lot of sense, and although it’s obvious in hindsight, it’s trivial to edit the code you’ve
written to find more-interesting statistics. I challenge you to edit sequential_counts
.nim and play around with the data. You can try finding the top-10 most popular pages
in the English Wikipedia, or you can download different page-counts files and com-
pare the results.

 You should now have a good understanding of how you can parse data effectively.
You’ve learned what bottlenecks you should look out for in your Nim applications and
how to fix them. The next step is to parallelize this parser so that its execution time is
even lower on multicore CPUs.

Listing 6.17 Output for sequential_counts.nim

Defines a tuple to store the
four parsed fields for the most
popular page

Checks whether the current line
contains information about a

page from the English
Wikipedia and whether its view

count is greater than that of the
currently most popular page

If it’s greater, saves it as the
new most popular page
Licensed to <null>

168 CHAPTER 6 Parallelism
6.4 Parallelizing a parser
In order for the program to be parallel, it must make use of threads. As mentioned
previously, there are two ways that threads can be created in Nim: using the threads
module, or using the threadpool module. Both will work, but the threadpool mod-
ule is more appropriate for this program.

6.4.1 Measuring the execution time of sequential_counts

Before we parallelize the code, let’s measure how long sequential_counts takes to
execute.

 This can be done very easily on UNIX-like OSs by using the time command. Exe-
cuting time ./sequential_counts should output the execution time of sequential_
counts.nim. On a MacBook Pro with an SSD and a dual-core 2.7 GHz Intel Core i5
CPU, which includes hyperthreading, the execution time is about 2.8 seconds.

 On Windows, you’ll need to open a new Windows PowerShell window, and
then use the Measure-Command command to measure the execution time. Executing
Measure-Command {./sequential_counts.exe} should output the execution time.

 The program currently runs in a single thread and is very CPU-intensive. This
means its speed can be significantly improved by making it parallel.

6.4.2 Parallelizing sequential_counts

Create a new parallel_counts.nim file. This is the file that we’ll populate with code
from now on.

 How can the threadpool module be used to parallelize this code? You may be
tempted to spawn the parse procedure, but this won’t work because it needs var
parameters that can’t safely be passed to a spawned procedure. It also wouldn’t help
much, because a single call to parse is relatively quick.

 Before you can parallelize this code, you must first change the way that the page-
counts file is read. Instead of reading each line separately, you need to read the file in
larger fragments. But what size fragment should you read?

 Consider the following scenario. The page-counts file begins with the following
lines:

en Main_Page 123 1234567
en Nim_(programming_language) 100 12415551

If the fragment size is so small that only "en Main_Page" is read, the program will fail
because the size of the fragment is insufficient.

 Alternatively, a fragment might contain valid data at the start, but it may end with a
line that was not fully read, such as "en Main_Page 123 1234567\nen Nim_". This
data will need to be split after every newline ("\n"), and each line will need to be
parsed separately. The last line in this example will lead to an error, because it’s not
complete. A solution is to find where the last line ends, and then defer parsing the
line that hasn’t been fully read until the next time a fragment of the file is read.
Licensed to <null>

169Parallelizing a parser
 Here’s how parallel_counts.nim should work:

 Instead of reading lines, a large fragment of text should be read.
 A new procedure called parseChunk should be created.

 The parseChunk procedure should receive a fragment of text, go through each
line, and pass the line to the parse procedure.

 At the same time, it should check which of the parsed pages are the most popular.

 The parseChunk procedure should be spawned. A slice of the fragment should
be passed to parseChunk, and the slice should not contain any incomplete lines.

 The incomplete line should be saved. Once the next fragment is read, the
incomplete line should be prepended to the newly read fragment.

TERMINOLOGY The term chunk is synonymous with the term fragment, and
throughout this chapter both will be used interchangeably. A slice means a
subset of the full data, such as a substring.

Listings 6.18, 6.19, and 6.20 show different sections of a parallel_counts.nim file that
implements this solution.

6.4.3 Type definitions and the parse procedure

Listing 6.18 starts with the top section of the file, which is not much different from the
sequential version. This section includes the import statement, some new type defini-
tions, and the original parse procedure. A new Stats type is defined to store page-
count statistics about a specific page; this type will be used to store the most popular
page in each spawned procedure. The Stats type will be returned from the spawned
procedure, so it must be a ref type because spawn currently can’t spawn procedures
that return custom value types. A new procedure called newStats is also defined,
which constructs a new empty Stats object. There’s also the definition of $, which
converts a Stats type to a string.

import os, parseutils, threadpool, strutils

type
Stats = ref object

domainCode, pageTitle: string
countViews, totalSize: int

proc newStats(): Stats =
Stats(domainCode: "", pageTitle: "", countViews: 0, totalSize: 0)

Listing 6.18 The top section of parallel_counts.nim

The threadpool module is required
for spawn, and the strutils module
is required for the % operator.

Defines a new Stats type that will hold
information about a page’s statistics.
The type has to be defined as a ref
because a procedure that returns a
non-ref type can’t be spawned.

The Stats type defines fields for
each of the parsed tokens.

Defines a new procedure called newStats that
acts as a constructor for the Stats type
Licensed to <null>

170 CHAPTER 6 Parallelism

Ite

e
li
c

proc `$`(stats: Stats): string =
"(domainCode: $#, pageTitle: $#, countViews: $#, totalSize: $#)" % [

stats.domainCode, stats.pageTitle, $stats.countViews, $stats.totalSize
]

proc parse(line: string, domainCode, pageTitle: var string,
countViews, totalSize: var int) =

if line.len == 0: return
var i = 0
domainCode.setLen(0)
i.inc parseUntil(line, domainCode, {' '}, i)
i.inc
pageTitle.setLen(0)
i.inc parseUntil(line, pageTitle, {' '}, i)
i.inc
countViews = 0
i.inc parseInt(line, countViews, i)
i.inc
totalSize = 0
i.inc parseInt(line, totalSize, i)

6.4.4 The parseChunk procedure

Listing 6.19 shows the middle section of the parallel_counts.nim file. It defines a new
procedure called parseChunk, which takes a string parameter called chunk and
returns the most popular English Wikipedia page in that fragment. The fragment con-
sists of multiple lines of page-count data.

 The procedure begins by initializing the result variable; the return type is a ref
type that must be initialized so that it’s not nil. The rest of the procedure is similar to
the readPageCounts procedure in the sequential_counts.nim file. It defines four vari-
ables to store the parsed tokens, and then it iterates through the lines in the chunk
using the splitLines iterator, and parses each of the lines.

proc parseChunk(chunk: string): Stats =
result = newStats()
var domainCode = ""
var pageTitle = ""
var countViews = 0
var totalSize = 0
for line in splitLines(chunk):

parse(line, domainCode, pageTitle, countViews, totalSize)
if domainCode == "en" and countViews > result.countViews:

result = Stats(domainCode: domainCode, pageTitle: pageTitle,
countViews: countViews, totalSize: totalSize)

Listing 6.19 The middle section of parallel_counts.nim

Defines a $ operator
for the Stats type so

that it can be
converted to a string

easily. In practice,
this means that echo

can display it.

The parse procedure is the same.

The parseChunk procedure is very
similar to the readPageCounts
procedure in sequential_counts.nim.

Initializes the result
variable with a new value
of the Stats type

Creates variables
to store the
parsed tokens.

rates
over
very

ne in
hunk

Calls the parse
procedure on each

line inside the chunk
to parse into the 4

fields: domainCode,
pageTitle, countViews,

and totalSize

Checks if the parsed page is in the English Wikipedia and
whether it got more views than the page stored in result

If that’s the case, result is
assigned the parsed page.
Licensed to <null>

171Parallelizing a parser
6.4.5 The parallel readPageCounts procedure

Listing 6.20 shows the readPageCounts procedure, which has been modified signifi-
cantly since the last time you saw it in listing 6.16. It now takes an optional parameter
called chunkSize that determines how many characters it should read each iteration.
But the procedure’s implementation is what differs most. The file is opened manually
using the open procedure, followed by definitions of variables required to properly
store the results of the fragment-reading process.

 The fragment-reading process is complicated by the fact that the code needs to
keep track of unfinished lines. It does so by moving backwards through the contents
of buffer, which stores the fragment temporarily, until it finds a newline character.
The buffer string is then sliced from the start of the fragment to the end of the last
full line in the fragment. The resulting slice is then passed to the parseChunk proce-
dure, which is spawned in a new thread using spawn.

 The end of the fragment that hasn’t yet been parsed is then moved to the beginning
of the buffer. In the next iteration, the length of the characters that will be read will be
chunkSize minus the length of the buffer that wasn’t parsed in the last iteration.

proc readPageCounts(filename: string, chunkSize = 1_000_000) =
var file = open(filename)
var responses = newSeq[FlowVar[Stats]]()
var buffer = newString(chunkSize)
var oldBufferLen = 0
while not endOfFile(file):
let reqSize = chunksize - oldBufferLen
let readSize = file.readChars(buffer, oldBufferLen, reqSize) + oldBufferLen
var chunkLen = readSize

while chunkLen >= 0 and buffer[chunkLen - 1] notin NewLines:
chunkLen.dec

Listing 6.20 The last section of parallel_counts.nim

The open procedure is now used to
open a file. It returns a File object
that’s stored in the file variable.

The readPageCounts procedure now includes
a chunkSize parameter with a default value of
1_000_000. The underscores help
readability and are ignored by Nim.

Defines a new buffer string of
length equal to chunkSize.

Fragments will be stored here.

Defines a new responses sequence
to hold the FlowVar objects that

will be returned by spawn

Defines a variable to store the
length of the last buffer that
wasn’t parsed

Loops until the full file is read

Calculates the number of
characters that need to be read

Uses the readChars procedure to read the reqSize number of
characters. This procedure will place the characters that it

reads starting at oldBufferLen, which will ensure that the old
buffer isn’t overwritten. The oldBufferLen is added because
that’s the length of the old buffer that was read previously.

Creates a variable to store the
fragment length that will be parsed

Decreases the chunkLen variable until
chunkLen - 1 points to any newline character
Licensed to <null>

172 CHAPTER 6 Parallelism
responses.add(spawn parseChunk(buffer[0 .. <chunkLen]))
oldBufferLen = readSize - chunkLen
buffer[0 .. <oldBufferLen] = buffer[readSize - oldBufferLen .. ^1]

var mostPopular = newStats()
for resp in responses:
let statistic = ^resp
if statistic.countViews > mostPopular.countViews:
mostPopular = statistic

echo("Most popular is: ", mostPopular)

file.close()

when isMainModule:
const file = "pagecounts-20160101-050000"
let filename = getCurrentDir() / file
readPageCounts(filename)

The parallel version is unfortunately more complex, but the complexity is mostly
restricted to the readPageCounts procedure, where the algorithm for reading the file
in fragments adds great complexity to the program. In terms of the line count,
though, the parallel version is only about twice as long.

6.4.6 The execution time of parallel_counts

Merge listings 6.18, 6.19, and 6.20 into a single parallel_counts.nim file. Then compile
and run the program. Make sure you pass both the --threads:on flag as well as the
-d:release flag to Nim when compiling. Measure the execution time using the tech-
niques described in section 6.4.1.

 On a MacBook Pro with an SSD and a dual core 2.7 GHz Intel Core i5 CPU that
includes hyperthreading, the execution time is about 1.2 seconds, which is less than
half of the 2.8 seconds that the sequential version took to execute. That’s a consider-
able difference!

 On UNIX-like systems, the time command allows you to verify that the parallel ver-
sion is in fact parallel by looking at its CPU usage. For example, the time command out-
puts ./parallel_counts 4.30s user 0.25s system 364% cpu 1.251 total, showing that
parallel_counts was using 364% of the available CPU. In comparison, sequential_
counts almost always shows around 99% CPU usage. This high CPU usage percentage
proves that parallel_counts is using all cores together with hyperthreading.

Assigns the part of the
fragment that wasn’t parsed

to the beginning of buffer

Creates a new thread to execute the
parseChunk procedure and passes a slice of
the buffer that contains a fragment that can
be parsed. Adds the FlowVar[string]
returned by spawn to the list of responses.

Iterates through each response

Blocks the main thread until the response
can be read and then saves the response
value in the statistics variable

Checks if the most popular
page in a particular

fragment is more popular
than the one saved in the

mostPopular variable. If it is,
overwrites the mostPopular

variable with it.

Ensures that the file
object is closed
Licensed to <null>

173Dealing with race conditions

I

 Now that you’ve seen how to parallelize a parser, you should have a better idea
about how to parallelize Nim code in general. The last sections of this chapter will
teach you about race conditions and how to avoid them.

6.5 Dealing with race conditions
You don’t typically need to worry about race conditions when writing concurrent code
in Nim because of the restriction that Nim puts on GC-safe procedures: memory
belonging to another thread can’t be accessed in a spawned procedure or a proce-
dure marked using the {.thread.} pragma.

 A race condition occurs when two or more threads attempt to read and write to a
shared resource at the same time. Such behavior can result in unpredictable results
that often are difficult to debug. This is one of the reasons why Nim prevents the shar-
ing of some resources between threads. Nim instead prefers data to be shared using
alternative methods such as channels, which prevent race conditions.

 Sometimes these methods aren’t appropriate for certain use cases, such as when
lots of data needs to be modified by the thread. Because of this, Nim also supports
shared memory. Sharing memory via global variables is easy as long as you only want
to share value types. Sharing reference types is much harder because you must make
use of Nim’s manual memory-management procedures.

WARNING: SHARED MEMORY Using shared memory is risky because it
increases the chances for race conditions in your code. Also, you must man-
age the memory yourself. I advise you to only use shared memory if you’re
certain that it’s required and if you know what you’re doing. In future ver-
sions of Nim, using shared memory will likely become safer and much easier.

Listing 6.21 implements a simple program that increments the value of a global vari-
able inside two threads running in parallel. The result is a race condition.

import threadpool

var counter = 0

proc increment(x: int) =
for i in 0 .. <x:

var value = counter
value.inc
counter = value

spawn increment(10_000)
spawn increment(10_000)
sync()
echo(counter)

Listing 6.21 Race condition with shared memory

The threadpool module
defines the spawn procedure.

Defines a global variable called counter

Iterates from 0 to x-1

Defines a new local variable called value
and assigns it the value of counter

ncrements
value

Sets the value of the global counter
variable to the value of “value”

Spawns two new threads that will call the increment
procedure with 10_000 as the argument

Waits until all the threads are finished

Displays the value of the counter
Licensed to <null>

174 CHAPTER 6 Parallelism
In this example, the increment procedure is GC safe because the global variable
counter it accesses is of type int, which is a value type. The increment procedure
increments the global counter variable x times. The procedure is spawned twice,
which means that there will be two increment procedures executing at the same time.
The fact that they’re both reading, incrementing, and then writing the incremented
value to the global counter variable in discrete steps means that some increments may
be missed.

SHARING MEMORY THAT MUST BE ALLOCATED ON THE HEAP Value types, such as
integers, can exist on the stack (or in the executable’s data section if the value
is stored in a global variable), but reference types such as string, seq[T] and
ref T can’t. Nim supports the sharing of reference types, but it won’t manage
the memory for you. This may change in a future version of Nim, but cur-
rently you must use a procedure called allocShared defined in the system
module to allocate shared memory manually.

Save listing 6.21 as race_condition.nim, and then compile it without the -d:release
flag and run it. Run it a couple of times and note the results. The results should appear
random, and should almost never display the expected value of 20,000. Figure 6.5
shows what the execution of listing 6.21 looks like.

 Preventing race conditions is very important because whenever a bug occurs due
to a race condition, it’s almost always nondeterministic. The bug will be very difficult
to reproduce, and once it is reproduced, debugging it will be even harder because the
mere act of doing so may cause the bug to disappear.

 Now that you know what race conditions are, let’s look at ways to prevent them.

6.5.1 Using guards and locks to prevent race conditions

Just like most languages, Nim provides synchronization mechanisms to ensure that
resources are only used by a single thread at a time.

 One of these mechanisms is a lock. It enforces limits on access to a resource, and
it’s usually paired with a single resource. Before that resource is accessed, the lock is
acquired, and after the resource is accessed, it’s released. Other threads that try to
access the same resource must attempt to acquire the same lock, and if the lock has
already been acquired by another thread, the acquire operation will block the thread
until the lock is released. This ensures that only one thread has access to the resource.

 Locks work very well, but they aren’t assigned to any variables by default. They can
be assigned using a guard. When a variable is guarded with a specific lock, the com-
piler will ensure that the lock is locked before allowing access. Any other access will
result in a compile-time error.

Licensed to <null>

175Dealing with race conditions
The following listing shows how a new Lock, together with a guard, can be defined.

import threadpool, locks

var counterLock: Lock
initLock(counterLock)
var counter {.guard: counterLock.} = 0

proc increment(x: int) =
for i in 0 .. <x:

var value = counter
value.inc
counter = value

Listing 6.22 Attempting to access a guarded global variable from a thread

Synchronized execution

Thread #1 Thread #2

Unsynchronized execution

counter

value = counter

increment

counter = value

value = counter

increment

counter = value

0

0

1

1

1

valueExecuted code valueExecuted code

0 0

10

0

1

1

1

1

1

Thread #1 Thread #2
counter

value = counter

increment

counter = value

value = counter

increment

counter = value

0

0

1

1

1

valueExecuted code valueExecuted code

0 0

01

1

1

1

0

1

2

1 2 2

Thread #2 does
nothing until
thread #1 is

finished.

After thread #1 is
finished, thread #2

performs its work and
thread #1 does

nothing.

Both threads
end up setting
counter to 1.

Two increment
operations end
up incrementing

only by 1.

Both threads
set their local
value variable

to 0.

The result is
correct.

Thread #1 sets its local value variable
to 0. Thread #2 sets it to 1 after

counter was updated by thread #1.

Figure 6.5 Synchronized and unsynchronized execution of listing 6.21

Imports the locks module, which defines
the Lock type and associated procedures

Defines a new counterLock of type Lock

Initializes the counterLock lock
using the initLock procedure

Uses the {.guard.} pragma to
ensure that the counter variable is
protected by the counterLock lock
Licensed to <null>

176 CHAPTER 6 Parallelism
spawn increment(10_000)
spawn increment(10_000)
sync()
echo(counter)

Save listing 6.22 as unguarded_access.nim, and then compile it. The compilation
should fail with “unguarded_access.nim(9, 17) Error: unguarded access: counter.”
This is because the counter variable is protected by the guard, which ensures that any
access to counter must occur after the counterLock lock is locked. Let’s fix this error
by locking the counterLock lock.

import threadpool, locks

var counterLock: Lock
initLock(counterLock)
var counter {.guard: counterLock.} = 0

proc increment(x: int) =
for i in 0 .. <x:

withLock counterLock:
var value = counter
value.inc
counter = value

spawn increment(10_000)
spawn increment(10_000)
sync()
echo(counter)

Save the code in listing 6.23 as parallel_incrementer.nim, and then compile and run
it. The file should compile successfully and its output should always be 20000, which
means that the race condition is fixed! The fact that the compiler verifies that every
guarded variable is locked properly ensures the safe execution of the code. It also
helps prevent bugs from appearing accidentally in the future, when new code is added
or existing code is changed.

6.5.2 Using channels so threads can send and receive messages

Despite all Nim’s efforts to make locks as safe as possible, they may not always be the
safest choice. And for some use cases, they may simply be inappropriate, such as when
threads share very few resources. Channels offer an alternative form of synchroniza-
tion that allows threads to send and receive messages between each other.

 A channel is an implementation of a queue—a first-in-first-out (FIFO) data struc-
ture. This means that the first value to be added to the channel will be the first one to
be removed. The best way to visualize such a data structure is to imagine yourself
queuing for food at a cafeteria. The first person to queue is also the first person to get
their food. Figure 6.6 shows a representation of a FIFO channel.

Listing 6.23 Incrementing a global variable with a lock

The code that accesses the counter
variable is now inside a withLock
section. This locks the lock and
ensures that it’s unlocked after the
code under the withLock body ends.
Licensed to <null>

177Dealing with race conditions
Nim implements channels in the channels module of the standard library. This mod-
ule is part of system, so it doesn’t need to be explicitly imported.

 A channel is created as a global variable, allowing every thread to send and receive
messages through it. Once a channel is defined, it must be initialized using the open
procedure. Listing 6.24 defines and initializes a new chan variable of type Channel
[string]. You can specify any type inside the square brackets, including your own cus-
tom types.

var chan: Channel[string]
open(chan)

Values can be sent using the send procedure and received using the recv procedure.
The following listing shows how to use both procedures.

import os, threadpool
var chan: Channel[string]
open(chan)

proc sayHello() =
sleep(1000)
chan.send("Hello!")

spawn sayHello()
doAssert chan.recv() == "Hello!"

The recv procedure will block until a message is received. You can use the tryRecv
procedure to get nonblocking behavior; it returns a tuple consisting of a Boolean,
which indicates whether or not data was received, and the actual data.

 To give you a better idea of how channels work, let’s implement listing 6.23 with
channels instead of locks. The following listing shows parallel_incrementer.nim
implemented using channels.

Listing 6.24 Initializing a channel using open

Listing 6.25 Sending and receiving data through a channel

send

recv

Figure 6.6 Representation
of a FIFO channel

The os module defines the sleep procedure.
The threadpool module is needed for spawn.

The sayHello procedure will sleep its thread for 1
second before sending a message through chan.

Executes the sayHello procedure in another thread

Blocks the main thread until a "Hello!" is received
Licensed to <null>

178 CHAPTER 6 Parallelism

import threadpool

var resultChan: Channel[int]
open(resultChan)

proc increment(x: int) =
var counter = 0
for i in 0 .. <x:

counter.inc
resultChan.send(counter)

spawn increment(10_000)
spawn increment(10_000)
sync()
var total = 0
for i in 0 .. <resultChan.peek:

total.inc resultChan.recv()
echo(total)

The global counter variable is replaced by a global resultChan channel. The increment
procedure increments a local counter variable x times, and then it sends counter’s value
through the channel. This is done in two different threads.

 The main thread waits for the two threads to finish, at which point it reads the
messages that have been sent to the resultChan. Figure 6.7 shows the execution of
listing 6.26.

Listing 6.26 parallel_incrementer.nim implemented using channels

Defines a new global Channel[int] variable

Initializes the channel so that
messages can be sent through it

This time the counter variable is
local to the increment procedure.

Once the counter calculation finishes,
its value is sent through the channel.

Waits for both of the threads to finish

The peek procedure returns the number of
messages waiting to be read inside the channel.

Reads one of the messages and increments
the total by the message’s value

Main thread increment thread #1 increment thread #2

sync()counter.inc

counter.inc

...
counter.inc

1

2

10,000

counter.inc

counter.inc

...
counter.inc

1

2

10,000

send(counter) send(counter)

10,00010,000

recv()

recv()

After the messages
are received, they are
added up and displayed Figure 6.7 Execution of listing 6.26
Licensed to <null>

179Summary
6.6 Summary
 The apparent execution of processes at the same time is called concurrency,

whereas true simultaneous execution of processes is called parallelism.
 Each thread in Nim has a separate heap that’s managed by a separate garbage

collector.
 Threads can be created using the createThread procedure defined in the

threads module.
 A procedure can be added to a thread pool using the spawn procedure defined

in the threadpool module.
 GC safety, which is enforced by the compiler, ensures that garbage-collected

data isn’t shared between threads.
 Data parsing can be performed using regular expressions, the split proce-

dure, or the parseutils module.
 Threads can be used to parallelize a parser.
 Locks or channels can be used to synchronize the execution of threads to pre-

vent race conditions.
Licensed to <null>

Building a Twitter clone
Web applications have become extremely popular in recent years because of their
convenience and the widespread use of web browsers. Many people have taken
advantage of this to become millionaires, developing the likes of Twitter, Facebook,
and Google.

 Large web applications consisting of many components are typically written in
several different programming languages, chosen to match the requirements of the
components. In most cases, the core infrastructure is written in a single language,
with a few small specialized components being written in one or two different pro-
gramming languages. YouTube, for example, uses C, C++, Java, and Python for its
many different components, but the core infrastructure is written in Python.

This chapter covers
 Developing a Twitter clone in Nim

 Storing and querying for data in a SQL database

 Generating HTML and sending it to the user’s
browser

 Deploying your web application
180

Licensed to <null>

181Architecture of a web application
 Thanks to the great speed of development that Python provides, YouTube was able
to evolve by quickly responding to changes and implementing new ideas rapidly. In
specialized cases, C extensions were used to achieve greater performance.

 Smaller web applications are typically written in a single programming language.
The choice of language differs, but it’s typically a scripting language like Python,
Ruby, or PHP. These languages are favored for their expressive and interpreted char-
acteristics, which allow web applications to be iterated on quickly.

 Unfortunately, applications written in those languages are typically slow, which has
resulted in problems for some major websites. For example, Twitter, which was initially
written in Ruby, has recently moved to Scala because Ruby was too slow to handle the
high volume of tweets posted by users every day.

 Websites can also be written in languages such as C++, Java, and C#, which are com-
piled. These languages produce very fast applications, but developing in them is not
as fast as in Python or other scripting languages. This is likely due to the slow compile
times in those languages, which means that you must spend more time waiting to test
your application after you’ve made changes to it. Those languages are also not as
expressive as Python or other scripting languages.

 Nim is a hybrid. It’s a compiled language that takes inspiration from scripting lan-
guages. In many ways, it’s as expressive as any scripting language and as fast as any
compiled language. Compilation times in Nim are also very fast, which makes Nim a
good language for developing efficient web applications.

 This chapter will lead you through the development of a web application. Specifi-
cally, it will show you how to develop a web app that’s very similar to Twitter. Of course,
developing a full Twitter clone would take far too much time and effort. The version
developed in this chapter will be significantly simplified.

 You’ll need some knowledge of SQL for this chapter. Specifically, you’ll need to
understand the structure and semantics of common SQL statements, including CREATE
TABLE and SELECT.

7.1 Architecture of a web application
Developers make use of many different architectural patterns when designing a web
application. Many web frameworks are based on the very popular model-view-control-
ler (MVC) pattern and its variants. One example of an MVC framework is Ruby on Rails.

 MVC is an architectural pattern that has been traditionally used for graphical user
interfaces (GUIs) on the desktop. But this pattern also turned out to be very good for
web applications that incorporate a user-facing interface. The MVC pattern is com-
posed of three distinct components that are independent of each other: the model,
which acts as a data store; the view, which presents data to the user; and the controller,
which gives the user the ability to control the application. Figure 7.1 shows how the
three different components communicate.

 Consider a simple calculator application consisting of a number of buttons and a
display. In this case, the model would be a simple database that stores the numbers that
Licensed to <null>

182 CHAPTER 7 Building a Twitter clone
have been typed into the calculator, the view would be the display that shows the result
of the current calculation, and the controller would detect any button presses and con-
trol the view and model accordingly. Figure 7.2 shows a simple graphical calculator
with the different components labeled.

 It’s a good idea to design web applications using the MVC pattern, especially when
writing very large applications. This pattern ensures that your code doesn’t mix data-
base code, HTML generation code, and logic code together, leading to easier mainte-
nance for large web applications. Depending on the use case, variations on this
pattern can also be used, separating code more or less strictly. Stricter separation
would mean separating the web application into more components than just the
model, view, and controller, or separating it into further subgroups derived from the
model, view, or controller.

 When you design the architecture of a web application, you may already naturally
separate your code into logical independent units. Doing so can achieve the same
benefits as using the MVC pattern, with the additional benefit of making your code-
base more specific to the problem you’re solving. It isn’t always necessary to abide by

Model

View Controller

Updates Manipulates

User

UsesDisplays data
to

Nim Ruby

Figure 7.1 The three different
components in the MVC architec-
ture and how they interact

Model
View

Current Answer: 5000
Current Operation: Add
Current Input: None

Controller

OperationInput

Figure 7.2 The three different
MVC components as seen on a
calculator’s GUI
Licensed to <null>

183Architecture of a web application
architectural patterns, and there are some web frameworks that are pattern agnostic.
This type of framework is more suited for small web applications, or applications that
don’t need to incorporate all the components of the MVC pattern.

 Sinatra is one example of a framework that doesn’t enforce the MVC pattern. It’s
written in Ruby, just like Ruby on Rails, but it has been designed to be minimalistic. In
comparison to Ruby on Rails, Sinatra is much lighter because it lacks much of the
functionality that’s common in full-fledged web application frameworks:

 Accounts, authentication, and authorization
 Database abstraction layers
 Input validation and sanitation
 Templating engines

This makes Sinatra very simple to work with, but it also means that Sinatra doesn’t sup-
port as many features out of the box as Ruby on Rails does. Sinatra instead encourages
developers to work on additional packages that implement the missing functionality.

 The term microframework is used to refer to minimalistic web application frame-
works like Sinatra. Many microframeworks exist, some based on Sinatra and written in
various programming languages. There’s even one written in Nim called Jester.

 Jester is a microframework heavily based on Sinatra. At the time of writing, it’s
one of the most popular Nim web frameworks. We’ll use Jester to develop the web
application in this chapter, as it’s easy to get started with and it’s the most mature of
the Nim web frameworks. Jester is hosted on GitHub: https://github.com/dom96/
jester. Later on in this chapter, you’ll see how to install Jester using the Nimble pack-
age manager, but first I’ll explain how a microframework like Jester can be used to
write web applications.

7.1.1 Routing in microframeworks

Full-fledged web frameworks usually require a big application structure to be created
before you can begin developing the web application. Microframeworks, on the other
hand, can be used immediately. All that’s needed is a simple definition of a route. The
following listing shows a simple route definition in Jester.

routes:
get "/":

resp "Hello World!"

To better understand what a route is, let me first explain how your web browser
retrieves web pages from web servers. Figure 7.3 shows an HTTP request to twitter
.com.

 When you’re browsing the internet and you navigate to a website or web page,
your web browser requests that page using a certain URL. For example, when navigat-
ing to the front page of Twitter, your web browser first connects to twitter.com and

Listing 7.1 A / route defined using Jester
Licensed to <null>

https://github.com/dom96/jester
https://github.com/dom96/jester
https://github.com/dom96/jester

184 CHAPTER 7 Building a Twitter clone
then asks the Twitter server to send it the contents of the front page. The exchange
occurs using the HTTP protocol and looks something like the following.

GET / HTTP/1.1
Host: twitter.com

Note the similarities between the information in listing 7.2 and listing 7.1. The two
important pieces of information are the GET, which is a type of HTTP request, and the /,
which is the path of the web page requested. The / path is a special path that refers to
the front page.

 In a web application, the path is used to distinguish between different routes. This
allows you to respond with different content depending on the page requested. Jester
receives HTTP requests similar to the one in listing 7.2, and it checks the path and exe-
cutes the appropriate route. Figure 7.4 shows this operation in action.

 An ordinary web application will define multiple routes, such as /register, /login,
/search, and so on. The web application that you’ll develop will include similar
routes. Some routes will perform certain actions, such as tweeting, whereas others will
simply retrieve information.

Listing 7.2 A simple HTTP GET request

GET / HTTP/1.1
Host: twitter.com

HTTP/1.1 200 OK

<html>...</html>

Twitter

server

Figure 7.3 An HTTP request to twitter.com

Specifies three pieces of information: the type
of HTTP request used, the path of the page
requested, and the HTTP protocol version

The HTTP request may include one or
more headers. The Host header
specifies the domain name that the
web browser has connected to.

An empty line is sent to ask
the server for a response.

GET / HTTP/1.1
routes:
 get "/":
 resp "Hello World!"

HTTP/1.1 200 OK

Hello World!

routes:
 get "/":
 resp "Hello World!"

Figure 7.4 HTTP requests and routing in Jester
Licensed to <null>

185Architecture of a web application
7.1.2 The architecture of Tweeter

Tweeter is what we’ll call the simplified version of Twitter that you’ll develop in this
chapter. Obviously, implementing all of Twitter’s features would take far too much
time and effort. Instead, Tweeter will consist of the following features:

 Posting messages up to 140 characters
 Subscribing to another user’s posts, called following in Twitter and many other

social media websites
 Viewing the messages posted by users you’re following

Some of Twitter’s features that won’t be implemented are

 User authentication: the user will simply type in their username and log in with
no registration required

 Search, including hashtags
 Retweeting, replying to messages, or liking messages

That’s a pretty small set of features, but it should be more than enough to teach you
the basics of web development in Nim. Through these features, you’ll learn several
things:

 How web application projects are structured
 How to store data in a SQL database
 How to use Nim’s templating language
 How to use the Jester web framework
 How the resulting application can be deployed on a server

The architecture of Tweeter will roughly follow the MVC architectural pattern
explained earlier.

 The following information will need to be stored in a database:

 Posted messages, and the users who posted them
 The username of each user
 The names of the users that each user is following

When you’re developing web applications, it’s useful to abstract database operations
into a separate module. In Tweeter, this module will be called database and it will
define procedures for reading from and writing to a database. This maps well onto the
model component in the MVC architecture.

 HTML will need to be generated based on the data provided by the database mod-
ule. You’ll create two separate views containing procedures to generate HTML: one for
the front page and the other for the timelines of different users. For example, a ren-
derMain procedure will generate an HTML page, and a renderUser procedure will
generate a small bit of HTML representing a user.
Licensed to <null>

186 CHAPTER 7 Building a Twitter clone
 Finally, the main source code file that includes the routes will act as the controller.
It will receive HTTP requests from the web browser, and, based on those requests, it
will perform the following actions:

 Retrieve the appropriate data from the database
 Build the HTML code based on that data
 Send the generated HTML code back to the requesting web browser

Figure 7.5 shows the process of developing these three components and their features.

7.2 Starting the project
The previous section described how web applications in general are designed and spe-
cifically how Tweeter will be designed, so you should have a reasonable idea of what
you’ll be building in this chapter. This section describes the first steps in beginning
the project, including the following:

 Setting up Tweeter’s directory structure
 Initializing a Nimble package
 Building a simple Hello World Jester web application

Just like in chapter 3, we’ll start by creating the directories and files necessary to hold
the project. Create a new Tweeter directory in your preferred code directory, such as
C:\code\Tweeter or ~/code/Tweeter. Then create a src directory inside that, and a
Nim source code file named tweeter.nim inside the src directory. This directory struc-
ture is shown in the following listing.

Tweeter
└── src

└── tweeter.nim

Listing 7.3 Tweeter’s directory structure

database module

post(message)

follow(follower, user)

create(user)

View modules

renderMain(html)
renderUser(user)

Controller

Stores information
about users, posts,
and followers

Transforms information
from the database
into HTML

Sends HTML
to browser
via HTTP

Renders HTML
using views

Controls
database

Figure 7.5 The components of Tweeter
and how they’ll be developed
Licensed to <null>

187Starting the project
The web framework that this project will use is Jester. This is an external dependency
that will need to be downloaded in order for Tweeter to compile. It could be down-
loaded manually, but that’s not necessary, because Jester is a Nimble package, which
means that Nimble can download it for you.

 Chapter 5 showed you how to use Nimble, and in this chapter you’ll use Nimble
during development. To do so, you’ll need to first create a .nimble file. You may recall
that Nimble’s init command can be used to generate one quickly.

 To initialize a .nimble file in your project’s directory, follow these steps:

1 Open a new terminal window.
2 cd into your project directory by executing something like cd ~/code/Tweeter.

Make sure you replace ~/code/Tweeter with the location of your project.
3 Execute nimble init.
4 Answer the prompts given by Nimble. You can use the default values for most of

them by simply pressing Enter.

If you’ve done everything correctly, your terminal window should look something like
figure 7.6.

Now, open the Tweeter.nimble file that was created by Nimble. It should look similar
to the following.

Package

version = "0.1.0"
author = "Dominik Picheta"
description = "A simple Twitter clone developed in Nim in Action."
license = "MIT"

Dependencies

requires "nim >= 0.13.1"

Listing 7.4 The Tweeter.nimble file

Figure 7.6 Successful initialization of a Nimble package
Licensed to <null>

188 CHAPTER 7 Building a Twitter clone
As you can see in the last line, in order for the Tweeter package to successfully com-
pile, the Nim compiler’s version must be at least 0.13.1. The requires line specifies
the dependency requirements of the Tweeter package. You’ll need to edit this line to
introduce a requirement on the jester package. Simply edit the last line so that it
reads requires "nim >= 0.13.1", "jester >= 0.0.1". Alternatively, you can add
requires "jester >= 0.0.1" at the bottom of the Tweeter.nimble file.

 You’ll also need to add bin = @["tweeter"] to the Tweeter.nimble file to let Nim-
ble know which files in your package need to be compiled. You should also instruct
Nimble not to install any Nim source files, by adding skipExt = @["nim"] to the file.
Your Tweeter.nimble file should now contain the following lines.

Package

version = "0.1.0"
author = "Dominik Picheta"
description = "A simple Twitter clone developed in Nim in Action."
license = "MIT"

bin = @["tweeter"]
skipExt = @["nim"]

Dependencies

requires "nim >= 0.13.1", "jester >= 0.0.1"

Now, open up tweeter.nim again, and write the following code in it.

import asyncdispatch

import jester

routes:
get "/":

resp "Hello World!"

runForever()

Go back to your terminal and execute nimble c -r src/tweeter. Your terminal should
show something like what you see in figure 7.7.

 Compiling your project using Nimble will ensure that all dependencies of your
project are satisfied. If you haven’t previously installed the Jester package, Nimble will
install it for you before compiling Tweeter.

 As you can see in figure 7.7, Jester lets you know in its own whimsical way about the
URL that you can use to access your web application. Open a new tab in your favorite

Listing 7.5 The final Tweeter.nimble file

Listing 7.6 A simple Jester test

This module defines the runForever procedure,
which is used to run the event loop.

Imports the Jester web framework

These are part of the DSL
defined by Jester.

Starts the definition of the routes

Defines a new route that will be
executed when the / path is accessed
using an HTTP GET request

Responds with the text “Hello World!”

Runs the asynchronous event loop forever
Licensed to <null>

189Storing data in a database
web browser and navigate to the URL indicated by Jester, typically http://local-
host:5000/. At that URL, you should see the “Hello World” message shown in figure 7.8.
Your web application will continue running and responding to as many requests as
you throw at it. You can terminate it by pressing Ctrl-C.

 With Nimble’s help, you were able to get started with Jester relatively quickly, and
you now have a good starting point for developing Tweeter. Your next task will involve
working on the database module.

7.3 Storing data in a database
Tweeter will use a database module to implement the storage and querying of infor-
mation related to the messages and users. This module will be designed in such a way
that it can easily be extended to use a different database implementation later.

 Because Nim is still relatively young, it doesn’t support as many databases as some of
the more popular programming languages such as C++ or Java. It does, however, sup-
port many of the most popular ones, including Redis, which is a key-value database;

Figure 7.7 The successful compilation and execution of tweeter

Figure 7.8 “Hello World!” from Jester
Licensed to <null>

190 CHAPTER 7 Building a Twitter clone
MongoDB, which is a document-oriented database; MySQL, which is a relational data-
base; and many more.

 If you’re familiar with databases, you’ll know that both Redis and MongoDB are
what’s known as NoSQL databases. As the name suggests, these databases don’t sup-
port SQL for making queries on the database. Instead, they implement their own lan-
guage, which typically isn’t as mature or sophisticated as SQL.

 It’s likely that you have more experience with relational databases than any of the
many different types of NoSQL databases, so you’ll be happy to hear that Nim supports
three different SQL databases out of the box. MySQL, SQLite, and PostgreSQL are all
supported via the db_mysql, db_sqlite, and db_postgres modules, respectively.

 Tweeter will need to store the following information in its database:

 Messages posted by users with metadata including the user that posted the mes-
sage and the time it was posted

 Information about specific users, including their usernames and the names of
users that they’re following

All the databases I mentioned can be used to store this information. The choice of
database depends on the requirements. Throughout this chapter, I use a SQL database
for development, and specifically SQLite because it’s far easier to get started with than
MySQL or PostgreSQL.

MYSQL AND POSTGRESQL SUPPORT Both MySQL and PostgreSQL are sup-
ported by Nim in the same way that SQLite is. Changing between different
database backends is trivial. As far as code changes go, simply importing
db_mysql or db_postgres instead of db_sqlite should be enough.

7.3.1 Setting up the types

Let’s begin by setting up the types in the database module. First, you’ll need to create
a new database.nim file in Tweeter’s src directory. You can then define types in that
file. These types will be used to store information about specific messages and users.

 The next listing shows what those definitions look like.

import times
type

User* = object
username*: string
following*: seq[string]

Listing 7.7 The types that store a Tweeter message and user information

Imports the times module, which
defines the Time type needed in
the definition of Message Begins a new type definition section

Defines a new User value type

Defines a string field named
username in the User type

Defines a sequence named following in
the User type, which will hold a list of
usernames that the user has followed
Licensed to <null>

191Storing data in a database
Message* = object
username*: string
time*: Time
msg*: string

The User type will represent information about a single specific user, and the Message
type will similarly represent information about a single specific message. To get a bet-
ter idea of how messages will be represented, look at the sample Twitter message
shown in figure 7.9.

An instance of the Message type can be used to represent the data in that message, as
shown in the next listing.

var message = Message(
username: "d0m96",
time: parse("18:16 - 23 Feb 2016", "H:mm - d MMM yyyy").toTime,
msg: "Hello to all Nim in Action readers!"

)

Figure 7.9 doesn’t include information about the people I follow, but we can speculate
and create an instance of the User type for it anyway.

var user = User(
username: "d0m96",
following: @["nim_lang", "ManningBooks"]

)

Listing 7.8 Representing the data in figure 7.9 using an instance of Message

Listing 7.9 Representing a user using an instance of User

Defines a string field named username in
the Message type. This field will specify
the unique name of the user who posted
the message.

Defines a new Message value type

Defines a floating-point time field in the
Message type. This field will store the time
and date when the message was posted.

Defines a string field named msg in
the Message type. This field will
store the message that was posted.

Figure 7.9 A sample Twitter message

The parse procedure is defined in the times module.
It can parse a given time in the specified format and

return a TimeInfo object that holds that time.
Licensed to <null>

192 CHAPTER 7 Building a Twitter clone
The database module needs to provide procedures that return such objects. Once
those objects are returned, it’s simply a case of turning the information stored in
those objects into HTML to be rendered by the web browser.

7.3.2 Setting up the database

Before the procedures for querying and storing data can be created, the database
schema needs to be created and a new database initialized with it.

 For the purposes of Tweeter, this is pretty simple. The User and Message types map
pretty well to User and Message tables. All that you need to do is create those tables in
your database.

ORM You may be familiar with object-relational mapping libraries, which
mostly automate the creation of tables based on objects. Unfortunately, Nim
doesn’t yet have any mature ORM libraries that could be used. Feel free to
play around with the libraries that have been released on Nimble.

I’ll use SQLite for Tweeter’s database. It’s easy to get started with, as the full database
can be embedded directly in your application’s executable. Other database software
needs to be set up ahead of time and configured to run as a separate server.

 The creation of tables in the database is a one-off task that’s only performed when
a fresh database instance needs to be created. Once the tables are created, the data-
base can be filled with data and then queried. I’ll show you how to write a quick Nim
script that will create the database and all the required tables.

 Create a new file called createDatabase.nim inside Tweeter’s src directory. The
next listing shows the code that you should start off with.

import db_sqlite

var db = open("tweeter.db", "", "", "")

db.close()

The db_sqlite module’s API has been designed so that it’s compatible with the other
database modules, including db_mysql and db_postgres. This way, you can simply
change the imported module to use a different database. That’s also why the open pro-
cedure in the db_sqlite module has three parameters that aren’t used.

 The code in listing 7.10 doesn’t do much except initialize a new SQLite database at
the specified location, or open an existing one, if it exists. The open procedure returns
a DbConn object that can then be used to talk to the database.

 The next step is creating the tables, and that requires some knowledge of SQL. Fig-
ure 7.10 shows what the tables will look like after they’re created.

Listing 7.10 Connecting to a SQLite database

The open procedure creates a new
database at the location specified. In
this case, it will create a tweeter.db file
in createDatabase’s working directory.
Licensed to <null>

193Storing data in a database
The following listing shows how to create the tables that store the data contained in
the User and Message objects.

import db_sqlite

var db = open("tweeter.db", "", "", "")

db.exec(sql"""
CREATE TABLE IF NOT EXISTS User(

username text PRIMARY KEY1

);
""")

db.exec(sql"""
CREATE TABLE IF NOT EXISTS Following(

follower text,
followed_user text,
PRIMARY KEY (follower, followed_user)
FOREIGN KEY (follower) REFERENCES User(username),
FOREIGN KEY (followed_user) REFERENCES User(username)

);
""")

Listing 7.11 Creating tables in a SQLite database

1 In some cases, it may be faster to use an integer as the primary key. This isn’t done here for simplicity.

usernamePK followerPK,FK1

followed_userPK,FK2

usernameFK

time

msg

Message User Following

Figure 7.10 The database tables

The sql procedure converts a string literal into a
SqlQuery string that can then be passed to exec.

Creates a new table, as long as the
database doesn’t already contain it

Specifies that the User table should
contain a username field and that it
should be a primary key1

Creates a new table, as
long as the database
doesn’t already contain it

Contains the username of the follower

Contains the username of the user
that the follower is following

Specifies that the follower and followed_user
fields are, together, the primary key

Creates a foreign-key constraint,
ensuring that the data added to the

database is correct
Licensed to <null>

194 CHAPTER 7 Building a Twitter clone
db.exec(sql"""
CREATE TABLE IF NOT EXISTS Message(

username text,
time integer,
msg text NOT NULL,
FOREIGN KEY (username) REFERENCES User(username)

);
""")

echo("Database created successfully!")

db.close()

Whew. That’s a lot of SQL. Let me explain it in a bit more detail.
 Each exec line executes a separate piece of SQL, and an error is raised if that SQL

isn’t executed successfully. Otherwise, a new SQL table is successfully created with the
specified fields. After the code in listing 7.11 is finished executing, the resulting data-
base will contain three different tables. The Following table is required because
SQLite doesn’t support arrays.

 The table definitions contains many table constraints, which prevent invalid data
from being stored in the database. For example, the FOREIGN KEY constraints present
in the Following table ensure that the followed_user and follower fields contain
usernames that are already stored in the User table.

 Save the code in listing 7.11 in your createDatabase.nim file, and then compile and
run it by executing nimble c -r src/createDatabase. You should see a “Database cre-
ated successfully!” message and a tweeter.db file in Tweeter’s directory.

 Your database has been created, and you’re now ready to start defining procedures
for storing and retrieving data.

7.3.3 Storing and retrieving data

The createDatabase.nim file is now finished, so you can switch back to the data-
base.nim file. This section explains how you can begin adding data into the database
and how to then get the data back out.

 Let’s start with storing data in the database. These three actions in Tweeter will
trigger data to be added to the database:

Contains the username of the
user who posted the message

Creates a new table, as long as the
database doesn’t already contain it

Contains the actual message text; a
NOT NULL key constraint is also

present to ensure that it’s not null

Contains the time when the
message was posted, stored as

UNIX time, the number of seconds
since 1970-01-01 00:00:00 UTC

The sql procedure converts a string
literal into a SqlQuery string that
can then be passed to exec.
Licensed to <null>

195Storing data in a database
 Posting a new message
 Following a user
 Creating an account

The database module should define procedures for those three actions, as follows:

proc post(message: Message)
proc follow(follower: User, user: User)
proc create(user: User)

Each procedure corresponds to a single action. Figure 7.11 shows how the follow pro-
cedure will modify the database.

Each of those procedures simply needs to execute the appropriate SQL statements to
store the desired data. And in order to do that, the procedures will need to take a
DbConn object as a parameter. The DbConn object should be saved in a custom Data-
base object so that it can be changed if required in the future. The following listing
shows the definition of the Database type.

import db_sqlite
type

Database* = ref object
db: DbConn

proc newDatabase*(filename = "tweeter.db"): Database =
new result
result.db = open(filename, "", "", "")

Add the import statement, the type definition, and the corresponding constructor to
the top of your database.nim file. After you do so, you’ll be ready to implement the
post, follow, and create procedures.

 The following listing shows how they can be implemented.

Listing 7.12 The Database type

follow("d0m96", "ManningBooks")

The Following table

INSERT INTO Following VALUES
(
 "d0m96",
 "ManningBooks"
);

followed_user

followed_user

follower

follower

Figure 7.11 Storing follow
data in the database
Licensed to <null>

196 CHAPTER 7 Building a Twitter clone

proc post*(database: Database, message: Message) =
if message.msg.len > 140:2

raise newException(ValueError, "Message has to be less than 140 characters.")

database.db.exec(sql"INSERT INTO Message VALUES (?, ?, ?);",
message.username, $message.time.toSeconds().int, message.msg)

proc follow*(database: Database, follower: User, user: User) =
database.db.exec(sql"INSERT INTO Following VALUES (?, ?);",
follower.username, user.username)

proc create*(database: Database, user: User) =
database.db.exec(sql"INSERT INTO User VALUES (?);", user.username)

The code in listing 7.13 is fairly straightforward, and the annotations explain the
important parts of the code. These procedures should work perfectly well, but you
should still test them. In order to do so, you’ll need a way to query for data.

 This gives us a good excuse to implement the procedures needed to get informa-
tion from the database. As before, let’s think about the actions that will prompt the
retrieval of data from the database.

 The primary way that the user will interact with Tweeter will be via its front page.
Initially, the front page will ask the user for their username, and Tweeter will need to
check whether that username has already been created. A procedure called findUser
will be defined to check whether a username exists in the database. This procedure
should return a new User object containing both the user’s username and a list of
users being followed. If the username doesn’t exist, an account for it will be created,
and the user will be logged in.

 At that point, the user will be shown a list of messages posted by the users that they
follow. A procedure called findMessages will take a list of users and return the mes-
sages that those users posted, in chronological order.

 Each of the messages shown to the user will contain a link to the profile of the user
who posted it. Once the user clicks that link, they’ll be shown messages posted only by
that user. The findMessages procedure will be flexible enough to be reused for this
purpose.

Listing 7.13 Implementing the post, follow, and create procedures

2 This won’t handle Unicode accurately, as len doesn’t return the number of Unicode characters in the string.
You may wish to look at the unicode module to fix this.

Inserts a row into the specified table. The question
marks are replaced with the values passed in after
the SQL statement. The exec procedure ensures that
the values are escaped to prevent SQL injections.

Verifies that the message length isn’t
greater than 140 characters. If it is,
raises an exception.2

The time, which has type Time, is
converted into the number of

seconds since the UNIX epoch by
calling toSeconds. The float result is

then converted into an int.
Licensed to <null>

197Storing data in a database
 Let’s define those two procedures. The following listing shows their definitions
and implementations.

import strutils
proc findUser*(database: Database, username: string, user: var User): bool =

let row = database.db.getRow(
sql"SELECT username FROM User WHERE username = ?;", username)

if row[0].len == 0: return false
else: user.username = row[0]

let following = database.db.getAllRows(
sql"SELECT followed_user FROM Following WHERE follower = ?;", username)

user.following = @[]
for row in following:

if row[0].len != 0:
user.following.add(row[0])

return true

proc findMessages*(database: Database, usernames: seq[string],
limit = 10): seq[Message] =

result = @[]
if usernames.len == 0: return
var whereClause = " WHERE "
for i in 0 .. <usernames.len:

whereClause.add("username = ? ")
if i != <usernames.len:

whereClause.add("or ")

let messages = database.db.getAllRows(
sql("SELECT username, time, msg FROM Message" &

whereClause &
"ORDER BY time DESC LIMIT " & $limit),

usernames)
for row in messages:

result.add(Message(username: row[0], time: fromSeconds(row[1].parseInt),
msg: row[2]))

Listing 7.14 Implementing the findUser and findMessages procedures

This procedure returns a Boolean
that determines whether the user
was found. The User object is saved
in the user parameter.

Finds a row with the specified
username in the database

False is returned when the
database doesn’t contain the

username specified.

Finds the usernames of people
that the user with the specified

username is following

Iterates through each row that
specifies who the user is following,
and adds each username to the list
named following

This procedure takes an optional limit
parameter. Its default value is 10, and
it specifies the number of messages
that this procedure will return.

Adds "username = ?" to the whereClause for each username
specified in usernames. This ensures that the SQL query
returns messages from each of the usernames specified.

Asks the database to return a list of all the
messages from usernames in chronological
order, limited to the value of limit

Iterates through each of the
messages and adds them to the

resultant sequence. The returned
time integer, which is the number
of seconds since the UNIX epoch,

is converted into a Time object by
the fromSeconds procedure.

Initializes the seq[Message] so
that items can be added to it
Licensed to <null>

198 CHAPTER 7 Building a Twitter clone
Add these procedures to your database.nim file. Make sure you also import the
strutils module, which defines parseInt.

 These procedures are significantly more complicated than those implemented in
listing 7.13. The findUser procedure makes a query to find the specified user, but it
then also makes another query to find who the user is following. The findMessages
procedure requires some string manipulation to build part of the SQL query because
the number of usernames passed into this procedure can vary. Once the WHERE clause
of the SQL query is built, the rest is fairly simple. The SQL query also contains two key-
words: the ORDER BY keyword instructs SQLite to sort the resulting messages based on
the time they were posted, and the LIMIT keyword ensures that only a certain number
of messages are returned.

7.3.4 Testing the database

The database module is now ready to be tested. Let’s write some simple unit tests to
ensure that all the procedures in it are working correctly.

 You can start by creating a new directory called tests in Tweeter’s root directory.
Then, create a new file called database_test.nim in the tests directory. Type import
database into database_test.nim, and then try to compile it by executing nimble c
tests/database_test.nim.

 The compilation will fail with “Error: cannot open 'database'.” This is due to the
unfortunate fact that neither Nim nor Nimble has any way of finding the database
module. This module is hidden away in your src directory, so it can’t be found.

 To get around this, you’ll need to create a new file called database_test.nim.cfg in
the tests directory. Inside it, write --path:"../src". This will instruct the Nim com-
piler to look for modules in the src directory when compiling the database_test
module. Verify that the database_test.nim file now compiles.

 The test will need to create its own database instance so that it doesn’t overwrite
Tweeter’s database instance. Unfortunately, the code for setting up the database is in
the createDatabase module. You’re going to have to move the bulk of that code into
the database module so that database_test can use it. The new createDatabase.nim
file will be much smaller after you add the procedures shown in listing 7.15 to the
database module. Listing 7.16 shows the new createDatabase.nim implementation.

proc close*(database: Database) =
database.db.close()

proc setup*(database: Database) =
database.db.exec(sql"""

CREATE TABLE IF NOT EXISTS User(
username text PRIMARY KEY

);
""")

database.db.exec(sql"""

Listing 7.15 The setup and close procedures destined for database.nim

The close procedure closes the
database and returns any allocated
resources to the OS.

The setup procedure initializes the
database with the User, Following,
and Message tables.
Licensed to <null>

199Storing data in a database
CREATE TABLE IF NOT EXISTS Following(
follower text,
followed_user text,
PRIMARY KEY (follower, followed_user),
FOREIGN KEY (follower) REFERENCES User(username),
FOREIGN KEY (followed_user) REFERENCES User(username)

);
""")

database.db.exec(sql"""
CREATE TABLE IF NOT EXISTS Message(

username text,
time integer,
msg text NOT NULL,
FOREIGN KEY (username) REFERENCES User(username)

);
""")

import database

var db = newDatabase()
db.setup()
echo("Database created successfully!")
db.close()

Add the code in listing 7.15 to database.nim, and replace the contents of createData-
base.nim with the code in listing 7.16.

 Now that this small reorganization of code is complete, you can start writing test
code in the database_test.nim file. The following listing shows a simple test of the
database module.

import database

import os, times

when isMainModule:
removeFile("tweeter_test.db")
var db = newDatabase("tweeter_test.db")
db.setup()

db.create(User(username: "d0m96"))
db.create(User(username: "nim_lang"))

db.post(Message(username: "nim_lang", time: getTime() - 4.seconds,
msg: "Hello Nim in Action readers"))

db.post(Message(username: "nim_lang", time: getTime(),
msg: "99.9% off Nim in Action for everyone, for the next minute only!"))

Listing 7.16 The new implementation of createDatabase.nim

Listing 7.17 A test of the database module

Removes the old test database

Creates a new
tweeter_test.db database

Creates the tables in the SQLite database

Tests user creation

Posts two messages 4 seconds apart,
with the first message posted in the
past and the second in the present
Licensed to <null>

200 CHAPTER 7 Building a Twitter clone
var dom: User
doAssert db.findUser("d0m96", dom)
var nim: User
doAssert db.findUser("nim_lang", nim)
db.follow(dom, nim)

doAssert db.findUser("d0m96", dom)

let messages = db.findMessages(dom.following)
echo(messages)
doAssert(messages[0].msg == "99.9% off Nim in Action for everyone,
➥ for the next minute only!")
doAssert(messages[1].msg == "Hello Nim in Action readers")
echo("All tests finished successfully!")

This test is very large. It tests the database module as a whole, which is necessary to
test it fully. Try to compile it yourself, and you should see the two messages displayed
on your screen followed by “All tests finished successfully!”

 That’s it for this section. The database module is complete, and it can store infor-
mation about users including who they’re following and the messages they post. The
module can also read that data back. All of this is exposed in an API that abstracts the
database away and defines only the procedures needed to build the Tweeter web
application.

7.4 Developing the web application’s view
Now that the database module is complete, it’s time to start developing the web com-
ponent of this application.

 The database module provides the data needed by the application. It’s the equiva-
lent of the model component in the MVC architectural pattern. The two components
that are left are the view and the controller. The controller acts as a link joining the
view and model components together, so it’s best to implement the view first.

 In Tweeter’s case, the view will contain multiple modules, each defining one or
more procedures that will take data as input and return HTML as output. The HTML
will represent the data in a way that can be rendered by a web browser and displayed
appropriately to the user.

 One of the view procedures will be called renderUser. It will take a User object and
generate HTML, which will be returned as a string. Figure 7.12 is a simplified illustra-
tion of how this procedure, together with the database module and the controller,
will display the information about a user to the person accessing the web application.

Tests the findUser procedure. It should
return true in both cases because the d0m96
and nim_lang users have been created.

Tests the follow procedure

Rereads the user information for
d0m96 to ensure that the
“following” information is correct

Tests the findMessages procedure
Licensed to <null>

201Developing the web application’s view
There are many ways to implement procedures that convert information into HTML,
like the renderUser procedure. One way is to use the % string formatting operator to
build up a string based on the data:

import strutils
proc renderUser(user: User): string =

return "<div><h1>$1</h1>Following: $2</div>" %
[user.username, $user.following.len]

Unfortunately, this is very error prone, and it doesn’t ensure that special characters
such as ampersands or < characters are escaped. Not escaping such characters can
cause invalid HTML to be generated, which would lead to invalid data being shown to
the user. More importantly, this can be a major security risk!

findUser("d0m96")

User

username

following

d0m96

nim_lang

ManningBooks renderUser(user)

routes:
 get "/d0m96":
 let user = findUser("d0m96")
 let html = renderUser(user)
 resp html

resp html

GET /d0m96

<div>
 <h1>d0m96</h1>
 Following: 2
</div>

Stored in user variable Stored in html variable

Figure 7.12 The process of displaying information about a user in the web browser
Licensed to <null>

202 CHAPTER 7 Building a Twitter clone
Nim supports two methods of generating HTML that are more intuitive. The first is
defined in the htmlgen module. This module defines a DSL for generating HTML.
Here’s how it can be used:

import htmlgen
proc renderUser(user: User): string =

return `div`(
h1(user.username),
span("Following: ", $user.following.len)

)

This method of generating HTML is great when the generated HTML is small. But
there’s another more powerful method of generating HTML called filters. The follow-
ing listing shows filters in action.

#? stdtmpl(subsChar = '$', metaChar = '#')
#import "../database"
#
#proc renderUser*(user: User): string =
result = ""
<div id="user">

<h1>${user.username}</h1>
${$user.following.len}

</div>
#end proc
#
#when isMainModule:
echo renderUser(User(username: "d0m96", following: @[]))
#end when

Filters allow you to mix Nim code together with any other code. This way, HTML can
be written verbatim and Nim code can still be used. Create a new folder called views in
the src directory of Tweeter, and then save the contents of listing 7.18 into
views/user.nim. Then, compile the file. You should see the following output:

<div id="user">
<h1>d0m96</h1>
0

</div>

Filters are very powerful and can be customized extensively.

Listing 7.18 Using a Nim filter to generate HTML

The backticks (`) around the div are
needed because “div” is a keyword.

The username passed to h1
becomes the <h1> tag’s content.

Only strings are accepted, so the
length must be explicitly converted

to a string using the $ operator.

This line, the filter definition,
allows you to customize the
behavior of the filter.

This file assumes that it’s placed in a
views subdirectory. This is why the “..”
is necessary to import "database".

In the filter, an ordinary procedure is created, and
in it you need to initialize the result variable.

In filters, it’s important to ensure
that all lines are prefixed with #.

Each line that doesn’t begin with # is
converted to result.add by the compiler.

Keywords delimit
where the
procedure ends
because
indentation
doesn’t work well
in templates such
as these.
Licensed to <null>

203Developing the web application’s view
WARNING: AN IMPORTANT FILTER GOTCHA When writing filters, be sure that all
the empty lines are prefixed with #. If you forget to do so, you’ll get errors
such as “undeclared identifier: result” in your code.

Figure 7.13 shows the view that the renderUser procedure will create.

The code shown in listing 7.18 still suffers from the same problems as the first exam-
ple in this section: it doesn’t escape special characters. But thanks to the filter’s flexi-
bility, this can easily be repaired, as follows.

#? stdtmpl(subsChar = '$', metaChar = '#', toString = "xmltree.escape")
#import "../database"
#import xmltree
#
#proc renderUser*(user: User): string =
result = ""
<div id="user">

<h1>${user.username}</h1>
Following: ${$user.following.len}

</div>
#end proc
#
#when isMainModule:
echo renderUser(User(username: "d0m96<>", following: @[]))
#end when

FILTER DEFINITIONS You can learn more about how to customize filters by tak-
ing a look at their documentation: http://nim-lang.org/docs/filters.html.

Save this file in views/user.nim and note the new output. Everything should be as
before, except for the <h1> tag, which should read <h1>d0m96<></h1>. Note
how the <> is escaped as <>.

Listing 7.19 Escaping special characters in views/user.nim

<h1>${user.username}</h1>

${$user.following.len}

<div id="user">

Figure 7.13 The view created by listing 7.18

This parameter specifies the
operation applied to each

expression, such as
${user.username}. Here, the

toString parameter is overwritten
with a new xmltree.escape string

to escape the expression.

The xmltree module that defines
escape needs to be imported.

The username of the user is now
d0m96<> to test the escape mechanism.
Licensed to <null>

http://nim-lang.org/docs/filters.html

204 CHAPTER 7 Building a Twitter clone
7.4.1 Developing the user view

The vast majority of the user view is already implemented in the view/user.nim file. The
procedures defined in this view will be used whenever a specific user’s page is accessed.

 The user’s page will display some basic information about the user and all of the
user’s messages. Basic information about the user is already presented in the form of
HTML by the renderUser procedure.

 The renderUser procedure needs to include Follow and Unfollow buttons. Instead
of making the renderUser procedure more complicated, let’s overload it with a new
renderUser procedure that takes an additional parameter called currentUser. The
following listing shows its implementation. Add it to the view/user.nim file.

#proc renderUser*(user: User, currentUser: User): string =
result = ""
<div id="user">

<h1>${user.username}</h1>
Following: ${$user.following.len}
#if user.username notin currentUser.following:
<form action="follow" method="post">

<input type="hidden" name="follower" value="${currentUser.username}">
<input type="hidden" name="target" value="${user.username}">
<input type="submit" value="Follow">

</form>
#end if

</div>
#
#end proc

Figure 7.14 shows what the follow button will look like once its rendered.

Listing 7.20 The second renderUser procedure

This procedure definition is almost identical
to the previous renderUser procedure. The
difference is in the parameters, in this case
the addition of the currentUser parameter.

Checks to see if the currently
logged-in user is already

following the specified user. If
not, creates a Follow button.

Adds a form that
contains a Follow
or Unfollow
button. The form
is submitted to
the /follow route.

Hidden fields are used to pass
information to the /follow route.

Figure 7.14 The Follow button constructed by renderUser in listing 7.20
Licensed to <null>

205Developing the web application’s view

s
.

Now, let’s implement a renderMessages procedure. The next listing shows the full
implementation of the renderMessages procedure, together with the renderUser
procedures implemented in the previous section.

#? stdtmpl(subsChar = '$', metaChar = '#', toString = "xmltree.escape")
#import "../database"
#import xmltree
#import times
#
#proc renderUser*(user: User): string =
result = ""
<div id="user">

<h1>${user.username}</h1>
Following: ${$user.following.len}

</div>
#end proc
#
#proc renderUser*(user: User, currentUser: User): string =
result = ""
<div id="user">

<h1>${user.username}</h1>
Following: ${$user.following.len}
#if user.username notin currentUser.following:
<form action="follow" method="post">

<input type="hidden" name="follower" value="${currentUser.username}">
<input type="hidden" name="target" value="${user.username}">
<input type="submit" value="Follow">

</form>
#end if

</div>
#
#end proc
#
#proc renderMessages*(messages: seq[Message]): string =
result = ""
<div id="messages">

#for message in messages:
<div>

${message.username}
${message.time.getGMTime().format("HH:mm MMMM d',' yyyy")}
<h3>${message.msg}</h3>

</div>
#end for

</div>
#end proc

Listing 7.21 Final views/user.nim with the new renderMessages procedure

The times module is imported
so that the time can be
formatted.

The new renderMessages
procedure takes a list of messages

and returns a single string.

Iterates through all messages. All the following HTML
code will be added verbatim in each iteration.

The procedure will first emit a new <div> tag.

Adds the username to the HTML first.

The for loop is explicitly finished
by the “end for” keywords.

Message text is added last.

The time when the message was created i
formatted and added to the HTML

As before, result is initialized so that
text can be appended to it by the filter.
Licensed to <null>

206 CHAPTER 7 Building a Twitter clone
#
#when isMainModule:
echo renderUser(User(username: "d0m96<>", following: @[]))
echo renderMessages(@[
Message(username: "d0m96", time: getTime(), msg: "Hello World!"),
Message(username: "d0m96", time: getTime(), msg: "Testing")
])
#end when

Replace the contents of your views/user.nim file with the contents of listing 7.21.
Then compile and run it. You should see something similar to the following:

<div id="user">
<h1>d0m96<></h1>
Following: 0

</div>

<div id="messages">
<div>

d0m96
12:37 March 2, 2016
<h3>Hello World!</h3>

</div>
<div>

d0m96
12:37 March 2, 2016
<h3>Testing</h3>

</div>
</div>

Figure 7.15 shows what the rendered message will look like.
 And that’s it for the user view. All you need to do now is build the remaining views.

The renderMessages procedure
is tested with some messages.

Figure 7.15 A message produced by renderMessages
Licensed to <null>

207Developing the web application’s view
7.4.2 Developing the general view

The user view will be used for a specific user’s page. All that remains to be created is
the front page. The front page will either show a login form or, if the user has logged
in, it will show the messages posted by the people that the user follows.

 This general view will be used as the front page of Tweeter, so for simplicity we’ll
implement the procedures in a new file called general.nim. Create this file in the
views directory now.

 One important procedure that we haven’t implemented yet is one that will gener-
ate the main body of the HTML page. Let’s implement this now as a renderMain pro-
cedure and add it to the new general.nim file. The following listing shows the
implementation of renderMain.

#? stdtmpl(subsChar = '$', metaChar = '#')
#import xmltree
#
#proc `$!`(text: string): string = escape(text)
#end proc
#
#proc renderMain*(body: string): string =
result = ""
<!DOCTYPE html>
<html>

<head>
<title>Tweeter written in Nim</title>
<link rel="stylesheet" type="text/css" href="style.css">

</head>

<body>
<div id="main">

${body}
</div>

</body>

</html>
#end proc

The code is fairly straightforward. The renderMain procedure takes a parameter
called body containing the HTML code that should be inserted into the body of the
HTML page. In comparison to listing 7.21, the toString parameter is no longer used
to ensure that the body isn’t escaped. Instead, a new operator called $! has been intro-
duced. This operator is simply an alias for the escape procedure. This means that you
can easily decide which of the strings you’re embedding will be escaped and which
won’t be.

 Now that the renderMain procedure has been implemented, it’s time to move on
to implementing the remaining two procedures: renderLogin and renderTimeline.
The first procedure will show a simple login form, and the second will show the user
their timeline. The timeline is the messages posted by people that the user is following.

Listing 7.22 Implementing the renderMain procedure

The toString parameter is no
longer set in the filter definition.

Defines a new operator that can
be used to escape text easily

Defines the renderMain procedure,
which simply generates a new HTML
document and inserts the body of
the page inside the <div> tag
Licensed to <null>

208 CHAPTER 7 Building a Twitter clone
 Let’s start with renderLogin. The following listing shows how it can be implemented.

#proc renderLogin*(): string =
result = ""
<div id="login">

Login
Please type in your username...
<form action="login" method="post">

<input type="text" name="username">
<input type="submit" value="Login">

</form>
</div>
#end proc

This procedure is very simple because it doesn’t take any arguments. It simply returns
a piece of static HTML representing a login form. Figure 7.16 shows what this looks
like when rendered in a web browser. Add this procedure to the bottom of the general
.nim file.

The renderTimeline procedure, shown next, is also fairly straightforward, even
though it takes two parameters. Add this procedure to the bottom of general.nim, and
make sure that you also import "../database" and user at the top of the file.

#proc renderTimeline*(username: string, messages: seq[Message]): string =
result = ""
<div id="user">

<h1>${$!username}'s timeline</h1>
</div>
<div id="newMessage">

New message

Listing 7.23 The implementation of renderLogin

Listing 7.24 The implementation of renderTimeline

<input type="text" name="username">

Login

<input type="submit" value="Login">

Figure 7.16 The rendered login page
Licensed to <null>

209Developing the web application’s view
<form action="createMessage" method="post">
<input type="text" name="message">
<input type="hidden" name="username" value="${$!username}">
<input type="submit" value="Tweet">

</form>
</div>
${renderMessages(messages)}
#end proc

The preceding implementation is fairly simple. It first creates a <div> tag that holds
the title, and then a <div> tag that allows the user to tweet a new message. Finally, the
renderMessages procedure defined in the user module is called.

 For completeness, here’s the full general.nim code.

#? stdtmpl(subsChar = '$', metaChar = '#')
#import "../database"
#import user
#import xmltree
#
#proc `$!`(text: string): string = escape(text)
#end proc
#
#proc renderMain*(body: string): string =
result = ""
<!DOCTYPE html>
<html>

<head>
<title>Tweeter written in Nim</title>
<link rel="stylesheet" type="text/css" href="style.css">

</head>

<body>
${body}

</body>

</html>
#end proc
#
#proc renderLogin*(): string =
result = ""
<div id="login">

Login
Please type in your username...
<form action="login" method="post">

<input type="text" name="username">
<input type="submit" value="Login">

</form>
</div>
#end proc
#
#proc renderTimeline*(username: string, messages: seq[Message]): string =

Listing 7.25 The final code of general.nim

The $! operator is
used here to ensure

that username is
escaped.The renderMessages

procedure is called, and its
result is inserted into the
generated HTML.
Licensed to <null>

210 CHAPTER 7 Building a Twitter clone
result = ""
<div id="user">

<h1>${$!username}'s timeline</h1>
</div>
<div id="newMessage">

New message
<form action="createMessage" method="post">

<input type="text" name="message">
<input type="hidden" name="username" value="${$!username}">
<input type="submit" value="Tweet">

</form>
</div>
${renderMessages(messages)}
#end proc

With that, the view components are complete, and Tweeter is very close to being fin-
ished. All that’s left is the component that ties the database and views together.

7.5 Developing the controller
The controller will tie the database module and the two different views together.
Compared to the three modules you’ve already implemented, the controller will be
much smaller. The bulk of the work is now essentially behind you.

 You’ve already created a file, tweeter.nim, that implements the controller. Open
this file now, so that you can begin editing it.

 This file currently contains one route: the / route. You’ll need to modify this route so
that it responds with the HTML for the login page. To do so, start by importing the differ-
ent modules that you implemented in the previous section: database, views/user, and
views/general. You can use the following code to import these modules:

import database, views/user, views/general

Once you’ve done that, you can modify the / route so that it sends the login page to
the user’s web browser:

get "/":
resp renderMain(renderLogin())

Save your newly modified tweeter.nim file, and then compile and run it. Open a new
web browser tab and navigate to http://localhost:5000. You should see a login form,
albeit a very white one. It might look similar to figure 7.17.

 Let’s add some CSS style to this page. If you’re familiar with CSS and are confident
in your web design abilities, I encourage you to write some CSS yourself to create a
nice design for Tweeter’s login page.

SHARE YOUR CSS If you do end up designing your own Tweeter, please share
what you come up with on Twitter with the hashtag #NimInActionTweeter.
I’d love to see what you come up with. If you don’t have Twitter, you can also
post it on the Nim forums or the Manning forums at http://forum.nim-lang
.org and https://forums.manning.com/forums/nim-in-action, respectively.
Licensed to <null>

http://forum.nim-lang.org
http://forum.nim-lang.org
http://forum.nim-lang.org
https://forums.manning.com/forums/nim-in-action

211Developing the controller
If you’re more like myself and don’t have any web design abilities whatsoever, you can
use the CSS available at the following URL: https://github.com/dom96/nim-in-action-
code/blob/master/Chapter7/Tweeter/public/style.css.

 The CSS file should be placed in a directory named public. Create this directory
now, and save your CSS file as style.css. When a page is requested, Jester will check the
public directory for any files that match the page requested. If the requested page
exists in the public directory, Jester will send that page to the browser.

STATIC FILE DIRECTORY The public directory is known as the static file direc-
tory. This directory is set to public by default, but it can be configured using
the setStaticDir procedure or in a settings block. For more information on
static file config in Jester, see the documentation on GitHub: https://github
.com/dom96/jester#static-files.

Once you’ve placed the CSS file in the public directory, refresh the page. You should see
that the login page is now styled. It should look something like the screen in figure 7.18
(or it may look better if you wrote your own CSS).

 Type in a username, and click the Login button. You’ll see an error message read-
ing “404 Not Found.” Take a look at your terminal and see what Jester displayed there.
You should see something similar to figure 7.19.

 Note the last line, which reads as follows:

DEBUG post /login
DEBUG 404 Not Found {Content-type: text/html;charset=utf-8, Content-Length: 178}

This specifies that an HTTP post request was made to the /login page. A route for the
/login page hasn’t yet been created, so Jester responds with a “404 Not Found” error.

Figure 7.17 The unstyled login form
Licensed to <null>

https://github.com/dom96/nim-in-action-code/blob/master/Chapter7/Tweeter/public/style.css
https://github.com/dom96/nim-in-action-code/blob/master/Chapter7/Tweeter/public/style.css
https://github.com/dom96/jester#static-files
https://github.com/dom96/jester#static-files
https://github.com/dom96/jester#static-files

212 CHAPTER 7 Building a Twitter clone
7.5.1 Implementing the /login route

Let’s implement the /login route now. Its implementation is short.

post "/login":
setCookie("username", @"username", getTime().getGMTime() + 2.hours)
redirect("/")

Listing 7.26 The /login route

Figure 7.18 The login page

Figure 7.19 Debug information from Jester

Specifies a new POST route on
the path /login. Any HTTP POST
requests on /login will activate
this route, and the code in its
body will be executed.

Sets a new cookie with a key of
"username" and tells it to

expire in 2 hours. The cookie’s
value is set to the username
that the user typed into the
login box on the front page.

Asks Jester to redirect
the user’s web browser
to the front page
Licensed to <null>

213Developing the controller
Add the code in listing 7.26 to tweeter.nim, and make sure it’s indented just like the
other route. You’ll also need to import the times module. The preceding code may
seem a bit magical, so let me explain it in more detail.

 The code does two simple things: it sets a cookie and then redirects the user to the
front page of Tweeter.

 A cookie is a piece of data stored in a user’s browser. It’s composed of a key, a
value, and an expiration date. The cookie created in this route stores the username
that was typed in by the user just before the Login button was clicked. This username
was sent together with the HTTP request when the Login button was clicked. It’s
referred to by "username" because that’s the name of the <input> tag that was created
in the renderLogin procedure. The value of "username" is accessed in Jester using the
@ operator.

 The expiration date of the cookie is calculated using a special + operator that adds
a TimeInterval to a TimeInfo object. In this case, it creates a date that’s 2 hours in the
future. At the end of the code, the route finishes by redirecting the user to the front
page.

 Recompile tweeter.nim, run it, and test it out. You should now be able to type in a
new username, click Login, and see the web browser navigate to the front page auto-
matically. Notice what’s happening in your terminal, and particularly the following
line:

DEBUG post /login
DEBUG 303 See Other {Set-Cookie: username=test; Expires=Wed,
➥02 Mar 2016 21:57:29 UTC, Content-Length: 0, Location: /}

The last line is actually the response that Jester sent, together with the HTTP headers,
which include a Set-Cookie header. Figure 7.20 shows this in action. The cookie is
set, but the user is redirected back to the front page.

303 See Other
Set-Cookie: username=test
Location: /

username=test

Figure 7.20 The current login process
Licensed to <null>

214 CHAPTER 7 Building a Twitter clone
7.5.2 Extending the / route

The cookie is set, but the user is still shown the front page without actually being
logged in. Let’s fix that. The following listing shows a modified version of the / route
that fixes this problem.

let db = newDatabase()

routes:
get "/":

if request.cookies.hasKey("username"):
var user: User
if not db.findUser(request.cookies["username"], user):

user = User(username: request.cookies["username"], following: @[])
db.create(user)

let messages = db.findMessages(user.following)
resp renderMain(renderTimeline(user.username, messages))

else:
resp renderMain(renderLogin())

Modify tweeter.nim by replacing the / route with the code in listing 7.27. Then recom-
pile and run Tweeter again. Navigate to http://localhost:5000, type test into the
Login text box, and click Login. You should now be able to see test’s timeline, which
should look similar to the screenshot in figure 7.21.

 Congratulations, you’ve almost created your very own Twitter clone!

Listing 7.27 The / route

Creates a new database instance that will open the
database saved in tweeter.db. This is done inside a
global variable so that every route can access it.

Checks if the cookie has been set

Checks if the username
already exists in the

database

If the username doesn’t exist
in the database, creates it

Retrieves the messages posted
by the users that the logged-in
user is following

Uses the renderTimeline
procedure to render the
user’s timeline, and then

passes the result to
renderMain, which returns a

fully rendered web page

If the cookie isn’t set,
shows the login page

Figure 7.21 A simple timeline
Licensed to <null>

215Developing the controller
7.5.3 Implementing the /createMessage route

Let’s keep going. The next step is to implement the tweeting functionality. Clicking
the Tweet button will try to take you to the /createMessage route, resulting in another
404 error.

 The following listing shows how the /createMessage route can be implemented.

post "/createMessage":
let message = Message(

username: @"username",
time: getTime(),
msg: @"message"

)
db.post(message)
redirect("/")

This route initializes a new Message and uses the post procedure defined in the data-
base module to save the message in the database. It then redirects the browser to the
front page.

 Add this code to the bottom of your routes. Then recompile, run Tweeter, and nav-
igate to http://localhost:5000. After logging in, you should be able to start tweeting.
Unfortunately, you’ll quickly notice that the tweets you create aren’t appearing. This is
because your username isn’t passed to the findMessages procedure in the / route.

 To fix this problem, change let messages = db.findMessages(user.following)
to let messages = db.findMessages(user.following & user.username). Recom-
pile and run Tweeter again. You should now be able to see the messages you’ve cre-
ated. Figure 7.22 shows an example of what that will look like.

Listing 7.28 The /createMessage route

Figure 7.22 A timeline
with messages
Licensed to <null>

216 CHAPTER 7 Building a Twitter clone
7.5.4 Implementing the user route

The username in the message is clickable; it takes you to the user page for that specific
username. In this example, clicking the test username should take you to
http://localhost:5000/test, which will result in a 404 error because a route for /test
hasn’t yet been created.

 This route is a bit different, because it should accept any username, not just test.
Jester features patterns in route paths to support such use cases. The following listing
shows how a route that shows any user’s timeline can be implemented.

get "/@name":
var user: User
if not db.findUser(@"name", user):

halt "User not found"

let messages = db.findMessages(@[user.username])
resp renderMain(renderUser(user) & renderMessages(messages))

Add the route in listing 7.29 into tweeter.nim, recompile, run Tweeter again, and nav-
igate to the front page: http://localhost:5000/.

 You’ll note that the page no longer has any style associated with it. What hap-
pened? Unfortunately, the route you’ve just added also matches /style.css, and
because a user with that name doesn’t exist, a 404 error is returned.

 This is easy to fix. Jester provides a procedure called cond that takes a Boolean
parameter, and if that parameter is false, the route is skipped. Simply add cond '.'
notin @"name" at the top of the route to skip the route if a period (.) is inside the
value of the name variable. This will skip the route when /style.css is accessed, and it
will fall back to responding with the static file.

 Test this by recompiling tweeter.nim and running it again. You should see that the
stylesheet has been restored when you navigate to http://localhost:5000/. Log in
using the test username, and click on the username in your message again. You
should see something resembling figure 7.23.

Listing 7.29 The user route

Anything that follows the @ character in a
path is a variable. Jester will activate this
route when the path is /test, or /foo, or
/<insert_anything_here>.

Inside the route, the @ operator is used
to retrieve the value of the "name"
variable in the path. The User object for
that username value is then retrieved.

The renderUser procedure is used to render
the timeline of the specified user, and the

renderMessages procedure is then used to
generate the HTML for the user’s messages.

If the user isn’t found, the route finishes
early with the specified message. The halt

procedure is similar to a return.
Licensed to <null>

217Developing the controller

7.5.5 Adding the Follow button

There’s one important feature missing from the user’s timeline page. That’s the Fol-
low button, without which users can’t follow each other. Thankfully, the user view
already contains support for it. The route just needs to check the cookies to see if a
user is logged in.

 This operation to check if a user is logged in is becoming common—the / route
also performs it. It would make sense to put this code into a procedure so that it’s
reusable. Let’s create this procedure now. Add the following userLogin procedure
above your routes and outside the routes block, inside the tweeter.nim file.

proc userLogin(db: Database, request: Request, user: var User): bool =
if request.cookies.hasKey("username"):

if not db.findUser(request.cookies["username"], user):
user = User(username: request.cookies["username"], following: @[])
db.create(user)

return true
else:

return false

The userLogin procedure checks the cookies for a username key. If one exists, it reads
the value and attempts to retrieve the user from the database. If no such user exists,
the user will be created. The procedure performs the same actions as the / route.

 The new implementations of the / and user routes are fairly easy. The following
listing shows the new implementation of the two routes.

get "/":
var user: User

Listing 7.30 The userLogin procedure

Listing 7.31 The new implementations of the / and user routes

Figure 7.23 Another user’s
timeline
Licensed to <null>

218 CHAPTER 7 Building a Twitter clone
if db.userLogin(request, user):
let messages = db.findMessages(user.following & user.username)
resp renderMain(renderTimeline(user.username, messages))

else:
resp renderMain(renderLogin())

get "/@name":
cond '.' notin @"name"
var user: User
if not db.findUser(@"name", user):
halt "User not found"

let messages = db.findMessages(@[user.username])

var currentUser: User
if db.userLogin(request, currentUser):
resp renderMain(renderUser(user, currentUser) & renderMessages(messages))

else:
resp renderMain(renderUser(user) & renderMessages(messages))

Now the Follow button should appear when you navigate to a user’s page, but clicking
it will again result in a 404 error.

7.5.6 Implementing the /follow route

Let’s fix that error by implementing the /follow route. All that this route needs to do
is call the follow procedure defined in the database module. The following listing
shows how the /follow route can be implemented.

post "/follow":
var follower: User
var target: User
if not db.findUser(@"follower", follower):

halt "Follower not found"
if not db.findUser(@"target", target):

halt "Follow target not found"
db.follow(follower, target)
redirect(uri("/" & @"target"))

That’s all there is to it. You can now log in to Tweeter, create messages, follow other
users using a direct link to their timeline, and see on your own timeline the messages
of users that you’re following.

TESTING TWEETER Without the ability to log out, it’s a bit difficult to test
Tweeter. But you can log in using two different accounts by either using a dif-
ferent web browser or by creating a new private browsing window.

Listing 7.32 The /follow route

If either of the usernames
isn’t present in the database,
responds with an error

Retrieves the current user and the
target user to follow from the database

Calls the follow procedure,
which will store follower
information in the database

The redirect procedure is used
to redirect the user’s browser

back to the user page.
Licensed to <null>

219Deploying the web application
Currently, Tweeter may not be the most user-friendly or secure application. Demon-
strating and explaining the implementation of features that would improve both of
those aspects would take far too many pages here. But despite the limited functional-
ity you’ve implemented in this chapter, you should now know enough to extend
Tweeter with many more features.

 As such, I challenge you to consider implementing the following features:

 The ability to unfollow users
 Authentication with passwords
 Better navigation, including a button that takes the user to the front page
 The ability to log out

7.6 Deploying the web application
Now that the web application is mostly complete, you may wish to deploy it to a server.

 When you compile and run a Jester web application, Jester starts up a small HTTP
server that can be used to test the web application locally. This HTTP server runs on
port 5000 by default, but that can be easily changed. A typical web server’s HTTP
server runs on port 80, and when you navigate to a website, your web browser defaults
to that port.

 You could simply run your web application on port 80, but that’s not recom-
mended because Jester’s HTTP server isn’t yet mature enough. From a security point
of view, it’s also not a good idea to directly expose web applications like that.

 A more secure approach is to run a reliable HTTP server such as NGINX, Apache,
or lighttpd, and configure it to act as a reverse proxy.

7.6.1 Configuring Jester

The default Jester port is fine for most development work, but there will come a time
when it needs to be changed. You may also wish to configure other aspects of Jester,
such as the static directory.

 Jester can be configured easily using a settings block. For example, to change the
port to 80, simply place the following code above your routes.

settings:
port = Port(80)

Other Jester parameters that can be customized can be found in Jester’s documenta-
tion: https://github.com/dom96/jester#readme.

7.6.2 Setting up a reverse proxy

A reverse proxy is a piece of software that retrieves resources on behalf of a client from
one or more servers. In the case of Jester, a reverse proxy would accept HTTP requests
from web browsers, ensure that they’re valid, and pass them on to a Jester application.
The Jester application would then send a response to the reverse proxy, and the

Listing 7.33 Configuring Jester
Licensed to <null>

https://github.com/dom96/jester#readme

220 CHAPTER 7 Building a Twitter clone
reverse proxy would pass it on to the client web browser as if it generated the
response. Figure 7.24 shows a reverse proxy taking requests from a web browser and
forwarding them to a Jester application.

 When configuring such an architecture, you must first decide how you’ll get a work-
ing binary of your web application onto the server itself. Keep in mind that binaries
compiled on a specific OS aren’t compatible with other OSs. For example, if you’re
developing on a MacBook running Mac OS, you won’t be able to upload the binary to
a server running Linux. You’ll either have to cross-compile, which requires setting up
a new C compiler, or you can compile your web application on the server itself.

 The latter is much simpler. You just need to install the Nim compiler on your
server, upload the source code, and compile it.

 Once your web application is compiled, you’ll need a way to execute it in the back-
ground while retaining its output. An application that runs in the background is
referred to as a daemon. Thankfully, many Linux distributions support the manage-
ment of daemons out of the box. You’ll need to find out what init system your Linux
distribution comes with and how it can be used to run custom daemons.

 Once your web application is up and running, all that’s left is to configure your
HTTP server of choice. This should be fairly simple for most HTTP servers. The follow-
ing listing shows a configuration suitable for Jester web applications that can be used
for NGINX.

server {
server_name tweeter.org;

location / {
proxy_pass http://localhost:5000;
proxy_set_header Host $host;
proxy_set_header X-Real_IP $remote_addr;

}
}

All you need to do is save that configuration to /etc/nginx/sites-enabled/tweeter.org
and reload NGINX’s configuration, and you should see Tweeter at http://tweeter.org.
That’s assuming that you own tweeter.org, which you most likely don’t, so be sure to
modify the domain to suit your needs.

Listing 7.34 NGINX configuration for Jester

Jester
Web browser

HTTP

HTTP

HTTP

HTTP

Figure 7.24 Reverse proxy in action
Licensed to <null>

221Summary
 Other web servers should support similar configurations, including Apache and
lighttpd. Unfortunately, showing how to do this for each web server is beyond the
scope of this book. But there are many good guides online that show how to configure
these web servers to act as reverse proxies.

7.7 Summary
 Web applications are typically modeled after the model-view-controller pattern.
 A route is a block of code that’s executed whenever a certain HTTP path is

requested.
 Jester is a Nim web microframework inspired by Sinatra.
 Nim’s standard library offers connectivity to the MySQL, SQLite, and Postgre-

SQL databases.
 HTML can be generated in two ways: using the htmlgen module and using fil-

ters.
 Filters are expanded at compile time. They allow you to mix literal text and

Nim code in the same file.
 A Jester web application should be deployed behind a reverse proxy.
Licensed to <null>

Licensed to <null>

Part 3

Advanced concepts

The concepts and examples become a bit more difficult in this last part, but
they should also prove to be a lot more fun.

 Chapter 8 looks at Nim’s foreign function interface, which allows you to use
libraries written in other programming languages. You’ll learn how to interface
with a C library called SDL and then use it to draw some 2D shapes on the screen.
You’ll also see the JavaScript backend in this chapter, and you’ll learn how to rec-
reate the same 2D shapes in the web browser using the Canvas API.

 Chapter 9 is on metaprogramming. It will teach you about the three different
metaprogramming constructs in Nim: generics, templates, and macros. It will also
show you how to create a domain specific language for configuration parsing.
Licensed to <null>

Licensed to <null>

Interfacing with
other languages
For many years, computer programmers have been writing software libraries in var-
ious programming languages. Many of these libraries have been in development
for a very long time, accumulating features and maturing over the years. These
libraries are not typically written in Nim; instead, they’ve been written in older pro-
gramming languages such as C and C++.

 When writing software, you might have required an external C library to per-
form a task. A good example of this is the OpenSSL library, which implements the
SSL and TLS protocols. It’s primarily used for securely transferring sensitive data
over the internet, such as when navigating to a website using the HTTPS protocol.

This chapter covers
 Getting to know Nim’s foreign function interface

 Distinguishing between static and dynamic linking

 Creating a wrapper for an external C library

 Using the JavaScript backend

 Wrapping JavaScript APIs
225

Licensed to <null>

226 CHAPTER 8 Interfacing with other languages
 Many of the HTTP client modules in the standard libraries of various programming
languages, including Nim’s, use the C library to transfer encrypted data to and from
HTTP servers securely. It’s easy to forget that this library is used, because it’s usually
invoked behind the scenes, reducing the amount of work the programmer needs to do.

 The Nim standard library takes care of a lot of things for you, including interfacing
with other languages, as is the case with the OpenSSL library. But there will be times
when you’ll need to interface with a library yourself.

 This chapter will prepare you for those times. First, you’ll learn how to call proce-
dures implemented in the C programming language, passing data to those procedures
and receiving data back from them. Then, you’ll learn how to wrap an external library
called SDL, and you’ll use your wrapper to create a simple SDL application that draws
on the screen. (A wrapper is a thin layer of code that acts as a bridge between Nim code
and a library written in another programming language, such as C.) Last, you’ll work
with the JavaScript backend, wrapping the Canvas API and drawing shapes on the
screen with it.

 Nim makes the job of calling procedures implemented in the C programming lan-
guage particularly easy. That’s because Nim primarily compiles to C. Nim’s other com-
pilation backends, including C++, Objective-C, and JavaScript, make using libraries
written in those languages easy as well.

8.1 Nim’s foreign function interface
Nim’s foreign function interface (FFI) is the mechanism by which Nim can call proce-
dures written in another programming language. Most languages offer such a mecha-
nism, but they don’t all use the same terminology. For example, Java refers to its FFI as
the Java Native Interface, whereas Common Language Runtime languages such as C#
refer to it as P/Invoke.

 In many cases, the FFI is used to employ services defined and implemented in a
lower-level language. This lower-level language is typically C or C++, because many
important OS services are defined using those languages. Nim’s standard library
makes extensive use of the FFI to take advantage of OS services; this is done to perform
tasks such as reading files or communicating over a network.

 In recent years, the web has become a platform of its own. Web browsers that
retrieve and present web pages implement the JavaScript programming language,
allowing complex and dynamic web applications to be run inside the browser easily. In
order to run Nim applications in a web browser and make use of the services provided
by the browser, like the DOM or WebGL, Nim source code can be compiled to Java-
Script. Accessing those services and the plethora of JavaScript libraries is also done via
the FFI. Figure 8.1 shows an overview of Nim’s FFI.

 It’s important to note that the FFI allows you to interface with C, C++, and Objective-C
libraries in the same application, but you can’t interface with both C and JavaScript
libraries at the same time. This is because C++ and Objective-C are both backward com-
patible with C, whereas JavaScript is a completely different language.
Licensed to <null>

227Nim’s foreign function interface
8.1.1 Static vs. dynamic linking

Before looking at the FFI in more detail, let’s look at the two different ways that C,
C++, and Objective-C libraries can be linked to your Nim applications.

 When using an external library, your application must have a way to locate it. The
library can either be embedded in your application’s binary or it can reside some-
where on the user’s computer. The former refers to a statically linked library, whereas
the latter refers to a dynamically linked library.

 Dynamic and static linking are both supported, but dynamic linking is favored by
Nim. Each approach has its advantages and disadvantages, but dynamic linking is
favored for several reasons:

 Libraries can be updated to fix bugs and security flaws without updating the
applications that use the libraries.

 A development version of the linked library doesn’t need to be installed in
order to compile applications that use it.

 A single dynamic library can be shared between multiple applications.

The biggest advantage of static linking is that it avoids dependency problems. The
libraries are all contained in a single executable file, which simplifies the distribution
and installation of the application. Of course, this can also be seen as a disadvantage,
because these executables can become very big.

 Dynamically linked libraries are instead loaded when the application first starts.
The application searches special paths for the required libraries, and if they can’t be
found, the application fails to start. Figure 8.2 shows how libraries are loaded in stati-
cally and dynamically linked applications.

 It’s important to be aware of the dynamically linked libraries that your application
depends on, because without those libraries, it won’t run.

Nim compiler

C/C++/Obj C FFI JavaScript FFI

printf()
std::srand

[NSUserNotification new]

getElementById()
new WebSocket()

WebGLRenderingContext

Figure 8.1 Using the Nim FFI, you can take advantage of services in other languages. Nim
offers two versions of the FFI: one for C, C++, and Objective-C; and a second one for JavaScript.
Both can’t be used in the same application.
Licensed to <null>

228 CHAPTER 8 Interfacing with other languages
With these differences in mind, let’s look at the process of creating wrappers in Nim.

8.1.2 Wrapping C procedures

In this section, we’ll wrap a widely used and fairly simple C procedure: printf. In C,
the printf procedure is declared as follows:

int printf(const char *format, ...);

What you see here is the procedure prototype of printf. A prototype specifies the pro-
cedure’s name and type signature but omits its implementation. When wrapping
procedures, the implementation isn’t important; all that matters is the procedure
prototype. If you’re not familiar with this procedure, you’ll find out what it does later
in this section.

 In order to wrap C procedures, you must have a good understanding of these pro-
cedure prototypes. Let’s look at what the previous procedure prototype tells us about
printf. Going from left to right, the first word specifies the procedure’s return type,
in this case an int. The second specifies the procedure name, which is printf. What
follows is the list of parameters the procedure takes, in this case a format parameter of
type const char * and a variable number of arguments signified by the ellipsis.

Static linking Dynamic linking

handshake()
encrypt()

OpenSSL

CreateWindow()
RenderClear()

SDL

./app

handshake()
encrypt()

OpenSSL

CreateWindow()
RenderClear()

SDL

./app

Application
executed

Find libraries

/usr/lib/libsdl.so

/usr/lib/libssl.so

Libraries found

Load libraries

Libraries
missing

Could not load: libssl.so

Application
executed

When a library can’t be
found, the application
fails with an error.

When the libraries are
loaded, the application
can start its execution.

The libraries are embedded
in the application binary and
so are loaded into memory

before it’s executed.

Libraries need
to be found and

loaded before the
application can start.

Figure 8.2 Static vs. dynamic linking
Licensed to <null>

229Nim’s foreign function interface
 Table 8.1 summarizes the information defined by the printf prototype.

This prototype has two special features:

 The const char * type represents a pointer to an immutable character.
 The function takes a variable number of arguments.

In many cases, the const char * type represents a string, as it does here. In C,
there’s no string type; instead, a pointer that points to the start of an array of charac-
ters is used.

 When wrapping a procedure, you need to look at each type and find a Nim equiva-
lent. The printf prototype has two argument types: int and const char *. Nim
defines an equivalent type for both, cint and cstring, respectively. The c in those
types doesn’t represent the C programming language but instead stands for compatible;
the cstring type is therefore a compatible string type. This is because C isn’t the only
language supported by Nim’s FFI. The cstring type is used as a native JavaScript
string as well.

 These compatible types are defined in the implicitly imported system module,
where you’ll find a lot of other similar types. Here are some examples:

 cstring

 cint, cuint
 pointer

 clong, clonglong, culong, culonglong
 cchar, cschar, cuchar
 cshort, cushort
 cint

 csize

 cfloat

 cdouble, clongdouble
 cstringArray

Let’s put all this together and create the wrapper procedure. Figure 8.3 shows a
wrapped printf procedure.

 The following code shows how the procedure can be invoked:

proc printf(format: cstring): cint {.importc, varargs, header: "stdio.h".}

discard printf("My name is %s and I am %d years old!\n", "Ben", 30)

Table 8.1 Summary of the printf prototype

Return type Name First parameter type First parameter name Second parameter

int printf const char * format Variable number of
arguments
Licensed to <null>

230 CHAPTER 8 Interfacing with other languages
Save the preceding code as ffi.nim. Then compile and run it with nim c -r ffi.nim.
You should see the following output:

My name is Ben and I am 30 years old!

The printf procedure takes a string constant, format, that provides a description of
the output. It specifies the relative location of the arguments to printf in the format
string, as well as the type of output that this procedure should produce. The parame-
ters that follow specify what each format specifier in the format string should be
replaced with. The procedure then returns a count of the printed characters.

 One thing you might immediately notice is the discard keyword. Nim requires
return values that aren’t used to be explicitly discarded with the discard keyword.
This is useful when you’re working with procedures that return error codes or other
important pieces of information, where ignoring their values may lead to issues. In the
case of printf, the value can be safely discarded implicitly. The {.discardable.}
pragma can be used for this purpose:

proc printf(format: cstring): cint {.importc, varargs, header: "stdio.h",
discardable.}

printf("My name is %s and I am %d years old!\n", "Ben", 30)

What really makes this procedure work is the importc and header pragmas. The header
pragma specifies the header file that contains the imported procedure. The importc pragma
asks the Nim compiler to import the printf procedure from C. The name that’s
imported is taken from the procedure name, but it can be changed by specifying a dif-
ferent name as an argument to the importc pragma, like so:

proc displayFormatted(format: cstring): cint {.importc: "printf", varargs,
header: "stdio.h", discardable.}

displayFormatted("My name is %s and I am %d years old!\n", "Ben", 30)

That’s pretty much all there is to it. The printf procedure now wraps the printf pro-
cedure defined in the C standard library. You can even export it and use it from other
modules.

Maps to a
const char*

Maps to C’s
int

Allows proc to take a
variable number of

arguments

Standard procedure declaration
Imports printf from C Note the lack

of = here because
C provides the
implementation

Specifies where
printf

is defined.

Figure 8.3 printf wrapped in Nim
Licensed to <null>

231Nim’s foreign function interface
8.1.3 Type compatibility

You may wonder why the cstring and cint types need to be used in the printf proce-
dure. Why can’t you use string and int? Let’s try it and see what happens.

 Modify your ffi.nim file so that the printf procedure returns an int type and takes
a string type as the first argument. Then, recompile and run the program.

 The program will likely show no output. This underlines the unfortunate danger
that comes with using the FFI. In this case, the procedure call does nothing, or at least
it appears that way. In other cases, your program may crash. The compiler trusts you
to specify the types correctly, because it has no way of inferring them.

 Because the cstring type was changed to the string type, your program now
passes a Nim string object to the C printf procedure. C expects to receive a const
char* type, and it always assumes that it receives one. Receiving the wrong type can
lead to all sorts of issues, one of the major ones being memory corruption.

 Nim’s string type isn’t as simple as C’s, but it is similar. A Nim string is an object
that contains two fields: the length of the string and a pointer to an array of chars.
This is why a Nim string can be easily converted to a const char*. In fact, because this
conversion is so easy, it’s done implicitly for you, which is why, even when you pass a
string to printf, which expects a cstring, the example compiles.

CONVERSION FROM CSTRING TO STRING A conversion in the other direction,
from a cstring to a string, is not implicit because it has some overhead.
That’s why you must do it explicitly using a type conversion or the $ operator.

As for the cint type, it’s very similar to the int type. As you’ll see in the Nim docu-
mentation, it’s actually just an alias for int32: http://nim-lang.org/docs/system
.html#cint. The difference between the int type and the int32 type is that the for-
mer’s bit width depends on the current architecture, whereas the bit width of the lat-
ter type is always 32 bits.

 The system module defines many more compatibility types, many of which are
inspired by C. But there will come a time when you need to import types defined in C
as well. The next section will show you how that can be done.

8.1.4 Wrapping C types

The vast majority of the work involved in interfacing with C libraries involves wrap-
ping procedures. Second to that is wrapping types, which we’ll look at now.

 In the previous section, I showed you how to wrap the printf procedure. In this sec-
tion, you’ll see how to wrap the time and localtime procedures, which allow you to
retrieve the current system time in seconds and to convert that time into calendar time,
respectively. These procedures return two custom types that need to be wrapped first.

 Let’s start by looking at the time procedure, which returns the number of seconds
since the UNIX epoch (Thursday, 1 January 1970). You can look up its prototype
online. For example, C++ Reference (http://en.cppreference.com/w/c/chrono/time)
specifies that its prototype looks like this:

time_t time(time_t *arg);
Licensed to <null>

http://nim-lang.org/docs/system.html#cint
http://nim-lang.org/docs/system.html#cint
http://nim-lang.org/docs/system.html#cint
http://en.cppreference.com/w/c/chrono/time

232 CHAPTER 8 Interfacing with other languages
Further research into the type of time_t indicates that it’s a signed integer.1 That’s all
you need to know in order to declare this procedure in Nim. The following listing
shows this declaration.

type
CTime = int64

proc time(arg: ptr CTime): CTime {.importc, header: "<time.h>".}

In this case, you wrap the time_t type yourself. The procedure declaration has an
interesting new characteristic. It uses the ptr keyword to emulate the time_t * type,
which is a pointer to a time_t type.

 To convert the result of time into the current hour and minute, you’ll need to wrap
the localtime procedure and call it. Again, the specification of the prototype is available
online. The C++ Reference (http://en.cppreference.com/w/c/chrono/localtime)
specifies that the prototype looks like this:

struct tm *localtime(const time_t *time);

The localtime procedure takes a pointer to a time_t value and returns a pointer to a
struct tm value. A struct in Nim is equivalent to an object. Unfortunately, there’s
no way to tell from the return type alone whether the struct that the localtime
returns has been allocated on the stack or on the heap.

 Whenever a C procedure returns a pointer to a data structure, it’s important to
investigate whether that pointer needs to be manually deallocated by your code. The
documentation for this procedure states that the return value is a “pointer to a static
internal tm object.” This means that the object has a static storage duration and so
doesn’t need to be deallocated manually. Every good library will state the storage
duration of an object in its documentation.

 When wrapping code, you’ll undoubtedly run into a procedure that returns an
object with a dynamic storage duration. In that case, the procedure will allocate a new
object every time it’s called, and it’s your job to deallocate it when you no longer need it.

DEALLOCATING C OBJECTS The way in which objects created by a C library can
be deallocated depends entirely on the C library. A free function will usually
be offered for this purpose, and all you’ll need to do is wrap it and call it.

The struct tm type is much more complex than the time_t type. The documentation
available in the C++ Reference (http://en.cppreference.com/w/c/chrono/tm) shows

1 The type of time_t is described in this Stack Overflow answer: http://stackoverflow.com/a/471287/492186.

Listing 8.1 Wrapping time

The CTime type is the wrapped version
of time_t, defined as a simple alias for
a 64-bit signed integer.

The time C procedure is defined in the
<time.h> header file. To import it,

the header pragma is necessary.
Licensed to <null>

http://stackoverflow.com/a/471287/492186
http://en.cppreference.com/w/c/chrono/tm

233Nim’s foreign function interface
that it contains nine integer fields. The definition of this type in C would look some-
thing like this:

struct tm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};

Wrapping this type is fairly simple, although a bit mundane. Fortunately, you don’t
have to wrap the full type unless you need to access all the fields. For now, let’s just
wrap the tm_min and tm_hour fields. The following listing shows how you can wrap the
tm type together with the two fields.

type
TM {.importc: "struct tm", header: "<time.h>".} = object

tm_min: cint
tm_hour: cint

You can then wrap the localtime procedure and use it together with the time proce-
dure as follows.

type
CTime = int64

proc time(arg: ptr CTime): CTime {.importc, header: "<time.h>".}

type
TM {.importc: "struct tm", header: "<time.h>".} = object

tm_min: cint
tm_hour: cint

proc localtime(time: ptr CTime): ptr TM {.importc, header: "<time.h>".}

var seconds = time(nil)
let tm = localtime(addr seconds)
echo(tm.tm_hour, ":", tm.tm_min)

Listing 8.2 Wrapping struct tm

Listing 8.3 A complete time and localtime wrapper

The struct keyword can’t be omitted
in the argument to the pragma.

The two fields are defined as they
would be for any Nim data type. The
cint type is used because it’s
compatible with C.

The localtime procedure takes a "time_t *" and returns a "struct tm *",
both of which are pointers. That is why the ptr keyword is used.

Assigns the result of the time call to a new seconds variable. The
time procedure can also optionally store the return value in the
specified argument; nil is passed here, as it’s not needed.

Passes the address of
the seconds variable to
the localtime procedure

Displays the current time
Licensed to <null>

234 CHAPTER 8 Interfacing with other languages
Save this code as ffi2.nim, and then compile and run it. You should see the current
time displayed on your screen after execution, such as 18:57.

 The main takeaway from the example in listing 8.3 is that wrapping a type essen-
tially involves copying its structure into a Nim type definition. It’s important to
remember that the field names have to match those of the C type. You can specify the
name of each field in an importc pragma if you wish to rename them. Figure 8.4
demonstrates this.

Another interesting aspect of wrapping the localtime procedure is the need to pass a
pointer to it. You need to account for this in your wrapper. The addr keyword returns
a pointer to the value specified, and that value must be mutable, which is why the
return value of time is assigned to a new seconds variable in listing 8.3. Writing
localtime(addr time(nil)) wouldn’t work because the return value isn’t stored any-
where permanent yet.

 You should now have a pretty good idea of how C types can be wrapped in Nim. It’s
time to wrap something a little more ambitious: an external library.

8.2 Wrapping an external C library
So far, I’ve shown you how to wrap some very simple procedures that are part of the C
standard library. Most of these procedures have already been wrapped to some extent
by the Nim standard library and are exposed via modules such as times.

 Wrapping an external library is slightly different. In this section you’ll learn about
these differences as you wrap a small bit of the SDL library.

 Simple DirectMedia Layer, or SDL, is a cross-platform multimedia library. It’s one
of the most widely used libraries for writing computer games and other multimedia
applications. SDL manages video, audio, input devices, and much more. Some practi-
cal things that you can use it for are drawing 2D graphics on the screen or playing
sound effects.

 I’ll show you how to draw 2D graphics. By the end of this section, you’ll produce an
application that displays the window shown in figure 8.5.

SDL WRAPPER The wrapper shown here will be very basic. You’ll find a full
SDL wrapper that’s already been created by the Nim community here:
https://github.com/nim-lang/sdl2.

tm_min: cint

type

TM {.importc: "struct tm", ...} = object

}

struct tm {

int tm_min,
int tm_hour,
...min: cint

min {.importc: "tm_min".}: cint

Nim C

Figure 8.4 The mapping between fields in a wrapped type and a C struct
Licensed to <null>

https://github.com/nim-lang/sdl2

235Wrapping an external C library
8.2.1 Downloading the library

Before you begin writing the wrapper for the SDL library, you should download it. For
this chapter’s example, you’ll only need SDL’s runtime binaries, which you can down-
load here: www.libsdl.org/download-2.0.php#source.

8.2.2 Creating a wrapper for the SDL library

A library, or package, wrapper consists of one or more modules that contain wrapped
procedures and type definitions. The wrapper modules typically mirror the contents
of C header files, which contain multiple declarations of procedure prototypes and
types. But they may also mirror other things, such as the contents of JavaScript API ref-
erence documentation.

 For large libraries like SDL, these header files are very large, containing thousands
of procedure prototypes and hundreds of types. The good news is that you don’t need
to wrap it all completely in order to use the library. A couple of procedures and types
will do. This means you can wrap libraries on demand instead of spending days wrap-
ping the full library, including procedures that you’re never going to use. You can just
wrap the procedures that you need.

AUTOMATIC WRAPPING An alternative means of wrapping libraries is to use a
tool such as c2nim. This tool takes a C or C++ header file as input and con-
verts it into a wrapper. For more information about c2nim, take a look at its
documentation: http://nim-lang.org/docs/c2nim.html.

Figure 8.5 The application you’ll produce in this section
Licensed to <null>

www.libsdl.org/download-2.0.php#source
http://nim-lang.org/docs/c2nim.html

236 CHAPTER 8 Interfacing with other languages
As in the previous section, you can go online to look up the definition of the proce-
dure prototypes that you’re wrapping. Be sure to consult the project’s official docu-
mentation and ensure that it has been written for the version of the library that you’re
using. Alternatively, you can look up the desired procedure or type inside the library’s
header files.

 First, though, you need to figure out what needs to be wrapped. The easiest way to
figure that out is to look for examples in C, showing how the library in question can
be used to develop a program that performs your desired actions. In this section, your
objective is to create an application that shows a window of a specified color with the
letter N drawn in the middle, as shown in figure 8.5.

 The SDL library can do a lot more than this, but in the interest of showing you how
to wrap it, we’ll focus on this simple example.

 With that in mind, let’s start. The wrapper itself will be a single module called sdl.
Before moving on to the next section, create this module by creating a new file called
sdl.nim.

8.2.3 Dynamic linking

Earlier in this chapter, I explained the differences between static and dynamic linking.
The procedures you wrapped in the previous section are part of the C standard
library, and as such, the linking process was automatically chosen for you. The process
by which the C standard library is linked depends on your OS and C compiler.

 When it comes to linking with external C libraries, dynamic linking is recom-
mended. This process involves some trivial initial setup that we’ll look at now.

 Whenever you instruct the Nim compiler to dynamically link with a C library, you
must supply it with the filename of that library. The filenames depend entirely on the
library and the OS that the library has been built for. Table 8.2 shows the filenames of
the SDL libraries for Windows, Linux, and Mac OS.

These files are called shared library files because in many cases, especially on UNIX-like
OSs, they’re shared among multiple applications.

 The SDL wrapper needs to know these filenames, so let’s define them in the sdl
module you just created. The following listing shows how to define these for each OS.
Add this code to your sdl module.

when defined(Windows):
const libName* = "SDL2.dll"

elif defined(Linux):

Table 8.2 The filenames of the SDL library

Windows Linux Mac OS

SDL2.dll libSDL2.so libSDL2.dylib

Listing 8.4 Defining the shared library filename conditionally
Licensed to <null>

237Wrapping an external C library
const libName* = "libSDL2.so"
elif defined(MacOsX):

const libName* = "libSDL2.dylib"

This code is fairly simple. Only one constant, libName, is defined. Its name remains
the same, but its value changes depending on the OS. This allows the wrapper to work
on the three major OSs.

 That’s all the setup that’s required. Strictly speaking, it’s not absolutely necessary
to create these constants, but they will enable you to easily change these filenames at a
later time.

 Now, recall the previous section, where I showed you the header and importc prag-
mas. These were used to import C procedures from a specific header in the C standard
library. In order to instruct the compiler to dynamically link a procedure, you need to
use a new pragma called dynlib to import C procedures from a shared library:

proc init*(flags: uint32): cint {.importc: "SDL_Init", dynlib: libName.}

The dynlib pragma takes one argument: the filename of the shared library where the
imported procedure is defined. Every time your application starts, it will load a shared
library for each unique filename specified by this pragma. If it can’t find the shared
library, or the wrapped procedure doesn’t exist in the shared library, the application
will display an error and terminate.

 The dynlib pragma also supports a simple versioning scheme. For example, if
you’d like to load either libSDL2-2.0.1.so or libSDL2.so, you can specify
"libSDL2(|-2.0.1).so" as the argument to dynlib. More information about the
dynlib pragma is available in the Nim manual: http://nim-lang.org/docs/manual
.html#foreign-function-interface-dynlib-pragma-for-import.

 Now, you’re ready to start wrapping.

8.2.4 Wrapping the types

Before you can successfully wrap the required procedures, you first need to define four
types. Thankfully, wrapping their internals isn’t necessary. The types will simply act as
stubs to identify some objects. The following listing shows how to define these types.

type
SdlWindow = object
SdlWindowPtr* = ptr SdlWindow
SdlRenderer = object
SdlRendererPtr* = ptr SdlRenderer

Listing 8.5 Wrapping the four necessary types

Defines an object stub. This object likely contains
fields, but you don’t need to access them in your
application, so you can omit their definitions.

Many of the procedures in the SDL library work
on pointers to objects, so it’s convenient to
give this type a name and export it instead of
writing “ptr TheType” everywhere.
Licensed to <null>

http://nim-lang.org/docs/manual.html#foreign-function-interface-dynlib-pragma-for-import
http://nim-lang.org/docs/manual.html#foreign-function-interface-dynlib-pragma-for-import
http://nim-lang.org/docs/manual.html#foreign-function-interface-dynlib-pragma-for-import

238 CHAPTER 8 Interfacing with other languages
The type definitions are fairly simple. The SdlWindow type will represent a single on-
screen SDL window, and the SdlRenderer will represent an object used for rendering
onto the SDL window.

 The pointer types are defined for convenience. They’re exported because the SDL
procedures that you’ll wrap soon return them.

 Let’s look at these procedures now.

8.2.5 Wrapping the procedures

Only a handful of procedures need to be wrapped in order to show a colored window
on the screen using SDL. The following listing shows the C prototypes that define
those procedures.

int SDL_Init(Uint32 flags)

int SDL_CreateWindowAndRenderer(int width,
int height,
Uint32 window_flags,
SDL_Window** window,
SDL_Renderer** renderer)

int SDL_PollEvent(SDL_Event* event)

int SDL_SetRenderDrawColor(SDL_Renderer* renderer,
Uint8 r,
Uint8 g,
Uint8 b,
Uint8 a)

void SDL_RenderPresent(SDL_Renderer* renderer)

int SDL_RenderClear(SDL_Renderer* renderer)

int SDL_RenderDrawLines(SDL_Renderer* renderer,
const SDL_Point* points,
int count)

You’ve already seen how to wrap the SDL_Init procedure:

proc init*(flags: uint32): cint {.importc: "SDL_Init", dynlib: libName.}

The wrapper for this procedure is fairly straightforward. The Uint32 and int types in
the prototype map to the uint32 and cint Nim types, respectively. Notice how the
procedure was renamed to init; this was done because the SDL_ prefixes are redun-
dant in Nim.

 Now consider the rest of the procedures. Each wrapped procedure will need to
specify the same dynlib pragma, but you can remove this repetition with another
pragma called the push pragma. The push pragma allows you to apply a specified
pragma to the procedures defined below it, until a corresponding pop pragma is used.

Listing 8.6 The SDL C prototypes that will be wrapped in this section

Initializes the SDL library

Creates an SDL
window and
rendering context
associated with
that window

Checks for input events

Sets the current draw color
on the specified renderer

Updates the screen with any
rendering that was performed

Clears the specified renderer
with the drawing color

Draws a series of
connected lines
Licensed to <null>

239Wrapping an external C library
The following listing shows how the rest of the procedures can be wrapped with the
help of the push pragma.

{.push dynlib: libName.}
proc init*(flags: uint32): cint {.importc: "SDL_Init".}

proc createWindowAndRenderer*(width, height: cint, window_flags: cuint,
window: var SdlWindowPtr, renderer: var SdlRendererPtr): cint
{.importc: "SDL_CreateWindowAndRenderer".}

proc pollEvent*(event: pointer): cint {.importc: "SDL_PollEvent".}

proc setDrawColor*(renderer: SdlRendererPtr, r, g, b, a: uint8): cint
{.importc: "SDL_SetRenderDrawColor", discardable.}

proc present*(renderer: SdlRendererPtr) {.importc: "SDL_RenderPresent".}

proc clear*(renderer: SdlRendererPtr) {.importc: "SDL_RenderClear".}

proc drawLines*(renderer: SdlRendererPtr, points: ptr tuple[x, y: cint],
count: cint): cint {.importc: "SDL_RenderDrawLines", discardable.}

{.pop.}

Most of the code here is fairly standard. The createWindowAndRenderer procedure’s
arguments include one pointer to a pointer to an SdlWindow and another pointer to a
pointer to an SdlRenderer, written as SdlWindow** and SdlRenderer**, respectively.
Pointers to SdlWindow and SdlRenderer were already defined in the previous subsec-
tion under the names SdlWindowPtr and SdlRendererPtr, respectively, so you can
define the types of those arguments as ptr SdlWindowPtr and ptr SdlRendererPtr.
This will work well, but using var in place of ptr is also appropriate in this case.

 You may recall var T being used in chapter 6, where it stored a result in a variable
that was passed as a parameter to a procedure. The exact same thing is being done by
the createWindowAndRenderer procedure. Nim implements these var parameters
using pointers, so defining that argument’s type using var is perfectly valid. The
advantage of doing so is that you no longer need to use addr, and Nim also prevents
you from passing nil for that argument.

 For the pollEvent procedure, the argument type was defined as pointer. This type
is equivalent to a void* type in C, essentially a pointer to any type. This was done
because it avoids the need to wrap the SdlEvent type. You may run into C libraries that
declare procedures accepting a void* type, in which case you can use the pointer

Listing 8.7 Wrapping the procedures in the sdl module

This ensures that each proc
gets the dynlib pragma. The var keyword is used in place of a ptr. In Nim,

these end up generating equivalent C code.

The pointer type in Nim is equivalent to
a void *, which is a pointer of any type.

The discardable pragma is
used here to implicitly discard
the return value.

The points parameter is a
pointer to the beginning of

an array of tuples.

This stops the
propagation of the
dynlib pragma.
Licensed to <null>

240 CHAPTER 8 Interfacing with other languages
type. In practice, however, it’s better to use a ptr T type for improved type safety. But
you can only do so if you know that the procedure you’re wrapping will only ever
accept a specific pointer type.

 Lastly, the drawLines procedure is the most complicated, as it accepts an array of
points to draw as lines. In C, an array of elements is represented by a pointer to the
first element in the array and the number of variables in that array. In the case of the
drawLines procedure, each element in the points array is an SDL_Point type, and it’s
defined as a simple C struct containing two integers that represent the x and y coordi-
nates of the point. In Nim, this simple struct can be represented using a tuple.

 Add the contents of listing 8.7 to your sdl module. It’s time to use it to write the
application.

8.2.6 Using the SDL wrapper

You can now use the wrapper you’ve just written. First, create an sdl_test.nim file beside
your wrapper, and then import the wrapper by writing import sdl at the top of the file.

 Before the library can be used, you’ll have to initialize it using the init procedure.
The init procedure expects to receive a flags argument that specifies which SDL
subsystems should be initialized. For the purposes of this application, you only need
to initialize the video subsystem. To do this, you’ll need to define a constant for the
SDL_INIT_VIDEO flag, like this:

const INIT_VIDEO* = 0x00000020

The value of this constant needs to be defined in the Nim source file because it’s not
available in the shared library. C header files typically define such constants using a
#define that isn’t compiled into any shared libraries.

 Add this constant into your sdl module. Then, you’ll finally be ready to use the
sdl wrapper to implement a simple application. The following listing shows the code
needed to do so.

import os
import sdl

if sdl.init(INIT_VIDEO) == -1:
quit("Couldn't initialise SDL")

var window: SdlWindowPtr
var renderer: SdlRendererPtr
if createWindowAndRenderer(640, 480, 0, window, renderer) == -1:

quit("Couldn't create a window or renderer")

Listing 8.8 An SDL application implemented using the sdl wrapper

Initializes the SDL video subsystem

Quits with an error if
the initialization fails

Creates a window and
renderer to draw things on

Quits with an error if the creation
of the window or renderer fails
Licensed to <null>

241Wrapping an external C library
discard pollEvent(nil)
renderer.setDrawColor 29, 64, 153, 255
renderer.clear

renderer.present
sleep(5000)

Compile and run the sdl_test.nim file.
You should see a window with a blue
background, as shown in figure 8.6
(to see color versions of the figures,
please refer to the electronic version
of this book).

 A blank SDL window is a great
achievement, but it isn’t a very excit-
ing one. Let’s use the drawLines pro-
cedure to draw the letter N in the
middle of the screen. The following
code shows how this can be done:

renderer.setDrawColor 255, 255, 255, 255
var points = [

(260'i32, 320'i32),
(260'i32, 110'i32),
(360'i32, 320'i32),
(360'i32, 110'i32)

]
renderer.drawLines(addr points[0], points.len.cint)

Add this code just below the renderer.clear statement in the sdl_test.nim file. Then,
compile and run the file. You should see a window with a blue background and the let-
ter N, as shown in figure 8.7.

 In the preceding code, the drawLines call is the important one. The address of the
first element in the points array is passed to this procedure together with the length
of the points array. The drawLines procedure then has all the information it needs to
read all the points in the array. It’s important to note that this call isn’t memory safe; if
the points count is too high, the drawLines procedure will attempt to read memory

This is where you’d handle any pending
input events. For this application, it’s only
called so that the window initializes properly.

Sets the drawing color to
the specified red, green,
blue, and alpha values

Clears the screen with the
specified drawing color

Shows the pixels drawn
on the renderer

Waits for 5 seconds before
terminating the application

Figure 8.6 The result of running listing 8.8

Changes the draw color to white

Defines an array of points that define the
coordinates to draw an N. Each coordinate
must be an int32 because that’s what a cint is.

Draws the lines defined
by the points array
Licensed to <null>

242 CHAPTER 8 Interfacing with other languages
that’s adjacent to the array. This is known as a buffer overread and can result in serious
issues because there’s no way of knowing what the adjacent memory contains.2

 That’s how you wrap an external library using Nim. Of course, there’s plenty of
room for improvement. Ideally, a module that provides a higher-level API should
always be written on top of a wrapper; that way, a much more intuitive interface can be
used for writing applications. Currently, the biggest improvement that could be made
to the sdl module is to add exceptions. Both init and createWindowAndRenderer
should raise an exception when an error occurs, instead of requiring the user to check
the return value manually.

 The last two sections have given you an overview of the C FFI. Nim also supports
interfacing with other C-like languages, including C++ and Objective-C. Those two back-
ends are beyond the scope of this book, but the concepts you’ve learned so far should
give you a good starting point. For further information about these backends, take a
look at the Nim manual: http://nim-lang.org/docs/manual.html#implementation-
specific-pragmas-importcpp-pragma.

 Next, we’ll look at how to write JavaScript wrappers.

8.3 The JavaScript backend
JavaScript is increasingly becoming known as the “assembly language of the web”
because of the many new languages that target it. Languages that can be translated to
JavaScript are desirable for various reasons. For example, they make it possible to

2 See the Wikipedia article for an explanation of buffer overreads: https://en.wikipedia.org/wiki/Buffer_over-read.

Figure 8.7 The final sdl_test application with the letter N drawn
Licensed to <null>

http://nim-lang.org/docs/manual.html#implementation-specific-pragmas-importcpp-pragma
http://nim-lang.org/docs/manual.html#implementation-specific-pragmas-importcpp-pragma
https://en.wikipedia.org/wiki/Buffer_over-read

243The JavaScript backend
share code between client scripts that run in a web browser and applications that run
on a server, reducing the need for code duplication.

 As an example, consider a chat application. The server manages connections and
messages from multiple clients, and a client script allows users to connect to the server
and send messages to it from their web browser. These messages must be understood
by all the clients and the server, so it’s beneficial for the code that parses those mes-
sages to be shared between the server and the client. If both the client and the server
are written in Nim, sharing this code is trivial. Figure 8.8 shows how such a chat appli-
cation could take advantage of Nim’s JavaScript backend.

Of course, when writing JavaScript applications, you’ll eventually need to interface
with the APIs exposed by the web browser as well as libraries that abstract those APIs.
The process of wrapping JavaScript procedures and types is similar to what was
described in the previous sections for the C backend, but there are some differences
that are worth an explanation.

 This section will show you how to wrap the JavaScript procedures required to
achieve the same result as in the previous section with the SDL library: filling the
drawable surface with a blue color and drawing a list of lines to form the letter N.

8.3.1 Wrapping the canvas element

The canvas element is part of HTML5, and it allows rendering of 2D shapes and bitmap
images on an HTML web page. All major web browsers support it and expose it via a
JavaScript API.

Figure 8.8 How the same code is shared between two platforms

Client Server

Running in a
web browser

JavaScript

Running on a
server

Binary

protocol.nim

The same module is
reused for the client

and the server.
Licensed to <null>

244 CHAPTER 8 Interfacing with other languages
Let’s look at an example of its usage. Assuming that an HTML page contains a <can-
vas> element with an ID of canvas, and its size is 600 x 600, the code in the following
listing will fill the canvas with the color blue and draw the letter N in the middle of it.

var canvas = document.getElementById("canvas");
canvas.width = 600;
canvas.height = 600;
var ctx = canvas.getContext("2d");

ctx.fillStyle = "#1d4099";
ctx.fillRect(0, 0, 600, 600);
ctx.strokeStyle = "#ffffff";
ctx.moveTo(250, 320);
ctx.lineTo(250, 110);
ctx.lineTo(350, 320);
ctx.lineTo(350, 110);
ctx.stroke();

The code is fairly self-explanatory. It starts by retrieving the canvas element from the
DOM by ID. The canvas size is set, and a 2D drawing context is created. Lastly, the
screen is filled with a blue color, the letter N is traced using the moveTo and lineTo
procedures, and the letter is drawn using the stroke procedure. Wrapping the proce-
dures used in this example shouldn’t take too much effort, so let’s begin.

 Create a new file called canvas.nim. This file will contain the procedure wrappers
needed to use the Canvas API. The getElementById procedure is already wrapped by
Nim; it’s a part of the DOM, so it’s available via the dom module.

 Unlike in C, in JavaScript there’s no such thing as a header file. The easiest way to
find out how a JavaScript procedure is defined is to look at the documentation. The
following list contains the documentation for the types and procedures that will be
wrapped in this section:

 CanvasRenderingContext2D type—https://developer.mozilla.org/en-US/docs/
Web/API/CanvasRenderingContext2D

 canvas.getContext(contextType, contextAttributes); procedure—http://mng
.bz/6kIp

 void ctx.fillRect(x, y, width, height); procedure—http://mng.bz/xN3Y
 void ctx.moveTo(x, y); procedure—http://mng.bz/A9Bk
 void ctx.lineTo(x, y); procedure—http://mng.bz/t355
 void ctx.stroke(); procedure—http://mng.bz/nv6C

Because JavaScript is a dynamically typed programming language, procedure defini-
tions don’t contain information about each argument’s type. You must look at the
documentation, which more often than not tells you enough to figure out the under-
lying type. The following listing shows how the CanvasRenderingContext2D type and
the five procedures should be wrapped. Save the listing as canvas.nim.

Listing 8.9 Using the Canvas API in JavaScript
Licensed to <null>

https://developer.mozilla.org/en-US/docs/ Web/API/CanvasRenderingContext2D
http://mng.bz/6kIp
http://mng.bz/6kIp
http://mng.bz/6kIp
http://mng.bz/xN3Y
http://mng.bz/A9Bk
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
http://mng.bz/t355
http://mng.bz/nv6C

245The JavaScript backend

import dom

type
CanvasRenderingContext* = ref object

fillStyle* {.importc.}: cstring
strokeStyle* {.importc.}: cstring

{.push importcpp.}

proc getContext*(canvasElement: Element,
contextType: cstring): CanvasRenderingContext

proc fillRect*(context: CanvasRenderingContext, x, y, width, height: int)

proc moveTo*(context: CanvasRenderingContext, x, y: int)

proc lineTo*(context: CanvasRenderingContext, x, y: int)

proc stroke*(context: CanvasRenderingContext)

This code is fairly short and to the point. You should be familiar with everything
except the importcpp pragma. The name of this pragma is borrowed from the C++
backend. It instructs the compiler to generate JavaScript code that calls the specified
procedure as if it were a member of the first argument’s object. Figure 8.9 demon-
strates the difference between importc and importcpp for the JavaScript backend.

Listing 8.10 Wrapping the Canvas API

The dom module exports
the Element type used in
the getContext proc.

All JavaScript objects
have ref semantics;

hence, the ref object
definition.

Each field must be
explicitly imported
using importc.

Each procedure is given
the importcpp pragma.

The contextAttributes
argument is intentionally

omitted here. It’s an
optional argument

with a default value.

Figure 8.9 The differences in JavaScript code produced with the importc and importcpp pragmas

{.importc.} {.importcpp.}vs.

proc getContext*(el: Element, typ: cstring): Ctx

nim js file.nim

element.getContext("2D")

getContext(element, "2D");

Function getContext is
not defined.

nim js file.nim

element.getContext("2D")

element.getContext("2D");

getContext is a
member of element, so

this works!

JavaScript
code after

compilation

Nim code
before

compilation

when applied to the following definition:
Licensed to <null>

246 CHAPTER 8 Interfacing with other languages
There aren’t many other surprises, but one interesting aspect to note is that when
you’re wrapping a data type in JavaScript, the wrapped type should be declared as a ref
object. JavaScript objects have reference semantics and so should be wrapped as such.

 That’s all there is to it! Time to put this wrapper to use.

8.3.2 Using the Canvas wrapper

Now that the wrapper is complete, you can write a little script that will make use of it,
together with a small HTML page to execute it.

 Save the following listing as index.html beside your canvas.nim file.

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8"/>
<title>Nim in Action - Chapter 8</title>
<script type="text/javascript" src="canvas_test.js"></script>
<style type="text/css">

canvas { border: 1px solid black; }
</style>

</head>
<body onload="onLoad();" style="margin: 0; overflow: hidden;">

<canvas id="canvas"></canvas>
</body>

</html>

The HTML is pretty bare bones. It’s got some small style adjustments to make the can-
vas full screen, and it defines an onLoad procedure to be called when the <body> tag’s
onLoad event fires.

 Save the next listing as canvas_test.nim beside your canvas.nim file.

import canvas, dom

proc onLoad() {.exportc.} =
var canvas = document.getElementById("canvas").EmbedElement
canvas.width = window.innerWidth
canvas.height = window.innerHeight
var ctx = canvas.getContext("2d")

ctx.fillStyle = "#1d4099"
ctx.fillRect(0, 0, window.innerWidth, window.innerHeight)

Note how similar the code is to JavaScript. This code listing defines an onLoad proce-
dure that’s then exported, which allows the browser to use it as an event callback. The
exportc procedure is used to do this. It simply ensures that the generated JavaScript
code contains an onLoad procedure. This pragma also works for the other backends.

Listing 8.11 The index.html file

Listing 8.12 The canvas_test.nim file
Licensed to <null>

247The JavaScript backend
 You may wonder what the purpose of the .EmbedElement type conversion is. The
getElementById procedure returns an object of type Element, but this object doesn’t
have width or height properties, so it must be converted to a more concrete type. In
this case, it’s converted to the EmbedElement type, which allows the two width and
height assignments.

 Compile this canvas_test module by running nim js -o:canvas_test.js canvas_
test.nim. You can then test it by opening the index.html file in your favorite browser.
You should see something resembling figure 8.10.

For now, this is just a blue screen. Let’s extend it to draw the letter N. Add the follow-
ing code at the bottom of the onLoad procedure:

ctx.strokeStyle = "#ffffff"
let letterWidth = 100
let letterLeftPos = (window.innerWidth div 2) - (letterWidth div 2)
ctx.moveTo(letterLeftPos, 320)
ctx.lineTo(letterLeftPos, 110)
ctx.lineTo(letterLeftPos + letterWidth, 320)
ctx.lineTo(letterLeftPos + letterWidth, 110)
ctx.stroke()

In this case, the code calculates where the letter should be placed so that it’s in the
middle of the screen. This is necessary because the canvas size depends on the size of
the web browser window. In the SDL example, the SDL window was always the same
size, so this calculation wasn’t needed.

 Recompile the canvas_test.nim file by running the same command again, and then
refresh your browser. You should see something resembling figure 8.11.

 That’s all there is to it. You should now have a good basic understanding of how to
wrap JavaScript and how to make use of Nim’s JavaScript backend.

Figure 8.10 The canvas_test.nim script
showing a blue screen in the web browser

Sets the stroke color to white Creates a local letterWidth
variable to store the desired
letter width

Calculates the top-left
position where the

letter should be placed

Begins tracing the lines
of the letter

Draws the letter
Licensed to <null>

248 CHAPTER 8 Interfacing with other languages
8.4 Summary
 The Nim foreign function interface supports interfacing with C, C++, Objective-C,

and JavaScript.
 C libraries can be either statically or dynamically linked with Nim applications.
 C header files declare procedure prototypes and types that provide all the infor-

mation necessary to wrap them.
 The importc pragma is used to wrap a foreign procedure, including C and

JavaScript procedures.
 The discardable pragma can be used to override the need to explicitly discard

values.
 The cstring type should be used to wrap procedures that accept a string argu-

ment.
 Using an external C library is best done via dynamic linking.
 The dynlib pragma is used to import a procedure from a shared library.
 The importcpp pragma is used to wrap C++ procedures and also member pro-

cedures in JavaScript.

Figure 8.11 The canvas_test.nim script showing a blue screen with the
letter N in the web browser
Licensed to <null>

Metaprogramming
This chapter describes one of the most advanced and most powerful features in the
Nim programming language: metaprogramming, composed of a number of compo-
nents including generics, templates, and macros.

 Metaprogramming is a feature of Nim that gives you the ability to treat your
application’s source code as data. This means you can write code that reads, gener-
ates, analyses, and modifies other code. Being able to perform such activities brings
many advantages, including allowing you to minimize the number of lines of code
needed to express a solution. In turn, this means that metaprogramming reduces
development time.

 Generating code is usually easy enough in most languages, but reading, analyz-
ing, and modifying it isn’t. Consider the following simple type definition:

This chapter covers
 Understanding metaprogramming and its uses

 Using generics to remove code duplication

 Constructing a Nim abstract syntax tree

 Executing code at compile time

 Using templates and macros
249

Licensed to <null>

250 CHAPTER 9 Metaprogramming
type
Person = object

name: string
age: int

Analyzing this code to retrieve information about the Person type isn’t easy in a lan-
guage without metaprogramming. For instance, in Java, you could do it via reflection
at runtime. In other languages, you could attempt to treat the type definition as a
string and parse it, but doing so would be very error prone. In Nim, there are facilities
that allow you to analyze type definitions at compile time.

 You may, for example, wish to iterate over each of the fields in a specified type:

import macros

type
Person = object

name: string
age: int

static:
for sym in getType(Person)[2]:

echo(sym.symbol)

Compiling the preceding code will display the strings name and age among the com-
piler’s output.

 That’s just one example of what metaprogramming allows you to accomplish. You
might use this to serialize any data type, without having to write code specific to each
data type, whether defined by you or someone else. You’ll find that through this and
many other features, metaprogramming opens up a vast number of possibilities.

 Here are some other use cases for metaprogramming:

 Advanced control flow mechanisms, such as async procedures
 Lazy evaluation, used in the logging module to ensure that parameters are only

evaluated if logging is enabled
 Lexer and parser generation

Metaprogramming adds a lot of flexibility to Nim, and because it’s executed at com-
pile time, it does so without causing any decrease in your program’s execution time.

 In this chapter, you’ll learn about the three metaprogramming constructs, starting
with generics, moving on to templates, and finishing up with macros. At the end of the
chapter, you’ll see how you can write a simple DSL for configuration files. DSLs are lan-
guages that are specialized to a particular application domain; they’ll be discussed in
more detail in section 9.4.

9.1 Generics
As you already know, Nim is a statically typed programming language. This means that
each piece of data in Nim has a type associated with it. In some cases, these types are
distinct but very similar. For example, the int and float types both represent num-
bers, but the former can’t represent a fraction, whereas the latter can.
Licensed to <null>

251Generics
 Generics are a feature that allows you to write your applications in a style called
generic programming, in which you write algorithms in terms of types that aren’t known
until the algorithms are invoked. Generic programming is useful because it offers a
reduction in code duplication.

 Generics are related to the two other metaprogramming components in Nim—
templates and macros—because they offer a way to generate repetitive code. This sec-
tion covers generics in procedures and types, showing how to best utilize them in
those contexts. It also briefly shows how generics can be constrained to make the defi-
nitions of algorithms more accurate.

 Some languages refer to generics as parametric polymorphism or as templates. Many
prominent statically typed programming languages include support for generics,
including Java, C#, C++, Objective C, and Swift. There are also a few that consciously
omit the feature; the Go programming language is infamous for doing so.

9.1.1 Generic procedures

To give you a better idea of how generics in Nim work, take a look at the following
implementation of a generic myMax procedure:

proc myMax[T](a, b: T): T =
if a < b:

return b
else:

return a

doAssert myMax(5, 10) == 10
doAssert myMax(31.3, 1.23124) == 31.3

The key part of this example is the first line. There, a generic type, T, is defined in
square brackets after the procedure name, and it’s then used as the type for the
parameters a and b as well as the procedure’s return type.

 Occasionally, the compiler may not be able to infer generic types. In those cases,
you can specify them explicitly using square brackets, as shown in the following code:

doAssert myMax[float](5, 10.5) == 10.5

This code tells the compiler explicitly that the generic type T should be instantiated to
float for this myMax procedure call.

 You can define as many generic types in a procedure definition as you want. Cur-
rently, the myMax procedure only accepts two arguments of the same type. This means
that the following procedure call will fail with a type mismatch error:

doAssert myMax(5'i32, 10.5) == 10.5

The preceding code fails to compile because the type of argument a is int32, whereas
the type of b is float. The myMax procedure defined previously can only be called with
arguments of the same type.
Licensed to <null>

252 CHAPTER 9 Metaprogramming
9.1.2 Generics in type definitions

When writing Nim code, you may run into cases where you’d like to specify the types
of one or more fields in an object during initialization. That way, you can have a single
generic type definition, and you can specialize it by specifying a particular type on a
case-by-case basis.

 This is useful for container types, such as lists and hash maps. A simple single-item
generic container can be defined as follows:

type
Container[T] = object

empty: bool
value: T

This code defines a Container type that accepts a generic type T. The type of the
value that the Container type stores is then determined by the generic type T speci-
fied when a Container variable is defined.

 A constructor for the Container type can be defined like this:

proc initContainer[T](): Container[T] =
result.empty = true

You can then call this constructor as follows:

var myBox = initContainer[string]()

Specifying the generic type in between the square brackets is currently mandatory.
This means that the following code will not work:

var myBox = initContainer()

Compiling this code will result in an “Error: cannot instantiate: 'T'” message. As men-
tioned previously, the compiler can’t always infer the generic type, and this is one case
where it can’t.

9.1.3 Constraining generics

Occasionally, you may wish to limit the types accepted by a generic procedure or type
definition. This is useful for making the definition stronger and therefore more clear
to yourself and other users of your code. Consider the myMax procedure defined previ-
ously and what happens when it’s called with two strings:1

proc myMax[T](a, b: T): T =
if a < b:

return b
else:

return a

echo myMax("Hello", "World")

1 There’s a reason why I named this procedure myMax and not max. I wanted to avoid a conflict with the max
procedure defined in the system module.
Licensed to <null>

253Generics
If you save this code, compile, and run it, you’ll see the string World displayed.
 Let’s assume that you don’t want your algorithm to be used with a pair of strings,

but only with integers and floats. You can constrain the myMax procedure’s generic
type like so:

proc myMax[T: int | float](a, b: T): T =
if a < b:

return b
else:

return a

echo myMax("Hello", "World")

Compiling this code will fail with the following error:

/tmp/file.nim(7, 11) Error: type mismatch: got (string, string)
but expected one of:
proc myMax[T: int | float](a, b: T): T

To make the constraint process more flexible, Nim offers a small number of type
classes. A type class is a special pseudo-type that can be used to match against multiple
types in a constraint context. You can define custom type classes like so:

type
Number = int | float | uint

proc isPositive(x: Number): bool =
return x > 0

Many are already defined for you in the system module. There are also a number of
built-in type classes that match whole groups of types. You can find a list of them in the
Nim Manual: http://nim-lang.org/docs/manual.html#generics-type-classes.

9.1.4 Concepts

Concepts, sometimes known as user-defined type classes in other programming languages,
are a construct that can be used to specify arbitrary requirements that a matched type
must satisfy. They’re useful for defining a kind of interface for procedures, but they’re
still an experimental Nim feature. This section will give you a quick overview of con-
cepts without going into too much detail, because their semantics may still change.

 The myMax procedure defined earlier includes a constraint that limits it to accept-
ing only int and float types as parameters. For the purposes of the myMax procedure,
though, it makes more sense to accept any type that has the < operator defined for it.
A concept can be used to specify this requirement in the form of code:

type
Comparable = concept a

(a < a) is bool

A concept definition is introduced with the concept
keyword. What follows are the type identifiers.

For this concept to match the type,
a < procedure that returns a bool
value must be defined for the type.
Licensed to <null>

http://nim-lang.org/docs/manual.html#generics-type-classes

254 CHAPTER 9 Metaprogramming
proc myMax(a, b: Comparable): Comparable =
if a < b:

return b
else:

return a

A concept is composed of one or more expressions. These expressions usually utilize
the instances that are defined after the concept keyword. When a type is checked
against a concept, the type is said to implement the concept as long as both of these
are true:

 All the expressions in the concept body compile
 All the expressions that evaluate to a Boolean value are true

The is operator determines whether the specified expression returns a value of type
bool by returning true if it does and false if it doesn’t.

 You can check whether the Comparable concept works as expected by writing some
quick tests. The following is from a previous example:

doAssert myMax(5, 10) == 10
doAssert myMax(31.3, 1.23124) == 31.3

You’d expect both lines to work, and they do. The first line specifies two int argu-
ments; a proc `<`(a, b: int): bool exists, so int satisfies the Comparable concept.
The second line specifies two float arguments, and a similar proc `<`(a, b: float):
bool also exists.

 But attempting to pass two arrays into the myMax procedure by writing echo
myMax([5, 3], [1, 6]) fails as follows:

/tmp/file.nim(11, 9) Error: type mismatch: got (Array constructor[0..1, int],
➥Array constructor[0..1, int])

but expected one of:
proc myMax[Comparable](a, b: Comparable): Comparable
...

Concepts are powerful, but they’re also a very new Nim feature, and as such are con-
sidered experimental. As a result, this chapter doesn’t go into detail about them, but
you’re more than welcome to read about them in the Nim manual: http://nim-lang
.org/docs/manual.html#generics-concepts.

 Now let’s move on to templates.

9.2 Templates
A template in Nim is a procedure that generates code. Templates offer one of the easi-
est ways to generate code directly, the other being macros, which you’ll learn about in
the next section. Unlike generics, templates offer a substitution mechanism that
allows you to substitute arguments passed to them in the body of the template. Just
like with all metaprogramming features, their code-generation ability helps you deal
with boilerplate code.
Licensed to <null>

http://nim-lang.org/docs/manual.html#generics-concepts
http://nim-lang.org/docs/manual.html#generics-concepts
http://nim-lang.org/docs/manual.html#generics-concepts

255Templates
 In general, templates offer a simple way to reduce code duplication. Some fea-
tures, like their ability to inject variables into the calling scope, are easiest to achieve
in Nim by defining a template.

 Templates are invoked in the same way as procedures. When the Nim compiler
compiles your source code, any template invocations are substituted with the contents
of the template. As an example, take a look at the following template from the stan-
dard library:

template `!=` (a, b: untyped) =
not (a == b)

It would be possible to define the != operator as a procedure, but that would require a
separate implementation for each type. You could use generics to get around this, but
doing so would result in a lot more call overhead.

 This template definition of != means that this line

doAssert(5 != 4)

gets rewritten as follows:

doAssert(not (5 == 4))

This is done during compilation, as shown in figure 9.1.
 The primary purpose of templates is to offer a simple substitution mechanism that

reduces the need for code duplication. In addition, templates offer one feature that
procedures don’t: a template can accept blocks of code.

Don’t worry about the
“untyped” type right now.
It will be explained later.

$ nim c file

doAssert(5 != 4)

Templates are
expanded

Template expansion

doAssert(not (5 == 4))

Compilation successful!

File is loaded
and parsed

After
expansion

Before
expansion

Figure 9.1 Templates are
expanded during the compilation
of Nim source code
Licensed to <null>

256 CHAPTER 9 Metaprogramming
9.2.1 Passing a code block to a template

Code blocks are composed of one or more statements, and in an ordinary procedure
call, passing multiple statements into the procedure can only be done using an anony-
mous procedure. With templates, you can pass a code block much more directly. Nim
supports a special syntax for templates that allows one or more code statements to be
passed to them.

 The following code shows a template definition that accepts a code block as one of
its parameters:

import os
template repeat(statements: untyped) =

while true:
statements

repeat:
echo("Hello Templates!")
sleep(1000)

CODE BLOCKS IN MACROS Macros, which you’ll learn about in the next sec-
tion, also support code blocks as parameters.

The statements identifier in the body of the template is replaced with whatever code
block is passed into the template. After the compiler expands the template, the
remaining code looks like this:

import os

while true:
echo("Hello Templates!")
sleep(1000)

Figure 9.2 shows the code that’s generated by the repeat template, which accepts a
code block as an argument. This shows some of the amazing substitution capabilities
of templates.

 Of course, template parameters don’t always have to accept a code block. The next
section describes how template parameters are substituted into the body of a template
and how the parameter’s type affects this.

MULTIPLE CODE BLOCKS There are also ways to pass multiple code blocks to a
template or macro via do notation, but this is beyond the scope of this chap-
ter. See the Nim manual’s discussion of do notation for more information:
http://nim-lang.org/docs/manual.html#procedures-do-notation.

Needed for the
sleep procedure.

The template accepts a
statements parameter that
corresponds to the code block.

The code block is substituted into here.

Templates that accept code blocks are used like this.
Licensed to <null>

http://nim-lang.org/docs/manual.html#procedures-do-notation

257Templates
It’s important to know how code blocks and other parameters interact. The rule is
that when a code block is passed into a template, the last parameter always contains it.
Here’s an example:

import os
template repeat(count: int, statements: untyped) =

for i in 0 .. <count:
statements

repeat 5:
echo("Hello Templates!")
sleep(1000)

9.2.2 Parameter substitution in templates

Templates can accept multiple parameters, and these parameters are often simple
identifiers, such as variable or type names. In this section, I’ll explain the different
template-specific parameter types and how they modify the parameter-substitution
behavior in templates.

 Arguments can be passed into templates in the same manner as with procedures:

template declareVar(varName: untyped, value: typed) =
var varName = value

declareVar(foo, 42)
echo(foo)

echo("Hello Templates!"

)

sleep(1000)

Argument statements

while true:

 statements

Template repeat

while true:

 echo("Hello Templates!"

 sleep(1000)

Final result

The repeat template
substitutes every
occurrence of the

statements identifier
in its body with the
code block that was

passed to it.

The resulting code is
a mixture of the

template’s body and
the code block that

was passed to it.

The repeat template
is invoked with the

statements code block.

Figure 9.2 A code block
passed into the repeat
template is substituted
into its body

The last parameter named
“statements” contains the
code block.

The template’s return
value is void because
its body is a statement
that has no type.Whatever arguments are

passed into the template,
they will replace varName
and value in this line.This line will be expanded

to var foo = 42.
Licensed to <null>

258 CHAPTER 9 Metaprogramming
When the declareVar template is called, it expands into a simple variable declaration.
The name and value of the variable is specified in the template using two arguments
that differ in type, the first being untyped and the second typed. Figure 9.3 shows how
the declareVar template produces code that defines a new variable.

 The difference between the untyped and typed argument types is simple:

 Untyped—An untyped template argument allows identifiers that haven’t been
declared yet to be specified. The reason this type is named untyped is because
undeclared identifiers have no type yet. The foo identifier in the preceding
example isn’t declared anywhere and is thus untyped.

 Typed—A typed template argument allows an identifier that has been declared,
or a value that has a type, to be specified. In the preceding example, the value
42 has the type int. The typed type allows any type to be specified, but tem-
plates also allow you to specify concrete types like int, float, and string.

To see the difference in more detail, take a look at the following declareVar calls:

var myInt = 42
declareVar(foo, myInt)

declareVar(foo, myUndeclaredVar)

Remember that the second parameter of declareVar is typed, so undeclared vari-
ables can’t be passed to it. Only if a variable has the specified identifier defined can it
be passed into declareVar.

 Compiling the preceding code listing will result in an “undeclared identifier”
error.

template declareVar(varName: untyped, value: typed) =

 var varName = value declareVar(foo, 42)

var foo = 42

The identifier and integer
value are substituted in the

body of the template.

This code is generated
as a result.

This argument can be an
undefined identifier because

its type is untyped.

This argument must be a
defined variable or a
literal value because
its type is typed.

Figure 9.3 Arguments are substituted as-is in templates. Their types determine whether an undefined identifier
is accepted.

This will compile because
myInt is declared above. This won’t compile because

myUndeclaredVar is not
declared anywhere.
Licensed to <null>

259Templates
9.2.3 Template hygiene

As shown with the preceding declareVar template, templates can define variables
that are accessible after the template is instantiated, but this feature may not always be
desirable. There may be cases when you wish to declare a variable inside a template
without exposing it to the outside scope, a practice referred to as template hygiene.

 Consider the previous template example again:

template declareVar(varName: untyped, value: typed) =
var varName = value

declareVar(foo, 42)
echo(foo)

Calling the declareVar template declares a new variable because the varName variable
is injected into the calling scope. The injection occurs automatically because the name
of the variable is taken from the template’s arguments.

 Normally, variables aren’t injected into templates unless they’re marked explicitly
with the {.inject.} pragma. The following code shows a comparison of the different
cases where variables are injected and where they aren’t:

template hygiene(varName: untyped) =
var varName = 42
var notInjected = 128
var injected {.inject.} = notInjected + 2

hygiene(injectedImplicitly)

doAssert(injectedImplicitly == 42)
doAssert(injected == 130)

Attempting to access the notInjected variable outside the template will result in an
“Error: undeclared identifier: 'notInjected'” message. The other variables are accessi-
ble because they’re injected by the template into the calling scope.

 When writing templates, make sure that you document precisely the variables that
are injected by the template, and be careful that only those variables are exposed.
Keep in mind that, in general, injecting variables is considered bad style. The stan-
dard library only injects variables in rare cases, such as in the mapIt procedure or the
=~ operator defined in the re module.

 For reference, the following definitions are all hygienic by default:

 type

 var

 let

 const

Injected implicitly because
its name is taken from the
varName parameter

Only accessible in
this template

Injected because of the {.inject.}
pragma. Note how the notInjected
variable can still be used.
Licensed to <null>

260 CHAPTER 9 Metaprogramming
 In contrast, the following definitions aren’t hygienic by default:

 proc

 iterator

 converter

 template

 macro

 method

The decision to make certain identifiers hygienic and others not was made to capture
the most common use cases without annotations.

 The next section explains macros, a component of Nim related to templates that’s a
lot more flexible and many times more powerful than templates.

9.3 Macros
A macro in Nim is a special kind of procedure that’s executed at compile time and
that returns a Nim expression or statement. Macros are the ultimate way to read, gen-
erate, analyze, and modify Nim code.

 In the world of computer science, macros exist in many different forms. Templates
are indeed a form of macro, albeit a very simple form that mostly consists of simple
substitutions. Templates are said to be declarative, because in their body they show
what the code that should be produced looks like, instead of describing the steps
needed to produce that code.

 A Nim macro, on the other hand, is said to be procedural because it contains steps
that describe how the code should be produced. When macros are invoked, their
body is executed at compile time, which means a related feature of the Nim program-
ming language, compile-time function execution, is also relevant to the study of macros.
This feature allows procedures to be executed by the compiler during compilation,
and you’ll learn more about it in the next section.

 Macros operate on Nim code, but not in the same way that you operate on code.
You, as a programmer, are used to dealing with the textual representation of code.
You write, read, and modify code as text. But macros don’t work that way. They oper-
ate on a different representation known as an abstract syntax tree (AST). The abstract
syntax tree is a special tree structure that represents code; you’ll learn more about it in
section 9.3.2.

 Figure 9.4 shows the primary difference between templates and macros.
 We’ll go through each of these concepts to teach you the ins and outs of macros.

At the end, you’ll also get to use your new macro skills to write a simple configuration
library.

 First, to understand how macros work, you’ll need to learn about the concept of
compile-time function execution.
Licensed to <null>

261Macros
9.3.1 Compile-time function execution

Compile-time function execution (CTFE) is a feature of Nim that allows procedures to be
executed at compile time. This is a powerful feature that’s relatively uncommon
among programming languages.

 CTFE was introduced briefly in chapter 2, where you were shown that the value of a
constant in Nim must be computable at compile time.

proc fillString(): string =
result = ""
echo("Generating string")
for i in 0 .. 4:

result.add($i)

const count = fillString()

When the preceding code is compiled, the message “Generating string” will be shown
among the compilation messages. This is because the fillString procedure is exe-
cuted at compile time.

 Compile-time execution has some limits, including the following:

 There’s no access to the foreign function interface (FFI), which means that
some modules or procedures can’t be used. For example, you can’t generate
random numbers at compile time unless you do so indirectly using staticExec.

Templates Macros

x != y

not (x == y) Create equality
comparison between

the x and y
identifiers.

Create a call to
the not keyword.

x != y

not (x == y)

infix(x, "==", y)

newCall("not", infix(...))

Templates substitute
values into new
expressions or

statements.

Macros generate
new code

procedurally.
Figure 9.4 Templates are declarative,
whereas macros are procedural.
Licensed to <null>

262 CHAPTER 9 Metaprogramming
 Global variables that aren’t annotated with the {.compileTime.} pragma can’t
be accessed at compile time.

Despite these limitations, Nim includes workarounds to permit common operations
like reading files and executing external processes at compile time. These operations
can be performed using the staticRead and staticExec procedures, respectively.

 Because macros are used to generate, analyze, and modify code, they must also be
executed at compile time. This means that the same limits apply to them as well.

9.3.2 Abstract syntax trees

An AST is a data structure that represents source code.
Many compilers use it internally after the source code is
initially parsed. Some, like the Nim compiler, expose it to
the user.

 The AST is a tree with each node representing a single
construct in the code. Let’s look at an example. Consider
a simple arithmetic expression such as 5 * (5 + 10). The
simplest AST for this might look something like the one
shown in figure 9.5.

 I’ll refer to this AST as the Simple AST for the rest of
this chapter. Let’s look at how the Simple AST can be rep-
resented as a Nim data type. The following listing shows
the definition for a Node type that’s then used to model
the Simple AST shown in figure 9.5.

type
NodeKind = enum

Literal, Operator

Node = ref object
case kind: NodeKind
of Literal:

value: int
of Operator:

left, right: Node
operator: char

proc newLiteralNode(value: int): Node =
result = Node(

kind: Literal,
value: value

)

var root = Node(
kind: Operator,
operator: '*',

Listing 9.1 Modeling the Simple AST shown in figure 9.5

In the Simple AST, there are only two node
kinds: literals, which include any number,
and operators, which specify the type of
arithmetic operation to perform.

When the node is a literal, an int
can be stored in its value field.

Each operator node may have up to
two child nodes. This recursive
definition allows a tree to be formed.

When the node is an operator, a char
can be stored in its operator field.

A convenience proc to
create a new literal node

The “root” variable holds a
reference to the root node
in the AST.

+

5 10

5

*

Figure 9.5 A simple AST for
5 * (5 + 10)
Licensed to <null>

263Macros
left: newLiteralNode(5),
right: Node(

kind: Operator,
operator: '+',
left: newLiteralNode(5),
right: newLiteralNode(10),

)
)

The root node holds the full representation of
5 * (5 + 10) in the form of an AST. Figure 9.6
shows how the Simple AST diagram maps to
the Node data structure defined in listing 9.1.

 You could write a procedure to convert any
Node instance into its textual representation,
or to display it as a tree using an indentation-
based format as follows.

Operator '*'
Literal 5
Operator '+'

Literal 5
Literal 10

Nim’s AST isn’t as simple as this because it models a language that’s far more complex
than simple arithmetic expressions. However, the arithmetic expression modeled by
the Simple AST is valid Nim code, so we can compare Nim’s AST to it. The dumpTree
macro defined in the macros module takes a block of code as input and outputs the
code block’s AST in the same indentation-based format as shown in listing 9.2.

 To display the AST of 5 * (5 + 10) in Nim, compile the following code:

import macros

dumpTree:
5 * (5 + 10)

Among the messages from the compiler, you should see the following.

StmtList
Infix

Ident !"*"
IntLit 5
Par

Infix
Ident !"+"
IntLit 5
IntLit 10

Listing 9.2 A simplified AST for 5 * (5 + 10) displayed using an indentation-based format

Listing 9.3 The Nim AST for 5 * (5 + 10) displayed using an indentation-based format

left right

+

5 10

5

left right

*

root

Literal

Operator

Operator

Literal Literal

Figure 9.6 An annotated version of
figure 9.5 showing how it maps onto root
in listing 9.1
Licensed to <null>

264 CHAPTER 9 Metaprogramming
You’ll note that the Nim AST differs from the Simple AST of the arithmetic expression
in two important ways:

 It includes many more node kinds, such as StmtList, Infix, and Ident.
 The AST is no longer a binary tree: some nodes contain more than two

children.

The structure is the same, but this AST contains more information about the expres-
sion. For example, it indicates that infix notation was used to invoke the * and + oper-
ators, and that a part of the expression is enclosed in parentheses.

 The AST can represent any valid Nim code, so there are many node kinds. To get a
feel for the different node kinds, try displaying the AST of some common constructs,
such as procedures, for loops, procedure calls, variable declarations, and anything
else you can think of.

 The Nim AST is described in the documentation for the macros module
(http://nim-lang.org/docs/macros.html). The documentation includes the defini-
tion of a NimNode type that’s very similar to the Node type defined in listing 9.1. The
macros module also contains many procedures that can be used for building, modify-
ing, and reading the AST.

 Before moving on, let’s look at some of these node kinds. Table 9.1 describes each
of the node kinds in the Nim AST that you’ve seen so far.

Let’s try to build the Nim AST of 5 * (5 + 10) in a way that’s similar to the definition of
root in listing 9.1, using the procedures defined in the macros module. The following
listing shows the code needed to create this AST.

Table 9.1 Various Nim node kinds and what they mean

Node kind Description Children

StmtList A list of statements. Arbitrary number of other Nim
nodes that represent a statement.

Infix An infix expression, such as 5 * 5. Infix operator, the infix operator’s
two arguments.

Ident An identifier, such as the name of a
procedure or variable. The node’s
ident field contains the identifier.

Cannot contain children.

Par Parentheses The code inside the parentheses.

IntLit An integer literal. The node’s
intVal field contains the integer
value.

Cannot contain children.
Licensed to <null>

http://nim-lang.org/docs/macros.html

265Macros

import macros

static:
var root = newStmtList(

infix(
newIntLitNode(5),
"*",
newPar(

infix(
newIntLitNode(5),
"+",
newIntLitNode(10)

)
)

)
)
echo(root.repr)

Compile listing 9.4, and you’ll see that the output is 5 * (5 + 10). You’ve successfully
constructed your first Nim AST!

9.3.3 Macro definition

So far, you’ve learned what an AST is, including how it can be constructed and the different
ways of displaying it during compilation. But you’re still missing an important piece of
knowledge: how to add the Nim code that the AST represents into the final executable.

 A macro is used for precisely that purpose. In the previous section, you constructed
a simple arithmetic expression that produces a numeric value. Let’s write a macro that
emits this expression’s AST so its result can be calculated.

import macros

macro calculate(): int =
result = newStmtList(

infix(
newIntLitNode(5),
"*",
newPar(

infix(
newIntLitNode(5),
"+",
newIntLitNode(10)

)
)

)
)

echo(calculate())

Listing 9.4 Creating the Nim AST of 5 * (5 + 10)

Listing 9.5 A macro that emits 5 * (5 + 10)

The macros module defines all
the necessary procedures for
constructing the AST.

The static keyword runs its body at
compile time. It’s used because the
AST procedures are only available at
compile time.

The repr call converts the root
node to a textual representation
of the Nim code.

Imports the macros module, which
is necessary for AST creation

Defines a new macro
called “calculate”

Creates a new StmtList node with children.
The resulting node produces “5 * (5 + 10).”

Creates a new Infix node as a child of the
StmtList node. The resulting node
produces “5 * (5 + 10).”

Creates a new IntLit node as a child of the
Infix node. The resulting node produces “5.”

Specifies
the infix

operator
to call

Creates a new Par node as a child of the Infix
node. The resulting node produces “(5 + 10).”

Creates a new Infix node as a child of the Par
node. The resulting node produces “5 + 10.”
Licensed to <null>

266 CHAPTER 9 Metaprogramming
There are two important things to note about listing 9.5:

 Macros can be invoked in the same way as procedures and templates.
 The AST tree structure constructed in the body of the macro is very similar to

the Nim AST shown in listing 9.3.

The calculate macro currently generates only a single expression, so the StmtList
node can be safely removed from the calculate macro. Once you remove it, the
macro will generate functionally equivalent code with no extraneous AST nodes.

 That was a very simple macro, designed to show you how macros use the AST to
emit Nim code. The equivalent template is much simpler and achieves the same
thing:

template calculate(): int = 5 * (5 + 10)

echo(calculate())

The calculate macro produces a static AST, but the true power of macros is their abil-
ity to produce ASTs dynamically. The next section will show you how to best make use
of this power.

9.3.4 Arguments in macros

As with procedures and templates, when macros are called, you may pass one or more
arguments to them. Doing so allows you to alter the behavior of your macro, changing
the code that it produces. You may, for example, wish to pass the name of a variable
that the macro should use in the code that it generates.

 You should think about arguments passed to macros a little bit differently from
those passed to procedures and templates. For example, a macro parameter’s type
may be int, but in the body of the macro, it’s a NimNode. The following code demon-
strates this:

import macros

macro arguments(number: int, unknown: untyped): untyped =
result = newStmtList()
echo number.treeRepr()
echo unknown.treeRepr()

arguments(71, ["12", "89"])

Compiling this listing will result in the following output:

IntLit 71
Bracket

StrLit 12
StrLit 89

Every macro must
have a return type.

Every macro must generate a valid
AST; an empty StmtList node is
created here to satisfy this rule.

The treeRepr procedure is similar to the
dumpTree macro; it returns a textual
representation of a NimNode.

The AST of the first argument passed to the macro: 71

The AST of the second argument
passed to the macro: ["12", "89"]
Licensed to <null>

267Creating a configuration DSL
 There are two things that you need to take away from this example:

 A macro must always have a return type, and it must always return a valid AST,
even if that AST is essentially empty.

 All macro parameters are Nim AST nodes (with the exception of static[T] and
typedesc parameters; you can find information about such special types in the
Nim manual: http://nim-lang.org/docs/manual.html#special-types).

The latter point makes perfect sense because macros already manipulate the AST.
Representing each macro argument as an AST node allows for constructs that ordi-
narily wouldn’t be possible in Nim. One example of this is the following:

arguments(71, ["12", 876, 0.5, -0.9])

This example displays the following AST for the second argument:

Bracket
StrLit 12
IntLit 876
Float64Lit 0.5
Prefix

Ident !"-"
Float64Lit 0.9

Arrays in Nim are homogeneous, so each value that they contain must be of the same
type. Attempting to declare an array with the values "12", 876, 0.5, -0.9 wouldn’t be
possible because the value’s types include string, int, and float. In this case, macros
give greater flexibility, allowing the possibility to use a heterogeneous array construc-
tor when calling macros.

 That should give you a good idea of the basic macro concepts. In the next section,
I’ll show you how to build a configuration DSL.

9.4 Creating a configuration DSL
Perhaps most usefully, metaprogramming allows you to create a DSL: a language that’s
specialized to a particular application domain. Within the bounds of Nim’s syntax,
you can define very flexible and intuitive languages that make writing software easier.

 For example, you might write a DSL for defining the structure of HTML. Instead of
writing a long, error-prone string literal, you could write something like the following:

html:
head: title("My page")
body: h1("Hello!")

That’s just one example. In this section, I’ll show you how to create a configuration
DSL that will allow you to more easily define the structure of a configuration file and
to read and write configuration files easily. You’ll first see how a typical DSL is repre-
sented in Nim’s AST, and then we’ll look at the AST representation of the desired gen-
erated code. Finally, we’ll look at how to build that AST based on information
specified by the user when they use the DSL.
Licensed to <null>

http://nim-lang.org/docs/manual.html#special-types

268 CHAPTER 9 Metaprogramming
 The DSL that you’ll create as part of this chapter will allow the following code to be
written:

import configurator

config MyAppConfig:
address: string
port: int

var config = newMyAppConfig()
config.load("myapp.cfg")
echo("Configuration address: ", config.address)
echo("Configuration port: ", config.port)

This code defines a simple configuration file named MyAppConfig that stores two
pieces of information: an address that’s a string, and a port that’s an integer. The defi-
nition is initialized using a constructor, and it’s then loaded from a local myapp.cfg
file. The address and port are then accessible as fields and their values are displayed
on the screen.

 Specifying a configuration like this is useful because it streamlines the process of
reading and writing configuration files. There’s only a single place where the configu-
ration file is defined, and that file is very easy to read and understand.

 This DSL will be written as a library named configurator. Let’s get started!

9.4.1 Starting the configurator project

Begin by creating a new configurator directory somewhere on your filesystem. As with
any project, set up a project directory structure containing a src directory and a Nim-
ble file. Remember that you can use the nimble init command to help with this.
Finally, create a configurator.nim file inside the src directory, and open it in your
favorite code editor.

 Macros will be used to implement the configurator DSL, so import the macros
module at the top of your newly created configurator.nim file.

 When working on a DSL, it’s a good idea to start by writing down what you’d like
the language to look like. Chances are that the code you have in mind may not be pos-
sible due to syntax restrictions,2 so it’s a good idea to test your language’s syntax first.
The easiest way to do so is to use the dumpTree macro defined in the macros module.
For example, to test whether the configuration DSL can be used, you can compile the
following:

import macros

dumpTree:
config MyAppConfig:

address: string
port: int

2 These syntax restrictions are often a good thing because they ensure that Nim programmers can always parse
Nim DSLs.
Licensed to <null>

269Creating a configuration DSL
The dumpTree macro doesn’t need the code inside it to be defined; the code only
needs to be syntactically valid. If the syntax is correct, you’ll see the compiler output
its AST, and you can be sure that it can be used as a DSL.

 After testing the validity of your DSL, you can write a macro for that DSL and dis-
play the various arguments’ ASTs, as in the following listing.

import macros

macro config(typeName: untyped, fields: untyped): untyped =
result = newStmtList()
echo treeRepr(typeName)
echo treeRepr(fields)

config MyAppConfig:
address: string
port: int

Save this code into configurator.nim and compile the file. You’ll see the following
among the output:

Ident !"MyAppConfig"
StmtList

Call
Ident !"address"
StmtList

Ident !"string"
Call

Ident !"port"
StmtList

Ident !"int"

This gives you an idea of the AST structure that you’ll be working with. Next, it’s time
to decide what code needs to be emitted in order to implement the desired code
logic. To implement the example shown at the start of this section, the macro will
need to create three separate constructs:

 A MyAppConfig object type, to store the configuration data
 A newMyAppConfig constructor procedure that initializes a new MyAppConfig

type
 A load procedure that parses the specified file and then populates the specified

instance of the MyAppConfig object with the information stored in the parsed file

The name of the generated type and constructor procedure depends on the name
specified in the config construction. For the example in listing 9.6, the name speci-
fied in the config construction is MyAppConfig. This name will be used by the macro
for the generated type and for the constructor, which derives its name from the gener-
ated type.

Listing 9.6 A simple config macro

The config
macro takes a
type name and
a list of fields.

Each macro must return a valid
AST, so create a basic one here.

For now, display the AST of the
typeName and fields arguments.
Licensed to <null>

270 CHAPTER 9 Metaprogramming
 The fields included in the generated type will also depend on those specified in
the config construction body. This includes the address string field and the port
int field in listing 9.6.

 The next three sections focus on implementing functionality in the macro to create
the three constructs: an object type, a constructor procedure, and a load procedure.

9.4.2 Generating the object type

Before you begin to write AST-generation code in the macro, you’ll first need to figure
out what AST you want to generate, which means you need to know the Nim code that
you want the macro to emit.

 Let’s start by writing down the type definition that should be generated by the
config construct. You saw this construct earlier:

config MyAppConfig:
address: string
port: int

The type definition that needs to be generated from this is very simple:

type
MyAppConfig = ref object

address: string
port: int

Two pieces of information specified in the config construct have been used to create
this type definition: the type name MyAppConfig, and the two fields named address
and port.

 Like any code, this code can be represented as an AST, and you need to find out
what that AST looks like in order to generate it. Let’s take a look at the information
that dumpTree shows us about this type definition:

import macros

dumpTree:
type

MyAppConfig = ref object
address: string
port: int

Compiling this code should show the following AST.

StmtList
TypeSection

TypeDef
Ident !"MyAppConfig"
Empty
RefTy

ObjectTy

Listing 9.7 The AST of the MyAppConfig type definition

Empty nodes reserve
space for extra features
like generics in the AST.
Licensed to <null>

271Creating a configuration DSL
Empty
Empty
RecList

IdentDefs
Ident !"address"
Ident !"string"
Empty

IdentDefs
Ident !"port"
Ident !"int"
Empty

The AST in listing 9.7 contains a large number of Empty nodes. These exist for
optional constructs like generics, in order to ensure that the index position of each
node remains the same. This is important, because navigating an AST is done using
the [] operator and an index, which you’ll see in action later in this chapter.

 Now that you know what the AST that needs to be generated looks like, you can
begin to write code to generate it. In some cases, the macros module contains proce-
dures that make the process of generating an AST for a specific construct easier.
Unfortunately, in this case you’ll need to generate the AST in listing 9.7 manually
using certain primitive procedures because there currently is no type section construc-
tor in the macros module. The following listing shows a procedure that generates a
large chunk of the AST shown in listing 9.7.

proc createRefType(ident: NimIdent, identDefs: seq[NimNode]): NimNode =
result = newTree(nnkTypeSection,

newTree(nnkTypeDef,
newIdentNode(ident),
newEmptyNode(),
newTree(nnkRefTy,

newTree(nnkObjectTy,
newEmptyNode(),
newEmptyNode(),
newTree(nnkRecList,

identDefs
)

)
)

)
)

The code in listing 9.8 creates each node, one by one, manually using the newTree
procedure. It takes a node kind as an argument, together with zero or more child

Listing 9.8 Generating the AST for a type definition

Empty nodes reserve
space for extra features
like generics in the AST.

This procedure takes two arguments: an
identifier that specifies the name of the type
to define and a list of identifier definitions,
which includes information about the type’s
fields. It returns a new NimNode.

Each node is created using the newTree
procedure, which allows children to be

easily added during its creation.

Each child node is given as an
argument to the outer newTree call.

Certain specialized procedures
make the process of creating
nodes easier.
Licensed to <null>

272 CHAPTER 9 Metaprogramming
nodes. These child nodes are added automatically to the resulting new Nim AST node
returned by newTree.

 Each node kind begins with the nnk prefix. For example, in the procedure’s body,
the first line shows the creation of a nnkTypeSection node. This matches the output of
dumpTree shown in listing 9.7, except that the output doesn’t contain the nnk prefixes.

 Note the striking similarities between the dumpTree output shown in listing 9.7 and
the code in listing 9.8. The way in which the nodes are nested is even the same. The
differences lie in the procedure calls: most of them involve newTree, but there are also
a couple of specialized procedures:

 newIdentNode—This procedure takes either a string or a NimIdent argument
and creates an appropriate nnkIdent node out of it. A nnkIdent node can also
be created via newTree, but doing so would be more verbose because the ident
would also need to be assigned. An ident node can refer to any identifier, such
as a variable or procedure name, but, as in this case, it may contain an identifier
that hasn’t been defined yet.

 newEmptyNode—This procedure creates a new nnkEmpty node. It’s simply an
alias for newTree(nnkEmpty).

Now let’s look at the createRefType procedure implemented in listing 9.8. It doesn’t
generate the full AST shown in listing 9.7—it misses out on a key part, the identDefs.
Instead, it accepts the identDefs as an argument and assumes that they were gener-
ated somewhere else. A single nnkIdentDefs node represents a field definition,
including the name and type of the field. In order to generate these, let’s define a new
procedure. The next listing shows the toIdentDefs procedure, which converts a list of
call statements to a list of nnkIdentDefs nodes.

proc toIdentDefs(stmtList: NimNode): seq[NimNode] =
expectKind(stmtList, nnkStmtList)
result = @[]

for child in stmtList:
expectKind(child, nnkCall)
result.add(

newIdentDefs(
child[0],
child[1][0]

)
)

Listing 9.9 Converting a list of call statements to a list of nnkIdentDefs nodes

Ensures that the stmtList
node is of kind nnkStmtList

Initializes the result variable
with an empty sequence

Iterates over all child
nodes in stmtList

Ensures that the
child node is of kind
nnkCall

Adds a nnkIdentDefs node
to the result sequence

Creates a new nnkIdentDefs node

The field name. The child’s first child,
such as Call -> Ident !"address".

The field type. The child’s second child’s child,
such as Call -> StmtList -> Ident !"string".
Licensed to <null>

273Creating a configuration DSL
The stmtList argument that will be passed to the toIdentDefs procedure is the sec-
ond argument in the config macro. More to the point, as you saw previously, the AST
of stmtList will look like this:

StmtList
Call

Ident !"address"
StmtList

Ident !"string"
Call

Ident !"port"
StmtList

Ident !"int"

It’s the job of the toIdentDefs procedure to take this AST and convert it to a list of
nnkIdentDefs nodes that matches the ones in listing 9.7. The code is fairly short, but
it could be shortened further at the cost of some error checking.

 The expectKind procedure is used to ensure that the input AST doesn’t contain
any unexpected node kinds. It’s a good idea to use this when writing macros because
sometimes your macro may get an unusual AST. Adding such checks makes debugging
easier and is akin to using the doAssert procedure.

 The conversion process is fairly simple:

1 The statement list node’s children are iterated over.
2 Each child’s children and grandchildren are accessed using the [] operator to

retrieve the two identifiers corresponding to the name and type of the fields.
3 The newIdentDefs procedure is used to create a new nnkIdentDefs node.
4 The new nnkIdentDefs node is added to the result sequence.

Both the conversion and the indexing depend on the structure of the AST. The struc-
ture shouldn’t change unless the user of the configurator library passes something
unexpected in the config macro’s body. Later in this section, you’ll see how this code
reacts to different inputs and how to make the failures more informative.

 You have now defined enough to generate the correct type definition in the
config macro. All you need to do is add a call to createRefType and toIdentDefs:

let identDefs = toIdentDefs(fields)
result.add createRefType(typeName.ident, identDefs)

Add these two lines after the result variable is defined in your macro. Then, at the
end of the macro, add echo treeRepr(result) to display the produced AST. Compile
the code, and your AST should match the one shown in listing 9.7.

 Another way to confirm that the generated AST is correct is to convert it to code
and display that. You can do so by writing echo repr(result) at the end of your file.
After compiling, you should see the following:

type
MyAppConfig = ref object

address: string
port: int
Licensed to <null>

274 CHAPTER 9 Metaprogramming
That’s the first and most lengthy part of this macro finished! The two remaining parts
shouldn’t take as long.

9.4.3 Generating the constructor procedure

The config macro can now generate a single type definition, but this type definition
needs a constructor to be usable. This section will show you how to create this very
simple constructor.

 The constructor doesn’t need to do much—it only needs to initialize the reference
object. Because of this, the code that needs to be generated is simple:

proc newMyAppConfig(): MyAppConfig =
new result

You could generate this code much like the type definition in the previous section,
but there’s an easier way. Instead of manually creating the AST for the procedure and
its body, you can use a template. The following code shows the required template.
Add this template just above your config macro in the configurator.nim file:

template constructor(ident: untyped): untyped =
proc `new ident`(): `ident` =

new result

This template creates a new procedure, naming it newIdent, where Ident is the ident
argument passed to the template. The ident argument is also used for the return type
of the created procedure. If you were to call this template via constructor(MyApp-
Config), you’d essentially define the following procedure:

proc newMyAppConfig(): MyAppConfig =
new result

But how can this template be used in the config macro? The answer lies in the getAst
procedure defined in the macros module. This procedure converts the code returned
by a template or a macro into one or more AST nodes.

 Thanks to getAst and the power of templates, you can add result.add
getAst(constructor(typeName.ident)) right after the createRefType call. Your
config macro should now look like the following code listing.

macro config*(typeName: untyped, fields: untyped): untyped =
result = newStmtList()

let identDefs = toIdentDefs(fields)
result.add createRefType(typeName.ident, identDefs)
result.add getAst(constructor(typeName.ident))

Listing 9.10 The config macro

The new call initializes the
reference object in memory.

For the procedure name, the compiler concatenates
the text “new” with whatever the ident parameter
holds. This is a simple way by which templates allow
you to construct identifiers.
Licensed to <null>

275Creating a configuration DSL
echo treeRepr(typeName)
echo treeRepr(fields)

echo treeRepr(result)
echo repr(result)

You should be able to compile the code again and see that the constructor procedure
is now generated.

9.4.4 Generating the load procedure

Last but not least is the load procedure. It will load the configuration file for you,
parse it, and populate an instance of the configuration type with its contents.

 For the config definition shown in the previous sections, which contains an
address string field and a port integer field, the load procedure should be defined as
follows:

proc load*(cfg: MyAppConfig, filename: string) =
var obj = parseFile(filename)
cfg.address = obj["address"].getStr
cfg.port = obj["port"].getNum.int

For simplicity, the underlying configuration format used in this example is JSON. The
load procedure starts by parsing the JSON file, and it then accesses the address and
port fields in the parsed JSON object and assigns them to the configuration instance.

 The address field is a string, so the load procedure uses getStr to get a string for
that field. The port field is similarly filled, although in this case the field is an integer,
so the getNum procedure is used. The type of the field will need to be determined by
the macro when the procedure is generated.

 In order to generate these statements, you’ll need information about the config
fields, including their names and types. Thankfully, the code already deals with this
information in the form of IdentDefs. You can reuse the IdentDefs that have already
been created to generate the load procedure. Let’s take a look at these IdentDefs for
the MyAppConfig definition again:

IdentDefs
Ident !"address"
Ident !"string"
Empty

IdentDefs
Ident !"port"
Ident !"int"
Empty

Loads the JSON file from filename
and saves it into the obj variable

Gets the address field from the parsed
JSON object, retrieves its string value,
and assigns it to the configuration
instance’s address field

Gets the port field from the parsed JSON
object, retrieves its integer value, and
assigns it to the configuration instance’s
port field. The type conversion is needed
because the getNum procedure returns a
BiggestInt type.
Licensed to <null>

276 CHAPTER 9 Metaprogramming
The structure is pretty simple. There are two nodes, and they each contain the field
name and type. Let’s use these to generate the load procedure. I’ll show you how to
write it in steps.

 First, define a new createLoadProc procedure and add it just above the config
macro in your configurator.nim file:

proc createLoadProc(typeName: NimIdent, identDefs: seq[NimNode]): NimNode =

Just like the createRefType procedure defined previously, createLoadProc takes two
parameters: a type name and a list of IdentDefs nodes. This procedure will use a semi-
automatic approach to generating the necessary AST.

 The load procedure takes two parameters—a cfg and a filename—and you need
to create an Ident node for each of them. In addition to that, you should create an
Ident node for the obj variable used in the procedure:

var cfgIdent = newIdentNode("cfg")
var filenameIdent = newIdentNode("filename")
var objIdent = newIdentNode("obj")

Add this code to the body of the createLoadProc procedure.
 The preceding code is pretty straightforward. It creates three different identifier

nodes that store the names of the two parameters and one of the variables. Let’s use
these to generate the first line in the load procedure:

var body = newStmtList()
body.add quote do:

var `objIdent` = parseFile(`filenameIdent`)

Append this code to the end of the createLoadProc body.
 This code starts off by creating a new StmtList node to hold the statements in the

load procedure’s body. The first statement is then generated using the quote proce-
dure defined in the macros module. The quote procedure returns a NimNode in a
manner similar to the getAst procedure, but instead of needing to declare a separate
template, it allows you to pass statements to it. Code inside the body of quote can be
substituted by surrounding it with backticks.

 In the preceding code, the name that the objIdent node holds is substituted into
the var definition. A similar substitution happens for the filenameIdent node. This
results in var obj = parseFile(filename) being generated.

 The next step is to iterate through the IdentDefs and generate the correct field
assignments based on them.

The cfg parameter that will store an
instance of the configuration object

The filename parameter that
will store the filename of the

configuration file

The obj variable that will
store the parsed JSON object

Defines a variable that stores
the body of the load procedure

The quote procedure returns an
expression’s AST. It allows for nodes
to be quoted inside the expression. The expression whose AST

is generated is the first
line of the load procedure,
essentially: var obj =
parseFile(filename)
Licensed to <null>

277Creating a configuration DSL

for identDef in identDefs:
let fieldNameIdent = identDef[0]
let fieldName = $fieldNameIdent.ident
case $identDef[1].ident
of "string":

body.add quote do:
`cfgIdent`.`fieldNameIdent` = `objIdent`[`fieldName`].getStr

of "int":
body.add quote do:

`cfgIdent`.`fieldNameIdent` = `objIdent`[`fieldName`].getNum().int
else:

doAssert(false, "Not Implemented")

Append this code to the end of the createLoadProc body.
 This is a rather large chunk of code, but it generates very simple statements that

depend on the fields specified in the config body. For the config definition shown in
the previous sections, it will generate the following two statements:

cfg.address = obj["address"].getStr

cfg.port = obj["port"].getNum.int

With that code, the procedure body is fully generated. All that’s left is to create the
AST for the procedure, and this can be done easily using the newProc procedure
defined in the macros module.

return newProc(newIdentNode("load"),
[newEmptyNode(),
newIdentDefs(cfgIdent, newIdentNode(typeName)),
newIdentDefs(filenameIdent, newIdentNode("string"))],

body)

The newProc procedure generates the necessary AST nodes that model a procedure.
You get to customize the procedure by specifying the name, the parameters, the
return type, and the procedure body.

 All that’s left to do is add a call to generate the load proc in the config macro. Just
add result.add createLoadProc(typeName.ident, identDefs) below the getAst call.

 That’s all there is to it! Let’s make sure that it all works now.

Iterates through the IdentDefs nodes Retrieves the field name
from the IdentDefs node

Converts the Ident into a string

Generates different code
depending on the field’s type

For a string field, generates
the getStr call

For an int field, generates the
getNum call and a type conversion

The first procedure parameter,
in this case cfg

The return type of the procedure; an empty
node is used to signify a void return type

The second procedure
parameter, in this

case filename

A StmtList node containing
statements to be included in
the body of the procedure

The name of the procedure
Licensed to <null>

278 CHAPTER 9 Metaprogramming
9.4.5 Testing the configurator

Before testing the code, you should create a JSON file that can be read. Create a new
file called myappconfig.json beside your configurator.nim file,3 and add the following
code to it:

{
"address": "http://google.com",
"port": 80

}

This will be read by the configurator in your test. The following listing shows how to
test it.

import json

config MyAppConfig:
address: string
port: int

var myConf = newMyAppConfig()
myConf.load("myappconfig.json")
echo("Address: ", myConf.address)
echo("Port: ", myConf.port)

Add the code in listing 9.11 to the bottom of the configurator.nim file. Then compile
and run the file. You should see the following output:

Address: http://google.com
Port: 80

WARNING: WORKING DIRECTORY Be sure to run the program from the src
directory; otherwise, your myappconfig.json file will not be found.

The DSL is finished! Based on this example, you should have a good idea of how DSLs
can be written in Nim and how macros work. Feel free to play around with the resulting
DSL. For an extra challenge, you might wish to add support for more field types or to
export the generated types and procedures to make them usable from other modules.

9.5 Summary
 Metaprogramming consists of three separate constructs: generics, templates,

and macros.
 Generic procedures reduce code duplication.
 Concepts are an experimental feature related to generics that allows you to

specify requirements that a matched type must satisfy.
 You can define generic procedures to reduce code duplication.

3 This was done for simplicity; ideally, you'd create a new tests directory and place the JSON file there.

Listing 9.11 Testing the config macro
Licensed to <null>

279Summary
 Templates are an advanced substitution mechanism; they’re expanded at com-
pile time.

 Templates support hygiene, which is a way to control access to variables defined
in them.

 Templates and macros are the only constructs that can take a code block as an
argument.

 Macros work by reading, generating, and modifying code in the form of an
abstract syntax tree.

 You can get an AST representation of any piece of Nim code.
 You can generate code by constructing an AST using macros.
Licensed to <null>

appendix A
Getting help

While reading this book, you may run into cases where some concepts might be
tough to understand, one of the examples doesn’t work, or you have trouble install-
ing something like the Nim compiler on your machine.

 The Nim community, which includes me, is available to help with such issues.
This appendix describes different ways that you can get in touch with people who
will be happy to help.

A.1 Real-time communication
The fastest way to get help is via one of the two real-time communication applica-
tions used by Nim programmers: IRC and Gitter. At the time of writing, there are
more than 100 users in both Nim’s IRC channel and Gitter room.

 The messages are relayed between IRC and Gitter, so speaking in one will send
an equivalent message to the other. This means you can speak with the same set of
people regardless of whether you’re using IRC or Gitter.

 Gitter is far more approachable, so I suggest using it, especially if you’re not
already familiar with IRC. You can find it here: https://gitter.im/nim-lang/Nim.

 IRC can also be accessed via the web, or you can use one of the many available
IRC clients, such as HexChat. The #nim IRC channel is hosted on freenode and can
be accessed using the web chat client available here: http://webchat.freenode.net/
?channels=nim.

 Feel free to join and ask whatever questions you might have. In some cases, you
might not hear from anyone for a while, so please be patient. If you need to leave
but want to come back later to see if your question was answered, you can look at
the messages written in the channel in Gitter and also in our IRC logs, located here:
http://irclogs.nim-lang.org/.
280

Licensed to <null>

https://gitter.im/nim-lang/Nim
http://webchat.freenode.net/?channels=nim
http://webchat.freenode.net/?channels=nim
http://webchat.freenode.net/?channels=nim
http://irclogs.nim-lang.org/

281Other communication methods
A.2 Forum
There are two forums that you can use to get help. The first is the Nim forum, avail-
able at http://forum.nim-lang.org/. The second is the Manning forum for this book,
available at https://forums.manning.com/forums/nim-in-action.

 For questions relating to this book, feel free to use either forum. For more-general
Nim questions, please use the Nim forum.

A.3 Other communication methods
For other ways to get in touch with the Nim community, take a look at the community
page on the Nim website: http://nim-lang.org/community.html.
Licensed to <null>

http://forum.nim-lang.org/
https://forums.manning.com/forums/nim-in-action
http://nim-lang.org/community.html

appendix B
Installing Nim

Before you begin writing Nim code, you need to install and set up the Nim com-
piler. The Nim compiler is the tool that will transform your Nim source code into a
binary format that your computer can then execute. It’s only used during develop-
ment, so users of your application won’t need it.

 You have the option of installing Aporia, the Nim IDE, as well. Aporia is a useful
tool for beginning Nim programmers: it allows you to compile and run Nim code
easily, and it can also be used as a Nim-centric alternative to popular source-code
editors such as gedit, Sublime Text, or Atom. Visual Studio Code is another editor
that offers functionality similar to Aporia (through a plugin) and can be installed
relatively easily.

 In this appendix, you’ll learn how to install both the Nim compiler and an
appropriate text editor. You’ll then test this Nim development environment by
compiling and executing a Hello World example.

 Let’s get started. Grab any computer—even a Raspberry Pi will work—and fol-
low along!1

B.1 Installing the Nim compiler
It’s difficult to write installation instructions that will remain accurate for years to
come.2 This is especially true for a compiler that’s still evolving. In this appendix, I
can’t provide a step-by-step installation guide for Nim, but I can discuss some
potential troubleshooting steps and let you know where to look for installation
instructions.

B.1.1 Getting up-to-date installation info

It’s best to consult the Nim website for up-to-date installation information. In par-
ticular, see the install page: https://nim-lang.org/install.html.

1 Seriously, though, please don’t use a Raspberry Pi for development.
2 During the development of this book, the installation instructions changed at least once.
282

Licensed to <null>

https://nim-lang.org/install.html

283Installing the Nim compiler
 That page should be your first stop when installing Nim because it also contains
the downloads for Nim. There will be different downloads for each OS and each will
have different installation instructions. You may need to build the compiler yourself
or simply execute an installer.

 Depending on your OS, the installation might be easy or difficult. As Nim evolves,
installation should become easier for all OSs, but as of the time of writing that’s not yet
the case. Follow whatever instructions the Nim website offers, and if they fail, you can get
in touch with me or somebody else in the Nim community (as discussed in appendix A).

 For completeness, I’ll describe the installation process offered by Nim since its
inception—building from source. This installation method should work more or less
the same way for the foreseeable future, but remember that there are likely simpler
ways to install Nim.

POSSIBLE PROBLEMS There’s nothing more annoying than not being able to
install something. Please remember that the Nim community is happy to help
out. Consult appendix A for ways to get in touch with us so that we can help
you solve your issue.

B.1.2 Building from source

This installation method will work on all platforms. It relies on a compressed archive
that contains the C source code, which has been generated for a specific version of the
Nim compiler. What you’ll be doing here is compiling the Nim compiler yourself.

 To compile the C source code, you need to have a C compiler installed on your sys-
tem. If you don’t already have one, you’ll need to install one first.

Installing a C compiler
The installation of a C compiler is fairly straightforward. The recommended C compiler
and the process for installing it differs depending on your OS.

Windows
You can install GCC by installing the MinGW package available here:
www.mingw.org/.

Mac OS
The recommended C compiler on Mac OS is Clang. Clang can be installed in two
ways.

If you have Homebrew, simply execute brew install clang to install Clang.

Otherwise, follow these steps:

 Open a terminal window.
 Execute clang or gcc.

A dialog box asking whether you’d like to install the Command Line Developer Tools
should appear. Alternatively, you can execute xcode-select --install.
Licensed to <null>

www.mingw.org/

284 APPENDIX B Installing Nim

DOWNLOAD THE NIM COMPILER ARCHIVE

Once you have a working C compiler installed, it’s time to download the C sources for
the latest version of the Nim compiler.

 Navigate to the Nim download page and find the download links for the generated
C sources for Windows, Mac OS, or Linux.

 You may see two download links, one of them a zip archive and another a tar.xz
archive. If you’re unsure which one to pick, download the zip archive.

EXTRACT THE ARCHIVE AND MOVE IT TO A SAFE LOCATION

Once the download completes, extract the archive. You should be able to simply double-
click the zip archive in your OS’s file manager to extract it.

 You should now see a folder containing files belonging to the Nim compiler (see
figure B.1). The folder’s name will likely be nim-<ver>, where <ver> is the version of
the Nim compiler that you downloaded (for example, nim-0.12.0).

(continued)
Click the Install button. Wait for the installation to finish, and then verify that the
installation was successful by executing clang --version.

Linux
In all likelihood, you already have a C compiler installed. Before attempting to install,
you can verify this by running gcc --version or clang --version.

The recommended C compiler for Linux is GCC. The installation instructions depend
on your distribution’s package manager.

On Yum-based distributions, you should be able to execute sudo yum install gcc
to install GCC.

On Debian-based distributions, you can execute apt-get like so: sudo apt-get

Figure B.1 The nim directory after it’s been extracted from the archive
Licensed to <null>

285Installing the Nim compiler
Move the Nim folder to a safe place where you’d like to install it, such as ~/programs/
nim.

COMPILE THE NIM COMPILER

Now open a terminal. Navigate into the nim directory using the cd command; for
example, cd ~/programs/nim. Your terminal should look similar to figure B.2.

You can now build the Nim compiler by executing one of the build scripts. The
build.bat and build64.bat scripts are for Windows, and the build.sh script is for all
other OSs. To execute the build.sh script, type sh build.sh into the terminal.

 Depending on the CPU power of your computer, this may take some time. But
unless you’re compiling Nim on a 1995 IBM NetVista, it shouldn’t take more than a
minute.

 When the compilation is successful, you should see “SUCCESS” at the bottom of
your terminal, as in figure B.3.

GETTING HELP Did the compilation fail? Are you having other issues? There
are many ways to get help, and one of the easiest is to ask on the Nim forum
or on IRC. For more information, see appendix A.

The bin directory should now contain a nim binary, but the installation is not finished
yet.

Figure B.2 Terminal
after navigating to
/home/dom/programs/nim

Figure B.3 The compilation succeeded
Licensed to <null>

286 APPENDIX B Installing Nim
ADD NIM TO YOUR PATH
In order for the nim binary to be visible to other applications, such as the terminal,
you need to add the bin directory to your PATH. In the previous example, the path
you’d need to add would be /Users/dom/programs/nim/bin because the username
in that example was dom and the ~ was expanded.

EXPANDING THE TILDE Keep in mind that the ~ expands to /home/<your_
username> on Linux. The preceding examples are for Mac OS. In certain
cases, adding a file path that includes the ~ to PATH may not work, so it’s usu-
ally best to just add an absolute path.

VERIFY THAT THE INSTALLATION WAS SUCCESSFUL

Ensure that you’ve completed these steps successfully by opening a new terminal win-
dow and executing nim -v. The output should look similar to the following:

Nim Compiler Version 0.14.2 (2016-08-09) [MacOSX: amd64]
Copyright (c) 2006-2016 by Andreas Rumpf

git hash: e56da28bcf66f2ce68446b4422f887799d7b6c61
active boot switches: -d:release

Assuming you were successful in installing Nim, you’re now ready to begin developing
Nim software! Before testing your new development environment, you have the
option of installing the Aporia IDE, discussed in the next section. You can skip this if
you’d like to use another IDE or text editor for writing Nim code. Section B.3 will
show you how to compile your first Nim application.

How to add Nim to your PATH
Windows
To add Nim to your PATH, you need to access the advanced system settings, which
you can do by opening Control Panel > System and Security > System. You should
then see Advanced System Settings in the left sidebar. Click on it and a dialog box
should appear. It will include an Environment Variables button that will display
another dialog box allowing you to edit the environment variables. Edit the Path vari-
able either under System Variables or User Variables. Make sure the path you add is
separated from the other paths by a semicolon (;).

Mac OS
There are multiple ways to edit your PATH on Mac OS. You can open the /etc/paths
file (as root using sudo nano /etc/paths or via your favorite editor) and append the
Nim bin path to the bottom. Alternatively, you can edit the ~/.profile file and add
export PATH=$PATH:/home/user/path/to/Nim/bin to the bottom.

Linux
If you want the change to be system-wide, you can edit the /etc/profile file. To make
Nim available only for your user, you can edit the ~/.profile file. In both cases you
should add export PATH=$PATH:/home/user/path/to/Nim/bin to the bottom of
those files.
Licensed to <null>

287Testing your new development environment
B.2 Installing the Aporia IDE
The installation of Aporia is entirely optional. Aporia integrates with the Nim com-
piler, so it makes experimenting with Nim easier. With Aporia, you’ll be able to
compile and run Nim source code by pressing the F5 key on your keyboard. Later in
this section, you’ll also learn how to compile Nim source code using the command
line, so you won’t miss out by using a different source code editor.

 Releases of Aporia can be downloaded from GitHub, and you’ll find detailed instruc-
tions on how to install it on your OS here: https://github.com/nim-lang/Aporia#readme.

 There are also other editors that can be used instead of Aporia. For example,
Visual Studio code with the Nim plugin is another good choice, especially for Mac OS
users. For a full list, see the following Nim FAQ answer: https://nim-lang.org/faq
.html#what-about-editor-support.

B.3 Testing your new development environment
You should now have a basic Nim development environment set up. This setup should
include the Nim compiler and may also include Aporia or a different source code edi-
tor that supports Nim syntax highlighting.

 You can test your new environment with a simple Nim Hello World program.
 Open your source code editor and type in the following short piece of code.

echo "Hello World!"

Save the file as hello.nim. Then, open a new terminal in the directory that contains
the file you just saved, and execute nim c -r hello.nim. This command will compile
the hello.nim file you’ve written, generating as output a brand-new binary file (the c
subcommand stands for compile). Once the compilation finishes, the binary will be
executed, as specified by the -r option (which stands for run).

Listing B.1 Hello World

Nim command syntax
The Nim command syntax takes the form of nim command [options] projectFile
.nim, where the options are optional. The following table shows some common Nim
commands.

Command Description

c, compile Compiles the projectFile.nim file and all its dependencies into an executable
using the default backend (C).

cpp Compiles the projectFile.nim file and all its dependencies using the C++ back-
end. The result is an executable.

js Compiles the projectFile.nim file and all its dependencies using the JavaScript
backend. The result is a JavaScript file.

check Parses the projectFile.nim file and checks it for errors, displaying all the errors found.
Licensed to <null>

https://github.com/nim-lang/Aporia#readme
https://nim-lang.org/faq.html#what-about-editor-support
https://nim-lang.org/faq.html#what-about-editor-support
https://nim-lang.org/faq.html#what-about-editor-support

288 APPENDIX B Installing Nim

APORIA In Aporia, you can simply press F5 to compile and run your pro-
gram. You don’t even have to save it manually!

At this point, if you’ve followed along and performed these steps yourself (I strongly
encourage you to do this!), you may be wondering what to make of all the messages
being output to your screen. These messages come from the Nim compiler. By
default, the Nim compiler displays information about which modules it’s currently
processing to notify you of its progress. Other information includes warnings, errors,
and other messages triggered by your source code. The following listing shows a sam-
ple of output from the Nim compiler.

config/nim.cfg(54, 3) Hint: added path: '~/.nimble/pkgs/' [Path]

Hint: used config file '~/nim/config/nim.cfg' [Conf]

Hint: system [Processing]

Hint: hello [Processing]

CC: hello

CC: stdlib_system

[Linking]

Hint: operation successful (9407 lines compiled; 1.434 sec total;

➥14.143MB; Debug Build) [SuccessX]

/Users/dominikp/nim-in-action/examples/hello

Hello World!

You’re probably surprised at just how short the Hello World example is. In compari-
son to other programming languages like C, Nim doesn’t require a main function,
which drastically reduces the amount of code needed for this example. In Nim, top-
level statements are executed from the top of the file to the bottom, one by one.

WARNING: PERFORMANCE Top-level statements are generally harder to opti-
mize for the compiler. To get maximum performance, use a main procedure
and compile with the -d:release flag.

Listing B.2 Compiler output

(continued)
For a full list of commands, execute nim --help and nim --advanced. When you’re
compiling with the C/C++ backends, passing in the -r flag will run the resulting
executable after compilation. Arguments to this executable can be passed after the
projectFile.nim param: nim c -r projectFile.nim arg1 arg2.

Added Nimble packages to
its module search path

Used a config file located
in ~/nim/config/nim.cfg

Parsing and compiling the system module to C

Using a C compiler to compile the
hello module to a binary format

Executing the resulting binary
located at that file pathOutput from the resulting

binary’s execution
Licensed to <null>

289Troubleshooting
Congratulations! You’ve successfully written your first Nim application. More impor-
tantly, you have successfully set up a Nim development environment and are now
ready to begin learning the basics of the Nim programming language.

B.4 Troubleshooting
This section identifies some problems that you may run into during the installation of
Nim, and provides solutions. This is certainly not a complete list, and I invite you to
consult the following website, which I’ll be keeping up to date, with solutions to other
problems that various users run into: https://github.com/dom96/nim-in-action-
code/wiki/Installation-troubleshooting.

 Please get in touch if you run into a problem that isn’t described in this section or
on the website. Instructions for getting in touch are available in appendix A.

B.4.1 Nim command not found

If you attempt to execute nim -v (or similar), and you see a message such as this,

command not found: nim

the likely problem is that you haven’t successfully added Nim to your PATH. Ensure
that the directory you added to your PATH contains the nim binary. You may need to
restart your terminal for the PATH changes to take effect.

 Another diagnosis tool you can use is displaying the contents of the PATH environ-
ment variable using echo $PATH on Unix or echo %PATH% on Windows.

B.4.2 Nim and C compiler disagree on target architecture

This problem manifests in an error that looks something like this:

error: 'Nim_and_C_compiler_disagree_on_target_architecture'
➥declared as an array with a negative size

Usually the problem is that your Nim compiler’s architecture isn’t the same as your C
compiler’s. For example, this can mean that the C compiler targets 32-bit CPUs,
whereas Nim targets 64-bit CPUs, or vice versa.

 To solve this issue, you can either ensure that a C compiler that targets the correct
architecture is in your PATH, or you can build a Nim compiler that targets the other
architecture. This is usually a problem on Windows, and you just need to use
build32.bat instead of build64.bat, or vice versa.

B.4.3 Could not load DLL

This issue usually presents itself when you’re executing a Nim application, either your
own or one of the Nim tools like the Nimble package manager.

 You might see a variation of the following error when executing the application:

could not load: (ssleay64|libssl64).dll
Licensed to <null>

https://github.com/dom96/nim-in-action-code/wiki/Installation-troubleshooting
https://github.com/dom96/nim-in-action-code/wiki/Installation-troubleshooting

290 APPENDIX B Installing Nim
This error means that the application can’t find a DLL that it depends on to execute.
In the preceding case, the missing DLL is used for secure socket connections via the
TLS or SSL protocols, such as HTTPS.

 This is usually an issue only on Windows. Mac OS and Linux typically already have
these dependencies installed.

 The solution is to download or install the missing DLLs. Unfortunately, on Win-
dows it’s not easy to find them online, and the Nim distribution might not include
them. That said, the Nim website does usually have a link to download them. Look for
them here: https://nim-lang.org/install.html. After downloading them, place them
somewhere in your PATH or beside your executable file.

 For Linux and Mac OS, you should be able to use a package manager to install
them if they’re missing.
Licensed to <null>

https://nim-lang.org/install.html

index

Symbols

_ (underscore character) 8,
32, 51, 171

, (comma) character 36
; (semicolon) character 24,

286
: (colon) character 31
: symbol 124
!= operator 255
!$ operator 114
. (dot) character 52
.. operator 124
" (double-quote) character

29, 66
() (parentheses) 116
[] (square brackets) 69, 159
{:} syntax 78, 113
@ character 135, 139, 216
* operator 43, 72, 103
/ operator 118–119, 165
\ (backward-slash) character

28–29
\n (newline escape sequence)

28, 168
\r (carriage return) 28
& (ampersand) character 201
(hash) character 25
% operator 78–79
` (backtick) character 33, 202
^ operator 68, 124, 158
+ operator 110, 213, 264
= (equals) character 36, 125
=~ operator 259
| operator 9
~ character 286

$ operator 31, 78–79, 93, 110,
170, 202

$! operator 207, 209

Numerics

80 port 219
404 error 216, 218
5000 port 219
7687 port 96

A

abstract syntax tree. See AST
accept procedure 83–84, 91
acceptAddr variant 92
add procedure 110, 123, 140
addr keyword 234
advantages of Nim 12–20

catches errors ahead of
time 18

efficient 13
flexible 16–18
readable 13–14
stands on its own 14–15

algorithm module 127
algorithms 111–117
allocShared procedure 174
ampersands 201
anonymous procedures

38–39
Aporia IDE

installing 287
overview 282

application-level package
managers 130

architecture
of chat applications 58–61

client components 60–61
finished product 58–61
network architectures

59–60
network models 59–60
server components 60–61

of web applications
181–186

routing in microframe-
works 183–184

Tweeter 185–186
archives, for compiler

downloading 284
extracting 284–285
moving to safe location

284–285
arguments

command-line 122–126
in macros 266–267

array type 39
arrays, bounds-checked 9
AssertionFailed exception 76
AST (abstract syntax tree)

7, 260, 262–265
ast module 19
async await 86
async procedure 250
asyncCheck command 85, 90,

94
asyncdispatch module 80, 84,

126
asyncftpclient module 126
asynchronous data transfer

91–99
adding network functional-

ity to client 95–98
291

Licensed to <null>

292 INDEX
asynchronous data transfer
(continued)

creating new Client instance
to hold data about
client 92

final results of 98–99
processing client messages

92–95
sending messages to other

clients 95
testing server without client

91–92
asynchronous execution, ver-

sus synchronous 85–86
asynchronous I/O (input/

output) 83–91
await keyword 88–91
difference between synchro-

nous and asynchronous
execution 85–86

event loops 87–88
example using callbacks

86–87
Future type 84–85

asynchronous sockets 83
AsyncHttpClient type 126
asynchttpserver module 126
asyncnet module 80, 83, 126
AsyncSocket type 80
auto type 36
await keyword 88–91, 100

B

backend, of JavaScript 242–247
using Canvas API wrapper

246–247
wrapping canvas elements

243–246
backticks 33, 202
backward-slash character

28–29
basic types 25–30

Boolean 28
characters 28
floating-points 28
integers 26–27
strings 29–30

benchmark tests 13
bigints package 142
binary notation 27
bindAddr procedure 82–83
Bitwise operations 110
block keyword 45

blocked state 66
blocking input/output, using

spawn to avoid 68–70
body parameter 207
Boehm 19
Boolean operations 110
Boolean type 26, 28
--boundsChecks option 40
break keyword 44
buffer overread 242
buffer string 171
build scripts 285
busy waiting 86
buttons, adding 217–218

C

C ++ programming language,
features of 19

c command 142, 287
C library 226
C programming language

building compiler from
source code of 283–286

adding Nim programming
language to PATH 286

compiling 285
downloading archives 284
extracting archives

284–285
moving archives to safe

location 284–285
verifying installation of

286
features of 19
wrapping external libraries

234–242
creating wrapper for SDL

(Simple DirectMedia
Layer) library 235–236

downloading SDL (Simple
DirectMedia Layer)
library 235

dynamic linking 236–237
using SDL wrappers

240–242
wrapping SDL procedures

238–240
wrapping SDL types

237–238
wrapping procedures

228–230
wrapping types 231–234

c subcommand 287
c1 sequence 79

c2nim tool 10
calculate macro 266
callback hell 88
callbacks, example of asynchro-

nous input/output
using 86–87

camelCase 8, 32
Canvas API, using wrappers

246–247
canvas elements, wrapping

243–246
CanvasRenderingContext2D

type 244
carriage return 28
case keyword 44
case statements 44
cd command 285
cfg parameter 276
chan variable 177
channels

overview 173
sending and receiving mes-

sages with 176–178
channels module 111, 177
character type 26, 28, 42
character-escape sequences 28
chat applications

architecture of 58–61
client components 60–61
finished product 58–61
network architectures

59–60
network models 59–60
server components 60–61

writing
first steps 61–62
implementing protocols

70–79
retrieving input in client

components 63–70
transferring data using

sockets 79–99
check command 287
chunks 160, 169
Clang 283
client components, retrieving

input in 60–61
reading data from standard

input streams 66–68
retrieving command-line

parameters supplied by
users 63–65

using spawn to avoid block-
ing input/output
68–70
Licensed to <null>

293INDEX
client module 79
Client type 80
clients

adding network functionality
to 95–98

creating instance to hold
data about 92

creating new Client instance
to hold data about 92

processing messages 92–95
sending messages to 95
testing server without 91–92

client-server module 59
close procedure 93, 198
cmp procedure 116
code blocks, passing to

templates 256–257
code statements 48
collection types 39–43

arrays 39
sequences 41–42
sets 42–43

colon character 31
comma character 36
command not found error 289
command-line applications 5
command-line arguments 100,

122–126
command-line parameters

overview 63
supplied by users, retrieving

63–65
command-line tools, Nimble

131
comments 25
community, for Nim program-

ming language 20, 281
Comparable concept 254
comparison operators 110
compatibility, of types 231
compilation 9–11
compiler

architecture 289
building from C sources

283–286
adding Nim programming

language to PATH 286
compiling 285
downloading archives 284
extracting archives

284–285
moving archives to safe

location 284–285
verifying installation

of 286

compiling 285
installing 282–286
verifying installation of 286

Compiler User Guide 14
compile-time error 31
compile-time function execu-

tion. See CTFE
Comprehensive Perl Archive

Network. See CPAN
concatenation operator 110
concept keyword 254
concurrency, parallelism

vs. 151–152
config macro 273
configuration DSLs, creating

267–278
generating constructor

procedures 274–275
generating load procedures

275–277
generating object types

270–274
starting configurator

project 268–270
testing configurators 278

connect procedure 82, 96
connected flag 81, 93
const char * type 229
const keyword 32
constraining generics 252–253
constructor procedures,

generating 274–275
Container variable 252
contextAttributes argument

245
continue keyword 44
control flow mechanisms 250
controllers, developing

210–219
adding Follow buttons

217–218
extending / routes 214
implementing /

createMessage routes
215

implementing /follow routes
218–219

implementing /login routes
212–213

implementing user routes
216–217

could not load error 289
counter variable 174, 176
counterLock 175
CPAN (Comprehensive Perl

Archive Network) 128

cpp command 287
crash procedure 159
createDatabase module 198
createLoadProc procedure 276
createMessage procedure 78,

97
/createMessage routes,

implementing 215
createRefType procedure 272
createThread procedure 153,

155, 159
createWindowAndRenderer

procedure 239
critbits module 111
cross-compilation 14
cstring type 229
CTFE (compile-time function

execution) 19, 260–262
curly brackets 43, 73
currentUser parameter 204

D

D programming language, fea-
tures of 19

-d release flag 167
daemonize package 135
daemons 220
data

client 92
manipulating 122–126
overview 122–126
parsing 159–167

manually using parseutils
module 163–164

manually using split
procedure 162–163

processing each line of
Wikipedia page-counts
files 164–167

understanding Wikipedia
page-counts format
160–161

using regular expressions
161–162

Wikipedia page-counts
format 161–164

reading from standard input
streams 66–68

retrieving from databases
194–198

storing in databases 189–200
setting up databases

192–194
Licensed to <null>

294 INDEX
data, storing in databases
(continued)

setting up types 190–192
testing databases 198–200

transferring asynchronously
91–99

adding network functional-
ity to client 95–98

creating new Client
instance to hold data
about client 92

final results of 98–99
processing client messages

92–95
sending messages to other

clients 95
testing server without

client 91–92
using sockets to transfer

79–99
asynchronous input/

output 83–91
asynchronously 91–99

data parameter 72
data parsing 179
data structures 111–117

modules 117
sets module 114–115
tables module 112–114

data variable 153
database module 192
databases

retrieving data from
194–198

setting up 192–194
storing data in 189–200
testing 198–200

DbConn object 192, 195
db_mysql module 190, 192
db_postgres module 190, 192
db_sqlite module 190, 192
Debian-based distributions 284
decimal notation 27
declarative templates 261
declareVar template 258–259
default parameters 36
defined procedure 121
delete procedure 123
dependencies, specifying in

Nimble 141–144
deploying web applications

219–221
configuring Jester

microframework 219
setting up reverse

proxy 219–221
developing

controllers 210–219
adding Follow buttons

217–218
extending/routes 214
implementing /

createMessage routes
215

implementing /follow
routes 218–219

implementing /login
routes 212–213

implementing user routes
216–217

front-page view 207–210
packages in Nimble package

manager 147–148
giving meaning to version

numbers 147
storing different versions

of single package
147–148

user view 204–206
web application view

200–210
development environments.

See IDEs
directory layout, of packages in

Nimble 140–141
discard keyword 34, 230
discardable pragma 239, 248
distributed version control

systems. See DVCSs
DLL (dynamic-link library),

could not load 289–290
do keyword 14, 19
do notation 256
doAssert procedure 76, 100,

111
documentation

Nimble 133
standard library 108–109

domain-specific languages.
See DSLs

dot character 52
double-quote character 29, 66
downloading

compiler archives 284
SDL libraries 235

drawLines procedure 240–241
DSLs (domain-specific lan-

guages)
creating configuration

267–278
overview 7

dumpTree macro 263, 268
DVCSs (distributed version

control systems) 133
dynamic linking

overview 236–237
vs. static linking 227–228

dynamic type systems 8
dynamic-link library. See DLL
dynlib pragma 237, 248

E

echo procedure 64, 93, 110
efficiency of Nim 13
elif keyword 43
else branch 121
else keyword 43
EmbedElement type 247
empty nodes 270–271
end keyword 14, 19, 24
enum types 51–52
environment variables 286
equals character 36, 125
errors, catching ahead of time

18
escape procedure 207
event loops 87–88
except branch 48
except keyword 107
exceptions

handling 47–48
in threads 159

execCmd procedure 120
execCmdEx procedure 120
execution

difference between synchro-
nous and asynchronous
85–86

external processes 120–121
of compile-time function

261–262
threads 155–156

execution time
of parallel_counts 172–173
of sequential_counts 168

existsDir procedure 119
existsFile procedure 119
expectKind procedure 273
export marker 72
exportc procedure 246
external libraries, C program-

ming language
234–242

external package 133
Licensed to <null>

295INDEX
external processes, executing
120–121

extracting, compiler archives
284–285

F

F4 shortcut, Aporia 62
F5 shortcut, Aporia 288
Facebook Messenger 58
failed procedure 85
features

of C ++ programming
language 19

of C programming
language 19

of D programming
language 19

of Go programming
language 19

of Java programming
language 19

of Lua programming
language 19

of Nim programming
language 6–11, 19

compilation 9–11
instability of newer 20
memory management 11
metaprogramming 6–7
powerful type system 8–9
style insensitivity 8

of Python programming
language 19

of Rust programming
language 19

FFIs (foreign function
interfaces) 25, 226, 261

FIFO (first-in-first-out) 176
files

parsing each line in 165–166
using iterators to read frag-

ments of 164–165
filesystems 118–120
fill procedure 116
fillString procedure 32, 261
filter procedure 38
filters 202
findMessages procedure 196,

200
findUser procedure 196, 200
flags argument 240
flexibility of Nim 16–18
float type 9, 26, 250

floating-point type 28
flow, controlling 43–47
FlowVar container 158
FlowVar types, retrieving return

values from 158–159
fmReadWrite mode 89
Follow buttons, adding

217–218
follow procedure 195, 218
/follow route, implementing

218–219
foo identifier 258
for loop 18, 40, 44–45, 205
for statement 45
foreign function interface

226–234
static vs. dynamic linking

227–228
type compatibility 231
wrapping C procedures

228–234
foreign-key constraint 194
format string 230
forums 281
forward declaration 34
FP (functional programming)

17, 21
fragments

overview 160, 169
using iterators to read

164–165
free function 232
from statement 106
front-page view, developing

207–210
full-stack applications 6
future module 38
Future type 84–85

G

garbage-collected memory 154
GC (garbage collector) safety,

with threads 153–156
GCC compiler 284
generics 250–254

concepts 253–254
constraining 252–253
in type definitions 252
procedures 251

get procedure 75
getAppFilename procedure 64
getCurrentDir procedure 165
getElementById

procedure 244

getHomeDir procedure 118
getStr procedure 75
git tool 134
Gitter 280
global variables 173, 262
Go programming language,

features of 19
group communication 58
guarded variables 174
guards, preventing race condi-

tions with 174–176
GUIs (graphical user

interfaces) 181
gzipped archives 160

H

handling exceptions 47–48
hash character 25
hash procedure 113–114
hashes module 114
HashSet[string] variable 115
Haskell 36
header pragma 230
help

community page 281
forums 281
real-time communication

280
--help flag 64
hexadecimal notation 27
hg tool 134
hidden fields 204
home directory 118
Homebrew 283
homogeneous arrays 267
Host header 184
HT (Hyper-Threading)

Technology 152
HTML templates 7
htmlgen module 202
httpclient module 126–127
hygiene, of templates 259–260
hyphens 139

I

I/O (input/output)
asynchronous 83–91

await keyword 88–91
difference between syn-

chronous and asynchro-
nous execution 85–86

event loops 87–88
Licensed to <null>

296 INDEX
I/O (input/output), asynchro-
nous (continued)

example using callbacks
86–87

Future type 84–85
reading data from input

streams 66–68
retrieving input in client

components 63–70
reading data from stan-

dard input streams
66–68

retrieving command-line
parameters supplied by
users 63–65

using spawn to avoid block-
ing input/output
68–70

using spawn to avoid
blocking 68–70

ident argument 274
Ident node 264
identifiers, comparing 8
IDEs (integrated development

environments)
Aporia, installing 287
testing new 287–289

if statement 24, 43
immutable variables 30, 53
import keyword 26, 71, 103,

106
import statement 96
importc pragma 230, 234, 248
importcpp pragma 245, 248
impure modules 108
in keyword 43
increment procedure 174, 178
indentation 23–24, 53
IndexError exception 64
indexing operator 51
index-out-of-bounds exception

41
Infix node 264
init command 139, 187
init type 9
initTable procedure 113
injected variables 259
input streams 63
input/output. See I/O
instability, of newer features 20
install command

understanding 136–139
using 135

installing
Aporia IDE 287
compiler 282–286

building from C sources
283–286

getting up-to-date installa-
tion info 282–283

verifying installation 286
Nim, troubleshooting

289–290
Nimble package manager

130
Nimble packages 135–139

int type 250
int64 type 27
int8 type 27
integer type 26–27
integrated development envi-

ronments. See IDEs
interfaces. See Canvas API; for-

eign function interface
interfacing with OSs

executing external processes
120–121

generic operating system
services 122

with other programming lan-
guages

JavaScript backend
242–247

through foreign function
interface 226–234

wrapping external C pro-
gramming language
libraries 234–242

working with filesystems
118–120

internet, networking and
126–127

interpreter 11
IntLit node 264
intsets module 111
IoT (Internet of Things) 5
IRC (Internet Relay Chat) 58,

280
is operator 254
isMainModule constant 76
isReady procedure 69, 158
isRootDir procedure 119
items iterator 46, 110
__iter__ method 46
iterators, reading file fragments

with 164–165

J

Java programming language,
features of 19

JavaScript, backend 242–247
using Canvas API wrapper

246–247
wrapping canvas elements

243–246
Jester 183–184, 188, 219
js command 287
JSON (JavaScript Object Nota-

tion)
generating 78–79
parsing 72–78

json module 73, 122
JsonNode type 73–74
JsonNodeKind type 73

K

KeyError exception 75
keywords 23, 33, 88–91

L

lazy evaluation 250
len procedure 110
let keyword 30–31
libName 237
libraries

external C programming
language 234–242

SDL (Simple DirectMedia
Layer)

creating wrappers for
235–236

downloading 235
libvlc 130
LIMIT keyword 198
line feed 28
lineFlowVar variable 158
lines iterator 164
lineTo procedure 244
linking

dynamic 236–237
static 227–228

list variable 18
listen procedure 83, 91
lists module 111
load procedures

generating 275–277
overview 105, 269

localhost 83
Licensed to <null>

297INDEX
localtime procedure 231–233
lock mechanism 174
locks

overview 179
preventing race conditions

with 174–176
logging module 250
/login routes, implementing

212–213
loop procedure 91
Lua programming language,

features of 19

M

macro_rules 19
macros 260–267

abstract syntax trees 262–265
arguments in 266–267
compile-time function

execution 261–262
defining 265–266

macros module 264–265
main function 14, 288
main thread 68
many-to-many communication

58
map procedure 18
mapIt procedural 259
math module 141, 144
Measure-Command 168
memory errors 9
memory management 11
Message type 72, 191
messageFlowVar 97
messages

client, processing 92–95
sending and receiving

between threads
176–178

sending to clients 95
metaprogramming

creating configuration
DSLs 267–278

generating constructor
procedures 274–275

generating load
procedures 275–277

generating object
types 270–274

starting configurator
project 268–270

testing configurators 278
generics 250–254

concepts 253–254

constraining 252–253
in type definitions 252
procedures 251

macros 260–267
abstract syntax trees

262–265
arguments in 266–267
compile-time function

execution 261–262
defining 265–266

templates 254–260
hygiene 259–260
parameter substitution in

257–258
passing code blocks to

256–257
microframeworks

Jester, configuring 219
routing in 183–184

MinGW package 283
modules

core 110–111
for threads 153, 155–156
impure 108
namespacing 105–107
pure 107–108
sets 114–115
tables 112–114
threadpool 156–159

defined 157
executing 155–156
retrieving return values

from FlowVar
types 158–159

using spawn with 157–158
moduleVersion variable 103,

106
MongoDB 190
mostPopular variable 172
moveTo procedure 244
mult procedure 140
multiline comment, creating

25
multiLine variable 30
multitasking 151
mutable variables 53
MyAppConfig object 269
myMax procedure 251, 253
MyPkg.nimble file 133
myProc procedure 34
myUndeclaredVar 258

N

name variable 216
namespacing 105–107
net module 82, 126
netAddr field 80
network architectures 59–60
network functionality, adding

to clients 95–98
networking, internet and

126–127
New Repository button, GitHub

145
newException procedure 47
newIdentNode procedure 272
newline escape sequence 28,

168
newSeq procedure 41–42
newServer procedure 81–82
newSocket constructor 82
Nim programming language

adding to PATH 286
advantages of 12–20

catches errors ahead of
time 18

efficient 13
flexible 16–18
readable 13–14
stands on its own 14–15

command not found 289
compiler

C compiler disagrees on
target architecture 289

compiling 285
downloading archives 284
extracting archives

284–285
installing 282–286
moving archive to safe

location 284–285
defined 4–12
features of 6–11, 19

compilation 9–11
memory management 11
metaprogramming 6–7
powerful type system 8–9
style insensitivity 8

implementation of 11–12
installing

Aporia IDE 287
testing new IDE 287–289
troubleshooting 289–290

shortcomings of 20
use cases 4–6

.nimble files, writing 141–144
Licensed to <null>

298 INDEX
nimble init command 149, 268
nimble install command 148
Nimble package manager

command-line tool 131
creating packages in

139–144
choosing names 139
Nimble package directory

layout 140–141
specifying dependencies

141–144
writing .nimble files

141–144
developing packages in

147–148
giving meaning to version

numbers 147
storing different versions

of single package
147–148

installing 130
installing packages 135–139

understanding install
command 136–139

using install command
135

package directory layout
140–141

packages, defined 131–134
publishing packages

145–146
nimble publish command 149
NimKernel 5
NimNode 266
nnk prefix 272
nnkEmpty node 272
nnkIdent node 272
nominative typing 50
nonblocking behavior 177
non-ref types 50
NoSQL database 190
NOT NULL key constraint 194
notInjected variable 259
number variable 30–31
numbers sequence 38
numbers variable 112

O

-o flag 62
object keyword 49
object types

generating 270–274
overview 49–50

OCaml 36
octal notation 27
of branch 44
oldBufferLen 171
one-to-one communication 58
online documentation 108–109
OOP (object-oriented pro-

gramming) 7, 16–17
open procedure 177, 192
openAsync procedure 87
OpenSSL library 225
operator 51, 74–75, 124
ORDER BY keyword 198
os module 63, 118–120, 127
osinfo package 121
osproc module 120–121
OSs (operating systems), inter-

facing with 117–122
executing external processes

120–121
generic operating system

services 122
working with filesystems

118–120
overloading procedures 37–38

P

packages
creating in Nimble package

manager 139–144
choosing names 139
Nimble package directory

layout 140–141
specifying dependencies

141–144
writing .nimble files

141–144
defined 131–134
developing in Nimble pack-

age manager 147–148
giving meaning to version

numbers 147
storing different versions

of single package
147–148

directory layout of 140–141
installing in Nimble package

manager 135–139
publishing with Nimble pack-

age manager 145–146
storing different versions of

147–148
Pageview API, Wikipedia 160

pairs iterator 46
Par node 264
parallel_counts, execution time

of 172–173
parallelism

concurrency vs. 151–152
dealing with race conditions

173–178
preventing with guards

174–176
preventing with locks

174–176
sending and receiving mes-

sages between threads
using channels
176–178

parsers 168–173
execution time of parallel_

counts 172–173
measuring execution time

of sequential_counts
168

parallel readPageCounts
procedure 171–172

parallelizing sequential_
counts 168–169

parse procedure 169
parseChunk procedure

170
type definitions 169

parsing data 159–167
parsing Wikipedia page-

counts format 161–164
processing each line of

Wikipedia page-counts
files 164–167

understanding Wikipedia
page-counts
format 160–161

sequential_counts 168–169
using threads in Nim

153–159
exceptions in threads 159
GC (garbage collector)

safety 153–156
thread pools 156–159
threads modules 153–156

param1 variable 123
paramCount procedure 64, 100
parameters

command-line 63–65
of procedures 36
substitution of, in templates

257–258
paramStr() procedure 63, 100,

122
Licensed to <null>

299INDEX
parentDir procedure 119
parentheses 116
parse procedure 166, 169
parseChunk procedure

169–170
parseJson procedure 74
parseMessage procedure 72, 79
parseopt module 64, 125
parsers, parallelizing 168–173

execution time of parallel_
counts 172–173

measuring execution time of
sequential_counts 168

parallel readPageCounts
procedure 171–172

parallelizing sequential_
counts 168–169

parse procedure 169
parseChunk procedure 170
type definitions 169

parseutils module
manually parsing data with

163–164
overview 125

parsing
command-line arguments

122–126
data 159–167

in Wikipedia page-counts
format 161–164

manually using parseutils
module 163–164

manually using split
procedure 162–163

processing each line of
Wikipedia page-counts
files 164–167

understanding Wikipedia
page-counts format
160–161

using regular expressions
161–162

each line in files 165–166
JSON 72–78

parsingex application 123
PascalCase 33
PATH variable

adding Nim programming
language to 286

overview 289
path-manipulation procedures

118
PCRE library 108
peer-to-peer networking 59
ping messages 99

PNG library, Python 105
pointer arithmetic 9
points array 240
points parameter 239
poll procedure 88, 90, 97, 159
pollEvent procedure 239
pop pragma 238
printf prototype 229
private keyword 72
proc keyword 33, 39, 53
procedural macros 261
procedural programming 21
procedures

anonymous 38–39
constructor, generating

274–275
generic 251
load, generating 275–277
overloading 37–38
parameters of 36
returning values from 35–36
wrapping

in C programming
language 228–230

in SDL (Simple Direct-
Media Layer) 238–240

processMessages procedure
93–94

programming languages,
differentiating 8

protocol module 72–73, 79,
103, 139

protocols, implementing
70–79

generating JSON 78–79
modules 71–72
parsing JSON 72–78

ptr type 9
public keyword 72
publishing packages, with Nim-

ble package manager
145–146

pull request 146
pure modules 107–108
pure pragma 52
push pragma 238
Python programming lan-

guage, features of 19

Q

queues module 111
quit procedure 64, 110
quote procedure 276

R

-r option 287
race conditions 173–178

sending and receiving mes-
sages between threads
176–178

using guards to prevent
174–176

using locks to prevent
174–176

raise keyword 47
raise statement 159
randomNumber variable 106
re module 108, 161
readability, of Nim program-

ming language 13–14
readAll procedure 87
readChars procedure 171
readFile function 87
reading data, from standard

input streams 66–68
readLine procedure 68, 97
readPageCounts procedure

overview 165
parallel version of 170–172

real-time communication, to
get help 280

receiving messages, between
threads using channels
176–178

recv procedure 82, 177
recvLine procedure 96
redirect procedure 218
Redis 190
ref keyword 49
ref object 246
ref types 50
regular expressions, parsing

data with 161–162
renderer.clear statement 241
renderLogin procedure 207
renderMain procedure 185,

207
renderMessages procedure 205
renderTimeline procedure

207–208, 214
renderUser procedure 185,

201, 204–205
repeat template 257
repository 134
repr procedure 110
result variable 36, 53, 170, 273
resultChan channel 178
resultVar procedure 36
Licensed to <null>

300 INDEX
resultVar2 procedure 36
resultVar3 procedure 36
retrieving

command-line parameters
supplied by users
63–65

data from databases 194–198
input in client components

63–70
reading data from stan-

dard input streams
66–68

using spawn to avoid block-
ing input/output
68–70

return values from FlowVar
types 158–159

return keyword 35
returning values, from

procedures 35–36
reverse procedure 116
reverse proxy, setting up

219–221
root node 263
root variable 262
route

extending 214
overview 183, 210

routes block 217
Rumpf, Andreas 4, 20
Rune type 28
runForever procedure 87, 89
runtime errors 23
Rust programming language,

features of 19

S

sayHello procedure 177
SDL (Simple DirectMedia

Layer) 234
libraries

creating wrappers for
235–236

downloading 235
using wrappers 240–242
wrapping procedures

238–240
wrapping types 237–238

sdl module 236
SdlEvent type 239
SDL_INIT_VIDEO flag 240
SdlRenderer 238–239
SdlRendererPtr 239

SdlWindow 238–239
SdlWindowPtr 239
search command 134–135
seconds variable 234
semicolon 24, 286
send procedure 82, 177
sending messages

between threads using
channels 176–178

to clients 95
seq type 41
sequence type 41–42
sequential_counts

measuring execution time of
168

parallelizing 168–169
sequtils module 42
server component 60
server module 79
Server type 80
serverAddr variable 64
servers

components of 60–61
testing without clients 91–92

set type 42–43
Set-Cookie header 213
setLen 166
sets module 111, 114–115
setup procedure 198
shared library files 236
sharing memory 173
shortcomings of Nim 20
showData thread 154
showNumber procedure 9
Simple DirectMedia Layer.

See SDL
Sinatra 183
Slack 58
Slice object 124
SMT (simultaneous multi-

threading) technology
152

smtp module 126
snake_case 8
socket variable 96
sockets

defined 82–83
transferring data with 79–99

asynchronous I/O 83–91
asynchronously 91–99

sort procedure 115
sorted procedure 116
spawn

using to avoid blocking
input/output 68–70

using with threadpool
modules 157–158

split procedure
manually parsing data

with 161–163
overview 124

splitFile procedure 119
splitLines iterator 170
splitPath procedure 119
sql procedure 193
SQLite library 102
square brackets 69, 159
src directory 186
standard library

algorithms 111–117
core modules 110–111
data structures 111–117

modules 117
sets module 114–115
tables module 112–114

for networking 126–127
interfacing with OSs

117–122
executing external

processes 120–121
generic operating system

services 122
working with filesystems

118–120
manipulating data 122–126
modules 103–107
overview 107–109

impure modules 108
online documentation

108–109
pure modules 107–108
wrappers 108

understanding data 122–126
startsWith integer 124
statements identifier 256
statements, splitting 24
static keyword 265
static linking, vs. dynamic

linking 227–228
static type systems 8
staticExec procedure 262
staticRead procedure 262
Stats type 169–170
stdin variable 66
StmtList node 264, 277
storage duration 232
storing

data in databases 189–200
setting up databases

192–194
Licensed to <null>

301INDEX
storing, data in databases
(continued)

setting up types 190–192
testing databases 198–200

defining storage 30–33
different versions of single

package 147–148
streams, reading data from

66–68
string formatting operator 201
string type 26, 29–30
stropping 23
struct tm type 232
structural typing 50
structures of data 111–117

modules 117
sets module 114–115
tables module 112–114

strutils module 8, 18, 30
style insensitive 6, 8, 32
subroutines 16, 33
subscribing, Twitter 185
substitution, of parameters in

templates 257–258
substr procedure 110
surname argument 37
switch statements 44
synchronous execution 85–86
syntax

abstract syntax trees 262–265
comments 25
indentation 23–24
keywords 23

system module 26, 42, 110, 127
system.cmp procedure 116
system-level package managers

129

T

tables module 111–114, 127
tags 134
tailDir procedure 119
target architecture, Nim and C

compiler disagree on
289

task 151
TCP sockets 82
telnet application 91
templates 254–260

hygiene 259–260
parameter substitution in

257–258
passing code blocks to

256–257

testing
configurators 278
new IDEs 287–289
server without clients 91–92

thread module 111
threadpool modules 156–159

defined 157
executing 155–156
retrieving return values from

FlowVar types 158–159
using spawn with 157–158

threads 153–159
exceptions in 159
GC (garbage collector) safety

153–156
modules 153–156
sending and receiving mes-

sages between, using
channels 176–178

using pools 156–159
defined 157
retrieving return values

from FlowVar types
158–159

using spawn with 157–158
time command 172
time procedure 231
TimeInfo object 191, 213
TimeInterval object 213
time_t type 232
tokens 170
toLowerAscii 124
top-level statements 288
toString parameter 203, 207
toUpper procedure 8
toUpperAscii 124
transferring data

asynchronously 91–99
adding network functional-

ity to client 95–98
creating new Client

instance to hold data
about client 92

final results of 98–99
processing client messages

92–95
sending messages to other

clients 95
testing server without

client 91–92
using sockets 79–99

asynchronous I/O (input/
output) 83–91

asynchronously 91–99
transport protocol 60

triple-quoted string literals 30
troubleshooting 289–290

could not load DLL 289–290
Nim and C compiler disagree

on target architecture
289

Nim command not found
289

try keyword 48
try statement 47–48
tryRecv procedure 177
tuple types 50–51
tuple unpacking 51, 92
Tweeter, architecture of

185–186
Twitter clones, building

architecture of web
applications 181–186

deploying web applications
219–221

developing controllers
210–219

developing web application
view 200–210

getting started 186–189
storing data in databases

189–200
type classes 253
type definitions 169, 252
type keyword 113
type mismatch error 251
type section 49, 53
type systems 8–9
typed arguments 258
typedesc parameter 267
types

compatibility of 231
wrapping

in C programming
language 231–234

in SDL (Simple Direct-
Media Layer) 237–238

See also basic types; collection
types; object types; user-
defined types

U

UDP sockets 82
UFCS (Uniform Function Call

Syntax) 17, 107
Uint32 type 238
underscore character 8, 32, 51,

171
Licensed to <null>

302 INDEX
Unicode characters 32
unicode module 28–29, 124
unindent procedure 30
UNIX time 194
unsigned integer 27
untyped arguments 258
user routes, implementing

216–217
User type 191
user view, developing 204–206
user-defined types 49–52

enums 51–52
objects 49–50
tuples 50–51

userLogin procedure 217
users, retrieving command-line

parameters supplied by
63–65

utils module 140

V

values, returning from
procedures 35–36

var keyword 31, 33
variables

defining 30–33
overview 115

varName variable 259
--ver flag 131, 134
ver variable 121
verifying installation of

compiler 286
version field 138
version key 147
versions

numbers for, giving meaning
to 147

storing different versions of
single package 147–148

view
of front page 207–210

of user 204–206
of web applications 200–210

VM (virtual machine) 15
void procedure 34

W

waitFor procedure 89
walkDir iterator 119
walkFiles iterator 45
web applications

architecture of 181–186
architecture of Tweeter

185–186
routing in microframe-

works 183–184
deploying 219–221

configuring Jester micro-
framework 219

setting up reverse
proxy 219–221

web pages, retrieving 127
WhatsApp 58
when statement 121
WHERE clause 198
while loop 44, 96, 163
while statement 67
whitespace character 163
Wikipedia page-counts

files, processing each line
164–167

finding most popular article
166–167

format
parsing 161–164
understanding 160–161

windows symbol 121
wrappers

Canvas API 246–247
SDL (Simple DirectMedia

Layer)
creating for libraries

235–236
using 240–242

wrapping
C programming language

procedures 228–230
C programming language

types 231–234
canvas elements 243–246
external C libraries 234–242

creating wrappers for SDL
library 235–236

downloading SDL library
235

dynamic linking 236–237
using SDL wrappers

240–242
wrapping SDL procedures

238–240
wrapping SDL types

237–238
writeFile procedure 118
writing

.nimble files 141–144
chat applications

first steps 61–62
implementing protocols

70–79
retrieving input in client

components 63–70
transferring data using

sockets 79–99

X

XML parsers 122
xmldom module 122
xmltree module 122, 203

Y

Yum-based distributions 284
Licensed to <null>

Nim Reference (continued)

Common infix operations (highest precedence first)

* Multiplication

/ Division (returns float)

div Division (returns integer)

mod Modulus

shl Bit shift left

shr Bit shift right

% String formatting

+ Addition

- Subtraction

& Concatenation

.. Constructs a slice

== <= < >= > != not Boolean comparisons

in notin Determines whether a value is within a container

is isnot Compile-time type equivalence

of Run-time instance of type check

and Bitwise and boolean and operation

Collections

string seq[T] Table[T]

"Hello World" @[1, 2, 3, 4] import tables
initTable({"K": "V"})

str.add("Hi") list.add(21) table["Key"] = 3.5

list.del(2)
list.delete(2)

table.del("Key")

"Hi"[0] 'H' @[1,2][0] 1 table["Key"] 3.5

"Hi"[^1] 'i' @[1,2][^1] 2 "b" in table false

"Hey"[0..1] "He" @[1,2,3][0..1] 1,2

"Hey"[1..^1] "ey" @[1,2,3][1..^1] 2,3

Licensed to <null>

Dominik Picheta

N
im is a multi-paradigm programming language that
offers powerful customization options with the ability
to compile to everything from C to JavaScript. It can

be used in any project and illustrates that you don’t have to
sacrifi ce performance for expressiveness!

Nim in Action is your guide to application development in
Nim. You’ll learn how Nim compares to other languages in
style and performance, master its structure and syntax, and
discover unique features. By carefully walking through a
Twitter clone and other real-world examples, you’ll see just
how Nim can be used every day while also learning how to
tackle concurrency, package fi nished applications, and inter-
face with other languages. With the best practices and rich
examples in this book, you’ll be able to start using Nim today.

What’s Inside
● Language features and implementation
● Nimble package manager
● Asynchronous I/O
● Interfacing with C and JavaScript
● Metaprogramming

For developers comfortable with mainstream languages like
Java, Python, C++ or C#.

Dominik Picheta is one of the principal developers of Nim and
author of the Nimble package manager.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/nim-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

Nim IN ACTION

PROGRAMMING LANGUAGES

M A N N I N G

“A great resource for
an incredibly

 powerful language.”
—Jonathan Rioux, TD Insurance

“Gives readers a solid
foundation in Nim, a robust
and fl exible language suitable
 for a variety of projects.”

—Robert Walsh
Excalibur Solutions

“A great job breaking down
the language. This book

will no doubt become the
de facto learning guide
 in the Nim space.”—Peter J. Hampton

Ulster University

“A goldmine for Nim
programmers; great insights

for any general programmer.”
—Cosimo Attanasi, ER Sistemi

SEE INSERT

	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How the book is organized
	Code conventions and downloads
	Book forum

	about the author
	about the cover illustration
	Part 1 The basics of Nim
	1 Why Nim?
	1.1 What is Nim?
	1.1.1 Use cases
	1.1.2 Core features
	1.1.3 How does Nim work?

	1.2 Nim’s benefits and shortcomings
	1.2.1 Benefits
	1.2.2 Areas where Nim still needs to improve

	1.3 Summary

	2 Getting started
	2.1 Nim syntax
	2.1.1 Keywords
	2.1.2 Indentation
	2.1.3 Comments

	2.2 Nim basics
	2.2.1 Basic types
	2.2.2 Defining variables and other storage
	2.2.3 Procedure definitions

	2.3 Collection types
	2.3.1 Arrays
	2.3.2 Sequences
	2.3.3 Sets

	2.4 Control flow
	2.5 Exception handling
	2.6 User-defined types
	2.6.1 Objects
	2.6.2 Tuples
	2.6.3 Enums

	2.7 Summary

	Part 2 Nim in practice
	3 Writing a chat application
	3.1 The architecture of a chat application
	3.1.1 What will the finished application look like?

	3.2 Starting the project
	3.3 Retrieving input in the client component
	3.3.1 Retrieving command-line parameters supplied by the user
	3.3.2 Reading data from the standard input stream
	3.3.3 Using spawn to avoid blocking input/output

	3.4 Implementing the protocol
	3.4.1 Modules
	3.4.2 Parsing JSON
	3.4.3 Generating JSON

	3.5 Transferring data using sockets
	3.5.1 What is a socket?
	3.5.2 Asynchronous input/output
	3.5.3 Transferring data asynchronously

	3.6 Summary

	4 A tour through the standard library
	4.1 A closer look at modules
	4.1.1 Namespacing

	4.2 Overview of the standard library
	4.2.1 Pure modules
	4.2.2 Impure modules
	4.2.3 Wrappers
	4.2.4 Online documentation

	4.3 The core modules
	4.4 Data structures and algorithms
	4.4.1 The tables module
	4.4.2 The sets module
	4.4.3 The algorithms
	4.4.4 Other modules

	4.5 Interfacing with the operating system
	4.5.1 Working with the filesystem
	4.5.2 Executing an external process
	4.5.3 Other operating system services

	4.6 Understanding and manipulating data
	4.6.1 Parsing command-line arguments

	4.7 Networking and the internet
	4.8 Summary

	5 Package management
	5.1 The Nim package manager
	5.2 Installing Nimble
	5.3 The nimble command-line tool
	5.4 What is a Nimble package?
	5.5 Installing Nimble packages
	5.5.1 Using the install command
	5.5.2 How does the install command work?

	5.6 Creating a Nimble package
	5.6.1 Choosing a name
	5.6.2 A Nimble package’s directory layout
	5.6.3 Writing the .nimble file and sorting out dependencies

	5.7 Publishing Nimble packages
	5.8 Developing a Nimble package
	5.8.1 Giving version numbers meaning
	5.8.2 Storing different versions of a single package

	5.9 Summary

	6 Parallelism
	6.1 Concurrency vs. parallelism
	6.2 Using threads in Nim
	6.2.1 The threads module and GC safety
	6.2.2 Using thread pools
	6.2.3 Exceptions in threads

	6.3 Parsing data
	6.3.1 Understanding the Wikipedia page-counts format
	6.3.2 Parsing the Wikipedia page-counts format
	6.3.3 Processing each line of a file efficiently

	6.4 Parallelizing a parser
	6.4.1 Measuring the execution time of sequential_counts
	6.4.2 Parallelizing sequential_counts
	6.4.3 Type definitions and the parse procedure
	6.4.4 The parseChunk procedure
	6.4.5 The parallel readPageCounts procedure
	6.4.6 The execution time of parallel_counts

	6.5 Dealing with race conditions
	6.5.1 Using guards and locks to prevent race conditions
	6.5.2 Using channels so threads can send and receive messages

	6.6 Summary

	7 Building a Twitter clone
	7.1 Architecture of a web application
	7.1.1 Routing in microframeworks
	7.1.2 The architecture of Tweeter

	7.2 Starting the project
	7.3 Storing data in a database
	7.3.1 Setting up the types
	7.3.2 Setting up the database
	7.3.3 Storing and retrieving data
	7.3.4 Testing the database

	7.4 Developing the web application’s view
	7.4.1 Developing the user view
	7.4.2 Developing the general view

	7.5 Developing the controller
	7.5.1 Implementing the /login route
	7.5.2 Extending the / route
	7.5.3 Implementing the /createMessage route
	7.5.4 Implementing the user route
	7.5.5 Adding the Follow button
	7.5.6 Implementing the /follow route

	7.6 Deploying the web application
	7.6.1 Configuring Jester
	7.6.2 Setting up a reverse proxy

	7.7 Summary

	Part 3 Advanced concepts
	8 Interfacing with other languages
	8.1 Nim’s foreign function interface
	8.1.1 Static vs. dynamic linking
	8.1.2 Wrapping C procedures
	8.1.3 Type compatibility
	8.1.4 Wrapping C types

	8.2 Wrapping an external C library
	8.2.1 Downloading the library
	8.2.2 Creating a wrapper for the SDL library
	8.2.3 Dynamic linking
	8.2.4 Wrapping the types
	8.2.5 Wrapping the procedures
	8.2.6 Using the SDL wrapper

	8.3 The JavaScript backend
	8.3.1 Wrapping the canvas element
	8.3.2 Using the Canvas wrapper

	8.4 Summary

	9 Metaprogramming
	9.1 Generics
	9.1.1 Generic procedures
	9.1.2 Generics in type definitions
	9.1.3 Constraining generics
	9.1.4 Concepts

	9.2 Templates
	9.2.1 Passing a code block to a template
	9.2.2 Parameter substitution in templates
	9.2.3 Template hygiene

	9.3 Macros
	9.3.1 Compile-time function execution
	9.3.2 Abstract syntax trees
	9.3.3 Macro definition
	9.3.4 Arguments in macros

	9.4 Creating a configuration DSL
	9.4.1 Starting the configurator project
	9.4.2 Generating the object type
	9.4.3 Generating the constructor procedure
	9.4.4 Generating the load procedure
	9.4.5 Testing the configurator

	9.5 Summary

	Appendix A Getting help
	A.1 Real-time communication
	A.2 Forum
	A.3 Other communication methods

	Appendix B Installing Nim
	B.1 Installing the Nim compiler
	B.1.1 Getting up-to-date installation info
	B.1.2 Building from source

	B.2 Installing the Aporia IDE
	B.3 Testing your new development environment
	B.4 Troubleshooting
	B.4.1 Nim command not found
	B.4.2 Nim and C compiler disagree on target architecture
	B.4.3 Could not load DLL

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

