P Wy S e T AR

Learn by doing: Iesstheory, more ults

OpenlLayers 3

Get started with OpenLayers 3 and enhance your web pages
by creating and displaying dynamic maps

Beginner's Guide

Thomas Gratier Paul Spencer open source

E ri k H azza rd community experience distilled

PUBLISHING

.alitebooks.col

http://www.allitebooks.org

Get started with Openlayers 3 and enhance your web pages
by creating and displaying dynamic maps

Thomas Gratier
Paul Spencer

Erik Hazzard

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Openlayers 3 Beginner's Guide

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2011

Second published: January 2015

Production reference: 1210115

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-236-0

www . packtpub.com

[vww allitebooks.cond

www.packtpub.com
http://www.allitebooks.org

Authors

Thomas Gratier
Paul Spencer

Erik Hazzard

Reviewers

Jorge Arévalo
Gagan Bansal
Christopher Jennison

Arnaud Vandecasteele

Commissioning Editor

Usha lyer

Acquisition Editors

Usha lyer
Sam Wood

Content Development Editor

Sweny Sukumaran

Technical Editor

Parag Topre

Copy Editors
Sarang Chari

Janbal Dharmaraj

Neha Karnani

Project Coordinator

Rashi Khivansara

Proofreaders

Ting Baker
Paul Hindle

Linda Morris

Indexer

Mariammal Chettiyar

Graphics

Valentina D'silva
Disha Haria

Abhinash Sahu

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

[vww allitebooks.cond

http://www.allitebooks.org

Thomas Gratier is a GIS consultant living in Nantes, France, who mainly specializes in

web development. He has an MSc degree in geography and urban planning from The
Institute Of Alpine Geography of The University of Grenoble. Career-wise, he decided to
steer towards more technical work but kept his geospatial passion in mind. He's gained 8
years of geospatial and programming experience, working for public authorities on water
and flood risk prevention and management, various private urban consultancies in urban
planning and web mapping solutions, and, multinational company CapGemini's GIS Division.
He's continued building a stronger knowledge in IT technologies, open source and open
data, and both web and geo standards. He does his development work with JavaScript,
Pythons and PHP. His favorite libraries and tools for working are GDAL/OGR, PostGIS,

QGIS, and Openlayers, but he also enjoys using OpenStreetMap-related libraries, such

as Mapnik or Osm2pgsql. He is an open source advocate, a Charter Member of The Open
Source Geospatial Foundation (http://www.osgeo.org)(0SGeo). He gets involved in
writing French translations for open source geospatial projects, such as MapServer and Zoo
Project. With like-minded professionals, he contributes to weekly geospatial news updates
at Geotribu (http://geotribu.net). He currently works as a freelance GIS consultant,
providing development, consulting, and training services. More information can be found on
his website at Web Geo Data Vore (http://webgeodatavore.com).

I'd like to thank the Openlayers developers and contributors for developing
this powerful web-mapping framework that works well for both simple

and complex use cases. My thanks go to Packt Publishing's editing team for
their knowledge and input to write this book. Without their invaluable help
to keep me on track, this book could not have been completed. | would
also like to thank Erik Hazzard, the author of the initial book, OpenLayers
2.10 Beginner's Guide, Packt Publishing. His version has been useful as a
starting base. 1'd like to thank Paul Spencer, my co-author for his fruitful
collaboration despite time-zone constraints. It has been a real pleasure

to share ideas on similar interests. His experience and insights have

been invaluable to complete the task of writing my first book. My thanks
go to my family and friends for their constant support, time, and kind
understanding through the years.

[vww allitebooks.cond

http://www.osgeo.org
http://geotribu.net
http://webgeodatavore.com
http://www.allitebooks.org

Paul Spencer is a software engineer who has worked in the field of open source geospatial
software for more than 15 years. He is a strong advocate of open source development and
champions its use whenever possible. Paul has architected several successful open source
projects and been actively involved in many more. Paul was involved in the early design and
development of OpenLayers and continues to be involved as the project evolves. Paul joined
DM Solutions Group (DMSG) in 1998, bringing with him advanced software development
skills and a strong understanding of the software-development process. In his time with

the company, Paul has taken on a leadership role as the CTO and primary architect for DM
Solutions Group's web mapping technologies and commercial solutions. Prior to joining
DMSG, Paul worked for the Canadian Military, after achieving his master's degree in software
engineering from The Royal Military College of Canada.

| would like to thank my wife and son, without whose support and
encouragement, | would not have been able to write this book.

Erik Hazzard is the author of OpenLayers 2.10 Beginner's Guide, Packt Publishing. He has
worked as the lead developer for a GIS-based company, has done contracting work with the
design studio, Stamen, and has co-founded two start-ups. Erik is passionate about mapping,
game development, and data visualization. In his free time, he enjoys writing and teaching,
and can be found at http://vasir.net.

[vww allitebooks.cond

http://vasir.net
http://www.allitebooks.org

Jorge Arévalo is a computer engineer from Universidad Auténoma de Madrid, UAM. He
started developing web applications with JavaScript, PHP, and Python. In 2010, he began
working with PostGIS and GDAL projects, after participating in GSoC 2009, creating the
PostGIS Raster GDAL driver. He also writes a blog on GIS at http://www.libregis.org.
Jorge Arévalo has co-written the book, Zurb Foundation 4 Starter, Packt Publishing. He

has also worked as a reviewer for the books, PostGIS 2.0 Cookbook, OpenlLayers Beginner's
Guide (2nd edition), Memcached, Speed Up your Web Application, and QGIS Cookbook,

all by Packt Publishing.

I would like to thank my girlfriend, Elena Cedillo, for her continuous
support and love.

Gagan Bansal has done B.Tech in Civil Engineering and then pursued M.Tech in Remote
Sensing. He is experienced in maps application development, geospatial database design,
and large-scale mapping using satellite data and aerial photographs. He is also experienced
in understanding various market problems and deriving a feasible GIS solution using open
source software and database. Currently, he is working with Redi ff . com as a maps
architect and engaged in developing applications for visualization and overlay of news,
socioeconomic data, and business data on maps.

[vww allitebooks.cond

http://www.libregis.org
Rediff.com
http://www.allitebooks.org

Christopher Jennison is an application developer working in Western Massachusetts
with experience in GIS application development and mobile platform development. He
has worked in web advertising, mobile advertising and application development, and data
science and mapping applications. He has worked for HitPoint Studios, as a brand game
developer, and The United States Geological Survey, as well as his own private contracts.

Arnaud Vandecasteele is a map lover and an open source / open data evangelist. After
his PhD in computer science and GIS, he decided to move to Canada to conduct research
on OpenStreetMap and to promote the use of Open Source GIS software. His experience
with OpenlLayers started from the very beginning of the library in 2006. From his website
(http://geotribu.net), he wrote several tutorials to help beginners to use OpenlLayers.
Currently, Arnaud runs a GIS consultancy firm called Mapali (http://mapali.re/) that
creates online mapping applications and provides consultancy services in the fields of web
cartography and online GIS using open source software to a wide range of clients in the
Indian Ocean (Réunion island, Mauritius).

[vww allitebooks.cond

http://geotribu.net
http://mapali.re/
http://www.allitebooks.org

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www . PacktPub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www. PacktPub.comand as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscrihe?
¢ Fully searchable across every book published by Packt
¢ Copy and paste, print, and bookmark content

¢ Ondemand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

[vww allitebooks.cond

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

Tahle of Contents

Preface 1
Chapter 1: Getting Started with OpenlLayers 7
Introducing OpenLayers 8
Advantages of using Openlayers 9
What, technically, is OpenlLayers? 10
Client side 10
Library 10
Anatomy of a web mapping application 11
Web map client 12
Web map server 12
Connecting to Google, Bing Maps, and other mapping APIs 13
Layers in OpenlLayers 14
Understanding a layer 14
The Openlayers website 14
Time for action — downloading OpenlLayers 17
Time for action — creating your first map 19
Where to go for help 26
APl docs 26
This book's website 27
Mailing lists 27
Other online resources 27
Openlayers issues 27
IRC 28
Openlayers source code repository 28
Getting live news from RSS and social networks 28
Summary 29

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 2: Key Concepts in OpenlLayers 31
Openlayers' key components 32
It's all about the map 32
Time for action — creating a map 34
Time for action — using the JavaScript console 38
Controlling the map's view 47
Displaying map content 47
Time for action — overlaying information 48
Interacting with the map 51
Using interactions 51
Controls 51
Openlayers' super classes 52
Event management with the Observable class 53
Working with events 54
Key-Value Observing with the Object class 56
Time for action — using bindTo 58
Transforming values with bindTo 60
More about KVO properties 60
Working with collections 61
Creating a collection 62
Collection properties 62
Collection events 62
Collection methods 63
Summary 64
Chapter 3: Charting the Map Class 65
Understanding the Map class 66
Time for action — creating a map 66
Map renderers 70
The Canvas renderer 70
The WebGL renderer 71
The DOM renderer 71
Time for action — rendering a masterpiece 72
Map properties 74
Time for action — target practice 74
Map methods 76
Control methods 77
Interaction methods 77
Layer methods 77
Overlay methods 78
Map rendering methods 78
Animation functions 78

Table of Contents

Time for action — creating animated maps 80
Conversion methods 83
Other methods 84

Events 85
Browser events 85
Map events 86
Render events 86

Views 87
The view Class 87
View options 87

Understanding resolution 89

View KVO properties 90
View methods 90
Time for action - linking two views 92
Summary 94
Chapter 4: Interacting with Raster Data Source 95

Introducing layers 96

Layers in OpenlLayers 3 926
The base layer 97
Overlay layers 97
Types of layers 97

Common operations on layers 29

Time for action — changing layer properties 100

Tiled versus untiled layers 103

Types of raster sources 105
Defining a source 105
A quick look at the history of API and tiles providers 106
Map mashups 107
Openlayers and third-party APls 107

Tiled images' layers and their sources 108
The OpenStreetMap layer 109

Accessing your own OSM tiles 109
Understanding OSM tiling 110
OpenStreetMap source class properties 111
The MapQuest layer 112
MapQuest source class properties 112
Stamen layers 113

Time for action — creating a Stamen layer 114
The Bing Maps layer 116

Time for action — creating a Bing Maps layer 116
The TileJSON layer 118

TileJSON source class properties 119

Table of Contents

WMTS layers

WMTS source class properties

The DebugTileSource source
TileDebugTile source class properties

Openlayers tiled WMS

Tiled WMS source class properties
Openlayers Zoomify
Time for action — creating tiles and adding Zoomify layer
Image layers and their sources
Openlayers' image WMS layer
Using Spherical Mercator raster data with other layers
Time For action — playing with various sources and layers together
Openlayers image for MapGuide
Inserting raw images using ImageStatic class
Time For action — applying Zoomify sample knowledge to a single raw image
Summary

Chapter 5: Using Vector Layers

119
120

120
120

121
122

122
123
125
125
127
128
131
132
132
134

135

Understanding the vector layer

Features of the vector layer
The vector layer is client side
Performance considerations

The difference between raster and vector
Time for action — creating a vector layer
How the vector layer works

How the vector layer is rendered
The vector layer class

Creating a vector layer

Vector layer methods
Vector sources

The vector source class

The cluster source
Time for action — using the cluster source

The format sources
What are formats?
The StaticVector source
The ServerVector source

Time for action — creating a loader function

Time for action — working with the TileVector source
Time for action — a drag and drop viewer for vector files
Features and geometries

The Geometry class
Coordinates

136

136
137
137

138
139
141
141
142
142
143
143
145
147
148

150
151
154
158

158
165
168
170

170
171

Table of Contents

Geometry methods 171
Geometry subclasses 172
The SimpleGeometry class and subclasses 172
Time for action — geometries in action 174
The Feature class 176
Creating a feature 176

The Feature class properties 177
Feature methods 177
Time for action — interacting with features 179
Summary 181
Chapter 6: Styling Vector Layers 183
What are vector styles? 184
What is a style function? 185
Time for action — basic styling 185
The style class 189
Fill styles 190
Stroke styles 191
Image styles 193
Time for action — using the icon style 195
Have a go hero — using the circle style 198
Text styles 198
Multiple styles 199
Time for action — using multiple styles 200
Style functions 202
Time for action — using properties to style features 203
Interactive styles 207
The feature overlays 208
Time for action — creating interactive styles 209
Summary 215
Chapter 7: Wrapping Our Heads Around Projections 217
Map projections 218
Why on earth are projections used? 218
Projection characteristics 218
Area 219
Scale 219
Shape 220
Other characteristics 221
Types of projections 223
EPSG codes 224
Time for action — using different projection codes 224
Latitude/longitude 227

Latitude 227

Table of Contents

Longitude 228
Time for action — determining coordinates 228
Openlayers projection class 229

Creating a projection object 229

Functions 230
Transforming coordinates 230
Time for action — coordinate transforms 231

The Proj4js library 232
Time for action - setting up Proj4js.org 233
Proj4js custom projections 233

Adding custom projections 234

OpenlLayers 3 custom projections use cases 234
Time for action - reprojecting extent 235

Using raster layers with projections 235
Time for action — using custom projection with WMS sources 235
Time for action — reprojecting geometries in vector layers 238
Summary 243

Chapter 8: Interacting with Your Map 245
Selecting features with OpenLayers 3 246

Using, creating, and converting your own data 246
Time for action — converting your local or national authorities data into
web mapping formats 248
Time for action - testing the use cases for ol.interaction.Select 251
Time for action — more options with ol.interaction.Select 255
Introducing methods to get information from your map 257

Getting features information from your map vector layers 258
Time for action — understanding the forEachFeatureAtPixel method 258

The getGetFeaturelnfoUrl method — an alternative way of getting

information from a map 261

Basics of the WMS standard 261

Using the getGetFeaturelnfoUrl method to get information from your map 262
Time for action — understanding the getGetFeaturelnfoUrl method 262
Adding a pop-up on your map 266

The ol.Overlay reference 266
Time for action - introducing ol.Overlay with a static example 267
Combining ol.Overlay with ol.Map features methods 270
Time for action — using ol.Overlay dynamically with layers information 270
Creating or updating content on your map 274
Drawing features on map 274
Time for action — using ol.interaction.Draw to share new information on
the Web 274

Table of Contents

Time for action — using ol.interaction.Modify to update drawing

Understanding interactions and their architecture

The short story of interactions

Inspecting the ol.interaction.defaults function
Time for action — configuring default interactions

A functional view for the nine default interactions
Discovering the other interactions

Time for action — using ol.interaction.DragRotateAndZoom
Time for action — making a rectangle export to GeoJSON with

ol.interaction.DragBox
Summary

Chapter 9: Taking Control of Controls

278
280
280
281
282
283
284
284

286
289

291

Introducing controls
Using controls in OpenlLayers
Adding controls to your map
Time for action — starting with the default controls
Controls overview
The ol.control.Control class
Control options
The ol.control.Attribution control
Attribution options
Time for action — changing the default attribution styles
The ol.control.Zoom control
Zoom options
The ol.control.Rotate control
Rotate options
The ol.control.FullScreen control
FullScreen options
The ol.control.MousePosition control
MousePosition options
Time for action — finding your mouse position
The ol.control.ScaleLine control
ScaleLine options
The ol.control.ZoomSlider control
ZoomSlider options
The ol.control.ZoomToExtent control

Time for action — configuring ZoomToExtent and manipulate controls

Creating a custom control

Time for action — extending ol.control.Control to make your own control

Summary

292
292
292
293
296
297

297
297

297
298
300

300
301

302
302

303
303

303
304
306

306
308

308
309
309
311
312
315

Table of Contents

Chapter 10: OpenlLayers Goes Mobile 317
Touch support in OpenlLayers 318
Using a web server 318

Finding your IP address on Windows 318
Finding your IP address on OSX 319
Finding your IP address on Linux 320

Testing your IP address 321

Time for action — go mobile! 321
The Geolocation class 324
Limitations of the Geolocation class 325
Using the Geolocation class 325
Time for action — location, location, location 325

The Geolocation class in detail 327
Geolocation constructor options 328
Geolocation KVO properties 328

The DeviceOrientation class 329
Time for action — a sense of direction 331

DeviceOrientation constructor options 332

DeviceOrientation KVO property methods 333
Debugging mobile web applications 333
Debugging on iOS 333
Debugging on Android 336

Debug anywhere — WEb INspector REmote (WEINRE) 340
Getting started with WEINRE 341

Going offline 346

The HTML 5 ApplicationCache interface 346
Creating an ApplicationCache MANIFEST file 347
Referencing a MANIFEST file in a web page 348

Time for action — MANIFEST destiny 349
Going native with web applications 351
Time for action — track me 352
Summary 354

Chapter 11: Creating Web Map Apps 355
Development strategies 355
Using geospatial data from Flickr 356

Note on APIs 356
Accessing the Flickr public data feeds 356
How we'll do it 357
Time for action — getting Flickr data 357
A simple application 359
Time for Action — adding data to your map 359
Styling the features 361

Table of Contents

Time for action — creating a style function 361
Creating a thumbnail style 362
Switch to JSON 363
Time for action — switching to JSON data 363
Time for action — creating a thumbnail style 366
Turning our example into an application 367
Adding interactivity 367
Time for action — adding the select interaction 368
Time for action — handling selection events 370
Displaying photo information 371
Time for action — displaying photo information 372
Using real time data 375
Time for action — getting dynamic data 375
Wrapping up the application 376
The plan 377
Changing the URL 377
Time for action — adding dynamic tags to your map 377
Deploying an application 379
Creating custom builds 379
Benefits of serving small files 380
Two approaches to optimization 380
What does the compiler do? 381
Rewriting code 382
Removing unused code 382
Renaming objects, functions, and properties 383
Creating a combined build 384
Time for action — creating a combined build 384
Creating a separate build 388
Time for action — creating a separate build 389
Summary 392
Appendix A: Object-oriented Programming — Introduction and Concepts 393
What is object-oriented programming? 394
What is an object? 394
What is a class? 394
What is a constructor? 395
What is inheritance? 395
What is an abstract class? 396
What is a namespace? 397
What are getters and setters? 397

Going further 400

Table of Contents

Appendix B: More details on Closure Tools and Code Optimization

Techniques 401
The Closure Tools philosophy 402
Ensuring optimum performance 402
Introducing Closure Library, yet another JavaScript library 404
The basics 404
Time for action — first steps with Closure Library 404
Custom components 409
Inheritance, dependencies, and annotations 409
Making custom build for optimizing performance 414
Time for action — playing with Closure Compiler 414
Applying your knowledge to the OpenLayers case 417
Installing the OpenLayers development environment 417
Installing Node.js 418
Installing Java 419
Installing Git 420
Microsoft Windows 420
Local OpenlLayers development reloaded 421
Time for action - running official examples with the internal
Openlayers toolkit 421
Time for action - building your custom OpenLayers library 424
Syntax and styles 431
Time for action — using Closure Linter to fix JavaScript 431
Coding styles alternatives and tools 433
Summary 434
Appendix C: Squashing Bugs with Web Debuggers 435
Introducing Chrome Developer Tools 436
Getting started with Chrome Developer Tools 436
Time for action — opening Chrome Developer Tools 437
Explaining Chrome Developer debugging controls 439
Panels 440
Time for action — using DOM manipulation with OpenStreetMap map images 442
Time for action — using breakpoints to explore your code 446
Time for action — playing with zoom button and map copyrights 449
Panel conclusion 452
Using the Console panel 452
Time for action — executing code in the Console 453
Time for action — creating object literals 454
Object literals 455
Time for action — interacting with a map 456

The API documentation 458

Table of Contents

Improving Chrome and Developer Tools with extensions 458
JSONView 458
Dealing with color with ColorZilla 459

Debugging in other browsers 460
Debugging in Microsoft Internet Explorer 461
Debugging in Mozilla Firefox 462

Summary 464

Appendix D: Pop Quiz Answers 465

Chapter 3, Charting the Map Class 465

Chapter 5, Using Vector Layers 465

Chapter 7, Wrapping Our Heads Around Projections 465

Chapter 8, Interacting with Your Map 466

Chapter 9, Taking Control of Controls 466

Chapter 10, OpenlLayers Goes Mobile 466

Appendix B, More details on Closure Tools and Code Optimization Techniques 466

Appendix C, Squashing Bugs with Web Debuggers 467

Index 469

[vww allitebooks.cond

http://www.allitebooks.org

Web mapping is the process of designing, implementing, generating, and delivering maps on
the Web and its products. OpenlLayers is a powerful, community-driven, open source, pure
JavaScript web mapping library. With this, you can easily create your own web map mashup
using a myriad of map backends. Interested in knowing more about OpenlLayers?

This book is going to help you learn OpenLayers from scratch. OpenLayers 3 Beginner's Guide
will walk you through the OpenlLayers library in the easiest and most efficient way possible.
The core components of OpenLayers are covered in detail, with examples, structured so that
you can easily refer back to them later.

The book starts off by showing you how to create a simple map and introduces you to
some basic JavaScript programming concepts and tools. You will also find useful resources
to learn more about HTML and CSS. Through the course of this book, we will review each
component needed to make a map in Openlayers 3, and you will end with a full-fledged
web map application.

You will learn some context to help you understand the key role of each Openlayers 3
component in making a map. You will also learn important mapping principles such as
projections and layers. Maps require sources of data as well; so, you will see how to create your
own data files and connect to backend servers for mapping. A key part of this book will also be
dedicated to building a mapping application for mobile devices and its specific components.

With OpenLayers 3 Beginner's Guide, you will learn how to create your own map applications
independently, without being stuck at the first stage of learning. You will acquire the
information you need to develop your skills and knowledge of the OpenLayers 3 library.

Chapter 1, Getting Started with OpenLayers will introduce you to OpenlLayers 3 and will help
you to learn some basic mapping principles. You will see how to get ready for development
in Openlayers and create your first map.

Preface

Chapter 2, Key Concepts in OpenLayers will introduce the main components of the
Openlayers library and illustrate how they are related. We will introduce some key concepts,
including events and observable properties, and learn some basic debugging techniques.

Chapter 3, Charting the Map Class will describe two of the core components, the Map and
View classes, in detail. We will learn about the properties, methods, and events of both
classes and apply them in practical examples.

Chapter 4, Interacting with Raster Data Source will introduce the concept of layers and focus
on raster layers. We will explain the difference between tiled and untiled layers and learn
how to use OpenlLayers to visualize any type of image, even non-geospatial ones.

Chapter 5, Using Vector Layers will introduce vector layers and the related source, format,
feature, and geometry classes. We will learn the properties, methods, and events associated
with each, and how to use them to load a variety of vector data into an OpenlLayers map.

Chapter 6, Styling Vector Layers will expand on our knowledge of vector layers by learning
how to apply both static and dynamic styles to them. Through hands-on examples, we'll
learn how to modify styles interactively in response to user interaction.

Chapter 7, Wrapping Our Heads Around Projections will cover the basic concepts behind map
projections and their characteristics. We will cover projection support within OpenLayers by
introducing the Proj4js library and applying it to map, vector, and raster layers.

Chapter 8, Interacting with Your Map will dive into the concept of interactions and introduce
the default interactions. After covering the available interactions in detail, we will finish with
an example showing how to use interactions to draw a rectangle.

Chapter 9, Taking Control of Controls will demonstrate the use of controls and introduce the
default controls provided by OpenLayers. We will also review each of the controls in more
detail and learn how to make a custom control.

Chapter 10, OpenLayers Goes Mobile will teach us to take advantage of mobile-specific
features such as Geolocation and Device Orientation. We will also learn how to debug mobile
web applications and look at some mobile-specific browser features that can be useful for
geospatial applications.

Chapter 11, Creating Web Map Apps will build a complete application from scratch and
learn how to use the Openlayers build system to create a production-ready application
from our code.

Appendix A, Object-oriented Programming — Introduction and Concepts covers the main
concepts of Object-oriented Programming (OOP). After, we will discover how to reuse them
exploring the Openlayers APl documentation with OOP in mind.

[2]

Preface

Appendix B, More details on Closure Tools and Code Optimization Techniques will cover more
details on Closure Tools and code optimization techniques. This appendix introduces Closure
Tools, a set of tools that OpenLayers 3 library relies on. It provides an understanding on how
to use the Closure Library and Closure Compiler with a focus on compressing OpenlLayers
code files. We will finish with a review of styles and syntax for good coding practices.

Appendix C, Squashing Bugs with Web Debuggers provides JavaScript beginners with an
in-depth review of browser developer tools. We will review Chrome Developer Tools, additional
extensions and finish with debugging tools in other browsers such as IE and Firefox.

The main thing you'll need for this book is a computer and text editor. Your operating system
will come with a text editor, any will do, but you will likely find that a text editor focused

on developer needs will be most useful. There are many excellent developer-oriented text
editors available for various operating systems, see https://github.com/showcases/
text-editorsand https://en.wikipedia.org/wiki/List of text editors for
some options. An Internet connection will be required to view the maps, and you'll also need
a recent version of a modern web browser, such as Firefox, Google Chrome, Safari, Opera, or
Internet Explorer (version 9 or higher).

For some advanced uses cases, you will also need Python, NodelS, Java, and Git (a source
code control management software). Installation instructions are provided for these
additional tools.

No knowledge of Geographic Information Systems (GIS) is required, nor is extensive
JavaScript experience. A basic understanding of JavaScript syntax and HTML/CSS will greatly
aid in understanding the material, but is not required.

This book is for anyone who has an interest in using maps on their website, from hobbyists
to professional web developers. OpenlLayers provides a powerful, but easy-to-use, pure
JavaScript and HTML (no third-party plug-ins involved) toolkit to quickly make cross-
browser web maps. A basic understanding of JavaScript will be helpful, but there is no prior
knowledge required to use this book. If you've never worked with maps before, this book
will introduce you to some common mapping topics and gently guide you through the
Openlayers 3 library. If you're an experienced application developer, this book will also serve
as a reference to the core components of OpenlLayers 3.

[31]

https://github.com/showcases/text-editors
https://github.com/showcases/text-editors
https://en.wikipedia.org/wiki/List_of_text_editors

Preface

In this book, you will find several headings that appear frequently (Time for action, What just
happened?, Pop quiz, and Have a go hero).

To give clear instructions on how to complete a procedure or task, we use these sections
as follows:

Time for action - heading

1. Action1l
2. Action?2
3. Action3

Instructions often need some extra explanation to ensure they make sense, so they are
followed with these sections:

What just happened?

This section explains the working of the tasks or instructions that you have just completed.

You will also find some other learning aids in the book, for example:

These are short multiple-choice questions intended to help you test your own
understanding.

These are practical challenges that give you ideas to experiment with what you have learned.

In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text, folder names, filenames, file extensions, pathnames, URLs, and user
input are shown as follows: "You can name the folder whatever you like, but we'll refer to
it as the sandbox folder."

[4]

Preface

A block of code is set as follows:

var map = new ol.Map ({
target: 'map',
layers: [layer],
view: view

13N

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

var map = new ol.Map ({
target: 'map',

view: view,

layers: [layer],
renderer: 'dom!'

P
Any command-line input or output is written as follows:

weinre -boundHost <your ip address>

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "You can do this in several
ways but the easiest is to load your page into a web browser and look at the Network tab".

% Warnings or important notes appear in a box like this.

a1

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

[51]

www.packtpub.com/authors

Preface

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

You can download the example code files for all Packt books you have purchased from your
account at http: //www.packtpub. com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Downloading the color images of this hook

We also provide you a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the changes in the output. You
can download this file from: http://www.packtpub.com/sites/default/files/
downloads/B02497 ColorImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we

would be grateful if you would report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata, please
report them by visiting http: //www.packtpub.com/submit-errata, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded on our
website, or added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

[6]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/B02497_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/B02497_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Getting Started with OpenLayers

Within the past few years, the popularity of interactive web maps has exploded.
In the past, creating interactive maps was reserved for large companies or
experts with lots of money. But now, with the advent of free services such as
Google and Bing Maps, online mapping is easily accessible to everyone. Today,
with the right tools, anyone can easily create a web map with little or even no
knowledge of geography, cartography, or programming.

Web maps are expected to be fast, accurate, and easy to use. Since they

are online, they are expected to be accessible from anywhere on nearly

any platform. There are only a few tools that fulfill all these expectations.
Openlayers is one such tool. It's free, open source, and very powerful. Providing
both novice developers and seasoned GIS professionals with a robust library,
OpenLayers makes it easy to create modern, fast, and interactive web-mapping
applications for desktop and mobile.

In this chapter, we will:

* & o o

Learn in detail about OpenLayers
Discuss some web mapping application concepts
Make our first map

Provide information on resources

Getting Started with OpenlLayers

Introducing Openlayers

Openlayers is an open source, client-side JavaScript library for making interactive web
maps, viewable in nearly any web browser. Since it is a client-side library, it requires no
special server-side software or settings—you can use it without even downloading anything!
Originally developed by MetaCarta as a response, in part, to Google Maps, the 2.x series of
the library has grown into a mature, popular framework with many passionate developers
and a very helpful community. At the time of writing, this version is still actively used and
maintained, but this book will focus on the latest version, which is 3.0. For people wishing to
switch to Openlayers 3, particularly people already using the OpenLayers 2 series, the main
reasons to change are:

¢ Openlayers 2 was released eight years back, and it has its design flaws. As the first
main open source mapping library, its conception has been done along the way with
web evolution, particularly with JavaScript. Due to these facts, code modularity
suffered and it was becoming impossible to make new evolutions.

Openlayers 3 provides out-of-the-box mobile support.
The library ability to easily incorporate animation.

The Canvas renderer by default, which is more efficient than the DOM renderer
bundled in Openlayers 2.x, and the WebGL support in the roadmap, enabling a
more powerful map display than Canvas.

Increased performance and build size using Closure Compiler.

The maintenance mode on OpenlLayers 2 series that will limit your application for
future usages.

You can also add the fact that the library is already used in production, that demonstrates
good performance at the Swiss federal geoportal, http://map.geo.admin.ch (see
screenshot for reference) and the OpenGeo Suite, a commercial open source based solution
which already bundles the library:

http://map.geo.admin.ch

Chapter 1

g o
J =
{ e ©
» Gaocalalog Changa topic © X3 N e f e Ve O
gy A) g) L
= Salection '_’? Zinih 5 "—:.r_ Vi o
—— 2 : o
% Ay
il AEE
3
i o
g Lastanne | . f‘x.._.J'
7) Ak Sl
P W ! w
L s et A
& ;f’r ans
i A
r_,," ot =" iy
X
1
b
)
Y. O D ki
sun s v e ndmnch Gyt & daiaprotctr

Openlayers makes creating powerful web mapping applications easy and fun. It is very
simple to use—you don't even need to be a programmer to make a great map with it. It's
open source, free, and has a strong community behind it. A big advantage of OpenlLayers is
that you can integrate it into any closed or open source application because it is released
under the BSD 2-Clause license. So, if you want to dig into the internal code, or even improve
it, you're encouraged to do so. Cross browser compatibility is handled for you by the Google
Closure Library— but you need to have IE9+ because VML rendering (specific to IE8 and
older versions) is no longer supported. Furthermore, OpenLayers 3.0 supports modern
mobile, touch devices making it easy to develop for mobile technology.

Openlayers is not tied to any proprietary technology or company, so you don't have to worry
much about your application breaking with third party code (unless you break it). Although
it's open source, you will get good support from the community and there are commercial
support options as well. The library is recognized as well —established by the OSGeo (Open
Source Geospatial Foundation), having passed through the OSGeo Incubation process, a
kind of open source quality mark for geospatial projects.

You can read further about OSGeo Incubation at http://wiki.
i osgeo.org/wiki/Incubation Committee

http://wiki.osgeo.org/wiki/Incubation_Committee
http://wiki.osgeo.org/wiki/Incubation_Committee

Getting Started with OpenlLayers

Openlayers allows you to build entire mapping applications from the ground up, with the
ability to customize every aspect of your map—Ilayers, controls, events, and so on. You can
use a multitude of different map server backends together, including a powerful vector layer.
It makes creating map mashups extremely easy.

What, technically, is OpenlLayers?

We said Openlayers is a client-side JavaScript library, but what does this mean? The
following context answers this question.

When we say client-side, we are referring to the user's computer, specifically their web
browser. The only thing you need to make OpenLayers work is the OpenlLayers code itself
and a web browser. You can either download it and use it on your computer locally, or
download nothing and simply link to the JavaScript file served on the site that hosts the
Openlayers project (http://openlayers.org). OpenLayers works on nearly all modern
web browsers and can be served by any web server or your own computer. Using a modern,
standard based browser such as Firefox, Google Chrome, Safari, or Opera is recommended.

Library

When we say library, we mean that Openlayers is a map engine that provides an API
(Application Program Interface) that can be used to develop your own web maps. Instead of
building a mapping application from scratch, you can use OpenlLayers for the mapping part,
which is maintained and developed by a bunch of brilliant people.

For example, if you'd want to write a blog, you could either write your own blog engine, or
use an existing one such as WordPress or Drupal and build on top of it. Similarly, if you'd want
to create a web map, you could either write your own from scratch, or use software that has
been developed and tested by a group of developers with a strong community behind it.

By choosing to use OpenlLayers, you do have to learn how to use the library (or else you
wouldn't be reading this book), but the benefits greatly outweigh the costs. You get to use a
rich, highly tested, and maintained code base, and all you have to do is learn how to use it.
Hopefully, this book will help you with it.

Openlayers is written in JavaScript, but don't fret if you don't know it very well. All you really
need is some knowledge of the basic syntax, and we'll try to keep things as clear as possible
in the code examples.

[101

http://openlayers.org

Chapter 1

If you are unfamiliar with JavaScript, Mozilla provides phenomenal
JavaScript documentation at https://developer.
. mozilla.org/en/javascript. We should also visit
a Eloquent JavaScript at http://eloquentjavascript.

A net, an online book to get started with the JavaScript language
We recommend you also do some interactive exercises at
Codecademy, http://codecademy . com, a website dedicated
to learn JavaScript programming basics and much more.

First off, what is a web-mapping application? To put it bluntly, it's some type of Internet
application that makes use of a map. This could be a site that displays the latest geo-tagged
images from Flickr (we'll do this in Chapter 11, Creating Web Map Apps), a map that shows
markers of locations you've traveled to, or an application that tracks invasive plant species
and displays them. If it contains a map and it does something, you could argue that itis a
web map application. The term can be used in a pretty broad sense.

So, where exactly does Openlayers fit in? We know OpenlLayers is a client-side mapping
library, but what does that mean? Let's take a look at the following figure:

) Web map client
Server side (dynamic content)

Files or
Map images
(static content)

Y | ‘T_L

Client side Web map client

This is called the client/server model and it is, essentially, the core of how all web
applications operate. In the case of a web map application, some sort of map client (for
example: Openlayers) communicates with some sort of web map server (for example: a map
server using the WMS (Web Map Service) standard, an OpenStreetMap backend, or some
satellite images). We've added a bit of complexity in it because the truth is that you can also
rely only on client-side for web mapping applications using static content that you have pre-
generated. To illustrate, you can use GeoJSON files, a JSON based format to display pins. For
example, it is very useful for mobile content.

nl

https://developer.mozilla.org/en/javascript
https://developer.mozilla.org/en/javascript
http://eloquentjavascript.net
http://eloquentjavascript.net
http://codecademy.com

Getting Started with OpenlLayers

Openlayers lives on the client-side. One of the primary tasks the client performs is to get
map images from a map server. Essentially, the client asks a map server for what you want
to look at. Every time you navigate or zoom around on the map, the client has to make new
requests to the server—because you're asking to look at something different.

Openlayers handles this all for you, and it is happening via AJAX (asynchronous JavaScript

+ XML) calls to a map server. Refer to http: //en.wikipedia.org/wiki/Ajax
(programming) for further information on AJAX. To reiterate—the basic concept is that
Openlayers sends requests to a map server for map data every time you interact with the
map, then Openlayers pieces together all the returned map data (which might be images or
vector data) so it looks like one big, seamless map. In Chapter 2, Key Concepts in OpenlLayers,
we'll cover this concept in more depth.

A map server (or map service) provides the map itself. There are a myriad of different map
server backends. The examples include:

¢ The map servers using WMS and WFS standards (such as the GeoServer, Mapserver,
and so on)

¢ Proprietary backends provided such as Bing Maps or Esri's ArcGIS Online, mainly
based on proprietary data

¢ Backends based on OpenStreetMap data such as the official OpenStreetMap,
Stamen maps, or MapQuest maps

If you are unfamiliar with these terms, don't sweat it. The basic principle behind all these
services is that they allow you to specify the area of the map you want to look at (by sending
a request), and then the map servers send back a response containing the map image. With
Openlayers, you can choose to use as many different backends in any sort of combination as
you'd like.

Openlayers is not a web map server; it only consumes data from them. So,
you will need access to some type of WMS. Don't worry about it though.
Fortunately, there are a myriad of free and/or open source web map
servers available that are remotely hosted or easy to set up yourself, such as
MapServer. We speak a lot about web map servers but you must be aware
L that depending on your web-mapping application, you can use geographic
data files to provide the needed data consumed by OpenlLayers.
Throughout this book, we'll often use a freely available web-mapping

service from http://www.openstreetmap.org/, so don't worry
now about having to provide your own.

121

http://en.wikipedia.org/wiki/Ajax_(programming)
http://en.wikipedia.org/wiki/Ajax_(programming)
http://www.openstreetmap.org/

Chapter 1

With many web map servers, you do not have to do anything to use them—just supplying
a URL to them in Openlayers is enough. OSGeo, OpenStreetMap, Google, Here Maps, and
Bing Maps, for instance, provide access to their map servers (although some commercial
restrictions may apply with various services in some situations).

The Google, Yahoo!, Bing, and ESRI's Mapping APIs allow you to connect with their map
server backend. Their APIs also usually provide a client-side interface.

The Google Maps API, for instance, is fairly powerful. You have the ability to add markers,
plot routes, and use KML data (things you can also do in OpenLayers)—but the main
drawback is that your mapping application relies totally on Google. The map client and map
server are provided by a third party. This is not inherently a bad thing, and for many projects,
Google Maps and the others like it, are a good fit.

However, there are quite a few drawbacks such as:

You're not in control of the backend
You can't really customize the map server backend, and it can change any time

There may be commercial restrictions, or some costs involved for consuming maps
images or other services such as geocoding or routing for car traffic

¢ These other APIs also cannot provide you with anything near the amount of
flexibility and customization that an open source mapping application framework
(that is, Openlayers) offers

Although we mentioned Google Maps API as one of the main maps,
its support in OpenlLayers is limited. As there are more tiles providers

% nowadays, it's not worth it to have code maintenance to support
Google Maps API, a third party code that can break the main library,
as sometimes happened earlier with the OpenlLayers 2 API.

1131

Getting Started with OpenlLayers

Layers in OpenlLayers

So, what's with the layers in OpenLayers? Well, OpenLayers allows you to have multiple
different backend servers that your map can use. To access a web map server, you declare
a layer and add it to your map with OpenLayers.

For instance, if you wanted to have a Bing Maps and an OpenStreetMap service displayed on
your map, you would use OpenlLayers to create a layer referencing Bing Maps and another
one for OpenStreetMap, and then add them to your OpenLayers map. We'll soon see an
example with an OpenStreetMap layer, so don't worry if you're a little confused.

Understanding a layer

Like layers of an onion, each layer is above and will cover up the previous one; the order
that you add in the layers is important. With OpenLayers, you can arbitrarily set the overall
transparency of any layer, so you are easily able to control how many layers cover each other
up, and dynamically change the layer order at any time.

Most of the time, you make a distinction between base layers and non-base layers. Base
layers are layers below the others and are used as a background on your maps to give general
context. When you choose one base layer, the others will not be shown. On the top of base
layers, you have non-base layers used to emphasize particular topics. You can also choose to
use only overlay layers if you're considering that they are enough to understand the map. As
a classical example, you could have a Bing map as your base layer, a layer with satellite
imagery that is semi-transparent, and a vector layer, all active on your map at once. A vector
layer is a powerful layer that allows for the addition of markers and various geometric objects
to our maps—we'll cover it in Chapter 5, Using Vector Layers. Thus, in this example, your
map would have three separate layers. We'll study in detail about layers and how to use and
combine them in Chapter 4, Interacting with Raster Data Source.

X At the code level, the distinction between base and non-base layers

% can be misleading. It does not exist in OpenlLayers 3, whereas it was

S in Openlayers 2 series. However, the concept remains interesting to
conceive your maps.

The Openlayers wehsite

The website for Openlayers 3 is located at http: //openlayers.org. Have a look at the
following screenshot:

(1]

http://openlayers.org

Chapter 1

Learn Examples APl Code

SO0 § | o
A high-performance, feature-packed library for all your
mapping needs.

OpenlLayers v3.0.0 is herel Check out the docs and the examples to get started. The full distribution can be downloaded from the
v3.0.0 release page.

If you've come here looking for OpenLayers 2.x information, you'll find everything you need on the 2.x page.

Tiled Layers Vector Layers

Pull tiles from OSM, Bing, MapBox, Stamen,
MapQuest, and any other XYZ source you can

Render vector data from Geo]SON, TopoJSON,
KML, GML, and a growing number of other

find. OGC mapping services and untiled layers formats.
also supported.
Fast & Mobile Ready Cutting Edge & Easy to Customize
Mabile support out of the box. Build lightweight 'J Map rendering leverages WebGL, Canvas 2D,
custom profiles with just the components you SmS;e.r] s and all the latest greatness from HTMLS. Style
need. ® your map controls with straight-forward CSS.
« Quick Start ® Download
Seen enough already? Go here to get started. Get the latest release or dig through the archives.
& Tutorials 5 APl Docs
Spend time learning the basics and graduate up to advanced Browse through the API docs for details on code usage.
mapping techniques.
P Fork the repo ¥k Open a ticket % Join the discussion

Code licensed under the 2-Clause BSD. All documentation CC BY 3.0. Thanks to our sponsors.

To begin, you need to download a copy of OpenlLayers (or we can directly link to the
library—but we'll download a local copy). You can download the compressed library
as a . zip by clicking on the green button at the bottom of the release page at
https://github.com/openlayers/ol3/releases/tag/v3.0.0.

151

https://github.com/openlayers/ol3/releases/tag/v3.0.0

Getting Started with OpenlLayers

We will cover the website links by following the different areas of the main web page. Let's
start with the navigation bar located at the top right area:

L 4

First link, Learn refers to the documentation for the OpenLayers library.

Examples points to the list of the latest examples available for the current
development library. At the time of writing, you can see 95 of them. You can
filter the list of examples with keywords to find your way.

API redirects to the APl documentation. It documents the APl where you can find
the syntax, methods, and properties for all the core library components. Without it,
it would be impossible to find your way within the library.

Last link, Code is simply the link to the Github library account located at
http://github.com/openlayers/ol3, for people who want to contribute
or learn more about the core library code.

In the central area, the main content is divided from top to bottom in four parts:
The first block LATEST speaks for itself. It's the latest news about the project.

The FEATURES part is a good reminder and teaser about what you can do with the
Openlayers library.

The LEARN MORE part is one of the most important parts of the web page:
o With Quick Start, you can learn a simple way to make your first map.

o The Download section is the place to find all release codes hosted at
GitHub. You can also find the releases notes — the list of evolution and
fixes to the library core code.

o The Tutorials section is the entry to learn more after the Quick Start. At
the time of writing, it's nearly empty. It should grow following the library
adoption curve.

o The API Docs section is one of the keys of OpenLayers. It documents the
API where you can find the syntax, methods, and properties for all the core
library components. Without it, it would be impossible to find your way
within the library.

¢ GET INVOLVED, the last block, is also important when you want to find help or make

a contribution:

o Fork the repo sends you to the URL of the official development repository
on Github.

o Open a ticket is the place where you can create a ticket. You can do it to
describe an unexpected behavior when using the library, or if you want
to ask for a new feature in the library, or if you are an advanced user or a
developer and wish to submit code or give your opinion on an existing ticket.

o The last topic Join the discussion links to the official OpenLayers 3 mailing list.

1161

http://github.com/openlayers/ol3

Chapter 1

Be aware that currently both versions of OpenLayers exist

M & The version 2.13, the latest version of the 2.x series of the library and
Q all related content, hosted at: http://openlayers.org/two
& The latest version, the 3.0.0 version, hosted at:

http://openlayers.org

Time for action — downloading OpenlLayers

Let's download the OpenLayers library. After you're done, you should have the OpenLayers
library files set up on your computer. Perform the following steps:

1. Goto the Openlayers website (http://openlayers.org), go to the Download
part to follow the link and download the v3.0.0. zip version of the OpenLayers
v3.0.0. It's the green button on the bottom left of the Github release page for v3.0.0.

2. Extract the file you just downloaded. When you extract it, you'll end up with a folder
called v3.0. 0 (or whatever your version is).

3. Openthev3.0.0 folder. Once inside, you'll see a lot of folders, but the ones we
are concerned with right now are the folders named build and css, as seen in the
following screenshot:

n v3.0.0 -0 x
File Edit View Bookmarks Go Tools Help

. ~ 0O o Ifhomefthomastownluadsﬁul0.0 | 2

ad o d d

apidoc build closure- C55

library
N AN A d
doc examples ol resgurces

4. Create an o013 folder within an assets folder contained within a new folder 013
samples in your home directory (or C:\ on Windows). Copy the previous build
folder from v3.0.0 and rename it as js into the new 013 directory and also copy
the css folder into the same 013 folder.

[l

http://openlayers.org/two
http://openlayers.org
http://openlayers.org

Getting Started with OpenlLayers

5. Create a new folder called sandbox into the 013_samples directory. You can name
the folder whatever you like, but we'll refer to it as the sandbox folder. Your new
folder structure should look similar to the following screenshot:

File Edit Tabs Help

What just happened?

We just installed OpenLayers 3 by copying over different pre-built, compressed JavaScript
files containing the entire Openlayers 3 library code (from the build directory) and the
associated assets (style sheets). To use Openlayers, you'll need at a minimum, the o1 .7s
file (the other . s files will be needed during the book but are not always required) and
the ol.css file. For best practice, we already gave you some tips to structure the code like
separate assets, such as css and js, or separate library code from your own code.

If you open the ol. js file, you'll notice it is nearly unreadable. This is because this is a
minified and obfuscated version, which basically means extra white space and unnecessary
characters have been stripped out to cut down on the file size and some variables have been
shortened whenever possible. While it is no longer readable, it is a bit smaller and thus
requires less time to download. If you want to look at the uncompressed source code, you
can view it by looking in the o1 -debug. js file within the js folder of the 013 directory.

You can, as we'll see in the last chapter of this book, build your own custom configurations of
the library, including only the things you need. But for now, we'll just use the entire library.
Now that we have our Openlayers library files ready to use, let's make use of them!

The process for creating a map with OpenLayers requires, at a minimum, the following things:

¢ Include the OpenLayers library files
¢ Creating an HTML element that the map will appear in

¢ Creating a layer object from a o1 .layer. * class

[181

Chapter 1

¢ Creating a map object from the o1 .Map class by adding a layer

¢ Creating a view from the ol .View class to set for the Map class (defining the area
where the map will initially be displayed)

Now, we're finally ready to create our first map!

Time for action - creating your first map

Let's dive into OpenLayers and make a map! After you finish this section, you should
have a working map, which uses a publicly available OSM server backend from the
OpenStreetMap.org project. Execute the following steps:

1. Navigate to the assets directory, create a folder css, and create a new file called
samples.css. Add the following code

map {
height: 500px;
width: 100%;
background-color: #b5d0do;

}

2. Add the following code to a new file called hello openstreetmap.html and
save the file in the sandbox directory. If you are using Windows, we suggest using
Notepad++ in particular because you need to be sure you're editing UTF-8 encoded
files. On Linux, you can use Gedit or Geany and for Mac OSX, you can use Text
Wrangler (free but not open source). Do not try to edit the file in a program such as
Microsoft Word, as it will not save properly. The following code will also be used as
the base template code for many future examples in this book, so we'll be using it
often and coming back to it a lot:

<ldoctype htmls>

<head>
<title> Hello OpenStreetMap </title>
<link rel="stylesheet" href="../assets/o0l3/css/ol.css"
type="text/css" />
<link rel="stylesheet" href="../assets/css/samples.css"
type="text/css" />
</head>
<body>
<div id="map" class="map"></div>
<script src="../assets/ol3/js/ol.js">
</script>
<scripts>

var osmLayer = new ol.layer.Tile ({
source: new ol.source.OSM/()

1191

OpenStreetMap.org

Getting Started with OpenlLayers

)

var birmingham = ol.proj.transform([-1.81185, 52.44314],
'EPSG:4326', 'EPSG:3857');
var view = new ol.View ({
center: birmingham,

zoom: 6

3

var map = new ol.Map ({
target: 'map'

3

map .addLayer (osmLayer) ;

map.setView(view) ;

</script>
</body>
</html>

3. Openhello openstreetmap.html in your web browser. It can be hosted
on a server or opened as a file. You should see something similar to the screenshot

that follows:

[201

Chapter 1

What just happened?

We just created our first map using OpenLayers! If it did not work for you for some reason,
try double-checking the code and making sure all the commas and parentheses are in place.
You can also open the browser debugger and look for JavaScript errors within the console.
If you don't know what a console is, don't worry, we will see it soon. You can also refer to
the Preface where a link to code samples used in the book is given. By default, we're given a
few controls if we don't specify any. We will use the file we created as a template for many
examples throughout the book, so save a copy of it so you can easily refer to it later.

The control on the left side (the navigation buttons) is called the Zoom control, which is a
ol.control . Zoom object. You can click the buttons to navigate around the map, drag the
map with your mouse, use the scroll wheel to zoom in, or use your keyboard's arrow keys.
ol.control.Attribution is added by default. It will be populated if a layer (such as
OSM) has attribution info available. This control is on the bottom right corner and gives the
credits for the data you're using such as license and data producer.

We'll cover controls in greater detail in Chapter 9, Taking Control of Controls.
Now, let's take a look at the code, line by line.

¢ Lines1to 7: It sets up the HTML page. Every HTML page needs an <html > and
<heads> tag, and the extraneous code you see specifies various settings that inform
your browser that this is an HTML5 compliant page. For example, we include the
DOCTYPE declaration in line 1 to specify that the page conforms to standards set
by the WC3. We also specify a <title> tag, which contains the title that will be
displayed on the page. We also add a css stylesheet content to display correctly
the zoom and attribution controls, and set the future map size to a height of 500px
and a width of 100% (the width will always be at the max width depending on the
browser window).

This is the structure that all our code examples will follow, so this basic code
template will be implicitly assumed in all examples that follow throughout the book.

¢ Lines8and?9:

<body>
<div id="map" class="map"></div>

To make an OpenlLayers map, we need an HTML element where the map will be
displayed in. Almost always, this element will be a div. You can give it whatever ID
you would like, and the ID of this HTML element is passed into the call to create the
map object. You can style the <div> tag however you would like—setting the width
and height to be 100 percent, for instance, if you want a full page map. We choose a
class for this, also called map.

21

Getting Started with OpenlLayers

L 4

Line 10:

<script src="../assets/ol3/js/ol.js" type="text/javascript"s></
script>

This includes the OpenlLayers library. The location of the file is specified by the
src="'../assets/0l3/js/ol.js" attribute. Here, we're using a relative path. As
the hello openstreetmap.html page is within the sandbox at the same level
as the assets, we need to go outside the sandbox directory and then set the path
to ol. s file. The file could either be on your computer, or another computer.
Browsers can load it on any computer thanks to the relative path.

We can also use an absolute path, which means we pass in a URL where the script
is located at. openlayers.org hosts the script file as well; we could use the
following line of code to link to the library file directly:

<script src='http://openlayers.org/en/v3.0.0/build/ol.js></script>

Notice how the src specifies an actual URL which is an absolute path http://
openlayers.org/en/v3.0.0/css/ol.css atline 5. Either way works,
however, throughout the book we'll assume that you are using a relative path and
have the Openlayers library on your own computer/server. If you use the hosted
Openlayers library, you cannot be sure that it will always be available, so using a
local copy is recommended.

Be aware that when browsers load a page, they load it from top to bottom. To use
any DOM (Document Object Model) elements (any HTML element on your page)

in JavaScript, they first have to be loaded by the browser. So, you cannot reference
HTML with JavaScript before the browser sees the element. It'd be similar to trying to
access a variable that hasn't yet been created. Because of this behavior, don't forget
to call your JavaScript content after the <div id="map" class="map"></divs.

Line 11: This starts a <script> block. We'll set up all our code inside it to create
our map. Since the OpenlLayers library has been included in line 13, we are able to
use all the classes and functions the library contains.

Lines 12 to 14:

var osmLayer = new ol.layer.Tile ({
source: new ol.source.OSM()

3N

In the previous three lines of code, we created a global variable called osmLayer.
In JavaScript, any time we create a variable we need to place var in front of it

to ensure that we don't run into scope issues (what functions can access which
variables). When accessing a variable, you do not need to put var in front of it.

[22]

openlayers.org

Chapter 1

Since we are defining osmLayer as a variable at the global level (outside of any
functions), we can access it anywhere in our code. We declare the osmLayer as an
ol.layer.Tile object. It means we use an ol.layer.Tile class for creating the
variable layerOsm.

The object created is also referred to as an instance of the o1 .1layer.Tile
class. We'll talk about what this means later in the Appendix A, Object-oriented
Programming — Introduction and Concepts.

Now, let's look at the right hand side of the equal sign (=): new keyword means that
we are creating a new object from the class that follows it. o1 .1layer.Tile is the
class name which we are creating an object from. Notice that something is inside
the parenthesis: {source: new ol.source.0SM() }. This means we are passing
one thing into the class (called an argument). Every class in Openlayers expects
different arguments to be passed into it, and some classes don't expect anything.

The ol.layer.Tile class expects one parameter following the API doc reference.
Take a look at: http://openlayers.org/en/v3.0.0/apidoc/ol.layer.
Tile.html.The {source: new ol.source.OSM() } is the layer options,
consisting of key: value pairs (for example, {key:value}). This is also called
JavaScript Object Literal Notation, a way to create objects on the fly.

JavaScript object literal notation

In Openlayers, we often pass in anonymous objects to classes . In JavaScript,

anonymous objects are commas separated key : value pairs, and are set up

in the format of {key1l:valuel, key2:value2}.They are, basically,

J objects that are created without deriving from a class. This format is also
Q referred to as object literal notation.

When we say keyl:valuel, it's similar to saying keyl = valuel, but

we use a colon instead of an equals sign. We can also affect to a variable an

object and reuse this variable instead of creating it on the line, for example:
var layer parameters = {source: new ol.source.OSM()};
var osmLayer = new ol.layer.Tile(layer parameters) ;

So, the option source new ol.source.0SM() is the way to tell the characteristic
of the tiles we want to retrieve such as the URL or the default attribution text,
whereas ol . layer.Tile is the way to say how you ask the map image, not
where it comes from.

The type of ol . source can be any from a multitude of different services, but we
are using OSM here as a source. OSM (OpenStreetMap), is a crowdsourcing project
focusing on creating open source map data. The main visible part of the project is
the OSM world map we are using.

[231

http://openlayers.org/en/v3.0.0/apidoc/ol.layer.Tile.html
http://openlayers.org/en/v3.0.0/apidoc/ol.layer.Tile.html

Getting Started with OpenlLayers

The arguments, like the source we can pass in for layers, are dependent on the layer
class—we cover layers in detail in Chapter 3, Charting the Map Class. If you don't
want to wait, you can also check out the documentation at http://openlayers.
org/en/v3.0.0/apidoc/ to see what arguments different layers of classes expect.

¢ Line 15:
var birmingham = ol.proj.transform([-1.81185 52.44314],
'EPSG:4326', 'EPSG:3857');

In this line of code, we take coordinates from a place, Birmingham in the UK, and
we use a custom function that transforms [longitude, latitude] to the projected
coordinate the map will expect in the view.

¢ Lines16to 19:

var view = new ol.View ({
center: birmingham
Zoom: 6

13N

In the preceding four lines of code, we are defining a view from class o1 . View.

It's to use a view. Until now, we have defined what we will see, but with the view,
we will define from where we are seeing it. Think of view as equivalent to a shot
you might see in a cinema and where the cameraman chooses to see actors with
more or less light, from far away or near, from below or above. Maps are usually 2D
objects but because of new capabilities in the library, you can also have a tilted 2D
view. We will not cover it because it requires advanced knowledge.

We have two options here in the JavaScript object: center and zoom.

The first one sets the center of the map with coordinates. These are not using
latitude and longitude coordinates but Spherical Mercator coordinates, a common
web mapping standard projection. We will explain this topic in Chapter 7, Wrapping
Our Heads Around Projections.

The zoom is a way to set the level of details you get on the map when you open the
web page. Change this value to understand better. The value for using the OSM layer
can be between 0 and 18. The more you increase the value, the more you zoom in. If
you set the value to 20, you will see that the image is always of the level 18 but the
library resizes the image itself and and the image quality will be reduced.

Since this is the last thing passed into the ol . View object

creation call, make sure there is not a trailing comma. Trailing

commas are a common error and are often tedious to debug.

[24]

http://openlayers.org/en/v3.0.0/apidoc/
http://openlayers.org/en/v3.0.0/apidoc/

Chapter 1

Lines 20 to 22:

var map = new ol.Map ({
target: 'map'

}) i

We previously created a layer in order to add it to a map but this map was not
already created. We have done it using the ol . Map class. The map object is the crux
of our OpenlLayers application— we call its functions to tell the view bound to the
map to zoom to areas, fire off events, keep track of layers, and so on.

The ol .Map class expects a JavaScript object parameter. Within this object, we use
one object parameter: target. You can provide another parameter renderer to
choose the way the image will be displayed in the browser. It can be, DOM, Canvas,
or WebGL. Don't worry about these terms, we will explain what they cover. This is
not a mandatory option but we'd prefer to tell you already to be aware of this. You
will learn more about this in Chapter 2, Key Concepts in OpenLayers.

The other object parameter is target. Its purpose is to set where you will attach your
map in the HTML. It refers to the id of an HTML element available in your web page.

Notice, we don't include everything on one line when creating our map object—this
improves readability, making it easier to see what we pass in. The only difference is
that we are also adding a new line after the comma separating arguments, which
doesn't affect the code (but does make it easier to read).

Line 23:

map .addLayer (osmLayer) ;

Now that we have created both the map and layer, we can add the layer to the map.
In Openlayers, every map needs to have at least one layer. The layer points to the
backend, or the server side map server, as we discussed earlier.

Notice, we are calling a function of the map object. There are actually a few ways to
go about adding a layer to a map object. We can use the previous code (by calling
map .addLayer), where we pass in an individual layer but we can also add the
layers when instantiating the o1 . Map with something such as the following:

var map = new ol.Map({ target: 'map',
layers: [osmLayer]

13N

In this second case, you have to create your layer before the map. Most official
examples use the second syntax but for learning purposes, we thought it would be
better to separate map instantiation from layers addition.

1251

Getting Started with OpenlLayers

¢ Line 24:

map.setView (view) ;

This line enables you to set the view to render the image and display it at the right
place you defined previously in the ol . View instance, the view variable.

¢ Lines 25to0 27:
</scripts>
</body>
</html>

These lines close the JavaScript block and the remaining HTML blocks.

After reviewing this first example, if the concept of object-oriented programming
is unfamiliar to you, we recommend that you take some time to explore this topic.
While you don't necessarily need to know OOP concepts thoroughly to use this
book, understanding keywords such as class, properties, abstract class, methods,
instance, constructor, or inheritance should ring a bell in your mind. If not, we
advise you to visit the Appendix A, Object-oriented Programming — Introduction
and Concepts.

Now, let's introduce you to the main resources for getting the most important
information about OpenlLayers and its ecosystem.

Our coverage of the sample code was not meant to be extremely thorough; just enough to
give you an idea of how it works. We'll be covering OOP concepts in more detail throughout
the remaining chapters, so if anything is a bit unclear, don't worry too much.

As Openlayers is a library and provides functions for you, it is important to know what these
functions are and what they do. There are many places to do this, but the best source is the
APl docs.

The API documentation is always up-to-date and contains an exhaustive description of all the
classes in Openlayers. It is usually the best and first place to go when you have a question.
You can access the documentation at: http://openlayers.org/en/v3.0.0/apidoc/ for
the 3.0.0 release. It contains a wealth of information. We will constantly refer to it throughout
the book, so keep the link handy! Sometimes, however, the APl docs may not seem clear
enough, but there are plenty of other resources out there to help you. We'll cover a bit about
how to find your way in APl documentation in Chapter 2, Key Concepts in OpenLayers and in
Appendix A, Object-oriented Programming — Introduction and Concepts.

1261

http://openlayers.org/en/v3.0.0/apidoc/

Chapter 1

This hook's wehsite

The extension website for this book can be found at: http://openlayersbook.github.
io/openlayersbook/. Current, up-to-date corrections and code fixes, along with more
advanced tutorials and explanations, can be found there. You can also grab the code and
more information about this book at Packt Publishing's website, located at https://www.
packtpub.com/web-development/openlayers-3-beginnersE2%80%99s-guide

The OpenlLayers mailing list is an invaluable resource that lets you not only post questions,
but also browse questions others have asked (and answered). There were two main
Openlayers news groups—Users and Dev for the OpenlLayers 2 Version. There is a list only
for OpenlLayers 3 development discussions located at https://groups.google.com/
forum/#! forum/ol3-dev. You may find some users' questions in the archives as it was
before for both development and users questions.

Now, user questions should be only posted on http://stackoverflow.com and tagged
with openlayers. OpenlLayers 3 library developers will answer directly here.

When posting a question, please be as thorough as possible, stating your problem, what
you have done, and the relevant source code (for example, "I have a problem with using

a WMS layer. | have tried this and that, and here is what my source code looks like..."). A
good guideline for asking questions in a way that will best elicit a response can be found at
http://www.catb.org/~esr/fags/smart-questions.html.

Books are great, but they're basically just a one way form of communication. If you have any
guestions that the book does not answer, your favorite search engine is the best place to

go to. The Questions and Answers website http://gis.stackexchange.com, the young
brother of StackOverflow, dedicated to GIS (Geographical Information System) can also be
quite useful. But, at the end, don't forget that mailing lists and IRC are other great resources.

Openlayers issues

Sometimes, you will hit an error without understanding why you encounter it, for example
related to a mobile browser's unexpected behavior. Before asking to check mailing lists

or IRC, we encourage you to make a small search in the list of issues located at Github
https://github.com/openlayers/ol3/issues. You can search issues by milestone,
status (opened, closed, etc), or keywords.

[21]

http://openlayersbook.github.io/openlayersbook/
http://openlayersbook.github.io/openlayersbook/
https://www.packtpub.com/web-development/openlayers-3-beginner%E2%80%99s-guide
https://www.packtpub.com/web-development/openlayers-3-beginner%E2%80%99s-guide
https://groups.google.com/forum/#!forum/ol3-dev
https://groups.google.com/forum/#!forum/ol3-dev
http://stackoverflow.com
http://www.catb.org/~esr/faqs/smart-questions.html
http://gis.stackexchange.com
https://github.com/openlayers/ol3/issues

Getting Started with OpenlLayers

IRC (Internet Relay Chat) is another great place to go to if you have questions about
Openlayers. IRC is used for group communication; a big chat room, essentially. If you have
exhausted Google, issues' trackers, and the mailing list, IRC provides you in real time with
other people interested in OpenlLayers.

Generally, the people who hang out in the OpenLayers chat room are very friendly, but
please try to find an answer before asking in IRC. The server is irc.freenode.net and
the chat room is #openlayers. You can download an IRC client online; a good Windows
one is mIRC (http://mirc.com). More information about how to use IRC can be found at
http://www.mirc.com/install.html. For beginners, we recommend using Chatzilla,
a Firefox Mozillaadd—on http://chatzilla.hacksrus.comor CIRC, a Google Chrome
add—on http://flackr.github.io/circ/.

When you've installed it, just type irc://irc. freenode.net/openlayers (for Chatzilla
only) in your browser address bar, press enter, wait and you're ready to speak on OpenlLayers
IRC channel.

Openlayers source code repository

The source code repository location is hosted at GitHub. You can access the entire code
repository at http://github.com/openlayers/ol3.

Feel free to download a copy and play around with it yourself. When you become an advanced
user, you can submit evolutions to the official source code base and become a contributor to
the library. Without going so far, it cannot hurt to download a copy of the code base and look
around it yourself to figure out how it's really working!

Nowadays, some people prefer to aggregate content using RSS feeds or social networks.
Let's review how you can access alternatively to all the previous resources and more.

For the OpenlLayers 3 Developers mailing list, you can use atom or RSS feed, available at
https://groups.google.com/forum/#!aboutgroup/ol3-dev

When you want to get news about OpenLayers 3 development, you have to rely on Github
website capabilities.

1281

irc.freenode.net
http://mirc.com
http://www.mirc.com/install.html
http://chatzilla.hacksrus.com
http://flackr.github.io/circ/
http://github.com/openlayers/ol3
https://groups.google.com/forum/#!aboutgroup/ol3-dev

Chapter 1

You can see:
¢ Thereleases https://github.com/openlayers/ol3/releases.atom
¢ The commits https://github.com/openlayers/ol3/commits/master.atom
¢ The Wiki edits https://github.com/openlayers/ol3/wiki.atom
¢ If you are interested in knowing more about the people behind the library, find

the list of its developers at https://api.github.com/orgs/openlayers/
public members and follow them on Twitter.

¢ To really get the main news, the official OpenlLayers Twitter account is also useful
https://twitter.com/openlayers

In this chapter, we were introduced to Openlayers and learnt a bit about it.

We saw what web map applications are and how they work. After that, we created our first
map with Openlayers, then analyzed how the code works. Then, we covered a fundamental
concept, object-oriented programming, which we'll need to know about while really working
with OpenlLayers. Lastly, resources for help and information outside this book were provided.

Now that we have a basic handle on OpenLayers, we'll jump straight into Chapter 2, Key
Concepts in OpenLayers. We will discover relationships between library core parts. Using
examples, we will also review Events and Observe behaviors. It would be impossible to
get an interactive map without them. Then, to finish, we will focus on basic debugging
techniques. To learn more about JavaScript debugging, you can also refer to Appendix C,
Squashing Bugs with Web Debuggers.

1291

[vww allitebooks.cond

https://github.com/openlayers/ol3/releases.atom
https://github.com/openlayers/ol3/commits/master.atom
https://github.com/openlayers/ol3/wiki.atom
https://api.github.com/orgs/openlayers/public_members
https://api.github.com/orgs/openlayers/public_members
https://twitter.com/openlayers
http://www.allitebooks.org

Key Goncepts in OpenLayers

Now that we've seen the basics and made our first map with OpenLayers,
let's take a step back and look at the big picture. OpenlLayers is a software
library based on an Object-oriented design principles, which means that it
contains classes to encapsulate behavior, formal relationships between those
classes, and standardized mechanisms for communication between objects.
While OpenLayers contains many classes, there are just a few that form the
foundation of the OpenLayers architecture. In this chapter, we will introduce
these core components of the library and also two key concepts— events and
observable properties—that are the basis for standardized communication
between objects. Along the way, we'll use concrete examples and introduce
some basic debugging techniques you can use to solve problems and explore
the relationships between objects in a running application.

In this chapter, we will:

* 6 o o

Illustrate the key classes that form the basis of the Openlayers architecture
Discover the relationship between these classes
Understand the roles of the key classes

Introduce basic debugging techniques that will allow you to solve problems with
your application and to explore the relationship between instances of the key
classes in a running application

Understand what events and observable properties are, and how to use them

Understand collections

Key Concepts in OpenlLayers

OpenLayers’ key components

The Openlayers library provides web developers with components useful to build web
mapping applications. Following the principles of an Object-oriented design, these
components are called classes. The relationship between all the classes in the OpenlLayers
library is part of the deliberate design, or architecture, of the library. There are two types

of relationships that we, as developers using the library, need to know about: relationships
between classes and inheritance between classes. We briefly talked about object-oriented
programming in Chapter 1, Getting Started with OpenLayers and a more detailed discussion is
included in Appendix A, Object-oriented Programming — Introduction and Concepts but for the
purpose of this chapter, let's summarize the two types of relationships we are interested in:

¢ Relationships between classes describe how classes, or more specifically, instances
of classes, are related to each other. There are several different conceptual ways
that classes can be related, but basically a relationship between two classes implies
that one of the class uses the other in some way, and often vice versa.

¢ Inheritance between classes shows how behavior of classes, and their relationships
are shared with other classes. Inheritance is really just a way of sharing common
behavior between several different classes.

We'll start our discussion of the key components of OpenLayers by focusing on the first of
these—the relationship between classes. OpenlLayers includes a lot of classes for our use,
and we'll cover a lot of these in later chapters, but for now, we'll start by looking at the Map
class—ol .Map.

Instances of the map class are at the center of every OpenlLayers application. These objects
are instances of the o1 .Map class and they use instances of other classes to do their

job, which is to put an interactive map onto a web page. Almost every other class in the
Openlayers is related to the Map class in some direct or indirect relationship. The following
diagram illustrates the direct relationships that we are most interested in:

[321

Chapter 2

contr0|s<0|.Collection*O> ol.control.Control
..n

ol.interaction.Interaction
0.1 0..n

o interations <ol.Collection>

ol.Map Wlayers<ol.Collection>W ol.layer.Base
0.1

overlays<ol.Collection>

ol.Overla:
0..n Y
view<ol.View> ﬁ ol.View

The preceding diagram shows the most important relationships between the Map class and
other classes it uses to do its job. It tells us several important things:

¢ A map has 0 or 1 view instances and it uses the name view to refer to it. A view
may be associated with multiple maps, however.

¢ A map may have 0 or more instances of layers managed by a Collection class
and a layer may be associated with 0 or one Map class. The Map class has a member
variable named layers that it uses to refer to this collection.

¢ A map may have 0 or more instances of overlays managed by a Collection class
and an overlay may be associated with 0 or one Map class. The Map class has a
member variable named overlays that it uses to refer to this collection.

¢ A map may have 0 or more instances of controls managed by a class called
ol.Collection (more on collections at the end of this chapter) and controls may
be associated with 0 or one Map class. The Map class has a member variable named
controls that it uses to refer to this collection.

¢ A map may have 0 or more instances of interactions managed by a Collection
class and an interaction may be associated with 0 or one Map class. The Map class
has a member variable named interactions that it uses to refer to this collection.

Although these are not the only relationships between the Map class and other
classes, these are the ones we'll be working with the most. We've already seen
some of these classes in action in the examples from the previous chapter. We'll do
another example in a moment, but first let's introduce each of these new classes.

Key Concepts in OpenlLayers

¢ TheVview class (ol .View) manages information about the current position of the

Map class.

If you are familiar with the programming concept of MVC
. (Model-View-Controller), be aware that the view class
% is not a View in the MVC sense. It does not provide the
A presentation layer for the map, rather it acts more like a
controller (although there is not an exact parallel because
Openlayers was not designed with MVC in mind.)

The Layer class (ol .layer.Base) is the base class for classes that provide data to
the map to be rendered.

The overlay class (ol .0verlay) is an interactive visual element like a control, but
it is tied to a specific geographic position.

The Control class (ol.control.Control) is the base class for a group of classes
that collectively provide the ability to a user to interact with the map. Controls have
a visible user interface element (such as a button or a form input element) with
which the user interacts.

The Interaction class (ol.interaction.Interaction) is the base class for
a group of classes that also allow the user to interact with the map, but differ from
controls in which they have no visible user interface element. For example, the
DragPan interaction allows the user to click on and drag the map to pan around.

Time for action - creating a map

Let's create a new OpenlLayers application and identify the components as we go:

1.

First, create a new file called components.html in the sandbox directory and put
in the standard HTML structure for our applications as follows:

<ldoctype htmls>
<html>
<head>
<title>OpenLayers Components</title>
<link rel="stylesheet" href="../assets/ol3/css/ol.css"
type="text/css" />
<link rel="stylesheet" href="../assets/css/samples.css"
type="text/css" />
</head>
<body>
<div id="map" class="map"></div>
<script src="../assets/o0l3/js/ol.js"></script>
<scripts>

341

Chapter 2

</script>
</body>
</html>

Now, we can add our code inside the second, empty script tag. First, we'll create a
layer to display our map. The layer will be added to the map's 1ayers collection:

var layer = new ol.layer.Tile({
source: new ol.source.OSM()

3N

Next, we'll create an interaction called DragRotateAndZoom:

var interaction = new ol.interaction.DragRotateAndZoom() ;

Now, we'll create a control called FullScreen:

var control = new ol.control.FullScreen() ;

Let's create an overlay as well. For this, we'll need to add an HTML element as well
as some code. First, add the following after the <div> tag containing our map:

<div id="overlay" style="background-color: yellow; width: 20px;
height: 20px; border-radius: 10px;">

Now, add the code for the overlay:
var center = ol.proj.transform([-1.812, 52.443], 'EPSG:4326',
'EPSG:3857") ;
var overlay = new ol.Overlay ({
position: center,
element: document.getElementById('overlay')

I3F;

The last step is to create a view. We'll use the same center as the overlay's position:

var view = new ol.View ({
center: center,
zZoom: 6

3N

Now, we can create the map and give it references to all our components:

var map = new ol.Map ({
target: 'map',
layers: [layer],
interactions: [interaction],
controls: [control],
overlays: [overlay],
view: view

3N

Key Concepts in OpenlLayers

9. Open the HTML file in your web browser, you should see something like the
following screenshot:

Esbie R <

Londandeny/Dermy
Durham’
Bufast

Armagh

Kingston
upon Hull

= Dublin
Galway g — e T

Hotringham

Limerick Leicester. st Norwidh

- Amsterdam ol
Waterford Cambrics Ererhede | OSnatnk

Rty AN Miinster

Breda

Cardit London ;
ath v x
Canteroury, £ Kol

Plyrrouth

Salisbury

PO

Brugge

Suth Bruxelles - Brussel 5o

Marmur

Solingen

Siegen

Koblenz

o
Wieshatier

Mannheim

Fieilbro)

Metz

If you try to interact with the map, you'll notice something immediately—you can't click and
drag to pan. Instead, if you hold down the Shift key while clicking and dragging, you'll get a
whole new behavior. We've also lost the zoom in and out buttons at the top left corner, and
the attribution icon in the bottom right corner, but there is a new button in the top-right
corner. What does it do?

What just happened?

In the first step, we added our boilerplate HTML code for a simple OpenlLayers application.
This includes standard HTML tags suitable for any web page, and also includes the
Openlayers CSS and JavaScript files.

Next, we started creating instances of various OpenLayers components to use with our map.
The first one was a layer that renders tiles from the OpenStreetMap tile servers. Next, we
created an interaction called bragRotateAndZoom. This interaction has no visible element,
but rather is triggered by holding down the Shift key while dragging the map. As the name
suggests, this interaction will rotate and zoom the map in response to dragging the mouse
cursor. Then we created a control called FullScreen. Again, the name gives away what it
does—Ilaunches the web page into fullscreen mode. Because it is a control, it has a button
that is clicked to activate its behavior. Next, we created an overlay, which displays an HTML
element at a specific geographic location. Finally, we created the view, giving it the same
center as the position we provided to the overlay.

Chapter 2

The last step is to tie it all together with the Map class object by passing all our components
as part of the constructor. We'll look at the Map class's constructor in more detail in Chapter
3, Charting the Map Class but for now, it's enough to know that we can provide arrays of
layers, interactions, controls, and overlays as options, and the Map class will know what to
do with them.

We saw that by providing our own set of interactions and controls; we changed the default
behavior of an OpenLayers application. This is because the Map class has a default set of
interactions and controls that it creates when they are not explicitly provided as options to
the constructor. There are two ways we can restore the default behavior and add our new
components as well.

The first way is to use helper functions provided by OpenLayers to obtain the collection of
default interactions and default controls and extend those with our new components. We
will do something like this (this example is not complete as the Map class is missing a view):

// create our interaction

var interaction = new ol.interaction.DragRotateAndZoom() ;

// get the default interactions and add our new one

var interactions = ol.interaction.defaults() .extend([interaction]) ;

// create our control

var control = new ol.control.FullScreen() ;

// get the default controls and add our new one

var controls = ol.control.defaults() .extend([control]) ;

// create the map and pass in the extended set of interactions and
controls
var map = new ol.Map ({

interactions: interactions,

controls: controls

13N

The second method is to add them to the map after calling the constructor, for instance,
(again, this example is not complete):

var interaction = new ol.interaction.DragRotateAndZoom() ;
var control = new ol.control.FullScreen() ;

var map = new ol.Map() ;

map.addInteraction (interaction) ;

map .addControl (control) ;

[311

Key Concepts in OpenlLayers

The advantage of the first method (passing constructor options) is that it gives you complete
control over which interactions and controls are in use, while the second method (adding
them after creating the map) has the advantage of being simpler if you want to add to the
existing set of interactions and controls.

In many parts of OpenlLayers, you will discover that there are multiple ways of accomplishing
a given task. This is part of the design of the OpenLayers library and provides developers
with the option to write code in a way that makes most sense for them.

Time for action - using the JavaScript console

We noted at the end of the previous example that the map wasn't working normally. We
replaced the default controls and interactions and so the default behavior wasn't present any
more. Let's take a moment to try to fix this. In many cases, mistakes or oversights in our code
will produce unexpected results. Web developers have a number of tools available to help
them diagnose and fix these problems. In this example, we'll work with the Developer Tools
available in the Chrome browser. Similar tools exist for all major browsers; if you are not
using Chrome, you should still be able to follow along using your browser's Developer Tools.
With the previous example open in your browser, let's get started:

1. The first step is to open the Developer Tools. In Chrome, this is done by using one of
the following methods:

o Select the Chrome menu at the top-right corner of your browser window,
then select Tools | Developer Tools.

o Right-click on any element on the web page and select Inspect Element.

o Use a keyboard shortcut. On Windows or Linux, you can use Ctrl-Shift-I. On
a Mac, you can use Cmd-Shift-I.

Using any of these methods, a new Developer Tools window will open. By default,
the Developer Tools window will be docked to the current tab at the bottom.

You can change this by detaching it to a separate window or moving it to one
side, but for now, let's keep it at the bottom. It should look something like the
following screenshot:

Chapter 2

[nﬂ Esbjerg Kol
+]
- | Lonasséanioeny
= Carlisie
Durham
Belfist
Amagh
Kingston
upon Hull
Dublin
Sy Aangor Cheser Lincaln Leewvrarden
hattingham
Emmen
Limerick Leicaster A Norwid
- Amsterdam 2,
waterford L Conice Ereede | OShAbNIk
ok 5t David's Glonrester Riotteram Amben Milnster
Carcff London Brada y :
@, [] |Elements| Network Sources Timeline Profiles Resources Audits Console =h -] =
Styles | Computed Ewvent Listeners #
¥ <html> 1 t.style 1 r
b <head>..</head> element.style { +, R
¥ <body>
b <div id="map" class="map">.</div> . body { samples.ess:l
</body= padding: »@;
</html> margin: ® 8;
width: 100%;
height: 100%;
body { user agent stylesheet
display: block;
marginth 8pxr
}
Cmagn -
padding- | | !
Eee— |
= - | 1024% 326 |- -|-:

2. Look at the bar between the map and the Developer Tools console. From left to
right, the components are:

[m]

A magnifying glass: If you click this, you can then hover over elements in
the web page to select them and reveal them in the Elements panel.

A vertical rectangle that looks a bit like a phone: If you click this, it enables
device mode that allows you to emulate the size and features of most
populate mobile devices.

Elements: This panel shows the HTML elements that make up the current
state of the Document Object Model (DOM). It's displayed as a tree
structure. You can expand parts of the tree to investigate the structure of
the web page. When you click an element, the panel on the right is updated
to show the CSS styling information for the selected elements. You can edit
both the element itself (in the tree view) and most of its CSS properties on
the right. This is a great tool for testing quick CSS changes.

Key Concepts in OpenlLayers

u]

Network: This panel displays the network requests made by the web

page to load remote assets. You can see what is requested, the size, and
response time to load assets, and if you click one you can see details about
the request and response.

Sources: This panel allows you to interact with your JavaScript code. You
can set break points in different files, and when the execution of your code
is stopped in the debugger, you can investigate the state of any variables
and even modify their values.

Timeline: This panel shows performance details about loading and
executing your web page and can be very useful for identifying bottlenecks
in your code.

Profiles: This panel allows you to capture a snapshot of running code over
a period of time and see which functions were called, how many times, and
how much time was spent executing each function. This is another useful
tool to use in improving performance of a slow web application.

Resources: This panel shows you resources used by the current web page,
including cookies and local storage.

Audits: This panel can analyze your web page as it loads and provides
suggestions for decreasing load time and improving real or perceived
responsiveness.

Console: This panel allows you to type in arbitrary JavaScript and run it
within the context of the web page. If the debugger is currently paused on a
line of code, then that will be the current context for the console.

The next group of buttons, aligned to the right edge, shows (respectively)
any errors or warnings for the current page (this will be missing if there are
no errors or warnings), toggles an inline console that appears at the bottom
of the current panel, a gear icon to access settings for the Developer Tools,
a button to detach the Developer Tools into a separate window, and a
button to close the Developer Tools on the far right.

Open the console by clicking the Console tab. We will run some interactive
JavaScript commands to add back some missing behavior. Specifically, we'll get the
default OpenlLayers interactions and add them to the map. Type the following code
into the Console and hit Enter key to execute it. This should return the default set of
controls for us:

controls = ol.control.defaults() ;

[401

Chapter 2

This should output the value that was assigned to the variable controls,
something like the following screenshot:

Q, [Elements Network Sources Timeline Profiles Resources Audits | Console | = % 0, x
® ¥ <topframe> v Preserve log
controls = ol.control.defaults();

» A {Qa: Ic, Se: A, pd: null, c: 8, closure_uid 183498250: 12..}
|

You can click the small triangle next to the line of output to expose properties of the
object, like the following screenshot:

Q, [Elements Network Sources Timeline Profiles Resources Audits | Console | = O, x
® ¥ <topframe> v Preserve log
controls = ol.control.defaults();
vA {Qa: Ic, Se: A, pd: null, c: 8, closure_uid 183498250: 12..}
» Jb: Object
» Kb: Object
» Qa: Ic
b Se: A
»a: Array[3]
c: @
closure_uid_183498298: 12
» ga: Object
» p: Object
pd: null
» P

We can't even tell what kind of object this is! Let's fix that first.

4. The version of OpenLayers we are using is compressed to minimize its size. While
this is good for production use, it's not helping us because much of the useful
information is obfuscated by the compression process. We'll need to use the debug
version to get any further. Open the page in your text editor and change the script
tag that adds o1 . js to load the debug version ol -debug. js:

<script src="../assets/0l3/js/ol-debug.js"></script>
The build process used to create production and debug versions

of Openlayers is covered in detail in Chapter 11, Creating Web
o Map Apps and Appendix B, More details on Closure Tools and

Code Optimization Techniques.

[al

Key Concepts in OpenlLayers

5. Now, reload the page in your browser and type the JavaScript from step 4 into the
Console tab again. You should be able to hit the up arrow to recall it easily and just
hit Enter again. Now, we will get more useful information:

Q D Elements Network Sources Timeline Profiles Resources Audits | Console | = ﬂ' EI‘ x
® ¥ <topframe> v Preserve log
controls = ol.control.defaults
¥ ol.Collection {eventTar wers_: goog.events.listenerMap, actualfventTarget_: ol.Collection, parentEventTarget_: nuill, revision_: 8,
clo d_656606556: 12..}

Object
» actualEventTarget_: ol.Collection
» array_: Arrayl[3]
» beforeChangelisteners_: Object
closure_uid_656606556: 12
L _: goog.events.listenarMap

e ull
vision_: @
» values_: Object
» : tempCtor

Now, we can see that the controls variable is an instance of ol .Collection and
we should be able to add each of the elements of the collection to the map. The line
of output expanded, you can see the properties of the collection object.

The last entry is labeled proto__ and has a triangle next to

it. The proto__ property is a special property that shows us

an object's prototype, essentially the methods it gains from the

% class the object was created from. We can explore this property

A for methods available to be called on the object. Note that the

___proto__ property may also havea proto_ property
revealing further methods inherited from other classes in the
inheritance hierarchy.

6. We can use the map's addControl method to add one control at a time, so we need
a way of doing this for each individual controls in the collection. Collections have
a forEach method that invokes a function for each item in the collection, which
sounds ideal! Let's give it a try by running the following code in the Console tab:

controls. forEach (map.addControl) ;

Q D Elements Network Sources Timeline Profiles Resources Audits | Console | 91 = ﬁ EI‘ x
® ¥ <topframe> v Preserve log
controls = ol.control.defaults

»ol. ction {eventTar rs_: goog.events.listenerMap, actvalEventTarget_: ol.Collection, parentEventTarget_: null, revision_: 8,
clo wid_656686556: 12.}
controls. forEach(map.addControl)
@ » Uncaught » TypeError: undefined is not a functien ol-debug.js:B8479

>

Something is not right, we are getting an error. Let's investigate.

[42]

Chapter 2

7. To the right of the line showing the error is the file in which it occurred and line
number on which it occurred. Click on the filename to open the Sources panel at the
line of code that is producing the error.

Q D Elements Network | Sources| Timeline Profiles Resources Audits Console Q1)= # EI‘ x
Sources | Content scri... Snippets |3 ol-debug js x [0 LU ve O
¥ @ (no domain) 5;:;; BT T » Watch Expressions + C
¥ (@ localhost:3000 88460 1; ¥ Call Stack Async
BB461 goog.inherits(ol.Map, ol.Object);
»[assets BBA462 Nert Paused
v ([chapter0z Egj? o ¥ Scope Variables
<2/ 236005_02_01.html BBA6S| = Add the given control to the map. Nor Paused
BB466| = gparam {ol.control.Control} control Control. -
BB467| = @api stable v Breakpoints
BBAGE| =/ No Breakpaint:
BB469 ol.Map.prototype.addControl = functionicontrol) { kot
BB47 » DOM Breakpoints

BBAT1 goog.asserts.assertigoog.isDeflcontrols)}; q

BBAT2 controls.push{control); RS Ra kPOl +
BB473 | }; » Event Listener Breakpoints
BB474

BBA7S

BBATE | /=¥

BBAT7| = Add the given interaction to the map.

BB478 = gparam {ol.interaction.Interaction} interaction Interaction to add.

BB479| = @api stable

BBABB | */

BB4B1 ol.Map.prototype.addInteraction = function(interaction) {

BB4B2 var interactions = this.getInteractions(};

{} Line 88470, Column 23

8. We want to stop here and see what is going on. There are two ways we can do this.
We can set a break point on this line of code, or we can ask the debugger to stop
automatically when an error is detected. Let's take the first route and add a break
point. To add a break point, simply click on the line number to the left of the line of
code you want to stop on in the Sources panel and the line number is highlighted in
blue. To remove a break point, just click it again.

@, [] Elements Network |Sources| Timeline Profiles Resources Audits Console o1 > £ El‘ x
Sources | Content scri... Snippets |[4] ol-debug.js [n o 1 ve O
» () (no domain) e Fioratse; IS » Watch Expressions + c¢
¥ (D localhost:3000 BB4GR | }; v Call Stack Async
B BB461 goog.inherits{ol.Map, ol.Object);
»Classets BBAG2 Not Paused
¥ chapter02 ggjgf ; ¥ Scope Variables
4| fa
< 236005_02_01.html BBA65| = Add the given control to the map. Not Paused
BB466, = gparam {ol.control.Control} control Control. -
BBAG7| = @api stable ¥ Breakpoints
BBAGE| */ @ ol-debug.js:88470
BB469 ol.Map.prototype.addControl = functionicontrol) {

var controls = this.getControls();
| 8470] g
BB4T1 goog.asserts.assert{goog.isDeflcontrols)}; » DOM Breakpoints
B8472 controls.push{control);

BBAT3 | }; » XHR Breakpaoints +
BB474 » Event Listener Breakpoints

BB4ATS

BBATE | /=

BB477| = Add the given interaction to the map.

BB478| = @param {ol.interaction.Interaction} interaction Interaction to add.
B8479| = gapi stable

BBAB® | *x/

BB481 ol.Map.prototype.addInteraction = function(interaction) {

BB4B2 var interactions = this.getInteractions(};

{} Line 88470, Column 23

[431

Key Concepts in OpenLayers

9. With the break point set, click on Console again and rerun that last line of code. The
debugger will automatically pause execution of the code when it gets to our break
point and switch to the Sources panel for us.

Paused in debugger Ik /2

Q Elements Nelwurk}-l.umi{ Timeline Profiles Resources Audits Console o1 > #% g, x
‘Sources‘ Content scri... Snippets [El‘ul—debugjs % Eoufme, »~ + ¢ ve O
» @ (no domain) He JrotansE HEEr » Watch Expressions + c
¥ (@ localhost:3000 BB468| }; ¥ Call Stack " Async
88461 goog.inherits{ol.Map, ol.0Object);
»Jassers BBAE2 go0d ¢ P ject); ol.Map.addControl ol-debug.js:88470
¥ (D chapteroz s P ol-debug.js:4031
2/ 236005_02_0L.html BE4ES = Add the given control to the map. gnog'a"a""f"";—a‘h"i‘"’g'NAT'VE—ARR”
88466 * @param {ol.control.Control} control Control. _PROTOTYPES.|
BB467| = gapi stable : ~ i
BEAGR| +/ ol.Collection.forEach ol-debug.js:27122
BB469 ol.Map.prototype.addControl = functionicontral) { (anonymous function) VM2258:2
88479 var rols = ti trol: [~} R
BA471 goog.asseris.asceri{goog.isDef{controls)); InjectedScript._evaluateOn WVMZ2185:762
88472 controls.push{control); VM2185:695
BB4T3| }; .
BBATA InjectedScript._evaluateAndWrap
88475 InjectedScript.evaluate VMZ2185:609
BBATG | [ak
BB477| = Add the given interaction to the map. Paused on a javaScript breakpaint.
BB478| = gparam {ol.interaction.Interaction} interaction Interaction to add.
88479 * Gapi stable v Scope Variables
BB4BB | =/ ¥ Local
BB481 ol.Map.prototype.addInteraction = function(interaction) { .
BRABZ var interactions = this.getInteractions(}; ¥ control: ol.control.Zoom
2 controls: undefined
{} Line 88470, Column 1 b this: Window

10. The line of code we've stopped at assigns a variable, controls, with the result of
calling this.getControls (). Move the mouse over the this keyword and the
debugger will show us what its value is. Now, we can see that this is the Window
object and not a Map class object, which is why the getInteractions method
is undefined! We need to provide the correct object, map, as the scope of the

forEach function call by passing it as the second argument.

Chapter 2

Q, [] Elements Network |Sources| Timeline Profiles R yindow

nity

L

Sources | Content scri. Snippets I} ol-debug.js %
Towy 0

= Tats| » function AnalyserMode() { ..
¥) (no domain} BB459 > : function ApplicationCa.
¥ (2 localhost:3000 g::g? + inherit > ErrorEvent: function App.
goog.lnherits , pa function Array{) { [native codel }
>

[Dassets 88462 S uffer: function ArrayBuffer() { [n.

¥ [chapteroz sgjgj . » function Attri) { [native codel }
< 236005_02_01.htm| P ’[:’Md the gi] function HTMLAudioElement() { [na.
BR466| = @paranm Lol * r: function AudioBuffer() { [n.
> : function AudioBuf..

BB467| = @api stabl| " :
BBAGE| */ —
BB8469 ol.Map.prototype.addControl = function(control) {

M msadd T

contrels = [this] getControls(); ©

BBAT1 goog.asserts.assert(goog.isDeflcontrols]};

BBA472 controls.push{control);

BB473 | };

BB474

BBATS

BBATE | /w*

BBAT7| = Add the given interaction to the map.

BB478| = @param {ol.interaction.Interaction} interaction Interaction to add.
B8479| = @api stable

BBABB | */

BB481 ol.Map.prototype.addInteraction = function(interaction) {
BB4B2 var interactions = this.getInteractions(};

{} Line 88470, Column 1 1024 px

o1)= £ O, x

LT S W
» Watch Expressions + C
¥ Call Stack | Async
ol.Map.addControl ol-debug.js:88470
ol-debug.js:4031
goog.array.forEach.goog. NATIVE_ARRAY

_PROTOTYPES.|

ol.Collection.forEach ol-debug.js:27122
(anonymous function) VMETEE:?
InjectedScript._evaluateOn VMZ2185:762
VM2185:695
InjectedScript._evaluateAndWrap
InjectedScript.evaluate VMZ185:609
Paused on a jJavaScript breakpoint

¥ Scope Variables

¥ Local
» control: ol.control.Zoom

controls: undefined
p this: Window

11. Before we can try this, we need to let the execution of JavaScript code continue.
Click the highlighted line number to remove the break point. To the right of
the code, where the debugger has paused, is another panel that shows various
information about the current state of the code. At the top of this panel is a row
of buttons that control the debugger. The left-most button, a sideways triangle,
will resume execution when the code is paused. Go ahead and click it now. A mini
console will open at the bottom of the debugger and show us the error again.

] ~ Yt e O

o1)= ## O, x

ch Expressions + C
¥ Call Stack | Async

ol.Map.addControl ol-debug.js:88470

I Anben e A0

1

12. Inthe console, retype the last command, this time passing a second argument to

specify the correct scope object for the callback function:

controls.forEach (map.addControl, map) ;

451

Key Concepts in OpenlLayers

Much better! Now, we have all our controls back.

[F]]]
[+ | i
[}G?..l Landendemy/Darmy i
Durhiam
Armagh
Ripon
Lancaster
e Lesds Krston
Al S Upon Hull
Bremertiaven
Dublin Sheffield
3ar00r Chester Lincoin
Nattingham
- Eme
bimerc Peterborough poowicty
Waterford A e - Osnabrik
Cork 5t David's Aottt Ambeim Minster
Swansea =%
ot London Ll ;
at At Venlo]
Salingen
Salisbury Dunkerqie
: Sieges
b Portsmouth Aschen” oy
Flymouttt Kablenz
T
Luxembourg
Reirns Saarbriicken
[k D Elements Nemwork Sources Timeline Profiles Resources Audits | Console | Q2)= ﬂ- |E|‘><
Q W <topframe> v Preserve log
controls = ol.control.defaults
Pk ol.Collection {eventTargetli rs_: goog.events.listenerMap, actualEventTarget_: ol.Collection, parentEventTarget_: null, revision_: 8,
closure_wid_656606556: 12.}
cantrols. forEach(map.addControl)
© » Uncaught » TypeError: undefined is not a function ol-debug.js:RA470
> controls. forEach(map.addContral)
© » Uncaught » TypeError: undefined is not a function ol-debug.js:BB478
contr orEach(map.addControl, map)
>

What just happened?

We used the Developer tools console to execute some JavaScript and modify our running
application to add the default zoom controls that were missing. Along the way, we ran into
a problem and switched to the debug build of the OpenLayers library so that we could

get more useful information about problems we ran into. We touched briefly on using the

powerful Developer tools, including the Console and Sources panels.

There are a great many things we can do with the Developer tools, and this just touches
briefly on one aspect of them. Please read Appendix C, Squashing Bugs with Web Debuggers

to learn more about using the Developer tools in application development.

In the following sections, we'll look a little more closely at each of the components we've

introduced so far, starting with the view class.

1461

Chapter 2

Based on the previous example, use the Console to add the default interactions to the
running application. You can get the default interactions by calling the ol . interaction.
defaults () method.

The OpenlLayers view class, ol . View, represents a simple two-dimensional view of the
world. It is responsible for determining where, and to some degree how, the user is looking
at the world. We'll cover views in more detail at the end of Chapter 3, Charting the Map
Class, but briefly, it is responsible for managing the following information:

The geographic center of the map

The resolution of the map, which is to say how much of the map we can see around
the center

¢ The rotation of the map

Although you can create a map without a view, it won't display anything until a view is
assigned to it. Every map must have a view in order to display any map data at all. However, a
view may be shared between multiple instances of the Map class. This effectively synchronizes
the center, resolution, and rotation of each of the maps. In this way, you can create two or
more maps in different HTML containers on a web page, even showing different information,
and have them look at the same world position. Changing the position of any of the maps (for
instance, by dragging one) automatically updates the other maps at the same time! We'll see
an example of this in the next chapter.

So, if the view is responsible for managing where the user is looking in the world, which
component is responsible for determining what the user sees there? That's the job of layers
and overlays.

A layer provides access to a source of geospatial data. There are two basic kinds of layers,
that is, raster and vector layers:

¢ In computer graphics, the term raster (raster graphics) refers to a digital image.
In Openlayers, a raster layer is one that displays images in your map at specific
geographic locations. So far, all of our examples have used raster layers. We'll cover
raster layers in Chapter 4, Interacting with Raster Data Source.

[a11

Key Concepts in OpenlLayers

¢ In computer graphics, the term vector (vector graphics) refers to images that are
defined in terms of geometric shapes, such as points, lines, and polygons—or
mathematic formulae such as Bézier curves. In OpenlLayers, a vector layer reads
geospatial data from vector data (such as a KML file) and the data can then be
drawn onto the map. We'll cover vector layers in Chapter 5, Using Vector Layers.

Layers are not the only way to display spatial information on the map. The other way is to
use an overlay. As we saw in the example earlier in this chapter, we can create instances of
ol.overlay and add them to the map at specific locations. The overlay then positions its
content (an HTML element) on the map at the specified location. The HTML element can
then be used like any other HTML element.

The most common use of overlays is to display spatially relevant information in a pop-up
dialog in response to the mouse moving over, or clicking on a geographic feature.

Time for action - overlaying information

In the previous example, we added an overlay but we didn't really investigate how it
behaves. Let's do something a bit more interesting with overlays to illustrate what they do. In
this example, we'll build an OpenLayers application that displays the latitude and longitude
of the mouse position in an overlay when you click on the map:

1. Create anew file called overlay.html in the sandbox directory. Add the standard
boilerplate content to get started:

<!doctype htmls>
<html>
<head>
<title>Openlayers Overlays</title>
<link rel="stylesheet" href="../assets/ol3/css/ol.css"
type="text/css" />
<link rel="stylesheet" href="../assets/css/samples.css"
type="text/css" />
</head>
<body>
<div id="map" class="map"></div>
<script src="../assets/o0l3/js/ol.js"></scripts>
<scripts>
</scripts>
</body>
</html>

[481

Chapter 2

Now, add the following code to set up a simple map with the OpenStreetMap data.

var layer = new ol.layer.Tile({
source: new ol.source.OSM/()

13N

var center ol.proj.transform([-1.812, 52.443], 'EPSG:4326',

'EPSG:3857") ;
var view = new ol.View ({
center: center,
zoom: 6

13N

var map = new ol.Map ({
target: 'map',
layers: [layer],
view: view

13N

We'll create an overlay object to display when the user clicks on the map. We will
need an HTML element; so, add the following line of code right after Map's <div>
element. You can change the style of the element if you wish:

<div id="overlay" style="background-color: white; border-radius:
10px; border: 1lpx solid black; padding: 5px 10px;">

The overlay object itself is pretty simple. Add this at the end, after creating the Map
class:

var overlay = new ol.Overlay ({
element: document.getElementById('overlay'),
positioning: 'bottom-center'

3N

Now, we need to respond to the user clicking on the map by updating the content of
our overlay and adding it to the map at the correct position. Put the following code
snippet in the overlay:

map.on('click', function (event) {
var coord = event.coordinate;
var degrees = ol.proj.transform(coord, 'EPSG:3857', 'EPSG:4326')
var hdms = ol.coordinate.toStringHDMS (degrees) ;
var element = overlay.getElement () ;
element .innerHTML = hdms;
overlay.setPosition (coord) ;
map .addOverlay (overlay) ;

13N

1491

Key Concepts in OpenlLayers

6. The result should look something like this, depending on where you click! After
clicking on the map, try panning or zooming the map and notice how the overlay
stays in the same geographic location (it moves with the map).

Eshjerg—— Kol

Landondemy/Demy 2
I Durhiam
Bellast
Anmagh
Lancaster Ripe
piess L frontil
Galway Dublin Hanaor Aeoat Lirenin
Limerick Mo Emmén
Waterford A Ay Erirheds | Osnabnck
- el e Tams Arhem Minister-
st London B
Bath T e Venid gy ¥
i ¥ Brugge - Aniwerp Solingen
o PorEmMouth Bruxelles’=Brussel, /.7 Siegen
S Plyrmouth Marmur Koblenz
‘Wiesbaden
Armie
Mannhiges
o Reims s 1 i
What just happened?
-

In this example, we illustrated how an overlay is positioned at a geographic location on the
map, how it moves with the map to stay at that same location, and how it can be used to

display information about some location.

After setting up the boilerplate HTML structure for the page, we added a raster layer
with the OpenStreetMap data, a view, and a map to the application. We then created

an overlay object pointing at an HTML element for content and with the positioning set
to 'bottom-center', which tells OpenlLayers to align the bottom, center of the HTML

element with the geographic position of the overlay. This means that the overlay will
appear above the location, centered on it.

The last step was to register an event handler (more on events later in this chapter) for the
map's click event. When the user clicks on the map, the event handler function is called
with an event object that contains coordinate (the geographic position) of the click on
the map. We transform the coordinate from the map's projection into decimal degrees
(longitude and latitude values) and use a helper function in the OpenLayers library to format
this into degrees minutes and seconds (a standard way of representing geographic location
in human readable form). We then update the content of our overlay's HTML element with
this information, set the position of the overlay to the coordinate provided with the event,

and add it to the map using the addoverlay method.

Chapter 2

If some of this seems overwhelming, don't worry, we'll be covering all of this in later chapters.

As mentioned earlier, the two components that allow users to interact with the map are
interactions and controls. Let's look at them in a bit more detail.

Using interactions

Interactions are components that allow the user to interact with the map via some direct
input, usually by using the mouse (or a finger with a touch screen). Interactions have no
visible user interface. The default set of interactions are:

¢ ol.interaction.DoubleClickZoom: If you double-click the left mouse button,
the map will zoom in by a factor of 2
ol.interaction.DragPan: If you drag the map, it will pan as you move the mouse

ol.interaction.PinchRotate: On touch-enabled devices, placing two fingers
on the device and rotating them in a circular motion will rotate the map

¢ ol.interaction.PinchZoom: On touch-enabled devices, placing two fingers on
the device and pinching them together or spreading them apart will zoom the map
out and in respectively

¢ ol.interaction.KeyboardPan: You can use the arrow keys to pan the map in
the direction of the arrows

ol.interaction.KeyboardZoom: You can use the + and — keys to zoom in and out

ol.interaction.MouseWheelZoom: You can use the scroll wheel on a mouse to
zoom the map in and out

¢ ol.interaction.DragZoom: If you hold the Shift key while dragging on map, a
rectangular region will be drawn and when you release the mouse button, you will
zoom into that area.

We will discuss interactions in detail in Chapter 8, Interacting with Your Map.

Controls are components that allow the user to modify the map state via some visible user
interface element, such as a button. In the examples we've seen so far, we've seen zoom
buttons in the top-left corner of the map and an attribution control in the bottom-right
corner of the map. In fact, the default controls are:

¢ ol.control.Zoom: This displays the zoom buttons in the top-left corner.

¢ ol.control.Rotate: Thisis a button to reset rotation to 0; by default, this is only
displayed when the map's rotation is not 0.

[51]

Key Concepts in OpenlLayers

¢ Theol.control.Attribution: This displays attribution text for the layers
currently visible in the map. By default, the attributions are collapsed to a single icon
in the bottom-right corner and clicking the icon will show the attributions.

We will discuss these controls and more in detail in Chapter 9, Taking Control of Controls.

This concludes our brief overview of the central components of an OpenLayers application.
We saw that the Map class is at the center of everything and there are some key
components—the view, layers, overlays, interactions, and controls—that it uses to accomplish
its job of putting an interactive map onto a web page. At the beginning of this chapter, we
talked about both relationships and inheritance. So far, we've only covered the relationships.
In the next section, we'll show the inheritance architecture of the key components and
introduce three classes that have been working behind the scenes to make everything work.

OpenLayers’ super classes

In this section, we will look at three classes in the OpenLayers library that we won't often
work directly with, but which provide an enormous amount of functionality to most of the
other classes in the library. The first two classes, Observable and Object, are at the base
of the inheritance tree for OpenlLayers—the so-called super classes that most classes inherit
from. The third class, Collection, isn't actually a super class but is used as the basis for
many relationships between classes in OpenlLayers—we've already seen that the Map class
relationships with layers, overlays, interactions, and controls are managed by instances of
the Collection class.

Before we jump into the details, take a look at the inheritance diagram for the components
we've already discussed:

ol.Observable
ol.Object ol.interaction.Interaction
ol.Collection ol.control.Control
ol.Map ol.View
ol.layer.Base

521

Chapter 2

As you can see, the Observable class, ol.0Observable, is the base class for every
component of OpenlLayers that we've seen so far. In fact, there are very few classes in the
Openlayers library that do not inherit from the Observable class or one of its subclasses.
Similarly, the Object class, ol .0Object, is the base class for many classes in the library and
itself is a subclass of Observable. Because the functionality contained in these two classes
is so fundamental to the understanding of how OpenLayers works, we'll be relying on them
for the rest of the book.

The Observable and Object classes aren't very glamorous. You can't see them in action
and they don't do anything very exciting from a user's perspective. What they do though

is provide two common sets of behaviour that you can expect to be able to use on almost
every object you create or access through the Openlayers library—Event management and
Key-Value Observing (KVO).

Event management with the Observable class

An event is basically what it sounds like—something happening. Events are a fundamental
part of how various components of OpenlLayers—the map, layers, controls, and pretty much
everything else—communicate with each other. It is often important to know when something
has happened and to react to it. One type of event that is very useful is a user-generated
event, such as a mouse click or touches on a mobile device's screen. We used this earlier in
the chapter to display an overlay at the location of a mouse click. Knowing when the user has
clicked and dragged on the Map class allows some code to react to this and move the map to
simulate panning it. Other types of events are internal, such as the map being moved or data
finishing loading. To continue the previous example, once the map has moved to simulate
panning, another event is issued by OpenLayers to say that the map has finished moving

so that other parts of OpenLayers can react by updating the user interface with the center
coordinates or by loading more data.

Classes inheriting from ol . Observable (including ol .0bject) get the following event
related methods:

Method Parameters Description

getRevision () ¢ none This method returns a number representing
the current revision of the object. Internal
methods can change the revision number
and this gives developers the ability to
detect whether an object has changed.

Key Concepts in OpenlLayers

Method Parameters Description
on(type, ¢ type - string| | This method registers a listener function
listener, Array.<string> | tobe called when a certain type of event
scope) e listener-— or gvents happe.n.. The scope a.rgument is
function optional. If slpe.cmed, th'en it will be the'
value of this in the 1istener function.
¢ scope-Object |) .
undefined The rfat.urne(.j v.alue is a key that unlquely.
identifies this listener and can be used with
unByKey () to remove the listener.
The 1istener function will be called
with a single parameter, an event object,
the contents of which depend on the event
being fired. In general, it will contain both
type and target properties.
once (type, ¢ type-string | This method works exactly the same way as
listener, Array.<string> | on() butthe listener is only called once,
scope) e listener— the.flrst time thg event happens after being
function registered. Thelllstener is aut'omatlcally
' removed after it is called. This method also
¢ scope-Object | returns a key.
undefined
un(type, ¢ type-string | This method removes a previously
listener, Array.<string> registered listener using on () .
scope) ¢ listener-—
function
& scope —Object
| undefined
unByKey (key) ¢ key-Object This method removes an event listener
by the key returned by on () or once ()
without having to know the listener and
scope values originally used.

It is very important to pass the exact same listener and scope values to un () as were
passed to on (). A common practice is to pass anonymous functions as arguments to
functions such as on (), which takes function arguments. Because un () needs the exact
same listener argument to work correctly, we can't use anonymous functions if we want to
callun () later. However, we can store the key returned by on () and use it with unByKey ().
Let's look at some code examples:

var map = new ol.Map ({
target: 'map',

[541

Chapter 2

view: view

1
This creates a Map class object, nothing new here.

map.on('moveend', function /() {
console.log('move end event!');

3N

Next, we will register for the moveend event. The moveend event is triggered by the map
after it has been panned or zoomed. The function we provide will be called every time the
map moves. Our code will output some text to the debug console. Because we used an inline
or anonymous function, we have no way to remove our function if we no longer want to
receive events. Or do we?

var key = map.on('moveend', function() {
console.log('move end event!');

3N

map .unByKey (key) ;

This code registers for the same moveend event using an anonymous function but this
time we will assign the return value to key. We can then use the value assigned to key
to unregister our handler.

Let's look at another way:

function onMoveEnd (event) {
console.log('moveend event 2');

map.on ('moveend', onMoveEnd) ;

map.un ('moveend', onMoveEnd) ;

This block declares a function called onMoveEnd () and registers it for the moveend event. The
last line unregisters it. This achieves exactly the same result as the previous code; so, what's
the difference? It is mostly to accommodate different coding styles and patterns. Some people
prefer to write their code a certain way, or perhaps they have to follow a particular coding style
guide (see Appendix B, More details on Closure Tools and Code Optimization Techniques for
more information on this), and Openlayers provides various ways to make it easier.

What about the scope parameter? This is useful for code that is written in an Object oriented
style. Here is a contrived example that illustrates how it will be used:

var MyClass = function(label) {
this.label = label;
this.onMoveEnd = function() {
console.log(this.label + ': moveend event');

}

[551

Key Concepts in OpenlLayers

}
var objl = new MyClass('Object 1');
var obj2 = new MyClass('Object 2');

A simple class called MyClass is defined, which contains a single attribute, label, and a
single method, onMoveEnd () . Next, two instances of this class are created with different
label values. We can use the onMoveEnd () method of our instances as a function in the
second parameter of the on () method. When the onMoveEnd () method is called, it will log
a message to the debug console containing the value of the label attribute. Here are some
examples of how this can be used:

map.on ('moveend', objl.onMoveEnd) ;

Registering the onMoveEnd () method for the moveend event will work, but the output will
be as follows:

Undefined: zoomend event

What's wrong? It turns out that this. label is not defined because the value of this is the
global window object. We can correct this by passing a scope object as the third parameter
to the on () function:

map.on ('moveend', objl.onMoveEnd, objl);
map.on ('moveend', obj2.onMoveEnd, obj2);

Now, the output will be what we expected:

Object 1: moveend event
Object 2: moveend event

We then need to use the scope to unregister for the events as follows:

map.un ('moveend', objl.onMoveEnd, objl);
map.un ('moveend', obj2.onMoveEnd, obj2);

Key-Value Ohserving with the Object class

Openlayers' Object class inherits from Observable and implements a software pattern
called Key-Value Observing (KVO). With KVO, an object representing some data maintains a
list of other objects that wish to observe it. When the data value changes, the observers are
notified automatically.

[561

Chapter 2

The following methods are available in all OpenLayers classes, which inherit from
ol.0Object. Note that the Object class also contains all the methods provided by the
Observable class even though they are not listed here:

Method

Parameters

Description

bindTo (key,
target,
targetKey)

& key-string

& target-—
ol.Object

& targetKey-
string

This method is used to add an observer to a
property on the object. The key parameter
specifies which property of the object is being
bound. The target parameter specifies the
object to which the property is bound. The
targetKey parameter specifies the property
of the target object to which the property of
this object is being bound to. If targetKey is
not provided, then it is assumed that the target
object has a property identified by the key
parameter.

A change in the target property automatically
updates the bound property, and vice versa.

This is a powerful concept and we'll explore it
with an example afterwards.

The bindTo method returns an object with a
transform method that can be used to modify
the property value being shared between the
objects. We'll provide an example of this further
in this chapter.

get (key)

key—-string

This gets the value of a property of an object.
The type of the value returned is specific to the
property being retrieved.

getKeys()

None

This method returns an array of all the keys that
are observable for this object.

getProperties (

)

None

This method returns an object literal with all the
keys as attributes and their current values as
properties.

set (key,value)

& key-string

¢ value-
mixed

This method sets the property identified by
key to the provided value. All observers

of the property will be notified, for example,
anObject.setValue('keyl', 'value
1');.

[571

Key Concepts in OpenlLayers

Method Parameters Description
setValues values —Object This method sets several properties at once.
(values) The values parameter is an object literal.

All properties that are updated will trigger
notifications to observers, for example,
anObject.setValues ({

keyl: 'value 1°',

key2: 'another value'
R
unbind (key) key-string This method removes the observer of a property

identified by key. Unbinding will set the unbound
property to the current value. The object will not
be notified as the value has not changed.

unbindAll () This method removes all observers from all
properties.

1
‘Q Remember that the Object class itself inherits from the

Observable class and has all the event methods as well.

Time for action - using bindTo

The bindTo method is extremely powerful and makes many seemingly advanced tasks quite
easy to accomplish. Let's set up an HTML checkbox element that we can use to control the
visibility of a map layer.

1. Using the same sample file we started earlier in the chapter, add the following on a
new line between <div id="map"> andthe <scripts> tag:
<input type="checkbox" id="visible" checked> Toggle Layer
Visibility
This will add a new HTML element, a checkbox, to our web page and we will use this
to turn our layer on and off.

2. Next, add the following two lines of code at the end of the script tag:
var visible = new ol.dom.Input (document.
getElementById('visible')) ;
visible.bindTo ('checked', layer, 'visible');

This code creates a new instance of ol .dom. Input, an Openlayers helper class
that connects to our checkbox element. It then uses the bindTo () method to
observe changes in the checked attribute and send them to the layer, specifically to
the visible property.

Chapter 2

3. Reload the example in your web browser.

K

Esbjerg
= Londand@myDeny £
i Carlisle Suridatand
! Durian
o1 Bt -
e
Sad yNery Aipen
A Lancaster
verk
ton Bradid ston uj il
P e ingston upon il : i
¢ ot WilR e e
Dublin Liverpocl Sheffeld Ermden
Gatwn St Asapn
- Bangar St Aszp Lincoin Lesweritan =, 4
! Stakean Trent (hssen™, o
Dety)
Umerick Lichited : ¥
s i Peterbioraugh fechicty e
Comntry By Amsterdam Amels | Qs 42
il +° . Warcester Cambridge i Dot < - Ganibrick
Heretord { Den Haag Whrecht g < Beleleld
Cark S Oavd's A iscdter e e
Oxorid S Albms Bl] Padetam
Swanzes 4 { et L Reckinghausen
T st London “Middelburg LD 3 e L R z
)] > O ety Higert 1
(o R | Bruogd Sethlwerpen o A
Sallsbury o bunkerque Genl ~ pirhesin \o;awfm
Sousitangtch ¢ ¥ i i e
wh ULNAMPLON ! righiton f Lo 1 Bruselles Brussel e - AN I arsory
Uik leger=y A Giederi
4 Brrouthy g Kebilera.
Trura
e nesbaden 0
A

\ Darmstact

2 b
Aluxermbourg
o

)

e, ol Keisersiaitem:
=

g A

L S5 R

i PO
e

) | Tiies : OpeniStr g, Uk
L =4 P

Toggle Layer Visibility

4. Toggle the checkbox below the map to turn the layer on and off.

What just happened?

You successfully used the bindTo () method to establish the 1ayer as an observer of the
checkbox using the o1 .dom. Input helper class. We bound the visible property of our layer
to the checked property of the ol . dom. Input. When the checkbox is clicked, ol . dom.
Input updates the checked property and notifies observers of the checked property that
it has changed. Because we bound the visible property of the layer to the checked
property of the input, the layer is notified of the change and updates the visible property,
which causes the layer to turn on and off.

Property binding works both ways. You can manually change the visibility of the layer using
the Console in Web Inspector. Try the following and observe what happens to the checkbox:

layer.setVisible (false) ;
layer.setVisible (true) ;

You should see the checkbox change state as if you had clicked it.

[591

vww allitebooks.conl

http://www.allitebooks.org

Key Concepts in OpenlLayers

Transforming values with hindTo

Sometimes, the property value that you are sharing between two objects is not exactly what
you need. For instance, you might want to synchronize two maps so that they are looking at
the same center point, but at different resolutions. If we share a view between the maps, we
can't have one of them at a different resolution. We could use two views and use events to
manually synchronize them—and this is a perfectly valid approach—but wouldn't it be nice
if we could use bindTo and just modify the resolution value a little bit? This is exactly what
the object returned from bindTo allows us to do. The return value from bindTo is an object
with a single function, transform, that you can invoke with two functions as arguments.
The first function is used to transform the value going £from the source to the target and the
second is used to transform the value going to the source from the target. For instance:

var transformer = viewl.bindTo(resolution', view2);
var from = function(value) {

return value * 2;
var to = function(value) {

return value / 2;

transformer.transform(from, to);

This example binds the resolution property of view2 (the target) to the resolution property
of viewl (the source). We can capture the return value in the variable transformer,
create two functions that will transform the resolution value, and call the transformer
variable's t ransform function with our two functions. The result is that view2 parameter's
resolution property will be bound to viewl parameter's property but will always have a
value twice that of viewl.

More ahout KVO properties

Most classes in the Openlayers library have one or more KVO properties (these are specified
in the library documentation) and have some special features. As we saw, the name of the
property can be used as the key parameter in any of the KVO methods described earlier.
Additionally, three events are triggered when the value of a property changes.

The first event is beforepropertychange and is triggered before a property will change. It
provides the name of the property that will change to the listener:

layer.on ('beforepropertychange', function (event) {
console.log('layer changed in some way') ;

// event.type == 'beforepropertychange'

// event.key == '<the key that is changing>'

3N

Chapter 2

The second event is propertychange is triggered as (effectively after) the property
is changed:

layer.on ('propertychange', function(event) ({
console.log('layer changed in some way') ;

// event.type == 'propertychange'

// event.key == '<the key that has changed>'

3N

A third event is a change event specific to the property that changed. The name of the
event is derived from the property name with the prefix change :. This means that we can
be notified of changes to individual properties. In our previous example of binding a layer's
visibility to a checkbox, we can register to be notified of the change like this:

layer.on('change:visible', function (event) ({
console.log('layer visibility changed') ;

// event.type == 'change:visible'

// event.target == layer

3N

It may seem like there are a lot of events that happen in response to a KVO property changing
and you are right, there are! Each event, though, is slightly different and provides both
convenient and optimal ways of responding to changes that happen to objects in OpenLayers.

In addition to events, KVO properties also have special accessor functions called setters and
getters defined for them. This means that instead of using the KVO methods get (key) and
set (key, value), you can use get<Property> () and set<Property> (value), where
<Propertys> is the capitalized property name. For instance:

layer.get ('visible') ;
layer.getVisible() ;
layer.set ('visible', true);
layer.setVisible (true) ;

These methods are primarily for convenience and you can use either depending on your
own preferences.

The last section for this chapter is about the OpenLayers' Collection class, ol.Collection.
As mentioned, the Collection class is not a super class like Observable and Object, but

it is an integral part of the relationship model. Many classes in OpenLayers make use of the
Collection class to manage one-to-many relationships.

611

Key Concepts in OpenlLayers

At its core, the Collection class is a JavaScript array with additional convenience methods.
It also inherits directly from the Object class and inherits the functionality of both
Observable and Object. This makes the Collection class extremely powerful and we
will use it many times in the rest of this book.

Creating a collection

A collection is created just like any other class, just use the new operator:

var collection = new ol.Collection() ;

The Collection constructor takes one optional argument, an array that is used to initially
populate the collection with elements. The elements in the array can be of any type, but if
you are using the collection with one of the OpenlLayers APl methods, the type of the values
will typically be specified in the API documentation. For instance, the Map class constructor
allows passing a collection of layers, interactions, controls, and overlays. In these cases, the
contents of the collection must be instances of the correct type of an object. For instance,
check the following code snippet:

var layerl = new ol.layer.Tile({/*options */);
var layer2 = new ol.layer.Vector ({/* options */});
var layerCollection = new ol.Collection([layerl, layer2]);
var map = new ol.Map ({
layers: layerCollection

3N

A Collection class, inherited from the Object class, has one observable property,
length. When a collection changes (elements are added or removed), its Length property
is updated. This means it also emits an event, change : length, when the 1ength property
is changed.

A Collection class also inherits the functionality of the Observable class (via Object
class) and emits two other events—add and remove. Registered event handler functions
of both events will receive a single argument, a CollectionEvent, that has an element
property with the element that was added or removed.

[621

Chapter 2

The Collection class has the following methods (the ones from Object and Observable

classes are not included in this list, but those methods are also available):

Method

Parameters

Description

clear ()

none

This removes all elements from the
collection.

extend (arr)

arr —array

This adds the elements from the arr
parameter to the collection.

forEach (iterator,
opt_this)

& iterator-
function
¢ opt_this-

optional, object

This method invokes the iterator
function for each element in the
collection, passing the element,
index and a reference to the
collection itself as arguments. If the
opt_this parameter is provided, it
will be the value of this inside the
iterator function.

getArray ()

none

This returns a reference to the
internal array managed by the
collection, which is useful if you need
a real JavaScript array for something.
You should not modify the array
returned by this value as no events
will be triggered and the 1length
property will go out of sync.

insertAt (index,
element)

¢ index-—number

& eclement —mixed

This inserts an element into the
collection at the given index. This will
change the length of the array.

item (index)

index —number

This returns the element at the
given index.

pop ()

none

This removes the last element from
the collection and returns it.

push (element)

element —mixed

This adds an element to the end of
the collection and returns the new
length.

remove (element)

element —mixed

This removes the first occurrence of
the element from the collection.

removeAt (index)

index —number

This removes the element at the
given index and returns it.

setAt (index,
element)

& index-—number

& element —mixed

This replaces an element at a given
index with a new element.

Key Concepts in OpenlLayers

This wraps up our overview of the key concepts in the OpenLayers library. We took a

quick look at the key components of the library from two different aspects—relationships
and inheritance. With the Map class as the central object of any OpenlLayers application,

we looked at its main relationships to other classes including views, layers, overlays,
interactions, and controls. We briefly introduced each of these classes to give an overview
of primary purpose. We then investigated inheritance related to these objects and reviewed
the super classes that provide functionality to most classes in the OpenlLayers library—the
Observable and Object classes. The Observable class provides a basic event mechanism
and the Object class adds observable properties with a powerful binding feature. Lastly,
we looked at the Collection class. Although this isn't part of the inheritance structure, it
is crucial to know how one-to-many relationships work throughout the library (including the
Map class relationships with layers, overlays, interactions, and controls).

In the next chapter, we'll dig into the Map and view class in much more detail.

1641

The Map class is, as you have probably realized by now, the core piece behind
your map. The map object(s) you create is the most important thing behind
your map, as without a map object you can't do anything with layers or
controls. In this chapter, we'll talk about the Map class, which we've been taking
for granted so far.

We will also introduce the concept of a view, which is used to change what we
see in a map, and several core concepts you'll need to understand the rest of
this book.

We used the Map and view classes so far in this book, without really understanding what's
going on. This chapter aims to not only explain how and why we've been doing things,

but will also provide thorough coverage of two core classes—the Map and view classes.
Specifically, we'll look at:

What the Map class is

How the Map class relates to the other classes we've discussed

Options that can be used when creating a map

Using functions of the Map class

Using the view class to change the location displayed by the map

Working with events to define and extend map behaviors

® 6 6 & 6 o o

Creating a simple application that contains multiple maps

Charting the Map Class

The OpenlLayers' Map class is the core component of OpenlLayers. We use it to manage the
layers, controls, interactions, and overlays. We've worked with it already by creating a map
object, adding layers to it, then using its view to modify its extent. We are yet to discuss the
functionality behind the Map class, the core component of our applications.

In Openlayers, everything belongs to the Map class. The Layer, Control, and
Interaction classes must be hooked up to a map if we want them to do anything. So, we
need a map object to actually create a useful map—and as you might imagine, we'll see later
in this chapter that it is possible to make an application that uses multiple map objects.

Time for action - creating a map

Let's walk through creating a simple map from the beginning. Create a new file in your
text editor to get started. To make it easy, save this file in the sandbox folder. Remember
that all the samples are set up to use the version of OpenLayers we've provided in the
assets folder:

1. Start with the HTML code needed to set up the page:

<!doctype htmls>
<html>
<head>
<title> Map Examples </title>
<link rel="stylesheet" href="../assets/ol3/ol.css" type="text/
css" />
<link rel="stylesheet" href="../assets/css/samples.css"
type="text/css" />
</head>
<body>
<div id="map" class="map"></div>
<script src="../assets/ol3/ol.js">
</scripts>

We are just setting up a standard HTML 5 web page and including our stylesheets
and the OpenlLayers library.

2. Adda <scripts> block with the following code:
<scripts>
var layer = new ol.layer.Tile({
source: new ol.source.OSM()
I3F;
var london = ol.proj.transform([-0.12755, 51.507222],
'EPSG:4326"', 'EPSG:3857"');

Chapter 3

var view = new ol.View ({
center: london,
zoom: 6,

1)

var map = new ol.Map ({
target: 'map',
layers: [layer],
view: view

1)

</script>

This code should look familiar to the ones used in the previous chapters, and you'll
be seeing it (with minor variations) quite a bit through the rest of this book. We
create a layer that will show OSM tiles, use 1ondon as our starting point for the
view and create an instance of ol .Map in our map div.

3. Finish off by closing the body and HTML tags:
</body>
</html>

4. Save this file as map . html and open it in your web browser, you should see a
familiar sight, as shown here:

611

Charting the Map Class

What just happened?

Let's look a little closer at how we create our map object in this block of code:

var map = new ol.Map ({

target:
layers:

view: view

3N

imapi ,
[layer],

We use the new operator to create an instance of the ol .Map class and pass it an object
literal containing several options, namely, target, view, and layers. We've used these
before in the previous examples without really explaining them or any of the other options
we might want to use. Here's the full list of available options and what they do:

Name Type Description
controls ol.Collection Controls are covered in detail in Chapter 7, Wrapping
| Array.<ol. Our Heads Around Projections; so, we don't need to
control. go in-depth here. We can define our map's controls
Control> when we create the map object by specifying
them with this option, or we can add them via the
addControl () method later. If you don't specify
this option, then OpenLayers will add an attribution
control, a logo control, and a zoom control to your
map by default.
deviceOptions | olx. The deviceOptions allows you to fine-tune
DeviceOptions performance options, particularly on devices with
| undefined slow memory (such as mobile phones). This is passed

as an object literal and can have two attributes:

loadTilesWhileAnimating: This, when set
to false, will prevent tiles from loading during
animation such as zooming and panning

loadTilesWhileInteracting: This, when set
to false, will prevent tiles from loading while the
user is interacting with the map

Both are true by default.

Chapter 3

Name Type Description
interactions ol.Collection Interactions are used by the map to handle browser
events, such as the user clicking or dragging on
the map. The map passes browser events to each
of its interactions in sequence, allowing each to
determine whether it should take action and whether
it should consume (stop further processing of) the
event. The order of interactions is important—if an
interaction consumes a browser event, subsequent
interactions will not see the event. Interactions are
closely related to controls and are discussed in more
detail in Chapter 8, Interacting with Your Map with
controls. The default interactions, if this option is not
provided, are DragRotate, DoubleClickZoom,
TouchPan, TouchRotate, TouchZoom,
DragPan, KeyboardPan, KeyboardZoom,
MouseWheelZoom, and DragZoom if they are
available.
keyboardEvent | Element | This option indicates which HTML element will be used
Target Document | to receive keyboard events for interactions that use
string | them (such as KeyboardPan and KeyboardZoom).
undefined By default, the map's target is used.
layers ol.Collection | The layers option defines which layers are to
| Array.<ol. be added to the map initially. Layers can be added
layer.Layers> and removed later using the addLayer () and
removeLayer () methods.
logo Boolean|String | This controls the display of the ol3 logo in the map,
|olx. true by default. Set to false to hide the logo.
LogoOptions Alternately, you can use your own logo by providing
a URL or a logo options object.
overlays ol.Collection | The overlays option defines which overlays will be
| Array.<ol. added to the map initially. We will review them
Overlay> thoroughly in Chapter 8, Interacting with Your Map.
pixelRatio Number The number of physical pixels per screen pixel,
normally computed automatically.
renderer String The renderer option determines which rendering

technology is to be used for drawing the map. The
allowed values are:

& webgl

4 canvas

¢ dom

We'll discuss what these actually mean a little further
on in this chapter.

Charting the Map Class

Name Type Description
target Element | The target identifies the HTML element in which
String the map will be drawn on the web page. In all our

examples, we pass a string value that matches the
id attribute of the HTML element we want the map
displayed in, and for the most part, this is what you
will want to do. You can also pass the actual DOM
element object instead of a string, but this is beyond
the scope of this book.

view ol.View The view controls the location and orientation of the
map. The View class has options that define its initial
state and methods that enable manipulation of the
view and these are discussed in more detail later in
this chapter.

By default, OpenLayers draws, or renders, the map in the browser using an HTML 5 canvas
element and its associated 2D drawing context. This is known as the Canvas renderer.
However, Openlayers actually comes with three renderers. The ability to choose a different
renderer for the map can be very powerful but it should also be used with care. Each
renderer has some specific capabilities and limitations. In particular, only the Canvas
renderer is considered stable at the time of writing this book.

The Canvas renderer

The Canvas renderer draws the map's contents onto an HTML 5 canvas element
(http://en.wikipedia.org/wiki/Canvas_element). The canvas elementis a
high-performance 2D drawing surface supported by all modern web browsers (on Internet
Explorer, Canvas support starts with version 9). The canvas renderer is the most fully
supported renderer in Openlayers. It does not support some of the advanced features of
the WebGL renderer, including 3D, controlling the contrast, brightness, hue and saturation
of a layer, and other advanced capabilities requiring the power of WebGL.

You will most likely want to use this renderer until WebGL is more broadly supported, unless
you are building an application that can target browsers that specifically support WebGL.

701

http://en.wikipedia.org/wiki/Canvas_element

Chapter 3

The WehGL renderer

WebGL (http://en.wikipedia.org/wiki/WebGL) is a powerful
technology that gives the web browser access to hardware-accelerated 2D
and 3D graphics rendering, normally available only to desktop software,
%ﬁx‘\ typically games. With this renderer, OpenLayers will be able to efficiently
’ render a lot of vector and raster data simultaneously. At the time of this
writing, rendering of vector data with WebGL was still in development and
not yet available.

It even provides the ability to render data in 3D and give full 3D navigation. Given how
fantastic all this sounds, why wouldn't you use it all the time? Unfortunately, WebGL support
in a browser is dependent on two things. First, the user's computer must have a graphics
card and software drivers that are capable of supporting it. Second, the web browser itself
must support it. Since WebGL is a relatively new specification, only the newest versions of
Google Chrome, Safari, and Firefox will enable WebGL on systems with capable hardware.
Internet Explorer up to version 10 does not provide WebGL support at all, although there are
third-party plugins that can be added by users to provide it. Finally, mobile browser support
is very limited and varies widely at this time.

In summary, the WebGL renderer can give your application amazing performance and some
cutting edge capabilities if your intended users can be relied on to have the latest web
browser versions and capable hardware. It isn't suitable if you need to support older web
browsers, Internet Explorer, or mobile users.

The DOM renderer

The DOM renderer draws the map's contents using HTML elements (and <divs>
tags) and uses CSS to position them. This renderer is supported by older versions of
most browsers, including Internet Explorer 8. However, it does not provide many of the
capabilities enjoyed by the Canvas renderer. Of the features that it does not support, the
most important is vector support covered in Chapter 6, Styling Vector Layers. The DOM
renderer will also generally exhibit poorer performance.

There is some effort being undertaken by community members to provide some vector
capabilities for the DOM renderer, including support for Internet Explorer 8, but in general,
you will probably not want to use the DOM renderer unless you need to support older
browsers that do not provide Canvas support.

Vector support for the DOM renderer has been added to OpenlLayers

since the 3.0 release covered in this book and should be available for

general use in the next release.

ni

http://en.wikipedia.org/wiki/WebGL

Charting the Map Class

Time for action - rendering a masterpiece

Let's modify our example and add a renderer option to see what happens:

1.

Open the example in your web browser. Right-click on the map and select Inspect
Element to open the Web Inspector and see what OpenlLayers creates in the web

page to display the map.

[+] T
el 2 nlmsle Sunderiand & !
1 Durhiam
ettt -
—
Ry Rinbn
Back
\ iaid N wilhdishae
Bblin un Reload - hepeha
Gomoy B et
Save As... o
Print...
Limenick e orwich:
Translate to English T L 1=
weesrird View Page Source Amsﬂ?{f‘,ﬂ. oA O,
¥ View Page Info | Den Haeg L NEENC e 8 L el
Gk SEDad's.] g9 nﬂi’;m T J Munster
Shaks o Trusda Recklinghausm
a1 & Unlcclf 1Password ‘ e SRV i
| 7 JSONView L : L e mm L
&7 Save to Pocket ~ Dunkerue Gent“Mecheion i tevraen
5 Fetlen Si
Excter WY Bruxelles® Brussel L;:_‘V“ L T g
' Inspect Element =t : 7 & ek
= Plyrrouth | ' s
i
i
& ~lensre on o
- 'I | |

2.

You should see something like the following screenshot:

| Elements | Resources Network Sources Timeline Profiles Audits Console
> Computed Style [_| Show inherited
¥ <html> ¥ Styles R
P <head>..</head> eLa:\\;nt style { * 2
¥ <body> 3 »5EY
¥ <div id="map" class="map">
vediv class="ol-viewport" style="position: relative; overflow: hidden; width: 180%; height: Matched C55 Rules
100%; "> .ol-viewport .ol-unselectable ol.ess:1
<canvas height="58@8" width="1888" class="ol-unselectable" style> 1
»<div clas ol-overlaycontainer'>.</div> A Bl b 11
</div=> —webkit-user-select: none;
</divs A + +
<script src="http://ol3js.org/en/master/build/ol.js" type="text/javascript"></script> L -—mez—user—seleett—henet
»escripts.</scripts 4 —ms—userselecthoner
=/body> L gser—setecti—fonrer
</html> -webkit-tap-highlight-color:
roba(e,®,0,0);
» Metrics
= Dranartinr
bt | oy | divbmapmap | dvol-viewpor
>
O, Q @ -<topframe-¥ <page context> v (b | Errors Warnings Logs Debug &

121

Chapter 3

The inspector is highlighting the HTML element used to render the map. In this case,
that element is the <canvas> element. This element is used for both the WebGL
and Canvas renderers. Let's see what happens when we change the renderer.

Edit the example and change the map object constructor to
like this:

var map = new ol.Map ({

target: 'map',
view: view,

layers: [layer],
renderer: 'dom!'

13N

Save this and load it in your web browser. Right-click on the

4.

use the DOM renderer,

map and select Inspect

Element to open the Web Inspector and see what has changed:

| Elements | Resources Network Sources Timeline Profiles Audits Console

¥=01v 10="map class="map =
¥<adiv class="ol-viewport"
100%; ">

style="position: relative; overflow: hidden; width: 100%; height:

l-unselectable" style="position: absolute; width: 180%; height:
¥ediv style="position: absolute;"s
v=div style="position: absolute; -webkit-transform: matrix3d(1, @, @, @, @, 1, @, @, @, @, 1,
9,

100%;">

330, 247, 0, 1);">

<img crossorigin="anonymous" src="http://c.tile.openstreetmap.ora/6/32/21.pne" style="max—
width: none; position: absolute; left: 256px; top: Bpx;'=
<img crossorigi anonymous" src="http://c.tile.openstreetmap.org/6/29/21.png" style="max-
width: none; position: absolute; left: -51Zpx; top: @px;"=>
<img crossorigin="anonymous" src="http://c.tile.openstreetmap.ora/6/38/28.pna" style="max-
width: none; position: absolute; left: -256px; tops —256px;'=
<img crossorigin="anonymous" src="http://c.tile.openstreetmap.org/6/33/20.png" style="max-
width: none; po on: absolute; left: 512px; top: -256px;'">
<img crossorigi anonymous" src="http://b.tile.openstreetmap.ora/6/32/28.png" style="max-
width: none; position: absolute; left: 256px; top: -256px;'"=

s nonymous" src="http://b.tile.openstreetmap.ora/6/29/20.png" style="max-

html body div#map.map div.ol-viewport | div.ol-unselectable div div m

bd

H,= 4 @ Errors Warnings Logs Debug

<top frame> ¥ <page context>

» Computed Style () Show inherited

¥ Styles + i £
element.style {
max-width: none;
position: absolute;
left: @px;
top: @px;
» Metrics
» Properties
» DOM Breakpoints
» Event Listeners e

What just happened?

Now, we see a lot of elements. By choosing the DOM renderer, we have asked
Openlayers to use a different way of presenting the map in the browser. OpenLayers
now creates a new element for each map tile coming from the remote server and

positions it next to the others to create the complete map.

7131

Charting the Map Class

In Chapter 2, Key Concepts in OpenLayers, we introduced the concept of observable, or KVO,
properties and how they can be used. Here are the KVO properties of the Map class:

Name Type Description

layergroup | ol.layer.Group The layergroup property is an instance of
ol.layer.Group and is used to manage the
layers in the map. Although you can use this property
to add and remove layers, there are convenience
methods in the Map class to make it easier (see layer
methods a little later in this chapter).

size ol.Size | undefined | The size property represents the size of the map
in pixels.
view ol.IView The view property is an instance of a View class

that provides the spatial context for the map. We
will discuss views at the end of this chapter.

target Element | string | The target property is the HTML element that
undefined the map is placed into. The value of this property
will be the value that you supplied, either an
HTML element or a string that is the ID of an
HTML element.

All properties on the Map class, and all other classes in OpenLayers that inherit from
ol .0Object, can be used with the KVO methods described previously.

Time for action - target practice

In this example, we'll use the target property to move the map around in our web page:

1. Working from the previous example, add a second <div> tag for the map and a
<button> tag after the <input > element we added for the bindTo () example.
Change the class of both <divs> tags to half-map—this class tells the <div> tag to
only take up to 50 percent of the width of the page. When the user clicks the button,
we'll move the map between the two <divs> tags:
<div id="map" class="half-map"></div>
<div id="map2" class="half-map"></div>
<input type="checkbox" id="visible" checked> Toggle Layer
Visibility
<button onclick="changeTarget () ;">Change Target</buttonx>

nl

Chapter 3

2. Now, we can add a function to the end of the <script > element that contains our
new code, right after the code we added in the bindTo () example. The function
will first call map .getTarget () to get the ID of the element that the map is
currently in. If the ID is map, then we set the target to map2; otherwise, we set it to
map:
function changeTarget () {

var target = map.getTarget () ;
if (target == 'map')
map.setTarget ('map2') ;
} else {
map.setTarget ('map') ;
}
}

3. Reload the example in your browser, you should see something like this:

T

Iu Y

Ripen
Yok

| | Beadind I
| resten Brodbrd o kingston upen Hul

Lancaster

ol
Banod it Linesin \ L=
L Suokeeon Trent
ety

Lchteld
i Petchorcugh Nerscty /
Coveniry Ely ! Amsterdan
Worcbbres S Northampton .rui/ e / ; S ilversist
Heqatord Miton Kegnes, | Den Hasg Utrecht]
5t Daud 5 Liitort Colchester Rontestan LA
s Claucester el ; Deietic

Swarises 3
Cardif Bristol . London
>]

Ws Canterbury, y
Salsury

hichester =& |
Exeter Beumerreaith =

Hyrouth
Thra

o LeMas

\ -8 ;_7 ¥ r
@ Toggle Layer Visibility | Change Target |

1751

Charting the Map Class

4. Click the Change Target button, and you should see something like this:

Liverpicel

Bangor

5t Dand's.

Swanses

Catm pristol

Fyrreth

Welfs
Salisbury

DT

Riptn
Yok

o Bradiord - kingston upon Hull
T ngstonupon K

Lincein

Stokean-Trent

Licrigesa)
Fetetioough
Covertry Ely
o ARRATOESN Candinge
Al ey es

L Gleuster Luiton, Colehester

Qxird Cremstorg

London

imerrath

Nerwich

Centeriy

Amsterdan]
£ Hilversa
D Haag Lerecht

Rotterdam
Dot

T

L
X

Y Amiens

Faris
Bt

A e 1 i

™ Toggle Layer Visibility | change Target

What just happened?

When you click the button, the changeTarget () function is called. This function uses
getTarget () to find out which element the map is rendered in and setTarget () to
move it to the other map element.

Moving the map between two HTML elements is really a contrived example to illustrate how
the methods work. A more likely use of these methods might be to show and hide the map
entirely. Try changing the above example to show and hide the map, rather than moving it.
Also, try using get () and set () instead of getTarget () and setTarget () methods.

Q
Man methods

The Map class, being the central organizing point for OpenLayers, provides methods for
managing many aspects of the map. As there are quite a few methods, we've grouped them
into some logical groups—Control methods, Interaction methods, Layer methods, Overlay
methods, Rendering methods, Conversion methods, and other methods.

Calling setTarget () with no parameters will set the map
target to nothing, effectively removing it from the page.

1761

Chapter 3

Control methods

These methods are used to manage Controls associated with a map. Controls are covered in
more detail in Chapter 9, Taking Control of Controls; so, we won't go into any detail here:

Method

Parameters

Description

addControl (control

) control -ol.Control

This method adds a control to
the map.

removeControl (

control)

control -ol.Control

This method removes a
control from the map.

getControls ()

This method returns an
ol.Collection of controls
associated with the map.

These methods are used to manage interactions associated with a map. Interactions are
covered in more detail in Chapter 8, Interacting with Your Map; so, we won't go into any

detail here:

Method

Parameters

Description

addInteraction (
interaction)

interaction-ol.Control

This method adds an interaction
to the map.

removelInteraction (
interaction)

interaction-ol.Control

This method removes an
interaction from the map.

getInteractions ()

This method returns an
ol.Collection of interactions
associated with the map.

Layer methods

The methods are used to manage layers in the map. Layers can also be managed through the
layergroup property but these methods are a bit easier to use:

Method

Parameters

Description

addLayer (layer)

layer —ol.Layer

This method adds a layer to the map.

removelayer (layer)

layer —ol.Layer

This method removes a layer from the map.

getLayers ()

ol.Col

This method returns all the layers that
have been added to the map as an

lection.

¥1]]

Charting the Map Class

These methods are used to manage overlays associated with a map. Overlays are covered in
more detail in Chapter 8, Interacting with Your Map; so, we won't go into any detail here:

Method Parameters Description
addOverlay(overlay) overlay-ol.Overlay | This method adds an overlay
to the map.

removeOverlay(overlay) | overlay-ol.Overlay | This method removesan
overlay from the map.

getOverlays () This method returns an
ol.Collection of overlays
associated with the map.

When we programmatically change the map's view (which we'll discuss at the end of this
chapter), the state of the map changes and a redraw of the map is scheduled. This means
that if we change the center of the view from London to New York, the map will re-center on
New York and fetch tiles for that area and the screen will be updated almost instantly. This
behavior can produce a jarring effect for the user. Fortunately, the Map class provides some
ways to modify how the map will change state by using the beforeRender () method and
how the map will appear using the render () and renderSync () methods.

Method Parameters Description

beforeRender (fn) fn- function | Thisaddsa render function and initiates frame
rendering.

render None This programmatically triggers a redraw of the

map. This will happen asynchronously, which
means that it will not happen before this method
returns but rather will be scheduled to occur at
some later time.

renderSync None This causes the map to be redrawn synchronously,
which means that by the time this method
returns, the map will have been redrawn.

The primary use of the beforeRender () method is to add animation effects to our map's
navigation. After we add a function using beforeRender (), the map will call the function
and allow it to update the state of the map. This function can be used to smoothly animate
any of the view's state including location, level of detail, and rotation.

7181

Chapter 3

While the creation of animation functions is beyond the scope of this book, their use is
straightforward, and OpenLayers provides some useful ways for creating animation functions
for most common scenarios. Let's indulge ourselves in a bit of fun by exploring how to create
and use them.

All the following methods take a single options argument with three common parameters:
start, duration, and easing.

L 4

start: This is a number, the time in milliseconds to start the animation at. If not
provided, the default is to start immediately. You can use the JavaScript Date object
to get the current time in milliseconds, such as var start = (new Date()).
getTime () ;. To specify a start time in the future, just add a number of milliseconds
to this number; for instance, to start an effect one second from now, use var

start = (new Date()) .getTime() + 1000;.

duration: This is a number, the duration of the animation in milliseconds, the
default is 1000 (1 second).

easing: This function is an easing function. An easing function is a function that
computes a smooth transition for an animation. The defaultis ol .easing.
inAndoOut, which provides a smooth acceleration into and out of an animated
transition. These are the built-in easing functions:
o ol.easing.bounce: This adds a bounce effect to the end of a transition
o ol.easing.easeIn: This smoothly accelerates the start of the transition
o ol.easing.easeOut: This smoothly decelerates the end of the transition

o ol.easing.inAndOut: This smoothly accelerates the start and
decelerates the end of the transition

o ol.easing.elastic: Thisis similar to the bounce effect

o ol.easing.upAndDown: This applies the transition, and then, reverses it

In addition to the three common options, each animation function has at least one
additional property you can provide. Here are the functions with a note on the additional
properties that can be passed. We'll try out these functions afterwards:

Function Options Description
ol.animation.bounce(| resolution-— The resolution parameter is the
options) number resolution to bounce to. This function

returns an animation function that provides
a bounce effect when animating a transition.
It is usually combined with other functions
such as pan.

17191

Charting the Map Class

Function Options Description
ol.animation.pan source — The source parameter is the location to
options) ol.Coordinate | start panning from. This function returns an

animation function that smoothly transitions
from one location to another. It is usually
used immediately before updating the view's
location to animate the transition from the
current location to a new location

ol.animation.rotate(| rotation- The rotation parameter is the rotation
options) number to apply in radians. This function returns an
animation function that rotates the map by
the rotation indicated.

ol.animation. zoom/(resolution-— The resolution parameter is the
options) number resolution to zoom to. This function returns
an animation function that smoothly zooms
the map from one resolution to another. It
is usually used immediately before changing
the view's resolution.

As you might guess, some of the built-in controls such as the zoom controls use these
animation functions to create nice effects.

Time for action - creating animated maps

The best way to understand these animation functions is to try them out. Start from the
previous example:

1. First, add some buttons to trigger the animation effects:

<button onclick="doBounce (london) ; ">Bounce To London</buttons>
<button onclick="doBounce (rome) ; ">Bounce To Rome</button
<button onclick="doPan (london) ;">Pan To London</buttons>
<button onclick="doPan (rome) ;">Pan To Rome</buttons>

<button onclick="doRotate () ;">Rotate</button>

<button onclick="doZoom(2) ;">Zoom Out</button>

<button onclick="doZoom(0.5) ;">Zoom In</buttons>

These are regular HTML buttons that call a function when clicked. We'll add the
functions in a moment.

2. Next, add a new location for Rome, next to the line where we defined the location
of London:

var rome = ol.proj.transform([12.5, 41.9], 'EPSG:4326"',
'EPSG:3857") ;

Chapter 3

Now, we'll add functions at the end of our <script> tag to handle the button clicks.
Start with the doBounce () function:

function doBounce (location) {
var bounce = ol.animation.bounce ({
resolution: map.getView() .getResolution() * 2
1)
var pan = ol.animation.pan ({
source: map.getView() .getCenter ()
1)
map .beforeRender (bounce) ;
map .beforeRender (pan) ;
map.getView() .setCenter (location) ;

}

Next, add the doPan () function:

function doPan(location) {
var pan = ol.animation.pan ({
source: map.getView() .getCenter ()
P
map .beforeRender (pan) ;
map.getView() .setCenter (location) ;

}

Next, add the doRotate () function:

function doRotate() {
var rotate = ol.animation.rotate ({
rotation : Math.PI * 2

)

map . beforeRender (rotate) ;

}

Finally, add the doZoom () function:

function doZoom(factor) {
var resolution = map.getView() .getResolution() ;
var zoom = ol.animation.zoom({
resolution: resolution
P
map .beforeRender (zoom) ;
map.getView() .setResolution(resolution * factor);

}

Now, reload the example in your web browser and try clicking on the buttons. You
should see the map zoom, pan, and bounce between London and Rome.

811

Charting the Map Class

What just happened?

Not too bad! In a few lines of code, we managed to create some pretty impressive animation
effects using ol .animation functions and the Map's beforeRender () method.

In step 3, we created the doBounce () function. This function takes a single parameter,
location, which is the location that we want to bounce to. The effect we want to achieve
is to smoothly zoom out from our current location and then into the new location. We

called ol .animation.bounce () to create a function that implements the bounce
animation effect. For this example, we provided only the resolution property and let

the other properties (start, duration, and easing) take their default values. We set

the resolution property to two times the current resolution of the map's view. This is
equivalent to clicking the ZoomOut control (the button in the top-left corner of the map with
the minus sign) once. What this does is smoothly zoom out from the current resolution to
the next zoom level, and then back into the current resolution.

Next, we created a function that implements the pan animation effect. Again, we used the
defaults for start, duration, and easing by not specifying them and set the source
property to the current center of the map's view. We added both bounce and pan functions
to the map by calling beforeRender () ; then, we changed the map's view to go to the
location we passed into this function.

In step 4, the doPan () function takes a single parameter, 1ocation, and smoothly pans

the map to it. To do this, we called o1 .animation.pan () with the map's current center for
the source as we did in the doBounce () function, then we told the map's view to go to the
new location.

In step 5, the doRotate () function doesn't take any parameters; we just wanted to spin
the map 360 degrees. We used the ol .animation.rotate () function for this and set
the rotation option to specify how much to rotate. When we add this to the map using
beforeRender (), the effect happens immediately.

In Openlayers, rotation is always specified in radians. When we
think about rotation, we normally think in degrees. To convert from
degrees to radians, it is useful to remember that 180 degrees = Pl *
radians. We don't need to know the value of PI, JavaScript provides
~ us with the useful constant, Math.PI. The formula to convert
Q degrees to radians is var radians = degrees * Math.
PI / 180;.Theinverseis var degrees = radians * 180
/ Math.PI;.Inour example, we wanted to rotate the map 360
degrees. Using the formula above, this becomes 2 * Math.PI,
which is the value we used.

1821

Chapter 3

Step 6 adds the doZoom () function. It takes a single parameter, factor, which is the
amount to zoom. We used ol .animation.zoom() to create our animation function using
the view's current resolution as our starting point. Then, we added our animation function
and told the map's view to zoom to a new resolution by multiplying the current resolution by
the factor parameter. A factor of two will cause the map to zoom out to the next zoom level
and a factor of 0.5 will cause the map to zoom in to the next zoom level.

Have a go hero - exploring animation properties

Now that we've seen how the basic animations work, try modifying the animation properties
in each function to see how to change its parameters and overriding the default duration,
start time and easing functions. You can also try combining the animations in different ways.

When we click on a web page, the browser generates a MouseEvent that contains, among
other things, the position that the click happened at. This position is in pixels and is relative
to the browser window. In an OpenLayers application, we will often want to respond to

the user interacting with the map and it is important to understand these events specify
the position in pixels. It is common to need to determine the geographic coordinate that
corresponds to this position. OpenLayers provides several methods that allow us to convert
between the browser's pixel space and geographic coordinates:

Method Parameters Description
getCoordinateFromPixel (| pixel - This method converts a pixel position
pixel) ol.Pixel to a geographic coordinate and

returns an ol .Coordinate. The
pixel position is relative to the HTML
element the map is contained in.

getPixelFromCoordinate (| coordinate - This method converts a geographic
coordinate) ol.Coordinate | coordinate into a pixel position
relative to the HTML element that the
map is contained in and returns an

ol.Pixel.
getEventCoordinate (event - This method computes the geographic
event) BrowserEvent coordinate from a browser event (such

as a click or mouse move) and returns
an ol.Coordinate.

getEventPixel (event) event - The method computes the pixel
BrowserEvent location of a browser event relative to
the map's HTML element and returns
anol.Pixel.

Charting the Map Class

The map object contains a few other methods that don't neatly fit into the previous groups;
so, we've included them here for completeness:

¢ opt_this -
object, or
null

¢ opt
layerFilter
- function
or null

& opt this2
- object or
null

Method Parameters Description
forEachFeatureAtPixel ¢ pixel - This method queries all layers
(pixel, callback, opt_ ol.Pixel contained in the map for any features
this, th_layerFilter, & callback - that intersect the pixel location
opt_this2) function provided. The callback function will

be called once for each feature found
with the feature as the first argument
and the layer it was found in as

the second argument. If provided,
opt_this will be used as the
context for the callback function (the
value of this inside the function).

By default, all layers will be queried;
however, you can choose which layers
to query by providing a function for
the opt layerFilter argument.
This function will be called once

for each layer, passing the layer as

the only argument, and is expected
to return true if the layer is to be
queried and false if the layer is not
to be queried. The final opt _this2
argument will be used as the context
for the layer filter function if provided.

getViewport ()

None

This method returns the HTML
element that the map is contained
within. Unlike the map's target
property, which may return either
a string or an HTML element, this
method will always return the
HTML element.

updateSize ()

None

This method tells the map to
recalculate its size based on its
container. This is used when other
code changes the size of the map's
target element.

[8a1

Chapter 3

The standard KVO events beforepropertychange and change are available, as well as
one event for each of the observable properties: change : 1ayergroup, change:size,
change:target, and change : view. Review the section on KVO in Chapter 2, Key Concepts
in OpenLayers if you don't remember how these events work.

In addition to the KVO related events, however, there are quite a few new events that can be
triggered from a map object. As with any other event, you can register for these events using
the on () and once () methods discussed earlier. We'll group these events into browser
events, map events, and render events.

The Browser events are all events that are provided in response to the user interacting with
the map's HTML element. The available events are:

*

click: This event is fired once for every discrete click on the map. If the user
double-clicks on the map, this event will be fired twice. If you want to distinguish
between a click and a double-click, use the singleclick event instead.

dblclick: This event is fired if the user double-clicks the map.

pointerdrag: This event is fired when the user moves the mouse while holding
down one of the mouse buttons.

pointermove: This event is fired when the user moves the mouse.

singleclick: This event is fired when the user single-clicks on the map. There is a
short 250 ms delay after the click event before this event is triggered to ensure that
the user is not double-clicking the map.

Listeners attached to the Browser events will receive an object of the
ol .MapBrowserEvent type that contains the following properties:

L 4
L 4

type — This is a string, MapBrowserEvent.
map: The ol .Map is a reference to the map object on which the event happened.

browserEvent: The DOMEvent is a standard browser event that was originally
issued by the browser. This will contain information about the event (its position and
what the user did—move, click, and so on) that you'd be usually looking for.

frameState: This is an object representing the current frame state of the map.

1851

Charting the Map Class

There are two events that are triggered when the map state changes.

¢ moveend: This event is triggered when the map completes a transition from one
position to another, typically after panning or zooming

¢ postrender: This event is triggered when the map has completed rendering the
current state

Listeners attached to the map events will receive an object of the ol . MapEvent type, which
contains the following properties:

¢ type: Thisis a MapEvent string

¢ target:The ol.Map, a reference to the map object on which the event happened

¢ frameState: Thisis an object representing the current frame state of the map

Render events
There are two events that are triggered when the map is being rendered. These can be used
to programmatically alter the appearance of the rendered map image in interesting ways:
& precompose: This event is triggered when the map is rendered, just before all the
layers will be drawn into the rendering context.

¢ postrender: This event is triggered when the map has completed rendering all
the layers into the current rendering context. This is a very interesting event as it
provides an opportunity to modify the canvas (for Canvas and WebGL renderers)
after the map has been rendered. We'll explore this in Chapter 6, Styling Vector
Layers when we discuss vector styling.

Listeners attached to the render events will receive an object of the ol . render . Event type
that contains the following properties:

¢ type: Thisis a MapEvent string

¢ target:The ol .Map is a reference to the map object on which the event happened

¢ vectorContext: This is a rendering API capable of drawing to the context
frameState: This is an object representing the current frame state of the map

context: This is the 2D context associated with the canvas (if applicable)

* o6 o

glContext: This is a WebGL rendering context (if applicable)

Chapter 3

The map object is the central component of an OpenlLayers web application. It is a central
place to add and remove things such as layers and controls, and bind them all together. The
remaining chapters in the book will introduce you to these other things, but one of those bits is
really very closely tied to the map object, and that is the view object. The view object provides
the map with the information it needs to decide what location and level of detail—or zoom
level—you are looking at. A view also has a projection (which we discussed in Chapter 2, Key
Concepts in OpenlLayers) that determines the geospatial reference system of the map.

The view Class

OpenlLayers currently provides a single View class, ol .View. This class represents a simple
2D view, which can be manipulated through three key properties: center, resolution,
and rotation. We will create a new instance of o1.view in the same way that we create
a map object, like the following:

var view = new ol.View(ViewOptions) ;

We've used views in all our examples because a view is a mandatory parameter when creating
a new map instance, but we haven't discussed it in detail yet. Let's dive in.

The options you can use when creating a new ol .View instance are as follows:
Property Type Description
center ol.Coordinate | This is the initial center for the view.
undefined The coordinate system for the center is

specified with the projection option. The
default value is undef ined, and if this
property is not set, then layer sources will
not fetch data (no map will render).

constrainRotation | boolean | number | Thisoption controls how the view will
constrain rotation. False indicates

no constraint. True indicates that the
view should snap to 0 rotation when the
rotation is close to zero, but otherwise, not
constraint rotation. If this option is set to

a number, then rotation is constrained to
that many values. For instance, a value of 4
constrains to 0, 90, 180, and 270.

enableRotation boolean This controls whether the view can be
rotated at all; the default is true.

1811

Charting the Map Class

Property

Type

Description

extent

ol.Extent |
undefined

This establishes a constraint for the center
of the view such that it always lies within
this extent. If not provided (the default),
the view's center is not constrained.

maxResolution

number | undefined

This is the maximum resolution in
projection units per pixel that the map
supports. This property, combined with
minResolution, maxZoom, minZoom,
and zoomFactor, determines the

zoom levels and resolutions that the map
supports. See the section after this table
for a complete description of how these
properties work together.

minResolution

number |undefined

This is the minimum resolution in
projection units per pixel that the
map supports.

maxzoom

number | undefined

This is the maximum zoom level that the
map supports.

minZoom

number |undefined

This is the minimum zoom level that the
map supports.

projection

ol.proj.
ProjectionLike

This is the projection of the view; default is
EPSG:3857 (Spherical Mercator).

resolution

number | undefined

This is the initial resolution for the view.
The units are projection units per pixel
(for example, meters per pixel).

resolutions

Array.<numbers |
undefined

These are resolutions to determine

the resolution constraint. If set, the
maxResolution, minResolution,
maxZoom, minZoomand zoomFactor
options are ignored.

rotation

number | undefined

This is the initial rotation for the view in
radians (positive rotation clockwise).

zoom

number | undefined

This is the zoom level used to calculate
the initial resolution for the view. The
initial resolution is determined using the
constrainResolution method.

zoomFactor

number | undefined

This is the zoom factor used to determine
the resolution constraint. It is used
together with maxResolution
minResolution, maxZoom, and
minZoom. The default value is 2.

Chapter 3

Understanding resolution

It is important to understand what is meant by the term resolution and how the various view
options related to resolution work together.

In the context of Openlayers, the term resolution means the number of projection units per
pixel. A projection determines how the real world, which is a sphere, is represented in 2D space.
The definition of a projection includes a number of things, including a 2D coordinate system
and an algorithm for converting real-world locations (latitude and longitude) to and from the
projection's coordinate system. The projection's coordinate system is defined in a particular set
of units, such as meters, feet, or even decimal degrees. The projection's coordinate system has
a bounding box defined as values in the projection's unit system. When we say projection units
per pixel, we mean a value expressed in the unit system of the projection.

The most zoomed out state of the map will render the bounds of the projection into a 256

x 256 pixel tile. This is considered the maximum resolution and can be calculated as the
width of the projection's bounds divided by 256. When the map is at its most zoomed in, the
minimum resolution can be calculated as the width of the projection's bounds divided by the
number of tiles wide times 256. We yet don't know how many tiles are required to draw the
map at the most zoomed in level; so, this has to be known or computed in some way.

The most zoomed out state of the map is, by convention, called ZoomLevel 0. When a user
zooms in or out, they change to the next zoom level. Zooming effectively changes the number
of tiles used to represent the projection's bounds. The default zoom factor is 2, which means
that zooming in to the next zoom level doubles the number of tiles in the map (in each
dimension) and halves the resolution. If ZoomLevel 0 is 1 tile (wide and high), then ZoomLevel
1is 4 tiles (2 wide and 2 high). ZoomLevel 3 is 16 tiles (4 wide and 4 high). In fact, the

number of tiles required for the width and height of any zoom level can be easily calculated
as numTiles = 2 * zoom. Each zoom level has a resolution defined by the projection's bounds
divided by the zoom level's width in tiles. For any given zoom level z, the resolution can be
computed as resolution = projection width / (2 # z). Likewise, the zoom level equivalent to

any resolution can be computed by rearranging the algorithm to z = log(projection width /
resolution)/log(2).

When a view is configured, it needs to know a maximum and minimum resolution and
a zoom factor for determining the resolutions between the maximum and minimum for
zooming. The View class provides several options that are used together to determine
the resolution constraints. Since zoom level and resolution can be computed from each
other, the constraints can be determined in terms of resolution (maxResolution and
minResolution), zoom levels (minZoom is equivalent to maxResolution, maxZoom
is equivalent to minResolution), or some combination of these. OpenlLayers uses the
resolution options in preference to the zoom options if both are provided.

In practice, it is usually sufficient to define just the maxZoom or minResolution because
minZoom defaults to 0 (the maximum resolution computed from the projection bounds).

Charting the Map Class

As with the Map class, the View class has a number of KVO properties that have accessor
methods (get and set), property binding, and events as discussed earlier:

Name Type Description

center ol.Coordinate This is the center of the view, with units determined by
the projection.

resolution | number This is the resolution of the view. The units are
projection units per pixel (for example, meters per pixel).

rotation number This is the rotation of the view in radians (positive
rotation clockwise).

View methods

The view class has several methods in addition to its properties:

Method

Parameters

Description

calculateExtent (size)

size—o0l.Size

This calculates the extent in projection
units for the given size, based on the
current resolution and center.

centerOn (coordinate)

coordinate -
ol.Coordinate

This centers the view at the geographic
coordinate provided.

constrainCenter (center

)

coordinate -
ol.Coordinate

Given a center coordinate, this applies
any constraints and returns the
resulting coordinate.

constrainResolution
(resolution, delta,
direction)

resolution
—number |
undefined

delta—number

Given a resolution, this applies any
resolution constraints and returns the
resulting resolution.

delta - number

direction-—

number
constrainRotation rotation-— Given a rotation value, this applies any
(rotation, delta) number rotation constraint and returns the

resulting rotation.

fitExtent (extent, size)

extent —
ol.Extent

size - o0l.Size

This fits the given extent based on the
given map size.

Chapter 3

Method Parameters Description

fitGeometry (geometry, geometry - This zooms the map to show the
size, options) ol.Geometry extent of a geometry in a given box
size. The options object may contain
any of the following:

size - ol.Size
options -
Object ¢ padding: Thisis an array of
four numbers to use as extra
padding around the geometry.
The order to apply the padding
values is top, right, bottom,
then left. Default is all Os (no
padding).

& constrainResolution:
This is a Boolean value
indicating whether the
resolution after zooming
should be constrained to the
nearest zoom level. The default
value is false.

¢ nearest:Thisisa
Boolean value used when
constrainResolutionis
true, which indicates whether
the nearest resolution should
be chosen or not. If this is
false, then the next most
zoomed out resolution will be
used (ensuring the geometry's
extent will definitely be visible).
If this is true, then the closest
zoom level will be used, which
might mean that the geometry's
extent is not entirely contained
after zooming. The default value
is false.

¢ minResolution: Thisis the
minimum resolution to zoom
to when fitting a geometry,
which can be used to prevent
zooming in really far on small
geometries. The default value
is 0, which means zoom in as
far as possible.

getCenter () This returns the center of the view.

911

Charting the Map Class

Method Parameters Description
getProjection () This returns the projection of the view.
getResolutionForExtent extent - This computes the resolution of a
(extent, size) ol.Extent given extent and map size.
size - ol.Size
getZoom () This returns the zoom level of
the view.
rotate (rotation, opt_ rotation - This rotates the view around the
anchor) number specified coordinate, or the center of
opt_anchor - the map if an anchor is not provided.
ol.Coordinate
setZoom (zoom) zoom - number This sets the zoom level of the view.

Time for action - linking two views

We'll wrap up this chapter with a final update to our example by adding a second map and
linking the two maps together.

1.

First, remove the button that we used to move the map between the two <div>
tags; it's the HTML that looks like this:

<button onclick="changeTarget () ; ">Change Target</buttons

Also, remove the associated function, changeTarget (), as we won't need it any
more.

Next, add some code to create a second instance of ol .Map and put it into the
map2 <divs> tag. Note that there is no view option!

var map2 = new ol.Map ({
target: 'map2',
layers: [layer]

13N

Now, we'll bind the map's view property to the other map object:
map2.bindTo('view', map) ;

Reload the example in your browser and try it out. Zooming and panning in the first
map automatically updates the view of the second map. The animation buttons

also work on the first map and the second map's view gets updated. Panning and
zooming in the second map also works and updates the first map.

1921

Chapter 3

What just happened?

With a single line of code, we bound the view property of the two maps and were able to
produce a pretty interesting effect. By itself, this doesn't do much that could be considered
useful but it is the basis for building some interesting functionalities such as creating an
overview map or a highlight map that shows the same area as a main map but at a different
level of detail.

One thing you probably noticed with the previous example is that changes from one

map aren't animated in the other one. This behavior is to be expected. If you recall, we
mentioned in the animation section that programmatic changes are applied instantly. Since
we aren't adding animation effects with beforeRender (), the changes applied from one
view to the other happen instantly and the result is sometimes quite jarring.

Use the knowledge you've gained in this chapter to adapt the previous example into
something more useful. Try to make the second map respond to changes in the first map,
but zoomed out three times. Remember that zooming out once is equivalent to doubling
the zoom level. When the page loads, it should look like this:

DT

Ripern
vork

Lsncaster
) Bradrt™. Kingston upon Hull
Fresten B ingsten upon Hul

Liverpeol
Bangor Chisster Linrein]
St Trent
Dety
Lichfeia

Petatorugn| Mo

CovEntry, Ely

Amsterdan
Hillersuer

Warcister S HOrthampton Carpfdde
Hesetora TAlton Keymes
StDavd's . Gloucester Luitor, Colehester
e Cheimeord
Swarises
Candif Bristol London
Canterbury,

Salsbury Dupkeriie

e} i
A
o ey

Aot ok

Y e,

Paris
st
3 | L 4 == Y . 1
@ Toggle Layer Visibility | Bounce To Londen | | Bounce To Rome | | Pan To Lendon | | Pan To Rome | | Rotate | | Zoom Out | | Zoom In

When the first map is panned or zoomed, the second map should center on the same

location and stay zoomed out in three levels. The second map should not have any controls or
interactions—set both the controls and interactions option tonew ol.Collection/()
to achieve this.

Charting the Map Class

[Q You will need a separate view object for the second map.]
Pop quiz

Let's do a series of questions to see what you understood during the chapter:

Q1. I want to start my map looking at a specific location and level of detail. Which object is
responsible for this?

1. the Map

2. the View

Q2. | want to take some action when the user pans the map. What event should I listen for?

1. moveend

2. zoomend
Q3. Which object files this event?

1. the View

2. the Map
Q4. | want to update a property called center of the view object when the center
property on another object obj, changes. Which class provides the bindTo () method
that I'll use?

1. ol.Map

2. ol.vView

3. ol.Object

This brings us to the end of the Map and View classes. We covered a lot of detail in these two
classes and also uncovered some of the common methods used throughout the OpenLayers
library that will help us work with events and key-value observing. We tried out many of the
methods in various examples.

In the next chapter, we'll dive into raster layers and discover how to add various types of
raster data sources to our Openlayers applications.

[9a1

Web maps are very popular today, and are growing in popularity. After Google
Maps was introduced, there was an explosion of interactive web maps. Google
provides an API to interact with its mapping service, as others do now, and
OpenlLayers works well with most of them. Not only can we use these third-party
APIs with OpenLayers, we can also mash up other layers on top of them. Those
services are the most popular, but they suffer from bottleneck depending on your
web mapping application. So, you need to know mainstream API and alternatives
to display raster images.

In this chapter, we will learn the following:

What are layers

What types of layers exist, particularly for raster

Why some raster data are tiled/untiled

What are sources in Openlayers

What is the web mapping history related to layers

How does the main sources class associated with a layer works

Working with the Spherical Mercator and combining different layer classes

® 6 6 6 6 0 o o

How to manage nongeographic images using map interactions

Interacting with Raster Data Source

A layer is basically a way to show multiple levels of information independent of each other.
Layers are not just a mapping or cartography concept; graphic designers and digital artists
make heavy use of layers.

Imagine a printed map of a city. Let's say you also have two sheets of transparent paper. One
sheet has blue lines that indicate bus routes, and the other sheet contains green lines that
indicate bicycle routes. Now, if you placed the transparent sheet of paper with bicycle routes
on top of the map, you will see a map of the city with the bicycle routes outlined.

Putting on or taking off these transparent pieces of paper will be equivalent to turning a
layer on or off. The order you place the sheets on top of each other also affects what the
map will look like—if two lines intersect, you will either see the green line or the blue line
on top. This is the basic concept of a layer.

Layers in OpenLayers 3

Openlayers is a JavaScript library, and as discussed earlier is built using Object Oriented
Programming (OOP). When we want to actually create a layer, we will create (or instantiate)
an object from an o1 .layer.Layer subclass.

Openlayers has many different ol . layer classes. The layer types are only for different kinds
of data (tiles, images, and vector). Using an attached ol . source. * will allow you to connect
to a different type of map server 'back end.' Each layer object is independent of other layer
objects; so, doing things to one layer won't necessarily affect the other.

How many layers can | have?

The safest maximum amount of layers you can have on a map at one time
depends largely on the user's machine (that is, their processing power
and memory). Too many layers can also overwhelm users; many popular
. web maps (for example, Google and Yahoo!) contain just a few layers. We
% recommend that you don't use a lot of layers or limit the number of layers
= that you can turn on at the same time. Adding layers is cheap but making
composition of the map image is expensive, particularly with Canvas
renderer. If you turn on many layers at the same time, you will end up with
an unusable map, whereas if only some of them are turned on, you will
have good performance. You also need to be aware that using vector layers
instead of raster layers is better for composition performances.

Chapter 4

Whatever the purpose of your web map application is, you will need at least one layer to
have a usable map. An OpenLayers map without any layers would be like an atlas without
any maps. You need at least one layer—at least one base layer. All other layers that sit above
the base layer are called overlay layers. The concept inherits from the existing OpenLayers 2
series and was seen in Chapter 1, Getting Started with OpenLayers.

The hase layer

A base layer is at the very bottom of the layer list, and all other layers are on top of it.

This would be our printed map from the earlier example. The order of the other layers can
change, but the base layer is always below the overlay layers. By default, the first layer that
you add to your map acts as the base layer. You can, however, change the order of any layer
on your map to act as the base layer.

You can also have multiple base layers. Although you can set more than one base layer active
at a time, for visual readability, most of the time, you only use one.

Any layer that is not a base layer is called an overlay layer. Like we talked about earlier, the
order that you add layers to your map is important. Every time you add a layer to the map,
it is placed above the previous one.

After this reminder about layers concepts, see what's happening at the OpenLayers 3 library
level inheritance to discover the main layers type.

Types of layers

There are two types of layers: raster and vector layers. The main differences between
both are:

¢ Raster layers are images like PNG or JPEG. They can be generated on server-side
or are static. In most cases, your browser doesn't manipulate them but only
consumes them.

& Vector layers are features, geographic objects that are described by their geographic
coordinates. They scale up and down without losing visual quality and are easier to
style because style can be done on client-side (your browser if you prefer).

1971

Interacting with Raster Data Source

To give you an overview of layers organization at the library level, let's look at the
following diagram:

ol.layer.Base
ol.layer.Layer ol.layer.Group
ol.layer.Image ol.layer.Tile ol.layer.Vector

When you are creating a new web mapping application, you have to make a choice between
benefits and drawbacks of those layers. For raster, it's mainly that images do not overload
the browser as vector layers mostly can. As you can see in the diagram, raster layers such as
vector layers are derived from a common ol . layer.Layer class. This ol . layer.Layer
class inherits from an ol . layer.Base class, (base in this case means common behavior
between layers). This class is also inherited by an ol . layer.Group class designed to group
layers to treat them as a single layer. In our case, we will focus mainly on the two raster layer
classes, ol.layer.Image and ol.layer.Tile. We will also do a review of the common
ol.layer.Layer methods. Moreover, you can divide raster in two categories: tiled or
untiled. We will cover both types in this chapter. The ol.layer.Vector class will be covered in
Chapter 5, Using Vector Layers.

Chapter 4

All raster layers inherit from ol . layer.Layer.

The following table is the list of available properties. You can also use them with vector
although it's not required in this chapter:

Name

Type

Description

brightness

number |undefined

This property sets the layer brightness.

See Wikipedia webpage (https://
en.wikipedia.org/wiki/Brightness)
for more information.

contrast

number|undefined

This property sets the layer contrast.

hue

number |undefined

This property sets the layer hue. You can
discover more about hue with the Wikipedia
page, https://en.wikipedia.org/
wiki/Hue.

opacity

number|undefined

This property sets the layer opacity. Possible
values are between 0 and 1. The default value
is 1.

saturation

number|undefined

This property sets the layer saturation.

See the dedicated Wikipedia article
(https://en.wikipedia.org/wiki/
Colorfulness) for more.

source

ol.source.Source

This property defines the source for the layer.
Sources are a way to access a resource such as
single, tiled images or geographic features.

visible

boolean|undefined

This property sets the visibility. The default value
is true (visible).

minResolution

number |undefined

This is the minimum resolution (inclusive) at
which this layer will be visible.

maxResolution

number|undefined

This is the maximum resolution (exclusive)
below which this layer will be visible.

You can use those properties to set layer properties at startup. If you need to change one
of those properties after layer creation, you always have setters and getters. Getters, if you
don't remember the part about JavaScript initialization, are methods of objects you can use
to get properties. Setters are also methods but to set properties. The setter and getter for a
property are derived from the property name. It starts with a get or set keyword followed
by the property with the first letter using uppercase. For example, for opacity, the getter
name is getOpacity and the setter name is setOpacity.

https://en.wikipedia.org/wiki/Brightness
https://en.wikipedia.org/wiki/Brightness
https://en.wikipedia.org/wiki/Hue
https://en.wikipedia.org/wiki/Hue
https://en.wikipedia.org/wiki/Colorfulness
https://en.wikipedia.org/wiki/Colorfulness

Interacting with Raster Data Source

You also have some methods that are specific to ol . 1layer.Layer and not related
to properties.

The following are the main methods. We will not cover methods related to events: the
ol.layer.Layer inherits from ol .0Object via ol .layer.Base (http://openlayers.
org/en/v3.0.0/apidoc/ol.html). It's because we already explained how events works
within Chapter 2, Key Concepts in OpenLayers.

Name Description

get ('key"') This method gets value for a key (inherited from o1 . Object)

This method sets value for a defined key (inherited from
set ('key', 'value') ol.Object)

This method sets values and keys from an object (inherited
setProperties (object) from ol .Object)

This method gets all property names and values for the layer
getProperties () within an object.

Let's try to play with the simplest cases.

Time for action - changing layer properties

Follow these steps to change layer properties:

Use the example derived from the first example from Chapter 1, Getting Started
with OpenlLayers, also available at chapter04/2360 04 01 changing layer
properties.html:

<!doctype htmls>
<html lang="en">
<head>
<title>Simple example</title>
<link rel="stylesheet" href="../assets/ol3/css/ol.css"
type="text/css" />
<link rel="stylesheet" href="../assets/css/samples.css"
type="text/css" />
</head>
<body>
<div id="map" class="map"></div>
<script src="../assets/ol3/ol.js" ></scripts>
<scripts
var osmLayer = new ol.layer.Tile ({
source: new ol.source.OSM(),

[100]

http://openlayers.org/en/v3.0.0/apidoc/ol.html
http://openlayers.org/en/v3.0.0/apidoc/ol.html

Chapter 4

opacity

: 0.6,

brightness: 0.2

3N
var view

center:
52.4431409750608]

zoom: 6
1)
var map =
target:

3N

= new ol.View ({
ol.proj.transform([-1.8118500054456526,

, 'EPSG:4326"',

new ol.Map ({

!map!

map .addLayer (osmLayer) ;

map.setVi
</script>
</body>
</html>

ew (view) ;

Show ol.source.Source from the osmLayer:

console.log(osmLayer.getSource()) ;

Execute the following code:

'EPSG:3857"'),

osmLayer.setProperties ({opacity: 0.4, contrast:0.6});

console.log(osmLayer.get ('contrast')) ;

console.log(osmLayer.get ('opacity')) ;

See the results and redo a similar operation with:

osmLayer.setProperties ({opacity:

console.log (osmLayer.getOpacity ()
console.log(osmLayer.getContrast (

Finish the code with these instructions:

osmLayer.

osmLayer.
osmLayer.
osmLayer.

set ('opacity',1);
setContrast (1) ;
setBrightness (0) ;

set ('myId',

'myUnique')

console.log(osmLayer.get ('myId')

0
)
)

)i

.7, contrast:0.3});

)i

1011

Interacting with Raster Data Source

5. The console result will look like this:

> console.log(osmLayer.getSource());
B Ex {Qa: Ic, Se: Ex, pd: null, c: 1, i: Lt.} VyM281:2
undefined

> osmLayer.setProperties({opacity: 0.4, contrast:0.6});
console.log(osmLayer.get('contrast'));
console.log(osmLayer.get('opacity'));

0.6 VM282:3
0.4 VM282:4
undefined

> osmLayer.setProperties({opacity: 0.7, contrast:0.3});
console.log(osmLayer.getOpacity());
console.log(osmLayer.getContrast());

0.7 yM283:3
0.3 VM283:4
undefined

> osmLayer.set('opacity',1);
osmLayer.setContrast(1);
osmLayer.setBrightness(0);
osmLayer.set('myId', 'myUnique'};
console.log(osmLayer.get('myId'));
myUnique VM284:6

undefined

What just happened?

We reviewed how to manage main methods attached to the o1 .1layer.Layer subclass
(remember that o1 .1layer.Tile inherits from it).

The interesting thing here, is that you are able to manipulate and create generic properties
for all the ol .layer.Layer subclasses.

The most common operations on layers have their custom getters/setters such as
getVisible () /setVisible (property), but you can replace them with the o1 .layer.
Layer getters/setters, get ('visible') /set ('visible', property).These are
inherited from ol .0bject, and consequently, ol .layer.Tile inherits them too. In the
normal case, you use these getters/setters only for arbitrary properties we want to add, such
as a hame.

11021

Chapter 4

Another benefit you may not be aware of is that when you add new properties to a layer
object, you can attach information for new applications related to layers. For example, you
can set a property to reference metadata for the layer (intellectual properties, license, link
to a PDF file to download, or more). Some other ways to use it are to define groups, set a
unique identifier, set a display name to reuse in a custom layer manager, and set a reference
to a legend resource (URL, image, and so on).

The possibilities are endless.

Now, after this short introduction to manage layer properties, we will review different raster
layers and also the source property. It's mainly these elements that make the difference
between raster layers in the Openlayers 3 library.

Tiled versus untiled layers

We mentioned earlier that there are two types of raster layers: tiled and untiled.

Before sharing ideas about tiling, the first thing to do is define tiling. According to Wikipedia,
https://en.wikipedia.org/wiki/Tiled rendering, it can be considered as the
process of subdividing an image by regular grid.

So, why is this needed? Again, like for Closure Tools, it's for web performances. You can
review about Closure tools in more detail in Appendix B, More details on Closure Tools and
Code Optimization Techniques. Raster data and layers are built from other images or from
vector data. The idea here with tiles is to balance the time for data processing and the time
for transferring the resource (the image) through the network. It's also because using a
regular tile grid can be cached, both by the browser and by the server.

Imagine that you require a complex layer. Would you want to wait for five minutes until it
renders? (Rendering is the process to generate an image from geographic sources).

[1031

https://en.wikipedia.org/wiki/Tiled_rendering

Interacting with Raster Data Source

The following table shows a summary of pros and cons for using tiled, untiled resources:

Type of layer | Pros Cons
& Heavy server consumption to
preprocess (generate) the tiles.
¢ Speed: It only takes time to & Loss of render freshness if
transfer an image. pregenerated and not associated
< Stability: You don't need with a tile server.
a backend after tiles & Heavy disk space consumption
generation, only to host web (Terabytes for world) when
Raster tiled accessible map images files. pregenerated tiles.
layer ¢ Support for heavy load: Each ¢ Visual break effects when
tile is only a small image, continuous zoom because tiles
which is light and will not are conceived with view levels in
overload your browser. mind. When you are not using the
& Tiles URLs are predefined; view levels, images will stretch
so, these can be served and would seems blurry.
through CDN. ¢ Limited to serve multiple
projections: a tileset has to be
generated for each projection.
& Render freshness in all cases.
& Limited disk space
Raster consumption. & Heavy load on server-side when
untiled layer & Support for multiple there are a lot of users.
projections. ¢ Slow with complex layering (heavy
¢ Image quality rendering at all process time).
scales and not only defined
levels.

To summarize, if you want performance with less flexibility, choose tiled raster, and if you
need fresh data and your layers are based on one or two data sources, choose untiled raster.
You can also make a mix of both solutions: use tiles at some levels and untiled content at
other levels. Another difference we don't really show in the table for tiles, is that you can
pregenerate image tiles for an upper level (such as the country level or lower) and choose
to generate tiles on the fly only for lower levels (the street level). Depending on the context,
you don't choose: you have to connect to a third-party map server where the choice is
restricted to the available web services / images.

The purpose of this comparison is to help you understand how to make a good decision
concerning the required layers you have to choose. OpenlLayers 3 is only a client-side library;
however, knowledge about the principle to provide layers is a requirement to use it well.
Also, you may need to host, or own, your map server to serve raster data.

(1041

Chapter 4

If you ever need to serve your own tiles or raster data, you can take a look
at the following open source software:

Geoserver: http://geoserver.org

It is a server software that allows you to serve maps and data from a variety
of formats to standard clients such as web browsers and desktop GIS
programs.

Mapnik: http://www.mapnik.org

It's a toolkit for rendering beautiful maps, with clean, soft feature edges
provided by quality anti-aliasing graphics, intelligent label placement, and
scalable, SVG symbolization. Most popularly, Mapnik is used to render the
OpenStreetMap main map layers.

Mapserver: http://www.mapserver.org

% It is an open source geographic data rendering engine written in C. Beyond
I~ browsing GIS data, MapServer allows you to create geographic image maps,
that is, maps that can direct users to web content. Like GeoServer, it allows
map publications via Open Web Standards.

Degree: http://www.deegree.org/

Degree is open source software for spatial data infrastructures and the
geospatial web. It shares with GeoServer and Mapserver the ability to serve
map via Open Web Standards.

We can also mention that there are map proxy applications such as
MapCache http://mapserver.org/mapcache/, GeoWebCache
http://geowebcache.org, or MapProxy http://mapproxy.org.
Their important purposes are creating tiles for dynamic web server, caching
requested map images using GeoServer, MapServer, Mapnik, Degree, or any
other map servers.

Tynes of raster sources

So far, we focused on the differences between tiled and untiled, but you also have some
differences coming from the source property.

So, how can we define a source? What is its purpose?

Sources in Openlayers 3 language define how and where you can access the layer. You
always need a source from an ol . source subclass in order to retrieve and display layers.

Why did Openlayers 3 development team invent this concept?

[1051

http://geoserver.org
http://www.mapnik.org
http://www.mapserver.org
http://www.deegree.org/
http://mapserver.org/mapcache/
http://geowebcache.org
http://mapproxy.org

Interacting with Raster Data Source

It was mainly for the organization of the code and reusability of the same principles. You gain
modularity because you have only three types of layers but more sources. It enables you to
decouple the type of layer you are using from the data source and the way you call it. It's simpler
to manage a new source than to create a new layer by example if a new source appears.

You can see in the following diagram that ol . source. Source has three main child subclasses,
ol.source.Vector, ol .source.TileSource, and ol . source. ImageSource.

They are abstract classes. It means, they work as a skeleton for all types of sources but are
never directly used:

Source
Tile ’ Image ’ Vector ‘
AN
Tilelmage TileDebug ImageStatic ImageCanvas ImageWMS MapGuide

uses;

’ XYz ’ Zoomify ‘ ’ WMTS ‘ ’ TileJSON ‘ ’ BingMaps TiledWMS ‘

uses:,

MapGuide

Stamen MapQuest

=]

A quick look at the history of API and tiles providers

Most of the layers we are manipulating are inherited from the past.

Web-based maps are commonplace today. The catalyst for the explosive growth of web
maps was the introduction of Google Maps. Web maps existed before, but they were not
quick or developer friendly. In June 2005, Google released an API for Google Maps, which
provided a frontend client (the role OpenLayers plays), along with an access to the backend
map server via their frontend client API.

[1061]

Chapter 4

This allowed anyone to insert not just a Google Map on their site, but also allowed them to
add in their own point data and manipulate the map in other ways. Google Maps grew in
popularity, and other companies such as Microsoft, Yahoo, MapQuest, MapBox, Nokia, and
others followed in their footsteps, creating their own web mapping APls.

Most of them are more likely to make mashups.

The term mashup refers to an application that combines various different data sources and
functionality together. A map mashup is a map that combines different layers and data.
Third-party mapping APIs, such as MapQuest and Microsoft Bing Maps, allow people to more
easily create these map mashups. For example, a map with an OpenStreetMap base layer
overlaid with markers that track places you've traveled to can be considered a map mashup.

Openlayers did not introduce map mashups, but it allows us to create very powerful ones
with ease. Combining an OpenStreetMap layer, a WMS layer, and a vector layer is pretty
simple with OpenLayers.

Openlayers 2 had some third-party mapping APIs embedded into its core, enabling you to
use its maps inside your Openlayers-based application. Nowadays, for better decoupling of
Openlayers API from third-party APls, the OpenLayers 3 team choose to have no support for
other mapping APIs that tie together tiles and an associated JavaScript API library.

Why this decision?

One of the main goals of OpenLayers 3 was to rewrite OpenLayers 2, making its APl cleaner.
The support for Google Maps APl in Openlayers 2 has also put a significant maintenance
burden on both library and application developers, to keep up with changes of the Google
Maps API. To avoid this in OpenlLayers 3, the support for Google Maps using Google Maps
APl is nonexistent. However, Google does provide its tiles independent from their API, but
only to paying customers. Fortunately, you have more alternatives to Google Maps API. We
will try to show you that Bing (Microsoft) Maps (with its tiles service) or OpenStreetMap
and its derived map images' data services APl such as MapQuest can fill the missing provider.

Now, it's time to review all the tiled layers, in particular, to use beautiful background layers
for your maps.

11071

Interacting with Raster Data Source

Tiled images’ layers and their sources

All tiled layers share some common properties. They inherit from the ol . source.
TileImage. Those common properties are quite useful for other ol .source. * that inherit
from it, for example, in some cases to put a logo or give attributions (also called credits) for
the maps data and/or tiles. You have to be careful in the APl docs online as these properties
are considered unstable. You have to uncheck the Stable Only checkbox on the top banner.
Unstable doesn't mean that you don't have to use those properties but that they may change
with future Openlayers releases. It's very useful for application developers to see what they

may need to use or migrate in the future. See the following table for further information:

Name Type Description
This gives the source attributions. It's
a way to give credits for geographical
data and/or tiles providers using an
ol.Attribution object. You
Array.<ol.Attribution> | can provide an array to put multiple
attributions | | undefined attributions.
This property sets configuration for
remote access using CORS (Cross Origin
Resource Sharing). CORS for security
null | string | purpose sets rules for accessing remote
crossOrigin undefined content.
This property defines the extent for the
extent ol.Extent | undefined | source.
logo string | undefined This property defines the logo URL.
opaque boolean | undefined This property sets the opacity.
projection ol.proj.ProjectionLike | This property sets the projection.
This property sets a tile class. By
default, it references the ol . source.
tileClass function | undefined TileImage function.
ol.tilegrid.TileGrid |
tileGrid undefined This property sets a tile grid.
ol.TileLoad
tileLoad FunctionType | This property is an optional function to
Function undefined load a tile to a given a URL.

[108]

Chapter 4

Name Type Description

This property is the pixel ratio used by
the tile service. For example, if the tile
service advertises 256 px by 256 px tiles
but actually sends 512 px by 512 px
images (for retina / hdipi devices), then

tilePixel tilePixelRatio should be set to 2.
Ratio number | undefined The default value is 1.

ol.TileUrlFunction This is an optional function to get the
tileUrl Type | undefined tile URL given a tile coordinate and the
Function projection.

The most important functions are mostly those that do not start with the word tile. The
tileClass, tileGrid, tileLoadFunction and tilePixelRatio exist but we choose
to not cover them as they seem out of the scope for beginners; they help setting access to
backend with particular tile grids. Along this book, we will sometimes refer to source as layer
but it means a layer with the source adapted for a particular backend.

The OpenStreetMap layer

OpenStreetMap (OSM) is a free, Wikipedia style map of the world driven by user
contributed content. You are able to use your own OSM tiles or ones provided through the
OpenStreetMap servers.

Setting up an OpenStreetMap service and tiles yourself is not too difficult, but it is outside
the scope of this book (visit http://switch2osm.org for more information on this).
Accessing OSM with OpenlLayers, however, isn't.

More information on the OpenStreetMap project can be found at http://www.
openstreetmap.org. To access OpenStreetMap, only using the ol . source.0SM
constructor without any options is enough. In the previous examples, we were already
using this source, so we will not give you another similar example.

Accessing your own OSM tiles

Though using constructor without options can be enough, you can also use other properties.
The default constructor code uses the publicly available OSM tiles, but it is easy to point it at
your own tiles. To do so, create the layer in this format:

var osmLayer = new ol.layer.Tile ({
source: new ol.source.OSM ({
url: 'http://{a-c}.tile.opencyclemap.org/cycle/{z}/{x}/{v}.png’
3]
I

(1091

http://switch2osm.org
http://www.openstreetmap.org
http://www.openstreetmap.org

Interacting with Raster Data Source

To use this, you will have to replace http://{a-c}.tile.opencyclemap.org/cycle/
with the server hosting your OSM tiles. {z}, {x}, and {y} are variables that OpenLayers will
replace with the appropriate values to reference specific map tiles.

The {a-c} parameters mean to say you can access tiles using these URLs:
http://a.tile.opencyclemap.org/cycle,
http://b.tile.opencyclemap.org/cycle,
http://c.tile.opencyclemap.org/cycle

This behavior comes from restrictions from your browser: you can't simultaneously ask
images from a same domain. It can only request a certain number of resources from the
same domain simultaneously, usually 2 or 4. Using subdomains is a way to bypass this limit
and speed up the map displaying.

If you have different sources for tiling, it is not only to provide different URLs to access
different map images. The way tiling is done depends on established standards.

For example, Stamen layers, OpenStreetMap layers, and MapQuest layers are using the
same tiling convention, whereas WMTS (Web Map Tile Service) can adopt other patterns to
display tiles. These patterns are set with the ol .tilegrid.TileGrid object that describe
for each arbitrary zoomlevel how the tiles are split.

The rules are the following. In reality, the Earth is not a sphere, but in this case, our planet is
assimilated to a sphere because we are using Spherical Mercator projection (mainly known
as EPSG 900913 or EPSG 3857). Do not worry about projections at the moment, we will
review them in a later chapter as it can be a difficult topic to understand.

The entire sphere is projected on a single square at the 0 level. Then, for each zoom, you
increase a level and for each tile at the previous zoom, we get 4 tiles at this one.

(1101

http://a.tile.opencyclemap.org/cycle
http://b.tile.opencyclemap.org/cycle
http://c.tile.opencyclemap.org/cycle

Chapter 4

LevelT Level 2
00|10 0,0 (10|20 30
01f1r ~-.._ |0a 112132

02 (1.2 (22,32

03 |13 |23]33

Level 3 !

00 |10[20/30([40|50|60|70

01| 12121 (31]141)51]61 |71

0212122132)]42|52]| 6.2 |92

05313 4 2isE 3 1 4,3, [5:3 16, 3RS

04|14|24 34|44 |54/(64)|74

05145 |°2:5 13,5 | 4.5 |'5:5'] 6:5| 7.5

06|16|26|36|46| 56| 66| 7.6

07 (1,7 | 207 (3,7 | 47 | 57| 67| 1.%

With the preceding diagram, you will know how to access a tile covering East Europe such
as Poland at the 3 level. The URL always looks like URL_TO TILES/level z/x_in grid
for level/y for grid in level.png. So, for Poland that has a zoom level 3, x equal
to 4,an yto 2, the URL could be http://b.tile.openstreetmap.org/3/4/2.png or
http://c.tile.openstreetmap.org/3/4/2.png to get the right tile.

OpenStreetMap source class properties

This source enables your layer to consume OpenStreetMap data and customize
OpenStreetMap specific properties.

The constructor is ol . source . 0SM and its properties can use following options:

Name Type Description

Array.<ol.Attributions | | This property can provide an array to put
attributions | undefined multiple attributions

This property sets configuration for
remote access using CORS (Cross Origin
crossOrigin null | string | undefined Resource Sharing)

This property is the maximum zoom. By
default, OpenStreetMap servers provide
tiles until a maximum level 18. Some
servers are able to work until level 20 for
maxzZoom number | undefined micromapping.

[l

Interacting with Raster Data Source

Name Type Description

This property sets the URL referring
to tiles. If not defined, the default
valueishttp://{a-c}.tile.
openstreetmap.org/{z}/{x}/

url string | undefined {v}.pna.
tileLoad ol.TileLoadFunctionType | Thisisan optional function to load a tile
Function | undefined given a URL.

The ManQuest layer

MapQuest was, until around 2008, the leading provider for web mapping API. With the entry
of Google Maps, the leadership was lost. In 2010, the company chose to change its position
concerning web mapping API, by choosing to exclusively rely on OpenStreetMap data to do
the job.

Two layers are available freely. They also provide other services such as their own web
mapping API. You can get further information at the Open developer part website at
http://developer.mapquest.com/web/products/open/.

MapQuest source class properties

The MapQuest source class refers directly to the MapQuest tiles server URL.
The constructor is ol . source .MapQuest.

You are only required to use the source constructor included in an ol .layer.Tile object
to add the layer. There are only two options' properties. The first one is the layer. It can take
values such as osm (roads), sat (satellite), and hyb (hybride) depending on the tiles you
want to display. The other property tileLoadFunction will not be covered here: it's not
a common requirement for beginners and we already listed it in the o1 . source.0SM. At
least, you just need to know that it helps change call to tiles with rules defined in your code.

The assignment is quite easy:

1. Create a map with both MapQuest OSM and satellite layers.

2. Play with the layer used in particular methods such as setvisible to be able to
see one layer and hide it to show the other underlying layer.

[n2]

http://developer.mapquest.com/web/products/open/

3.

data too but not coming from the official website.
4,

Find some alternative URLs that provide a URL to tiles coming from OpenStreetMap

Chapter 4

Find the real URL that MapQuest layers use, using the debugger and in the code of

the library itself (available at https://github.com/openlayers/ol3).
5.

Center your map on New York City, United States and choose the zoom you want or
the part of the city you prefer. You can use http://openstreetmap.org to get
the coordinates' center.

You will get something like the following screenshot if you center on the Statue of Liberty
and use the MapQuest OSM layer:

pad

&
onne

The Stamen layers were named so after a company. To cite the OpenstreetMap wiki,

Stamen (http://stamen.com) is a San Francisco design and development studio focused
on data visualization and map-making. These layers extensively use OpenStreetMap data

in many of their map visualizations and have provided three CC-BY OpenStreetMap tilesets:
Toner, Terrain, and Watercolor. You can see how the styles look at the official demo website,
http://maps.stamen.com.

131

https://github.com/openlayers/ol3
http://openstreetmap.org
http://stamen.com
http://maps.stamen.com

Interacting with Raster Data Source

Time for action - creating a Stamen layer

Follow these steps to create a Stamen layer:

1. We can access the Stamen layer from the outside of the box. This will be pretty
simple. First, we just need to create a layer object:

var stamenlLayer = new ol.layer.Tile ({
source: new ol.source.Stamen ({
layer: 'toner!'
3]
1

2. Then, we just construct the map directly, adding the view and the layer already
configured at startup:

var map = new ol.Map ({

layers: [stamenLayer],

target: 'map',

view: new ol.View({

center: ol.proj.transform([2.35239, 48.858391], 'EPSG:4326',

'"EPSG:3857'),
zoom: 12

)

1

3. You should see something like the following screenshot:

Chapter 4

What just happened?

The map we've just created shows a black and white Stamen layer. You can look at other
available layers for Stamen, the list is available just after the Stamen Layers' properties below.

Stamen source class properties

Stamen source class refers to the beautiful tiles from Stamen. You can declare their source
using the following content.

The constructor is ol . source. Stamen.

We will not review all properties, as most of them are configured by default. You can refer
to the APl docs at http://openlayers.org/en/v3.0.0/apidoc/ol.source.
Stamen.html.

The most important property to remember is the layer where you set the name of the
available layer you want with:

new ol.source.Stamen ({
layer: 'toner'

|3

You will find all the available layers names derived from the three Stamen layers in the
following table, their image type, and their default state. Be careful, particularly when you are
using the . jpg images and the opaque property option together, the . jpg image format is
unable to work with transparency. Refer to the following table for further information:

Name Extension opaque
terrain .Jjpg true
terrain-background .Jjpg true
terrain-labels .png false
terrain-lines .png false
toner-background .png true
toner .png true
toner-hybrid .png false
toner-labels .png false
toner-lines .png false
toner-lite .png true
watercolor .jpg true

(1151

http://openlayers.org/en/v3.0.0/apidoc/ol.source.Stamen.html
http://openlayers.org/en/v3.0.0/apidoc/ol.source.Stamen.html

Interacting with Raster Data Source

The Bing Maps layer

Microsoft provides an interface to their mapping services as well. Their mapping service
previously was referred to as Virtual Earth, but they have since rebranded it as Bing Maps. The
official Microsoft documentation can be found at http://msdn.microsoft.com/en-us/
library/dd877180.aspx.

Time for action - creating a Bing Maps layer

Bing Maps tiles can be viewed using the official Bing Maps API, but they can also be used
through an API that gives direct access to their tiles. This is what we will see now:

1.

2.

Go to the Microsoft Mapping API register website at http: //www.bingmapsportal.
com to get an official key.

Let's set up the source object now. We need to not only specify the style property
but also the key. Contrary to the previous examples, a tile access control is done
and works through an account associated with a key to use in your code:

var sourceBingMaps = new ol.source.BingMaps ({

key: '"AibU6zHqoTPYDuUNRtHPMJIQg557poKb9AVTIJONWWNNZf8LfoRRwoigHTQO
Frrsrbm',

imagerySet: 'Road',

13N

Now, create the first ol .layer.Tile layer:

var bingMapsRoad = new ol.layer.Tile ({
source: sourceBingMaps

3N

Now, add another layer using the other type of image 'Aerial":

var bingMapsAerial = new ol.layer.Tile ({
source: new ol.source.BingMaps ({

key: 'AibU6zHqoTPYDuNRtHPMJQ557poKb9AVTIJONWWNNZE8LfoRRwoig
HTQOFrrsrbm',

style: 'Aerial',
3]
1)

Let's create the map and add the two layers and the view directly:

var map = new ol.Map ({
layers: [bingMapsRoad, bingMapsAeriall,
target: 'map',
view: new ol.View({

center: ol.proj.transform([6.562783, 46.517814], 'EPSG:4326',
'EPSG:3857"'),

(1161

http://msdn.microsoft.com/en-us/library/dd877180.aspx
http://msdn.microsoft.com/en-us/library/dd877180.aspx
http://www.bingmapsportal.com
http://www.bingmapsportal.com

Chapter 4

To make the example work, it's required to put your file on a
web server. It can be Apache, but with Python, you can simply
do it in the command line in your demo file root directory:

python -mSimpleHTTPServer

Next, open your browser to http://localhost:8000/
sandbox/your file name.html.

Another way can be to use the node index.js command
(if you downloaded the samples code) and open http://
localhost:3000/sandbox/your file name.html.

Also, you don't have the obligation to create an API key when
you are on your local machine. The one used in this book works
only when using 1localhost or the official book website at
http://openlayersbook.github. io.

(1111

http://openlayersbook.github.io

Interacting with Raster Data Source

What just happened?

We just made a map using the Microsoft Bing Map tiles' API. It works similar to the
OpenStreetMap tiles layers but required to be authenticated. We can communicate with
Microsoft tiles API server and use different properties. Let's go over the properties, as there
are some that the other third-party sources do not provide.

Bing Maps source class properties

Bing Maps source helps you consume Bing tiles representing road and imagery in your layer.

The constructor is ol . source . BingMaps and the following table is for the options:

Name Type Description

It is the language and the localization you want to
display for your labels. The supported Culture Codes
for each style are listed in the official Microsoft
documentation at http://msdn.microsoft.
culture string | undefined | com/en-us/library/hh441729.aspx.

This is the Bing Maps API key. Get yours at
kety string http://bingmapsportal.com.

This is a type of imagery. It can be Road, Aerial,
and AerialWithLabels. Some others are
also available for local parts of the world, such as

imagterySet | string collinsBart or ordnanceSurvey.
ol.TileLoad

tileLoad FunctionType | This is an optional function to load a tile given

Function undefined a URL.

The TileJSON layer

The TileJSON format was invented by MapBox, another company providing OpenStreetMap
related services. It relies on JSON notation.

According to the specification, TileJSON is an open standard for representing map metadata.
Its main goal is to reference the name, the attribution, the server URL, the minimum and
max zoom, the center, the bounds, and the scheme of the tile (for OSM, numbering go

top to bottom but other tiles' systems start numbering upwards). You can see all available
parameters looking at the official specification at https://github.com/mapbox/
tilejson-spec.

As it is not the mainstream way to get tiles, although it's a smart way, we will not review it
through an example but directly advise you to go the official demo available at http://
openlayers.org/en/v3.0.0/examples/tilejson.html and look into the code.

(1181

http://msdn.microsoft.com/en-us/library/hh441729.aspx
http://msdn.microsoft.com/en-us/library/hh441729.aspx
http://bingmapsportal.com
https://github.com/mapbox/tilejson-spec
https://github.com/mapbox/tilejson-spec
http://openlayers.org/en/v3.0.0/examples/tilejson.html
http://openlayers.org/en/v3.0.0/examples/tilejson.html

Chapter 4

TileJSON source class properties

TileJSON source permits you to display in a tiled layer custom tile. You can declare their
source using the following constructor:

ol.source.TileJSON

You can also review the available properties, particularly the required URL parameter on
the official APl docs at http://openlayers.org/en/v3.0.0/apidoc/ol.source.
TileJSON.html.

WMTS layers

The WMTS layer is based on the WMTS standards. The specification defines it as The Web
Map Tile Service described in this standard builds on earlier efforts to develop scalable, high-
performance services for web-based distribution of cartographic maps.

A WMTS-enabled server application can serve map tiles of spatially referenced data using tile
images with predefined content, extent, and resolution.

This type of layer is quite different from most of the previous tiled layers we've seen. WMTS
layers are more customizable. You can make a request to get tiles in custom projection, you
can also choose your grid without caring about the implicit rules, that each tile when you
zoom it will give you four tiles, as illustrated with the following figure:

Coarse resolution
Highest scale denominator

:||_“_“_',||_,
I

i’
il

i

OO0o0oan

Detailed resolution

Lowest scale denominator D D D D D D

(19l

http://openlayers.org/en/v3.0.0/apidoc/ol.source.TileJSON.html
http://openlayers.org/en/v3.0.0/apidoc/ol.source.TileJSON.html

Interacting with Raster Data Source

It's really not the most common tiles layer, but you can see it as the most efficient tile
system for custom requirements. You can better choose your level of tiling or you can also
use custom tile size. For example, for mobile, a smaller tile with 64 pixels for its side can be
used instead of the standard 256 pixels size. We recommend, if you are curious, to see the
official examples at http://openlayers.org/en/v3.0.0/examples/ using the WMTS
keyword. We will not be covering the details here. You can learn more about the standard
itself by going to the official dedicated web pages at http://www.opengeospatial .org/
standards/wmts.

You also need to understand that one of its main goals was to fill the issue for fast rendering
contrary to OGC WMS standard as it can be cached.

IWMTS source class properties

WMTS sources are complex to declare. They require more parameters than other sources
because of their flexibility. For example, the ability to customize for each tile levels grid
means also as a drawback, complexity.

The constructor is ol . source . WMTS. To see its options, we recommend that you visit
the official APl docs at http://openlayers.org/en/v3.0.0/apidoc/ol.source.
WMTS . html.

The DebugTileSource source

The DebugTileSource source is only a way to debug tiles rendering in OpenLayers 3. It
doesn't use the tile numbering from the source but the internal that OpenlLayers use. We
just mentioned it to be exhaustive. You use it into a o1 .layer.Tile class. You can look at
the demo to learn more about it at http://openlayers.org/en/v3.0.0/examples/
canvas-tiles.html. It can really help you to debug special grid, for example, in WMTS.

TileDebugTile source class properties

The TileDebugTile source enables you to display numbered grids to show how tiles are
regrouped in the OpenlLayers Canvas rendering. Canvas is a renderer to display a map in
your browser.

The constructor is ol . source. TileDebug and for the options, you should visit the
official APl docs at http://openlayers.org/en/v3.0.0/apidoc/ol.source.
TileDebug.html.

1201

http://openlayers.org/en/v3.0.0/examples/
http://www.opengeospatial.org/standards/wmts
http://www.opengeospatial.org/standards/wmts
http://openlayers.org/en/v3.0.0/apidoc/ol.source.WMTS.html
http://openlayers.org/en/v3.0.0/apidoc/ol.source.WMTS.html
http://openlayers.org/en/v3.0.0/examples/canvas-tiles.html
http://openlayers.org/en/v3.0.0/examples/canvas-tiles.html
http://openlayers.org/en/v3.0.0/apidoc/ol.source.TileDebug.html
http://openlayers.org/en/v3.0.0/apidoc/ol.source.TileDebug.html

Chapter 4

A WMS (Web Map Service) is a standard protocol for serving georeferenced map images
over the Internet that are generated by a map server. You can watch the full reference at the
official OGC (Open Geospatial Consortium) website, the organization managing this standard
(http://www.opengeospatial .org/standards/wms).

The two versions of WMS available are 1.1.1 and 1.3.0.
WMS is dynamic: you can generate on the fly images.
So, why do | see a reference to a tiled WMS in OpenLayers 37?

It's just a way to lower charge on server-side—when you are generating small images,
the process is faster, the memory cost does not really change as the number of requests
increase, but you gain the ability to cache the tiles.

But wait, so why can't we use ImageWMS with WMS if we can have the advantage of both
tiled (caching) and untiled system (freshness)?

We will not directly answer this right now, but will give you the hint in the section dedicated
to ImageWMS.

You can refer to the official example to see a simple example as a reference at
http://openlayers.org/en/v3.0.0//examples/wms-tiled.html.

To find out what projections a WMS service supports, you can
make a getCapabilities request to the server. To make

this request, specify the request, service, and version
properties in the URL. For example, http://suite.opengeo.
org/geoserver/wms?service=WMS&version=1.1.1&r

% equest=GetCapabilities.
2

Y

You also have to be cautious. Here, we use the Version 1.1.1
version call but the specification supports two versions: 1.1.1
and 1.3.0. It's recommended to use 1.3.0 nowadays, but you can
meet external WMS web services using only 1.1.1. Just use the
VERSION parameter in the params options.

[1211

http://www.opengeospatial.org/standards/wms
http://openlayers.org/en/v3.0.0//examples/wms-tiled.html
http://suite.opengeo.org/geoserver/wms?service=WMS&version=1.1.1&request=GetCapabilities
http://suite.opengeo.org/geoserver/wms?service=WMS&version=1.1.1&request=GetCapabilities
http://suite.opengeo.org/geoserver/wms?service=WMS&version=1.1.1&request=GetCapabilities

Interacting with Raster Data Source

Tiled WMS source class properties

Tiled WMS source helps you set tiled WMS calls for your layer. The constructor is
ol.source.TiledWMSs and the options are listed in the following table:

Name Type Description
Array.<ol.
Attribution> | This property sets an attributions array for the
attributions | undefined source.
This property contains an object of WMS request
parameters. At least, a param layer is required.
Styles are set by default. The version is 1.3.0 by
default. The width, height, BBOX, and CRS (SRS
Object.<string, for WMS, version less than 1.3.0) will be set
params *> dynamically.
null | string | This property sets the crossOrigin setting for
crossOrigin undefined image requests.
ol.Extent |
extent undefined This property sets the extent of your layer source.
ol.tilegrid.
TileGrid | This property enables you to declare a tile grid, a
tileGrid undefined custom grid for your source layer.
maxZoom number | undefined | This property sets the maximum zoom level.
projection ol.ProjectionLike | This property sets the projection.
url string | undefined | This property sets WMS service URL.
This property sets an array of WMS service URLs.
Array.<string> | Use this instead of URL when the WMS supports
urls undefined multiple URLs for GetMap requests.
OpenLayers Zoomify

Contrary to most components that are useful only in a map context, this component helps
you to display any arbitrary images. It's really useful when you need to display a large image
and want performances associated with tiles displayed and the usual interactions of mapping
such as panning and zooming.

Some use cases can be game maps, discovery of scanned historical documents such as birth
certificates for genealogy, or the old maps with no referencing, meaning that they do not
overlay well with existing imagery and geographical data.

To make the ol . source. Zoomify component work, you will need to preprocess a large
image to create tiles.

11221

Chapter 4

Time for action - creating tiles and adding Zoomify layer

10.

11.
12.

With this example, the main goal is to manipulate images. Those images can lack
geographic position, or overlay can't be possible or is not useful. In all cases, the
image size has to be important as tiles' images are only useful in this use case.

Install Python 2.7 series, if you don't have it already installed, using the Getting
Started from The Hitchhiker's Guide to Python! (http://docs.python-guide.
org/en/latest/#getting-started or the instructions in the Installing the
OpenlLayers development environment section in Appendix B, More details on
Closure Tools and Code Optimization Techniques).

Then, install PIL (Python Image Library) using Wikibooks documentation (https://
en.wikibooks.org/wiki/Python Imaging Library/Getting PIL).

Now, go to download the file, http://sourceforge.net/projects/
zoomifyimage/, in order to get the software that will provide the way to split
your image in tiles. You will need to install a software called 7-Zip on Windows to
decompress the downloaded content.

Retrieve the map of Dublin, Ireland, https://en.wikipedia.org/wiki/
File:1797-map-of-Dublin.jpg, in the original size. We choose this document
for its large size and Public Domain rights.

Go in the Zoomi fyImage directory from the third step and generate the tiles for
the image. It can take some time, so don't worry, although the program output is
not verbose:

python ZoomifyFileProcessor.py path to dublin map/1797-map-of-
Dublin. jpg

Copy inthe 013 samples/assets/data/ directory, the created folder from
path to dublin map/1797-map-of-Dublin/.

Prepare the usual OpenlLayers 3 sample structure with no content between the
<script>and </script> tags.

Copy the content from http://openlayers.org/en/v3.0.0/examples/
zoomify.js in your script block.

Open the ImageProperties.xml from ol3 samples/assets/data/1797-
map-of-Dublin/ file and inspect the WIDTH and HEIGHT attributes from the
IMAGE PROPERTIES xml tag.

Copy those values to imgWidth and imgHeight.

Set the url variable to /assets/data/1797-map-of-Dublin/ and change the
zoom property in the view to 1 instead of 0.

11231

http://docs.python-guide.org/en/latest/#getting-started
http://docs.python-guide.org/en/latest/#getting-started
https://en.wikibooks.org/wiki/Python_Imaging_Library/Getting_PIL
https://en.wikibooks.org/wiki/Python_Imaging_Library/Getting_PIL
http://sourceforge.net/projects/zoomifyimage/
http://sourceforge.net/projects/zoomifyimage/
https://en.wikipedia.org/wiki/File:1797-map-of-Dublin.jpg
https://en.wikipedia.org/wiki/File:1797-map-of-Dublin.jpg

Interacting with Raster Data Source

13. Open your browser using the usual local server and you should see a result, similar
to the following screenshot, to play a bit:

=

7

If you have some difficulty, do not hesitate to retrieve the file from samples.

What just happened?

We just made a map using images' tiles using Zoomify source with its particular grid.

The main particular thing to understand in the sample is to set a projection definition that
uses image pixel coordinates, for example:

var proj = new ol.proj.Projection ({
code: 'ZOOMIFY',
units: 'pixels',
extent: [0, 0, imgWidth, imgHeight]

3N

We use units' pixels instead of the more usual degrees or meters and the original image
width and height are used to define the extent. Then, we use pixels as extent units, instead
of meters or degrees.

[124]

Chapter 4

The component retrieves each tile as we zoom in/out. To get an overview of this behavior,
we recommend that you open the Network panel and play a bit with the demo.

Now, it's time to review untiled layers.

Although there are really less image layers' sources available than a tiled one, they are also
useful depending on your goal or your backend.

We will start with the image WMS layer and then cover other types.

Openlayers' image WMS layer

Like the tile layer WMS already reviewed, this component is also using the WMS standard
to retrieve the map, imayer. The thing that differs here is that you add a layer using an
ol.layer. Image constructor instead of the now more usual ol.layer.Tile and,
your ol .source is ol . source . ImageWMs instead. Next, you just have to complete the
parameters like for a tiled WMS.

Now, let's see why we need to use untiled WMS.

See the two following images coming from the official example when you zoom in. The first
one comes from http://openlayers.org/en/v3.0.0/examples/wms-tiled.html.
See the following screenshot:

Tiles Court

11251

http://openlayers.org/en/v3.0.0/examples/wms-tiled.html

Interacting with Raster Data Source

The second image, as shown here, is the untiled one from http://openlayers.org/en/
v3.0.0/examples/wms-image.html:

Tiles Courtesy of MapQuest

You can see that, particularly for labels, they are duplicated. This behavior is quite simple:
each tile is requested separately in a tiled WMS. Most of the time the position of the label
depends on the position of the object, but here you can request it more than one time
because of your tiles. In conclusion, be careful to not use tiled WMS when you are using
automatic labeling in WMS or you will suffer from labels' duplications.

After this functional review, let's inspect the WMS layer ImageWMS source class properties:

The constructor is ol . source . ImageWMS. Contrary to the tiled version, you can't call
multiple URLs. The options are available as follows:

Name Type Description

Array.<ol.

Attribution> | This property sets an array of attributions, for
attributions undefined the layer source.

null | string | This property sets crossOrigin for image
crossOrigin undefined requests.

ol.Extent | This property sets the extent of your layer
extent undefined source.

11261

http://openlayers.org/en/v3.0.0/examples/wms-image.html
http://openlayers.org/en/v3.0.0/examples/wms-image.html

Chapter 4

Name Type Description
These are the WMS request parameters. At
least, a layers param is required. The styles are
by default. The version is 1.3.0 by default. The
Object.<string, width, height, BBOX, and CRS (SRS for WMS
params *> version less than 1.3.0) will be set dynamically.

projection

ol.ProjectionLike

This property sets the projection.

This property is the ratio regarding the image
requests. 1 means image requests are the size of
the map viewport, 2 means twice the size of the

ratio number | undefined map viewport, and so on.

Array.<numbers | This property is for resolutions. If specified,
resolutions undefined requests will be made for these resolutions only.
url string | undefined This property uses the WMS service URL.

After this raster overview, it's time to review a bit more on how to combine those different
layers in a big mashup. We will illustrate it combining the layers based on OpenStreetMap
projection, the Spherical Mercator.

Using Spherical Mercator raster data with other layers

Getting other layers to play nicely with these layers involve three things. These rules are also
available for others projections:

¢ Set up the correct map projection properties, in this case, the default is already the
right projection.

¢ Make sure that projection layer is set to the right EPSG code (most tiles' layers also
use the right projection) and are available on the third-party map layer.

¢ Ensure all raster layers (any non-Vector or Image layer), such as WMS, are in the
map's projection. In this case, we'll need to make sure we ask our WMS server for

map tiles in the EPSG:3857 projection.

Using what we've learned so far, let's make a mashup. We'll use OSM derived layers with
Bing Maps layer and put at the top a WMS layer. We will also set a small layer switcher
(as there is no available component in Openlayers core code for this).

1211

Interacting with Raster Data Source

Time For action - playing with various sources and layers

together

To achieve your task, combine our knowledge and just follow these instructions:

1.

2.

Let's make a map mashup that consists of a different tiles layer, a WMS layer. We will
also play with the visibility to display a basic layer switcher.

First, we need to reuse the usual template that call OpenlLayers 3 CSS and JavaScript
for our code and put it on a local server:

<ldoctype htmls>
<html lang="en">
<head>
<title>Playing with various sources and layers </title>
<link rel="stylesheet" href="../assets/ol3/css/ol.css"
type="text/css" />
<link rel="stylesheet" href="../assets/css/samples.css"
type="text/css" />
</head>
<body>
<div id="map" class="map"></div>
<script src="../assets/0l3/0l.js" ></script>
<scripts>
</script>
</body>
</html>

Now, we can begin to add our layers between the empty <script > tag. We add
together two Bing Maps layers and add to them a name using set . We will reuse
this parameter later:

var bingMapsAerial = new ol.layer.Tile ({
source: new ol.source.BingMaps ({
key: 'AIQLZ0-5yk301 ESrmNLma3LYxEKNSg7w-e knuRfyYFtld-
UFvXVs38NOulku3Q', a a
imagerySet: 'Aerial'
3]
P
bingMapsAerial.set (
'name', 'Bings Maps Aerial'
)i
var bingMapsRoad = new ol.layer.Layer ({
source: new ol.source.BingMaps ({

11281

Chapter 4

key: 'AlQLZ0-5yk301 ESrmNLma3LYXEKNSg7w-e knuRfyYFtld-
UFvXVs38NOulku3Q!',

imagerySet: 'Road',
culture: 'fr-FR'
3]
3N
bingMapsRoad. set (
'name', 'Bings Maps Road'

)i

Now, let's add a MapQuest layer. You just need to use the constructor without an
option. We add a layer name using a setter:

var mapQuestAerial = new ol.layer.Tile ({
source: new ol.source.MapQuest ({layer: 'sat'})

3N

mapQuestAerial.set ('name', 'MapQuest Open Aerial');

We'll create our WMS layer now and specify that we want the topp:states

layer from the URLhttp://demo.boundlessgeo.com/geoserver/wms and
various label layers back from the WMS server. We'll also set the opacityto 0.6,
that is 60 percent opaque. The projection is not specified: it comes from the view
and we know that the remote layer service available has the right projection (using
getCapabilities). Go ahead and create the WMS layer and add again a name:

var simpleWMS = new ol.layer.Image ({
opacity: 0.6,
source: new ol.source.ImageWMs ({
url: 'http://demo.boundlessgeo.com/geoserver/wms',
params: {

'LAYERS': 'topp:states'
I
extent: [-13884991, -7455066, 2870341, 6338219]
|3
13N,
simpleWMS.set ('name', 'USA layer from Geoserver WMS demo') ;

Now, let's create an array of all the layers. You will soon discover why we do it
like this:

var layers = [bingMapsAerial, bingMapsRoad, mapQuestAerial,
simpleWMS] ;
Create the map object, add into the 1ayers object and the view too.

var map = new ol.Map ({
layers: layers,
target: 'map',

11291

http://demo.boundlessgeo.com/geoserver/wms

Interacting with Raster Data Source

10.

view: new ol.View({
center: ol.proj.transform([-90, 40], 'EPSG:4326',
'"EPSG:3857"),
zoom: 3
)
13N

Now, we just need to add the layers to the map.

Now, we'll create a function with a special purpose: creating an HTML label tag and
also and HTML input checkbox. It will have three parameters: one for the name, one
to create an id for the HTML input, and the planned place where we want to create
this checkbox:

function generate checkbox(id checkbox, label name, html element)

{

var checkbox = document.createElement ('input') ;
checkbox.type = "checkbox";

checkbox.id = id_checkbox;

var label = document.createElement ('label') ;
label.htmlFor = id_checkbox;

label.appendChild (document.createTextNode (label name)) ;
html element.appendChild (checkbox) ;

html element.appendChild(label) ;

}

Finally, we just need to loop using the layers object from the end of the array to the
beginning in order to see; first, our checkbox for the top layer and after the others.
We will use two magic functions ol . dom. Input and bindTo but don't bother
about it at the moment:
for (var i = layers.length - 1; i >= 0; i--) {

var id = layers[i] .get('id');

var name = layers[i] .get ('name') ;

generate_checkbox ('layer id ' + i, name, document.body) ;

var visible = new ol.dom.Input (document.getElementById('layer
id '+ 1))

visible.bindTo ('checked', layers[i], 'visible');

Vi

Open up your map now and pan on USA. You will see an image, as seen in the
following section, and will be able to play with the layer switcher.

[130]

Chapter 4

What just happened?

We just created a map using different tiles' layers with a WMS overlay. We also create,
as a bonus, a simple but dynamic layer switcher. All the layers use the map's projection,
EPSG:3857, and line up with the lower aerial Bing Maps.

<y of MapQuest Portions Courtesy \/IPL-Caltech and U.S. Depart. of Agriculture, Farm Service Agency

4 USA layer from Geoserver WMS demo ¥ MapQuest Open Aerial ¥ Bings Maps Road ¥ Bings Maps Aerial

We choose, for learning purposes, to only use the OpenLayers library code
* to manage layers display but an external component to the library is also

available for this goal at https://github.com/walkermatt/ol3-

layerswitcher. Try it on your own and enjoy! It will be a good opportunity
to learn more about ol . layer .Group, we didn't really review until now.

After revising, it's time to see another source to display the image: the ol . source .MapGuide
source.

We didn't review this server, although an open source version of this server is available at
http://mapguide.osgeo.org, when we saw the various servers available to provide
images for the OpenlLayers 3 library. We chose to not cover it in detail, because this solution
is not mainstream and beginners will not be able to dive deeper in to this complex solution.

11311

https://github.com/walkermatt/ol3-layerswitcher
https://github.com/walkermatt/ol3-layerswitcher
http://mapguide.osgeo.org

Interacting with Raster Data Source

You just need to understand that this image source is unusual and is mostly used by people
coming from the CAD (Computer-aided design) world because this software was released as
open source by AutoDesk, the leading company for 2D/3D drawing software.

1. For an example, you should go to the Openlayers official sample,
http://openlayers.org/en/v3.0.0/examples/mapguide-untiled.html.

2. Contrary to cases where we review an example, we will also recommend that you go
to the official link http://openlayers.org/en/v3.0.0/apidoc/ol.source.
MapQuest .html for the API to discover more about how to achieve specific
configuration if required.

After this short review, it's time to see ol . source . ImageStatic, a class that can be seen
as the equivalent for the nonprojected image of TileWMS for ImageWMS. It can be also seen
as a non-Zoomify source. We will see how to use it within an untiled layer.

Time For action - applying Zoomify sample knowledge to a

There are some quite important differences to make an equivalent map version of the
Zoomify sample. Let's see how:

1. Copy the sample from the Zoomify example previously created into the usual
sandbox directory.

Change the URLto /assets/data/1797-map-of-Dublin. jpg.
Set the imgCenter variableto [imgWidth / 2, imgHeight / 21;.

Remove the line code, var crossOrigin = 'anonymous';.

Replace the ol.layer.Tile with ol.layer.Image

DA WN

Then, change the source variable with the following code:

var source = new ol.source.ImageStatic({

attributions: [

new ol.Attribution ({

html: '© <a href="https://commons.wikimedia.org/wiki/

File:1797-map-of-Dublin. jpg#Summary">Wikipedia Commons'

b

1,

url: url,

imageSize: [imgWidth, imgHeight],

projection: proj,

imageExtent: proj.getExtent ()

13N
[1321]

http://openlayers.org/en/v3.0.0/examples/mapguide-untiled.html
http://openlayers.org/en/v3.0.0/apidoc/ol.source.MapQuest.html
http://openlayers.org/en/v3.0.0/apidoc/ol.source.MapQuest.html

Chapter 4

7. Open your browser and you will see the same image you already got from the
Zoomify sample, but you will get a less smooth rendering, as you are manipulating
only one large image.

What just happened?

You changed the center for the view by using a positive value for the second value in the
imgCenter variable. It's because the ol . source.ImageStatic doesn't use the same
origin as the ol .source. Zoomify.

We also set as an option, attributions referencing the credits to the Wikipedia
Commons image.

The most important parts for configuration for the constructor are the url, imageSize,
and imageExtent.

We also reused the projection based on pixels' units to set the projection for the source.
As a reminder, you can inspect the available properties for the source.

The class helps to use any image as a layer using a pixel-based projection.

Its constructor is ol . source . ImageStatic. The constructor options are as follows:

Name Type Description

Array.<ol.

Attributions | This property sets an array of attributions for
attributions | undefined the layer source.

null | string | This property sets the crossOrigin setting
crossOrigin undefined for image requests.

ol.Extent | This property sets the extent of your layer
extent undefined source.

ol.Extent |
imageExtent undefined This property sets the extent of the image.
imageSize ol.Size | undefined This property sets the size of the image.
logo string | undefined This property sets the logo.
projection ol.ProjectionLike This property sets the projection.
url string | undefined This property sets the URL to image.

To be complete, an ultimate source to review is the ol . source . ImageCanvas.

[1331

Interacting with Raster Data Source

ImageCanvas source class properties

The ImageCanvas source is already an advanced topic, which is out of this book's scope; so,
we will only explain its purpose.

If you remember, the default OpenlLayers 3 behavior is to generate an HTML Canvas element
to display the map image.

The purpose of ol . source . ImageCanvas is to help you inject in the HTML Canvas map
element any arbitrary Canvas element. It's more flexible but the main drawback is the
requirement to manage conversions between map units and the canvas element you want
to add.

So, if you want to go further, you will need to learn Canvas drawing and also some projection
calculations. At best, you will be able to integrate Canvas produced by other libraries. You also
need to understand that a Canvas element can be built from vector elements and not only
from raster images. It's a silly use case compared to the ideal separation between raster and
vector layers.

Its constructor is ol . source . ImageCanvas. If you need it for a special purpose, the best
way is to refer to the official documentation at http://openlayers.org/en/v3.0.0/
apidoc/ol.source.ImageCanvas.html.

You can see it in action with D3 (another JavaScript library to generate graphic, charts, plots,
and also maps), that can produce a canvas element you can use as a layer, as demonstrated
in the official example at http://openlayers.org/en/v3.0.0/examples/d3.html.

For getting started with Canvas, use the Mozilla Developer part about
% the HTML 5 Canvas APl at https://developer.mozilla.org/
g en-US/docs/Web/API/Canvas API.

In this chapter, we quickly reviewed the layer structure inheritance, focusing on raster. Then,
we talked about what raster data layers are, how they work, and what benefits you can get
from using different sources to display your maps. We learned how to use the Microsoft Bing
Maps layer, all API depending on tiles using OpenStreetMap data. We also discussed tiling in
OpenStreetMap that use Spherical Mercator and how to create a map mashup with a layer
switcher, mixing various layers and sources' types together. We didn't restrict the chapter to
maps as it's possible to also use images unrelated to cartography.

In the next chapter, Using Vector Layers, we will see the concept of vector layer in-depth and
the OpenlLayers main classes for using them. Like for raster, you will discover not only their
specific sources but also the various vector data formats and how to manipulate features
and geometry.

(1341

http://openlayers.org/en/v3.0.0/apidoc/ol.source.ImageCanvas.html
http://openlayers.org/en/v3.0.0/apidoc/ol.source.ImageCanvas.html
http://openlayers.org/en/v3.0.0/examples/d3.html
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API

Using Vector Layers

Having explored raster layers, it's time to explore the other layer type that
OpenLayers supports—vector layers. In this chapter, we'll introduce the vector
layer and discover how to display and interact with vector data on the fly. We'll
see how we can use vector sources to load vector data in a variety of formats.
Through several hands-on examples, we'll explore the Format, Feature, and
Geometry classes that are the foundation of OpenLayers 3 vector support.

In this chapter, we will cover using the vector layer class, ol .layer.vector, and some
related classes to display vector data. Specifically, we'll:

* 6 6 6 o o

Discuss what the vector layer class is and see how it works

Cover the properties, methods, and events of the vector layer class
Introduce the three subclasses of the vector layer class

Discover and demonstrate the use of format classes

Cover the Feature and Geometry classes

Learn how to interact with features in vector layers

Using Vector Layers

Understanding the vector layer

In Openlayers, the vector layer is used to display vector data on top of a map and allow real-
time interaction with the data. What does this mean? Basically, it means we can load raw
geographic data from a variety of sources, including geospatial file formats such as KML and
GeoJSON, and display that data on a map, styling the data however we see fit. For example,
take a look at the map that follows:

-

©2012 Geokye @30T ICN € 2012 Blom Earthstar Geographics 51092014 Microsoft CorpgFation Terms of Use

It shows a map with a Bing satellite raster layer and a vector layer on top of it. The vector
layer loads data using the OSM XML Vector source and draws it in real time with different
styles based on the type and attribute of each feature (the individual points, lines, and
polygons). In this example, a small subset of the OSM data has been requested and is styled
by OpenlLayers to highlight roads (white lines), parking lots (gray polygons), buildings (red
polygons), green space (in green, of course) and the location of trees (the green dots). We'll
cover vector styles in detail in Chapter 6, Styling Vector Layers.

Features of the vector layer

With a raster image, what you see is what you get. If you were to look at some close up
satellite imagery on your map and see a bunch of buildings clustered together, you wouldn't
necessarily know any additional information about those buildings. You might not even know
they are buildings. Since raster layers are made up of images, it is up to the user to interpret
what they see. This isn't necessarily a bad thing, but vector layers provide much more.

[1361

Chapter 5

With a vector layer, you can show the actual geometry of the building and attach additional
information to it—such as its address, who owns it, its square footage, and so on. As we'll
see later in this chapter, it's easy to put a vector layer on top of your existing raster layers and
create features in a specific location. We'll also see how we can get additional information
about features just by clicking or hovering our mouse over them.

We can display any type of geometric shape with the vector layer—points, lines, polygons,
squares, markers, any shape you can imagine. We can use the vector layer to draw lines

or polygons and then calculate the distance between them. We can draw shapes and then
export the data using a variety of formats, then import that data in other programs, such as
Google Earth. These are just a few basic cases though, and throughout this chapter, you'll see
how powerful the vector layer can be.

The vector layer is client side

Another fundamental difference is that the vector layer is a client side layer. This means that
interaction with the actual vector data happens on the client side. When you display vector
data, for instance, its visual representation is generated by OpenLayers in response to the
rules you define in your code. Raster data looks the way it looks and you can't easily change
the color of roads or decide not to display buildings. When you navigate your map, vector
data is generally already available and can be displayed immediately. With raster layers, each
time you zoom in or out, Openlayers has to request more image tiles from the server and
wait for them to arrive unless they are already in the browser cache.

Performance considerations

Since, in most cases, the vector data is loaded on the client side, presentation of and
interaction with the vector layer usually happens nearly instantaneously. However, there are
some practical limitations. Most vector sources make a lot more data available than can be
loaded and rendered in the browser. Network bandwidth, memory and processor speed all
have limits and, although computers and web browsers are getting faster and more powerful
all the time, there are always practical boundaries to what can be done with vector data. The
Openlayers developers have worked hard to push these boundaries and many things that
were impossible to consider even two years ago are now practical—we'll highlight some best
practices along the way.

11311

Using Vector Layers

The difference hetween raster and vector

In computer graphics, there are essentially two types of data: raster and vector. The majority
of image files— . jpeg, .png, .gif, and other bitmap image formats—are raster images. A
photograph, for example, is a raster image. A raster image is a rectangular grid—like graph
paper—of color information, and each color point in an image is called a pixel. When you
look at a raster image on your computer, it interprets the color information in each pixel

and maps this to physical pixels on your screen. As you zoom in on a raster image, there is

a point at which each pixel in the raster image can be rendered to a single physical pixel on
your screen. This is referred to as the resolution of the image, the most information that

the image can accurately represent. As you zoom in further, each pixel in the raster image is
drawn into more than one physical pixel and the quality of the image starts to degrade—we
say it is pixelated. When you zoom out, each pixel in the raster image requires only part of a
physical pixel on the screen and so several adjacent raster pixels are combined to compute a
color to display in the physical pixel.

A vector, on the other hand, encodes information about how to draw a particular shape.
There might be many ways of representing vector shapes—a straight line can be represented
as a starting point and an ending point, or a starting point, direction and distance. When you
display a vector on a computer screen, it has to be converted from its encoded format into
colors for physical pixels—a process called rasterization. However, because the computer
has detailed instructions on how to draw the shape, it can choose a resolution that exactly
matches the physical pixels of your computer display every single time it draws it, regardless
of how much you zoom in or out. In fact, the same vector information can be drawn on

any other screen at the appropriate resolution. For this reason, we often call vector data
resolution independent.

Here is an example of how a circle appears when drawn as a vector and a raster. The left side
is rendered as a vector and the right side is rendered as a raster. When the image is zoomed,
the vector remains sharp and clear but the raster becomes blocky.

11381

Chapter 5

Vector Rendering Raster Rendering

Time for action - creating a vector layer

We'll begin by creating a basic vector layer. Start a new page using the sandbox template.
We'll use some existing vector data (found in the assets/data folder of the sample code
that comes with this book) that contains polygons outlining countries of the world and

display it in a map:

1.

Add the following code to the <script> tag to create our vector layer:

var vectorSource = new ol.source.GeoJSON ({
projection: 'EPSG:3857',
url: '../assets/data/countries.geojson'

13K

var vectorLayer = new ol.layer.vector ({
source: vectorSource

IF

Next, create a view object:
var center = ol.proj.transform([0, 0], 'EPSG:4326',
var view = new ol.View ({

center: center,

zoom: 1,

3N

[1391

'"EPSG:3857"') ;

Using Vector Layers

3. Now, create a map variable and add the vector layer the same way you would add
any other layer:

var map = new ol.Map ({
target: 'map',
layers: [vectorLayer],
view: view

3N

4. Now load the page in your browser, you should see something like the following
screenshot:

Zoom in on the countries and notice how quickly the map zooms and how sharp the outlines
of the countries remain.

What just happened?

We just demonstrated how easy it is to incorporate vector data into a map. First, we created
a source, specifically one that knows how to read features in the GeoJSON format. We told
the source where to find the data (its url property) and what projection we need the data
to be in (The view's projection is EPSG:3857, a standard Spherical Mercator projection used
in many common commercial maps such as Google and Bing. We'll discuss projections in
more detail in Chapter 7, Wrapping Our Heads Around Projections). Next, we created a
vector layer and provided it with the source we just created. The view object centers the
map at 0 degrees latitude and longitude, and we added all of this to the map in the same
way we've used in all the other examples.

(1101

Chapter 5

Pop quiz - why use a vector layer?

Vector layers tend to be very quick, as the data can be stored entirely on the client. Interaction
happens instantly, which can greatly enhance the user's experience. Which of the following
would be good choices for using vector layers?

| want to highlight a building when the user moves their mouse over it.

| want to display a topographic base map containing contours, shaded relief, water,
and street networks.

¢ During arace, | want to visualize the location of boats using GPS data in real time.

Now, before we jump into more advanced uses of the vector layer, first, let's see how it
actually works.

How the vector layer works

There are five things we need to cover to understand how the vector layer works:

How the vector layer is rendered
The vector layer class itself
The vector source class and related format classes

The Feature and Geometry classes

* 6 ¢ o o

The styling vector layers, which we won't look at until the next chapter

Recall from Chapter 3, Charting the Map Class that OpenlLayers supports three separate
renderer technologies, WebGL, Canvas, and DOM. When OpenLayers draws the layers

in a map, it uses one of these renderers to do the actual work of drawing. The renderer
requests data from the layer's source for the area being displayed, and then transforms
this into the final map image. For raster layers, images are fetched from a remote server
and are composited into a Canvas element (for WebGL and Canvas renderers) or
tags (for the DOM render). Vector layers work in the same way, but are only supported by
the Canvas renderer at the time this book was written. The renderer asks the layer's source
to fetch the data it needs and then applies algorithms for rendering the vector data to the
Canvas element. As we mentioned earlier, the vector data is not just an image. It can contain
additional information such as the coordinates of the data. This additional information can
be used for styling features (which we'll cover in detail in the next chapter) or to provide
interactive feedback (as we'll see in an example later in this chapter).

(a1l

Using Vector Layers

1
‘Q As of Openlayers 3.1.0, vector rendering is now supported by

the DOM renderer.

The vector layer class

The vector layer, by itself, is a layer like the other layers we've discussed so far. To really
get the most out of the vector layer class, we'll be working mostly with other classes. For
example, to get a basic example working (like the first one in this chapter), we will make
use of at least one other class—the ol . source. Source class—to read features from a
particular vector format. In fact, under the hood, OpenLayers was using a format, features,
geometries, and some styles for this example. All of this happens automatically for the
simplest case of drawing some vector data, but in practice, it's necessary to understand
how these other classes function as well to get the most out of OpenLayers.

Before we get into too much detail, let's cover the vector layer class, ol . layer.Vector,
itself. It is a direct subclass of o1 .1layer.Layer and inherits its methods and observable
properties. Refer to Chapter 2, Key Concepts in OpenlLayers if you need a refresher on
those methods.

Creating a vector layer
The ol .layer.vector class is used to create a vector layer instance:
var layer = new ol.layer.vector (options) ;
The options can include all the options for ol .layer.Layer (see Chapter 4, Interacting

with Raster Data Source for a refresher if necessary) plus the following additional options
that are specific to a vector layer:

Name Type Description

source | ol.source.vector This is a source that provides vector features to
the layer for rendering. We will cover sources
later in this chapter.

style ol.style.Style | This is a style, or styles, to use when rendering
Array.<ol.style.Style> | features in this layer, or a function that returns
ol.feature.StyleFunction | astyle for a given feature. Vector styling is
covered in detail in the next chapter.

The vector layer class also has several methods in addition to those it inherits from
ol.layer.Layer.

[142]

Chapter 5

Method Parameters Description

getStyle () none This property returns the value provided as the
style option in the constructor or to the last call
to setStyle ().

getSource () | none This property returns the source for this layer.

Function ()

setStyle ol.style.Style | This property sets the style to be used when
(style) Array.<ol.style. rendering this layer.

Style> | ol.style.

StyleFunction
getStyle none This property returns a function that can be used

to get the style of any given feature on this layer.

Vector sources

The vector layer class by itself isn't very useful—it relies on other classes to do all the
interesting work. Let's look at the source class, ol . source.vector, and its subclasses
first as it's the only thing that is absolutely needed to get a working vector layer.

The vector source class is named after its purpose—to be a source of vector features for

a vector layer. It is responsible for fetching features when needed, providing them to the
vector layer for rendering, and also for retrieving features based on various criteria. We won't
actually use the vector source class as it is a base class for the classes we'll actually be using,
such as ol . source.GeoJSON in the preceding example. The following diagram shows how
the vector source classes fit together in the OpenLayers architecture:

ol.Observable ‘

1

ol.source.Source

e D

‘ ol.source.Tile ‘ ‘ ol.source.Vector ‘ ‘ ol.source.Image ‘
‘ ol.source.FormatVector ‘ ‘ ol.source.Cluster ‘
‘ ol.source.ServerVector ‘ ‘ ol.source.StaticVector ‘ ‘ ol.source.TileVector ‘

ol.source.GeoJSON }74{ ol.source.KML ‘

ol.source.GPS }74{ ol.source.OSMCML ‘

ol.source.|GC }74{ ol.source.TopoJSON ‘

(1431

Using Vector Layers

As you can see, there are quite a few classes in the OpenlLayers library that deal with vector
formats. The classes that you can create new objects from are highlighted in green. We'll
briefly describe each class before we get into more detail:

L 4

ol.source.Vector: This is the base class for all vector sources. It provides a
common API for accessing features in a vector source.

ol.source.Cluster: This source automatically groups features together when
they are close to each other, and represents the group as a single feature. The
cluster source uses another vector source to access features to be clustered.

ol.source.FormatVector: This class provides a common API for sources that use
a format for reading and writing features. You cannot create an instance of this class.

ol.source.ServerVector: This source uses a loader function that can
retrieve vector features on the fly from a server, for example, a WFS (Web
Feature Service) server.

ol.source.TileVector: This source loads vector features in batches based on
a tiling scheme similar to how raster layers load image tiles.

ol.source.StaticVector: This source loads vector features from a file in a
specific format. It is considered static in that all the available features are read from
the file when it is loaded. Although you can create an instance of this class, you will
normally use one of the format-specific subclasses.

ol.source.GeoJSON: This source reads a file containing features in the GeoJSON
format, a standardized encoding of geographic features using JSON.

ol.source.GPX: This source reads a file containing features in the GPX (GPS
Exchange format), a common file format for GPS devices.

ol.source. IGC: This source reads a file in the IGC (International Glider
Commission) format, a standard format for recording glider flights.

ol.source.KML: This source reads a file in the KML (Keyhole Markup Language),
an XML-based format used in Google Maps and related products.

ol.source.0SMXML: This source reads a file using the Open Street Map
XML schema.

ol .source.TopoJSON: This source reads a file encoded in JSON using the TopoJSON
specification, an extension of GeoJSON that encodes topology information.

[114]

Chapter 5

The vector source class

The vector source class, ol . source.vector, hot only provides a common API for all vector
sources but is also be instantiated and used directly. All of its subclasses primarily deal with
actually retrieving vector features, but all the useful methods for actually interacting with
features once they have been processed exist in this class. You can use this class if you have
an existing set of vector features or are getting features in some way not directly supported
by the subclasses. Some examples might include:

¢ Using a mobile device's GPS to track the user's current location and creating
waypoints or tracks based on changes in location
Programmatically generating features

Reading features from a legacy system that is not directly supported by OpenlLayers

The vector source constructor takes the following options:

Name Type Description

attributions | Array.<ol. This is an array of attribution objects that
Attributions> | describe the provenance of the data. The
undefined attributions will be displayed on the map in the

attribution area when features from this source
are rendered on the map.

features Array.<ol.Feature> This is an array of feature objects initially added
| undefined to this source.

logo string | olx. This is a logo object that represents an image
LogoOptions | logo to be displayed on the map when features
undefined from this source are rendered on the map.

projection ol.proj. This is the projection of the features in this
ProjectionLike source, or rather the projection of the features'

geometries. The projection must be specified.

state ol.source.State | This is the state of the source, either one of

undefined loading, ready, or error.

The vector source also provides the following methods:

Method Parameters Description

addFeature (feature) ol.Feature This adds a single feature to this source,
triggering the addfeature event. A
redraw of the map will be scheduled

if the feature should appear in the
current map area being viewed.

(1451

Using Vector Layers

Method

Parameters

Description

addFeatures (features)

Array.<ol.
Feature>

This adds an array of features to this
source. The addfeature event will
be triggered for each feature added.
As with addFeature, a redraw of
the map will be scheduled if any of the
features need to be drawn.

clear

none

This removes all features from

the source. This will trigger the
removefeature event for each
feature as it is removed and schedule a
redraw of the map if any of the features
were visible on the map.

forEachFeature
(callback, scope)

¢ callback

function
& scope -

object |

null

This method calls the callback function
for each feature in the source. The
callback function will be called with a
feature as its only argument. Within the
callback function, the value of this will
be the scope, if provided.

forEachFeatureInExtent
(extent, callback,
scope)

¢ extent -
ol.Extent

¢ callback

function
¢ scope -

object |

null

This method works the same way as
forEachFeature except that it first
filters the features by the provided
extent. Contrary to what the method
name implies, the features may

not actually be within the provided
extent. Rather, features whose extent
intersects the provided extent are
included.

getClosestFeatureToCoo
rdinate (coordinate)

ol.Coordinate

This method returns the feature that is
closest to the provided coordinate. If
there are several features equidistant
to the coordinate, it is indeterminate
which will be returned.

getExtent ()

none

This returns an ol . Extent object
representing the extent all the features
currently in this source.

(1461

Chapter 5

Method Parameters Description
getFeatureById() id - string | This method returns a feature whose
number ID equals the passed value. For

performance, the type of the id is not
used to determine equality. This means
that a string value of 2 will match a
numeric value of 2. If multiple features
have the same id, it is indeterminate
which will be returned.

getFeatures () none This method returns all the features of
this source as an array.

getFeaturesAtCoordinat | ol.Coordinate This method returns an array of
e (coordinate) features whose extent contains the
given coordinate.

removeFeature (feature) | ol.Feature This method removes a single feature
from the source and triggers the
removefeature event. Removing a
feature will schedule a redraw of the
map if the feature is currently visible.

The vector source can trigger the following events:

& addfeature: This event is triggered when a feature is added to the source

¢ removefeature: This event is triggered when a feature is removed from the source

The cluster source

There are two subclasses of the vector source, FormatVector and Cluster. The
FormatVector class is the basis for many subclasses that obtain features by reading them
from some specifically formatted data such as GeoJSON or KML. We'll look into these classes
shortly, but first let's take a brief look at the cluster source.

The cluster source dynamically groups (or clusters) features that are near each other based
on the current resolution, or zoom level, of a map's view and represents those groups as
individual features. It does this by finding features within a certain distance of each other
and creating a new feature to represent them. The new feature contains a reference to the
original features that are represented by the clustered feature.

(1411

Using Vector Layers

Creating a cluster source is the same as creating a vector source except the constructor
options include two additional properties:

Name Type Description

distance | number This is the minimum distance, in pixels, between
clusters. Features that are less than this distance apart
at the current zoom level will be clustered into a single
feature.

source ol.source.vector | Thisisa vector source that provides the features to be
clustered.

Time for action - using the cluster source

The cluster source may be used with any type of feature, but it is typically used with a set
of point features. This example illustrates using the cluster source with some randomly
generated points that are included with the sample files for this project in assets / data /
cluster.geojson. We'll first show the original data, then modify the example to use the
cluster source. The following are the steps:

1. Starting from the previous example, we will add a new vector source that loads the
sample data:

var originalSource = new ol.source.GeoJSON ({
url: '../assets/data/cluster.geojson'

13N

2. Next, we will create a cluster source to cluster these features:

var originallayer = new ol.layer.vector ({
source: originalSource,

3N

3. Then, add the new layer to the map's layers array:
var map = new ol.Map ({
target: 'map',
layers: [vectorLayer, originallayer],
view: view

13N

(181

Chapter 5

4. \Load this in your browser and take a look:

5. That's a lot of points—about 5000 actually. If these represented real data, it will
be very hard to see individual points until we zoom way in. Now, let's see what the
cluster source does with these features. Create a new source and layer after the
originallayer:
var clusterSource = new ol.source.Cluster({
source: originalSource

13K,

var clusterLayer = new ol.layer.vector ({
source: clusterSource,

13K,

6. Andreplace originalLayer with clusterLayer in the map's layers:
var map = new ol.Map ({
target: 'map',
layers: [vectorLayer, clusterLayer],
view: view

)

11491

Using Vector Layers

7. Reload to see the effect of the cluster source. Try zooming in and out.

What just happened?

In this example, we discovered how the cluster source works. First, we created a vector layer
containing about 5000 points and displayed it on the map. As we saw, it's very hard to see
these points when zoomed out. Next, we added a cluster source and a new layer based on
the cluster source. Now the number of points displayed on the map changes dynamically

as we zoom in and out, and the number of points on the map at any one time is much

more manageable.

Typically, when displaying a cluster of features, we would represent the cluster differently
depending on how many features are in the cluster—perhaps by adding a text label or
changing the size of the point. We'll revisit this example in the next chapter and deal with
the styling options then.

The format sources

The other direct subclass of the vector source is the FormatVector source. This class cannot
be directly created, rather it is an abstract class that adds a single method, readFeatures,

to the API of all its concrete subclasses. This means that all the other source classes provide a
readFeatures method that gets features from some data structure such as a string, array, or
JavaScript object. The type of the data structure is determined by the format.

[1501

Chapter 5

A feature format is responsible for reading features from a structured format that
organizes spatial features in a structured way. Each feature format is based on a recognized
specification document that defines how that format represents the geospatial data it
contains. The feature formats are organized into three distinct groups:

JSON-based formats, which use the JavaScript Object Notation format
XML-based formats, which use the Extensible Markup Language format

Text formats, which do not rely on another markup language but rather define
their own structure

The JSON formats

There are two JSON-based formats, GeoJSON and TopoJSON. The GeoJSON format defines
a schema used to represent spatial data as JSON data. JSON looks a lot like JavaScript object
literals, but it has specific rules for formatting. The main differences between JSON and
JavaScript object literals are:

¢ JSON strings, including object property keys, must be wrapped with the double
quote character

¢ Property values in JSON may only be JSON objects, arrays, strings, numbers, and
Boolean values

¢ JSON may only contain one top-level thing and it must be either an object or
an array

To find out more about the JSON format, see http://www.json.org.

A GeolJSON file may contain either a Feature or FeatureCollection. A Feature is
represented in JSON as an object with three keys: type, geometry, and properties.
The type is always "Feature". The geometry is an object with a type and coordinates,
where the type can be one of "Point", "MultiPoint", "LineString",
"MultiLineString", "Polygon", "MultiPolygon", or "GeometryCollection",
and the coordinates are an array containing the coordinates in a structure dependency
on the type. The properties key is an object that contains keys and values representing
nonspatial data associated with the feature.

A FeatureCollection is represented as an object containing two keys: type and
features. The type is always "FeatureCollection" and features is an array of
GeoJSON features structured as in the preceding paragraph.

An example of a Feature looks like the following:

{

"type": "Feature",
"geometry": {

[1511

http://www.json.org

Using Vector Layers

"type": "Point",
"coordinates": [125.6, 10.1]
b
"properties": {
"name": "Dinagat Islands"
}
}
A FeatureCollection looks like the following:
{ "type": "FeatureCollection",
"features": [
{ "type": "Feature",
"geometry": {"type": "Point", "coordinates": [102.0, 0.5]},
"properties": {"prop0": "value0"}
b
{ "type": "Feature",

"geometry":
"type": "LineString",
"coordinates": [[102.0, 0.0], [103.0, 1.0], [104.0, 0.0],
[105.0, 1.0] 1

b
"properties":
"propO": "valueO",
"propl": 0.0
}
b
{ "type": "Feature",
"geometry":
"type": "Polygon",
"coordinates": [[[100.0, 0.0], [101.0, 0.0], [101.0,
1.01,[100.0, 1.0], [100.0, O0.0] 1 1

}I
"properties":
"propO": "valueO",
"propl": {"this": "that"}
}

}

As you might imagine, this structure is quite easy to use with JavaScript applications and
GeoJSON is a popular format for web mapping applications. Read more about this format
at http://geojson.org.

[1521

http://geojson.org

Chapter 5

The TopoJSON format is an extension of the GeoJSON format that encodes topology. A
discussion of topology is beyond the scope of this book; briefly, topology defines rules for
representing spatial features in a region. The most common example of this is adjacent
polygons sharing a common border. Topological rules require two adjacent polygons sharing

a common boundary will share the points that define the common boundary between them
such that moving one point changes the boundary of both polygons simultaneously. You can
find out more about the TopoJSON format at https://github.com/mbostock/topojson.

The KML formats

The XML formats are based on XML, a metalanguage that describes structured content using
tags denoted by the < and > signs. HTML, which we've seen many times in this book already,
looks like XML, and the tags in HTML instruct a web browser how to render the page.

Most HTML is not valid XML. HTML does not follow the strict
formatting rules required by XML— particularly, there are many
. tagsin HTML that do not require a closing tag. The tag
& is an example of this. There is a variant of HTML, called XHTML,
= that defines a valid XML schema for HTML. While there are

some advantages to using XHTML, it has not gained widespread
adoption because it is more work for developers to ensure a
valid document and the perceived benefits are low.

Structured documents based on XML have a specific set of tags and a set of rules on tag
content and nesting. Collectively, the tags and rules are called a schema. There are several
geospatial formats based on XML and each defines a specific schema. The schema allows
developers to write code to parse the spatial information out of the structured document in
the same way that the GeoJSON format proscribes a specific JSON object structure.

The XML-based formats are GML, GPX, KML, OSM XML, and WFS. Let's describe each briefly:

¢ GML (Geography Markup Language): This is based on a standard published by the
Open Geospatial Consortium. This standard was developed in collaboration with
many companies that were interested in developing a standard format for describing
geospatial information to facilitate exchange of data between different proprietary
and open source systems. While GML is very expressive and represents a wide range
of geospatial data, it is also quite complicated to support consuming GML as there
are several versions and vendor-specific extensions to the schema.

¢ GPX (GPS Exchange Format): This is a schema supported by many GPS vendors
as a common format for representing data generated by GPS devices. Its primary
purpose is to describe routes, tracks, and waypoints in a vendor-neutral way. In
addition to geographic locations, it can store time, speed, and elevation data.

[1531

https://github.com/mbostock/topojson

Using Vector Layers

¢ KML (Keyhole Markup Language): This was popularized by Google as the format for
representing spatial data rendered in Google Earth. It is less expressive than GML,
but contains additional information about how to view the data it represents.

¢ OSM XML (OpenStreetMap XML): This schema is used for representing the core data
structures in the OpenStreetMap system, particularly nodes, ways, and relations.

The text formats

While all the formats we've discussed so far can be represented in a plain text file, the
text formats differ in that they are not based on standard representation. Rather, they
define their own unique structure. There are currently two text formats supported by
OpenlLayers—IGC and WKT.

¢ ICG (International Gliding Commission): This format is a specification produced for
recording glider flight information. Unless you are part of the gliding community,
you probably won't have much need for this format. It is part of OpenLayers, partly
because someone had an interest in it and contributed the code, and partly as an
example of implementing support for text-based formats. There is an sample IGC file
included in assets/data if you are interested.

¢ WKT (Well Known Text): This is a standard first developed by the Open Geospatial
Consortium. It has since been expanded and included in ISO (International
Standards Organisation) 13249-3:2011. The WKT format is well supported by many
open source and commercial GIS applications.

The StaticVector source
Now, we know something about formats, let's look at the next class in the vector source
hierarchy—staticvVector. Openlayers provides the StaticVector source and some
format-specific subclasses designed to simplify loading vector features from the supported
formats. They are as follows:
& ol.source.GeoJSON
ol.source.TopoJSON
ol.source.GML
ol .source.GPX
ol.source.KML
ol .source.OSMXML

ol .source.IGC

® 6 6 & 6 o o

ol.source.WKT

Each of these is a vector source that works in exactly the same way, the only difference
between them is the format they use internally to read features.

(1541

Chapter 5

The StaticVector source, as the name suggests, loads a set of vector features from a
source that does not change. This means the features are loaded, and parsed, just once, The
actual features in the source never change in response to panning or zooming. In all other
respects, the StaticVector source works in the same way as the other vector sources.

You can create an instance of StaticVector directly and pass it a format and a source

of data, or you can use one of the format-specific subclasses. Let's look first at creating
StaticVector instance. Note that several of the options only apply for particular formats,
as noted in the description.

It is worth emphasizing at this point that for all the OpenlLayers formats,
the data stored in files are actually text files. Loading these files in

a browser will result in the data being loaded as a JavaScript string.
Some libraries will automatically convert data from its text-based
representation into another type of object for you. For instance, loading
XML data from a text file will often give you a reference to a Document
Object after it is loaded. In OpenLayers, every format supports loading
data from a string value, but the string must contain data that is in the

structure expected by the format.

Name Type Description
attributions | Array.<ol. As with ol . source.vector, thisis an
Attribution> optional array of attributions to display when
features from this source are displayed on the
map.
doc Document | This is a browser Document Object, typically
undefined returned from parsing an XML document.
This option is used by the GML, GPX, KML,
and OSMXML formats.
format ol.format.Format This is the format to use for extracting
features from the provided data. The
option that provides the data for the format
depends on the type of the format, as noted
in the relevant options.
logo string | olx. This is a logo to display when features from
LogoOptions | this source are displayed on the map.
undefined
node Node | undefined This is a browser node object, typically
returned by querying the browser's
document or a document parsed from an
XML string. This option is used by the GML,
GPX, KML, and OSMXML formats.

[1551]

Using Vector Layers

Name

Type

Description

object

Object | undefined

This is a JavaScript object, typically obtained
by programmatically creating an object using
object literal syntax or by parsing a JSON
string. This option is used by the GeoJSON
and TopoJSON formats.

projection

ol.proj.
ProjectionLike

This is the projection for feature geometries
after parsing. Some formats support
identifying the projection of the data, or have
a default projection. If a projection is passed
to the StaticVector constructor and it is
different from the projection of the features
coming from the format, the geometries of
the features will be transformed into this
projection.

text

string | undefined

This is a string representing the data to load.
All formats support reading from a string

as long as it is properly structured for that
format.

url

string | undefined

This is an optional URL to load the data from.
If provided, then OpenLayers will attempt to
load the URL and parse it using the source's
format. The actual format of the data when
loaded must match what the format expects.
For instance, if the formatis ol . format.
GeoJSON, then the URL must return valid
JSON when loaded.

urls

Array.<string> |
undefined

These are multiple URLs to load data from.
These are treated the same way as the url
option, and data will be loaded from each
URL in turn.

The actual format-specific source classes generally work the same way and support only
those options that make sense from the StaticvVector class. However, there are some
important differences that are worth noting. All the following source constructors support
the attributions, logo, text, url, and urls options listed in the preceding table. For
the sake of brevity, these options have been omitted from the following tables.

[1561

Chapter 5

The JSON formats

The two JSON formats, ol . source.GeoJSON and ol . source.TopoJSON, support the two
additional constructor options. These are shown in the following table:

Name Type Description
defaultProjection ol.proj. This is the GeoJSON format specification.
ProjectionLike | | Thisindicates that data is, by default, in
undefined the EPSG:4326 projection. Newer versions
of the specification allow you to identify
the projection of the data as something
other than EPSG:4326. If the data is not in
EPSG:4326 and the projection is not stored
with the data, this option allows you to
override the default value.
object Object | This is a JavaScript object containing the
undefined data, usually parsed from a JSON string
using the JSON . parse method.
ol.source.GPX
The GPX format constructor has no additional options, but will read data from the node and
doc options.
ol.source.lGC

The IGC format constructor supports one additional option. Refer to the following table:

Name Type Description
altitudeMode | ol.format.IGCZ | | Thisisthe mode to use for altitude
undefined measurements when parsing data. Possible
values are barometric, gps, and none. The
default is value is none.
ol.source.KML

The KML format specification requires that the geometry data for features be represented
in EPSG:4326. In addition to supporting the node and doc options, the KML format supports
two other options. Refer to the following table:

Name

Type

Description

defaultsStyle

Array.<ol.style.

Style>

The default style to use for features that do not
have embedded style information, or if extraction
of styles is disabled.

1571

Using Vector Layers

Name Type Description

extractStyles | boolean KML documents contain embedded style
information. If this option is set to true (the
default value), then OpenlLayers will attempt to
extract style information from the KML document
for each feature.

ol.source.0SMXML

The GPX format constructor has no additional options, but will read data from the node and
doc options.

Time to put our new knowledge into action. There are sample files included with the book's

code samples in assets / data in each of the formats discussed earlier. Try adding each of

them to a map. Remember, you will need to create an appropriate source and a vector layer,
and add the vector layer to the map. As with earlier examples, you should be able to use the
url option to load the data without having to load and parse it yourself.

The ServerVector source

The ServervVector source requests features from a server by sending the geographic
coordinates of some region it needs features for to a server. As you might imagine, there are
many different ways of doing this based on what a particular server understands. Each server
has its own unique language for requesting features. Many servers implement a common
language based on an open standard called WFS (Web Feature Service) that can simplify the
job. Even so, there are different versions and different flavours of WFS that make it difficult
to support them all. To avoid this problem, OpenLayers provides a generic mechanism

for requesting features for the Servervector source; specifically it requires that you
implement the loader function yourself!

Time for action - creating a loader function

Creating a loader function isn't as hard as it might sound, let's walk through a concrete
example that loads features from a WFS server. In this example, we will be using the
popular jQuery library to help us load data. If you are not familiar with jQuery, see
http://jquery.com for more information.

1. Start by creating a new HTML page using the same structure we've used before.
We'll start from this for each of the vector source examples. Note the addition of
a <script> tagto load jQuery:
<!ldoctype htmls>
<html>

[158]

http://jquery.com

Chapter 5

<head>
<titles>vector Examples</title>
<link rel="stylesheet" href="../assets/ol3/ol.css" type="text/
css" />
<link rel="stylesheet" href="../assets/css/samples.css"
type="text/css" />
</head>
<body>
<div id="map" class="map"></div>
<script src="../assets/ol3/ol.js" type="text/javascript"></
scripts>

<script src="//code.jquery.com/jquery-1.11.0.min.js"></scripts>
<scripts
var tiledRaster = new ol.layer.Tile ({
source: new ol.source.OSM()
1)
var center = ol.proj.transform([-72.6, 41.7], 'EPSG:4326"',
'"EPSG:3857") ;
var view = new ol.View ({
center: center,
zoom: 12,
1)
var map = new ol.Map ({
target: 'map',
layers: [tiledRaster],
view: view
3N
</script>
</body>
</html>

Next, we'll need to create a style object for displaying our vectors. Don't worry too
much about what this is, we'll cover it in detail in Chapter 6, Styling Vector Layers.
Add this after the tiledRaster and before the center

var £ill = new ol.style.Fill ({
color: 'rgba(0,0,0,0.2)"'

P

var stroke = new ol.style.Stroke({
color: 'rgba(0,0,0,0.4)"

P

var circle = new ol.style.Circle({
radius: 6,
£i11: £4i11,
stroke: stroke

[1591]

Using Vector Layers

1)

var vectorStyle = new ol.style.Style ({
£i1l:. £ill,
stroke: stroke,
image: circle

3N

Save this file as vector template.html and make a copy of it to use for the rest
of this example. We'll be using vector_ template.html as the starting point for
several examples.

Now, add the following code after the vectorStyle object, which will handle
loading features from the remote server:

var vectorLoader = function(extent, resolution, projection) {
var url = 'http://demo.boundlessgeo.com/geoserver/
wfs?service=WFS&' +
'version=1.1.0&request=GetFeature&typename=osm:builtup area&' +
'outputFormat=text/javascript&format
options=callback:loadFeatures' +
'&srsname=EPSG:3857&bbox="' + extent.join(',') + ',EPSG:3857';
$.ajax ({
url: url,
dataType: 'jsonp'
P
i
var loadFeatures = function (response) {
var features = vectorSource.readFeatures (response) ;
vectorSource.addFeatures (features) ;

Vi

We now have everything needed to create the source and layer objects; so, add this
code immediately following the 1oadFeatures function:

var vectorSource = new ol.source.ServerVector({
format: new ol.format.GeoJSON (),
loader: vectorLoader,
strategy: ol.loadingstrategy.createTile (new ol.tilegrid.XYZ ({
maxzoom: 19
D),
projection: 'EPSG:3857',
P
var serverVector = new ol.layer.vector({
source: vectorSource,
style: vectorStyle

3N

[160]

Chapter 5

5. Finally, add the servervector layer to the map's layers:

var map = new ol.Map ({
renderer: 'canvas',
target: 'map',
layers: [tiledRaster, serverVector],
view: view

13K,

6. Load the page in your browser and you should see something like the following
screenshot:

7. Pan and zoom the map and observe what happens.

What just happened?

We just created a vector layer that reads features from a remote WFS server as the map is
panned and zoomed. A lot just happened, so let's review each step in detail.

In step 1, we set up a new OpenlLayers application using the same structure as we've used
for all the other examples so far. Nothing new here, except we've chosen a center for

the map view somewhere in the north eastern United States and named our base layer
tiledRaster to help differentiate it from the vector layers we will be working with.

11611

Using Vector Layers

In step 2, we created a simple vector style object to use with all our vector layers. A vector
style consists of several components, in this case, we are defining the style to use for £111
(polygons), stroke (lines), and image (points). The color for each is defined using the
rgba () syntax, which stands for red, green, blue, and alpha (opacity). In this case, we are
using a simple black color and 20 percent opacity. We'll cover styles in much more detail in
the next chapter.

Step 4 is really the heart of this example. First, we defined a vectorLoader function. This
function is used by ol . source.ServerVector to fetch features from a remote server. The
vectorLoader function declares a URL that points to a WFS server. You might think the
URL looks a bit complicated, and you are right. For now, just trust that it does the right thing,
which is to ask the server for all the vector features contained within the current extent. The
jQuery ajax function is used to actually trigger loading the URL. The jsonp data type tells
jQuery to request the data by inserting it as a <script> tag, and the callback option in the
URL identifies the function that will be executed when the <script> tag is loaded; in this
case, the loadFeatures function.

The loadFeatures function takes the features provided by the server, reads them using
the vector source (which has a GeoJSON format for parsing the data), and adds them to
the layer.

In step 5, we combined all the previous pieces to create the source and layer objects. To
define the source, we used ol . source. ServerVector and provided it with a format
(GeoJSON in this case), the loader function we defined in the previous step, a loading
strategy, and a projection. We'll discuss the loading strategy a bit later. Finally, we created
the actual layer object using o1 .layer.vector and provide it with our source and style.

After we added this to the map's layers in step 5, we can see it in action. Every time the map
is panned or zoomed, the vector layer checks its source for features. The Servervector
source requests data from a remote server using a function that we provide. This gives you a
lot of flexibility, but also means that you have to understand how to load data from a remote
server. Fortunately, libraries such as jQuery have very good convenience methods for doing
just this. The ServervVector source uses its loading strategy to decide how to divide up the
requests to the server and passes the appropriate parameters to your loader function. We'll
talk a bit more about loading strategies in some time. Once the features are loaded, you can
parse them and add them to the source directly. The vector layer then draws the features
using the provided style.

11621

Chapter 5

To see what happens when features are requested from the server, open Web Inspector,

switch to the Network tab, and make sure All is selected, then reload the page.

Developer Tools - http://localhost:9000/chapter06/236005_06_02_server_sources.html
Q, Elements | Network | Sources Timeline Profiles Resources Audits Console

® 0 v =

Preserve log

Documents Stylesheets Images Scripts XHR Fonts WebSockets Other O Hide data URLs
Name

Path * Headers Preview Response | Cookies Timing

T 1 loadFeatures({"type":"FeatureCollection","totalFeatures":1,"features": [{"type":"Feature","id
_l demo.opengeo.org/geoser (" typ ' ’ L typ '

§| wis?service=WFS&versio.
|==] demo.opengeo.org/geoser

_| wis?service=WFS&versio...
demo.opengeo.org/geaser

wis?service=WFS&versio...

7| wis?service=WFS&versio...
demo.opengeo.org/geoser

‘I wis7service=WFS&versio.
demo.opengeo.org/geoser

'| wisZservice=WFS&versio,
demo.opengeo.org/geoser

"I wis?service=WFS&versio...

demo.opengeo.org/geoser

7| wis?service=WFS&versio...
demo.opengeo.org/geoser

50 requests | 45.3 KB transferr.

":"builtup_area.6918]

You can identify the feature requests because they start with wfs?service=WFS.

Click on a

request to view its response. Notice how some requests have no features, and some have
features. Notice how the response is formatted—it looks like a JavaScript function call to

loadFeatures () with an object literal as the argument. The loadFeatures (

) function is

the one we specified and that we implemented. This is an example of how jsonp works.

Now that we've seen it in action, let's review the constructor options for a Serv
source:

erVector

Name Type Description
attributions | Array.<ol. As with ol . source.vector, this is an optional
Attribution> array of attributions to display when features from
this source are displayed on the map.
format ol.format.Format | Thisisthe format that the server features are
represented in.
loader function This is a function that creates an appropriate

request to the server for a given extent, resolution
and projection. If the server responds successfully
with data to be parsed, then the source's format
should be used by the loader function to read the
features from the data returned by the server.

11631

Using Vector Layers

Name Type Description

logo string | olx. This is a logo to display when features from this
LogoOptions | source are displayed on the map.
undefined

strategy function This is a function that determines how the source

will split up requests to the server. There are two
built-in strategy functions:

& ol.loadingstrategy.all:This
strategy loads all the available data in a single
request by specifying an infinite extent.

& ol.loadingstrategy.bbox: This
strategy loads data for the visible map
extent. Panning or zooming the map
can trigger additional calls to the loader
function, possibly overlapping previously
loaded regions.

There is one additional option available,
ol.loadingstrategy.createTile. You do
not use this as a loading strategy directly, instead
it is a function you call to create a loading strategy
function based on a tile-grid specification. The
return value from this is a function to be used as

a loading strategy that triggers requests based on
regular tile boundaries. Unlike the BBOX strategy,
the extent for each call to the loader function will
not overlap previous extents.

projection ol.proj. This is the projection for feature geometries after
ProjectionLike parsing.
The TileVector source

The final vector source is TileVector. This source loads features by requesting them in
batches based on a tile grid exactly the same way that the raster sources work. The job of a
tile grid is to divide the world up into rows and columns and convert geographic coordinates
for the current view into row and column references.

If you were following closely in the previous section, you might wonder how TilevVector
is different from a ServervVector configured with a loading strategy based on
ol.loadingstrategy.createTile. The main differences are as follows:

1. The Tilevector source has its own loading functionality—you do not need to
provide one.

2. The TileVector source uses the row, column, and zoom level rather than
geographic coordinates to request features from the server.

11641

Chapter 5

3. The TileVector source provides convenient options for working with
tile-based servers.

There are several ways of producing and serving vector tiles. One

way is to use a program that splits vector data up into tiles based
. on a particular tile grid and save the tiles to disk in a directory
% structure based on the zoom level, column,and row. Another

way is to use a server that can split up vector data on the fly. The
OpenStreetMap wiki has a page dedicated to vector tiles and

related resources at http://wiki.openstreetmap.org/
wiki/vector tiles.

Time for action — working with the TileVector source

The use of a tile grid removes the need to implement a loader function; so, there is less work
involved in setting it up. Let's see how easy it is to use the TileVector source:

1. Starting from the previous example, add the following after the servervector
layer is defined:

var tiledSource = new ol.source.TileVector ({
format: new ol.format.TopoJdSON ({
defaultProjection: 'EPSG:4326'
1
projection: 'EPSG:3857',
tileGrid: new ol.tilegrid.XYZ ({
maxzoom: 19
1
url: 'http://{a-c}.tile.openstreetmap.us/vectiles-water-areas/
{z}/{x}/{y}.topojson'
1

2. Now, add create a vector layer using this source:

var tiledVector = new ol.layer.vector({
source: tiledSource,
style: vectorStyle

}) i

3. And finally, change the map to load the tiledvector layer instead of the
serverVector layer:

var map = new ol.Map ({
renderer: 'canvas',
target: 'map',
layers: [tiledRaster, tiledVector],
view: view

13N

11651

http://wiki.openstreetmap.org/wiki/vector_tiles
http://wiki.openstreetmap.org/wiki/vector_tiles

Using Vector Layers

4. \Load this in your browser and you should see something like the following
screenshot:

e B ol =1 R 0] 0 N
Hartford o

-]

Be

: i g P g
Wethersfield S 7"‘Cidstov5.|r;,;' i

(cTe), B
ws 4
g H; i

What just happened?

As you can see, the TileVector source is quite a bit simpler than the Servervector
source. For the TilevVector, we provided a format, a projection to convert vector
features into (typically, the projection used with the map's view), a tileGrid, and a url.
The format specifies what format the features will be in, which tells OpenLayers how to
read features from the tiles sent by the server. It also can specify the projection used for

the features. In this example, the server provides files in the TopoJSON format, a variant of
GeoJSON that encodes topology, in a projection of EPSG:4326 (latitude and longitude). The
tileGrid tells OpenLayers how to convert geographic coordinates into rows and columns
that the server will understand. You can't just use any tileGrid with any server—it's very
important that the ti1eGrid matches what the server expects. The XYZ tile grid, however, is
a very common grid used by most tile servers, both raster and vector. The url property tells
Openlayers where to request each tile from. There are some special placeholders that you
can put into a url that OpenLayers will replace on the fly when requesting a specific tile:

& {z}:This will be replaced by the current zoom level.

¢ {y}or {-y}:This will be replaced by the row of the tile. The { -y} option inverts
the y axis, this is needed for some servers.

¢ {x}:This will be replaced by the column of the tile.

After defining the source, it can be used with the vector layer in the same way the
ServerVector source was used, and the layer is added to the map in the same way too.

(1661

Chapter 5

The result is that when you load the browser, OpenLayers will request vector tiles from the
server and render them using the style we defined.

To see what happens when vector tiles are requested, open Web Inspector, switch to the
Network tab, and make sure All is selected, then reload the page. You will see the requests
that fetch the vector tiles end with the . topojson extension:

Developer Tools - http://localhost:9000/chapter06/236005_06_03_tiled_sources.html|
Q,_ Elements | Network| Sources Timeline Profiles Resources Audits Console = ﬂ- :I‘
[] Preserve log
Documents Stylesheets |mages Scripts XHR Fonts WebSockets Other [Hide data URLs

* Headers | Preview Response Timing

e v {objects:{vectile: {type:GeometryCollection, geometries:[,.1}}, type:Topology,..}
o »arcs: [[[8e8, 766], [7, -11, [6, -14], [-8, 3], [-5, 12]],.]
1526.topojson b objects: {vectile:{type:GeometryCollection, geometries:[,.]}}

—J b.tile.openstreetmap.us/ve » transform: {translate:[-72.42187499999999, 41.77131167976486],..}

- type: "Topology"
1525.topajsen s potogy

L atile.openstreetmap

] 1524.topojson
L c.tile.openstreetmap.us/ve

| 1523.topojson
L b.tile.openstreetmap.us fve

] 1526.topojson
c.tile.openstreetmap.us/ve

| 1525.topojson
L b.tile.openstreetmap.us fve

] 1524.topojson
—J a.tile.openstreetmap.us/ve

1523.topojson

50 requests | 31.1 KB transferr.

Click on some requests and view the responses. Do you see the difference between this
and the serverVector responses? Here, the features are returned directly as a JavaScript
object while in the previous example, they were wrapped in a JavaScript function call.

Look through the requests for the raster tiles they are the ones that end with .png.
You should be able to find a raster tile for each vector tile because they are using the
same tileGrid.

One of the side effects of using vector tiles is that vector features such as lines and

polygons may cross more than one tile and will be split up into different features. If you

are rendering polygons with a stroke, or lines with dashed styles, you will see some
interesting effects at the edges of the tile boundaries. We can see an example of this when
first loading the TileVector, in this particular case. The river that runs vertically through
the center of the map has several horizontal lines in it that coincide with the tile boundaries.
Line features are typically less affected and point features shouldn't be affected at all. You
can use polygon features, but you will probably want to render a fill style only to avoid
artifacts at the tile boundaries.

11671

Using Vector Layers

Now, we've seen it in action, let's review all the options available when using a
TileVector source:

Name Type Description
attributions | Array.<ol. As with ol . source.vector, this is an optional
Attribution> array of attributions to display when features from
this source are displayed on the map.
format ol.format.Format | Thisis the format that the features are represented
in.
logo string | olx. This is a logo to display when features from this
LogoOptions | source are displayed on the map.
undefined
projection ol.proj. This is the projection for feature geometries after

ProjectionLike

loading.

tileGrid ol.tilegrid. The tile grid specifies how the world is divided up
TileGrid into tiles. The most popularisol.tilegrid.
XYZ.
tileUrl function | This is a function that returns a URL given a tile
Function undefined coordinate and the projection. This is required if
both url and urls are not provided.
url string | This is a string representing the URL from which to
undefined request tiles. The string must contain placeholders
identifying the tile coordinates as row ({y} or
{-v1}), column ({x}) and zoom ({z}).
urls Array.<string> |

undefined

This is an array of URL strings following the same
convention as the url option. Some servers
provide multiple domain names to access tiles
from to allow browsers to request many tiles in
parallel.

Time for action - a drag and drop viewer for vector files

Loading static sources programmatically is very useful, but let's say you want to look at a new
GeoJSON file you just found. Opening up your text editor and coding up a quick viewer is
pretty easy, but it takes some time, and perhaps, you'll need to check the APl documentation
(or this chapter!) to recall the exact details. Wouldn't it be nice if you could just drag your
new GeolJSON file onto a map and view it without writing any code? Guess what, you can!

1. Make a copy of the vector template.html file and add a DragAndDrop
interaction after the vectorstyle is defined:

var dragAndDrop = new ol.interaction.DragAndDrop ({

formatConstructors: [

[168]

Chapter 5

ol.format .GPX,
ol.format.GeoJSON,
ol.format.IGC,
ol.format .KML,
ol.format.TopoJSON
]
13N

2. When afile is dropped on the map, the DragandDrop interaction will fire an event
that can be used to actually add the features to the map:

dragAndDrop.on ('addfeatures', function(event)
var vectorSource = new ol.source.vector ({
features: event.features,
projection: event.projection
1
map.getLayers () .push (new ol.layer.vector ({
source: vectorSource,
style: vectorStyle
)
view.fitExtent (vectorSource.getExtent (), map.getSize()) ;

3N

3. Lastly, we need to get the map to use our interaction since its not enabled by
default. Add this after the map object is declared, at the end of our <script> tag.

map .addInteraction (dragAndDrop) ;

4. Openassets | data in your file browser and try dragging one of the vector files
onto the map.

What just happened?

With a few lines of code, we've created a pretty cool vector file viewer. Let's look at how we
accomplished this.

In step 1, we created an instance of ol . interaction.DragAndDrop. This class turns

the map into a drop target. When you drag a file from the operating system onto a drop
target, the browser emits an ondrop event. The DragAndDrop interaction listens for this
browser event and attempts to read features from the file using one of the formats. The
DragAndDrop interaction allows you to customize the list of formats to be tried through the
formatConstructors option. In this case, we've added all the formats.

(1691

Using Vector Layers

In step 2, we add a listener for the DragAndDrop interaction's addfeatures event. This
event is triggered when the interaction parses features from a file dropped on the map. The
event passed to our handler gives us an array of features and the projection of the features.
We take the array of features passed to the event handler and create a new vector source
with the features and the projection of the features, then create a new vector layer with this
source and our style and add it to the map.

The last thing to do is make sure that the map knows about our interaction, which we did
in step 3.

We've been using feature objects throughout the chapter so far without really talking about
the Feature class itself. We also hinted at the Geometry class, but we haven't gone into any
detail so far. This section will cover both classes in a bit more detail so that you can gain a bit
more confidence working with them. Don't worry—it's easy, you've already been exposed to
both classes.

Before we get into the Feature class, we should go over the Geometry class, as it's used to
create the actual geometry objects that make up a feature object.

The Geometry class

Although it is perfectly valid to create features without geometries, they can't be
represented on a map. Therefore, the Geometry class is, from the map's point of view,
the foundation of the feature object. The Feature class uses the Geometry class to store
geometry information about the feature.

However, what exactly is the Geometry class? In a nutshell, it stores geographic information
in the form of one or more coordinate pairs. Remember the examples from The feature
formats section of this chapter where we added features using the Format subclasses? We
briefly saw geometries while reprojecting the features into the map view's projection:

for (var i = 0, ii = features.length; i < ii; ++i) {
var feature = features[i];
var geometry = feature.getGeometry () ;
geometry.applyTransform(transform) ;

}

In this example, we will transform the feature's geometry from its original projection into
the map view's projection so that the loaded feature will align with the raster base map
correctly. This is just one part of what we can do with geometries.

(1701

Chapter 5

When working with the Geometry class, we always use one of its subclass. What do we
mean? Think about the Format classes we've used earlier in this chapter—we've talked about
format but actually used subclasses of the base Format class the entire time (ol . format .
GeoJSON, ol . format . KML, and so on are all subclasses of the ol . format . Format class).

We mentioned before that a geometry object stores geographic information as coordinate
pairs. A coordinate pair is simply an array of two, three, or four numbers (we'll get to this in
a moment) representing a single location on the earth in a given projection. You're already
familiar with coordinates, it's the value that we use to set the center of a view in all of the
examples. In the OpenLayers documentation, you'll see coordinates represented with the
type ol.Coordinate. This looks like a classname, but really it's a type definition specifying
an array of numbers representing a location. There are four different ways, called layouts, of
representing a coordinate:

XY: This is a coordinate with two values, X and Y

XYZ: This is a coordinate with three values, X, Y, and Z (elevation)

XYM: This is a coordinate with three values, X, Y, and M (the measurement
dimension)

¢ XYZM: This is a coordinate with four values, X, Y, Z, and M

To get maximum performance, OpenlLayers' Geometry classes store coordinates in so-
called flat arrays, meaning all the values of all the coordinates are stored in a single array
of numbers. Because the individual coordinates can have two, three, or four values, all the
Geometry classes need to know the layout of the coordinates they are storing.

Before we cover the subclasses, let's quickly go over some of the methods available to all of
the subclasses via the base Geometry class. All these methods are available to any Geometry
subclass, as all the subclasses inherit from the Geometry class:

Method Parameters Description
applyTransform ol.Transform This applies a transform function to the
(transformFn) Function geometry. Most often, this will be used

to reproject features but it can actually
apply any transformation to a Geometry.

clone () None This creates a copy of the geometry and
returns it.

1l

Using Vector Layers

Method Parameters Description
getClosestPoint point - This finds the closest point in this
(point, out_point) | ol.Coordinate geometry to the provided point and

returns it. The second argument,
out_point, is optional. If provided,
its coordinates will be updated with the
closest point.

out point -
ol .Coordinate

getExtent (opt_ opt_extent - This returns the bounding box of the
extent) ol.Extent geometry.

getSimpifiedGeomet | number This returns a simplified geometry. The
ry (sqTolerance) sgTolerance represents a distance

squared, in projection units, that guides
the simplification algorithm.

getType () None This returns a string indicating the type
of the geometry. Geometry types are
discussed further in this chapter.

transform(source, source - ol.proj. | Thistransforms a geometry from one
destination) ProjectionLike projection to another.
destination
- ol.proj.

ProjectionLike

Geometry subclasses

There are two direct subclasses of ol . geom.Geometry—ol.geom.SimpleGeometry and
ol.geom.GeometryCollection. The GeometryCollection class, as the name suggests,
treats several geometries as a single geometry object. The SimpleGeometry class is the
base class for geometries we can actually use to represent specific shapes—points, lines,
polygons, and so on. Let's look at the SimpleGeometry class and its subclasses first.

The SimpleGeometry class and subclasses

We don't use the SimpleGeometry class directly, but it is the base class for all the basic
geometry types that OpenlLayers understands. We'll look first at the methods provided by
SimpleGeometry to all the subclasses, then look at the subclasses themselves:

Method Parameters | Description

getFirstCoordinate () None This returns the first coordinate in the geometry.

getLastCoordinate () None This returns the last coordinate in the geometry.

getLayout () None This returns the layout (XY, XYZ, XYM, or XYZM) of
the geometry.

[1721

Chapter 5

Point, MultiPoint, and Circle classes

The Point class represents a single point, and MultiPoint is a collection of points. A Circle
class is a special case of the Point class that includes a radius property. All take coordinates as
the first argument to the constructor. Both Point and Circle expect a single coordinate, while
MultiPoint expects an array of coordinates. A Circle takes a second argument, the radius. All
take an optional final argument, the layout, which defaults to XY. Here are some examples of
creating each type:

var point = new ol.geom.Point ([1, 21);
var multipoint = new ol.geom.MultiPoint([[1,2], [2,3] 1);
var circle = new ol.geom.Circle([1,2], 2);

LineString and MultilineString classes

The LineString class represents a sequence of two or more coordinates that are connected
to form a line. As with MultiPoint, MultiLineString is a collection of lines. A LineString is
constructed with an array of coordinates, while MultiLineString is created with an array of
arrays of coordinates. Both take the layout as an optional final argument, the layout, which
defaults to XY. Here are some examples of each:

var line = new ol.geom.Line([[1, 2]1,([2,3],1[3,4]1 1);
var multipoint = new ol.geom.MultiPoint ([[[1,2],[2,31,1[3,4]1, [
[4,5],05,61 1 1)

Polygon, MultiPolygon, and LinearRing classes

The Polygon class is composed of one or more LinearRing classes. A linear ring is a sequence
of three or more coordinates that forms a closed ring, that is, the last coordinate is the same
as the first coordinate. When a polygon contains multiple linear rings, the first is called the
outer ring and the rest are interior rings. Interior rings define holes in the polygon. And

as you might expect, a MultiPolygon is a collection of polygons. Let's see how to make a
linear ring and polygon. As with the other geometry types, the layout can be specified as an
optional last argument:

var linearRing = new ol.geom.LinearRing([[1,2],[2,31,[3,4],[1,21);
var polygon = new ol.geom.Polygon([[[-20,-20],[-20,20], [20,20], [20, -
201, [-20,-201 1 1);

(1131

Using Vector Layers

Time for action — geometries in action

The last example only used one linear ring for the polygon. Let's use the Web Inspector's
console to create a polygon and then add a linear ring to see what happens. Open the
vector template.html file in your browser and then open the Web Inspector's Console.
We'll be typing the commands into the console directly and observing the result on the map.

1. First, create a polygon using the preceding example:
var polygon = new ol.geom.Polygon([[[-20,-20], [-
20,201, [20,20], [20,-20], [-20,-20] 1 1);

2. We'll need to reproject the coordinates into our view's projection:
polygon.transform('EPSG:4326', 'EPSG:3857');

3. Now, we'll need a source and a layer:

var source = new ol.source.vector ({
features: [new ol.Feature (polygon)],
projection: 'EPSG:4326'

1

var layer = new ol.layer.vector ({
source: source,

style: vectorStyle

1)

4. And add it to the map:
map .addLayer (layer) ;

5. You should see something like the following screenshot:

1l

Chapter 5

6. Now create a linear ring that will make a hole in our polygon.

var linearRing = new ol.geom.LinearRing([[-10,-10], [10, -
101, [10,10],[-10,10], [-10,-10] 1);
linearRing.transform('EPSG:4326', 'EPSG:3857") ;
polygon.appendLinearRing (linearRing) ;

7. Now, it should look like the following screenshot:

What just happened?

We've just seen linear rings in action. When you create a polygon, the first linear ring is the
outer boundary of the polygon and any other linear rings you create define holes in the
outer ring.

Try the last example again, only this time add two or more linear rings to the polygon and
observe what happens.

The GeometryGollection class

The GeometryCollection class, as the name suggests, is a collection of geometry objects.
Unlike the MultiPoint, MultiLine, and MultiPolygon classes, a GeometryCollection

can contain any type of geometry. You can create an instance of ol .geom.
GeometryCollection by passing an array of geometries to it, for example:

var geomCollection = new ol.geom.GeometryCollection ([geoml, geom2,
geom3]) ;

(1151

Using Vector Layers

The GeometryCollection methods

Although you can use a GeometryCollection as an ol.geom.Geometry class anywhere,
you can't use any of the SimpleGeometry methods on a GeometryCollection. Instead
there is a separate API for accessing the geometries managed by the collection.

Method Parameters Description

getGeometries () None This returns an array of geometries managed
by the collection.

setGeometries Array.<ol. This sets the array of geometries managed
geom.Geometry> | by the collection.

The Feature class

To complete our discussion of vector layers, we'll finish with the Feature class. We've already
seen features in action—in fact, you can't display vector data without them—but we haven't
really talked about what they are and what they do.

In the previous section, we explored the various OpenlLayers Geometry classes. They contain
the geospatial coordinates that represent a particular shape. However, to display a shape on
the map, we need to work with features. When we model things in the real world and build

data structures to represent their position, we also want to capture other information about
them. A polygon representing the outline of a building is an interesting thing to display on a

map, but when we click on it, it's pretty reasonable to expect to get some information about
the building such as its address, its height, and building type (that is, commercial, industrial,

or residential). These nonspatial properties of a feature can also be used to change the style
of a shape on the map.

A feature combines these two concepts—the spatial location of a thing, and nonspatial
properties of the thing that we are interested in.

Creating a feature

Creating a new feature is pretty straightforward; you just need to provide a geometry object
(to create a feature with no extra properties) or an object literal containing the geometry
and other properties of the feature. For instance, given a point geometry, we can construct a
simple feature like this:

var point = new ol.geom.Point ([x, vI]);
var feature = new ol.Feature (point) ;

(1761

Chapter 5

To create a feature with information associated with the point, we do it this way:

var feature = new ol.Feature({
geometry: point,
name: 'My Cottage'

13N

By convention, the geometry key is used to specify the geometry associated with the
feature. It's possible, though, to use a different key and the setGeometryName () method
to change this. For our purposes, we'll be doing it the default way.

The Feature class properties

We refer to this extra, nonspatial information associated with a feature as properties. The
properties associated with a feature are almost completely free-form and contain any value.
The geometry property is really the only exception.

You might wonder why we care about the nonspatial properties of a feature since we can
create a feature without them and things work just fine. There are essentially two reasons:

1. We want to provide users with information about the feature when they interact
with them in some way. For instance, if we are displaying the country layer, we
might want to show some information about the country — its name or population
for instance.

2. We want to style features based on some property. For instance, if we are displaying
earthquake locations, we might draw circles of varying radii and intensity of color
based on the magnitude of the earthquake recorded at that location.

We'll look at the first case—interactive information—in the last example for this chapter.
We'll explore the second case in the next chapter when we look more closely at styling
vector layers.

Before we jump into our last example, let's look at the methods available on a feature object.
Note that Feature class is a subclass of ol .0bject and inherits all the Event class and KVO
properties, methods, and events. We won't include them here, but if you need a refresher
jump back to Chapter 2, Key Concepts in OpenLayers for a moment.

Method Parameters Description

getGeometry () None This returns the geometry associated with
this feature. This uses the geometry name
to decide which property contains the
geometry.

[l

Using Vector Layers

Method Parameters Description

getGeometryName () None This returns the name of the property,
which contains the geometry for this
feature. By default, this will be geometry,
unless setGeometryName has been used
to change it.

getId() None This returns the unique ID associated with
this feature, if any has been set.

getProperties () None This returns an object literal containing all
the properties of this feature.

getsStyle () None This returns the style, if any, associated with
this feature.

getStyleFunction() | None This returns the function that will be used

to style the feature.

setGeometry (geom)

geom - ol.geom.

This sets the geometry of this feature. This

Geometry will set a property based on the current
geometry name (see setGeometryName)
setGeometryName name - string This sets the property name to be used for
(name) getting the geometry associated with this
feature.
setId(id) id - number or This sets the ID of this feature, a value that
string uniquely identifies it.
setProperties values - object | Thissets properties for this feature.
(values)

setStyle (style)

style -
ol.style.Style
| Array.<ol.
style.Style> |
function

This is a style to be used for this feature.

While we are not including the o1 .0bject methods in this list, it is relevant and important
to note that feature properties are treated as object properties. This means that you can:

Change or create a property using feature.set (key, value)

Get the value of a property using feature.get (key)

Observe changes to a property using feature.on ('change:<key>",
observerFunction), where <key> is the name of a property

& Change several properties at once using feature.setProperties (values)

(1181

Chapter 5

One last thing before our final example—feature objects can have their own styles. Normally,
styles are assigned to the vector layer and all features that are rendered as part of that layer
use the layer's style. It is possible, however, to assign styles to individual features and that
style will be used instead of the layer's style. Because a feature comes from a source, and a
source can be used for more than one vector layer, this means that a feature without a style
can be rendered differently depending on the layer's style while a feature with a style will be
rendered the same way regardless of the different styles on different layers.

Time for action - interacting with features

To wrap up our chapter on vector layers, let's combine our knowledge of layers, sources, and
features and create a small application that displays the name of a country when we hover
over it with the mouse:

1. Let's start with a simple vector layer based on the GeoJSON file containing the
country data. This is how we started the chapter!

var source = new ol.source.GeoJSON ({
projection: 'EPSG:3857',
url: '../assets/data/countries.geojson'
3N
var countries = new ol.layer.vector ({
source: source
3N
var center = ol.proj.transform([0, 0], 'EPSG:4326', 'EPSG:3857');
var view = new ol.View({
center: center,
zoom: 1,
1)
var map = new ol.Map ({
target: 'map',
layers: [countries],
view: view
3N
2. Next, we'll hook up to the pointermove event provided by the map object. If you
don't remember anything about map events, review Chapter 3, Charting the Map Class:

map.on ('pointermove', onMouseMove) ;

3. Now, add the onMouseMove function:

function onMouseMove (browserEvent) {
var coordinate = browserEvent.coordinate;
var pixel = map.getPixelFromCoordinate (coordinate) ;
var el = document.getElementById('name') ;
el.innerHTML = '';

(191

Using Vector Layers

map.forEachFeatureAtPixel (pixel, function(feature) {
el.innerHTML += feature.get('name') + '
';

|3
}
4. Finally, add a <div> element to display the country name, just after the <div> that
holds the map:

<div id="name"></divs>

5. Load this in your browser and move the mouse around. You should see the name of
the country that the mouse is over appear below the map.

United Kingdom

What just happened?

We've just saw how easy it is to interact in real time with vector data sources.
Step 1 just created a vector layer using a static GeoJSON source and added it to the map.

In step 2, we registered for the pointermove event. Recall from Chapter 3, Charting the
Map Class that the pointermove event is fired by the map whenever the mouse moves
over the map, and it passes a BrowserEvent object that contains, among other things, the
map coordinate of the mouse position. Next, we implemented our event handler function.

It gets the coordinate from the browser event and finds all features at that coordinate in our
country layer's source. If there are any features, we get the name property from the first one
and display this in the <div> added in step 4. You may wonder exactly how interactions with
your map work behind the scene. Don't worry! We will see them more thoroughly in
Chapter 8, Interacting with Your Map.

[1801]

Chapter 5

Vector layers are extremely useful for developing interactive web mapping applications.

In this chapter, we've discussed what a vector layer is and its potential limitations. We've
explored the various vector data sources that OpenlLayers provides, and looked in detail at
features and geometries. Through a series of examples, we learned how to load dynamic
data from a remote server such as a WFS server, load tiled vector data, load vector data
stored in static files, even by dragging them to the map from our file browser, work with
geometries and features, and dynamically interact with vector data.

We covered a lot about vector layers, but we're not done yet. It's time to take control of the
presentation of our vector data; so, keep reading to learn all about how to use styles with
vector layers to really make your maps pop!

11811

Styling Vector Layers

By now you should be getting pretty comfortable creating simple OpenLayers
maps with a combination of raster and vector data. With raster data, there

is no control over presentation, as the saying goes—what you see is what you
get. Vector data, on the other hand, gives you direct control over presentation
details. We've already alluded to vector styles, and used them in the previous
chapter. Now, it is time to take full control of how we present our vector data!

In the last chapter, you saw how powerful the vector layer can be. In this chapter, we'll go

a bit deeper and talk about how to customize the appearance of the features within a vector
layer. We'll explore the following:

The basic style object

Fill, stroke, image, and text styles

Composing multiple styles

Using style functions

* 6 & o o

Applying styles interactively

Styling Vector Layers

So, what is a vector style? Quite simply, it is a set of instructions about how to draw
graphic primitives—the points, lines, polygons, and text that make up our vector features.
Openlayers provides a basic default style that renders features in various shades of blue.
While this is quite nice, it's probably not what you'll want to use all the time.

You've already seen an example of a basic vector style in the previous chapter. Let's review
it here:

var f£ill = new ol.style.Fill ({
color: 'rgba(0,0,0,0.2)"

P

var stroke = new ol.style.Stroke({
color: 'rgba(0,0,0,0.4)"

P

var circle = new ol.style.circle({
radius: 6,
£i11l: £4i11,
stroke: stroke

P

var vectorStyle = new ol.style.Style ({
£i11l: £4i11,
stroke: stroke,
image: circle

I3F;

This code defines specific rules for the £111, stroke, and image properties of a new
ol.style.Style object. The fill and stroke rules specify a color and opacity using the RGBA
(Red, Green, Blue, and Alpha) format. The circle style is a special style that draws points as
circles of a specific radius with a fill and stroke property. Together, these form a style object
that OpenlLayers uses to determine how to draw a feature. The fill property is used for filling
polygons and circles. The stroke property is used to draw the outline of polygons, lines, and
circles. The image property is used for drawing points. There is also a text property that we
haven't seen yet.

The vector layer's style property accepts three different ways of specifying styles:

¢ Aninstance of ol.style.Style
¢ Anarrayof ol.style.Style instances

¢ Astyle function

(1841

Chapter 6

What is a style function?

We'll look at style functions in more detail in the second half of this chapter, but briefly, a

style function is one that returns an array of style objects to be used for a specific feature

and resolution. In combination with feature properties, a style function allows for the
implementation of advanced custom styling. Before we can run, we'd better learn how to walk.

Time for action - hasic styling

We'll start with an example that shows off most of the basic style properties. We'll start with
a new HTML page setup the same way we usually start off.

1.

Make a copy of our sandbox template and add the standard setup for a map to the
main <scripts> tag:

var center = ol.proj.transform([0, 0], 'EPSG:4326', 'EPSG:3857');
var view = new ol.View ({

center: center,
zoom: 1

1)

var map = new ol.Map ({
target: 'map',
view: view

3N

In this example, we'll be purely using vector layers. No need for rasters here! Go
ahead and create a vector layer for countries, then add it to the map:

var countries = new ol.layer.Vector ({
source: new ol.source.GeoJSON ({
projection: 'EPSG:3857',
url: '../assets/data/countries.geojson’
3]
1
var map = new ol.Map ({
target: 'map',
layers: [countries],
view: view

3N

(1851

Styling Vector Layers

3. Load the HTML file to your browser to see the basic styling that OpenLayers provides:

4. Make it a bit more interesting by adding another vector layer, time zones. Don't
forget to add it to the map's layers property:
var timezones = new ol.layer.Vector ({
source: new ol.source.KML ({

projection: 'EPSG:3857',
url: '../assets/data/timezones.kml’

3]
)

1861

Chapter 6

5.

Now, the map looks like the following. The time zone KML file is drawn in different
colors because KML files often contain style information for each feature.

We'd like to have more control over the appearance of our map; so, let's create
some rules for styling. First, create two style objects—one for each layer:

var countryStyle = new ol.style.Style ({
fill: new ol.style.Fill ({
color: [203, 194, 185, 1]
.
stroke: new ol.style.Stroke({
color: [177, 163, 148, 0.5],
width: 2
h
I
var timezoneStyle = new ol.style.Style ({
stroke: new ol.style.Stroke({
color: [64, 200, 200, 0.5],
N
text: new ol.style.Text ({
font: '20px Verdana',
text: 'Tz',
fill: new ol.style.Fill ({
color: [64, 64, 64, 0.75]

[18171

Styling Vector Layers

7. Don't forget to add a style property to each of the vector layers so they know
which style to use. Also, we'll need to tell the KML source not to extract the default

feature styles stored in the KML document:

var countries = new ol.layer.Vector({
source: new ol.source.GeoJSON({
projection: 'EPSG:3857',
url: '../assets/data/countries.geojson'

P

style: countryStyle
P
var timezones = new ol.layer.Vector({
source: new ol.source.KML({
projection: 'EPSG:3857',
url: '../assets/data/timezones.kml’,
extractStyles: false

P

style: timezoneStyle

13N

8. Take alook at the result. Not arguably better, perhaps, but we now have full control!

Tz
12
TAZ
TZ ¥z ¥Z T2 {r%
v TZ
TZ
IZ 17732 T2 1z % - TZ
TZ TZ
TFZ
1% TZ
TZ
TZ T TZ
T2r2 Zrz 4 TZ e
What just happened?

With this example, we are illustrating some of the basic styling capabilities of OpenLayers.
We combined two static vector sources—countries and time zones—and some simple styles

to create our map.

[1881]

Chapter 6

Step 1 set up the same structure we've been using for all our examples. In step 2, we added
the country data using a static GeoJSON source and added it to the map with the default
styling. Next, we added the time zone data in step 4 and developed some basic styles for the
two layers in step 6. The country data is composed of polygons, so we created a fill style and
a stroke style for styling the country layer. The time zone data also contains polygons, but we
want to see the countries underneath so we created a separate style with just the stroke and
text properties for it.

The text property in this example is somewhat contrived to keep things simple. Showing

the same text string for each time zone is not what we'd really want to do. Ideally, we'd
display information specific to each time zone—perhaps, the name or number of hours from
Greenwich Mean Time. We'll cover how to do this a bit later in the chapter though. The last
thing is to assign our custom styles to the appropriate vector layer and turn off the automatic
extraction of styles from the KML layer, which happened in step 7.

Now that we've reviewed how basic styles work, let's take a closer look at the style object and
the properties we can assign to it. Along the way, we'll illustrate each with a specific example.

The style class

The style class, o1 .style.Style, contains the drawing instructions to be used when
rendering a feature. There are five properties we can use when creating a style property:

Name Type Description

fill ol.style.Fill This style is used when filling polygons. To draw unfilled
polygons, leave this property out or set to null.

stroke ol.style.Stroke This style is used when drawing lines and drawing the

outline of polygons. To draw polygons without an outline,
leave this property out or set to null.

image ol.style.Image This style is used when drawing points.
text ol.style.Text This style is used when drawing text.
zIndex number The z-index determines the order in which features are

drawn. To ensure that certain features are drawn on

top of other features—for instance, points on top of
polygons—assign a higher zIndex value. Note that this
only affects features within the same layer.

(1891

Styling Vector Layers

As you can see, a style is really a composite of several specific types. Including a property
turns on drawing of the relevant type and excluding it turns it off. When you specify the
style property for a vector layer, this replaces all the default styles; so, you don't need to
override all the properties all the time—just specify the ones that are needed and the rest
will not be drawn at all. For example, creating a style with just a stroke property will draw
polygons with an outline and no fill:

var style = new ol.style.Style({
stroke: new ol.style.Stroke ({
color: [127,127,127,1]
3
P

Now, let's look at each specific property type with some examples.

Fill styles

The fill style—ol.style.Fill—is used to fill shapes with a solid color. The fill style is used
by ol.style.Style as well as a couple of other objects we'll see shortly. It has a single
property, color, of the type ol .Color that is used when drawing filled shapes.

Colors may be specified in three ways:

& An array of four values representing the red, green, blue, and
alpha components of the color. The color components are
numbers between 0 and 255, while the alpha value is between 0
(transparent) and 1 (opaque). For example, black is represented as
[0,0,0,1]1, whiteis represented as [255,255,255,1], and
a semitransparent blue greenis [0,255,0,0.5].

& A CSS RGBA string expression, written as

. "rgba (red, green, blue, alpha) ", where red, green,
% blue, and alpha are the same as the preceding array
~= form; for example, our semitransparent green color will be

"rgba (0,255,0,0.5)".

& ACSS hexadecimal, or hex, color value written as #RRGGBB,
where RR is the red value, GG is the green value, and BB is
the blue value. The values are a hexadecimal equivalent of the
numeric values between 0 and 255, written as 00 to FF. The alpha
value is assumed to be 1 in this case.

These different representations are equivalent (except for the missing
alpha control in hex colors) and you can use whichever is more convenient.

[1901]

Chapter 6

The stroke style— ol .style.Stroke—is used to draw lines. The line style is used by
ol.style.Style as well as a couple of other objects we'll see shortly. A stroke style has
the following options.

Name Type Description
color ol.Color This is the color to use when drawing lines.
lineCap string This is the style to draw the end of lines in. This may

be one of the following:

& Dbutt: These finish lines squarely right at the
exact point the line ends at.

& round: These finish lines by rounding them,
radius depends on width at the bottom. This
is the default value if not specified.

& square: These finish lines with a square
the size of width (line extends past the last
point by the line width)

See the diagram following this table for an example
of each 1ineCap style.

lineJoin string The line join style is used when drawing segments
that are part of the same line. This may be one of the
following:

& bevel: This joins lines with a bevel.

& round: This joins lines by rounding them.
This is the default value if not specified.

& wmiter: This joins lines by mitering them (see
miterLimit below).

See the diagram following this table for an example
of each 1ineJoin style.

lineDash Array.<number> This is an array of numbers that define the on-off
pattern for drawing lines with a dash pattern. The
default is none (no dash pattern).

miterLimit number This is the limit for drawing miter joins; the default
is 10.
width number This is the width, in pixels, to draw the line. This

number may be a floating point number.

11911

Styling Vector Layers

The following diagram illustrates the effect of the various values for 1ineJoin (top) and
lineCap (bottom).

Mitre Join Bevel Join Round Join
Butt Cap Square Cap Round Cap

Have a Go Hero - fill and stroke styles

Modify the last example and try out some £i11 and stroke style properties. In particular, try
changing the 1ineJoin and 1ineCap properties. Use a wider stroke width to see the effect
it produces. Note that the 1ineCap style won't be apparent when drawing polygons—to see

it in action, you'll need a line layer, perhaps, using the fells loop.gpx file we saw in the
previous chapter.

Here are a couple of examples:

var countryStyle = new ol.style.Style({
fill: new ol.style.Fill ({
color: [0, 255, 255, 1]
1
stroke: new ol.style.Stroke ({
color: [127,127,127,1.0],
width: 10,
lineJoin: 'bevel',
1)
P
var timezoneStyle = new ol.style.Style ({
stroke: new ol.style.Stroke ({
color: [64, 200, 200, 0.5],
lineJoin: 'round',
width: 10
1)
P

11921

Chapter 6

Image styles

The image style—ol.style.Image—is used to style point data. You won't be using it
directly though. Instead, there are two subclasses that you'll be using: o1 .style.Icon
and ol .style.Circle. Let's look at the icon style first.

The icon style

The icon style displays an image at the location of a point. There are quite a few properties
associated with the icon style that allow you to align the placement of the image relative to
the precise geographic location being represented.

Name Type Description

anchor Array.<number> | This property states where to position the

image relative to the geographic location of the
point specified as an array of two numbers. The
default valueis [0.5, 0.5] and assumes

units of fraction (see anchorXUnits and
anchorYUnitsg). This will specify aligning the
center of the image to the geographic location.

The position within the image is measured relative
to the anchorOrigin property, which defaults to
top-left.

anchorOrigin string This specifies where the anchor value is measured
from. One of the following values can be used:

& top-left (the default)
& top-right

& bottom-left

¢ Dbottom-right

anchorXUnits string This specifies the units of the X anchor value,
either pixels or fraction. The default value is
fraction. When fractionis used, the value
of the associated value is a floating point number
between 0 and 1 as a percentage of the width or
height of the image.

anchorYUnits string This specifies the units of the Y anchor value.

crossOrigin string The crossOrigin setting for the image allows
you to leverage CORS (Cross Origin Resource
Sharing) when loading an image.

img Image This is an image object to use for the icon. This
may be used instead of the src property but the
provided image object must already be loaded.

[1931

Styling Vector Layers

Name

Type

Description

offset

Array.<number>

This is the top-left corner of the image to draw

the icon from. When combined with the size
property, this would allow you to use an image
sprite and selecting a portion of the sprite to display
for a specific icon. The defaultis [0, 0].

offsetOrigin

String

This sets the origin of the of £set property, one of
the following:

& bottom-left

& bottom-right

& top-left (the default)
& top-right

scale

number

This is a scale factor to use when drawing the image,
the default is 1 (do not scale the image). A value of
2 will double the size of the icon and a value of 0.5
will half the size of the icon.

snapToPixel

Boolean

If true, this property will cause images to be
snapped to integer pixel values and result in sharper
display of images. If false, the image will be
placed more accurately but may appear blurry. The
default value is true. You may want to set this to
false if you are animating an icon's position, as
snapping to pixels would cause noticeable jitter.

rotateWithView

Boolean

If true, the icon will rotate when the map's view is
rotated. The default is false (always stay upright).

rotation

number

This is a rotation (in radians) to apply to the icon.

size

ol.Size

This is the size of the icon in pixels as an array of
two values—width and height. The default
value is the size of the image being used. Using
a different value, when combined with origin,
allows the use of image sprites.

src

string

This is the URL to load the image from.

11941

Chapter 6

The following diagram illustrates the meaning of the origin, size, and anchor options:

origin[1]

size[0]

v

origin[0]

size[1]
anchor[1]

—
v anchor{0]

Time for action - using the icon style

As we haven't seen the Icon style before, let's build an example. As we'll need some point
data for this example, the earthquake . kml file should be perfect! We'll use the following
image sprite and pick the middle dot. This file is included with the code samples that come
with the book; you can find it at assets/img/dots.png.

1. Starting from the previous example, first, we'll create an icon style using our sprite:

var earthquakeStyle = new ol.style.Style ({
image: new ol.style.Icon ({
anchor: [0.5, 0.5],
size: [52, 527,
offset: [52, 0],
opacity: 1,
scale: 0.25,
src: '../assets/img/dots.png'

(1951

Styling Vector Layers

2.

Next, create the earthquake layer and assign it the style. Because it is a KML file,
we'll need to tell OpenlLayers to not extract the embedded style information:
var earthquakes = new ol.layer.Vector ({
source: new ol.source.KML ({
projection: 'EPSG:3857',

url: '../assets/data/earthquakes.kml',
extractStyles: false

b

style: earthquakeStyle

)

Now, add the layer to the map's layers array:

var map = new ol.Map ({
target: 'map',
layers: [countries, timezones, earthquakes],
view: view

13K,

The result should look something like this:

What just happened?

Using the icon style properties, we displayed an image at the location of each of the points in
the earthquakes.kml file.

[1961]

Chapter 6

First, we created an icon style pointing at our sprite image and supplied values for offset,
anchor, size, and scale to ensure our red dot is used. The sprite is 156 pixels wide and 52
pixels high, and each image in the sprite is 52 by 52 pixels, so we provided a size of [52,52].
An offset value of [52, 0] moved the frame of reference 52 pixels in from the left edge.
The anchor position of [0.5,0.5] specified the middle of the image since the default
anchor units is fraction. We can also have specified pixels for anchor units and changed our
anchor position to [26, 26]. Given the density of the earthquakes, using a 52 by 52 pixel
image will overwhelm the map; so, we provided a scale value of 0.25, which effectively
shrunk the resulting image to 25 percent of its size, or 13 by 13 pixels.

After creating a new vector layer that used our icon style, we added it to the map.

The circle style

Like the icon style, the circle style is used for point geometries. It's a much simpler object,
though with only four configurable properties:

Name Type Description

radius number This is the radius, in pixels, to draw the
circle.

f£ill ol.style.Fill This is the style to fill the circle with.

snapToPixel | Boolean If true, this property will cause the

circle to be snapped to integer pixel
values and result in sharper display of
the circle. If false, the circle will be
drawn more accurately but may appear
blurry. The default value is true. You
may want to set this to false if you
are animating the circle's position

as snapping to pixels may cause
noticeable jitter.

stroke ol.style.Stroke This is the style to draw the
circumference of the circle with.

11971

Styling Vector Layers

Have a go hero - using the circle style

To round out our understanding of the image styles, redo the previous example using
ol.style.Circleinstead of ol.style.Icon asthe image property of the earthquake
style. Your result should look something like this (depending on what values you choose):

A

Text styles

We saw the text style in action in the first example, and we also saw that it wasn't very useful
to include a static text style—at least in that example. In general, text styles will be much
more useful when the text that is displayed is derived from some property of the feature
being displayed. We'll look at how to do that at the end of the chapter, so for now, let's finish
up the basic style section with the properties available to text styles:

Name Type Description

font string This is a string containing the font size and name
of the font to use for rendering the text. The size is
typically given in pixels, for example:

"18px Verdana"

offsetX number This is the horizontal offset, in pixels, to move the
text. A positive number will move the text to the
right, while a negative number will shift it left. The
default value is 0.

[198]

Chapter 6

Name Type Description

offsetY number This is the vertical offset, in pixels, to move the
text. A positive number will move the text down
while a negative number will move it up. The
default value is 0.

scale number This is an amount to scale the rendered text. A value
of 2 will double the size of the text while a value of
0.5 will halve it. The default is 1 (no scaling).

rotation number This is an angle, in radians, to rotate the text.
The rotation is clockwise, and the default is 0
(no rotation).

text string This is the text to be rendered.

textAlign string This is the alignment of the text, one of start,
left, center (default), right, or end.

textBaseline | string This is the baseline of the text, one of top,

hanging, middle, alphabetic (default),
ideographic, or bottom.

fill ol.style.Fill This is the style to use to fill text characters.
stroke ol.style.Stroke | Thisisthe style to use to draw the outline of text
characters.

Remember, from the beginning of the chapter, that we said there were three different ways
of specifying styles:

¢ Aninstance of ol.style.Style

¢ Anarrayofol.style.Style instances

¢ Astyle function
We've looked at the first, using ol .style.Style, in detail. The second, an array of styles,
is really not much different from the first, that is, you are still dealing with the basic styles.
The difference is that when you provide an array of styles, features are rendered once for

each style. This means each feature is rendered more than once, which can provide some
interesting effects. An example is probably the best way of illustrating this.

[199]

Styling Vector Layers

Time for action - using muitiple styles

In this example, we'll use the country data again and draw each polygon with two styles to
create a shadow effect around the continents.

1. You can start from any of the examples in this chapter. We've started from the first
example and removed the time zones for clarity. First, modify the countryStyle to
provide a somewhat darker stroke:

var countryStyle = new ol.style.Style({
£fill: new ol.style.Fill ({
color: [203, 194, 185, 1]
1
stroke: new ol.style.Stroke ({
color: [101, 95, 90, 11,
width: 1
1
zIndex: 2

ISF

2. Next, we'll add our second style for the shadow effect:
var shadowStyle = new ol.style.Style ({
stroke: new ol.style.Stroke ({
color: [0, O, 127, 0.15],
width: 8
1
zIndex: 1

I3F;

3. Finally, use both styles for the countries layer:
var countries = new ol.layer.Vector ({
source: new ol.source.GeoJSON ({
projection: 'EPSG:3857',
url: '../assets/data/countries.geojson'

1

style: [shadowStyle, countryStylel

ISF

[200]

Chapter 6

4. The result should look something like the following screenshot:
\,] =V
;aQK\R

23

@@D

7 /{\ﬁ \i__/(qﬂ
g D\

What just happened?

By combining two styles, we achieved the desired effect. In the first step, we modified our
starting style slightly to sharpen the country outline—this makes them easier to see over
the shadows. In the second step, we added another style for the country layer with a wide,
mostly transparent stroke and no fill. Lastly, we provided an array as the style property for
our countries layer.

There is one thing you really need to be aware of when using arrays of styles—each feature

is drawn once for each style. This can have dramatic performance implications when dealing
with a lot of features. If you create a style array with two styles, you are effectively doubling
the number of features being rendered. This will have no visible effect on a small number of
simple features, but will start to have a noticeable effect when rendering lots (say hundreds
of thousands) of features, or a smaller number of highly complex features.

In practice, it doesn't really double the rendering time as their efficiencies are built into
Openlayers that try to avoid expensive operations as much as possible. For example,

the same effect can be achieved using two vector layers. This will be more inefficient as
Openlayers has to process the geometries twice, while they only have to be processed once
when using an array of styles.

2011

Styling Vector Layers

Have a go hero — understanding zindex

If you have been paying attention, you will have noticed that we added a zIndex property
to each style in the previous example. Try removing the zIndex from both the styles and
observe the result. This should give you an appreciation of what the zIndex property does.
Without it, OpenlLayers renders the features one at a time with their complete style, which
would mean that the shadow from one country will overlap an adjacent country rather than
just forming a shadow around each continent.

Style functions

Now that we've seen all the basic style properties and how to combine them as arrays
of styles, it's time to learn how to use them in conjunction with feature properties to
achieve dynamic styles. This is actually the last of our three ways of specifying the style
property—the style function.

We said at the beginning of the chapter that a style function is one that returns an array of
style objects to be used for a specific feature and zoom level.

What does this mean? It's really quite straightforward, but extremely powerful. A style
function is nothing more than a JavaScript function that receives two parameters—the
feature being styled, and the resolution of the map's view. It is required to return an array of
ol.style.Style objects when it is called. For instance, we could have written our country
style example using a style function like this:

var countryStyleFunction = function (feature, resolution) ({
return [countryStyle]; // the basic style we already defined
var countries = new ol.layer.Vector({
source: countrySource,
style: countryStyleFunction

3N

This example doesn't use the feature or the resolution arguments, but does illustrate how
simple the concept of a style function is. In fact, when you provide a style or an array of
styles as the style property of a vector layer, Openlayers creates a style function internally
that looks exactly like this.

You might be wondering if it's this simple, then how can we claim that it's extremely
powerful? The power really comes when you use the feature and the resolution to
dynamically create styles.

12021

Chapter 6

At the end of the previous chapter, we introduced the concept of feature properties and the
methods used to retrieve them. Now, we can make practical use of this knowledge by using
properties to create styles on the fly.

Time for action - using properties to style features

For this example, we will render the country layer by styling each country based on income
level by associating its country code to income level data provided by the world bank. There
are quite a few brackets; so, we've simplified it to four levels: high, medium, 1low, and poor.
We'll draw each country in a color associated with its income level based on these brackets.
Let's start from the previous example.

1. Atthe beginning of the <script > tag, before anything else, we will define colors for
the four brackets. Use any colours you like:

var high = [64,196,64,1];
var mid = [108,152,64,1];
var low = [152,108,64,1];
var poor = [196,32,32,1];

2. Theincome levels for each feature are indicated by a code. We need a way to look
up the color to use for each code. You don't need to include the comments, they are
there to show how we are grouping the income levels:

var incomelLevels =
'"HIC': high, // high income
'"OEC': high, // high income OECD
'NOC': high, // high income, non-OECD
'UMC': mid, // upper middle income
'MIC': mid, // middle income
'LMC': mid, // lower middle income
'LIC': low, // low income
'"LMY': low, // low and middle income
'"HPC': poor // heavily indebted poor country

bi

3. It's good practice to have a default style to use if something goes wrong:

var defaultStyle = new ol.style.Style({
£ill: new ol.style.Fill ({
color: [250,250,250,1]
|
stroke: new ol.style.Stroke ({
color: [220,220,220,1],
width: 1
3
3N

[2031

Styling Vector Layers

4.

Our style function will create styles as needed and cache them. Here's the cache and
the style function. We'll discuss what it does at the end of the code.

var styleCache = {};
function styleFunction (feature, resolution) {
var level = feature.get ('incomeLevel') ;
if (!level || !incomeLevels[level]) {
return [defaultStylel;
}
if (!styleCache[levell) {
styleCache[level]l = new ol.style.Style ({
£ill: new ol.style.Fill ({
color: incomeLevels[level]
1
stroke: defaultStyle.stroke
1)
}

return [styleCachel[levell];

}

Modify the countries layer to use the style function. While you are at it, make sure
the source is specified as a separate object. We'll need this in a moment:

var source = new ol.source.GeoJSON ({
projection: 'EPSG:3857',
url: '../assets/data/countries.geojson'

1)

var countries = new ol.layer.Vector ({
source: source,

style: styleFunction

1) s

Now, we come to the part where we load the income data and associate it with our
features. Add the following somewhere after the source is defined:

var key = source.on('change', function(event) {
if (event.target.getState() == 'ready') {
source.unByKey (key) ;
$.ajax('../assets/data/income_levels.json') .
done (function(data)
source. forEachFeature (function (feature) {

var code = feature.get('iso_a2');
if (datalcodel) {
feature.set ('incomeLevel', data[code]) ;

12041

Chapter 6

7. Give it a whirl, you should see something like the following screenshot:

=

2

What just happened?

Let's review what is happening in this example. We are using a standard setup for vector
layers, and combining some extra data into our features dynamically. The data is used to
style, or classify, the country polygons by the income level as recorded by the world bank.
Some interesting things are happening in this example; so we'll look at each step and
highlight what's going on.

In step 1, we created some colors to be used to fill countries that fall into one of the four
income categories. The number of categories is arbitrary—you can create colors for each of
the income levels, or decide to group them differently.

In step 2, we created an object that we can use to look up a color based on an income level,
and in step 3, we defined a default style. It's usually good practice when dealing with data
that can change to have some kind of fallback so that your code doesn't break. We'll use the
default style if we can't find a income level in our lookup object.

[2051]

Styling Vector Layers

In step 4, we created our style function. Another best practice is to reuse style objects as
much as possible. Since several countries might be drawn in the same style, we created an
empty object (the styleCache) to store previously created styles. The actual function comes
next. When the style function is called, it gets a reference to the feature being styled and the
current resolution of the view on which it is being rendered. We aren't using the resolution in
this example. We are using the feature, however. The feature should have a property called
incomeLevel that matches the values in our lookup tables, so we grab that value and assign
it to a variable. If the income level wasn't set or if it doesn't exist in the lookup table, we'll
return the default style. Otherwise, we can check to see whether the styleCache object
already has a style for this income level. If it doesn't, we need to create a new style using the
color from our lookup table. In this case, we are using the default style's stroke for everything,
but you could easily change the stroke for each feature too. Because we've assigned the new
style to the correct slot in the cache, we can then return it directly.

Note that in both cases, we return an array containing the style.
This is required for a very important reason: performance! The
Style functions are executed a lot of times when rendering
vector features and if Openlayers had to check the return type
* of each call to see if it was a style object or an array of style
%‘ objects, this would add significant overhead to the rendering
pipeline. For individual features, the difference is so tiny that
it's probably not measurable even with the best of tools. For
many features, this tiny difference adds up to a lot and it is
measurable. The OpenlLayers developers have put a lot of effort
into this kind of detail and it shows!

In step 5, we modified the layer to use the style function we just created and defined a
separate variable for the source. This was to make the next step a little easier.

In step 6, we loaded the income level data. The goal of the code in this step is to load the
income data and associate it with the appropriate country feature. To do this, we need

to make sure that the country features have been loaded. Once the countries are loaded,
then, we need to load the income data. Then we can create a new property on each country
feature with the appropriate income level. There are a few important things happening in
this step, so we'll review each line:

¢ Line 1: This registers for the change event on the source and assigns the return value
to a variable. The sources inherit from ol .Observable and so they provide the
on () method for this. Recall from Chapter 2, Key Concepts in OpenLayers, that the
on () method returns a key that can be used later to deregister an event handler
(using the unByKey () method)—we'll need it in just a moment. The change event
on a vector source is triggered when the source changes state.

[2061]

Chapter 6

¢ Line 2: This checks the state of the source to see if the source is ready. There are
three states—loading, ready, and error—for a vector source, and we are interested
to know when the state changes to ready as that's when we can load our income
data safely.

¢ Line 3: This unregisters the event handler by using the unByKey () method so that
the handler doesn't get called again. This is very important. A source triggers the
change event when its state changes, but also when any of its features change. This
means that our event handler will get called again when we add properties to the
feature. Since the state of the source will already be ready, our code will try to load
the income data again and will create an infinite loop.

¢ Line 4: This line loads the income data using jQuery's ajax () method. The data
loaded from this file is passed to the function we register using done () .

¢ Line 5: This line starts a loop over each of the features in the source by calling
forEachFeature () and providing a function that will be called with each feature.

& Line 6: This line gets the iso_a2 property of the feature, which is a two letter code
associated with each country. The income data in our file is organized by this code
so we can use this code to get the income level for each country.

¢ Line 7: This checks to see if the income data has a value for the current country
and line 8 adds the income level as a property of the feature if it does. As we
add the property to each feature, the map responds to the change by redrawing
itself. You might think that it seems inefficient to redraw the map for each feature
change. What actually happens though, is that the map schedules a redraw for the
next available render cycle. This won't happen until the current JavaScript process
completes, so all the features will be changed and the map will only be redrawn
once at some (very short) time later.

These eight lines of code accomplish quite a bit and combine concepts from other chapters
of this book, including Chapter 2, Key Concepts in OpenLayers (event registration and
deregistration) and Chapter 5, Using Vector Layers (vector layers, vector sources, and feature
properties).

Interactive styles

To round off our chapter on vector styles, let's explore combining vector styles with user
interaction. In the previous chapter, we responded to the mouse moving over a country

by displaying the country's name in an HTML element outside the map. We'll build on this
example and take it one step further. As the mouse moves, we'll highlight the country under
the mouse and draw its flag and name in the center of the country using a feature overlay.
The feature overlays are something new; so, we'll need to learn something about them
before we go ahead with our example though.

2071

Styling Vector Layers

The feature overlays

The FeatureOverlay class, ol .FeatureOverlay, is a special type of vector layer
designed to render a small number of temporary features in a specific style. It isn't a
full-fledged vector layer, but it is highly optimized for the specific case of highlighting
features in a temporary way. This sounds ideal for our use case!

Creating a new feature overlay is just like creating any other class in OpenLayers, just
pass some options to configure it. Here are the options that can be passed to the
ol .FeatureOverlay constructor:

Name Type Description
features ol.Collection | This is an array or collection of features to
Array.<ol.Feature> | be added to the feature overlay initially. You
undefined may omit this parameter if you don't have any
features to add right away.
map ol.Map | undefined This is the map on which the feature overlay will
be rendered. You may omit this and attach the
overlay to a map later.
style ol.style.Style | This is a style, an array of styles or style function
Array.<ol.style. respectively to use when rendering the features
Style> | function | in this feature overlay. You may omit this and set
undefined the style later.

The FeatureOverlay class has several methods to manage its features, map, and styles

as follows:

Method

Parameters

Description

addFeature (feature)

feature

- ol.Feature

This adds a single feature to the
feature overlay. You may also
add features by adding them

to the collection returned from
getFeatures().

getFeatures ()

none

This returns the
ol.Collection object used
to manage features in this feature
overlay. Modifying this collection
directly affects the features in the
overlay.

getStyle ()

none

This returns whatever was passed
as the style option when
constructing the feature overlay or
from the last call to setStyle.

[208]

Chapter 6

Method Parameters Description

getStyleFunction/() none This returns a function
representing the active styles for
this feature overlay.

removeFeature feature - ol.Feature | This removes a single feature from
(feature) the feature overlay. You may also
remove features by removing
them from the collection returned
by getFeatures ().

setFeatures collection - This replaces the features for

(collection) ol.Collection this feature overlay by using the
provided collection of feature
objects.

setMap (map) map - ol.Map This sets the map object that this

feature overlay will be rendered
on, maybe null to remove the
feature overlay from a map.

setStyle (style) style - ol.style. This sets the style to be used
Style | Array.<ol. when rendering features.
style.Style> |
function

Feature overlays are pretty simple and most of what you will want to do with a feature overlay
once it is configured with a style and map is manage features. Let's see how that's done!

Time for action - creating interactive styles

Now we have the knowledge we need to build our final example. We will add some
interactivity to our countries layer by highlighting the country under the mouse with
a different style—specifically, we will:

Draw the highlighted country with a red outline and semitransparent fill
Draw an icon at the center of the highlighted country representing its flag

Draw the country's name next to the flag

1. First, we'll need a new file. Let's start again with the basic country vector layer:

var countries = new ol.layer.Vector({
source: new ol.source.GeoJSON({
projection: 'EPSG:3857',
url: '../assets/data/countries.geojson'
})
P

[2091]

Styling Vector Layers

var center = ol.proj.transform([0, 0], 'EPSG:4326', 'EPSG:3857');
var view = new ol.View ({
center: center,
zoom: 1,
1)
var map = new ol.Map ({
target: 'map',
layers: [countries],
view: view

3N

2. Next, we'll set up some styles for our highlighted features. This code can go right
after the map is defined. Don't worry if you don't remember what everything
does—we'll review the code at the end:

var baseTextStyle = {
font: '12px Calibri,sans-serif',
textAlign: 'center',
offsetyY: -15,
£ill: new ol.style.Fill({
color: [0,0,0,1]
.
stroke: new ol.style.Stroke ({
color: [255,255,255,0.5]
width: 4
3
i
var highlightStyle = new ol.style.Style({
stroke: new ol.style.Stroke ({
color: [255,0,0,0.6],
width: 2
.
£ill: new ol.style.Fill({
color: [255,0,0,0.2]
I

zIndex: 1

13N

3. We'll be using a style function with our feature overlay because we need to
dynamically create styles for the feature being rendered:

function styleFunction(feature, resolution) {
var style;
var geom = feature.getGeometry() ;
if (geom.getType() == 'Point') {
var text = feature.get('text!');

[210]

Chapter 6

baseTextStyle.text = text;
var isoCode = feature.get('isoCode') .toLowerCase () ;
style = new ol.style.Style ({
text: new ol.style.Text (baseTextStyle),
image: new ol.style.Icon ({
src: '../assets/img/flags/'+isoCode+'.png'
1
zIndex: 2
1)
} else {
style = highlightStyle;
}

return [stylel;

}

We also need to create the feature overlay itself. It's pretty straightforward as the
style function is doing all the work for us:

var featureOverlay = new ol.FeatureOverlay ({
map: map,
style: styleFunction

3N

Finally, the interactive part. We'll add a handler for the map's pointermove
event and manage the features in our feature overlay based on where the mouse
is. This is a pretty big function that exercises our knowledge of geometries from
the previous chapter:

map.on ('pointermove', function (browserEvent) {
featureOverlay.getFeatures () .clear() ;
var coordinate = browserEvent.coordinate;
var pixel = browserEvent.pixel;
map.forEachFeatureAtPixel (pixel, function(feature, layer)
if (!layer) {
return; // ignore features on the overlay
}
var geometry = feature.getGeometry () ;
var point;
switch (geometry.getType()) {
case 'MultiPolygon':
var poly = geometry.getPolygons () .reduce (function(left,
right)
return left.getArea() > right.getArea() ? left : right;
1)
point = poly.getInteriorPoint () .getCoordinates() ;

break;

[21]

Styling Vector Layers

case 'Polygon':
point = geometry.getInteriorPoint () .getCoordinates() ;
break;
default:
point = geometry.getClosestPoint (coordinate) ;
}
textFeature = new ol.Feature({
geometry: new ol.geom.Point (point),
text: feature.get ('name'),
isoCode: feature.get('iso a2').toLowerCase ()
1)
featureOverlay.addFeature (textFeature) ;
featureOverlay.addFeature (feature) ;
1)
}

6. Load this in your browser and try it out! You should see something like the following
screenshot when you move the mouse over a country:

- |
What just happened?

As you can see, feature overlays make it very simple to create an interactive experience with
vector layers. There are a few new concepts in this example, as well as some old ones, so
let's review the code step by step.

Step 1 should be pretty familiar to you now—we are creating a vector layer with a GeoJSON
source, and adding it to a map with a view centered on 0, 0.

[212]

Chapter 6

In step 2, we set up some styles for our feature overlay to use. There are two styles—one for
text and one for polygon highlighting. Notice that the baseTextStyle is an object literal,
not a new instance of ol .style.Text. When you create an instance of ol .style.Text,
the text to be drawn needs to be passed to that object and you can't change the text after it
has been created. The style function allows us to create text styles with the text of the current
feature, but we'll need to specify the other options. Since all labels will share the other text
options, we can set them up once and just refer to them later in the style function. The
options we've specified here are to center align the text, offset it up by 15 pixels (recall that a
positive of fset Y moves the text down), and provide a fill and stroke color. For the text, the
stroke is rendered around the outside of each character so we set a wide, semitransparent
stroke to make the text stand out from the map beneath it.

The highlightStyle is straightforward— a fill and stroke style for the highlighted polygon.

The style function needs to be defined before we can use it to create the feature overlay, so
in step 3, we defined it. Recall that the style function receives the feature being rendered
as the first argument. We drew two types of features, points, and polygons, with two
different styles. So, the first thing we did was get the feature's geometry and check to

see whether it was a point. If it is a point, we create a new text style and a new icon style
specific to the current feature. We got the feature's text property and combined it with the
baseTextStyle object to create the text style. Next, we got the isoCode property and
used it to create a URL to the flag for the country (the flag icons are conveniently named
using the two-letter ISO country code) for a new icon style. Then, we created a new style
object for the current feature. If the feature is a polygon, it's much simpler—all we need to
do is return the highlightStyle object. Finally, we returned an array containing the style
(recall that style functions are required to return arrays for performance reasons).

Step 4, by comparison, was very short! We created a new feature overlay and configured it
with the map object and style function. It's really the style function, and step 5, that do all
the work.

Step 5 added a handler for the map's pointermove event; so, we could find the feature
closest to the mouse and add it to the feature overlay. We actually wanted to highlight two
features— the polygon itself and a point at the center of the polygon. It turns out that getting
this center point is a bit tricky. Let's review the code carefully.

Line 1 of code in the handler clears any existing features in the feature overlay. It is much
easier to retrieve the collection and clear it than to remove individual features in our case.

The browserEvent object provides us with the map coordinate and pixel that the event
happened at. We used the pixel location with o1 .Map classes forEachFeatureAtPixel
function on the next line to retrieve all features at that location from our vector layer. This
function invokes a callback function for every feature at the pixel location, providing both the
feature and the layer that the feature was found on. The layer parameter may be null if the
feature was found on a FeatureOverlay.

[2131

Styling Vector Layers

Inside our callback function, we tested first to see if the feature was actually on a layer before
proceeding. Then we needed to find both the geometry and the center point of the geometry.
If all the country features were polygons, we could simply call get InteriorPoint () to
retrieve the center and we would be done. Unfortunately, we didn't know what type of
features we were dealing with—some of the features in the country data were actually
MultiPolygons, and we needed to handle them differently. The switch statement chooses a
path based on the type of the feature. Let's look at each case separately.

The first case was for Mult i Polygon. As the name suggests, a MultiPolygon class contains
multiple polygons (a country and some islands perhaps) and there isn't a convenient way

to determine the center of a group of polygons. Instead, a Mult iPolygon class has several
centers, one for each of its constituent polygons. The get InteriorPoints () method
returns the center points for us. We only really wanted a single label though. One way is to
get all the interior points and use the first one. The problem with this approach is that there is
no particular order to the polygons, and it looks odd to label some random island off the coast
rather than the major landmass of a given country. To get around this, we wanted our label to
appear at the center of the largest polygon. To get the largest polygon, we first got the array
of polygons and then reduced that array to a single value with a function that compared two
polygons based on their area. The reduce method is a standard method of JavaScript arrays.
Once we've found the largest polygon, we can ask for its interior point.

The second case is for polygon, and was much simpler— we just needed the interior point of
the polygon and we were done!

The final case was the default case. While it isn't strictly needed, it is good practice to include
a default case in switch statements. The getClosestPoint () method is available on all
geometry types and is a safe fallback for our default case.

Now that we had a point coordinate at the best location we could determine for the feature
under the mouse, we created a new Feature and provided the point geometry for its
location. We also added two properties—text (that we displayed at the point) and isoCode
(that we will use to find the flag icon for the country).

Finally, we added both features to the feature overlay so that when the map is next
rendered, the country under the mouse will be highlighted in red and display the flag
and country name at the center.

[214]

Chapter 6

This concludes our chapter on styling vector layers. OpenLayers' styling capabilities are quite
simple to implement, but can be incredibly powerful. The basic styles are easy to set up and
give you a lot of flexibility in styling your vector features. More complex styling is readily
implemented through the use of a style function by allowing you to create basic styles
tailored to a specific feature and current zoom level of the map. The building blocks—basic
styles and the style function—are simple, but the combination of them allows you to create
highly custom cartographic representations for your vector data.

In the next chapter, we will dig into projections and discover how to use them to display both
vector and raster layers in different projections.

[215]

When you look at a map, you are looking at a two-dimensional representation
of a 3D object (the Earth). Because we are, essentially, 'losing' a dimension
when we create a map, no map is a perfect representation of the Earth. All
maps have some distortion.

The distortion depends on what projection (a method of representing the
earth's surface on a two dimensional plane) you use. In this chapter, we'll talk
more about what projections are, why they're important, and how we can

use them in OpenLayers. We'll also cover some other fundamental geographic
principles that will help make it easier to better understand OpenLayers.

In this chapter, we will cover the following topics:

Concept of map projections

Types of projections

Latitude, longitude, and other geographic concepts
The OpenlLayers projection class

Transforming coordinates

Projections in context of raster layers

® 6 6 & 6 o o

Projections using vector layers

Let's get started!

Wrapping Our Heads Around Projections

No maps of the earth are truly perfect representations; all maps have some distortion. The
reason for this, is because they are attempting to represent a 3D object (an ellipsoid: the
Earth) in two dimensions (a plane: the map itself).

A projection is a representation of the entire, or parts of a surface of a 3D sphere (or more
precisely, an ellipsoid) on a 2D plane (or other types of geometry).

Why on earth are projections used?

Every map has some sort of projection—it is an inherent attribute of maps. Imagine
unpeeling an orange and then flattening the peel out. Some kind of distortion will occur, and
if you try to fully fit the peel into a square or rectangle (like a flat, two-dimensional map),
you'd have a very hard time.

To get the peel to fit perfectly onto a flat square or rectangle, you can try to stretch out
certain parts of the peel or cut some pieces of the peel off and rearrange them. The same
sort of idea applies while trying to create a map.

There are literally an infinite amount of possible map projections; an unlimited number of
ways to represent a three-dimensional surface in two dimensions, but none of them are
totally distortion free.

So, if there are so many different map projections, how do we decide on which one to use?
Is there a best one? The answer is no. The 'best' projection to use depends on the context in
which you use your map, what you're looking at, and what characteristics you wish to preserve.

As a two-dimensional representation is not without distortion, each projection makes a trade
off between some characteristics. As we lose a dimension when projecting the earth onto a
map, we must make some sort of trade off between the characteristics we want to preserve.
There are numerous characteristics, but for now, let's focus on three of them.

[218]

Chapter 7

Area refers to the size of features on the map. Projections that preserve area are known
as equal-area projections (also known as equiareal, equivalent, or homolographic). A
projection preserves area if, for example, a meter measured at different places on the
map covers the same area. Because area remains the same, angles, scales, and shapes are
distorted. This is what an equal area projected map may look like:

Here, we use Tissot indicatrix with EPSG:3410 NSIDC EASE-Grid Global, where the EPSG
code helps define all existing projections. We will cover EPSG in detail, later in this chapter.

Without going into technical details, Tissot indicatrix is a way to display map projections
deformation visually. In a perfect projection, we will keep area, distance, and shape, with
circles with equal area and equal distance.

As you see, with this equal-area projection, we have circle and ellipse shapes but areas
remain the same.

Scale

Scale is the ratio of the map's distance to the actual distance (for example, one centimeter
on the map may be equal to one hundred actual meters). All map projections show scale
incorrectly at some areas throughout the map; no map can show the same scale throughout
the map. There are parts of the map, however, where scale remains correct—the placement
of these locations mitigates scale errors elsewhere. The deformation of scale also depends
on the area being mapped. Projections are referred to as equidistant if they contain true
scale between a point and every other point on the map.

[219]

Wrapping Our Heads Around Projections

An example to illustrate can be the EPSG:32662 projection known as Plate Carree.

%«-i % ol i B S s -
PR UU B = 2 i)] ﬁ ffi""_ A‘*—"-\ﬁﬁl_\’_)
s e } 2, ofos Ll /l P e e
_-H\.H? g S — f‘f‘fJ
- E_/-:_ + . e
D \{\ PN D ahS G ap % Gal N
A PP 7 \%J g D %
N A, T, > & & D
L) . - f
S N 2. < “fz%’ ¢ 8L o
I A ANy Ei =X
T ;'r o Y. /J* NN N
] L/ N d/ - {- \\1 1
4 ' Ly L AL R Y- 9 b QN A
- s
4 - R .
. - W W W - ~ 1 —~
> @ e e i A A s = o
— I e i 1 —
= B === ;;E]__

Here, we keep the distance between the center of the ellipse/circle. We overlay on top of the
image of a grid so that you can better evaluate distance.

Maps that preserve shape are known as conformal or orthomorphic. Shape means that
relative angles to all points on a map are correct. Most maps that show the entire earth are
conformal, such as the Mercator projection (used by Google Earth and other common web
maps). Depending on the specific projection, areas throughout the map are generally distorted
but may be correct in certain places. Also, a map that is conformal cannot be equal-area.

To illustrate shape preservations, let's see the following example using EPSG code 3395
(WGS 84 - World Mercator), where all circles stay circles wherever they are:

12201

Chapter 7

Projections have numerous other characteristics, such as bearing, distance, and direction.
The key concept to take away here is that all projections preserve some characteristics at the
expense of others. For instance, a map that preserves shape cannot completely preserve area.

There is no perfect map projection. The usefulness of a projection depends on the context
the map is being used in. A particular projection may excel at a certain task, for example,
navigation, but can be a poor choice for other purposes. For example, when we do thematic
mapping and respect representations rules, colors are related to areas of countries. When
we look at a world thematic map with a wrong projection, our eyes see a country bigger than
the others, whereas because of projections, this country can, in reality, have a calculated
area identical to countries represented with a smaller size.

[2211

Wrapping Our Heads Around Projections

The following figure overlays an area preserving projection (Robinson) on top of a Spherical
Mercator to show the difference and why it matters:

© Mappemonde 2008 (G

Have a go hero - projections’ effects on scale

One of the simple ways to convince you that each projection has a reason to exist is to visit
the OpenlLayers 3 website examples.

We will compare the scale line example, http://openlayers.org/en/v3.0.0/
examples/scale-1line.html, with the tiled WMS with the custom projection example,
http://openlayers.org/en/v3.0.0/examples/wms-custom-proj.html.

[2221

http://openlayers.org/en/v3.0.0/examples/scale-line.html
http://openlayers.org/en/v3.0.0/examples/scale-line.html
http://openlayers.org/en/v3.0.0/examples/wms-custom-proj.html

Chapter 7

Your instructions until now are:

¢ To not look at the code but only the behavior of the scale line in the bottom-left
corner of the map.

L 4

In both cases, to zoom in and at the same zoom level, pan up and down looking at
the scale line.

How the scale line behaves.

¢ How do you explain it?

Types of projections

Projections are projected onto a geometric surface, three of the most common ones being a
plane, cone, or cylinder.

Imagine a cylinder being wrapped around the earth, with the center of the cylinder's
circumference touching the equator. Now, the earth is projected onto the surface of this
cylinder, and if you cut the cylinder from top to bottom vertically and unwrap it and lay it
flat, you'd have a regular cylindrical projection:

The Mercator projection is just one of these types of projections. If you've never worked
with projections before, there is a good chance that most of the maps you've seen were in
this projection.

Because of its nature, there is heavy distortion near the ends of the poles. Looking at the
previous screenshot, you can see that the cells get progressively larger, the closer you get to
the North and South poles. For example, Greenland looks larger than South America, but in
reality, it is about the size of Mexico. For illustrating this problem visually, you can compare
countries overlapping with http://overlapmaps . com. If area distortion is important in
your map, you might consider using an equal area projection, as we mentioned earlier.

12231

http://overlapmaps.com

Wrapping Our Heads Around Projections

More information about projections can be found at the USGS
_ (Us Geological Survey) website at http: //pubs.er.usgs.
& gov/publication/ppl395, where you can download
= the reference book Map Projections: A Working Manual (U.S.
Geological Survey Professional Paper 1395), John P. Snyder,
1987, 397 pages.

As we mentioned, there are literally an infinite number of possible projections. So, it
makes sense that there should be some universally agreed upon classification system that
keeps track of projection information. There are many different classification systems, but
Openlayers uses EPSG codes. EPSG refers to the European Petroleum Survey Group, a
scientific organization involved in oil exploration, which in 2005 was taken over by the OGP
(International Association of Oil and Gas Producers).

For the purpose of OpenlLayers, EPSG codes are referred to as EPSG: 4326.

The numbers (4326, in this case) after EPSG: refer to the projection identification number.
It uses the familiar longitude/latitude coordinate system, with coordinates that range from
-180° to 180° (longitude) and -90° to 90° (latitude).

Time for action - using different projection codes

Let's create a basic map using a different projection. Using the usual code from Chapter 1,
Getting Started with OpenLayers, recreate your map object the following way. We'll be
specifying the projection property, along with the center and zoom properties. The
projection we will use is EPSG:4326, a projection used for world data. Usually, when you
don't specify a projection, the default projection in OpenLayers is EPSG:3857 (historically,
called EPSG:900913), used by Google Maps and other third-party APIs such as Bing Maps or
OpenStreetMap.

1. Declare anew layer:

var blueMarblelLayer = new ol.layer.Tile ({
source: new ol.source.TileWMS ({
url: 'http://maps.boundlessgeo.com/geowebcache/service/wms',
params: {

'TILED' : true,
'VERSION': '1.1.1"',
'LAYERS': 'bluemarble',
'FORMAT': 'image/jpeg'

[224]

http://pubs.er.usgs.gov/publication/pp1395
http://pubs.er.usgs.gov/publication/pp1395

Chapter 7

Then, declare a new view:

var view = new ol.view({
projection: 'EPSG:4326',
center: [-1.81185, 52.44314],
zoom: 6

13N

Now, declare the map object:

var map = new ol.Map ({
target: 'map'

3N

Add the layer and the view to the map object:

map .addLayer (blueMarblelayer) ;
map.setView(view) ;

Save the file into the usual sandbox folder, we'll refer to it as chapter7 exl.html.
You should see something like the following:

12251

Wrapping Our Heads Around Projections

What just happened?

We just created a map with the EPSG: 4326 projection. The process to use another
projection is really similar to all previous examples in the book.

One of the main differences is the backend server. It can provide a layer projected in
another projection from the default one in OpenlLayers 3 library. In our case, it's the source
URL, http://maps.boundlessgeo.com/geowebcache/service/wms, from the
blueMarbleLayer layer object that permits this.

The other difference is at the view level. In the constructor, we set a new property:
projection that refers to wanted EPSG code and we also directly use coordinates
from the projection to set the center on our map.

Apart from the code, you'll notice that the example looks quite different from the maps
we've made so far. This is because of its projection.

Specifying a different projection

Openlayers supports any projection, but if you want to use a projection other than EPSG:3857,
you must specify this option in the view projection. The default value is EPSG:3857.

If you do not specify this option, the default value is used (most of the other maps so far,
have been using the default values).

You can pass to the projection a string with EPSG: yourcode, but you can also give it an

ol .proj.Projection object. You can define it manually but most of the time, you will
retrieve it from a preconfigured projection setting. We will only cover how to define it when
you are using Proj47js, a JavaScript library dedicated to manage projections. As a beginner
will not need to work with use cases without EPSG codes. Be careful, as OpenlLayers only
supports EPSG:4326 and EPSG:3857 (both with a few aliases) out-of-the-box.

M In the APl documentation, you will sometimes see ol .proj.
Q ProjectionLike:, which means, the accepted parameters can be
a string with an EPSG code or an ol .proj . Projection object.

12261

http://maps.boundlessgeo.com/geowebcache/service/wms

Chapter 7

Latitude/longitude

Longitude and latitude are two terms most people are familiar with, though they have
limited geographic knowledge or get confused by the two. Let's take a look at the following
screenshot and then go over these two terms:

Latitude

T Longitude

Latitude

Latitude lines are imaginary lines parallel to the equator, aptly known also as parallels of
latitude. Latitude is divided into 90 degrees, or 90 spaces (or cells), above and below the
equator. -90° is the South Pole, 0° would be the Equator, and 90° is the North Pole.

Each space, or cell, (from 42° to 43°, for example) is further divided into 60 minutes and each
minute is further divided into 60 seconds. The minutes and seconds terminology has little to
do with time. In the context of mapping, they are just terms used for precision. The size of

a degree of latitude is constant (if calculation bot is based on projected distance). Because
they measure 'north to south', Openlayers considers the y coordinate to be the latitude.

[2211

Wrapping Our Heads Around Projections

Longitude

Longitude lines are perpendicular to the lines of latitude. All lines of longitude, also known
as meridians of longitude, intersect at the North Pole and South Pole, and unlike latitude,

the length of each longitude line is the same. Longitude is divided into 360 degrees, or
spaces. Similar to latitude, each space is also divided into 60 minutes, and each minute is
divided into 60 seconds. For EPSG:4326, -180 to 0 measures west of the Greenwich meridian,
whereas 0 to 180 measures east of Greenwich.

As the space between longitude lines gets smaller, the closer you get to the poles, the size of
a degree of longitude changes (when not relying on projected distance). The closer you are
to the poles, the lesser time it will take you to walk around the Earth.

With latitude, it makes sense to use the equator as 0°, but with longitude, there is no spot

better than to start the 0° mark at. So, while this spot is really arbitrary, the Observatory of
Greenwich, England, is today universally considered to be 0° longitude. Because longitude

measures east and west, OpenLayers considers the x coordinate to be longitude.

Time for action - determining coordinates

Let's take a look at a couple of examples on coordinates from our previous maps:

1. Open up the final example from Chapter 1, Getting Started with OpenLayers. Pan
around the map in any direction. Then, in Chrome Developer Tools, type the following:

map.getView () .getCenter () ;

Depending on where you have panned, your output should read something like
the following:

[9397474.0038099,3595597.979890091]

2. Now, open up the example from the beginning of this chapter. Pan around, and then
in Chrome Developer Tools, type:

map.getView () .getCenter () ;

You should see something like the following:

[-72.8125, 19.6875]

3. Reuse this last array to change the representation of your degrees values. For
calculation, we always use dd (decimal degrees) but some people such as sailors will
prefer the DMS (Degrees, Minutes, Seconds) notation:

ol.coordinate.toStringHDMS ([-72.8125, 19.6875]) ;

12281

Chapter 7

What just happened?

We just took a look at the longitude and latitude values for the center of the map in two
different maps with different projections. When we call map.getview () .getCenter (),
we get back an ol . Coordinate object, in fact, an array of x, y values.

In the first map, the max extent of the map was between -20037508.342789244 meters
and 20037508.342789244 meters for x, and between -20037508.342789244 meters and
20037508.342789244 meters for y.

These are the values used by the EPSG:3857, and it is an x and y type of Cartesian coordinate
system. The values for x and y change in the second map because they are not in the same
projection (they are in EPSG:4326). So, x are between -180° and 180° and y between -90°
and 90°.

The x and y means longitude and latitude, respectively in EPSG:4326 and easting and
northing in EPSG:3857. To understand definition of easting and northing, go to the Wikipedia
dedicated page, https://en.wikipedia.org/wiki/Easting and northing.

OpenLayers projection class

So far, we've been talking about the abstract idea of a projection. Let's dive into OpenLayer's
ol .proj namespace functions and the associated class ol . proj . Projection class, which
is what we use to actually handle projections. The ol .proj . Projection class relies on
internal code, managing the most used projection in the web mapping world: the EPSG:4326
projection (also named WGS 84) and the EPSG:3857 projection, also known as EPSG:900913
(using leetspeak, it means Google, the first company relying on this exact projection), and also,
alternatively named WGS 84 Spherical Mercator. For reference, you can have the full history of
the second projection at http://wiki.openstreetmap.org/wiki/EPSG:3857

For other use case such as custom projections, OpenlLayers, for convenience, supports an
external library called Projdjs, which can be found at http://proj4js.org. First, we'll talk
about what we can do without the Proj4js library, and then talk about what we can do with it.

In truth, whenever you load your web mapping application, you have already instantiated
the default projections, EPSG:4326 and EPSG:3857.

You only need to access ol .proj . Projection by typing the following line of code:
ol.proj.get ('EPSG:3857")

In ol .proj.get, you can use a projectionCode, a string for identifying the WKID
(Well Known Identifier) for the projection, such as an EPSG code in the form of EPSG:4326.

12291

https://en.wikipedia.org/wiki/Easting_and_northing
http://wiki.openstreetmap.org/wiki/EPSG:3857
http://proj4js.org

Wrapping Our Heads Around Projections

When creating a map and loading a particular projection, you will only require to declare
Proj4js-specific definition and use OpenlLayers built-in functions to use them. This string,
such as EPSG:4326, is also known as an SRS (Spatial Reference System) code. When passing
in a code, like we've done with all our examples so far, ol .proj .get () will automatically
create a projection object, as long as the projection definition is known to Proj4js.

The projection class (the list is available at http://openlayers.org/en/v3.0.0/
apidoc/ol.proj.Projection.html) has a number of methods, including the following:

Function Description
getCode () This gets the code for the projection, EPSG:4326 for example.
getExtent () This returns an {ol.Extent}, in truth an array with four values to

define extent [minx, miny, maxx, maxy]. It uses the projection
units and defines the validity extent for this projection.

getMetersPerUnit () | This gets the amount of meters per unit of this projection.
If the projection is not configured with a units identifier, the
return is undefined.

getUnits () This gets the units of this projection. Units can be degrees,
ft, m orpixels.

isGlobal () This returns if the projection is a global projection that spans
the whole world.

Transforming coordinates

Transforming a point means you take a coordinate in one projection and turnitinto a
coordinate of another projection. This operation is also called reprojection. The term
reprojection is also applied when deforming a raster image from one projection to another.
Apart from transforming EPSG:4326 to EPSG:3857 and vice versa, OpenLayers does not
provide support for transforming other projections out-of-the-box. To do transforms with
other projections, you can include Proj4js (which can be found at http://proj4js.org)
or provide your own transforms and register them with OpenLayers. You may be wondering
why. The main reason is to not maintain projections in the core library when we can keep it
outside, in a well-maintained library. The other goal, is to avoid increasing the overall library
size. There are thousands of projections, whereas most projects only require some of them.
The gain is not worth the drawback.

2301

http://openlayers.org/en/v3.0.0/apidoc/ol.proj.Projection.html
http://openlayers.org/en/v3.0.0/apidoc/ol.proj.Projection.html
http://proj4js.org

Chapter 7

In most scenarios, it is the job of the backend map server to handle projection
transformations. Often, it's useful or faster to do it on the client-side (such as in the case of
vector layer coordinate transformations) because we don't need to call server-side again for
transformation or because we don't control the server-side like for external web services.
Let's take a look at how to transform EPSG:4326 to EPSG:3857 with OpenLayers.

Time for action - coordinate transforms

Proj4js is not necessary for this example, as transforming between these two projections is
possible without proj47s. Try the following steps:

1. Open up the previous example in your browser. We won't be modifying any code, so
any page that includes the OpenLayers library will be fine.

2. Open Chrome Developer Tools. In the console, create two projection objects:
var proj 4326 = ol.proj.get ('EPSG:4326"');
var proj 3857 = ol.proj.get ('EPSG:3857"');

3. Now, let's create an array with x, y coordinates, which will contain a point in
EPSG:4326 coordinates:

var point to_ transform = [-79, 42];

4. And now, let's transform it. We'll take it from EPSG: 4326 (our source proj 4326
projection object) to EPSG:3857 (our destination proj 3857 projection object):

var myTransformedPoint = ol.proj.transform(point_ to_transform,
proj 4326, proj 3857);
5. Finally, we'll print the new value:

console.log(myTransformedPoint) ;
console.log(myTransformedPoint [0] , myTransformedPoint [1]) ;

6. Your output should read something like:
[-8794239.7714444, 5160979.4433314]
-8794239.7714444 5160979.4433314

What just happened?

We just transformed a point in the EPSG: 4326 projection to a point in the EPSG:3857
projection. Let's take a closer look at the transform method we called on the point to
transform object:

ol.proj.transform(point to transform, 'EPSG:4326', 'EPSG:3857');

2311

Wrapping Our Heads Around Projections

This will transform the original point from the EPSG: 4326 projection to the EPSG:3857
projection. Notice, we are calling the function directly from an ol . Coordinate array. The
ol.proj.transform() function's definition is as follows:

Function Description Parameters

ol.proj. This function transforms Coordinates: an array with x,

transform(coordinate, ol.Coordinate (anarray | y coordinates

rce, ination) ; i i N

source, destination) of coo'rdlnates) }N.'thOUt Source: Source projection
changing the original value. o o
It returns the transformed Des.tlna?tlon: Destination
ol.Coordinate. projection

In this case, our source projection is in EPSG: 4326, and our destination projection is in
EPSG:3857. Keep in mind however, that EPSG:4326 and EPSG: 3857 are the only two
projections you can do transforms on with OpenLayers out-of-the-box.

When creating a map, all the raster layers (image-based layers; nearly every layer except
the vector and image layer) must be in the same projection as the map. It's possible to do
projection transformations with coordinates and the vector layer, but once OpenlLayers gets
back an image from a map server, it cannot reproject the image itself (that's something the
map server has to do).

The Proj4js library

The Proj4js library allows you to transform the coordinates from one coordinate system into
another coordinate system. The Proj4js website is http://proj4js.org. By just including
the Projdjs library on your page (like you do with OpenLayers), you can do more transforms

within OpenLayers. Note that Proj4js also only ships with only a few codes. Definitions need
to be added for all others.

The site http://epsg. io contains Projdjs definitions for most
of the EPSG codes. When you are using data from foreign countries,
%\ you need to know the most common used projections. For this, go
’ to the ProjFinder website, http://projfinder.com, and guess
projections for unknown places.

Ideally, you should be using the same projection throughout your map, but there are times

when you may want to display the coordinates in a different projection—such as with a
vector layer. Let's take a look at how to set up the Proj4js library.

12321

http://proj4js.org
http://epsg.io
http://projfinder.com

Chapter 7

Time for action - setting up Proj4js.org

This step is similar to the way we set up the now usual template for OpenLayers 3.

1. Download Proj4js from https://github.com/proj4ijs/proj4js/releases.
At the time of writing, the latest version was proj4js 2.3.3; so, go ahead and
download it by clicking on the proj4.js green button for 2.3.3 (or whichever the
latest version is).

2. Copytheproj4.ijs fileintoanew assets/proj47s directory at the root
code directory.

3. Add the following line in the <head> section of your code before the OpenLayers 3
library inclusion code:

<script src="../assets/proj4js/
proj4.js">
</script>

4. You can also use the online source, http://cdnjs.cloudflare.com/ajax/
libs/proj4js/2.3.3/proj4.js, for production purposes. In this case, do not
forget to use a fallback to the local file if the CDN fails for any reason.

5. Now, open up the page and start Chrome Developer Tools. Type and run the
following code:

var test proj = proj4 ('EPSG:4326');
console.log(test proj);

6. You should see an output that looks like the following:

Object {forward: function, inverse: function, oProj: Projection}

What just happened?

We just included the Projdjs library and tested to see if it worked. If you received an error
when you attempted to call proj4 ('EPSG:4326'), it means that the location of the
proj4.js file was wrong. Ensure that the path in the <script> tag correctly references the
JavaScript file.

Projdjs custom projections

Proj4js custom projections are required, particularly when you are using data at the local
level and you want to use your country official projection(s) or you depend on external data
sources such as web services.

[2331]

https://github.com/proj4js/proj4js/releases
http://cdnjs.cloudflare.com/ajax/libs/proj4js/2.3.3/proj4.js
http://cdnjs.cloudflare.com/ajax/libs/proj4js/2.3.3/proj4.js

Wrapping Our Heads Around Projections

Adding custom projections

Now that the Proj4js library is included, you can do transforms with more projections, the
same way we did in the previous example. Except EPSG:3857, EPSG:4326, and EPSG:4269,
there are no projections defined; however, you are able to define them yourself. For
example, for France, the main official EPSG code is as follows:

proj4.defs ("EPSG:2154", "+proj=1lcc +lat 1=49 +lat 2=44 +lat 0=46.5
+lon 0=3 +x 0=700000 +y 0=6600000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0
+units=m +no_defs");

After this, you'd be able to use EPSG: 2154 for projection transformations just like you were
able to use EPSG: 4326 and EPSG: 3857 from the earlier examples.

A more complete list of projections (containing Proj4js definitions for nearly any EPSG code)
can be found at http://epsg.io.

To get projection definitions, you can copy them from http://epsg.io or also load
them from the URL. For example, adding the proj4 . js script after the <script
src="http://epsg.io/2154.js"></script>. The URL pattern to retrieve the
definition ishttp://epsg.io/xxx.Jjs where xxx is the EPSG code you want to use.

Openlayers 3 custom projections use cases

When you are using custom projections in OpenlLayers 3, you need to declare the projection,
as described earlier. Use ol .proj . get to retrieve its definition and define the projection
extent. For this, reuse the http://epsg.io site.

When you want to declare a custom projection, you must create an object, such as the
preceding one, when you start your JavaScript code:

var projection = ol.proj.get ('EPSG:2154"');
projection.setExtent ([-378305.81, 6093283.21, 1212610.74,
7186901.68]) ;

You will then be able to use the usual ol .proj.transform function with this new
projection.

Sometimes, in another context for example, to provide parameters to web services it can be
necessary to convert extent between projections. Let's inspect how to do this operation.

12341

http://epsg.io
http://epsg.io
http://epsg.io

Chapter 7

Time for action - reprojecting extent

Until now, we only see how to do reprojection using points coordinates but how can we do it
for extent?

1. Head to one of the official examples at http://openlayers.org/en/v3.0.0/
examples/wms-image-custom-proj.html?mode=raw and see that you have
extent at the layer level typing:

console.log (extent) ;

2. Apply a built-in function to transform extent from one coordinate's projection to
another one:

ol.proj.transformExtent (extent, 'EPSG:21781', 'EPSG:4326');

What just happened ?

We reused the function behind the ol .proj . transform function without knowledge.

The ol .proj.transformExtent method expects an extent as a first parameter, as

a second parameter, it needs the origin projection, and as a third parameter, it's the
destination projection. We declared that we use as input the extent; as origin, EPSG:2181;
and as destination, EPSG:4326. At the internal OpenlLayers 3 library level, the function loops
on the extent and transforms each coordinate.

With this function, if we need to get a bounding box in EPSG:4326 from local projections, it
will really help.

Using raster layers with projections

If you remember Chapter 4, Interacting with Raster Data Source, we introduced you to the
tiled and untiled raster. Most tiled rasters do not serve in a foreign projection, for example, a
non-Spherical Mercator projection, but contrary to most cases, WMS sources can be served
and consume using custom projections.

Time for action — using custom projection with WMS sources

In this part, we will see how to display the WMS image coming from the authority
responsible for geology maps in France, the BRGM (equivalent to USGS to simplify):

1. Let's copy the usual template into the sandbox directory but do not forget
to include, in this case, the reference to Projdjs JavaScript library before the
0l3.js file.

[2351]

http://openlayers.org/en/v3.0.0/examples/wms-image-custom-proj.html?mode=raw
http://openlayers.org/en/v3.0.0/examples/wms-image-custom-proj.html?mode=raw

Wrapping Our Heads Around Projections

2.

Go within the <script> tag and declare the additional projection for local
projection, in this case, Lambert 93, an official projection for France:
proj4.defs ("EPSG:2154", "+proj=1lcc +lat 1=49 +lat 2=44

+lat _0=46.5 +lon 0=3 +x 0=700000 +y 0=6600000 +ellps=GRS80
+towgs84=0,0,0,0,0,0,0 +units=m +no_defs");

Declare the extent and the projection reusing your knowledge about declaring
custom projection:

var extent = [-378305.81, 6093283.21, 1212610.74, 7186901.68];
var projection = ol.proj.get ('EPSG:2154"');
projection.setExtent (extent) ;

Declare an array with one layer using a source providing a WMS-projected web
service in EPSG: 2154, the EPSG code for Lambert 93:

var layers = [new ol.layer.Image ({
source: new ol.source.ImageWMs ({
url: 'http://geoservices.brgm.fr/geologie',
attributions: [new ol.Attribution ({
html: '© ' +
'BRGM (French USGS equivalent)'
3]
params: {
'LAYERS': 'SCAN_F GEOL1M',
'VERSION': '1.1.1"'
j
extent: extent
3]
3]

Declare the map and the view with its center and zoom:

var map = new ol.Map ({
layers: layers,
target: 'map',
view: new ol.view({
projection: projection,
center: [495520.187986, 6587896.855407],
zoom: 2
b
1) i

[2361]

Chapter 7

6. Open the file in the browser and you should see the following screenshot:

What just happened?

We reused the custom projection by first declaring the Projdjs projection declaration and its
extent. We recommend that you visit the website http://epsg. io to better understand how
to get the extent and the meaning of the second parameter in from the proj4 .defs function.

Then, we used our raster WMS knowledge to create the layer. Analyzing the network

can be useful to remind you about the relationship between the WMS source layer
declaration and the backend web server delivering the image. You can look in particular

at getCapabilities, to inspect the available projections and the layers name you may
change, if you want to play with the sample. The most important part to understand is to
set the projection in the map view projection parameter. How can we deduce this? We
understood that because in all the code, we never set any projection at the layer or source
level. We should mention that Proj4js is not needed for maps, as long as they do not need
any client-side transforms.

Using our example, a minimal case can be achieved replacing previous projection
declarations by only declaring a projection, with units and code parameters like below:

var projection = new ol.proj.Projection ({
code: 'EPSG:2154"',
units: 'm!'

13N

2311

http://epsg.io

Wrapping Our Heads Around Projections

Have a go hero - applying a raster projection on your own

When someone reviews someone else job, it seems to be quite easy but reusing the same
method for your own case is not the same, and will help you to really understand it.

So, we will ask you to complete a simple job:

1. Find local projections for your country by visiting your national mapping
agency, if available or sort out projections using the recommended website,
http://epsg.io.

2. Find web services that provide WMS in your local projection. Search engines
or Geodata portals can help you. Do not forget to use the getCapabilities
operation to get a layer's name or projections available for the data. If you don't
find public web services using local projections for your country, to complete the
assessment, explore other countries local projections web services.

Find the extent and the code you will need to make your map with local projections.

4. Copy the previous example to readapt it and not reinvent the wheel.

Never forget to inspect the Network panel to help you if you encounter web services issues.
You may also need to use the DOM renderer within the map; it helps you to inspect the url
call. With the default canvas renderer, images are assembled in the background and you
can't get the WMS URL that can help you.

To find the open data portals, the main entry for America is https://www.data.gov.

For Europe, you should visit http://publicdata.eu. For a worldwide overview, go at
http://datacatalogs.org, a website for A Comprehensive List of Open Data Catalogs
from Around the World. To grasp the state of OpenData in your country, you can visit Global
Open Data Index at http://global.census.okfn.org. It's a website maintained by the
community to make surveys about each country's open data initiative. The focus is mainly on
the type of open data datasets available.

After inspecting how to work with custom projection using raster layers, it's time to see
vector reprojection. We already reviewed how to manipulate vector but not explaining
further how to manage vector projections. Let's see a bit about them.

Time for action - reprojecting geometries in vector layers

When you draw in Openlayers, you draw in local projections' features. Then, if you need,
for example, to exchange data source with a third party, sometimes you need to make
reprojections. It's useful to know how to consume data and reproject them or on the
contrary, export them. It's what we will see here:

1. Again, let's copy the previous sample into a new file in the sandbox directory.

2381

http://epsg.io
https://www.data.gov
http://publicdata.eu
http://datacatalogs.org
http://global.census.okfn.org

Chapter 7

Edit the file, and after the var projection declaration, add a new GeoJSON source,
a vector source:

var countriesSource = new ol.source.GeoJSON ({
projection: 'EPSG:2154',
url: '../assets/data/nutsv9 lea.geojson'

)

Add a listener on the source that fires once and that sends some console.log
statements:

countriesSource.once ('change', function(evt) {
if (this.getState() == 'ready') {
console.log(this.getFeatures () [0] .getGeometry () .
getCoordinates()) ;
console.log(this.getFeatures () [0] .getGeometry () .clone () .transf
orm('EPSG:2154"', 'EPSG:4326") .getCoordinates()) ;
}
3N

Declare the vector layer within the layers existing array, reusing the countriesSource
as the source. You will normally write something like the following:

var layers = [
new ol.layer.Image ({
I3
new ol.layer.Vector ({
source: countriesSource
)

1;

Create a new vector layer with an empty GeoJSON source and add it to the map:

var bbox = new ol.layer.Vector({
source: new ol.source.GeoJSON ()

|3)

map .addLayer (bbox) ;

Create a GeoJSON featureCollection inline. It's recommended by the GeoJSON
specifications to have coordinates using EPSG:4326:

var geojson = {
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"properties": {},
"geometry": {
"type": "Polygon",
"coordinates": [
[[-0.944824, 46.134170], [-0.944824, 48.312428],
[4.438477, 48.312428], [4.438477, 46.134170],

[2391]

Wrapping Our Heads Around Projections

10.

[-0.944824, 46.134170]

Create an ol . format .GeoJSON with defaultDataProjection:

var format = new ol.format.GeoJSON ({
defaultDataProjection: 'EPSG:4326'

3]

Read the features to reproject them and add them to the source of the bbox layer:

var features = format.readFeatures (geojson, {
dataProjection : 'EPSG:4326',
featureProjection: 'EPSG:2154'

3N

bbox.getSource () .addFeatures (features) ;

Finish with some console. log statements to help inspect the result, but also see
how you can use writeFeatures and reproject.

console.log (features) ;
console.log (
format.writeFeatures (features, ({
dataProjection : 'EPSG:4326',
featureProjection: 'EPSG:2154'

[+]

A T
ST
f#"&”

Y fté‘ Py
‘iﬁ.?' ”'“ﬁ’i
3 ’.if

Chapter 7

What just happened?

We first set a source by defining its target projection. You might not remember but when
you consume GeoJSON, the data default projection is supposed to be EPSG:4326, but our
previous map example relies on EPSG:2154, a local projection. By setting this parameter,
we are able to tell our application to make a reprojection from EPSG:4326 to EPSG:2154.

How can we be sure it works? You just need to inspect your GeoJSON file and see the
coordinates. For EPSG:4326, the approximate values are mostly less than a hundred
degrees, whereas with EPSG, the units are meters and expressed with thousands of meters.

For this purpose, we already set a listener with countriesSource.once ('change’',
function(evt) { toinspectthe features values. We checked before firing the console.
log statements that the GeoJSON was ready to use getState. Then, we tried to inspect the
coordinates that the layer vector source contained. As you can see, we chained methods to
write a shorter code. We requested all the features with the getFeatures method; the 0
index is to select only the first feature in the array. By reusing this feature, we got geometry
with getGeometry, and on this geometry, we retrieved the coordinates.

With a second console.log, we started like the previous statement, but we cloned the
geometry. It's because we wanted to keep the values in the original feature intact. The
APl documentation mentions about the ol . geom.Geometry transform method that
it transforms a geometry from one coordinate reference system to another, modifies the
geometry in place. If you do not want the geometry modified in place, first clone() it and
then use this function on the clone.

If you extend both returned arrays in the console, you will see that the transformation to
EPSG:2154 was already stored in the features, and by transforming again, we were able to
get the EPSG:4326 original values.

For the rectangle box in the new layer, we choose another way to manipulate projections
with vector. We choose to use an empty source within a new vector layer.

The goal was to show you that when you need to add features using the addFeatures
method from the ol . source.GeoJSON vector source, you need to reproject features
using an object ol . format. Here, we used ol . format . GeoJSON, but it could have
been ol . format .WKT. As long as the type of format accepts dataProjection and
featureProjection as options in the readFeatures, you can make reprojections.

The important part to keep in mind is the role of the ol . format . GeodJSON methods,
readFeatures and writeFeatures and their options.

When you use readFeatures, you reproject from EPSG:4326 to EPSG:2154, and when you
use writeFeatures, you reproject from EPSG:2154 to EPSG:4326.

[241]

Wrapping Our Heads Around Projections

At the code level, when you use readFeatures, you need to provide a string or a GeoJSON
object with options and when you write them, it must be Array. <ol .Feature> with
options. An excerpt from the document will help to understand those options (common to
readFeatures and writeFeatures), as follows:

Name Type Description

dataProjection ol.proj. This is the projection of the data
ProjectionLike we are writing. If not provided, the
| undefined defaultDataProjection value of the

format is assigned (where it is set). If no
defaultDataProjectionis setfora
format, the features will be returned in the
featureProjection option.

featureProjection | ol.proj. This is the projection of the feature
ProjectionLike geometries that will be serialized by the
format writer.

We also need to mention that for simplicity, we used readFeatures and writeFeatures,
but for only one feature (when outside a GeoJSON FeatureCollection), you have to use the
readFeature and writeFeature methods (note the singular in the methods' names).
Refer to the complete APl documentation for more at http://openlayers.org/en/
v3.0.0/apidoc/ol.format.GeoJSON.html.

After this review, it's up to you to imagine how you can play with features from the source
and also how to manage projections in other formats in various use cases, as we mainly
focus for demonstration on GeoJSON.

Popn Quiz - projections

Q1. Give some reasons why you might want to use a projection other than EPSG:38577?

1. To have more precision.

2. To manage external WMS.
3. To manage national data.
4

To overlay OpenStreetMap tiles.
Q2. Which areas will not be best suited for displaying the EPSG: 3857 projection?

1. The North Pole.
2. The Equator.

[242]

http://openlayers.org/en/v3.0.0/apidoc/ol.format.GeoJSON.html
http://openlayers.org/en/v3.0.0/apidoc/ol.format.GeoJSON.html

Chapter 7

Q3. You need to get your local country EPSG code, where do you need to go to be efficient?

1. http://epsg.io
2. http://bingmaps.com.
3. http://openstreetmap.org.

In this chapter, we talked about projections. We covered what they are and the various
different types of projections. Longitude, latitude, and other geographic concepts were
also discussed. While we just scratched the surface of these pretty complex topics, you
should have enough fundamental information to understand how to use projections.

We also talked about the ol .proj.Projection class and the namespace ol .proj
associated for coordinates' manipulation, along with how to transform coordinates and use
the Proj4js library. You'll often work with data in coordinate systems other than EpPsG: 4326,
and knowing how to work with and transform data in other projections is important.
Because Proj4js alone is not useful without OpenlLayers 3, we also reviewed the different

use cases for managing projections in a layer context, depending on the main layer type, for
example, vector or raster. It can be useful to know reprojection in vector when you want

to manage projections in the various ol . format classes we already discovered in Chapter 5,
Using Vector Layers.

Now, after reviewing how projections work, it's time to review how interactions components
work. Without even being aware, we already use them but never really highlighted them
until now. When you pan the map for instance, you are already using interactions. Let's dive
into the next chapter, Interacting With Your Map.

[2431

http://epsg.io
http://bingmaps.com
http://openstreetmap.org

Interacting with Your Map

This chapter's goal is to review main interactions in OpenLayers 3. Interactions
are components that manage relations between mouse or keyboard actions
and the map. They do not rely on HTML elements like buttons.

What are the main interactions? It's the most asked function for end users,

such as interactions with events on the map to retrieve map or layers
information or to create new information with a drawing. You can, for example,
click on a polygon representing a property and find out who owns the place and
since when. All such information is called attributes. Along this chapter, we will
see how to use main interaction-related components, in particular for querying,
drawing, and modifying geographical features. Then, we will see the default
interactions at both the functional and code levels. We will end by reviewing
the remaining interactions.

In this chapter, we will cover:

L 4

Understanding how you can make your own files for vector layers and hence to get
information from your map

Selecting features from the layers (requesting information from web services or data
sources such as GeoJSON or KML)

Discovering how to get information from the map using map features methods

How to display content in a DOM element and also in a pop-up. How to use a
pop-up with simple HTML content or using content coming from layers data

Drawing and modifying features on the map using dedicated components

Interacting with Your Map

¢ Inspecting default interactions, implicit interactions, which we have been using since
the beginning

¢ Reviewing the remaining interactions, in particular the ones that help in drawing
rectangles and can be later used to execute any operation

Let's get started by reviewing the part related to conversion and selection of vector formats.

Selecting features with Openlayers 3

Selection is mainly achieved through vector layers. So, a small introduction to data conversion
can be useful.

Using, creating, and converting your own data

In this section, we want to introduce you to the creation of static data in a particular vector,
which is required in most cases where there is a need to click on your map to get information.

Let's see how you can provide vector data to our OpenLayers 3 library. We will not explain
again how to work with vectors here—just how to provide them.

If you remember, we told you in Chapter 1, Getting Started with OpenLayers, in the section
Anatomy of a web-mapping application, that the OpenLayers 3 library can consume dynamic
vector data or static. The main difference resides in the fact that data is dynamically provided
on demand. At the end of it all, OpenlLayers consumes the same formats.

As a reminder for vector layers, the main following formats are supported:

¢ GeolSON: This is an open standard format for encoding collections of simple
geographical features along with their non-spatial attributes using JavaScript Object
Notation according to Wikipedia. It's also the most popular format nowadays for
web mapping.

¢ KML (KeyHole Markup Language): This is a standard XML-based format created
by Keyhole, a company acquired by Google. Its popularity comes mainly from the
default support of Google Maps and Google Earth.

¢ GPX: This is the most common format produced by GPS devices, and it's
XML-based, too.

¢ TopolSON: It is an extension of GeoJSON that encodes topology, as stated in
Wikipedia. It enables you to get lighter files for lines and polygons.

[2461

Chapter 8

¢ WKT: Wikipedia defines WKT (Well-known text) as a text markup language for
representing vector geometry objects. It's one of the most common formats to
encode geometry.

¢ GML: This is the GML (Geography Markup Language) is the XML grammar defined
by the Open Geospatial Consortium (OGC) to express geographical features. It's the
default format when using OGC Web Services for features (vector).

You can go further by reviewing the content from Chapter 5, Using Vector Layers,
and inspecting all o1 . format . * available following the APl documentation at
http://openlayers.org/en/v3.0.0/apidoc/ol.format.html. You should
not forget some formats can be abstract classes for other formats.

We have chosen to focus only on GeoJSON and KML: they are the most used formats for
static files. As long as your applications do not use large amount of data, it's one of the
most practical solutions. But most of the time, we don't have data directly available in those
formats: a large percentage of geographic data production and manipulation is done using
desktop mapping software that does not use those formats as a primary storage solution.

To understand why, let's see a context where you start to make your own examples.
In this case, you have three main choices to have data:

Drawing your data with the dedicated drawing component
Consuming external sources through third-party APIs as a service

Consuming files directly or after data format conversion that the OpenlLayers 3
library supports

¢ The first way requires time to get the data you want to produce. The second method
is good for large datasets, but you might be limited by the selection of content in the
data provided or by restrictive terms of service.

¢ The last way used to be restricted to local authorities or private companies.
They were the only ones who could afford both data producing and software
costs for GIS.

From a programmer's point of view, GIS (Geographical Information
System) is software to manage geographical datasets and make
4 maps. We really chose to restrict the definition to keep it simple.
% That's why we encourage you to learn further by starting with the
GIS Wikipedia page http://en.wikipedia.org/wiki/
Geographic information systemand also try out searches
through search engines on the topic.

[247]

http://openlayers.org/en/v3.0.0/apidoc/ol.format.html
http://en.wikipedia.org/wiki/Geographic_information_system
http://en.wikipedia.org/wiki/Geographic_information_system

Interacting with Your Map

GIS was first used for desktop applications. With the growth of the Web, the GIS world
extended to the Internet. The main problems to fill the gap between desktop-oriented
geographic data and web geographic data were:

Availability of geographic data for non-specialists

Data conversion to break the barrier between the two worlds; the first barrier was
partly broken with the OpenData movement, defined by Wikipedia as the idea that
certain data should be freely available to everyone to use and republish as they wish,
without restrictions from copyright, patents or other mechanisms of control

The second is also partly broken with open data, but lots of open data datasets always use
GIS Desktop formats like the shapefile. We will not explain this format but demonstrate by
an example of how you can do some data conversion.

To find open data portals, the main entry for America is
https://www.data.gov.

For Europe, you should visit http: //publicdata.eu.

For a worldwide overview, go at http://datacatalogs.

~ org, a website for A Comprehensive List of Open Data Catalogs
from Around the World.

To grasp the state of OpenData in your country, you can visit

the Global Open Data Index at http://global.census.
okfn.org. It's a website maintained by the community to make
surveys about each country's open data initiative. The focus is
mainly about the type of open data datasets available.

Time for action - converting your local or national authorities

tlata into weh mapping formats

For illustration purposes, we will use data coming from the Geographical Information
System at the Commission (GISCO), a Eurostat (an European commission organism) service
which promotes and stimulates the use of GIS within the European Statistical System and the
Commission. We chose to use the Nomenclature of Units for Territorial Statistics (NUTS),
the main administrative units within Europe. Perform these steps to achieve the objective
outlined in this paragraph:

1. Gotothe URL http://www.eea.europa.eu/data-and-maps/data/

administrative-land-accounting-units, and click on Download file within
the GIS DATA block.

[2481

https://www.data.gov
http://publicdata.eu
http://datacatalogs.org
http://datacatalogs.org
http://global.census.okfn.org
http://global.census.okfn.org
http://www.eea.europa.eu/data-and-maps/data/administrative-land-accounting-units
http://www.eea.europa.eu/data-and-maps/data/administrative-land-accounting-units

Chapter 8

2. Gotohttp://converter.mygeodata.eu, a website to make online conversion
of spatial data files, vector, and raster. On the left-hand side part, in the block Upload
your data files, click on Browse to select the downloaded z1Pp file. After that, click on
the Submit button. The following screenshot is the result of these two steps:

“ NUTSV9_LEAC

N Isle af. M

Miger i W ol N

3. After this operation, you should see in the block My GeoData on the left-hand side
part, below the previous block, a date of upload and the shp file name NUTSV9
LEAC. shp. You will also see in the page center an Overview Map.

4. Scroll down to change Target vector format: to GeoJSON and Output coordinate
system: to WGS84. It should be like the following image.

5. Before clicking on the button Convert now!, continue to scroll down to inspect
dataset information like the layer name, the input format, the geometry type
(polygon, line, or point), the number of elements, the extension, the projection
and its associated SRID (read again if you need to Chapter 7, Wrapping Our Heads
around Projections) and the column names with their type.

12491

http://converter.mygeodata.eu

Interacting with Your Map

6. Now, click for real on the button Convert now!, wait to see a new page appear
with a button Download result, and click on it. You will have to wait to see an ad
before getting a Z1P file mygeodata.json. Here's how the screen will look upon
performing these steps:

Target vector format: | GeoJSON (.json) | Q@
Layer creation option: [__ default values -- n
Environment variables: | __ default values -- o
Output coordinate system: |WGs 84 =
Define...

7. Unzip the file to get a GeoJSON file named NUTSV9_LEAC.json. Rename it now to
nutsv9 lea.geojson. Our application will use it later.

What just happened?

We saw how we can use an external online website to have a first approach of geographical
data conversion without installing specific software on your machine. You also saw that you
only review a small part of the possibilities of the online tool to make conversion.

After this small conclusion, let's work more on the topic of data.

Have a go hero - find out more ahout GIS files

Remember that we introduced open data portals during the chapter and GIS files formats
in particular in Chapter 5, Using Vector Layers. To revise and go a bit further, perform the
following tasks:

¢ Find out your local and national open data portals, places dedicated to sharing open
data and retrieve some GIS datasets

¢ From the first step, use the raw or converted GIS data to add it to a vector layer in
your map example. It can be either GeoJSON or KML.

¢ Discover the documentation about shapefile, the most common GIS format. If you
start to play more with cartography, you will have to know it.

¢ Try to discover web services such as Web Feature Service (WFS) instead of using a
file; they serve content remotely. Use them instead of files, reusing your knowledge
from Chapter 5, Using Vector Layers.

[2501]

Chapter 8

¢ Simplify the returned GeoJSON resulting from the previous conversion: it is too
large. Use MapShaper for this (see the following tip to learn about this tool):

Data conversion tips

We chose to introduce you to an on-line application to make GIS
data conversion. Imagine that you need to filter a large dataset and
the upload size is big; you may need to use a local application for
this. We advise you to do it with QGIS at http://ggis.org, an

W1 open source desktop software where you can view the geographical

=~ dataset itself in a GUI. If you prefer the command line, you'd better use

Q GDAL (Geospatial Data Abstraction Library), a tool to make GIS data

conversion, available at http://gdal.org.

You should also visit the website http: //www.mapshaper.org.
Contrary to the reviewed use case, the goal of MapShaper is to simplify
the data in order to get a lighter dataset, in particular to gain time
when loading. Do not hesitate because most of the time, you don't
need a high level of precision!

Diving into the Openlayers 3 select component

Until now, you only learned some useful skills to transform data. It was good way to
reintroduce the vector layer topic. Now, let's review how you can start selecting some
geographic objects on your map.

Time for action - testing the use cases for ol.interaction.Select

With this example, you will also be able to learn some useful things that you will learn more
deeply in Chapter 6, Styling Vector Layers. Perform the following steps to do just that:

1. From the support files available with this book (https: //www.packtpub.com/
web-development /openlayers-3-beginner's-guide), download the file
2360 _08 01 simple select.html and putitin the sandbox directory.

2. Create a data directory in the assets folder, and put the file nutsv9o lea.
geojson there, or download it also from the support site.

3. Put the file into a webserver directory, or use the Python-included server with
python -m SimpleHTTPServer because of Ajax's same-origin policy requirements.

[2511

http://qgis.org
http://gdal.org
http://www.mapshaper.org
https://www.packtpub.com/web-development/openlayers-3-beginner's-guide
https://www.packtpub.com/web-development/openlayers-3-beginner's-guide

Interacting with Your Map

4. Next, open your browser and navigate to the page hosted by your web server (for
example, http://localhost:8000/2360 08 01 simple select.html ifyou
use the Python server) to click on the blue features. Use the Shift key, and select
more than one feature to get a result that might look like the following screensot:

What just happened?

Let's have a look at the code used in this task.

First, we declared the usual raster layer as the background with the following code:

var raster = new ol.layer.Tile ({
source: new ol.source.MapQuest ({layer: 'sat'})

I3F;

Then, we started to declare the style that is applied when we select one or more features.
It's exactly like the usual styling.

[2521

Chapter 8

Later, when selecting with the o1 .interaction.Select, we will reuse this style. Here's
how we declare the style:

var selectEuropa = new ol.style.Style({
stroke: new ol.style.Stroke ({
color: '#££0000°',
width: 2
3]
3N

This part is dedicated to preparing styling for the vector layer when there is no selection; it's
the blue stroke you see in the preceding screenshot:

var defaultEuropa = new ol.style.Style ({
stroke: new ol.style.Stroke ({
color: '#0O0OOff',
width: 2
3]
3N

Next, we started to declare the vector layer and its source ol . source .GeoJSON, where we
mentioned the projection of the map and the GeoJSON file we produced in the previous

part of the chapter. We lowered the GeoJSON file and renamed the extension nutsv9 lea.
geojson. We added into the style property in ol .layer.Vectoranol.style.Style class
that uses your previous defaultEuropa, as follows:

var vectorEuropa = new ol.layer.Vector ({
id: 'europa',
source: new ol.source.GeoJSON({
projection: 'EPSG:3857',
url: '../assets/data/nutsv9 lea.geojson'

P

style: defaultEuropa

P
We also needed to declare the interaction constructor to make the selection, or our style for
selection will never work.

The way to do it is to instantiate it with:

var selectInteraction = new ol.interaction.Select ({
condition: ol.events.condition.singleClick,
toggleCondition: ol.interaction.condition.shiftKeyOnly,
layers: function (layer) ({
return layer.get('id') == 'europa';
}
P

[2531]

Interacting with Your Map

When you are in a complex map, you have more than one layer. Using the option layers
is the way to say the click will only query information from layers that match the condition.
You use a function to do this filtering. You can also use an array of layers, but it's less
powerful. So, if you click in a place where a feature with layer id is 'europa", it will apply
the right style. The condition variable is a static variable you can choose when you want
to change behavior for select. By default, it's the single click that triggers the selection, but
it can also be, for example, the Alt + click that can do it if you wish. It's also the same for
toggleCondition. The purpose of this property is to set the condition when you want to
toggle selection. In this case, we just use the default condition for learning purposes.

Then, we do the usual operations: declare the center, the view, and the map, then add to the
map the layers, and set the view for the map, as follows:

var london =
'EPSG:3857") ;
var view = new ol.View ({

ol.proj.transform([-0.12755, 51.507222], 'EPSG:4326"',

center: london,
zoom: 6
P
var map = new ol.Map ({
target: 'map'
P
map .addLayer (raster) ;
map .addLayer (vectorEuropa) ;
map.setView (view) ;

At the end of it all, we finished by adding the ol . interaction.Select object, as follows:

map.getInteractions () .extend([selectInteraction]) ;

An alternative syntax to get the same result can be done by adding it in the interactions
property of the ol . Map constructor, as follows:

var map = new ol.Map ({

interactions: ol.interaction.defaults () .extend([selectInteraction]),
target: 'map'

3N

After this first introduction, let's do another useful example to learn how to manage
multi-selection or make a selection with points instead of polygons.

12541

Chapter 8

Time for action — more options with olLinteraction.Select

Now, let's reuse the previous example and discover more.

1.

2.

Start by copying 2360 08 01 simple select.html in a new file called
2360_08_02 select options.html.

After the vectorEuropa declaration, add the following JavaScript code to create
the vector layer for points. A new dataset, a GeoJSON file france 4326 .geojson,
is available on the book's webpage:

var defaultFrancePoints = new ol.style.Style({
image: new ol.style.Circle ({
£ill: new ol.style.Fill ({
color: 'blue'
1
stroke: new ol.style.Stroke ({
color: '#ffcc00'
1
radius: 8
3]
13N
var selectFrancePoints = new ol.style.Style({
image: new ol.style.Circle ({
£ill: new ol.style.Fill ({
color: '#££0000'
1
stroke: new ol.style.Stroke ({
color: '#ffccff!
1
radius: 16
3]
1)
var vectorFrancePoints = new ol.layer.Vector ({
id: 'france',
source: new ol.source.GeoJSON ({
projection: 'EPSG:3857',
url: '../assets/data/france 4326.geojson'
1

style: defaultFrancePoints

1)

Change a little bit the selectInteraction declaration, as follows:

var selectInteraction = new ol.interaction.Select ({
layers: function(layer)
return layer.get ('selectable') == true;
}
1

[2551]

Interacting with Your Map

4.

At the end of the preceding steps, after you added the vectorEuropa, add the
new vector layer, as follows:

map .addLayer (vectorFrancePoints) ;

Then, set a property for both layers; arbitrarily, we use selectable to be more
meaningful, as follows:

vectorEuropa.set ('selectable', true);
vectorFrancePoints.set ('selectable', true);

Open your browser and play with the selection with the Shift key to make multi-
selection over the different layers.

You should see a result like the following screenshot:

What just happened?

We will not review all the code, but focus only on important points.

In the new block that declares the vectorFrancePoints layer, we just reviewed the vector
point styling. Using the o1 .style.Circle component, we set in style with the key image.

We kept the logic of the styles in order to keep the behavior for the selection: rules as
reminders are applied if conditions they contain are met, whereas the style in ol .layer.
Vector is the default style for the vector layers.

[2561]

Chapter 8

In the selectInteraction declaration, we changed the property that helps match our
layers. Previously, we were matching using id with the value europa, and now, we are
matching if a property selectable is true. But, as we do not declare initially in the layers
some properties, we set them by adding a selectable property to both layers.

After you've seen everything you have to know about the ol .interaction.Select
component, it's time to try to go further to really acquire knowledge by yourself about this
part of the library.

For this, reuse the previous example and improve it using the following instructions:

¢ Find a dataset using 1inestrings. It can be SHP, KML, or GeoJSON. If required,
transform the format to be able to consume it with the OpenLayers 3 library.

Add a third layer using the retrieved dataset.
Find out what styles you have to use to style the 1inestrings layer.

Instead of adding options hardcoded in the code, use o1 .dom. Input to be able to
play on selectability.

Until now, we have only focused on the ol .interaction.Select component. Its main
goals are to be able to highlight information by making a symbolization change and get
information from the geographic features, for example.

But how can you also return information from the layers on your map and show them? That
what we will see in the next part.

Introducing methods to get information from your map

If you remember the description of layers, two main layers types are vector and raster. Some
layers with specific o1 . source accept methods to access geographic features in your map.
The map queries each of the specified layers for this information, but not all layers support
this. Only layers that support querying for geographic features will return results.

Without going deep into explanation, think that for the vector, you are querying the features
near the point where you've done the click. Whereas for raster, you ask a remote resource to
get a position on the image and extrapolate from this position the features of the image.

We will first review how to work with a vector source and then with raster sources. Do not
worry if you don't already understand everything: we will review some concepts in the
chapters dedicated to layers in particular.

2571

Interacting with Your Map

So, we will see first how to get features from vectors, then explore how to do it from the
method associated with raster, and try to discover where they differ.

Getting features information from your map vector layers

To understand the way they work, we will need to reuse some knowledge and code from our
previous examples.

Time for action - understanding the forkachFeatureftPixel

method

Let's try with another example to discover more about the forEachFeatureAtPixel
method. It should remind you about the last sample from Chapter 5, Using Vector Layers. To
complete the task, check the following steps:

1. First, copy and paste the code from Time for action — converting your local or national
authorities data into web mapping formats, that is, the file 2360 _08 01 simple
select.html inanew HTMLfile 2360 08 03 foreachfeatureatpixel.html.

2. Then change the ol .5s JavaScript file reference with o1-debug. js.
3. After that, add at the end of the JavaScript section of the new HTML file the following:

map.on('click' , function(evt) {
var pixel = evt.pixel;
console.log(evt) ;
console.log (pixel) ; });

4. Open your browser with the console, and click where you have blue features to get
a result like the following screenshot:

Q [] Elements Network Sources Timeline Profiles Resources » = Q- 0, x

O W <topframe> v Preserve log N

2360 _08 03 foreachfeatureatpixel.html:68
» ol.MapBrowserPointerEvent {type: "click", target: ol.MapBrowserEventHandler
, currentTarget: ol.Map, propagationStopped : false, defaultPrevented:
ralse..}

[504, 362] 2360 _08 03 foreachfeatureatpixel.html:69

5. Next, remove both console. log statements, and add the following code just after
the line var pixel = evt.pixel;displayFeaturelInfo(pixel) ;.

[2581]

Chapter 8

6. Add the function displayFeatureInfo before the map.on (code
var displayFeatureInfo = function(pixel) ({
var features = [];
map . forEachFeatureAtPixel (pixel, function (feature, layer) {
features.push (feature) ;
I3
console.log(features);};

7. Again, open your browser and try to click not only on features, but also on
the sea, where you don't have features to understand the behavior. Here's
the resultant screenshot:

Q, [] Elements Network Sources Timeline Profiles Resources » > % 0O, x
© Y <topframe> v Preserve log
v [ol. Feature] 2360 08 03 foreachfeatureatpixel.html:71
b 0: ol.Feature
length: 1
p proto : Array[0]
> |

8. Replace console. log with this code:
var container = document.getElementById('information') ;
if (features.length > 0) {

var info = [];
for (var i = 0, ii = features.length; i < ii; ++1i) {
info.push (features[i] .get ('N3NM')) ;
}
container.innerHTML = info.join(', ') || ' (unknown)';
} else {
container.innerHTML = ' ';
}
9. Add just before the HTML div the class map, as follows:

<div id="information"s</div>

[2591]

Interacting with Your Map

10. Now, for the last time, open or reload your example, and click on features on the
map to see something like the following screenshot:

FR717 Savoie

What just happened?

First, with console. log, we tried to see the event content and also get the pixel position
with an array of x, y, where we click. Next, we made a call to the function that relies on a
map . forEachFeatureAtPixel function. Its purpose is to get back every feature under the
click using the pixel position from the event where we want to see the return you get from
the callback in success property and also restrict the action on the vectorEuropa layer.

We also saw that the return contained the ol . Feature object, and because of this, we
chose to play to try if the return was empty or not. As a click can send back more than
one feature, we used a loop to push the features property N3NM information in an array.
Depending on this, we have the choice to display or not the name of the NUTS region with
the attribute N3NM in a DOM element in the screenshot FR717 Savoie.

After this review, we know how to retrieve and manipulate information from vector layers. You
understand that the method map . forEachFeatureAtPixel within displayFeatureInfo
sends back ol . Feature. You can manipulate to retrieve geometry or attributes from the
layers you click on.

[260]

Chapter 8

There is another way to retrieve information when clicking, and it's with the WMS
getGetFeatureInfoUrl method. In which circumstances should we use it, and
why does it exist?

The getGetFeatureinfoUrl method - an alternative way of getting
information from a map

The title can be unclear if you don't already have some basics.

For this, we will start by reviewing the Open Geospatial Consortium (OGC) Web Map
Services (WMS) standard.

Let's begin with the basics of WMS, and later, we will come back to the main topic.

For this, we will reuse two excerpts from the Geoserver documentation (a server-side
component that can work with the OpenLayers 3 library).

The first one summarizes what WMS is:

"The OGC Web Map Service (WMS) specification defines an HTTP interface for
requesting georeferenced map images from a server."

The second one, a table, gives you the type of requests the WMS standard can perform:

Operation Description
DescriptionExceptions This is displayed when an exception occurs.
GetCapabilities This retrieves metadata about the service, including supported

operations and parameters and a list of the available layers.

GetMap This retrieves a map image for a specified area and content.

GetFeatureInfo (optional) This retrieves the underlying data, including geometry and
attribute values, for a pixel location on a map.

DescribeLayer (optional) This indicates the Web Feature Service (WFS) or Web
Coverage Service (WCS) to retrieve additional information
about the layer.

GetLegendGraphic (optional) | This retrieves a generated legend for a map.

In this list of possible operations, the most common operation is GetMap, an operation that
send back an image to display in a client, JavaScript or desktop.

But you also see GetFeatureInfo, an optional operation for WMS.

12611

Interacting with Your Map

Here, when you read, the point is that it's not the client side that manages returned features,
but the server side. The purpose here is to have less load on the client side: managing a lot
of features in the client side is mainly a pain, in particular if you use DOM.

The idea is to send the information to a server and retrieve the minimum and really light
result. The result can be an HTML, a GML, raw text or depending on your server, also a
GeoJSON. To illustrate, type into your browser the following URL:

http://demo.opengeo.org/geoserver/

wms? SERVICE=WMS&VERSION=1.3.0&REQUEST=GetFeatureInfo&FORMAT=1mage/png
&TRANSPARENT=true&WIDTH=256 &HEIGHT=256&LAYERS=ne :ne&QUERY LAYERS=ne:n
e&STYLES=&CRS=EPSG:3857&BB0OX=-10018754.171394622,5009377.085697312, -
5009377.085697311,10018754. 171394624&INFO_FORMAT:teXt/html&I=94&J=l82

You will see an HTML table with information from the point where we clicked on:
INFO_FORMAT= text/html. Itis the way to say we want an HTML format return.

As a conclusion, just retain at the moment that when you choose to use the OpenLayers
getGetFeatureInfoUrl method, you are supposed to use it with WMS layers.

Now, you have enough knowledge, let's go back to the main topic.

Using the getGetFeatureinfoUrl method to get information from your map

After, this quick review of WMS, let's try to work with another example using
getFeatureInfoUrl.

Time for action - understanding the getGetFeaturelnfoUrl method

Let's start with a new example:

1. To begin with, copy and paste the now usual HTML page 2360 08 01 simple
select.html to reuse it asa model in 2360 08 04 getgetfeatureinfourl.
html.

2. Add just after the script referencing the o1 . s file the HTML content that follows:

<script src="http://code.jquery.com/jquery-1.11.0.min.js"></
script>

3. Remove all the JavaScript block content between <scripts </scripts>. Next, add
the following code into the same block:

var wms_layer = new ol.layer.Tile ({
source: new ol.source.TileWMS({
url: 'http://demo.opengeo.org/geoserver/wms',
params: {'LAYERS': 'ne:ne'}

|3)

12621

http://demo.opengeo.org/geoserver/wms?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetFeatureInfo&FORMAT=image/png&TRANSPARENT=true&WIDTH=256&HEIGHT=256&LAYERS=ne:ne&QUERY_LAYERS=ne:ne&STYLES=&CRS=EPSG:3857&BBOX=-10018754.171394622,5009377.085697312,-5009377.0856973
http://demo.opengeo.org/geoserver/wms?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetFeatureInfo&FORMAT=image/png&TRANSPARENT=true&WIDTH=256&HEIGHT=256&LAYERS=ne:ne&QUERY_LAYERS=ne:ne&STYLES=&CRS=EPSG:3857&BBOX=-10018754.171394622,5009377.085697312,-5009377.0856973
http://demo.opengeo.org/geoserver/wms?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetFeatureInfo&FORMAT=image/png&TRANSPARENT=true&WIDTH=256&HEIGHT=256&LAYERS=ne:ne&QUERY_LAYERS=ne:ne&STYLES=&CRS=EPSG:3857&BBOX=-10018754.171394622,5009377.085697312,-5009377.0856973
http://demo.opengeo.org/geoserver/wms?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetFeatureInfo&FORMAT=image/png&TRANSPARENT=true&WIDTH=256&HEIGHT=256&LAYERS=ne:ne&QUERY_LAYERS=ne:ne&STYLES=&CRS=EPSG:3857&BBOX=-10018754.171394622,5009377.085697312,-5009377.0856973
http://demo.opengeo.org/geoserver/wms?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetFeatureInfo&FORMAT=image/png&TRANSPARENT=true&WIDTH=256&HEIGHT=256&LAYERS=ne:ne&QUERY_LAYERS=ne:ne&STYLES=&CRS=EPSG:3857&BBOX=-10018754.171394622,5009377.085697312,-5009377.0856973

Chapter 8

3N

var view =

new ol.View ({

center: [0, 0],
zoom: 1

1)

var map = new ol.Map ({
layers: [wms_ layer],
target: 'map',

view: view

3N

var viewProjection
var viewResolution

map.on('click"',
var container =
var url =

view.getProjection() ;
view.getResolution () ;

function (evt)
document .getElementById('information') ;
wms_layer.getSource () .getGetFeatureInfoUrl (

evt.coordinate, viewResolution, viewProjection,

{'INFO_FORMAT' :
'propertyName' :
if (url) {
var parser =
$.ajax ({
url: url,

dataType:

jsonpCallback:
}) .then (function (response) {
parser.readFeatures (response) ;

var result =
if
var info =

for (var i

'text/javascript’',
'formal _en'});

new ol.format.GeoJSON () ;

'jsonp',

'parseResponse’

(result.length) ({

[1;

0, ii = result.length;

i< ii;

info.push(result[i] .get ('formal en'));

}

container.innerHTML =

} else {

container.innerHTML =

info.join("',

' ' ;

") ;

++1)

{

12631

Interacting with Your Map

4. Open your browser, and click wherever you want. You will see a result that looks like
the following screenshot:

United States of America
Greenland

Russia Russia

Mongolia Mongalia

China United States China United
India India

Braeil
Auslralia Auslralia
Antarctica Antarctica
b -

What just happened?

We started by creating a tiled WMS layer, a raster type layer. Next, we created the view and
the map. Then we got parameters from the view required later in the code—the resolution
and the projection—and we got the DOM element information reference where we

will display our click result. The most important part happens in the declaration map.
on('click', function(evt) {, means wherever you click in the map, the code within
the block is executed.

In this block, we declared an url variable to call the WMS web service. Its result was
provided by a function generated from a WMS source using also the coordinates of the
click, the resolution, the projection, and the query parameters.

The coordinates were provided by the click. The query parameters defined the returned
type expected from the web service. In this case, we wanted the JSONP return encapsulating
GeoJSON (JSONP) using ' INFO_FORMAT': 'text/javascript'.They also help to select
only the properties we want from the web service (' propertyName': 'formal en').

12641

Chapter 8

You can discover more by setting a breakpoint, and when clicking on the map, copying the
URL string, and then, opening it in a new browser window to inspect.

Then, we declared an ol . format . GeoJSON object called parser, a component designed
to understand the returned GeoJSON content from the Ajax call just after.

The Ajax call was done using a jQuery function $.ajax ({...}) .then(function
(response) {, hence the jQuery script addition previously. The url parameter is not
enough to manage JSONP. We need to custom the Ajax call to manage JSONP. JSONP
allows remote calls to resources external to your website without encountering any issues
with Ajax same origin policy (see the Wikipedia web page about the subject https://
en.wikipedia.org/wiki/Same-origin policy).

The code in the block reuses the received content and adds it as a JavaScript object in the
result variable. This new object, an array, is manipulated to retrieve the text data United
States of America and displays it in the container DOM element.

It's recommended also that you see in the network panel what happens every time you click
on the map. The following screenshot is a depiction of the network panel:

® O Preserve log ¥ Disable cache
4 Docum Stylesh Imag Med Scrip XHI Fonl WebSo¢ Othi (O Hide data
Name =
Path Headers | Preview Response Timing
—| wms?SERVICE=WMS&VERSI... Remote Address: 108.163.203.42:80

=J Request URL: http://demo.opengeo.org/geoserv
er/wms?SERVICE=WMS&VERSION=1.3.0&REQUEST=Get
FeatureInfo&FORMAT=1image%2Fpng&TRANSPARENT=t
rue&QUERY_LAYERS=ne%3Ane&LAYERS=ne%s3Ane&INFO
~ FORMAT=text%2Fjavascript&propertyName=Torma
1 en&I=103&1=195&WIDTH=256&HEIGHT=256&CRS=EP
SG%3A3857&STYLES=&BB0OX=-20037508.3427892445%2
C0%2C0%2C20037508.342789244&callback=parseRe
sponse& =1417439990599

1 requests | 423 B transferred F_!_e'q_uesE M_ethqd: GET

The important thing here is you rely on a web service able to provide a raster map based on a
standard, and you are also able to get remotely the features below the place where you click.
The main advantage here is to have less coupling between your server code and your JavaScript
code. However, on the other side, you can suffer from latency (time to receive the response
from the URL call). Up until now, every piece of information returned was always displayed in a
DOM element outside of the map. How can we display it on the top of the map as a pop-up?

That's what we will see in the next part mainly based on o1 .0verlay, a component we
already use in the Chapter 2, Key Concepts in OpenLayers.

12651

https://en.wikipedia.org/wiki/Same-origin_policy
https://en.wikipedia.org/wiki/Same-origin_policy

Interacting with Your Map

To add a pop-up, you can rely exclusively on HTML and CSS, but the OpenLayers 3 library
bundles a component to help you to display information in a pop-up.

You will find below the reference for this component called o1 .0verlay. Only a light review

will be done here because some examples will follow to illustrate.

The ol.Overlay reference

The object is instantiated with a constructor such as:

var yourOverlay

= new ol.Overlay ({

element :document .getElementById ('yourOverlayElement')

3]

Because ol .0verlay inherits from ol .0bject, we only describe here the methods related

to the object itself.

Method Parameters Description

getElement () None. This gets the DOM element of the overlay.

getMap () None. This gets the map associated with the
overlay.

getOffset () None. This gets the offset of the overlay.

getPosition () None. This gets the current position of the overlay
in map projection.

getPositioning () | None. This gets the current positioning of the

overlay. It's the position of the overlay
relative to the click.

undefined.

setElement Need a DOM Element or | This sets the DOM element to be associated

(element) undefined. with the overlay.

setOffset Array.<number> This sets the offset for the overlay. Offsets

(offset) are in pixels used when positioning the
overlay. The fist element in the array is the
horizontal offset. A positive value shifts the
overlay to the right-hand side. The second
element in the array is the vertical offset.
A positive value shifts the overlay down.
Defaultis [0, 0].

setPosition Need an object This sets the position for the overlay in map

(position) ol.Coordinate or projection.

12661

Chapter 8

Method Parameters Description
setPositioning ol.Overlay This sets the positioning for the overlay,
(positioning) Positioning for example, how the overlay is positioned

relative to its point on the map. Possible
values are bottom-left, bottom-
center, bottom-right, center-
left, center-center, center-
right, top-left, top-center or

top-right.
setMap (map) Need an object o1 .Map | This sets the map to be associated with the
or undefined. overlay.

You can check out the complete o1 .0verlay APl documentation at http://openlayers.
org/en/v3.0.0/apidoc/ol.0Overlay.html.

After this small component review, we will first see the simplest case for using ol .0verlay
with a static example where the information is not coming from any query but only from
a DOM element.

Time for action - introducing ol.Overiay with a static example

To illustrate the simplest use case for ol .0verlay, let's perform the following steps:

1. Copythe HTMLmodel 2360 08 01 simple select.html, we always used in
the chapter, in a new file 2360 08 05 simple overlay.html. You can also
check the code at the Packt code book URL.

2. Addinto assets/css/samples.css this code:

#popup {
background: red;

}

3. Inthe HTML code, replace <div id="map" class="map"></divs with <div
id="map" class="map">, as follows:

<div id="popup">OpenLayers 3 Code Sprint <i>Humanities A3</
i></divs>

</div>

4. Replace all the JavaScript part with the following code:

var popup = new ol.Overlay ({
element: document.getElementById('popup')

I3F;

var osmLayer = new ol.layer.Tile ({

12671

http://openlayers.org/en/v3.0.0/apidoc/ol.Overlay.html
http://openlayers.org/en/v3.0.0/apidoc/ol.Overlay.html

Interacting with Your Map

source: new ol.source.OSM()

)

var ol3 sprint location = ol.proj.transform([-1.20472, 52.93646],
'EPSG:4326', 'EPSG:3857');

var view = new ol.View ({
center: ol3 sprint location,
zoom: 16

)

var map = new ol.Map ({
target: 'map'’

)

map .addLayer (osmLayer) ;
map.setView(view) ;

map .addOverlay (popup) ;
popup.setPosition(ol3 sprint location);

5. Open your browser and you will see this is how it looks:

[268]

Chapter 8

What just happened?

Let's review the code to understand the way ol .Overlay works.

First, we defined a new o1 .0verlay with the following:

var popup = new ol.Overlay ({
element: document.getElementById('popup')

3N

The element property in the object literal option of the constructor has to reference an
HTML element.

Here, we reference the HTML text OpenLayers 3 Code Sprint
<i>Humanities A3</i> locatedin a <divs> tag with an id value of popup.

Next, we performed the usual steps, such as creating layers, creating map, adding the layers,
and setting the view, as follows:

var osmLayer = new ol.layer.Tile ({

map.setView(view) ;

Just after this block, we added the ol .0verlay object to the map in order to declare that
we are using an overlay:

map .addOverlay (popup) ;

Instead of adding overlays after the preceding map, you can also use the option in the
ol .Map constructor, as shown in the following sample:

var map = new ol.Map ({
target: 'map',
overlays: [popupl]

3N

The following line was to set the position of the DOM element by matching coordinates and
image position:

popup.setPosition (ol3_sprint_location) ;

12691

Interacting with Your Map

The name overlay implies also that there is something at the top of something else. To
understand, just see the screenshot of the Chrome Developers Tools Elements panel,
as follows:

¥ <html>
P #shadow-root
> <script=.</script=
» <head=..</head>
¥ <body=>
¥ <div id="map" class="map"=>
v <div class="ol-viewport" style="position: relative; overflow: hidden;
width: 100%; height: 100%; "=
<canvas class="ol-unselectable" width="808" height="500" style=
"width: 100%; height: 100%;">
<div class="ol-overlaycontainer"=</div>
¥ <div class="ol-overlaycontainer-stopevent">
¥ <div style="position: absolute; left: 404px; top: 250px;">

¥ <div id="popup"=>
0penLayers 3 Code Sprint
<i>Humanities A3</i=

As you see, the pop-up is included in a div tag, also contained in a div tag with class ol-
overlaycontainer situated after the canvas element (where the map is drawn).

Now, let's assemble our knowledge with overlay and map feature methods.

The goal is simple: we are able to display content at the top of the map image but without
getting information from the map itself. Let's discover how we can achieve this by again
using an example.

Time for action - using ol.Overlay dynamically with layers

In this case, we will reuse just the previous example as a model.

1. So, copy the previous example's code in a new HTML page named 2360_08_06_
layer overlay.html.

2. Remove the string OpenLayers 3 Code Sprint <is>Humanities
A3</i> from the HTML.

3. Then, just after the osmLayer declaration, add the following code, where we are
reusing again the vectorEuropa layer with the styles:

var selectEuropa = new ol.style.Style({
stroke: new ol.style.Stroke ({

12101

Chapter 8

color: '#ffo0o000',
width: 2
)
13N

var defaultEuropa = new ol.style.Style ({
stroke: new ol.style.Stroke ({
color: '#0000ff',
width: 2
3]
3N

var vectorEuropa = new ol.layer.Vector ({
id: 'europa',
source: new ol.source.GeoJSON ({
projection: 'EPSG:3857',
url: '../assets/data/nutsv9 _lea.geojson'

1

style: defaultEuropa

1) s

Add anol.interaction.Select component, as shown in the following code.

var selectInteraction = new ol.interaction.Select ({
layers: function (layer) {
return layer.get('id') == 'europa';
P

After map.addLayer (osmLayer) ;, add to the map the following new layer:

map .addLayer (vectorEuropa) ;

At the end of the JavaScript block, just after map.addoverlay (popup) ;, add the
code that follows:

function pickRandomProperty () {

var prefix = ['bottom', 'center', 'top'l;

var randPrefix = prefix[Math.floor (Math.random() * prefix.
length)];

var suffix = ['left', 'center', 'right'];

var randSuffix = guffix[Math.floor (Math.random() * suffix.
length)];

return randPrefix + '-' + randSuffix;

}

var container = document.getElementById('popup') ;
var displayFeaturelInfo = function(pixel, coordinate) ({
var features = [];

2nl

Interacting with Your Map

map.forEachFeatureAtPixel (pixel, function(feature, layer) ({
features.push (feature) ;

I3

if (features.length > 0) {
var info = [];
for (var i = 0, ii = features.length; i < ii; ++1i) {

info.push (features[i] .get ('N3NM')) ;

}
container.innerHTML = info.join(', ') || ' (unknown)';
var randomPositioning = pickRandomProperty () ;
popup.setPositioning (randomPositioning) ;
popup.setPosition (coordinate) ;

} else {
container.innerHTML = ' ';

}

}i

map.on('click', function(evt) ({
var coordinate = evt.coordinate;
displayFeatureInfo (evt.pixel, coordinate) ;

)

Now, open your browser, pan, and click, and you will see a result like the following
screenshot:

[2121

Chapter 8

What just happened?

First, we added to the previous example the vector EuropaLayer in order to have areas
easier to click on. It's because areas cover the entire map contrary to points where you need
accurate clicking.

Next, we declared a function pickRandomProperty in order to generate a random
string, fitting positioning parameters expected by the o1 . 0verlay component for a small
demonstration purpose.

Then, we declared a modified displayFeatureInfo function reusing most of the code
from 2360 08 03 foreachfeatureatpixel.html, where we set the positioning
and the position. The position requires coordinates, so we added a second argument to
displayFeatureInfo

For positioning, we chose to display the content by changing the pop-up position randomly.
This position is relative to the click event; to get this result, we reused the function
pickRandomProperty, as follows:

var randomPositioning = pickRandomProperty () ;
popup.setPositioning (randomPositioning) ;

We also used the setter on the pop-up element in order to change its position according to
the retrieved click coordinates, as follows:

popup.setPosition (coordinate) ;

We finished with the now quite usual block to add a click event to the map map.on ('click"',
function (evt), but we retrieved the coordinates also and not only the pixel position to
reuse the function displayFeatureInfo.

Now, you will learn to make dynamic use of ol .0Overlay. You are also able to put a pop-up
on your map using your geographic features.

You can try by yourself some experiments by following instructions given in the next section.

Have a go hero — customizing your pop-up

In order to go further, we advise you to do some exercises with ol .0verlay.
Your new assignment can be the following:

¢ Style the pop-up better, and try to add a tiny cross in particular to be able to close
the pop-up. You should use the debugger for the styling part.

[2131

Interacting with Your Map

¢ Use the JavaScript setTimeout () function to stop displaying the pop-up after
some time. You can see a reference about setTimeout at https://developer.
mozilla.org/en-US/docs/Web/API/WindowTimers.setTimeout. A short
article at http://davidwalsh.name/javascript-debounce-function will
also help you to understand why it can be useful.

¢ Review the official vector examples to find some examples relying on an external
library such as Bootstrap.

Interactions can happen not only with selecting and displaying information from your map.
It's also possible, for example, to create new features by drawing points, lines, or polygons.
You can also update features. We will mainly focus on geometric representations because
the built-in functionalities in OpenLayers 3 are mainly dedicated for this.

Let's start with the drawing component.

Time for action - using ol.interaction.Draw to share new

information on the Web

To be able to do a basic save, we have developed a server-side script based on Node.js, a
software platform for scalable server-side and networking applications. For the client side,
the code will be more classical.

1. Install Node and NPM, an executable to manage Node.js library dependencies if
you don't already have it, using https://github.com/joyent/node/wiki/
installation#installing-without-building.

2. Next, retrieve the index. js and package . j son files from the code from
upcoming url and put them in the 013 samples directory.

3. Install the dependencies from the command line firing from the 013 samples
folder path, as follows:

npm install

4. Download also the file features .geojsoninto ol3 samples/assets/data/.

5. Tryif the server side works by firing the node index. js and opening
http://localhost:3000/features.geojson. You should see something
like the following:

{type: "FeatureCollection", features: []}

[2:]

https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers.setTimeout
https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers.setTimeout
http://davidwalsh.name/javascript-debounce-function
https://github.com/joyent/node/wiki/installation#installing-without-building
https://github.com/joyent/node/wiki/installation#installing-without-building

Chapter 8

Create anew file 2360 08 07 create new content.html in the usual
sandbox folder by copying 2360 08 01 simple select.html.

Empty the HTML body to replace the HTML content to create a <div> tag for the
map and a form to enable you to choose future drawing types (point, line string,
and polygon) with the following code:

<div id="map" class="map">
</divs>
<form class="form-inline">
<label>Geometry type </labels>
<select id="type">
<option value="Point">Point</option>
<option value="LineString">LineString</option>
<option value="Polygon">Polygon</option>
</select>
</form>
<script src="../assets/o0l3/0l.js"></script>
<script src="http://code.jquery.com/jquery-1.11.0.min.js"></
scripts>

Start <script> without forgetting to close it at the end, and copy the following
code into it:

var raster = new ol.layer.Tile({
source: new ol.source.MapQuest({layer: 'sat'H

13N

var source = new ol.source.GeoJSON({
url: '/features.geojson'

13N

var vector = new ol.layer.Vector({
id: ‘'wvector',
source: source,
style: new ol.style.Style ({
fill: new ol.style.Fill ({
color: 'rgba (255, 255, 255, 0.2)'
I
stroke: new ol.style.Stroke({
color: '"#ffcec33',
width: 2
I
image: new ol.style.Circle ({
radius: 7,
fill: new ol.style.Fill ({

[215]

Interacting with Your Map

color: '#ffcc33!

var map = new ol.Map ({
layers: [raster, vector],
target: 'map',
view: new ol.View ({
center: [-11000000, 46000007,
zoom: 4
|3
1)

9. Youcan already open your browser at http://localhost:3000/
sandbox/2360 08 07 create new content.html to see the definitive
sample look.

10. After the previous added code, add the following content:

var typeSelect = document.getElementById('type') ;
function addInteraction() {
draw = new ol.interaction.Draw ({
source: source,
type: typeSelect.value
I

map.addInteraction (draw) ;

}

typeSelect.onchange = function(e) {
map.removelnteraction (draw) ;
addInteraction() ;

Vi

addInteraction() ;

11. Reload the sample, choose the type you want to draw, and click on the map to
try out componentReload on the page to see that you can draw but there is no
persistency.

12. Atthe end of the addInteraction function, copy the following code:

draw.on ('drawend',

function (evt)
console.log(evt.feature) ;
var parser = new ol.format.GeoJSON() ;

12161

Chapter 8

var features = source.getFeatures() ;
var featuresGeoJSON = parser.writeFeatures (features) ;
$.ajax ({
url: '/features.geojson',
type: 'POST',
data: featuresGeoJSON
}) .then (function (response) {
console.log(response) ;
|3
b

this) ;

13. Reload the sample, and try to draw and reload to see persistency working:

eometry type |Polygon ¥ |

What just happened?

We created a map that uses a drawing component.

Each time you choose a Geometry type, it removes the ol . interaction.Draw component
and adds again a new one using the code in typeSelect.onchange.

In the called function, the key feature is the drawend event bound to the draw component.
Each time the user finishes drawing, it fires an event that send a feature.

[2m1

Interacting with Your Map

In our case, we chose to get features from the source as GeoJSON using ol . format.
GeoJSON and send them via an Ajax post call.

Depending on your backend, or for client storage, you can change what you want to send.
The sample sends all features using a GeoJSON format, but you can customize the URL call,
change the format to let's say GML, or only send the added feature and not all the features.

For this last case, you can see the log returned from console.log(evt.feature) ;.

Modifying features on the map

After feature creation, another requirement is to make modification on geometries to
existing content.

Time for action - using ol.interaction.Modify to update drawing

The assignment will be quite simple because the component at the time of writing needs
some refining. It's possible to edit content but there are no events to catch at the end of
modification: we will be unable to save the modified features. We will cover the client as is.

1. Copythefirst sample 2360 08 01 simple select.html as2360 08 08
modify.html.

2. Before var london, add the following code:

var modify = new ol.interaction.Modify ({
features: selectInteraction.getFeatures ()

3N

3. Replace map.getInteractions () .extend([selectInteraction]) ; with the
following code:

map.getInteractions () .extend([selectInteraction, modifyl) ;

4. Add the following code to manage features change:

var selected features = selectInteraction.getFeatures() ;
selected features.on('add', function(event) {
var feature = event.element;
feature.on('change', function(event){
event .target.getGeometry () .getCoordinates()) ;
P
P

12181

Chapter 8

5. Open the new sample, select a feature, hover over some features, and click and drag
to see the behavior, which is as follows:

What just happened?

We saw in this sample how to use ol . interaction.Modify here using the modify
component. We also saw that it requires ol .interaction.Select. To be able to listen
to change, there is no available method on ol . interaction.Modify to directly know
the modification to the features. You have to listen to changes on features with selected
features.on('add', function (event) {

To make this behavior really more obvious, we also used a console. log statement, so
when using the browser console debugger, you are able to follow the call when a feature is
modified.

After reviewing, drawing, and modifying features, it's time to deepen our interactions

knowledge: preferring a practical approach, we only scratched the surface (their definitions)
until now.

[219]

Interacting with Your Map

Understanding interactions and their architecture

Until now, we never inspected relations between interactions. So, it's time to examine
ol.interaction. * classes. All the classes inherit from ol . interaction.Interaction,
but compared to controls, it's less simple; you also have subclasses.

See the following diagram to grasp the relationships between the different interaction classes:

Interaction
A

Select Pointer | | MouseWheelZoom DragAndDrop DoubleClickZoom

’ KeyboardZoom

’ KeyboardPan

’ PinchRotate

PinchZoom ’ Modify ‘ ’ Draw ‘

DragRotateAndZoom ‘

DragRotate

’ DragPan

DragBox
A

DragZoom

An inspection of the above schema shows that every ol . interaction component inherits
from ol .interaction.Interaction. In some cases, when an interaction uses a mouse,
pen, or touchscreen, it will need to inherit from ol . interaction.Pointer, which deals
with this use case.

You can also note with the schema that interactions are tied to touch events for mobile,
mouse events like click or drag, mouse events with the mouse wheel, and the keyboard. You
can combine them depending on the expected behaviors. Luckily, by default, you can deal
with them with ease. Let's see how. After this, we will explore different ways to make more
customizations.

The short story of interactions

Most of the time, you don't really need to deal with interaction behaviors, but sometimes
knowing how to manage them is a requirement.

You have two choices for simple cases:

¢ To consider that you don't need interactions at all on the map. You are using the
Openlayers 3 library's abilities just to access particular information, but you don't
want people interact with the map. In this case, you just have to do in a map
something like the following:

var map = new ol.Map ({

[2801]

Chapter 8

controls: [],
interactions: [],

13N,
Consider that you need most default behaviors, but you don't need all of them. In this case,
you will have to use the ol . interaction.defaults function.

¢ Let's jump to this second topic.

As mentioned previously, the best and simplest way to handle interactions is by reusing the
ol.interaction.defaults function, as follows.

Let's review the properties you can set in the options:

Name Type Description
altShiftDrag boolean| This enables /disables 01 . interaction.
Rotate undefined DragRotate. The default value is set to true.
boolean| This enables /disables 01 . interaction.
doubleClickZoom . DoubleClickZoom. The default value is set to
undefined
true.
This enables /disables 01 . interaction.
boolean| KeyboardZoom and the
keyboard .) .
undefined ol.interactionKeyboardPan. The default
value is set to true.
This enables /disables o1 . interaction.
boolean| -
mouseWheelZoom . MouseWheel Zoom. The default value is set to
undefined
true.
. boolean | This enables /disables o1 . interaction.
shiftDragZoom . R
undefined DragZoom. The default value is set to true.
boolean | This enables /disables ol . interaction.
dragPan . . .
undefined DragPan. Default is value is set to true.
, boolean | This enables /disables 0l . interaction.
pinchRotate . . :
undefined PinchRotate. The default value is set to true.
, boolean| This enables /disables ol . interaction.
pinchZoom] . .
undefined PinchZoom. The default value is set to true.

2811

Interacting with Your Map

Name Type Description

This is the delta. It has the same meaning as the
oneinol.interaction. Zoom. This applies

number | . .
zoomDelta . toboth ol.interaction.KeyboardZoom
undefined . \ .
and ol .interaction.DoubleClickZoom
behaviors if interactions are activated.
This is the zoom duration in milliseconds. This applies
totheol.interaction.DoubleClickZoom,
. number | ol.interaction.KeyboardZoom,
zoomDuration , \ . .
undefined ol.interaction.PinchZoom, and

ol.interaction.MouseWheelZoom
behaviours if interactions are activated.

Time for action - configuring default interactions

Let's deactivate zoom and pan with the keyboard and also the rotate when doing
Alt + Shift + mouse drag.

For this, do the following:

1. Copy the usual HTML file.

2. Addinthe block <div id="map" class="map"></divs the attribute tabIndex
with a value 0 to make it focusable.

3. Change the keyboard option to false in the interactions property of the
ol .Map object.

4. Do all this with the altshiftDragRotate option. Try different actions with the
left, right, up, and down arrows or with the plus and minus keys.

5. Do all this by trying to use Alt + Shift + mouse drag.

What just happened?

Here you just saw an example to deactivate some default behaviors.

By changing keyboard options to false, we make the application unable to respond to
keyboard interaction with pan and zoom.

After reviewing the ol . interaction.defaults function itself, you also learn that each
map already embedded nine ol . interaction by default, and for keyboard, the switch
works for all keyboard interactions.

12821

Chapter 8

A functional view for the nine default interactions

Let's see exactly what each of those interactions does at the functional level more than at
the code level. We already introduced them in Chapter 2, Key Concepts in OpenLayers, so
you should not be lost.

*

ol.interaction.DoubleClickZoom: This interaction allows users to zoom by
double-clicking. You can set the duration to change animation time and delta when
you want to change the zoom delta.

ol.interaction.DragPan: It allows to you to pan by dragging the map. You can
set panning behavior by setting the kinetic property.

ol.interaction.DragRotate: This interaction makes the map rotate when
you combine both the Alt and Shift keys together to rotate the map image. You can
change it by changing the condition property.

ol.interaction.DragZoom: It enables you to draw a temporary rectangle
when pressing the Shift key with the keyboard. Then, this rectangle is used to
zoom on the selected region of the rectangle. You can change the condition for the
behavior with a condition, but you can also choose a style when drawing. The most
interesting part in this component, other than its behavior, is that it inherits from
ol.interaction.DragBox. It means that we will be able to reuse the drawing
rectangle behavior for other purposes and not only for zooming like here. Later in
the chapter, we shall see how.

ol.interaction.PinchRotate: On mobile devices, one of the main interactions
is the pinch. In the Openlayers 3 library's case, it is supported by default. The

name itself is enough to understand that this component has a behavior similar

to DragZoom, but when pinching. You can set the threshold property if your
application requires to change sensitivity for rotating the map.

ol.interaction.PinchZoom: As the previous component, it relies on the pinch
but in order to zoom. It's like when you are browsing on mobile, but instead of
getting only a lens effect, you really make a zoom in your map. You change the
animation duration, setting the same duration property in the component.

ol.interaction.KeyboardPan: Its role is to manage map browsing using only the
keyboard. It needs to make the map focusable by adding a tabIndex attribute at your
map div level. To get the focus for the map, you need to use the tab key. Then, panning
can be controlled using the up, down, left, and right keys. The option pixelDelta
enables you to set the translation in pixels when pushing on the keys. By default, it
value is 128 pixels. It is also possible to set the now usual condition property.

M An alternative way to make the map reactive to keyboard
Q interaction without giving to the map the focus is to set the
ol .Map property keyboardEventTarget to document.

[2831]

Interacting with Your Map

¢ ol.interaction.KeyboardZoom: Its goal is similar to the previous component
except that it applies when you use the keys plus and minus instead. This interaction
can be set just as for DoubleClickZoom with the delta property and also the
condition too.

¢ ol.interaction.MouseWheelZoom: As its name implies, this interaction is
related to the use of the mouse wheel to zoom in or zoom out. The only custom
behavior you can set for this interaction is the duration of the animation by
default to 250 milliseconds.

After this more verbose part, it's time to see the missing interactions.

Discovering the other interactions

We will first look at o1 . interaction.DragRotateAndZoom, and then we will move on to
the others.

These other interactions were sometimes used along the book chapters, but we did not
always explain them completely; it was impossible with all the other concepts that required
explanation at the time.

This interaction does both actions together: rotate and zoom. By default, you need to use the
Shift key when you drag to use it. Let's review it with an example.

Time for action - using ol.interaction.DragRotateAndZoom

Let's follow the component's self-explaining name to try out it behaviour :

1. First, duplicate the code from the previous ol .interaction.defaults sample.

2. Then, make changes in the interactions block in the o1 .Map object as follows:

var map = new ol.Map ({
interactions: ol.interaction.defaults ({

shiftDragZoom: false
}) .extend ([new ol.interaction.DragRotateAndZoom()]),

b

3. Finally, open your browser and drag while maintaining the keyboard on the Shift key.

12841

Chapter 8

What just happened?

First, as it can conflict with ol . interaction.DragRotateAndZoom, we deactivated the
shiftDragZoom interaction by setting it to false. We chose this option, but it was also
possible to change the key to activate the function using the condition property.

You also saw the now-common pattern to add interactions to existing default interaction
using an array within the extend block. Practically, you also learned how to use the behavior.

Now, let's jump to the next interaction.

This interaction, according to the official documentation AP, is for handling input of
vector data by drag and drop. We already saw an example of using this in Chapter 5,
Using Vector Layers.

The only additional thing that you can add is that when you drop the file after dragging
it, when the event is triggered, you can get not only the features or their projection
(experimental), but you can also get the filename. It can be useful, for example, to give a
name to the layer, imagining we use the component together with a layer tree.

How did we deduce that it was also possible to retrieve this information? We did this
simply by inspecting the APl at http://openlayers.org/en/v3.0.0/apidoc/
ol.interaction.DragAndDrop.html. It mentions the function signature when an
event is fired, as follows:

addfeatures (ol.interaction.DragAndDropEvent).You can see that
ol.interaction.DragAndDropEvent is involved. If you inspect its API definition, you
will see and not be really surprised to discover members are features, files, and projections.

Just as a quick reminder, here are the DragaAndDrop options (experimental):

Name Type Description

Array.<function (new:ol.
formatConstructors | format.Feature)> |
undefined

These are the format
constructors.

This is the target projection.
reprojectTo ol.proj.ProjectionLike By default, the map's view's
projection is used.

Now, let's continue with another interaction implying always a drag-related event.

[2851]

http://openlayers.org/en/v3.0.0/apidoc/ol.interaction.DragAndDrop.html
http://openlayers.org/en/v3.0.0/apidoc/ol.interaction.DragAndDrop.html

Interacting with Your Map

The official documentation describes this interaction as:

"Allowing the user to zoom the map by clicking and dragging on the map, normally
combined with an ol . events.condition that limits it to when the Shift key is
held down."

When reviewing ol . interaction.DragBox and seeing that it's the base class for
ol.interaction.DragZoom, we already give you some hints for other use cases based
on the same logic. It can be to select features based on a rectangular selection, to draw

a rectangle, or to use it as a bounding box to generate and draw other shapes, such as
ellipsoids and circles.

Let's look at how you can, for example, get the drawn rectangle as a GeoJSON string, where
you've done a selection. Here, we suppose you are working on your desktop as mouse
interaction is not available with mobile devices.

Time for action — making rectangle export to GeoJSON with

olinteraction.DragBox
After introducing the goal, we should do the following:

1. Reuse the usual sample for the chapter that include the osm default and
map Vvariables.

2. Between the two variables, declare ol . interaction.DragBox, as follows:

var dragBoxInteraction = new ol.interaction.DragBox ({
condition: ol.events.condition.shiftKeyOnly,
style: new ol.style.Style ({
stroke: new ol.style.Stroke ({
color: 'red',
width: 2

3. Like for DragRotateAndZoom, deactivate DragZoom, and add the new interaction
in the interactions parameter within ol .Map, as follows:
interactions: ol.interaction.defaults ({
shiftDragZoom: false
}) .extend ([dragBoxInteraction]),

4. Then, open your browser and try to draw a rectangle by holding down the Shift key
while dragging with the mouse.

[2861]

ol.events.condition

Chapter 8

5. Now, add the following code between the dragBoxInteraction and map
declarations:
dragBoxInteraction.on('boxend', function(e) {
var format = new ol.format.GeoJSON() ;
var geom = e.target.getGeometry () ;
geom.transform('EPSG:3857', 'EPSG:4326') ;
var feature = new ol.Feature ({
geometry: geom

3N
var obj = format.writeFeatures ([featurel);
console.log (JSON.stringify (obj)) ;

3N

6. Open again the sample in the browser with the debugger activated, and repeat the
same rectangle selection operation.

What just happened?

In the first part, you should be able to draw the rectangle, but no events fired then like with
the DragZoom for example. We chose to play with all the available options.

We set the condition to be able to activate the behavior only with the Shift key using
ol.events.condition.shiftKeyOnly and changed the style to make a red border
with 1 pixel's width.

We added the new interaction but disabled the other, which also uses ol .events.
condition.shiftKeyOnly.

Finally, we reused the event listener to catch when the rectangle drawing ends with boxend.

Within this event, we manipulated the returned geometry ol .geometry.Polygon to
change it projection and reuse it into ol . Feature. By providing this feature with the
writeFeatures method of a new ol. format .GeoJSON, we were able to make the
GeoJSON object and converted it into a string.

As a reminder, in the following table, you will find the expected optional parameters
(and experimental) for the interaction:

Name Type Description
ol.events. This is a function that takes ol . MapBrowserEvent and
condition | ConditionType | returns a Boolean to indicate whether that event should be
| undefined handled. The defaultis ol .events.condition always..
ol.style.
tyl isi .
style Style This is a style for the box

After this last assignment for the book, it's time for revision.

12871

Interacting with Your Map

Let's look at a few questions to see what we understood during the chapter:

Q1. In a context where we want to query a WMS, what components and methods would be
required for this?

ol .Map.

ol.layer.Tile.

ol.source. ImageWMS.

ol.layer.Vector.

vk wNoe

ol.source.TileWMS.

Q2. What will happen if we use the addCondition property value ol . interaction.
condition.onlyAltKey to build ol.interaction.Select?

1. The cumulating selection will react when a click on the Shift key is done.

2. The cumulating selection will react only with the Alt key.

3. Anerror will occur: the value does not exist.
Q3. We want to make a style change. When selecting, what type is required in the option
style of o1 .layer.Vector?

1. ol.style.Style.

2. ol.style.Stroke.

3. ol.style.Fill.

4. anarrayof ol.style.Style.
Q4. What is(are) the condition(s) not present by default in the available conditions when
using interactions :
ol.events.condition.neverShift.
ol.events.condition.never.
ol.events.condition.shiftAlways.

ol.events.condition.noModifierKey.

vk W oe

ol.events.condition.shiftKeyOnly.

[2881]

Chapter 8

In this chapter, we discovered more about the way to query information from your map.
Compared to a paper map, interactive feedback from a map is one of the most powerful
features you can expect. We hope following our guidance was not too tough.

Starting with data manipulation, you learned more about the complex world of GIS. Next, we
discovered about the dedicated components to select and query maps. Afterwards, with a
pop-up, we inspected how to nearly reproduce the Push Pins map (you can always reproduce
it as an additional task).

We created and modified our own geographical data instead of consuming existing data.

Inspecting the default interactions, we helped to explain some hidden interactions, requiring
key and mouse combinations. We didn't restrict our inspection to default interactions: we saw
all interactions except the one concerning mobile devices like PinchZoom or PinchRotate
as we will review them in Chapter 10, OpenLayers Goes Mobile.

Now, we will dive into controls. Controls are quite similar to interactions, but they depend
on the DOM element. We will look at all the available controls in the coming chapter. This
chapter will also help you to understand not only the purpose, but also the ways of creating
custom controls.

[2891]

Taking Control of Controls

So far, we've taken for granted that we will zoom in/out when clicking on plus
or minus buttons. We haven't discussed much about what actually is behind the
map interaction when you use buttons. The ol . control namespace contains
numerous classes that make our maps interactive, in particular to configure
behavior on your map. There are many built-in controls, each with their own
unique functions. You can easily customize them with a CSS style or other
parameters. Contrary to interactions, controls depend on DOM elements and
not keyboard and mouse input only.

In this chapter, we'll cover the following topics:

* 6 o o

What controls are
Adding controls to a map
Presenting all o1 .control classes and their organization

Inspect how to make your own control

Taking Control of Controls

Introducing controls

Controls allow us to interact with our map. They also allow us to display extra information,
such as displaying a scale bar with the o1 .control.ScaleLine control. Before, in

the previous generation of Openlayers, version 2.x, some controls did not have a visual
appearance. Nowadays, those elements, which do not rely on a DOM element, are called
interactions like for example, touch interactions on mobiles. You can have as many controls
on your map as you'd like. There are even some cases where you may not want any
controls—such as embedding an unmovable map in a page, or showing a static map

for printing.

Using controls in OpenlLayers

Most controls are added directly to the map, such as the ol . control . Zoom control.
By default, you can now attach a control to other elements such as the <div> tag outside
the map.

Adding controls to your map

There are two methods for adding controls to a map:

¢ You can pass in a JavaScript array of ol .control . * objects when you instantiate
the map object.

¢ You can add controls to the map object after it has been created by calling the map
function's addcontrol (), method passing in a single control object. If you need
to pass more than one control, just loop using an array of control objects, using the
same addControl ().

When you create your map, three control objects are added automatically. These three
controls are as follows:

¢ ol.control.Attribution: Thisis responsible for displaying credits for producers
of map data sources or tiles providers like for OpenStreetMap. By default, the
control is located in the bottom-right corner.

¢ ol.control.Zoom: This is responsible for showing the plus and minus buttons in
the top-left corner. Those buttons when clicking help to do a zoom in for plus and a
zoom out for minus.

¢ ol.control.Rotate: Thisis responsible for resetting the map rotation to 0.

12921

Chapter 9

Since these controls are added without us explicitly adding them, how do we choose to not
include them? The simplest way is to pass an empty array or null to the control's property
when instantiating the map. Another way to change default controls is to explicitly set the
options for each of them to true or false when you call the ol .controls.defaults
function in the controls property of the ol . Map object.

Let's review this use case before going further.

Time for action - starting with the default controls

Follow these steps to start manipulating the default controls:

1.

Create an HTML page using the usual template referring to the Openlayers 3
JavaScript library and its default CSS, as shown here:

<ldoctype htmls>
<html>
<head>
<titlesDefault controls</title>
<link rel="stylesheet" href="../assets/o0l3/css/ol.css"
type="text/css">
<link rel="stylesheet" href="../assets/css/samples.css"
type="text/css" />
</head>
<body>
<div id="map" class="map"></div>
<script src="../assets/ol3/0l.js"></script>
<scripts>
</script>
</body>
</html>

Now, between the empty <script> </script> add the declaration to the map:

var osm_default = new ol.layer.Tile ({
source: new ol.source.OSM()
1)
var map = new ol.Map ({
layers: [osm _default],
target: 'map',
view: new ol.View({

center: ol.proj.transform([-1.81185, 52.443141], 'EPSG:4326',
'EPSG:3857"'),

zoom: 6 })

3N

12931

Taking Control of Controls

3.

Try to open your HTML page. Don't forget to keep the good practice to put your
page on a server or by using python -m SimpleHTTPServer or node index.
js (if you are using the code from the book samples) because some sources are
sensitive to the URL context (or you will get a blank map).

4.

Now, change the previous page by adding the required options to o1 .control.
defaults to cancel all default controls parameters in the map constructor. See the
following code to understand this:

var map = new ol.Map({ layers: [osm default],
controls: ol.control.defaults ({
zoom: false,
attribution: false,
rotate: false
b
3

Chapter 9

5. Reload your HTML page in the browser and you will see a result like the following:
Londondemy/Demy =
Carlisle
Burham
Belfast
Armagh
Lancaster R“)‘J“
. Kimoston
Preston Lo upon Hull
Duibli Manchester
X ublin 3
Galway Bangor Chester Lincoin s warsen
Mottingham
Emimy
Limerick Leicestar wgh Norwich
W Amsterdam
Waterford Worcester Camibridge Eredhd
- “Amhe
Cork 5t David's Glougester ROtEstom gl
Breda

Caraff Ek London e o G

af 4 enio

Canterbury Brugge —+ Altwerpen
Salishury

J [&]

S Paortsmioiith Bruxelles’: B"USSG"_ | Aachen

Biymouth Narriur
Tnao
Amiens
Caan Reims

What's just happened?

Let's examine the interesting part of the code:

controls: ol.control.defaults ({

zoom: false,

attribution: false,

rotate: false

3]

To manage default controls, we must use a parameter in the ol .control.defaults
function. This first parameter is an object that contains a key referring to the default controls.
You can set their value to false to disable the corresponding control.

This object also supports other keys to set options for each default controls. These keys are
attributionOptions, rotateOptions, and zoomControlOptions. We mentioned
them here but we will see them later when reviewing each control individually.

[2951]

Taking Control of Controls

The following table, an excerpt from the APl documentation of ol .control.defaults,
summarizes these properties:

Name Type Description
With this property, you can set
attribution boolean | undefined whether or not the attribution control

should be displayed, with the values
trueor false.

attributionOptions

olx.control.
AttributionOptions
| undefined

If the attribution control is used, you
can pass these attribution options for
the control.

This property sets the rotate controls

rotate boolean | undefined | if you want to display the rotate
control with true or false.
olx.control. If the rotate control is used, you can
rotateOptions RotateOptions | pass these rotate options for the
undefined control.
This property sets the zoom if you
zoom boolean | undefined | want to display the zoom control with
trueor false.
olx.control. If the zoom control is used, you can
zoomOptions ZoomOptions | pass these zoom options for the the
undefined control.

After this long introduction to manipulation of controls, let's review all of them step by step.
You can refer to the following diagram for a quick overview of the class hierarchy:

Control

ZoomToExtent ZoomSlider

Zoom ScaleLine Rotate

MousePosition FullScreen Attribution

As you can see, all o1 .control. * classes inherit from o1 .control.Control.

So, first let's see this ol .control.Control.

[2961]

Chapter 9

The ol.control.Control class

The ol .control.Control is the parent class of all the available controls. It inherits from
ol.0Object, an abstract class that also inherits from ol . Observable, a convenient class to
provide and manage listeners.

This object is responsible for the common options that all controls contain. All controls
inherit from ol .control.Control, and it's exactly the same for the options. To
understand its properties, just review how a control can be described.

"A control is a DOM element related to the map and that can be attached to an
existing DOM element."

If you refer to the following table. The DOM element is the element property, the place
that contains the look for the control. The target property is the place where you add the
element into the DOM.

Name Type Description
This element is the control's container element.
Element | . o - ;
element , This only needs to be specified if you're
undefined .
developing a custom control.
Element | string | | Specify a target if you want the control to be
target \ . o
undefined rendered outside of the map's viewport.

Never forget that it is useful to know ol .control.Control to understand its subclasses,
but you never directly use it. You reuse this class only if you need to create your own control
but it's not the time for this. First, we need to study controls provided by the Openlayers 3
library, which will be explained in the following sections.

The ol.control.Attribution control

The ol.control.Attribution control is not very new. We are already using it implicitly
since we used the ol .1ayer.0SM class in Chapter 1, Getting Started with OpenlLayers.

Attribution options

These are the options concerning the ol .control .Attribution control.

2971

Taking Control of Controls

You can see all properties you can set for the control. You should be aware that those
properties are considered as experimental in the Openlayers 3 release.

Name Type Description

string | This property sets the CSS class name for the control. The
className ; . . .

undefined default valueis ol-attribution.

Element | This option sets the target to the DOM element where you
target . .

undefined want to display your control.

This specifies whether attributions can be collapsed. If you
. boolean | |
collapsible undefined use an OSM source, this should be set to false—see OSM
Copyright. The default value is true.

boolean | This specifies whether attributions should be collapsed at
collapsed . .

undefined startup. The default value is true.

. string | This is the text label to use for the button tip. The default

tipLabel

undefined valueis Attributions.

string | This is the text label to use for the collapsed attributions
label ; ..

undefined button. The default value is 1.

string | This is the text label to use for the expanded attributions
collapseLabel .)

undefined button. The default value is ».

We will discover the way to customize it in the following section.

Time for action - changing the default attribution styles

Attributions, as a reminder, are the way to mention credits for layers sources that reference
source of the tiles and/or data. The ol . control .Attribution control is dedicated for this.

1. First, copy the example dedicated to the defaults controls in a new file.

2. Next, change the ol .control.defaults options in the controls property of the
map, and also set 1ogo options to false at the ol .Map level:

logo:

false

controls: ol.control.defaults ({

attributionOptions:

b
1

3. Open your browser (we suppose you are using Google Chrome).

4. Now, addinattributionOptions to the following content and reload the page:

attributionOptions:

className:

b

'myCustomClass'

[298]

Chapter 9

5. Use the Chrome Developers tools to find the element with myCustomClass to try
to understand the effect of the className option in attributionOptions.

6. Now, again add a new property in attributionOptions:

attributionOptions:
className: 'myCustomClass',
target: document.getElementById('myattribution'),

b

7. Add also in the HTML after the <div id="map" class="map"> </divsthe
following content:

<div id="myattribution"s></div>

8. Reload the HTML page and you will see an image like the one that follows:

Burham
Bellast
Armagh
Lancaster Wl
| Kingston
Preston’®. . Leed il
Dubli Manchester
uphin
Galway Bangor Chester. Lincoln Leeuvwarden,
Mattingham
iy . Emmen
Limerick Leicester. it Nowrwich
ugh
- Amsterdam
Waterfard Al Catrioe i Erschede]
Cork 5t David's GloLcEsTer Boftss:tam L
Bred,
caraff London R A
5 Venlo
Cantertury Enigge - Antwerpen
salisbury
Bruxelles'’- Brussel a
Eohe Posmouth JAachen
Plyrnouth Ha
Trure.
Armiens.
i by & . i 2
» Tiles © OpenStreetMap contributors, CC BY-SA
» Data © OpenStreetMap contributors, ODbL

What just happened?

We first introduced you to the className property. This enables you to change the default
class name for the control. Then, you can customize your control with CSS according to this
new class name. You may have noticed that, in the first case, you were unable to see the
content in the browser, but only in the debugger because the element was always attached
to the map element with its child, the <div class="ol-viewport" ...> tag.

[299]

Taking Control of Controls

With the second case, we showed you the purpose of the target property: you can tell the
control where you want to attach the control. So, you need to use a DOM selector such as
document .getElementById('myattribution').

With this action, you might have seen that the control is now well separated from the
<div id="map" class="map"></div> HTML.

It is now easy to customize as per your wish and you can display credits outside of the map:
it can be useful when you use a lot of layers and don't want to display too much information.

The ol.control.Zoom control

The ol.control.Zoom control displays a plus and minus element to zoom in and zoom out. It is
one of the default controls.

The zoom options are similar to both previous controls but we also have some other
properties such as a delta property. The other specific properties are only to change text
for the control or when the mouse hovers them.

We will not cover those options as they are quite straightforward to understand but advise
you to play with it within the context of OpenStreetMap. If you remember, OpenStreetMap
behavior for tiles in Chapter 1, Getting Started with OpenLayers (each zoom multiply zoom
by 2), you will also remember how to play with the delta property. For each click on the
control, your delta is 1. Change this property to a value, either 2 or 4, and try to click on the
plus (+) and minus (-) buttons and see the change.

You can find the properties list for the control as follows:

Name Type Description
duration number | This property sets the animation duration in
undefined milliseconds. The default value is 250.
string | This property sets the CSS class name for the control.
className ; .
undefined The default value is 01 - zoom.
string | This is the text label to use for the zoom in button. The
zoomInLabel ; .
undefined default value is +.
zoomOutLabel Strll’lg | This is the text Iab.el to use for the zoom out button.
undefined The default value is -.
tri . o
zoomInTipLabel string | This is the tex.t label to L.Jse for the button tip. The
undefined default value is Zoom in.
ZoomOuUtTipLabel strlng | This is the texF label to use for the button tip. The
undefined default value is Zoom out.

Chapter 9

Name Type Description
number |
delt , i i ick.
elta undefined The zoom delta is applied on each click
Element | This option sets the target, to the DOM element where
target . .
undefined you want to display your control.

The ol.control.Rotate control

The ol.control.Rotate control is not really obvious to understand. As OpenLayers 3 targets
mobile browsers or applications, it can be useful to reset the rotation when you choose to
make an interactive map that relies on the compass from your device. Sometimes, you want
to reset the north direction for readability for end users. In fact, this control is a default one.

You can make it appear by reopening the previous example, then click and drag while

pressing down both Shift and Alt keys. You will see a result like the following:
TN
B &
‘:(} ‘:.'.
NSy :
- & o
£ & £2;
2 £ e
& R) o
& ; _‘? . : Qﬁt‘] &
;" -;"} F o \:{ +c'
o oF & -3 o, R,
“ 9 & = < Q\Q'
§
7 4 # s Sl _
s It o & o
,."s & 2 5 L e ..:A? B
) By o (g ol &
. 2 £ (‘C'P Lol
___-“-‘ o+ \ L
o L.l"
A, :r‘} & £ _JL 5
d{r ' of ik‘.' y.i 5 Pt
A & B = QQ
“ 3
o
3 & C
$ #
%) F
3 .‘: "
4 §
c.'\\"g" ‘"“.—: n o.‘-é:
& & ¥
5 B &
& &
F

[3011

Taking Control of Controls

Rotate options

Let me remind you that you will find the options available to customize the Rotate control:

Name Type Description
className |string | undefined This p.roperty sets the CSS class name. The default
valueis ol-rotate.
This property sets the text label to use for the
1abel string | undefined rotate b}]tton. The default is Uppe.r arrow key,
as seen in the upper-right corner in the previous
screenshot.
tipLabel string | undefined This prqperty sets the text Ia‘bel to use for the .
rotate tip. The default value is Reset rotation.
duration number | undefined Th.IS. property sets the anlmatlon duration in
milliseconds. The default value is 250.
. boolean | With this, you can hide the control when rotation is
autoHide . .
undefined 0. The default value is true.
target Element | Thi ty sets the target for the control
g undefined is property sets the target for the control.

You can play around with these options; for example, you can always display North with
an arrow like for paper maps with autoHide. It's also possible, if your application is not
targeting English-speaking users, to change the tipLabel.

The ol.control.FullScreen control

With this control, you can easily switch to the fullscreen mode that relies on HTMLS5. Also,
for this reason, it will work better with a modern browser that supports this feature, such as
Google Chrome, Firefox, and so on. Typing Esc will take you out from this mode.

This is the first control we've reviewed that is a not a default one. If you need it, you can
use the ol.Collection returned by the ol.control.defaults method and with it the
ol.Collection extend method, add the control using an array to the collection, when
instantiating o1 . Map with the bare minimum (no options):

controls: ol.control.defaults () .extend([new ol.control.FullScreen()]),

As a reminder, supposing map is the ol . Map object name, you can also add the control with
the following line:

map.addControl (new ol.control.FullScreen()) ;

3021

Chapter 9

These FullScreen are options for the FullScreen control. Except for the keys property
that depends on latest support in browsers and tipLabel to set the tip text on the button,
the properties are the usual ones, the ones inherited from ol . control.Control. All are
considered as experimental.

Name Type Description

string | This property sets the CSS class name for the control. The
className ; .

undefined default valueis o1-full-screen.
tipLabel string | This property sets the next label to use for the button tip.

undefined The default value is Toggle full-screen.

boolean |)
keys undefined This property grants full keyboard access.

Element | This option sets the target, to the DOM element where
target

undefined you want to display your control.

The ol.control.MousePosition control

The ol .control.MousePosition control helps you to determine the coordinates where
your mouse is pointing on the map.

One way to do this is by instantiating the element with the syntax that follows:

controls: ol.control.defaults() .extend([
new ol.control.MousePosition ({
key: value,

3]
1),

The object into the control constructor is optional.

MousePosition options

The MousePosition options are the available properties you pass to the control
ol.control .MousePosition. They help customize the behavior of the control such
as coordinates formatting or units.

Name Type Description

This property sets the CSS class name
className string | undefined | for the control. The default value is o1 -
mouse-position.

Taking Control of Controls

Name Type Description
ol.Coordinate
coordinateFormat | FormatType | This property sets the coordinate format.
undefined
projection ol.ProjectionLike ThIS propert.y sets 'fhe prpjecthn and the
library uses it for displaying units.
oot Element | Tlhls opttlonhsets the targte'i, tZ'thT DOM
g undefined element where you want to display your

control.

This property sets the markup for
undefinedHTML string | undefined | undefined coordinates. The default value is
an empty string.

We will review these options with an example.

Time for action - finding your mouse position

Follow these steps to get started with the mouse position behavior:

1. Reuse the usual HTML for the chapter by copying it in a new file.

2. Now, edit the file to be sure that you create an HTML element with an ID
myposition such as <div id="myposition"s</div>.

3. Declare a JavaScript variable that references the control:
var mousePosition = new ol.control.MousePosition ({
coordinateFormat: ol.coordinate.createStringXY(2),
projection: 'EPSG:4326',
target: document.getElementById('myposition'),
undefinedHTML: ' '

3N

4. Add the control to the map without forgetting that this operation is only available
after you create the map:

map .addControl (mousePosition) ;

5. See the result in your browser and hover with your mouse the map.

6. Go back in your HTML code and add the following code in your CSS file, assets/
css/samples.css

#myposition > .ol-mouse-position {
position: relative;
margin-left: 20px;
font-size: 30px;

13041

Chapter 9

7. Reload your page and you will see a screenshot like the following:

Landondemy/Demy

Carlisle

Durham
Bellast
‘Armagh
Lancaster Ripan
- Leeds Ll
Preston Lpon Hull
A Manchester
X ublin \
Galway Bangor Chester. Lincoln Leeuwarten
Nottingham
. Emmen
Limerick Leinester. wigh Morwich
Amsterdam
Waterford Weroerr Cambridge - rechede.
Arnihe i
Cork St David's Goucester L tt-ol” ek £
Carciff Londo e, .
Bath = Venlo
Cankerbary Brugge. - ARLWErpEn L
Salisbury
Kailn
QMEMK lles’= I
S Portsmauth Bruxelles; Brussel. Ja e
Biyrmouth Narmur »
Truro,
S Amiens b
iy Reims o E%
0.18,51.41
-
What just happened?

Here, we choose to use most of the options of the controls.

The first one, coordinateFormat, accepts an ol.CoordinateFormatType. It simply
means that when you retrieve the coordinates, you may want to change them to Degrees
Minutes Seconds notation or you may want to change the precision you display in the

HTML file.

The two relevant options to set here are:

¢ ol.coordinate.createStringXY (2): Thisis where 2 is the precision

you expect

¢ ol.coordinate.toStringHDMS: This is useful only if you use degrees units
and the result will look like 51° 30’ 33" N "8°49' 22" E"

Be careful to not set ol . coordinate.toStringHDMS () instead; it's a bit surprising, but

you need to use the class itself.

Taking Control of Controls

The projection option helps you choose the coordinates you want. You may have forgotten
but each projection has a defined unit system (and subunits). For example, the EPSG:4326
projection returns units in a decimal degree. It's what you see in the bottom of the previous
image. The undefinedHTML option just sets what you want to display when you are not
hovering over the map. You can confirm availability by searching in the Chrome
debugger Elements panel, the string in precedent example.

The target option and the CSS part were only to remind you of previous use cases.

We've never really insist until now, but you can also set the parameters after controls
creation. In fact, for each property, you always have a setter and a getter.

Just open your browser with the example, type in the console the following line, and hover
over the map to understand:

mousePosition.setProjection (ol.proj.get ('EPSG:3857"'))

As you see, you can really explore the methods available in the o1 . control .MousePosition
control. We really encourage you to play in the console using auto completion: you will see that
you can really find useful things that may remind you of other examples. You should also focus
on the Fires: part of the APl documentation at http://openlayers.org/en/v3.0.0/
apidoc/ol.control.MousePosition.html because it will help you to apply your events
knowledge in the context of controls and here, the mousePosition control.

The ol.control.Scaleline control

If you remember, we already introduced you to this control in the Chapter 7, Wrapping
Our Heads Around Projections at a functional level.

The purpose of ol .control.ScaleLine is to show a scale line bar to give people
an overview of scale and distance. Be aware that it is only useful for projection that
keeps distances.

You just need to add it to the map with something such as map.addControl (new
ol.control.ScaleLine ()) if you don't use the options.

Scaleline options

The following is the options list you can set for the scale line control:

Name Type Description

This property sets the CSS class name for the

className | string | undefined . ,
control. The default value is 01 -scale-1line.

minWidth number | undefined This option sets the minimum width in pixels.

http://openlayers.org/en/v3.0.0/apidoc/ol.control.MousePosition.html
http://openlayers.org/en/v3.0.0/apidoc/ol.control.MousePosition.html

Chapter 9

Name Type Description
target Element | undefined This option sets the t.arget, to the DOM element
where you want to display your control.
ol.control. This property sets the units you want to use in
units ScaleLineUnits | your scale line. The supported values are degrees,
undefined imperial, nautical, metric, and US.

Have a go hero - discovering ol.control.Scaleline specific parameters

Although this book is about introducing the OpenLayers 3 library, we suppose that if you
are reading this, it also means you want to understand what you are doing. So, let's give you
some tasks to do by yourself:

Reuse the usual chapter code.

Set the minwidth property to a value you want in pixels.

Zoom in, zoom out, and pan to see the control behavior.

* & o o

Change units in the scale line (the ol .control.ScaleLineUnits description is
available in the following content). When you want to display your map legend using
others units, you need to know the available units. You can find them using the table
that follows, extracted from the ol .control.ScaleLineUnits type definitionsin
the OpenlLayers 3 API :

Name Type Default

This property returns the the string degrees required for internal
library units changes. Check out Wikipedia to learn more on this
unit (decimal degree) at http://en.wikipedia.org/
wiki/Decimal degrees.

degrees | string

This property is similar to previous property but returns the string
imperial | string | imperial. Check out Wikipedia to learn more about the unit at
http://en.wikipedia.org/wiki/Imperial units.

This property is similar to the previous property but returns the
string nautical. It refers to nautical miles. Check out Wikipedia for
more information at http://en.wikipedia.org/wiki/
Nautical mile.

nautical | string

This property is similar to the previous property, but returns the
string metric that refers to metre or meter. Check out Wikipedia
for an historyat http://en.wikipedia.org/wiki/
Metre.

metric string

This property is similar to the previous property but returns the
string US. It refers to US units. Check out Wikipedia for more
information at http://en.wikipedia.org/wiki/
United States customary units.

us string

[3071

http://en.wikipedia.org/wiki/Decimal_degrees
http://en.wikipedia.org/wiki/Decimal_degrees
http://en.wikipedia.org/wiki/Imperial_units
http://en.wikipedia.org/wiki/Nautical_mile
http://en.wikipedia.org/wiki/Nautical_mile
http://en.wikipedia.org/wiki/Metre
http://en.wikipedia.org/wiki/Metre
http://en.wikipedia.org/wiki/United_States_customary_units
http://en.wikipedia.org/wiki/United_States_customary_units

Taking Control of Controls

Inspect the HTML element using the debugger
What CSS rules apply to the elements within the DOM element control

Tweak the control color

* & o o

Change the scale line position with CSS, the target property or both of them

The ol.control.ZoomsSlider control

The ol .control.ZoomSlider control helps you to see your zoom levels using a slider.
We advise you to go to the official example at http://openlayers.org/en/v3.0.0/
examples/zoomslider.html because it's well illustrated for CSS styling. You can display
the slider horizontally or vertically for the example illustrated in the following screenshot:

Default style Placed between zoom controls Horizontal and completely re-styled

The following content presents the available options/properties in ol .control.
ZoomSlider

Name Type Description
strin
className g | This property sets the class name for the control.
undefined
, number | .)) . .
maxResolution . This option defines the maximum resolution.
undefined
, , number | . . - .
minResolution . This option sets the minimum resolution.
undefined

http://openlayers.org/en/v3.0.0/examples/zoomslider.html
http://openlayers.org/en/v3.0.0/examples/zoomslider.html

Chapter 9

You can manage and try to better understand resolutions by using the getResolution ()
function at the view level (with map.getview()).

The ol.control.ZoomToExtent control

The ol.control.ZoomToExtent control permits you to create a button to go to a
particular extent.

In a real context, it may help you to get a map with a zoom on a country, and using this
control, you will be able to zoom directly on a particular city. In another case, you may want
to go back to the initial extent of your map, and this control is also a way to address this
requirement.

Time for action - configuring ZoomToExtent and manipulate

In order to learn better, let's try another example:

1. Copy the HTML code from other examples.

2. Set the center and zoom of the map at loading to different values from the usual
one. You can get values reusing the view with map.getview () .getZoom() and
map.getView() .getCenter ().

3. Create a control named zoomToExtentControl:

var zoomToExtentControl = new ol.control.ZoomToExtent ({

extent: [-11243808.051695308, 4406397.202710291,
-4561377.290892059, 6852382.107835932]

3N

4. Reuse it with the code that follows, after your map instantiation:

addControl (zoomToExtentControl) ;

5. Find the control within the controls attached to the map:

var controls = map.getControls() ;
var attributionControl;
controls.forEach (function (el) {
if (el instanceof ol.control.Attribution) {
attributionControl = el;

Taking Control of Controls

6. Remove the ol.control.Attribution control using the reference you retrieve
and supposing map reference the ol .Map instance.

map .removeControl (attributionControl) ;

7. Just see the result centered on Canada:

(m il 1 [+]

What just happened?

Here, we've just seen an example to learn how to manage the ol . control . ZoomToExtent
control. The most interesting part is related to the code that enables you to find your control
reference without having an object control reference. For this, we use the instanceof

JavaScript function.

Now, we also know how to list controls for a map using the map.getControls () function,
and also loop through it using the forEach method from o1 .Collection.

3101

Chapter 9

Finally, we discovered how to remove a control when for any reason, we needed to delete it
afterward with the map . removeControl () function. You also have to understand that for
learning purposes we don't check everything. For example, imagine there were more than
one ol.control.Attribution control. A good exercise can be to change code to manage
this case.

LloomToExtent options
These properties set the options for the ol . control . ZoomToExtent control.
Name Type Description
className string | undefined | This property sets the class name for the control.
target Element | This option sets the target to the DOM element
undefined where you want to display your control.
tipLabel string | undefined This is the text Iab_el to be used for the button tip.
The default value is Zoom to extent.
ol.Extent | This d?flnes the ex.te.nt you can zoom..lf
extent . undefined, the validity extent of the view
undefined o
projection is used.

Now, we got an overview of controls, let's see how to make our own ones, for specific purposes.

Creating a custom control

You may wonder "why do we need to learn that?"
Some points to explain this requirement are:

Reusing components instead of using a boilerplate each time

Correctly overlaying Ul buttons on the top of the map, particularly for a full
screen case

¢ Unifying Ul manipulation because based on the same parent class, for example,
adding a control using the various Map class methods is more easy than managing
Openlayers 3 and non-Openlayers 3 objects separately

Let's see how we can do it.

(3111

Taking Control of Controls

Time for action - extending ol.control.Control to make your

own control

Let's get started. Contrary to most examples, it will need more code than usual. So, to keep
things simple, we will explain how to build the sample by retrieving the various code files
instead of inlining it. After these operations, we will focus on the important parts of the code
to understand them:

1. Gotothe samples directory and retrieve all the css class with the export -geojson
string from assets/css/samples.css and copy paste them in your own samples.
css file. Next, retrieve a new JavaScript file from https://github.com/eligrey/
FileSaver.js/blob/master/FileSaver.js into a new subdirectory, assets/
js.

2. If you don't already have it from Chapter 8, Interacting with Your Map, go to
download the features.geojson file from assets/data/features.geojson,
within the book samples.

3. Then, retrieve the code from chapter09/23600S_09 06 custom control.html.

4. Finally, run node index.js, open your browser, and draw something. Push on the
new button named G just below the minus plus buttons and you can download a file.

5. You should see an example similar to the following screenshot:

Geometry type |Point v

[3121

https://github.com/eligrey/FileSaver.js/blob/master/FileSaver.js
https://github.com/eligrey/FileSaver.js/blob/master/FileSaver.js

Chapter 9

What just happened?

We will just highlight the most important parts.

At a functional level, we reused ol . interaction.Draw with the possibility to switch
between drawing points, lines, and polygons. We removed the server-side dependency for
saving the efforts for the same.

Instead we introduced a new component, app . generateGeoJSONControl, with the
following snippet:

controls: ol.control.defaults () .extend(
new app.generateGeoJSONControl({source: source})

1),

This component reuses the declared ol . source . GeoJSON vector source used to get a
GeolSON content with the source: source option.

This new control is created by declaring a namespace with:

window.app = {};
var app = window.app;

Then, we declared the function with app . generateGeoJSONControl = function (opt
options) { and directly prepared to get opt options with the following line of code:

var options = opt options || {};
We made an anchor DOM element, then a temporary variable with var this = this; to
be able to keep the scope for the getGeoJSON function.

Within this named function, we stopped a default behavior to not get the URL changed and
started to manipulate the features from the source to transform them to a GeoJSON string.
With a new download function, we made it possible to save the text content in a file.

This declaration is not the call; so, we needed to bind the function to event click and
touchstart for desktop and mobiles experiences on the anchor DOM element with:

anchor.addEventListener('click', getGeoJSON, false);
anchor.addEventListener ('touchstart', getGeoJSON, false);

Near the end, we added a new <div> tag and appended anchor as a child.

We made an interesting statement by using a call function from ol .control.Control:

ol.control.Control.call(this, {
element: element,
target: options.target

3N

[3131

Taking Control of Controls

It enables us to reuse the option from the parent control and to set them, for example,
target and element, the newly created <div> tag.

Making a call was just to call the function of the parent class; so, after the end of the
app.generateGeoJdSONControl function, we explicitly used a special declaration
ol.inherits to apply the ol.control.Control parent methods and properties
to our custom class:

ol.inherits (app.generateGeoJSONControl, ol.control.Control) ;

Q1. You need to stop the zoom in / zoom out behavior on the map. In the ol . Map object,
what do you need to change in the options and why?

1. The interactions property.
2. The controls property.
3. Both controls and interactions properties.

Q2. If you want to use panning on your map, what do you need to change in ol .Map?

1. The interactions property.
2. The controls property.

3. Both controls and interactions properties.

Q3. Assuming | have made my own control named mycustomControl and | declare the
following within o1 . Map:

controls: ol.control.defaults () .extend ([
mycustomControl ({source: source})

1)
What will happen and why?

1. It will work.
2. It will fail.

(3141

Chapter 9

In this chapter, we discovered more about the controls. Up untill now, we've used it without
really understanding their purpose—what can they do for us?

Firstly, we organized our thoughts using inheritance schema. In fact, it's more complicated,
but for a beginner book, it was quite enough. We didn't go too deep; we used and reviewed
existing components but didn't focus a lot on creating new ones. You don't really need to use
augmented controls in most cases. When you need to make a new control, don't hesitate to
review the behavior from the various interaction: it's simple to combine them with buttons.

After this review of how to use controls with your map using the available components

from API, it's time to dive into OpenLayers support for mobile. You will learn how
Openlayers touch events work but also how to reuse device geolocation and orientation.
Using the mobile context, we will review some HTML 5 features that can help with improving
application experiences. This overview will cover web mapping sites such as native
applications for mobiles.

[315]

10

Openlayers Goes Mohile

The rise in popularity of mobile devices—smart phones and tablets—has
changed the landscape of web development. Now, users expect our websites
and applications to work on their mobile devices' smaller screens, respond
to touchscreen interfaces and know where they are via integrated GPS.
OpenLayers 3 provides some great features targeting mobile platforms,

and we will highlight those in this chapter. But, developing mobile-friendly
web applications has its challenges too, so we'll look at how to debug web
applications on mobile devices and at some strategies to use when mobile
devices lose their network connections.

In this chapter, we will cover the following topics:

® 6 6 & 6 o o

Touch support in OpenlLayers

Using ol.Geolocation to get the location of a mobile device

Using ol.DeviceOrientation to track orientation of a mobile device
Debugging mobile web applications on Android and iOS

Using HTML5 ApplicationCache to run web applications offline
Using HTMLS5 Storage to save data for offline use

Going native with HTML5 apps

OpenlLayers Goes Mobile

Touch support in OpenLayers

One of the biggest differences between desktop and mobile web applications is how we
interact with an application. On a desktop or laptop computer, we have a keyboard and

a mouse or trackpad, and we point and click or click and drag things. On mobile devices
though, there is no keyboard and no mouse pointer. Instead, we use our fingers, and we do
things like touch, drag, and tap. We can also do more complicated things, such as pinching
two fingers together or rotating two fingers, and we usually expect this to do something in
an application. In mapping applications on touch devices, for instance, we might expect that
dragging a finger will pan the map and pinching two fingers will zoom in or out.

Openlayers provides touch support for us in the form of interactions—recall that we talked
about interactions in Chapter 8, Interacting with Your Map. The touch-specific interactions
are as follows:

¢ ol.interaction.DragPan: This pans the map in response to one or more fingers
being dragged across the screen

¢ ol.interaction.PinchRotate: This rotates the map in response to two fingers
twisting in a circular motion on the screen

¢ ol.interaction.PinchZoom: This zooms the map in or out in response to two
fingers pinching in or out on the screen

These interactions are created by default and enabled on devices that support touch events.
Let's see them in action!

Because we'll view the examples in this chapter on a mobile device with a browser that does
not have direct access to your development machine, we'll need to serve them through

a web server and access them using the HTTP protocol. Your computer also needs to be
connected to the same Local Area Network (LAN) as your mobile device.

We've already been using a web server with the samples using the URLhttp://localhost/.
This URL uses the name localhost, a special name that tells the web browser to connect

to the local machine. This is great for your desktop browser, but it isn't going to work for our
mobile device. You'll need to find the IP address of your computer on the LAN.

On Windows, open a command prompt (cmd . exe) and type ipconfig.

3181

Chapter 10

You should see something like the following screenshot:

Command Prompt

Microsoft Windows XP [Version 5.1.26H01]
(C> Copyright 1985-28001 Microsoft Corp.

C:“\Documents and Settings“pspencer>ipconfig

Windows IFP Configuration

Ethernet adapter Local Area Connection 2:

Connection—specific DNE Suffix localdomain

IP Address. - . . -« - - . - . 192.168.75.131

Subnet Maszsk 255.255.255.8

Default Gateway 192 .168.75.2
Ethernet adapter Bluetooth Metwork Connection:

Media State . . . - - & Media disconnected

C:“Documents and Settings:pspencer’

The ipconfig command will output some information about your network connections;
the actual output will be different depending on your setup and how you are connected to
the network, but you are looking for the marked line in the following screenshot:

IP Address. . t 192.168.75.131

Write down the IP address for future reference.

On 0OSX, you can find your IP address from System Preferences. Perform the following steps
to find your IP address:

1. From the Apple menu, pull down System Preferences

2. Click on the Network preference pane

[319]

OpenlLayers Goes Mobile

3. Your IP address will be visible on the right-hand side, as indicated in the following

screenshot:
eeon Network
< | > || ShowaAll | (Q)
Location: | Automatic S —]
Status: Connected | Turn Wi-Fi Off |
pnet and has the IP
@ Android 2 (% o
Not Configured
Android R oS , s
=] Not Configured % . Network Name: | paganet + |
Internal Modem (} & (¥ Ask to join new networks
Not Configured Known networks will be joined autamatically.
Eth If no known networks are available, you will
thernet be asked before joining a new network.
e Not Connected <n°>
FireWire
e Not Connected =
iPhone USB =
e Not Connected u
o Bluetooth PAN @
No IP Address
i T==n7 T Show Wi-Fi status in menu bar ~ Advanced... ()
L+ | =[] | o | Advanced... | (?
[_ﬂ Click the lock to prevent further changes. | Assist me... | Revert Apply

Finding your IP address on Linux

On Linux, open a terminal window and use the i fconfig command to get your IP address.
If you are connecting using WIFI, type:

ifconfig wlanO
If you are connecting using Ethernet (cable), type:

ifconfig ethO

[320]

Chapter 10

You will see output like the following screenshot:

You should see the IP address between inet addr and Bcast.

Testing your IP address

Before we continue, let's make sure that the IP address is correct. Replace localhost in
your browser address bar with your IP address, and make sure that the page loads the same
way. For instance, if you determined that your IP address is 192.168.0.1, then the URL
would start with http://192.168.0.1/. Next, open the web browser on your mobile
device and enter the same test URL. You should see that page opens in your mobile device's
web browser.

If you are having problems with this step, make sure that WIFI is enabled on your mobile
device and that it is connecting to the same network as your development machine.

Time for action - go mobhile!

Now, we are ready to test our new setup with a fully mobile-capable OpenlLayers application.
As you'll see in the following steps, there's nothing special you need to do with OpenLayers
itself to work in a mobile environment:

1. First, let's create a new web page for this chapter as there are some differences
needed to support mobile devices that we haven't seen before. Add the following to
a new file in your text editor, and save it as mobile.html:

<ldoctype htmls>
<html>
<head>
<title>Mobile Example</titles>

<meta name="viewport" content="width=device-width, initial-
scale=1.0, maximum-scale=1.0, user-scalable=no">

13211

OpenlLayers Goes Mobile

<link rel="stylesheet" href="../assets/ol3/ol.css" type="text/

css" />
<link rel="stylesheet" href="../assets/css/samples.css"

type="text/css" />
</head>

<body>
<div id="map" class="full-map"></div>

<script src="../assets/ol3/ol.js"></script>
<scripts
var layer = new ol.layer.Tile ({
source: new ol.source.OSM()
1)
var london = ol.proj.transform([-0.12755, 51.507222],
'EPSG:4326', 'EPSG:3857"');
var view = new ol.View ({
center: london,
zoom: 6,
3N
var map = new ol.Map ({
target: 'map',
layers: [layer],
view: view
1)
</script>
</body>
</html>

2. Open this page in a web browser on your mobile device. You should see something
like the following screenshot:

13221

Chapter 10

No Service = 4

14 PM

Mobile Examples

192.168.209.8:9000/23¢ &

Ripon

;te[%

4 York
Bragiond

ston upon Hull

Livirpeal Shelield
Asaph .- Lincoln
i Stoke-on-Trent
Lichisia
- Peterborough horwich
Coventry Ely
Worcester Cambridge
Hergtord
T Gloucester
Oodord /5t Albans. /
b 4 y
Cardif gistol London)
|
- Canterbury. &
Salisbury o
Southamplon
nton
petar ol
5 - |

3.

the screen.

What just happened?

1
= Brug
Dunkague

|

NP \
Lillery

Try out the touch interactions by dragging, pinching, and twisting your fingers on

We created an example very similar to the ones we've been using in previous chapters and,
just by loading it on a mobile device, we get new capabilities from OpenLayers' default touch
interactions. We can now pinch to zoom in and out, move two fingers in a circular motion to

rotate the map, and touch drag the map to pan around.

[3231

OpenlLayers Goes Mobile

We made a couple of small changes to the example we used in previous chapters though, so
let's highlight the differences. In the <head> section, we've added a <meta> tag. The <meta>
tag provides information to the web browser rendering the page, its name indicates the type
of information it is providing, and its content is the information or data we want to inform

the browser about. In this case, we've used the viewport <metas tagto provide some
information that mobile web browsers can use to modify how a user interacts with the web
page in a mobile browser. Let's break down the content and explain what it's doing, as follows:

<meta name="viewport" content="width=device-width, initial-scale=1.0,
maximum-scale=1.0, user-scalable=no">

The content is a series of comma-separated key-value pairs formatted as key=value. The
width key indicates how wide the browser's viewport should be. It can be set to a specific
number of pixels or to a predefined value device-width, which indicates that the viewport
should be 100 percent wide. The initial-scale and maximum-scale keys constrain the
mobile browser viewport scale factor, which would allow rendering a page more zoomed-in
than its default. Setting the user-scalable key to no disables zooming the web page in
response to the user performing a pinch gesture. We want the pinch gesture to zoom the
map, not the whole page. We've also changed the class name used on the HTML element
that contains the map from map to full-map. This changes the map element to take up 100
percent of the width and the height of the browser viewport.

The remainder of the example is exactly the same as in previous chapters. In fact, you can
load this example in your normal web browser, and it should function in exactly the same
way as many of the other examples, the only difference being that the map will fill your
browser window.

So, we get touch support in our web mapping application without really having to do
anything at all. But just supporting touch events isn't that exciting. Let's explore what else
Openlayers has to offer on mobile devices, starting with finding our location.

The Geolocation class

Openlayers provides us with the o1 .Geolocation class, which can be used to find the
current location of the user and to track changes in location over time. This class accesses
information provided by web browsers through the HTML 5 Geolocation API.

[3241

Chapter 10

Limitations of the Geolocation class

Before we go any further, it's important to discuss the technology behind the Geolocation
API a little bit to understand its limitations. The location of a device can be determined
by several methods. Typically, we think of the location as being determined by a Global
Positioning System (GPS), but in practice, the location of a device can be determined by
several means, including the following:

¢ Public IP address: Every device that can access the Internet has a public IP address.
Public IP addresses are allocated to various Internet providers in specific blocks, and
so an approximate location for any device can be guessed from its public IP address.
The accuracy of this guess can vary widely and might even identify the location as
being in the wrong city.

¢ Cellular network towers: Every mobile device that connects to the Internet does
so through a wireless cellular network. The device knows which network towers it
is connected to, and since these towers have known locations, the location of the
device can be estimated.

& GPS: A series of geostationary satellites can be used to determine the location of a
device with a high degree of accuracy.

A mobile device can use any of these techniques to determine its location, and the owner of
the device can choose to turn any or all of these methods off, perhaps for privacy reasons or
to conserve battery power.

Now that we know there are limitations, let's create an example using ol .Geolocation,
and then we'll provide some more details about what can be done with it. Our new example
will place a marker on the map at the location reported by the Geolocation API.

Time for action - location, location, location

Let's add another resource to our page, so that we can access some nice icons. In the past,
we might have done this by creating images for each of the icons we wanted and then
adding tags. We are going to try a different approach this time using an iconic font
called Font Awesome. We'll discuss why after the example; for now, just follow these steps:

1. Add the following <1ink> tag to the <heads> tag of your HTML document, just after
the linkto ol .css:

<link href="//netdna.bootstrapcdn.com/font-awesome/3.2.1/css/font-
awesome.css" rel="stylesheet">

[325]

OpenlLayers Goes Mobile

2. Now, add a new <styles section inside the <head> tag:

<style>

.marker {
position: absolute;
width: 24px;
height: 24px;
font-size: 24px;

}

</style>

3. Next, we need to add an HTML element for our marker. Add the following new
<div> tag just after the map <div> tag:

<div class="map"></div>
<div id="location" class="marker icon-flag"s</div>

4. Finally, add the following code at the end of the <script> tag, after all the other
code:

var marker = new ol.Overlay({
element: document.getElementById('location')
P
map .addOverlay (marker) ;
var geolocation = new ol.Geolocation({
tracking: true
P
geolocation.bindTo ('projection', view);
geolocation.bindTo ('position', marker) ;

5. Reload the page in your mobile web browser, and you should see a flag on the map
at your current location. If you don't live near London, England, then you might need
to zoom out and pan to see the marker on the map.

[3261]

Chapter 10

What just happened?

Step 1 adds a link to a stylesheet that defines an iconic font, which we'll discuss in more
detail in just a moment. In step 2, we created a new CSS class called marker that we can
add to the HTML elements we want to be displayed as markers on the map. This class sets
the width and height of the element to be 24 pixels and also the font size, as we are using
an iconic font for our marker images. In step 3, we added the HTML element we want to
use as our marker. We gave it an ID of location, so that we could refer to it later and added
both marker and icon-flag to the class. The marker class makes the element a specific
size, and the icon-flag class indicates which icon to use from our iconic font. In step 4,
the new code we added creates a new ol .0Overlay attached to our marker element and
adds it to the map. Then, we create an instance of ol .Geolocation and tell it we want to
track location updates. Then, we bind the projection property of the geolocation object to
the view's projection and position properties to the marker. The geolocation object
will now automatically convert location updates into the correct projection for our view and
move our marker overlay to our current location.

More about iconic fonts

Iconic fonts are just like any other font, except that the characters in the font are designed as
pictures instead of letters. Like text in a web page, the icons in a font are easily resizable and
adapt to different resolution displays automatically. Mobile devices such as the iPhone 4 and
later sport retina displays have a high pixel density. Normal images on retina devices end up

looking blocky. Icon fonts are automatically rendered at a higher resolution on retina devices
and are crisp and clear.

FontAwesome (http://fortawesome.github.io/Font-Awesome/) is a popular iconic
font (at the time of writing this) and is easy to use in any web application, just by including
a single <1ink> tag and then using icon-specific class names. We'll use a couple more Font
Awesome icons in later examples, but if you are interested in what icons are available, visit
their site and take a look around.

Font Awesome isn't the only choice for an icon font, and there are many tools on the Web to
help you make your own icon fonts from existing vector art.

The Geolocation class in detail

Now that we've seen ol .Geolocation in action, let's take a look at its full capabilities.

13211

http://fortawesome.github.io/Font-Awesome/

OpenlLayers Goes Mobile

When creating an instance of ol .Geolocation, you can provide the following optional
properties to control its initial behavior:

Option

Type

Description

tracking

Boolean

When tracking is turned on (true), the Geolocation API
reports changes in location automatically. The default value
is false.

trackingOptions

Object

The tracking options support three properties:

& enableHighAccuracy: Thisis a Boolean value,
default value of which is false. If true, it asks
the mobile device to provide the highest-accuracy
results. This can result in slower response times and
increased power consumption. However, for many
devices, it is necessary to enable this option to get
any results at all.

& timeout: Thisis a number value, with the default
value of 0. This is the number of milliseconds to wait
for a new position. If 0, there is no timeout. If set to
a value greater than 0 and a position is not obtained
within this time frame, then an error of the type
TIMEOUT is emitted.

& maximumAge: This is a number value, with the
default value of 0. This option allows the device
to return a cached location whose age is no more
than the specified time in milliseconds. A value of 0
means that the device must get a new position.

projection

String

The projection in which the coordinates of location

updates are reported defaults to EPSG: 4326 (latitude

and longitude). Typically, you will need to provide the same
projection as the map's view or transform the location using
ol .proj.transformyourself.

The Geolocation class inherits from ol .Object and has the following key-value observing
(KVO) properties (recall that we discussed KVO in Chapter 2, Key Concepts in OpenLayers):

Name

Type

Description

accuracy

number

This is a read-only property. It is the accuracy of
the position returned by the device in meters.

3281

Chapter 10

Name Type Description
accuracyGeometry | ol.geom. This is a read-only property. It is a geometry
Geometry that can be used to represent the accuracy of

the geometry measurement, basically a circle
around the location with a radius equivalent to
the accuracy property. This geometry can be
added to a vector layer and styled to visualize
the current accuracy of the location.

altitude number This is a read-only property. It is the altitude of
the position in meters above mean sea level.

altitudeAccuracy | number This is a read-only property. It is the accuracy of
the altitude in meters.

heading number This is a read-only property. It is the heading of
the device in radians clockwise from north.

position ol.Coordinate | Thisis a read-only property. It is an

ol .Coordinate array representing the
position of the device. If a projection has been
set on the Geolocation instance, the coordinate
will already have been transformed into this
projection.

projection

ol.proj.
Projection

This is the projection in which the coordinates of
location updates are reported.

speed

number

This is a read-only property. It is the
instantaneous speed in meters per second.

tracking

boolean

When tracking is turned on (true), the
Geolocation API reports changes in location
automatically. When off (false), the position is
not updated in response to moving the device.

trackingOptions

Object

These are the tracking options; see the
Constructor options for details.

The DeviceOrientation class

Many new computers, and especially mobile phones and tablets, provide hardware support
to track their orientation. The HTML 5 specification defines the DeviceOrientation

API to expose this information. Just as with the Geolocation API, OpenlLayers provides the
ol .DeviceOrientation class to make it easier to work with this APl in a stable,
cross-browser compatible way.

[329]

OpenlLayers Goes Mobile

Device orientation refers to the orientation of the mobile device relative to a common
starting point. A device's orientation is then reported as angles of rotation from this common
reference orientation. For mobile devices, the reference orientation is defined as the phone
lying face up on a table with the top of the phone pointing north. For computers, it is the
same, except the screen is open at 90 degrees. This represents the zero state, and all angles
are reported relative to this state.

Device orientation is reported as three angles—alpha, beta, and ggmma—relative to the
starting orientation along the three planar axes X, Y, and Z. The X axis runs from the left edge
to the right edge through the middle of the device. Similarly, the Y axis runs from the bottom
to the top of the device through the middle. The Z axis runs from the back to the front
through the middle. In the starting position, the X axis points to the right, the Y axis points
away from you, and the Z axis points straight up from the device lying flat, as shown in the
following screenshot:

In practice, this allows us to respond to the user turning and tilting the device. The most
useful property is the value of alpha, which lets us figure out where the compass heading the
device is pointing at. Let's see this in action!

3301

Chapter 10

Time for action - a sense of direction

In this example, we'll display an icon at the user's location, use values from the
DeviceOrientation API to create a simple compass, and by rotating it, show which way is
north. Perform the following steps to achieve what's been set out in this paragraph:

1. Open the previous example in your text editor, and change the icon we are using
from a flag to an arrow. We'll use an arrow pointing up for north. Here's the code
to accomplish this:

<div id="location" class="marker icon-arrow-up"></divs

2. Now, add the following code at the end of the script tag, right after our

Geolocation code:

var deviceOrientation = new ol.DeviceOrientation ({
tracking: true

3N

deviceOrientation.on('change:heading', onChangeHeading) ;

function onChangeHeading (event) {
var heading = event.target.getHeading() ;
var el = document.getElementById('location') ;
el.style['-webkit-transform'] = 'rotate('+heading+'rad)';
el.style['transform'] = 'rotate('+heading+'rad)';

13N

3. Reload the page in your mobile device's web browser and try turning. The arrow
should rotate as you do, showing the direction you are pointing relative to the map.

What just happened?

Let's walk through the code and see what it does. First, we create a new instance of
Openlayers' helper class ol .DeviceOrientation and indicate we would like to receive
orientation updates, as follows.

var deviceOrientation = new ol.DeviceOrientation ({
tracking: true

3N

Next, we register a function to receive updates to the heading property, and it will be
passed an event object that has the information we need, as follows.

deviceOrientation.on ('change:heading', onChangeHeading) ;

The function that receives the orientation update event does several things. First, we get the
value of the heading property (in radians) from the event target.

var heading = event.target.getHeading() ;

[3311

OpenlLayers Goes Mobile

We mentioned before that the value of alpha is used to figure
out the compass heading. Not all devices support reporting of the
_ device orientation in the same way. In particular, WebKit on iOS
% reports an alpha value that is computed from where the device
L is pointing when tracking is turned on instead of from north.
Openlayers provides a special property, heading, which reports
the true angle from north and standardizes this across different
devices behind the scenes.

Next, we obtain a reference to the HTML element that contains our arrow. We gave it an ID
to make this easier, as follows.

var el = document.getElementById('location') ;

Finally, we use CSS to rotate the arrow relative to north so that it's pointing in the direction
our phone is pointing. The CSS3 transform property can apply a number of transformation
functions to an element (see https://developer.mozilla.org/en-US/docs/Web/
CsS/transform); in this case, we've selected the rotate function. We set the angle we
want to rotate and specify that the value is in radians, since that is the unit that OpenLayers
reports angles in. The following is the code to accomplish this:

el.style['-webkit-transform'] = 'rotate('+heading+'rad)';
el.style['transform'] = 'rotate('+heading+'rad)';

We set this property twice to accommodate Safari and Chrome, which still only support the
vendor-specific prefixed version of the property name.

Here is the complete API for the DeviceOrientation class.

When creating an instance of ol .DeviceOrientation, there is only one option currently
available, which is as follows:

Option Type Description

tracking Boolean | When tracking is turned on (true), the
DeviceOrientation APIreports changesin
orientation automatically. The default value is false.

13321

https://developer.mozilla.org/en-US/docs/Web/CSS/transform
https://developer.mozilla.org/en-US/docs/Web/CSS/transform

Chapter 10

DeviceOrientation KVO0 property methods

The DeviceOrientation class inherits from ol .0bject and has the following

KVO properties.

Name Type Description

alpha number This is a read-only property. It is the value of alpha in radians. This
might not be relative to north depending on the device.

beta number This is a read-only property. It is the value of beta in radians.

gamma number This is a read-only property. It is the value of gamma in radians.

heading number This is a read-only property. It is the heading of the device in radians
clockwise from north, normalized for browser differences.

tracking Boolean This is a Boolean value indicating whether tracking is enabled or not.

Mobile web browsers offer some exciting capabilities for our web applications, especially for
map applications! But they offer some challenges too. We've seen in Chapter 2, Key Concepts
in OpenlLayers, that web developers have powerful tools like Chrome Developer Tools at their
disposal for debugging web applications. But it's not that easy on mobile devices, where
these tools don't exist. Fortunately, there is an answer! In this section, we'll cover techniques
for debugging web applications on each of iOS and Android, as well as another tool that isn't

device-specific.

The simplest way to debug web applications on iOS is to enable remote debugging with Safari
on your Mac. If you don't have a Mac, skip ahead to the Debugging on Anything section.

You need a Mac, iOS version 6 or later and Safari version 6.0 or
later to enable this feature.

OpenlLayers Goes Mobile

1.

First, on your iOS device, head over to Settings | Safari | Advanced and toggle Web

Inspector on. These actions are depicted in the following screenshot:

#0000 ROGERS 9:16 PM L
£ Safari Advanced

Website Data

JavaScript

#0000 ROGERS = 9116 PM s 0000 ROGERS & 9:16 PM [
Settings { Settings Safari
\d Messages .
Smart Search Field
Ly FaceTime .)
Fraudulent Website Warning 0
a Maps More about Safari and privacy...
. Compass
0 Safari Clear History

iTunes & App Store

2e

Music

-
v
g

Videos

Photos & Camera

iBooks

Podcasts

Clear Cookies and Data

| @)
O

Web Inspector

—-

READING LIST

O

Use cellular network to save Reading List
items from iCloud for offline reading.

Use Cellular Data

Advanced

To use the Web Inspector, connect to Safari
our computer using a cable and access
your iPhone from the Develop menu. You
can enable the Develop menu in Safari’s
Advanced Preferences on your computer.

v BOe

Next, you'll need to add the Develop menu to Safari on your computer, so open Safari

and open the preferences (Safari | Preferences), and in the Advanced tab, check the
Show Develop menu in the menu bar checkbox, as shown in the following screenshot:

mme Edit View History BnnkmarksIDeveIan Window Help Debug

About Safari
| Safari Extensions...
Check for WebKit Updates...

(e —

Private Browsing...
Reset Safari...

Services

Hide Safari
Hide Others
Show All

Quit Safari

titled
br enter an address
Advanced
» a2 B 5 |
Security Privacy ificati i Adv, d
#H
it [) Never use font sizes smaller than 2 ~
|_| Press Tab to highlight each item on a webpage
#0Q Option-Tab highlights each item.

None Selected

Western (ISO Latin 1)

: || Change Settings...

(¥ Show Develop menu in menu bar

13341

Chapter 10

3.

4.

Connect your device to your computer using a USB cable, launch Safari on your iOS
device, and then you should see your device in Safari's Develop menu on your Mac,

as follows:

o686

[]-]

Show Web Inspectar
Show Error Console
Show Page Source
Show Page Resources

o Show Snippet Editor
Show Extension Builder

Start Profiling JavaSeript W OHP
Start Timeline Recording “COORT

Empty Caches
Disable Caches

Disable Images
. Disable Styles

Disable JavaScript
Disable Site-specific Hacks
Disable Local File Restrictions

Enable WebGL

. OpenPageWith
a r 5] @] @] |et] B ragamesaiocatsoon oo, User Agent
| Paul's iPhone ____________* |

pagameba local — 2360_10_03_orlentation htm

Mmm:umﬂ Duts © OpenSireesilag comritansen, 0L

If you have several web pages open in Safari on your iOS device, you will see them
all listed. Click on the one that is the mobile example, and Web Inspector will open,

as shown in the following screenshot:

Web inspecior — Pas's iPhone — Safari —

— 236010 03_oreentation.seml

pagameba ocal
G0 0068 30 L] D ke

OpenlLayers Goes Mobile

What just happened?

We just enabled some pretty powerful debugging capabilities for our mobile application
development. In the first step, we turned on the Web Inspector option that lets us access
debug information for the current web browser process in Safari. In the second step, we
enabled the Developer menu for Safari on a Mac computer. Finally, when we connect an iOS
device to a Mac computer with a USB cable, we can use Safari's web debugging capabilities
with the mobile Safari browser.

Depending on your version of Safari, Web Inspector might appear differently. In any case,
Web Inspector has basically the same capabilities as those of Chrome Developer Tools,
which were introduced in Chapter 2, Key Concepts in OpenLayers, and you have full access to
inspect the HTML created for your application, change CSS styles dynamically, run JavaScript
code, and view logfiles.

If you have an Android device, you can debug your web applications using the ADB Chrome
extension and the Chrome DevTools introduced in Chapter 2, Key Concepts in OpenLayers. There
are quite a few steps to get it all working, but it's worth it when you need it! So, here goes:

1. If Chromeis not already installed by default, install Chrome for Android version 28
or later from Google Play, and connect your device to your computer with a USB.
Here's how your screen looks when you perform these actions:

e

(E¥ chrome for android

Chrome Browser - Google
() e
Google Chrome to Phone
@ 3
[e e e e
| |

Books 16 FoRE |
Beginning Andreid 3

e e

Beginning Android 3

e e

Chapter 10

2.

3.

Install Chrome version 28 or later on your development machine. The following
screenshot depicts the screen as it should look while performing this action:

c

£y prismaie
Chrome

History
Extensions

enings

e

& [B chrome:fchrome wOAGHO A, =
@ rersony [@omsc [l e [l Home - viey Toerer N Magios Core [55 Dara URss - s "
About
Google Chrome

A web hrowser bullt for speed, simplicity, and security

Gt MII |‘M|h‘u§mg Chrome Mpuun Issue

Version 28.0,1478.0 dev
L4 Google Crirome s up to date.

Goagle Cheame
Copyright 2013 Google Inc. All rights reserved.

Google Chrome is made possible by the Chigmium open source project and other goen source seltware.

Google Chrome Terms of Service

Install ADB Chrome Extension available in the Chrome web store by opening a new
tab in Chrome, clicking the App Store icon, and then searching for ADB, as shown in
the following screenshot:

= e W Shvee < A5 3

& 5 C @ B "o cvome.geogie com webstons seasch ADE sourcench 1y D A G O A =
O rimane [Pesonst @ osetc @R wa [l vore vy Tooee M Nagies Coce [€58 Duta s - Lse .
e chrome web store pagametady

ik || mesuies or a0 i an Apps Etensions Thees
[one |

Popular .

TemYeUTENTIG Farum, Actus et Entre-Alde [}

Callectiont = fram veandrod makss.com &

1] % st Forum { Tchut et mesage sur Archoxd t s Ardrod),

e 101 o flitiesbi i dedrisabin

tducation

[

ADB
Leetryie = o besprsigeveispers giogie s
News BiWeather ; ADE Plugin fir remsone detugg ng Chrome sn Androsd

[3311

OpenlLayers Goes Mobile

4. Enable USB debugging on your device by opening the Developer options settings
panel and clicking the checkbox for USB debugging, as follows:

o For Android 3.2 and older, go to Settings | Applications | Development.
o For Android 4.0 and newer, go to Settings | Developer.

o For Android 4.2 and newer, the Developer options panel is hidden by
default. To make it available, go to Settings | About phone and tap Build
number seven times. Return to the previous screen to find Developer
options. Here's how the Developer options screens look during this process:

] w03 Al D)
@ Settings < @ Developer options

p backup password

E Samsung aeeount

® Add account Stay avike :

A Allow USE debugging?
2uEen Protect ST
B Motion w il S USE debugging is intended for
: i development purpeses only, It can
G be used to copy data between your
l Accessory e : computer and your device, install
. applications on your device without
notification, and read log data

Allow mocle |
el B v “
Ao

ur Accessibility Soloet dob

° Date and time

Developer options

@ About device

5. Connect your Android device to your computer with a USB cable.

6. Launch Chrome for Android on your device, open Settings | Advanced | Developer
Tools, and check off the Enable USB Web debugging option, as shown in the
following screenshots:

Chapter 10

h]]
{ G Settings <€ TDeveloper teools
Chrome PBrowser - Google BASICS Enable Tilt Scrolling
GOOGLE [NC, & ; Allew scrolling of the stack view by
. J Search engine Flinging the device, Changes won't take
J I:l toogle (aoonle.ca) effoct until Chrome is restarted,
= Autofill forms Enable USE Web debugging)
s — On Debug wek pages from Chrome Desktop Cif
via USE

Save passwords

on Learn more about using USR Web
ADVANLED debugging
| | Privacy
*kkk Accessibility
¢ TOP DEVELOPER Content settings

R 1| 810K people +1'd this, .
Bandwidth management

Description
Developer tools

FOWSER On Your

g in te sync your £

r computer to toke it with

Sléw IN TO CHROME

7. When you first connect your Android device to your computer, you might see an
alert requesting permission to Allow USB debugging. To avoid seeing this again,
check Always allow from this computer, and click on OK.

8. start debugging in Chrome on your computer with ADB Chrome Extension by
clicking on the ADB icon in the Chrome toolbar and selecting Start ADB, as follows:

A®HEO Al

It

View Inspection Targets

Start ADB
Stop ALB

m Help

9. Click on View Inspection Targets to open the about:inspect page that displays each
connected device and its tabs.

10. Find the mobile device tab you want to debug, and click on the inspect link next to
its URL.

OpenlLayers Goes Mobile

What just happened?

Phew! First, we made sure that we installed Chrome for Android on the device and the latest
version of Chrome on our computer. Next, we installed ADB Chrome Extension for Chrome.
Then, we allowed USB debugging on the device. Finally, we launched ADB Chrome Extension
to see it in action. You can now debug your mobile web application running on your device
with the Chrome Developer Tools.

Itis also possible to debug using Firefox on Android; see https://
developer.mozilla.org/en-US/docs/Tools/Remote

Debugging/Firefox for Android for more information.

Debug anywhere — WED INspector REmote (WEINRE)

Native debugging on mobile is great once you get it working, but what do you do when you
don't have a USB cable with you, you have an iPhone but not a Mac, or you want to debug
on some other device? There's a solution, of course, and the solution is to use WEINRE (WEb
INspector REmote), an open source package that gives you an almost native debugging
capability for mobile devices.

WEINRE is part of the Apache Cordova project (http://cordova.apache.org/) and was
pioneered by Patrick Mueller. We will talk about Apache Cordova in the next section.

Using WEINRE involves combining three separate components, as follows:
¢ The debug server: This is an HTTP server provided by WEINRE; it's used by the
debug client and the debug target.

¢ The debug client: This is the Web Inspector user interface we will use to debug your
application. It displays the Elements and Console panels, among other things.

¢ The debug target: This refers to both the machine running the browser that we
want to debug and the web page being debugged.

The debug client and the debug server run on our development computer and the debug
target runs on the mobile device.

To activate the debug target, we will need to add some JavaScript code, provided by the
debug server, into the web page.

3401

https://developer.mozilla.org/en-US/docs/Tools/Remote_Debugging/Firefox_for_Android
https://developer.mozilla.org/en-US/docs/Tools/Remote_Debugging/Firefox_for_Android
https://developer.mozilla.org/en-US/docs/Tools/Remote_Debugging/Firefox_for_Android
http://cordova.apache.org/

Chapter 10

WEINRE is a Node.js application and is published as an NPM package. We've already
talked about using Node.js and NPM to run a small server for editing features in Chapter 8,
Interacting with Your Map. To install WEINRE then, all we need to do is open a command
prompt and run the following command:

npm install -g weinre

® 00 @} ~ — node — BOx24 e

% 19:22:46 ~: npm install —g weinre
npm) https://registry.npmjs.org/weinre

npm https://registry.npmjs.org/weinre

npm | https://registry.npmjs.org/coffee-script
npm http GET htt istry.npmjs.org/underscore

! 1t T _h 1//r it pmjs.0 ;

Lp LLI g/expres

This is how the command prompt would look when we run the preceding command. This
command instructs NPM to install the WEINRE package globally, which will make the weinre
command available to you.

To start WEINRE, we need to use the IP address of the development machine—see the
beginning of this chapter if you don't remember it. Open a command prompt and run the
following command:

weinre -boundHost <your ip address>

®00 i} ~ — node — 80x24 v

~C#X 20:14:56 ~: weinre ——boundHost 192.168.209.8
2013-09-20T00:15:01.067Z weinre: starting server at http://192.168.209.8:8081
|

This is how the command prompt would look when we run the preceding command. The
boundHost option allows the debug target's JavaScript to be loaded in a page on another
machine, such as our mobile device. There are several other command-line options that
you can supply to the weinre command; for the most part, you don't need them, but
you can read about them in the WEINRE documentation at http://people.apache.
org/~pmuellr/weinre/docs/latest/Running.html.

[3m1

http://people.apache.org/~pmuellr/weinre/docs/latest/Running.html
http://people.apache.org/~pmuellr/weinre/docs/latest/Running.html

OpenlLayers Goes Mobile

WEINRE starts a debug server and reports the URL at which the debug server page can be
accessed. Copy this URL and open it in a web browser. The following is how the page will
look when these actions have been performed:

B8 0/ — weinre server home % W »
- = =

| .

& - C ff [)192.168.209.8:3081 w O ADEHO A

ﬂ Prismatic D Persaonal D DMSG D RHE . Home - YIFY Torre u Nagios Core H CSS Data URIs - Us ig FirstRow Live Footb

weinre - web inspector remote

Access Points

debug client user interface: http://192.168.209 .8:808 1 /client/#anonymous
documentation: hitp://192.168.209.8:808 1/doc/

Target Demos

The following links point to an already instrumented sample application, run in a couple of different environmental conditions.

First open a new browser window for the debug client user interface, as specified above. Then open another new browser window for one
of the demos below . They should auto-connect and result in an active debug connection between the client and the target demo.

« the non-minified demo

+ the minified demo
« the non-minified strict demo

Target Script

You can use this script to inject the weinre target code into your web page.

http://192.168.209.8:8081/target/target-script-min.js#anonymous

Example:

<script src="http://192.168.209.8:8081/target/target-script-min. js#anonymous"></script>

This page has the information and links we need to get started with debugging our mobile
web application. The first section, Access Points, contains links to the debug client user
interface and documentation. The second section, Target Demos, gives you some quick
links to try out WEINRE debugging right away. Try them if you like. The third section contains
the link to the JavaScript we will need to add to our mobile web page to activate the debug
target code. Let's go ahead with this now.

[3421

Chapter 10

Open the mobile example page in a code editor. Copy the <script> tag from the following
example in the target script section, and paste it into the example page just after the
<title> tag, as follows:

<title>Mobile Examples</title>
<script src="http://192.168.209.8:8081/target/target-script-min.
js#anonymous"></scripts>

Now, for the big finale—load the mobile example on your mobile device, and then click
on the link to open the debug client on your desktop machine. After that, this is how your
screen will look:

000 = weinre: target not connec: L4
« C ff [} 192.168.200.8:8081/client/#anonymous w @A B o A =
£\ Prismatic [Personal [DMSG] RHE . Home - YIFY Torre N Nagios Core H €SS Data URIs - Us A& FirstRow Live Foott
l-Remote ‘?I}Elemenn B jResources @Netwmk @Timeline Console

Targets
+ 192.168.209.7 [channel: t-1 id: anonymous] -
http://pagameba.local:9000/2360 10 03 orientation.html
Clients
+ 192.168.209.8 [channel: ¢-2 id: anonymous]

Server Properties

boundHost: 192.168.209.8

deathTimeout: 5

debug: false

httpPort: 8081

readTimeout: 1

reuseAddr: true

staticWebDir: /Users/pspencer/src/nvm/v0.10.10/lib/node_modules /weinre /web
verbose: false

version: 2.0.0-pre-HHOSN197

[343]

OpenlLayers Goes Mobile

The Remote tab shows the debug target connected and some other information. You can
now click on the Elements, Resources, Network, Timeline, and Console tab. Click on the
Elements tab to show the Elements panel. This is how your screen will look after performing
these actions:

O 00 o weinre: hetp:/192.168.20 % || =
&« C ff [7 192.168.208.8:8081/client/#anonymous wOADEHO® AW =

ﬂ Prismatic ﬁ Personal ﬁ DMSG ﬁ RHE . Home - YIFY Torrer L‘ Nagios Core H CSS Data URIs - Use ! FirstRow Live Foothb

» Computed Style () Show inherited|
v<html lang="en"> ¥ Styles -3
» <head>..</head> element.style {
¥ <body>
v<div id="mop" class="map"> 1

v<div class="ol-touch" style="position: relative; overflow: hidden;
width: 100%; height: 100%;">
<canvas height="46@" width="328" class="ol-unselectable" style>
v<div class="ol-overlaycontainer”s
» <div class="ol-attribution ol-unselectable” styles.</div>
»<div class="ol-logo ol-unselectable” style="display: none;">.</div>

Matched CSS Rules
html, body {
height: 108%;
»margin: @px;
» padding: @px;

width: 100%;
»<div class="ol-zoom ol-unselectable">.</div>
v<div style="position: absolute; left: 16@px; bottom: 23@px;"> s
<div id="location" class="icon-arrow-up" style="-webkit-transform: -
rotate(2.5392889456641643rad); "></div> P Properties
</divs » Event Listeners -
</div>
</divs
</divs

<script src="http://0l13js.org/en/master/build/ol-whitespace.js" type=
"text/javascript"></script>
<script type="text/javascript" src="deps.js"></script>
» <sCriptr.</script>
</body>
</html>

»= Q@ html > body - divémap.map - div.ol-touch : div.ol-overlaycontainer - div - div#location.icon-arrow-up

You can use the Elements panel just like Chrome Developer Tools and explore the DOM.
Note that it can take a few moments for WEINRE to respond with information, so be patient
and wait for it to appear.

The Resources panel shows WebSQL databases and data stored in the local storage and
session storage. The Network panel shows XML HTTP requests issued after the page has
loaded. Unlike Chrome Developer Tools, it can't capture the assets loaded by the page itself.

The Timeline panel can be used to display timing information about events and to track user-
triggered events. Using this panel is beyond the scope of this book, but if you are interested,
then check out the WEINRE documentation.

(3141

Chapter 10

The last tab, Console, displays the JavaScript log and provides a command line for executing
arbitrary JavaScript in your web page. Try typing the following command into the console
and hit Enter:

alert('test');

& - C ff [192.168.209.8:8081/client/#anonymous w SO A D [I T

A\ prismatic [0 Personal [10] DMsc (1] RHE . Home - YIFY Torrer. N Nagios Core €SS Data URIs - Use q FirstRow Live Footh

m‘ Errors Warnings Logs
> alert("test')
> alert("test')

Your screen will look like this when the preceding command has been entered.

You should see an alert pop up on your mobile device, as shown in the following screenshot:

http://192.168.209.8
test

OK

[3451

OpenlLayers Goes Mobile

The Console tab also shows log messages, and we can filter by message types (Errors,
Warnings, and Logs). Some log messages are generated by the browser itself, typically
when an error happens, and we can use WEINRE to see if errors are happening. We can also
programmatically send messages to log in our code using methods of the global console
object that are available in all web browsers.

WEINRE isn't as complete as native debugging with iOS and Android, but it can certainly help
out at a pinch.

One of the great challenges in delivering content to the mobile web is that mobile devices
can easily be disconnected from the Internet. As users move around, they go in and out of
range of WIFI and cellular networks, and the state of their network connection can change
frequently. Native applications on mobile devices solve this problem by being installed on
the device. Many native applications also cache content for offline use and are designed
to handle the transient nature of mobile network connections. Web browsers, including
mobile web browsers, typically cache web page content to help pages load faster. While
this can help mobile web applications quite a bit, the cache managed by the web browser
is unreliable, can be cleared by user settings, and might not keep critical content for your
application. The cache also doesn't provide a mechanism to store generated data and stores
only assets required to load a web page.

In this section, we will introduce three technologies that can help you with taking a web
application offline:

¢ HTMLS5 ApplicationCache interface

¢ HTML5 Storage

¢ Apache Cordova

The HTML 5 ApplicationCache interface

The HTML 5 ApplicationCache interface is designed to help address the unreliable nature of
web browser caches by allowing a developer to control how content is cached for offline use.
The ApplicationCache interface provides us with the following benefits:

o Developers can specify exactly which resources to cache and ensure that users can
navigate to all the content regardless of their network state
Developers can also specify which resources not to cache

Content in ApplicationCache is not displaced by new content in the normal
browser cache, so it is much more reliable

[346]

Chapter 10

¢ Content is cached locally on the device, and so it will load much faster than across
a network

¢ Developers can update content and have only that content transferred, reducing
load on web servers

If you are thinking Sounds great, lets get me some of that, read on!

Taking advantage of the ApplicationCache interface is actually very simple, and there are
three steps we need to take:

¢ Create a MANIFEST file
¢ Reference the MANIFEST file in an HTML page
¢ Serve the MANIFEST file from our web server correctly

Creating an ApplicationCache MANIFEST file

A MANIFEST file is a plain text file that you can create in any text editor. The easiest way to
describe its content is by example, so let's take a look at a MANIFEST file and then describe
it in detail:

CACHE MANIFEST

version 2
CACHE:index.htmlscripts/app.jscss/styles.cssimages/logo.png
NETWORK: login.php

FALLBACK:images/large/ images/offline.jpg*.html /offline.html
SETTINGS:prefer-online

The first line is mandatory; it must contain the specific text CACHE MANIFEST.

The second line is a comment. Comments are any line starting with a # character. One
important characteristic of ApplicationCache is that the browser will usually not replace
cached content with an updated version from the server unless the MANIFEST file changes

or the prefer-online setting is specified. It is a common convention to include a comment
near the top of the MANIFEST file, indicating a date or version number. When content is
updated, the date or version in the MANIFEST file can also be updated, which will trigger the
browser to download changed content. The third line declares the CACHE section. The CACHE
section explicitly declares URLs that will be stored in the ApplicationCache. This line can
be optional. If it is omitted, any files after the first line will be considered part of the CACHE
section up to the start of any other section. The following lines up to the NETWORK line define
files, by URL, that are to be cached. Wildcards are not allowed in the CACHE section. Do not
include the MANIFEST file in the list of files to be cached, or it will be very difficult for users to
get updates. URLs can be relative or absolute and might point to resources on domains other
than that of the page being loaded. Check the following line, for example:

CACHE :
http://another.server.com/logo.png

3411

OpenlLayers Goes Mobile

Next, comes the NETWORK section. This section contains a whitelist of resources that the
browser will not cache (unless explicitly declared in the cache section), and which it is
permitted to access when online. In this example, the browser can access 1ogin.php when
online, and the results of loading that page will not be cached. This section is typically used
to identify URLs that are part of a server APl or content that cannot be used if it is out of
date. URLs cannot contain wildcards, but a single wildcard character is allowed on a line by
itself to indicate that any URL can be loaded. Check the following line for example:

NETWORK :
*

The FALLBACK section defines alternate resources to be used if a particular resource is

not available. Wildcards and path matching are allowed in this section. The first line of the
FALLBACK section shows how you would display the image from images/offline.jpg for
any image in the images/large path that is unavailable. In the next line, we specify that
any HTML page that cannot be accessed should use of f1ine.html instead. URL prefixes
are allowed (a path to a folder for instance), but the wildcard character * is not permitted.
Also, only URLs in the same domain as the web page can be listed in this section. As of
writing this book, only one value is permitted in the final SETTINGS section, the prefer-
online setting. If this is present in the SETTINGS section, then the browser will attempt to
access the server version of resources before using the cached version.

Note the following rules for a MANIFEST file:

The first line must contain the text CACHE MANIFEST.
A line starting with the # character is considered a comment.

Comments must be on their own line as the # character is a valid component of a URL.

* & o o

Any non-comment lines after the first line are implicitly part of the CACHE section up
to the start of one of the other sections. Thus the CACHE : line is not strictly needed.

¢ Only spaces and tab characters are allowed for whitespace, and all other characters
are considered part of a URL.

¢ There are four distinct section types. The allowed section names are CACHE,
NETWORK, FALLBACK, and SETTINGS. A section is started by putting the section
name followed by the : character.

¢ Sections can appear in any order and can be repeated.

Referencing a MANIFEST file in a weh page

In order to trigger the use of an ApplicationCache MANIFEST file, you must include
a reference to the MANIFEST file in your web page. This is done as an attribute of the
<html> tag, as follows:

<html manifest="/myapp.appcache">

3481

Chapter 10

The value of the attribute is the URL to your MANIFEST file. Although the MANIFEST file can
have any extension, it is standard practice to use .appcache as the file extension, and we
recommend you follow this practice. The MANIFEST file must be delivered by a web server
with mime-type of text/cache-manifest. The instructions for configuring a web server
to serve particular files with a particular mime - type vary depending on the particular web
server in use. Please consult the documentation for your web server to determine the best
way to accomplish this.

Time for action — MANIFEST destiny

Let's take the MANIFEST file out for a spin with our mobile example. The first thing we need
to do is decide which resources we want to be included in our application cache and which
we want to be excluded. Our application is pretty simple, so we won't need to exclude
anything. So, here's what we will do:

1. Open atext editor and create a new file. Save it as myapp . appcache next to your
example's HTML file.

2. Determine which files to include in the cache. You can do this in several ways, but
the easiest is to load your page into a web browser and look at the Network tab.
Here's how your screen looks when the Network tab is pressed:

Developer Tools - http:/ /localhost:9000/chapter11/2360_10_04_appcache.html
Elements Resources | Network | Sources Timeline Profiles Audits Console
Name Status s Size Time
Path Method | oo Type indtlator Content |latency |
| 2360_10_04_appcache.html| 200 4ms
o CGET text/html Other (from ...
| jchapter11 0K 4ms
__“' ol.css GET 200 o 2360 11 04 a... 3ms
S {from c...
4 0K S parse ome 1ms
200 2360 10 04 a.. 3Ims
. GET text/css (from ¢ o
ts/css oK Parse, 2ms
font-awesome.css 200 2360 10 04 a.. 95ms
GET text/css (from c o
OK Parse; 2ms
CET 200 | 2360 10 04 a.. 432 ms
OK PPN parse S 3ms
fontawesome-webfont.woffrv=3.2.1 RN 304 ' 2360 10 04 a. 2448 305ms
L Jassetsfont Not Modif “PP'“*** parse 42.6K8 294ms
| 22.png CET 200 ' ol.js:450 p oms
(fror
_! b.tile.openstreetmap.org/6/18 OK mage, Script me oms
| 23.png o 200 T ol.js:450 P— 0ms
| c.tile.openstreetmap.org/6/18 OK 3 Script N Oms |
| 22.png CET 200 image/ ol.js:450 (from ¢ oms
| c.tile.openstreetmap.org/6/19 OK Eldie Script i) Oms
| 23.png 200 ol.js:450 0ms
i O CET image/.. (from c... 3
— a.tile.openstreetmap.org/6/19 oK Script Oms
| 22.png . 200 . oljs:450 ; Oms
D‘ x| Q| = e 6 ¢l Documents Stylesheets Images Scripts XHR Fonts WebSockets Other 94 ﬁ

The first six lines are files requested directly by our application, and the remainder
are map tiles loaded from the OpenStreetMap server. We'll explicitly cache the first
six in our example.

[3a9]

OpenlLayers Goes Mobile

3. Add the following lines to the file:

CACHE MANIFEST

version 1

CACHE :

236005 10 04 appcache.html

../assets/o0l3/0l.css

../assets/css/samples.css
../assets/css/font-awesome.css
../assets/o0l3/0l.js
../assets/font/fontawesome-webfont .woff?v=3.2.1

NETWORK :
*

at the end of the line. It is important to specify the exact file that is

M Note the last line—it contains some extra characters (?v=3.2.1)
Q requested by the server; otherwise, it will not be cached correctly.

4. Open the HTML file, and add a manifest attribute to the <html> tag, as follows:

<html lang="en" manifest="myapp.appcache">

5. Reload the application in your mobile browser. Everything should work normally.

6. Disconnect your mobile device from your computer, and disable cellular data and
WIFI networking. On most devices, there is also an airplane mode, but this also
disables your GPS.

7. Reload the application in your mobile browser once more. The application should
load correctly.

What just happened?

We created an application cache MANIFEST file for our application, so it can load our
application even when it has no network connection. The CACHE section contains the
files we are explicitly using in our application. The NETWORK section contains the wildcard
character to allow our application to access any URLs when we are online so that we can
get map tiles. Now, when the mobile device is offline (it has no network connection), the
application can still be loaded correctly.

Unfortunately, if you pan or zoom, you will start to see some blank spots. These are map tiles
that are not cached by our browser. On the first load, you should see any map tiles that were
loaded while we were online (in step 5). Any tiles you accessed prior to going offline might be
available in the normal browser cache until it is cleared or they are displaced by newer content.

Chapter 10

In summary, the ApplicationCache interface provides an easy and convenient mechanism
to ensure content is available offline and to speed up loading of any web application by
explicitly caching content in the browser for online and offline use. Unfortunately, for
mapping applications, it doesn't solve the problem of accessing remote servers, including
map tile sources, while offline. The next section, on HTMLS5 Storage, discusses part of the
solution, and the final section, on Apache Cordova, provides another alternative.

Mobile web applications are a fast-growing market. Users with mobile devices expect access

to all content on their mobile devices. While mobile web applications provide a great user
experience in most cases, they often fall short of so-called native applications because they

do not have access to convenient offline storage, capabilities of the physical device such as

the camera, and data available to other applications, such as the user's contact list. Short of
building a native application, there doesn't seem to be a way to access the full capabilities of
mobile devices. But, do we really want to recode our great web application into native code for
i0S, Android, Blackberry, Windows Mobile, and whatever other devices our users might have?

It turns out that we don't have to. On every major mobile platform, the web browser is also
available as a component that can be embedded into a native application. This one fact
means that it is possible to create native applications whose entire user interface is a web
page and still have access to all the native functionality of the device. Doing this on every
platform that you might want to support probably seems like a daunting task even if you
know anything about coding native applications—or perhaps especially if you do!

Open source to the rescue again! Apache Cordova, a fantastic project of the Apache
Foundation, provides the framework to create native applications from mobile web
applications with almost no need to know anything about native development—and it works
on all major mobile platforms. Not only will Cordova provide you with the tools to wrap
your web application up into a native application, it also exposes the most common native
capabilities to your web application, including:

& Access to device storage, allowing you to save content for persistent offline use,
bypassing the temporary nature of browser caches, and providing much more
storage capacity than would otherwise be available.

¢ Access to native hardware capabilities, including the camera, battery status,
and others.

Access to contacts and media.

Access to native dialog.

3511

OpenlLayers Goes Mobile

Unfortunately, we can't cover using Apache Cordova in any detail in this book—there simply
isn't enough room; it's enough material for an entire book by itself! If you need access to
more than the web browser can provide on mobile devices though, we highly recommend
that you check out the Apache Cordova website at http://cordova.apache.org/, where
you will find lots of great information and starter projects to get you going on each platform.

Let's bring together what we've learned by expanding our application to track our movement
over time and display it on the map. Recall that we covered vector features in Chapters 6,
Styling Vector Layers, and Chapter 5, Using Vector Layers. So, here's what we will do:

1. We need a vector feature to capture our track. Add the following at the beginning of
the <script> tag:

var trackStyle = new ol.style.Style({
stroke: new ol.style.Stroke ({
color: 'rgba(0,0,255,1.0)"',
width: 3,
lineCap: 'round'
3]
P
var trackFeature = new ol.Feature ({
geometry: new ol.geom.LineString([])
3N
var trackLayer = new ol.layer.Vector ({
source: new ol.source.Vector ({
features: [trackFeature]

1

style: trackStyle

3N

2. We'll need to add trackLayer to the map, so add it to the array of layers where we
create the map, as follows:
var map = new ol.Map ({
target: 'map',
layers: [layer, trackLayer],
view: view

3N

13521

http://cordova.apache.org/

Chapter 10

3. And finally, we can update trackFeature as we move by modifying what happens
when the geolocation object's position changes, as follows:

geolocation.on('change:position', function() {
var coordinate = geolocation.getPosition() ;
view.setCenter (coordinate) ;
trackFeature.getGeometry () .appendCoordinate (coordinate) ;

3N

4. Load the application in your mobile device and move around enough to see your
location changing. Perhaps go outside for a short walk!

What just happened?

We just created a very simple tracking application that follows our location and renders a
line on the map to show where we've been. In step 1, we created a few new objects based
on our knowledge of vector layers and features from Chapters 6, Styling Vector Layers,
and Chapter 5, Using Vector Layers. First, we created a style object that draws our line in
blue. Next, we created a feature object containing a LineString geometry to record our
movements in. Lastly, we created a vector layer with a source that references our track
feature using our style for blue lines. In step 2, we added the layer to the map. In step 3,
we updated the geometry of the track feature by appending the latest position update
coordinate to its LineString geometry.

Q1. Which OpenlLayers class provides access to a mobile device's location?

1. ol.GeoLocation.
2. ol.View.

3. ol.DeviceOrientation.
Q2. Which Openlayers class tells you which direction your mobile device is pointing in?

1. ol.GeoLocation.
2. ol.View.

3. ol.DeviceOrientation.
Q3. Which OpenLayers class would you use to center the map on your current location?

1. ol.GeoLocation.
2. ol.View.

3. ol.DeviceOrientation.

OpenlLayers Goes Mobile

This brings us to the end of this chapter. We've seen that OpenlLayers is basically
mobile-ready out-of-the-box, and there's really not much we need to do to make it work

in @ mobile web browser. The GeoLocation and DeviceOrientation classes provide
access to some useful information in a mobile environment, including our position, speed,
altitude, and direction of travel, and we saw these in action. We can even tell which
direction our device is pointing in. We've learned how to debug mobile applications and
how to prepare them for working offline. We wrapped up with an example that records our
movement over time using vector layers and features.

In the next and final chapter, we will be building a complete application from scratch using
everything we've learned so far. We'll also be introducing the OpenlLayers build tools and
learning how to create a production-ready application.

3541

11

By now, we've covered all the parts of OpenLayers that are essential for making
our own web map application. So far, we've been focusing on how to use the
various different parts of OpenLayers. In this chapter, we'll put together those
pieces that we've learned and demonstrate how to create an actual web map
application with OpenLayers.

While we won't be introducing many new things in this chapter, we will put them together in
ways we haven't before. Throughout this chapter, we'll:

Cover common development strategies

Learn how to interact with third-party data

Build a web-mapping application from scratch using Flickr

Deploy our applications and discuss what deployment means

* 6 & o o

Discover how to build the Openlayers library file

In this chapter, we'll be developing a web map application that loads in data from a
third-party source (Flickr). The examples have been structured with iterative development in
mind. What this means is that you start small and make many changes, gradually building up
your web map from nothing into something useful. Iterative development is an important,
popular, and effective way to develop applications. The core idea is that you create
something simple, get it working, and then improve it. You can figure out more quickly what
does and doesn't work by improving on, and learning from, the previous iterations.

Creating Web Map Apps

Another strategy we'll make use of is modular programming. What this means, essentially, is
that we try to keep things as discrete (or modular) as possible. By doing so, once we know a
component works, we don't have to worry about it later.

Using geospatial data from Flickr

Because Openlayers is so flexible, it's easy to make third-party software and data work with
our maps. Sharing geospatial data is becoming more popular, with services such as Flickr and
Twitter freely offering geospatially embedded data. Being able to visualize data often helps
us to understand it. Using Openlayers, we can place geospatial data (say, Twitter posts or
Flickr images) on a map and get a clearer picture about the data.

Note on APIS

Many popular sites provide an APl (Application Programmer Interface) that allows
programmers to interact with their data. For instance, both Flickr and Twitter provide APIs
that enable developers to view recent updates (photo uploads and tweets). These APIs (but
not all APIs) let us get geospatial data that we can use with OpenLayers. Flickr provides some
very easy-to-use methods to retrieve data with associated geographic information; so, we'll
focus this chapter on building a web-mapping application around Flickr.

M You can find out more about APIs and what they support
Q at various websites, a good one is

http://www.programmableweb.com.

While Flickr provides a very robust developer API, we'll only interface with Flickr via URL calls
that provide access to feeds. Feeds provide information about data, and we can get different
kinds of feeds (for example, a specific user's feed or the feed for all users combined). It's
really quite easy to do; we just make a call to a URL and specify certain parameters. The

base URLwe'll call ishttp://api.flickr.com/services/feeds/geo/?format=kml.
The format parameter can be a number of values—KML, JSON, RSS, SQL, and so on. We'll
be using KML and JSON in this chapter. When calling this URL, a file in the format you ask

for will be returned that contains information about the latest photos uploaded that have
geographic information associated with them (that's what geo in the URL is for).

Flickr's API documentation can be found at http://www.flickr.
com/services/api/. More information about the Flickr feeds can

be found at http://www.flickr.com/services/feeds/.

http://www.programmableweb.com
http://api.flickr.com/services/feeds/geo/?format=kml
http://www.flickr.com/services/api/
http://www.flickr.com/services/api/
http://www.flickr.com/services/feeds/

Chapter 11

Snecifying data

We can refine the data that is returned by adding additional parameters to the URL. You
can specify a user's ID via the ID key, a group via the g key, and tags via the tags key. You
can also specify other things, such as a certain coordinate and radius—for now, we'll just be
focusing on the tags key.

Let's create a web map application that will pull in data from Flickr and display it on a map.
This will allow us to see, geographically, from where photos were submitted. We can, for
example, search for bird photos and get an idea where some particular bird species might be
common (or at least, commonly photographed and uploaded to Flickr).

The application will provide a search box to enter tags and refresh the map based on them,
and allow you to click on points on the map to view the photo and details about it.

We'll break down the development of this application into small steps:

Download a static sample of the Flickr data.
Create a simple application to display it.
Add interactivity to view details about the photos.

Load the data in real time from Flickr.

vk N oe

Add a search box and refresh the data based on search terms.

Okay, we've got a goal in mind and broken it down into some manageable steps—we'll start
simple and improve in increments until we reach our goal. Let's get started.

Time for action - getting Flickr data

The first step in our application will require us to get data from Flickr. We'll request some
data and save it locally.

1. Thefirst step, is to figure out what sort of data we want to get. To simplify things,
let's start with KML data. We'll use the URL we mentioned before, but we'll also
specify a tag. Let's use bird as a tag. Open up this URL in your web browser, and
you should be able to download it as a KML file from http://api.flickr.com/
services/feeds/geo/?format=kml&tags=bird.

2. Savethefileas flickr data.kml and place it in your map directory.

3571

http://api.flickr.com/services/feeds/geo/?format=kml&tags=bird
http://api.flickr.com/services/feeds/geo/?format=kml&tags=bird

Creating Web Map Apps

3. Open up the file in your text editor and take a look at it. We won't be editing it, but
just take a look to see how the data is structured. Notice that there are style tags—if
we want, we can directly apply the styles from the file to our map (as we'll see soon).

[X X} &) download.kml — Downloads

1L/2.1" xmlns:flickr="urn:flickr:">

2| SoftTabs: 2v | $#2 @

What just happened?

We just downloaded the latest images in the KML format that contained a tag called bird.
When you call the URL and pass in a tag, Flickr will return to you the latest images uploaded
that have some geographic information associated with them. You may be wondering why
we downloaded the KML file. If you remember from Chapter 5, Using Vector Layers, we

can just create a vector layer and point to the Flickr URL, instead of a local file. Doing this
adds complexity, however, because Flickr does not support Cross Origin Resource Sharing.
When we download the KML file, we can access it directly. When we're in the development
mode, we want to keep things as easy as possible to debug and fix. Once we get the code
working to load the KML file we downloaded (in the next example), we don't need to worry
about it anymore. When we develop our application and find bugs or errors with it, we don't
have to spend much time tracking them down. We get the static file working, and we move
on to the next task. We don't have to worry about the Flickr APl going down, our requests
not completing, or other things—we can focus on other parts. Once we get more parts of
our application working, then we'll switch to using the dynamic URL. For now, let's use the
static file.

Chapter 11

Make a request to the URL from the previous example. Try changing the tags parameter
and notice how the returned file is different. Based on the parameters in the URL, Flickr will
return different data.

The first step in our iterative process, is to develop a simple application that displays the data
we just loaded. Time to get back to coding.

Time for Action - adding data to your map

With the data from Flickr from the previous example, we have enough to get started. We'll
create our simple application with an OSM base layer and a vector layer filled with the Flickr
data on top of it:

1. Create a new HTML page for the application in the sandbox folder. For the sake of
this chapter, we'll refer to this as £1ickr.html. We'll use the familiar structure.
Also, we'll start with o1 -debug. js and optimize it later:

<!doctype htmls>
<html>
<head>
<title>Flickr App</title>
<link rel="stylesheet" href="../assets/ol3/css/ol.css"
type="text/css">
<link rel="stylesheet" href="../assets/css/samples.css"
type="text/css">
</head>
<body>
<div id="map" class="map"></div>
<script src="../assets/o0l3/js/ol-debug.js></script>
<script>
</scripts>
</body>
</html>

2. Now, add the following code to create our vector layer using the data we saved to the
empty <script> tag. Adjust the URL property to point to where you saved your file:
var flickrSource = new ol.source.KML ({

url: '../assets/data/flickr data.kml',
projection: 'EPSG:3857'

Creating Web Map Apps

1)
var flickrLayer = new ol.layer.Vector ({
source: flickrSource

3N

We also need a base map; let's use OSM:

var layer = new ol.layer.Tile ({
source: new ol.source.OSM()

3N

Lastly, create the view and map objects:

var center = ol.proj.transform([0,0], 'EPSG:4326', 'EPSG:3857');
var view = new ol.View ({
center: center,
zoom: 1
1)
var map = new ol.Map ({
target: 'map',
layers: [layer, flickrLayer],
view: view

3N

We should see some points now that show the location of the images that were
uploaded. Open up the application in your browser. You will see something like this,
but with different pictures in different places:

(1 [+]

Chapter 11

What just happened?

We just loaded in the KML file as a vector layer, and OpenLayers uses the style information in
the KML file to render it by displaying a thumbnail of the photograph as its icon on the map.

Styling the features

The automatic styles provided in the KML file make it a little difficult to see the photos,
especially when we are zoomed out—the thumbnails of the photos are just too large. It'll be
nice to make the thumbnails of the photos smaller, but we don't have any control over the
default style provided with the KML file. However, we should be able to replace the default
styles with our own and achieve the effect we want.

Time for action - creating a style function

We'll accomplish this in two steps. First, we'll replace the default style with a simple one, and
then, we'll develop a new style to display smaller thumbnails:

1. First, turn off automatic styling for the KML source by adding extractStyles:
false to its options:

var flickrSource = new ol.source.KML ({
url: '../assets/data/flickr data.kml',
projection: 'EPSG:3857',
extractStyles: false

3N

2. Now, create a new function that will generate styles for our photos, we'll use a
simple circle style for now:

function flickrStyle (feature) {
var style = new ol.style.Style({
image: new ol.style.Circle ({
radius: 6,
stroke: new ol.style.Stroke ({
color: 'white',
width: 2
1
£ill: new ol.style.Fill ({
color: 'green'
3]
3]
P
return [stylel;

}

[3611

Creating Web Map Apps

3. That should do it, check out the result in the browser. This is what it looks like with
the data saved in the assets folder, yours will look different if you downloaded
new data:

:
C i) ...
e
@:\ﬂ
What just happened?

Great, we've replaced the automatic style extracted from the KML file with a simple one
driven by a style function. Our style function returns an array containing our simple circle
style. If you have been paying attention, you should have noticed that our style function is
not at all efficient—we are creating a new copy of exactly the same style for every single
feature! Don't worry though, this is a temporary state that we'll fix shortly by generating a

unique style for each feature, based on its photo and we'll add caching when we do.

Creating a thumbnail style

We can use Openlayer's icon style to display an image, we just need the URL to the photo.
We can use the JavaScript console to take a quick look at what data is associated with each

feature, so that we can figure out where the URL is stored. With the previous example

running in your browser, open the JavaScript console and type the following commands:

var feature = flickrSource.getFeatures() [0];

feature.getProperties() ;

13621

Chapter 11

This gets the first feature from the vector source and displays its properties, which should
show you something like the following screenshot:

800 Developer Tools - http:/ /localhost:3000/chapter12/236005_12_02_photo_style.html .
@ [] Elements Network Sources Timeline Profiles Resources Audits |Console | = ¥ =,

® W <topframe> v

letrl: “#styleMap/photo/14991571391", name: “a good canvas to fly", description: “Open photo pagew

Open photo pagew - " Taken on June 12th, 2014 by fitzgibbon.andyw
y: ol.geom.Point
a good canvas to fly"
styleUrl: “#styleMap/photo/14991571391"
> : Dbject

Well, that wasn't as useful as we'd hoped. The URL to the photo is not there, so what's
happening? It turns out that the KML format includes style information and OpenLayers is
smart enough to extract that information and automatically generate style functions for the
features. Unfortunately, OpenlLayers is also hiding all the extra information about the feature
that we need. We need a different solution.

Time for action - switching to JSON data

We mentioned earlier that the Flickr feed API supports more than just the KML format. It
also supports a variety of RSS versions and JSON. That sounds promising; let's see if we can
do better with the JSON version. Refer to the following steps:

1. First, replace the KML source, £1ickrSource, with a generic vector source. Reload
the page and make sure that everything still works. You should see the base map but
no features (we'll add them shortly):

var flickrSource = new ol.source.Vector () ;
2. Next, we'll need to download the JSON version of our data by changing the format

in the URL to json. Load the following URL in your browser and save the result to a
new file called £lickr data.json:

http://api.flickr.com/services/feeds/geo/?format=json&tags=bird

http://api.flickr.com/services/feeds/geo/?format=json&tags=bird

Creating Web Map Apps

3.

Have a look at this file in your text editor. Note that it starts with jsonFlickrFeed
(on the first line, this means that it is intended to be loaded as JSONP).

JSONP, or JSON with Padding, is a technique for loading JSON
. data from a remote server that avoids the restrictions of the
% same-origin policy. See http://en.wikipedia.org/
A wiki/JSONP for a good description of why and how JSONP
works. For now, it is sufficient to know that JSONP will invoke
a callback function and pass the data to it.

The next few lines appear to be metadata about the response—a title, description,
date, and so on. What comes next seems to be what we want—an array of

objects that represent photos, complete with links to photos and geographic
locations. Perfect!

The data isn't in a format that OpenLayers understands; so, we'll have to load
the data and turn it into features ourselves. We can use the jQuery ajax method
to do this:

$.ajax ({
url: '../assets/data/flickr data.json',
dataType: 'jsonp',
jsonpCallback: 'jsonFlickrFeed',
success: successHandler

13N

Now, we can add the successHandler function to process the data into features
and add them to the map:

function successHandler (data) {
var transform = ol.proj.getTransform('EPSG:4326', 'EPSG:3857');
data.items.forEach (function (item) {
var feature = new ol.Feature(item) ;
feature.set ('url', item.media.m);

var coordinate = transform([parseFloat (item.longitude),
parseFloat (item.latitude)]) ;

var geometry = new ol.geom.Point (coordinate) ;
feature.setGeometry (geometry) ;
flickrSource.addFeature (feature) ;

13N

[364]

http://en.wikipedia.org/wiki/JSONP
http://en.wikipedia.org/wiki/JSONP

Chapter 11

6. Reload and check the result. If we try the code from before in the console, we
should see much more useful information:

var feature = flickrSource.getFeatures() [0];
feature.getProperties () ;

[:NaNs) Developer Tools - http:/flocalhost:3000/chapter12/236005_12_03_json_data.html e
@ [] Elements Network Sources Timeline Profiles Resources Audits | Console| = & =N
Q W <topframe> v
> var feature = flickrSource.getFeatures()[@];

e.getProperties();

: "a good canvas to Tly", link: "http:/fwww.flickr.con/photos/1196263656N06/14991571391/", media: Object, date_taken: "2014-06-12T16:59:
body@flickr.com (fitzgibbon.andy)"

" 65EN06"

2014-06-12T16:59:53-08:00"
: " <pTitzgibbon. andy posted a photo:=/p> <p=<a href="http://www.Tlickr. com/p!
1.geom. Point

.45869"

link: "http://www.flickr.com/photos/119628365@N06/14991571391/"

longitude: "-9.816627"
v media: Object

m: “http://farmd.staticflickr.com/3916/14991571391_85d138e947_m.jpg"

_: Object
"2014-08-22T00:59:252"
cloud bird mizen crookhaven goleen"
*a good canvas to fly"
ttp://farmé.staticflickr. com/3916/14991571391_85d138e947_m. jpg"
: Object

What just happened?

Allowing for different features in the new data file, the application should look exactly the
same as before. The only difference is, we are now using JSON data instead of KML. Let's
review how we changed from KML to JSON.

The JSON data is not in a format that is directly usable by OpenLayers; so, we need to do
most of the work that a format-specific source would do for us. The first step was to remove
the KML source and replace it with a generic vector source, into which we can insert the
features as we get them. The next step is to load the data. We've chosen to use jQuery's
ajax function to do this. The ajax function needs a URL to load from, a function to call
when the data is loaded (successHandler) and a configuration to help it understand that
the data is in the JSONP format:

dataType: 'jsonp'
And, that it uses a specific callback function name:

jsonpCallback: 'jsonFlickrFeed'

The final step is to interpret the data once it is loaded and create the features we need. We
do this inside successHandler by first creating t rans form that will convert coordinates
from latitude and longitude into the projection we are using for the map's view:

var transform = ol.proj.getTransform('EPSG:4326', 'EPSG:3857');

Creating Web Map Apps

Then, we loop over all the items and turn each one into a feature. Each item is an object
literal containing all the information we need for positioning and styling the photo. We
create a new feature object and pass it this information, so that we can access it later for
styling purposes:

var feature = new ol.Feature(item) ;

From looking at the properties of each photo, we see that the URL to the photo is stored in
the media attribute under a key called m. This will be inconvenient to work with later; so, we
create a new property called url with the value we want:

feature.set ('url', item.media.m);

We need to create a new geometry object to represent the feature's location using the
latitude and longitude of the photo (remembering to also transform the coordinates into the
view's projection) and set it as the geometry of the feature:

var coordinate = transform([parseFloat (item.longitude),
parseFloat (item.latitude)]) ;

var geometry = new ol.geom.Point (coordinate) ;
feature.setGeometry (geometry) ;

Finally, we added the feature to our vector source:

flickrSource.addFeature (feature) ;

Time for action - creating a thumbnail style

Now that we've got that sorted out, we should be able to create a thumbnail style for our
photos reasonably easily:

1. As mentioned earlier, we will want to cache our feature styles. Add an empty object
that can be used for this, just before our style function:

var cache = {};

2. We can use the URL to the photo as the key for our cache entries. Remove all the
existing code in the f1ickrstyle function and replace it with the following:

function flickrStyle (feature) {
var url = feature.get('url');
if (!cache[url]) {
cache [url] = new ol.style.Style({
image: new ol.style.Icon ({
scale: 0.10,
src: url

|3)

Chapter 11

3N
}

return [cache[url]l];

What just happened?

We just updated our style function to return a more suitable style. In the first step, we
created an object to act as a cache for our styles, so that we don't create them multiple
times (that's inefficient!), and in the second, we updated our style function to create a new
icon style for the feature, if one isn't in the cache already. Our icon style takes care of scaling
the image to 10 percent of its original size so that it's not too big for the map area.

Turning our example into an application

So far, we've accessed data from Flickr, saved it to a file, added it to our map and created a
simple photo thumbnail style. This is pretty cool, but we really haven't done much other than
just load in the data, from an Openlayers's point of view. It's useful, but we really haven't
created a full-featured web application just yet. So, let's focus on how to build a more useful
web-mapping application. To do this, we'll basically need to do two general things:

1. Add some interactivity to our map.

2. Use live data. We shouldn't have to manually download a data file every time we
want new data—our web application should do it automatically.

Let's focus on the first part, and then change the data source after we develop some
interactivity.

We need to decide what interactivity we'd like to provide to make our application interactive
for our users. We'd like our users to be able to click on a photo and see relevant information.
For this, we can use the select interaction. What should happen when we select a feature?
We'll want to show information about the feature we clicked on, and that information is the
Flickr photo itself and any associated attributes. So, let's keep things for now and show the
photo's information below the map when a feature is selected.

[3671

Creating Web Map Apps

Time for action - adding the select interaction

So, let's go ahead and add a select interaction to our application:

1. To add feature selection ability, create a select interaction. We'll add events soon,
but for now, let's just create the control and add it to the map and then activate it.
Add this at the end of the main <script > tag after all the other code:

var select = new ol.interaction.Select ({
layers: [flickrLayer]
1

map.addInteraction (select) ;

2. If you try this out, you'll see that when you click on a feature or a cluster, it turns
into a blue dot with a white stroke around it. This is the default style for selected
point features, and isn't really what we want. A simple thing for us to do is to make
the photo larger when it is selected. The select interaction has a style option that
allows us to do this. We'll create a new function to return a selected style by making
a copy of our £1ickrStyle function and cache object, using a larger scale value,
and using the new style function with the select interaction:

var selectedCache = {};
function selectedStyle (feature) {
var url = feature.get('url');
if (!selectedCache[url])
selectedCache [url] = new ol.style.Style({
image: new ol.style.Icon ({
scale: 0.50,
src: url

13N,
}

return [selectedCache[url]];

13N

var select = new ol.interaction.Select({
layers: [vectorLayer],
style: selectedStyle

13N

Chapter 11

3. If you try this now, you should see a photo get larger when you click on it:

&
% B -
o+
§
¢ Y
What just happened?

We just added some interactivity to our map. Let's recap how we did this.

The first step, was to add a select interaction to the map, configured to select features from
our vector layer:

var select = new ol.interaction.Select ({
layers: [flickrLayer]

3N

map.addInteraction (select) ;

The default selection style wasn't appropriate; so, we added a new function for styling
selected features. We created a new cache object for selected styles, so that we could use
the URL as the value for caching, and the style we used was the same thumbnail style but
with a larger photo.

We've duplicated the style code, which was easy to do and doesn't really introduce any
problems in the runtime efficiency of our code. However, duplicated code can cause
maintenance problems in real applications and some effort should be made to avoid
obviously duplicate code. Try refactoring the style-related code to eliminate duplication
as much as possible. You'll still need separate functions for the select interaction and the
vector layer, but the code inside each layer looks like a candidate for moving into a new
consolidated function that takes scale as a parameter.

Creating Web Map Apps

Time for action - handling selection events

The next step is to display some information about photos when they are selected. To
do this, we'll need to listen for an event on the select interaction's collection of selected
features and retrieve the features that were selected. Our plan is to have some photo
information display when we select features:

1. Let's go ahead and get the framework for this set up first, by simply creating a
<div> tag that will appear below the map. In your HTML code, add the following
line after the map's <div> tag:

<div id='photo info ></div>

2. The select interaction doesn't provide events directly related to features being
selected or deselected, but it does maintain a collection of selected events and the
collection object has events for adding and removing items. First, get a reference to
the selected features:

var selectedFeatures = select.getFeatures() ;

3. Now, we can listen for the add event. For now, let's put the URL of the selected
photo into our photo_info <divs> tag:

selectedFeatures.on('add', function (event) {
var feature = event.target.item(0) ;
var url = feature.get('url');
$ ('#photo-info') .html (url) ;

13N

4. We should also handle the case where a feature is removed from the selection by
clearing the photo_info <divs tag:
selectedFeatures.on('remove', function (event) {
S ('#photo-info') .empty () ;

13N

5. Tryit out! When you select a photo by clicking on it, you should see the URL to its
image appear below the map. When you click elsewhere on the map, the selected
photo should be unselected and the information should be removed.

What just happened?

We used the select interaction to respond to the user selecting photos. While there is

no direct way to do this, we can use the add and remove events of the collection returned
by getFeatures to update our photo_info div with some information about the
selected photo.

3101

Chapter 11

Earlier, we revealed what information is available for each feature by running the following
code in the JavaScript console:

var feature = flickrSource.getFeatures() [0];
feature.getProperties () ;

And, we saw the following in the console:

en0o Developer Tools - http://localhost:3000/chapter12/236005_12_03_json_data.html "
@, [] Elements Network Sources Timeline Profiles Resources Audits | Console| = & =,
® ¥ <topframe> v
> var feature = flickrSource.getFeatures()[a];

feature. Properties();

: “a good canvas to fly", Link: “http://www. flickr.con/photos/119626365gN86/14991571391/", media: Object, date_taken: *2014-86-12T16:59:
&flickr.com (fitzgibbon.andy)"
283656N06"
4-B6-12T16:59:53-08: 00"
pitzgibbon, andy</a= posted a photoi</p= <p=<a href="http://www. flickr.com/p
» geometn geom. Point
latitud .45069"
link: “http://ww. Flickr.con/photos/119628365EN06/14991571391/"

farmd. staticflickr.con/3916/14991571391_85d138e847_m. jpg"
Object

2014-88-22T00:59:252"

sky cloud bird mizen crookhaven goleen”

"a good canvas to fly"

ttp://farmd.statictlickr. con/3916/14991571391_B5d138e947_m.jpg"
: Object

We can see that each feature has some interesting information we might want to display:
¢ author and author_id: These are useful for identifying the Flickr user that took
the photo.

¢ date_takenand published: These contain the date that the photo was taken and
the date it was published to Flickr.

¢ description: Thisis a pregenerated HTML string that contains useful information
about the photo including the user's description, if available.

link: This takes you to the actual Flickr page for the photo.
tags: This is a space-separated list of tags associated with the photo.

title: This was provided by the user that uploaded the photo.

[3nl

Creating Web Map Apps

The description property seems like a great thing to display. It's nicely
formatted and includes some interesting information for some photos.
Unfortunately, all that nice formatting only shows up if we insert the
. description as HTML into our page. Injecting untrusted HTML into a page,
% without first sanitizing it, makes your application prone to XSS (Cross-site
S scripting) attacks, a technique for injecting and executing unauthorized
JavaScript into web pages. You should never inject HTML from an
untrusted source into a web page. Even though it might seem safe to trust
Flickr, we'll be prudent and avoid the description property by creating
our own description from other information available.

Time for action - displaying photo information

We need a programmatic way to display the information about our photos in the web page.
This means taking data about the selected features and creating HTML elements for them.
For the purpose of this chapter, we'll create an HTML template and populate it with data
from the feature. While there are many different approaches and libraries for implementing
HTML templates, our needs are simple; so, we'll do it without depending on another library.

We'll need several HTML elements to display each piece of information, and a way to specify
where in the elements we want to put what information. We could write the template as a
JavaScript string, but then we couldn't put line breaks into the HTML and it will be difficult
to read in the code. Instead, we'll use the same technique that most templating libraries
use—a <script> tag with the id and type attributes set to something other than text/
javascript. We'll explain how it works later. We'll use brace brackets { and } around key
words to indicate where we want to place specific information.

1. Thefirst step is to create a template. We can add it anywhere inside the <body>
tag, by convention, they are usually added after everything else and just before
the </body> tag at the end:

<script type="text/html" id="photo-template">
<a href="{link}" target=" blank" title="Click to open photo in
new tab" style="float:left; "><brs>

<p>Ta ken by <a href="http://www.flickr.com/people/
{author id}" target="_ blank" title="Click to view author details
in new tab">{author} on {date taken} at lat: {latitude} lon:
{longitude}</p>

<p>Tagged in {tags}</p>
</script>

2. Next, we need a function that takes a feature and creates an HTML representation of
it by combining the feature's properties with our template. Add the following function
anywhere in our main script tag, preferably just before we create the select interaction:

function photoContent (feature) {

[3121

Chapter 11

var content = $('#photo-template') .html () ;
var keys = ['author', 'author id', 'date taken', 'latitude', 'longit
ude', 'link"',
'url', 'tags', 'title'];

for (var i=0; i<keys.length; i++) {

var key = keysl[il;

var value = feature.get (key) ;

content = content.replace('{'+key+'}',value);

}

return content;

}

3. Now, we can update our select interaction's event handler and use our templating
function to get HTML content for each selected photo:
selectedFeatures.on('add', function(event) ({

var feature = event.target.item(O0) ;
var content = photoContent (feature) ;
$ ('#photo-info') .append (content) ;

)

4. And that's it, now we should see some useful information about each photo when
it's selected. Go ahead and try it out.

.| Horfolk
S sland

aken by nobody@flickr.com igo Conte) on 2014-08-16T10:08:54-08:00 at lat: -15.773845 lon: -47.921504

agged in brazil male bird brasil ave macho brasilia nighthawk chordeiles caprimulgidae fantasticnature
d da curiango da podager chordeil da corucao

[3131

Creating Web Map Apps

What just happened?

We just built a simple templating system that lets us put feature properties into an HTML
template and injected the results into the page to show information about each feature in
the selected cluster. Let's review each step in detail.

In the first step, we created our HTML template by putting the HTML code we want to
display for each photograph into a <scripts> tag. This probably sounds strange, but it is a
technique used by many template libraries. The <script> tag has a type attribute that
tells the browser how to interpret its content. When we are writing JavaScript, the value of
the type attribute is text /javascript. If the type attribute is not specified, all browsers
will assume that the type is just this—text /javascript. However, if the type is set to
something else that the browser does not recognize, such as text/html, then the browser
will ignore both the tag and its contents. It is still in the DOM, however, and we can retrieve
its content using jQuery's html () method, just as we will with any other HTML element.
This allows us to write readable HTML that can be accessed programmatically, without
having to worry about it showing up in the web page.

The template content is self-explanatory. We used an anchor tag around the image and some
<p> tags for extra information about the author and keywords that the photo was tagged
with. We placed brace brackets around a keyword in each place we wanted to insert some
information dynamically from a feature property. To keep it simple, the keywords will match
the feature property names. Thus, the following line in the template will get replacements
for {1ink} and {url} from the current feature:

<a href="{link}" target="_blank" title="Click to open photo in new
tab"s><img src="{url}"s

In the second step, we added a function that generates HTML content for a given feature by
replacing placeholders in the template with actual values. The first step is to get the content
of the template as a string, for which we use jQuery's html () method:

var content = $('#photo-template') .html();
Next, we have an array of the property names we want to process replacements for.
var keys = ['author', 'author_id', 'date_taken', 'latitude', 'longitude’,
'link',
'url', 'tags', 'title'];
For each of these, we get the value of the previous property from the feature:

for (var i=0; i<keys.length; i++) {
var key = keys[il];
var value = feature.get (key) ;

[3m1

Chapter 11

Finally, we replaced the placeholder (the key wrapped in brace brackets) with the value and
when all replacements were done, we returned the resulting string:

content = content.replace('{'+key+'}',value);

}

return content;

In the last step, we made use of our function to get HTML for the selected feature and added
it to the page:

$ ('sphoto_info') .append(content) ;

The data we've loaded (£lickr data.json)is from a third-party source, but it's only fresh
up to the point that we download it. Our application will load the data in real time when the
page is loaded. Now that everything is functional with static data, its time to get dynamic
and load data in real time.

Time for action - getting dynamic data

In this exercise, we'll change our code to fetch the data from Flickr when the page loads,
rather than using a previously downloaded file. As you'll see, this is quite straightforward.

1. Recall that when we switched over to the static JSON data, we entered the following
URL into our browser to download the JSON data:

http://api.flickr.com/services/feeds/geo/?format=json&tags=bird
2. We should be able to use this URL with our $. ajax function and load data directly

from the live feed rather than our static file. Go ahead and modify the URL:
$.ajax ({

url: 'http://api.flickr.com/services/feeds/
geo/?format=json&tags=bird’,

dataType: 'jsonp',

jsonpCallback: 'jsonFlickrFeed',

success: successHandler

13N

[3151

http://api.flickr.com/services/feeds/geo/?format=json&tags=bird

Creating Web Map Apps

3. Reload the browser and you should see different photos loaded than in your saved

JSON file.
ol
-
& el
&
What just happened?

By simply replacing the URL for our AJAX function with the live Flickr feed URL, we can now
load the latest available data. No other changes were needed.

Wranping up the application

Showing bird pictures from around the world is nice—but what about giving users the ability
to show a photo with any tag they want? That's what we'll do next. So far, we've created a
map that lets users interact with Flickr data. As far as we're concerned, we're more or less
done with the interaction part. Now, we'll focus on changing the data source part. Currently,
we're only asking for photos with the bird tag, but we want to allow that to be any tag.

An important concept in application development is to keep things modular. This basically
means that we try to write out applications in such a way that we can take out, and put in,
different parts without drastically changing the rest of our code. In this case, we will leave
the interaction part of our code alone (what we've done so far at least) and focus mainly on
the code that retrieves data.

[3161

Chapter 11

The plan

What needs to happen? Well, let's think this through. We want the user to be able to specify
any tag they want. We want to allow multiple tags. This means we'll need to change the URL
that the $.ajax function is loading, but only after the user specifies some tags. We'll want
to create a function to wrap the $.ajax call and come up with a way to change the URL
based on the selected tags. We'll also need to deal with removing existing features when the
tags change.

Changing the URL

So, we know we need to allow a variable that specifies the tags parameter in the URL to
be based on user input. We'll need to create an input box that will allow the user to specify
tags. We'll also have a submit button that will, when clicked, call a function that updates the
$.ajax method's URL with the specified parameters.

Time for action - adding dynamic tags to your map

Let's add some more interaction to our map now. We'll add an input box that will change the
requested Flickr data based on the user's input:

1. First, we'll add an input box and button to the HTML page. We'll put them into a div
after the map and before the photo information:
<div id="search" style="position: absolute; top: 10px; right:
10px; padding: 5px; background-color: rgba(255,255,255,0.5);">
<input type="text" placeholder="Search photos by tag(s)"
style="width: 200px">
<button type="button"s>Search</buttons>
</div>

2. Next, we'll need to replace our $.ajax call with a function that will get called when
the button is clicked. This function will do three things. First, it will clear the existing
features from the map. Next, it will clear any selected photo info. Finally, it will
request new data from Flickr with the appropriate tags:

function loadFlickrFeed(tags)
selectedFeatures.clear () ;
flickrSource.clear() ;
$ ('#photo-info') .empty () ;
$.ajax ({
url: 'http://api.flickr.com/services/feeds/geo’,
data: {
format: 'json',
tags: tags

b

[3ml

Creating Web Map Apps

dataType: 'jsonp',
jsonpCallback: 'jsonFlickrFeed',
success: successHandler

3N
}

3. Now, we'll need to make the button call this function when it is clicked. We'll use
jQuery for this. Add the following after the 1oadF1lickrFeed function:

$ (document) .on('click', '#search button', function() {
var value = $('#search input') .val();
var tags = value.split(' ').join(',');
loadFlickrFeed (tags) ;

3N

4. Open up the page and you should see an input box over the map. When you change
the value and hit the button next to it, the 1oadFlickrFeed function will get called

and refresh the vector layer. Try typing in various tags (or multiple tags separated by
a comma) and hitting the button:

- J | Search |

(1 [+]

aken by nobody @flickr.com (Janicskovsky) on 2013-08-12T16:19:47-08:00 at lat: 49.502032 lon: -2.518229

agged in uk dog slr grass ball nikon walk depthoffield gb resting dslr guernsey channelislands longgrass
nikond7000

[318]

Chapter 11

What just happened?

We just updated our Flickr application to allow user input that affects what data is shown.
We did this in a sort of modular way—we didn't have to change any of the previous code
we wrote. Instead, we just created a function that clears the existing features and loads new
ones based on the selected tags. Now that we've written an application, let's talk a little bit
about how to deploy it.

Deploying an application

What does it mean to deploy an OpenlLayers (or any other) application? Basically, deploying
something means that we're switching from a development mode to a production mode;
we're releasing something for the rest of the world to see.

The production application should be as fast and bug free as possible. As we want the
production version to be accessed as quickly as possible, this will often include removing
things we used in the development environment and tweaking the production environment
to better handle a lot of users. This also means using files that are as small in size as possible.
While fully optimizing a web application is beyond the scope of this book, there are a couple
of things we can do with Openlayers to help optimize our JavaScript file size: create a custom
build of OpenLayers and compile our code with the OpenLayers code.

There are many other things we should do to better prepare our
X production environment, such as using caching, as well as combining
% and minimizing our website's assets. These, and other practices, are
outside the scope of this book, but further information can be found
athttp://en.wikipedia.org/wiki/Web performance
optimization#Best practices.

Openlayers provides an easy way to create a custom build of the library to include in your
page that contains only the things you need. Throughout this book, we've been including
afile called ol .7s (or ol-debug. js), a file that contains all the functionality (classes,
functions, and so on) that OpenlLayers provides. So far, this has been great—we've been
developing up to this point, so we want to be sure that we have access to all the classes that
we may use.

[3191

http://en.wikipedia.org/wiki/Web_performance_optimization#Best_practices
http://en.wikipedia.org/wiki/Web_performance_optimization#Best_practices

Creating Web Map Apps

Well, the o1 . js file we've been using is around 391 KB, and the debug version is 3.5 MB!
Both are quite large files to load, especially since they contain only JavaScript code. Even
though large file sizes aren't as much of an issue as they were years ago, when everyone was
on slower connections, a large JavaScript file in a production environment is something we
want to avoid if at all possible. This is especially true for mobile environments, where users
pay for data plans and data speeds can be highly variable.

We want all our files in a production environment to be as small as they can absolutely be.
This will allow users to download the files faster (since there is less to download), which
decreases the page's loading time (saves on bandwidth expenses). Faster page loads (even if
the speed is only perceived) will greatly enhance the user's experience. Fortunately, we can
greatly reduce the size of the OpenLayers library file with a build tool provided by OpenlLayers.

Two approaches to optimization

To optimize your application code for production, there are two approaches you can take:

¢ Combined: The build tool combines all your JavaScript files into a single file
containing both the OpenlLayers 3 code and your application code.

¢ Separate: The build tool creates a custom version of the OpenLayers library code
with only the parts you need. Your application code is kept separate.

The following table shows the advantages and disadvantages of each approach:

Approach Advantages Disadvantages

Combined compilation & Maximum optimization of & More complicated to
the compiled JavaScript annotate your code
code. with comments that

allow closure compiler
to optimize your code.

& Requires externs,
particularly when using
third-party libraries.

& Closure compiler
doesn't always work
well with third-party
code. In particular, it
doesn't work well with
module loaders.

Chapter 11

Approach

Advantages

Disadvantages

Openlayers and application
code separate

& Creates a custom build of

Openlayers 3 tailored to
your needs.

Application code does not
have to be type-annotated

& The build size is higher

than the all-in-one
compilation.

Defining the exports for
a custom build can be

for the closure compiler. difficult to get right.

& Can use other JavaScript
compression techniques
(suchashttp://
lisperator.net/
uglifyjs/) forthe
application code and
third-party libraries. This
can often achieve nearly
equivalent compression
and avoid many of the
pitfalls of the closure
compiler with third-party
libraries.

Before going further, you will need to follow the installation process for Python, Java, and
Node following the guide in Appendix B, More details on Closure Tools and Code Optimization
Techniques. These tools are required to create custom builds of OpenLayers.

The standard release archive for Openlayers does not contain the build tools we require.
Additionally, the build tools provided with OpenLayers work only with code cloned from

a Git repository. The instructions for this book are designed for version 3.0.0 of OpenlLayers.
To make sure that you are using the correct version, you can check out the v3.0.0 branch of
the repository using the following command:

git checkout -b v3.0.0

If you have already run the OpenLayers build tools on a version other than v3.0.0, it is
recommended to remove the build and node modules folders and start again.

What does the compiler do?

We'll briefly cover how the closure compiler works to optimize your code, as we will need
to understand it a little bit to use it properly. More detailed information can be found in
Appendix B, More details on Closure Tools and Code Optimization Techniques.

[381]

http://lisperator.net/uglifyjs/
http://lisperator.net/uglifyjs/
http://lisperator.net/uglifyjs/

Creating Web Map Apps

The closure compiler optimizes code by applying a series of transformations to your code.
Covering all of these is the topic for a whole book in itself, but for our purposes it does three
basic things:

¢ Safely rewrite your code into a more optimal form
¢ Remove unused code

¢ Rename objects, methods, and property names to shorter versions

When the compiler rewrites your code, it will attempt to use language features that reduce
the overall size of your code and execute more efficiently. This can include the following:

¢ Removal of extraneous white space
¢ Consolidation of variable declarations

& Restructuring of loops

Generally, these changes are safe and do not change the logic or functionality of your code.
They simply take advantage of language features to fit your code into less space.

The compiler will also attempt to remove the so-called dead code. Dead code is any function
that the compiler determines will not be called by the application. It is sometimes difficult
for the compiler to automatically determine what code your application will use, especially
if you are creating a separate build. In these cases, we need to tell the compiler what things
we need to keep even though they might be considered dead code. This is generally done
in two ways depending on our strategy. If we are creating a combined build, the compiler
can generally determine what functions we will need automatically, but it doesn't know
what files to include in the first place. To help the compiler, we add code to register these
dependencies. If we are creating a separate build, the compiler doesn't have our code to
analyze; so, we have to use a different technique. In this case, we will provide an explicit list
of functions to keep in the compiled library.

We will cover both techniques shortly.

13821

Chapter 11

Renaming ohjects, functions, and properties

The final compiler technique we need to discuss is the renaming strategy. Generally, when

we are writing code, we use descriptive names for functions and variables. This makes code
much more readable to ourselves and others, and it's much easier to remember names that
mean something when writing our code. However, these long names take up space—1 byte
per character—and when they are used repeatedly, it can really add up. The JavaScript engine
in a browser doesn't really care about our descriptive names though. A name like X1 is just

as good as GeoJSONParser, and as long as it is used in the right places, we can save 11 bytes
for every use of GeoJSONParser by replacing it with X1. Using short names is not practical for
application developers, but it is something that can be done really well by a compiler.

Unfortunately, this is one of the biggest gotchas of using the Closure Compiler. It renames
objects, functions, and properties very aggressively and makes them effectively unusable by
external code. There are two main problems we need to be aware of concerning this renaming.

When creating a standalone build of OpenLayers, we need to make sure that the objects,
functions, and parameters we need are not renamed. This is done using exports, which will
be covered later in this chapter.

When creating a combined build of OpenLayers with our application code, we no longer have
to worry about exports because our use of the Openlayers objects, functions, and properties
will be taken into consideration by the compiler and renamed appropriately. However, if we
use other third-party libraries (for instance, jQuery), the closure compiler does not know
about them and will rename our use of their objects, functions, and properties. There are
two things we can do to tackle the second problem. First, we can provide special JavaScript
files, called externs, which define the objects, functions, and properties of external libraries.
The compiler can then correctly avoid renaming parts of our code that we need to preserve.
The second, is to use string values in key places, because the compiler will never rename

a string value. This technique relies on the ability for JavaScript code to reference object
properties using array-like syntax. For instance, if we have a property name on an object foo,
normally, we would reference it like the following:

foo.name = 'test';
The compiler might rewrite this code like the following:

XB.XC="'test';

If foo is an object coming from some external library that relies on name, our code may
break in unusual ways. To prevent this, we can use the array-like notation with a string value
to avoid renaming:

foo['name'] = 'test';

Creating Web Map Apps

We'll see an example of this in our next example.

Exports and externs are quite similar. The first is for choosing the library
code you want to expose the third-party code, whereas the second, is to
U . . .
~ stop the default renaming behavior for the third-party code. To fully grasp
the difference, you should refer to the official topic on Do Not Use Externs
Instead of Exports! at https://developers.google.com/
closure/compiler/docs/api-tutorial3#no.

Now that we have a working OpenLayers build environment and understand a little
background, let's take a look at optimizing our application using the first technique—a
combined build.

Time for action - creating a comhined build

There are a few steps we need to take to create a combined build. These are as follows:

1. First, we will remove our JavaScript code from the HTML page and create a separate
file for it. Go ahead and copy the contents of the <script> tag that contains all
the JavaScript code into a file and save it as f1ickr combined.js. You can, of
course, call it something different but the remainder of this example will refer to
it by this name. If you choose a different name, make sure to change all the
references appropriately.

2. Now, delete the JavaScript and the script tag from your HTML file. At this point, we
can create a new <script>tagtoload flickr combined.js and everything
should work as before. If you want to try this, go ahead but remember to remove
the script tag afterwards. We won't be using £lickr combined.js directly.

3. In order for the closure compiler to find the exact parts of OpenlLayers that our
application needs, we need to tell it what parts we are using. The closure compiler
then removes any code we won't need and produces an optimal build. When
creating an all-in-one build, the mechanism for doing this is to add goog . require
statements to our JavaScript file. Let's go ahead and do that now. Add the following
at the top of your £1lickr combined.js file:

goog.require ('ol.Feature') ;
goog.require ('ol.geom.Point') ;
goog.require ('ol.interaction.Select') ;
goog.require ('ol.layer.Tile') ;
goog.require ('ol.layer.Vector') ;
goog.require('ol.Map') ;

3841

https://developers.google.com/closure/compiler/docs/api-tutorial3#no
https://developers.google.com/closure/compiler/docs/api-tutorial3#no

Chapter 11

goog.require('ol.proj') ;

goog.require ('ol.source.OSM') ;

goog.require ('o

("ol
("ol

goog.require ('ol.source.Vector') ;
('ol.style.Icon');
("ol

goog.require('ol.View') ;
If you are using the o1 -debug. js build of OpenlLayers, then this change will
continue to work. If you are using ol . js, however, it will not work as the goog

namespace is not exported in the optimized build of OpenLayers.

The OpenlLayers build tool runs inside the OpenLayers directory. The easiest way for
Openlayers to find your code is to copy it into the 013 directory. Go ahead and copy
flickr combined.js into the 013 /build directory now.

Next, we need to create a configuration file that is used by the build tool to control
what the Closure Compiler does. Create a file called f1ickr combined.json file
within the 013 /build directory and give it the following content. We'll go over the
parts of this file afterwards:

{
"exports": [],
"src": ["src/**/*.js", "build/flickr combined.js "I,
"compile": {

"externs": [
"externs/closure-compiler.js",
"externs/geojson.js",
"externs/jquery-1.7.js",
"externs/oli.js",
"externs/olx.js",
"externs/proj4ijs.js",
"externs/vbarray.js"

1,

"define": [

"goog.dom.ASSUME STANDARDS MODE=true",
"goog.DEBUG=false"

1,

"jscomp error": [
"accessControls",
"ambiguousFunctionDecl",
"checkEventfulObjectDisposal",
"checkRegExp",
"checkStructDictInheritance",
"checkTypes",

"checkVars",
"const",
"constantProperty",

Creating Web Map Apps

1,

"deprecated",
"duplicateMessage",
"es3™",

"es5Strict",
"externsValidation",
"fileoverviewTags",
"globalThis",
"internetExplorerChecks",
"invalidCasts",
"misplacedTypeAnnotation",
"missingGetCssName",
"missingProperties",
"missingProvide",
"missingRequire",
"missingReturn",
"newCheckTypes",
"nonStandardJdsDocs",
"suspiciousCode",
"strictModuleDepCheck",
"typeInvalidation",
"undefinedNames",
"undefinedvars",
"unknownDefines",
"uselessCode",
"visibility"

"extra annotation name": [

1,

"api", "observable"

"compilation level": "ADVANCED",

"output_ wrapper":
n(function () {%output%}) () ;",

"use types for optimization": true,

"manage closure dependencies": true

Now, we have the parts we need to build our combined file. Open a command prompt
or terminal and change to the 013 directory. Execute the following command:

node tasks/build.js build/flickr combined.json build/flickr
combined.built.jsgit status

Copy the resulting file named £1ickr combined.built.js backinto the working
directory of your application code.

"// OpenLayers 3. See http://ol3.js.org/\

Chapter 11

7. Change the <script> tag that loads the o1 -debug. s script to point to the new
JavaScript file, for instance:

<script src="flickr combined.built.js"></scripts>

8. Reload your application page and everything should still be working.

What just happened?

We created a custom build of OpenlLayers combined with our application code using the
provided build tools. We'll review the steps but first, let's take a look at the resulting file sizes:

Files Used Net Size

Before (debug build) ol-debug. js (3.3 MB) 3.3 MB
flickr combined.js (3.7 KB)

Before (optimized build) | ol.js (382 KB) 385.7 KB
flickr combined.js (3.7 KB)

After flickr combined.built.js (153 KB) 153 KB

As you can see, our final built file is less than half the size of the full OpenLayers build. Okay,
now let's review how we did it.

For the OpenLayers build tools to work, they need our application's JavaScript and a
configuration file. We first extracted the JavaScript from our HTML into a separate file, then
added some extra lines of code to help the Closure compiler understand what parts of
Openlayers we use by adding goog. require statements. Figuring out what you are using
from OpenlLayers can be a bit tricky in larger applications, but using searching for o1 . (that's
o1 followed by a period) will identify the correct things.

The next step, was to create a configuration file for the build tool. This configuration file is
written in the JSON format, which looks a lot like JavaScript. The configuration file has several
parts to it:

¢ exports: This identifies specific objects and methods in the OpenLayers library
that should not be renamed when creating an optimized build. We'll see how this
works in the next example, but for this example, we left it empty because we are
combining our application code with OpenlLayers.

¢ src: This identifies all the source JavaScript files that the compiler should consider
when creating the optimized build. We say consider because not all the code will
be included in the output. In our configuration file, we can specify the path to the
Openlayers source files (src/**/* . js) and our application file (build/flickr
combined.js).

[3871

Creating Web Map Apps

¢ compile: This contains directives specific to the Closure compiler. Modifying this
section requires advanced knowledge of the Closure compiler and we won't be
covering it in this book. It is normally sufficient just to copy this section to each
new configuration file that you create. The one exception is the externs array. The
externs array identifies files that contain type hints for the closure compiler. If
you are using a third-party library in your application code, you will need to provide
an externs file for that library to prevent the compiler from renaming function and
property names in your code. For instance, we are using jQuery with our application
and have included the jQuery-1.7.7js externs file provided with OpenLayers.
Externs for other libraries can be found at https://github.com/google/
closure-compiler/tree/master/contrib/externs.

With our application code prepared and a configuration file, we then run the command-line
build tool providing it the name of the configuration file and the name of the JavaScript file
to create:

node tasks/build.js build/flicker combined.json build/flickr combined.
built.js

We then copied the resulting file, f1ickr combined.built.js, back into our application
folder and updated the script tag to load this file instead of o1 -debug. js. The net result is
an impressive drop in file size and the elimination of one JavaScript file to load.

In large applications, it is not uncommon to have your JavaScript
_ code separated out into different files based on some logical
breakdown of the code. OpenlLayers, for instance, has 330
o separate JavaScript files. When you have a lot of different files,
the net effect of combining them all into a single file is much
more apparent to the user.

While the combined build creates a single JavaScript file that contains both OpenLayers

library code and your application code, a separate build creates a single JavaScript file that
contains just the OpenLayers code required by your application. The main difference with this
approach is that we will not use goog . require to tell the compiler what parts of OpenLayers
we want to use. Instead, we will use the exports property of the configuration file. The other
difference, is that we will not include our application source file in the src configuration.

https://github.com/google/closure-compiler/tree/master/contrib/externs
https://github.com/google/closure-compiler/tree/master/contrib/externs

Chapter 11

Time for action - creating a separate build

Unlike before, we don't need to move our application code into a separate file. Unless you
kept a copy of the application from before the previous example, however, we'll need to fix
up our HTML file a little bit for this example. This example assumes you are starting with the
previous example:

1.

2.

Create a copy of £1lickr combined.jsandcallit flickr separate.js.As
always, you may use a different name but make sure it is consistent! You might also
want to make a copy of your HTML file and use it for the rest of this example.

Edit flickr separate.js and remove all the goog.require statements from
the beginning of the file.

Add anew <script>tagtoload flickr separate.js afterthe <scripts tag
that loads the combined build file:

<script src="flickr separate.js"></scripts>

Now, we need to create our custom build of OpenLayers. First, we'll need a
configuration file. Let's create a new file named £1ickr separate.jsoninthe
Openlayers build directory. Give it the following content:

{
"exports": ["ol.Map",
"ol.Map#*",
"ol.View",
"ol.animation.*",
"ol.control.*",
"ol.layer.Tile",
"ol.proj.*",
"ol.source.OSM",
"ol.source.Vector",
"ol.source.Vectorf#figetFeatures",
"ol.source.Vector#addFeature",
"ol.source.Vector#removeFeature",
"ol.layer.Vector",
"ol.interaction.Select",
"ol.interaction.Select#getFeatures",
"ol.interaction.Select#on",
"ol .Observablefon",
"ol .Feature",
"ol.Featuref#fget",
"ol .Featurefiset",
"ol.geom.Point",
"ol.style.Style",
"ol.style.Fill",

Creating Web Map Apps

"ol.style.Stroke",
"ol.style.Circle",
"ol.style.Text",
"ol.style.Icon"

1,

"src": ["src/**/*.js"],
"compile": {
"externs": [

"externs/bingmaps.js",
"externs/bootstrap.js",
"externs/closure-compiler.js",
"externs/example.js",
"externs/geojson.js",
"externs/jquery-1.7.js",
"externs/oli.js",
"externs/olx.js",
"externs/proj4js.js",
"externs/tilejson.js",
"externs/topojson.js",
"externs/vbarray.js"

1,

"define": [
"goog.dom.ASSUME STANDARDS MODE=true",
"goog.DEBUG=false"

1,

"jscomp error": |
"accessControls",
"ambiguousFunctionDecl",
"checkEventfulObjectDisposal",
"checkRegExp",
"checkStructDictInheritance",
"checkTypes",

"checkVars",

"const",

"constantProperty",
"deprecated",
"duplicateMessage",

"es3",

"externsValidation",
"fileoverviewTags",
"globalThis",
"internetExplorerChecks",
"invalidCasts",
"misplacedTypeAnnotation",

Chapter 11

"missingGetCssName",
"missingProperties",
"missingProvide",
"missingRequire",
"missingReturn",
"newCheckTypes",
"nonStandardJdsDocs",
"suspiciousCode",
"strictModuleDepCheck",
"typeInvalidation",
"undefinedNames",
"undefinedvars",
"unknownDefines",
"uselessCode",
"visibility"

1,

"extra annotation name": [
"api", "observable"

1,

"jscomp off": [

"es5Strict"

1,

"compilation level": "ADVANCED",

"output wrapper": "// OpenLayers 3. See http://ol3.js.org/\

n(function () {%output%}) ();",
"use types for optimization": true,
"manage closure dependencies": true

}

Now, we can build our custom version of OpenLayers. Execute the following in
a command prompt or terminal in the 013 directory, as we did before:

node tasks/build.js build/flickr separate.json build/flickr
separate.ol.js

Copy the resulting £1ickr separate.ol.js back to your application folder

nextto flickr separate.js

Finally, change the script tag that loads £1ickr combined.js to point to this
new file:

<script src="flickr separate.ol.js"></script>

Load your HTML page and everything should work just as it did before.

[3911

Creating Web Map Apps

What just happened?

We just created a custom build of the OpenlLayers library that contains only the code we
need, and which exports only the things we actually use. The resulting library is a little bit
larger—177.5 KB vs 156.5 KB—because the compiler is preserving the names of the objects,
functions, and properties that we have exported. Let's review these steps.

First, we adapted our previous example and modified a copy of our application code to
remove the goog. require statements. Those won't be needed for the compiler, and in
fact, won't work with our custom build because the goog namespace is not exported.

Next, we created a new configuration file for the compiler. You probably noticed that it's
nearly identical to the one from the previous example. In fact, there are two differences
and they are very important. First, we removed our application source from the build by
removing it from the src property. Second, we explicitly listed the names of objects and
functions we want exported in the exports section.

Populating exports is really the trickiest part of creating a separate build. As with the
combined build, a search of your code for o1 . will identify all the main classes that you are
referencing and these can be included directly in the exports array. However, exporting a
class does not automatically export any of its properties or methods. We also need to know
what methods we call on all objects that are exported. In some cases, we don't actually call
any methods on the objects we created, but in other cases, we do. Finding these methods is
a bit more time consuming as it requires manually reading the code.

When adding a method name to the exports list, we write it with the object name first,
a # symbol, and then the method name, for instance see the following:

ol .Map#getSize

It is also possible to export all methods of an object by using * instead of a method name
after the # symbol. While this is quick and easy, it will produce much larger builds than
necessary in most cases.

sSummary

You've reached the end of the book! In this chapter, we built a simple web map application
that grabs Flickr data based on user input. We covered some development concepts
throughout the chapter, such as attempting to keep our code modular. We learned how to
interact with other third-party APIs, and built an application from the ground up. Lastly, we
talked about deployment and learned how to use the Openlayers build script. Now that
you've finished reading this book (I hope you've enjoyed it), you should be able to go out
and make your own impressive web maps!

[392]

When you need to make a custom map using the OpenLayers 3 library, you
need to grasp the common programming sentences and vocabularies.

Why? It's because OpenlLayers relies on JavaScript, a programming language
based on object-oriented programming (OOP). Knowledge about OOP is shared
amongst programmers. Without this knowledge, it will be difficult to talk about
programming issues, for example, on a forum.

We will see that behind complex words lie simple concepts. In fact, everyone
uses OOP concepts on a daily basis but without being aware of it.

In this appendix, we will cover:

¢ What object-oriented programming is
¢ How OOP in the OpenlLayers 3 API context can be useful

Let's talk about how object-oriented programming works from a theoretical and
technical level.

Object-oriented Programming — Introduction and Concepts

Object-oriented programming is a programming paradigm. It added a new way to manage
code by using the concept of object as opposed to procedural programming where code
follow the reading order. By using OOP, you gain reusability of code. The main gain is related
to encapsulation or separation of concern. Each object has his own life.

To understand object orientation, let's take a simple example—animals. Your cat is a class. If
you have four cats, you have four objects of type cat. Each of them has different properties
name, age and sex values. A cat can move. In OOP terms, move is a method of the class cat.

Let's review some questions that can help you understand keywords and concepts we will
implicitly use.

What is an ohject?

An object can be considered a thing that can perform actions and has properties. The action
defines the object's behavior. For instance, the cat can jump. Your cat's age is eight so the
property value is 8.

In pure OOP terms, an object is an instance of a class.

In an Openlayers context, imagine you want a side-by-side map where you prepared a div
with id attribute equal to map1 and another one for the id attribute with the value map2.
You will use the JavaScript new operator to declare two instances of the o1 .Map class like
following:

var mapl = new ol.Map ({
target: 'mapl'

1)

var map2 = new ol.Map ({

target: 'map2'

1) s

An instance means that each object based on the class has it own properties values.

In our example, the target property is different for the map1 and map2 objects.

Whatis a class?

A class can be considered as an extensible program-code-template.

When you already know OOP, you use the word class to declare it but in JavaScript, the class
is known as a function. Also, functions are used as constructors.

[394]

Appendix A

The following excerpt from OpenlLayers illustrates how a class looks:

ol.Map = function (options) {

}

We also recommend you inspect the full o1 .Map class at http://openlayers.org/en/
v3.0.0/apidoc/map.js.html after reviewing the following information box to discover
on your own the class methods and properties.

We will abusively use classes to describe object-oriented
programming but the truth is that JavaScript is based
. on prototypes and not classes. We chose to simplify the
% explanation as more people understand OOP based on classes.
A The main goal is to explain inheritance in particular. To learn the

difference. we recommend going to https://developer.
mozilla.org/en-US/docs/Web/JavaScript/
Guide/Details of the Object Model for more.

What is a constructor?

To instantiate an object, you need to use the new keyword on a JavaScript function.

For example, when using new ol .Map (), the function ol .Map is called the constructor.
It's the function you use with the new keyword to create an object. You can give options to
the constructor.

There are other ways to create an object but to keep thing simple,
we chose to restrict our explanation to the most common way
%@‘\ when using the OpenLayers library. If you want to go further, go to
’ https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Guide/Working with Objects.

What is inheritance?

Inheritance is the ability of a new class to be created, from an existing class by extending
it. With this, you use the DRY (Don't repeat Yourself) principle. For example, you can reuse
method or properties from a parent class. Don't sweat, it's time to explain!

Imagine after describing your cat, you also want to describe your dog in OOP.

13951

http://openlayers.org/en/v3.0.0/apidoc/map.js.html
http://openlayers.org/en/v3.0.0/apidoc/map.js.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects

Object-oriented Programming — Introduction and Concepts

Cats and dogs are not the same but they share some characteristics like their name, their sex or
their age or they ability to move. However, a cat can jump from windows whereas a dog can't.
We don't want to maintain two classes because they have common properties. You can achieve
this by using a new class called animal. It can be represented like the following diagram:

Animal
Name
Age
Sex
move()
0
Cat -
- ; Dog
jumpFromWindows()
bark()
meow()

In your code, instead of declaring every common property and method twice, you declare
that your cat class inherits from the Animal class, so you can reuse properties and methods

from the parent class. Cat and Dog are subclasses of the Animal class. You can also says
that the Ccat class extends the Animal class.

Why do you think it's useful to review this abstract concept?

It's because you need to figure out the relations between OpenlLayers 3 library components.
The library heavily uses inheritance and for creating your own components, it's a requirement.

It's a class you use to define properties for other class that need to inherit it properties and
/ or methods but you never directly instantiate this class. The animal can be considered

as an abstract class. However, in Openlayers, the ol .source.XYZ isn't an abstract class,
although o1 .source.0sMis its child class.

Appendix A

Namespace helps you to organize your code by grouping it logically, and also by separating
variables from the global.

You can declare a namespace with something like below:

var app = {
main: ""

}

or

var app = {};
app.main = {};

The ol . * classes in the APl documentation illustrate the namespace purpose
http://openlayers.org/en/v3.0.0/apidoc/.

Methods are actions you can use within the object. Getters and setters are special types of
methods. A setter's purpose is to set property within the object, whereas a getter is to get
property from the object.

In Openlayers, most classes inherit from the ol .0bject class. This class is fundamental for
using setters and getters within the library. The excerpt from the official documentation is
quite clear about them:

"Classes that inherit from this have predefined properties, to which you can add
your own. The pre-defined properties are listed in this documentation as Observable
Properties, and have their own accessors; for example, ol .Map has a target
property, accessed with getTarget () and changed with setTarget (). However,
not all properties are settable. There are also general-purpose accessors, get () and
set (). For example, get ('target') Iisequivalent to getTarget ()."

Let's have a look at the APl and understand how it uses the OOP concepts.

After reviewing the most important principles, let's inspect the API to sort out how to
analyze it with OOP concepts.

13971

http://openlayers.org/en/v3.0.0/apidoc/
http://openlayers.org/en/v3.0.0/apidoc/ol.Map.html

Object-oriented Programming — Introduction and Concepts

For this, we will reuse the ol . source.XYZ APl documentation, http://openlayers.org/
en/v3.0.0/apidoc/ol.source.XYZ.html. First, let's start with the content on top of
the page.

ol.source.XYZ

Layer source for tile data with URLs in a set XYZ format.

Constructor _

. ~ ——»new ol.source.XYZ (cptions) sre/olsource/ xyzsources, line 19
W|th Opthl‘lS c/ol/source/ xyzsource. s, line

Name Type Description
File name and - o XYZ options /
line number to Name Type Description
find the constructor actribution Attributions.
code.
Note that there are z jin Cross origin setting for image requests
two separate links here ; Logo
URL template. Must include {x ¥y} or
-y} .and {z] placehclders

An array of URL templates.

Fires:
. ! Triggered when the state of the source changes
Those classes
inherits from—— Subclasses
ol.source.XYZ . M

ol.source.XYZ
inherits from — > Extends
ol.source.Tilelmage

The illustration above is self-explanatory. You should follow the link for the constructor
function, the subclasses to inspect properties, and methods subclasses inherits and discover
provided properties and methods from ol . source.TileImage.

http://openlayers.org/en/v3.0.0/apidoc/ol.source.XYZ.html
http://openlayers.org/en/v3.0.0/apidoc/ol.source.XYZ.html

Appendix A

Using the following screenshot, you will be able understand inheritance:

Methods

{Array.<ol F'.'.lrl|.‘.|'.I'JI|')}

getAttributions

Urilque key for the listener.

setUrl jurl)

Name Description

URL

Type

folrokanrvable s, lin 63 g

Returns:
Attributions.
getLogo {stringjolx.LogoOptionsjundefined}
Returms:
Laga
getTileGrid (1 € {ol.tilegrid TiieGria} ([
Returns:
Tile grid
onicy s 1li 1eT, his) {goog.events.Hey} m
Listen for a certain type of event.
Mame Type Description
The event type or array of event types
cener The listener function.
The ohject to use a5 thi= in listener .
Returns:
unigue key for the listener.
once (type, listener, t_this) {goog.events. H.cy}
Listen once for a certain type of event
Name Type Description
type The event type or array of event types
The listener function
The object to use 85 this in listener.
Retumns:

srefal/sourcefyzcource. fc, line

Methods coming
from ol.source.Source
in source.js

< Method coming
from ol.source.Tile
in tilesource.js

Methods coming
from ol.Observable
in observable.js

.« = Method sets ‘
on xXyzsource.js,
without inheritance

Looking at the screenshot, we are able to figure out most of the inheritance. We deduced
the exact class inheritance by hovering over the inherited keyword with the mouse to see

the URL that gives us a hint about it.

Object-oriented Programming — Introduction and Concepts

Within the previous screenshot, for readability, we had to remove the full o1 . source.
XYZ class description. If we include and follow all the available methods, the relationships
between ol . source.XYZ class methods and properties and their parent and child classes,
the result will be as follows:

ol.Observable
on()

once()
un()

unByKey()
A

ol.source.Source

getAttributions()

getlLogo()
A

ol.source.Tile
getTileGrid()

A

ol.source.Tilelmage

A

ol.source.XYZ

attributions
crossOrigin
logo
url
urls

setUrl()
A

ol.source.Stamen ol.source.OSM ol.source.MapQuest

For a more complete abstract about object-oriented programming, check out
https://en.wikipedia.org/wiki/Object-oriented programming.

For a review concerning JavaScript object-oriented programming, head on to
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction
to Object-Oriented JavaScript.

[400]

https://en.wikipedia.org/wiki/Object-oriented_programming
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript

More details on Closure Tools and
Code Optimization Techniques

Closure Tools are a set of utilities used for web development. It is mainly
supported by Google, but is open source under the Apache License Version 2.0,
a well-established permissive license. The name Closure Tools hides under it a
lot of subtools, which will make your life as an apprentice developer easier. It
includes a JavaScript optimizer, a JavaScript library, a templating library, a style
checker and style fixer, and at last, a stylesheet language. Just to illustrate how
powerful this set can be, think that most Google JavaScript applications, such
as Gmail or Google Maps, use these components.

Why are we introducing you to these tools?

The OpenLayers 3 library itself depends on the Closure Library, the JavaScript
library attached to Closure Tools. Its main goal is to leverage cross-browser
support. You also know you can write your application in pure JavaScript.

However, you can also consider Closure for advanced uses like creating your
own component such as controls and buttons with special behavior inherited
from an existing OpenLayers component. You will also get some useful Ul
components. It is also a good toolset to achieve better file compression when
you want an efficient web mapping application, using the Closure Compiler,
another utility from the Closure Tools bundle.

More details on Closure Tools and Code Optimization Techniques

We will not review all Closure Tools but only the most useful. Specifically, we will cover the
following topics:

Understanding the Closure Tools concepts

How to use the Closure Library and a small review of the main components' families

Why Closure Compiler is different from others compiler tools

* & o o

How to use it with Closure Library and with other JavaScript libraries. Application
of Closure Tools in OpenLayers for improving our way of developing web-mapping
applications

¢ The use of the already hidden workflow in OpenLayers code that relies on
Closure Tools

& Best practices for creating readable code and how to detect and fix errors using both
Closure style checker and style fixer

The Closure Tools philosophy

If you have ever done a bit of web development, and in particular, JavaScript, you must
have heard about jQuery, the most popular JavaScript library with more than 50 percent of
the worldwide websites using it. To not reinvent the wheel, the OpenLayers development
team chose Closure Library rather than jQuery. Why was this decision made? For a better
understanding, you need a bit of history of the Web.

In the olden days, there wasn't a lot of JavaScript. All applications were created using simple
HTML and CSS. There was dynamic content when reloading a full page using a server-side
such as PHP or Java. However, people wanted a smoother web navigation experience. With
the way AJAX works it was possible, as illustrated in the following figure, and people began
to focus more and more on the client-side:

14021

Appendix B

classic web application model (synchronous)

user activity user activity

data transmission

LOISSIWSLIRI] 1P
data transmission
uolssiwsuel eyep

system processing system processing

Ajax web application model (asynchronous)

user activity

user activity

yndu
display

ndit
dismay

ndut

d:smay

yndut
display

client-side processing

data transmission
LoissisUex e1ep
data transmission

data transmission
uoisSIUsUR Y BIep

LOISSILISLR BIED

server-side
processing

server-side
processing

server-side
processing

Jesse James Garrett / adaptivepath.com

uoIsSILUSUR BIep

data transmission

server-side
processing

The main two problems associated with this evolution are:

¢ The more files you have, the more your browser will wait to display pages. The issue
here comes from the processing cost to ask for the file, wait for it and then use it.
This behavior is called latency. For example, imagine you are at the checkout counter
at the supermarket; if ten clients buy one apple, the billing will take longer, than if

one client buys ten apples.

resources such as images, CSS, and JavaScript.

The second drawback of this evolution is that browsers have to load more and more

¢ The bigger the files are, the longer it will take to retrieve and process the content.
The main cause for this is the limited bandwidth. For example, when you are cooking
pasta, the more water you put in, the longer you have to wait for the pasta to cook.

[4031]

More details on Closure Tools and Code Optimization Techniques

When you are at home, you don't really suffer from bandwidth restriction, but in other
cases, you will always suffer from high latency. If you are planning to work on mobile support
with limited bandwidth, high latency, and a browser with limited memory, it can be a pain.

A good part of the solution lies in compression.
You have three levels of compression available for JavaScript, depending on technology:

¢ Combine without compacting all JavaScript in one file
¢ Combine and compact all JavaScript in one file

¢ Combine, compact, and obfuscate the code

For performance, the last method will work the best, and the Closure Library is the only
JavaScript library able to work this way, when combined with Closure Compiler.

Closure Tools, in particular, Closure Library and Closure Compiler are among the best tools to
deal with this case.

Although both tools are tightly related, we will review the most useful functions related to
Google Closure Library and later explain how to use Closure Compiler to optimize code.

Introducing Closure Library, yet another JavaScript library

Although the OpenlLayers 3 development team chose Closure Library mainly for performance
purposes, it is not the only reason.

To demonstrate, let's try some functions with Closure Library.

The hasics

We will review the most useful functions when you chose to use the Closure Library. It will
also help for understanding OpenLayers 3 internal code, based on Closure, when making
custom components. Let's start with DOM functions.

Time for action - first steps with Glosure Library

Although we can download the library on our computer, to remain simple, we will use a
remote JavaScript library version.

1. Create an HTML page using your text editor and cut and paste the following code:
<!DOCTYPE htmls>
<html>
<head>
<title>Dom manipulation</title>

(4041

Appendix B

<script src='https://rawgit.com/google/closure-library/master/
closure/goog/base.js'></script>
<scripts
goog.require ('goog.dom') ;

</scripts>
</head>
<body>
<ul id="my layers list">
My first layer

My second layer</lis>
My third layer
My background or base layer

<scripts
var my layers list = goog.dom.getElement ('my layers list');
var myTitle = goog.dom.createDom('hl');
var myText = goog.dom.createTextNode ("My simple layers

list");
goog.dom.append (myTitle, myText) ;
goog.dom.insertSiblingBefore (myTitle, my layers list);
</script>
</body>
</html>

2. Open your browser to see the following result:

My simple layers list

My first layer

My second layer

My third layer

My background or base layer

. ® @

What just happened?

In order to understand the code, let's review the lines related to the Google Library:

<script src='https://rawgit.com/google/closure-library/master/closure/
goog/base.js'>
</script>

[4051]

More details on Closure Tools and Code Optimization Techniques

Load the library base from a remote file. The code hosted on Github, needs to use a third-
party website https://rawgit.comto be able to serve the . js files:

goog.require ('goog.dom') ;

This line is the way to say make available the function from goog.dom namespace of the
library. If you forget this call, every function call starting with goog . dom will fail. This call
adds acall to <script src='https://rawgit.com/google/closure-library/
master/closure/goog/base.js'>and must be separated in a dedicated <script> tag.

The goal here is to load only required functions and to keep your JavaScript clean with
namespacing. Namespace enables separation of functions based on a common name. The
chosen namespace for the Google Library is goog, so every function based on the library will
start with goog. In this case, the goog.dom namespace is created. To discover the available
functions in the namespace, you can use your JavaScript debugger and type goog.dom var
my layers list = goog.dom.getElement ('my layers list') ;. Thisline selects
from DOM the element with an attribute ID, 'my layer lists'.

var myTitle = goog.dom.createDom('hl') ; createsan <hls taginan HTML fragment,
an element separated from the DOM, which you plan to add later to the web page DOM:

var myText = goog.dom.createTextNode ("My simple layers list");

The following code line adds a text node, the visible element in HTML you will see in a
web page.

goog.dom. append (myTitle, myText) ;

Add the text node to the <h1> tag. That is, the two previous floating elements <h1> </h1>
and My simple layers list became: <hls>My simple layers list</hl>

goog.dom.insertSiblingBefore (myTitle, my layers list);

Add the combined fragment to the DOM: it will be visible in your browser. We choose to use
the insertSiblingBefore method. Its purpose is to add a fragment in the DOM before
a reference DOM element. So, the text with <h1> tags will appear before the list.

With this example, we have reviewed a small subset of the goog. dom functions.

You will need them, for example, for interactivity like displaying an element with a color
change, or for having an application that reacts to a click of a button.

[406]

https://rawgit.com

Appendix B

Google library is an ever evolving JavaScript library

In a real context, outside experimentations such as the first Closure
Library code example, you will need to retrieve it using an SCM
(Source Code Management) software. Its goal is to follow every
%%‘ change in the code. It is one of the most useful tools for developers.
The one you need is called Git. Don't worry about it at the moment,
we will need it in the Installing the OpenLayers development
environment section. For now, just remember the URL to get the code
fromhttps://github.com/google/closure-library

To give you an overview of the most useful functions, we have mentioned below some
statistics on the most used namespaces and sub-namespaces' functions in the Openlayers 3
library. We also chose to keep the functions at the first level such as goog.require (. You
can make the distinction between functions and namespaces with the open parenthesis.
We also ordered the list in the following table:

Namespace and sub-namespaces

Numbers of occurrences

goog.require (

1436

goog.asserts 812
goog.isDef (765
goog. isNull (349
goog.provide (295
goog.object 289
goog.base (196
goog. inherits(168
goog.events, goog.vec 136
goog.dom 113
goog.array 100
goog.exportProperty (81
goog.math 72
goog.isDefAndNotNull (68
goog.getUid (39
goog.style 35
goog.isString(22
goog.bind(21
goog.string 14
goog.partial (13

4071

https://github.com/google/closure-library

More details on Closure Tools and Code Optimization Techniques

Namespace and sub-namespaces Numbers of occurrences
goog.isArray 12
goog.global 11

goog.addSingletonGetter (, goog.
dispose(9

goog.log,goog.uri.utils

goog. functions, goog.Uri, goog.now (4
goog.net, goog.isFunction (, goog.

isObject (3
goog.async, goog.isNumber (2

goog.color, goog.debug, goog. fs, goog.
fx, goog.json, goog.userAgent, goog.
isBoolean (, goog.Uri (1

Let's talk about goog . require and goog.provide. The Google Library, and hence the
Openlayers internal code, manages dependencies using these two declarations. In a file,
goog.require helps declaring required functions needed in the application code, whereas
the goog.provide is the opposite: it permits declaring that some functions are within a
file. These declarations combined with Closure Compiler usage help solve dependencies
between the various library files and also with the application code. Reusing these
dependencies will enable combining code for production.

Other important functions are goog. inherits and goog.base: you will find them
to apply inheritance concepts already evoked in Appendix A, Object-oriented
Programming — Introduction and Concepts.

With previous functions, you might think that some functions not at the top of the list are
not useful, but you shouldn't. In fact, we invite you to review them because the code for the
core of a JavaScript library differs from the code application to use it. In particular, look at
goog.userAgent functions or goog.style.

To have an overview of the available functions, the recommended way
is to visit the official website, https://developers.google.
X com/closure/library/, toreview the APl, http://docs.
% closure-library.googlecode.com/git/index.html. For
S samples, look at the available demos you have to use at https://
github.com/google/closure-library/tree/master/
closure/goog/demos/. It's a great complementary help to the
API, in particular to get an overview of the goog.ui components.

Next, let's head to an example to make your own component using Closure Library.

[408]

https://developers.google.com/closure/library/
https://developers.google.com/closure/library/
http://docs.closure-library.googlecode.com/git/index.html
http://docs.closure-library.googlecode.com/git/index.html
https://github.com/google/closure-library/tree/master/closure/goog/demos/
https://github.com/google/closure-library/tree/master/closure/goog/demos/
https://github.com/google/closure-library/tree/master/closure/goog/demos/

Appendix B

When a component is not available, you will have to write some application code or for

reuse purpose, make your own. In this section, we will first review some of the concepts

of JavaScript applied with Google Closure Library. After this, we will see one of the official
sample code to understand how to use the library to create your own customized component.

Inheritance, dependencies, and annotations

Let's start with the inheritance. It should ring a bell; otherwise, you should review Appendix
A, Object-oriented Programming — Introduction and Concepts. This example will be enough
to introduce you to other key concepts of the library:

<!DOCTYPE html>
<html>
<head>
<titles>Inheritance</titles>

<script src='https://rawgit.com/google/closure-library/master/
closure/goog/base.js'></script>

</head>
<body>
<scripts>
//Parent Class
goog.provide ('myNamespace.layer.Layer') ;

/**
* @constructor
*/
myNamespace.layer.Layer = function (options) {
this.color = options.color || 'grey';
inamespace.layer.Layer.prototype.getColor = function () {

return this.color ;
}
//Sub Class
goog.provide ('myNamespace.layer.Vector') ;
/**
* @constructor
* @extends {myNamespace.layer.Layer}
*/
myNamespace.layer.Vector = function (options) {
goog.base (this, options) ;
if (options.style) {
this.style = options.style;

[409]

More details on Closure Tools and Code Optimization Techniques

goog.inherits (myNamespace.layer.Vector, myNamespace.layer.Layer) ;

//Create a new instance of Vector layer and call to method from
parent class.

var myVector = new myNamespace.layer.Vector({
color: 'white',
style: 'myStyle!'
1)
console.log(myVector.getColor()) ;
</script>
</body>
</html>

Launch it in your browser with the debugger, like Google Developer Tools, opened.

Let's review the code for the main lines:
<script src='http://closure-library.googlecode.com/svn/trunk/closure/
goog/base.js'>
</script>

This inserts the call to Closure Library:

goog.provide ('myNamespace.layer.Layer') ;

This declares the parent namespace (and class) with goog . provide:

/**

* @constructor

*/

myNamespace.layer.Layer = function (options) {
this.color_ = options.color || 'grey';

}

This declares the parent constructor:

myNamespace.layer.Layer.prototype.getColor = function () {
return this.color_;

}
This adds a method to the prototype of the object:
goog.provide ('myNamespace.layer.Vector') ;
This declares the children's namespace (and class) with goog.provide:

/**
* @constructor
* @extends {myNamespace.layer.Layer}

*/
[4101

Appendix B

myNamespace.layer.Vector = function (options) {
goog.base (this, optiomns);
if (options.style) {
this.style = options.style;
}
}

This declares the children's constructor and specifies who the parent is, in comments with
@extends.

In the function, goog.base (this, options) ; can be replaced with myNamespace.
layer.Layer.call (this, options) ; for a pure JavaScript alternative. It says to call
the options from the current constructor:

goog.inherits (myNamespace.layer.Vector, myNamespace.layer.Layer) ;

This makes myNamespace.layer.Vector inherit from its parent myNamespace.layer.
Layer.

var myVector = new myNamespace.layer.Vector ({
color: 'white',
style: 'myStyle'

1) i

console.log(myVector.getColor()) ;

This instantiates myNamespace . layer.Vector with options and makes a console call to
get the method call to the parent class in order to retrieve the color.

Until now, we mainly covered Closure Library, but this knowledge can be reused in OpenlLayers.
You will see that OpenLayers application code can really look like Closure Library.

Have a go hero - analyze a real Openlayers case

To see the similarity between Closure Library and OpenLayers application code, we will review
inheritance in a real OpenLayers context. So, we will ask you to review an official example
available at http://openlayers.org/en/v3.0.0/examples/custom-controls.html.

It will also be a good opportunity to review inheritance knowledge from Chapter 2,
Key Concepts in OpenlLayers; Chapter 9, Taking Control of Controls and Appendix A,
Object-oriented Programming — Introduction and Concepts.

[411]

http://openlayers.org/en/v3.0.0/examples/custom-controls.html

More details on Closure Tools and Code Optimization Techniques

This example contains the following JavaScript content:

/**
* Define a namespace for the application.
*/

window.app = {};

var app = window.app;

//

// Define rotate to north control.

//

/**
* @constructor
* @extends {ol.control.Control}
* @param {Object=} opt options Control options.
*/
app.RotateNorthControl = function (opt options) ({

var options = opt_options || {};

var anchor = document.createElement('a');

anchor.href = '#rotate-north';
anchor.innerHTML = 'N';
var this = this;

var handleRotateNorth = function (e) {
// prevent #rotate-north anchor from getting appended to the url
e.preventDefault () ;
this .getMap () .getView() .setRotation(0) ;

bi

anchor.addEventListener ('click', handleRotateNorth, false);
anchor.addEventListener ('touchstart', handleRotateNorth, false);

var element = document.createElement ('div') ;
element.className = 'rotate-north ol-unselectable';
element .appendChild (anchor) ;

ol.control.Control.call (this, {
element: element,
target: options.target

13N

[a12]

Appendix B

}i

ol.inherits (app.RotateNorthControl, ol.control.Control) ;

//

// Create map, giving it a rotate to north control.

//

var map = new ol.Map ({
controls: ol.control.defaults ({
attributionOptions: /** etype {olx.control.AttributionOptions} */
({
collapsible: false
3]
}) .extend ([
new app.RotateNorthControl ()
1),
layers: [
new ol.layer.Tile ({
source: new ol.source.OSM()
3]
1,
renderer: exampleNS.getRendererFromQueryString(),
target: 'map',
view: new ol.View({
center: [0, 0],
zoom: 2,
rotation: 1
3]
1)

These questions are for improvement:

Where does the code instantiate the RotateNorthControl component?
What is the parent class?
Where are the constructors and its methods?

What is the difference between the two methods (hint in the comments)?

* & 6 o o

Where do you declare inheritance (hint: ol .inherits is an alias to
goog.inherits)?

Until now, we focused on Closure Library. However, as we mentioned at the start of this
chapter, for performance, we need to use Closure Compiler as well. It is time to do it!

[4131

More details on Closure Tools and Code Optimization Techniques

Making custom build for optimizing performance

This appendix is dedicated to Closure Tools to help you understand how to optimize your
mapping applications. We will directly try Closure Compiler and after that review how to use
it in a real Openlayers case.

Time for action - playing with Closure Compiler

The more we can learn without installing tools the better it is to lower the learning
entry. So, we will use the Closure Compiler online tool. Go to the official URL,
http://closure-compiler.appspot.comand you will get the following screenshot:

3 Closure Compiler REST API | Help

Add a URL: v | Add
Original Size:
Compiled Size:

Example: hitpziwww.example.comibigfile.js
Optimization: (' Whitespaceonly @ Simple (O Advanced
Which optimization is right for my code?

Formatting: | Pretty print [Print input delimiter
ng. pi P
Compile Reset Compiled Code Wamings
Ermors POST data

©2009 Google - Terms of Service - Privacy Policy - Google Home

To display the ability of the Closure Compiler to compress files, we will ask you to try it
online. Perform the following actions:

1. cCutand paste only the JavaScript content from inheritance use case replacing
the // ADD YOUR CODE HERE section in the left-hand text area.

2. Push on the Compile button and wait. You will see the Compiled Code tab
going green.

3. Write on a paper or a spreadsheet Original Size and Compiled Size. You can also
copy the generated code.

4. Change Optimization parameters to Whitespace only (Simple is the default that we
have already tried) and note down the Original Size and the Compiled size again.

(4141

http://closure-compiler.appspot.com

Appendix B

5.

Repeat the last step with Optimization parameters set to Advanced.

3 Closure Compiler

Original Size:

Compiled Size:

Add a URL:
v
Add
Example: hitp:iwww . example com/bigfile js
Optimization: Whitespace only Simple ® Advanced
Which optimization is right for my code?
Formatting: Pretty print Print input delimiter
Compile Reset
i
£
i
s

/4 ADD YOUR CODE HERE

//Parent Class

goog.provide ("myNamespace.layer.Layer");

Jrx

* @fconstructor

g

mylMamespace.layer.Layer = function [(options) |
this.color_ = options.color ||

1

"grey®;:

-

7

function b{a)
{b.call(this,a} }goca.bic,b) ;
c{{color:"white",style: "myS

2+ 19k | REST API | Help

386 bytes gzipped (903 bytes
uncompressed)

130 bytes gzipped (134 bytes
uncompressed)

Saved 66.32% off the gzipped size (83.16%
without gzip)

The code may also be accessed at
default.js.

Compiled Code

Errors POST data

{thi=.a=a.color| | g "} function cia)
sole.logi {new

"1hy.al;

tyle

©2009 Google - Terms of Service - Privacy Policy - Google Home

What just happened?

The results you get from your experiment are as follows:

Compression | Original Ozrilglr:;l Save Compiled C:imp::d Sae\:segnz;:p:d

level size g. PP percentage | size g_ PP P &
size size

WHITESPACE | 940 bytes | 391 bytes | 45.21% 515 bytes | 238 bytes | 39.13%

SIMPLE 940 bytes | 391 bytes | 52.77% 444 bytes | 224 bytes | 42.71%

ADVANCED 940 bytes | 391 bytes | 85.74% 160 bytes | 141 bytes | 66.75%

[4151

More details on Closure Tools and Code Optimization Techniques

Let's take a look at the results of the different optimizations mode to compare:

L 4

The WHITESPACE mode:

goog.provide ("myNamespace.layer.Layer") ;myNamespace.
layer.Layer=function (options) {this.color =options.

color]| | "grey"};myNamespace.layer.Layer.prototype.
getColor=function() {return this.color_ };goog.provide ("myNamespace.
layer.Vector") ;myNamespace. layer.Vector=function (options)
{goog.base (this,options) ;if (options.style)this.style =options.
style};goog.inherits (myNamespace.layer.Vector, myNamespace.layer.
Layer) ;var myVector=new myNamespace.layer.Vector ({color:"white", st
yle:"myStyle"}) ;console.log (myVector.getColor()) ;

As you can see, everything is preserved. You only made the code compact by
removing white space.

The SIMPLE mode:

var myNamespace={layer:{}};myNamespace.layer.Layer=function(a)
{this.color_ =a.color]| |"grey"};myNamespace.layer.Layer.prototype.
getColor=function() {return this.color_ };myNamespace.layer.
Vector:function(a){myNamespace.1ayer.Layer.call(this,a);a.
style&& (this.style =a.style) };goog.inherits (myNamespace.layer.
Vector,myNamespace.layer.Layer) ;var myVector=new myNamespace.
layer.Vector ({color:"white",style:"myStyle"}) ;console.

log (myVector.getColor()) ;

As you can see the compiler has done a substituting job by replacing all the goog
functions. The only remaining namespaced function is goog. inherits. The
function arguments are also renamed. It remains quite readable. If you replace the
JavaScript from the example with this one, you can always call in your console the
function with their original names.

The ADVANCED mode:

function b(a) {this.a=a.color||"grey"}function c(a)
{b.call(this,a);a.style&&(this.c=a.style) }goog.b(c,b) ;console.
log((new c({color:"white",style:"myStyle"})).a);

As you can see in this case, most of the code is renamed. The code in itself will have
the same behavior but you can't call it with the original functions you wrote.

The ADVANCED way of doing it is the more efficient way to compress, but it requires
extra work as compared to the SIMPLE mode. In particular, you need to add extra
comments to be able to run the compiler. We gave you a working example, but
removed the text @constructor on the sample code and run again the ADVANCED
mode and observe. Because of this mode when you are using foreign code such as
an external library, you have to mention preserve this code from renaming. For this,
you have to declare what we call externs. If you don't have available externs with
the library you are using, your code will fail to execute correctly.

[4161

Appendix B

Do not worry at the moment! The OpenLayers tools we will review already support
jQuery externs, for example. We recommend that you go to the dedicated web pages
from Google because it's an advanced feature (https://developers.google.
com/closure/compiler/docs/api-tutorial3) and because we will review
later how to solve it in the OpenLayers 3 context. You can also solve the problem
using only the SIMPLE mode but you will lose a part of the gain of Closure Tools.

We will now see the application of what we learned so far in OpenlLayers.

Applying your knowledge to the OpenLayers case

When you choose to release your application online and you need performance for your web
mapping applications, you need to perform certain steps.

Closure Compiler enables you to do so at the JavaScript level. In the OpenLayers project,
some tools facilitate the use of Closure Compiler.

These tools, such as Closure Compiler, depend on three languages: Python, Java, and Node.
We will quickly review the install process to run it.

We will review how to install the environment on the different operating systems. We will
start with Python. Then, we will install NodelS. Next, we will do a Java installation and we
will end with other tools such as Git installing.

Closure Compiler requires 2.x series of Python. You can install it using the following
instructions for Microsoft Windows and Linux. For Mac OSX, Python is already bundled.

Microsoft Windows (as administrator)
Goto http://www.python.org/downloads/ and follow these steps:

Click on the link referring to the latest Python 2.x series (2.7.9 at writing time). Next, click
Download on the Windows x86 MSI Installer or Windows X86-64 MSI Installer, depending
of your Microsoft Windows architecture.

1. You also need to add Python to the PATH variable.

2. For this, right-click on My Computer and click Properties. Go to the Advanced
System Settings link in the left column. In the System Properties window, click
the Environment Variables button. You can now, on the bottom part of the
System variables, click on Edit Path and add the path at the end of the string,
;C:\Python27;C:\Python27\Scripts.

[417]

https://developers.google.com/closure/compiler/docs/api-tutorial3
https://developers.google.com/closure/compiler/docs/api-tutorial3
http://www.python.org/downloads/

More details on Closure Tools and Code Optimization Techniques

Linux
You need to open a command line as superuser:

On a RedHat-based OS:

yum install python python-setuptools

On Ubuntu/Debian OS:

apt-get install python python-setuptools

On every 0S, open a command line (for MS-DOS, go to open Command Prompt or Bash for
Linux/Mac OSX) and type:

python --version
It will echo something such as Python 2.7.5.
For all OS, you must install pip, a packet manager for Python.

Download it at https://bootstrap.pypa.io/get-pip.py and then execute the
following code line:

python get-pip.py

Now, let's examine the Node.js installation process.

Installing Node.js

It's quite easy. We will not rely on external packages but only official binaries. Check out the
official website at http://nodejs.org/download/.

Microsoft Windows

Just download the binary, and then execute the installer. Nowadays, except if you have an
old Windows XP, you should download the 64 bit Windows Installer (.msi).

Linux
Instructions are for both RedHat-based OS and Ubuntu/Debian OS.
1. Gotothe download page to get the 64-bit Linux Binaries (.tar.gz), except if for any
reason, you are using an old 32-bit Linux.

2. From the command line, you can do it as su or by adding sudo:
mkdir /opt/node && chmod -R 777 /opt/node/

Uncompress the downloaded directory.

4. Move the content to the new /opt /node directory.

[m81

https://bootstrap.pypa.io/get-pip.py
http://nodejs.org/download/

Appendix B

5. Then, add to the ~/.profile file the following:
export PATH=$PATH:/opt/node/bin

Download and run the . dmg file. Open a terminal and type node. If you get an error, add the
following to the ~/ .profile file:

export PATH=$PATH:/usr/local/bin

After this quick Node.js installation review, let's install Java.

We have assumed you started from scratch. You may already have Java installed. Mostly, it
will be the JRE (Java Runtime Environment). JRE is enough to execute Java, but we can also
use the developer-oriented JDK (Java Development Kit).

Before downloading a new JRE, try to see if you already have Java installed. For this, open a
command prompt and type the following:

java -version

If the feedback is not something like java version "1.7.0_xx", you should consider installing
the JRE. The returned version must be 1.7.0_xx (xx is the exact version) and it should not be
1.6.0_xx or 1.8.0.xx. At the writing time, the version was 1.7.0_72.

Independent of the OS, head to http://www.oracle.com/technetwork/java/javase/
downloads for downloading the file you require to have Java JRE (Java Runtime Environment).

As there are many links, you will find the following screenshot with the mouse indicating the
link to follow:

Java SE Tu71/72

These releases includes important security fixes. Oracle strongly recommends that all Java SE
7 users upgrade to one of these releases.

Learn more #

= Installation Instructions JDK

DOWNLOAD #
. Relesse Noes

= Oracle License

= Java SE Products Server JRE

= Third Party Licenses DOWNLOAD #
= Cerified System Configurations

= Readme Files
JDK Readme JRE

DOWNLOAD #
» JRE Readme *

(4191

http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads

More details on Closure Tools and Code Optimization Techniques

Microsoft Windows
After download, run the installer and set the PATH, as for Python.

Here, you will need to add a new system environment variable called JAVA HOME with the
value C:\Program Files\Java\jrexxx or C:\Program Files (x86) \Java\jrexxx,
depending on your architecture (32 or 64 bit). You will follow the same recipe described to
change PATH in Python but instead of editing an existing variable, you will add it.

After, add at the end of the PATH environment ; $JAVA HOME%\bin.

Linux
On a RedHat-based OS:

Retrieve the RPM from the URL retrieved by following the screenshot JRE Download button
and perform the following command as superuser (depending on your java version):

rpm -ivh jre-7u72-linux-x64.rpm
On an Ubuntu/Debian OS, get the tar.gz Linux file instead of the RPM file:

tar xvzf jre-7u72-linux-x64.tar.gz

mv jrel.7.0 72 /opt/ && chmod -R 777 /opt/jrel.7.0_ 72

In ~/.profile, add the following content at the end of the file:

export JAVA HOME=/opt/jrel.7.0_ 72

export PATH=$PATH:$JAVA HOME/bin

Mac 0SX

Run the .dmg file and add to the ~/ .profile file:

export JAVA HOME=/Library/Java/Home

export PATH=$PATH:$JAVA_HOME/bin

In the information box about Closure Library, we mentioned an SCM called Git. Now, it's time
for installation. Let's see how it works on a different OS.

Microsoft Windows

Head to the msysGit project, https://msysgit.github. io, download the installer by
clicking on the Download link and execute it.

After installation, add to the PATH, as for Python, the string; C: \msysgit\bin\;C:\
msysgit\bin\mingw\bin

14201

https://msysgit.github.io

Appendix B

Linux
On a RedHat-based OS:

yum install git-core
On an Ubuntu/Debian OS:
apt-get install gitMac OSX

Go to the Mac installer website, http://code.google.com/p/git-osx-installer,
and install it.

Now that you have Git, you can install other tools.

Now, everything is ready! So, let's start to use the Closure Compiler to better understand
how to optimize your code to display faster maps. We will review how to use the OpenlLayers
development workflow to make your custom application.

Local OpenLayers development reloaded

Although we have seen that you can use a simple call to an external JavaScript file to make
your application, it's better to prepare for deployment and use custom build.

Time for action - running official examples with the internal

We will inspect reusing the workflow for developing the OpenLayers core library to run the
official examples. For this purpose, start with the following step:

1. Download the project code in your command line:
git clone https://github.com/openlayers/ol3.git
cd ol3
git checkout v3.0.0

2. Install Node and Python additional libraries with:
npm install

sudo pip install -r requirements.txt
3. Run from the command line, on Windows, build.cmd checkdeps or ./build.

py checkdeps on Linux / Mac OSX. It will return if dependencies are solved to
proceed to the next step.

[421]

http://code.google.com/p/git-osx-installer

More details on Closure Tools and Code Optimization Techniques

4.

To retrieve Closure Compiler and use the automatic configuration from the
Openlayers project, launch on Microsoft Windows:

build.cmd
build.cmd host-examples

build.cmd serve

On Linux / Mac OSX:
./build.py

./build.py host-examples
./build.py serve

You may need an offline API, if for example, you're working

in public transportation or without a network connection. To
* generate it, execute the . /build.py apidocorbuild.cmd
apidoc. Then, open it with http://localhost:3000/
build/hosted/HEAD/apidoc/. You can also get it directly
fromthe v3.0.0. zip file, downloaded from Chapter 1, Getting

Started with OpenLayers.

Now, open your browser at http://localhost:3000/examples/ and open
Google Chrome Developers Tools. You will see the examples like the one you get on

the official website that follows:

Accessibility example
(accessible.html)

Example of an accessible map.

tags: accessibility, tabindex

Bind HTML input example

(bind-input.html}

Demonstrates two-way binding of
HTML input elements to
OpenLayers objects.

tags: input, bind, openstreetmap

Canvas tiles example

(canvas-tiles.html)

Renders tiles with coordinates for
debugging

tags: layers, openstreetmap, canvas

Animation example

(animation.html}

Demonstrates animated pan, zoom,
and rotation.

tags: animation

Bing Maps example
(bing-maps.htmil)

Example of a Bing Maps layer.

tags: bing, bing-maps

Advanced View Positioning
example

(centerhtml}

This example demonstrates how a
map's view can be adjusted so a
geometry or coordinate is

Attributions example
(attributions.htrnl)

Example of a attributions visibily
change on map resize, to collapse
them on small maps.

tags: attributions, openstreetmap

Brightness/contrast example

(brightness-contrast.htmil)

Example of brightness/contrast
control on the client (WebGL only).

tags: brightness. contrast. webgl

Clustering example

(cluster.html)
Example of using ol Cluster .

tags: C luster vector

14221

Appendix B

7. Explore the examples and watch for the Elements, Network, and Sources panel, in
particular the JavaScript calls.

8. Then, navigate to http://localhost:3000/build/hosted/HEAD/examples/
attributions.html.

9. Tryto add the URL of the examples ?mode=whitespace or ?mode=simple, or

?mode=raw.

What just happened?

We serve files on a small web server. In the first case, the 1oader. js file retrieves the
dependencies and adds for each required files the script tag with the src attribute. In the
second case, we chose to open the hosted files, the ones you get when you browse the
official website, http://openlayers.org.

In the second case, depending on the provided values for the mode parameter, we will load
different files for the Openlayers 3 library:

¢ Raw: This loads each input via its own <script> tag. This does not run the
Compiler, so no checks are performed.

¢ Whitespace: This loads all of the JavaScript code concatenated together with all
white space and comments removed.

& Simple: This loads the JavaScript as compiled with SIMPLE _OPTIMIZATIONS
enabled. Without an option in the URL, this loads the JavaScript as compiled with
ADVANCED OPTIMIZATIONS enabled.

Hey! These options look familiar, where did we see them?

Remember that we had mentioned to you that OpenLayers tools are using Closure Compiler.
Let's see how OpenlLayers takes benefits from it.

Openlayers 3 default huild tool advantages

When you changed examples with the raw mode, you may have noticed (in particular by
filtering the script in the Network panel) that the loaded files number greatly differs from the
URL without it. What can make this difference? Let's see some practical uses to understand.

We waited until now to review the removal of the unused code feature related to Google
Closure Compiler.

As we already said, when you switch between examples, you load different files. How does
it work?

14231

http://localhost:3000/build/hosted/HEAD/examples/attributions.html
http://localhost:3000/build/hosted/HEAD/examples/attributions.html
http://openlayers.org

More details on Closure Tools and Code Optimization Techniques

Open your browser Network panel. Open the URL for one of the official examples and add
?mode=raw.

Then, in the console, type console.log (paths.length) ;.

Just compare the length between the examples. If your example in the URL is animation.
html, inspect also the animation-require.js files, you will see that there are some
lines beginning with goog.require ('..."). The loader gets the name from the file via
loader?id=examplename, and with the goog. require indications from examplename-
require.js, Closure Compiler generates the list of files to load for the example.

When Compiler does not find the required goog. require statements, it excludes the files
and the resulting build file is smaller. On mobile applications, it is invaluable. Just be careful
to not break your application, for example, if you forget to add a statement.

Making your custom build

When you run . /build.py or build.cmd, you have something such as 2014-12-10
18:41:23,358 build/ol.js: node tasks/build.js config/ol.json build/
ol.7js. We will reuse the beginning command to compile the ol . js file again and play with
the Closure Compiler builder included in the OpenLayers 3 toolkit. The o1 . json file is used
to provide parameters to Closure Compiler to make the build and ol . js is the output result.

To build, you have two choices:

¢ Build the code to make it work with a separate . js lightened build

¢ Build the code by including the OpenlLayers library code, together with the script file

At the moment, you have a shared JSON file for all examples in config/examples-all.
json. We will reuse it.

Time for action - huilding your custom Openlayers library

We will reuse the animation sample, from the local OpenlLayers installation, to try out both
ways of building code:

1. Copytheanimation.html and animation. s files from the examples folder into
animation-exports.html and animation-exports.js.

2. Createafile config/ol-animation-exports.json inspired by the config/
examples-all.json with the following content:
{
"exports": ["ol.Map",
"ol .Map#*",
"ol.View",
"ol.animation.*",

[424]

Appendix B

"ol.control.*",
"ol.layer.Tile",
"ol.proj.*",
"ol.source.OSM"

1,

"src": ["src/**/*.js"],
"compile": {
"externs": [

"externs/bingmaps.js",
"externs/bootstrap.js",
"externs/closure-compiler.js",
"externs/example.js",
"externs/geojson.js",
"externs/jquery-1.7.js",
"externs/oli.js",
"externs/olx.js",
"externs/proj4js.js",
"externs/tilejson.js",
"externs/topojson.js",
"externs/vbarray.js"

1,

"define": [
"goog.dom.ASSUME STANDARDS MODE=true",
"goog.DEBUG=false"

1,

"jscomp error": |
"accessControls",
"ambiguousFunctionDecl",
"checkEventfulObjectDisposal",
"checkRegExp",
"checkStructDictInheritance",
"checkTypes",

"checkVars",

"const",

"constantProperty",
"deprecated",
"duplicateMessage",

"es3",

"externsValidation",
"fileoverviewTags",
"globalThis",
"internetExplorerChecks",
"invalidCasts",
"misplacedTypeAnnotation",
"missingGetCssName",
"missingProperties",
"missingProvide",

14251

More details on Closure Tools and Code Optimization Techniques

"missingRequire",
"missingReturn",
"newCheckTypes",
"nonStandardJdsDocs",
"suspiciousCode",
"strictModuleDepCheck",
"typeInvalidation",
"undefinedNames",
"undefinedvars",
"unknownDefines",
"uselessCode",
"visibility"

1,

"extra annotation name": [
"api", "observable"

1,

"jscomp off": [

"es5Strict"

1,

"compilation level": "ADVANCED",

"output wrapper": "// OpenLayers 3. See http://ol3.js.org/\

n(function () {%output%}) () ;",
"use types for optimization": true

}
}

Inthe animation-exports. js file, remove the goog. require statements.

In animation-exports.html, change the script src attribute from loader.
js?id=animationto ../build/ol-animation-exports.js and add a new
script reference with <script src="animation-exports.js"></scripts>.
Compile the o1-animation-exports. js file from the root 013 folder using the
following command:

node tasks/build.js config/ol-animation-exports.json build/ol-
animation-exports.js

Launch . /build.py serveorbuild.cmd serve and open your browser at
http://localhost:3000/examples/animation-exports.html.

Stop the server and again copy the animation.html and animation.js from the
examples folder into animation-combined.html and animation-combined. js

14261

Appendix B

8. At the bottom of the HTML code, change the code to only get two JavaScript calls:

<script src="jquery.min.js"></scripts>
<script src="../build/ol-animation-combined.js"></script>

9. Copy the previous config/ol-animation-exports.jsoninto config/ol-
animation-combined. json.

10. set exports to [] and add at the end of the array, contained in the src value, the
. js files declaration to get a result like the following:
"src": [
"src/**/* . 8",
"examples/animation-combined. js"

]

11. Addin the beginning of the examples/animation-combined. js file the code
from resources/example-behaviour. js.

12. Remove the line externs/example.js, from the config/ol-animation-
combined. json file.

13. Compile the code with:

node tasks/build.js config/ol-animation-combined.json build/ol-
animation-combined.js

14. serve files and open the browser to: http://localhost:3000/examples/
animation-exports.html

What just happened?

Until now, to facilitate learning, we used code for samples within the HTML. For compressing
code, firstly, you need to have all your JavaScript code in a separate . s file.

In the first case, we used exports in the ADVANCED mode. At the functional level, exporting
means that you want to stop obfuscating variables, for example, renaming variables and
properties to shorter ones. The advantage of this, is that you can use code from outside
the library, in a third-party JavaScript file. It can help you, for example, in designing a subset
of the OpenlLayers 3 library for specific use cases or making your own library based on the
Openlayers 3 and a custom code augmenting the default.

At the code level, to know what we want to export, we reuse the content from goog . require
statements in the example. These statements are deduced from the code namespaces and
constructors . If you limit yourself to these statements to declare exports, when compiling and
executing code, you will get some errors stating undefined in the browser debugger console.
Mostly, it means you protect the constructor but you didn't choose some functions to protect.
To protect from variable renaming, you will need to use the * character. It's what we have done
with ol .Map#* or ol .proj . *.

[4211

More details on Closure Tools and Code Optimization Techniques

In the o1 .Map#* case, we said that we wanted to protect all functions from o1 .Map.
prototype to be renamed by using the # character. In the ol .proj . * use case, we just
protected the all ol.transform namespace.

For externs, we will not go in to the details of how they work, but you just have to
understand that it's a way to protect code from other libraries to be renamed by Closure
Compiler by declaring their variables' and functions' signatures.

If we review the other parameters in the first JSON file, the most important ones are:

¢ src: This helps define where your compiler has to search for code when managing
dependencies. Those dependencies are declared by declarations in code.

¢ compilation level: This can be set to ADVANCED, WHITESPACE_ONLY, or
SIMPLE. We chose to look at the ADVANCED case, because once we have understood
how to work with the advanced option, the others can be worked on easily.

& Another quite important parameter is use_types for optimization.In fact, it
highlights the importance of comments also known as annotations. We will start by
quoting the official Closure Compiler documentation:

"The Closure Compiler can use data type information about Javas-
cript variables to provide enhanced optimization and warnings. Ja-
vaScript, however, has no way to declare types. Because JavaScript
has no syntax for declaring the type of a variable, you must use
comments in the code to specify the data type."

From this, we can deduce that you can use Closure Compiler without always using comments
but comments can help you catch errors using variables type checking based on comments
(based on a standard called JSDoc).

It's also useful, because when Closure compiler uses the ADVANCED mode, the compiler
renames variables to decrease the build size and annotations act as hints for the tool.
Moreover, the commenting code is anyways a good practice to maintain code: do

not hesitate to use them. Navigate to the official Closure Compiler documentation
(https://developers.google.com/closure/compiler/docs/js-for-compiler)
to see the exact grammar.

Another good tip related to annotations is the fact that adding an annotation @api
(specific to OpenLayers) is the way to export a function when you use OpenlLayers 3
default build system.

14281

https://developers.google.com/closure/compiler/docs/js-for-compiler

Appendix B

For instance, you can add @api to ol .Ellipsoidand ol .Ellipsoid.prototype.
vincentyDistance in the file src/ol/ellipsoid/ellipsoid. js (for reference, see
src/ol/map. s line 160). Then, launch node tasks/build.js config/ol.json
build/ol.js and reuse the generated ol . js instead of the usual one. You will see that
you can use, in your application code, the following code:

var ellipsoid wgs84 = new ol.Ellipsoid(6378137, 1/298.257223563);
var distance o0l3 vincenty = ellipsoid wgs84.vincentyDistance([5, 34],
[12, 56])

We will not inspect all the other parameters, because it's mostly
R not required to understand their meanings. If you would like to read
% further about them, we recommend that you go to the APl and
s to the readme file about tasks that document most parameters at
https://github.com/openlayers/o0l3/blob/v3.0.0/
tasks/readme.md.

If we dive into the case where we build everything together, the essential part is the
inclusion of the build/ol-animation-combined. js file in the src array parameter.

As we removed the script tag calling resources/example-behaviour.js from
animation-combined.html, we had to combine resources/example-behaviour.js
with examples/animation-combined. js files. It's because adding a file into src array is
not enough. You need goog . require into the file to be combined with the main OpenLayers
3 library code.

With the inclusion of resources/example-behaviour. js, the other important part
was to remove the externs/example.js line, in order to unprotect the exampleNs
namespace, so that we can rename it.

You should also note that in both reviewed case, compression can be achieved because of
already mentioned goog . require and goog . provide. At the code level, they allow you to
create a dependencies tree to gather each required function and variable within OpenlLayers
core library code source files.

If you inspect the size of the resulting files, you will see that although we have more content
inthe ol-animation-combined.js file than ol-animation-exports.js, the first
one weighs 190Ko (65Ko manually gzip compressed), whereas the second size is 212Ko
(71Ko manually gzip compressed).

The conclusion is that compiling everything together is the best solution to gain size in
your code.

Now, try to reuse this knowledge in your own OpenlLayers samples build.

14291

https://github.com/openlayers/ol3/blob/v3.0.0/tasks/readme.md
https://github.com/openlayers/ol3/blob/v3.0.0/tasks/readme.md

More details on Closure Tools and Code Optimization Techniques

Have a go hero - applying code optimization to other OpenLayers samples

Now that you have all the basic knowledge about OpenLayers toolkit to compress code, try
and apply it your own project.

To improve your skills, you can perform the same task we did in the previous Time for action
section, but using a different example. You can use the JSON files from the build/examples
because they may help you to solve building dependencies. Be careful, if you rely only on
those files, it will not work the expected way if you use the export method or you change
JavaScript calls in samples HTML files.

To try it out.

1. You have to create an HTML and a JavaScript file.
2. You have to change the paths in samples.

3. Test them by interacting with your samples; it may work when they are loading, but
they will fail later when clicking and panning.

You have to change the paths in samples, and then test them by interacting with your
samples; it may work when they are loading, but they will fail later when clicking and panning.

Using externs

Remember we told you that without externs, you can't use external libraries in the
ADVANCED mode? We recommend you comment out or remove externs, to see what will
happen if we don't use them. In particular, try to remove jQuery externs, and try to build the
examples from Time for action.

What do you see? If you don't have any ideas, you can see that externs' keywords refers to
some JavaScript files. If you need, for example, to use a library such as Underscore (another
JavaScript Library to use more functional programming), just copy the externs, add your path
to the JSON file, say, ". . /externs/underscore.js", and after this, you are ready to use
your library in the Closure Compiler ADVANCED mode.

To find out about externs, go to this Closure Compiler web page: https://github.com/
google/closure-compiler/wiki/Externs-For-Common-Libraries

If you require another less common library, find it using a search engine or by generating
it with this tool: http://blog.dotnetwise.com/2009/11/closure-compiler-
externs-extractor.html

In the worst case, you will be stuck and will only be able to use the SIMPLE mode or to use
the exports method, building a minimum Openlayers core library.

4301

https://github.com/google/closure-compiler/wiki/Externs-For-Common-Libraries
https://github.com/google/closure-compiler/wiki/Externs-For-Common-Libraries
http://blog.dotnetwise.com/2009/11/closure-compiler-externs-extractor.html
http://blog.dotnetwise.com/2009/11/closure-compiler-externs-extractor.html

Appendix B

Q1. When using the OpenlLayers 3 toolkit, your code is not working in the ADVANCED
compilation mode, although it's perfectly fine in the SIMPLE mode, what can be the cause
(multiple choices accepted)?

You didn't declare goog . require
You forgot to use goog. inherits
You didn't use goog functions in your custom code

You used an external library without externs

vk wNoe

You forgot comments in a constructor function

Now, we have seen mainly an underlying way to compress the JavaScript code; we will
introduce you to syntax and styles in JavaScript code. When you start to write more than ten
lines of code, it starts to become an obligation!

Syntax and styles

Syntax and styles are the way to keep your code clean and to share it. You can always do
dirty work, but for maintainability of long term, it is a must to enforce some rules.

For this, we rely on Closure Linter, one of the Closure tools. It also requires Python to run.
We already installed it with pip install -r requirements; so, let's see how to use it.
Later, we will see some alternatives.

Time for action - using Closure Linter to fix JavaScript

We will retrieve one file from the previous OpenlLayers library Version 2.12.

For this, download the file Map.js from https://raw.github.com/openlayers/
openlayers/release-2.12/1ib/OpenlLayers/Map.js.

Type the following command:
gjslint Map.js
You will get 605 errors with messages like below:

----- FILE : /home/thomas/Map.js -----

Line 1, E:0001: Extra space at end of line

Line 7, E:0200: Invalid JsDoc tag: requires

Line 266, E:0131: Single-quoted string preferred over double-quoted string.
Line 982, E:0120: Binary operator should go on previous line "+"

Line 1106, E:0002: Missing space before "("

4311

https://raw.github.com/openlayers/openlayers/release-2.12/lib/OpenLayers/Map.js
https://raw.github.com/openlayers/openlayers/release-2.12/lib/OpenLayers/Map.js

More details on Closure Tools and Code Optimization Techniques

Line 1131, E:0002: Missing space after "function"
Line 1089, E:0110: Line too long (83 characters).
Found 605 errors, including 0 new errors, in 1 files (0 files OK).

Some of the errors reported by GJsLint may be auto-fixable using the fixjsstyle script.
Please double-check any changes it makes and report any bugs. The script can be run
by executing:

fixjsstyle Map.js

So now, make a copy of the Map . js file to save it in an eventual case where the fixer would
suffer from a bug. Then, execute the following recommended line:

fixjsstyle Map.js

You will see:

fixjsstyle Map.js Fixed 582 errors in /fhome/thomas/Map.js
WARNING: Line 1089 of /home/thomas/Map.js is now longer than 80 characters.

Relaunch the gjslint again:
gjslint Map.js

You now have only 23 errors. Really good compared to the previous 605 errors. You can
ignore, in this case, errors like:

¢ E:0200: Invalid JsDoc tag: This requires Openlayers 2 code; do not use Closure so
requires tag is not available

¢ E:0110: Line too long (n characters): Sometimes, you need more than 80 lines in
your code so ignore it, in particular for an existing code like the one used

Be aware, that you can use options to comply more or less to the language but can't
customize everything. You are also encouraged to play with the options. To discover them,
execute the following command:

gjslint --help

For example, try the - -strict options that check also your file indentation and you get
1867 errors or use the recursive option -r to apply check on a every JavaScript files in
a directory.

We use a practical approach, but to understand the adopted code style, we invite you to go
to the Google JavaScript Guide at http://google-styleguide.googlecode.com/svn/
trunk/javascriptguide.xml, in particular, if you don't want to fix all your code at the
end of your project.

14321

http://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml
http://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml

Appendix B

We gave you some information about the raw use of the Linter, but like for other cases,
you already can check your code in the default OpenlLayers development environment. Just
launch . /build.py lint orbuild.cmd 1lint, depending on your OS.

Although syntax and styles are considered as good practices. Good practices are not rules;
you choose to respect them more or less. Never forget that consistency is important,
particularly when you need to share your code with other people. We reviewed how to do it
with Closure Linter but this is not the only way. Let's broaden your vision.

It is always easier to use the same tools for all your JavaScript, but we advise that you be
curious about other JavaScript coding styles for improving your knowledge and choose the
coding style that fits you.

We recommend that you not only look at https://github.com/rwldrn/idiomatic.js
but also at big library projects.

For example, check out the following links:

jQuery Core Style Guide: http://contribute.jquery.org/style-guide/js/

MoTools: https://github.com/mootools/mootools-core/wiki/Syntax-
and-Coding-Style-Conventions

¢ Dojo Toolkit Style Guide: http://dojotoolkit.org/community/styleGuide
To enforce your own coding style and share it, the most valuables tools are as follows:

¢ jsHint: http://www.jshint.com

¢ JsLint: http://www.jslint.com

Although those tools are interesting, the errors you receive when using them on your files
are not always clear. So, we advise that you look at http://jslinterrors.com.

[4331]

https://github.com/rwldrn/idiomatic.js
http://contribute.jquery.org/style-guide/js/
https://github.com/mootools/mootools-core/wiki/Syntax-and-Coding-Style-Conventions
https://github.com/mootools/mootools-core/wiki/Syntax-and-Coding-Style-Conventions
http://dojotoolkit.org/community/styleGuide
http://www.jshint.com
http://www.jslint.com
http://jslinterrors.com

More details on Closure Tools and Code Optimization Techniques

In this appendix, we learned a lot about the Closure Tools. It is always important to
understand how things work to be able to track why your code is not working. Without
this review, when using, for example, the ADVANCED mode, you will stay stuck and end up
keeping the default file for production. If you do so, you are losing partly the OpenlLayers 3
philosophy: this version is a rewrite to have a better APl and to get performances.

In the first part of the appendix, we learned why performance is important. Next, we saw
how to reuse Closure Library or how to overload default OpenLayers 3 components. We then
inspected how to practically use Closure Compiler itself in the OpenLayers development
context.

Finally, we introduced you to some tools to improve your overall code quality. In this case,
only remember this citation from idiomatic.js:

"All code in any code-base should look like a single person typed it, no matter how
many people contributed."

14341

Openlayers is, at a fundamental level, not doing anything that is conceptually
too hard to grasp. It gets map data from a server, and puts them together.
From a technical level, however, there is a lot of work going on, and it might
seem magical how it all works together so well.

Fortunately, there are many tools to dispel any potential magical thinking

we might have and show us how OpenLayers is working behind the scenes.
Google Chrome Developer Tools, the included debugger in Google Chrome
browser, is one such great tool. Speeding up development time, viewing
network communication, and squashing bugs are just a few things that Chrome
Developer Tools, and other web development tools, do that make them hard to
live without.

To really use OpenLayers effectively and to its full potential, we need to
understand how it works. In this appendix, we'll try our best to do just that, by
using web development tools to examine OpenLayers' inner workings. By doing
so, we'll accomplish two things. First, we'll become familiar with these tools,
which will significantly help us when developing our maps. Secondly, and more
importantly for now, we'll gain a better understanding of how OpenlLayers works.

We'll do another tour about plugins and functions that can improve your
experience in Chrome Developers Tools and can help you develop your
OpenlLayers debugging skills. To finish, the last topic will be how to work with
other browsers when debugging. You may not be aware, but Google Chrome
and its Developers Tools is around one-third of the browser market.

Squashing Bugs with Web Debuggers

In this chapter, we'll cover the following topics:

What Google Chrome Developers Tools is and other development tools
Use of each debugger panels
Using the JavaScript Command Line Console panel

Showing useful tools in addition to the Chrome default debugger

* 6 & o o

Introducing web development tools for dealing with cross-browsers development
in particular

Introducing Chrome Developer Tools

Chrome Developer Tools, also called Chrome DevTools, is the built-in debugger included in
Google Chrome browser, a free cross-platform browser. Other modern- and standards-based
browsers, such as Mozilla's Firefox, Apple's Safari, Opera, and Microsoft Internet Explorer
(8+) also work well for debugging web-based applications and sites.

Chrome DevTools and other web development tools make the web development process
much easier and quicker. What do we mean by this? With these tools, we can change
anything on our site on the fly without editing or saving any files. We can type in JavaScript
code with a command-line interface and execute it immediately. We can view all the
requests that our web page sends to servers, along with the server's reply. For example, if
our map isn't able to get back map images from the server, we can examine the requests our
page is making and find out if we have any typos or haven't set up our map layer properly.

Using these tools makes it a lot easier to develop not only an OpenlLayers mapping
application, but any web application, and makes it easier to fix any bugs we encounter in
the process. The choice to use Google Chrome as the first tool for debugging instead of
other debuggers is motivated by its large support for mobile testing, the best built-in tools
for debugging at the time of this writing, its support for all OS (Windows, Mac, Linux) and
some others features. We'll focus mainly on Google Chrome in this chapter and refer back
to it throughout the book. Other tools such as Mozilla's Firefox, Internet Explorer (8+), and
Apple's Safari's developer tools work just as well (although some functionality may vary).

Getting started with Chrome Developer Tools

To discover this tool, firstly, Google Chrome browser needs to be installed.

So, go to its dedicated download area at http://www.google.com/chrome/ and install it.
Depending of your OS, the format for installing the software will be an .exe, a .dmg, a .deb
or an . rpn file.

[4361]

http://www.google.com/chrome/

Appendix C

Time for action - opening Chrome Developer Tools

After the Chrome installation, let's open Chrome DevTools:

1. Todo so, go in the upper-right window of Chrome and click on the icon with the
three horizontal bar like the following screenshot:

2. Then, go to the More tools menu and click on the Developer Tools submenu, as
shown in the following screenshot:

o
{[[]

New tab
New window

New incognito window

Bookmarks

Recent Tabs

Edit Cut Copy Paste

Save page as...
Find...

Print...
Zoom - 100% + a

History

Downloads
Sign in to Chrome...

Settings
About Google Chrome

Help 3
Create application shortcuts...
Extensions Exit

Task manager

Clear browsing data...

Encoding >
View source

3

JavaScript console

4311

Squashing Bugs with Web Debuggers

What just happened?

After clicking on the panel activation, the browser windows has been split to display a panel.
An alternative way to open this panel is to right-click in a web page and to click on Inspect.

You can also find the keyboards shortcut for this at https://developers.google.com/
chrome-developer-tools/docs/shortcuts.

Now, let's take a look at what the tool looks like after its activation:

Q [] |Elements| Network Sources Timeline Profiles Resources Audits Console > % o, =
Styles | Computed Event Listeners »
=!.. Editors & translators, please, edit firstcss.en.tmpl, not -
html --> element.style { +, i§
¥ <html lang="en"= I
¥ <head=..</head= #language, firstcss.en.himl:28
¥ <body= #translations
P =div class="section” id="language"=.=/div= font-style: italic;
»=hl=._=/hl= font-size: small;
P adiv class="map">.</div=
::n"f;? div.section { threepart.css:94
[y clear: both;
P =div class="figure"=.=/div=
=p=Note that I don't claim that this is beautiful @ div { user agent stylesheet
display: block;
</ p= 1
F=div class="advanced">.=/div> | ;
nherited from bod
P =div clas section” id="HTML"=.=/div= body
R . e rai. ¥ |body threepart.css:45 ¥
[1ay {0 divilanguage.section

The top row starts with a Page Inspector icon and Toogle device mode

icon, which is useful for mobiles. Then, multiple panels with textual

descriptions such as Elements or Network provide specific functionality

% (they look and act similar to tabs, but the technical term is panels). The

s upper row end on the right has a Show Console icon, a Settings icon, a

Detached/attached debugger icon and a close button. The position of the
icons may change over time as Google Developer Tools is updated; but
general functionalities should remain (more or less) the same.

The following content will cover the top row icons from left to right, excluding panels.

4381

https://developers.google.com/chrome-developer-tools/docs/shortcuts
https://developers.google.com/chrome-developer-tools/docs/shortcuts

Appendix C

Explaining Chrome Developer debugging controls

In this section, we will see each button in the Chrome Developer Developer Tools to review
the available functions you can perform with the debugger.

¢ The Page Inspector(1) icon: This icon, a magnifying glass, is the HTML Inspector.
When you click on it, the mouse cursor will identify HTML elements on the web
page. So, when the mouse hovers over anything on a website, the element will be
outlined in blue and the HTML panel will open up and show you the element your
mouse is over.

¢ The Toogle Device mode(2) icon: This is when you need to test different mobile
screen resolutions or you want to use simulation for Geolocation. It's a component
in the Google Developer Tools that have changed several times. So, we prefer to
redirect you to official doc https://developer.chrome.com/devtools/docs/
device-mode as it may change again.

It's the various panels (3) we will review just after all the tool bar options reviews.

The Console(4) icon: This icon is a way to display the console, a tool for exploring
JavaScript. You click on it to display a new window below the bottom row. When
activated, the grey icon changes to blue. We will explore it further when describing
the console panel. Just before this icon, you will see errors and warnings appear if
there are any in the web page you are browsing.

¢ The Settings(5) icon: this icon displays a new panel with three vertical tabs. The
first one is dedicated to the General settings. The second is Workspace. Its goal is
to make the editing done in the Sources panel persistent. The last, Shortcuts, is the
reminder of all shortcuts needed to be efficient when using the debugger. It contains
more or less the information available in the shortcuts web page provided some
pages before.

¢ The Attached/detached debugger(6) icon: This enables you to display the debugger
with fullscreen web page with a separated window or with the debugger view
integrated in the current page (aligned to bottom or right). To switch between those
modes, click or click and hold access the several options.

¢ Cross(7): This enables you to close the browser debugger.

[4391]

https://developer.chrome.com/devtools/docs/device-mode
https://developer.chrome.com/devtools/docs/device-mode

Squashing Bugs with Web Debuggers

The top row set of controls is called panels; each panel provides a different type of function.
The panels act like tabs (the two terms can be used interchangeably), but Chrome Developer
Tools refers to them as panels in the documentation. Let's go over each panel, since they are,
essentially, what makes up Chrome DevTools. We will not go over these panels from left to
right, but instead we will look at the most important ones for beginners first.

The Elements panel

The Elements panel provides not just a display of the HTML source code, but also the ability
to quickly edit any HTML element and its associated style. It allows users to add, remove,
and move HTML elements, edit HTML attributes, and change nearly anything about the page
without having to save any files. It also can track when attributes or elements are created,
changed, or removed. This helps to make web development much easier and faster.

Chrome DevTools automatically builds a tree structure from HTML code, giving the ability to
expand and hide each HTML tag. It is important to note that the code you see in the HTML
panel is a generated HTML code—the code in the panel may not be exactly the same as

the page's source code (because the browser is interpreting the HTML to be able to show a
page content).

Here is what the Elements tab looks like when Chrome DevTools is opened while viewing a
web page:

Q [] |Elements| Network Sources Timeline Profiles Resources Audits Console = & O, =
. / - Styles | Computed Event Listeners »
=!-- Editors & translators, please, edit firstcss.en.tmpl, not —
html --> element.style { +
¥ <html lang="en"> 1
¥ <head=..</head> #languaage, firstcss.en.html:28
¥ <body= 1slatior
Pk <div class="section" id="language"=.</div= font-style: italic;
P <hl=.</hl= font-size: small;
P =div class="map">.=/div=
:2;»fip? div.section {
2ol clear: both;
P <p=_</p= }
P =div class="figure"=.=/div=
<p=Note that I don't claim that this is beautiful @ div { user agent stylesheet
display: block;
</ p=

P =div class="advanced"=.=/div= | .
nherited from bod
b =div cl section” id="HTML"=.</div= e

. i o3 i m a woonoue o T |body { threepart.css:45 7
s, TR ULl divitlanguage section

On the left-hand side, Chrome DevTools shows the HTML of the page. It's possible to
right-click on any tag and do various things—such as copying the HTML to the clipboard,
deleting the element, changing the tag attributes, and more.

(4101

Appendix C

On the right-hand side, the associated style information for the selected element is
displayed. Properties can be added or modified and will instantly appear on the page, like in
the preceding capture image example (at http://www.w3.org/Style/Examples/011/
firstcss.en.html), with the div element with id attribute value to 1anguage. Looking
at the CSS on the right-hand side, there is a definition for the 1anguage id but only
font-size and font-style properties are defined. We also see that some other styles
are coming from the body element parent. The <div> tag inherits from body the color
#333333 or the font-family properties.

R If you are unfamiliar with HTML or CSS, the WebPlatform
% site is a great resource. For more information on HTML, visit
i http://docs.webplatform.org/wiki/html, and for

CSS, visithttp://docs.webplatform.org/wiki/css.

What does this mean? Well, Chrome DevTools lists all inherited style information, and parent
element styles propagate down to all their child elements (each child has all its parent's
styles, unless the child overrides a style, which doesn't happen in this example).

By double-clicking on pretty much anything in the HTML or CSS list, you can quickly change
values and names. Any change you make will immediately show up on the page, which
makes it very easy to change style in real time and see how the page is affected without
having to edit and save any files.

When you're playing with CSS, you can disable a property with a left click on the left part of
the CSS property. You can try this on font -size to see visual change. For CSS, when the
code really inherits from a lot of properties, we advise you to go to sub-panel Computed
on the right part of Elements panel. You get the summary overview for each property. Play
around with it a bit—if you mess anything up, you can just reload the page in Chrome.

When editing pages with Google Chrome Developer Tools, any changes you make will
disappear when you refresh the page. You are not editing the actual web server's files with
Google Chrome Developer Tools—instead, you are editing a copy that is on your computer
that only you can see when you make changes to it. So, if you make changes and want them
to be saved, you'll have to edit your actual source code.

In fact, one way to directly edit and save content within Google
M Chrome Developer Tools is to rely on the Workspace ability we
Q already have evocated when clicking in the Settings icon. Check out
the official Chrome Developer browser documentation at https://
developer.chrome.com/devtools/docs/workspaces.

Until now, we focused on the right part of panel elements. Let's see how to manipulate and
inspect DOM elements in the left Elements window.

[aml]

http://www.w3.org/Style/Examples/011/firstcss.en.html
http://www.w3.org/Style/Examples/011/firstcss.en.html
http://docs.webplatform.org/wiki/html
http://docs.webplatform.
https://developer.chrome.com/devtools/docs/workspaces
https://developer.chrome.com/devtools/docs/workspaces

Squashing Bugs with Web Debuggers

Time for action - using DOM manipulation with OpenStreetMap

Reusing knowledge about OpenlLayers renderers from Chapter 3, Charting the Map Class and
OpenStreetMap from Chapter 4, Interacting with Raster Data Source, let's review how to
manipulate the DOM and changing OpenStreetMap tiles sources on the fly.

So, let's start with the official OpenlLayers example from http://openlayers.org/en/
v3.0.0/examples/simple.html using Page inspector.

Open the file and at the end of the URL you get from your browser add ?renderer=dom

1. Click on the Page Inspector icon (or right-click on image and click Inspect in the
menu) and hover over the images. .

2. Then, on one of the img tags, right-click on Edit attributes, as illustrated in the
following screenshot:

. Openlayers 3 Examples

1 [+]

Open Link in New Tab
Open Link in Resources Panel

Copy Link Address

Add Attribute

A

Force Element State 3

Edit as HTML

Copy CSS Path

Copy XPath
Copy
Cut
ws, CC BY-5A Data © OpenStreetMap contributors,
-
Q, [] |Elements| Network Sources Time = O, *
WIUTIT: £J0pA T eIyl Delete Node . * L
-256px; top: Opx;": “| | Styles | Computed Event Listeners »
<img crossorigin="g 1 nt.styl Y
b.tile.openstrestm: Scroll into View € E::;(' wid-yl'e rfor=' +.
: s -width: e;
:véthisézi?x; heigh width: 256px;
~img crossorigin=": Break on... r height: 256px;

position: absolute;
left: @px;
top: @px;

=i U —
height: 256px; position: absolute; left: Opx;

in="anonymous® src="http:// -
eetmap.ora/2/3/2.png" style="max-width: none; img {

height: 256px; position: absolute; left: A Ee O
Bpx; "> hedghti—auter
in="anonymous” src="http:// st 065
eetmap.org/2/3/1.png" style="max-width: none; vertical-align: middle:
256 % 256 pixels [hainkht: JEEnwe nmacitinne ahealotar lafe. h hordar: k- =]
html body div | p divolviewport div.ol-unselectable div dlvm
—

[442]

http://openlayers.org/en/v3.0.0/examples/simple.html
http://openlayers.org/en/v3.0.0/examples/simple.html

Appendix C

3. Next, you will see that you can change the value in our example, http://b.tile.
openstreetmap.org/2/2/1.png, of the src attribute. So, replace its value
with http://tile.stamen.com/toner/2/2/1.png and see the result. In the
Elements panel, the img (for the image tag) src attribute contains http://b.
tile.openstreetmap.org/2/2/1.png. If you remember, URL can be separated
in two parts. The first part, http://b.tile.openstreetmap.org/, (called base
URL), will change when the second part, 2/2/1 . png, will change according to
images you hover on. Here, we only change the first part.

4. Repeat the process by changing the image you hover on and the base URL you
use. The value you can use for base URLcan be http://d.tile.stamen.com/
watercolor/, http://b.tile.opencyclemap.org/cycle/, and http://
otile2.mgcdn.com/tiles/1.0.0/0osm/.

5. The result obtained will look like the screenshot that follows:

- Tiles © OpenStreetMap cantributars, CC BY-5SA Data © OpenStreetMap contributars,

What just happened?

We saw how to modify attributes of HTML elements using the Page Inspector on images.
You also saw the correspondence between highlight on the web page and code content
in the Elements panel when hovering over. You also rediscovered some different
OpenStreetMap backgrounds.

14431

http://b.tile.openstreetmap.org/2/2/1.png
http://b.tile.openstreetmap.org/2/2/1.png
http://tile.stamen.com/toner/2/2/1.png
http://b.tile.openstreetmap.org/2/2/1.png
http://b.tile.openstreetmap.org/2/2/1.png
http://b.tile.openstreetmap.org/
http://d.tile.stamen.com/watercolor/
http://d.tile.stamen.com/watercolor/
http://b.tile.opencyclemap.org/cycle/
http://otile2.mqcdn.com/tiles/1.0.0/osm/
http://otile2.mqcdn.com/tiles/1.0.0/osm/

Squashing Bugs with Web Debuggers

The Network panel

Chrome DevTools's Network panel is a tool we often use throughout this book. It basically
provides a way for us to monitor a network activity by viewing all the requests and responses
the web page is making. In addition to the initial page load network activity, we are also

able to monitor all of the asynchronous JavaScript requests that are made by the web page.
Without AJAX, we will have to refresh our entire page any time we want to do anything with
our OpenlLayers map. So, for example, every time you zoom in, OpenlLayers makes a series

of requests to the map server to get new map images, and the map server's response is a
new map image that OpenLayers then displays. This request/response method is handled via
AJAX; without it, we would have to refresh the entire page after every request.

See Appendix B, More details on Closure Tools and Code Optimization
TS Techniques, where a small web history and a diagram covers AJAX.

The Network panel allows us to see the URL that is being requested, the GET or POST
parameters, the server's status response, the type of resource requested, the size of the
response, and the time it took to complete the request. Let's take a look at what the
Network panel looks like for the example from the previous official example used when
reviewing Elements panel:

Q, [] Elements | Metwork | Sources Timeline Profiles Resources Audits Console = - o, =
® O v Preserve log [Disable cache
N_a!'ne Method Et..?t_us Type Initiator %IZG N Tl_n:‘_E_) Timeline
Path ext Content | Latency 400 ms
=] simple.html 304 ~ 223B 98 ms
>| .) GET texts... | Other . . o7 m= q ms
Jenfv3.0.0/examples Mokt TKB ¥7 ms
r‘_55| ?l.cs.s_ B ceT 304 text/css :.imgle.htmI:T 2%3.8 Stalled 0.412 ms
Jen/v3.0.0/css Not .. Parse LTKE Request sent 0.067 ms
f;ss_| i.)uutz_trfi?.min.(ss o ?|04 textjcss ;imgle.html.& 22_'|i 2 Waiting (TTFB) 96.329 ms
fenfu3.0.0/resources/h 103 KB
=) e ! Content Download 0.962 ms|
| layout.css ~ 304 . simple.html:9 223B
f;:=5| . GET textfcss | T . -
[enfv3.0.0/resources Mot .. Parser 175 B 21ms
~| bootstrap-responsive.... 304 simple.htmk10 223 B 122 ms

23 requests | 3.7KB transferred | 589 ms (load: 561 ms, DOMContentLoaded: 561 ms)

Before we talk about the requests being made, take a look at the buttons above the lists of
requests—the first one is dedicated to Record Network Log and the second Clear helps you
remove the list of network calls. Then, you can activate Filter, which displays a submenu to
filter by resources types for example, Documents, Stylesheets, Images, but also by the type
of requests such as XHR or WebSockets. The Filter icon also activates a full text search box.
The fourth icon is Use small resource rows. The two checkboxes are available, Preserve Log
will cause the list of requests to persist, or not get deleted, on page reloads, while Disable
cache will not allow you to use cache. For better performances, some assets such as scripts
or images can be kept in your browser memory to speed your browsing experience when you
visit the same website again. The drawback is when you debug, you can use an outdated file.

[aaa]

Appendix C

Now, let's break down the actual request list.

The request list

The request list shows us all the requests the page makes. Each URL in the previous
screenshot is a URL that OpenLayers is making a request to. By clicking on each request,
we can see more information about the request, including the full request URL and the
response. When we are in the Headers sub-tab, we get a Request URL, Request Method,
and Status Code, and after we get all details of Request Headers and Response Headers.

The Request URL tab gives all the parameters. The Response tab provides us with the
server's response to our request:

@, [Elements | Network | Sources Timeline Profiles Resources Audits Console

= £ O x
® O Y Preserve log () Disable cache
Mame "
Path Headers | Preview Response
textured_paper,jpeg * Remote Address: 77.95.70.166:808
W Jenfu3 ‘.:_._‘_,.J_,_, Request URL: http://c.tile.openstreetmap.org/2/1/1.png

Request Method: GET
Status Code: @ 200 0K (from
v Request Headers
Provisional headers are shown
User-Agent: Mozilla/5.8 (X11; Linux xB6_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.8.2171.95 Safari/537.36
Response Headers
1.png Access-Control-Allow-Origin: *
Age: 155
Cache-Control: max-age=56352
2.png Content-Length: 8437
a.tile.openstrestmap.org/. Content-Type: image/png
Date: Sat, 13 Dec 2014 ©1:17:14 GMT
ETag: "4486526c3f54eb40dc4abd596ace1433"
Expires: Sat, 13 Dec 2014 15:16:26 GMT
g Sgrver: Apache/2.2.22 (Ubuntu)
Via: 1.1 nepomuk.openstreetmap.org:3128 (squid/2.7.STABLES)
X-Cache: HIT from nepomuk.openstreetmap.org
] 2png - X-Cache-Lookup: HIT from nepomuk.openstreetmap.org:3128
25 requests | 5.4KB transferred ...

7 XS
Fan

dataimage/png;base

“

=] %] [@]

7 1png
b.tile.openstrestmap.org/

clile.openstreetmap.org/..

Take a look again at the list—when we look at the first image in the screenshot, the row has
the name 1.png. The method, GET in this case, specifies that the request type is GET, which

basically means we are embedding variables inside the URL itself, with optional key=value
pairs, separated by an & sign.

When we mouse over a URL, we can see more of it; we see the full URL, which may contain a
bunch of variables in the key=valuegkey=values&. ... format. In our case, we only have a
full URL like http://c.tile.openstreetmap.org/2/1/1.png when hovering.

As we saw in all OpenStreetMap examples through the book, we didn't need parameters. If
you remember in Chapter 1, Getting Started with OpenLayers, we told you that OpenlLayers
consumes cartographic data; some can come from dynamic web mapping server, others
from pregenerated data. Our example relies on pregenerated data so that there are no
parameters added contrary, for instance, to a WMS data source.

14451

Squashing Bugs with Web Debuggers

The Sources panel

The Sources panel is very powerful. It enables you to view and edit JavaScript and CSS
files loaded from the web page. You are not restricted to only view all the JavaScript code
associated with the page in this panel; you can use it to do real-time code debugging. You
can set watch expressions, view the stack, set breakpoints, and so on. If these terms are
foreign, don't worry, we will review some of them.

For example, we want to quickly talk about enabling Pause on exceptions. With this
option enabled, Chrome DevTools will stop the web page whenever a JavaScript error is
encountered. This makes it very easy to quickly pinpoint where your page is blowing up at.
To enable it, simply click on the Pause on exceptions button icon (be careful, it's not the
same as an Pause Script Execution icon).

Keep note of this when you enable it. We've been frustrated more than once when
developing because we forgot that it had been enabled. When it is enabled, the button

isn't gray, as demonstrated with the icon:

Another tip in this panel, is the ability to unminify JavaScript. It's really useful to track errors.
You can open a web page with a compressed JavaScript file. If you click on the icon with
open/close brackets called Pretty Print, you will see the difference.

You are maybe wondering why we spoke so much about this panel. When you start to make
complex web mapping applications, this panel is the best way to analyze how an application
works. When you're developing or reusing an already existing code, you can already guess
the behavior of the code, but you can't confirm it. The key feature of the debugger is to
make this confirmation. Let's see an example of how you can use it.

Time for action - using hreakpoints to explore your code

Breakpoints help you understand available variables and their values, one at a time in your
code, and see when the code is executed. Let's see how.

As we didn't have space to cover such a large topic, we chose to let you discover the basic parts
using the official tutorial. So head to it and review it at https://developers.google.
com/chrome-developer-tools/docs/javascript-debugging. Now after this review,
open the example for Chapter 1, Getting Started with OpenLayers, with Chrome Developer
Tools opened with the Sources panel. Change the ol . js reference to ol-debug.js (more
readable).

14461

https://developers.google.com/chrome-developer-tools/docs/javascript-debugging
https://developers.google.com/chrome-developer-tools/docs/javascript-debugging

Appendix C

Set breakpoints in the HTML page at var osmLayer, var map, map.addLayer, and map.

setView. Check the following steps:

1.

Define in the Watch Expressions part on the right the following variables and

functions calls: osmLayer, map, map.getLayers (), map.getLayers () .
getArray () ,map.getView () and map.getView () .getCenter ().

2.

var osmLayer.

3.

Reload your page to see your page loading stopped at the first breakpoint

You should have content similar to the following screenshot:

=script src="../assets/ol3/js/ol-debug.js"></script=
=5Cript=

Q, Elements Metwork | Sources | Timeline Profiles Resources Audits Console = # I:I‘ ®
|:|E||2360_01_01_5|'mp..._comments.html>< Fomjm, A~ + % ve @
1 4 | w Watch Expressions. + C
g “ht:‘bd osmLayer: undefined
<nead> ing
H def d
4 =title=Hello OpenStreetMap</title= ::‘j unae er
5 <link rel="stylesheet" href="../assets/ol3/css/ol.css" type="tes) - -
6 <link rel="stylesheet” href="../assets/css/samples.css” type="te¢ map ! =
7| </head=> map. ¢
8 <body= map.g 1ilat
9 <div id="map" class="map"=</div= w Call Stack] Async
]
1

(anonymous function)

var osmLayer = new ol.layer.Tile({

Paused on a JavaScript breakpoint.

source: new ol.source.0SM()
i
var birmingham = ol.proj.transform([-1.81185, 52
var view = new ol.View({
center: birmingham.
zoom: &
i
var map = new ol.Map({
target: 'map’
s
map.addLayer (osmLayer);
map.setView({view);
25 =/script=
26 =/body=
27 | </html>
2

{} Line12, Column1

.443141], 't

v Scope Variables
» Global
¥ Breakpoints

[# 2360_01_01_simple_osm_no_comments.html:12
var osmLayer = new ol.layer.Tile({

[# 2360_01_01_simple_osm_no_comments.html:20
var map = new ol.Mapi{

[# 2360_01_01_simple_osm_no_comments.html:23
map.addLayer(osmLayer):

[# 2360_01_01_simple_osm_no_comments.html:24
map.setView{view):

» DOM Breakpoints
» XHR Breakpoints
» Event Listener Breakpoints

2360_01_01_simp...mments.html:12

Window

4.

Use the Resume script execution to see at each step the value in the Watch

Expressions part. The result should be along the steps like the following illustration:

After var osmLayer...

» osmLayer: ol.layer Tile

» map: ol.Map
» map.getlayers(): ol Collection
» map.getlayers() .getArray(): Array[l]

b map.getView(): ol View
map . getView() .getCenter():

nul

¥ Watch Expressions + C
After map.addLayer...
¥ Watch Expressions + C

After var map...

v Watch Expressions

» osmLayer: ol.layer.Tile

» map: ol.Map

» map.getlayers(): ol.Collection

» map.getLayers() . .getArray(): Array[O]
p map.getView(): ol.View

map.getViewl) .getCenter(): null

After map.setView...

¥ Watch Expressions

» osmLayer: ol.layer.Tile
» map: ol.Map

» map.getLayers():
p» map.getlLayers() getArrayl):
» map.getView(: ol.View

» map.getView() .getCenter():

ol.Collection
Array[1]

Array[2]

[447]

Squashing Bugs with Web Debuggers

What just happened?

When we began by introducing the library in Chapter 1, Getting Started with OpenlLayers, we
described every step to create a basic map. With this example, we are able to follow the flow
of your code with Chrome Developer Tools. First, all the variables we defined in the Watch
Expressions were empty, as seen in the screenshot at step 3.

With the declaration of var osmLayer, the part of figure After var osmLayer... showed us
anol.layer.Tile object was created.

Then, we created a map in the After var map... part. The result is that map variable was
assigned an instance of ol .Map. With this o1 .Map creation, ol .Collection was created
for layers, but there were no layers: map.getlayers () .getArray () as a length equal to
0. Moreover, a view was also added in the map but didn't have a center in this step; map.
getView () stopped to be empty and was replaced with an ol .view instance.

Then, by adding the layer in the After map.addLayer part, we saw that the map had a layer
added: the previous map.getlayers () .getArray () was using osmLayer: its length is 1.

At the end, the same process happened for the map view. The Map class with the map.
setView method gained the view parameters, and so, map.getView () .getCenter ()
returned an array with coordinates.

This detailed description was a good way to show that we can find how the code works

by following the code execution, instead of blindly searching where things happen or only
deducing by reading code. When you have enough coding experience, the solution to only
follow the code without using a debugger can be better to get a full code overview, but as a
beginner, it's not the best solution and you should focus only on small code parts.

We hope with this demonstration, you appreciated discovering one of the main web
debuggers features.

After this JavaScript escape, let's return to the CSS topic. Remember we said that we can
also edit the CSS content in the Sources panel. Contrary to the Elements panel, we have the
option to edit any CSS document associated with the page, not just the style of a selected
element. We don't need to not talk much about this panel. We'll give you an accelerated
overview for using it in OpenLayers.

[4481]

Appendix C

Time for action - playing with zoom hutton and map copyrights

What we are customizing are the controls introduced in Chapter 9, Taking Control of
Controls. It's time to try it: practicing things on your own will improve your comprehension.
For this, we will reuse the OpenStreetMap example from Chapter 1, Getting Started with
Openlayers, and customize the position for zoom buttons and map copyrights.

1. Inthe Sources panel, open the ol . css file and use the Format button to make it
more readable as this file is a . css minified file on one line.
2. Findthe.ol-zoom class in the ol .css file.

3. Replacetheleft : 0.5em; parameter with right : 0.5em; to make changes
to zoom buttons.

4. Now, it's time to change copyrights. So, like in the previous case, look for the CSS
class, .ol-attribution:not (.ol-collapsed).

5. Change the property background, rgba (255,255, 255,0.8) ;, to
rgba (255,0,0, .4) ;.

Londandemy/Demy . g
Carlisle
Durham
Armagh
Ripan
Lancaster Pe
et Levects Kingston
Preston 2 upan Hull
Dublin Sheffield %,
Bangor Chestar Lincoin LesLaarmen
Mattingham
Ernr
Limerick wict
Petarborough Norwch
Waterford Wonte Cantricoe T T Ered
A - Amhem
Cork 5 David's Gowcester Rotterdam
Swansea Brada
London
Bath ' Venlo
Cantertiry ;
: B
Salishury Dunkerque
B Portsimauth Belgi lelniaue Aachin
Plymouth
T
: g 7 | P
e e ST (. - Y . 1 P st ol Y =
*~ Tiles © OpenStreetMap contributars ta @ OpenStreetMap contribu
" | e M P Reims DDbL-
— pid LN T e L

14491

Squashing Bugs with Web Debuggers

What just happened?

In the previous example, you played with HTML content. Here, the focus was to cover how
you can change the style on the fly. We set the position of the zoom control to the top
right and we also changed the background for attribution when you open the attributions
collapsible block (credits to maps data and tiles) to red with an opacity change. We
encourage you to perform more tests on your own to assimilate the way the panel works.

If you are a web designer working on the code or a web developer requiring to make some
designs, we advise you to play a lot with this powerful panel. It can greatly speed up your
development time when you master it. If you are always editing CSS in your browser, you
should consider looking into the Workspace functionality we've already talked about.

The Console panel

The Chrome DevTools Console panel is where we'll spend most of our time. It acts as a
powerful JavaScript command line, or interpreter, which means we can type in JavaScript
code and execute it right away—no need to save or edit any files. We can also inspect values
when we are stopped at a breakpoint in the Sources panel and want to inspect the context
at this time.

Another thing that makes this panel so useful is that we can interact directly with the DOM
(Document Object Model)—any HTML element on the web page, including any existing
JavaScript code the page contains. So, this means we're able to interact with our OpenLayers
map on the fly, issuing command and testing code to instantly see what works and what
doesn't. As you can imagine, this saves a ton of time!

Q, [] Elements Network Sources Timeline Profiles Resources Audits | Console | = # |EI‘ X
® 7 <topframe> v Preserve log

> |

You can choose and type in the console on one line or multi-lines. To use multi-lines, type
Shift + Enter to return without executing code.

[450]

Appendix C

When you need to discover the structure of an object, the Console panel is a very valuable
tool, especially when you want to take a peek at JavaScript components. Assuming we are
looking at a page that includes OpenLayers, we can quickly see all of OpenLayer's classes,
functions, and so on. It is not a replacement for the APl docs, but serves as a good, quick way
to view such information.

It looks like the screenshot that follows:
Q, [] Elements Network Sources Timeline Profiles | Resources| Audits Console = £ =9, x
w] Frames 1
. 2| <html>
w7 (2360_01_01_simple_os... 3| <hends
> Images 4 =title=Hello OpenStreetMap</title=
» Scripts 5 <link rel="stylesheet"™ href="../assets/fol3/css/ol.css" type="text/css" /=
6 <link rel="stylesheet™ href="../assets/css/samples.css" type="text/css" />
» Stylesheets 7| </head=
5

. B <body=>
e e e v e 9 <div id="map" class="map"=</div=

{1web sQL 18 =script src="../assets/ol3/js/ol-debug.js"=</script=
| {IndexedDB 11 <scripts _
= 12 var osmLayer = new ol.layer.Tile({
» [Local Storage 13 source: new ol.source.0SM()
» (| Session Storage 14 I _
. 5 var birmingham = ol.proj.transform{[-1.81185, 52.443141], 'EP5G:4326', 'EP
» [Cookies 16 var view = new ol.View({
EnpplicationCache 17 center: birmingham,
18 zoom: 6
19 s
28 var map = new ol.Map({
21 target: 'map e
22 »

With it, you have a classification of all types of resources. You get all resources depending
on frames such as the images, CSS, and HTML files. It is a good way to know what your web
page loads.

You also can see all persistent storage. Persistent storage are Web SQL, IndexedDB, Local
Storage, Session Storage, and Cookies. Although they might not mean much to you, they
provide features, not directly related to OpenLayers, can be useful as they are HTML5 features.
We invite you to discover their purpose by visiting http: //html5demos . com.

With this various storage, you can keep information for customizing users' experiences. For
example, you can use them to customize the language for a web application, store the zoom
level for a displayed map, and so on.

To complete and end this panel description, the last thing we need to inspect is the
Application Cache. It is the most useful function for our book in Chapter 10, OpenLayers
Goes Mobile. It helps you inspect the data cached using the MANIFEST file.

[4511

http://html5demos.com

Squashing Bugs with Web Debuggers

Timeline, Profiles, and the Audits panel
These three panels are not really useful for beginners. They target advanced developers
mainly for performances purposes:

¢ The Timeline panel enables you to record how the page content is processed to

display the final image you see in the browser.

¢ The Profile panel is mainly to evaluate computer resources consumed by the web
page such as the memory consumed by JavaScript, the CSS selectors efficiency, and
the overall memory allocation.

¢ The Audits panel, like the name indicates, is an audit to give you information for
improving performances at the network level or CSS levels for example.

If you want more information about these panels, visit the official documentation of Chrome
DevTools at https://developers.google.com/chrome-developer-tools/.

Panel conclusion

Each panel serves a certain purpose and all of Google Chrome DevTools' panels are extremely
useful, but throughout this book, we will be mainly focusing on the following panels:

The Console panel (Command-line JavaScript)

The Elements panel

The Sources panel

* 6 o o

The Network panel

These four panels are the ones that we should use the most throughout this book. We can
occasionally come back to the other panels, but we don't need to spend a whole lot of time
with them. However, before we conclude this chapter, let's get a bit more familiar with the
Console panel, since we will need it in most of our chapters.

We talked a bit about what the console panel is—essentially, a JavaScript command line. We
can execute any JavaScript code we want, and interact with any page element. There are two
primary components to the Console panel—the console log area and the input area.

The console log area will display information about any errors, along with displaying any
code that is entered. The input area allows us to either enter a single line of code or multiple
lines of code.

Before we start using the console with our maps, let's get familiar with the console by
executing some JavaScript code.

[4521

https://developers.google.com/chrome-developer-tools/

Appendix C

Time for action - executing code in the Console

We will do some basic JavaScript coding via the Chrome DevTools console; specifically, just
calling a built-in the alert () function to display an alert.

1. Open up Chrome. It doesn't matter at this point which website (if any) you go to,
since we will be writing a standalone code.

2. Open up Chrome DevTools by going through the menu. Go to the Console panel.

3. Now, at the bottom of your screen, you'll see an area where you can enter code,
designated by >. Clicking anywhere after this will allow you to enter the code.

4. Type in the following code, and then hit Enter:

alert ('Packt publishing loves open source. You want to write? See
http://authors.packtpub.com') ;

5. Youshould see an alert box pop-up with the text 'Packt publishing loves open
source. You want to write? See http://authors.packtpub.com' (or whatever string
you passed into the alert function). After the code is executed, it will appear in the
log above the input line:

Q, [] Elements Network Sources Timeline Profiles Resources Audits | Console | = -n- |EI‘ x

Q W <topframe> v Preserve log

alert({’'Packt publishing loves open source. You want to write? See http://authors.packtpub.com');

What just happened?

We've just executed some JavaScript code without having to edit and save any files. Although
we did a simple alert, we are really not limited by what we can do. Anything that we can save
in a JavaScript file, we can also enter in the Console.

You'll also notice that the same code that we typed in appeared in the log area. We'll also
get an error message if any errors occur in the code—go ahead and try it! Instead of typing
alert ('My alert') ; type something like fakealert ('Boom') ;. This will give you a
reference error, since nowhere is the fakealert () function defined —alert (); on the
contrary, it is a built-in function, so we can call it from any page.

That's pretty much all there is to it! The rest just builds on these principles. Let's go ahead
and do just one more thing, something that is slightly more involved, before jumping into
manipulating an OpenlLayers page.

[4531]

Squashing Bugs with Web Debuggers

Time for action - creating object literals

We will introduce object literals and get acclimated with how to manipulate them now, so
that we can better work with the OpenLayers code:

1. Open up Chrome and the DevTools Console panel—again, it doesn't matter right
now what page you're on.

2. Type in the following code, and then execute it by pressing Enter:

var my parameters = {zoom: false, attribution: false,
otherControl: 'myslider'};
console.log(my parameters) ;

3. The preceding code should display, in the console log area, something similar to
{zoom: false, attribution: false; otherControl: 'mySlider' } In
this case, the object is not complex but when the object is more complex, you will
see an arrow before the object, and if you click on it, it will show all the information
about the object you just created.

4. Click on the Console panel to get back to it. In the input box, add the following code
to the existing code and execute it:

console.log(my parameters.otherControl) ;

5. Youshould see a line of output in the console area containing the string mySlider:

Q, [] Elements Network Sources Timeline Profiles Resources Audits | Console | = # |EI‘><

® ¥ <topframe> w Preserve log
var my parameters = {zoom: false, attribution: false, otherControl: 'myslider'};
undef

console. log(my parameters);

Object {zoom: false, attribution: false, otherControl: "myslider"} VM1GES5:2
undefines
console. log{my parameters.otherControl);
myslider VM1656:2
undefinec
>
H
What just happened?

We just created what is called in JavaScript an anonymous object, or object literal. We
previously discussed that objects are created from classes, in Appendix A, Object-oriented
Programming — Introduction and Concepts and in JavaScript, we need to use the new
keyword to instantiate an object from a function. However, here, you can see that there is
no new keyword!

14541

Appendix C

Object literals

The key concept here is that we are just creating a single object that does not derive from a
class. Since object literals (anonymous objects) do not derive from a class, it is, essentially, an
empty object. It contains only what we explicitly defined. The value associated with a key can
be almost anything—a string, integer, function, array, or even another object literal.

We encountered object literals in Chapter 1, Getting Started with OpenLayers —they were
the {key:value} pairs used to define the parameters and options of our layer and objects.
The only difference is that we did not assign a variable to them; we simply passed them in
when we created our layer object.

Object literals are extremely useful for a variety of tasks, and it is a great way to package
information in an easy-to-use form. They are in the form of {key:value, key2:value2}.
We can access any property of an object literal by using dot notation, in the form of my
object literal.key. The key, like before, is the key part of the key:value pair. In the
preceding code, we call console.log (my parameters.otherControl) ; and the value
of the key opacity is displayed in the console's log area. You will also encounter an alternative
notation and brackets notation, to retrieve the same information. This form is quite useful
because you can concatenate values keys in your object.

Using console.log (my parameters['other' + 'Cont' + 'rol'l]); willdothe
same as the previous console. log call. It allows to loop on objects with a key that can
change whereas the dot notation does not allow this.

console.log (): The Chrome DevTools function console.log ()
is a function that will, essentially, display what you pass into it in the

console log. You can pass in variables, strings, objects, anything, and it
will display in the log. It comes in handy often, so getting familiar with

itis a goodidea.

We use object literals frequently when making our maps—so if they don't make much sense
yet, don't worry. The basic idea to grasp, and the primary way we will use them, is that they
are essentially key : value pairs. Before we end this chapter, let's do a quick example where
we interact with an Openlayers map using the Console panel.

[4551]

Squashing Bugs with Web Debuggers

Time for action - interacting with amap

We'll use the map we created in Chapter 1, Getting Started with OpenLayers, to do this
example, interacting with our OpenLayers map by calling various functions of the map.

1.

7.

Edit the example map from Chapter 1, Getting Started with OpenLayers, to change
the reference to JavaScript from . . /assets/0l3/js/ol.jsto ../assets/0l3/
js/ol-debug. js and open the file in Chrome. Enable Chrome DevTools and go to
the Console panel. If you like, you can take a look at the Network panel and view
the network activity to see the requests your page is making.

Go to the Console panel, input the following code, and then execute it:

console.log (map) ;

You should see the map object information come up in the console log. Click on

it, and take a moment to look over the various attributes it has. Near the bottom,
you can see a list of all the functions that belong to it (which are also referred to as
methods).

Take note of the function names, as we'll be using them.

Go back to the Console panel, type in, and execute the following code:

map.getView () .setCenter ([0, 0]);
map.getView () .calculateExtent (map.getSize()) ;

Take note of the extent. Clear out the code you typed in, then type in the following
and execute it:

map.getView () .setResolution (2000) ;

map.getView() .calculateExtent (map.getSize())

Now, let's take a look at some properties of the map object. We can access the map
properties using the dot notation, which we discussed earlier. Clear any code you've
typed so far, input and execute the following code:

console.log(map.getSize()) ;
console.log(map.getViewport ()) ;

You will see the following screenshot:

Q
[\

]
v

conso
[778,
ndefir

conso

Elements Network Sources Timeline Profiles Resources Audits | Console | =)

[n|
x

<top frame> ¥ Preserve log

le.log(map.getSize());

~

[

508] VM167Z2:2

le.log(map.getViewport());

VM1673:2

s class="ol-viewport" style="position: relative; overflow: hidden; width: 180%; height: 108%;"=.</div=

[4561]

Appendix C

8. Refer back to the functions of the map object (by running console.log (map) ;
then clicking on the output in the log area). Try playing around with different
functions and attributes the map object has. To access the functions, you just need
to type inmap. function() ;.

9. You can also access the properties of the map by typing map . key, where key would
be something like keyHandler (so the full code would be map.keyHandler).
Be aware that values with underscore at the end are private when using the
compressed ol . js file (it's a naming convention in the library code).

Q, [] Elements MNetwork Sources Timeline Profiles Resources Audits | Console | = # |El‘x

®© W <topframe> v Preserve log
console.log(map) ;
VM1716:2
¥ ol.Map {eventTargetlisteners : goog.events.lListenerMap, actualEventTarget : ol.Map., parentEventTarget :
null, r ion_: 8, closure uid 477460346: 3.}
s @ Dbject
p actualEventTarget : ol.Map
p animationDelay : goog.async.AnimationDelay
» beforeChangelisteners : Object
closure uid 477460346: 3
» controls : ol.Collection
p coordinateToPixelMatrix : Array[l6]
p deviceOptions : Object
» eventTargetlisteners : goog.events.ListenerMap
» focus : Array[2]
frameIndex : 39
p frameState : Object
p» interactions : ol.Collection
» keyHandler : goog.events.KeyHandler hd

What just happened?

We just executed some functions of our map and accessed some properties of it. All we have
to do is call our object, map, followed by a period, then a function or property it owns. Using
this dot notation (for example, map.getSize () ;), we can access any property or function
of the map object.

We also saw how the Console panel comes in handy, and took a look at functions that

we can call, which the map object owns. Any function listed there can be called via map.
functionname () ;, but some functions require parameters to be passed in or they will not
work. However, where can we go to figure out more information about the functions and
what they require?

Have a go hero - experimenting with functions

Try to call different functions that you see listed in the Console tab when typing in the
window. Many functions will not work unless you pass certain arguments into them, but
don't be afraid of errors! Poke around the various functions and properties and try to
interact with them using the Console tab like in the preceding example.

[4571

Squashing Bugs with Web Debuggers

The APl documentation

The APl documentation for the Map class, which our map object derives from (and thus,
inherits all the functions and properties of the class) provides more detailed explanations
of the properties, functions, and what we can do with them. They can be found at
http://openlayers.org/en/v3.0.0/apidoc/. Even though Chrome DevTools is a
great resource to quickly interact with code and learn from it, the API docs present an extra
level of information that Chrome DevTools cannot necessarily provide. Do not hesitate to
visit them at http://openlayers.org/en/v3.0.0/examples/.

\ Chrome DevTools is evolving rapidly and many new capabilities are
~ being added all the time. Make sure you read the official documentation
Q athttps://developer.chrome.com/devtools/index and
check back periodically to see what's new.

Improving Chrome and Developer Tools with extensions

Although it's more related to programming than web mapping, it's recommended to increase
your abilities at using web debuggers.

Chrome DevTools by default offers the main functions to develop and debug with
Openlayers, but to be more efficient, it's really required to use extensions. Extensions are
additions to Chrome browser or to the Developer Tools to add or augment default software
functions. You can find most of them at http://www.google.com/intl/en/chrome/
webstore/extensions.html.

We'll review some of them.

Usually you're consuming web services providing JSON (JavaScript Object Notation) when
you're doing mashups. To illustrate why the add-on is useful, we will use a geocoder service,
such as Nominatim, to retrieve position for a postal code. A geocoder is a tool to match
addresses with geographic coordinates.

For example, typing http://nominatim.openstreetmap.org/search?g=35+Liver
y+Street+Birmingham&format=json&limit=1 in Chrome will send you the following
screenshot:

[{"place_id":"11211228","licence":"Data \u@Ba9 OpenStreetMap contributors, ODbL 1.0.
http:\/\/www.openstreetmap.org\/copyright”,"osm_type":"node"”,"osm_id":"1109893358", "boundingbox":
["52.483815","52.483915","-1.9007587","-1.90086587"], "lat":"52.483865", "lon":"-1.9807087","display_n
ame":"Rustic, 35, Livery Street, Jewellery Quarter, Birmingham, Warwickshire, wWest Midlands,
England, B3, United

Kingdom","class":"amenity","type":"fast food","importance":0.421,"icon":"http:\/\/nominatim.openstr
eetmap.org\/images\/mapiconsy/food fastfood.p.2@.png"}]

[4581]

http://openlayers.org/en/v3.0.0/apidoc/
http://openlayers.org/en/v3.0.0/examples/
https://developer.chrome.com/devtools/index
http://www.google.com/intl/en/chrome/webstore/extensions.html
http://www.google.com/intl/en/chrome/webstore/extensions.html
http://nominatim.openstreetmap.org/search?q=35+Livery+Street+Birmingham&format=json&limit=1
http://nominatim.openstreetmap.org/search?q=35+Livery+Street+Birmingham&format=json&limit=1

Appendix C

With the extension, you will directly get an indented content, collapsible.

place_id: "11211228",
licence: "Data © OpenStreetMap contributors, ODbL 1.0.
http://www.openstreetmap.org/copyright",
osm_type: "node",
osm_id: "1189093358",
- boundingbox: [
"52.483815",
"52.483915",
"-1.9007587",
"-1.9086587"
Is
lat: "52.483865",
lon: "-1.9087087",
display_name: "Rustic, 35, Livery Street, Jewellery Quarter, Birmingham, Warwickshire,
West Midlands, England, B3, United Kingdom",
class: "amenity",
type: "fast food",
importance: ©.421,
icon: "http://nominatim.openstreetmap.org/images/mapicons/food fastfood.p.20.png"

So what is the difference? When it's required to correctly reuse data, we must understand
received data and with this plugin, the return content is human readable! Furthermore,
Openlayers can consume GeolJSON, a subset JSON notation dedicated to maps data.

Download it at https://chrome.google.com/webstore/detail/jsonview/
chklaanhfefbnpoihckbnefhakgolnme.

Dealing with color with GolorZilla

When you are making a custom Ul, you always have to try different colors.

You can also retrieve a color you like from another website or an image. In this situation, you
will not want to always go back and forth between a graphic tool such as Gimp or Photoshop
and your browser. So in this case, you can install ColorZilla. How is this related to OpenLayers?
When you want to make customize controls elements, this is an invaluable tool. Go to
http://www.colorzilla.com/chrome/ to retrieve it. It's also a plugin available for Firefox.

If you really want to improve your skills for using Chrome Developer Tools,
you should visit Code School tutorial at https://www.codeschool.
M com/courses/discover-devtools. Use also the videos available in
Q the official documentation at https://developers.google.com/
chrome-developer-tools/docs/videos.

Visit the Secrets of the Browser Developer Tools website,
http://devtoolsecrets.com. It covers all browsers! -

[4591]

https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc
https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc
http://www.colorzilla.com/chrome/
https://www.codeschool.com/courses/discover-devtools
https://www.codeschool.com/courses/discover-devtools
https://developers.google.com/chrome-developer-tools/docs/videos
https://developers.google.com/chrome-developer-tools/docs/videos
http://devtoolsecrets.com

Squashing Bugs with Web Debuggers

During all this chapter, we introduced you to Chrome DevTools. It's one of the most
powerful tools for debugging JavaScript applications, but it is important to see the reality
of the web market. Just look on this graphic below from StatCounter GlobalStats,
http://gs.statcounter. com, that provide statistics from more than 3 million websites.

StatCounter Global Stats
Top 5 Desktop Browsers from Nov 2013 to Nov 2014

Firefox .

»# Line
Other
® B Bar

0% 10% 20% 30% 40% spoa- @ Map

Stat: Browser ¥ Region: |Worldwide ¥ Period: Nov 2013 to Nov 2014 (edit)

As you see, there exists more than one web browser, and Internet Explorer with Firefox
together represents a bit less than 50 percent of the market. It means that your web

mapping application must be compliant to those other browsers. Moreover, you have to deal
with different versions for the same browser family.

Although Openlayers itself works really well with all browsers, your own code will not always
do it.

Because of this, we'll review some tools to debug in Internet Explorer and Mozilla Firefox. We
will describe equivalence between Chrome DevTools panels and browsers-specific debuggers.

[460]

http://gs.statcounter.com

Appendix C

Debugging in Microsoft internet Explorer

Before Internet Explorer 8, there wasn't any debugger built-in. The previous version of

Openlayers library (the 2.x series) was covering old IE versions such as IE 6, 7. OpenlLayers 3
supports IE 9+.

Although the IE debugger is considered less powerful than other browsers debuggers, it is
valuable tool in particular because of the step-by-step debug.

The following screenshot of IE 9 debugger shows that most panels are similar to Chrome
Developer Tools:

File Find Disable View Images Cache Tools Validate | Browser Mode: IE9 Document Mode: 1E9 standards - F X
HTML | (55 Console Script Profiler MNetwork | Search HTML... R |
hRE EH Style | TraceStyles Layout Attributes

: id="Page"> + -[linherited - body -

E-<div

- Empty Text Node =-[#body BaseStyles.css
id="HeadingSection"> [fleslon 4042425
nt-family: "Segoe UI" , Verdana, Helvetica, Sans-Ser
font-size: 1@pt;

--Text - Empty Text Node
—-«<div id="HeadlineSection"»

<@ id="HeadlineSectionLink" href="": —-[#]inherited - a
R <div i adlineSecticnButton"/> =-[¥la, a:visited, a:hover BaseStyles.css
- Empty xt Node = 8 color: #@B8a3ef;
id="DemoSection"» T isited, a:hover BaseStyles.css
- Empty Text Node ~[@lcolor: #@Ba3ef; =

=]+ BaseStyles.css|
~[¥lpadding-top: 8px;
er Images ~--» ~[lpadding-right: epx;
- Tex ext Node - [¥lpadding-bottom: @px;
- <img class="ImagePrimer" src="Views/Homepage/Headline -[#padding-1eft: @px;
--Text - Empty Text Node ~[#margin-top: epx;
—-<img class="ImagePrimer" src="Views/Homepage/Headline ~[margin-right: epx;
-Text - Empty Text Node [@lmargin-bottom: @px;
--<img class="ImagePrimer" src="Views/Homepage/Headline [@lmargin-left: epx;
- Text - Empty Text Node il 2 [¥l#HeadlinesectionButton Homepage.css _
- .gime rlasc="TmagaPrimar® crc="Tnrlndes/Tmase/Ratirnfir R S S s S, _
] 1 3 4 il b

The HTML panel is like the Elements panel, and the CSS and Scripts panels do the same job
that the Sources panel in Chrome DevTools does.

The Console and Network panels are quite similar to the ones in Chrome Developer Tools.

In addition, for better performance, for example, to evaluate and improve your JavaScript
execution time, a profiler can be found in the Profiles panel but doesn't provide as much
functions as its Chrome equivalent.

With IE, each version of the browser debugger gains panels. So, it would be better to review
versions differences using the official Microsoft developer website at http://msdn.
microsoft.com/en-us/library/ie/.

4611

http://msdn.microsoft.com/en-us/library/ie/
http://msdn.microsoft.com/en-us/library/ie/

Squashing Bugs with Web Debuggers

Like for IE, this part will be dedicated to describe equivalence between Chrome DevTools and
Firebug, an extension to Firefox. Although Mozilla Firefox has a built-in debugger included
nowadays, Firebug remains the best tool on Mozilla to debug web maps and sites at the time
of this writing.

We advise that you install it by visiting the official site at https://getfirebug.com/.

& Y € » »= Console | HTML~ | C55 Script DOM Net Cookies Psearchbytextort| & | v | BEIE
L Edit div#language.section body html Style » | Com... Layout DOM 2> |»
<!DOCTYPE html PUBLIC W3C//DTD HTML 4 El #language, firstcss.en.html (line 28)

=l <html lang="en"= #translations {
* <head> font-size: small; 2
= <body=> font-style: italic;
EX ¥
4 <hl= div.section { threepart.css (line 94)
H <div class="map"= clear: both;
<p=This short tutorial is meant for people who want to start using CSS and 1
have never written a CS5 style sheet before. </p= Inherited from body
+ <p=
<p=At the end of the tutorial, you will hawve made an HTML file that looks body {1 . . threepart.css (line 45)
like this: </p> [~ color: #33% . [

Now, it's time to make the comparison again.

In this case, the Console panel with the DOM panel in Firebug provides the same
functionality that Chrome Developer Tools Console panel gives.

The HTML panel is equivalent to the Elements panel.
The CSS and Script panels combined together give you Sources panel functions.
The Timeline, Profiles, and Audits panels are specific to Chrome Developer Tools.

Most of the extensions for Firebug are listed at https://getfirebug.com/wiki/index.
php/Firebug Extensions.

Those extensions help to close the gap between default Chrome Developer and Firefox with
only FireBug.

You can also find Mozilla Firefox add-on that do not always depend on FireBug. The official
place to get them is https://addons.mozilla.org.

If you need one extension, you will have to install Acebug: https://addons.mozilla.
org/en-us/firefox/addon/acebug/.

When you are learning and in particular doing JavaSript test directly in the browser, it
behaves like an advanced text editor. Its main goal is to bring new features to Firebug's
multi-lines command.

14621

https://getfirebug.com/
https://getfirebug.com/wiki/index.php/Firebug_Extensions
https://getfirebug.com/wiki/index.php/Firebug_Extensions
https://addons.mozilla.org
https://addons.mozilla.org/en-us/firefox/addon/acebug/
https://addons.mozilla.org/en-us/firefox/addon/acebug/

Appendix C

This add-on does the following:

Add a new Firebug panel, Resources, to see list of files

Auto-complete with Ctrl + Space. Beautify selected code with Ctr/ + Shift + B
Auto-indent and outdent using Tab and Tab + Shift

Validate JavaScript, such as incomplete brackets

* 6 6 o o

Load and save JavaScript files

Moreover, the Resources panel that you get with AceBug in Firebug combined with Cookies
panel provides similar experience to the Resources panel in Chrome DevTools.

More and more efforts have been done on the built-in Firefox
M Developers Tools, it starts widening the gap with Firebug debugging
Q functions. Sometimes, it exposes more advanced capabilities
than Firebug. You can take a look at it main dedicated page at
https://developer.mozilla.org/en-US/docs/Tools.

Have a go hero - repeat after me

Learning process goes through repetitions. So, go back to the previous Console panel
examples of the chapter and retry them in Mozilla Firefox. Take your time to see differences
with Chrome Developer Tools behaviors. After those tests, go to your first OpenlLayers
example and type ol in the Console panel and click on it to browse like if you were

in the Chrome Developer Tools Console tab. We also recommend that you play with
autocompletion. Don't hesitate to experiment until you feel confident.

Q1. What panel(s) will you use if you wanted to execute JavaScript code?

1. The Network panel.
2. The Console panel.
3. The Timeline panel.
4. The Sources panel.

Q2. You want to make some changes in CSS styles; what panel(s) can be used?

The Elements panel.
The Resources panel.

1

2

3. The Network panel.
4. The Sources panel.
5

The Timeline panel.

[4631]

https://developer.mozilla.org/en-US/docs/Tools

Squashing Bugs with Web Debuggers

Q3. Using the sample from Chapter 1, Getting Started with OpenLayers, when you inspect
the map object with console.log, what methods are available?

1. map.getView().

2. map.getLayers().
3. map.getlLayer().
4

map.getInteraction().

In this appendix, we learned more about how OpenLayers works but before anything,
we learned more on how to use Chrome DevTools.

We then took a look at the panels that Chrome DevTools provides and what they are

used for. Afterwards, we spent time with the Console panel—something you'll be making
extensive use of throughout this book (and when you're developing your own web maps).
Then, we reviewed how to improve default Chrome DevTools. Finally, we covered basically
main other web debuggers with cross-browsers support in mind.

This appendix aimed to provide some fundamental knowledge of web development tools for
getting into both OpenlLayers and general web development. Web development tools, such
as Chrome DevTools, are one of the biggest assets in our toolkit. They speed up development
time, help us identify bugs, interact with our code better, and much more.

14641

Chapter 3, Charting the Map Class

Ql 2
Q2 1
Q3 2
Q4 3

Chapter 9, Using Vector Layers

|Q1 |1and3 |

Chapter 7, Wrapping Our Heads Around Projections

Q1 1,2and 3
Q2 1
Q3 1

http://epic.packtpub.com/index.php?action=ajaxui#ajaxUILoc=index.php%3Fmodule%3Doss_Chapters%26action%3DDetailView%26record%3D8d06d8f6-112b-01ff-3f29-53ad26354b66

Pop Quiz Answers

Chapter 8, Interacting with Your Map

Pop quiz
Q1 1,2,3, and 5
Q2 3
Q3 land4
Q4 1,3and 4

Chapter 9, Taking Control of Controls

Pop quiz
a1 3
Q2 1
Q3 2

Chapter 10, OpenLayers Goes Mobile

Q1 1
Q2 3
Q3 2

Appendix B, More details on Closure Tools and Code
Optimization Techniques

|Q1 |4and5 |

[4661]

Appendix D

Anpendix G, Squashing Bugs with Web Debuggers

Q1 2
Q2 land 4
Q3 land?2

14671

A

abstract class 396
ADB Chrome Extension 337
airplane mode 350
AJAX (asynchronous JavaScript + XML) 12
Android
web applications, debugging on 336-340
animation functions
about 79
animated maps, creating 80-83
animation properties, exploring 83
ol.animation.bounce(options) 79
ol.animation.pan(options) 80
ol.animation.rotate(options) 80
ol.animation.zoom(options) 80
animation functions, parameters
duration 79
easing 79
start 79
Apache Cordova
URL 352
API
about 10, 356
history 106
URL 356
API docs, OpenlLayers
about 26
URL 23
URL, for TileJSON source class 119
URL, for WMTS source class 120
APl documentation, Map class 458

Index

application
deploying 379

area 219

AutoDesk 132

base layer 97
basic styling
example 185-188
beforeRender() method 78
bindTo method
using 58, 59
values, transforming 60
Bing Maps
Openlayers, connecting to 13
reference link 116
Bing Maps API key
reference link 118
Bing Maps layer
about 116
creating 116-118
Bing Maps source class, properties
culture 118
imagterySet 118
kety 118
tileLoadFunction 118
Bing (Microsoft) Maps 107
breakpoints
used, for exploring code 446-448
brightness property, layers
reference link 99

Browser events
about 85
click 85
dblclick 85
pointerdrag 85
pointermove 85
singleclick 85
Browser events, listeners properties
browserEvent 85
frameState 85
map 85
type 85

C

CAD (Computer-aided design) 132
Canvas renderer 70
cellular network towers 325
characteristics, projection
about 218, 221
area 219
scale 219
shape 220
Chatzilla
URL 28
Chrome Developer browser
URL, for documentation 441
Chrome Developer Debugging controls 439
Chrome Developer Tools
about 436
improving, with extensions 458
opening 437,438
URL, for documentation 452
CIRC
URL 28
circle style
about 197
fill 197
radius 197
snapToPixel 197
stroke 197
using 198
classes
about 32, 394
inheritance between 32
Map class 32
relationships between 32

Closure Compiler
URL, for documentation 428
working with 414-416
Closure Library
about 404
basics 404
custom components 409
downloading, on computer 404-408
references 408
Closure Linter
used, for fixing JavaScript 431, 432
Closure Tools
about 103, 401, 402
optimum performance, ensuring 402-404
Cluster class 147
cluster source
about 147
using 148-150
cluster source, properties
distance 148
source 148
code
executing, in Console panel 453
exploring, breakpoints used 446-448
Codecademy
URL 11
code optimization
applying, to Openlayers samples 430
Collection class
about 52,53, 61
clear() method 63
creating 62
events 62
extend(arr) method 63
forEach(iterator, opt_this) method 63
getArray() method 63
insertAt(index, element) method 63
item(index) method 63
length property 62
pop() method 63
push(element) method 63
removeAt(index) method 63
remove(element) method 63
setAt(index, element) method 63
Colorzilla
URL 459

[470]

combined build
creating 384-388
combined compilation
advantages 380
disadvantages 380
compiler, functionalities
about 381
code, rewriting 382
functions, renaming 383
objects, renaming 383
properties, renaming 383
unused code, removing 382
components, WEINRE
debug client 340
debug server 340
debug target 340
configuration file, parts
compile 388
exports 387
src 387
conformal 220
console log area 452
Console panel
about 450, 451
code, executing in 453
using 452
constructor 395
constructor options, DeviceOrientation
tracking 332
constructor options, Geolocation class
projection 328
tracking 328
trackingOptions 328
content
creating, on map 274
updating, on map 274
Control class 34
Control methods
about 77
addControl(control) 77
getControls() 77
removeControl(control) 77
controls
about 51, 292
adding, to maps 292
ol.control.Attribution 52, 292, 297

ol.control.Control 297
ol.control.FullScreen 302
ol.control.MousePosition 303
ol.control.Rotate 51, 292, 301
ol.control.ScaleLine 306
ol.control.Zoom 51, 292, 300
ol.control.ZoomSlider 308
ol.control.ZoomToExtent 309
overview 296
used, for interacting with map 51
using, in OpenlLayers 292
conversion methods
about 83
getCoordinateFromPixel(pixel) 83
getEventCoordinate(event) 83
getEventPixel(event) 83
getPixelFromCoordinate(coordinate) 83
coordinates
determining 228, 229
transforming 230-232
coordinates, Geometry class 171
CORS (Cross Origin Resource
Sharing) 108, 193, 358
CSS3 transform property
reference link 332
Culture Codes
reference link 118
custom builds
benefits, of serving small files 380
creating 379
making, for performance optimization 414
optimization approaches 380
custom components, Closure Library
about 409
annotations 409-411
dependencies 409-411
inheritance 409-411
custom control
creating 311
custom Openlayers library
building 424-429
custom projection
reference link, for example 222
using, with WMS sources 235-237
custom projection, Openlayers 3
usecases 234,235

[471]

custom projection, Projdjs
about 233
adding 234

D

D3
about 134
URL 134
data
adding, to map 359-361
converting 246
creating 246
obtaining, from Flickr 357, 358
using 246
data conversion
references 248
dataProjection 242
debug client 340
debugging
in Microsoft Internet Explorer 461
in Mozilla Firefox 462, 463
in other browsers 460
debug server 340
debug target 340
DebugTileSource source
about 120
reference link 120
TileDebugTile source class, properties 120
dedicated web pages, Google
URL, for Openlayers tools tutorials 417
default controls
manipulating 293-295
default interactions
configuring 282
Degree
about 105
URL 105
degrees property
URL, for wiki 307
Developer Tools console, components
Audits 40
buttons 40
Console 40
Elements 39
magnifying glass 39
Network 40

phone look-alike 39
Profiles 40
Resources 40
Sources 40
Timeline 40

development strategies 355
deviceOptions, Map class

loadTilesWhileAnimating 68
loadTilesWhilelnteracting 68

device orientation 329, 330
DeviceOrientation API

used, for creating simple compass 331, 332

DeviceOrientation class 329
Dojo Toolkit Style Guide

URL 433

DOM (Document Object Model) 22, 450
DOM manipulation

using, with OpenStreetMap
map images 442,443

DOM renderer

about 71
adding 72,73

drawing

updating, ol.interaction.Modify used 278, 279

Dublin map

reference link 123

dynamic data

obtaining 375, 376

dynamic tags

E

adding, to map 377-379

easing functions

ol.easing.bounce 79
ol.easing.easeln 79
ol.easing.easeOut 79
ol.easing.elastic 79
ol.easing.inAndOut 79
ol.easing.upAndDown 79

easting and northing

El

El

reference link 229
ements panel
about 440
working 440, 441
oquent JavaScript
URL 11

[472]

EPSG:3857
about 88
URL 229
EPSG codes 224
equal-area projections 219
equidistant 219
European Petroleum Survey Group.
See EPSG codes
event management
about 53
with Observable class 53, 54
events
about 85
Browser events 85
KVO events 85
Map events 86
Render events 86
working with 54, 56
exports 383
Extensible Markup Language formats. See
XML formats
extensions
Chrome Developer Tools, improving with 458
externs
about 383
using 430
externs, Closure Compiler
references 430

F

Feature class
about 170, 176
creating 176, 177
interacting with 179, 180
properties 177

Feature class, methods
getGeometry() 177
getGeometryName() 178
getld() 178
getProperties() 178
getStyle() 178
getStyleFunction() 178
setGeometry(geom) 178
setGeometryName(name) 178
setld(id) 178
setProperties(values) 178

setStyle(style) 178
feature overlay 207
FeatureOverlay class
addFeature(feature) method 208
getFeatures() method 208
getStyleFunction() method 209
getStyle() method 208
removeFeature(feature) method 209
setFeatures(collection) method 209
setMap(map) method 209
setStyle(style) method 209
FeatureOverlay class, ol.FeatureOverlay
features 208
map 208
style 208
featureProjection 242
features
drawing, on map 274
modifying, on map 278
selecting, with OpenlLayers 3 246
styling 361
features information
obtaining, from map vector layers 258
fill style, ol.style.Fill 190-192
Firebug
references 462
Flickr
data, obtaining from 357, 358
geospatial data, using from 356
references 356, 357, 363
Flickr API
accessing 359
Flickr public data feeds
accessing 356, 357
data, specifying 357
Font Awesome
about 325-327
URL 327
forEachFeatureAtPixel method 84, 258-261
formats
about 151
JSON formats 151
text formats 151
XML formats 151-153
format sources
about 150
ServerVector source 158

[473]

StaticVector source 154-156 geospatial data

TileVector source 164 using, from Flickr 356
FormatVector class 147 Geospatial Data Abstraction Library. See GDAL
GeoWebCache
G URL 105
getGetFeaturelnfoUrl method
GDAL about 261
URL 251 example 262-265
Geographical Information System. See GIS used, for obtaining information from map 262
Geographical Information System at the getters 61,397, 398-400
Commission (GISCO) 248 getViewport() method 84
GeoJSON format GIS
about 144, 151, 152 about 27, 247
URL 152 URL 247
GeoJSONParser 383 GIS files 250
Geolocation class Git
about 324,327 installing 420
constructor options 328 installing, on Linux 421
KVO properties 328, 329 installing, on Microsoft Windows 420
limitations 325 Global Open Data Index
using 325 URL 248
geometries Global Positioning System. See GPS
reprojecting, in vector layers 238-241 global window object 56
Geometry class GML (Geography Markup Language) 153, 247
about 170 Google

coordinates 171

Openlayers, connecting to 13
example 174, 175

Google Chrome

Geometry class, methods URL 436
applyTransform(transformFn) 171 Google library
clone() 171 about 407
getClosestPoint(point, out_point) 172 URL 407
getExtent(opt_extent) 172 GPS 325
getSimpifiedGeometry(sqTolerance) 172 GPX (GPS Exchange Format) 144, 153, 246
getType() 172
transform(source, destination) 172 H
Geometry class, subclasses
GeometryCollection class 172, 175 HTML 5 ApplicationCache interface
SimpleGeometry class 172 about 346
GeometryCollection class ApplicationCache MANIFEST file,
about 175 creating 347, 348
getGeometries method 176 benefits 346
setGeometries method 176 MANIFEST file, referencing in web page 348
Geoserver HTML 5 Canvas API
about 105 URL 134
URL 105 hue property, layers

reference link 99

[474]

iconic fonts 327
icon style
anchor 193
anchorOrigin 193
anchorXUnits 193
anchorYUnits 193
crossOrigin 193
img 193
offset 194
offsetOrigin 194
rotateWithView 194
rotation 194
scale 194
size 194
snapToPixel 194
src 194
using 195, 196
IGC (International Glider Commission)
format 144, 154
ImageCanvas source class
about 134
properties 134
URL, for documentation 134
image layers
about 125
image WMS layer 125-127
sources 125
ImageStatic class
used, for inserting raw images 132, 133
ImageStatic class, properties
attributions 133
crossOrigin 133
extent 133
imageExtent 133
imageSize 133
logo 133
projection 133
url 133
image style, ol.style.Image 193
image WMS layer 125-127
imperial property
URL, for wiki 307
IndexedDB 451
inheritance 395
input area 452

installation, Git 420
installation, OpenLayers 3 18
Interaction class 34
Interaction class, methods
addInteraction(interaction) 77
getinteractions() 77
removelnteraction(interaction) 77
interactions
about 51, 280
architecture 280
ol.interaction.DoubleClickZoom 51
ol.interaction.DragPan 51
ol.interaction.DragZoom 51
ol.interaction.KeyboardPan 51
ol.interaction.KeyboardZoom 51
ol.interaction.MouseWheelZoom 51
ol.interaction.PinchRotate 51
ol.interaction.PinchZoom 51
overview 280, 281
used, for interacting with map 51
interactive styles
about 207
creating 209-214
interactivity, web mapping application
adding 367
select interaction, adding 368, 369
Internet Relay Chat (IRC) 28
ioS
web applications, debugging on 333-336
IP address
finding, on Linux 320
finding, on OSX 319
finding, on Windows 318
testing 321-324
issues, OpenlLayers
about 27
IRC 28
reference link 27
iterative development 355

J

Java
installing 419
installing, on Linux 420
installing, on Mac OSX 420
installing, on Microsoft Windows 420

[475]

JavaScript
fixing, Closure Linter used 431, 432
JavaScript console
used, for creating map 38-46
JavaScript Object Literal Notation 23
JavaScript Object Notation formats. See JSON
formats
JavaScript object-oriented programming
reference link 400
jQuery-1.7.js externs file, OpenLayers Externs
reference link 388
jQuery Core Style Guide
URL 433
JRE (Java Runtime Environment) 419
jsHint
URL 433
JsLint
URL 433
JSON data
switching to 363-365
URL, for downloading 375
JSON formats
about 151, 152
GeoJSON 151
TopoJSON 151
URL 151
JSON formats, StaticVector source
defaultProjection option 157
object option 157
JSON (JavaScript Object Notation) 458
JSONP (JSON with Padding)
about 364
URL 364
JSONView 458

K

Key-Value Observing. See KVO
KML (Keyhole Markup Language) 144, 154, 246
KVO
about 53-58
bindTo method, using 58, 59
KVO events 85
KVO properties
about 60
beforepropertychange event 60
change event 61

getters 61
propertychange event 61
setters 61
KVO properties, Geolocation class
accuracy 328
accuracyGeometry 329
altitude 329
altitudeAccuracy 329
heading 329
position 329
projection 329
speed 329
tracking 329
trackingOptions 329
KVO properties, Map class
layergroup 74
size 74
target 74
view 74
KVO property methods, DeviceOrientation class
alpha 333
beta 333
gamma 333
heading 333
tracking 333

L

latitude 227

Layer class 34

Layer methods
about 77
addLayer(layer) 77
getlLayers() 77
removelayer(layer) 77

layers
about 47, 96
base layer 97
overlay layers 97
raster layers 47
vector layers 47

layers, methods
get('key') 100
getProperties() 100
set('key', 'value') 100
setProperties(object) 100

[476]

layers, properties
brightness 99
contrast 99
hue 99
maxResolution 99
minResolution 99
modifying 100-103
opacity 99
saturation 99
source 99
visible 99
layers, types
raster 97
vector 97
Linux
Git, installing on 421
IP address, finding on 320
Java, installing on 420
Node.js, installing on 418
Openlayers development environment,
installing for 418
Local Area Network (LAN) 318
Local OpenlLayers development reloaded 421
Local Storage 451
longitude 227, 228

M

Mac installer website
URL 421
Mac 0SX
Java, installing on 420
Node.js, installing on 419
MANIFEST file
mobile example 349, 350
rules 348
map
content, creating on 274
content, displaying 47, 48
content, updating on 274
controls, adding to 292
creating 34-37
creating, JavaScript console used 38-46
creating, OpenlLayers used 19-26
data, adding to 359-361
dynamic tags, adding to 377-379
features, drawing on 274

features, modifying on 278
information, overlaying 48-51
interacting, with controls 51, 52
interacting, with interactions 51
pop up, adding on 266

view, controlling 47

MapCache

URL 105

Map class

about 32, 65

map, creating 66-69

map, hiding 76

methods 76

properties 74

relationships between, other classes 33
target property, using 74-76

Map class, options

controls 68
deviceOptions 68
interactions 69
keyboardEventTarget 69
layers 69

logo 69

overlays 69
pixelRatio 69
renderer 69
target 70

view 70

map copyrights

working with 449, 450

map events

about 86
moveend 86
postrender 86

map events, listeners properties

frameState 86
target 86
type 86

MapGuide

about 131
reference link 132

map mashups 107
Mapnik

about 105
URL 105

mapping APIs

drawbacks 13

[477]

OpenlLayers, connecting to 13
map projections 218
MapProxy

URL 105
MapQuest 107
MapQuest layer

about 112

MapQuest source class, properties 112

reference link 112, 113

using 112
map renderers

about 70

Canvas renderer 70

DOM renderer 71

WebGL renderer 71
map rendering methods

about 78

beforeRender(fn) 78

render 78

renderSync 78
Mapserver

about 105

URL 105
MapShaper

URL 251
map vector layers

features information, obtaining from 258

Mercator projection 223
methods

used, for obtaining information from map 257

methods, Map class
animation functions 79, 80
Control methods 77
conversion methods 83
Interaction methods 77
Layer methods 77
Map rendering methods 78
other methods 84
Overlay methods 78

methods, projection class
getCode() 230
getExtent() 230
getMetersPerUnit() 230
getUnits() 230
isGlobal() 230

metric property
URL, for wiki 307

Microsoft Mapping API register
reference link 116
Microsoft Windows
Git, installing on 420
Java, installing on 420
Node.js, installing on 418
Microsoft Windows (as administrator)
Openlayers development environment,
installing for 417
mIRC
URL 28
mobile-capable OpenLayers application
setup, testing with 321-324
mobile web
going offline challenge 346
mobile web applications
debugging 333
modular programming 356
MoTools
URL 433
Mozilla
URL, for JavaScript documentation 11
msysGit project
URL 420
multiple styles
about 199
using 200, 201
MVC (Model-View-Controller) 34

N

namespace 397
native, with web applications
about 351
movement, tracking 352, 353
nautical property
URL, for wiki 307
Network panel
about 444
parameters 445
request list 445
new operator
using 68
Node.js
about 274
installing 418
installing, on Linux 418

[478]

installing, on Mac OSX 419
installing, on Microsoft Windows 418
Node.js application 341
Nomenclature of Units for Territorial
Statistics (NUTS) 248
NSIDC EASE-Grid Global 219

(0

object 394
Object class
about 52, 53
KVO 57, 58
Object class, methods
bindTo(key,target, targetKey) 57
get(key) 57
getKeys() 57
getProperties() 57
set(key,value) 57
setValues(values) 58
unbindAll() 58
unbind(key) 58
object literals
about 455
creating 454
map interaction 456, 457
object-oriented programming
about 26, 96, 394
abstract class 396
class 394
constructor 395
getters 397-400
inheritance 395
namespace 397
object 394
reference link 400
setters 397-400
Observable class
about 52, 53
event management 53, 54
Observable class, event related methods
getRevision() 53
once (type, listener, scope) 54
on(type, listener, scope) 54
unByKey(key) 54
un(type, listener, scope) 54

0GC
about 121, 261
URL 121
ol.* classes, APl documentation
reference link 397
ol.control.Attribution
about 292, 297

default attribution styles, modifying 298, 299

options 297
ol.control.Control

about 297

extending 312, 313

options 297
ol.control.defaults

properties 296
ol.control.FullScreen control

about 302

options 303
ol.control.MousePosition control

about 303

mouse position behavior, finding 304-306

options 303
ol.control.Rotate control
about 292, 301
options 302
ol.control.ScaleLine control
about 306
options 307
specific parameters, discovering 307

ol.control.ScaleLineUnits type definitions,

Openlayers 3 API
degrees 307
imperial 307
metric 307
nautical 307
us 307
ol.control.Zoom control
about 292, 300
options 300, 301
ol.control.ZoomSlider control
about 308
configuring 309, 310
manipulating 309, 310
options 308
URL, for example 308
ol.control.ZoomToExtent control
about 309

[479]

options 311
ol.coordinate.createStringXY(2) option 305
ol.coordinate.toStringHDMS option

URL, for API documentation 306
ol.interaction.defaults function

inspecting 281
ol.interaction.DoubleClickZoom 283
ol.interaction.DragAndDrop 285
ol.interaction.DragBox

rectangle export to GeoJSON,

making with 286, 287
ol.interaction.DragPan 283, 318
ol.interaction.DragRotate 283
ol.interaction.DragRotateAndZoom 284
ol.interaction.DragZoom 283
ol.interaction.Draw

used, for sharing information on Web 274-277
ol.interaction.KeyboardPan 283
ol.interaction.KeyboardZoom 284
ol.interaction.Modify

used, for updating drawing 278, 279
ol.interaction.MouseWheelZoom 284
ol.interaction.PinchRotate 283, 318
ol.interaction.PinchZoom 283, 318
ol.interaction.Select

examples 255-257

use cases, testing for 251-254
ol.layer.Base

reference link 100
ol.Map class

reference link 395
ol.Map features methods

ol.Overlay, combining with 270
ol.Overlay

combining, with ol.Map features method 270

using, with layers information 270-273
ol.Overlay reference

about 266

getElement() 266

getMap() 266

getoffset() 266

getPosition() 266

getPositioning() 266

setElement(element) 266

setMap(map) 267

setOffset(offset) 266

setPositioning(positioning) 267

setPosition(position) 266
ol.Overlay, with static example 267, 269
ol.proj.transform() function 232
ol.source.Cluster class 144
ol.source.FormatVector class 144
ol.source.GeoJSON class 144
ol.source.GPX 157
ol.source.GPX class 144
ol.source.IGC

about 157

altitudeMode option 157
ol.source.ImageWMS constructor, properties

attributions 126

crossOrigin 126

extent 126

params 127

projection 127

ratio 127

resolutions 127

url 127
ol.source.KML

defaultStyle option 157

extractStyles option 158
ol.source.OSMXML class 144
ol.source.ServerVector class 144
ol.source.StaticVector class 144
ol.source.TileVector class 144
ol.source.TopoJSON class 144
ol.source.vector class 144
one-to-many relationships 61
Open Geospatial Consortium. See OGC
Openlayers

about 7

advantages 9

APl docs 26

client side 10

connecting, to Bing Maps 13

connecting, to Google 13

connecting, to other mapping APIs 13

controls, using in 292

issues 27

layers 14

library 10

mailing list 27

map, creating 18

online resources 27

projection class 229

[480]

third-party APIs 107

touch support 318

URL, for APl documentation 247

URL, for examples 442

URL, for official examples 411
Openlayers 2

limitations 8

URL 17
Openlayers 3

downloading 17, 18

features, selecting with 246

installing 18

online resources 29

URL, for downloading 17

website 14-16
Openlayers 3 default build tool, advantages

about 423

custom build, making 424

unused code feature, removing 423, 424
Openlayers 3 Developers

URL, for mailing list 28
Openlayers 3 library 401
Openlayers 3 select component

diving into 251
Openlayers case

knowledge, applying to 417
Openlayers development environment

installing 417

installing, for Linux 418

installing, for Microsoft Windows

(as administrator) 417

Openlayers library

reference link, for creating objects 395
OpenlLayers samples

code optimization, applying to 430
Openlayers toolkit

official examples, running with 421-423
Open Source Geospatial Foundation (0SGeo) 9
OpenStreetMap map images

DOM manipulation, using with 442, 443
Open Street Map XML 144
optimization approaches, custom builds

combined 380

separate 380
optimizations mode

ADVANCED mode 416

SIMPLE mode 416

WHITESPACE mode 416
options object, fitGeometry(geometry, size,
options) method
constrainResolution 91
minResolution 91
nearest 91
padding 91
options, ol.control.Attribution control
className 298
collapsed 298
collapseLabel 298
collapsible 298
label 298
target 298
tipLabel 298
options, ol.control.Control class
element 297
target 297
options, ol.control.FullScreen control
className 303
keys 303
target 303
tipLabel 303
options, ol.control.MousePosition control
className 303
coordinateFormat 304
projection 304
target 304
undefinedHTML 304
options, ol.control.Rotate control
autoHide 302
className 302
duration 302
label 302
target 302
tipLabel 302
options, ol.control.ScaleLine control
className 306
minWidth 306
target 307
units 307
options, ol.control.Zoom control
className 300
delta 301
duration 300
target 301
zoomlInLabel 300

[481]

zoomInTipLabel 300
zoomOutLabel 300
zoomOutTipLabel 300
options, ol.control.ZoomSlider control
className 308
maxResolution 308
minResolution 308
options, ol.control.ZoomToExtent
className 311
extent 311
target 311
tipLabel 311
orthomorphic 220
0SGeo Incubation 9
OSM layer
about 109
using 112
OSM (OpenStreetMap)
about 23, 36, 107, 109
URL 12,109, 113
URL, for examples 443
OSM source class, properties
attributions 111
crossOrigin 111
maxZoom 111
url 112
OSM tiles
about 110, 111
accessing 109
URL, for accessing 110
OSM XML (OpenStreetMap XML) 154
0SX
IP address, finding on 319
OverlapMaps
URL 223
Overlay class 34
overlay layers 97
Overlay methods
about 78
addOverlay(overlay) 78
getOverlays() 78
removeOverlay(overlay) 78

P

panels
about 440

Audits panel 452
concluding 452
Console panel 450-452
Elements panel 440
Network panel 444
Profile panel 452
Resources panel 451
Sources panel 446
Timeline panel 452
performance optimization
custom build, making for 414
PIL (Python Image Library)
URL, for installing 123
plan, web-map application
about 377
URL, modifying 377
Plate Carree 220
pop up
adding, on map 266
customizing 273
Projajs
about 231
custom projections 233
URL 229-232
Projajs.org
setting up 233
projection class
about 229
reference link 230
projection codes
using 224-226
projection object
creating 229
projections
about 218
applications 218
characteristics 218-221
effects, on scale 222, 223
raster layers, using with 235
specifying 226
projections, types
about 223
cone 223
cylinder 223
plane 223
ProjFinder
URL 232

[482]

properties, ol.control.defaults
attribution 296
attributionOptions 296
rotate 296
rotateOptions 296
zoom 296
zoomOptions 296

properties, ol.interaction.defaults function
about 281
altShiftDragRotate 281
doubleClickZoom 281
dragPan 281
keyboard 281
mouseWheelZoom 281
pinchRotate 281
pinchZoom 281
shiftDragZoom 281
zoomDelta 282
zoomDuration 282

public IP address 325

Python
URL 417

Python 2.7
URL, for installing 123

Q

QGIS
URL 251

R

raster image
about 138
versus vector image 138
rasterization 138
raster layers
about 47,97, 136
tiled 98
untiled 98
using, with projections 235
versus vector layers 97
raster projection
applying 238
RawGit
URL 406
raw images
inserting, ImageStatic class used 132, 133

real OpenlLayers case
analyzing 411-413

real time data
using 375

rectangle export, to GeoJSON

making, with ol.interaction.DragBox 286, 287
remote debugging, using Firefox on Android

reference link 340
render events
about 86
postrender 86
precompose 86
render events, listeners properties
context 86
frameState 86
glContext 86
target 86
type 86
vectorContext 86
reprojection 230
requests 444
requests types, WMS standard
about 261
DescriptionExceptions 261
GetCapabilities 261
GetFeaturelnfo 261
GetLegendGraphic 261
GetMap 261
resolution option, View class 89
Resources panel 451
response 444
RGBA (Red, Green, Blue, and Alpha) 184
RSS
using 28
rules, MANIFEST file 348

S

saturation property, layers
reference link 99
scale 219
scale line
reference link, for example 222
SCM (Source Code Management) 407
Secrets of the Browser Developer Tools
URL 459

[483]

separate build MapGuide 131

creating 388-392 using 127
separate compilation using, with other layers 128-131
advantages 381 SRS (Spatial Reference System) 230
disadvantages 381 Stamen layer
ServerVector source about 113
loader function, creating 158-163 creating 114
versus TileVector source 164 Stamen source class, properties 115
ServerVector source, options StatCounter GlobalStats
attributions 163 URL 460
format 163 StaticVector source
loader 163 about 154-158
logo 164 JSON formats 157
projection 164 ol.source.GPX 157
strategy 164 ol.source.lGC 157
Session Storage 451 ol.source.KML 157
setters 61, 397-400 ol.source.OSMXML 158
simple application StaticVector source, options
about 359 attributions 155
data, adding to map 359-361 doc 155
SimpleGeometry class format 155
about 172 logo 155
getFirstCoordinate() method 172 node 155
getlLastCoordinate() method 172 object 156
getLayout() method 172 projection 156
SimpleGeometry class, subclasses text 156
Circle class 173 url 156
LinearRing class 173 urls 156
LineString class 173 strategy options, ServerVector source
MultiLineString class 173 ol.loadingstrategy.all function 164
MultiPoint class 173 ol.loadingstrategy.bbox function 164
MultiPolygon class 173 ol.loadingstrategy.createTile function 164
Point class 173 stroke style, ol.style.Stroke
Polygon class 173 about 191
social networks color 191
using 28 lineCap 191
source code repository, OpenLayers lineDash 191
URL 28 lineJoin 191
sources miterLimit 191
about 105 width 191
APl 106 style class, ol.style.Style
defining 105, 106 fill 189
map mashups 107 image 189
tiles providers 106 stroke 189
Sources panel 446 text 189
Spherical Mercator zIndex 189
about 95

[484]

style features
properties, using of 203-207
style function
about 185
creating 361, 362
styles 431
super classes, OpenlLayers
Collection class 52,53
events, working with 54-56
Object class 52, 53
Observable class 52,53
Swiss federal geoportal
URL 8
syntax 431

T

text formats
about 154

ICG (International Gliding Commission) 154

WKT (Well Known Text) 154
text styles

about 198

fill 199

font 198

offsetX 198

offsetY 199

rotation 199

scale 199

stroke 199

text 199

textAlign 199

textBaseline 199

third-party APIs, OpenLayers 107

thumbnail style
creating 362-366
TileDebugTile source class
properties 120
reference link 120
tiled images layers
about 108, 109
Bing Maps layer 116
DebugTileSource source 120
functions 109
MapQuest layer 112
OSM layer 109
sources 108, 109

Stamen layer 113
tiled WMS 121
TileJSON layer 118
WMTS layer 119, 120
Zoomify layer 122
tiled images layers, properties
attributions 108
crossOrigin 108
extent 108
logo 108
opaque 108
projection 108
tileClass 108
tileGrid 108
tileLoadFunction 108
tilePixelRatio 109
tileUrlFunction 109
tiled raster layers
about 98
cons 104
pros 104
versus untiled raster layers 103
tiled WMS
about 121
reference link 121
tiled WMS source class, properties
attributions 122
crossOrigin 122
extent 122
maxZoom 122
params 122
projection 122
tileGrid 122
url 122
urls 122
TileJSON 118
TileJSON layer
about 118
TileJSON source class, properties 119
tiles providers 106
TileVector source
about 164, 165
drag and drop viewer, using 168, 169
versus ServerVector source 164
working with 165-167
TileVector source, options
attributions 168

[485]

format 168
logo 168
projection 168
tileGrid 168
tileUrlFunction 168
url 168
urls 168
tiling 103
Tissot indicatrix 219
TopoJSON format
about 151-153
URL 153
topp:states layer
reference link 129
touch-specific interactions
ol.interaction.DragPan 318
ol.interaction.PinchRotate 318
ol.interaction.PinchZoom 318
touch support, OpenLayers 318

U

untiled raster layers

about 98

cons 104

pros 104

versus tiled raster layers 103
untiled WMS images

reference link 126
updateSize() method 84
USGS (US Geological Survey) 224
us property

URL, for wiki 307

Vv

vector image
versus raster image 138
vector layer class
about 142
creating 142
vector layer class, methods
getSource() 143
getStyle() 143
getStyleFunction() 143
setStyle(style) 143
vector layer class, options
source 142

style 142
vector layers
about 48,97, 136
client side 137
creating 139, 140
features 136, 137
geometries, reprojecting in 238-241
performance considerations 137
raster image, versus vector image 138
rendering 141
versus raster layers 97
working 141
vector source class
about 145
Cluster class 147
FormatVector class 147
vector source class, events
addfeature 147
removefeature 147
vector source class, methods
addFeature(feature) 145
addFeatures(features) 146
clear 146
forEachFeature(callback, scope) 146
forEachFeaturelnExtent(extent,
callback, scope) 146
getClosestFeatureToCoordinate(coordinate) 146
getExtent() 146
getFeatureByld() 147
getFeatures() 147
getFeaturesAtCoordinate(coordinate) 147
removeFeature(feature) 147
vector source class, options
attributions 145
features 145
logo 145
projection 145
vector sources
about 143, 144
cluster source 147
format sources 150
vector source class 145-147
vector style 184
vector tiles
reference link 165
View class
about 34, 87

[486]

KVO properties 90
maps, linking together 92, 93
View class, KVO properties
center 90
resolution 90
rotation 90
View class, methods
calculateExtent(size) 90
centerOn(coordinate) 90
constrainCenter(center) 90
constrainResolution(resolution,
delta, direction) 90
constrainRotation(rotation, delta) 90
fitExtent(extent, size) 90
fitGeometry(geometry, size, options) 91
getCenter() 91
getProjection() 92
getResolutionForExtent(extent, size) 92
getZoom() 92
rotate(rotation, opt_anchor) 92
setZoom(zoom) 92
View class, options
center 87
constrainRotation 87
enableRotation 87
extent 88
maxResolution 88
maxZoom 88
minResolution 88
minZoom 88
projection 88
resolution 88, 89
resolutions 88
rotation 88
zoom 88
zoomFactor 88
views
about 87
View class 87

W

Web
ol.interaction.Draw, used for sharing
information on 274-277
web applications
debugging, on Android 336-340

debugging, on iOS 333-336
Web Coverage Service (WCS) 261
Web Feature Service (WFS) 250, 261
WebGL

about 71

URL 71
WebGL renderer 71
WEDb INspector REmote. See WEINRE
web map client 12
web mapping application

about 11

building 367

photo information, displaying 371-374

selection events, handling 370

web map client 12

web map server 12
web mapping formats

local or national authorities data,

converting to 248-250

web map server 12
Web Map Service (WMS) 11, 121, 261
Web Map Tile Service. See WMTS
web performance

URL, for optimization best practices 379
WebPlatform

references 441
web server

using 318
Web SQL 451
WEINRE

about 340

starting with 341-346

URL, for documentation 341
WFS (Web Feature Service) 144, 158
Windows

IP address, finding on 318
WKID (Well Known Identifier) 229
WKT (Well Known Text) 154, 247
WMS sources

custom projection, using with 235, 237
WMS standard 261, 262
WMTS 110
WMTS layer

about 119, 120

reference link 120

WMTS source class, properties 120

[487]

X

XML formats
about 153

GML (Geography Markup Language) 153

GPX (GPS Exchange Format) 153

KML (Keyhole Markup Language) 154

OSM XML (OpenStreetMap XML) 154
XSS (Cross-site scripting) 372

Z

zindex property
adding, to style 202
zoom button
working with 449, 450
Zoomify image
reference link, for downloading 123
Zoomify layer
about 122
creating 123, 124
ZoomLlevel 89

[488]

open source

community experience distilled

PUBLISHING

Packt, pronounced 'packed’, published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're

using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub. com.

Ahout Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to authorepacktpub. com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, then please contact
us; one of our commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

www.packtpub.com

open source

community experience distilled

PUBLISHING

LT A B TS

S T ey
R K
PO

Openlayers Cookhook
ISBN: 978-1-84951-784-3 Paperback: 300 pages

60 recipes to create GIS web applications with the
open source JavaScript library

1. Understand the main concepts about maps, layers,
controls, protocols, events etc.

2. Learn about the important tile providers and
WNMS servers.

3. Packed with code examples and screenshots for
practical, easy learning.

Building Mapping Applications
with QGIS

Building Mapping Applications with QGIS
ISBN: 978-1-78398-466-4 Paperback: 264 pages

Create your own sophisticated applications to
analyze and display geospatial information using
QGIS and Python

1. Make use of the geospatial capabilities of QGIS
within your Python programs.

2. Build complete standalone mapping applications
based on QGIS and Python.

3. Use QGIS as a Python geospatial development
environment.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

GeoServer Cookhook
ISBN: 978-1-78328-961-5 Paperback: 280 pages

Boost your map server's performance using the
power and flexibility of GeoServer

1. Optimize your vector and raster data with
GeoServer's advanced configuration.

2. Explore the latest GeoServer modules that make
managing styles and monitoring and configuring
your server a lot easier.

3. A pragmatic guide to find your way through the
world of GeoServer.

PostGIS Cookbook

PostGIS Cookhook
ISBN: 978-1-84951-866-6 Paperback: 484 pages

Over 80 task-based recipes to store, organize,
manipulate, and analyze spatial datain a
PostGlIS database

1. Integrate PostGIS with web frameworks and
implement OGC standards such as WMS and
WES using MapServer and GeoServer.

2. Convert 2D and 3D vector data, raster data, and
routing data into usable forms.

3. Visualize data from the PostGIS database using a
desktop GIS program such as QGIS and OpenJUMP.

4. Easy-to-use recipes with advanced analyses of
spatial data and practical applications.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with OpenLayers
	Introducing OpenLayers
	Advantages of using OpenLayers
	What, technically, is OpenLayers?
	Client-side
	Library

	Anatomy of a web-mapping application
	Web map client
	Web map server

	Connecting to Google, Bing Maps, and other
mapping APIs
	Layers in OpenLayers
	Understanding a layer

	The OpenLayers website

	Time for action – downloading OpenLayers
	Time for action – creating your first map
	Where to go for help
	API docs
	This book's website
	Mailing lists
	Other online resources

	OpenLayers issues
	IRC

	OpenLayers source code repository
	Getting live news from RSS and social networks
	Summary

	Chapter 2: Key Concepts in OpenLayers3
	OpenLayers' key components
	It's all about the map

	Time for action: creating a map
	Time for action – using the JavaScript console
	Controlling the map's view
	Displaying map content

	Time for action – overlaying Information
	Interacting with the map
	Using interactions
	Controls

	OpenLayers' super classes
	Event management with the Observable class
	Working with events

	Key-Value Observing with the Object class
	Time for action – using bindTo
	Transforming values with bindTo
	More about KVO properties

	Working with collections
	Creating a collection
	Collection properties
	Collection events
	Collection methods

	Summary

	Chapter 3: Charting the Map Class
	Understanding the Map class
	Time for action – creating a map
	Map renderers
	The Canvas renderer
	The WebGL renderer
	The DOM renderer

	Time for action – rendering a masterpiece
	Map properties
	Time for for action – target practice
	Map methods
	Control methods
	Interaction methods
	Layer methods
	Overlay methods
	Map rendering methods
	Animation functions

	Time for action – creating animated maps
	Conversion methods
	Other methods

	Events
	Browser events
	Map events
	Render events

	Views
	The View Class
	View options
	Understanding resolution

	View KVO properties
	View methods

	Time for action – linking two views
	Summary

	Chapter 4: Interacting with Raster Data Source
	Introducing layers
	Layers in OpenLayers 3
	The base layer
	Overlay layers
	Types of layers

	Common operations on layers
	Time for action – changing layer properties
	Tiled versus untiled layers
	Types of raster sources
	Defining a source
	A quick look at the history of API and tiles providers
	Map mashups
	OpenLayers and third-party APIs

	Tiled images' layers and their sources
	The OpenStreetMap layer
	Accessing your own OSM tiles
	Understanding OSM tiling
	OpenStreetMap source class properties

	The MapQuest layer
	MapQuest source class properties

	Stamen layers

	Time for action – creating a Stamen layer
	The Bing Maps layer

	Time for action – creating a Bing Maps layer
	The TileJSON layer
	TileJSON source class properties

	WMTS layers
	WMTS source class properties

	The DebugTileSource source
	TileDebugTile source class properties

	OpenLayers tiled WMS
	Tiled WMS source class properties

	OpenLayers Zoomify

	Time for action – creating tiles and adding Zoomify layer
	Image layers and their sources
	OpenLayers' image WMS layer

	Using Spherical Mercator raster data with other layers
	Time For action – playing with various sources and layers together
	OpenLayers image for MapGuide
	Inserting raw images using ImageStatic class

	Time For action – applying Zoomify sample knowledge to a single raw image
	Summary

	Chapter 5: Using Vector Layers
	Understanding the vector layer
	Features of the vector layer
	The vector layer is client side
	Performance considerations

	The difference between raster and vector

	Time for action – creating a vector layer
	How the vector layer works
	How the vector layer is rendered

	The vector layer class
	Creating a vector layer
	Vector layer methods

	Vector sources
	The vector source class
	The cluster source

	Time for action: using the cluster source
	The format sources
	What are formats?
	The StaticVector source
	The ServerVector source

	Time for action – creating a loader function
	Time for action: working with the TileVector source
	Time for action – a drag-and-drop viewer for vector files
	Features and geometries
	The Geometry class
	Coordinates

	Geometry methods
	Geometry subclasses
	The SimpleGeometry class and subclasses

	Time for action – geometries in action
	The Feature class
	Creating a feature
	The Feature class properties
	Feature methods

	Time for action – interacting with features
	Summary

	Chapter 6: Styling Vector Layers
	What are vector styles?
	What is a style function?

	Time for action – basic styling
	The style class
	Fill styles
	Stroke styles
	Image styles

	Time for action – using the icon style
	Have a go hero – using the circle style
	Text styles

	Multiple styles
	Time for action – using multiple styles
	Style functions
	Time for action – using properties to style features
	Interactive styles
	The feature overlays

	Time for action – creating interactive styles
	Summary

	Chapter 7: Wrapping Our Heads
Around Projections
	Map projections
	Why on earth are projections used?
	Projection characteristics
	Area
	Scale
	Shape
	Other characteristics

	Types of projections
	EPSG codes

	Time for action – using different projection codes
	Latitude/longitude
	Latitude
	Longitude

	Time for action – determining coordinates
	OpenLayers projection class
	Creating a projection object
	Functions

	Transforming coordinates
	Time for action – coordinate transforms
	The Proj4js library

	Time for action – setting up Proj4js.org
	Proj4js custom projections
	Adding custom projections
	OpenLayers 3 custom projections use cases

	Time for action – reprojecting extent
	Using raster layers with projections

	Time for action – using custom projection with WMS sources
	Time for action – reprojecting geometries in vector layers
	Summary

	Chapter 8: Interacting with Your Map
	Selecting features with OpenLayers 3
	Using, creating, and converting your own data

	Time for action – converting your local or national authorities data into web mapping formats
	Time for action – testing the use cases for ol.interaction.Select
	Time for action – more options with ol.interaction.Select
	Introducing methods to get information from your map
	Getting features information from your map vector layers

	Time for action – understanding forEachFeatureAtPixel method
	The getGetFeatureInfoUrl method – the alternative way of getting information from a map
	Basics of the WMS standard
	Using the getGetFeatureInfoUrl method to get information from your map

	Time for action – understanding getGetFeatureInfoUrl method
	Adding a pop-up on your map
	The ol.Overlay reference

	Time for action – introducing ol.Overlay with a static example
	Combining ol.Overlay with ol.Map features methods

	Time for action – using ol.Overlay dynamically with layers information
	Creating or updating content on your map
	Drawing features on map

	Time for action – using ol.interaction.Draw to share new information on the Web
	Time for action – using ol.interaction.Modify to update drawing
	Understanding interactions and their architecture
	The short story of interactions
	Inspecting the ol.interaction.defaults function

	Time for action – configuring default interactions
	A functional view for the nine default interactions

	Discovering the other interactions
	Time for action – using ol.interaction.DragRotateAndZoom
	Time for action – making rectangle export to GeoJSON with ol.interaction.DragBox
	Summary

	Chapter 9: Taking Control of Controls
	Introducing controls
	Using controls in OpenLayers

	Adding controls to your map
	Time for action – starting with the default controls
	Controls overview
	The ol.control.Control class
	Control options

	The ol.control.Attribution control
	Attribution options

	Time for action – changing the default attribution styles
	The ol.control.Zoom control
	Zoom options

	The ol.control.Rotate control
	Rotate options

	The ol.control.FullScreen control
	FullScreen options

	The ol.control.MousePosition control
	MousePosition options

	Time for action – finding your mouse position
	The ol.control.ScaleLine control
	ScaleLine options

	The ol.control.ZoomSlider control
	ZoomSlider options

	The ol.control.ZoomToExtent control

	Time for action – configuring ZoomToExtent and manipulate controls
	Creating a custom control
	Time for action – extending ol.control.Control to make your
own control
	Summary

	Chapter 10: OpenLayers Goes Mobile
	Touch support in OpenLayers
	Using a web server
	Finding your IP address on Windows
	Finding your IP address on OSX
	Finding your IP address on Linux

	Testing your IP address

	Time for action – go mobile!
	The Geolocation class
	Limitations of the Geolocation class
	Using the Geolocation class

	Time for action – location, location, location
	The Geolocation class in detail
	Geolocation constructor options
	Geolocation KVO properties

	The DeviceOrientation class
	Time for action – a sense of direction
	DeviceOrientation constructor options
	DeviceOrientation KVO property methods

	Debugging mobile web applications
	Debugging on iOS
	Debugging on Android
	Debug anywhere – WEb INspector REmote (WEINRE)
	Getting started with WEINRE

	Going offline
	The HTML 5 ApplicationCache interface
	Creating an ApplicationCache MANIFEST file
	Referencing a MANIFEST file in a web page

	Time for Action: MANIFEST destiny
	Going native with web applications
	Time for action: track me
	Summary

	Chapter 11: Creating Web Map Apps
	Development strategies
	Using geospatial data from Flickr
	Note on APIs
	Accessing the Flickr public data feeds

	How we'll do it

	Time for action – getting Flickr data
	A simple application
	Time for Action – adding data to your map
	Styling the features
	Time for action – creating a style function
	Creating a thumbnail style
	Switch to JSON

	Time for action – switching to JSON data
	Time for action – creating a thumbnail style
	Turning our example into an application
	Adding interactivity

	Time for action – adding the select interaction
	Time for action: handling selection events
	Displaying photo information

	Time for action: displaying photo information
	Using realtime data
	Time for action – getting dynamic data
	Wrapping up the application
	The plan
	Changing the URL

	Time for action – adding dynamic tags to your map
	Deploying an application
	Creating custom builds
	Benefits of serving small files
	Two approaches to optimization
	What does the compiler do?
	Rewriting code
	Removing unused code
	Renaming objects, functions and properties

	Creating a combined build
	Time for action – creating a combined build
	Creating a separate build
	Time for action – creating a separate build
	Summary

	Appendix A: Object-oriented
Programming – Introduction
and Concepts
	What is object-oriented programming?
	What is an object?
	What is a class?
	What is a constructor?
	What is inheritance?
	What is an abstract class?
	What is a namespace?
	What are getters and setters?

	Going further

	Appendix B: More Details on Closure Tools and Code Optimization Techniques
	The Closure Tools philosophy
	Ensuring optimum performance

	Introducing Closure Library, yet another JavaScript library
	The basics

	Time for action – first steps with Closure Library
	Custom components
	Inheritance, dependencies, and annotations

	Making custom build for optimizing performance
	Time for action – playing with Closure Compiler
	Applying your knowledge to the OpenLayers case
	Installing the OpenLayers development environment
	Installing Node.js
	Installing Java
	Installing Git
	Microsoft Windows
	Local OpenLayers development reloaded

	Time for action - running official examples with the internal OpenLayers toolkit
	Time for action - building your custom OpenLayers library
	Syntax and styles
	Time for action – using Closure Linter to fix JavaScript
	Coding styles alternatives and tools

	Summary

	Appendix C: Squashing Bugs with Web Debuggers
	Introducing Chrome Developer Tools
	Getting started with Chrome Developer Tools

	Time for action – opening Chrome Developer Tools
	Explaining Chrome Developer debugging controls
	Panels

	Time for action – using DOM manipulation with OpenStreetMap map images
	Time for action – using breakpoints to explore your code
	Time for action – playing with zoom button and map copyrights
	Panel conclusion

	Using the Console panel
	Time for action – executing code in the Console
	Time for action – creating object literals
	Object literals

	Time for action – interacting with a map
	The API documentation

	Improving Chrome and Developer Tools with extensions
	JSONView
	Dealing with color with ColorZilla

	Debugging in other browsers
	Debugging in Microsoft Internet Explorer
	Debugging in Mozilla Firefox

	Summary

	Appendix D: Pop Quiz Answers
	Chapter 3, Charting the Map Class
	Chapter 5, Using Vector Layers
	Chapter 7, Wrapping Our Heads Around Projections
	Chapter 8, Interacting with your Map
	Chapter 9, Taking Control of Controls
	Chapter 10, OpenLayers Goes Mobile
	Appendix B, More details on Closure Tools and Code Optimization Techniques
	Appendix C, Squashing Bugs with Web Debuggers

	Index

