
M A N N I N G

Jamie Duncan
John Osborne
Foreword by Jim Whitehurst

www.allitebooks.com

http://www.allitebooks.org

OpenShift in Action

 www.allitebooks.com

http://www.allitebooks.org

 www.allitebooks.com

http://www.allitebooks.org

OpenShift in Action

JAMIE DUNCAN
JOHN OSBORNE

M A N N I N G
SHELTER ISLAND

 www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Toni Arritola
20 Baldwin Road Review editor: Ivan Martinović
PO Box 761 Technical development editor: Dani Cortés
Shelter Island, NY 11964 Project manager: Kevin Sullivan

Copyeditor: Tiffany Taylor
Proofreader: Melody Dolab

Technical proofreader: Eric Rich
Typesetter: Gordan Salinovic

Illustrations: Chuck Larson
Cover designer: Marija Tudor

ISBN 9781617294839
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

 www.allitebooks.com

http://www.manning.com
http://www.allitebooks.org

 For Molly and Elizabeth. Thank you for your understanding, your immeasurable
assistance, and making me take time off to play with the chickens.

—J.D.

 To my wife and two daughters, thank you for always giving me spontaneous reasons
to laugh.

—J.O.

 www.allitebooks.com

http://www.allitebooks.org

 www.allitebooks.com

http://www.allitebooks.org

vii

brief contents
PART 1 FUNDAMENTALS..1

1 ■ Getting to know OpenShift 3

2 ■ Getting started 20

3 ■ Containers are Linux 37

PART 2 CLOUD-NATIVE APPLICATIONS ...59

4 ■ Working with services 61

5 ■ Autoscaling with metrics 80

6 ■ Continuous integration and continuous deployment 91

PART 3 STATEFUL APPLICATIONS ..125

7 ■ Creating and managing persistent storage 127

8 ■ Stateful applications 147

PART 4 OPERATIONS AND SECURITY..169

9 ■ Authentication and resource access 171

10 ■ Networking 194

11 ■ Security 217

 www.allitebooks.com

http://www.allitebooks.org

 www.allitebooks.com

http://www.allitebooks.org

ix

contents
foreword xv
preface xvii
acknowledgments xix
about this book xx
about the authors xxiii
about the cover illustration xxiv

PART 1 FUNDAMENTALS ..1

1 Getting to know OpenShift 3
1.1 What is a container platform? 4

Containers in OpenShift 4 ■ Orchestrating containers 5

1.2 Examining the architecture 7
Integrating container images 7 ■ Accessing applications 7
Handling network traffic in your cluster 9

1.3 Examining an application 9
Building applications 9 ■ Deploying and serving applications 9

1.4 Use cases for container platforms 12
Technology use cases 12 ■ Use cases for businesses 13
When containers aren’t the answer 15

1.5 Solving container storage needs 15

 www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

1.6 Scaling applications 16

1.7 Integrating stateful and stateless applications 16

1.8 Summary 19

2 Getting started 20
2.1 Cluster options 21

2.2 Logging in 22
Using the oc command-line application 22

2.3 Creating projects 23

2.4 Application components 24
Custom container images 24 ■ Build configs 26 ■ Deployment
configs 26 ■ Image streams 27

2.5 Deploying an application 28
Providing consistent application access with services 28
Exposing services to the outside world with routes 30

2.6 Deploying applications using the web interface 32
Logging in to the OpenShift web interface 32

2.7 Deploying applications with the web interface 33

2.8 Summary 36

3 Containers are Linux 37
3.1 Defining containers 37

3.2 How OpenShift components work together 38
OpenShift manages deployments 38 ■ Kubernetes schedules
applications across nodes 40 ■ Docker creates containers 41
Linux isolates and limits resources 42 ■ Putting it all together 44

3.3 Application isolation with kernel namespaces 45
The mount namespace 47 ■ The UTS namespace 52 ■ PIDS in
containers 53 ■ Shared memory resources 55 ■ Container
networking 55

3.4 Summary 57

PART 2 CLOUD-NATIVE APPLICATIONS..................................59

4 Working with services 61
4.1 Testing application resiliency 61

Understanding replication controllers 62 ■ Labels and selectors 65

CONTENTS xi

4.2 Scaling applications 68
Modifying the deployment config 70

4.3 Maintaining healthy applications 71
Creating liveness probes 72 ■ Creating readiness probes 76

4.4 Summary 79

5 Autoscaling with metrics 80
5.1 Determining expected workloads is difficult 81

5.2 Installing OpenShift metrics 81
Understanding the metrics stack 83

5.3 Using pod metrics to trigger pod autoscaling 84
Creating an HPA object 84 ■ Testing your autoscaling
implementation 88 ■ Avoiding thrashing 89

5.4 Summary 90

6 Continuous integration and continuous deployment 91
6.1 Container images as the centerpiece of a CI/CD pipeline 92

6.2 Promoting images 93

6.3 CI/CD part 1: creating a development environment 93
Invoking object triggers 98 ■ Enabling automated and consistent
deployments with image streams 100

6.4 CI/CD part 2: promoting dev images into a test
environment 101

Service discovery 103 ■ Automating image promotion with image
stream triggers 107

6.5 CI/CD part 3: masking sensitive data in a production
environment 109

Protecting sensitive data with secrets 112 ■ Using config maps for
environment-specific settings 113

6.6 Using Jenkins as the backbone of a CI/CD pipeline 116
Triggering Jenkins from Gogs 119 ■ Native integration with a
Jenkinsfile 120

6.7 Deployment strategies 121

6.8 Summary 124

CONTENTSxii

PART 3 STATEFUL APPLICATIONS125

7 Creating and managing persistent storage 127
7.1 Container storage is ephemeral 129

7.2 Handling permanent data requirements 130

7.3 Creating a persistent volume 131
Logging in as the admin user 131 ■ Creating new resources from
the command line 132 ■ Creating a physical volume 133

7.4 Using persistent storage 135
Creating a persistent volume claim using the command line 136
Adding a volume to an application on the command line 137
Adding persistent storage to an application using the web
interface 138

7.5 Testing applications after adding persistent storage 142
Data doesn’t get mixed up 142 ■ Forcing a pod restart 143
Investigating persistent volume mounts 144

7.6 Summary 145

8 Stateful applications 147
8.1 Enabling a headless service 148

Application clustering with Wildfly 149 ■ Querying the OpenShift
API server from a pod 151 ■ Verifying Wildfly data
replication 153 ■ Other use cases for direct pod access 153

8.2 Demonstrating sticky sessions 154
Toggling sticky sessions 155

8.3 Shutting down applications gracefully 157
Setting a grace period for application cleanup 157 ■ Using
container lifecycle hooks 159

8.4 Native API object support for stateful applications with stateful
sets 160

Deterministic sequencing of startup and shutdown order with stateful
sets 161 ■ Examining a stateful set 162 ■ Predictable network
identity 164 ■ Consistent persistent storage mappings 165
Stateful set limitations 166 ■ Stateful applications without native
solutions 166

8.5 Summary 167

CONTENTS xiii

PART 4 OPERATIONS AND SECURITY169

9 Authentication and resource access 171
9.1 Proper permissions vs. the Wild West 171

9.2 Working with user roles 173
Assigning new user roles 173 ■ Creating administrators 174
Setting default user roles 175

9.3 Limit ranges 176
Defining resource limit ranges 178

9.4 Resource quotas 180
Creating compute quotas 181 ■ Creating resource quotas 183

9.5 Working with quotas and limits 185
Applying quotas and limits to existing applications 185
Changing quotas for deployed applications 186

9.6 Using cgroups to limit resources 187
Cgroups overview 187 ■ Identifying container cgroups 188
Confirming cgroup resource limits 190

9.7 Summary 193

10 Networking 194
10.1 OpenShift network design 194

10.2 Managing the OpenShift SDN 197
Configuring application node networks 197 ■ Linking containers
to host interfaces 200 ■ Working with OVS 201

10.3 Routing application requests 202
Using HAProxy to route requests 203 ■ Investigating the HAProxy
pod 205 ■ How HAProxy gets requests to the correct pods 206

10.4 Locating services with internal DNS 208
DNS resolution in the pod network 209

10.5 Configuring OpenShift SDN 211
Using the ovs-subnet plugin 212 ■ Isolating traffice with the ovs-
multitenant plugin 212 ■ Creating advanced network designs
with the ovs-networkpolicy plugin 214 ■ Enabling the ovs-
multitenant plugin 214 ■ Testing the multitenant plugin 215

10.6 Summary 216

CONTENTSxiv

11 Security 217
11.1 Understanding SELinux core concepts 218

Working with SELinux labels 219 ■ Applying labels with
SELinux contexts 220 ■ Enforcing SELinux with policies 221
Isolating pods with MCS levels 224

11.2 Investigating pod security contexts in OpenShift 224
Examining MCS levels in OpenShift 225 ■ Managing pods
Linux capabilities 227 ■ Controlling the pod user ID 227

11.3 Scanning container images 228
Obtaining the image-scanning application 228 ■ Deploying the
image-scanning application 229 ■ Viewing events on the
command line 231 ■ Changing SCCs for an application
deployment 232 ■ Viewing security scan results 234

11.4 Annotating images with security information 235

11.5 Summary 236

appendix A Installing and configuring OpenShift 239
appendix B Setting up a persistent storage source 268
appendix C Working directly with Docker 276
appendix D Configuring identity providers 279

 index 283

xv

foreword
Containers are becoming the primary way applications are built and deployed.
They’re one of those rare technologies that comes along and not only cuts operating
costs, but also increases productivity. Containers also provide the flexibility to keep
organizations from getting locked into any one technology. Our vision at Red Hat is to
become a default choice for organizations looking for a partner to help them build
any applications and deploy them in any environment.

 Enter Red Hat OpenShift: Red Hat’s answer to bringing together the best and
most popular projects and developer services to emerge around containers—such as
Kubernetes and Ansible—in a single, scalable, rock-solid container platform com-
bined with all the services developers need.

 In the pages that follow, you’ll find something unique: the first holistic view of
OpenShift in print. OpenShift in Action, written by two of Red Hat’s top contributors, is
the first book that takes a soup-to-nuts approach in combining both the developer and
operator perspectives and covering everything from deployment to the top of the
application stack.

 As you read, you’ll discover how containers reduce costs, increase productivity, and
address the Holy Grail of software: the power to write code once and then reuse it
multiple times. In the past, the heavy cost of architecting and building a reusable
infrastructure has been a difficult barrier to cross. With containers working in cooper-
ation with microservices, we finally have a lightweight technology that has kicked off
an IT revolution.

FOREWORDxvi

 Large-scale applications are moving to hybrid and multicloud environments, and
more organizations are choosing containers to easily build applications, deploy them,
and move them across clouds. By abstracting applications from underlying resources,
OpenShift makes developers and operators more efficient and productive in deliver-
ing feature functionality.

 We have long had a front-row seat in seeing how large enterprises and organizations
with massive tech footprints struggle to implement the latest technology. Red Hat was
early to embrace containers and container orchestration and contribute deeply to
related open source communities. Just as we’ve done with Red Hat Enterprise Linux for
decades, we created OpenShift as a way to bring the power of the community to the
enterprise while making it consumable in a safe, secure, and reliable way.

 Read on to get your own glimpse of how open source is leading the way in this
emerging new paradigm of computing.

 JIM WHITEHURST, PRESIDENT AND CEO, RED HAT

xvii

preface
When we first began developing OpenShift in Action, it was going to be a book focusing
on the ops side of DevOps in OpenShift. Existing books focus on OpenShift’s devel-
oper experience, and we wanted to be their counterpoint. As we continued to work on
the content and look at what we wanted to teach, it became apparent that we didn’t
want to be a counterpoint. We didn’t want to represent one side of anything. Instead,
we decided to create a complete example of OpenShift with a strong experience for
both operators and developers. OpenShift in Action takes a holistic view of OpenShift,
giving equal weight to both perspectives represented in DevOps.

 We think this is important, because the ultimate goal of DevOps is to enable and
enhance communication between developer and operations teams that historically
have been placed in adversarial (at best) relationships. To accomplish this, the two
authors each specialize in one of these roles. For us, writing this book has been an
amazing learning experience in how DevOps can work for just about anything, includ-
ing writing a book.

 We can’t cover every OpenShift topic in a single book. But we hope OpenShift in
Action gives you the fundamental knowledge from both developer and operation per-
spectives to allow you to deploy and successfully use OpenShift in your own environ-
ments. We also hope you can use OpenShift to accomplish meaningful work using
containers. Most important, we hope the content in this book expands your knowl-
edge through hands-on experience with OpenShift and becomes a reference for you
for years to come.

PREFACExviii

 OpenShift has a great web-based user interface, powerful command-line utilities,
and a robust API. Almost any of the examples we go through in OpenShift in Action can
be accomplished using any of those interfaces. We try to give you examples using all of
these methods, but you’ll notice as you read and work through the examples that we
tend to focus on command-line workflows to accomplish tasks. There are two primary
reasons we did this:

■ With the electronic versions of the book, you can copy and paste most of the
examples directly into the command line to run them.

■ In our experience at Red Hat, working with hundreds of customers and helping
them effectively use OpenShift, the command line is the most common inter-
face for power users.

OpenShift in Action was written using the experience we’ve gained helping countless
Red Hat customers over the years. We cover a wide range of topics, and we’ve done
our best to organize them in a way that will be relevant and useful as you begin this
exciting journey. We hope this book is as helpful to you as the process of writing it has
been to us.

xix

acknowledgments
We’d like to thank the OpenShift and Kubernetes communities. These technologies
are changing how IT solutions are delivered. This book wouldn’t have been possible
without immeasurable help from those communities, as well as the other open source
communities whose software makes OpenShift the industry-leading Kubernetes-based
platform. To call out individuals would be nearly impossible. We’d also like to thank
Red Hat for its sponsorship and leadership in open source endeavors globally.

 We want to thank the people at Manning who made this book possible: publisher
Marjan Bace and everyone on the editorial and production teams who worked behind
the scenes.

 We also want to thank Dani Cortés and Eric Rich for giving the book a thorough
technical review and proofread. Several other reviewers also looked over the manu-
script at various stages of development: Alexandros Koufoudakis, Andrea Cosentino,
Andrea Tarocchi, Areg Melik-Adamyan, Bruno Vernay, Carlos Esteban Feria Vila,
Derek Hampton, Ioannis Sermetziadis, Jorge Quilcate, Juan Lopez, Julien Pohie,
Mario-Leander Reimer, Michael Bright, Paolo Antinori, Paul Balogh, Rick Wagner,
Tony Sweets, Vinicius Miana, and Zorodzayi Mukuya. We appreciate all their time
and feedback.

 www.allitebooks.com

http://www.allitebooks.org

xx

about this book
Our goal in this book is to give you working knowledge of how to build, deploy, and
maintain applications running on OpenShift. We use practical examples to build core
knowledge of the platform. Throughout, we explore the inner workings of containers
within the Linux kernel all the way up through running a CI/CD pipeline. While Open-
Shift has a fast release cadence, this book is designed to be relevant for future releases
by focusing on foundational concepts instead of latest-and-greatest features. We hope
it gives you the fundamental tools to succeed and is a reference for you going forward.

Who should read this book
OpenShift in Action is for any IT professional who’s investigating OpenShift specifically,
or containers in general from a developer or operations perspective. Countless blog
posts and documentation sites are available online, but this is the first book that takes
a view of OpenShift from top to bottom. Included in that is how to use container run-
times like docker as well as information about Kubernetes. This book brings all that
information together in a single source.

How this book is organized: a roadmap
This book has 4 parts and 11 chapters. Part 1 explains OpenShift at a high level and
explores deploying a cluster, creating your first applications, and how applications
work in containers:

■ Chapter 1 provides a high-level overview of how OpenShift works and how it fits
modern business needs.

ABOUT THIS BOOK xxi

■ Chapter 2 walks you through deploying an OpenShift cluster. It also covers the
components in OpenShift and creating your first containerized applications.

■ Chapter 3 is a deep dive into how applications in containers are isolated on an
OpenShift node, using examples of the applications you’ve just deployed.

Part 2 focuses on working with cloud-native applications in OpenShift:

■ Chapter 4 examines the OpenShift components that make up a deployed appli-
cation. It also demonstrates how to set liveness and readiness probes for appli-
cations to ensure that they’re functioning correctly.

■ Chapter 5 demonstrates how to set up metrics-based application autoscaling.
■ Chapter 6 uses Jenkins to deploy an entire CI/CD pipeline in OpenShift.

Part 3 is about using OpenShift to deploy stateful applications:

■ Chapter 7 goes through the process of deploying persistent storage and making
it available for applications in OpenShift.

■ Chapter 8 deploys an application using persistent storage and covers managing
application session persistence and other challenges for distributed stateful
applications.

Part 4 focuses on the operational aspects of OpenShift and handling security challenges:

■ Chapter 9 configures user roles to control access, resource limits, and quotas,
and investigates how Linux cgroups enforce these constraints.

■ Chapter 10 is a deep dive into how the software-defined networking layer is set
up and managed.

■ Chapter 11 deals with core aspects of security, including SELinux and working
with security contexts.

Part 1 will be especially helpful to you if containers are a new concept; chapter 3 is the
deepest technical chapter in the section. Parts 3 and 4 cover both operations and devel-
oper topics. Part 4 is primarily focused around operations but will still appeal to devel-
opers who have a need or desire to understand the OpenShift platform more deeply.

About the code
Beginning with chapter 2, each chapter has extensive code samples and source code;
these are available for download at the book’s website, www.manning.com/books/
openshift-in-action, and at https://github.com/OpenShiftInAction. Because Open-
Shift evolves so quickly, we’ll continue to update the samples on GitHub even after the
book is printed. Please join us there or at the book’s forum (https://forums.manning
.com/forums/openshift-in-action) to let us know if you run into issues or have questions
around the examples in the book. If you’re looking for additional resources, you can
find the official OpenShift documentation repository at https://docs.openshift.com.

http://www.manning.com/books/openshift-in-action
http://www.manning.com/books/openshift-in-action
https://github.com/OpenShiftInAction
https://forums.manning.com/forums/openshift-in-action
https://forums.manning.com/forums/openshift-in-action
https://forums.manning.com/forums/openshift-in-action
https://docs.openshift.com

ABOUT THIS BOOKxxii

 This book presents source code both in numbered listings and in line with normal
text. In both cases, it’s formatted in a fixed-width font like this to separate it from
ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. When even this wasn’t enough, listings include line-continuation markers (➥).
Additionally, comments in the source code have often been removed from the listings
when the code is described in the text. Code annotations accompany many of the list-
ings, highlighting important concepts.

Book forum
Purchase of OpenShift in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and from other users. To access the forum,
go to https://forums.manning.com/forums/openshift-in-action. You can also learn
more about Manning’s forums and the rules of conduct on the forums at https://
forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It isn’t a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

https://forums.manning.com/forums/openshift-in-action
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about

xxiii

about the authors
JAMIE DUNCAN is a recovering history major with 11 years of experience working profes-
sionally with Linux. Six of those years have been at Red Hat, focusing increasingly on
the operations-oriented features of OpenShift. Jamie spends his days explaining how
containers are an integral part of the Linux operating system, and he’s had this discus-
sion with customers, OpenShift advocates, and technology fans on multiple conti-
nents. That fundamental knowledge of how containers work helps people treat
containers like the revolutionary technology they are, using them strategically to solve
their challenges. When not knee-deep in OpenShift, Jamie’s a wanna-be farmer and
Formula 1 racing fan.

JOHN OSBORNE is a principal OpenShift architect dedicated to Red Hat public sector
customers. He’s been at Red Hat for five years, with a strong focus on Kubernetes and
DevOps. Before his arrival at Red Hat, he worked at a startup and then spent seven
years with the U.S. Navy developing high-performance applications and deploying
them to several mission-critical areas across the globe. He enjoys making cutting-edge
technologies useful and practical for people trying to solve business problems. He
lives in northern Virginia with his wife and two daughters.

xxiv

about the cover illustration
The figure on the cover of OpenShift in Action is captioned “Morning Habit of a Lady of
the City of Pera in Natolia in 1568.” Pera was the name of a district on the European side
of Istanbul, separated from the historic old city by the Golden Horn, an inlet of the Bos-
porus. The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different
Nations, Ancient and Modern, published in London between 1757 and 1772. The title
page states that these are hand-colored copperplate engravings, heightened with gum
arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He
was an English cartographer who was the leading map supplier of his day. He engraved
and printed maps for government and other official bodies and produced a wide range
of commercial maps and atlases, especially of North America. His work as a mapmaker
sparked an interest in local dress customs of the lands he surveyed and mapped; they
are brilliantly displayed in this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the eighteenth century, and collections such as this one were popular, intro-
ducing both the tourist and the armchair traveler to the inhabitants of other
countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the
uniqueness and individuality of the world’s nations centuries ago. Dress codes have
changed, and the diversity by region and country, so rich at one time, has faded away.
It is now often hard to tell the inhabitant of one continent from another. Perhaps, try-
ing to view it optimistically, we have traded a cultural and visual diversity for a more
varied personal life—or a more varied and interesting intellectual and technical life.

ABOUT THE COVER ILLUSTRATION xxv

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of national costumes from centuries ago, brought back to
life by Jefferys’ pictures.

Part 1

Fundamentals

As with most things, the best place to start with OpenShift is with the fun-
damentals. If you’re an experienced OpenShift user, this part of the book may
seem familiar. If this is your first look at OpenShift, these chapters may be very
valuable.

 Chapter 1 is a high-level overview of what OpenShift does and the issues it’s
designed to solve. We’ll talk about the business problems and lay out the use
cases where OpenShift and containers provide advantages over previous tech-
nology solutions.

 Chapter 2 gets down to the bits and bytes. After deploying an OpenShift clus-
ter, you’ll deploy your first container-based applications on top of it. Using these
examples, we’ll discuss the OpenShift components that work together to make
applications function correctly.

 Chapter 3 takes you down to the bottom of the Linux kernel. We’ll talk about
how the containers used by OpenShift isolate the applications inside them. This
is a fundamental concept of how containers work, and we feel that it’s important
for people who develop applications in containers as well as people who operate
OpenShift clusters to have this essential knowledge.

3

Getting to know
 OpenShift

Containers are changing how everyone in the IT industry does their job. Contain-
ers initially entered the scene on developers’ laptops, helping them develop appli-
cations more quickly than they could with virtual machines or by configuring a
laptop’s operating system. As containers became more common in development
environments, their use began to expand. Once limited to laptops and small devel-
opment labs, containers worked their way into the enterprise. Within a couple of
years, containers progressed to the point that they’re powering massive production
workloads like GitHub (www.github.com).

This chapter covers
 How container platforms are changing IT

 Comparing containers to virtual machines

 Understanding when containers don’t fit

 Designing OpenShift

http://www.github.com

4 CHAPTER 1 Getting to know OpenShift

NOTE The success of Pokémon GO running on a container platform makes for
interesting reading. Pokémon GO runs on Google Cloud Platform. Its massive
workloads are documented in the blog post “Bringing Pokémon GO to life on
Google Cloud” by Luke Stone (September 29, 2016, http://mng.bz/dK8B).
The next time you’re stalking a Pikachu across your local park, remember that
it’s all happening in a container.

As powerful as container are—and we’ll be discussing that throughout this book—
they aren’t a solution on their own. Containers are a new way to deliver applications.
But the platform that serves those applications needs to have a lot more going for it
than just containers. To effectively use containers, they need to be part of a container
platform like OpenShift. Container platforms provide orchestration and other services
that containers need in order for users to take full advantage of containers.

1.1 What is a container platform?
A container platform is an application platform that uses containers to build, deploy,
serve, and orchestrate the applications running inside it. OpenShift uses two primary
tools to serve applications in containers: a container runtime to create containers in
Linux and an orchestration engine to manage a cluster of servers running containers.
Let’s discuss the container runtime first.

1.1.1 Containers in OpenShift

A container runtime works on a Linux server to create and manage containers. For
that to make sense, we need to look at how containers function when they’re running
on a Linux system.

 In subsequent chapters, we’ll dig deeply into how containers isolate applications in
OpenShift. To start, you can think of containers as discrete, portable, scalable units
for applications.

 Containers hold everything required for the applications inside them to function.
Each time a container is deployed, it holds all the libraries and code needed for its
application to function properly (see figure 1.1).

 Applications running inside a container can only access the resources in the con-
tainer. The applications in the container are isolated from anything running in other
containers or on the host. Five types of resources are isolated with containers:

 Mounted filesystems
 Shared memory resources
 Hostname and domain name
 Network resources (IP address, MAC address, memory buffers)
 Process counters

We’ll investigate these in more depth throughout this book.
 In OpenShift, the service that handles the creation and management of containers

is docker (https://github.com/docker). Docker is a large, active, open source project
started by Docker, Inc. The resources that docker uses to isolate processes in containers

http://mng.bz/dK8B
https://github.com/docker

5What is a container platform?

all exist as part of the Linux kernel. These resources include things like SELinux, Linux
namespaces, and control groups (cgroups), which will all be covered later in the book.
In addition to making these resources much easier to use, docker has also added several
features that have enhanced its popularity and growth:

 Portability—Earlier attempts at container formats weren’t portable between
hosts running different operating systems. This container format is now stan-
dardized as part of the Open Container Initiative.1

 Image reuse—Any container image can be reused as the base for other container
images.

 Application-centric API—The API and command-line tooling allow developers to
quickly create, update, and delete containers.

 Ecosystem—Docker, Inc. maintains a free public hosting environment for con-
tainer images; it now contains several hundred thousand images.

1.1.2 Orchestrating containers

Although the docker engine manages containers by facilitating Linux kernel resources,
it’s limited to a single host operating system. Although a single server running containers
is interesting, it isn’t a platform that you can use to create robust applications. To deploy
highly available and scalable applications, you have to be able to deploy application con-
tainers across multiple servers. To orchestrate containers across multiple servers effec-
tively, you need to use a container orchestration engine: an application that manages a

1 More information is available here: https://github.com/opencontainers/image-spec.

Linux server running containers

Shared resources

Linux kernel

Source
code

Libraries

Container 3

Source
code

Libraries

Container 1 Container 2

Source
code

Libraries

Each container provides
an environment for each
application running
inside it.

Some resources on
the server are shared
among all containers.

A container carries
all libraries and code
needed for the
application to run.

Multiple containers can
run simultaneously on
a single kernel without
causing resource
conflicts.

Figure 1.1 Overview of container properties

https://github.com/opencontainers/image-spec

6 CHAPTER 1 Getting to know OpenShift

container runtime across a cluster of hosts to provide a scalable application platform.
OpenShift uses Kubernetes (https://kubernetes.io) as its container orchestration engine.

 Kubernetes is an open source project that was started by Google. In 2015, it was
donated to the Cloud Native Computing Foundation (www.cncf.io).

NOTE Kubernetes is a bit of a challenge to type or spell. It’s often abbreviated
as kube or k8s, which stands for “k + 8 letters + s.”

Kubernetes employs a master/node architecture. Kubernetes master servers maintain
the information about the server cluster, and nodes run the actual application work-
loads (see figure 1.2).

Figure 1.2
Overview
of the
Kubernetes
architecture

Kubernetes node

Container runtime (docker)

Container orchestration engine (kube)

Linux kernel

Source
code

Libraries

Container 3

Source
code

Libraries

Container 1 Container 2

Source
code

Libraries

Kubernetes node

Container runtime (docker)

Container orchestration engine (kube)

Linux kernel

Source
code

Libraries

Container 3

Source
code

Libraries

Container 1 Container 2

Source
code

Libraries

The master server maintains
information about the cluster
and manages the actions
on the nodes.

The nodes run all of the
application containers
using the container
runtime.

Applications can communicate within the cluster.

Access to application
containers is through
the Kubernetes master
server.

Kubernetes master

Users

Kubernetes master services

https://kubernetes.io
http://www.cncf.io

7Examining the architecture

Kubernetes is a great open source project. The community around it is quickly grow-
ing and incredibly active. It’s consistently one of the most active projects on GitHub.
But to realize the full power of a container platform, Kubernetes needs a few addi-
tional components. OpenShift uses docker and Kubernetes as a starting point for its
design. But to be a truly effective container platform, it adds a few more tools to pro-
vide a better experience for users.

1.2 Examining the architecture
OpenShift uses the Kubernetes master/node architecture as a starting point. From
there, it expands to provide additional services that a good application platform needs
to include out of the box.

1.2.1 Integrating container images

In a container platform like OpenShift, container images are created when applica-
tions are deployed or updated. To be effective, the container images have to be avail-
able quickly on all the application nodes in a cluster. To do this, OpenShift includes
an integrated image registry as part of its default configuration (figure 1.3).

 An image registry is a central location that can serve container images to multiple
locations. In OpenShift, the integrated registry runs in a container.

 In addition to providing tightly integrated image access, OpenShift works to make
access to the applications more efficient.

1.2.2 Accessing applications

In Kubernetes, containers are created on nodes using components called pods.
There are some distinctions that we’ll discuss in more depth in chapter 2, but
they’re often similar. When an application consists of more than one pod, access to
the application is managed through a component called a service. A service is a proxy
that connects multiple pods and maps them to an IP address on one or more nodes
in the cluster.

 IP addresses can be hard to manage and share, especially when they’re behind a fire-
wall. OpenShift helps to solve this problem by providing an integrated routing layer. The
routing layer is a software load balancer. When an application is deployed in OpenShift,
a DNS entry is created for it automatically. That DNS record is added to the load bal-
ancer, and the load balancer interfaces with the Kubernetes service to efficiently handle
connections between the deployed application and its users (see figure 1.3).

 With applications running in pods across multiple nodes, and management
requests coming from the master node, there’s a lot of communication between serv-
ers in an OpenShift cluster. You need to make sure that traffic is properly encrypted
and can be separated when needed.

8 CHAPTER 1 Getting to know OpenShift

Routing
layer

Integrated
container
registry

Routing layer provides easy
DNS access and a consistent
endpoint for all applications
in OpenShift.

OpenShift node

Users

Container 3Container 1 Container 2

OpenShift master server

Master server manages
all actions inside
the cluster.

Application containers can
be scaled across multiple
nodes to provide scalable
and highly available
applications.

All communications inside
the cluster are encrypted
using TLS.

OpenShift nodes run the application
workloads as directed by the master
server.

Integrated registry provides
container images to build and
deploy applications on the
nodes.

Users access the API, web interface,
and command line tools through
the master server.

Users access applications
through the routing layer.

OpenShift node

Container 3Container 1 Container 2

Figure 1.3 Overview of the OpenShift architecture

9Examining an application

1.2.3 Handling network traffic in your cluster

OpenShift uses a software-defined networking (SDN) solution to encrypt and shape
network traffic in a cluster. OpenShift SDN, an SDN solution that uses Open vSwitch
(OVS, http://openvswitch.org) and other open source technologies, is configured by
default when OpenShift is deployed. Other SDN solutions are also supported. We’ll
examine OpenShift SDN in depth in chapter 10.

 Now that you have a good idea of how OpenShift is designed, let’s look at the life-
cycle of an application in an OpenShift cluster.

1.3 Examining an application
OpenShift has workflows that are designed to help you manage your applications
through all phases of its lifecycle:

 Build
 Deployment
 Upgrade
 Retirement

The following sections examine each of these phases.

1.3.1 Building applications

The primary way to build applications is to use a builder image. This process is the
default workflow in OpenShift, and it’s what you’ll use in chapter 2 to deploy your first
applications in OpenShift.

 A builder image is a special container image that includes applications and librar-
ies needed for an application in a given language. In chapter 2, you’ll deploy a PHP
web application. The builder image you’ll use for your first deployment includes the
Apache web server and the PHP language libraries.

 The build process takes the source code for an application and combines it with
the builder image to create a custom application image for the application. The cus-
tom application image is stored in the integrated registry (see figure 1.4), where it’s
ready to be deployed and served to the application’s users.

1.3.2 Deploying and serving applications

In the default workflow in OpenShift, application deployment is automatically trig-
gered after the container image is built and available. The deployment process takes
the newly created application image and deploys it on one or more nodes. In addition
to the application pods, a service is created, along with a DNS route in the routing layer.

http://openvswitch.org

10 CHAPTER 1 Getting to know OpenShift

Users are able to access the newly created application through the routing layer after
all the components have been deployed (see figure 1.5).

 Application upgrades use the same workflow. When an upgrade is triggered, a new
container image is created, and the new application version is deployed. Multiple
upgrade processes are available; we’ll discuss them in more depth in chapter 6.

Integrated
container registry

Application
source code

Developers

OpenShift master server

1. The developer
 triggers an
 application build.

2. The master
 server triggers
 a new build.

3a. The application
 source code is
 copied into the
 build pod.

4. A build pod is used to create
 a custom container image
 combining the source code
 and the builder image.

5. After the build process completes,
 the new application image is stored
 in the image registry and is ready
 to be deployed to the nodes.

3b. A builder image
 is provided by the
 integrated registry.

OpenShift node

OpenShift node

Build
pod

Builder
image

Application
image

Figure 1.4 Overview of the application build process

11Examining an application

That’s how OpenShift works at a high level. We’ll dig much deeper into all of these
components and mechanisms over the course of this book. Now that you’re armed
with a working knowledge of OpenShift, let’s talk about some of the things container
platforms are good (and sometimes not so good) at doing.

TIP For a more comprehensive list of how OpenShift integrates with and
expands the functionality of Kubernetes, visit www.openshift.com/container-
platform/kubernetes.html.

Application
image

Integrated
container
registry

Developers Users

OpenShift master server

1. The developer triggers an
 application deployment.

2. The master server
 triggers the creation
 of multiple components
 to deploy the application.

3. The application image
 is used to deploy one
 or more pods to the
 application nodes.

4. A service is created
 to proxy connection
 for all of the application
 pods. All application
 pods are connected
 to the service.

5. Users access the application
 through the routing layer
 and the newly created
 hostname component.

OpenShift node

OpenShift node

Application
service

Application
container

Application
container

Routing
layer

Figure 1.5 Overview of application deployment

http://www.openshift.com/container-platform/kubernetes.html
http://www.openshift.com/container-platform/kubernetes.html

12 CHAPTER 1 Getting to know OpenShift

1.4 Use cases for container platforms
The technology in OpenShift is pretty cool. But unless you can tie a new technology to
some sort of benefit to your mission, it’s hard to justify investigating it. In this section,
we’ll look at some of the benefits OpenShift can provide. Let’s start by exploring its
technological benefits.

1.4.1 Technology use cases

If you stop and think about it for a minute, you can hang the major innovations in IT
on a timeline of people seeking more efficient process isolation. Starting with main-
frames, we were able to isolate applications more effectively with the client-server
model and the x86 revolution. That was followed by the virtualization revolution. Mul-
tiple virtual machines can run on a single physical server. This gives administrators
better density in their datacenters while still isolating processes from each other.

 With virtual machines, each process was isolated in its own virtual machine. Because
each virtual machine has a full operating system and a full kernel (see figure 1.6), it
must have all the filesystems required for a full operating system. That also means it
must be patched, managed, and treated like traditional infrastructure.

 Containers are the next step in this evolution. An application container holds
everything the application needs to run:

 Source code or compiled code for the application
 Libraries or applications needed for the application to run properly
 Configurations and information about connecting to shared data sources

Hypervisor server

Linux kernel

Virtual
machine 3

Virtual
machine 1

Virtual
machine 2

Application
1

Application
2

Application
3

Virtualized
Linux
kernel

Virtualized
Linux
kernel

Virtualized
Linux
kernel

Each process is isolated
in a virtual machine with
its own filesystems and
virtualized kernel.

One server runs on the
physical server, running
the hypervisor code.

Figure 1.6 Virtual
machines can be used
for process isolation.

13Use cases for container platforms

What containers don’t contain is equally important. Unlike virtual machines, contain-
ers all run on a single, shared Linux kernel. To isolate the applications, containers use
components inside the kernel (see figure 1.7) that we’ll discuss in chapters 3 and 9.

 Because containers don’t have to include a full kernel to serve their application,
along with all the dependencies of an operating system, they tend to be much smaller
than virtual machines both in their storage needs and their resource consumption.
For example, whereas a typical virtual machine starts out with a 10 GB or larger disk,
the CentOS 7 container image is 140 MB.

 Being smaller comes with a couple of advantages. First, portability is enhanced. Mov-
ing 140 MB from one server to another is much faster than moving 10 GB or more.

 Second, because starting a container doesn’t include booting up an entire kernel,
the startup process is much faster. Starting a container is typically measured in milli-
seconds, as opposed to seconds or minutes for virtual machines.

 The technologies behind containers provide multiple technical benefits. They pro-
vide business advantages as well.

1.4.2 Use cases for businesses

Modern business solutions must include time or resource savings as part of their
design. Solutions today have to be able to use human and computer resources more
efficiently than in the past. Containers’ ability to enable both types of savings is one of
the major reasons they’ve exploded on the scene the way they have.

Server running containers

Linux kernel

Container 3Container 1 Container 2

Application
1

Application
2

Application
3

Each process is isolated in
a container that contains
all the code needed to
run the application.

Components in the Linux
kernel are used to isolate
processes in containers.

Figure 1.7 Containers use a single kernel to serve applications, saving space
and resources and providing flexible application platforms.

14 CHAPTER 1 Getting to know OpenShift

MORE EFFECTIVE RESOURCE UTILIZATION WITH CONTAINERS

If you compare a server that’s using virtual machines to isolate processes to one that’s
using containers to do the same thing, you’ll notice a few key differences (see figure 1.8):

 Containers consume server resources more effectively. Because there’s a single
shared kernel for all containers on a host, instead of multiple virtualized ker-
nels as in virtual machines, more of the server’s resources are used to serve
applications instead of for platform overhead.

 Application density increases with containers. Because the basic unit used to
deploy applications (container images) is much smaller than the unit for virtual
machines (virtual machine images), more applications can fit per server. This
means more applications require fewer servers to run.

Figure 1.8 Comparing virtual machines and containers: containers provide better utilization of server
resources

Hypervisor server running
virtual machines

Linux kernel with host operating system

Virtual
machine

Virtual
machine

Virtual
machine

Unused server resources

Application
1

Application
2

Application
3

Virtualized
Linux
server

Virtualized
Linux
server

Virtualized
Linux
server

Virtual machines tend to leave
unused resources on the host server.

Containers allow more applications per node
to run, increasing resource utilization.

Server resources aren’t used to keep
a full virtual machine operational
with a complete operating system
to isolate a single application.

Virtual machines and
containers both rely
on the Linux kernel
to operate.

Server running
containers

Linux kernel with host operating system

Container
4

Container
7

Container
1

Container
5

Container
8

Container
2

Container
6

Container
9

Container
3

15Solving container storage needs

Even though containers are great tools, and we’ll talk about them on every page of
this book, they aren’t always the best tool for every job. In the next section, we’ll dis-
cuss a few times when containers aren’t the best fit.

1.4.3 When containers aren’t the answer

An ever-increasing number of workloads are good fits for containers. The container
revolution started with pure web applications but now includes command-line tools,
desktop tools, and even relational databases. Even with the massive growth of use
cases for containers, in some situations they’re not the answer.

WHEN THE RETURN ON INVESTMENT IS TOO LOW

If you have a complex legacy application, be careful when deciding to break it down
and convert it to a series of containers. If an application will be around for 18 months,
and it will take 9 months of work to properly containerize it, you may want to leave it
where it is. It’s OK, we promise.

WHEN YOU NEED ACCESS TO EXOTIC HARDWARE

Containers solutions began in the enterprise IT world. They’re designed to work with
most enterprise-grade storage and networking solutions, but they don’t work with all
of them easily. When you’re using a networking solution like InfiniBand, or a storage
solution like Lustre, containers can be a challenge. This is quickly being addressed by
the Kubernetes community, with access to devices like GPUs being previewed in
OpenShift 3.9 with more to follow.

NOTE InfiniBand (http://mng.bz/6CMb) is a high-performance networking
standard that’s often found in high-performance computing (HPC) environ-
ments. Lustre (http://lustre.org/) is a high-performance parallel filesystem
that’s also often found in HPC environments.

WHEN YOUR MONOLITH APPLICATIONS WILL ALWAYS BE MONOLITHS

Some applications are always going to be very large, very resource-intensive mono-
lithic applications. Examples are software used to run HR departments and some very
large relational databases. If a single application will take up multiple servers on its
own, running it in a container that wants to share resources with other applications on
a server doesn’t make a lot of sense.

 Now that you have a solid idea of how OpenShift uses containers, and where
they’re good (and not good) fits for applications, let’s look at how you can provide
containers for applications that need persistent or shared storage.

1.5 Solving container storage needs
Containers are a revolutionary technology, but they can’t do everything on their own.
Storage is an area where containers need to be paired with another solution to deploy
production-ready applications.

 This is because the storage created when a container is deployed is ephemeral. If a
container is destroyed or replaced, the storage from inside that container isn’t reused.

http://mng.bz/6CMb
http://lustre.org/

16 CHAPTER 1 Getting to know OpenShift

This is by design, to allow containers to be stateless by default. If something goes bad,
a container can be removed from your environment completely, and a new one can be
stood up to replace it almost instantly.

 The idea of a stateless application container is great. But somewhere in your appli-
cation, usually in multiple places, data needs to be shared across multiple containers,
and state needs to be preserved. Here are some examples of these situations:

 Shared data that needs to be available across multiple containers, like uploaded
images for a web application

 User state information in a complex application, which lets users pick up where
they leave off during a long-running transaction

 Information that’s stored in relational or nonrelational databases

In all of these situations, and many others, you need to have persistent storage avail-
able in your containers. This storage should be defined as part of your application’s
deployment and should be available from all the nodes in your OpenShift cluster.
Luckily, OpenShift has multiple ways to solve this problem.

 In chapter 7, you’ll configure an external network storage service. You’ll then con-
figure it to interact with OpenShift so applications can dynamically allocate and take
advantage of its persistent storage volumes (see figure 1.9).

 When you’re able to effectively integrate shared storage into your application’s
containers, you can think about scalability in new ways.

1.6 Scaling applications
For stateless applications, scaling up and down is straightforward. Because there are
no dependencies other than what’s in the application container, and because the
transactions happening in the container are atomic by design, all you need to do to
scale a stateless application is to deploy more instances of it and load-balance them
together.

 To make this process even easier, OpenShift proxies the connections to each appli-
cation through a built-in load balancer. This allows applications to scale up and down
with no change in how users connect to the application.

 If your applications are stateful, meaning they need to store or retrieve shared data,
such as a database or data that a user has uploaded, then you need to be able to pro-
vide persistent storage for them. This storage needs to automatically scale up and
down with your applications in OpenShift. For stateful applications, persistent storage
is a key component that must be tightly integrated into your design. At the end of the
day, stateful pods are how users will get data in and out of your application.

1.7 Integrating stateful and stateless applications
As you begin separating traditional, monolithic applications into smaller services that
work effectively in containers, you’ll begin to view your data needs in a different way.
This process is often referred to as designing applications as microservices.

17Integrating stateful and stateless applications

For any application, you’ll have services that you need to be stateful, and others that
are stateless. For example, the service that provides static web content can be stateless,

OpenShift cluster

Persistent
volume B

Persistent
volume C

Persistent
volume A

Application node

Application
B

Application
C

Application
A

NFS server

Application node

Application
B

Application
C

Persistent
volume B Persistent

volume C

Persistent
volume A

Applications can request multiple types
of storage to fit the application design.

Persistent volumes can be any size
to fit the needs of the application.

Application A has
read-write-once
storage, allowing
one pod to write
to the volume.

Application B has
read-write-many
storage, allowing
multiple pods to
write to the volume.

An external NFS server provides
persistent volumes for applications.

Application C has read-only
storage, allowing pods to only
read the data on the volume.

OpenShift tracks
each available volume
in its database on the
master server.

Figure 1.9 OpenShift can integrate and manage external storage platforms and ensure that the best-fit storage
volume is matched with the applications that need it.

18 CHAPTER 1 Getting to know OpenShift

whereas the service that processes user authentication needs to be able to write infor-
mation to persistent storage. These services all go together to form your application.

 Because each service runs in its own container, the services can be scaled up and
down independently. Instead of having to scale up your entire codebase, with contain-
ers you only scale the services in your application that need to process additional
workloads.

 Additionally, because only the containers that need access to persistent storage
have it, the data going into your container is more secure. In figure 1.10, if there was a
vulnerability in service B, a compromised process would have a hard time getting
access to the data stored in the persistent storage.

Users Persistent storage

Traditional monolithic
application

Microservice application

Users access
the application.

The application code is
separated into multiple
containers.

Entire user workflows can
exist that have no access
to storage.

Only the application code
that needs it has access
to the persistent storage.

Each stateful application
pod has a unique connection
to the persistent storage.

All code for the
monolithic application
has potential access to
all persistent storage.

Monolithic application code runs
in a single location, with no separation.

C

C

C

D

D

EB

A

A

Figure 1.10 Illustrating the differences between traditional and microservice applications: microservice
applications scale their components independently, creating better performance and resource utilization

19Summary

That brings us to the end of our initial walkthrough of OpenShift and how it deploys,
manages, and orchestrates applications deployed with containers using docker and
Kubernetes. The benefits provided by OpenShift save time for humans and use server
resources more efficiently. Additionally, the nature of how containers work provides
improved scalability and deployment speed versus virtual machine deployments.

 This all goes together to provide an incredibly powerful application platform that
you’ll work with for the rest of this book. In chapter 2, you’ll install and configure
OpenShift, and deploy your first applications.

1.8 Summary
 OpenShift is an application platform that uses docker, Kubernetes, and addi-

tional services to deploy applications.
 Docker is a container runtime that creates and manages containers on a single

host.
 Kubernetes is a container-orchestration engine that’s used to orchestrate con-

tainer engine workloads across multiple servers in a cluster.
 OpenShift expands on the Kubernetes design, adding important components

out of the box.
 Containers provide better resource utilization and start up faster than virtual

machines.
 Some situations aren’t a good fit for running applications in containers.
 OpenShift SDN is a robust, configurable SDN solution that’s deployed in Open-

Shift by default, along with an integrated application routing layer and image
registry.

 Containers can easily consume persistent storage in OpenShift.
 OpenShift is able to combine multiple stateless and stateful applications to pro-

vide a single application experience for end users.

20

Getting started

There are three ways to interact with OpenShift: the command line, the web inter-
face, and the RESTful API. This chapter focuses on deploying applications using
the command line, because the command line exposes more of the process that’s
used to create containerized applications in OpenShift. In other chapters, the
examples may use the web interface or even the API. Our intention is to give you
the most real-world examples of using OpenShift. We want to show you the best
tools to get the various jobs done.

 We’ll also try our best not to make you repeat yourself. Almost every action in
OpenShift can be performed using all three access methods. If something is lim-
ited, we’ll do our best to let you know. But we want you to get the best experience
possible from using OpenShift. With that said, in this chapter we’re going to repeat
ourselves. But we have a good reason!

This chapter covers
 Accessing your cluster and logging in

 Creating projects and deploying applications

 Accessing your application by creating routes

 Investigating application components

 Comparing command-line and web workflows

21Cluster options

 The most common task in OpenShift is deploying an application. Because this is
the most common task, we want to introduce you to it as early as practical, using both
the command line and the web interface. So please bear with us. This chapter may
seem a little repetitive, but we think the repetition will be helpful as you continue to
learn how to use OpenShift.

2.1 Cluster options
Before you can start using OpenShift, you have to deploy it. Appendix A guides you
through a full deployment of OpenShift on multiple servers. Several of the chapter’s
examples require multiple nodes to function properly or to have enough resources to
function properly. But there’s a different installer for OpenShift that we’d like to men-
tion here: Minishift.

 Minishift (https://github.com/minishift/minishift) is a single-node installation of
OpenShift that you can stand up in a few minutes on just about any operating system
as a virtual machine. As a development platform, it’s a very useful tool.

 We strongly recommend going through the process of installing a full OpenShift
cluster. You can run most of the examples in this book on Minishift, through chapter 6.
But you’ll run into trouble when you start working with persistent storage, metrics,
complex application deployments, and networking. If you’re ready to get your full
OpenShift cluster up and running, head to appendix A and deploy your cluster before
you move on to the examples in this chapter. If you want to dive in to the examples a
little faster, Minishift is your path forward. Take a look at its documentation to get it up
and running.

When something goes awry
It’s almost inevitable. When you’re first learning how to use a new tool like OpenShift,
you do something, and it doesn’t come out quite like you expected. So you start trou-
bleshooting, and that makes things worse. Eventually, you end up with a platform
that’s full of random weirdness or doesn’t work at all.

IT professionals learn by doing. We encourage you to experiment with OpenShift as
you go through this book. Give yourself problems to solve, and use OpenShift to solve
them. And when one of them doesn’t work as expected, use this book as a reference
to dig in and figure out what’s going on.

We also know that starting from scratch is hard and time-consuming. Toward that
end, we’ve created a GitHub organization: https://github.com/OpenShiftInAction. In
this organization, you’ll find repositories dedicated to the work and examples for each
chapter.

You’ll also notice a project called autoinstaller. The autoinstaller project uses Ansible
(www.ansible.com) to deploy OpenShift with the same configuration you’d deploy by
following appendix A. There are also shorter playbooks that do all the work for each
chapter in the book. If you break your cluster and need to start over, feel free to use
autoinstaller as a quicker path back to where you were before your issues.

https://github.com/minishift/minishift
https://github.com/OpenShiftInAction
http://www.ansible.com

22 CHAPTER 2 Getting started

Like most applications, OpenShift requires a little configuration to get going. That’s
what the next sections discuss.

2.2 Logging in
In OpenShift, every action requires authentication. This allows every action to be gov-
erned by the security and access rules set up for all users in an OpenShift cluster. We’ll
discuss the various methods of managing authentication in chapter 9, but by default
your OpenShift cluster’s initial configuration is set to allow any user and password
combination to log in. This is called the Allow All identity provider.

 The Allow All identity provider creates a user account the first time a user logs in.
Each username is unique, and the password can be anything except an empty field.
This configuration is safe and recommended only for lab and development OpenShift
instances like the one you just set up.

 The first user you’ll create will be called dev. This user will represent any normal
developer or end user in OpenShift. You’ll use the dev user for most of the examples
in this book.

NOTE This authentication method is case-sensitive. Although the passwords
can be anything, dev and Dev are different users and won’t be able to see the
same projects and applications. Be careful when you log in.

2.2.1 Using the oc command-line application

In appendix A, you install oc on your laptop or workstation. This is the tool you’ll use
to manage OpenShift on the command line. If you’re using an OSX or Linux system,
you can open your favorite terminal application. On Windows, open your command
prompt. From your command line, run the oc login command, using dev for the
username and password and the URL for your master server’s API server:

$ oc login -u dev -p dev https://ocp-1.192.168.122.100.nip.io:8443
Login successful.

You don't have any projects. You can try to create a new project, by running

oc new-project <projectname>

(continued)
Also, please use the issue tracker and other tools in the GitHub organization to com-
municate with us. Our plan is to continue to work with and update these projects even
after the book is published. So file issues, submit pull requests, and contribute to
the OpenShift in Action community.

The syntax for logging in to an OpenShift
 cluster, including the username, password,

 and URL for your OpenShift master’s API server

23Creating projects

The parameters used here for oc login are as follows:

 -u, the username to log in with.
 -p, the user’s password.
 URL for your OpenShift master’s API server. By default, it’s served over HTTPS

on TCP port 8443.

In the example, OpenShift is prompting you to accomplish your next step: creating a
project.

2.3 Creating projects
In OpenShift, projects are the fundamental way applications are organized. Projects let
users collect their applications into logical groups. They also serve other useful roles
around security that we’ll discuss in chapters 9 and 10. For now, though, think of a
project as a collection of related applications. You’ll create your first project and then
use it to house a handful of applications that you’ll deploy, modify, redeploy, and do
all sorts of things to over the course of the next few chapters.

To create a project, you need to run the oc new-project command and provide a
project name. For your first project, use image-uploader as the project name:

$ oc new-project image-uploader --display-name='Image Uploader Project'
Now using project "image-uploader" on server

➥ "https://ocp-1.192.168.122.100.nip.io:8443".

You can add applications to this project with the 'new-app' command.

➥ For example, try:

oc new-app centos/ruby-22-centos7~https://github.com/openshift/ruby-ex.git

to build a new example application in Ruby.

The output prompts you to deploy your first application.

NOTE You can find documentation for all of the oc command’s features in
the OpenShift CLI Reference documentation at http://mng.bz/dCTv.

The default project and working with multiple projects
The oc tool’s default action is to execute the command you run using the current
working project. If you create a new project, it automatically becomes your working
project. The oc project command changes among projects that already exist.

To specify a command to be executed against a specific project, regardless of your
current working project, use the -n parameter with the project name you want the
command to run against.

This is a helpful option when you’re writing scripts that use oc and act on multiple
projects. It’s also a good habit in general.

 www.allitebooks.com

http://mng.bz/dCTv
http://www.allitebooks.org

24 CHAPTER 2 Getting started

In addition to the name for your project, you can optionally provide a display name.
The display name is a more human-friendly name for your project. The project name
has a restricted syntax because it becomes part of the URL for all of the applications
deployed in OpenShift. We’ll discuss how that works later in this chapter.

 Now that you’ve created your first project, section 2.5 will walk you through
deploying your first application, called Image Uploader, into your new project. Image
Uploader is a web-based PHP application that’s used to upload and display graphic
files from your computer. But first, let’s talk about application components, so you
understand how all the parts fit and work together.

2.4 Application components
Applications in OpenShift aren’t monolithic structures; they consist of a number of
different components in a project that all work together to deploy, update, and main-
tain your application through its lifecycle. These components are as follows:

 Custom container images
 Image streams
 Application pods
 Build configs
 Deployment configs
 Deployments
 Services

These components all work together to serve your applications to your end users, as
shown in figure 2.1. The interactions between the application components can seem
a little complex, so next let’s walk through what these components do in more
detail. We’ll start with how OpenShift creates and uses custom container images for
each application.

2.4.1 Custom container images

Each application deployment in OpenShift creates a custom container image to serve
your application. This image is created using the application’s source code and a cus-
tom base image called a builder image. For example, the PHP builder image contains
the Apache web server and the core PHP language libraries.

 The image build process takes the builder image you choose, integrates your
source code, and creates the custom container image that will be used for the applica-
tion deployment. Once created, all the container images, along with all the builder
images, are stored in OpenShift’s integrated container registry, which we discussed in
chapter 1 (also noted in figure 2.1). The component that controls the creation of your
application containers is the build config.

25Application components

Developers

Application users

Application deployments
Triggered with oc new-app

or the web UI

Source code
image-uploader repo

from GitHub

Deployment config
Defines how to deploy

the application

Build config
Defines how to build

the application

Image stream
Monitors for config
and image changes

Route
DNS entry in the load
balancer to access a

deployed app

Load balancer
Maps routes
to deployed

apps

Builder
image

Container
image

Deployment
Represents one

application deployment

Pod
Your application in

a container

Service
Represents all the pods
running your application

Application components

Image registry

Routing layer

OpenShift cluster

Developers create an application
and use the oc command-line
tool to trigger a new build in
OpenShift.

Deployment configs
define how applications
are deployed, and
create deployments,
which represent unique,
deployed, application
versions.

Deployments are
unique for each
version of the
application and
use that version’s
custom image to
deploy the pod.

The application
runs in a pod, which
can be scaled up or
down as needed.

Pods are proxied
through the service,
which allows for
easier pod scaling.

A route is created in the
software load balancer to
provide consistent application
access using DNS.

Users access the
application through
the route created
by the load balancer.

The build config
combines the source
code and builder image
and creates a custom
container image for
your application.

Image streams
trigger new builds
and deployments
on change events.

The image registry
serves all container
images used by
OpenShift

Figure 2.1 How application components work together: Each deployed application creates these components in
your OpenShift cluster. This workflow is fully automated and customizable.

26 CHAPTER 2 Getting started

2.4.2 Build configs

A build config contains all the information needed to build an application using its
source code. This includes all the information required to build the application con-
tainer image:

 URL for the application source code
 Name of the builder image to use
 Name of the application container image that’s created
 Events that can trigger a new build to occur

Figure 2.1 illustrates these relationships. The build config is used to track what’s
required to build your application and to trigger the creation of the application’s con-
tainer image.

 After the build config does its job, it triggers the deployment config that’s created for
your newly created application.

2.4.3 Deployment configs

If an application is never deployed, it can never do its job. The job of deploying and
upgrading the application is handled by the deployment config component. In fig-
ure 2.1, you see that deployment configs are created as part of the initial applica-
tion deployment command that you’ll run later in this chapter.

 Deployment configs track several pieces of information about an application:

 Currently deployed version of the application.
 Number of replicas to maintain for the application.
 Trigger events that can trigger a redeployment. By default, configuration

changes to the deployment or changes to the container image trigger an auto-
matic application redeployment

 Upgrade strategy. app-cli uses the default rolling-upgrade strategy.
 Application deployments.

A key feature of applications running in OpenShift is that they’re horizontally scal-
able. This concept is represented in the deployment config by the number of replicas.

MAINTAINING APPLICATION REPLICAS

The number of replicas specified in a deployment config is passed into a Kubernetes
object called a replication controller. This is a special type of Kubernetes pod that allows
for multiple replicas—copies of the application pod—to be kept running at all times.
All pods in OpenShift are deployed by replication controllers by default.

 Another feature that’s managed by a deployment config is how application
upgrades can be fully automated.

 Each deployment for an application is monitored and available to the deployment
config component using deployments.

27Application components

DEPLOYMENTS

Each time a new version of an application is created by its build config, a new deploy-
ment is created and tracked by the deployment config. A deployment represents a
unique version of an application. Each deployment references a version of the appli-
cation image that was created, and creates the replication controller to create and
maintain the pods to serve the application. In figure 2.1, the deployment is directly
linked to the pod that serves an application.

 New deployments can be created automatically in OpenShift by managing how
applications are upgraded, which is also tracked by the deployment config.

MANAGING UPGRADE METHODS

The default application-upgrade method in OpenShift is to perform a rolling upgrade.
Rolling upgrades create new versions of an application, allowing new connections to
the application to access only the new version. As traffic increases to the new deploy-
ment, the pods for the old deployment are removed from the system.

 New application deployments can be automatically triggered by events such as con-
figuration changes to your application, or a new version of a container image being
available. These sorts of trigger events are monitored by image streams in OpenShift.

2.4.4 Image streams
Image streams are used to automate actions in OpenShift. They consist of links to one
or more container images. Using image streams, you can monitor applications and
trigger new deployments when their components are updated.

 In figure 2.1, you can see how image streams are linked to the container image for
an application, as well as its deployment. We’ll discuss image streams in more depth in
chapter 6.

Phases of the pod lifecycle
In OpenShift, a pod can exist in one of five phases at any given time in its lifecycle.
These phases are described in detail in the Kubernetes documentation at
http://mng.bz/NIG1. The following is a brief summary of the five pod phases:

 Pending—The pod has been accepted by OpenShift, but it’s not yet scheduled
on one of the applications nodes.

 Running—The pod is scheduled on a node and is confirmed to be up and running.
 Succeeded—All containers in a pod have terminated successfully and won’t

be restarted.
 Failed—One or more containers in a pod have failed to start.
 Unknown—Something has gone wrong, and OpenShift can’t obtain a more

accurate status for the pod.

Failed and Succeeded are considered terminal states for a pod in its lifecycle. Once
a pod reaches one of these states, it won’t be restarted.

You can see the current phase for each pod in a project by running the oc get pods
command. Pod lifecycles will become important when you begin creating project quo-
tas in chapter 6.

http://mng.bz/NIG1

28 CHAPTER 2 Getting started

 Now that we’ve gone through how applications are built and deployed, it’s time for
you to deploy your first application.

2.5 Deploying an application
Applications are deployed using the oc new-app command. When you run this com-
mand to deploy the Image Uploader application into the image-uploader project, you
need to provide three pieces of information:

 The type of image stream you want to use—OpenShift ships with multiple container
images called builder images that you can use as a starting point for applications.
In this example, you’ll be using the PHP builder image to create your application.

 A name for your application—In this example, use app-cli, because this version
of your application will be deployed from the command line.

 The location of your application’s source code—OpenShift will take this source code
and combine it with the PHP builder image to create a custom container image
for your application deployment.

Here’s the new application deployment (we’ve trimmed the output for clarity):

$ oc new-app \
> --image-stream=php \
> --code=https://github.com/OpenShiftInAction/image-uploader.git \
> --name=app-cli
...
--> Success

Build scheduled, use 'oc logs -f bc/cli-app' to track its progress.
Run 'oc status' to view your app.

After you run the oc new-app command, you’ll see a long list of output. This is Open-
Shift building out all the components needed to make your application work prop-
erly, as we discussed at the beginning of this section.

 Now that you’ve deployed your first application, you need to be able to access the
newly deployed pod. Figure 2.2 shows that the pod is associated with a component
called a service, which then links up to provide application access for users. Let’s look
at services next.

2.5.1 Providing consistent application access with services

Chapters 3 and 4 will explore multiple ways to force OpenShift to redeploy application
pods. In the course of a normal day, this happens all the time, for any number of reasons:

 You’re scaling applications up and down.
 Application pods stop responding correctly.
 Nodes are rebooted or have issues.
 Human error (the most common cause, of course).
 The phase of the moon is out of alignment, one of the many other things that

cause computers to not do what you want.

Image stream to use
Source code for
the application

Application name

29Deploying an application

Although pods may come and go, there needs to be a consistent presence for your appli-
cations in OpenShift. That’s what a service does. A service uses the labels applied to pods
when they’re created to keep track of all pods associated with a given application. This
allows a service to act as an internal proxy for your application. You can see information
about the service for app-cli by running the oc describe svc/app-cli command:

$ oc describe svc/app-cli
Name: app-cli
Namespace: image-uploader
Labels: app=app-cli
Selector: app=app-cli,deploymentconfig=app-cli
Type: ClusterIP
IP: 172.30.90.167
Port: 8080-tcp 8080/TCP
Endpoints:
Session Affinity: None
No events.

Users Developers

Route
DNS entry in the load
balancer to access a

deployed app

Deployment config
Defines how to deploy

the application

Pod
Your application in

a container

Deployment
Represents one

application deployment

Service
Represents all the pods
running your application

Users access the application
through the route created
by the load balancer.

A route is created in the software
load balancer to provide consistent
application access using DNS.

All of the pods are proxied
through the service, which
allows for easier pod scaling.

Deployment configs define how applications
are deployed, and create deployments,
which represent a unique, deployed,
application version.

Application deployments
Triggered with oc new-app

or the web UI

Load balancer
Software load

balancer to automate
DNS for applications

Figure 2.2 Components that deploy an application in an OpenShift project

IP address for
the service Port to connect

to the service

30 CHAPTER 2 Getting started

Each service gets an IP address that’s only routable from within the OpenShift cluster.
Other information that’s maintained includes the IP address of the service and the
TCP ports to connect to in the pod.

TIP Most components in OpenShift have a shorthand that can be used on
the command line to save time and avoid misspelled component names. The
previous command uses svc/app-cli to get information about the service for
the app-cli application. Build configs can be accessed with bc/<app-name>,
and deployment configs with dc/<app-name>. You can find the rest of the
shorthand in the documentation for oc at https://docs.openshift.org/latest/
cli_reference/get_started_cli.html.

Services provide a consistent gateway into your application deployment. But the IP
address of a service is available only in your OpenShift cluster. To connect users to your
applications and make DNS work properly, you need one more application component.
Next, you’ll create a route to expose app-cli externally from your OpenShift cluster.

2.5.2 Exposing services to the outside world with routes

When you install your OpenShift cluster, one of the services that’s created is an
HAProxy service running in a container on OpenShift. HAProxy is an open source,
software load-balancer application. We’ll look at this service in depth in chapter 10.

 To create a route for the app-cli application, run the following command:

oc expose svc/app-cli

As we discussed earlier, OpenShift uses projects to organize applications. An applica-
tion’s project is included in the URL that’s generated when you create an application
route. Each application’s URL takes the following format:

<application-name>-<project-name>.<cluster-app-domain>

When you deploy OpenShift in appendix A, you specify the application domain
apps.192,168.122.101.nip.io. By default, all applications in OpenShift are served
using the HTTP protocol. When you put all this together, the URL for app-cli should
be as follows:

http://app-cli-image-uploader.apps.192.168.122.101.nip.io

You can get information about the route you just created by running the oc describe
route/app-cli command:

$ oc describe route/app-cli
Name: app-cli
Namespace: image-uploader
Created: About an hour ago
Labels: app=app-cli
Annotations: openshift.io/host.generated=true
Requested Host: app-cli-image-uploader.apps.192.168.122.101.nip.io

exposed on router router about an hour ago

URL created
in HAProxy

https://docs.openshift.org/latest/cli_reference/get_started_cli.html
https://docs.openshift.org/latest/cli_reference/get_started_cli.html
https://docs.openshift.org/latest/cli_reference/get_started_cli.html

31Deploying an application

Path: <none>
TLS Termination: <none>
Insecure Policy: <none>
Endpoint Port: 8080-tcp

Service: app-cli
Weight: 100 (100%)
Endpoints: 10.129.1.112:8080

The output tells you the host configurations added to HAProxy, the service associated
with the route, and the endpoints for the service to connect to when handling
requests for the route.

 Now that you’ve created the route to your application, go ahead and verify that it’s
functional in a web browser. You should be able to browse to your app-cli application
using the URL for the route that was created (see figure 2.3).

NOTE You should be able to access your app-cli deployment from anywhere
that your test cluster is accessible. If you created the cluster on virtual machines
on your laptop, it’s most likely accessible only from your laptop. OpenShift is
pretty awesome, but it can’t overcome the rules of TCP/IP networking.

Focusing on the components that deploy and deliver the app-cli application, you can
see the relationship between the service, the newly created route, and the end users.
We’ll cover this in more depth in chapter 10; but in summary, the route is tied to the
app-cli service, and users access the application pod through the route (see figure 2.4).

 This chapter is about relationships. In OpenShift, multiple components work in
concert to build, deploy, and manage applications. We’ll spend the rest of this book
discussing the different aspects of these relationships in depth. That fundamental
knowledge of how container platforms operate is incredibly valuable.

Associated service

Endpoints for the service

Figure 2.3 The app-cli application web interface should be up and running and available.

32 CHAPTER 2 Getting started

2.6 Deploying applications using the web interface
We began this chapter by claiming that we didn’t want to repeat ourselves and then
warning you that the chapter would be a little repetitive. Well, we’ve reached the
repetitive part. Deploying applications in OpenShift is so fundamental to its purpose
that we want to quickly walk you through the same process using the web interface.
We’ll keep this section as short as possible—the web interface’s workflow will help
with that.

2.6.1 Logging in to the OpenShift web interface

The OpenShift web interface is served from your master server, using the same URL
that you use to log in with the command line. In the example, the web interface is
accessible at https://ocp-1.192.168.122.100.nip.io:8443 (see figure 2.5). Go ahead
and log in, if you haven’t already. Use the same dev user and non-empty password that
you used to log in earlier.

 After logging in, you’ll arrive at a project overview page. This page lists all active proj-
ects for your user. You should see the image-uploader project that you created earlier
in this chapter. Click the Image Uploader name to go to the project details page.

Users

Route
Exposed route for app-cli

Service
app-cli

Pod
app-cli

Pod
app-cli

Pod
app-cli

The route maps to
the IPs defined by the
application’s service.

When pods are created
or deleted, the service
is updated.

Users access an
application using
its route.

Service represents
all running pods for
the application.

Figure 2.4 Overview of application request routing

Figure 2.5
Web interface
login page

33Deploying applications with the web interface

2.7 Deploying applications with the web interface
The web interface creates the same components that we talked about in the previous
section (see figure 2.6). From the project details, you can see the details for the app-cli
deployment, including the following:

 Deployment information, including a link to the deployconfig details
 Replica count
 Route information and a link to the application

Also on the project details page, on the top bar, is an Add to Project button. Click Add
to Project > Browse Catalog to deploy a new application.

 When you deployed app-cli, you selected the PHP image stream that included the
PHP 7.0 builder image. In the web interface, you can follow the same process. The
builder image image streams are available in a handy catalog. For your second appli-
cation, you’ll deploy the same Image Uploader application again. Click the PHP
option from the catalog to proceed (see figure 2.7).

Figure 2.6 App-cli information in the web interface, and the Add to Project button

Deployment information

Link to deployed app

Replica count

Add to Project button

Figure 2.7 Builder
images for multiple
languages in the
image catalog

34 CHAPTER 2 Getting started

The next screen takes you to all the available builder images for the PHP programming
language. You should see at least three options at this stage, similar to the information
about the app-cli service you saw in section 2.4.2. Because you’re deploying the same
application, you can select the same default PHP builder image (see figure 2.8).

 After selecting the default PHP builder image, you’re prompted to provide the
same information that was required to deploy app-cli (see figure 2.9):

 Name—For your second deployment of the Image Uploader code, call the
application app-gui.

 Git Repository URL—This is the same repository that you supplied to deploy app-
cli, https://github.com/OpenShiftInAction/image-uploader.git.

When you’ve filled in the fields, click Create. This will launch the build and deploy-
ment process for your new app-gui application.

Default PHP image

Figure 2.8
PHP-specific
builder images

Figure 2.9
Create a new PHP
application using
the web interface.

https://github.com/OpenShiftInAction/image-uploader.git

35Deploying applications with the web interface

Once the process has started, you’re taken to a deployment summary page (see fig-
ure 2.10). This page provides you with information about how to log in to the com-
mand line, as well as more advanced features like setting application probes, which
we’ll discuss in chapter 4, and setting resource limits, which we’ll discuss in chapter 9.

 Click the Continue to Overview link to return to the project details page.
 At this point, OpenShift is going through the exact same process we discussed ear-

lier in this chapter. It’s taking the source code, creating a custom container image,
and building out all the other components that will be used to manage the applica-
tion’s lifecycle. Even though both app-cli and app-gui use the same application source
code, OpenShift will create a custom container image for each deployment, along
with a unique version of each other component. Doing so allows for fully independent
application lifecycles, even if they share the same source code.

 Depending on your internet connection speed, the build and deployment process
for app-gui may take a couple of minutes. When it completes, you should see both
your app-cli and app-gui application deployments up and active (see figure 2.11).

 When you deployed app-cli, you had to create a route to access the application.
Notice in figure 2.11 that when you deployed app-gui with the web interface, the
route was created for you automatically. This is designed to save time for the average
user who’s using the web interface. Creating routes with the command line isn’t auto-
mated to allow that workflow to be customized and automated more easily.

 And that is, we hope, the last time we’ll ask you to do the same thing twice in this
book!

 This chapter has been all about defining what an application deployment looks
like in OpenShift, and how the components that make up an application maintain

Figure 2.10 After deploying your app-gui application, you should see the deployment
summary page, which offers you a link to the application overview.

36 CHAPTER 2 Getting started

their relationships with one another. In the next chapter, we’ll discuss how you add
persistent storage to applications to make them more flexible and easier to scale.

2.8 Summary
 Application deployments create multiple, tightly orchestrated application com-

ponents to manage build, deploy, and manage applications.
 All transactions in OpenShift require an authenticated session.
 Projects in OpenShift are used to organize similar applications.
 OpenShift has robust command-line and web-based workflows.
 OpenShift can automatically configure DNS records that route requests to your

application when it’s deployed.

Figure 2.11 Project details page with app-cli and app-gui deployed

37

Containers are Linux

In the previous chapter, you deployed your first applications in OpenShift. In this
chapter, we’ll look deeper into your OpenShift cluster and investigate how these
containers isolate their processes on the application node.

 Knowledge of how containers work in a platform like OpenShift is some of the
most powerful information in IT right now. This fundamental understanding of
how a container actually works as part of a Linux server informs how systems are
designed and how issues are analyzed when they inevitably occur.

 This is a challenging chapter—not because you’ll be editing a lot of configura-
tions and making complex changes, but because we’re talking about the funda-
mental layers of abstraction that make a container a container. Let’s get started by
attempting to define exactly what a container is.

3.1 Defining containers
You can find five different container experts and ask them to define what a con-
tainer is, and you’re likely to get five different answers. The following are some of
our personal favorites, all of which are correct from a certain perspective:

This chapter covers
 How OpenShift, Kubernetes, and docker work together

 How containers isolate processes with namespaces

38 CHAPTER 3 Containers are Linux

 A transportable unit to move applications around. This is a typical developer’s
answer.

 A fancy Linux process (one of our personal favorites).
 A more effective way to isolate processes on a Linux system. This is a more

operations-centered answer.

What we need to untangle is the fact that they’re all correct, depending on your point
of view.

 In chapter 1, we talked about how OpenShift uses Kubernetes and docker to
orchestrate and deploy applications in containers in your cluster. But we haven’t
talked much about which application component is created by each of these services.
Before we move forward, it’s important for you to understand these responsibilities as
you begin interacting with application components directly.

3.2 How OpenShift components work together
When you deploy an application in OpenShift, the request starts in the OpenShift
API. We discussed this process at a high level in chapter 2. To really understand how
containers isolate the processes within them, we need take a more detailed look at
how these services work together to deploy your application. The relationship
between OpenShift, Kubernetes, docker, and, ultimately, the Linux kernel is a chain
of dependencies.

 When you deploy an application in OpenShift, the process starts with the Open-
Shift services.

3.2.1 OpenShift manages deployments

Deploying applications begins with application components that are unique to Open-
Shift. The process is as follows:

1 OpenShift creates a custom container image using your source code and the
builder image template you specified. For example, app-cli and app-gui use the
PHP builder image.

2 This image is uploaded to the OpenShift container image registry.
3 OpenShift creates a build config to document how your application is built.

This includes which image was created, the builder image used, the location of
the source code, and other information.

4 OpenShift creates a deployment config to control deployments and deploy and
update your applications. Information in deployment configs includes the
number of replicas, the upgrade method, and application-specific variables and
mounted volumes.

5 OpenShift creates a deployment, which represents a single deployed version of
an application. Each unique application deployment is associated with your
application’s deployment config component.

39How OpenShift components work together

6 The OpenShift internal load balancer is updated with an entry for the DNS
record for the application. This entry will be linked to a component that’s cre-
ated by Kubernetes, which we’ll get to shortly.

7 OpenShift creates an image stream component. In OpenShift, an image stream
monitors the builder image, deployment config, and other components for
changes. If a change is detected, image streams can trigger application rede-
ployments to reflect changes.

Figure 3.1 shows how these components are linked together. When a developer cre-
ates source code and triggers a new application deployment (in this case, using the oc
command-line tool), OpenShift creates the deployment config, image stream, and
build config components.

Figure 3.1 Application components created by OpenShift during application deployment

oc new-app
...

Source
code

External

OpenShift

Builder
image Build config Image

stream
Custom
image

Image registry

DNS
route

Load balancer

Deployment
config

Deployment

1. The developers
create application
source code.

2. The developers trigger
a new application
deployment.

Users want to use
application but have
no access (and no
application…)

3. A custom container
image is created
and referenced in
the build config.

4. The deployment config creates
a unique deployment for each
application version.

3a. The image stream monitors
 the images and deployment
 config for changes, triggering
 upgrades and rebuilds as
 needed to serve the new
 configuration.

3b. A DNS route is created
 in the OpenShift load
 balancer.

Developers

Users

40 CHAPTER 3 Containers are Linux

The build config creates an application-specific custom container image using the
specified builder image and source code. This image is stored in the OpenShift image
registry. The deployment config component creates an application deployment that’s
unique for each version of the application. The image stream is created and monitors
for changes to the deployment config and related images in the internal registry. The
DNS route is also created and will be linked to a Kubernetes object.

 In figure 3.1, notice that the users are sitting by themselves with no access to the
application. There is no application. OpenShift depends on Kubernetes, as well as
docker, to get the deployed application to the user. Next, we’ll look at Kubernetes’
responsibilities in OpenShift.

3.2.2 Kubernetes schedules applications across nodes

Kubernetes is the orchestration engine at the heart of OpenShift. In many ways, an
OpenShift cluster is a Kubernetes cluster. When you initially deployed app-cli, Kuber-
netes created several application components:

 Replication controller—Scales the application as needed in Kubernetes. This com-
ponent also ensures that the desired number of replicas in the deployment con-
fig is maintained at all times.

 Service—Exposes the application. A Kubernetes service is a single IP address
that’s used to access all the active pods for an application deployment. When
you scale an application up or down, the number of pods changes, but they’re
all accessed through a single service.

 Pods—Represent the smallest scalable unit in OpenShift.

NOTE Typically, a single pod is made up of a single container. But in some sit-
uations, it makes sense to have a single pod consist of multiple containers.

Figure 3.2 illustrates the relationships between the Kubernetes components that are
created. The replication controller dictates how many pods are created for an initial
application deployment and is linked to the OpenShift deployment component.

 Also linked to the pod component is a Kubernetes service. The service represents
all the pods deployed by a replication controller. It provides a single IP address in
OpenShift to access your application as it’s scaled up and down on different nodes in
your cluster. The service is the internal IP address that’s referenced in the route cre-
ated in the OpenShift load balancer.

NOTE The relationship between deployments and replication controllers is
how applications are deployed, scaled, and upgraded. When changes are
made to a deployment config, a new deployment is created, which in turn cre-
ates a new replication controller. The replication controller then creates the
desired number of pods within the cluster, which is where your application is
actually deployed.

41How OpenShift components work together

We’re getting closer to the application itself, but we haven’t gotten there yet. Kuberne-
tes is used to orchestrate containers in an OpenShift cluster. But on each application
node, Kubernetes depends on docker to create the containers for each application
deployment.

3.2.3 Docker creates containers

Docker is a container runtime. A container runtime is the application on a server that
creates, maintains, and removes containers. A container runtime can act as a stand-
alone tool on a laptop or a single server, but it’s at its most powerful when being
orchestrated across a cluster by a tool like Kubernetes.

NOTE Docker is currently the container runtime for OpenShift. But a new
runtime is supported as of OpenShift 3.9. It’s called cri-o, and you can find
more information at http://cri-o.io.

Kubernetes controls docker to create containers that house the application. These
containers use the custom base image as the starting point for the files that are visible
to applications in the container. Finally, the docker container is associated with the
Kubernetes pod (see figure 3.3).

 To isolate the libraries and applications in the container image, along with other
server resources, docker uses Linux kernel components. These kernel-level resources
are the components that isolate the applications in your container from everything
else on the application node. Let’s look at these next.

OpenShift

Kubernetes

ServicePod

DNS
route

Load balancer

The Kubernetes service is associated with
the DNS route created in the load balancer.

OpenShift deployments
are associated with the
Kubernetes replication
controller.

The Kubernetes service
is linked to pods for
each deployment.

Replication controllers
are associated with pods
in Kubernetes.

Deployment

Replication
controller

Figure 3.2 Kubernetes components that are created when applications are deployed

http://cri-o.io

42 CHAPTER 3 Containers are Linux

3.2.4 Linux isolates and limits resources

We’re down to the core of what makes a container a container in OpenShift and
Linux. Docker uses three Linux kernel components to isolate the applications run-
ning in containers it creates and limit their access to resources on the host:

 Linux namespaces—Provide isolation for the resources running in the container.
Although the term is the same, this is a different concept than Kubernetes
namespaces (http://mng.bz/X8yz), which are roughly analogous to an Open-
Shift project. We’ll discuss these in more depth in chapter 7. For the sake of
brevity, in this chapter, when we reference namespaces, we’re talking about
Linux namespaces.

 Control groups (cgroups)—Provide maximum, guaranteed access limits for CPU
and memory on the application node. We’ll look at cgroups in depth in chapter 9.

 SELinux contexts—Prevent the container applications from improperly access-
ing resources on the host or in other containers. An SELinux context is a
unique label that’s applied to a container’s resources on the application node.
This unique label prevents the container from accessing anything that doesn’t
have a matching label on the host. We’ll discuss SELinux contexts in more
depth in chapter 11.

The docker daemon creates these kernel resources dynamically when the container is
created. These resources are associated with the applications that are launched for the
corresponding container; your application is now running in a container (figure 3.4).

 Applications in OpenShift are run and associated with these kernel components.
They provide the isolation that you see from inside a container. In upcoming sections,

OpenShift

Kubernetes

Container

PodReplication
controller

Containers use the custom container image
as the basis for the container filesystem.

Containers are associated
with a Kubernetes pod.

docker

Builder
image

Custom
image

Image registry

Figure 3.3 Docker containers are associated with Kubernetes pods.

http://mng.bz/X8yz

43How OpenShift components work together

we’ll discuss how you can investigate a container from the application node. From the
point of view of being inside the container, an application only has the resources allo-
cated to it that are included in its unique namespaces. Let’s confirm that next.

In the previous sections, we looked at each individual layer of OpenShift. Let’s put all
of these together before we dive down into the weeds of the Linux kernel.

docker

Linux kernel

User space Kernel space

Container

The docker container creates
Linux kernel resources to
isolate applications.

SELinux limits containers’ access
to only what they should be able
to access on the application node.

The application is
linked to the container
namespaces to isolate
it from everything else.

Namespaces isolate
applications in the
container from other
applications on the
host.

Control groups limit
CPU and memory
resources available
to each container.

NamespacesApplication Control
groups

SELinux
contexts

Figure 3.4 Linux kernel components used to isolate containers

Userspace and kernelspace
A Linux server is separated into two primary resource groups: the userspace and the
kernelspace. The userspace is where applications run. Any process that isn’t part of
the kernel is considered part of the userspace on a Linux server.

The kernelspace is the kernel itself. Without special administrator privileges like
those the root user has, users can’t make changes to code that’s running in the ker-
nelspace.

The applications in a container run in the userspace, but the components that isolate
the applications in the container run in the kernelspace. That means containers are
isolated using kernel components that can’t be modified from inside the container.

44 CHAPTER 3 Containers are Linux

3.2.5 Putting it all together

The automated workflow that’s executed when you deploy an application in Open-
Shift includes OpenShift, Kubernetes, docker, and the Linux kernel. The interactions
and dependencies stretch across multiple services, as outlined in figure 3.5.

oc new-app
...

Source
code

External

Builder
image Build config Image

stream
Custom
image

Image registry

Deployment
config

Deployment

Developers

Users

OpenShift

Kubernetes

ServicePodReplication
controller

DNS
route

Load
balancer

docker

Linux

Kernel space

Container

NamespacesApplication Control
groups

SELinux
contexts

User space

Figure 3.5 OpenShift deployment including components that make up the container

45Application isolation with kernel namespaces

Developers and users interact primarily with OpenShift and its services. OpenShift
works with Kubernetes to ensure that user requests are fulfilled and applications are
delivered consistently according to the developer’s designs.

 As you’ll recall, one of the acceptable definitions for a container earlier in this
chapter was that they’re “fancy processes.” We developed this definition by explaining
how a container takes an application process and uses namespaces to limit access to
resources on the host. We’ll continue to develop this definition by interacting with
these fancy processes in more depth in chapters 9 and 10.

 Like any other process running on a Linux server, each container has an assigned
process ID (PID) on the application node.

3.3 Application isolation with kernel namespaces
Armed with the PID for the current app-cli container, you can begin to analyze how
containers isolate process resources with Linux namespaces. Earlier in this chapter, we
discussed how kernel namespaces are used to isolate the applications in a container
from the other processes on a host. Docker creates a unique set of namespaces to iso-
late the resources in each container. Looking again at figure 3.4, the application is
linked to the namespaces because they’re unique for each container. Cgroups and
SELinux are both configured to include information for a newly created container,
but those kernel resources are shared among all containers running on the applica-
tion node.

 To get a list of the namespaces that were created for app-cli, use the lsns com-
mand. You need the PID for app-cli to pass as a parameter to lsns. Appendix C walks
you through how to use the docker daemon to get the host PID for a container, along
with some other helpful docker commands. Use this appendix as a reference to get
the host PID for your app-cli container.

 The lsns command accepts a PID with the -p option and outputs the namespaces
associated with that PID. The output for lsns has the following six columns:

 NS—Inode associated with the namespace
 TYPE—Type of namespace created
 NPROCS—Number of processes associated with the namespace
 PID—Process used to create the namespace
 USER—User that owns the namespace
 COMMAND—Command executed to launch the process to create the namespace

When you run the command, the output from lsns shows six namespaces for app-cli.
Five of these namespaces are unique to app-cli and provide the container isolation
that we’re discussing in this chapter. There are also two additional namespaces in
Linux that aren’t used directly by OpenShift. The user namespace isn’t currently used
by OpenShift, and the cgroup namespace is shared between all containers on
the system.

46 CHAPTER 3 Containers are Linux

NOTE On an OpenShift application node, the user namespace is shared
across all applications on the host. The user namespace was created by PID 1
on the host, has over 200 processes associated with it, and is associated with
the systemd command. The other namespaces associated with the app-cli PID
have far fewer processes and aren’t owned by PID 1 on the host.

OpenShift uses five Linux namespaces to isolate processes and resources on applica-
tion nodes. Coming up with a concise definition for exactly what a namespace does is
a little difficult. Two analogies best describe their most important properties, if you’ll
forgive a little poetic license:

 Namespaces are like paper walls in the Linux kernel. They’re lightweight and
easy to stand up and tear down, but they offer sufficient privacy when they’re in
place.

 Namespaces are similar to two-way mirrors. From within the container, only the
resources in the namespace are available. But with proper tooling, you can see
what’s in a namespace from the host system.

The following snippet lists all namespaces for app-cli with lsns:

lsns -p 4470
NS TYPE NPROCS PID USER COMMAND

4026531837 user 254 1 root /usr/lib/systemd/systemd --

➥ switched-root --system --deserialize 20
4026532211 mnt 12 4470 1000080000 httpd -D FOREGROUND
4026532212 uts 12 4470 1000080000 httpd -D FOREGROUND
4026532213 pid 12 4470 1000080000 httpd -D FOREGROUND
4026532420 ipc 13 3476 1001 /usr/bin/pod
4026532423 net 13 3476 1001 /usr/bin/pod

As you can see, the five namespaces that OpenShift uses to isolate applications are as
follows:

 Mount—Ensures that only the correct content is available to applications in the
container

 Network—Gives each container its own isolated network stack
 PID—Provides each container with its own set of PID counters
 UTS—Gives each container its own hostname and domain name

There are currently two additional namespaces in the Linux kernel that aren’t used by
OpenShift:

 Cgroup—Cgroups are used as a shared resource on an OpenShift node, so this
namespace isn’t required for effective isolation.

Mount namespace

UTS
namespace

PID
namespace

IPC
namespace

Network namespace

 IPC—Provides shared memory isolation for each container

47Application isolation with kernel namespaces

 User—This namespace can map a user in a container to a different user on the
host. For example, a user with ID 0 in the container could have user ID 5000
when interacting with resources outside the container. This feature can be
enabled in OpenShift, but there are issues with performance and node configu-
ration that fall out of scope for our example cluster. If you’d like more informa-
tion on enabling the user namespace to work with docker, and thus with
OpenShift, see the article “Hardening Docker Hosts with User Namespaces” by
Chris Binnie (Linux.com, http://mng.bz/Giwd).

We’ll discuss the five namespaces used by OpenShift with examples, including how
they enhance your security posture and how they isolate their associated resources.
Let’s start with the mount namespace.

3.3.1 The mount namespace

The mount namespace isolates filesystem content, ensuring that content assigned to
the container by OpenShift is the only content available to the processes running in
the container. The mount namespace for the app-cli container allows the applications
in the container to access only the content in the custom app-cli container image, and
any information stored on the persistent volume associated with the persistent volume
claim (PVC) for app-cli (see figure 3.6).

NOTE Applications always need persistent storage. Persistent storage allows
data to persist when a pod is removed from the cluster. It also allows data to
be shared between multiple pods when needed. You’ll learn how to configure
and use persistent storage on an NFS server with OpenShift in chapter 7.

The root filesystem, based on the app-cli container image, is a little more difficult to
uncover, but we’ll do that next.

What is /usr/bin/pod?
The IPC and network namespaces are associated with a different PID for an applica-
tion called /usr/bin/pod. This is a pseudo-application that’s used for containers cre-
ated by Kubernetes.

Under most circumstances, a pod consists of one container. There are conditions,
however, where a single pod may contain multiple containers. Those situations are
outside the scope of this chapter; but when this happens, all the containers in the
pod share these namespaces. That means they share a single IP address and can
communicate with shared memory devices as though they’re on the same host.

http://mng.bz/Giwd

48 CHAPTER 3 Containers are Linux

ACCESSING CONTAINER ROOT FILESYSTEMS

When you configured OpenShift, you specified a block device for docker to use for
container storage. Your OpenShift configuration uses logical volume management
(LVM) on this device for container storage. Each container gets its own logical vol-
ume (LV) when it’s created. This storage solution is fast and scales well for large pro-
duction clusters.

 To view all LVs created by docker on your host, run the lsblk command. This
command shows all block devices on your host, as well as any LVs. It confirms that
docker has been creating LVs for your containers:

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 253:0 0 8G 0 disk
 vda1 253:1 0 8G 0 part /
vdb 253:16 0 20G 0 disk

Applications
Launched by the

app-cli initial process

Application
Starts app-cli

1. Content from the app-cli container
 image is made available in the
 app-cli mount namespace.

2. The application is launched
 using the files and libraries
 in the app-cli namespace.

Applications using
the mount namespace
created for the app-cli
container can see only
the content in that
namespace.

An application launched
by another application
inherits the same
namespace as its
parent.

Volumes can be added
before or after a pod is
started, depending on
the application's needs.

The NFS mount for the app-cli persistent volume
is added to the mount namespace and made
available at /opt/app-root/src/uploads.

Anything in the app-cli namespace
must be available on the host on
the local filesystem or as a
mounted remote volume.

Application node filesystem
All content available on

the host by default

app-cli image
Cached copy of the

app-cli container image
from the image registry

NFS mount
Volume added to
app-cli via PVC

Mount namespace
Created for the

app-cli container

Figure 3.6 The mount namespace takes selected content and makes it available to the app-cli
applications.

49Application isolation with kernel namespaces

 vdb1 253:17 0 20G 0 part
 docker_vg-docker--pool_tmeta 252:0 0 24M 0 lvm
 docker_vg-docker--pool 252:2 0 8G 0 lvm
 docker-253:1-10125-e27ee79f... 252:3 0 10G 0 dm
 docker-253:1-10125-6ec90d0f... 252:4 0 10G 0 dm
...

 docker_vg-docker--pool_tdata 252:1 0 8G 0 lvm
 docker_vg-docker--pool 252:2 0 8G 0 lvm
 docker-253:1-10125-e27ee79f... 252:3 0 10G 0 dm
 docker-253:1-10125-6ec90d0f... 252:4 0 10G 0 dm

...

The LV device that the app-cli container uses for storage is recorded in the informa-
tion from docker inspect. To get the LV for your app-cli container, run the following
command:

docker inspect -f '{{ .GraphDriver.Data.DeviceName }}' fae8e211e7a7

You’ll get a value similar to docker-253:1-10125-8bd64caed0421039e83ee4f1cdc
bcf25708e3da97081d43a99b6d20a3eb09c98. This is the name for the LV that’s being
used as the root filesystem for the app-cli container.

 Unfortunately, when you run the following mount command to see where this LV is
mounted, you don’t get any results:

mount | grep docker-253:1-10125-

➥ 8bd64caed0421039e83ee4f1cdcbcf25708e3da97081d43a99b6d20a3eb09c9

You can’t see the LV for app-cli because it’s in a different namespace. No, we’re not
kidding. The mount namespace for your application containers is created in a differ-
ent mount namespace from your application node’s operating system.

 When the docker daemon starts, it creates its own mount namespace to contain filesys-
tem content for the containers it creates. You can confirm this by running lsns for the
docker process. To get the PID for the main docker process, run the following pgrep com-
mand (the process dockerd-current is the name for the main docker daemon process):

pgrep -f dockerd-current

Once you have the docker daemon’s PID, you can use lsns to view its namespaces.
You can tell from the output that the docker daemon is using the system namespaces
created by systemd when the server booted, except for the mount namespace:

lsns -p 2385
NS TYPE NPROCS PID USER COMMAND

4026531836 pid 221 1 root /usr/lib/systemd/systemd --switched-root

➥ --system --deserialize 20
4026531837 user 254 1 root /usr/lib/systemd/systemd --switched-root

➥ --system --deserialize 20
4026531838 uts 223 1 root /usr/lib/systemd/systemd --switched-root

➥ --system --deserialize 20

50 CHAPTER 3 Containers are Linux

4026531839 ipc 221 1 root /usr/lib/systemd/systemd --switched-root

➥ --system --deserialize 20
4026531956 net 223 1 root /usr/lib/systemd/systemd --switched-root

➥ --system --deserialize 20
4026532298 mnt 12 2385 root /usr/bin/dockerd-current --add-runtime

➥ docker-runc=/usr/libexec/docker/docker-runc-current
--default-runtime=docker-runc --exec-opt native.cgroupdriver=systemd

➥ --userland-proxy-p

You can use a command-line tool named nsenter to enter an active namespace for
another application. It’s a great tool to use when you need to troubleshoot a container
that isn’t performing as it should. To use nsenter, you give it a PID for the container
with the --target option and then instruct it regarding which namespaces you want
to enter for that PID:

$ nsenter --target 2385

When you run the command, you arrive at a prompt similar to your previous prompt.
The big difference is that now you’re operating from inside the namespace you speci-
fied. Run mount from within docker’s mount namespace and grep for your app-cli LV
(the output is trimmed for clarity):

mount | grep docker-253:1-10125-8bd64cae...
/dev/mapper/docker-253:1-10125-8bd64cae... on ➥
/var/lib/docker/devicemapper/mnt/8bd64cae... type xfs (rw,relatime,➥
context="system_u:object_r:svirt_sandbox_file_t:s0:c4,c9",nouuid,attr2,inode64,

➥ sunit=1024,swidth=1024,noquota)

From inside docker’s mount namespace, the mount command output includes the
mount point for the root filesystem for app-cli. The LV that docker created for app-cli
is mounted on the application node at /var/lib/docker/devicemapper/mnt/8bd64-
cae… (directory name trimmed for clarity).

 Go to that directory while in the docker daemon mount namespace, and you’ll find
a directory named rootfs. This directory is the filesystem for your app-cli container:

ls -al rootfs
total 32
-rw-r--r--. 1 root root 15759 Aug 1 17:24 anaconda-post.log
lrwxrwxrwx. 1 root root 7 Aug 1 17:23 bin -> usr/bin
drwxr-xr-x. 3 root root 18 Sep 14 22:18 boot
drwxr-xr-x. 4 root root 43 Sep 21 23:19 dev
drwxr-xr-x. 53 root root 4096 Sep 21 23:19 etc
-rw-r--r--. 1 root root 7388 Sep 14 22:16 help.1
drwxr-xr-x. 2 root root 6 Nov 5 2016 home
lrwxrwxrwx. 1 root root 7 Aug 1 17:23 lib -> usr/lib
lrwxrwxrwx. 1 root root 9 Aug 1 17:23 lib64 -> usr/lib64
drwx------. 2 root root 6 Aug 1 17:23 lost+found
drwxr-xr-x. 2 root root 6 Nov 5 2016 media
drwxr-xr-x. 2 root root 6 Nov 5 2016 mnt
drwxr-xr-x. 4 root root 32 Sep 14 22:05 opt

51Application isolation with kernel namespaces

drwxr-xr-x. 2 root root 6 Aug 1 17:23 proc
dr-xr-x---. 2 root root 137 Aug 1 17:24 root
drwxr-xr-x. 11 root root 145 Sep 13 15:35 run
lrwxrwxrwx. 1 root root 8 Aug 1 17:23 sbin -> usr/sbin
...

It’s been quite a journey to uncover the root filesystem for app-cli. You’ve used infor-
mation from the docker daemon to use multiple command-line tools, including
nsenter, to change from the default mount namespace for your server to the namespace
created by the docker daemon. You’ve done a lot of work to find an isolated filesystem.
Docker does this automatically at the request of OpenShift every time a container is cre-
ated. Understanding how this process works, and where the artifacts are created, is
important when you’re using containers every day for your application workloads.

 From the point of view of the applications running in the app-cli container, all
that’s available to them is what’s in the rootfs directory, because the mount namespace
created for the container isolates its content (see figure 3.7). Understanding how
mount namespaces function on an application node, and knowing how to enter a
container namespace manually, are invaluable tools when you’re troubleshooting a
container that’s not functioning as designed.

Figure 3.7 The app-cli mount namespace isolates the contents of the rootfs directory.

The system mount
namespace is for all
applications running
on the host.

The docker mount
namespace isolates
the mounted volumes
for the containers on
the system.

The app-cli namespace
isolates the content
available in the
container from
everything else
on the system.

System mount namespace

docker daemon mount namespace

app-cli container mount namespace

drwxr-xr-x. 18 root root 4096 Oct 9 12:39 .

drwxr-xr-x. 3 root root 30 Sep 21 12:49 ..

lrwxrwxrwx. 1 root root 7 Aug 1 17:23 bin

drwxr-xr-x. 3 root root 18 Sep 14 22:18 boot

drwxr-xr-x. 4 root root 43 Oct 9 12:39 dev

-rwxr-xr-x. 1 root root 0 Oct 9 12:39 .dockerenv

drwxr-xr-x. 53 root root 4096 Oct 9 12:39 etc

-rw-r--r--. 1 root root 7388 Sep 14 22:16 help.1

drwxr-xr-x. 2 root root 6 Nov 5 2016 home

lrwxrwxrwx. 1 root root 7 Aug 1 17:23 lib

lrwxrwxrwx. 1 root root 9 Aug 1 17:23 lib64

drwx------. 2 root root 6 Aug 1 17:23 lost+found

drwxr-xr-x. 2 root root 6 Nov 5 2016 media

drwxr-xr-x. 2 root root 6 Nov 5 2016 mnt

drwxr-xr-x. 4 root root 32 Sep 14 22:05 opt

drwxr-xr-x. 2 root root 6 Aug 1 17:23 proc

52 CHAPTER 3 Containers are Linux

Press Ctrl-D to exit the docker daemon’s mount namespace and return to the default
namespace for your application node. Next, we’ll discuss the UTS namespace. It won’t
be as involved an investigation as the mount namespace, but the UTS namespace is
useful for an application platform like OpenShift that deploys horizontally scalable
applications across a cluster of servers.

3.3.2 The UTS namespace

UTS stands for Unix time sharing in the Linux kernel. The UTS namespace lets each
container have its own hostname and domain name.

The easiest way to view the hostname for a server is to run the hostname command, as
follows:

hostname

You could use nsenter to enter the UTS namespace for the app-cli container, the same
way you entered the mount namespace in the previous section. But there are additional
tools that will execute a command in the namespaces for a running container.

NOTE On the application node, if you use the nip.io domain discussed in
appendix A, your hostname should look similar to ocp2.192.168.122.101
.nip.io.

One of those tools is the docker exec command. To get the hostname value for a run-
ning container, pass docker exec a container’s short ID and the same hostname com-
mand you want to run in the container. Docker executes the specified command for
you in the container’s namespaces and returns the value. The hostname for each
OpenShift container is its pod name:

docker exec fae8e211e7a7 hostname
app-cli-1-18k2s

Each container has its own hostname because of its unique UTS namespace. If you
scale up app-cli, the container in each pod will have a unique hostname as well. The

Time sharing
It can be confusing to talk about time sharing when the UTS namespace has nothing
to do with managing the system clock. Time sharing originally referred to multiple
users sharing time on a system simultaneously. Back in the 1970s, when this con-
cept was created, it was a novel idea.

The UTS data structure in the Linux kernel had its beginnings then. This is where the
hostname, domain name, and other system information are retained. If you’d like to
see all the information in that structure, run uname -a on a Linux server. That com-
mand queries the same data structure.

53Application isolation with kernel namespaces

value of this is identifying data coming from each container in a scaled-up system. To
confirm that each container has a unique hostname, log in to your cluster as your
developer user:

oc login -u developer -p developer https://ocp1.192.168.122.100.nip.io:8443

The oc command-line tool has functionality that’s similar to docker exec. Instead of
passing in the short ID for the container, however, you can pass it the pod in which
you want to execute the command. After logging in to your oc client, scale the app-cli
application to two pods with the following command:

oc scale dc/app-cli --replicas=2

This will cause an update to your app-cli deployment config and trigger the creation
of a new app-cli pod. You can get the new pod’s name by running the command oc
get pods --show-all=false. The show-all=false option prevents the output of
pods in a Completed state, so you see only active pods in the output.

 Because the container hostname is its corresponding pod name in OpenShift, you
know which pod you were working with using docker directly:

$ oc get pods --show-all=false
NAME READY STATUS RESTARTS AGE
app-cli-1-18k2s 1/1 Running 1 5d
app-cli-1-9hsz1 1/1 Running 0 42m
app-gui-1-l65d9 1/1 Running 1 5d

To get the hostname from your new pod, use the oc exec command. It’s similar to
docker exec, but instead of a container’s short ID, you use the pod name to specify
where you want the command to run. The hostname for your new pod matches the
pod name, just like your original pod:

$ oc exec app-cli-1-9hsz1 hostname
app-cli-1-9hsz1

When you’re troubleshooting application-level issues on your cluster, this is an incred-
ibly useful benefit provided by the UTS namespace. Now that you know how host-
names work in containers, we’ll investigate the PID namespace.

3.3.3 PIDs in containers

Because PIDs are how one application sends signals and information to other applica-
tions, isolating visible PIDs in a container to only the applications in it is an important
security feature. This is accomplished using the PID namespace.

 On a Linux server, the ps command shows all running processes, along with their
associated PIDs, on the host. This command typically has a lot of output on a busy sys-
tem. The --ppid option limits the output to a single PID and any child processes it has
spawned.

Original app-cli pod

New app-cli pod

 www.allitebooks.com

http://www.allitebooks.org

54 CHAPTER 3 Containers are Linux

 From your application node, run ps with the --ppid option, and include the PID
you obtained for your app-cli container. Here you can see that the process for
PID 4470 is httpd and that it has spawned several other processes:

ps --ppid 4470
PID TTY TIME CMD

4506 ? 00:00:00 cat
4510 ? 00:00:01 cat
4542 ? 00:02:55 httpd
4544 ? 00:03:01 httpd
4548 ? 00:03:01 httpd
4565 ? 00:03:01 httpd
4568 ? 00:03:01 httpd
4571 ? 00:03:01 httpd
4574 ? 00:03:00 httpd
4577 ? 00:03:01 httpd
6486 ? 00:03:01 httpd

Use oc exec to get the output of ps for the app-cli pod that matches the PID you col-
lected earlier. If you’ve forgotten, you can compare the hostname in the docker con-
tainer to the pod name. From inside the container, don’t use the --ppid option,
because you want to see all the PIDs visible from within the app-cli container.

 When you run the following command, the output is similar to that from the previ-
ous command:

$ oc exec app-cli-1-18k2s ps
PID TTY TIME CMD

1 ? 00:00:27 httpd
18 ? 00:00:00 cat
19 ? 00:00:01 cat
20 ? 00:02:55 httpd
22 ? 00:03:00 httpd
26 ? 00:03:00 httpd
43 ? 00:03:00 httpd
46 ? 00:03:01 httpd
49 ? 00:03:01 httpd
52 ? 00:03:00 httpd
55 ? 00:03:00 httpd
60 ? 00:03:01 httpd
83 ? 00:00:00 ps

There are three main differences in the output:

 The initial httpd command (PID 4470) is listed in the output.
 The ps command is listed in the output.
 The PIDs are completely different.

Each container has a unique PID namespace. That means from inside the container,
the initial command that started the container (PID 4470) is viewed as PID 1. All the
processes it spawned also have PIDs in the same container-specific namespace.

55Application isolation with kernel namespaces

NOTE Applications that are created by a process already in a container auto-
matically inherit the container’s namespace. This makes it easier for applica-
tions in the container to communicate.

So far, we’ve discussed how filesystems, hostnames, and PIDs are isolated in a con-
tainer. Next, let’s take a quick look at how shared memory resources are isolated.

3.3.4 Shared memory resources

Applications can be designed to share memory resources. For example, application A
can write a value into a special, shared section of system memory, and the value can be
read and used by application B. The following shared memory resources, docu-
mented at http://mng.bz/Xjai, are isolated for each container in OpenShift:

 POSIX message queue interfaces in /proc/sys/fs/mqueue
 The following shared memory parameters:

– msgmax
– msgmnb
– msgmni
– sem
– shmall
– shmmax
– shmmni
– shm_rmid_forced

 IPC interfaces in /proc/sysvipc

If a container is destroyed, shared memory resources are destroyed as well. Because
these resources are application-specific, you’ll work with them more in chapter 8
when you deploy a stateful application.

 The last namespace to discuss is the network namespace.

3.3.5 Container networking

The fifth kernel namespace that’s used by docker to isolate containers in OpenShift is
the network namespace. There’s nothing funny about the name for this namespace.
The network namespace isolates network resources and traffic in a container.
The resources in this definition mean the entire TCP/IP stack is used by applications
in the container.

 Chapter 10 is dedicated to going deep into OpenShift’s software-defined network-
ing, but we need to illustrate in this chapter how the view from within the container is
drastically different than the view from your host.

 The PHP builder image you used to create app-cli and app-gui doesn’t have the ip
utility installed. You could install it into the running container using yum. But a faster
way is to use nsenter. Earlier, you used nsenter to enter the mount namespace of the
docker process so you could view the root filesystem for app-cli.

http://mng.bz/Xjai

56 CHAPTER 3 Containers are Linux

If you run nsenter and include a command as the last argument, then instead of
opening an interactive session in that namespace, the command is executed in the
specified namespace and returns the results. Using this tool, you can run the ip
command from your server’s default namespace in the network namespace of your
app-cli container.

 If you compare this to the output from running the /sbin/ip a command on your
host, the differences are obvious. Your application node will have 10 or more active
network interfaces. These represent the physical and software-defined devices that
make OpenShift function securely. But in the app-cli container, you have a container-
specific loopback interface and a single network interface with a unique MAC and
IP address:

nsenter -t 5136 -n /sbin/ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue

➥ state UNKNOWN qlen 1
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
3: eth0@if12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue

➥ state UP
link/ether 0a:58:0a:81:00:2e brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 10.129.0.46/23 scope global eth0

valid_lft forever preferred_lft forever
inet6 fe80::858:aff:fe81:2e/64 scope link

valid_lft forever preferred_lft forever

The network namespace is the first component in the OpenShift networking solution.
We’ll discuss how network traffic gets in and out of containers in chapter 10, when we
cover OpenShift networking in depth.

 In OpenShift, isolating processes doesn’t happen in the application, or even in the
userspace on the application node. This is a key difference between other types of soft-
ware clusters, and even some other container-based solutions. In OpenShift, isolation

The OSI model
It would be great if we could go through the OSI model here. Unfortunately, it’s out of
scope for this book. In short, it’s a model to describe how data travels in a TCP/IP
network. There are seven layers. You’ll often hear about layer 3 devices, or a layer 2
switch; when someone says that, they’re referring to the layer of the OSI model on
which a particular device operates. Additionally, the OSI model is a great tool to use
any time you need to understand how data moves through any system or application.

If you haven’t read up on the OSI model before, it’s worth your time to look at the
article “The OSI Model Explained: How to Understand (and Remember) the 7 Layer
Network Model” by Keith Shaw (Network World, http://mng.bz/CQCE).

Loopback
device in the

container

eth0
 device in

 the container

MAC address
for eth0

IP address
for eth0

http://mng.bz/CQCE

57Summary

and resource limits are enforced in the Linux kernel on the application nodes. Isola-
tion with kernel namespaces provides a much smaller attack surface. An exploit that
would let someone break out from a container would have to exist in the container run-
time or the kernel itself. With OpenShift, as we’ll discuss in depth in chapter 11 when
we examine security principles in OpenShift, configuration of the kernel and the con-
tainer runtime is tightly controlled.

 The last point we’d like to make in this chapter echoes how we began the discus-
sion. Fundamental knowledge of how containers work and use the Linux kernel is
invaluable. When you need to manage your cluster or troubleshoot issues when they
arise, this knowledge lets you think about containers in terms of what they’re doing all
the way to the bottom of the Linux kernel. That makes solving issues and creating sta-
ble configurations easier to accomplish.

 Before you move on, clean up by reverting back to a single replica of the app-cli
application with the following command:

oc scale dc/app-cli --replicas=1

3.4 Summary
 OpenShift orchestrates Kubernetes and docker to deploy and manage applica-

tions in containers.
 Multiple levels of management are available in your OpenShift cluster that can

be used for different levels of information.
 Containers isolate processes in containers using kernel namespaces.
 You can interact with namespaces from the host using special applications and

tools.

Part 2

Cloud-native applications

 Cloud native is how the next generation of applications is being created. In
this part of the book, we’ll discuss the technologies in OpenShift that create the
continuously deploying, self-healing, autoscaling behaviors we all expect in a
cloud-native application.

 Chapter 4 focuses on working with and modifying services in OpenShift. This
chapter also walks you through creating probes for your applications to ensure
that they’re always functioning correctly.

 Chapter 5 takes that to the next level: using OpenShift to automatically scale
applications based on resource consumption.

 Chapter 6 brings everything cloud-native into a single functional example of
deploying an entire continuous integration, continuous deployment applica-
tion, all in OpenShift.

61

Working with services

In chapter 2, you deployed your first application in OpenShift and reviewed many
of the components that were created. You confirmed that all the components
worked together to deliver two deployments of the Image Uploader application. In
this chapter, we’ll discuss those relationships in depth, and how OpenShift recovers
when those relationships are altered.

4.1 Testing application resiliency
When you deployed the Image Uploader application in chapter 2, one pod was cre-
ated for each deployment. If that pod crashed, the application would be temporarily
unavailable until a new pod was created to replace it. If your application became
more popular, you wouldn’t be able to support new users past the capacity of a single
pod. To solve this problem and provide scalable applications, OpenShift deploys
each application with the ability to scale up and down. The application component
that handles scaling application pods is called the replication controller (RC).

This chapter covers
 Testing application resiliency

 Working with labels and selectors

 Scaling applications

 Tracking application health and status

62 CHAPTER 4 Working with services

4.1.1 Understanding replication controllers

The RC’s main function is to ensure that the desired number of identical pods is run-
ning at all times. If a pod exits or fails, the RC deploys a new one to ensure a healthy
application is always available (see figure 4.1).

You can think of the RC as a pod-monitoring agent that ensures certain requirements
are met across the entire OpenShift cluster. You can check the current status of the
RCs for the app-cli deployment by running the oc describe command (listing 4.1).
Note that in listing 4.1, the individual deployment (app-cli-1) is specified, not the
name of the application.

OpenShift master server

The replication controller detects
a failure in an application pod
for app-cli.

A replacement pod is automatically
deployed, and the failed pod is
removed from the system.

Developers

Replication
controller

app-cli
application

pod

app-cli
application

pod

Web/CLI/API

Figure 4.1 If an application pod fails to function correctly, it’s automatically replaced by the replication
controller.

63Testing application resiliency

 The information tracked about the RC helps to establish its relationship to the
other components that make up the application:

 Name of the RC, which is the same as the name of the deployment it’s associ-
ated with

 Image name used to create pods for the RC
 Labels and selectors for the RC
 Current and desired number of pod replicas running in the RC
 Historical pod status information for the RC, including how many pods are

waiting to be started or have failed since the creation of the RC

The labels and selectors in the next listing are key-value pairs that are associated with
all OpenShift components. They’re used to create and maintain the relationships and
interactions between applications. We’ll discuss them in more depth in the next section.

$ oc describe rc $(oc get rc -l

➥ app=app-cli -o=jsonpath='{.items[].metadata.name}')
Name: app-cli-1
Namespace: image-uploader
Selector: app=app-cli,deployment=app-cli-1,deploymentconfig=app-cli
Labels: app=app-cli

openshift.io/deployment-config.name=app-cli
Annotations: openshift.io/deployer-pod.name=app-cli-1-deploy

openshift.io/deployment-config.latest-version=1
openshift.io/deployment-config.name=app-cli
openshift.io/deployment.phase=Complete
openshift.io/deployment.replicas=
openshift.io/deployment.status-reason=config change
openshift.io/encoded-deployment-config=

 ➥ {"kind":"DeploymentConfig","apiVersion":"v1","metadata":
 ➥ {"name":"app-cli","namespace":
 ➥ "image-uploader","selfLink":
 ➥ "/apis/apps.openshift.io/v1/namespaces/image-up...
Replicas: 1 current / 1 desired
Pods Status: 1 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:

Labels: app=app-cli
deployment=app-cli-1
deploymentconfig=app-cli

Annotations: openshift.io/deployment-config.latest-version=1
openshift.io/deployment-config.name=app-cli
openshift.io/deployment.name=app-cli-1
openshift.io/generated-by=OpenShiftNewApp

Containers:
app-cli:
Image: docker-registry.default.svc:

 ➥ 5000/image-uploader/app-cli@sha256:
 ➥ cef79b2eaf6bb7bf495fb16e9f720d5728299673dfec1d8f16472f1871633ebc

Port: 8080/TCP

Listing 4.1 Using oc describe to get information about the app-cli RC

Replication controller name
Labels and

selectors
for the RC

Current
running
pods, and
the desired
number

Image used
 to create the

pods for the RC

64 CHAPTER 4 Working with services

Environment: <none>
Mounts:

/opt/app-root/src/uploads from volume-mddzb (rw)
Volumes:
volume-mddzb:
Type: PersistentVolumeClaim

 ➥ (a reference to a PersistentVolumeClaim in the same namespace)
ClaimName: app-cli
ReadOnly: false

Events: <none>

NOTE By using the oc describe command, you can quickly look at the infor-
mation about the component, but not all the fields are shown. If you want to
see every attribute for the component, use the oc get command, which can
be output in multiple formats, including YAML syntax. An example is oc get
rc app-cli-1 -o yaml.

The RC doesn’t keep track of a specific list of pods that it manages. This is by design.
In keeping with Kubernetes design philosophies, OpenShift API objects are loosely
coupled. RCs use label selectors to constantly query the pods that they manage. If
pods are created or deleted outside of the normal process, the RC can immediately
take action to put the system back into the desired state. Listing 4.1 included the selec-
tor field; the RC will manage any pod that has the three labels shown in that selector
field. This loosely coupled philosophy is demonstrated throughout OpenShift, includ-
ing many of the API objects discussed in the first three chapters:

 Image streams monitor for changes and trigger new deployments and builds for
applications.

 Build configs track everything required to build an application deployment.
 Deployment configs keep track of all information required to deploy an application.
 Pods are the default unit of work. They’re where your application code is served.
 Deployments are unique deployed versions of an application.
 Container images are the template used to deploy application pods.
 Services are a consistent interface for all the application pods for a deployment.
 Routes are external-facing, DNS-based load-balancer entries that are connected

to services.
 Replication controllers ensure that the desired number of application pods is run-

ning at all times.

TIP The RC and other objects track pods through labels and selectors, and this
can be used in troubleshooting. For instance, a pod may exhibit odd behavior
that requires extensive debugging. Instead of taking the system offline, an
OpenShift administrator can modify the pod’s labels so it’s no longer included
as part of the RC. The old pod is quarantined and can be debugged via a com-
mand shell without affecting end users or services. The RC will then notice that
the desired number of pods is different from the current number of pods and
start a new pod in place of the one that’s in quarantine.

Mounted volumes

65Testing application resiliency

4.1.2 Labels and selectors

As we go forward, it’s important that you understand the following regarding how
labels and selectors are used in OpenShift:

 When an application is deployed in OpenShift, every object that’s created is
assigned a collection of labels. Labels are unique per project, just like application
names. That means in Image Uploader, only one application can be named app-cli.

 Labels that have been applied to an object are attributes that can be used to cre-
ate relationships in OpenShift. But relationships are two-way streets: if something
can have a label, something else must be able to state a need for a resource with
that label. The other side of this relationship exists in the shape of label selec-
tors (selectors).

 Label selectors are used to define the labels that are required when work needs
to happen.

Let’s examine this in more depth, using the app-cli application you deployed in chap-
ter 2. In the next example, you’ll remove a label from a deployed pod. This is one of
the few times we’ll ask you to do something to intentionally break an application.
Removing a label from a pod will break the relationship with the RC and other appli-
cation components. The purpose of this example is to demonstrate the RC in
action—and to do that, you need to create a condition that it needs to remedy.

 Using listing 4.1 as an example, the selectors and labels for the app-cli-1 RC and
the app-cli-1 pods are shown in figure 4.2. Selectors in an application component are
the labels it uses to interact with other components. The app-cli RC will create and
monitor applications pods with the following labels:

 app=app-cli

 deployment=app-cli-1

 deploymentconfig=app-cli

The app-cli replication controller uses
selectors to identify the pods it needs
to interact with.

app-cli replication controller

Selectors:
app=app-cli
deployment=app-cli-1
deploymentconfig=app-cli

Each app-cli pod is created with the
labels that correspond to the selectors
in the app-cli replication controller.

app-cli pod

Labels:
app=app-cli
deployment=app-cli-1
deploymentconfig=app-cli

Figure 4.2 The app-cli-1 RC manages pods with labels that match its Selector field.

66 CHAPTER 4 Working with services

The app-cli-1 RC will always ensure that there is the configured number of replica
applications pods with those three labels. When you deployed app-cli, you didn’t spec-
ify a specific replica count, so the RC ensures that one replica is running. In the next
section, you’ll manipulate the number of replicas for the app-cli deployment. First,
let’s discuss what happens when an application pod no longer meets the criteria
defined by the RC.

 As an exercise, remove the app=app-cli label from the app-cli pod:

1 In the web interface, choose Applications > Pods on the left panel of your proj-
ect view. This takes you to a list of all the pods in the current project. You should
see a single running pod at this point.

2 Click the pod to get the full pod view. The three labels appear at the top of the
screen, just below the pod name.

3 Choose Actions > Edit YAML, remove the app=app-cli label as shown in fig-
ure 4.3, and click Save.

4 You’re sent back to the pod view. But you want to view all the pods in the proj-
ect, so click Applications > Pods again. You’ll notice that there are now two
pods: the pod you from which you removed the app=app-cli label, and a newly
deployed pod to replace it.

Figure 4.3 Edit pod view

Delete this line

67Testing application resiliency

If you click each pod individually, you’ll see that one pod has all three labels, and one
pod has only two labels (because you deleted one). The RC immediately detected your
label deletion and deployed a new pod that had all the labels to meet its requirement
of one pod with the proper labels defined by the selectors in the RC (see figure 4.4).
The original pod from which you removed a label is now considered abandoned,
because there isn’t an RC with matching selectors. If it dies, a new pod won’t be
started in its place. The new pod is being managed by the app-cli-1 RC, which means if
that pod dies or is deleted, then a replacement pod will be started quickly.

 The fastest way to delete the pods for the app-cli deployment is through the command
line. This process shouldn’t be part of your normal application workflow, but it can come
in handy when you’re troubleshooting issues in an active cluster. From the command
line, run the following oc delete command to delete all the pods for the app-cli appli-
cation. The -l parameter specifies a label to look for when performing the delete:

$ oc delete pod -l app=app-cli

Switching back to the web console, you can see that a single pod for app-cli was recre-
ated. By navigating down to the pod details, you can see that the new pod, which was
started by the RC in response to you deleting the app=app-cli label, has all three
labels specified by the RC’s selectors.

 You may be wondering whether the abandoned pod will still receive traffic from
users. It turns out that the service object, responsible for network traffic, also works on
the concepts of labels and selectors. To determine whether the abandoned pod would

The app-cli replication controller
uses selectors to identify the pods
it needs to interact with.

The replication controller
detects the missing label
and deploys a new, correctly
configured application pod
to take over serving
the application.

app-cli replication controller

Selectors:
app=app-cli
deployment=app-cli-1
deploymentconfig=app-cli

The app=app-cli label has
been removed from this
app-cli application pod.

app-cli pod

Labels:
app=app-cli
deployment=app-cli-1
deploymentconfig=app-cli

New app-cli pod

Labels:
app=app-cli
deployment=app-cli-1
deploymentconfig=app-cli

Figure 4.4 An RC spins up a new pod with labels to match its selectors, after original pod labels
are modified.

68 CHAPTER 4 Working with services

have served traffic, you need to look at the Selector field in the service object. You
can get the selector information about the app-cli service by running the following oc
describe command. There’s a lot of output, so passing it into a grep command to
look for only the information you want can be helpful:

$ oc describe svc app-cli | grep Selector
Selector: app=app-cli,deploymentconfig=app-cli

The output shows that the service component has two selectors:

 app=app-cli
 deploymentconfig=app-cli

Because you deleted the app=app-cli label from the original pod, its labels are no lon-
ger a match for the app-cli service selectors and would no longer receive traffic requests.

Replication controllers ensure that properly configured application pods are always
available in the proper number. Additionally, the desired replica counts can be modi-
fied manually or automatically. In the next section, we’ll discuss how to scale applica-
tion deployments.

4.2 Scaling applications
An application can consist of many different pods, all communicating together to do
work for the application’s users. Because different pods need to be scaled inde-
pendently, each collection of identical pods is represented by a service component, as

Fundamental Kubernetes design
Kubernetes was born out of many lessons learned at Google from running containers
at scale for 10+ years. The main two orchestration engines internally at Google during
this time have been Borg and its predecessor, Omega. One of the primary lessons
learned from these two systems was that control loops of decoupled API objects were
far preferable to a large, centralized, stateful orchestration. This type of design is
often called control through choreography. Here are just a few of the ways it was
implemented in Kubernetes:

 Decoupled API components
 Avoiding stateful information
 Looping through control loops against various microservices

By running through control loops instead of maintaining a large state diagram, the
resiliency of the system is considerably improved. If a controller crashes, it reruns
the loop when it’s restarted, whereas a state machine can become brittle when there
are errors or the system starts to grow in complexity. In our specific examples, this
holds true because the RC loops through pods with the labels in its Selector field
as opposed to maintaining a list of pods that it’s supervising.

You can find more information about the Kubernetes structure at https://kubernetes.io.

https://kubernetes.io

69Scaling applications

we initially discussed in chapter 1. More complex applications can consist of multiple
services of independently scaled pods.

 A standard application design uses three tiers to separate concerns in the application:

 Presentation layer—Provides the user interface, styling, and workflows for the
user. This is typically where the website lives.

 Logic layer—Handles all the required data processing for an application. This is
often referred to as the middleware layer.

 Storage layer—Provides persistent storage for application data. This is often a
database, filesystems, or a combination of both.

Figure 4.5 shows how a three-tier application is deployed in OpenShift. The applica-
tion code runs in the pods for each application layer. That code is accessed directly
from the routing layer. Each application’s service communicates with the routing layer
and the pods it manages. This design results in the fewest network hops between the
user and the application. This design also allows each layer in the three-tier design to
be independently scaled to handle its workload effectively without making any
changes to the overall application configuration.

Users

Routing
layer

Presentation
pod

Presentation
service

Logic
service

Presentation
pod

Logic
pod

Logic
pod

Logic
pod

Users access the
application through
the routing layer.

The routing layer gets
pod IP addresses from
the OpenShift API server
so it can connect to
pods directly.

The Routing layer connects
directly to the presentation
layer pod on user access,
without the extra hop of
connecting through the
service.

Pods can connect directly with each
other with or without the services layer.

Pods scale independently
to handle their workloads.

Storage
service

Storage
pod

Figure 4.5 A web application in OpenShift, independently scaling each component as needed

70 CHAPTER 4 Working with services

Figure 4.5 is a simple example. In a large, enterprise application, dozens (sometimes
hundreds) of services often work together to build an application. The design meth-
odology behind building out multiple small, decoupled applications that work
together to act together is often called microservices. When you start designing applica-
tions that are made up of multiple smaller, independent pods, the act of scaling those
pods up and down becomes more important. In the next section, we’ll discuss differ-
ent ways to scale application pods in OpenShift.

NOTE Extreme examples of the microservice paradigm exist in large tech com-
panies like Google, Amazon, and Netflix. These companies often connect to
hundreds of different services on the backend of a single user session. Not many
other IT organizations may need to scale to the level of Netflix, but the need
for a platform to handle modern web application designs is nearly universal.

4.2.1 Modifying the deployment config

To scale an application, begin at the deployment configuration page. Follow these steps:

1 Choose Applications > Deployments on the left panel of your project overview.
This takes you to a list of all your OpenShift deployments in the current project.

2 Click the link for your app-cli deployment. The History tab opens, with a list of
changes to the app-cli deployment.

3 Click Configuration to see details of the deployment configuration. On this page,
you can change the number of replicas to meet the demands of your application.

4 Click Edit next to the current replica count (see figure 4.6), and change the
number of replicas to three. Changing this number will change the deployment
config object, which will update the RC behind the scenes.

Figure 4.6 Editing the
number of replica pods by
editing the deployment configClick to edit

71Maintaining healthy applications

Changing the number of pods will take a few seconds to complete. When that’s done,
you’ll have scaled the app-cli deployment from one pod to three (see figure 4.6).

NOTE The deployment config component makes changes to the RC in the
background. When you instruct the deployment config to add replicas to an
application, it in turn tells the RC to create the additional pods.

The same functionality is available on the command line. To scale the number of pods
back down to one, run the following oc scale command:

$ oc scale dc app-cli-1 --replicas=1

At this point, you’ve done the following:

 Deployed app-cli and app-gui versions of the Image Uploader application
 Attached persistent storage to both deployments so uploaded images will be

consistent when they’re scaled
 Confirmed that OpenShift will automatically replace an application pod if it

becomes unhealthy
 Edited the deployment config for app-cli to scale it up to three pods

NOTE The up and down arrows on the project overview page also scale appli-
cations by modifying the deployment config component the same way. The
only difference is that if you use the arrows, you can add or remove only one
pod at a time. If you needed to scale to 20 or even 100 pods, you wouldn’t
want to click the console for every change in replica count.

In the real world, manually editing deployment configs to scale applications isn’t
practical for many scenarios. In chapter 5, we’ll discuss ways to automate application
scaling.

4.3 Maintaining healthy applications
In most situations, application pods run into issues because the code in the pod stops
responding or begins to respond in ways that aren’t desired. The first step in building
a resilient application is to run automated health and status checks on your pods,
restarting them when necessary without manual intervention. Creating probes to run
the needed checks on applications to make sure they’re healthy is built into Open-
Shift. The first type of probe we’ll look at is the liveness probe.

 In OpenShift, you define a liveness probe as a parameter for specific containers in
the deployment config. The liveness probe configuration then propagates down to
the individual containers created in pods running as part of the DC. A service on each
node running the container is responsible for running the liveness probe that’s
defined in the deployment config. If the liveness probe was created as a script, then
it’s run inside the container. If the liveness probe was created as an HTTP response or

72 CHAPTER 4 Working with services

TCP socket-based probe, then it’s run by the node connecting to the container. If a
liveness probe fails for a container, then the pod is restarted.

NOTE The service that executes liveness probe checks is called the kubelet
service. This is the primary service that runs on each application node in
OpenShift.

4.3.1 Creating liveness probes

In OpenShift, the liveness probe component is a simple, powerful concept that checks
to be sure an application pod is running and healthy. Liveness probes can check con-
tainer health three ways:

 HTTP(S) checks—Checks a given URL endpoint served by the container, and
evaluates the HTTP response code.

 Container execution check—A command, typically a script, that’s run at intervals to
verify that the container is behaving as expected. A non-zero exit code from the
command results in a liveness check failure.

 TCP socket checks—Checks that a TCP connection can be established on a spe-
cific TCP port in the application pod.

NOTE An HTTP response code is a three-digit number supplied by the server
as part of the HTTP response headers in a web request. A 2xx response indi-
cates a successful connection, and a 3xx response indicates an HTTP redirect.
You can find a full description of all response codes on the IETF website at
http://mng.bz/XfMi.

As a best practice, always create a liveness probe unless your application is intelligent
enough to exit when it hits an unhealthy state. Create liveness probes that not only
check the internal components of the application, but also isolate problems from
external service dependencies. For example, a container shouldn’t fail its liveness
probe because another service that it needs isn’t functional. Modern applications
should have code to gracefully handle missing service dependencies. If you need an
application to wait for a missing service dependency, you can use readiness probes,
which are covered later in this chapter. For legacy applications that require an
ordered startup sequence of replicated pods, you can take advantage of a concept
called stateful sets, which we’ll cover in chapter 8.

 To make creating probes easier, a health check wizard is built into the OpenShift
web interface. Using the wizard will help you avoid formatting issues that can result
from creating the raw YAML template by hand.

 To add a new liveness probe to a deployed application, follow these steps:

1 Choose Applications > Deployments on the left panel of your project view.
2 Click your deployment, app-cli.
3 Click the Configuration tab. You should see an alert that shows you haven’t yet

configured any health checks (see figure 4.7).

http://mng.bz/XfMi

73Maintaining healthy applications

4 Choose Add Health Checks > Add Liveness Probe.
5 On the page that opens, set the following values for your probe, and click Save

(see figure 4.8):

– Type: HTTP Get
– Use HTTPS: no (unchecked)
– Path: /
– Port: 8080
– Initial Delay: 5
– Timeout: 1

Click here

Figure 4.7 The Deployments page, showing the app-cli deployment config link

74 CHAPTER 4 Working with services

The values you specify to create a liveness probe are as follows:

 Type—An HTTP(S) check, a container execution check, or a socket check, as
discussed earlier in this chapter.

 Use HTTPS—Whether to run an HTTP(S) check using HTTP or HTTPS. This
depends on how you deployed your application and its route. In chapter 2,
when you created the route for app-cli, you didn’t specify the use of TLS
encryption; that’s why you don’t tell the liveness probe to use HTTPS.

 Path—The path for an HTTP(S) check to look for. Because the Image
Uploader application is only a couple of pages, you’re using the root context.

 Port—The TCP port to connect to.
 Initial Delay—An arbitrary value that specifies how long to wait before running

the probe for the first time against an application pod. This gives the pod time
to start all the needed services and be ready to respond properly. For a simple
application like Image Uploader, the time it takes for a pod to be ready is typi-
cally less than a second.

 Timeout—An arbitrary value that specifies how long to wait for a response
before declaring the probe as a failed check. A timeout value of one second is
just in case something goes awry in the application pod.

Figure 4.8 Fields in the liveness probe wizard

75Maintaining healthy applications

After you create the liveness probe, you’ll be redirected back to the Deployments page
for app-cli. When you added the liveness probe, the deployment config automatically
created a new deployment for app-cli that includes the liveness probe. The deploy-
ment config also automatically migrated the app-cli route to the new deployment.
Click #2 to access the app-cli deployment config overview for the newly deployed
application.

 Scroll down to the bottom of the page to see information about the newly
deployed pod. If the deployment has failed for some reason, a large error with a link
to the events and logs to help begin troubleshooting will appear at the top of the
Deployments page.

 Click Pod Name. The default pod view should show that there’s a liveness probe
configured for the app-cli deployment (see figure 4.9).

Figure 4.9 Pod liveness
probe after the app-cli
deployment updates

Using the health check wizard
The OpenShift health check wizard was designed for ease of use to cover most situ-
ations, but not all. Other parameters can be passed to the liveness probe that aren’t
implemented in the web interface, but are available from the command line. One
that’s useful is failureThreshold, which defaults to three attempts. As we dis-
cussed in the previous section, failureThreshold for a readiness probe (discussed
in the next section) or a liveness probe sets the number of times a probe will be
attempted before it’s considered a failure.

Imagine a situation where a liveness probe’s initial delay was run before the applica-
tion started up. You wouldn’t want the container to be killed right away. failure-
Threshold allows the liveness probe to try again in periodSeconds, another
liveness probe parameter that can be manually set. In the current release of Open-
Shift, periodSeconds defaults to 10 seconds.

To create a probe on the command line, you use the oc set probe command, which
we’ll discuss in chapter 5.

You can find the documentation for all probes at http://mng.bz/Yh16.

http://mng.bz/Yh16

76 CHAPTER 4 Working with services

Liveness probes are a good way to ensure that application pods are functioning prop-
erly. For app-cli, a new deployment should take less than a minute on your system. But
some applications may not be ready to receive traffic that soon after the pod is
deployed.

4.3.2 Creating readiness probes

Many applications need to perform any combination of the following before they’re
able to receive traffic, which increases the amount of time before an application is
ready to do work. Some common tasks include

 Loading classes into memory
 Initializing a dataset
 Performing internal checks
 Establishing a connection to other containers or external services
 Finishing a startup sequence or other workflow

Fortunately, OpenShift also supports the concept of readiness probes, which ensures
that the container is ready to receive traffic before marking the pod as active. Simi-
lar to a liveness probe, a readiness probe is run at the container level in a pod and
supports the same HTTP(S), container execution, and TCP socket-based checks.
Unlike a liveness probe, though, a failed readiness check doesn’t result in a new pod
being deployed. If a readiness check fails, the pod remains running while not receiv-
ing traffic.

 Let’s run through an example of adding a readiness probe to the app-cli applica-
tion using the command line. For this readiness probe, you’ll tell OpenShift to look
for a non-existent endpoint.

 Looking for a URL that doesn’t exist in your app-cli deployment will cause the
readiness probe to fail. This exercise illustrates how an OpenShift probe works when
it runs into an undesired condition. Until a deployment passes a readiness probe, it
won’t receive user requests. If it never passes the readiness probe, as in this example,
the deployment will fail and never be made available to users.

 To create the readiness probe, use the command line and run the oc set probe
command:

$ oc set probe dc/app-cli \
--readiness \
--get-url=http://:8080/notreal \
--initial-delay-seconds=5

deploymentconfig "app-cli" updated

The output includes a message that the deployment configuration was updated. Just
like a liveness probe, creating a readiness probe triggers the creation of a new app-cli
deployment. Check to see whether the new pods were deployed by running the oc
get pods command:

77Maintaining healthy applications

$ oc get pods
NAME READY STATUS RESTARTS AGE
app-cli-1-build 0/1 Completed 0 17d
app-cli-2-js7z9 1/1 Running 0 38m
app-cli-3-6snpl 0/1 Running 0 1m
app-cli-3-deploy 1/1 Running 0 2m
app-gui-1-build 0/1 Completed 0 15d
app-gui-1-x6mvw 1/1 Running 1 15d

The new app-cli pod is running but not ready, which means it isn’t yet receiving traffic.
The previous pod is still running and receiving any incoming requests. Eventually, the
readiness probe will fail two more times and will meets the readiness probe failure-
Threshold metric, which is set to 3 by default. As we discussed in the previous section,
failureThreshold for a readiness or liveness probe sets the number of times a probe
will be attempted before it’s considered a failure.

NOTE The readiness probe will take 10 minutes to trigger a failed deploy-
ment. When this happens, the pod will be deleted, and the deployment will
roll back to the old working configuration, resulting in a new pod without the
readiness probe. You can modify the default timeout parameters by changing
the timeoutSeconds parameter as part of dc.spec.strategy.*params in the
deployment config object. Deployment strategies are covered in greater detail
at the end of chapter 6.

Once all three failures occur, the deployment is marked as failed, and OpenShift auto-
matically reverts back to the previous deployment:

$ oc get pods
NAME READY STATUS RESTARTS AGE
app-cli-1-build 0/1 Completed 0 17d
app-cli-2-js7z9 1/1 Running 0 47m
app-cli-3-deploy 0/1 Error 0 10m
app-gui-1-build 0/1 Completed 0 15d
app-gui-1-x6mvw 1/1 Running 1 15d

The reason for the failure appears as an event in OpenShift that can be shown from
the command line or the web console. Because events are easier to read through the
web console, let’s check it out there. Click the Overview tab on the left panel to go to
your project’s home page. There you’ll see a warning showing that the previous
deployment configuration failed (see figure 4.10).

 Expand the panel by clicking the down arrow, and then click View Events, as
shown in figure 4.11. You’ll see all the events for the current project, including one
that says, “Readiness probe failed: HTTP probe failed with statuscode: 404.” HTTP
response code 404 means “Page Not Found.” This makes sense, because the readiness
probe was configured to check for a nonexistent URL.

The pod for
the previous
deployment is still
running and ready.

The pod for the
new deployment
is running but not
marked as ready.

The previous
deployment is
still active and
serving requests.

The deployment pod
errored out after the
readiness probe
failed three times.

78 CHAPTER 4 Working with services

TIP In the last example, the readiness probe failed, and after the deployment
config time was reached, OpenShift automatically rolled back the application
to the previous working development. To manually trigger rollbacks, you can
use the console or the command line. An example of using the command line
for rollback is executing the following command:

$ oc rollback app-cli

In this chapter, we’ve discussed how replication controllers work and are managed by
their corresponding deployment configs. By replicating pods across your OpenShift
cluster, you can ensure that your applications are resilient and highly available, and
that multipod applications have independently scaling components.

Figure 4.10 Pod readiness probe

Figure 4.11 Failed readiness probe

Click here

79Summary

4.4 Summary
 OpenShift deploys resilient pods using replication controllers for all applica-

tions by default.
 OpenShift uses labels and selectors for all components to define relationships

between application components.
 Deployment configs interact with RCs to maintain multiple pods for application

deployments.
 Services provide a consistent IP address and access path for applications,

whereas pods scale up and down as needed.
 Applications are scaled up and down by modifying the deployment config

component.
 Liveness probes check to be sure application pods are responding to requests

properly, restarting them if they don’t respond properly.
 Readiness probes check to be sure applications are ready to receive traffic, not

allowing requests to be routed to the application pods until they pass the readi-
ness probe.

 Deployments can be rolled back when needed with a single OpenShift command.

80

Autoscaling with metrics

In the last chapter, you learned about the health and status of an application. You
learned that OpenShift deployments use replication controllers (RCs) under the
covers to ensure that a static number of pods is always running. Readiness probes
and liveness probes make sure running pods start as expected and behave as
expected. The number of pods servicing a given workload can also be easily modi-
fied to a new static number with a single command or the click of a button.

 This new deployment model gives you much better resource utilization than the
traditional virtual machine (VM) model, but it’s not a silver bullet for operational
efficiency. One of the big IT challenges with VMs is resource utilization. Tradition-
ally, when deploying VMs, developers ask for much higher levels of CPU and RAM
than are actually needed. Not only is making changes to VM resources challenging,

This chapter covers
 Using container metrics

 Creating a Horizontal Pod Autoscaler

 Setting resource requests and limits

 Autoscaling applications

 Load testing with the Apache HTTP server
benchmarking tool

81Installing OpenShift metrics

but many developers typically have no idea what types of resources are needed to run
the application. Even at large companies like Google and Netflix, predicting applica-
tion workload demand is so challenging that tools are often used to scale the applica-
tions as needed.

5.1 Determining expected workloads is difficult
Imagine that you deployed a new application, and it unexpectedly exploded in popu-
larity. External monitoring tools notify you that you need more pods to run your appli-
cation. Without any historical context, there’s no data to indicate how many pods are
needed tomorrow, next week, or next month. A great example is Pokémon GO, a pop-
ular mobile application that runs on Kubernetes. Within minutes of its release,
demand spiked well past expectations; and over the opening weekend it became an
international sensation. Without the ability to dynamically provision pods on demand,
the game likely would have crashed, as millions of users started to overload the system.

 In OpenShift, triggering horizontal pod scaling without human intervention is
called autoscaling. Developers can set objective measures to scale pods up and down
on demand, and administrators can limit the number of pods to a defined range. The
indicators that OpenShift uses to determine whether the application needs more or
fewer pods are based on pod metrics such as CPU and memory. But those pod metrics
aren’t available out of the box; to use metrics in OpenShift, the administrator must
deploy the OpenShift metrics stack. This metrics stack comprises several popular open
source technologies including Hawkular, Heapster, and Apache Cassandra. Once the
metrics stack is installed, OpenShift autoscaling has the objective measures it needs to
scale pods up and down on demand.

TIP The metrics stack can also be deployed with the initial OpenShift instal-
lation by using the advanced installation option.

TIP The latest versions of OpenShift also have the option to deploy Pro-
metheus, a popular open source monitoring and altering solution, to provide
and visualize cluster metrics. In the future, Prometheus may be used as the
default metrics solution, but more engineering work needs to be done. You
can learn more about Prometheus at https://prometheus.io/.

5.2 Installing OpenShift metrics
Installing the OpenShift metrics stack is straightforward. By default, the pods that are
used to collect and process metrics run in the openshift-infra project that was created
by default during the installation. Switch to the openshift-infra project from the com-
mand line:

$ oc project openshift-infra
Now using project "openshift-infra"...

OpenShift provides an Ansible playbook called openshift-metrics.yml to install the
OpenShift metrics stack. The playbook comes with reasonable default settings but can
also be customized by passing environment variables on the command line. Switch to

https://prometheus.io/

82 CHAPTER 5 Autoscaling with metrics

the ocp-1 VM that you used to install OpenShift, and then run the openshift-metrics.yml
playbook as follows:

$ ansible-playbook -i /root/hosts \
/usr/share/ansible/openshift-ansible/playbooks/byo/openshift-cluster/

 ➥ openshift-metrics.yml \
-e openshift_metrics_install_metrics=True \
-e openshift_metrics_start_cluster=True \
-e openshift_metrics_duration=1 \
-e openshift_metrics_hawkular_hostname=hawkular-metrics.apps.192.168.

 ➥ 122.101.nip.io

NOTE For a full listing of environment variables that can be passed to the
openshift-metrics.yml Ansible playbook, visit http://mng.bz/TRyO.

If all the tasks run properly, the end of the output should show zero failed tasks, as in
the following example:

...
TASK [openshift_metrics : Delete temp directory] **************************
ok: [192.168.122.100 -> localhost]

PLAY RECAP **
192.168.122.100 : ok=181 changed=33 unreachable=0 failed=0
192.168.122.101 : ok=1 changed=0 unreachable=0 failed=0
localhost : ok=10 changed=0 unreachable=0 failed=0

If the deployment fails, double-check that the environment variables you passed to
openshift-metrics.yml are accurate. Pay especially close attention to the openshift
_metrics_hawkular_hostname variable to be sure it’s correct for your installation.

 After the playbook completes, check from the command line that the metrics stack
is running. Similar to other features in OpenShift, the stack is deployed as several dif-
ferent pods. You may have to wait a couple of minutes for the system to pull down the
metrics container images. You can use the watch command to check the results of oc
get pods every two seconds:

$ watch oc get pods
Every 2.0s: oc get pods

NAME READY STATUS RESTARTS AGE
hawkular-cassandra-1-fk86b 1/1 Running 0 20m
hawkular-metrics-cg4cz 1/1 Running 0 20m
heapster-jg8wf 1/1 Running 0 20m

Once the pods are deployed, you need to make an additional configuration change.
Although the metrics stack is functional and publishing metrics at the HTTP end-
point that you set with the openshift_metrics_hawkular_hostname environment
variable, it’s doing so with self-signed certificates. OpenShift allows its administrators
to bring their own certificates, but that’s not necessary for this exercise.

OpenShift metrics Ansible playbook
Deploys

the
metrics

stack Starts gathering metrics after
the components are deployed

Number
 of days to

retain metrics Route for the metrics endpoint

http://mng.bz/TRyO

83Installing OpenShift metrics

 Although most modern browsers such as Chrome and Firefox allow for self-signed
certificates, they require an extra approval step before they will serve the endpoint.
Luckily, the approval step is as easy as navigating to the URL you set with openshift
_metrics_hawkular_hostname and manually accepting the certificate. Navigate to the
hawkular-metrics route in your browser, and accept the self-signed certificate. Once
you do so, the OpenShift console will be able to make direct calls to the Hawkular
endpoint. Verify this by logging in to the OpenShift console and selecting the Image
Uploader Project, as shown in figure 5.1. You’ll see metrics on the overview page.
OpenShift metrics is now installed!

TIP For instructions on how to accept self-signed certificates for various
browsers, visit https://support.solarwinds.com/Success_Center/Virtualization
Manager(VMAN)/Accept_a_self-signed_certificate.

5.2.1 Understanding the metrics stack

In the previous section, you successfully deployed the OpenShift metrics stack. Three
types of pods were deployed to make this happen, each with a different purpose, using
technologies including Hawkular, Heapster, and Cassandra.

Figure 5.1 Project overview page displaying metrics

https://support.solarwinds.com/Success_Center/Virtualization_Manager_(VMAN)/Accept_a_self-signed_certificate
https://support.solarwinds.com/Success_Center/Virtualization_Manager_(VMAN)/Accept_a_self-signed_certificate
https://support.solarwinds.com/Success_Center/Virtualization_Manager_(VMAN)/Accept_a_self-signed_certificate

84 CHAPTER 5 Autoscaling with metrics

 But none of the pods generate metrics themselves. Those come from kubelets. A
kubelet is a process that runs on each OpenShift node and coordinates which tasks
the node should execute with the OpenShift master. As an example, if an RC requests
that a pod be started, the OpenShift scheduler, which runs on the master, eventually
tasks an OpenShift node to start the pod. The command to start the pod is passed to
the kubelet process running on the assigned OpenShift node. One of the additional
responsibilities of the kubelet is to expose the local metrics available to the Linux ker-
nel through an HTTPS endpoint. The OpenShift metrics pods use the metrics
exposed by the kubelet on each OpenShift node as their data source.

 Although the kubelet exposes the metrics for individual nodes through an HTTPS
endpoint, no built-in tools are available to aggregate this information and present a
cluster-wide view. This is where Heapster comes in handy. Heapster acts as the back-
end for the metrics deployment. It queries the API server for the list of nodes and
then queries each individual node to get the metrics for the entire cluster. It stores the
metrics in an Apache Cassandra database. On the frontend, the Hawkular pod pro-
cesses the metrics by connecting directly to Heapster. Hawkular exposes all the met-
rics in the cluster through a common REST API to enable further custom integration.
OpenShift uses the Hawkular REST API to pull metrics into the OpenShift console;
the API can also be used for integration into other third-party tools or other monitor-
ing solutions. You can find documentation about connecting directly to the Hawkular
API at http://mng.bz/Vf3H.

NOTE Apache Cassandra is a NoSQL database that was originally designed at
Facebook. It’s often used for large datasets that need to scale horizontally.

5.3 Using pod metrics to trigger pod autoscaling
To implement pod autoscaling based around metrics, you need a couple of simple
things. First, you need a metrics stack to pull and aggregate metrics from the entire
cluster and then make those metrics easily available. So far, so good. Second, you need
an object to monitor the metrics and trigger the pods up and down. This object is
called a Horizontal Pod Autoscaler (HPA), and its main job is to define when Open-
Shift should change the number of replicas in an application deployment.

5.3.1 Creating an HPA object

OpenShift provides a shortcut from the CLI to create the HPA object. This shortcut is
available through the oc autoscale command. Switch to the CLI, and use the follow-
ing command:

$ oc autoscale dc/app-cli \
--min 2
--max 5
--cpu-percent=75
deploymentconfig "app-cli" autoscaled

Specifies the deployment
config to update

Defines the
minimum

number of pods
Defines the maximum number of pods

Defines the pod
CPU percentage

threshold

http://mng.bz/Vf3H

85Using pod metrics to trigger pod autoscaling

A couple of things happen when you run that command. First, you trigger an auto-
matic scale-up to two app-cli pods by setting the minimum number of pods to 2. Run
the following command to verify the number of app-cli pods:

$ oc get pods -l app=app-cli
NAME READY STATUS RESTARTS AGE
app-cli-1-6vskd 1/1 Running 0 8m
app-cli-1-9c12j 1/1 Running 0 8m

Second, the HorizontalPodAutoscaler object was created for you. By default, it has
the same name as DeploymentConfig (app-cli). This command gets the name of the
HPA object created by oc autoscale:

$ oc get hpa
NAME REFERENCE TARGET CURRENT MINPODS MAXPODS

➥ AGE
app-cli DeploymentConfig/app-cli 75% 0% 2 5

➥ 10m

And this command lets you inspect the HPA object:

$ oc describe hpa app-cli
Name: app-cli
Namespace: image-uploader
Labels: <none>
Annotations: <none>
CreationTimestamp: Tue, 08 Aug 2017 15:20:10 -0400
Reference: DeploymentConfig/app-cli
Target CPU utilization: 75%
Current CPU utilization: 0%
Min replicas: 2
Max replicas: 5
Events:

FirstSeen LastSeen Count From

➥ SubObjectPath
➥ Type Reason Message

--------- -------- ----- ----

➥ -------------
➥ -------- ------ -------

11m 11m 3 {horizontal-pod-autoscaler } Normal

➥ SuccessfulRescale New size: 2; reason: Current number of replicas

➥ below Spec.MinReplicas
10m 8m 7 {horizontal-pod-autoscaler } Normal

➥ MetricsNotAvailableYet missing request for cpu on container app-cli

➥ in pod image-uploader/app-cli-1-6vskd
7m 14s 16 {horizontal-pod-autoscaler } Warning

➥ FailedGetMetrics missing request for cpu on container app-cli

➥ in pod image-uploader/app-cli-1-6vskd

The description displays a couple of errors because you aren’t finished. If you were to
log in to the OpenShift console, you’d see a similar error on the overview page, as
shown in figure 5.2.

86 CHAPTER 5 Autoscaling with metrics

The error occurs because some information is missing. You’ve set the HPA object to
scale up to five pods when the CPU reaches 75% of an undetermined threshold. You
need to set that threshold, which is called a resource request.

REQUESTS AND LIMITS

In OpenShift, a resource request is a threshold you can set that affects scheduling and
quality of service. It essentially provides the minimum amount of resources guaran-
teed to the pod. For example, a user can set a CPU request of four-tenths of a core,
written 400 millicores or 400m. This tells OpenShift to schedule the pod on nodes that
can guarantee that there will always be at least 400m of CPU available to it.

NOTE CPU is measured in units called millicores (one-thousandth of a core).
By default, pods don’t get individual cores; they get timeslices of CPU, shar-
ing the cores on the node with other pods. If a particular node has four CPUs
assigned to it, then 4,000 millicores are available to all the running pods on
that node.

Resource requests also can be combined with a resource limit, which is similar to a
request but sets the maximum amount of resources guaranteed to the pod. Setting
requests and limits also allows the user to set a quality of service level by default:

 BestEffort—Neither a resource nor a limit is specified. This is for low-priority
applications that can live with very low amounts of CPU and memory.

 Burstable—A request is set, indicating a minimum amount of resources allo-
cated to the pod.

 Guaranteed—A request and a limit are both set to the same number. This is for
the highest-priority applications that need the most consistent amount of com-
puting power.

Setting a lower quality of service gives the scheduler more flexibility by allowing it to
place more pods in the cluster. Setting a higher quality of service limits flexibility but

Figure 5.2 HPA error on the OpenShift console overview page

87Using pod metrics to trigger pod autoscaling

gives applications more consistent resources. Because choosing the quality of service is
about finding reasonable defaults, most applications should fall into the Burstable tier.

TIP You can view the resource capacity on a node along with the requests
and limits of the running pods on the node by running the command oc
describe node <node name>.

SETTING A CPU REQUEST

You can set a CPU request for all the pods in the app-cli application by changing the
deployment config with the following command:

oc set resources dc app-cli --requests=cpu=400m

As with other changes to the deployment config, this results in a new deployment con-
fig object that will, in turn, create new pods. Once running, these new pods’ CPU
request is set to 400m. The OpenShift scheduler places the pods only on nodes that
can guarantee 400 millicores available to the application. Figure 5.3 shows the new
pod description in the OpenShift console, indicating that the 400m request has prop-
agated to the new pods

NOTE Requests and limits can also be set by default on a project-wide basis by
creating a LimitRange object. The LimitRange object removes the need to
set requests and limits manually for each deployment as well as define the
range of the request and limit values. You can find more information at
http://mng.bz/tB5m.

Figure 5.3 New pods have a 400m CPU request.

http://mng.bz/tB5m

88 CHAPTER 5 Autoscaling with metrics

The previous error is now resolved. An HPA event appears, indicating a normal status.
Run the oc describe command again to confirm that the output is healthy:

$ oc describe hpa app-cli
...
Events:
...

1m 12s 4 {horizontal-pod-autoscaler } Normal DesiredReplicasComputed

➥ Computed the desired num of replicas: 0 (avgCPUutil: 0, current replicas: 2)

No errors are shown, so autoscaling is successfully enabled!

5.3.2 Testing your autoscaling implementation

To demonstrate that autoscaling works as expected, you need to trigger the CPU
threshold that you previously set. To help reach this mark, use the Apache benchmark
instance (ab) that comes preinstalled with CentOS and is already available in your
path. Before you run the benchmarking test, make sure you’re logged in to the Open-
Shift console in another window, so you can switch over to see pods being spun up.
Then, go to the overview page for the image-uploader project and run the command
in the following snippet, updating the route for the app-cli application:

ab \
-n 50000 \
-c 500 \
http://app-cli-route-image-uploader.apps.192.168.122.101.nip.io/
...
Benchmarking app-cli-route-image-uploader.apps.192.168.122.101.nip.io

➥ (be patient)
Completed 5000 requests
Completed 10000 requests
Completed 15000 requests
Completed 20000 requests
Completed 25000 requests
Completed 30000 requests
Completed 35000 requests
Completed 40000 requests
Completed 45000 requests
Completed 50000 requests
Finished 50000 requests
...
Concurrency Level: 500
Time taken for tests: 14.101 seconds
Complete requests: 50000
Failed requests: 0
Write errors: 0
...

Sets the total number
of HTTP requests

Sets the number of
concurrent requests

Application route

89Using pod metrics to trigger pod autoscaling

Percentage of the requests served within a certain time (ms)
50% 134
66% 146
75% 155
80% 161
90% 176
95% 195
98% 221
99% 237

100% 3122 (longest request)

Now, quickly switch over to the OpenShift console, and see whether OpenShift has
spun up more pods. It should have scaled up your application, but your mileage may
vary. If your application is still running two pods, try increasing the number of total or
concurrent requests sent to the route with the Apache Benchmark.

5.3.3 Avoiding thrashing

When the Apache benchmark tests kicked off, the OpenShift autoscaler detected very
high CPU usage on the deployed pods, which violated the HPA constraints. This
caused new pods to be spun up on demand. Behind the scenes, the deployment was
modified, creating a new number of replicas. After the tests were completed, the CPU
usage on the pods went back down close to zero, because the pods were finished pro-
cessing requests. But unlike when the CPU spiked and the new pods spun up quickly,
it took several minutes for new pods to spin down.

TIP By default, the HPA synchronizes with the Heapster metrics every 30
seconds. You can modify this sync period in master-config.yaml in the
horizontalPodAutoscalerSyncPeriod field under controllerArguments.

This time window is by design, to avoid something called thrashing : in OpenShift,
that’s the constant starting and stopping of pods unnecessarily. Thrashing can cause
wasted resource consumption, because deploying new pods uses resources to sched-
ule and deploy a pod on a new node, which often includes things like loading applica-
tion libraries into memory. After OpenShift triggers an initial scale, there’s a forbidden
window to prevent thrashing. During the forbidden window, no autoscaling options
can occur. This prevents thrashing. The rationale is that in practice, if there’s a need
to constantly scale up and scale down within a matter of minutes, it’s probably less
expensive to keep the pods running than it is to continuously trigger scaling changes.

 In versions of OpenShift up to 3.6, the forbidden window is hardcoded at 5 min-
utes to scale down the pods and 3 minutes to scale up the pods. In OpenShift 3.7 and
higher, the default values are still 5 minutes and 3 minutes, respectively, but they can
be modified via the controllerManagerArgs field in the master-config.yaml file as
horizontal-pod-autoscaler-upscale-delay and horizontal-pod-autoscaler-

downscale-delay.

90 CHAPTER 5 Autoscaling with metrics

5.4 Summary
 Determining the size and number of pods required to run an application is dif-

ficult and error-prone.
 OpenShift can autoscale the number of pods in a service based on metric

consumption.
 The OpenShift metrics stack is easy to deploy and provides end users with per-

formance and monitoring capabilities.
 You can set resource limits and quality-of-service tiers in OpenShift.
 You can use the Apache benchmarking tool to test OpenShift autoscaling.
 OpenShift has a built-in forbidden window to avoid constant thrashing.

91

Continuous
 integration and

 continuous deployment

Deploying software into production is difficult. One major challenge is adequately
testing applications before they make it into production. And adequate testing
requires one of the longest-standing challenges in IT: consistent environments. For
many organizations, it’s time-consuming to stand up new environments for devel-
opment, testing, QA, and more. When the environments are finally in place,
they’re often inconsistent. These inconsistencies develop over time due to poor
configuration management, partial fixes, and fixing problems upstream, such as

This chapter covers
 Promoting images

 Invoking object triggers

 Service discovery

 Protecting sensitive data with secrets

 Altering applications with config maps

92 CHAPTER 6 Continuous integration and continuous deployment

directly making a patch in a production environment. Inconsistent environments can
lead to unpredictable software. To eliminate risk, organizations often schedule main-
tenance windows during software deployments and then cross their fingers.

 Over the last 15 years, there have been many attempts to improve software pro-
cesses. Most notable has been the industry-wide effort to move from the waterfall
method of deploying software to flexible approaches such as Agile that attempt to
eliminate risk by performing many small, iterative deployments as opposed to the
massive software rollouts common with the waterfall method. But Agile falls short in
several areas, because it focuses on software development and doesn’t address the effi-
ciency of the rest of the stakeholders in the organization. For example, code may get
to operations more quickly, but a massive bottleneck may result because operations
now has to deploy code more frequently.

 Many organizations are trying to solve these problems with a modern DevOps
approach that brings together all the stakeholders to work jointly throughout the
software-development lifecycle. DevOps is now almost synonymous with automation
and continuous integration (CI) and continuous deployment (CD), often shortened to
CI/CD. The delivery mechanism for implementing CI/CD is often called a software-
deployment pipeline or CI/CD pipeline. Although DevOps methodologies involve people
and processes in addition to technology, this chapter focuses largely on the technology
aspect and how it relates to containers.

TIP You can find an explanation of DevOps in the article “What Is DevOps?”
(Ernest Mueller, The Agile Admin, https://theagileadmin.com/what-is-
devops). For a more in-depth read on DevOps principles, practices, and tools
being implemented at high-flying IT companies, see “DevOps Cookbook”
(Gene Kim, www.realgenekim.me/devops-cookbook).

6.1 Container images as the centerpiece of a CI/CD pipeline
From a technology perspective, containers are becoming the most important technol-
ogy in the software-deployment pipeline. Developers can code applications and ser-
vices without the need to design or even care about the underlying infrastructure.
Operations teams can spend fewer resources designing the installation of applica-
tions. Applications and services can easily be moved not only between environments
like dev, QA, testing, and so on in the software-development pipeline but also between
on-premises and public cloud environments, such as Amazon Web Services, Microsoft
Azure, and Google Compute Platform.

 When applications need to be modified, developers package new container images,
which include the application, configuration, and runtime dependencies. The con-
tainer then goes through the software-deployment pipeline, automated testing, and
processing. Using container images in a software-deployment pipeline reduces risk
because the exact same binary (container image) is run in every environment. If a
change needs to be made, then it begins in the sandbox or development environment,
and the entire deployment process starts over. Because running containers are created

https://theagileadmin.com/what-is-devops
https://theagileadmin.com/what-is-devops
http://www.realgenekim.me/devops-cookbook

93CI/CD part 1: creating a development environment

from container images, there’s no such thing as fixing things upstream. If a developer
or operator attempted to circumvent the deployment pipeline and patch directly into
production, the change wouldn’t persist. The change must be made to the underlying
container image.

 By making the container the centerpiece of the deployment pipeline, system stabil-
ity and application resiliency are greatly increased. When failures occur, identifying
issues and rolling back software is quicker because the container can be rolled back to
a previous version. This is much different than in previous approaches, where entire
application servers and databases may need to be reconfigured in parallel to the appli-
cation rollback—often a manual process.

 In addition, containers let developers run more meaningful testing earlier in the
development cycle, because they have environments that mimic production on their
laptops. A developer can reasonably simulate production load and performance test-
ing on the container during development. The result is higher-quality, more-reliable
software updates. Better, more-efficient testing also leads to less work in progress and
fewer bottlenecks, which means faster updates.

6.2 Promoting images
In this chapter, you’ll build a CI/CD pipeline in OpenShift. To keep the promise of
using the same binary in every environment, you’ll build your image just once in your
development environment. You’ll then use image tagging to indicate that the image is
ready to be promoted to other projects. To facilitate this process, you’ll use Jenkins
and some additional OpenShift concepts, which you’ll learn about as you go. Jenkins
is an open source automation server that’s commonly used as the backbone for
CI/CD pipelines because it has many plugins for existing tools and technologies. Jen-
kins often becomes a Swiss army knife that’s used to integrate disparate technologies
into a CI/CD pipeline.

NOTE Container images typically have image tags associated with them when
they’re built. By default, container images built with docker are tagged as
latest. To list the container images and their tags, run the following com-
mand as root on one of the VMs: $ docker images.

6.3 CI/CD part 1: creating a development environment
The first part of any CI/CD pipeline is the development environment. Here, con-
tainer images are built, tested, and then tagged if they pass their tests. All container
builds happen in this environment. You’ll use a prebuilt template to spin up a simple
ToDo application that runs on Python and uses MongoDB as a database. The template
also provides an open source Git repository called Gogs, which comes preinstalled
with the application already in it. PostgreSQL is also provided as a database for Gogs.
Figure 6.1 shows the pods that are created during instantiation of the template.
(There’s also a builder pod for the Python application, and a Gogs installation pod
that will exit when completed, but these aren’t shown in the figure.)

94 CHAPTER 6 Continuous integration and continuous deployment

Python Gogs

MongoDB PostGreSQL

Dev project

Figure 6.1 Dev project pods

Working with OpenShift templates
This chapter makes heavy use of OpenShift templates to install applications. An
OpenShift template is essentially an array of objects that can be parameterized and
spun up on demand. In most cases, the API objects created as part of the template
are all part of the same application, but that is not a hard requirement. Using Open-
Shift templates provides several features that aren’t available if you manually import
objects, including the following:

 Parameterized values can be provided at creation time.
 Values can be created dynamically based on regex values, such as randomly

generated database passwords.
 Messages can be displayed to the user in the console or on the CLI. Typical

messages include information on how to use the application.
 You can create labels that can be applied to all objects in the template.
 Part of the OpenShift API allows templates to be instantiated programmati-

cally and without a local copy of the template.

OpenShift comes with many templates out of the box that you can see through the
service catalog or by running oc get templates -n openshift. To see the raw
template files, navigate to /usr/share/openshift/examples/ on the OpenShift mas-
ter node.

For more information on how to author and use templates, visit http://mng.bz/1LTp.

http://mng.bz/1LTp

95CI/CD part 1: creating a development environment

At the command line, create your development environment by running the follow-
ing command:

$ oc new-project dev --display-name="ToDo App - Dev"

Next, import the ToDo application template in the dev project:

$ oc create -f \
https://raw.githubusercontent.com/OpenShiftInAction/

➥ chapter6/master/openshift-cicd-flask-mongo/OpenShift/templates/
➥ dev-todo-app-flask-mongo-gogs.json \

-n dev

Now, instantiate the template:

$ oc new-app --template="dev/dev-todo-app-flask-mongo-gogs"
--> Deploying template "dev/todo-app-flask-mongo-gogs" to project dev

Flask + MongoDB (Ephemeral)

An example Flask application with a MongoDB database. For more
information about using this template, including OpenShift considerations
,see https://github.com/sclorg/mongodb-container/blob/master/3.2/README.md

WARNING: MongoDB instance is ephemeral so any data will be lost on pod
destruction.

The following service(s) have been created in your project:
todo-app-flask-mongo, mongodb.

mongodb Connection Info:
Username: userImE
Password: mPO37nup
Database Name: tododb
Connection URL: mongodb://userImE:mPO37nup@mongodb/tododb

* With parameters:
* Application Name=todo-app-flask-mongo
* Mongodb App=mongodb
* Application route=
* Git source repository=https://github.com/

 ➥ OpenShiftInAction/chapter6
* Context Directory=openshift-cicd-flask-mongo
* Git branch/tag reference=master
* Database name=tododb
* Database user name=userImE # generated
* Database user password=mPO37nup # generated
* Database admin password=mDsUVISh # generated
* Memory Limit (Flask)=128Mi
* Memory Limit (MongoDB)=128Mi

Creates a resource from file

Raw JSON template for this chapter
Installs the template into the dev project

Username to access the
MongoDB instance

Password to
access the
MongoDB
instance

Database
name for the

application Full connection string for an
application to access the

created MongoDB database

Git
repository

for the
Python

ToDo
application

Git context directory
in the Git repository

Max memory
for the ToDo
application,

covered
further in
chapter 5

Max memory for the
MongoDB database

96 CHAPTER 6 Continuous integration and continuous deployment

* Gogs Password=password
* Gogs version=0.11.29
* Gogs' PostgreSQL Password=EqLiXiUqoHCtl0dc # generated
* GitHub Trigger=F2v00WoE # generated
* Generic Trigger=GGg1KqHl # generated

...

The pods will take a few minutes to deploy. First, the Gogs, PostgreSQL, and Mon-
goDB pods are deployed. A separate pod called install-gogs also automates the instal-
lation of Gogs by initializing PostgreSQL and cloning the remote Git repository
locally. When Gogs is fully installed with a local copy of the remote Git repository, the
install-gogs pod configures a webhook: an event-drive HTTP callback that you’ll use to
automate new builds in OpenShift. More specifically, every time there’s a new Git
commit, Gogs will recognize the event and send an HTTP POST to the OpenShift
API, telling OpenShift to start a new source-to-image (S2I). Every time there’s a new
commit, the ToDo application will be rebuilt. Once the install-gogs pod finishes its
task, it exits.

TIP If the pod deployments fail, verify that your network connection is fast
enough to pull the new container images required for this application.

Next, open the OpenShift console in your browser, and navigate to the ToDo applica-
tion by choosing Applications > Routes > todo-app-flask-mongo. You’ll see the applica-
tion’s home page, as shown in figure 6.2.

Verify that Gogs is running properly by navigating to the gogs route. If the install-gogs
pod isn’t finished and marked completed, you’ll see the database-initialization page
shown in figure 6.3. Once the pod has completed the installation process, you’ll see
the Gogs home page and will be ready to proceed.

Password for
the default

Gogs user in
the Gogs

application Token to trigger
automated builds

Figure 6.2 The home page for the ToDo application in the dev project

97CI/CD part 1: creating a development environment

TIP Because the application is using Python, an interpreted language, the
build process is very fast. For languages like Java that may take a while to build
using tools like Maven, you can enable incremental builds that allow the build
pod to reuse build artifacts such as Maven JARs and Maven POMs that were
imported during the build process. This avoids the redundancy of having to
install the same dependencies multiple times for every build. You can find
more information at http://mng.bz/262s.

You now have a full development environment. By making some application code
changes, you can see the environment in action and demonstrate many of the Open-
Shift automation features. Here, you’ll edit the main landing page of the application.
Follow these steps:

1 Switch back to the Gogs home page, and click the sign-in link at upper right.
Log in using the username/password combination gogs/password.

2 Click the openshift-cicd-flask-mongo repository on the right of the page. You’re
now in the master directory of your git repository.

3 Navigate to openshift-cicd-flask-mongo > Templates > todo.html.
4 Click the Edit icon shown in figure 6.4. In the text editor, scroll down to the h1

HTML tag on line 32, and change the text to the following:

<h1 class="text-center">OIA ToDo App</h1>

Figure 6.3 The Gogs database-initializing page

http://mng.bz/262s

98 CHAPTER 6 Continuous integration and continuous deployment

5 Scroll to the bottom, and click Commit Changes. The source code for the appli-
cation is modified and committed into the Git repository.

Verify that the Gogs webhook successfully started a new build by going back to the
OpenShift console and clicking Builds in the panel on the left and then clicking
Builds again. You should see that a new build was created. When the S2I process com-
pletes again, your application will be updated with the new HTML heading.

 Take a minute to go back to the route for the ToDo application, and verify that it’s
up to date with the new code. If the browser still shows the old code, try clearing your
browser cache and then refreshing the route.

TIP Most browsers allow you to clear your cache by pressing Ctrl-Shift-Delete
on a Windows or Linux machine. If you’re using a Mac, press Command-
Shift-Delete.

6.3.1 Invoking object triggers

In the previous example, you configured a trigger of type webhook to automatically start
a new OpenShift build. The webhook trigger is an HTTP URL that can be accessed via
HTTP POST and includes a token for security. When called, the webhook can trigger new
actions such as starting new builds. Often, webhooks are used in conjunction with

Figure 6.4 Edit the source code for the ToDo application.

99CI/CD part 1: creating a development environment

source code repositories such as GitHub and GitLab to automatically trigger new Open-
Shift builds when the application source code has changed.

 The template you installed for the dev project automatically generated the web-
hook for you. In most scenarios, such as using the oc new-app command, webhook
triggers are generated automatically by OpenShift. These webhooks can be used by
any external system to trigger builds in OpenShift. Some examples of common sys-
tems that are used to trigger OpenShift builds include the following:

 Git-based source control systems like GitHub and Gogs
 Configuration-management systems
 Ticketing systems
 Automation tools like Jenkins

To see the webhooks that were automatically created for you by the template you
installed, go to the OpenShift console and navigate back to the build’s landing page,
and then click the todo-app-flask-mongo Build > Configuration tab. You’ll see the trig-
gers listed for the build and the webhooks that were generated for the trigger, as
shown in figure 6.5. These webhooks are specific triggers that can be used by any
external system to start a new todo-app-flask-mongo build.

 Triggers are an important part of automation in OpenShift, and they can be used
in several ways. In addition to initiating new builds, they can automate things such as
new application deployments and statefulset rollouts (covered in chapter 8). In the
context of CI/CD, external systems triggering new builds are only a piece of the puz-
zle. For example, in a container landscape, live applications aren’t patched in a tradi-
tional way like VMs. If they were patched live, the changes wouldn’t persist, because
when the container died, a new container would be spun up from the previous known
container image—which wouldn’t contain the patch. Therefore, the proper way to
apply a patch is to rebuild the container image when a new patch needs to be applied.

Figure 6.5 View the build triggers

Build triggers

100 CHAPTER 6 Continuous integration and continuous deployment

Similarly, in a CI/CD context, the same container image is used in many different
environments. When a new container is built in dev, the test environment needs to
have an automated way to trigger a redeployment and run its tests.

 Automating container image promotion between environments is difficult for sev-
eral reasons. First, most container image registries have very little built-in automation
features. Second, keeping versions of container image tags aligned between different
environments can be challenging. Finally, because container images can be overrid-
den, there needs to be another mechanism to ensure consistency of container images.
A good example can be during development. Suppose, for instance, you have 10 pods
in your dev environment running from the same image, todo-app-flask-mongo:latest.
When you build a new container image with the same image and tag, you want to be
guaranteed that all 10 pods have the new image and not the old one.

6.3.2 Enabling automated and consistent deployments with image streams

To solve these challenges, OpenShift has the concept of an image stream. This is often
one of the most difficult concepts for new users of OpenShift to understand. Essen-
tially, an image stream is an interface for one or more container images; it’s treated
the same as a container registry.

 For example, a docker pull pointed to an image stream pulls down a docker image,
just as it would if the pull was issued directly to the container registry. But having the
image stream allows for two key features versus a regular container registry. First, as
mentioned in chapter 2, the image stream enables automation, such as providing trig-
gers. For example, it’s easy to issue a new build or deployment every time a depen-
dency image has changed. Second, the image stream ensures additional consistency.
Docker image tags can be overwritten, so containers running from the same image tag
can be inconsistent. An image stream tracks the sha256 hash of the images it’s point-
ing at, to ensure consistency. By using an image stream, OpenShift ensures that when
pods are replicated, they’re the same binary.

TIP You can read about the consistency of container image tags and image
streams in the article “Docker Tag vs. Hash: A Lesson in Deterministic Ops”
(Tariq Islam, Medium, May 7, 2017, http://mng.bz/adCf).

Image streams are a perfect mechanism to use to build a test environment for the
ToDo application. Every time the image stream is updated, a new deployment can be
triggered in the test environment. Because image streams also support tagging, the
test environment can be configured to trigger new deployments only when the image
stream with a certain tag is updated.

 Switch to the command line, and find the specific image that the image stream is
currently referencing with the sha256 hash:

$ oc describe imagestream todo-app-flask-mongo | grep sha256
* docker-registry.default.svc:5000/dev/todo-app-flask-mongo@sha256:55f29

 ➥ 438305f9d8b6baf7ac0df8ee17965bb62a1dba8ac01190ad88e0ca18843

http://mng.bz/adCf

101CI/CD part 2: promoting dev images into a test environment

The output of the command shows the exact image the image stream is currently
referencing. Copy the full image string to your clipboard, and tag that image as
promoteToTest, as shown next. The test environment will pull only images that are
ready for the test environment as referenced by the new imagestream tag:

$ oc tag todo-app-flask-mongo@sha256:55f29438305f9d8b6baf7ac0df8ee17965bb6

➥ 2a1dba8ac01190ad88e0ca18843 \
dev/todo-app-flask-mongo:promoteToTest

Tag todo-app-flask-mongo:promoteToTest set to todo-app-flask-mongo@sha256:55

➥ f29438305f9d8b6baf7ac0df8ee17965bb62a1dba8ac01190ad88e0ca18843.

The same container image now has two tags, latest and promoteToTest. Having mul-
tiple tags for the same container image is helpful when you’re using the same image for
different environments, because environments aren’t always in sync. By having multiple
tags, you can use the tags to manage the images in each environment. Although you’ll
eventually promote this container image into a test environment, you’re likely to come
back later and add new code, features, enhancements, and so on. Doing so will gener-
ate new container images tagged as todo-app-flask-mongo:latest in dev but won’t
impact what’s running in the test environment. Eventually, when the latest image is
ready to be promoted to the test environment, the promoteToTest tag can be updated
to point to the new container image.

6.4 CI/CD part 2: promoting dev images into a test environment
In the last section, you built a development environment and then tagged the image
stream for the ToDo application as promoteToTest to indicate that it’s ready to be run
in the test environment. Before you pull down the application, you need to create a
new project called test, deploy an instance of MongoDB, and modify a security setting
for the test environment.

 In the OpenShift CLI, run the following commands to create a new test environ-
ment and deploy a new instance of MongoDB:

$ oc new-project test --display-name="ToDo App - Test"
...
$ oc new-app \

-e MONGODB_USER=oiatestuser \
-e MONGODB_PASSWORD=password \
-e MONGODB_DATABASE=tododb \
-e MONGODB_ADMIN_PASSWORD=password mongodb:3.2

--> Found image 5540f1c (10 days old) in image stream "openshift/mongodb"
under tag "3.2" for "mongodb:3.2"

...
--> Success

Run 'oc status' to view your app.

Next, you’ll deploy the same image that you built in the dev environment into your
test environment. By default, image streams in the OpenShift project can be seen by
all other projects. But image streams created in other projects, such as those in the

102 CHAPTER 6 Continuous integration and continuous deployment

dev project, aren’t visible outside those individual projects. The image streams have
limited scope in order to provide increased security. It’s recommended that users and
teams who want to share images with other projects, such as in a CI/CD context,
should modify this behavior using the OpenShift CLI. Run this command to allow the
test project to pull images from the dev project:

$ oc policy add-role-to-group \
system:image-puller \
system:serviceaccounts:test \
-n dev

The test project can now access images in the dev project. Next, deploy the image
tagged promoteToTest in the dev project into your test project:

$ oc new-app dev/todo-app-flask-mongo:promoteToTest
--> Found image 8bd4599 (22 hours old) in image stream

"dev/todo-app-flask-mongo" under tag "promoteToTest"
for "development/todo-app-flask-mongo:promoteToTest"

...
* Port 8080/tcp will be load balanced by service "todo-app-flask-mongo"

* Other containers can access this service through the hostname
"todo-app-flask-mongo"

--> Creating resources ...
deploymentconfig "todo-app-flask-mongo" created
service "todo-app-flask-mongo" created

--> Success
Run 'oc status' to view your app.

By default, the Python image that you used to create your application is configured for
applications listening on port 8080—but the actual application listens on port 5000.
Run this command to update to the correct port:

$ oc patch svc todo-app-flask-mongo --type merge \
--patch '{"spec":{"ports":[{"port": 8080, "targetPort": 5000 }]}}'

service "todo-app-flask-mongo" patched

Now that the service has been correctly updated, create a route for the ToDo application:

$ oc expose svc todo-app-flask-mongo
route "todo-app-flask-mongo" exposed

Normally, everything would be good to go at this point. But if you double-check your
pods, you’ll notice that the pod isn’t running as expected:

$ oc get pods
NAME READY STATUS RESTARTS AGE
mongodb-1-61z9p 1/1 Running 0 19h
todo-app-flask-mongo-1-4xzj6 0/1 CrashLoopBackOff 6 10m

The system:image-puller
role allows users/groups to
pull images from projects.

Applies the change
to serviceaccounts
in the test project

103CI/CD part 2: promoting dev images into a test environment

The ToDo application pod has a status of CrashLoopBackOff, which usually means the
pod is starting and then immediately exiting. This behavior is also confirmed by the
high number of restarts.

 In this case, the CrashLoopBackOff status indicates that although you’ve deployed
a MongoDB instance for the ToDo application to use, the application has no way to
discover it. One of the challenges with promoting the same container image to multi-
ple environments is that the application must dynamically find the dependencies it
needs. We’ll look at this next.

6.4.1 Service discovery

In chapter 4, you learned that a service object provides a single IP address and port
for all identical pods. Unlike pod IP addresses, which are ephemeral, the service pro-
vides a static IP address and port that don’t change for the life of the service object.
The service object becomes even more critical as you try to maintain one of the under-
lying promises of containers: the same binary that runs on the developer’s laptop runs
in production. To make this promise a reality, you need a dynamic discovery mecha-
nism so the container can use different systems and different data sets as images move
between environments. The most common example is a database. Your application
container may process dummy data on a laptop and then process more robust, tar-
geted data sets as it moves from various environments into production. As it does so, it
needs a discovery mechanism to find the databases services it will use. In OpenShift,
service discovery works with both environment variables and DNS.

 When you create applications in OpenShift, the service object is usually generated
for you behind the scenes to avoid the manual process of creating API objects. In most
cases, there is a single service object per deployment, but many service objects can be
used when multiple ports need to be exposed.

 In the example, the MongoDB exposes only a single port: the database connec-
tions port. The ToDo application needs to find the service used to expose this port. In
the console, view the MongoDB service object that OpenShift automatically created
for you by choosing Applications > Services > Mongodb. You should see a screen simi-
lar to figure 6.6.

 The service type is listed as ClusterIP, which means you have a cluster-wide IP
address. Typically, this is automatically generated by OpenShift. ClusterIP is the most
common service type. The IP is a private IP address that was automatically generated
by OpenShift and isn’t available from outside the OpenShift cluster. The ClusterIP
can be identified in OpenShift using either DNS or environment variables, each of
which come with its own advantages and disadvantages.

104 CHAPTER 6 Continuous integration and continuous deployment

DNS
OpenShift runs SkyDNS for internal discovery of services. SkyDNS is a distributed name-
server specifically designed to run with etcd, the Kubernetes API server backend, as its
data store. It runs on the master on port 8053 by default. When a container initially
starts up, the nameserver on the master(s) is added to the container configuration (in
/etc/resolv.conf in the container). When this happens, the container uses the master
for all DNS queries ending in .cluster.local.

TIP SkyDNS is covered in greater detail in chapter 10.

In OpenShift, DNS is often the preferred choice for service discovery. These DNS
entries normally take the form <service>.<pod_namespace>.svc.cluster.local, but the
format can be shortened to <service>.<pod_namespace>.svc or even <service> if
you’re looking for a service local to the current namespace. The main benefit of using
DNS as the service-discovery mechanism is that it’s consistent and less brittle than
using environment variables, as we’ll demonstrate in the next section.

ENVIRONMENT VARIABLES

Services can also be discovered using environment variables. Many developers who use
docker are probably using environment variables in some capacity. They’re easy to use
with containers, even without a platform. They have the benefit of being injectable at

Figure 6.6 Viewing the service object that was automatically generated by the oc new-app command

105CI/CD part 2: promoting dev images into a test environment

runtime, thus increasing application portability across environments. Unfortunately,
they also have a significant disadvantage: the backend services need to be up and run-
ning before other services can discover them with environment variables. If the back-
end services are created after the consuming services are spun up, service discovery
won’t work properly unless the backend service is redeployed. For this reason, using
DNS is often the preferred method for service discovery in OpenShift. Some reasons
you may want to use environment variables anyway include the following:

 Consistency with the way you run the containers using the docker CLI
 Portability outside of Kubernetes-based platforms
 Ability to run dynamic smoke tests
 Support for older applications pre-configured for environment variables
 Ease of use

In the next section, you’ll fix the ToDo application by providing a service-discovery
mechanism for the Python frontend to find the MongoDB instance.

FIXING TODO BY INJECTING ENVIRONMENT VARIABLES

It turns out that the ToDo application uses both DNS and environment variables to
look for the database. In the template you deployed for your development environ-
ment, this is handled automatically for you by injecting an environment variable into
the todo-app-flask-mongo deployment. The environment variable that the application
is looking for has the following format:

mongodb://${MONGODB_USER}:${MONGODB_PASSWORD}@${MONGODB_HOSTNAME}/

➥ ${MONGODB_DATABASE}

The MongoDB hostname is a DNS entry for the MongoDB service. Because the ToDo
application is looking for the MongoDB service in the same namespace, you’ll use the
short format of service. Based on the variables you used to create the MongoDB
application in section 6.4, inject the environment variable into the todo-app-flask-
mongo deployment:

MONGO_CONNECTION_URI=mongodb://testuser:password@mongodb/tododb

Adding environment variables to your deployment configuration will propagate down
to the pod level. This can be done either through the CLI or through the OpenShift
console, but adding them via the console is easiest. Go back to your Deployments
page, and click the Environment tab. Then add the environment variable as shown in
figure 6.7.

 As with any changes to a deployment configuration, OpenShift will version-control
the change and then roll out the latest deployment configuration, which will propagate
the changes down to the pods. Test this by navigating to your pod and choosing
Applications > Pods. You should have only one pod running, so click that pod. Click the
Environment Variable tab to see the MONGO_CONNECTION_URI environment variable. To

106 CHAPTER 6 Continuous integration and continuous deployment

double-check that the container in the pod can see the change, navigate to the Terminal
tab on the pod view, and check the environment variable from the command prompt:

$ echo $MONGO_CONNECTION_URI
mongodb://testuser:password@mongodb/tododb

Adding MONGO_CONNECTION_URI will prevent the pod from immediately exiting and
causing the pod status to be set to CrashLoopBackOff. Verify through the browser that
the ToDo application is working.

 Only one problem remains: there’s still no automation between environments. If
you were to go back to Gogs in the development environment and make a code
change, doing so would trigger a new source-to-image build of the ToDo application
in the development environment. The output of that source-to-image would be
another container image called todo-app-flask-mongo:latest. Even when todo-app-
flask-mongo:promoteToTest was updated to point to the new image, nothing would
propagate to the test environment. Although you can manually trigger a new deploy-
ment in the test environment, you want this to be automated. To create this automa-
tion, you need to add a trigger for the image stream.

Figure 6.7 Injecting the MONGO_CONNECTION_URI environment variable into the todo-app-flask-mongo
deployment

Manually triggering builds
You can manually trigger builds from the web console or the command line. In the
web console, there’s a Deploy button on the landing page for each deployment.

To manually trigger builds from the command line, use the rollout subcommand.
For example, to roll out a new deployment of the todo-app-flask-mongo app in the test
environment, you’d run this command:

$ oc rollout latest dc/todo-app-flask-mongo -n test

107CI/CD part 2: promoting dev images into a test environment

6.4.2 Automating image promotion with image stream triggers

In this section, you’ll create an image stream trigger that will cause the todo-app-flask-
mongo application in the test environment to be redeployed every time there’s a new
image in the dev environment tagged as todo-app-flask-mongo:promoteToTest. The
triggers for the image stream object are included in the deployment config object. You
can add an image stream trigger through both the web console and the command line.

 Configure the todo-app-flask-mongo deployment to redeploy every time a new
image is available in the dev/todo-app-flask-mongo:promoteToTest image stream by
running the following command:

$ oc patch dc todo-app-flask-mongo --patch '{"spec":{"triggers": [{
"imageChangeParams": {

"automatic": true,
"containerNames": [

"todo-app-flask-mongo"
],
"from": {

"kind": "ImageStreamTag",
"name": "todo-app-flask-mongo:promoteToTest",
"namespace": "dev"

}
},
"type": "ImageChange"

}
]

}}'
deploymentconfig "todo-app-flask-mongo" patched

TIP There’s a shortcut to create triggers using the command-line tool oc set
triggers. You can find more information at http://mng.bz/8LFv.

You now have a CI/CD pipeline that consists of a dev environment and a test environ-
ment. When code is committed into the Git repository, it will be automatically built and
deployed in the dev environment. To promote the image into the test environment, the
user is still required to tag the image as promoteToTest, as shown in figure 6.8.

 Verify that this is automated by making an additional edit to the source code.
Switch back to the Gogs UI, and edit the todo.html file again. In the text editor, mod-
ify the HTML tag on line 32 to this:

<h1 class="text-center">Ready For Test - ToDo App</h1>

After the text is updated, scroll to the bottom of the page, and click Commit Changes.
Doing so will cause a webhook from Gogs to trigger a new application build. When
the build completes, your application will be updated and can be tested through the
route. Take a minute to go back to the route for the ToDo application and verify that
it’s up to date with the new code.

http://mng.bz/8LFv

108 CHAPTER 6 Continuous integration and continuous deployment

At this point, the test environment is still running the older code. The new build gen-
erated a new container image of todo-app-flask-mongo with the tag latest, and the
deployment in the test environment is configured to redeploy the application only
when there’s a new container image of todo-app-flask-mongo with the tag promote-
ToTest. Review the image streams by switching to the dev project and describing the
image streams in that project:

$ oc project dev
Now using project "dev" on server "https://ocp-1.192.168.122.100.nip.io:8443"
$ oc describe is todo-app-flask-mongo
Name: todo-app-flask-mongo
Namespace: dev
...
Unique Images: 3
Tags: 2

latest
pushed image

* docker-registry.default.svc:5000/dev/todo-app-flask-mongo@sha256:85
 ➥ 01f5a2b7cdd8650ffb69975f512af23f681e0cb01c5bef41def890ba7925a7

About a minute ago
docker-registry.default.svc:5000/dev/todo-app-flask-mongo@sha256:ce

 ➥ ee1ea5bfca8beed8c34411af2dccef19c32364933971fe0623303a45201074
About an hour ago

docker-registry.default.svc:5000/dev/todo-app-flask-mongo@sha256:55

1. Git
 commit

2. Webhook
 HTTP POST

OpenShift

3. oc start-build

4. ToDo image
 tagged as latest

5. ImageChange
 trigger

6. Tag image as
 promoteToTest

7. ImageChange
 trigger

Build
pod

Registry
pod

ToDo
dev

ToDo
test

User

User

Figure 6.8 Images are automatically promoted to test once they’re tagged as promoteToTest.

109CI/CD part 3: masking sensitive data in a production environment

 ➥ f29438305f9d8b6baf7ac0df8ee17965bb62a1dba8ac01190ad88e0ca18843
25 hours ago

promoteToTest
tagged from todo-app-flask-mongo@sha256:ceee1ea5bfca8beed8c34411af2dccef

 ➥ 19c32364933971fe0623303a45201074

* docker-registry.default.svc:5000/dev/todo-app-flask-mongo@sha256:ceee1
 ➥ ea5bfca8beed8c34411af2dccef19c32364933971fe0623303a45201074

About an hour ago
docker-registry.default.svc:5000/dev/todo-app-flask-mongo@sha256:55f29

 ➥ 438305f9d8b6baf7ac0df8ee17965bb62a1dba8ac01190ad88e0ca18843
25 hours ago

Notice that the active images for latest and promoteToTest both have an asterisk in
front of them. The image you just built was tagged as latest and has a different hash
value string than the one marked promoteToTest. Grab the full string so that you can
tag it as promoteToTest, which will automate deployment into the test environment.
Do this to tag the image as promoteToTest:

$ oc tag todo-app-flask-mongo@sha256:8501f5a2b7cdd8650ffb69975f512af23f681

➥ e0cb01c5bef41def890ba7925a7 \
todo-app-flask-mongo:promoteToTest

Tag todo-app-flask-mongo:promoteToTest set to todo-app-flask-mongo@sha256:

➥ 8501f5a2b7cdd8650ffb69975f512af23f681e0cb01c5bef41def890ba7925a7

Now, open the OpenShift Console and go to the pod overview page in the test project.
The pod’s age will indicate that a new image was pulled from the development envi-
ronment. Refresh the application again in the browser, making sure you’re looking at
the test version. You’ll see that the application change was automatically deployed
from dev to test! The process of tagging the image may have seemed a little awkward,
but at the end of the chapter you’ll learn how to automate this process with Jenkins.

NOTE Normally, many other processes would be involved to test an
application before promoting it to production, often including unit tests,
load tests, code quality inspections, security scans, and even manual
approval processes. That information isn’t in the scope of this chapter, but
you can find more information in the article “CI and CD With OpenShift”
(Siamak Sadeghianfar, DevOps Zone, February 24, 2017, https://
dzone.com/articles/cicd-with-openshift).

6.5 CI/CD part 3: masking sensitive data in a production
environment
In this section, you’ll quickly build an environment for production that’s similar to the
one you built for the test environment, but you’ll use a template and some shortcuts
to avoid duplicating the work. You’ll then learn how to mask sensitive information.

 To get started, switch to your dev project and create a new tag named promoteTo-
Prod:

https://dzone.com/articles/cicd-with-openshift
https://dzone.com/articles/cicd-with-openshift
https://dzone.com/articles/cicd-with-openshift

110 CHAPTER 6 Continuous integration and continuous deployment

$ oc tag todo-app-flask-mongo@sha256:8501f5a2b7cdd8650ffb69975f512af23f681

➥ e0cb01c5bef41def890ba7925a7 \
todo-app-flask-mongo:promoteToProd

Tag todo-app-flask-mongo:promoteToProd set to todo-app-flask-mongo@sha256:

➥ 8501f5a2b7cdd8650ffb69975f512af23f681e0cb01c5bef41def890ba7925a7

Create a new project named prod by running the following command:

$ oc new-project prod --display-name="ToDo App - Prod"

Now, import the template:

$ oc create -f \
https://raw.githubusercontent.com/OpenShiftInAction/chapter6/master/]opensh

➥ ift-cicd-flask-mongo/OpenShift/templates/prod-todo-app-flask-mongo.json \
-n prod

template "prod-todo-app-flask-mongo" created

Instantiate the template by running the following command. The template assumes
that your development project is called dev and your production project is called
prod. If you made any changes to the default values, initialize the template through
the OpenShift console and modify the default parameters:

$ oc new-app --template="prod/prod-todo-app-flask-mongo"
--> Deploying template "prod/prod-todo-app-flask-mongo" to project prod
...

mongodb Connection Info:
Username: userqOe
Password: PNG7YEVF
Database Name: tododb
Connection URL: mongodb://userqOe:PNG7YEVF@mongodb/tododb

...
--> Creating resources ...

rolebinding "image-puller-prod" created
service "mongodb" created
deploymentconfig "mongodb" created
imagestream "todo-app-flask-mongo" created
deploymentconfig "todo-app-flask-mongo" created
service "todo-app-flask-mongo" created
route "todo-app-flask-mongo" created

--> Success
Run 'oc status' to view your app.

TIP Many users want their environments to run on dedicated OpenShift
nodes. For example, a user may want all development projects to run on older
hardware, and all production projects to run on newer, fast hardware. When
running in a public cloud, production environments often have their own VMs
with higher quality of service (QoS) tiers for disks and networking. For instance,
Amazon Web Services (AWS) allows users to upgrade their network bandwidth
and latency in addition to upgrade to solid-state drives (SSDs) for local disk stor-
age. It’s easy in OpenShift to match environments to dedicated machines by
using OpenShift labels to match nodes to projects. You can find more informa-
tion at http://mng.bz/FmM6 and http://mng.bz/f02E.

Template auto-
generated username

Template
 auto-generated

password

Full connection URL
for MongoDB clients

Role binding gives the
prod project access to
dev project images.

http://mng.bz/FmM6
http://mng.bz/f02E

111CI/CD part 3: masking sensitive data in a production environment

Earlier in the chapter, you set up your test project manually and ran the oc policy
command to allow the test project to access images from the dev project. In setting up
the prod environment, this was handled for you by the template. At this point, the dev
project is the only project with a build config. All projects are built in dev. The test and
prod projects have access to pull these images but not modify or push new ones, as
shown in figure 6.9.

 In the examples up to this point, you’ve used environment variables to dynamically
configure the MongoDB instance and then pass the credentials (username, password,
hostname, database) to the ToDo application. From a security perspective, using envi-
ronment variables for sensitive data is a significant drawback: it’s easy to accidentally
expose an environment variable. For example, it’s common for application frame-
works to automatically print environment variables and other configuration data
during a server error (returning an HTTP 500 response). Printing environment vari-
ables during a server error usually happens when an application is accidentally left in
development mode or is poorly configured for error handling. In addition, many
application frameworks print environment variables to log files, which are available to
users who aren’t supposed to have access to sensitive information. When environment
variables are printed in log files, that also means the sensitive information will likely
be printed in clear text on disk.

 Fortunately, OpenShift has the concept of secrets: API objects that can be used to
mask data better than environment variables. We’ll discuss them next.

Default project

Dev project Test project Prod project

Adding the system:image-puller
role to the test service account in
the dev project allows pods in the
test project to access images
from the dev project.

Registry

Prod images

Test images

Dev images

Push/pull
access Pull access Pull access

Figure 6.9 Test and prod projects have access to pull images created in the dev project.

112 CHAPTER 6 Continuous integration and continuous deployment

6.5.1 Protecting sensitive data with secrets

Secrets can be used to make sensitive information dynamically available to a container
in OpenShift. They’re encoded/decoded and kept in memory only on the OpenShift
nodes that require them and only for the period during which they’re needed. Secrets
can be used in many ways, including as better-protected environment variables.

 In the example, you want to avoid using an environment variable, so you’ll create a
secret and mount the data as files in the container. Follow these steps:

1 Navigate to the prod project in the OpenShift console, and choose Applications
> Deployments > Mongodb.

2 Click the Environment tab, and update the username and password to oiauser
and SecretPwd12, respectively.

3 Click save to deploy a new MongoDB instance with the updated username and
password.

4 Create a new secret:

oc create secret generic \
oia-prod-secret \
--from-literal=mongodb_user=oiauser \
--from-literal=mongodb_password=SecretPwd12 \
--from-literal=mongodb_hostname=mongodb \
--from-literal=mongodb_database=tododb

NOTE Like other Kubernetes platforms, OpenShift uses etcd as the database
for the API Server. You can learn more about securing secrets in etcd at
http://mng.bz/Qa46.

1 OpenShift provides a shortcut through the command-line tool to mount the lit-
erals to files in the container. Run this command to mount the secret literals as
files in the ToDo application pods:

$ oc set volumes dc/todo-app-flask-mongo \
--add \
--name=secret-volume \
--mount-path=/opt/app-root/mongo/ \
--secret-name=oia-prod-secret

The secret used to mask the Mongo connection information is now mounted as a
local file in the container. The ToDo application will use these files to determine how
to find and access MongoDB. By default, the ToDo application is specifically config-
ured to look first in files located in the /opt/app-root/mongo directory. If the files
aren’t there, it looks for the MONGO_CONNECTION_URI environment variable, which was
initially configured for you by the template.

 Ensure that the application is configured to use the secret you created by running
the following command:

Secret name
MongoDB username

MongoDB password

MongoDB service name
MongoDB
database

Adds a new volume
and volume mount
to the containerArbitrary

volume name

Container directory where
files will be mounted

Creates files from the secret
named oia-prod-secret

http://mng.bz/Qa46

113CI/CD part 3: masking sensitive data in a production environment

$ oc logs $(oc get pods -l deploymentconfig=todo-app-flask-mongo \
-o=jsonpath='{.items[].metadata.name}')

---> Running application from Python script (app.py) ...
Using files in /opt/app-root/mongo/ for MongoDB connection
Successful connection to MongoDB instance
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

TIP When secrets are mounted as volumes, any update to the secret will auto-
matically be pushed to the volumes that use that secret. This also goes for con-
fig maps (covered in the next section). This functionality allows you to update
your applications without restarting them. In order for this to work properly,
though, the application must be configured to look for updates and reload
them. Many applications only look for files at startup and never reload them,
so be careful about relying on live updates for secrets and config maps.

The output should indicate that the application is using the files in the /opt/app-
root/directory. If that isn’t the case, double-check that you ran the previous two com-
mands correctly. If you did, but problems still occur, navigate to the Deployment page
in the OpenShift console and ensure that the secret is properly configured as a vol-
ume in the container

 Secrets can be used for other sensitive information, as well. OpenShift by default
creates and manages many secrets for you behind the scenes, to make a better user
experience. One example is the dockercfg secret, which is used internally so that
OpenShift can automate updates to the container registry. Other common use cases
for secrets are SSL/TLS certificates and private Git repository credentials.

 Secrets provide a secure mechanism to dynamically pass sensitive information to
containers. By passing this information at runtime, the credentials aren’t in the actual
container image, which is a security best practice. Secrets are a powerful tool for mak-
ing dynamic container images that can be promoted between environments, although
they often have additional administrative or configuration overhead.

 There may be times when you need a simple mechanism to get different settings to
your application at runtime. If the configuration file doesn’t contain sensitive data, it
makes more sense to use a config map.

6.5.2 Using config maps for environment-specific settings

Similar to secrets, config maps are API objects. A config map object holds key-value
pairs, typically configuration data. The data can be individual strings or entire proper-
ties files. Config maps are an important component in using container images for a
CI/CD pipeline which allow for environment-specific configuration artifacts to be
decoupled from the image. Config map objects can be exposed as environment vari-
ables, mounted as files in a container, or even configured as command-line arguments
on application startup. By presenting environment-specific configurations at runtime,
the container image becomes truly portable across environments.

 The most common use case for a configuration map is an application that is pre-con-
figured to look at a properties or settings file upon startup. Often times, applications

114 CHAPTER 6 Continuous integration and continuous deployment

may look for this file on its local filesystem. Before containers became the backbone of
CI/CD pipelines, these configuration files were typically bundled with the application.
In the next section, you will make such a change to modify the ToDo application.

IMPLEMENTING A CONFIG MAP

The ToDo application is configured to look for a file called style.properties in the
/opt/app-root/ui directory. If the file exists, the application checks for a usebuttons
property in the file. If the usebuttons property exists, then ToDo displays buttons
instead of text for adding and removing tasks from the application. Because this con-
figuration isn’t sensitive, you can use a config map to make sure the property isn’t
hardcoded in the image. Follow these steps:

1 Switch to the dev project on the command line. Create a style.properties file
with the value usebuttons:

echo "usebuttons" > style.properties

2 Use the command line to create a config map from the style.properties file:

$ oc create configmap \
ui-config \
--from-file=style.properties

3 Patch the deployment to mount the config map to the expected directory:

$ oc set volumes dc/todo-app-flask-mongo \
--add \
--name=configmap-volume \
--mount-path=/opt/app-root/ui/ \
-t configmap --configmap-name=ui-config

TIP You can use the previous command to point to a directory instead of an
individual file. This is a handy shortcut if you have many configuration files
that you want to be included in the same configmap object.

Because the deployment you patched has a ConfigChange trigger, a new todo-app-
flask-mongo pod will be immediately started that has the style.properties file mounted
in the /opt/app-root/directory. Navigate to the ToDo application in the browser, and
refresh the page. Double-check that the application is using buttons instead of text, as
shown in figure 6.10. If the application is still showing the old button-style, then first
verify that the config map is mounted properly as a file at /opt/app-root/ui/
style.properties. If the file is not at that location, go back and ensure that the com-
mand to create the config map was run properly. If the file is in the right place, but
the app is not functioning properly, then try refreshing your browser or clearing your
browser cache.

115CI/CD part 3: masking sensitive data in a production environment

NOTE Some use cases require that many different pod types have the same
environment variables, secrets, config maps, and so on. In this scenario, you
can use pod presets to inject these constructs into pods, using labels as
opposed to modifying individual deployments separately. A common exam-
ple is many different applications in a project having their own deployments
but needing to access the same secret. If you use pod presets, the application
deployments don’t all need to be modified separately. You can learn more
about how to use pod presets at http://mng.bz/H909.

So far in this chapter, you’ve built a development environment and then used Open-
Shift native features and API objects to promote the same image from your develop-
ment environment to your production environment. You use image streams to enable
automation; image tagging to trigger image promotion; and environment variables,
secrets, and config maps to ensure that the image worked in every environment.
Although enabling this automation is useful, it lacks some key features. First, there’s no
macro view of what’s happening in the environment. The OpenShift console provides
a project-based view, but it doesn’t provide a multiproject view to track images being
promoted among various environments. Second, some of the steps require manual
effort, such as using the oc tag to tag an image stream as being ready to promote.
Finally, it’s unclear how to integrate third-party tools such as code scanning and testing
tools. For these reasons, many OpenShift users use Jenkins to promote container
images to different environments in a fully automated fashion.

Figure 6.10 ToDo application using buttons instead of text

The application checked for the userbuttons field
in style.properties. That was mounted as a local file
from the config map, which triggered the application
to use buttons instead of text.

http://mng.bz/H909

116 CHAPTER 6 Continuous integration and continuous deployment

6.6 Using Jenkins as the backbone of a CI/CD pipeline
Jenkins is a popular, easy-to-use automation tool, and many OpenShift users already have
a working knowledge of it. In many ways, Jenkins has become the de facto industry stan-
dard to automate a CI/CD pipeline, mainly because it has a large ecosystem of plugins for
third-party tools. Typically, when a vendor wants to get a product or technology out to a
large audience, creating a plugin for Jenkins is at the top of the priority list.

 OpenShift provides Jenkins container images as well as several Jenkins plugins to
facilitate integrating Jenkins with OpenShift and building CI/CD pipelines. The fol-
lowing are some common ways to use Jenkins and OpenShift together:

 Jenkins-as-a-service on OpenShift—In this scenario, you spin up a Jenkins pod in
OpenShift to facilitate CI/CD pipelines in OpenShift. The Jenkins pod can be
deployed from the OpenShift service catalog and comes with the OpenShift
plugins preinstalled. This can be set up on a cluster-wide or per-project basis.

 External Jenkins—Users who already have an existing Jenkins installation and
CI/CD pipeline can install the OpenShift plugins into their existing instance to
facilitate OpenShift automation.

 Hybrid—Typically, this involves running an external Jenkins instance but run-
ning Jenkins slaves in OpenShift pods as needed.

You’ll deploy Jenkins-as-a-service in this section because it’s easy and doesn’t require
new infrastructure. In many OpenShift environments, each project has its own
instance of Jenkins. But in this case, the Jenkins instance will be coordinating across
multiple projects, so you’ll create a Jenkins instance in a dedicated project. You’ll use
the same Jenkins instance for your development, test, and production environments.
Follow these steps:

1 Allow the the Jenkins Service Account to edit your existing dev, test, and prod
projects:

$ oc policy add-role-to-user edit \
 system:serviceaccount:cicd:jenkins -n dev
$ oc policy add-role-to-user edit \
 system:serviceaccount:cicd:jenkins -n test
$ oc policy add-role-to-user edit \
 system:serviceaccount:cicd:jenkins -n prod

2 Create a new project:

$ oc new-project cicd --display-name="ToDo App - CI/CD with Jenkins"
Now using project "cicd" on server "https://ocp-1.192.168.122.100.nip.io

➥ :8443"
...

117Using Jenkins as the backbone of a CI/CD pipeline

3 Import the Jenkins template for this chapter:

$ oc create -f \
https://raw.githubusercontent.com/OpenShiftInAction/chapter6/master/

 ➥ jenkins-s2i/jenkins-s2i-template.json \
-n cicd

template "jenkins-oia" created

4 Run the following command to process the template. It installs Jenkins and uses
the OpenShift S2I image, which will pull three preconfigured Jenkins jobs to
automate building a new image in dev, tagging it as promoteToTest, and then
tagging it again as promoteToProd. In other words, the preconfigured Jenkins
pod in the template will automate the manual steps you had to perform earlier:

$ oc new-app --template="cicd/jenkins-oia"
--> Deploying template "openshift/jenkins-ephemeral" to project cicd

Jenkins (Ephemeral)

Jenkins service, without persistent storage.

WARNING: Any data stored will be lost upon pod destruction.
Only use this template for testing.

A Jenkins service has been created in your project.
Log into Jenkins with your OpenShift account. The tutorial at
https://github.com/openshift/origin/blob/master/examples/jenkins/

 ➥ README.md
contains more information about using this template.

...
--> Success

Run 'oc status' to view your app.

When the build is finished and the custom Jenkins pod is deployed, open your
browser and navigate to the route that was created for you automatically by the tem-
plate. You can log in with your OpenShift credentials. Choose Dev Build Job > Config-
ure to bring up the job; you should see a page similar to figure 6.11. Note that the
template you instantiated created a service account called jenkins with permissions to
edit images from the dev project. This allows you to skip providing your login session
token, which will expire periodically.

TIP You can find your login token by running oc whoami -t from the com-
mand line.

If you scroll to the bottom, you’ll see that the job is configured to automatically trigger
the Promote to Test job (see figure 6.12). Take a couple minutes to explore the Pro-
mote To Test and Promote To Prod jobs. They’re simple, but they eliminate the need
for you to manually find the image ID and tag it as you did earlier in the chapter.

118 CHAPTER 6 Continuous integration and continuous deployment

Eventually, the container image is fully promoted to the prod environment, as shown
in figure 6.13, by Jenkins automating the image tagging process.

 If you go back to the Dev Build job and click Build Now, a new image will be built
and promoted all the way to your production environment. In the real world, you’ll
have many other software testing and code- and image-scanning tools that run in this
pipeline. For most customers, there may be manual checkpoints as well. One of the
benefits of using Jenkins is that it’s easy to integrate external systems like Service Now
or Jira, which can trigger Jenkins jobs through an HTTP call.

Figure 6.11 Jenkins triggering an OpenShift build

Figure 6.12 Jenkins Promote to Test job

119Using Jenkins as the backbone of a CI/CD pipeline

TIP You can find more about how to trigger Jenkins jobs remotely on the Jen-
kins wiki at http://mng.bz/4aI6.

6.6.1 Triggering Jenkins from Gogs

Earlier in the chapter, you spun up a development environment from a template that
included Gogs as the Git source repository. New code commits in Gogs configured an
OpenShift build in the dev project. Because you’ve configured Jenkins as the backbone
of your CI/CD, it makes sense to reconfigure Gogs to kick off the pipeline through Jen-
kins. This will automate the entire pipeline process, not just a single build.

 First, configure the Dev Build job to allow remote triggers:

1 In the console, click Dev Build Job > Configure > Build Triggers.
2 Toggle the Trigger Builds Remotely check box, and add an authentication

token with the value cicdtrigger=oia, as shown in figure 6.14.
3 Click Save.

Now, navigate to the Gogs web interface using the route created in your dev project.
Log in, and then follow these steps:

1 Click the the openshift-cicd-flask-mongo repository, and choose Setting > Webhooks.
2 Delete the previous webhook, which was automatically installed for you.
3 Click Add Webhook and Gogs.
4 Configure a new webhook, as shown in figure 6.15. Be sure to update the URL

to the correct URL of your Jenkins route.
5 Choose Update Webhook > Test Delivery to trigger a new complete pipeline build.

Figure 6.13 Jenkins tagging an image for prod

http://mng.bz/4aI6

120 CHAPTER 6 Continuous integration and continuous deployment

Figure 6.14 Allowing a Jenkins job to be triggered remotely

Figure 6.15 Configuring Gogs to trigger a Jenkins job

121Using Jenkins as the backbone of a CI/CD pipeline

TIP The username/password credentials for Gogs are gogs and password,
respectively.

You now have a fully automated end-to-end CI/CD pipeline with Jenkins!

6.6.2 Native integration with a Jenkinsfile

OpenShift integration with Jenkins has one last important piece of functionality in
addition to the plethora of available plugins, single-sign-on capability using OpenShift
credentials, and S2I capability: it can natively integrate with Jenkins pipelines. This
scriptable approach to building a pipeline allows Jenkins to run truly customizable
workflows by using a special file for scripting called a Jenkinsfile. Users can create a
pipeline with a script that OpenShift extends by providing many OpenShift-specific
functions that can be called. This approach is popular in the CI/CD community.

TIP For a list of OpenShift functions that can be called in the Jenkinsfile,
check out the documentation at http://mng.bz/7L8Y.

The result of the script is a full pipeline. In OpenShift, this pipeline can be built using
a build config for Jenkins. In the OpenShift console, the pipeline can be executed
and monitored, providing a deep integration for Jenkins in OpenShift. The Jenkins
template that you deployed earlier comes with an example called oia-pipeline, which
you likely noticed as the fourth Jenkins job in the browser. This Jenkins job calls the
OpenShift Jenkinsfile function to automate the CI/CD pipeline the same way, but it
provides several benefits:

 The pipeline can be executed from the OpenShift console.
 The pipeline can be monitored from the OpenShift console.
 The duration of each stage in the job is shown, to allow for better visibility.
 The script is easily extensible.

Let’s kick off the oia-pipeline build from the OpenShift console. Navigate to the cicd
project in the OpenShift console and, in the Builds panel, choose Pipelines > Start
Pipeline. The pipeline includes a manual step before the application is built and pro-
moted to production. You’ll see output similar to figure 6.16, indicating a successful
CI/CD pipeline in OpenShift through integration with Jenkinsfile builds!

Figure 6.16 Viewing a Jenkins pipeline build in the OpenShift console

http://mng.bz/7L8Y

122 CHAPTER 6 Continuous integration and continuous deployment

6.7 Deployment strategies
So far in this chapter, you’ve learned how to build a container image and automate
the promotion of that image across different environments using native OpenShift
automation in addition to Jenkins integration. But we haven’t discussed the exact
sequence for how the new version of the application is rolled out. The way you update
your application in OpenShift is called a deployment strategy; it’s a critical component of
supporting a wide variety of applications in the platform. OpenShift supports several
deployment strategies, including the following:

 Rolling—The default strategy. When pods consisting of the new image become
ready by passing their readiness checks, they slowly replace the old images, one
by one. Setting this deployment strategy is done in the deployment configura-
tion object.

 Re-create—Scales down to zero pods consisting of the old image, and then
begins to deploy the new pods. This strategy has the cost of a brief downtime
while waiting for the new pods to be spun up. Similar to rolling, in order to use
this strategy it must be set in the deployment configuration object.

 Blue/Green—Focuses on reducing risk by standing up the pods consisting of new
images while the pods with the old images remain running. This allows the user
to test their code in a production environment. When the code has been fully
tested, all new requests are sent to the new deployment. OpenShift implements
this strategy using routes.

 Canary—Adds checkpoints to the blue/green strategy by rolling out a fraction
of the new images at a time and stopping. The user can test the application ade-
quately before rolling out more pods. As with blue/green deployments, this
strategy is implemented using OpenShift routes.

 Dark launches—Rolls out new code but doesn’t make it available to users. By test-
ing how the new code works in production, the user can then later enable the
features when its determined to be safe. This strategy has been made popular at
places like Facebook and Google. To accomplish dark launches, the application
code must have checks for certain environment variables that are used to
enable or disable new features. In OpenShift, you can take advantage of that
code by toggling the new features on or off by setting the appropriate environ-
ment variables for the application deployment.

TIP OpenShift also includes a way to provide custom deployment strategies.
Although seldom used, it’s a powerful way to extend the platform. You can
find more information at http://mng.bz/SPEt.

There are many considerations for choosing a deployment strategy. The rolling strat-
egy upgrades your application the most quickly while avoiding downtime, but it runs
your old code side-by-side with your new code. For many stateful applications, such as
clustered applications and databases, this can be problematic. For example, imagine
that your new deployment has any of the following characteristics:

http://mng.bz/SPEt

123Deployment strategies

 It’s rolling out a new database schema.
 It uses clustering to dynamically discover other pods (chapter 8 covers cluster-

ing and other stateful-applications in greater detail).
 It has a long-running transaction.
 It shares persistent storage among all the pods in the deployment.

In these cases, it makes sense to use a re-create strategy instead of a rolling upgrade.
Databases almost always use the re-create strategy.

 You can check the strategy for the MongoDB pod and the ToDo application pod in
your deployments by running the following command:

echo $(oc get dc todo-app-flask-mongo -o=jsonpath='{.spec.strategy.type}'

➥ -n dev)
Rolling

You can check the strategy for the mongodb deployment the same way:

$ echo $(oc get dc mongodb -o=jsonpath='{.spec.strategy.type}' -n dev)
Recreate

As expected, a stateless Python application is a good fit for a rolling upgrade, whereas
MongoDB makes more sense to run using the re-create strategy. Both the rolling and
re-create strategies have extensible options, including various parameters to deter-
mine the timing of the rollouts; they also provide lifecycle hooks, which allow code to be
injected during the deployment process.

TIP You can learn more about lifecycle hooks at http://mng.bz/b351.

Many users also choose to add blue/green- and canary-style deployment strategies by
combining the power of OpenShift routes with a rolling or re-create deployment strat-
egy. For applications using rolling deployment, adding a blue/green- or canary-style
deployment allows the OpenShift user to reduce risk by providing a more controlled
rollout using checkpoints. For applications using the re-create deployment strategy,
adding blue/green or canary features lets the application avoid downtime.

 Both blue/green and canary deployments use OpenShift routes to manage traffic
across multiple services. To implement these deployment strategies, an entire copy of
the application is created with the new code. This copy includes the API objects to run
the application: the deployment, service, replication controller, pods, and so on.
When adequate testing has been performed on the new code, the OpenShift route is
patched to point to the service containing the new code. A blue/green deployment
has the added benefit of testing code in production—and because the old code is still
running, the application can be rolled back to the old code if something breaks. One
downside to using blue/green deployments is that they require more infrastructure,
because your application needs double the resources while both versions of the code
are running. A canary deployment is similar to a blue/green deployment except that
whereas blue/green switches the route between services all at once, canary uses

http://mng.bz/b351

124 CHAPTER 6 Continuous integration and continuous deployment

weights to determine what percentage of traffic should go to the new and old service.
You can modify the weights for the rollout using the OpenShift CLI or console.

TIP You can read a good example of both blue/green and canary deploy-
ments in “Colorful Deployments: An Introduction to Blue-green, Canary, and
Rolling Deployments” (Maciej Szulik, Opensource.com, May 2, 2017,
http://mng.bz/64a9).

6.8 Summary
 Image streams enable automation and consistency for container images.
 You can use OpenShift triggers for event-based image builds and deploys.
 You can use DNS for service discovery.
 You can use environment variables for service discovery if dependencies are

installed first.
 Image tagging automates the promotion of images between environments.
 Secrets mask sensitive data that needs to be decoupled from an image.
 Config maps provide startup arguments, environment variables, or files

mounted in an image.
 OpenShift provides a Jenkins source-to-image capability, which builds Jenkins

with custom jobs and other artifacts.
 OpenShift provides a Jenkins instance with many useful plugins preinstalled.
 Jenkinsfile pipelines can be executed and monitored from the OpenShift

console.
 OpenShift supports many types of deployment strategies for a wide variety of

applications.

Cleaning up your projects
This chapter creates four new projects and many new pods. Depending on your envi-
ronment, you may run out of CPU or memory going forward. If so, you can remove
these projects through the command line by running the following commands:

$ oc delete project dev
project "dev" deleted
$ oc delete project test
project "test" deleted
$ oc delete project prod
project "prod" deleted
$ oc delete project cicd
project "cicd" deleted

http://mng.bz/64a9

Part 3

Stateful applications

Part 2 of the book focused on how cloud-native applications work in Open-
Shift. Part 3 covers more traditional applications that need stateful storage.

 In chapter 7, you’ll set up an external NFS server and use it to provide per-
sistent storage volumes to OpenShift. You’ll then take that persistent storage and
attach volumes that have already been deployed in OpenShift.

 Chapter 8 focuses on how stateful applications work in OpenShift. We’ll go
through examples using applications that require session persistence and spe-
cific startup and shutdown sequences.

127

Creating
 and managing

 persistent storage

We haven’t discussed what your first application deployed in OpenShift does. We
noted that the application you deployed using the image-uploader source code was
written in PHP. Here are a few additional application features:

 Uploads images from your workstation
 Shows you those images as thumbnails on the application page
 Verifies that what you’re uploading is a standard image format
 Shows you the full-size image when you click it

This chapter covers
 Using the system:admin user to administer your

cluster

 Attaching persistent storage to applications

 Making remote storage available in containers

 Removing persistent storage from applications

 Cleaning up persistent storage volumes

128 CHAPTER 7 Creating and managing persistent storage

It’s not the next Instagram, but it’s simple enough to live in a couple of files of source
code and be easy to edit and manipulate in OpenShift. You’ll use that simplicity to
your advantage in this chapter.

 If you haven’t already, go ahead and test out the Image Uploader app, and upload
an image or two (or three or four or more!) into the app-cli deployment. After you
do, your application should look similar to figure 7.1. For the examples, I uploaded a
meme, a picture of my super-cute daughter, and a photo of Dan Walsh.

When you deploy an application in OpenShift, you can specify the minimum number
of replicas (instances of the application) to keep running at all times. If you don’t
specify a number (you didn’t for app-gui or app-cli), OpenShift will always keep one
instance of your application running at all times. We initially discussed this in chapter
three, and used the feature in chapters four, five, and six. None of these application
replicas had persistent storage. If one of the application pods was deleted or scaled
down, any data it had written would be gone as well. Let’s test this out.

Figure 7.1 Image Uploader after a few pictures have been uploaded. I (Jamie)
uploaded a meme, a picture of my daughter, and a photo of Dan Walsh.

Who is Dan Walsh?
Dan is a consulting engineer at Red Hat who joined the company in 2001. Since 2013,
Dan has been the lead engineer for Red Hat’s container engineering teams. He’s also
the lead engineer for most of the development around SELinux.

In addition to being a pretty smart guy and a key voice in how containers are changing
IT, he’s funny, massively sarcastic, and a bit of a hero to both authors. You can find
Dan on Twitter at @rhatdan.

129Container storage is ephemeral

7.1 Container storage is ephemeral
After logging in to your OpenShift cluster from the command line with the oc
command-line tool, you can use the oc get pods command to get a list of all of your
running pods:

$ oc login -u dev -p dev https://ocp-1.192.168.122.100.nip.io:8443
Login successful.

You have one project on this server: "image-uploader"

Using project "image-uploader".
$ oc get pods
NAME READY STATUS RESTARTS AGE
app-cli-1-2162x 1/1 Running 1 23h
app-cli-1-build 0/1 Completed 0 23h
app-gui-1-build 0/1 Completed 0 23h
app-gui-1-gk5j4 1/1 Running 1 23h

The output shows the app-cli and app-gui application containers. It also lists the com-
pleted pods created by the build config and used to create the custom image for each
deployment. The pod for the app-cli application is app-cli-1-2162x.

 Let’s put this idea to the test. You can use the oc delete pod command to delete
the app-cli pod. To do so, use the command followed by the name of the pod you want
to delete:

$ oc delete pod app-cli-1-2162x
pod "app-cli-1-2162x" deleted

After deleting the pod, check back using the oc get pods command. Here you can see
that OpenShift created a new pod with a new name for app-cli almost immediately:

$ oc get pods
NAME READY STATUS RESTARTS AGE
app-cli-1-build 0/1 Completed 0 1d
app-cli-1-d2mcd 1/1 Running 0 11s
app-gui-1-build 0/1 Completed 0 1d
app-gui-1-gk5j4 1/1 Running 1 1d

As we mentioned earlier in this chapter, OpenShift always makes sure the desired
number of copies of your application are running. When you delete a pod, OpenShift
detects that the desired state (one pod running at all times) isn’t being met, so it cre-
ates a pod using the application image created when you deployed app-cli. In this
case, the AGE field indicates that the pod had already been up and running for 11 sec-
onds by the time the oc get pods command was run again.

 This would seem to be the answer to just about everything, wouldn’t it? Applica-
tions automatically restart themselves when they go down. But before we close up
shop, take another look at your app-cli application’s web page.

Logging in to OpenShift
successfully from the

command line

The app-cli
application container

The app-gui
application container

Newly created app-cli
pod, which has been
up for 11 seconds
according to the AGE
data column

130 CHAPTER 7 Creating and managing persistent storage

In figure 7.2, you can see that the images uploaded earlier are nowhere to be found.
When a pod is deployed in OpenShift, the storage that’s used for the filesystem is
ephemeral: it doesn’t carry over from one instance of the application to the next.
When applications need to be more permanent, you need to set up persistent storage for
use in OpenShift.

7.2 Handling permanent data requirements
In OpenShift, persistent storage is available for data that needs to be shared with other
pods or needs to persist past the lifetime of any particular pod. Creating such perma-
nent storage in pods is handled by persistent volumes (PVs). PVs in OpenShift use
industry standard network-based storage solutions to manage persistent data. Open-
Shift can use a long list of storage solutions to create PVs, including the following:

In the next section, you’ll configure a PV in OpenShift using NFS.

 Network File System (NFS) Google Cloud Platform (GCP) Persistent Disk

 HostPath (local directories on the OpenShift nodes) iSCSI

 Gluster Fibre Channel

 Ceph RBD Azure Disk

 OpenStack Cinder Azure File

 AWS Elastic Block Storage (EBS)

Before deleting pod After pod is recreated

Figure 7.2 After app-cli was automatically redeployed by OpenShift, the isolated storage for the new
container didn’t include the uploaded images from the previous deployment, because containers don’t
have persistent storage by default.

131Creating a persistent volume

7.3 Creating a persistent volume
PVs in OpenShift rely on one of the listed types of network storage to make the storage
available across all nodes in a cluster. For the examples in the next few chapters, you’ll
use a PV built with NFS storage. Appendix B takes you through setting up and exporting
an NFS volume on your OpenShift master. It also offers up pointers if you prefer to use
a different NFS server. If you haven’t already, go ahead and walk through that now.

 As we discussed early in chapter 2, your OpenShift cluster is currently configured to
allow any user to log in to the system, as long as their password isn’t empty. Each new
username is added to a local database at first login. You created a user named dev and
used that user to create a project and deploy the app-cli and app-gui versions of the
Image Uploader application. The dev user can create projects and deploy applications,
but it doesn’t have the proper permissions to make cluster-wide changes like attaching
a PV. We’ll take a much deeper look at how users are managed in OpenShift in chapter
9, but to create a PV, you need administrator-level access to your OpenShift cluster.

7.3.1 Logging in as the admin user

When an OpenShift cluster is installed, it creates a configuration file for a special user
named system:admin on the master server. The system:admin user is authenticated using
a specific SSL certificate, regardless of the authentication provider that’s configured.
System:admin has full administrative privileges on an OpenShift cluster. The key and
certificate for system:admin are placed in a Kubernetes configuration file when the
OpenShift cluster is installed; this makes it easier to run commands as system:admin. To
run commands as system:admin, you need to copy this configuration file to the local sys-
tem where you’ve been running oc commands.

COPYING THE ADMIN USER CONFIGURATION

The configuration file for system:admin is created on the master server at /etc/
origin/master/admin.kubeconfig. You can copy this file into your home directory on
your workstation; this process will vary slightly depending on your workstation’s oper-
ating system. Your admin.kubeconfig file should look similar to the example in the fol-
lowing listing.

apiVersion: v1
clusters:
- cluster:

certificate-authority-data:
LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tL...
server: https://ocp-1.192.168.122.100.nip.io:8443

name: ocp-1-192-168-122-100-nip-io:8443
contexts:
- context:

cluster: ocp-1-192-168-122-100-nip-io:8443
namespace: default
user: system:admin/ocp-1-192-168-122-100-nip-io:8443

name: default/ocp-1-192-168-122-100-nip-io:8443/system:admin

Listing 7.1 Example admin.kubeconfig file (certificate and key fields trimmed)

132 CHAPTER 7 Creating and managing persistent storage

current-context: default/ocp-1-192-168-122-100-nip-io:8443/system:admin
kind: Config
preferences: {}
users:
- name: system:admin/ocp-1-192-168-122-100-nip-io:8443

user:
client-certificate-data:
LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tL...
client-key-data: LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLR...

The system:admin user is a special user account in OpenShift. Instead of relying on
the configured identity provider, it uses a TLS certificate for authentication. This cer-
tificate was generated when you deployed your cluster. The certificate and user infor-
mation are stored in /etc/origin/master/admin.kubeconfig—that’s why copying this
file to your workstation allows you to run administrator-level commands on your
OpenShift cluster. The root user on your master server also has this configuration file
as its default OpenShift setup, which means any user who has root access to your mas-
ter server can administer your entire OpenShift cluster.

 After you’ve copied admin.kubeconfig to your workstation, you can use it with the
oc command to create a PV, as we’ll discuss in the next section.

7.3.2 Creating new resources from the command line

OpenShift makes extensive use of configuration files written in YAML format. YAML is
a human-readable language that’s often used for configuration files and to serialize
data in a way that’s easy for both humans and computers to consume. YAML is the
default way to push data into and get data out of OpenShift.

NOTE If you’d like to dig a little deeper into what YAML is and how it works, a
great place to start is www.yaml.org/start.html.

In chapter 2, we talked about the OpenShift resources that are created when an appli-
cation is built and deployed. These resources have documented, YAML-formatted tem-
plates so you can create and manage the resources easily. In later chapters, you’ll use
several of these templates to create or change resources in OpenShift. For the applica-
tion deployments you created in chapter 2, these templates were automatically gener-
ated and stored in the OpenShift database when you ran the oc new-app command.

 In this chapter, you’ll use a template to create a PV. To make this a little easier,
we’ve created an organization on GitHub with repositories for each chapter:
https://github.com/OpenShiftInAction. You can download the chapter 7 repository
from https://github.com/OpenShiftInAction/chapter7; other chapters have similar
names. If you haven’t already, clone this repository on to your workstation. It contains
ready-made templates that you can use for the rest of the examples in this chapter.

NOTE The source code that you used to create the Image Uploader applica-
tion is also in this GitHub organization, at https://github.com/OpenShiftIn-
Action/image-uploader. In addition, it’s posted on the book’s website at
www.manning.com/books/openshift-in-action.

https://github.com/OpenShiftInAction
https://github.com/OpenShiftInAction/chapter7
https://github.com/OpenShiftInAction/image-uploader
https://github.com/OpenShiftInAction/image-uploader
https://www.manning.com/books/openshift-in-action
http://www.yaml.org/start.html

133Creating a persistent volume

The template to create your first PV is detailed in listing 7.2. It contains several key
pieces of information about the PV you’ll create with it, including the following:

 The type of resource the template will create. Different resources have different
template configurations. In this case, you’re creating a PV.

 A name for the resource to be created. This example is pv01. In the next sec-
tion, you’ll create pv01 through pv05.

 Storage capacity for the PV that will be created, measured in GB in this exam-
ple. Each of the PVs you create in this chapter will be 2 GB.

 Access mode for the PV that will be created.
 NFS path for this PV.
 NFS server for this PV. If you used another IP address for your master, or used

another server, you’ll need to edit this value.
 Recycle policy for the PV that will be created. These policies dictate how data

will be disposed of once it’s no longer being used by an application. We’ll dis-
cuss this in the next section.

apiVersion: v1
kind: PersistentVolume
metadata:

name: pv01
spec:

capacity:
storage: 2Gi

accessModes:
- ReadWriteMany
nfs:

path: /var/nfs-data/pv01
server: 192.168.122.100

persistentVolumeReclaimPolicy: Recycle

In the next section, you’ll create several PVs using the NFS volumes that you created
in appendix B.

7.3.3 Creating a physical volume

To create a resource from a YAML template, use the oc create command along with
the -f parameter, which specifies the template file you want to process. To create the
PV for this example, you’ll use the template named pv01.yaml, which is in the chap-
ter7 repository you cloned onto your workstation earlier in this chapter.

NOTE Creating PVs is one of the few tasks that isn’t available in the current
OpenShift web interface. To create and manage PVs, the command line is the
place to start.

Listing 7.2 Template to create a PV using the NFS volume created in appendix B

Type of resource template

Name of the PV

Capacity for this PVAccess
mode for

the PV
Mount path for the NFS
volume on the NFS serverNFS server

address
Volume reclaim policy

134 CHAPTER 7 Creating and managing persistent storage

Because PVs are cluster-wide resources, you can also use the --config parameter to
specify the admin.kubeconfig file that you copied from your master server earlier. You
can put all of this together by running the following command:

$ oc --config ~/admin.kubeconfig create -f pv01.yaml
persistentvolume "pv01" created

In appendix B, you created five NFS exports. Each of these will be mapped to a PV;
there are templates for these additional PVs in the chapter7 repository.

 To create the other PVs, you can repeat the previous step for each pvX.yaml file in
the repository. Or you can run them all as a quick Linux one-liner like the following:

for i in $(seq 2 5);do oc --config ~/admin.kubeconfig create -f pv0$i.yaml;done

You can confirm that the parameters from your template were correctly interpreted by
running the oc get pv command using the admin.kubeconfig configuration to get
information about all active PVs:

$ oc --config ~/admin.kubeconfig get pv
NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM REASON AGE
pv01 2Gi RWX Recycle Available 15s
pv02 2Gi RWX Recycle Available 9s
pv03 2Gi RWX Recycle Available 8s
pv04 2Gi RWX Recycle Available 8s
pv05 2Gi RWX Recycle Available 8s

Next, let’s look at some of those parameters, to help better understand their options
and benefits.

DECIDING ON A STORAGE ACCESS MODE

Each PV’s template specifies an access mode. An access mode for a PV describes how it
can be used by other OpenShift resources. There are three options for the access mode:

 Read/Write once (RWO)—This volume can be mounted as read/write by a sin-
gle node in the OpenShift cluster. This is useful when you have workloads
where a single application pod will be writing data. An example is a relational
database, when you know that all the writes to the persistent data will come
from a single pod.

 Read-only many (ROX)—Volumes with this access mode can be mounted as read-
only by multiple OpenShift nodes. An example of where this type of access
mode is useful is when a horizontally scalable web application needs access to
the same static content, such as images.

 Read/Write many (RWX)—The RWX access mode is the option you’ll use for the
PV in this chapter. It allows multiple nodes to mount this volume, read from it,
and write to it. The Image Uploader application is a good example. When you
scale up the Image Uploader application in the next chapter, multiple nodes will
need to be able to read and write to the persistent storage you’re about to create.

135Using persistent storage

Currently, only GlusterFS and NFS support the RWX access mode.

SELECTING A RECLAIM POLICY

A reclaim policy dictates how a PV handles reclaiming space after a storage claim on the
PV is no longer required. Two options are available:

 Retain—With this reclaim policy, all data is retained in the PV. Reclaiming space
is a manual process.

 Recycle—This reclaim policy automatically removes data when the claim is
deleted. You’ll use this option for the PV created in this chapter. This policy is
available only for NFS and HostPath PVs.

TIP In OpenShift 3.7 and above, the recycler for NFS has been deprecated in
favor of dynamic provisioners. More information about using dynamic provi-
sioners to create storage on demand is available at https://docs.openshift.org/
latest/install_config/persistent_storage/dynamically_provisioning_pvs.html.

You’ve now created persistent storage that can be used with your applications in
OpenShift. In the next section, you’ll configure your applications to take advantage of
this storage.

7.4 Using persistent storage
Now that you have PVs configured, it’s time to take advantage of them. In OpenShift,
applications consume persistent storage using persistent volume claims (PVCs). A PVC
can be added into an application as a volume using the command line or through the
web interface. Let’s create a PVC on the command line and add it to an application.

How persistent volume claims match up with persistent volumes
First, you need to know how PVs and PVCs match up to each other. In OpenShift, PVs
represent the available storage. PVCs represent an application’s need for that
storage.

When you create a PVC, OpenShift looks for the best fit among the available PVs and
reserves it for use by the PVC. In the example environment, matches are based on
two criteria:

 PV size vs. PVC need—OpenShift tries to take best advantage of available
resources. When a PVC is created, it reserves the smallest PV available that
satisfies its need.

 Access mode—When a PVC is created, OpenShift looks for an available PV with
at least the level of access required. If an exact match isn’t available, it reserves
a PV with more privileges that still satisfies the requirements. For example, if a
PVC is looking for a PV with an RWO access mode (read/write once), it will use
a PV with an RWX (read/write many) access mode if one is available.

Because all the PVs in your environment are the same size, matching them to PVCs
will be straightforward. Next, you’ll create a PVC for your application to use.

https://docs.openshift.org/latest/install_config/persistent_storage/dynamically_provisioning_pvs.html
https://docs.openshift.org/latest/install_config/persistent_storage/dynamically_provisioning_pvs.html
https://docs.openshift.org/latest/install_config/persistent_storage/dynamically_provisioning_pvs.html

136 CHAPTER 7 Creating and managing persistent storage

7.4.1 Creating a persistent volume claim using the command line

Listing 7.3 shows an example PVC template, which you can find in the chapter7 repos-
itory on GitHub. The file is named pvc-app-cli.yaml. Some of the important template
parameters include the following:

 The name of the PVC to be created.
 The access mode for the PVC. In this example, the PVCs will request the RWX

access mode. This aligns with the PVs you created earlier in this chapter.
 The size of the storage request. This example creates a 2 GB storage request,

which matches the size of the PVs that you created in the previous section.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

name: app-cli
spec:

accessModes:
- ReadWriteMany

resources:
requests:

storage: 2Gi

To create a PVC on the command line, you use the same oc create command syntax
that you used to create a PV:

$ oc create -f pvc-app-cli.yaml
persistentvolumeclaim "app-cli" created

Note that this example doesn’t use the system:admin user to create the PVC. By default,
any user can create a PVC in their project. The one rule to remember is that a PVC needs
to be created in the same project as the project for which it will provide storage.

 When the PVC is created, it queries OpenShift to get all the available PVs. It uses
the criteria described to find the best match and then reserves that PV. Once that’s
done, it can take a minute or so, depending on the size of your cluster, for the PVC to
become available to be used in an application as persistent storage.

 The following command shows how you can use oc to provide information about
all the active PVCs in an OpenShift project:

$ oc get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
app-cli Bound pv05 2Gi RWX 1h

A PVC represents reserved storage available to the applications in your project. But it
isn’t yet mounted into an active application. To accomplish that, you need to mount
your newly created PVC into an application as a volume.

Listing 7.3 Example PVC template from the chapter7 repository on GitHub

Name of the PVC

Access mode for the PVC

Requested storage size

137Using persistent storage

7.4.2 Adding a volume to an application on the command line

In OpenShift, a volume is any filesystem, file, or data mounted into an application’s
pods to provide persistent data. In this chapter, we’re concerned with persistent stor-
age volumes. Volumes also are used to provide encrypted data, application configura-
tions, and other types of data, as you saw in chapter 6.

 To add a volume, you use the oc volume command. The following example takes
the newly created PVC and adds it into the app-cli application (the command is bro-
ken into multiple lines to make it a little easier to understand, and to fit on the page):

$ oc volume dc/app-cli --add \
--type=persistentVolumeClaim \
--claim-name=app-cli \
--mount-path=/opt/app-root/src/uploads
info: Generated volume name: volume-l4dz0
deploymentconfig "app-cli" updated

By applying the volume to the deployment config for app-cli, you can trigger a rede-
ployment of the application automatically to incorporate the new PV. The following
parameters are required:

 dc—The deployment config, in this case app-cli
 --add—Tells oc that you want to add a new component
 --type—The type of component you want to add, in this case a persistent-

VolumeClaim

 --claim-name—The PVC to use as the mounted volume
 --mount-path—The mount point in the pod

Optionally, you can also specify a name for the volume with the --name parameter. If
this isn’t set, OpenShift creates one dynamically.

 Using the oc describe dc/app-cli command, you can confirm that this volume
is mounted into your application:

$ oc describe dc/app-cli
Name: app-cli
Namespace: image-uploader
Created: 2 hours ago
Labels: app=app-cli
Annotations: openshift.io/generated-by=OpenShiftNewApp
Latest Version: 2
Selector: app=app-cli,deploymentconfig=app-cli
Replicas: 1
Triggers: Config, Image(app-cli@latest, auto=true)
Strategy: Rolling
Template:

Labels: app=app-cli
deploymentconfig=app-cli

Annotations: openshift.io/generated-by=OpenShiftNewApp
Containers:
app-cli:

The volume name
was automatically
created.

Version of the currently active
deployment. Attaching the volume

caused a new deployment to be
created for the application.

138 CHAPTER 7 Creating and managing persistent storage

Image: 172.30.52.103:5000/image-uploader/
 ➥ app-cli@sha256:f5ffe8c1...

Port: 8080/TCP
Volume Mounts:

/opt/app-root/src/uploads from volume-l4dz0 (rw)
Environment Variables: <none>

Volumes:
volume-l4dz0:
Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in

 ➥ the same namespace)
ClaimName: app-cli
ReadOnly: false

...

Because you created the PV and PVC to allow for multiple reads and writes by using the
RWX access mode, when this application scales horizontally, each new pod will mount
the same PVC and be able to read data from and write data to it. To sum up, you just mod-
ified your containerized application to provide horizontally scalable persistent storage.

 In the next section, you’ll create the same result using the OpenShift web inter-
face. In the web interface, you’ll focus on creating a PVC and associating it with an
active application, because to create a PV you must use the command line.

7.4.3 Adding persistent storage to an application using the web interface

Creating PVCs and associating them as persistent volumes in applications is easy to do
using the web interface.

CREATING A PERSISTENT VOLUME CLAIM WITH THE WEB INTERFACE

You don’t need administrator-level privileges to create a PVC, so log in as your dev
user, if you haven’t already done so. Select the Image Uploader project when you log
in, and you should see the Storage link in the left menu bar of the project overview
page (see figure 7.3).

Volumes mounted into the
application, including the
newly mounted PVC

Figure 7.3 The Storage link to create PVCs in the web interface

Storage
link

139Using persistent storage

Click the link to go to the Storage page. You should see the PVC that you created on
the command line, which is currently mounted as a PV in app-cli. On the right side of
the page, click the Create Storage button to open the dialog shown in figure 7.4,
where you can create a PVC.

 The required parameters for the web interface are as follows:

 Name—The name for your PVC. For this example, use the name of your appli-
cation, app-gui.

 Access Mode—Use the same RWX mode that you used to create the PVC for
app-cli.

 Size—Use 2 GB, which is the same as all the PVs you created earlier in this
chapter.

After you fill in the fields, click the Create button to return to the Storage page. Your
new PVC is listed beside the one you created earlier (see figure 7.5).

 This page also confirms the capacity, access mode, and PV that your PVC has
reserved. In this example, our newly created app-gui PVC has bound itself to PV01.
The next step is to attach this PVC to an application as a PV.

Figure 7.4 Creating a PVC using the web interface

140 CHAPTER 7 Creating and managing persistent storage

ATTACHING STORAGE TO AN APPLICATION WITH THE WEB INTERFACE

To attach a PVC to an application, you start on the project overview page. Just as you
did at the command line, you need to add the PVC you created to your application as
a PV. On the command line, you made a change to the deployment config for app-cli:
this caused your application to be redeployed with your PVC attached in the pod. In
the web interface, you need to do the same thing.

 Figure 7.6 points out an easy way to access an application’s current deployment
config. Click the app-gui link to open the Deployments page for app-gui.

The Deployments page, a portion of which is shown in figure 7.7, lists all the deploy-
ments for the app-gui application. There’s currently only the initial deployment from
when you built the application. Adding the PVC as a volume to the application will
trigger a new deployment for app-gui.

 To add the volume, choose Actions > Add Storage to open the Add Storage wizard
for app-gui. Using the wizard, you need to select the PVC that you want to use: in this
case, the app-gui PVC. The only other field that’s required for your mount to work is
Mount Path. This will be the same as the mount path for the command-line example
earlier in this chapter: you want to mount the PVC at /opt/app-root/src/uploads in
your application (see figure 7.8).

Figure 7.5 The storage-overview page after you create the PVC for app-gui using the web interface

Deployment
overview link

Figure 7.6 In the web interface,
use the link to the deployment
overview to edit your applications.

141Using persistent storage

Figure 7.7 The app-gui Deployments page. There’s currently only the initial deployment for the
application. Adding the PVC as a PV will trigger a new deployment.

Figure 7.8 Adding a persistent volume to app-gui

142 CHAPTER 7 Creating and managing persistent storage

Once you’ve selected your storage and filled out the mount path, click the Create but-
ton to return to the Deployments page for app-gui. Figure 7.9 shows that OpenShift
redeployed the application.

 After a few seconds, the new version of app-gui should be functional and active,
including the newly mounted persistent storage. With PVs up and active in both app-
cli and app-gui, now is the time to test them and see what’s happening.

7.5 Testing applications after adding persistent storage
First, the fun stuff. Because app-gui and app-cli are individual instances of the same
Image Uploader application, they both have web pages that you can access through
your browser. Each application has an active URL address that leads you to the appli-
cation (see figure 7.10). For both app-gui and app-cli, browse to the web interfaces
and upload a few pictures. These pictures are stored in the uploads directory in each
application’s pod. That means the pictures are stored on the two PVs you just config-
ured. In my case, I uploaded pictures of container ship accidents into app-cli, and I
uploaded pictures of my daughter into app-gui.

NOTE To upload pictures with the Image Uploader program, use the Choose
File button on the main page to select pictures from your workstation.

7.5.1 Data doesn’t get mixed up

Notice that you don’t see pictures in the wrong places after you upload them. That’s
because each application deployment is using its own NFS volume to store data. Each
NFS volume is mounted into its application’s mount namespace, as we talked about in
chapter 3, so the application’s data is always separated. It isn’t possible for one applica-
tion to inadvertently put data, or funny pictures, in the wrong place. The true test will
come when you force OpenShift to create a new copy of your application’s pod.

Figure 7.9 After adding a new PV, OpenShift redeploys the app-gui application to incorporate
the persistent storage in the pod.

143Testing applications after adding persistent storage

7.5.2 Forcing a pod restart

At the beginning of the chapter, you deleted a pod and noticed that the uploaded pic-
tures were lost when OpenShift automatically replaced the deleted pod. Go ahead
and repeat the experiment, this time for both applications. Here’s the process in
action:

$ oc get pods
NAME READY STATUS RESTARTS AGE
app-cli-1-build 0/1 Completed 0 1d
app-cli-2-1bwrd 1/1 Running 0 1d
app-gui-1-build 0/1 Completed 0 3h
app-gui-2-lkpn0 1/1 Running 0 1h

$ oc delete pod app-cli-2-1bwrd app-gui-2-lkpn0
pod "app-cli-2-1bwrd" deleted
pod "app-gui-2-lkpn0" deleted

$ oc get pods
NAME READY STATUS RESTARTS AGE
app-cli-1-build 0/1 Completed 0 1d
app-cli-2-m2k7v 1/1 Running 0 34s
app-gui-1-build 0/1 Completed 0 3h
app-gui-2-27h64 1/1 Running 0 34s

app-cli URL

app-gui URL

Figure 7.10 On the project overview page, each application’s URL is an active link to the application.

144 CHAPTER 7 Creating and managing persistent storage

After this, look at the app-gui and app-cli websites again. Are your pictures still there?
Did they survive a pod deletion? Yes, they did! You’ve deployed persistent storage in
multiple applications in OpenShift. What does that look like on the host running the
containers? Let’s take a look.

7.5.3 Investigating persistent volume mounts

Because you’re using NFS server exports as the source for your PVs, it stands to reason
that somewhere on the OpenShift node, those NFS volumes are mounted. You can see
that this is the case by looking at the following example. SSH into the OpenShift node
where the containers are running, run the mount command, and search for mounted
volumes from the IP address of the NFS server. In my environment, the IP address of
my OpenShift master server is 192.168.122.100:

$ mount | grep 192.168.122.100
192.168.122.100:/var/nfs-data/pv05 on /var/lib/origin/openshift.local.

➥ volumes/pods/b693b1ad-5496-11e7-a7ee-52540092ab8c/volumes/
➥ kubernetes.io~nfs/pv05 type nfs4 (rw,relatime,vers=4.0,rsize=524288,

➥ size=524288,namlen=255,hard,proto=tcp,port=0,timeo=600,retrans=2,sec=sys,
➥ clientaddr=192.168.122.101,local_lock=none,addr=192.168.122.100)
192.168.122.100:/var/nfs-data/pv01 on /var/lib/origin/openshift.local.

➥ volumes/pods/b69da9c5-5496-11e7-a7ee-52540092ab8c/volumes/
➥ kubernetes.io~nfs/pv01 type nfs4 (rw,relatime,vers=4.0,rsize=524288,

➥ wsize=524288,namlen=255,hard,proto=tcp,port=0,timeo=600,retrans=2,
➥ sec=sys, clientaddr=192.168.122.101,local_lock=none,addr=192.168.122.100)

You get two results, one for each pod for each application. Earlier in this chapter, you
used the oc get pv command and confirmed that pv05 was being used by app-cli. But
that doesn’t explain how the NFS volume is made available in the app-cli container’s
mount namespace.

 Chapter 3 looked at how the filesystem in a container is isolated from the rest of
the application node using a mount namespace. The pv05 NFS mount isn’t added to
the app-cli mount namespace, though. Instead, the NFS mount is made available in
the container using a technology called a bind mount.

 A bind mount in Linux is a special type of mounted volume where part of a filesystem
is mounted in a new, additional location. For app-cli, the NFS mount for pv05 is mounted
using a bind mount at /opt/app-root/src/uploads in the container’s mount namespace.
Using a bind mount makes the content available simultaneously in two locations. A
change in one location is automatically reflected in the other location (see figure 7.11).

NOTE You can find more information about bind mounts in the mount man-
ual pages at http://man7.org/linux/man-pages/man8/mount.8.html.

Bind mounts are used for volumes for two primary reasons. First, creating a bind
mount on a Linux system is a lightweight operation in terms of CPU requirements.
That means redeploying a new container to replace an old one doesn’t involve
remounting a remote volume. This keeps container-creation time low.

http://man7.org/linux/man-pages/man8/mount.8.html

145Summary

Second, this approach separates concerns for persistent storage. Using bind mounts,
the container definition doesn’t have to include specific information about the
remote volume. The container only needs to define the name of the volume to
mount. OpenShift abstracts how to access the remote volume and make it available in
containers. This separation of concerns between administration and usage of a cluster
is a consistent OpenShift design feature.

 The goal of this chapter was to walk you through configuring the components that
make persistent storage work in OpenShift. In the following chapters, you’ll use per-
sistent storage to create more scalable and resilient applications.

7.6 Summary
 When an application pod is removed or dies, OpenShift automatically replaces

it with a new instance of the application.
 OpenShift can use multiple network storage services, including NFS, to provide

persistent storage for applications.
 When using persistent storage, applications in OpenShift can share data and

provide data across upgrades, upgrades, and container replacement.
 OpenShift uses persistent volumes to represent available network storage volumes.

The PV remote volume
is mounted on the host
running the pod.

The host filesystem
includes the NFS volume
and container image.

The container mount namespace
has the content from the image
and any mounted volumes.

Application node filesystem
All content available

on the host

app-cli image
Cached copy of the

app-cli container image
from the image registry

app-cli mount namespace
Content available in

the container

app-cli image content
Everything in the

app-cli container image

The NFS mount is bind
mounted into the container
so the volume is available.

Bind mounts write to both
mount points immediately
bidirectionally.

NFS mount
PV mounted from
storage provider

Bind mount
Content

from NFS
volume

Figure 7.11 Volumes are bind mounted into the container from the host

146 CHAPTER 7 Creating and managing persistent storage

 Persistent volume claims are associated with a project and match criteria such as
capacity needed and access mode to bind to and reserve a persistent volume.

 Persistent volume claims can be mounted into OpenShift applications as vol-
umes, mounting the network storage into the container’s filesystem in the
desired location.

 OpenShift manages the persistent volume using the proper network storage
protocol and uses bind mounts to present the remote volumes in application
containers.

147

Stateful applications

In chapter 7, you created persistent storage for the Image Uploader pods, which
allowed data to persist past the lifecycle of a single pod. When a pod failed, a new pod
spun up in its place and mounted the existing persistent volume locally. Persistent
storage in OpenShift allows many stateful applications to run in containers. Many
other stateful applications still have requirements that are unsatisfied by persistent
storage alone: for instance, many workloads distribute data through replication,
which requires application-level clustering. In OpenShift, this type of data replica-
tion requires direct pod-to-pod networking without going through the service layer.
It is also very common for stateful applications such as databases to have their own
custom load balancing and discovery algorithms which require direct pod-to-pod
access. Other common requirements for stateful applications include the ability to
support sticky sessions as well as implement a predictable graceful shutdown.

This chapter covers
 Enabling a headless service

 Clustering applications

 Configuring sticky sessions

 Handling graceful shutdowns

 Working with stateful sets

148 CHAPTER 8 Stateful applications

 One of the main goals of the OpenShift container platform is to be a world-class
platform for stateless and stateful applications. In order to support stateful applica-
tions, a variety of tools are available to make virtually any application container-native.
This chapter will walk you through the most popular tools, including headless ser-
vices, sticky sessions, pod-discovery techniques, and stateful sets, just to name a few. At
the end of the chapter, you’ll walk through the power of the stateful set, which brings
many stateful applications to life on OpenShift.

8.1 Enabling a headless service
A good example of application clustering in everyday life is demonstrated by Ama-
zon’s virtual shopping cart. Amazon customers browse for items and add them to a vir-
tual shopping cart so they can potentially be purchased later. If an Amazon user is
signed in to their account, their virtual shopping cart will be persisted permanently
because the data is stored in a database. But for users who aren’t signed in to an
account, the shopping cart is temporary. The temporary cart is implemented as
in-memory cache in Amazon’s datacenter. By taking advantage of in-memory caching,
end users get fast performance, which results in a better user experience. One down-
side of using in-memory caching is that if a server crashes, the data is lost. A common
solution to this problem is data replication: when an application puts data in memory,
that data can be replicated to many different caches, which results in fast perfor-
mance and redundancy.

 Before applications can replicate data among one another, they need a way to
dynamically find each other. In chapter 6, this concept was covered through the use of
service discovery, in which pods use an OpenShift service object. The OpenShift ser-
vice object provides a stable IP and port that can be used to access one or more pods
running the same workload. For most use cases, having a stable IP and port to access
one or more replicated pods is all that’s required. But many types of applications,
such as those that replicate data, require the ability to find all the pods in a service
and access each one directly on demand.

 One working solution would be to use a single service object for each pod, giving
the application a stable IP and port for each pod. Although this works nicely, it isn’t
ideal because it can generate many service objects, which can become difficult to man-
age. A better solution is to implement a headless service and discover the application
pods using an application-specific discovery mechanism. A headless service is a service
object that doesn’t load-balance or proxy between backend pods. It’s implemented by
setting the spec.clusterIP field to None in the service API object.

 Headless services are most often used for applications that need to access specific
pods directly without going through the service proxy. Two common examples of
headless services are clustered databases and applications that have client-side load-
balancing logic built-in to the code. Later in this chapter, we’ll explore an example of
a headless service using MongoDB, a popular NoSQL database.

149Enabling a headless service

TIP One common traditional approach to discovery has been to use network
broadcasting or multicasting, which is blocked by most public cloud providers
such as Amazon Web Services (AWS) and Azure. OpenShift also blocks multi-
casting by default. Fortunately, OpenShift 3.6 and higher allow users to
enable multicasting between pods. Because OpenShift tunnels this traffic
over its software-defined network (SDN), this solution can also work on all
public cloud providers. You can learn more at http://mng.bz/L33O.

8.1.1 Application clustering with WildFly

In this section, you’ll deploy a classic example of application-level clustering in Open-
Shift using WildFly, a popular application server for Java-based application runtimes.
You’ll be deploying new applications as part of this chapter, so create a new stateful-
apps project as follows:

oc new-project stateful-apps

It’s important to note that this new example uses cookies stored in your browser to
track your session. Cookies are small pieces of data that servers ask your browser to
hold to make your experience better. In this case, a cookie will be stored in your
browser with a simple unique identifier: a randomly generated string called JSES-
SIONID. When the user initially accesses the web application, the server will reply with
a cookie containing the JSESSIONID field and a unique identifier as the value. Subse-
quent access to the application will use JSESSIONID to look up all information about
the user’s session, which is stored in a replication cache. It doesn’t matter which pod is
accessed—the user experience will be the same (see figure 8.1).

 The WildFly application that you’ll deploy will replicate the user data among all
pods in its service. The application will track which user the request comes from by
checking the JSESSIONID that’s passed from the browser cookie. Because the user
data will be replicated, the end user will have a consistent experience even if some
pods die and new pods are accessed. Run the following command to install the Wild-
Fly application template and see this in action:

oc create -f \
https://raw.githubusercontent.com/OpenShiftInAction/chapter8/master/

 ➥ wildfly-template.yaml \
-n stateful-apps

To process the template through the OpenShift console, navigate to the stateful-apps
project. Click Add to Project, and enter wildfly-oia-s2i in the Service Catalog
search box. Keep the default values, and click create to process the template.

 The build may take up to a couple of minutes because it’s pulling in a lot of depen-
dencies. Watch for the pod to be running and ready before you proceed. When the pod
is running and ready, choose Applications > Routes to see the route you just created.
Click that route: you’ll see the application shown in figure 8.2. If you don’t see the appli-
cation, go back and look at the pod logs to make sure the application is fully deployed.

http://mng.bz/L33O

150 CHAPTER 8 Stateful applications

HAProxy

Load balancer

Initial user access of the
app generates a cookie with
a unique JSESSION ID.

On subsequent user access
of the app, the JSESSION ID is
used to retrieve information.

Cookie

Browser

JSESSIONID=1234

HTTP GET /index.html
Cookie: JSESSIONID=1234

Web
session
cache

Server Server

Web
session
cacheClustered

Figure 8.1 An application
replicating cached user data

Figure 8.2
Home page for the
WildFly application

151Enabling a headless service

NOTE Back in chapter 4, you learned that readiness probes can be used to
ensure that a pod is ready to receive traffic before traffic is routed to it. The
default readiness probe for the WildFly image only makes sure the applica-
tion server is running as expected—it doesn’t check for the application you
deployed. The best practice is to create a readiness probe that’s specific to
each application. Because you haven’t done that yet in this exercise, it’s possi-
ble for traffic to be routed to the pod before the application is fully deployed.

Now that the application is deployed, let’s explore application clustering with WildFly
on OpenShift. To demonstrate this, you’ll do the following:

1 Add data to your session by registering users on the application page.
2 Make a note of the pod name.
3 Scale the service to two replicated pods. The WildFly application will then auto-

matically replicate your session data in memory between pods.
4 Delete the original pod.
5 Verify that your session data is still active.

8.1.2 Querying the OpenShift API server from a pod

Before you get started, you need to modify some permissions for the default service
account in your project, which will be responsible for running the application pods.
From the stateful-apps project, run the following command to add the view role to the
default service account. The view role will allow the pods running in the project to
query the OpenShift API server directly. In this case, the application will take advan-
tage of the ability to query OpenShift API server to find other WildFly application
pods in the project. These other instances will send pod-to-pod traffic directly to each
other and use their own application-specific service-discovery and load-balancing fea-
tures for communication:

oc policy \
add-role-to-user \
view \
system:serviceaccount:$(oc project -q):default \
-n $(oc project -q)

Start by registering a few users in the WildFly application page. Choose Applications >
Pods, and write down your pod name. Then, click the Overview tab in the left panel
and scale up to two pods by clicking the up arrow. Once the second pod starts run-
ning, the data that you generated in the first step will be sent directly from the first
pod to the second pod.

 The two pods discovered each other with the help of a WildFly-specific discovery
mechanism designed for Kubernetes. The implementation is called KUBE_PING, and
it’s part of the JGroups project. When the second pod was started, it queried the
OpenShift API for all the pods in the current project. The API server then returned a
list of pods in the current project. The KUBE_PING code in the WildFly server

152 CHAPTER 8 Stateful applications

filtered the list of pods for those with special ports labeled ping. If any of the pods in
the result set returned from the API server match the filter, then the JGroups code in
WildFly will attempt to join any existing clusters among the pods in the list.

NOTE JGroups (www.jgroups.org) is a popular open source toolkit for reli-
able messaging written in Java and popular with Java application servers. Wild-
Fly uses JGroups under the covers to send messages back and forth between
other application servers.

TIP By default, the WildFly pods have several ports exposed. The main port
that is used for direct pod-to-pod traffic is 8888. On that port is an embedded
HTTP server that’s used to send messages to and receive messages from other
pods. If you examine the pod object, you’ll notice that the port also has a
matching name of ping, which is used as metadata about the port.

Take a moment to examine the result set from the pod perspective by navigating to
any of the pods in the OpenShift console and clicking the Terminal tab. Then run this
command to query the API server for a list of pods in the project matching the label
application=wildfly-app:

curl -k -X GET \
-H "Authorization: Bearer $(cat /var/run/secrets/kubernetes.io/serviceac

 ➥ count/token)" \
https://$KUBERNETES_PORT_443_TCP_ADDR:$KUBERNETES_SERVICE_PORT_HTTPS/api

 ➥ /v1/namespaces/stateful-apps/pods?labelSelector=application%3Dwildfly-app

KUBE_PING also uses two environment variables that were automatically generated
for you in the OpenShift template that you first used. Navigate to the Environment tab
on the current page, and you’ll see the OPENSHIFT_KUBE_PING_NAMESPACE and OPEN-
SHIFT_KUBE_PING_LABELS variables set automatically, as shown in figure 8.3.

Figure 8.3 WildFly clustering environment variables

www.jgroups.org

153Enabling a headless service

8.1.3 Verifying WildFly data replication

Now that two pods are successfully clustered together, delete the original pod from
the OpenShift console by choosing Actions > Delete, as shown in figure 8.4. The
OpenShift replication controller (RC) will notice that a pod has been deleted and will
spin up a new one in its place to ensure that there are still two replicas. If clustering is
working properly, the original data you entered will still be available, even though it
was originally stored in memory in a pod that no longer exists. Double-check by
refreshing the application in your browser. If your data is no longer there, go back
and make sure you ran the oc policy add-role-to-user command properly from
the stateful-apps project. If that doesn’t resolve the issue, look at the pod logs for any
noticeable errors.

8.1.4 Other use cases for direct pod access

A Java application server that needs to cluster applications is just one common use
case for direct pod discovery and access. Another example is an application that has
its own load-balancing or routing mechanism, such as a sharded database. A sharded
database is one in which large datasets are stored in many small databases as opposed
to one large database. Many sharded databases have intelligence built into their cli-
ents and drivers that allows for direct access to the correct shard without querying or
guessing where the data resides. Sharded databases work well on OpenShift and have
been implemented using MongoDB as well as Infinispan, among others.

 A typical sharded-database implementation may include creating the service object
as a headless service. Once a headless service object is created, DNS can be used as
another service-discovery mechanism. A DNS query for a given headless service will
return A records for all the pods in the service. (More information on DNS and A
records is available in chapter 10.) Applications can then implement custom logic to
determine which pod to access.

Open the Actions dropdown
for the Delete option.

Figure 8.4 Delete a WildFly application pod

154 CHAPTER 8 Stateful applications

 One popular application that uses DNS queries to determine which instances to
access is Apache Kafka, a fast open source messaging broker. Most implementations of
Apache Kafka on OpenShift and other Kubernetes-based platforms use headless ser-
vices so the messaging brokers can access each other directly to send and replicate
messages. The brokers find each other using DNS queries, which are made possible by
implementing a headless service.

 Other common use cases for direct access include more mundane IT workloads
such as software agents that are used for backups and monitoring. Backup agents are
often run with many traditional database workloads and implement features such as
scheduled snapshots and point-in-time recovery of data. A monitoring agent often
provides features such as real-time alerting and visualization of an application. Often
these agents may either run locally embedded as instrumented code in the applica-
tion or communicate through direct network access. For many use cases, direct net-
work access is required because the agents may communicate with more than one
application across many servers. In these scenarios, the agents require consistent,
direct access to applications in order to fulfill their daily functions.

8.2 Demonstrating sticky sessions
In the WildFly example, data is replicated between two WildFly server instances. A
cookie with a unique identifier is generated automatically by the application and
stored in your browser. By using a cookie, the application can track which end user is
accessing the application. This approach works well but has several drawbacks. The
most obvious is that if the WildFly server didn’t support application clustering or
didn’t have a discovery mechanism that works in OpenShift, the application would
produce uneven user experiences. Without application clustering, if there were two
application pods—one with user data and one without user data—then the user
would see their data only 50% of the time because requests are sent in a round-robin
manner between pods in a service.

 One common solution to this problem is to use sticky sessions. In the context of
OpenShift, enabling sticky sessions ensures that a user making requests into the
cluster will consistently receive responses from the same pod for the duration of their
session.

 This added consistency helps ensure a smooth user experience and allows many
applications that temporarily store data locally in the container to be run in Open-
Shift. By default in OpenShift, sticky sessions are implemented using cookies for
HTTP-based routes and some types of HTTPS-based routes. The OpenShift router
can reuse existing cookies or create new cookies. The WildFly application you created
earlier created its own cookie, so the router will use that cookie for the sticky-session
implementation. If cookies are disabled or can’t be used for the route, sticky sessions
are implemented using a load-balancing scheme called source that uses the client IP
address as part of its implementation.

155Demonstrating sticky sessions

TIP For more information on how to disable cookies, visit http://mng.bz/
OYn9. For more information on load-balancing schemes such as the source
scheme, visit http://mng.bz/1wMh.

8.2.1 Toggling sticky sessions

Let’s see how sticky sessions work by toggling cookies on and off using the Linux curl
command-line tool, which can make HTTP requests to a server eight times and print
the results. The WildFly application you’ve deployed has a couple of REST endpoints
that haven’t been explored yet. The first endpoint can be used to print out the pod IP
and hostname. Enter the following command to print out that information from eight
sequential HTTP requests to the wildfly-app route:

$ for I in $(seq 1 8); \
do \

curl -s \
"$(oc get route wildfly-app -o=jsonpath='{.spec.host}')/rest/serverd

 ➥ ata/ip"; \
printf "\n"; \

done

{"hostname":"wildfly-app-7-x4q1k","ip":"10.128.1.138"}
{"hostname":"wildfly-app-7-xrwsz","ip":"10.128.1.137"}
{"hostname":"wildfly-app-7-x4q1k","ip":"10.128.1.138"}
{"hostname":"wildfly-app-7-xrwsz","ip":"10.128.1.137"}
{"hostname":"wildfly-app-7-x4q1k","ip":"10.128.1.138"}
{"hostname":"wildfly-app-7-xrwsz","ip":"10.128.1.137"}
{"hostname":"wildfly-app-7-x4q1k","ip":"10.128.1.138"}
{"hostname":"wildfly-app-7-xrwsz","ip":"10.128.1.137"}

The output prints the hostname and IP address of each pod four times, alternating
back and forth between pods in a round-robin pattern. This is as you’d expect because
the curl command doesn’t provide a cookie for the OpenShift router to track the ori-
gins of each request. Fortunately, curl can save cookies locally in a text file that can be
used for future HTTP requests to the server. Use the following command to grab the
cookie from the WildFly application and save it to a local file called cookie.txt:

$ curl -o /dev/null \
--cookie-jar cookies.txt \
$(oc get route wildfly-app \
-o=jsonpath='{.spec.host}')/rest/serverdata/ip

Now that you’ve saved the cookie locally, send eight more requests to the wildfly-app
route, using the cookie that’s saved locally:

$ for I in $(seq 1 8); \
do \

curl -s \
--cookie cookies.txt \

Runs the command eight
times sequentially

Passes the silent flag to
ignore the progress bar

Extracts the hostname from
the route named wildfly-appAdds a newline character

Sends the contents of cookies.txt
as a cookie with the request

http://mng.bz/OYn9
http://mng.bz/OYn9
http://mng.bz/OYn9
http://mng.bz/1wMh

156 CHAPTER 8 Stateful applications

"$(oc get route wildfly-app -o=jsonpath='{.spec.host}')/rest/serverd
 ➥ ata/ip"; \

printf "\n"; \
done

{"hostname":"wildfly-app-7-x4q1k","ip":"10.128.1.138"}
{"hostname":"wildfly-app-7-x4q1k","ip":"10.128.1.138"}
{"hostname":"wildfly-app-7-x4q1k","ip":"10.128.1.138"}
{"hostname":"wildfly-app-7-x4q1k","ip":"10.128.1.138"}
{"hostname":"wildfly-app-7-x4q1k","ip":"10.128.1.138"}
{"hostname":"wildfly-app-7-x4q1k","ip":"10.128.1.138"}
{"hostname":"wildfly-app-7-x4q1k","ip":"10.128.1.138"}
{"hostname":"wildfly-app-7-x4q1k","ip":"10.128.1.138"}

Sticky sessions are now working! Unlike in the previous command, the eight requests
aren’t sent in a round-robin pattern. Each request is sent to the same pod consistently
by using a cookie.

TIP Modern browsers automatically enable cookies for you, unless you’ve dis-
abled this functionality.

LIMITATIONS OF USING COOKIES

One limitation of using cookies for load balancing is that they don’t work for HTTPS
connections that use the passthrough routing. In passthrough routing, there’s an
encrypted connection from the client—typically a browser—all the way to the applica-
tion pod. In this scenario, cookies won’t work, because the connection is encrypted
from the client to the application; there’s no way for the routing layer to view the
cookie. To solve this problem, OpenShift uses the client IP address to implement
sticky sessions. But this option has a couple of drawbacks.

 First, many client IP addresses get translated using Network Address Translation
(NAT) before reaching their destination. When a request is translated using NAT, it
replaces the often-private IP address of the client with that of a public IP address. This
frequently makes the client IP the same for all users on a particular home or business
network. Imagine a scenario in which you ran three pods to run an application for
everyone in your office, but everyone in your office was being routed to the same pod
because the requests all appeared to show the same source IP address.

 Second, OpenShift uses an internal hashing schema based on the client IP address
and the number of pods to determine its load-balancing schema. When the number
of replicas changes, such as when you’re using autoscaling, it’s possible to lose sticky
sessions.

 For the rest of this chapter, you won’t need two instances of the WildFly applica-
tion pod. So, scale back down to a single pod:

$ oc scale dc/wildfly-app --replicas=1
deploymentconfig "wildfly-app" scaled

157Shutting down applications gracefully

TIP Previously, we mentioned that the WildFly application has two REST
endpoints, but only one was covered. Another endpoint prints out the HTTP
headers associated with the user and is available at http://wildfly-app-stateful-
apps.apps.192.168.122.101.nip.io/rest/clientdata.

8.3 Shutting down applications gracefully
So far in this chapter, you’ve learned how to use sticky sessions to ensure that users
have a consistent experience in OpenShift. You’ve also learned how to use custom
load balancing and service discovery in OpenShift services. To demonstrate custom
load balancing, you deployed an application that keeps user data in memory and rep-
licates its data to other pods.

 When looking at clustering, you entered data and then scaled up to two pods that
replicated the data you entered. You then killed the original pod and verified that
your data was still there.

 This approach worked well but in a controlled and limited capacity. Imagine a sce-
nario in which autoscaling was enabled and the pods were spinning up and down
more quickly. How would you know the application data had been replicated before a
particular pod was killed—or even which pod was killed? OpenShift has several ways
to solve this issue.

8.3.1 Setting a grace period for application cleanup

The easiest and most straightforward solution is to use a grace period for the pod to
gracefully shut down. Normally, when OpenShift deletes a pod, it sends the pod a
Linux TERM signal, often abbreviated SIGTERM. The SIGTERM acts as a notification to
the process that it needs to finish what it’s doing and then exit. One caveat is that the
application needs custom code to catch the signal and handle the shutdown
sequence. Fortunately, many application servers have this code built in. If the con-
tainer doesn’t exit within a given grace period, OpenShift sends a Linux Kill signal
(SIGKILL) that immediately terminates the application.

 In this section, you’ll deploy a new application to demonstrate how OpenShift
grace periods work. In the same stateful-apps project that you’re already in, run the
following command to build and deploy the application:

$ oc new-app \
-l app=graceful \
--context-dir=dockerfile-graceful-shutdown \
https://github.com/OpenShiftInAction/chapter8

...
--> Creating resources with label app=graceful ...

imagestream "centos" created
imagestream "chapter8" created
buildconfig "chapter8" created
deploymentconfig "chapter8" created

--> Success
Build scheduled, use 'oc logs -f bc/chapter8' to track its progress.
Run 'oc status' to view your app.

158 CHAPTER 8 Stateful applications

TIP Many of the objects created in the examples are called chapter8 because
we didn’t use a template for deployment. The name is based on the Git repos-
itory when using S2I.

The application may take a minute or so to build, because it may need to pull down a
new base image to build the application. Once the application is successfully built and
running, delete it with a grace period of 10 seconds:

$ oc delete pod -l app=graceful --grace-period=10
pod "dockerfile-graceful-shutdown-demo-1-1cbv1" deleted

When you run delete with a grace period of 10 seconds, OpenShift sends a SIGTERM
signal immediately to the pod and then forcibly kills it in 10 seconds if it hasn’t exited
by itself. Quickly, run the following command to see this plays out in the logs for the
pod:

$ oc logs -f \
$(oc get pods -l app=graceful -o=jsonpath='{.items[].metadata.name}')

pid is 1
Waiting for SIGTERM, sleeping for 5 seconds now...
Waiting for SIGTERM, sleeping for 5 seconds now...
Waiting for SIGTERM, sleeping for 5 seconds now...
...
Caught SIGTERM! Gracefully shutting down now
Gracefully shutting down for 0 seconds
Gracefully shutting down for 1 seconds
Gracefully shutting down for 2 seconds
Gracefully shutting down for 3 seconds

Learning more about source-to-image
Many of the applications so far in this book have used the OpenShift source-to-image
(S2I) technology to build an application container image from source code. This
approach extends the traditional Dockerfile approach, which uses standard Linux
commands to build the container image. Both approaches are first-class citizens in
OpenShift and have various advantages and disadvantages. One advantage of the
Dockerfile approach is that it allows for the most extensibility and customization. S2I
has a few major advantages:

 Easy-to-use.
 Customizable for most use cases.
 Removes the need to build and maintain a Dockerfile.
 Improves performance. In a Dockerfile, every command is a layer in the con-

tainer image, whereas the entire S2I build processes a single layer that
improves the size and speed of the container image.

 Allows platform administrators to limit how the images are built.

You can learn more about S2I at https://docs.openshift.org/latest/creating_images/
s2i.html.

https://docs.openshift.org/latest/creating_images/s2i.html
https://docs.openshift.org/latest/creating_images/s2i.html
https://docs.openshift.org/latest/creating_images/s2i.html

159Shutting down applications gracefully

Gracefully shutting down for 4 seconds
Gracefully shutting down for 5 seconds
Gracefully shutting down for 6 seconds
Gracefully shutting down for 7 seconds
Gracefully shutting down for 8 seconds
Gracefully shutting down for 9 seconds

The process that’s running is a simple bash script that waits for a SIGTERM signal
and then prints a message to standard out until it’s killed. In this case, the pod was
given a grace period of 10 seconds, and the pod printed logs for approximately 10
seconds before it was forcibly killed. By default, the grace period is set to 30 seconds.
If you have an important container that you never want to be killed, you must set the
terminationGracePeriodSeconds field in the deployment config to -1.

TIP In a container, the main process runs as process ID (PID) 1. This is import-
ant when handling Linux signals because only PID 1 receives the signal. Although
most containers have a single process, many containers have multiple processes.
In this scenario, the main process needs to catch the signal and notify the other
process in the container. systemd can also be used as a seamless solution. For con-
tainers with multiple processes that all need to handle Linux signals, it’s best to
use systemd for this implementation. A CentOS base container that’s available to
build is available at https://hub.docker.com/r/centos/systemd.

TIP You can find a full list of Linux signals at https://en.wikipedia.org/
wiki/Signal_(IPC).

You no longer need the graceful app demo, so delete all the resources it created:

$ oc delete all -l app=graceful
buildconfig "chapter8" deleted
imagestream "centos" deleted
imagestream "chapter8" deleted
deploymentconfig "chapter8" deleted
pod "chapter8-1-1j1zx" deleted

8.3.2 Using container lifecycle hooks

Although catching basic Linux signals such as SIGTERM is a best practice, many appli-
cations aren’t equipped to handle Linux signals. A nice way to externalize the logic
from the application is to use a preStop hook and one of two container lifecycle hooks avail-
able in OpenShift. Container lifecycle hooks allow users to take predetermined
actions during a container management lifecycle event. The two events available in
OpenShift are as follows:

 PreStop—Executes a handler before the container is terminated. This event is
blocking, meaning it must finish before the pod is terminated.

 PostStart—Executes a handler immediately after the container is started.

https://hub.docker.com/r/centos/systemd
https://en.wikipedia.org/wiki/Signal_(IPC)
https://en.wikipedia.org/wiki/Signal_(IPC)
https://en.wikipedia.org/wiki/Signal_(IPC)

160 CHAPTER 8 Stateful applications

Similar to readiness probes and liveness probes, the handler can be a command
(often a script) that is executed in the container, or it can be an HTTP call to an end-
point exposed by the container.

TIP Container lifecycle hooks can be used in conjunction with pod grace periods.
If preStop hooks are used, they take precedence over pod deletion. SIGTERM
won’t be sent to the container until the preStop hook finishes executing.

CHOOSING THE BEST GRACEFUL SHUTDOWN METHOD

Container lifecycle hooks and Linux signal handling are often used together, but in
many cases users decide which method to use for their application. The main benefit
of using Linux signal handling is that the application will always behave the same way,
no matter where the image is run. It guarantees consistent and predictable shutdown
behavior because the behavior is coded in the application. Sending SIGTERM signals
on delete is fundamental not only to all Kubernetes platforms but also to the stand-
alone docker engine. If the user handles the SIGTERM signal in their application, the
image will behave consistently even if it’s moved outside of OpenShift. Because preStop
hooks need to be explicitly added to the deployment, deployment config, or template,
there’s no guarantee that the image will behave the same way in other environments.

 Many applications, such as third-party applications, don’t handle SIGTERM prop-
erly, and the end user can’t easily modify the code. In this case, a preStop hook must
be used. A good example is NGINX, a popular and lightweight HTTP server. When
NGINX is sent a SIGTERM, it exits immediately. Rather than forking NGINX and add-
ing code to handle the Linux SIGTERM signal, an easy solution is to add a preStop
hook that gracefully shuts down NGINX from the command line. A general rule to
follow is that if you control the code, you should code your application to handle
SIGTERM. If you don’t control the code, use a preStop hook if needed.

8.4 Native API object support for stateful applications
with stateful sets
So far in this chapter, you’ve learned that OpenShift has many capabilities to support
stateful applications:

Using patch to set a preStop hook
To implement a preStop hook that calls the CLI tooling to initiate a graceful shutdown,
you can use the oc patch command. This command can be used to update object
fields. Here’s an example of adding a preStop hook to the wildfly-app deployment config:

oc patch dc wildfly-app \
-p '{"spec": {"template": {"spec": {"containers": [{"name": "wildfly-a

➥ pp","lifecycle": {"preStop": {"exec": {"command":

➥ ["/jboss-cli.sh", "

➥ --connect", "command=:shutdown[timeout=10]"]}}}}]}}}}'

161Native API object support for stateful applications with stateful sets

 Implementing custom load balancing
 Implementing custom service discovery
 Obtaining DNS A records on a per-pod-basis using a headless service
 Configuring sticky sessions
 Handling a controlled startup and shutdown sequence by handling Linux sig-

nals and container lifecycle events

These let users make traditional workloads first-class citizens on OpenShift, but some
applications also require even more predictable startup and shutdown sequencing as
well as predictable storage and networking-identifying information. Imagine a sce-
nario with the WildFly application in which data replication is critical to the user expe-
rience, but a massive scaling event destroys too many pods at one time while
replication is happening. How will the application recover? Where will the data be
replicated to?

 To solve this problem, OpenShift has a special object called a stateful set (known as
a pet set in older versions of OpenShift). A stateful set is a powerful tool in the Open-
Shift users’ toolbox to facilitate many traditional workloads in a modern environment.
A stateful set object is used in place of a replication controller as the underlying
implementation to ensure replicas in a service, but it does so in a more controlled way.

 A replication controller can’t control the order of how pods are created or
destroyed. Normally, if a user configures a deployment to go from one to five replicas
in OpenShift, that task is passed to an RC that starts four new pods all at once. The
order in which they’re started and marked as ready (successfully completing a readi-
ness probe) is completely random.

8.4.1 Deterministic sequencing of startup and shutdown order with stateful sets

A stateful set brings a deterministic sequential order to pod creation and deletion.
Each pod that’s created also has an ordinal index number (starting at 0) associated
with it. The ordinal index indicates the startup order. For instance, if the previous
WildFly application was using a stateful set with three replicas, the pods would be
started and named in this order: wildfly-app-0, wildfly-app-1, and wildfly-app-2. A state-
ful set also ensures that each pod is running and ready (has passed the readiness
probe) before the next pod is started. In the previous scenario, wildfly-app-2 wouldn’t
be started until wildfly-app-1 was running and ready.

 The reverse is also true. An RC or replica will delete pods at random when a com-
mand is given to reduce the number of replicas. A stateful set can also be used for a
controlled shutdown sequence: it starts with the pod that has the highest ordinal
index (n-1 replicas) and works backward to meet the new replica requirement. A pod
won’t be shut down until the previous pod has been fully terminated.

 This controlled shutdown sequence can be critical for many stateful applications. In
the case of the WildFly application, user data is being shared between a number of
pods. When the WildFly application is shut down gracefully, a data-synchronization pro-
cess may occur between the remaining pods in the application cluster. This process will

162 CHAPTER 8 Stateful applications

often be interrupted without the use of a stateful set because the pods are shut down in
parallel. By using a predictable, one-at-a-time shutdown sequence, the application is
less likely to lose data, which results in a better user experience.

8.4.2 Examining a stateful set

To see how stateful sets work, first create a new project:

$ oc new-project statefulset
Now using project "statefulset" on server "https://ocp-1.192.168.122.100.n

➥ ip.io:8443".

Now, import the template for this chapter’s stateful set example:

$ oc create \
-f https://raw.githubusercontent.com/OpenShiftInAction/chapter8/master/st

 ➥ atefulsets/mongodb-statefulset-replication-emptydir.yaml \
-n statefulset

template "mongodb-statefulset-replication-emptydir" created

After you’ve installed the MongoDB template, go the statefulset project via the Open-
Shift console and click Add to Project. Filter for the template you just installed by typ-
ing statefulset in the OpenShift service catalog, as shown in figure 8.5. Once you
select the template, you can modify the parameters for the MongoDB installation.
None of the parameters are required because the OpenShift template will generate
random values for anything left empty. Because this template has everything you need
for the example already filled in, scroll to the bottom and click Create.

Adding the -n <namespace> tag to the end of the command
means this template is available only in the statefulset project.

Figure 8.5
Find the
MongoDB
stateful set
template in
the service
catalog.

163Native API object support for stateful applications with stateful sets

TIP The template makes reference to a replica set. That’s the MongoDB term
for replicated MongoDB instances. This template doesn’t create an Open-
Shift replica set object, which is similar to a replication controller.

Next, navigate to the stateful set in the OpenShift console by choosing Applications >
Stateful Sets and selecting the mongodb stateful set object that was created. The
details page for the stateful set object will open. Examine the two pods that the tem-
plate created: as shown in figure 8.6, the bottom of the screen shows that the two pod
names have an ordinal index associated with them. As mentioned earlier, that index
also determines the startup and shutdown sequence.

Figure 8.6 Example mongodb stateful set in the console

164 CHAPTER 8 Stateful applications

From the command line, modify the stateful set to spin up a third replica:

$ oc scale statefulsets mongodb --replicas=3
statefulset "mongodb" scaled

Unlike previous use of the scale command, this time you need to explicitly state that
you’re scaling a stateful set. In the OpenShift console, notice that the new pod that
was created has a deterministic pod name with the ordinal index associated with it:
mongodb-2.

 Similar to the WildFly application, the three MongoDB pods are replicating data
to each other. To check that this replication is fully functional, click any of the pods on
the bottom of the mongodb stateful set Details page, and then click the Terminal tab.
Any commands executed here will execute in the pod. First log in to mongodb as the
admin user, as shown in figure 8.7; then check the status of the MongoDB replica set
by typing rs.status() after a successful login.

TIP The MongoDB replica set is now fully functional. You can learn more and
see an architectural diagram of how this works at https://docs.mongodb.com/
manual/replication.

8.4.3 Predictable network identity

Stateful sets also provide a consistent host-naming scheme for each pod in the set.
Each predictable hostname is also associated with a predictable DNS entry. Examine
the pod hostname for mongodb-0 by executing this command:

Figure 8.7 Log in as the mongo admin user.

https://docs.mongodb.com/manual/replication
https://docs.mongodb.com/manual/replication
https://docs.mongodb.com/manual/replication

165Native API object support for stateful applications with stateful sets

$ for statefulpod in $(oc get pods -l name=mongodb -o=jsonpath='{.items[*]
 ➥ .metadata.name}'); \

do \
oc exec $statefulpod cat /etc/hostname; \

done
mongodb-0
mongodb-1
mongodb-2

The stateful set also ensures a DNS entry for each pod running in the stateful set. This
can be found by executing the dig command using the DNS entry name for each pod.
Find the IP addresses by executing the following command from one of the Open-
Shift nodes. Because the command relies on the OpenShift-provided DNS, it must be
run from within the OpenShift environment to work properly:

$ for statefulpod in $(oc get pods -l name=mongodb -o=jsonpath='{.items[*]
 ➥ .metadata.name}'); \

do \
dig +short $statefulpod.mongodb-internal.statefulset.svc.cluster.lo

 ➥ cal; \
done

10.128.1.164
10.128.1.165
10.128.1.166

TIP When you’re using stateful sets, the pod hostname in DNS is listed in the
format <pod name>.<service name>.<namespace>.svc.cluster.local.

Because this example also contains a headless service, there are DNS A records for the
pods associated with the headless service. Ensure that the pod IPs in DNS match the
previous listing by running this command from one of the OpenShift nodes:

$ dig +search +short mongodb-internal.statefulset.svc.cluster.local
10.128.1.164
10.128.1.165
10.128.1.166

8.4.4 Consistent persistent storage mappings

Pods running as part of a stateful set can also have their own persistent volume claims
(PVCs) associated with each pod. But unlike a normal PVC, they remain associated
with a pod and its ordinal index as long as the stateful set exists. In the previous exam-
ple, you deployed an ephemeral stateful set without persistent storage.

 Imagine that the previous example was using persistent storage, and the pods were
writing log files that included the pod hostname. You wouldn’t want the PVC to later
be mapped to the volume of a different pod with a different hostname because it
would be hard to make sense of those log files for debugging and auditing purposes.
Stateful sets solve this problem by providing a consistent mapping through the use of
a volume claim template, which is a template the PVC associates with each pod. If a pod

166 CHAPTER 8 Stateful applications

dies or is rescheduled to a different node, then the PVC will be mapped only to the
new pod that starts in its place with the same hostname as the old pod. Providing a
separate and dedicated persistent volume claim for each pod in the stateful set is cru-
cial for many different types of stateful applications which cannot use the typical
deployment config model of sharing the same PVC across many application instances.

NOTE A similar MongoDB stateful set example with persistent storage is avail-
able at http://mng.bz/LCaI.

8.4.5 Stateful set limitations

Under normal circumstances, pods controlled by a stateful set shouldn’t need to be
deleted manually. But there are a few scenarios in which a pod being controlled by a
stateful set could be deleted by an outside force. For instance, if the kubelet or node is
unresponsive, then the API server may remove the pod after a given amount of time
and restart it somewhere else in the cluster. A pod could also exit accidentally or could
be manually removed by a user. In those cases, it’s likely that the ordinal index will be
broken. New pods will be created with the same hostnames and DNS entries as the old
pods, but the IP addresses may be different. For this reason, any application that relies
on hardcoded IP addresses isn’t a good fit for stateful sets. If the application can’t be
modified to use DNS or hostnames instead of IP addresses, you should use a single ser-
vice per pod for a stable IP address.

 Another limitation is that all the pods in a stateful set are replicas of each other,
which of course makes sense when you want to scale. But that won’t help any situation
in which disparate applications need to be started in a particular order. A classic
example is a Java or .NET application that throws errors if a database is unavailable.
Once the database is started, then the application also needs to be restarted to refresh
its connections. In that scenario, a stateful set wouldn’t help the order between the
two disparate services.

8.4.6 Stateful applications without native solutions

One of the reasons OpenShift has gained so much market adoption is that traditional
IT workloads work just as well as modern stateless applications. Yet there’s still work to
be done. One of the biggest promises of using containers is that applications will
behave the same way between environments. Containers start from well-known image
binaries that contain the application and the configuration it needs to run. If a con-
tainer dies, a new one is started from the previous image binary that’s identical to how
the previous container was started. One major problem with this model occurs for
applications that are changed on the fly and store their information in a way that
makes it difficult to re-create.

 A good example of this issue can be seen with WordPress, an extremely popular
blogging application that was designed many years before containers become popular.
In a given WordPress workflow, a blogger might go to the admin portion of their web-
site, add some text, and then save/publish it. WordPress saves all that text in a database,

http://mng.bz/LCaI

167Summary

along with any HTML and styling. When the blogger has completed this action, the
container has drifted from its original image. Container drift is normal for most appli-
cations; but in the case of WordPress, if the container crashed, the blog would be lost.
Persistent storage can be used to ensure that the data is persisted. When a new Word-
Press pod starts, it could map to the database and would have all the blogs available.

 But promoting such a snapshot of a database among various environments is a
major challenge. There are many examples of using an event-driven workflow that can
be triggered to export and import a database after a blogger publishes content, but
it’s not easy, nor is it native to the platform. Containers start from well-known
immutable container images, but engineering a reverse workflow in which images are
created from running container instances is more error-prone and rigid. Other exam-
ples that have worked—with some engineering—include applications that open a
large number of ports, applications the rely on hardcoded IP addresses, and other leg-
acy applications that rely on older Linux technologies.

 As OpenShift continues to evolve, the ecosystem of support for OpenShift and other
Kubernetes-based offerings is also evolving. OpenShift keeps adding features to sup-
port even more stateful applications, and many companies are putting significant engi-
neering resources behind making more cloud-native applications. This will further the
process of making traditional IT workloads first-class citizens on OpenShift.

8.5 Summary
 OpenShift supports many different types of stateful applications.
 There are many ways in OpenShift to do custom service discovery.
 Custom load balancing can be implemented with a headless service.
 The OpenShift router supports session affinity with sticky sessions.
 Pods are sent Linux SIGTERM signals before being shut down.
 You can add a configurable grace period parameter before a pod is forcibly

removed with SIGKILL.
 Container lifecycle events allow for actions to be taken when containers are

started and stopped.
 A stateful set object allows a consistent startup and shutdown sequence.
 Pods can obtain their own hostname and consistent PVC mapping with a state-

ful set.
 Applications that need hardcoded IP addresses can use a single service per pod.

Part 4

Operations and security

This part of the book focuses on cluster-wide concepts and knowledge you’ll
need to effectively manage an OpenShift cluster at scale. These are some of the
skills required for any operations team managing OpenShift.

 Chapter 9 is all about working with OpenShift’s integrated role-based access
control (RBAC). You’ll change the authentication provider for your cluster’s
users and work with the system accounts built into OpenShift, along with the
default roles for different user types.

 Chapter 10 focuses on the software-defined network that’s deployed as part
of OpenShift. This is how containers communicate with each other and how ser-
vice discovery works in an OpenShift cluster.

 Finally, chapter 11 brings together the concepts from previous chapters and
looks at OpenShift from a security perspective. We’ll discuss how SELinux is
used in OpenShift and how you can work with security policies to provide the
most effective level of access for your applications.

171

Authentication
 and resource access

Before we get started, let’s face it: this isn’t the most interesting chapter in the
book. Setting up authentication sources and configuring project quotas for your
applications aren’t topics that will show up on the first slide of anyone’s presenta-
tion. They’re essential for an application platform to function correctly, however, so
strap in, and let’s dive into the deep, dark reaches of OpenShift.

9.1 Proper permissions vs. the Wild West
Application platforms like OpenShift aren’t effective for multiple users without
robust access and permissions management for various applications and OpenShift
components. If every user had full access to all of your OpenShift cluster’s
resources, it would truly be the Wild West. Conversely, if it was difficult to access

This chapter covers
 Adding permissions to users by assigning roles

 Managing project resource limits and quotas

 Setting default limits and quotas for projects

 Examining how Linux enforces limits and quotas

172 CHAPTER 9 Authentication and resource access

resources, OpenShift wouldn’t be good for much, either. OpenShift has a robust
authentication and access-control system that provides a good balance of self-service
workflows to keep productivity up while limiting users to only what they need to get
their job done.

 When you first deployed OpenShift, the default configuration allowed any user-
name and non-empty password field to log in. This authentication method uses the
allow-all identity provider that comes with OpenShift.

TIP In OpenShift, an identity provider is a plugin that defines how users can
authenticate and the backend service that you want to connect to for manag-
ing user information. Although the allow-all provider is good enough when
you’re learning to use OpenShift, when you need to enforce access rules,
you’ll need to change to a more secure authentication method. In the next
section, you’ll replace the allow-all provider with one that uses a local data-
base file.

Appendix D walks you through configuring your OpenShift cluster to use an Apache
htpasswd database for user access and set up a few users to use with that authentica-
tion source. You’ll create the following users:

 developer—a user with permissions typical to those given to a developer in an
OpenShift cluster.

 project-admin—a user with permissions typical of a developer or team lead in an
OpenShift cluster. They have administrative control over a single project.

 admin—a user with administrative control over the entire OpenShift cluster.

Please go through that now, and then continue with this chapter. After configuring
OpenShift per appendix D, if you attempt to log in with your original dev user, that user
can’t be authenticated because it’s not in your htpasswd database. But if you log in using
the developer or admin user, you no longer have access to the image-uploader project.
That’s because the now locked-out dev user owns the image-uploader project and all the
applications deployed in it.

System users and administrative access
In chapter 7, when you provisioned persistent volumes to use as storage, you used
a user named system:admin. To log in as this user, you copied a file named
admin.kubeconfig from the master server to your workstation.

System:admin is a member of a special class of system users. These users don’t
authenticate through the configured authentication mechanism. Instead, they authen-
ticate using an SSL certificate. This certificate is what’s in the admin.kubeconfig file.

On the master node, a similar user certificate is added to the default configuration
for the root user. This is how you can access oc and oadm on the master node without
logging in to OpenShift.

173Working with user roles

You’ve made your OpenShift cluster more secure by configuring it to use a more
secure authentication provider. But in the process, you disabled access to the
deployed applications by stopping access for the user you used to deploy your project
and applications. In the next section, you’ll correct this and set up more robust per-
missions by manipulating user roles.

9.2 Working with user roles
Roles are used to define permissions for all users in an OpenShift cluster. In chapter 3,
you used the special system:admin user to configure physical volumes on your cluster.
The system:admin is a special system account that uses SSL certificates for authentica-
tion. In this section, you’ll create users with similar privileges using roles.

 To work with roles, you’ll use a new command-line tool named oadm (short for
OpenShift administration). It’s installed by default on your master server.

On your master node, the OpenShift deployment program set up the root user with the
same admin-level user information that you used in chapter 3 by copying the admin
.kubeconfig file to your workstation. You can see all the user information set up for the
root user by running the following command as the root user on your master server:

oadm config view

This allows administrators with access to the root user on an OpenShift master server
to have cluster administration access by default. It’s useful, but it also means you have
to make sure everyone who has root access to your master server should be able to
control your OpenShift cluster. For a smaller cluster like the one you’ve built, this will
work fine. But for a larger cluster, the people who should have root access to your serv-
ers and the people who should be able to administer OpenShift probably won’t match
exactly. You can distribute this administrative certificate as needed for your cluster
administrator’s workstations.

9.2.1 Assigning new user roles

Remember those users you created? The developer user needs permission to view and
add new content to the image-uploader project. To accomplish that, first make sure

The default project, and working with multiple projects
The oc and oadm tools’ default action is to run a command using the current working
project. If you create a new project, it automatically becomes your working project.
The oc project command changes among projects that already exist.

To specify a command to be run against a specific project, regardless of your current
working project, use the -n parameter with the project name you want the command
to run against. This is a helpful option when you’re writing scripts that use oc and
oadm and that act on multiple projects. It’s also a good habit in general.

174 CHAPTER 9 Authentication and resource access

you’re working in the context of the image-uploader project by running the following
command:

oc project image-uploader

In the project, you need to add the edit role to your developer user. This role gives
users permission to add to a project and edit existing deployments. Adding a role to a
user for a project, or even the entire OpenShift cluster, is called binding a role to a user.
You do so by running the following command:

oadm policy add-role-to-user edit developer

To confirm that your new role is applied, log in again through the web UI or the com-
mand line as the developer user. You should now have access to the image-uploader
project and the deployed applications in it.

 That takes care of the developer user. Let’s give your admin user a little more
access. In the next section, you’ll give the admin user administrator-level access to
your entire OpenShift cluster.

9.2.2 Creating administrators

So far, your OpenShift cluster has a single project. As an OpenShift cluster grows, it
typically has dozens, or even hundreds, of projects at any given time. To manage this
effectively, you need users who can administer a project, or even multiple projects
across the cluster.

CREATING A PROJECT ADMIN

For the image-uploader project, you’ll make the project-admin user an administrator
for the project. You do so much the same way you gave the developer user the ability
to edit. Instead of binding the edit role to the project-admin user, however, you need
to bind the admin role. This role will give the project-admin user full administrative
privileges in the image-uploader project. Run the following command as root on your
master server:

oadm policy add-role-to-user admin project-admin

You now have a developer who can work in the image-uploader project and a project-
admin user who can administer the project. The next user role you need is one who
can manage the entire OpenShift cluster.

CREATING A CLUSTER ADMIN

The cluster administrator role is important. To borrow a line from a comic book,
“With great power comes great responsibility.” A cluster admin can not only adminis-
ter projects, but also manage all of OpenShift’s internal configurations. To create a
cluster admin, run the following command as root on your master node:

oadm policy add-cluster-role-to-user cluster-admin admin

175Working with user roles

This command binds the admin role to the admin user you created in the previous section.
Instead of binding that role for a single project, it binds it for every project in OpenShift.

 Everything you’ve done in this chapter until now will help you edit existing users
and make sure they have the correct privileges to access what their job requires. But
what happens when you add new users? In the next section, you’ll configure Open-
Shift to bind the edit role to new users by default when they’re created.

9.2.3 Setting default user roles

OpenShift has three default groups. These groups are configured during OpenShift
installation and define whether a user is authenticated. You can use these groups to
target users for additional actions, but the groups themselves can’t be modified:

 system:authenticated—Any user who has successfully authenticated through the
web UI or command line, or via the API.

 system:authenticted:oauth—Any user who’s been authenticated by OpenShift’s
internal oauth server. This excludes system accounts.

 system:unauthenticated—Users who have failed authentication or not attempted
to authenticate.

In your cluster, it will be helpful to allow any authenticated user to access the image-
uploader project. You can accomplish this by running the following oadm policy

command, which binds the edit role for the image-uploader project, specified by the
-n option, to the system:authenticated default group:

oadm policy add-role-to-group edit -n image-uploader system:authenticated

Any user who has successfully logged in will now be able to access the image-uploader
project.

To confirm that your new default user role has taken effect, add an additional user
named user1 to your htpasswd database with the following command:

echo user1 | htpasswd --stdin /etc/origin/master/openshift.htpasswd user1

When to use other default groups
This example uses the system:authenticated group. Depending on what you need to
accomplish, the other groups can be used in a similar fashion.

The system:authenticated:oauth group excludes the system accounts that are used
to build and deploy applications in OpenShift. We’ll cover those in more depth in
chapter 11. In short, this group consists of all the humans and external services
accessing OpenShift

System:unauthenticated can be used if you want to provide a level of anonymous
access in your cluster. Its most common use, however, is to route any user currently
in that group to the OpenShift login page.

176 CHAPTER 9 Authentication and resource access

Log in to your cluster and confirm that your new user can see the image-uploader
project by default. user1 should have the ability to work in the image-uploader project
from the time of first login.

 Any time you have a shared environment, you need processes in place to ensure
that one user or project doesn’t take up too many resources in your cluster—either
accidentally or on purpose. Limit ranges and resource quotas are the processes that
manage this potential problem. In OpenShift, these resource constraints are different
for each deployment, depending on whether explicit resource quotas are requested.

 For app-gui and app-cli, you didn’t specify specific CPU or memory resources to be
allocated for either deployment. These best-effort deployments—deployments that
don’t request specific resources and are assigned a best-effort quality of service
(QoS)—can govern default values at the project level in OpenShift by using limit
ranges. In the next section, we’ll discuss limit ranges in more depth, and you’ll create
your own and apply them to the image-uploader project.

9.3 Limit ranges
For each project in OpenShift, a limit range, defined as a LimitRange when working
with the OpenShift API, provides resource constraints for most objects that exist in a
project (the documentation is at http://mng.bz/tB5m.) The objects are the types of
OpenShift components that users deploy to serve applications and data. Limit ranges
apply to the maximum CPU, memory, and total object count for each component.
The limits for each component are outlined in table 9.1.

Before an application is deployed or scaled up, the project limit ranges are analyzed
to confirm that the request is within the limit range. If a project limit range doesn’t
allow the desired action, then it doesn’t happen (see figure 9.1). For example, if a
project’s limit range defines the memory per pod as between 50 MB and 1,000 MB, a
request for a new application deployment with a defined quota of 1,500 MB will fail
because it’s outside the pod-memory limit range for that project.

 Limit ranges have the additional benefit of being able to define default compute
resource values for a project. When you deployed app-gui and app-cli, you hadn’t yet

Table 9.1 Limit-range resource constraints

Project component Limits

Pod CPU and memory per pod, and total pods per project

Container CPU and memory per container, default memory and CPU, maximum
burstable ratio per container, and total containers per project

Images Maximum image size for the internal registry

Image stream Maximum image tag references and image references per image stream

Persistent volume claims Minimum and maximum storage request size per PVC

http://mng.bz/tB5m

177Limit ranges

defined a limit range for the image-uploader project and didn’t specify the resources
for each deployment, so each application’s pod was deployed with no resource con-
straints. In OpenShift, a deployment with no defined resource quotas is called a best-
effort deployment. A best-effort deployment has the lowest priority in an OpenShift
cluster and is the first to be killed if a system runs out of memory.

 If users start accessing app-gui heavily, it can consume resources to the point that
the performance of the app-cli deployment is affected. For a busy cluster with multi-
ple users and running applications, that’s a major problem. With limit ranges, you can
define the default compute resources for a project that doesn’t specify a quota and
prevent this from happening in your cluster.

Users Developers

Route
DNS entry in the load
balancer to access a

deployed app

Deployment config
Defines how to deploy

the application

LimitRange
Sets resource limits

for each project

Pod
Your application in

a container

Deployment
Represents one

application deployment

Service
Represents all the pods
running your application

Users access the application
through the route created
by the load balancer.

A route is created in the
software load balancer to
provide consistent application
access using DNS.

All of the pods are proxied
through the service, which
allows for easier pod scaling.

Deployment configs define how
applications are deployed, and
create deployments, which
represent a unique, deployed,
application version.

Before the deployment starts,
the project's limit range definitions
are checked to make sure the request
is in the range of acceptable values
for the project. If so, the request
goes forward. If not, then the
request fails before it even starts.

Application deployments
Triggered with oc new-app

or the web UI

Load balancer
Software load

balancer to automate
DNS for applications

Figure 9.1 Limit ranges are queried before any deployment or scaling request.

178 CHAPTER 9 Authentication and resource access

9.3.1 Defining resource limit ranges

Limit ranges define the minimum and maximum RAM and CPU an application can
be allocated when it’s deployed. In addition to the top and bottom of the range, you
can specify default request values and limits. The difference between an application’s
requested value and its maximum limit is called the burstable range.

All this is a little abstract, so let’s walk through a few quick examples, using as a refer-
ence the limit-range YAML template in listing 9.1:

 If you deploy an application with no requested resources, you’re assigned a
default request amount of 200 millicores and 100 MiB of RAM per pod. The
default limit is 300 millicores and 200 MiB RAM. That means your application
would be deployed with 200 millicores and 100 MiB RAM and could burst up
to a maximum of 300 millicores and 200 MiB RAM if it received a spike
in traffic.

 If you requested specific resources for an application deployment, you can
request any CPU value between 100 millicores and 2,000 millicores (2 CPU), and
RAM resources between 4 MiB and 1,000 GiB per pod. For the burstable range,
your application can’t exceed 10 times your defined request. This is set by
maxLimitRequestRatio in the limit range. That means if you requested 150
millicores of CPU, the maximum your application could ever consume would
be 1,500 millicores.

Let’s create a limit range for the image-uploader project using the template in listing 9.1.
Create a file called core-resource-limits.yaml using the contents of the template. Then,
ensure that you’re logged in as the proper user.

Millicores and mebibytes
In OpenShift, RAM is measured using the base 2 values of kibibytes, mebibytes, and
gibibytes. For example, a mebibyte is 210 bytes (1,024), whereas a megabyte is 103

(1,000) bytes.

To calculate millicores, when an application node is added to the OpenShift cluster,
its number of CPU cores is interrogated. This value is multiplied by 1,000, and that’s
the number of millicores available on a given host. For example, the two VCPU virtual
machines we recommend in appendix A have 2 × 1,000 millicores = 2,000 available
for applications.

Millicores don’t equate to the clock speed of a given CPU on a host. They’re only a
relative way to allocate CPU resources in an OpenShift cluster. If you have two nodes
with different processor speeds, you’ll notice different performance between the two
nodes with the same resource allocations.

179Limit ranges

apiVersion: "v1"
kind: "LimitRange"
metadata:

name: "core-resource-limits"
spec:

limits:
- type: "Pod"

max:
cpu: "2"
memory: "1Gi"

min:
cpu: "100m"
memory: "4Mi"

- type: "Container"
max:

cpu: "2"
memory: "1Gi"

min:
cpu: "100m"
memory: "4Mi"

default:
cpu: "300m"
memory: "200Mi"

defaultRequest:
cpu: "200m"
memory: "100Mi"

maxLimitRequestRatio:
cpu: "10"

To define a limit range, a user needs to have the cluster-admin role. To log in as the
admin user, run the following oc login command:

oc login -u admin -p admin https://ocp-1.192.168.122.100.nip.io:8443

Now, execute the following oc create command to create the new limit range. The -n
option can be used to specify the project you want to be affected by an oc command:

oc create -f core-resource-limits.yaml -n image-uploader

TIP Throughout this chapter and the rest of the book, you’ll need to create
YAML template files that are referenced in oc commands. We use relative file-
name paths to keep the examples easy to read, but if you’re not running oc
from the directory where those files are created, be sure to reference the full
path when you run the command.

You can use the command line to confirm that the image-uploader limit range was
created and to confirm the settings you specified in the YAML template were accu-
rately read:

Listing 9.1 Template to create limit-range definitions for image-uploader

Name for the resource
limits object

Limit ranges for podsMaximum
CPUs for
one pod

Maximum memory for one pod

Minimum CPU
and memory
for one pod

Limit ranges for containers

Maximum CPU and
memory for one

container
Minimum CPU and memory
for one container

Default maximum
CPU and memory

usable for one
container Default requested CPU and

memory for one container

Maximum burstable ratio for
container CPU utilization

180 CHAPTER 9 Authentication and resource access

$ oc get limitrange
NAME AGE
core-resource-limits 5m
$ oc describe limitrange core-resource-limits
Name: core-resource-limits
Namespace: image-uploader
Type Resource Min Max Default Request Default Limit

➥ Max Limit/Request Ratio
---- -------- --- --- --------------- -------------

➥ -----------------------
Pod cpu 100m 2 - - -
Pod memory 4Mi 1Gi - - -
Container cpu 100m 2 200m 300m 10
Container memory 4Mi 1Gi 100Mi 200Mi -

You also can use the web UI to confirm the limit range you just set. Choose Resources
> Quotas from the image-uploader project overview page to see the limit range.

 Limit ranges act on components in a project. They also provide default resource
limits for deployments that don’t provide any specific values themselves. But they
don’t provide project-wide limits to specify a maximum resource amount. For that,
you’ll need to define a resource quota for image-uploader. In the next section, that’s
exactly what you’ll do.

9.4 Resource quotas
Nobody likes a noisy neighbor, and OpenShift users are no different. If one project’s
users were able to consume more than their fair share of the resources in an OpenShift
cluster, all manner of resource-availability issues would occur. For example, a resource-
hungry development project could stop applications in a production-level project in
the same cluster from scaling up when their traffic increased. To solve this problem,
OpenShift uses project quotas to provide resource caps and limits at the project level.

 Whereas limit ranges provide resource minimums and maximums for individual
application components, quotas provide maximum resource limits for an entire proj-
ect. Quotas fall into three primary categories:

 Compute resources
 Storage resources
 Object counts

In chapter 2, we discussed pod lifecycles. Project quotas apply only to pods that aren’t
in a terminal (failed or succeeded) phase. Quotas apply to any pod in a pending, run-
ning, or unknown state. Before an application deployment is started or a deployed
application is changed, OpenShift evaluates the project’s quotas (see figure 9.2).

TIP The full documentation for quotas in OpenShift is available at
http://mng.bz/ktZj.

In the next section, you’ll create a compute resource quota for the image-uploader
project.

http://mng.bz/ktZj

181Resource quotas

9.4.1 Creating compute quotas

Compute resource quotas apply to CPU and memory allocation. They’re related to
limit ranges, because they represent quotas against totals for requests and limits for all
applications in a project. You can set the following six values with compute resource
quotas:

 cpu, requests.cpu—Total of all CPU requests in a project, typically measured
in cores or millicores. cpu and requests.cpu are synonyms and can be used
interchangeably.

 memory, requests.memory—Total of all memory requests in a project, typically
expressed in mebibytes or gibibytes. memory and requests.memory are syn-
onyms and can be used interchangeably.

Users Developers

Route
DNS entry in the load
balancer to access a

deployed app

Deployment config
Defines how to deploy

the application

Quotas
Provides aggregate

limits for all apps
deployed in a project

LimitRange
Sets resource limits

for each project

Pod
Your application in

a container

Deployment
Represents one

application deployment

Service
Represents all the pods
running your application

Before the deployment starts, the
project's limit range definitions are
checked to make sure the request
is in the range of acceptable values
for the project. If so, the request
goes forward. If not, then the
request fails before it even starts.

Before the deployment starts,
project quotas are analyzed to be
certain there are enough resources
available in the project to deploy
the request as configured. If so,
the deploy continues. If not, the
deployment never starts.

Application deployments
Triggered with oc new-app

or the web UI

Load balancer
Software load

balancer to automate
DNS for applications

Figure 9.2 Quotas are evaluated before any new resources are created in a project.

182 CHAPTER 9 Authentication and resource access

 limits.cpu—Total for all CPU limits in a project.
 limits.memory—Total for all memory limits in a project.

In addition to the quotas, you can also specify the scope the quota applies to. There are
four quota scopes in OpenShift:

 Terminating—Pods that have a defined lifecycle. Typically, these are builder
and deployment pods.

 NotTerminating—Pods that don’t have a defined lifecycle. This scope includes
application pods like app-gui and app-cli, and most other applications you’ll
deploy in OpenShift.

 BestEffort—Pods that have a best-effort QoS for CPU or memory. Best-effort
deployments are those that didn’t specify a request or limit when they were created.

 NotBestEffort—Pods that don’t have a best-effort QoS for CPU or memory.
The inverse of best effort, this scope is useful when you have a mixture of low-
priority, transient workloads that have been deployed with best-effort QoS, and
higher-priority workloads with dedicated resources.

Quotas are defined in YAML templates like all other resources in OpenShift. To create
a quota for compute resources with the NotTerminating quota scope, create a file
named compute-resources.yaml on your workstation with the content from the follow-
ing listing.

apiVersion: v1
kind: ResourceQuota
metadata:

name: compute-resources
spec:

hard:
pods: "10"
requests.cpu: "2"
requests.memory: 2Gi
limits.cpu: "3"
limits.memory: 3Gi

scopes:
- NotTerminating

To create a new quota for a project, cluster-admin level privileges are required. That
means you need to be logged in as the admin user to run this command, because the
developer user only has the edit role bound to it for the image-uploader project and
has no privileges for the rest of the cluster. To log in as the admin user, run the follow-
ing oc login command:

oc login -u admin -p admin https://ocp-1.192.168.122.100.nip.io:8443

Listing 9.2 Template to create CPU resource quotas

The project can run a
maximum of 10 pods.

A maximum of
two CPU cores

can be requested.

A maximum of two gibibytes
of memory can be requested.The CPU limit is

three cores total.

The project’s memory
limit is three gibibytes.

Scope that limits the quota to
deployed application pods

183Resource quotas

Now, run the following oc create command to create the new CPU resource quota:

oc create -f compute-resources.yaml -n image-uploader

This command applies the compute-resources quota YAML template to the image-
uploader project. To confirm that this quota was applied, run the following oc get
command:

oc get resourcequota -n image-uploader

In the output, you should see a quota name compute-resources. Next, you’ll create
some resource quotas for image-uploader. Resource quotas provide a cap for the num-
ber of deployable resources in a project.

9.4.2 Creating resource quotas

Resource quotas track all resources in a project that are deployed by Kubernetes. Core
components in OpenShift, like deployment configs and build configs, aren’t covered
by quotas; that’s because these components are created on demand for each deploy-
ment and controlled by OpenShift.

 The components that are managed by resource quotas are the primary resources
in an OpenShift cluster that consume storage and compute resources. Keeping track
of a project’s resources is important when you need to plan how to grow and manage
your OpenShift cluster to accommodate your applications. The following components
are tracked by resource quotas:

 Config maps—We discussed config maps in chapter 6.
 Persistent volume claims—Application requests for persistent storage.
 Resource quotas—The total number of quotas in a project.
 Replication controllers—The number of RCs in a project. This is typically equal to

the number of deployed applications, but you can also manually deploy applica-
tions using different workflows that could make this number change.

 Secrets—We discussed secrets in chapter 6.
 Services—The total number of services in a project.
 Image streams—The total number of image streams in a project.

Most of the items in this list should look familiar. We’ve been discussing them for sev-
eral chapters now.

 The following listing shows the resource quota template that you need to apply to
the image-uploader project. To do this, create a file named core-object-counts.yaml on
your workstation, and enter the contents of the following listing.

apiVersion: v1
kind: ResourceQuota
metadata:

name: core-object-counts

Listing 9.3 Template to create resource quotas

Name for the
resource quota

184 CHAPTER 9 Authentication and resource access

spec:
hard:

configmaps: "10"
persistentvolumeclaims: "5"
resourcequotas: "5"
replicationcontrollers: "20"
secrets: "50"
services: "10"
openshift.io/Image streams: "10"

Run the following command to apply the resource quota template to the image-
uploader project. As was true for the compute quota you created, you need to be
logged in to OpenShift as the admin user to run this command:

oc create -f core-object-counts.yaml -n image-uploader

Next, you can confirm that your quota was created using the command line or the
web interface. At the command line, run the same oc get quota command you ran to
confirm that your compute quota was applied. You should see both quotas in the com-
mand output:

$ oc get quota -n image-uploader
NAME AGE
compute-resources 9h
core-object-counts 9h

To see the configuration for each quota, run oc describe resourcequota and com-
plete the command with each quota name:

$ oc describe resourcequota compute-resources
Name: compute-resources
Namespace: image-uploader
Scopes: NotTerminating
* Matches all pods that do not have an active deadline.

Resource Used Hard
-------- ---- ----
limits.cpu 0 2
limits.memory 0 2Gi
pods 2 10
requests.cpu 0 3
requests.memory 0 3Gi

$ oc describe quota core-object-counts
Name: core-object-counts
Namespace: image-uploader
Resource Used Hard
-------- ---- ----
configmaps 0 10
openshift.io/imagestreams 2 10
persistentvolumeclaims 1 5
replicationcontrollers 4 20
secrets 9 50
services 2 10

Limits for resource types

Gets the names of
all active quotas

Describes the compute
resource quota

Pod count quota

Resource quotas, which
are all counted correctly

185Working with quotas and limits

In the web interface, you can see this information added to the quota page under
Resources > Quotas, linked from the image-uploader project overview page.

 Looking at the compute quota from the previous output, you can see that you’ve
run into a problem: the app-gui and app-cli deployments aren’t counting against the
compute quota. The number of pods is reflected, but not the CPU or memory con-
sumption. In the next section, we’ll discuss why that is and how you can work with
your newly minted quotas and limits in OpenShift.

9.5 Working with quotas and limits
Now that the image-uploader project has limit ranges and quotas, it’s time to put them
through their paces. The compute quota for app-cli and app-gui isn’t being reflected
yet, and your first task is to fix that.

9.5.1 Applying quotas and limits to existing applications

When you deployed app-gui and app-cli in chapter 2, no quotas or limits were defined
for the image-uploader project. As we mentioned when you were creating limit
ranges, back then your cluster was essentially the Wild West, and any deployed applica-
tion could consume any amount of resources in the cluster.

 If an application is created and there are no limit ranges to reference and no
resources were requested (as when you deployed the metrics pod in chapter 5), the
Linux kernel components that define the resource constraints for each container are
created with unlimited values for the resources limits. This is what happened when
you deployed app-cli and app-gui and why their CPU and memory quotas aren’t
reflected in OpenShift.

 Now that you’ve applied limit ranges and quotas to image-uploader, you can have
OpenShift re-create the containers for app-gui and app-cli to include these
constraints. The easiest way to do this is to delete the current pods for each
application. When you run the following oc delete command, OpenShift will
automatically deploy new pods that contain the default limit ranges that you defined
in the previous section:

$ for i in app-cli app-gui;do oc delete pod -l app=$i;done

This command is a for loop that will iterate through both app-cli and app-gui and
variables. For each value, it will delete the pods in OpenShift that have the app=VALUE
label.

 Because you didn’t specify specific resource values, your new app-gui and app-cli
pods inherit the default request values you defined in the core-resource-limits
limit range. Each pod was assigned 200 millicores and 100 MiB of RAM. You can see in
the previous output that the consumed CPU and memory quotas for the image-
uploader project are twice the default request.

186 CHAPTER 9 Authentication and resource access

TIP It’s definitely not a best practice to start using projects before you’ve set
limits and quotas. But we had to start somewhere, and if chapter 2 was all
about quotas, you’d never have gotten to chapter 3. So, for teaching pur-
poses, we decided to begin with using OpenShift before we discussed a
proper configuration.

In the next section, you’ll edit the app-cli deployment config to give it more resources
than the default limit.

9.5.2 Changing quotas for deployed applications

When you deploy a new application, you can specify limits and quotas as part of its
definition. You can also edit the YAML definition for an existing deployment config
directly from the command line. To edit the resource limits for your app-cli deploy-
ment, run the following oc edit command, which lets you edit the current YAML
definition for the application:

oc edit dc/app-cli

This command attempts to open the YAML template from the OpenShift database
with the default text editor on your system. To edit the resource limits, you need to
find the spec.containers.resources section of the configuration. This section is
currently empty because nothing was defined when the application was deployed:

spec:
containers:

...
resources: {}
...

Let’s add memory and CPU requests and limits that are slightly larger than the default
request values you defined in your limit range. Replace the {} in the resources sec-
tion, and edit the file to look like the following listing, adding a larger quota request
and limit for CPU and memory resources.

resources:
requests:

cpu: "750m"
memory: "500Mi"

limits:
cpu: "1"
memory: "1000Mi"

Saving the new configuration file will trigger a new deployment for app-cli. This new
deployment will incorporate your new resource requests and limits. Once the build
completes, your app-cli deployment will be available with more guaranteed resources.

Listing 9.4 Editing the deployment config to increase limits and resource requests

187Using cgroups to limit resources

You can confirm this by looking at the web interface page for the latest deployment,
or from the command line by running the following oc describe command:

oc describe dc/app-cli

You can edit a deployment config to make complex changes to deployed applications,
but it’s a manual process. For new application deployments, your projects should use
the default limit ranges whenever possible, to inherit default values.

 While your resource requests and limit ranges are new and fresh in your mind, let’s
dig a little deeper and discuss how these constraints are enforced in OpenShift by the
Linux kernel with control groups (cgroups).

9.6 Using cgroups to limit resources
Cgroups are Linux kernel components that provide per-process limits for CPU, mem-
ory, network bandwidth, and block-storage bandwidth. In an OpenShift cluster, they
enforce the limits and quotas configured for applications and projects.

9.6.1 Cgroups overview

Cgroups are defined in a hierarchy in the /sys/fs/cgroup/ directory on the applica-
tion node. Within this director is a directory for each type of cgroup controller that’s
available. A controller represents a specific system resource that can be controlled by
cgroups (see figure 9.3).

 In this section, we’re focusing on the cpu and memory cgroup controllers. In the
directories for the cpu and memory controllers is a directory named kubepods.slice.
Cgroup slices are used to create subdivisions within a cgroup controller. Slices are used
as logical dividers in a controller and define resource limits for groups of resources
below them in the cgroup hierarchy.

/sys/fs/cgroup

blkio

cpu

cpuset

memory

net_prio

pids

...

All cgroups are defined
in /sys/fs/cgroup.

Controllers are different
types of resources in Linux
that cgroups can control.

Figure 9.3 Cgroup controller hierarchy

188 CHAPTER 9 Authentication and resource access

The kubepods slice is where the configurations to enforce OpenShift requests and
limits are located (figure 9.4). Within kubepods.slice are two additional slices:

 kubepods-besteffort.slice
 kubepods-burstable.slice

These two slices are how resource limits for best-effort and burstable QoS levels that
we’ve discussed in this chapter are enforced. Because you defined resource requests
for app-cli and app-gui, they both will be defined in kubepods-burstable.slice.

 Within kubepods-besteffort.slice and kubepods-burstable.slice are multiple addi-
tional slices. There isn’t an immediate identifier to tell you which slice contains the
resource information for a given container, but you can get that information directly
from docker on your application node.

NOTE In the following sections, you’ll interact with docker to extract low-level
information about the containers that OpenShift creates. Working with
docker is outlined in appendix C; if you haven’t already, read appendix C,
and then move on to the next section.

9.6.2 Identifying container cgroups

To determine which cgroup slice controls the resources for your app-cli deployment,
you need to get the cgroup information from docker. The cgroup slice that each con-
tainer belongs to is listed in the information from docker inspect. To obtain it, use
the -f parameter and specify the {{ .HostConfig.CgroupParent }} object accessor.
This limits the output to only the cgroup slice information. In our example cluster,
the cgroup slice for app-cli is kubepods-burstable-pod7bdf36bb_a3eb_11e7_a480
_001cc4000001.slice, as you can see here:

docker inspect -f '{{ .HostConfig.CgroupParent }}' 80366fd64c36
kubepods-burstable-pod7bdf36bb_a3eb_11e7_a480_001cc4000001.slice

/sys/fs/cgroup

memory

cpu

kubepods.slice

kubepods.slice

Kubernetes creates a kubepods
slice for each cgroup controller.

Figure 9.4 kubepods.slice cgroup slices

189Using cgroups to limit resources

As we mentioned earlier, app-cli’s cgroup is in the burstable slice. The slice defined in
the app-cli docker inspect output is in the burstable slice. Slices don’t define
resource constraints for individual containers, but they can set default values for mul-
tiple containers. That’s why the hierarchy of slices looks a little excessive here.

 You have one more layer to go to get to the resource constraints for the app-cli
container. In the lowest slice is a scope directory. Cgroup scopes are where individual
process resource constraints are defined. Each scope is named after the full hash that
a container’s short ID is based on. In our example, app-cli’s resource constraints are
defined in the scope named docker-80366fd64c3630651d80076e5333475438fb6fc8
e34f4525aa94fc99a0e15750.scope. This is how cgroups are mapped to containers in
OpenShift (see figure 9.5).

Cgroup configurations are created on OpenShift application nodes using this process.
It’s a little complex; and because cgroups are listed according to the cgroup controller
and not the PID they manage, troubleshooting them can be a challenge on a busy
system.

 When you need to see the cgroup configuration for a single container, the process
is more straightforward. In the next section, we’ll look at how the cgroup information
from the host is mounted into each container that’s created.

docker-80366fd6....scope

kubepods-besteffort.slice

kubepods-burstable.slice

cpu kubepods.slice

kubepods-burstable-pod7bdf36bb....slice

kubepods.slice is divided into
two slices for besteffort and
burstable QoS deployments.

Each unique resource configuration
is divided into its own slice.

Each container’s scope is defined in
the proper slice for its deployment.

Figure 9.5 Cgroup hierarchy, down to the container-specific scope

190 CHAPTER 9 Authentication and resource access

9.6.3 Confirming cgroup resource limits

When docker creates a container, it mounts the cgroup scope that applies to it in the
container in the /sys/fs/cgroup directory. It truncates the slices and scope so the con-
tainer appears to have only a single cgroup controller.

 We’re going to focus on the limits that enforce CPU and memory constraints for
the app-cli container. Let’s begin with the limits for CPU consumption. To start an
interactive shell prompt in your running container, run the following command,
edited to reference your container’s short ID:

docker run -it 80366fd6 bash

This command launches the bash shell prompt in the specified container and pro-
vides you with an interactive TTY session. You’ll use this session in the next section.

Viewing cgroups on the command line
This information is also available on the command line by using the systemctl-cgls
command to get a tree view of all the active cgroups on the application node. This
output shows every process on the system, organized by the cgroup it belongs to, so
it’s pretty long. The output for the kubepods slice from systemctl-cgls is as follows:

...
 kubepods.slice
 kubepods-burstable.slice
 kubepods-burstable-pod7bdf36bb_a3eb_11e7_a480_001cc4000001.slice
 |?docker-➥
80366fd64c3630651d80076e5333475438fb6fc8e34f4525aa94fc99a0e15750.scope

 55965 httpd -D FOREGROUND
 56068 /usr/bin/cat
 56069 /usr/bin/cat
 56070 httpd -D FOREGROUND
 56073 httpd -D FOREGROUND
 56076 httpd -D FOREGROUND
 56091 httpd -D FOREGROUND
 56094 httpd -D FOREGROUND
 56098 httpd -D FOREGROUND
 56102 httpd -D FOREGROUND
 56105 httpd -D FOREGROUND
 56966 httpd -D FOREGROUND

...

The systemctl-cgls tool displays the processes that are controlled by each cgroup
scope. But systemctl-cgls doesn’t provide the actual resource limits associated
with a container’s scope. To get that information, you need to access information
from the container.

191Using cgroups to limit resources

VERIFYING CONTAINER CPU LIMITS

As we discussed earlier in this chapter, CPU resources in OpenShift are allocated in
millicores, or one-thousandths of the CPU resources available on the server. For
example, if your application node has two CPUs, a total of 2,000 millicores is available
for containers on the node.

 The ratio expressed here is what’s represented in the cpu cgroup. The actual num-
ber isn’t expressed in the same units, but the ratios are always the same.

 The app-cli container has a request of 750 millicores, with a limit of 1,000 mil-
licores, or one CPU. You need the following two values from /sys/fs/cgroup/cpu to
build a ratio that confirms the limit for the app-cli container:

 cpu.cfs_quota_us—The time, in microseconds, that the cgroup is allowed to
access a CPU during the defined period. The period of time is adjustable. For
example, if the cfs_quota_us value is 100, the cgroup will be allowed to access
the CPU for 100 microseconds during the set period. If that period is also 100,
that means the cgroup has unlimited access to a CPU on the system. If the
period were set to 1000, the process would have access to the CPU for 100
microseconds out of every 1,000.

 cpu.cfs_period_us—The time period, in microseconds, during which the
cgroup’s quota for CPU access is measured and reallocated. This can be manip-
ulated to create different CPU quota ratios for different applications.

For app-cli, this cgroup limits the container’s access to 1 CPU during 100,000 out of
every 100,000 microseconds:

bash-4.2$ cat /sys/fs/cgroup/cpu/cpu.cfs_quota_us
100000
bash-4.2$ cat /sys/fs/cgroup/cpu/cpu.cfs_period_us
100000

If you convert these values to a ratio, app-cli is allocated a maximum of 1,000 mil-
licores, or 1 CPU. That’s the limit you set for app-cli. This is how CPU limits are man-
aged for each container in an application deployment. Next, let’s look at how the
request values are controlled by cgroups.

NOTE The limit for app-gui is 300 millicores, the default limit range for the
image-uploader project. Using the same steps, you can verify that its CPU lim-
its match the ratio of 300/1,000 millicores.

The request limit for app-cli is managed by the value in /sys/fs/cgroup/cpu/
cpu.shares. This value is a ratio of CPU resources relative to all the cores on the system.

 The CPU request for app-cli is 750 millicores. Because the application node has
two CPUs, it should be allocated 750/2,000 of the total CPU capacity for the applica-
tion node, or 37.5%. The cpu.shares ratio for app-cli should have the same ratio.

192 CHAPTER 9 Authentication and resource access

 The denominator for the cgroup ratio is the total CPU shares available to kubepods
.slice on the host. This value is set by multiplying the number of CPUs by 1,024. You can
verify this with the cpu.shares value for kubepods.slice, as shown in the following exam-
ple from the application node:

cat /sys/fs/cgroup/cpu/kubepods.slice/cpu.shares
2048

To get the numerator for this ratio, run cat /sys/fs/cgroup/cpu/cpu.shares from
inside the app-cli container:

$ cat /sys/fs/cgroup/cpu/cpu.shares
768

The app-cli container is allocated 768/2,048 CPU shares on the application node,
or 37.5%. The numbers are identical. This is how OpenShift uses the Linux kernel to
ensure that resource requests and limits are met for deployed containers.

 Next, let’s look at how cgroups enforce memory limits and requests.

VERIFYING CONTAINER MEMORY LIMITS

The memory limit for app-cli is controlled by the value in /sys/fs/cgroup/memory/
memory.limit_in_bytes in the app-cli container. This value is expressed in bytes. If
you convert it to mebibytes, the value you created the memory limit in, you get 1,000
MiB. This is the defined memory limit for app-cli. To view the value for the upper
memory limit for app-cli, use the cat command to echo the file contents from inside
the app-cli container:

bash-4.2$ cat /sys/fs/cgroup/memory/memory.limit_in_bytes
1048576000

Resource limits for OpenShift containers are enforced with kernel cgroups. The only
exception is the memory request value. There’s no cgroup to control the minimum
amount of RAM available to a process; this value is primarily used to determine which
node a pod is assigned to in your OpenShift cluster.

 This chapter covered a lot of what’s required to create and maintain a healthy
OpenShift cluster. We’ve gone far down into the Linux kernel to confirm how con-
tainer resource limits are enforced. Although limits, requests, and quotas aren’t the
most exciting things to work through, they’re absolutely critical to make OpenShift
ready to handle production workloads effectively.

 Your cluster is now connected with an authentication database, and the project
you’ve been working with has effective resource limits and quotas. In the following
chapters, you’ll keep building on that momentum.

193Summary

9.7 Summary
 OpenShift can use a long list of user databases for user authentication.
 Special service accounts authenticate with SSL certificates that bypass the user

database.
 OpenShift can bind roles that represent project or cluster permission sets to

users and groups, to create a full role-based, access-control environment.
 Limit ranges provide minimum, maximum, and default compute resource lim-

its for pods and containers at the project level.
 Limit ranges provide caps for the number of application components, such as

services and persistent volume claims, that can be created in a single project.
 Quotas provide aggregate CPU and memory limits for projects. They have mul-

tiple scopes so different quotas can be applied to different types of project
resources.

 Limits and requests are enforced in the Linux kernel by cgroups.
 Cgroups can be examined from the application node and used to troubleshoot

issues when they arise.

194

Networking

The importance of the networking configuration in an OpenShift cluster can’t be
overstated; it’s the fabric that binds your cluster together. With that perspective,
OpenShift does a lot of work to make sure its networking configuration is stable,
performs well, and is highly configurable. Those principles are what we’ll cover
in this chapter. Let’s start with an overview of how the network in OpenShift
is designed.

10.1 OpenShift network design
Up to this point, all your OpenShift applications have run on a single application
node. It’s time to fix that. Section A.8 in appendix A walks through the steps to pro-
vision a third server and add it to your OpenShift cluster as an application node. Go
ahead and use that walkthrough to scale your cluster with an additional application

This chapter covers
 Designing cluster networks

 Understanding network traffic flow in OpenShift

 Configuring Open vSwitch

 Configuring OpenShift network plugins

 Using DNS in OpenShift

195OpenShift network design

node. When you’re finished, your cluster will consist of a single master server and two
application nodes.

 When you initially deployed OpenShift, a private network called the pod network
was created. Each pod in your OpenShift cluster is assigned an IP address on the pod
network when it’s deployed. This IP address is used to communicate with each pod
across the cluster. The pod network spans all nodes in your cluster and was extended
to your second application node when that was added to the cluster (see figure 10.1).

 The pod network uses the 10.128.0.0/14 classless inter-domain routing (CIDR,
(defined at http://mng.bz/28or) IP address block by default. Each node in the clus-
ter is assigned a /23 CIDR IP address range from the pod network block. That means,
by default, that each application node in OpenShift can accommodate a maximum
of 512 pods. The IP ranges for each node are controlled by OpenFlow, a component in
OpenShift’s networking solution. OpenFlow (https://www.sdxcentral.com/sdn/
definitions/what-is-openflow/) is a software-defined networking control-plane man-
ager that OpenShift uses to route network traffic in the cluster without having to
change the configuration of the host’s networking stack. Open control lets OpenShift
maintain the IP address ranges for each host without having to alter the application

Master node where the
API and UI are served

The master node runs
the Kubernetes database
and scheduler services.

Applications serve
deployed application
workloads.

ocp1
Master node: NFS server

ocp2
Application node: infrastructure node

ocp3
Application node

The infrastructure node runs
containers that are used for
OpenShift infrastructure
services.

Figure 10.1 Expanded three-node cluster

http://mng.bz/28or
https://www.sdxcentral.com/sdn/definitions/what-is-openflow/
https://www.sdxcentral.com/sdn/definitions/what-is-openflow/
https://www.sdxcentral.com/sdn/definitions/what-is-openflow/

196 CHAPTER 10 Networking

node’s network routing tables. To see information about the pod network, including
the IP ranges allocated to each node, run the oc get hostsubnet command:

oc get hostsubnet
NAME HOST HOST IP

➥ SUBNET
ocp1.192.168.122.100.nip.io ocp1.192.168.122.100.nip.io 192.168.122.100

➥ 10.129.0.0/23
ocp2.192.168.122.101.nip.io ocp2.192.168.122.101.nip.io 192.168.122.101

➥ 10.128.0.0/23
ocp3.192.168.122.102.nip.io ocp3.192.168.122.102.nip.io 192.168.122.102

➥ 10.130.0.0/23

We already mentioned OpenFlow and that it’s used to manage how IP addresses are
allocated to each application node. The interfaces on the nodes that make up the pod
network, and also the encrypted connections between nodes, are created and
managed by Open vSwitch (OVS; www.openvswitch.org). Combined with the iptables
firewall on each host, open control and OVS are referred to collectively as the
OpenShift SDN network plugin. The term software-defined networking (SDN) can be used
for any networking solution that uses interfaces and components that are created
using software instead of physical interfaces. Next, we’ll look at how OVS is used in
OpenShift SDN.

TIP If you’d like more in-depth documentation for these open source
projects, you can use these links for the OpenShift SDN components:
OVS, http://docs.openvswitch.org/en/stable; open control, http://
docs.openvswitch.org/en/latest/topics/openflow; and iptables, https://
netfilter.org/documentation.

All pods deployed on ocp2 have an IP
address in the 10.128.0.0/23 range.

If you’re already using the pod network IP address range
Your pod network IP addresses can’t be used on your network by any network that
OpenShift might need to communicate with. OpenShift’s internal network routing fol-
lows all the rules of any network, and multiple destinations for the same IP address
lead to confusion.

If you’re using all or part of the 10.128.0.0/14 network range, you can change the
pod network IP address range. When you configure the installation inventory file
before deploying OpenShift, set the osm_cluster_network_cidr variable to the IP
address range you want to use for the pod network. This variable and many others
are documented at http://mng.bz/efu3. Be careful when you select the IP range for
the pod network—once you deploy OpenShift, it’s all but impossible to change it.

http://docs.openvswitch.org/en/stable
http://docs.openvswitch.org/en/latest/topics/openflow
http://docs.openvswitch.org/en/latest/topics/openflow
http://docs.openvswitch.org/en/latest/topics/openflow
https://netfilter.org/documentation
https://netfilter.org/documentation
https://netfilter.org/documentation
http://mng.bz/efu3
http://www.openvswitch.org

197Managing the OpenShift SDN

10.2 Managing the OpenShift SDN
OVS is an enterprise-grade, scalable, high-performance SDN. In OpenShift, it’s the
default SDN used to create the pod network in your cluster. It’s installed and configured
when you deploy OpenShift or add a node to an existing cluster. OVS runs as a service
on each node in the cluster. You can check the status of the service by running the fol-
lowing systemctl command on any node:

systemctl status ovs-vswitchd

The ovs-vswitchd service is automatically enabled on all cluster nodes as part of
OpenShift’s deployment.

OVS is used in your OpenShift cluster as the communications backbone for all of your
deployed pods. Traffic in and out of every pod is affected by OVS in the OpenShift clus-
ter. For that reason, you need to know how it works and how to effectively use it for your
needs. Let’s start with the network configuration for your OpenShift application nodes.

10.2.1 Configuring application node networks

When a node is added to an OpenShift cluster, several network interfaces are created
in addition to the standard lo loopback interface and eth0 physical interface. For our
purposes, we’ll call eth0 the physical interface even though you’re using VMs for your
cluster’s infrastructure. That’s because OpenShift creates the following additional vir-
tual interfaces to route traffic:

 br0—An OVS bridge all OpenShift SDN interfaces are associated with. OVS
creates this interface when the node is added to the OpenShift cluster.

 tun0—Attached to br0. Acts as the default gateway for each node. Traffic in and
out of your OpenShift cluster is routed through this interface.

 vxlan_sys_4789—Also attached to br0. This virtual extensible local area net-
work (VXLAN) is encrypted and used to route traffic to containers on other
nodes in your cluster. It connects the nodes in your OpenShift cluster to create
your pod network.

Integrating OVS and Kubernetes
The configuration file for OVS is located at /etc/sysconfig/openvswitch, and each
node’s local OVS database is located in the /etc/openswitch directory. For day-to-day
operations, OVS should be transparent. Its configuration and updates are controlled
by OpenShift. Using OVS provides several advantages to OpenShift.

This transparent operation is possible because OpenShift uses the Kubernetes Con-
tainer Network Interface (CNI; http://mng.bz/vRJa). The Kubernetes CNI provides a
plugin architecture to integrate different SDN solutions to create and manage the pod
network. OpenShift uses OVS as its default, but it can function with other network
providers as well; these are documented at http://mng.bz/y145.

http://mng.bz/vRJa
http://mng.bz/y145

198 CHAPTER 10 Networking

Additionally, each pod has a corresponding virtual Ethernet (veth) interface that’s
linked to the eth0 interface in the pod by the Linux kernel. Any network traffic that’s
sent to either interface in this relationship is automatically presented to the other.
(We’ll get into more detail in the next section.) All of these relationships are illus-
trated in figure 10.2.

Traffic outside the cluster
is routed through the
tun0 interface.

Each veth interface is linked
to a specific pod to pass traffic
in and out of the container.

Traffic between pods on other
application nodes is routed through
the vxlan_sys_4789 interface.

All SDN components are attached
to the OVS br0 bridge to simplify
application deployment.

Destinations outside
the cluster

Other nodes in
the cluster

tun0
Gateway interface

for pods on each node

br0 bridge

vxlan_sys_4789
Encrypted routes traffic

to pods on different nodes

vethXXXXXX
Linked to a specific pod's

internal eth0 interface

app-cli
deployed pod

eth0

app-gui
deployed pod

eth0
vethYYYYYY

Linked to a specific pod's
internal eth0 interface

Figure 10.2 Application node networking configuration

What are Linux bridges, TUN interfaces, and VXLANs?
A Linux bridge is a virtual interface that’s used to connect other interfaces together.
If two interfaces on a host are attached to a bridge, they can communicate with each
other without routes needing to be created. This helps with communication speed as
well as keeping networking configurations simple on the host and in the container.
For more details, see https://wiki.archlinux.org/index.php/Network_bridge.

A VXLAN is a protocol that acts as an overlay network between the nodes in your
OpenShift cluster. An overlay network is a software-defined network that’s deployed
on top of another network. The VXLANs used in OpenShift are deployed on top of the
networking configuration of the hosts.

https://wiki.archlinux.org/index.php/Network_bridge

199Managing the OpenShift SDN

You can see these interfaces on your application nodes by running the ip a com-
mand. The following sample output has been trimmed with a little command-line
magic for brevity and clarity:

ip a | egrep '^[0-9].*:' | awk '{ print $1 $2}'
1:lo:
2:eth0:
3:ovs-system:
6:br0:
7:docker0:
8:vxlan_sys_4789:
9:tun0:
10:veth68d047ad@if3:
11:veth875e3121@if3:
12:vethb7bbb4d5@if3:
13:vethd7768410@if3:
14:veth8f8e1db6@if3:
15:veth334d0271@if3:

The networking configuration for the master node is essentially the same as an appli-
cation node. The master node uses the pod network to communicate with pods on the
application nodes as they’re deployed, deliver their applications, and are eventually
deleted. In the next section, we’ll look more deeply at how the interface in the con-
tainer is linked to a corresponding veth interface on the application node.

To communicate securely between pods, the VXLAN encapsulates pod network traffic
in an additional layer of network information so it can be delivered to the proper pod
on the proper server by IP address. The overlay network is the pod network in your
OpenShift cluster. The VXLAN interfaces on each node provide access to and from
that network. You can find the full definition and specifications for a VXLAN in the RFC
documentation at https://tools.ietf.org/html/rfc7348.

A TUN interface (short for network TUNnel) is a virtual network device that mimics
the functionality of a physical interface. In the case of OpenShift, the tun0 interface
acts as the default gateway on each node for the pod network. Because it’s a virtual
device and not a physical one, it can be used to route traffic on and off the non-
routable pod network. In-depth information about TUN interfaces is available at
www.kernel.org/doc/Documentation/networking/tuntap.txt.

All of these devices are controlled by OVS and form the network topology for Open-
Shift SDN.

https://tools.ietf.org/html/rfc7348
http://www.kernel.org/doc/Documentation/networking/tuntap.txt

200 CHAPTER 10 Networking

10.2.2 Linking containers to host interfaces

In chapter 3, we talked about the network namespace and how each container con-
tains a unique loopback and eth0 interface for network communications. From the
perspective of applications in a container, these two interfaces are the only networks
on the host. To get network traffic in and out of the container, the eth0 interface in
the container is linked in the Linux kernel to a corresponding veth interface in the
host’s default network namespace.

 The ability to link two interfaces is a feature of the Linux kernel. To determine
which veth interface a container is linked to, you need to log in to the application
node where the container is running. You can figure this out in just a few steps. Let’s
use the app-cli application as an example.

 Run the oc get pods -o wide command to confirm where the app-cli pod is
deployed:

$ oc get pods -o wide -n image-uploader --show-all=false
NAME READY STATUS RESTARTS AGE IP

➥ NODE
app-cli-4-vt840 1/1 Running 1 3d 10.130.0.17

➥ ocp3.192.168.122.102.nip.io
app-gui-2-2jwp8 1/1 Running 1 3d 10.130.0.16

➥ ocp3.192.168.122.102.nip.io
test-1-dzs4r 1/1 Running 3 5d 10.130.0.18

➥ ocp3.192.168.122.102.nip.io

Any virtual interface on a Linux system can be linked by the kernel to another virtual
or physical interface. When an interface is linked to another, the kernel makes them
essentially the same interface. If something happens to one interface, it automatically
happens to its linked interface. In an interface’s iflink file—a file created and main-
tained by the running Linux kernel at /sys/class/net/<interface name>/iflink—is the
index number for its linked interface. To find the linked interface number for the
app-cli container, run the following oc exec command, making sure to use the pod ID
for your app-cli deployment. This command uses the cat command-line tool to echo
the contents of the app-cli container’s iflink file:

$ oc exec app-cli-4-vt840 cat /sys/class/net/eth0/iflink
11

The eth0 interface in the app-cli pod is linked to interface 11 on application node
ocp3. But which veth interface is number 11? That information is available in the out-
put from the ip a command. The link ID, also called the ifindex for each interface,
is the number at the beginning of each interface listed. For each eth0 interface in a
container, its iflink value is the ifindex value of its corresponding veth interface
(see figure 10.3).

The app-cli pod is deployed on ocp3.

201Managing the OpenShift SDN

You previously confirmed that app-cli is deployed on ocp3. To confirm that the index
for the veth interface app-cli is linked to, SSH to ocp3 (this may be different on your
cluster). To view only the interface with ifindex 11 on ocp3, run the following ip a
command (we’ve trimmed the command-line output):

ip a | egrep -A 3 '^11.*:'
11: veth875e3121@if3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc➥
noqueue master ovs-system state UP

link/ether 1e:5f:8f:29:ff:59 brd ff:ff:ff:ff:ff:ff link-netnsid 1
inet6 fe80::1c5f:8fff:fe29:ff59/64 scope link

valid_lft forever preferred_lft forever

You’ve now confirmed that the app-cli pod is linked by the Linux kernel to veth875e3121
on the ocp3 application node. This is how network traffic enters and exits containers in
general. Next, let’s confirm that veth875e3121 on ocp3 is connected to the cluster’s pod
network so network traffic can get in and out of the OpenShift cluster.

10.2.3 Working with OVS

The command-line tool to work with OVS directly is ovs-vsctl. To use this tool, you
need to be logged in to the host you’re looking for information about. In these exam-
ples, we’re logged in to ocp3, where app-cli is deployed and where we’ve already iden-
tified the linked interface for app-cli.

 We mentioned earlier in this chapter that all OpenShift SDN interfaces are attached
to an OVS bridge named br0. We make the distinction of calling it an OVS bridge
because it’s a bridge interface that’s created and controlled by OVS. You can also create
a bridge interface with the Linux kernel. A Linux bridge is created and managed using
the brctl command. You can confirm that the br0 interface is being controlled by OVS
by running the following ovs-vsctl command to list all active OVS bridges:

ovs-vsctl list-br
br0

Any traffic presented to one
linked interface automatically
is presented to its peer.

The veth875e3121 interface on
ocp3 has an ifindex value of 11.

The Linux kernel uses the ifindex
of veth875e3121 to link it to the
eth0 interface in the app-cli pod.

The eth0 interface in the
pod has an iflink value of 11.

eth0
app-cli interface
iflink value: 11

veth875e3121
ocp3 interface

ifindex value: 11

Figure 10.3 How container
interfaces are linked in Linux

202 CHAPTER 10 Networking

If you’ve used Linux bridges before, it can seem confusing when you know a bridge should
be present but none appears when you run brctl, because they’re being managed by
OVS. Ocp3 has a single OVS bridge named br0, which aligns with what we discussed ear-
lier. To list the interfaces connected to br0, run the following ovs-vsctl command:

ovs-vsctl list-ifaces br0

The output of this command lists all interfaces connected to br0:

 tun0 interface that’s the default gateway for the pod network on ocp3.
 vxlan0 interface, which is how the vxlan_sys_4789 interface is referenced in

the OVS database

Also included is a veth interface for each pod running on the node, including
veth875e3121, which is the interface linked to eth0 in the app-cli pod:

ovs-vsctl list-ifaces br0
tun0
veth334d0271
veth68d047ad
veth875e3121
veth8f8e1db6
vethb7bbb4d5
vethd7768410
vxlan0

This is how OpenShift SDN functions. When a new pod is deployed, a new veth inter-
face is created and attached to bro. At that point, the pod can send and receive net-
work traffic on the pod network. It can communicate outside the cluster through br0
and communicate to pods on other application nodes using the vxlan_sys_4789
interface (see figure 10.4).

 In the next section, you’ll put OpenShift’s SDN to work by digging deeper into
how application traffic is routed and how applications communicate in your cluster.
Let’s start at the beginning, with a request for the app-cli deployment.

10.3 Routing application requests
When you browse to http://app-cli-image-uploader.apps.192.168.122.101.nip.io/,
your request goes to ocp2 (192.168.122.101) on port 80, the default HTTP port. Log
in to ocp2, and run the following netstat command to determine which service is lis-
tening on port 80:

netstat -tpl --numeric-ports | grep 80
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN

➥ 42625/haproxy

There’s an haproxy service running on ocp2 as PID 42625. Let’s look at this in more
detail.

TUN
interface

Veth interface linked
to app-cli pod

VXLAN interface

203Routing application requests

10.3.1 Using HAProxy to route requests

HAProxy (www.haproxy.org) is the front door to your applications in OpenShift.
HAProxy is an open source, software-defined load balancer and proxy application. In
OpenShift, it takes the URL route associated with an application and proxies those
requests into the proper pod to get the requested data back to the requesting user. We
won’t dig too deeply into all that HAProxy can do—we’re focusing on how OpenShift
uses HAProxy. If you’d like more information about HAProxy, you can find documen-
tation for its different versions at www.haproxy.org/#docs.

TIP Like the networking configuration, the router in OpenShift is built using a
plugin architecture. The default plugin is the HAProxy plugin we’re discussing in
this chapter. But OpenShift also ships with a routing plugin that uses the BigIP F5
load-balancer platform (https://f5.com/products/big-ip/local-traffic-manager-
ltm). You can find more information about configuring router plugins at
https://docs.openshift.org/latest/install_config/router/index.html.

The router pod runs in the project named “default” in OpenShift. The router pod
handles incoming user requests for your OpenShift cluster’s applications and proxies
them to the proper pod to be served to the user. The router pod listens directly on the
host interface for the node it’s deployed on and uses the pod network to proxy
requests for different applications to the proper pod. The session then returns to the
user from the pod’s host through its TUN interface (see figure 10.5).

Traffic outside the cluster
is routed through the
tun0 interface.

Each veth interface is linked
to a specific pod to pass traffic
in and out of the container.

Traffic between pods on other
application nodes is routed through
the vxlan_sys_4789 interface.

All SDN components are attached
to the OVS br0 bridge to simplify
application deployment.

Destinations outside
the cluster

Other nodes in
the cluster

tun0
Gateway interface

for pods on each node

br0 bridge

vxlan_sys_4789
Encrypted routes traffic

to pods on different nodes

vethXXXXXX
Linked to a specific pod's

internal eth0 interface

app-cli
deployed pod

eth0

app-gui
deployed pod

eth0
vethYYYYYY

Linked to a specific pod's
internal eth0 interface

Figure 10.4 Application node networking configuration

https://f5.com/products/big-ip/local-traffic-manager-ltm
https://f5.com/products/big-ip/local-traffic-manager-ltm
https://docs.openshift.org/latest/install_config/router/index.html
http://www.haproxy.org
http://www.haproxy.org/#docs

204 CHAPTER 10 Networking

Because the router listens directly on the host’s interface, it’s configured differently
than a typical pod in OpenShift. In the next section, we’ll investigate the HAProxy
pod in more detail.

1. Users (humans and other apps)
 request information for app-cli by
 its route’s URL, which connects
 to ocp2 on port 80, where
 HAProxy is listening.

2. The HAProxy pod takes the
 requested URL and maps it
 to its corresponding pod.

3. HAProxy uses the pod network
 to proxy the connection to a
 node where an app-cli pod is
 deployed.

4. The request goes through the
 pod network and is passed
 into the app-cli pod.

5. The TUN interface attached
 to br0 routes traffic to the
 host network interface

6. The app-cli pod processes the request and
 sends the response through its host’s TUN
 interface back to the user.

router
pod

docker-
registry

pod

registry-
console

pod

ocp2 host network

Pod network

default project

TUN interface

Users

app-cli
pod

image-uploader
project

app-gui
pod

Figure 10.5 How requests are routed through HAProxy in OpenShift

How HAProxy always deploys to the same node
When you deployed your OpenShift cluster, you added a label to the ocp2 node that
added it to a region named infra:

- connect_to: 192.168.122.101 ... node_labels: '{''region'': ''infra''}'

Labels are arbitrary key-value pairs you can use in OpenShift workflows to manage
applications and a host of interactions. You can add labels to the nodes in your clus-
ter and use those labels to specify where specific pods are deployed.

205Routing application requests

10.3.2 Investigating the HAProxy pod

The lsns tool you used in chapter 3 displays the namespaces associated with the
haproxy process listening on port 80. The following lsns command works in our
example cluster. Our example has PID 42625; be sure to change the PID to match
your own cluster:

lsns -p 42625

Instead of having unique network and UTS namespaces, the router pod uses the UTS
and network namespaces from the host system:

NS TYPE NPROCS PID USER COMMAND
4026531837 user 299 1 root

➥ /usr/lib/systemd/systemd --switched-root --system --deserialize 20
4026531838 uts 265 1 root

➥ /usr/lib/systemd/systemd --switched-root --system

➥ --deserialize 20
4026531956 net 265 1 root

➥ /usr/lib/systemd/systemd --switched-root --system

➥ --deserialize 20
4026532506 ipc 4 11699 1001 /usr/bin/pod
4026532708 mnt 3 12199 1000000000 /usr/bin/openshift-router
4026532709 pid 3 12199 1000000000 /usr/bin/openshift-router

To specify a specific node or group of nodes by label, specify a nodeSelector value
in your application’s deployment config component. The default OpenShift router has
a node selector that specifies the node with the matching region=infra label. You
can see this node selector in the router’s deployment config:

$ oc export dc/router -n default | grep -A1 nodeSelector
nodeSelector:

region: infra

Node selectors are powerful tools when you need to separate different types of appli-
cations in your OpenShift cluster. You can see a great demo at http://mng.bz/2HDH.
For the HAProxy router, a node selector makes the public IP address for accessing
your applications predictable. Your application’s DNS routes won’t have to be
updated, because the router will always be deployed on the node that has the
region=infra label associated with it. As long as that node’s IP address is consis-
tent, your routes will work reliably.

Network namespace created by
systemd when the host was booted

UTS namespace created by systemd
when the host was booted

http://mng.bz/2HDH

206 CHAPTER 10 Networking

Using the host’s network namespace lets HAProxy listen directly on the host’s inter-
faces for incoming requests. Listening on the host’s interface means HAProxy receives
application requests directly, acting as OpenShift’s front door for application traffic.

 The router pod has its own mount namespace, which means the configuration files
for HAProxy are isolated in the container. To enter the router pod, run the following
oc rsh command, substituting the name of your router pod:

$ oc rsh router-1-qpfg3
sh-4.2$

Once you’re in the container’s namespace context, confirm that the router pod can
see the host’s network by running the ip a command. You see all the interfaces on the
host.

TIP The router pod is an example of a privileged pod. A privileged pod is able
to run with additional permissions and resource access in the OpenShift clus-
ter. We’ll discuss these in more depth in chapter 11.

So far in this section, we’ve talked about how HAProxy uses the networking stack for
the host it runs on, and how it’s always deployed to the same node by using a node
selector that specifies nodes with the region=infra label. Those features provide two
primary benefits:

 Using the host networking stack lets HAProxy receive requests directly from
users. Because HAProxy is the front door to OpenShift, it has to be the first
thing a request encounters.

 Deploying to the same host makes it easier to manage the DNS routes used to
access individual applications.

In the next section, we’ll walk through how HAProxy takes the URL that’s been
requested and proxies the traffic into a pod servicing the correct application. We’ll look
at the HAProxy configuration in the pod, scale an application, and see how the
HAProxy configuration changes.

10.3.3 How HAProxy gets requests to the correct pods

The configuration file for HAProxy is in the pod at /var/lib/haproxy/
conf/haproxy.config. This configuration file is maintained by OpenShift. Any time an
application is deployed, updated, or deleted, OpenShift updates this configuration
and has the HAProxy process reload it. Let’s see this in action.

 With app-cli scaled to a single-pod replica, run the following command to search
for the app-cli HAProxy configuration in the router pod:

$ grep app-cli /var/lib/haproxy/conf/haproxy.config
backend be_http:image-uploader:app-cli

server pod:app-cli-1-c7t85:app-cli:10.128.0.73:8080 10.128.0.73:8080

➥ cookie 10c2a5a2bcb4ba518fc9b08053a8b544 weight

➥ 100 check inter 5000ms

app-cli pod
entry in the

HAProxy
configuration

207Routing application requests

We won’t go too deep into how the configuration works, but you can see the pod
name, IP address, and port to access app-cli.

 Next, scale app-cli to two pods, either in the web UI or with the following oc com-
mand from a workstation that can log in to OpenShift:

$ oc scale dc/app-cli --replicas=2 -n image-uploader

This command takes a few seconds to complete. After it’s done, rerun the search in
the router pod for app-cli. Kubernetes has updated the HAProxy configuration to add
an entry for the newly created app-cli pod:

$ grep app-cli /var/lib/haproxy/conf/haproxy.config
backend be_http:image-uploader:app-cli

server pod:app-cli-1-c7t85:app-cli:10.128.0.73:8080 10.128.0.73:8080 cookie

➥ 10c2a5a2bcb4ba518fc9b08053a8b544 weight

➥ 100 check inter 5000ms
server pod:app-cli-1-3lqbw:app-cli:10.128.0.75:8080 10.128.0.75:8080 cookie

➥ 3208c76c647df4c7f738539068c8a368 weight

➥ 100 check inter 5000ms

HAProxy takes the request from the user, maps the requested URL to a defined route
in the cluster, and proxies the request to the IP address for a pod in the service associ-
ated with that route. All this traverses the pod network created by OpenShift SDN (see
figure 10.6)

 This process works in concert with iptables on each host. OpenShift uses a com-
plex, dynamic iptables configuration to make sure requests on the pod network are
routed to the proper application pod. Iptables are a complex topic that we don’t have
space to cover here, but we wanted to mention them so you know they should be run-
ning on your cluster nodes, and they’re crucial to your cluster’s effective operation.
For more information, visit http://mng.bz/p58R.

 The method for routing requests in OpenShift works well. But it poses a problem
when you’re deploying applications that depend on each other to function. If a new
pod is added to an application or a pod is replaced and it receives a new IP address,
the change would require all applications that reference it to be updated and rede-
ployed. This isn’t a serviceable solution. Luckily, OpenShift incorporates a DNS ser-
vice on the pod network. Let’s examine it next.

Original pod entry

The scaled-up pod IP address is added
automatically to HAProxy configuration
when the pod deploys.

http://mng.bz/p58R

208 CHAPTER 10 Networking

10.4 Locating services with internal DNS
Applications depend on each other to deliver information to users. Middleware apps
depend on databases. Web presentation apps depend on middleware. In an applica-
tion spanning multiple independently scalable pods, these relationships are complex
to manage. To make this easier, OpenShift deploys SkyDNS (https://github.com/sky-
netservices/skydns) when the cluster is deployed and makes it available on the pod
network. SkyDNS is a DNS service that uses etcd, the primary Kubernetes database, to
store DNS records. DNS records, also known as zone files, are configuration files where

ocp2
Infrastructure node

1. User request hits port 80 on the
 infrastructure node because of
 DNS lookup for the route.

2. HAProxy listens on port
 80 on the infrastructure
 node’s namespace.

6. The pod serves the request
 and responds through the
 tun0 interface out of the
 cluster and back to
 the user.

3. HAProxy configures headers
 on the request and sends the
 request to the app-cli pod.

4. HAProxy forwards the request through
 VXLAN across the pod network to the
 IP of the app-cli pod.

5. The request is sent to the
 app-cli pod’s veth interface.

router
HAProxy pod

Users

eth0

Request: http://app-cli...

vxlan0

ocp3
Application node

app-cli pod
10.130.0.17:8080

veth875e3121

vxlan0 tun0

eth0

Figure 10.6 OpenShift SDN network interfaces

https://github.com/skynetservices/skydns
https://github.com/skynetservices/skydns

209Locating services with internal DNS

DNS records are recorded for a domain controlled by a DNS server. In OpenShift,
SkyDNS controls the zone files for several domains that exist only on the pod network:

 cluster.local—Top-level domain for everything in your OpenShift cluster
 svc.cluster.local—Domain for all services running in your cluster

Domains for each project are also created. For example, image-uploader.svc.cluster
.local is used to access all the services created in the image-uploader project.

 A DNS A record (http://support.dnsimple.com/articles/a-record) is created in
SkyDNS for each service in OpenShift when an application is deployed. A service rep-
resents all the deployed pods for an application. To view the services for the image-
uploader project, run the following oc command:

$ oc get services -n image-uploader
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
app-cli 172.30.86.81 <none> 8080/TCP 3h
app-gui 172.30.90.249 <none> 8080/TCP 3h

Let’s examine how DNS resolution works in your OpenShift cluster.

10.4.1 DNS resolution in the pod network

When a pod is deployed, the /etc/resolv.conf file from the application node is
mounted in the container in the same location. In Linux, /etc/resolv.conf configures
the servers and configuration used for DNS resolution. By default, /etc/resolv.conf
on the application node is configured with the IP address for the node itself.
DNS requests on each application node are forwarded to SkyDNS running on the
master server.

 The search parameter in /etc/resolv.conf is also updated when it’s mounted in the
container. It’s updated to include cluster.local, svc.cluster.local, and all other domains
managed by SkyDNS.

 Any domains defined in the search parameter in resolv.conf are used when a fully
qualified domain name (FQDN) isn’t used for a hostname. FQDNs are defined at
https://tools.ietf.org/html/rfc4703; but because not everyone loves to read RFC doc-
uments, a good rule of thumb is that an FQDN has to be a complete address on a net-
work. The domain server.domain.com is fully qualified, where server isn’t a complete
domain name. The search parameter provides one or more domains that are auto-
matically appended to non-FQDNs to use for DNS queries.

 When a request comes in from your cluster, those requests are automatically for-
warded to the master server where SkyDNS handles requests. Let’s test it in action in
your cluster.

 From an OpenShift node, you can access the services using DNS if you use its
FQDN. The format is service_name.project_name.svc.cluster.local:port. The following
example is run from ocp3, connecting to the app-cli service:

http://support.dnsimple.com/articles/a-record
https://tools.ietf.org/html/rfc4703

210 CHAPTER 10 Networking

curl app-cli.image-uploader.svc.cluster.local:8080
<html>
<head>
<title>Image Library Demo Application by </title><style>
body {
...
</body>
</html>

You can run the same command from within a pod without specifying the FQDN,
because /etc/resolv.conf has the SkyDNS search domains added. Using oc rsh, you
can enter the namespaces for the app-cli pod and use curl to download the index
page from app-gui service and the default page for the router service:

$ oc rsh app-cli-1-3lqbw

$ curl app-gui.image-uploader:8080
<html>
<head>
<title>Image Library Demo Application by </title><style>
body {
...
</body>
</html>

$ oc rsh app-gui-1-2zrqx
sh-4.2$ curl wildfly-app.stateful-apps:8080
<!DOCTYPE html>
<!--

JBoss, Home of Professional Open Source
Copyright 2014, Red Hat, Inc. and/or its affiliates, and individual

Using OpenShift’s implementation of SkyDNS, you can access any deployed applica-
tion using the DNS record for its service. In OpenShift, application relationships
remain stable, and no information about the application’s pods is required. This
abstraction makes it easy to add references to other services in applications’ configura-
tions when they’re deployed, without having to know the actual pod-level information
about them.

 In the previous example, you accessed an application from one project (wildfly-
app in the stateful-apps project) from an application pod in another project (the app-
cli pod in the image-uploader project). You do so because the default configuration of
OpenShift’s pod network uses a flat network topology. Applications from one project
are able to communicate with applications in all other projects.

 This configuration works well when OpenShift is used by a single team. But when
you need a multitenant environment to support multiple teams who don’t need to
view each other’s applications, OpenShift handles that situation as well. In the next
section, you’ll change OpenShift’s network configuration so it isolates the network
traffic for each project.

Connects to the app-cli pod

Browses the app-gui service

Browses wildfly-app in
the stateful-apps project

211Configuring OpenShift SDN

10.5 Configuring OpenShift SDN
When you deploy OpenShift, the default configuration for the pod network’s topology
is a single flat network. Every pod in every project is able to communicate without
restrictions. OpenShift SDN uses a plugin architecture that provides different network
topologies in OpenShift. There are currently three OpenShift SDN plugins that can be
enabled in the OpenShift configuration without making large changes to your cluster:

 ovs-subnet—Enabled by default. Creates a flat pod network, allowing all pods in
all projects to communicate with each other (see figure 10.7).

 ovs-multitenant—Separates the pods by project. The applications deployed in a
project can only communicate with pods deployed in the same project. You’ll
enable this plugin in this chapter.

 ovs-networkpolicy—Provides fine-grained ingress and egress rules for applica-
tions. This plugin provides a lot of configuration power, but the rules can be
complex. This plugin is out of scope for this book.

The Kubernetes CNI accepts different networking plugins. OpenShift SDN is the
default CNI plugin in OpenShift; it configures and manages the pod network for your
cluster (see figure 10.7).

 Let’s review the available OpenShift SDN plugins, starting with ovs-subnet.

The ovs-subnet plugin is enabled
by default and builds out the pod
network with a flat topology.

All pods communicate
using the pod network.

CNI connects to the configured
plugin for OpenShift SDN.

Kubernetes CNI lets different
networking plugins control
the network topology in
the cluster.

ovs-subnet
plugin

ovs-multitenant
plugin

ovs-networkpolicy
plugin

Pod network

Kubernetes CNI

OpenShift SDN-CNI plugin

Figure 10.7 SDN plugins and overview

212 CHAPTER 10 Networking

10.5.1 Using the ovs-subnet plugin

Earlier, you were able to communicate directly with an application from the stateful-
apps project from a pod in the image-uploader project; you could do so because of
how the ovs-subnet plugin configured the pod network. A flat network topology for all
pods in all projects lets communication happen between any deployed applications
(see figure 10.8).

With the ovs-subnet plugin, an OpenShift cluster is deployed like a single tenant, with
all resources available to one another. If you need to separate network traffic for mul-
tiple tenants, you can use the ovs-multitenant plugin.

10.5.2 Isolating traffice with the ovs-multitenant plugin

The ovs-multitenant network plugin isolates pod communications at the project level.
Each pod for each application deployment can communicate only with pods and ser-
vices in the same project on the pod network. For example, the app-gui and app-cli
pods can communicate directly because they’re both in the image-uploader project.
But they’re isolated from the wildfly-app application in the stateful-apps project in
your cluster. This isolation relies on two primary tools in Open vSwitch:

ocp3
Application node

app-gui pod
10.130.0.47:8080

app-cli pod
10.130.0.23:8080

ocp2
Application node

Pods from the image-uploader project span
multiple nodes and can communicate with
any other pod on the system.

Communication between pods
uses the pod network through
the vxlan0 interface.

vxlan0
VXLAN

vxlan0

The wildfly application pod
can communicate with any
other pod on the cluster.

app-cli pod
10.128.0.17:8080

wildfly pod
10.128.0.38:8080

Figure 10.8 With the ovs-subnet plugin all pods can communicate with each other.

213Configuring OpenShift SDN

 VXLAN network identifier (VNID)—A VNID acts in a fashion similar to a VLAN in
a traditional network. It’s a unique identifier that can be associated with an
interface and used to isolate communication to interfaces with the same VNID.

 OpenFlow—OpenFlow (www.sdxcentral.com/sdn/definitions/what-is-openflow)
is a communications protocol that can be used to map network traffic across a net-
work infrastructure. OpenFlow is used in OpenShift to help define which inter-
faces can communicate and when to route traffic through the vxlan0 and tun0
interfaces on each node.

When the ovs-multitenant plugin is enabled, each project is assigned a VNID. The
VNID for each project is maintained in the etcd database on the OpenShift master
node. When a pod is created, its linked veth interface is associated with its project’s
VNID, and OpenFlow rules are created to make sure it can communicate only with
pods in the same project.

NOTE The router and registry pods in the default project are assigned VNID 0.
This is a special VNID that can communicate with all other VNIDs on a system.
If a pod needs to communicate with a pod on another host, the VNID is
attached to each packet on the network as part of the VXLAN encapsulation
process (see figure 10.9).

ocp3
Application node

etcd maintains the mapping
values that match a project
to a VNID.

Applications deployed in the image-uploader
project can communicate only with other pods
in the same project and the default project.

Pods in the default project
are assigned VNID 0, allowing
them to communicate with
all pods in the cluster.

The wildfly pod is limited
to communication with pods
in the stateful-apps project
and with pods in the
default project.

app-gui pod
VNID 1

app-cli pod
VNID 1

wildfly pod
VNID 2

app-cli pod
VNID 1

ocp2
Infrastructure node

registry pod
VNID 0

registry-console pod
VNID 0

router pod
VNID 0

ocp1
Master node

etcd database
VNID values

Figure 10.9 The
multitenant plugin
isolates network
traffic by project.

http://www.sdxcentral.com/sdn/definitions/what-is-openflow

214 CHAPTER 10 Networking

With the multitenant plugin enabled, if a pod needs to communicate with a pod in
another project, the request must be routed off the pod network and connect to the
desired application through its external route like any other external request. This
isn’t always the most efficient architecture. The OpenShift SDN’s ovs-networkpolicy
plugin provides more fine-grained control over how applications communicate
across projects.

10.5.3 Creating advanced network designs with the ovs-networkpolicy plugin

The ovs-networkpolicy plugin provides fine-grained access control for individual
applications, regardless of the project they’re in. These rules can become complex
very quickly. We don’t have space in this book to cover creating network policies, but if
you want to learn about it, a good starting place is the documentation at http://
mng.bz/LIUA.

 Let’s enable the ovs-multitenant plugin and make sure it isolates traffic in your
cluster as we’ve discussed.

10.5.4 Enabling the ovs-multitenant plugin

To enable the ovs-multitenant plugin, you need to SSH to your master and application
nodes and edit a configuration file on each. Follow these steps to edit the master
configuration:

1 Open the master configuration file located at /etc/origin/master/master-
config.yaml.

2 Locate the networkPluginName parameter in the file. The default value that
enables the ovs-subnet plugin is redhat/openshift-ovs-subnet. Edit this line
as shown next.

...
networkPluginName: redhat/openshift-ovs-multitenant
...

3 Restart the origin-master service:

systemctl restart origin-master

Next you need to edit the application node configurations. Here are the steps:

1 On each application node, the configureation file is located at /etc/origin/
node/node-config.yaml. In this file, you need to edit two lines. They’re the
same as the line you changed in the master configuration.

Listing 10.1 Editing networkPluginName in the master config

http://mng.bz/LIUA
http://mng.bz/LIUA
http://mng.bz/LIUA

215Configuring OpenShift SDN

....
networkPluginName: redhat/openshift-ovs-multitenant 1((CO8-1))
networkConfig struct introduced in origin 1.0.6 and OSE 3.0.2 which
deprecates networkPluginName above. The two should match.
networkConfig:

mtu: 1450
networkPluginName: redhat/openshift-ovs-multitenant

...

2 Restart the node service on each application node with the following
command:

systemctl restart origin-node

And that’s it. You’ve changed your OpenShift cluster to use the multitenant network
plugin. To make sure, let’s test it.

10.5.5 Testing the multitenant plugin

Previously in the chapter, you logged in to the app-cli pod using oc rsh and down-
loaded web pages from other pods. Let’s test this now with the ovs-multitenant plugin
in place. Follow these steps:

1 Connect to the app-cli pod:

$ oc rsh app-cli-1-3lqbw
sh-4.2$

2 From the app-cli pod, use the curl command to download the index page for
the app-gui pod using its DNS record:

sh-4.2$ curl app-gui:8080
<html>
<head>
...

Because these two applications are in the same project, you can communicate
between these pods with no issues.

3 Try to access the router pod in the default project:

sh-4.2$ curl router.default
<html>

<head>
...

Because the default project is assigned VNID 0, the app-cli pod can access it as
needed.

Listing 10.2 Editing networkPluginName in the application node config

Edit both lines
to reference the
multitenant plugin.

216 CHAPTER 10 Networking

4 Attempt to access the wildfly-app pod in the stateful-apps project:

sh-4.2$ curl wildfly-app.stateful-apps

This request eventually times out. The app-cli pod can’t connect to the wildfly-
app pod because they’re in different projects. The multitenant plugin stops this
communication from happening by design.

NOTE You can learn more about how the ovs-multitenant plugin uses VNIDs
at http://mng.bz/dkj0, including information about how VNID 0 is used for
the default project.

This chapter has been quite a journey through the network in your OpenShift cluster.
Managing a network effectively in an application platform is a huge challenge. Open-
Shift uses Open vSwitch and its components to do so effectively in a dynamic cluster.
All you have to do is decide how you want your pod network configured and then edit
your cluster configuration files.

10.6 Summary
 OpenShift uses a non-routable pod network to handle traffic in the cluster.
 OpenShift SDN is a software-defined networking implementation using Open

vSwitch (OVS) to create a scalable and highly configurable network for Open-
Shift traffic.

 Network traffic is passed in and out of containers using multiple OVS interfaces
configured together on each host.

 Each container has a corresponding veth interface on the host that’s linked to
the container interface using the Linux kernel.

 OpenShift provides an internal DNS service to make interactions between pods
easy to manage and scale.

 OpenShift SDN’s default plugin provides a flat network topology that allows all
pods to communicate with each other in the cluster.

 You can change networking plugins to the multitenant plugin, which effectively
isolates network communications at the project level for applications.

http://mng.bz/dkj0

217

Security

Each topic in this chapter is specific to security and to making OpenShift a secure
platform for your applications. This chapter isn’t a comprehensive summary of
OpenShift’s security features—that would take 100 pages or more and is a great
idea for another OpenShift book. What we’ll do in this chapter is walk through the
fundamentals of OpenShift security. We want to give you examples of what we think
are the most crucial concepts, and we’ll do our best to point you in the right direc-
tion for the topics we don’t have room to cover.

This chapter covers
 Learning how SELinux isolates container

resources

 Understanding security contexts and application
permissions

 Scanning container images for security issues

 Using security context constraints

 Analyzing OpenSCAP security scan reports

218 CHAPTER 11 Security

 We began discussing important security concepts and making OpenShift secure
not long after page 1 of this book:

 Understanding OpenShift’s role in your environment: chapter 1
 Deploying applications associated with specific users: chapter 2
 Diving deep into how container processes are isolated: chapter 3
 Confirming application health and status: chapter 4
 Autoscaling applications to automate resilience: chapter 5
 Creating CI/CD pipelines so humans don’t have to be involved: chapter 6
 Working with persistent storage: chapter 7
 Controlling access to pods, and handling interactions between pods: chapter 8
 Using identity providers and working with roles, limits, and quotas: chapter 9
 Creating a secure, stable network: chapter 10

We may be using a broad definition of security here, but every chapter in this book
contributes to your understanding of OpenShift and how to deploy it in an automated
and secure fashion. Automation and security go hand in hand, because humans aren’t
good at repetitive tasks. The more you can automate tasks for your applications, the
more secure you can make those applications. Even though we’ve already covered a
lot of ground regarding security, we still need to devote this entire chapter to security-
specific concepts.

 OpenShift has layers of security, from the Linux kernel on each application node
through the routing layer that delivers applications to end users. We’ll begin this dis-
cussion with the Linux kernel and work our way up through the application stack. For
containers and OpenShift, security begins in the Linux kernel with SELinux.

11.1 Understanding SELinux core concepts
SELinux is a Linux kernel module that’s used to enforce mandatory access control
(MAC). MAC is a set of access levels that are assigned to users by the system. Only
users with root-level privileges can alter them. For typical users, including the auto-
mated user accounts in OpenShift that deploy applications, the SELinux configura-
tion specified for a deployment is an immutable fact.

 MAC is in contrast to discretionary access control (DAC) in Linux. DAC is the system
of users and file ownership/access modes that we all use every day on Linux hosts. If
only DAC were in effect in your OpenShift cluster, users could allow full access to their
container’s resources by changing the ownership or the access mode for the container
process or storage resources. One of the key security features of OpenShift is that
SELinux automatically enforces MAC policies that can’t be changed by unprivileged
users for pods and other resources, even if they deployed the application.

 We need to take a few pages to discuss some fundamental information that we’ll
use throughout the chapter. As with security in general, this won’t be a full SELinux
introduction. Entire books have been written on that topic, including an SELinux col-
oring book available at https://github.com/mairin/selinux-coloring-book. But the

https://github.com/mairin/selinux-coloring-book

219Understanding SELinux core concepts

following information will help you understand how OpenShift uses SELinux to cre-
ate a secure platform. We’ll focus on the following SELinux concepts:

 Labels—SELinux labels are applied to all objects on a Linux server.
 Contexts—SELinux contexts apply labels to objects based on filesystem loca-

tions.
 Policies—SELinux policies are rules that control interactions between objects

with different SELinux labels.

Let’s begin by taking a more detailed look at how SELinux labels are designed.

11.1.1 Working with SELinux labels

SELinux labels are applied to all objects on your OpenShift servers as they’re created.
An SELinux label dictates how an object on a Linux server interacts with the SELinux
kernel module. We’re defining an object in this context as anything a user or process
can create or interact with on a server, such as the following:

 Files
 Directories
 TCP ports
 Unix sockets
 Shared memory resources

Each object’s SELinux label has four sections, separated by colons:

 User—Which SELinux user has access to the objects with that SELinux label.
 Role—The SELinux role that can access the objects with the matching SELinux

label.
 Type—SELinux type for each label. This is the section where most common

SELinux rules are written.
 Multi-category security (MCS)—Often called the MCS bit. Unique for each con-

tainer, and what we’ll spend the most time on.

Figure 11.1 shows an example of a full SELinux label for the socket interface used by
Open vSwitch for communication on your OpenShift nodes at /var/run/open-
vswitch/db.sock. To view this label, run the following ls command, using the -Z
option to include SELinux information in its output:

ls -alZ /var/run/openvswitch/db.sock
srwxr-x---. root root system_u:object_r:openvswitch_var_run_t:s0➥
/var/run/openvswitch/db.sock

In addition to the standard POSIX attributes of mode, owner, and group ownership,
the output also includes the SELinux label for /var/run/openvswitch/db.sock.

 Next, let’s examine how SELinux labels are applied to files and other objects when
they’re created.

220 CHAPTER 11 Security

11.1.2 Applying labels with SELinux contexts

Labels are applied to files using SELinux contexts: rules that are used to apply labels to
objects on a Linux system. Contexts use regular expressions to apply labels depending
on where the object exists in the filesystem.

The SELinux user
is used for MCS
implementations.

system_u:object_r:openvswitch_var_run_t:s0

The SELinux role is
used primarily for MCS
implementations.

Objects are assigned an MCS
value to distinguish between
different category levels on
the Linux system.

The SELinux type is used in
type-enforcement policies to
define interactions between
objects on a Linux host.

Figure 11.1 SELinux label for the Open vSwitch socket object

Digging deeper into SELinux
Most commands have a -Z option that will include the commands’ SELinux labels.
Common command-line tools like ls, ps, netstat, and others accept the -Z option
to include SELinux information in their output.

Because objects are presented in the Linux operating system as files, their SELinux
labels are stored in their filesystem extended attributes. You can view these attri-
butes directly for the Open vSwitch socket using the following getfattr command:

getfattr -d -m - /var/run/openvswitch/db.sock
getfattr: Removing leading '/' from absolute path names
file: var/run/openvswitch/db.sock
security.selinux="system_u:object_r:openvswitch_var_run_t:s0"

If you’re looking for full SELinux documentation, a great place to start is the Red Hat
Enterprise Linux 7 SELinux Guide at http://mng.bz/G5t5.

SELinux breaks my application!
One of the worst things a sysadmin can hear is a developer telling them that SELinux
“breaks” their application. In reality, their application is almost certainly creating
objects on the Linux server that don’t have a defined SELinux context.

If SELinux doesn’t know how to apply the correct label, it doesn’t know how to treat
the application’s objects. This often results in SELinux policy denials that lead to fran-
tic calls and requests to disable SELinux because it’s breaking an application.

http://mng.bz/G5t5

221Understanding SELinux core concepts

To query the contexts for a system, use the semanage command and filter it using
grep. You can use semanage to search for contexts that apply to any label related to
any file or directory, including the Open vSwitch socket. A search for openvswitch in
the semanage output shows that the context system_u:object_r:openvswitch_var
_run_t:s0 is applied to any object created in the /var/run/openvswitch/ directory:

semanage fcontext -l | grep openvswitch
/etc/openvswitch(/.*)? all files

➥ system_u:object_r:openvswitch_rw_t:s0
/var/lib/openvswitch(/.*)? all files

➥ system_u:object_r:openvswitch_var_lib_t:s0
/var/log/openvswitch(/.*)? all files

➥ system_u:object_r:openvswitch_log_t:s0
/var/run/openvswitch(/.*)? all files

➥ system_u:object_r:openvswitch_var_run_t:s0
/usr/lib/systemd/system/openvswitch.service regular file

➥ system_u:object_r:openvswitch_unit_file_t:s0
/usr/bin/ovs-vsctl regular file

➥ system_u:object_r:openvswitch_exec_t:s0
...

Properly applied, SELinux labels create policies that control how objects with differ-
ent labels can interact with each other. Let’s discuss those next.

11.1.3 Enforcing SELinux with policies

SELinux policies are complex things. They’re heavily optimized and compiled so they
can be interpreted quickly by the Linux kernel. Creating one or looking at the code
that creates one is outside the scope of this book, but let’s look at a basic example of
what an SELinux policy would do. For this, we’ll use an example that most people are
familiar with: the Apache web server. You won’t find the Apache web server on your
master node—the OpenShift API and user interfaces are served by a custom web
application. But Apache is common everywhere and has long-established SELinux
policies that we can use as an example.

 The executable file for the Apache web server is /usr/sbin/httpd. This httpd exe-
cutable has an SELinux label of system_u:object_r:httpd_exec_t:s0. On CentOS and
Red Hat systems, the default Apache web content directory is /var/www/html. This
directory has an SELinux label of system_u:object_r:httpd_sys_content_t:s0. The
default cgi-script directory for Apache is /var/www/cgi-bin, and it has an SELinux
label of system_u:object_r:httpd_sys_script_exec_t:s0. There’s also an http_port_t
label for the following TCP port numbers:

 80 8008

 81 8009

 443 8443

 488 9000

SELinux context to apply the correct label
to the Open vSwitch socket interface

222 CHAPTER 11 Security

An SELinux policy enforces the following rules using these labels for the httpd_exec_t
object type:

 httpd_exec_t—Can write only to objects with an httpd_sys_content_t type
 httpd_exec_t—Can execute scripts only with the httpd_sys_script_exec_t

type
 httpd_exec_t—Can read from directories with httpd_sys_script_exec_t, but

can’t write to them
 httpd_exec_t—Can open and bind only to ports with the http_port_t type

This means even if Apache is somehow compromised by a remote user, it can read
content from /var/www/html and run scripts from /var/www/cgi-bin. It also can’t
write to /var/www/cgi-bin. All of this is enforced by the Linux kernel, regardless of
the ownership or permissions of these directories and which user owns the httpd pro-
cess (see figure 11.2).

 The default type of SELinux loaded on a Linux system is the targeted type. The
rules in the targeted SELinux type are applied only to objects that have matching con-
texts. Every object on a server is assigned a label based on the SELinux context it
matches. If an object doesn’t match a context, it’s assigned an unconfined_t type in
its SELinux label. The unconfined_t type has no contexts or policies associated with
it. Interactions between objects that aren’t covered by a policy in targeted SELinux are
allowed to run with no interference.

The httpd executable can only
bind to ports with the matching
http_port_t type.

httpd can only execute scripts with
the httpd_sys_script_exec_t type.

httpd can only serve content
and write to directories with
the httpd_sys_content_t type.

httpd can only read from directories
with the httpd_sys_script_exec_t type;
it can’t write to them.

TCP port 80
http_port_t

/usr/sbin/httpd
httpd_sys_exec_t

/var/www/html
httpd_sys_content_t

/var/www/cgi-bin
httpd_sys_script_exec_t

Figure 11.2 SELinux mitigates vulnerabilities in applications like the Apache web server.

223Understanding SELinux core concepts

For CentOS and Red Hat Enterprise Linux, the default policies use type enforcement.
Type enforcement uses the type value from SELinux labels to enforce the interactions
between objects.

 Let’s review what we’ve discussed up to this point about SELinux:

 SELinux is used to enforce MAC in your OpenShift cluster. MAC provides
access controls at a deeper level than traditional user/group ownership and
access mode. It also applies to objects on the operating system that aren’t tradi-
tional files and directories.

 Every object on an OpenShift node is assigned an SELinux label, including a
type.

 Labels are assigned according to SELinux contexts as objects are created,
depending on where they exist on the filesystem.

 With labels applied, SELinux policies enforce interactions between objects.
SELinux uses type-enforcement policies on your OpenShift cluster to ensure
proper interactions between objects.

This SELinux configuration is standard for any CentOS or Red Hat system running
with SELinux in enforcing mode. Just as in the Apache web server process we’ve been
discussing, you know that a container is essentially a process. Each container’s process
is assigned an SELinux label when it’s created, and that label dictates the policies that
affect the container. To confirm the SELinux label that’s used for containers in Open-
Shift, get the container’s PID from docker and use the ps command with the -Z
parameter, searching for that PID with grep:

docker inspect -f '{{ .State.Pid }}' 1aa4208f4b80
2534

ps -axZ | grep 2534
system_u:system_r:svirt_lxc_net_t:s0:c7,c8 2534 ? Ss 0:01 httpd -D

➥ FOREGROUND

PID for the app-cli container

SELinux label for the app-
cli container process

SELinux in enforcing mode
OpenShift hosts operate with SELinux in enforcing mode. Enforcing mode means the
policy engine that controls how objects can interact is fully activated. If an object
attempts to do something that’s against an SELinux policy present on the system,
the action isn’t allowed, and the attempt is logged by the kernel. To confirm that SELi-
nux is in enforcing mode, run the following getenforce command:

getenforce
Enforcing

In OpenShift, SELinux is taken care of automatically, and you don’t need to worry
about it. There’s no reason to disable it.

224 CHAPTER 11 Security

The user and role portions of the label aren’t used for type-enforcement policies. The
svirt_lxc_net_t type is used in SELinux policies that control which resources on the
system containers can interact with. We haven’t discussed the fourth part of the SELi-
nux label: the MCS level, which isolates pods in OpenShift. Let’s examine how that
works next.

11.1.4 Isolating pods with MCS levels

The original purpose of the MCS bit was to implement MCS security standards
(https://selinuxproject.org/page/NB_MLS) on Linux servers. These standards con-
trol data access for different security levels on the same server. For example, secret
and top-secret data could exist on the same server. A top-secret-level process should be
able to access secret-level data, a concept called data dominance ; but secret processes
shouldn’t be able to access top-secret data, because that data has a higher MCS level.
This is the security feature you can use to prevent a pod from accessing data it’s not
authorized to access on the host.

TIP You may have noticed that the SELinux type for the app-cli container is
svirt_lxc_netsvirt_lxc_net. SVirt (https://selinuxproject.org/page/SVirt)
has been used for several years to isolate kernel-based virtual machines (KVMs)
using the same MCS technology. VMs and containers aren’t similar technolo-
gies, but they both use SVirt to provide security for their platforms.

OpenShift uses the MCS level for each container’s process to enforce security as part
of the pod’s security context. A pod’s security context is all the information that
describes how it’s secured on its application node. Let’s look at the security context
for the app-cli pod.

11.2 Investigating pod security contexts in OpenShift
Each pod’s security context contains information about its security posture. You can
find full documentation for the possible fields that can be defined at
http://mng.bz/phit. In OpenShift, the following parameters are configured by
default:

(continued)
In other servers, tools like virus scanners can cause issues with SELinux. A virus scan-
ner is designed to analyze files on a server that are created and managed by other
services. That makes writing an effective SELinux policy for a virus scanner a significant
challenge. Another typical issue is when applications and their data are placed in loca-
tions on the filesystem that don’t match their corresponding SELinux contexts. If the
Apache web server is trying to access content from /data on a server, it will be denied
by SELinux because /data doesn’t match any SELinux contexts associated with
Apache. These sorts of issues lead to some people deciding to disable SELinux.

http://mng.bz/phit
https://selinuxproject.org/page/NB_MLS
https://selinuxproject.org/page/SVirt

225Investigating pod security contexts in OpenShift

 Capabilities—Defines an application’s ability to perform various tasks on the
host. Capabilities can be added or dropped for each pod. We’ll look at these in
depth in this chapter.

 Privileged—Specifies whether the container is running with any of the host’s
namespaces.

 RunAsUser—UID with which to run the container’s process. This can be config-
ured, which we’ll discuss later in this chapter.

 SeLinuxOptions—SELinux options for the pod. Normally, the only needed
option is to set the SELinux level.

You can view the security context for a pod in the GUI by choosing Applications >
Pods, selecting the pod you want information about, and then choosing Actions > Edit
YAML. From the command line, the same output is available using the oc export
command:

$ oc export pod app-cli-2-4lg8j
apiVersion: v1
kind: Pod
...
spec:
...

securityContext:
capabilities:

drop:
- KILL
- MKNOD
- SETGID
- SETUID
- SYS_CHROOT

privileged: false
runAsUser: 1000070000
seLinuxOptions:

level: s0:c8,c7
...

NOTE Looking at the output, two security contexts are defined. The one dis-
played here is the MCS level for the container; there’s a similar security con-
text for the pod, as well. The MCS level for the container and the pod should
always be equal.

We’ve been discussing SELinux for a while. Let’s bring the topic to a close by walking
through how OpenShift uses a pod’s MCS level to enhance security.

11.2.1 Examining MCS levels in OpenShift

The structure of the MCS level consists of a sensitivity level (s0) and two categories
(c8 and c7), as shown in the following output from the previous command:

seLinuxOptions:
level: s0:c8,c7

Security context
for the pod

Pod
capabilities

(added or
dropped)

Whether the pod
is privileged

UID with
which to

run the pod

MCS label

226 CHAPTER 11 Security

You may have noticed that the order of the categories is reversed in the oc output
compared with the ps output. This makes no difference in how the Linux kernel
reads and acts on the MCS level.

 A detailed discussion of how different MCS levels can interact is out of scope for
this book. If you’re looking for that depth of information, the SELinux Guide for Red
Hat Enterprise Linux at http://mng.bz/G5t5 is a great place to start. Here, we’ll focus
on how OpenShift uses MCS levels to isolate pods in each project.

 OpenShift assumes that applications deployed in the same project will need to
interact with each other. With that in mind, the pods in a project have the same MCS
level. Sharing an MCS level lets applications share resources easily and simplifies the
security configurations you need to make for your cluster.

 Let’s examine the SELinux configurations for pods in different projects. You
already know the MCS level for app-cli is s0:c8,c7. Because app-cli and app-gui are in
the same project, they should have the same MCS level. To get the MCS level for the
app-gui pod, use the same oc export command:

$ oc export pod app-gui-1-cwm7t | grep -A 1 seLinuxOptions
seLinuxOptions:

level: s0:c8,c7
--

seLinuxOptions:
level: s0:c8,c7

This confirms what we stated earlier: the MCS levels for app-gui and app-cli are the
same because they’re deployed in the same project.

 Next, let’s compare the same values for a pod deployed in another project. Use the
wildfly-app application you deployed in chapter 8. To get the name of the deployed
pod, run the following oc get pods command, specifying the stateful-apps project
using the -n option:

$ oc get pods -n stateful-apps
NAME READY STATUS RESTARTS AGE
wildfly-app-1-zsfr8 1/1 Running 0 6d

After you have the pod name, run the same oc export command, searching for seLi-
nuxOptions and specifying the stateful-apps project using the -n option:

$ oc export pod wildfly-app-1-zsfr8 -n stateful-apps | grep -A 1 seLinuxOptions
seLinuxOptions:

level: s0:c10,c0
--

seLinuxOptions:
level: s0:c10,c0

Each project uses a unique MCS level for deployed applications. This MCS level per-
mits each project’s applications to communicate only with resources in the same proj-
ect. Let’s continue looking at pod security-context components with pod capabilities.

MCS level for the container

MCS level for the pod

MCS level for the wildfly-app container

MCS level for the wildfly-app pod

http://mng.bz/G5t5

227Investigating pod security contexts in OpenShift

11.2.2 Managing pods Linux capabilities

The capabilities listed in the app-cli security context are Linux capabilities that have
been removed from the container process. Linux capabilities are permissions assigned
to or removed from processes by the Linux kernel:

securityContext:
capabilities:

drop:
- KILL
- MKNOD
- SETGID
- SETUID
- SYS_CHROOT

Capabilities allow a process to perform administrative tasks on the system. The root
user on a Linux server can run commands with all Linux capabilities by default. That’s
why the root user can perform tasks like opening TCP ports below 1024, which is pro-
vided by the CAP_NET_BIND_SERVICE capability, and loading modules into the Linux
kernel, which is provided by the CAP_SYS_MODULE capability.

 You can add capabilities to a pod if it needs to be able to perform a specific type of
task. Add them to the capabilities.add list in the pod’s security context. (A full listing
of capabilities and their functions is detailed at http://mng.bz/Qy03.) To remove
default capabilities from pods, add the capabilities you want to remove to the drop list.
This is the default action in OpenShift. The goal is to assign the fewest possible capa-
bilities for a pod to fully function. This least-privileged model ensures that pods can’t
perform tasks on the system that aren’t related to their application’s proper function.

 The default value for the privileged option is False; setting the privileged option
to True is the same as giving the pod the capabilities of the root user on the system.
Although doing so shouldn’t be common practice, privileged pods can be useful under
certain circumstances. A great example is the HAProxy pod we discussed in chapter 10.
It runs as a privileged container so it can bind to port 80 on its node to handle incoming
application requests. When an application needs access to host resources that can’t be
easily provided to the pod, running a privileged container may help. Just remember, as
the comic book says, with great power comes great responsibility.

 The last value in the security context that we need to look at controls the user ID
that the pod is run with: the runAsUser parameter.

11.2.3 Controlling the pod user ID

In OpenShift, by default, each project deploys pods using a random UID. Just like the
MCS level, the UID is common for all pods in a project, to allow easier interactions
between pods when needed. The UID for each pod is listed in the security context in
the runAsUser parameter:

runAsUser: 1000070000

Ability to send a kill signal to
other applications, regardless
of application permissions

Ability to create
special files

(nodes) like pipes
on the system

Changes GIDs on the system

Changes UIDs on
the system Creates chroots on the system

User ID for the app-cli pod

228 CHAPTER 11 Security

By default, OpenShift doesn’t allow applications to be deployed using UID 0, which is
the default UID for the system’s root user. There aren’t any known ways for UID 0 to
break out of a container, but being UID 0 in a container means you must be incredibly
careful about taking away capabilities and ensuring proper file ownership on the sys-
tem. It’s an ounce of prevention that can prevent the need for a pound of cure down
the road.

TIP Many containers available publicly on registries like Docker Hub
(https://hub.docker.com) run as UID 0 by default. You can learn more about
editing these images and dockerfiles, along with some best practices around
OpenShift and building container images, at http://mng.bz/L4G5.

The components in a pod’s or container’s security context are controlled by the secu-
rity context constraint (SCC) assigned to the pod when it’s deployed. An SCC is a config-
uration applied to pods that outlines the security context components it will operate
with. We’ll discuss SCCs in more depth in the next section, when you deploy an appli-
cation in your cluster that needs a more privileged security context than the default
provides. This application is a container image-scanning utility that looks for security
issues in container images in your OpenShift registry. Let’s get started.

11.3 Scanning container images
OpenShift is only as secure as the containers it deploys. Even if your container images
are built using proven, vetted base images supplied by vendors or created using your
own secure workflows, you still need a process to ensure that the images you’re using
don’t have security issues as they age in your cluster. The most straightforward solu-
tion for this challenge is to scan your container images.

11.3.1 Obtaining the image-scanning application

To run this scan in OpenShift, you need a container image that includes the scanning
engine. An OpenShift image scanner called Image Inspector is available at https://
github.com/openshift/image-inspector. An image built using this source code is avail-
able on Docker Hub at https://hub.docker.com/r/openshift/image-inspector. We’ve

Container scanning and compliance becomes its own industry
You’re going to scan a single container image on demand in this chapter. In a pro-
duction environment, image scanning should be an integral component in your appli-
cation deployment workflows. Companies like Black Duck Software (www.
blackducksoftware.com) and Twistlock (www.twistlock.com) have image-scanning
and -compliance tools that integrate with OpenShift.

You must be able to trust what’s running in your containers and quickly fix issues
when they’re found. An entire industry has sprung up in the past few years that pro-
vides container image-scanning products to help make this an everyday reality.

http://mng.bz/L4G5
https://hub.docker.com
https://github.com/openshift/image-inspector
https://github.com/openshift/image-inspector
https://github.com/openshift/image-inspector
https://hub.docker.com/r/openshift/image-inspector
http://www.blackducksoftware.com
http://www.blackducksoftware.com
http://www.blackducksoftware.com
http://www.twistlock.com

229Scanning container images

created an OpenShift template that uses Image Inspector, making its needed inputs
parameters that are easy to use in OpenShift.

 Follow these steps:

1 Create a new project named image-scan using the following oc command:

oc new-project image-scan

2 Import the image-inspector template into the image-scan project. Creating the
template in the image-scan project means it won’t be visible to users who don’t
have access to the image-scan project.

TIP By default, all templates available in the service catalog are located in the
openshift project. You can learn more about how templates work in Open-
Shift at http://mng.bz/8DF6.

3 To import the template, run the following oc command:

$ oc create -f https://raw.githubusercontent.com/OpenShiftInAction/

➥ chapter11/master/image-scanner/templates/image-scanner.yaml -n image-scan
template "image-scan-template" created

Once it completes, the image-scanner template will be available for use in the image-
scan project.

11.3.2 Deploying the image-scanning application

The image you’ll scan is wildfly-app, which you deployed when you were working with
stateful applications in chapter 8. The image-scan-template template has parameters
defined, as shown in the following listing; these are used to specify the image that’s
being scanned.

parameters:
- name: APPLICATION_NAME

displayName: Application Name
description: The name assigned to all of the frontend objects

➥ defined in this template.
value: image-inspector
required: true

- name: IMAGE_INSPECTOR_URL
displayName: Container Image that is doing the scans
description: The image inspector image, defaults to CentOS, for RHEL use

➥ registry.access.redhat.com/openshift3/image-inspector:latest
value: docker.io/openshift/image-inspector:latest
required: true

- name: IMAGE_TO_SCAN_URL
displayName: Image URL to scan with OpenSCAP
description: The image getting scanned with OpenSCAP
value: registry.access.redhat.com/rhel7:7.0-21

Listing 11.1 Parameters in the image-scan-template template

http://mng.bz/8DF6

230 CHAPTER 11 Security

required: true
- name: SCAN_TYPE

displayName: Scan Type
description: Type of scan you want image-inspect to run
value: openscap
required: true

- name: DOCKERCFG_SECRET
displayName: dockercfg Secret
description: This is the name of a pre-existing dockercfg secret with

➥ credentials to access the registry
required: true

- name: SERVICE_ACCOUNT
displayName: Service Account
description: The Service Account to run the pod as
value: default
required: true

The default value for the IMAGE_TO_SCAN_URL parameter is registry.access.redhat
.com/rhel7:7.0-21, the publicly available Red Hat Enterprise Linux 7.0 container
image. You need to supply the full container-image URL to the image scanner
application as the IMAGE_TO_SCAN_URL value. To get the URL for the image used to
deploy widfly-app, run the following oc describe command:

oc describe dc/wildfly-app -n stateful-apps | grep Image:
Image: docker-registry.default.svc:5000/stateful-apps/wildfly-app@sha256:

➥ e324ae4a9c44daf552e6d3ee3de8d949e26b5c5bfd933144f5555b9ed0bf3c84

OpenShift doesn’t use image tags to specify an image to use when deploying an appli-
cation, because tags can be changed on images in a registry. Container image tags are
mutable objects. Instead, OpenShift uses an immutable SHA256 digest to identify the
exact image to deploy a specific version of your application. This is another security
safeguard that’s used in OpenShift by default. You can cryptographically prove that
the image in your registry is the image you’re using to deploy applications on your
host. Pulling images by digest is defined and explained in more depth in the docker
engine documentation at http://mng.bz/81H4.

 To download a copy of this image to scan, the image-scanning application needs to
be able to download images from the OpenShift image registry. Permission to down-
load images from the registry is controlled using a secret, similar to those you created
in chapter 6. The dockercfg secret is the JSON data used to log in to a docker registry
(http://mng.bz/O0sm) encoded as a base-64 string. It’s one of several secrets created
and used by OpenShift:

oc get secrets
NAME TYPE DATA AGE
builder-dockercfg-24q2h kubernetes.io/dockercfg 1 39d
builder-token-dslpv kubernetes.io/service-account-token 4 39d
builder-token-rdv3n kubernetes.io/service-account-token 4 39d
default-dockercfg-dvklh kubernetes.io/dockercfg 1 39d
default-token-b8dq2 kubernetes.io/service-account-token 4 39d

Docker configuration secrets

http://mng.bz/81H4
http://mng.bz/O0sm

231Scanning container images

default-token-g9b4p kubernetes.io/service-account-token 4 39d
deployer-dockercfg-

w8jg2 kubernetes.io/dockercfg 1 39d 1((CO8-2))
deployer-token-b761w kubernetes.io/service-account-token 4 39d
deployer-token-zphcs kubernetes.io/service-account-token 4 39d

To deploy the Image Inspector application and have it scan the wildfly-app image, use
the following oc new-app command. Supply the wildfly-app URL, and parse the secret
output to supply the name of the dockercfg secret as parameters:

$ oc new-app --template=image-scan/image-scan-template \
> -p DOCKERCFG_SECRET=$(oc get secrets -o jsonpath='{

➥ .items[*].metadata.name}' | xargs -n1 | grep 'default-dockercfg*') \
> -p IMAGE_TO_SCAN_URL=docker-registry.default.svc:5000/stateful-apps/

➥ wildfly-app@sha256:
➥ e324ae4a9c44daf552e6d3ee3de8d949e26b5c5bfd933144f5555b9ed0bf3c84
...
--> Creating resources ...

deploymentconfig "image-inspector" created
--> Success

Run 'oc status' to view your app.

We’ll use the data generated by this new image-scanner application to examine the
scan results for the WildFly image.

11.3.3 Viewing events on the command line

Running oc new-app deploys a deployment config. The deployment config downloads
the container image for wildfly-app so it can be scanned for vulnerabilities. But some-
thing isn’t right: if you wait for a few minutes, the deployment pod is running, but the
application pod never gets created. To figure out what’s happening, let’s examine the
events recorded by OpenShift for the image-scan project, including the error deploying
the Image Inspector application:

$ oc get events -n image-scan
...
39s 3m 16 image-inspector-1

➥ ReplicationController Warning

➥ FailedCreate replication-controller

➥ Error creating: pods "image-inspector-1-" is forbidden: unable to validate

➥ against any security context constraint: [spec.volumes[1]:

➥ Invalid value: "hostPath": hostPath volumes are not allowed to be used

➥ provider restricted: .spec.containers[0].securityContext.privileged:

➥ Invalid value: true: Privileged containers are not allowed]

The security context for each pod is configured based on the security context con-
straint (SCC) assigned to the pod when it’s created. The default SCC for an applica-
tion is the restricted SCC. The restricted SCC creates a security context that matches
what you saw earlier in this chapter for the app-cli deployment:

The image-inspector deployment isn’t allowed
to deploy with its default security context.

232 CHAPTER 11 Security

 Limited Linux capabilities
 Privileged mode disabled
 Pod run using a specific UID
 Pod created with a specific MCS level

The error listed in the events tells you that the image-inspector pod is attempting to
define the security context with privileged mode enabled, and the restricted security
context prevents that configuration from deploying. To run the Image Inspector
application, you need to change the SCC used to deploy the pod.

11.3.4 Changing SCCs for an application deployment

OpenShift is configured with several SCCs that provide different levels of access for
pods, including the default restricted SCC. The privileged SCC lets a pod deploy as
any UID, with all Linux capabilities, with any MCS level, and with privileged mode
enabled:

$ oc get scc
NAME PRIV CAPS SELINUX RUNASUSER FSGROUP

➥ SUPGROUP PRIORITY READONLYROOTFS VOLUMES
...
privileged true [*] RunAsAny RunAsAny RunAsAny

➥ RunAsAny <none> false [*]
restricted false [] MustRunAs MustRunAsRange

➥ MustRunAs RunAsAny <none> false [configMap

➥ downwardAPI emptyDir persistentVolumeClaim projected secret]

The privileged SCC fulfills the image-inspector pod’s request for privileged mode to
be enabled. To change the SCC for the image-inspector pod, you need to change the
default SCC for the service account that’s used to run pods in the image-scan project.

 A service account is used in OpenShift when one component is interacting with
another as part of a workflow. When a project is created in OpenShift, the following
three service accounts are created by default:

 Builder—Used by build pods. It has the system:image-builder role bound to it,
and it can create images and push them to a registry.

 Deployer—Used to deploy applications. It’s bound to the system:deployer role,
allowing it to view and modify replication controllers and pods.

 Default—Used to run all pods unless a different service account is specified.

TIP You can create additional service accounts to fit your specific needs. The
process and more details are documented at http://mng.bz/8M4n.

Privileged SCC

Restricted
SCC

http://mng.bz/8M4n

233Scanning container images

To view the service accounts for a project, you can run the following oc get command:

$ oc get serviceaccount -n image-scan
NAME SECRETS AGE
builder 2 5d
default 2 5d
deployer 2 5d

To deploy Image Inspector, you need to add the privileged SCC to the default service
account for the image-scan project. To do that, run the following oc adm command:

$ oc adm policy add-scc-to-user privileged -z default -n image-scan
=======
$ oc import-image registry.access.redhat.com/rhel7:7.0-21 --confirm
The import completed successfully.

Name: rhel7
Namespace: image-scan
Created: Less than a second ago
Labels: <none>
Annotations:

➥ openshift.io/image.dockerRepositoryCheck=2017-12-10T04:37:14Z
Docker Pull Spec: docker-registry.default.svc:5000/image-scan/rhel7
Image Lookup: local=false
Unique Images: 1
Tags: 1

7.0-21
tagged from registry.access.redhat.com/rhel7:7.0-21

* registry.access.redhat.com/rhel7@sha256:

➥ 141c69dc6ae89c73339b6ddd68b6ec6eeeb75ad7b4d68bcb7c25e8d05d9f5e60
Less than a second ago

Image Name: rhel7:7.0-21
Docker Image: registry.access.redhat.com/rhel7@sha256:

➥ 141c69dc6ae89c73339b6ddd68b6ec6eeeb75ad7b4d68bcb7c25e8d05d9f5e60
Name: sha256:➥
141c69dc6ae89c73339b6ddd68b6ec6eeeb75ad7b4d68bcb7c25e8d05d9f5e60

Created: Less than a second ago
Image Size: 50.37 MB
Image Created: 3 years ago
Author: <none>
Arch: amd64

With this change made, you’re ready to deploy the Image Inspector application using
the privileged SCC. Before you do that, however, you need to remove the previous,
failed deployment using the following oc delete command:

oc delete dc/image-inspector
deploymentconfig "image-inspector" deleted

Default service
account

234 CHAPTER 11 Security

After the previous deployment is deleted, rerun the oc new-app command to deploy
Image Inspector:

$ oc new-app --template=image-scan/image-scan-template \
> -p DOCKERCFG_SECRET=$(oc get secrets -o jsonpath='{

➥ .items[*].metadata.name}' | xargs -n1 | grep 'default-dockercfg*') \
> -p IMAGE_TO_SCAN_URL=docker-registry.default.svc:5000/stateful-apps/

➥ wildfly-app@sha256:
➥ e324ae4a9c44daf552e6d3ee3de8d949e26b5c5bfd933144f5555b9ed0bf3c84

Downloading the image and the security scanner content into the build pod will take
a minute or two, depending on your internet connection speed. During this time,
your pod will be in ContainerCreating status:

oc get pods
NAME READY STATUS RESTARTS AGE
image-inspector-1-deploy 1/1 Running 0 16s
image-inspector-1-xmlkb 0/1 ContainerCreating 0 13s

After the content downloads, the image-inspector pod will be in a Running state, like
any other pod you’ve worked with so far. At this point, the pod has run its scan on the
container image, and the results are ready for you to view and act on.

11.3.5 Viewing security scan results

The image scanner in the pod uses OpenSCAP (www.open-scap.org) to scan and gen-
erate a report on the wildfly-app container image.

WARNING This scanning methods relies on the RPM metadata in Red Hat
base images to run properly. This scanning method may not work on images
that use a different Linux distribution, including CentOS.

This report is stored in the pod at /tmp/image-results/results.html. To transfer this
HTML report to your local workstation, use the following oc rsync command:

oc rsync image-inspector-1-xmlkb:/tmp/image-content/results.html .

Open the scan results with your web browser, and you’ll see a full report of how close
to compliance your wildfly-app container image is, and any errata regarding things it
may be missing. Figure 11.3 shows that our results were close but had three high-level
security issues.

 You don’t want to deploy applications when their images have potentially danger-
ous security issues. In the next section, you’ll add an annotation to the wildfly-app
image to prevent it from being run.

http://www.open-scap.org

235Annotating images with security information

11.4 Annotating images with security information
OpenShift is configured with image policies that control which images are allowed to
run on your cluster. The full documentation for image policies is available at
http://mng.bz/o1Po. Annotations in the image metadata enforce image policies; you
can add these annotations manually. The deny-execution policy prevents an image
from running on the cluster under any conditions. To apply this policy to the wildfly-
app image, run the following oc annotate command:

oc annotate image sha256:e324ae4a... images.openshift.io/deny-execution=true
image "sha256:e324ae4a9c44daf552e6d3ee3de8d949e26b5c5bfd933144f5555b9ed0bf3c84"

➥ annotated

Image policies don’t affect running pods, but they prevent an image with the deny-
execution annotation from being used for deployments. To see this in action, delete
the active pod for your wildfly-app deployment using the oc delete pod command on
the active pod for wildfly-app. Normally, the replication controller for the wildfly-app
deployment would automatically deploy a new version of the pod based on the correct
base image. But no new pod is deployed. Looking at the events for the stateful-apps
project, you can see that the image policies in OpenShift are reading the annotation
you added to the image and preventing a new pod from being deployed:

$ oc events -n stateful-apps
...
16s 24s 14 wildfly-app-1 ReplicationController

➥ Warning FailedCreate replication-controller

➥ Error creating: Pod "" is invalid: spec.containers[0].image: Forbidden:

➥ this image is prohibited by policy

Figure 11.3 Image scan results and scoring from the image-inspector application

http://mng.bz/o1Po

236 CHAPTER 11 Security

This process manually scans a container image and adds an annotation to it if security
issues are found. The annotation is read by the OpenShift image-policy engine and
prevents any new pods from being deployed using that image. Automated solutions
like Black Duck and Twistlock handle this dynamically, including annotations about
the security findings and information about the scan. These annotations can be used
for security reporting and to ensure that the most secure applications are deployed in
OpenShift at all times.

 You started this chapter with SELinux and worked your way up to the security
contexts that define how pods are assigned security permissions in OpenShift. You
used the privileged SCC to give the Image Inspector image scanner the permissions
it needed to run. You then deployed the Image Inspector application to scan an
existing container image and generate a report on any security findings. Finally, you
used image policies to prevent the scanned image from being deployed because you
found security issues in its scan results. That sounds like a good place to end this
security chapter.

 As we said at the start of the chapter, this isn’t a comprehensive list or a complete
security workflow. Our goal has been to introduce you to what we think are the most
important security concepts in OpenShift and give you enough information to begin
to use and customize them as you gain experience using OpenShift.

11.5 Summary
 SELinux provides MAC security that’s enforced by the Linux kernel and is

immutable unless a user has root-level access to the system.
 SELinux labels, contexts, and policies all work together to control the resources

available to pods in OpenShift.
 Each pod is assigned a security context that includes information about its capa-

bilities on the host, its UID, whether the pod is privileged, and its SELinux MCS
level.

 SCCs can be added for system users who build, deploy, or run pods, to give the
pod different levels of access to the system during its lifecycle.

 Image policies use annotations applied to an image to prevent pods from being
deployed using that image.

 Scanning container image content is a vital component of any workflow that
includes OpenShift.

This also seems like a good place to wrap up OpenShift in Action. As was the case for this
chapter, we never intended this book to be a comprehensive OpenShift manual. To be
honest, OpenShift and its components are growing and changing too quickly for a
truly comprehensive manual to ever be put in print. Our goal has been to focus on the
fundamental knowledge that will help you implement OpenShift, even as newer ver-
sions are released and the technology evolves. We hope we’ve done that.

237Summary

 We also hope you have a fully functional cluster up and running that you can use
for your ongoing learning around containers and OpenShift. We’ll continue to
update the code and helper applications at www.manning.com/books/openshift-in-
action and https://github.com/OpenShiftInAction. We’ll also continue to be active
in the Manning book forum at https://forums.manning.com/forums/openshift-in-
action. If you have questions or ideas for improvement, or just want to say hi, you can
find us at either of those locations online. Thank you—and we hope you’ve enjoyed
OpenShift In Action.

https://www.manning.com/books/openshift-in-action
https://www.manning.com/books/openshift-in-action
https://github.com/OpenShiftInAction
https://forums.manning.com/forums/openshift-in-action
https://forums.manning.com/forums/openshift-in-action

239

appendix A
Installing and

 configuring OpenShift
The purpose of this appendix is to help you get a multiple-node OpenShift cluster
up and running. OpenShift runs on CentOS 7 or Red Hat Enterprise Linux 7 sys-
tems. It can run on physical servers, virtual machines (VMs), or VMs in a public
cloud like Amazon Web Services (AWS) EC2. This installation should take approxi-
mately an hour, depending on your internet connection speed.

A.1 Prerequisites
This section covers what you’ll need to have access to or control of to build out
your OpenShift cluster.

Multiple OpenShift deployment options
Minishift (https://github.com/Minishift/minishift) is a single-node installation of
OpenShift that can be stood up in a few minutes on just about any OS as a VM.
As a development platform, it’s a very useful tool.

We recommend going through the process of installing a full OpenShift cluster.
You can run most of the examples in this book on Minishift. But you’re going to
run into trouble when you start working with persistent storage, metrics, complex
application deployments, and networking.

We love Minishift and use it daily, but the focus of this book is to work with you to
deploy an OpenShift cluster that can be the prototype for a larger cluster that’s
ready to do meaningful work. Minishift has a different goal in mind.

In addition to OpenShift in your datacenter, or even your laptop, hosted versions
of OpenShift are available. Red Hat has a hosted version of OpenShift available at
www.openshift.com that has a free usage tier. There’s also an interactive learning
portal at https://learn.openshift.com with guided scenarios that give you access
to a single-node installation of OpenShift.

https://github.com/Minishift/minishift
https://learn.openshift.com
http://www.openshift.com

240 APPENDIX A Installing and configuring OpenShift

A.1.1 Available systems or creating virtual machines

This appendix starts during the OS installation process. The primary assumption
we’re making is that you have a place to house two servers. These servers can be physi-
cal or VMs.

A.1.2 Administrator or root access

For many of the examples, you’ll use the oc command-line client to control your
OpenShift cluster. This appendix will cover its installation.

 oc is run from your laptop or workstation. To install oc, you need administrator
access if you’re using a Windows computer, or root access if you’re using Linux or
macOS. It’s a robust application; full documentation is available on GitHub at http://
mng.bz/2s9U.

A.1.3 Internet access

For the configuration described here and many of the examples in the book, your
OpenShift cluster must be able to access the internet to download software updates
and example files.

A.1.4 Access to the servers

You’ll need several types of access to these systems to install the OS and perform the
examples throughout the book.

CONSOLE ACCESS

For either a physical or virtual system, you’ll need some sort of console access to install
the OS. This could be direct console access on a physical system or some sort of
remote console solution like VNC (www.realvnc.com/en/connect/download/vnc) for
physical or virtual systems.

SSH ACCESS

To install OpenShift and perform some of the examples, you’ll need to have SSH access
to all the systems you create. SSH is a widely used remote access protocol that’s used to
manage systems over a network connection. The default SSH port is TCP port 22.

 On Linux and macOS, there’s a built-in command-line SSH client that you can use
to access your systems once the OS installation is complete. For Windows, you can use
an SSH client application like PuTTY (www.putty.org).

HTTPS ACCESS

OpenShift’s default configuration uses TCP port 8443 to access its web interface as
well as its API. You’ll need to be able to browse to your master server on this port.

A.1.5 Communication between servers

To ensure that your OpenShift cluster can communicate properly, several TCP and
UDP ports need to be open on the master and nodes. You can find more details at
http://mng.bz/gjy1, but we usually pare this down to a simpler configuration for the

http://mng.bz/2s9U
http://mng.bz/2s9U
http://mng.bz/gjy1
http://www.realvnc.com/en/connect/download/vnc
http://www.putty.org

241Prerequisites

sort of lab installation that you’ll be creating. If you’re building this cluster on an iso-
lated network such as your laptop, you can leave all connectivity between your cluster
servers open.

 If your cluster will have any sort of inbound connectivity from the internet, table A.1
provides a list of ports to keep open for communication among the cluster members.

A.1.6 DNS resolution

In OpenShift, the hostnames for all nodes must have a DNS record. This allows
encrypted traffic between nodes to work properly.

 You need to configure a wildcard DNS record (https://tools.ietf.org/html/
rfc4592) that points to your OpenShift cluster to access the applications you deploy. If
you have a DNS server that you can control, you can go that route. But as long as you
have internet access, you can use the nip.io domain.

NOTE If you have experience with Linux, you may be asking yourself, “Why
can’t I just use the /etc/hosts file in my OpenShift cluster?” The answer is
that you could use /etc/hosts, but only for your server hostnames. OpenShift
also can use a wildcard DNS domain for all the applications it deploys. This has
some helpful advantages that we’ll discuss later, and it’s how you’ll configure
this cluster.

UNDERSTANDING THE NIP.IO DOMAIN

The nip.io domain (http://nip.io/) is a wonderful little service. Instead of having to
configure and manage a DNS server, if you have access to the internet, you can create
hostnames and DNS records that resolve to any IP address you choose. It works by
taking any DNS record that ends with any IP address and .nip.io and returning that
IP address.

Table A.1 Ports to keep open between hosts

Port number Network protocol Reason

22 TCP SSH access

1936 TCP OpenShift router statistics

8053 TCP and UDP Internal DNS management

4789 UDP Software-defined networking communication

443 TCP SSL communications

8443 TCP Web and API services

10250 TCP Kubernetes communication

9200 TCP Aggregated logging collection

9300 TCP Aggregated logging collection

http://nip.io/
https://tools.ietf.org/html/rfc4592
https://tools.ietf.org/html/rfc4592

242 APPENDIX A Installing and configuring OpenShift

 Here are some examples of DNS lookups of records using the nip.io domain:

dig +short anything.192.168.12.150.nip.io
192.168.12.150
dig +short anything-else.192.168.65.200.nip.io
192.168.65.200

The only requirement is that your servers all be able to access a public DNS server.

DECIDING ON HOSTNAMES

The hostnames that we used in our cluster and will use in the examples are outlined in
table A.2. We’re using the nip.io domain, so the corresponding IP address is important
as well. You’ll configure the IP address on your servers later in this appendix.

A.1.7 Networking information

The servers in your OpenShift cluster will have static IP addresses to ensure that the
DNS and hostnames that you configure work consistently. If you didn’t use static IP
addresses, you’d need to be able to manage a DHCP server in your environment.

 To configure a static IP address in the CentOS installer, you’ll need to know some
information about the network your systems will be connected to (see table A.3).
You’ll use this information when you configure your server’s network interface.

NOTE The DNS server we’re using is 8.8.8.8, which is one of Google’s public
DNS servers. You can use any DNS server you wish, but in order to work, it
must resolve public DNS queries for the nip.io domain.

Next, we’ll walk through the resource requirements for the nodes.

Table A.2 Hostnames and IP addresses for our OpenShift example cluster

Hostname IP address OpenShift role

ocp-1.192.168.122.100.nip.io 192.168.122.100 Master

ocp-2.192.168.122.101.nip.io 192.168.122.101 Node

Table A.3 Networking information needed for server installation

Network parameter Description Example values

Network mask (netmask) Network mask for your network 24

Gateway Default gateway for your network 192.168.122.1

DNS servers DNS server(s) your systems will use 8.8.8.8

243Installing CentOS 7

A.2 Machine resource requirements
OpenShift Origin’s official hardware requirements are published at http://mng.bz/
gjy1. These are based on the premise of running a large, production-ready cluster.
You’re welcome to follow these guidelines, if you have those resources available. But we
tested the examples in this book with smaller virtual systems, as outlined in table A.4.

You can always create systems with more resources. These are just values we tested
with, and we confirmed that they work.

 These server values allow you to have a fully operational OpenShift cluster in VMs
on a smaller, portable laptop. This configuration won’t let you run as many applica-
tions in OpenShift, but for the examples we’ll go through in this book, these systems
should get the job done.

 There are a few nondefault configurations you need to use when you’re configur-
ing your OpenShift cluster. Let’s go through those next.

A.3 Installing CentOS 7
CentOS 7 has a graphical installer you can use if you’re installing it using an installa-
tion DVD image. In addition, cloud images are available at www.centos.org/download
for multiple platforms like VMWare, OpenStack, and Amazon. We’ll go through the
installation ISO method using the standard installation DVD image, because it can be
used on any platform, including bare-metal systems.

 You should be able to use this guide to provision both servers and install Open-
Shift. If you have another process or tool you use to provision servers, it should work
as well. This approach isn’t exclusive, by any means. The goal of this section is to
demonstrate the most universal installation method.

A.3.1 Launching the installer

When you boot your system using the installation DVD, you’ll see the screen shown in
figure A.1. You can press Enter, or the process will start automatically after 60 seconds.

 The installer boots into the installation process. There’s a media check that takes a
minute or so, which confirms that the DVD image is fully functional and there were
no errors during the download.

Table A.4 Resources used for our example cluster

Server type CPU/vCPU RAM Storage

Master 2 8 GB 2 disks: 10 GB for OS, 20 GB for persistent storage

Node 2 8 GB 2 disks: 10 GB for OS, 20 GB for container storage

http://mng.bz/gjy1
http://mng.bz/gjy1
http://www.centos.org/download

244 APPENDIX A Installing and configuring OpenShift

Next, you arrive at the home screen of the graphical installer, shown in figure A.2.
The graphics are buttons for various installation options. For example, if you need to
adjust the time zone, you can change it on the Date & Time screen.

Figure A.1 The CentOS
installation startup

Figure A.2 The CentOS installation main screen opens immediately after the installer launches.

245Installing CentOS 7

The first customization that must happen to install OpenShift is selecting the disk
configuration for your server.

A.3.2 Configuring the disk setup

This step is the same for master and node servers. In section A.2, we noted that the
OpenShift nodes need two disks. The first disk in these systems will be for the OS. The
second disk won’t be provisioned by CentOS: you’ll take care of it on the node in a
subsequent step so you can use it for container image storage. On the master, this disk
will be used in appendix B to set up an NFS server.

 From the Installation Destination on the main screen, click the smaller first disk,
and be sure to leave the second disk unselected (see figure A.3). Then, click Done to
return to the installer main screen.

 The next step in getting CentOS configured properly is to set up networking for
both nodes.

Figure A.3 The CentOS disk setup screen

246 APPENDIX A Installing and configuring OpenShift

A.3.3 Setting up networking

The networking configuration process is the same for the master and node servers.
On the main screen, click Network & Host Name to access the networking configura-
tion. You’ll go through several screens, beginning by setting the hostname and
enabling networking.

HOSTNAME RESOLUTION

The Host Name field is in the lower-left corner of the Network & Host Name screen
(see figure A.4). Your server hostnames need to be resolvable on your network. Ear-
lier, we mentioned the nip.io domain and how you can use it to resolve anything you
need to any IP address you want—and you can use this service for your server host-
names. To set a hostname for your server, fill in the Host Name field, and click Apply.
The current hostname appears at lower right after you apply the new hostname.

Also on this screen, you need to enable the server’s network. By default, the network
interface isn’t turned on. To turn it on, click the slider button at upper right, as shown
in figure A.4.

 Next, you need to configure the interface on your server after the installation is
complete.

A.3.4 Setting the permanent configurations on the servers

This step is the same on both the Master and the Node servers. To start, click Config-
ure on the Network & Host Name screen to open the screen shown in figure A.5.

Figure A.4 The Network & Host Name screen

247Installing CentOS 7

Don’t make any changes—this is a tab-oriented screen. The first tab you need to con-
figure is the General tab.

THE GENERAL CONFIGURATION TAB

On the General tab, select the Automatically Connect to This Network When It Is
Available check box, as shown in figure A.6. This will make sure the interface is
brought up when the server is booted.

Figure A.5 The initial network configuration screen

Figure A.6 Network configuration General tab configuration

248 APPENDIX A Installing and configuring OpenShift

Next, you need to configure the IPv4 Settings tab.

IPV4 SETTINGS

This is the last network configuration you need to make on your OpenShift servers.
These systems will use a static IP address to ensure that the hostnames always resolve
properly; you’ll configure the static IP address on the screen shown in figure A.7.

In section A.1, we pointed out the hostnames we’re using for the master and node
servers. These are the hostnames and IP addresses we use for the examples through-
out the book.

 Select Manual from the Method drop-down list; this option lets you enter static IP
addresses for your servers. To fill in the values, use the networking information you
gathered in section A.1.5, including the IP address, netmask, and default gateway
addresses. Then, click Save to return to the main installation screen.

A.3.5 Starting the installation

Once the disk and networking configurations are complete, the Begin Installation
button becomes available on the main screen. Click it, and you’re on your way.

 You’ll be prompted to set a password for your root user. Click the Root Password but-
ton shown in figure A.8, and you’ll be prompted to enter and confirm a root password.
Type a password, and click Done. If it’s a weaker password, the installer may warn you
and force you to either change it or click Done again to confirm that’s the password you
want to use. For the examples, you won’t have to create any additional users.

Figure A.7 Network IPv4 Settings screen configuration

249Installing CentOS 7

Now you can sit back and wait for the installer to finish doing its job.

A.3.6 Wrapping up and rebooting

When the installer signals that it’s finished, it will prompt you to reboot the server, as
shown in figure A.9. Click Reboot to restart your server so that it can confirm every-
thing was laid down correctly.

 You’re now ready to connect to your server, configure it, and install OpenShift.

Figure A.8 The CentOS User Settings screen

Figure A.9 A completed CentOS installation that’s ready to be rebooted

250 APPENDIX A Installing and configuring OpenShift

A.4 Preparing to install OpenShift
All the commands in this section will be executed using an SSH connection to the
proper server. If you have console access for your systems, you can use that to execute
these commands. But in our experience, using an SSH client makes it possible to copy
and paste text. This simple feature can save a lot of time when provisioning a system.

 OpenShift has a few dependencies that you need to get out of the way before
launching the installer. Just as when you built out your master and node OSs, we’ll
point out if the steps are different for the master and node servers here.

A.4.1 Software prerequisites

You need to install a few software packages. The software that’s specific to OpenShift
comes from a specialized CentOS repository, which you must install and configure on
all servers.

CONFIGURING THE OPENSHIFT REPOSITORIES ON ALL SERVERS

The first step is to install the Extra Packages for Enterprise Linux (EPEL) and Open-
Shift Origin repository RPMs. These configure your systems to access those software
repos to pull down the needed files. To do so, run the following yum command:

yum -y install epel-release centos-release-openshift-origin36

Once that command completes, several software packages will be common to both
master and node servers; they come from the two newly enabled repositories. You can
install these packages with the following command:

yum -y install origin origin-clients vim-enhanced atomic-openshift-utils

➥ NetworkManager python-rhsm-certificates

With those packages installed, there’s one more command to run on both systems: you
need to enable and start NetworkManager. NetworkManager is a tool on Linux servers
that configures and maintains all aspects of a server’s networking stack. OpenShift uses
NetworkManager to manage the network configurations of all the servers in the cluster.
You can enable and start NetworkManager by running the following command:

systemctl enable NetworkManager --now

In the next section, you’ll make a few changes to your server’s DNS configurations.

A.4.2 Configuring DNS resolution on both servers

Because DNS is used by OpenShift for everything from encrypted traffic to communi-
cation between deployed services, configuring DNS on your nodes is essential.

NOTE The steps in this section apply only if you’re using nip.io for your host-
names. If your server’s hostnames are all on the same domain, this step isn’t
required.

251Preparing to install OpenShift

CONFIGURING /ETC/RESOLV.CONF

If you’re using the nip.io domain for your server hostnames, you need to make an
additional configuration to NetworkManager. In Linux, specifically CentOS 7, Net-
workManager is the utility that manages the configuration for all the networking com-
ponents on a server.

 One of the components that NetworkManager controls is DNS resolution. In
Linux, the configuration file that sets up how a server resolves DNS requests is /etc/
resolv.conf.

 The first line in resolv.conf lets you know that this file was created by NetworkMan-
ager. The nameserver parameter is the DNS server that your server will connect to for
DNS queries. You can have up to three nameserver parameters listed in resolv.conf.

The other parameter that’s included by default in resolv.conf is search. This value
defaults to the domain name for your server’s hostname. The search value is used for
any DNS queries that aren’t fully qualified domain names (FQDN). FQDNs are DNS
records that are complete—that means they have a hostname, domain name, and top-
level domain. For example, server.example.com is an FQDN, and server isn’t.

A deeper look at wildcard subdomains and OpenShift
The application domain you use needs to point to your node server. This is because
OpenShift uses HAProxy to route traffic properly between your DNS entry and the
proper containers in OpenShift. HAProxy is a popular, open source, software-based
load balancer. In OpenShift, it runs in a container on a specific host in your cluster.
For this installation, it will run on the single application node.

For your cluster, the domain name you specify could be your application node’s host-
name. But for larger clusters, you can specify which node or nodes run your HAProxy
container. It’s a good practice to get used to specifying a domain here; we’ll use it
for examples in the book.

In DNS, a wildcard domain means any host for this domain will automatically point to
the same IP address. Let’s look at a couple of examples. First, here’s an actual wild-
card domain that we set up on a sample domain:

$ dig +short *.apps.jeduncan.com
12.207.21.2

You can look up any other record ending in .apps.jeduncan.com, and it will return the
same record:

$ dig +short app1.apps.jeduncan.com
12.207.21.2
$ dig +short someother.apps.jeduncan.com
12.207.21.2

OpenShift uses this same principle. Each application is given a domain that’s a mem-
ber of the wildcard domain that’s configured. That way, all the DNS entries for your
applications work without any additional configuration.

252 APPENDIX A Installing and configuring OpenShift

 Here’s how resolv.conf looks immediately after installation:

Generated by NetworkManager
search 192.168.122.100.nip.io
nameserver 8.8.8.8

Using the nip.io domain, each octet in the IP address is separated by a period. That
means each number in the IP address is a level in the domain, with nip.io being the
top-level domain. Because of some configurations OpenShift adds to each container,
this can cause confusion when pulling down container images from the OpenShift
integrated registry. You must edit the search parameter to have only the nip.io top-
level domain, as shown in the next listing.

Generated by NetworkManager
search nip.io
nameserver 8.8.8.8

This configuration will work fine until you reboot your servers. That’s because Net-
workManager controls /etc/resolv.conf, and it will add the search parameter back
when the service is restarted after a reboot. To stop this from happening, you need to
configure NetworkManager to not make any further changes to /etc/resolv.conf.

CONFIGURING NETWORKMANAGER

To configure NetworkManager, you need to edit its default configuration file. On
CentOS 7, the NetworkManager configuration file is located at /etc/NetworkMan-
ager/NetworkManager.conf. The default configuration shown in the following listing
is an example of a standard Python configuration file. It has two sections, defined by
the lines encased in square brackets: [main] and [logging].

Configuration file for NetworkManager.
#
See "man 5 NetworkManager.conf" for details.
#
The directory /etc/NetworkManager/conf.d/

can contain additional configuration
snippets. Those snippets override the settings from this main file.
#
The files within conf.d/ directory are read in asciibetical order.
#
If two files define the same key, the one that is read afterwards will

➥ overwrite
the previous one.

[main]

Listing A.1 Edited resolv.conf

Listing A.2 Example of the default /etc/NetworkManager/NetworkManager.conf

search parameter

Listed nameserver

Edited search parameter

Listed nameserver

253Preparing to install OpenShift

plugins=ifcfg-rh

[logging]
#level=DEBUG
#domains=ALL

You need to add a line to the [main] section of this configuration file, to tell Network-
Manager not to make changes to /etc/resolv.conf. Add the line dns=none as shown
here:

[main]
plugins=ifcfg-rh
dns=none

After you restart NetworkManager, the change you made to /etc/resolv.conf will
persist across server reboots. To restart the NetworkManager, run the following
systemctl command:

systemctl restart NetworkManager

This should only take a second or so. Once it completes, confirm that Network-
Manager is running using systemctl status:

systemctl status NetworkManager
? NetworkManager.service - Network Manager
Loaded: loaded (/usr/lib/systemd/system/NetworkManager.service; enabled;

➥ vendor preset: enabled)
Active: active (running) Because Sat 2017-05-13 17:05:12 EDT; 6s ago

...

The final confirmation is to check /etc/resolv.conf and make sure the search param-
eter hasn’t been added back to the file by the freshly restarted NetworkManager ser-
vice. If there’s no search parameter, then everything is as it should be, and you’re
ready to move forward.

 Now you’re ready to set up software that’s specific to the master and node servers.
You’ll start with the master server in the next section.

A.4.3 Installing software on the master server

Several packages need to be installed only on the master server. This primarily has to
do with installing Ansible and ensuring that it’s the correct version. Ansible (www.ansi-
ble.com) is an open source automation and deployment tool. The installation process
for OpenShift is written using Ansible. One of the key features of Ansible is that it uses
YAML, a human-readable data-transport language, to describe all the work it does.

 To install OpenShift, you’ll create a configuration file written in YAML. This file
will be read by the Ansible engine to deploy OpenShift exactly as you want. You’ll be
creating a relatively simple configuration file; for more advanced installations, the full
set of options is documented at http://mng.bz/CD7l.

http://mng.bz/CD7l
http://www.ansible.com
http://www.ansible.com

254 APPENDIX A Installing and configuring OpenShift

 The OpenShift installer is written and tested against a specific version of Ansible.
That means you’ll need to make sure that’s the version of Ansible that’s installed on
your master. You only need to worry about Ansible on the master server, because
there’s no agent on the node. Ansible doesn’t use an agent on the systems it’s con-
trolling; instead, it uses SSH as a transport mechanism and to execute remote com-
mands. Start this process by running the following yum command:

yum -y install httpd-tools gcc python-devel python-pip

The python-pip package installs the Python application package manager named
pip. It’s used to install applications written in Python and available on the Python
Package Index (www.pypi.org). With pip installed, you can use it to install Ansible and
ensure that you install version 2.2.2.0, which is tested with OpenShift 3.6:

pip -v install ansible==2.2.2.0

After Ansible is installed, you’ll need to set up SSH keys from your master server to the
node, and to the master as well. That’s what you’ll do next.

SETTING UP SSH ACCESS FROM THE MASTER SERVER

To get the OpenShift installer to function correctly, you need to create an SSH key pair
on your master server and distribute the public key to your node. To create a new SSH
key pair on your master server, you can use the ssh-keygen command as in this example:

ssh-keygen -f /root/.ssh/id_rsa -t rsa -N ''

This command creates an SSH key pair in the root user’s home directory, /root, in the
.ssh subfolder. In Linux, this is the default location for a user’s SSH keys.

 Next, run the following ssh-copy-id command to distribute your newly created
SSH public key to your OpenShift node (if you used a different IP addresses for your
master and node, adjust the command accordingly):

for i in 192.168.122.100 192.168.122.101;do ssh-copy-id root@$i;done

You’ll be prompted for the root password for your OpenShift master and node. Once
you confirm each password, this command will add the public key from your SSH key
pair to the authorized_keys file in /root/.ssh on the OpenShift node.

 This will allow the OpenShift installer to connect to the master and node to perform
the installation steps. It may seem a little odd to specify the IP address of the master when
you’ll be running the installer from that server. This is because the OpenShift installer
is designed so that it can be run from outside your OpenShift cluster if desired. For your
first lab, and because we aren’t 100% sure what type of computer you’re using daily, it’s
easier to satisfy the dependencies for the installer on the master node.

 This should meet all the dependencies to run the OpenShift installer on the mas-
ter server. Next, you’ll configure your application node.

http://www.pypi.org

255Preparing to install OpenShift

INSTALLING SOFTWARE ON THE APPLICATION-NODE SERVER

The software requirements for the nodes are a little different. The biggest difference
is that this is where docker will be installed. The libcgroup-tools package provides
utilities that you’ll use to inspect how applications are isolated using kernel control
groups in chapter 9. To install these packages, run the following yum command:

yum -y install docker libcgroup-tools

Once this is complete, you’re ready to configure your container engine’s storage on
your OpenShift nodes.

A.4.4 Configuring container storage for application nodes

An application called docker-storage-setup is packaged with docker. It configures
the desired storage for docker to use when it creates containers for OpenShift.

NOTE The examples in this book use a logical volume management (LVM) con-
figuration. This setup creates an LVM volume for each container on demand.
These are small initially but can grow to the maximum size configured in
OpenShift for your containers.

You can find additional details about the storage setup in the OpenShift documenta-
tion at http://mng.bz/hR82.

 The first step in this process is to create a configuration file for docker-storage-
setup on your OpenShift node, as shown in the next listing. The disk you specify in
/etc/sysconfig/docker-storage-setup is the second disk you created for your VM.
Depending on your choice of platform for your servers, the OS’s name for this disk
(/dev/vdb in our example) may vary, but the operation won’t.

cat <<EOF > /etc/sysconfig/docker-storage-setup
DEVS=/dev/vdb
VG=docker-vg
EOF

Listing A.3 Creating the docker-storage-setup configuration file

/dev/vdb is the 20 GB volume
you added to your nodes.

Confirming your storage disk name
If you’re unsure about the name of the disk to use for your container storage, the
lsblk command gives you a list of all disks on your server. The output is in an easy-
to-understand tree diagram, as in the following example:

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 253:0 0 8G 0 disk
??vda1 253:1 0 8G 0 part /
vdb 253:16 0 20G 0 disk

Your second disk will have no partitions, because it hasn’t been formatted yet.

Disk where CentOS
was installed

Disk to use for container storage

http://mng.bz/hR82

256 APPENDIX A Installing and configuring OpenShift

After you’ve created this file, you’re ready to run the storage-setup utility. This com-
mand should run in a couple of seconds, and the output should look like this:

docker-storage-setup

Checking that no-one is using this disk right now ...
OK

Disk /dev/vdb: 41610 cylinders, 16 heads, 63 sectors/track
...

Rounding up size to full physical extent 24.00 MiB
Logical volume "docker-pool" created.
Logical volume docker-vg/docker-pool changed.

A.4.5 Enabling and starting docker on your OpenShift nodes

With your container storage configured, it’s time to start up the docker service on your
OpenShift node. This is the container runtime that will start and stop containers in the
OpenShift workflows. It needs to be enabled and running prior to installing OpenShift.

 To enable docker to start at boot time, and to start the service initially, run the fol-
lowing systemctl command:

systemctl enable docker.service --now

Like NetworkManager, you can confirm that docker started correctly by running
systemctl status docker:

[root@ocp2 ~]# systemctl status docker
? docker.service - Docker Application Container Engine

Loaded: loaded (/usr/lib/systemd/system/docker.service; enabled;

➥ vendor preset: disabled)
Drop-In: /etc/systemd/system/docker.service.d

??custom.conf
Active: active (running) since Fri 2017-11-10 18:45:12 UTC;

➥ 12 secs ago
Docs: http://docs.docker.com

Main PID: 2352 (dockerd-current)
Memory: 121.4M
CGroup: /system.slice/docker.service

...

The next step is to modify SELinux to allow OpenShift to connect to NFS as a per-
sistent storage source.

A.4.6 Configuring SELinux on your OpenShift nodes

Throughout this book, OpenShift applications will need NFS volumes to act as per-
sistent storage. To be able to do this successfully, you have to tell SELinux on your nodes
to allow containers to use NFS. You do so using the setsebool command-line utility:

setsebool -P virt_use_nfs 1
setsebool -P virt_sandbox_use_nfs 1

The active (running) status
confirms the docker service
is up and functioning.

257Installing OpenShift

A.5 Installing OpenShift
OpenShift is installed using an Ansible playbook: a collection of tasks and configura-
tion parameters needed to perform a task. To execute an Ansible playbook, three
things must be present on your server:

 Ansible engine—Executes the playbook code. You installed the Ansible engine
earlier in this appendix.

 Playbook—The code that’s executed. When you installed the OpenShift pack-
ages, the deployment playbooks were included.

 Inventory—The list of hosts against which to run a playbook. Inventories can be
divided into groups and contain any variables needed for the hosts in the inven-
tory for the playbook to run.

To deploy OpenShift, you need to configure an Ansible inventory file for your cluster.
That’s what you’ll do next.

A.5.1 Creating the OpenShift inventory

The Ansible inventory for OpenShift contains information about your two hosts and
specifies which roles each node will have in your cluster. If you’re using the IP
addresses and hostnames we’re using in this appendix, you can download a prepared
inventory to your master node from the OpenShift in Action organization on GitHub:

curl -o /root/hosts

➥ https://raw.githubusercontent.com/OpenShiftInAction/AppendixA/master/hosts

For those of you who need to customize your installation, let’s go through the inven-
tory components and how they’re designed.

 Ansible inventories are divided into groups. Each group consists of hosts that are
defined by either hostname or IP address. In an inventory, a group can also be
defined by listing child groups that belong to it using the :children syntax. In the fol-
lowing example, the group master_group is made up of the hosts in group1 and
group2. You’ll use this capability in your OpenShift inventory:

[master_group:children]
group1
group2

[group1]
host1
host2

[group2]
host3
host4

[group3]
host5
host6

master_group, defined
by the child groups of
group1 and group2

group1 hosts

group2 hosts

group3 hosts, which aren’t
part of master_group

258 APPENDIX A Installing and configuring OpenShift

Another capability of Ansible inventories that you’ll use in your OpenShift inventory
is defining variables for hosts and host groups. You can define variables for an entire
group using a group heading and the :vars syntax. To define a variable for a single
host, add it to the same line you use to define the host in a group:

[group1]
host1 var2=False var3=42
host1 foo=bar

[group1:vars]
var1=True

Your initial OpenShift inventory uses several groups and lots of variables:

 OSEv3—The group that represents your entire cluster. It’s made up of the child
groups nodes, masters, nfs, and etcd.

 nodes—All groups in your cluster, including all masters and all application
nodes.

 masters—The nodes in your cluster that will be designated as masters.
 nfs—Nodes used to provide NFS shared storage for several services on the mas-

ter nodes. This is required if you have multiple master servers. We aren’t taking
advantage of multiple masters in this initial cluster, but the group is still
required for deploying OpenShift.

 etcd—The nodes where etcd will be deployed. etcd is the database for Kuber-
netes and OpenShift. Your cluster will use the master server to house the etcd
database. For larger clusters, etcd can be separated into its own cluster nodes.

For the nodes and masters groups, you’ll disable a few of the system checks the
deployment playbook runs prior to deployment. These checks verify the amount of
free space and memory available on the system; for an initial cluster, you can use
smaller values than the recommendations verified by these checks. (You can learn
more about these checks at http://mng.bz/r0dI.) To disable the checks, you set vari-
ables for each of these groups:

[nodes:vars]
openshift_disable_check=disk_availability,memory_availability,docker_storage

[masters:vars]
openshift_disable_check=disk_availability,memory_availability,docker_storage

Your deployment inventory will also set variables for most of the hosts. The ansible
_connection variable is specific to Ansible, telling the Ansible engine to connect to
the host from the local system where the playbook is running. Additional Ansible vari-
ables are discussed at http://mng.bz/g3g0.

var2 and var3 are
defined only for host1.

var1 will be defined and
available for all hosts in group1.

Disables storage and memory
checks for the nodes group

Disables storage and memory
checks for the masters group

http://mng.bz/r0dI
http://mng.bz/g3g0

259Installing OpenShift

NOTE The IP addresses and hostnames used in this inventory are specific to
the example cluster. If your IP addresses and hostnames are different, you’ll
need to change them in the inventory to successfully deploy OpenShift.

The rest of the variables are specific to the OpenShift playbook, and documented in
the following listing, which is a full example of the OpenShift inventory.

[OSEv3:children]
nodes
nfs
masters
etcd

[OSEv3:vars]
openshift_master_cluster_public_hostname=None
openshift_master_default_subdomain=apps.192.168.122.101.nip.io
ansible_ssh_user=root
openshift_master_cluster_hostname=None
openshift_override_hostname_check=true
deployment_type=origin

[nodes:vars]
openshift_disable_check=disk_availability,memory_availability,docker_storage

[masters:vars]
openshift_disable_check=disk_availability,memory_availability,docker_storage

[nodes]
192.168.122.100 openshift_public_ip=192.168.122.100

➥ openshift_ip=192.168.122.100
➥ openshift_public_hostname=ocp1.192.168.122.100.nip.io
➥ openshift_hostname=ocp1.192.168.122.100.nip.io
➥ connect_to=192.168.122.100 openshift_schedulable=False

➥ ansible_connection=local
192.168.122.101 openshift_public_ip=192.168.122.101

➥ openshift_ip=192.168.122.101
➥ openshift_public_hostname=ocp2.192.168.122.101.nip.io
➥ openshift_hostname=ocp2.192.168.122.101.nip.io
➥ connect_to=192.168.122.101 openshift_node_labels="{'region': 'infra'}"

➥ openshift_schedulable=True

[nfs]
192.168.122.100 connect_to=192.168.122.100 ansible_connection=local

[masters]
192.168.122.100 openshift_public_ip=192.168.122.100

➥ openshift_ip=192.168.122.100
➥ openshift_public_hostname=ocp1.192.168.122.100.nip.io
➥ openshift_hostname=ocp1.192.168.122.100.nip.io
➥ connect_to=192.168.122.100 ansible_connection=local

[etcd]

Listing A.4 OpenShift inventory file

OSEv3 group, made up of
all groups in the inventory

Cluster-wide variables applied
to all nodes in the OSEv3 group

Variables for the nodes group

Host entry for ocp1,
using its IP address;
includes host-specific
variables

nfs group

masters group

etcd group

260 APPENDIX A Installing and configuring OpenShift

192.168.122.100 openshift_public_ip=192.168.122.100

➥ openshift_ip=192.168.122.100
➥ openshift_public_hostname=ocp1.192.168.122.100.nip.io
➥ openshift_hostname=ocp1.192.168.122.100.nip.io
➥ connect_to=192.168.122.100 ansible_connection=local

NOTE The ocp1 node has a variable named openshift_node_labels. Node
labels are arbitrary values you can apply to nodes on your cluster. The label
applied during deployment, region = infra, tells OpenShift the correct node
to deploy the container that runs the router to handle internet requests. You’ll
work with node labels in chapter 10.

After making any inventory edits required to match your environment, save your
inventory on your master node as /root/hosts. The next step is to start your Open-
Shift deployment.

A.5.2 Running the deployment playbook

It’s time to deploy your OpenShift cluster. Ansible uses SSH to log in to each node and
perform the tasks to deploy OpenShift, so this command needs to be executed as the
root user on the master, which has SSH access keys on each node. To run the proper
Ansible playbook, run the ansible-playbook command, specifying the inventory file
and the deploy playbook installed at /usr/share/ansible/openshift-ansible/play-
books/byo/config.yml:

ansible-playbook -i /root/hosts \
/usr/share/ansible/openshift-ansible/playbooks/byo/config.yml

This launches the deployment process. Depending on your internet connection
speed, the deployment could take 30-45 minutes. If everything is successful, you
should see output indicating that the playbook completed. If you see a red Ansible
error on the command line, it should give you an indication of what to look at.

A.6 Installation complete
Once the installation is complete, you should be able to browse to the hostname of
your master server on port 8443 with HTTPS. In our example, the URL is https://
ocp1.192.168.122.100.nip.io:8443 (see figure A.10). Before the page loads, you’ll

My deployment failed. Help!
OpenShift is a complex application, so we can’t point you to a single link of trouble-
shooting tips if you run into issues with your deployment. Copying the most important
parts of the error and searching for those terms on the internet is always a good start-
ing point. Also, please feel free to contact us on the Manning forum for OpenShift in
Action at https://forums.manning.com/forums/openshift-in-action. We’ll do our best
to help you get up and running!

https://forums.manning.com/forums/openshift-in-action

261Installing the oc OpenShift command-line utility

probably get a warning about the site being insecure because the SSL certificate hasn’t
been properly signed. Don’t worry about this—OpenShift created its own SSL certifi-
cates as part of the installation process. In our configuration, because the cluster is
deployed with VMs on a laptop, the cluster is available only from the laptop the VM
nodes are installed on.

 If your OpenShift server looks like figure A.10, you’ve successfully installed Open-
Shift! You’re ready to go through the examples beginning in chapter 2.

 Many of the examples you’ll go through involve using the OpenShift oc command-
line tool. The next section will help you get oc installed and ready to use on Windows,
macOS, or Linux.

TIP OpenShift has a robust diagnostics toolset integrated into the oc command-
line tool. Documentation for running diagnostics and checks on your OpenShift
cluster is available at http://mng.bz/Zo4P.

A.7 Installing the oc OpenShift command-line utility
The oc application has ready-to-use binaries for Linux, Windows, and macOS. They’re
available on the Releases GitHub page for OpenShift Origin at https://github.com/
openshift/origin/releases. We’re using the latest release for oc; you can find it by
browsing directly to https://github.com/openshift/origin/releases/latest.

NOTE Because OpenShift Origin is a fast-moving project, there are usually
one or more pre-release versions of software available for download. These
versions are a little too new and untested to ensure that you have a good expe-
rience with OpenShift.

Figure A.10 The OpenShift login page after a successful installation

http://mng.bz/Zo4P
https://github.com/openshift/origin/releases
https://github.com/openshift/origin/releases
https://github.com/openshift/origin/releases/latest

262 APPENDIX A Installing and configuring OpenShift

The downloadable files are listed in the Downloads section for each software release.
For each OS, there’s a corresponding openshift-origin-client-tools archive that you
can download. These are the files you’ll be using to install oc.

A.7.1 Installing oc on Windows

To install oc on Windows, download the windows Zip archive from the Downloads sec-
tion of the Latest Release page. After unzipping the archive, move the oc binary in it
into a directory in your Windows PATH.

 You can see the directories that are in PATH on your Windows system from the Win-
dows command line by running the following command:

C:\> path

A.7.2 Installing oc on macOS

For macOS, the binary can also be downloaded from the Releases page on GitHub.
The downloaded file is a Zip binary. Extract the downloaded oc binary file, and then
copy it to a directory in your PATH. To see all the directories in your PATH, you can use
the Terminal application to print out the variable using the following command:

echo $PATH

With oc in your PATH, you can execute the command from the Terminal application
by typing oc.

A.7.3 Installing oc on Linux

There are 32- and 64-bit versions of the oc client available for download. If you’re
unsure of the type of Linux you have installed on your system, you can confirm
whether you have a 32- or 64-bit system by running the following uname command:

uname -i

The output should contain either x86_64 for 64-bit systems or i686 for 32-bit installa-
tions. Be sure to download the appropriate openshift-origin-client-tools archive for
your Linux architecture—they aren’t cross-compatible. To download the Linux
archive, run the following curl command:

curl -L https://github.com/openshift/origin/releases/download/v3.6.0/

➥ openshift-origin-client-tools-v3.6.0-c4dd4cf-linux-64bit.tar.gz

After you download the archive you plan to use, extract the archive using the tar
utility:

tar -xzf /tmp/openshift-origin-client-tools.tar.gz

263Adding an OpenShift node

After you extract the archive, move the oc file that was in it into a directory that’s
listed in the PATH variable on your system. If you aren’t sure about the directories in
your PATH, you can confirm them by echoing the variable out to your command line:

$ echo $PATH
/usr/lib64/qt-3.3/bin:/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/home/

➥ jduncan/.local/bin:/home/jduncan/bin

NOTE The OpenShift Origin documentation website has a section dedicated
to getting oc up and running. It’s available at http://mng.bz/iM9L if you’d
like to take a look.

A.7.4 Confirming that oc is installed and functioning correctly

Now that you’ve installed oc on your favorite OS, you need to confirm that it’s func-
tional. You can do this by asking oc for its version information on the command line.
Your output should look like the following example. For Linux, use your favorite ter-
minal emulator. macOS uses the Terminal application, and Windows has the com-
mand prompt. This example is from a Linux workstation:

$ oc version
oc v1.3.1
kubernetes v1.3.0+52492b4
features: Basic-Auth GSSAPI Kerberos SPNEGO
error: You must be logged in to the server (the server has asked for the

➥ client to provide credentials)

If this executes cleanly, your system should be ready to connect to OpenShift and get
work done once you have OpenShift installed and configured. You can add additional
nodes to an existing OpenShift cluster using the next section as a guide.

A.8 Adding an OpenShift node
Scaling your OpenShift cluster is essential as you deploy more application workloads.
This section walks you through the steps required to add a second application node to
your cluster. First, you need to provision a new server and install the prerequisites.

A.8.1 Preparing the new application node

OpenShift manages the resources available on a node and allocates resources to it accord-
ingly. Your second application node’s resources don’t have to match your original node.

Running nodes on different platforms
OpenShift can run on any x86_64 server that can run CentOS 7 or Red Hat Enterprise
Linux 7. In theory, your OpenShift cluster can stretch across multiple platforms like these:

 Bare-metal servers
 Virtual machines like VMWare, Ovirt, and Hyper-V
 Public cloud providers like Amazon Web Services and Microsoft Azure

http://mng.bz/iM9L

264 APPENDIX A Installing and configuring OpenShift

For our new node, we’re using an additional VM with similar resources, hostname,
and IP address (see table A.5). Any additional server that can run CentOS 7 will work
if it has network connectivity to your existing cluster.

Configure your new node using the same steps as the original application node cov-
ered in this appendix. These steps are summarized in table A.6.

Table A.5 New application node specs

Resource Value

VCPU 2

RAM 8192 MB

OS disk 10 GB

Data disk 20 GB

Hostname ocp3.192.168.122.102.nip.io

IP address 192.168.122.102

Table A.6 Summary of steps in configuring an application node

Command Description

yum -y install origin origin-clients vim-enhanced
atomic-openshift-utils NetworkManager python-rhsm-
certificates

Installs base OpenShift packages

systemctl enable NetworkManager --now Enables and starts NetworkManager

setsebool -P virt_use_nfs 1
setsebool -P virt_sandbox_use_nfs 1

Sets SELinux to allow NFS persistent
storage

yum -y install docker libcgroup-tools Installs docker and cgroup manage-
ment tools

cat <<EOF > /etc/sysconfig/docker-storage-setup
DEVS=/dev/<CONTAINER_STORAGE_DISK> VG=docker-vgEOF

Creates the docker-storage-setup con-
figuration file

docker-storage-setup Runs the docker-storage-setup utility

(continued)
Communication between OpenShift nodes requires a quality connection with rela-
tively low latency. You’ll get the best performance if you locate your cluster on a single
platform. For building out larger clusters across multiple types of server infrastruc-
ture, you should consult a company like Red Hat (or at least its documentation) for
best practices and example architectures.

265Configuring the master node

After your new application node is provisioned and configured, reboot it to make sure
all changes take effect. The server is now ready to be added to your cluster. The work-
flow to add your node is executed on your master server, like deploying your original
cluster. Let’s discuss that next.

A.9 Configuring the master node
The first step in configuring your master node is to add the root user’s SSH to your
new application node. Doing this allows the Ansible playbook that adds your node to
access your new application node. To do this, run the following ssh-copy-id com-
mand. If you used a different IP address for your new node, be sure to use it when run-
ning the command:

ssh-copy-id root@192.168.122.103

You’re prompted for the root user’s password that you set during the CentOS installa-
tion process. This command sets up the SSH key from your master to provide access to
the root user on your new node. With this complete, make sure the installer packages
are up to date for your master server.

A.9.1 Updating OpenShift playbooks

To make sure you have the most up-to-date version of the OpenShift installer, run the
following yum command on the master node:

yum update atomic-openshift-utils

If there are updated playbooks for your version of OpenShift, this command will
install them on your master, notifying you when complete. Next, add your new node
to the OpenShift installer’s inventory.

A.9.2 Updating your OpenShift inventory

When you deployed OpenShift, you created an Ansible inventory file at /root/hosts
on the master node. To add the new node to OpenShift, you need to edit this inven-
tory before running the Ansible playbook that scales your cluster.

NOTE Red Hat supports OpenShift clusters as large as 2,000 application
nodes. For clusters that large, services on the master, like etcd, are separated
onto their own servers to provide better performance and scalability.

To add your new node, create a group that contains the information for your node by
editing your inventory file directly, as shown in listing A.5. Be sure to name this group
new_nodes. Also include any labels it needs (none in this case), and tell the installer to
make this node schedule-able for workloads.

266 APPENDIX A Installing and configuring OpenShift

[new_nodes]
192.168.122.102 openshift_node_labels="{}" openshift_schedulable=True

Next, you need to tell the OpenShift playbook that the new_nodes group is part of
your OpenShift cluster. To do this, add the new_nodes group to the [OSEv3:chil-
dren] group, as shown in the following listing.

[OSEv3:children]
nodes
nfs
masters
etcd
new_nodes

The final step of editing your inventory is to define the variables your new_nodes
group needs to function properly. You need to create this group so you can define the
variables to disable a few of the resource checks that the installer performs by default
because of the limited resources on the nodes. You can copy the [nodes:vars] group
and change the name to [new_nodes:vars], shown in the following listing.

[new_nodes:vars]
openshift_disable_check=disk_availability,memory_availability,docker_storage
openshift_deployment_type=origin

After creating the new_nodes and new_nodes:vars groups, and adding new_nodes to
the OSEv3:children group, you’re ready to scale your OpenShift cluster.

A.10 Adding the node
There’s an Ansible playbook on your master node that will add your new node to your
existing OpenShift cluster. You run it using the ansible-playbook command, specify-
ing your newly edited inventory with the -i parameter. To start this process, run the
following command on your master server:

ansible-playbook -i /root/hosts /usr/share/ansible/openshift-

➥ ansible/playbooks/byo/openshift-node/scaleup.yml

Once scaleup.yml completes successfully, your new node has been added to your
OpenShift cluster. You can confirm this by running oc get nodes while being logged
in as the admin user:

Listing A.5 new_nodes group to contain your new node’s information

Listing A.6 new_nodes group added to the OSEv3:children group

Listing A.7 Creating the new_nodes:vars group

Copy the content from nodes:vars and use it to
create a new group called new_nodes:vars.

267Adding the node

oc get nodes
NAME STATUS AGE

➥ VERSION
ocp1.192.168.122.100.nip.io Ready,SchedulingDisabled 3d

➥ v1.6.1+5115d708d7
ocp2.192.168.122.101.nip.io Ready 3d

➥ v1.6.1+5115d708d7
ocp3.192.168.122.102.nip.io Ready 2d

➥ v1.6.1+5115d708d7

This process is repeatable as your OpenShift cluster grows over time, to make sure
your OpenShift cluster always has resources to handle your workloads.

The new ocp3 node is visible to
OpenShift and ready to handle
workloads.

268

appendix B
Setting up a

 persistent storage source
The purpose of this appendix is to configure NFS and export a volume to use as the
backend for persistent volumes in your OpenShift cluster. In the examples, you’ll
set up the OpenShift master as the NFS server. If you want to use a different server,
the setup is similar. The main thing you need to be sure of is that your NFS server
has connectivity to your OpenShift cluster. In the following sections, you’ll install
and configure your OpenShift master as an NFS server.

B.1 Installing the NFS server software
The NFS server software is provided by the nfs-utils package. The first step is to
confirm whether this package is installed on the master. The command to do that
uses the yum package manager. The output indicates whether nfs-utils is
installed. If the package isn’t installed, there’s no output. In a terminal window, run
the following command at the prompt to see if the nfs-utils package is installed
on your master server:

rpm -q nfs-utils
nfs-utils-1.3.0-0.33.el7_3.x86_64

If you need to install nfs-utils, running the following yum command in the same
terminal will install all the services required to act as an NFS server:

yum -y install nfs-utils

When you have nfs-utils installed on your master server, you need to configure
the filesystem that NFS will use for storage. This is detailed in the next section.

269Configuring storage for NFS

B.2 Configuring storage for NFS
In appendix A, you created your master node with two disks. In the example in appen-
dix A, which used VMs on a Linux laptop, the second disk device’s name is /dev/vdb.
If you created your VMs using a different platform, or if you’re using physical
machines for your cluster, the device name of this disk may be different. If you don’t
know the device name for your second disk, you can use the lsblk command on your
master server to see all the block devices on your server:

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sr0 11:0 1 1024M 0 rom
vda 252:0 0 10G 0 disk
 vda1 252:1 0 1G 0 part /boot
 vda2 252:2 0 9G 0 part
 cl-root 253:0 0 8G 0 lvm /
 cl-swap 253:1 0 1G 0 lvm [SWAP]
vdb 252:16 0 20G 0 disk

B.2.1 Creating a filesystem on your storage disk

In appendix A, when you selected your disk configuration options, you unchecked the
second disk on the system. That instructed the installer to ignore that disk when it
installed the OS. Now you need to create a filesystem on the second disk. For your
needs, an ext4 filesystem will do everything you need. (The ext4 filesystem is a stan-
dard filesystem format for Linux servers.) To create a filesystem, you can use the
mkfs.ext4 command:

mkfs.ext4 /dev/vdb
mke2fs 1.42.9 (28-Dec-2013)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
1310720 inodes, 5242880 blocks
262144 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=2153775104
160 block groups
32768 blocks per group, 32768 fragments per group
8192 inodes per group
Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
4096000

Allocating group tables: done
Writing inode tables: done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information: done

270 APPENDIX B Setting up a persistent storage source

NOTE If you’d like more information about the ext4 filesystem and what
makes it work, check out the article “An Introduction to Linux’s EXT4 Filesys-
tem”(David Both, opensource.com, https://opensource.com/article/17/5/
introduction-ext4-filesystem).

The next step is to configure your master server so that it’s properly mounted when
the server starts up.

B.3 Mounting your storage disk at startup
The NFS shared volume you’re creating needs to be available all the time. That means
you need to configure your NFS server to mount your newly created filesystem when
the host boots up.

B.3.1 Creating a mountpoint directory

In Linux, every mounted filesystem needs a directory to act as a mountpoint. For your
NFS server, you need to create that directory in /var to mount your filesystem in. The
following command creates the /var/nfs-data directory to serve as the mountpoint for
the NFS filesystem:

mkdir /var/nfs-data/

After the directory is created, you need to gather some information about the filesys-
tem you created to hold your NFS volumes. This information will be used to edit the
Linux server to make it mount this filesystem correctly when it boots up.

B.3.2 Getting your storage drive’s block ID

Each block device has a unique identifier (UUID) in Linux. You can view these UUIDs
using the blkid command-line tool. Here’s an example of the output:

blkid
/dev/vda1: UUID="bdda3896-5dbc-4822-b008-78bba4898341" TYPE="xfs"
/dev/vda2: UUID="KsWi8Z-PNi0-Hdgt-akAP-RWfF-9Myp-oL0eKr" TYPE="LVM2_member"
/dev/vdb: UUID="607b9d47-9280-433d-a233-0f40f060ec51" TYPE="ext4"
/dev/mapper/cl-root: UUID="88a37ff5-eaba-4358-80a7-119edf6d30a7" TYPE="xfs"
/dev/mapper/cl-swap: UUID="4a2d0c5c-33f9-46d3-b8e7-4e8c53d562ce" TYPE="swap"
/dev/loop0: UUID="e7a6c25e-d482-4082-bc7d-a845fd2aef17" TYPE="xfs"
/dev/mapper/docker-253:0-12995325-pool: UUID="e7a6c25e-d482-4082-bc7d-

➥ a845fd2aef17" TYPE="xfs"

In this example, we used the /dev/vdb block device to create the NFS storage file-
system. You can see in the output that our UUID is “607b9d47-9280-433d-a233-
0f40f060ec51”. Make a note of the UUID for your device; you’ll need it in the next
section.

 The next step is to configure your server to automatically mount the volume cor-
rectly when it boots up.

https://opensource.com/article/17/5/introduction-ext4-filesystem
https://opensource.com/article/17/5/introduction-ext4-filesystem

271Mounting your storage disk at startup

B.3.3 Editing /etc/fstab to include your volume

On a Linux server, /etc/fstab is the configuration file that contains all the filesystems
and partitions that should be mounted automatically when the server boots up, along
with their mount options. The following listing shows an example /etc/fstab file; the
same file should be similar on your system.

#
/etc/fstab
Created by anaconda on Fri May 12 19:39:58 2017
#
Accessible filesystems, by reference, are maintained under '/dev/disk'
See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info
#
/dev/mapper/cl-root / xfs defaults 0 0
UUID=bdda3896-5dbc-4822-b008-78bba4898341 /boot xfs

➥ defaults 0 0
/dev/mapper/cl-swap swap swap defaults 0 0

Each mountpoint in /etc/fstab has several parameters. They’re as follows, from left to
right:

 Device to be mounted—In this case, you’ll use the UUID that you noted earlier.
 Mount point for the block device—This is the /var/nfs-data directory that you cre-

ated earlier.
 Type of filesystem—This is ext4 for your new line in /etc/fstab.

The rest of the options are beyond the scope of this appendix. You can use defaults 0 0.
 In this example, the following line was added to the end of /etc/fstab:

UUID=607b9d47-9280-433d-a233-0f40f060ec51 /var/nfs-data ext4 defaults 0 0

B.3.4 Activating your new mount point

After adding your new line to /etc/fstab, you can use the mount -a command to
have the server re-read /etc/fstab and mount anything that isn’t already mounted.
After it completes, you can make sure it’s mounted properly by running the mount
command with no additional parameters. Following are examples of these com-
mands and their output:

mount -a
mount
...
/dev/mapper/cl-root on /

type xfs (rw,relatime,seclabel,attr2,inode64,noquota)
selinuxfs on /sys/fs/selinux type selinuxfs (rw,relatime)
systemd-1 on /proc/sys/fs/binfmt_misc type autofs

➥ (rw,relatime,fd=31,pgrp=1,timeout=300,minproto=5,maxproto=5,direct)
hugetlbfs on /dev/hugepages type hugetlbfs (rw,relatime,seclabel)

Listing B.1 An example /etc/fstab configuration file

272 APPENDIX B Setting up a persistent storage source

debugfs on /sys/kernel/debug type debugfs (rw,relatime)
mqueue on /dev/mqueue type mqueue (rw,relatime,seclabel)
nfsd on /proc/fs/nfsd type nfsd (rw,relatime)
/dev/vda1 on /boot type xfs (rw,relatime,seclabel,attr2,inode64,noquota)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw,relatime)
tmpfs on /run/user/0 type tmpfs

➥ (rw,nosuid,nodev,relatime,seclabel,size=388192k,mode=700)
/dev/vdb on /var/nfs-data type ext4

➥ (rw,relatime,seclabel,data=ordered)

At this point, the filesystem is ready to go. The next step is to configure NFS to share
/var/nfs-data over the network.

B.4 Configuring NFS
Because several examples in this book require NFS storage, you’ll need to export five dif-
ferent NFS volumes. In NFS, an exported volume is a unique directory specified in the
/etc/exports configuration file. You need to create these directories in /var/nfs-data.
You can create them all with a single command, as follows:

mkdir -p /var/nfs-data/{pv01,pv02,pv03,pv04,pv05}

After creating your export directories, the next step is to add them to your NFS
server’s configuration.

 By default, the /etc/exports configuration file is empty. You’ll edit this file to add
all the volumes you want to export, along with their permissions, as shown in the fol-
lowing listing.

/var/nfs-data/pv01 *(rw,root_squash)
/var/nfs-data/pv02 *(rw,root_squash)
/var/nfs-data/pv03 *(rw,root_squash)
/var/nfs-data/pv04 *(rw,root_squash)
/var/nfs-data/pv05 *(rw,root_squash)

Looking at each line in this file from left to right, let’s break down what the configura-
tion means for each export:

 Directory to be exported by NFS—One entry for each of the directories you just
created.

 Servers allowed to connect to this NFS share—The asterisk allows any server to access
these shares.

 Mount permissions—These options are in parentheses. For these exports, you’ll
allow read-write (rw) access and not allow the root user to mount the volume
(root_squash).

Listing B.2 Configuration to add to /etc/exports for your cluster

/dev/vdb is mounted at /var/nfs-data,
just like we want.

273Setting firewall rules to allow NFS traffic

Because you aren’t allowing the root user to mount any of these NFS volumes, you
need to make sure the permissions on the directories are correct.

B.4.1 Setting ownership of the mountpoint

OpenShift will connect to the NFS shares using the nfsnobody user: a special user
used by NFS servers that’s used when root user access isn’t allowed. You can use the
chown and chmod commands to properly set the ownership of /var/nfs-data and allow
access to the directory only for the nfsnobody user. After setting the proper ownership
and permissions, you can confirm them:

chown -R nfsnobody.nfsnobody /var/nfs-data/
chmod -R 0770 /var/nfs-data/
ls -al /var/nfs-data/
total 24
drwxrwx---. 7 nfsnobody nfsnobody 4096 Jun 17 21:27 .
drwxr-xr-x. 20 root root 283 Jun 17 01:13 ..
drwxrwx---. 2 nfsnobody nfsnobody 4096 Jun 17 21:16 pv01
drwxrwx---. 2 nfsnobody nfsnobody 4096 Jun 17 21:16 pv02
drwxrwx---. 2 nfsnobody nfsnobody 4096 Jun 17 21:27 pv03
drwxrwx---. 2 nfsnobody nfsnobody 4096 Jun 17 21:27 pv04
drwxrwx---. 2 nfsnobody nfsnobody 4096 Jun 17 21:27 pv05

Because NFS is a filesystem served over a network, you need to make sure the network
firewall on your master server will allow the NFS traffic through. This is covered in the
next section.

B.5 Setting firewall rules to allow NFS traffic
You’ll be using NFS version 4 (NFSv4) to connect to these exported volumes. This ver-
sion of the NFS protocol requires TCP port 2049 to be open. You can check that status
using the following command:

iptables -L -v -n | grep 2049
0 0 ACCEPT tcp -- * * 0.0.0.0/0

 ➥ 0.0.0.0/0 state NEW tcp dpt:2049

If you don’t get any output from this command, you can add a rule to your firewall
using the following iptables command:

iptables -I INPUT -p tcp --dport 2049 -j ACCEPT

After running this command, you can rerun the previous iptables command, and
you should see a result. If you do, then you’ve configured your firewall correctly.

 The last thing you need to do for your network configuration is to save your new
settings. You do so using the following service command in Linux:

service iptables save

Sets ownership to nfsnobody, using the -R
option to act on the directory recursively

Sets the mode
so that only the
nfsnobody user and
group can access
the directory, using
the -R option again
to act recursively

Confirms that
the ownership

and permissions
for /var/nfs-data

are correct

274 APPENDIX B Setting up a persistent storage source

NOTE The default firewall utility for CentOS and RHEL 7 is firewalld. Open-
Shift is still working to integrate completely with this tool. Currently, the
OpenShift installer disables firewalld. For our example, because we’re using
the OpenShift master as our NFS server, we’re using the older iptables com-
mands and the service command to save our firewall rules. If you’re using a
different server, you can set up NFS using firewalld.

With this completed, the last things to do is to enable and start the NFS services.

B.6 Enabling and starting NFS
What we call NFS is actually a collection of four services that you need to enable and start:

 rpcbind—NFS uses the RPC protocol to transfer data.
 nfs-server—The NFS server service.
 nfs-lock—Handles file locking for NFS volumes.
 nfs-idmap—Handles user and group mapping for NFS volumes.

B.6.1 Starting NFS services

If you’re using the OpenShift master as your NFS server, these services are already
enabled and turned on. In that case, you need to restart the services, using the follow-
ing command that loops through all the services that make NFS work properly:

for i in rpcbind nfs-server nfs-lock nfs-idmap;do systemctl restart $i;done

If you’re using another server to host your NFS server, enable these services and start
them using the following command:

for i in rpcbind nfs-server nfs-lock nfs-idmap;do systemctl enable

➥ $i;systemctl start $i;done

Now you can check your system to make sure your new volume is exported.

B.6.2 Confirming that your NFS volume is exported and ready to use

To see all the volumes exported by NFS in Linux, you can use the exportfs command-
line tool. On the OpenShift master, you’ll see several exported volumes, similar to the
following example. On an independent server, you’ll see only the volumes you
exported in the /var/nfs-data directory:

exportfs
/var/nfs-data/pv01

<world>
/var/nfs-data/pv02

<world>
/var/nfs-data/pv03

<world>
/var/nfs-data/pv04

<world>
/var/nfs-data/pv05

Indicates that the volume is
exported and ready for use as
an NFS volume. The <world>
notation means any host can
access the volume, just as you
configured in /etc/exports.

275Enabling and starting NFS

<world>
/exports/registry

<world>
/exports/metrics

<world>
/exports/logging-es

<world>
/exports/logging-es-ops

<world>

And that’s it! You now have an NFS volume that’s ready to be used by OpenShift to
provide persistent storage to your containerized applications.

276

appendix C
Working

 directly with Docker
Docker has its own command-line tool, aptly named docker. To get the information
you need to dig deeper into how containers isolate applications in OpenShift, the
docker command is your starting point.

NOTE To interact directly with docker, you need to SSH into your applica-
tion node and run the commands in this chapter as the root user.

The first thing we’ll walk through is how to get a list of all currently running con-
tainers on an application node.

C.1 Getting running containers
After you log in to your application node, run docker ps at the command prompt.
This command returns a list of all containers currently running on the application
node. Each line in the output from docker ps represents a running container. The
first value in each line is a shortened version of the container ID for that container.
You can use this short ID—for example, fae8e211e7a7—to specify a container
when you need to interact with it using the docker command. You can confirm
whether the container is for app-cli or app-gui by the name of the image used to
create the container.

 The docker ps output will be longer on your application node, including
information about containers that house both your image registry and your
HAProxy load balancer. The following has been trimmed to show only the output
for the app-cli and app-gui containers you’ll deploy in chapter 2. These two appli-
cations are what you’ll use for examples through chapter 4. You’ll deploy app-cli
using the OpenShift command-line tool and then deploy app-gui using the Open-
Shift web interface.

277Getting running containers

 This appendix uses those applications as the example:

docker ps
CONTAINER ID

➥ IMAGE
➥ COMMAND CREATED STATUS PORTS

➥ NAMES
fae8e211e7a7
docker-registry.default.svc:5000/image-uploader/

➥ app-cli@SHA256:

cef79b2eaf6bb7bf495fb16e9f720d5728299673dfec1d8f16472f1871633ebc
"container-entrypoint" 32 hours ago Up 32 hours

➥ k8s_app-cli_app-cli-4-18k2s_image-uploader_45e4431b-9f1d-11e7-
➥ 8afe-001cc4000001_1efbbe3967e47
➥ docker-registry.default.svc:5000/image-uploader/app-gui@SHA256:
➥ 2f98cd2ce28aa32faf60bbd7dab14320c95e5af744c50b2d5bc202fa437aa3e2
➥ "container-entrypoint" 32 hours ago Up 32 hours

➥ k8s_app-gui_app-gui-2-l65d9_image-uploader_42965321-9f1d-11e7-
➥ 8afe-001cc4000001_1

OK status code
from a header

Docker-registry.default.svc is
the internal IP for the registry.

The registry listens on
port 5000 by default.

The unique SHA256 ID beginning
with cef279 ensures the correct
container image for this app-cli

deployment is always pulled.

How OpenShift pulls container images
The URL that points to the container image in the OpenShift registry may seem a little
strange if you’ve downloaded an image from any container registry before. A standard
registry-request URL contains a container name and a corresponding tag, like
docker.io/jeduncan/php-demo-app:latest. This registry URL can be broken down into
four components:

 docker.io—URL for the registry. In this case, Docker Hub.
 jeduncan—User account for the registry. In this case, jeduncan, the account

for Jamie Duncan.
 php-demo-app—Name of the container image to download.
 latest—Tag, or specific version, of the container image.

The value latest is the image tag you want to download. Image tags are arbitrary
values that specify a version of the image to be downloaded. Instead of using tags
to specify a version of an image, OpenShift uses the unique SHA256 hash value for
each version of a container image.

Downloading a container image by its SHA256 hash is a security benefit for Open-
Shift. Tags are mutable, meaning multiple tags can point to different image versions
at different times. SHA256 hashes are immutable and always point to a single con-
tainer image, regardless of any tags associated with it. If a container image changes
for any reason, its SHA256 hash changes, even if its tags don’t.

278 APPENDIX C Working directly with Docker

In the previous output, the container with a short ID fae8e211e7a7 is the app-cli con-
tainer. You can be sure of this because it was created from the app-cli custom con-
tainer image in the OpenShift registry.

C.2 Using docker inspect
The docker inspect command displays all the low-level runtime information about a
container. If you don’t specify any parameters, docker inspect returns a long list of
information about the container in JSON format.

 Using the -f parameter, you can specify the part of the JSON output that you want
to view using JSON’s dot-notation property accessor. Using the container short ID for app-
cli you obtained using docker ps, you can get the PID for the app-cli container using
docker inspect, as the following example and its resulting output demonstrates:

docker inspect -f '{{ .State.Pid }}' fae8e211e7a7
4470

TIP The JSON data format dot-notation property accessor is a way to describe
and access a specific piece of data in a JSON dataset. (You can learn more at
http://mng.bz/26Nm.) You can run docker inspect <container short
id> on your application node to see all the data available from docker about a
running container. Using this output, you can use JSON dot notation to spec-
ify only the data you want from all the available information.

If you delete the app-cli pod or stop the container using docker directly, OpenShift
will create a new container using the same image and configuration, but it will have a
different PID. The PID will also change if you reboot your application node or rede-
ploy your applications. In a similar fashion, the container’s short ID will change under
the same circumstances. These aren’t permanent values on your application node. In
chapters 3, 5, and 9, you’ll interact with docker to pull low-level information about
your containers as you investigate how containers function on a Linux server.

 Another task you’ll need to do is to start an interactive shell in a running
container.

C.3 Interactive shells in a container
To start an interactive shell session in a running container, edit the following com-
mand to reference your container’s short ID:

docker exec -it f3cce9147cd1 bash

The -i option provides an interactive user session, -t creates a TTY session in the con-
tainer, and bash launches the bash shell terminal program on the TTY you created in
the container. You’ve effectively entered your running container. Instead of just pro-
viding the output of the command, the interactive parameter provides you with an
active bash shell.

http://mng.bz/26Nm

279

appendix D
Configuring

 identity providers
Many different user databases are available to IT professionals for managing access
and authentication. To interoperate with as many of these as possible, OpenShift
provides 11 identity providers that interface with various user databases, including
the Allow All provider that you’ve been using in your cluster up to this point. These
providers are as follows:

 Allow All—Allows any username and non-empty password to log in
 Deny All—Doesn’t allow any usernames and passwords to log in
 htpasswd—Authenticates with Apache htpasswd database files
 Keystone—Uses OpenStack Keystone as the authentication source
 LDAP—Authenticates against an LDAP provider like openLDAP
 Basic—Uses Apache Basic authentication on a remote server to authenticate

users
 Request Header—Uses custom HTTP headers for user authentication
 GitHub—Authenticates with GitHub using OAuth
 GitLab—Authenticates with GitLab using OAuth
 Google—Uses Google OpenID Connect for authentication
 OpenID Connect—Uses OpenID Connect with a source other than Google

Different authentication providers have different options that are specific to each
provider’s unique format. For example, the options available for the htpasswd pro-
vider are different than those required for the GitHub provider, because these pro-
viders access such different user databases.

 In the next section, you’ll change your OpenShift cluster’s configuration to stop
using the Allow All provider and start using htpasswd provider. To use this provider,
you’ll need to create an htpasswd database file on the master server.

280Creating the htpasswd database

D.1 Introduction to htpasswd
The htpasswd provider uses Apache-style htpasswd files for authentication. These are
simple databases that contain a list of usernames and their corresponding passwords in
an encrypted format. Each line in the file represents a user. The user and password sec-
tions are separated with a colon (:). The password section includes the algorithm that
was used to encrypt the password, encapsulated by $ characters, and the encrypted pass-
word itself. Here’s an example htpasswd file with two users, admin and developer:

admin:$apr1$vUqfPZ/D$sTL5RCy1m5kS73bC8GA3F1
developer:$apr1$oKuOUw1t$CEJSFcVXDH5Jcq7VDF5pU/

You create htpasswd files using the htpasswd command-line tool. In appendix A, you
installed this tool on your master server. By default, the htpasswd tool uses a custom
encryption algorithm based on MD5 hashing.

NOTE Full documentation on the Apache htpasswd application and file for-
mat is available at http://mng.bz/ZqaG. Full documentation on possible
encryption formats is available at http://mng.bz/3CVh.

D.2 Creating the htpasswd database
To create an htpasswd database file, you need to SSH to your master server. On the
master server, the configuration files for the OpenShift master processes are in /etc/
origin/master. There, you’ll create an htpasswd file called openshift.htpasswd with
three users—developer, project-admin, and admin—to act as the database for the
htpasswd provider to interact with.

TIP The location of the htpasswd file is important. Be sure to take note,
because you’ll need it in the next section.

You need to run the htpasswd command to add each user. The first time you run the
command, be sure to include the -c option to create the new htpasswd file.

TIP Be sure to only use the -c option the first time, or it will overwrite your
file each time. The -i option takes the password information from the com-
mand’s standard input. Without this option, the tool will prompt you twice
for the password through an interactive prompt.

Why is htpasswd spelled this way?
The htpasswd utility is an old one. It goes all the way back to the first versions of the
Apache web server in the later 1990s. Back then, computers had so much less mem-
ory that the name of an application could affect system performance.

Application names were typically limited to eight characters. To fit this tight requirement,
characters were often removed wherever possible—and thus htpasswd was born.

admin user with a
password encrypted using
the default apr1 algorithm

http://mng.bz/ZqaG
http://mng.bz/3CVh

281 APPENDIX D Configuring identity providers

Use the following commands to create the htpasswd file with three users:

echo developer | htpasswd -i -c

➥ /etc/origin/master/openshift.htpasswd developer
Adding password for user developer

echo project-admin | htpasswd -i

 ➥ /etc/origin/master/openshift.htpasswd project-admin
Adding password for user project-admin

echo admin | htpasswd -i /etc/origin/master/openshift.htpasswd

➥ admin
Adding password for user admin

With your htpasswd database created and populated with users, you’re ready to use it
for authentication in OpenShift. To configure your new identity provider, you need to
edit the configuration for your OpenShift master server. That’s what you’ll do in the
next section.

D.3 Changing authentication providers
The configuration file for your OpenShift master is /etc/origin/master/master-config
.yaml, and it’s more than 150 lines long. When you configured OpenShift, this section
enabled the default Allow All provider that we discussed earlier. The following options
are common to all providers:

 challenge—Defaults to true. Ensures that web clients receive challenge HTTP
headers. These headers instruct non-web clients like the oc command-line tool
to be sure users are logged in before access is granted.

 login—Defaults to true. Redirects unauthenticated sessions to the login page
for the provider.

 mappingMethod—Defines how users interact with the user database. The default
value, claim, provisions a new user with the preferred login if the name isn’t
available.

We’ll concentrate on the identityProviders stanza. This section controls which
authentication providers are implemented in OpenShift. Here’s a default identity-
Providers section from master-config.yaml:

identityProviders:
- challenge: true

login: true
mappingMethod: claim
name: allow_all
provider:

apiVersion: v1
kind: AllowAllPasswordIdentityProvider

NOTE You can find full information about configurations for all the identity
providers at http://mng.bz/bjMJ.

Creates the file and adds
the developer user

Adds the project-
admin user

Adds the admin user

Name for the provider

Provider to use

http://mng.bz/bjMJ

282Changing authentication providers

The options for the htpasswd identity provider are similar to those of the Allow All
provider. It requires one additional option: a file parameter that references the loca-
tion of your htpasswd database file. The other big difference is the kind value, which
is the name of the provider you want to use. In this case, you need to make sure the
value for kind is HTPasswdPasswordIdentityProvider.

 To configure the htpasswd provider, edit the identityProviders section in your
master-config.yaml file as shown next.

identityProviders:
- name: my_htpasswd_provider

challenge: true
login: true
mappingMethod: claim
provider:

apiVersion: v1
kind: HTPasswdPasswordIdentityProvider
file: /etc/origin/master/openshift.htpasswd

After you make the changes and save your new configuration, restart the OpenShift
master services with the following command:

systemctl restart origin-master

Once the origin-master service is restored, the new configuration is in effect. You can
verify this by attempting to log in as the dev user you’ve been using in your cluster.
Access should be denied at this point. Access for your newly created users—developer,
project-admin, and admin—should work, with their configured passwords.

Listing D.1 master-config.yaml configured to access your htpasswd database

Name for your
new provider

kind value

Location of the htpasswd
database file

283

index

A

admin users
copying configuration

131–132
logging in as 131–132

administrators, creating
174–175

cluster admins 174–175
project admins 174

Allow All identity provider 22
annotating images, with security

information 235–236
Ansible 253
Apache Kafka 154
API object support. See native

API object support
app-cli pod 215
applications 9–11

accessing 7, 28–30
adding persistent storage

using web interface
138–142

adding volume to 137–138
applying limits and quotas

to 185–186
building 9
clustering with Wildfly

149–151
components 24–28

build configs 26
custom container

images 24
deployment configs 26–27
image streams 27–28

configuring node
networks 197–199

deployed, changing quotas
for 186–187

deployments 9–11, 28–31
changing SCCs for 232–234
exposing services with

routes 30–31
with web interface 32–36

isolating, with kernel
namespaces 45–57

maintaining 71–78
creating liveness

probes 72–76
creating readiness

probes 76–78
maintaining replicas 26
nodes

configuring container
storage for 255–256

preparing 263–265
routing requests 202–207

investigating HAProxy
pods 205–206

routing HAProxy requests
to correct pods
206–207

with HAProxy 203–205
scaling 16, 68–71
scheduling across nodes

40–41
serving 9–11
testing after adding persistent

storage 142–145
forcing pod restart 143–144

persistent volume
mounts 144–145

testing resiliency 61–68
labels 65–68
replication controllers

62–64
selectors 65–68

See also stateful applications
architecture 7–9

accessing applications 7
handling network traffic in

clusters 9
integrating container

images 7
assigning user roles 173–174
authentication, changing

providers 281–282
autoinstaller project 21
automating image

promotion 107–109
autoscaling

testing implementation 88–89
with metrics

determining expected
workloads 81

installing OpenShift
metrics 81–84

triggering pod autoscaling
with pod metrics 84–89

B

best-effort deployment 177
BestEffort 86, 182
blkid command 270

INDEX 284

bridges, Linux 202
build configs 26, 64
builder image 9, 28
Burstable 86

C

-c option 280
CAP_SYS_MODULE 227
cat command 192
CentOS 7 Linux

distribution 243–249
configuring disk setup 245
launching installer 243–245
rebooting 249
setting permanent configura-

tions on servers 246–248
general configuration

tab 247–248
IPv4 settings 248

setting up networking 246
hostname resolution 246

starting installation 248–249
cgroups (control groups)

42, 46, 187
cgroups kernel feature

confirming resource
limits 190–192

verifying container CPU
limits 191–192

verifying container
memory limits 192

identifying container
cgroups 188–189

limiting resources with
187–192

overview 187–188
CI/CD pipelines

container images with 92–93
creating development

environments 93–101
enabling deployments with

image streams
100–101

invoking object
triggers 98–100

Jenkins as backbone of
116–121

masking sensitive data in
production
environments 109–115

config maps for
environment-specific
settings 113–115

protecting sensitive data
with secrets 112–113

promoting dev images into
test environments
101–109

automating image promo-
tion with image stream
triggers 107–109

service discovery 103–106
CIDR (classless inter-domain

routing) 195
claims, persistent volume

138–139
cleanup of applications 157–159
clusters

clustering applications with
Wildfly 149–151

creating cluster admins
174–175

handling network traffic in 9
options 21–22

command lines
adding volume to

applications on 137–138
creating new resources

from 132–133
creating persistent volume

claims using 136
viewing events on 231–232

config maps
for environment-specific

settings 113–115
implementing 114–115

--config parameter 134
ConfigChange trigger 114
configuring

/etc/resolv.conf 251–252
application node

networks 197–199
container storage for applica-

tion nodes 255–256
disk setup 245
DNS resolution on both

servers 250–253
identity providers

changing authentication
providers 281–282

htpasswd 280–281
master nodes 265–266

updating inventory
265–266

updating playbooks 265
NetworkManager 252–253
NFS 272–273

OpenShift SDN 211–216
creating advanced network

designs with ovs-net-
workpolicy plugins 214

enabling ovs-multitenant
plugins 214–215

isolating traffic with
ovs-multitenant
plugins 212–214

testing multitenant
plugins 215–216

using ovs-subnet
plugins 212

repositories on all servers 250
SELinux on nodes 256
storage for NFS 269–270

consoles, access to 240
container execution checks 72
container images 64
container lifecycle hooks 159
container platforms 4
container runtime 4, 41
containers 12–15

accessing root filesystems
48–52

CPU limits, verifying 191–192
creating with Docker 41
custom images 24
disadvantages of 15
identifying cgroups 188–189
images with CI/CD

pipelines 92–93
in Docker 276–278
in OpenShift 4–5
integrating images 7
interactive shells in 278
lifecycle hooks 159–160
linking to host

interfaces 200–201
Linux and

application isolation with
kernel
namespaces 45–57

OpenShift components
38–45

memory limits 192
networking 55–57
orchestrating 5–7
overview of 4–7, 37–38
persistent storage vs con-

tainer storage 129–130
PIDS in 53–55
resource utilization with

14–15

INDEX285

containers (continued)
scanning images 228–234

changing SCCs for applica-
tion deployment
232–234

deploying image-scanning
applications 229–231

obtaining image-scanning
applications 228–229

viewing events on command
lines 231–232

viewing security scan
results 234

storage needs 15–16
use cases 12–15

contexts, SELinux 219
continuous integration and

deployment pipelines. See
CI/CD pipelines

controllerManagerArgs field 89
cookies, limitations of 156–157
CPU limits, verifying 191–192
CPU requests, setting 87–88
CrashLoopBackOff status 103
curl command 155
custom container images 24

D

DAC (discretionary access
control) 218

data
in production

environments 109–115
config maps for

environment-specific
settings 113–115

protecting sensitive data
with secrets 112–113

permanent, handling
requirements 130

sensitive
masking in production

environments 109–115
protecting with

secrets 112–113
Wildfly, verifying

replication 153
data dominance 224
default groups 175
deny-execution annotation 235
deployment 9–11, 27–31

changing SCCs for 232–234

configs 26–27
maintaining application

replicas 26
managing upgrade

methods 27
modifying 70–71

enabling with image
streams 100–101

exposing services with
routes 30–31

managing with OpenShift
38–40

providing consistent
application access
with services 28–30

running deployment
playbook 260

strategies for 122–124
with web interface 32–36

deployment configs 64
DeploymentConfiguration 84
deployments 64
deterministic sequencing

of startup, with stateful
sets 161–162

Dev Build job 118
dev images, promoting into test

environments 101–109
automating image promotion

with image stream
triggers 107–109

service discovery 103–106
development environments,

creating 93–101
enabling deployments with

image streams 100–101
invoking object triggers

98–100
display name 24
DNS (domain name server) 104

internal, locating services
with 208–210

resolution 241–242
configuring on both

servers 250–253
in pod networks 209–210
nip.io domain 241–242
selecting hostnames 242

docker exec command 52
docker inspect 189, 278
Docker platform

Docker inspect 278
enabling on nodes 256
getting running

containers 276–278

interactive shells in
containers 278

starting on nodes 256
docker-storage-setup

application 255
docker.io component 277
dockercfg secret 113
domain name server. See DNS

E

EBS (Elastic Block Storage) 130
edit role 174
environment variables 104–106
environment-specific settings,

config maps for 113–115
EPEL (Extra Packages for

Enterprise Linux) 250
/etc/fstab file, editing to

include volume 271
/etc/resolv.conf file,

configuring 251–252
etcd database 258
eth0 interface 200
events, viewing on command

lines 231–232
exportfs command 274

F

Failed phase, pod 27
filesystems

accessing container root
filesystems 48–52

creating on storage disks
269–270

firewalls, setting rules to allow
NFS traffic 273–274

for loop 185
forbidden window 89
FQDNs (fully qualified domain

names) 209, 251

G

GCP (Google Cloud
Platform) 130

Git Repository URL 34
Gogs service, triggering Jenkins

from 119–121
graceful shutdowns 157–160

container lifecycle
hooks 159–160

INDEX 286

graceful shutdowns (continued)
selecting method 160
setting grace periods for appli-

cation cleanup 157–159
Guaranteed setting 86

H

HAProxy 30
pods 205–206
routing requests to correct

pods 206–207
routing requests with

203–205
hardware, exotic 15
headless services, enabling

148–154
application clustering with

Wildfly 149–151
querying OpenShift API

server from pods
151–152

use cases for direct pod
access 153–154

verifying Wildfly data
replication 153

HorizontalPodAutoscaler 85
hostname command 52
hostnames

resolution in CentOS 7 246
selecting 242

HPA (horizontal pod autoscaler)
objects, creating 84–88

limits 86–87
requests 86–87
setting CPU requests 87–88

htpasswd
creating database 280–281
overview 280

httpd command 54
HTTPS checks 72
HTTPS, access to 240

I

-i option 278
identity providers, configuring

changing authentication
providers 281–282

htpasswd 280–281
IETF website 72
image policies 235

image streams 27, 64
enabling deployments

with 100–101
triggers, automating image

promotion with 107–109
image tags 93, 277
Image Uploader program 142
IMAGE_TO_SCAN_URL

parameter 230
image-scanning applications

deploying 229–231
obtaining 228–229

images
annotating with security

information 235–236
automating promotion with

image stream
triggers 107–109

container images
scanning 228–234
with CI/CD pipelines

92–93
custom container images 24
image streams 27–28
integrating container

images 7
promoting 93
See also dev images

InfiniBand 15
Initial Delay value 74
install-gogs pod 96
installing

CentOS 7 243–249
configuring disk setup 245
launching installer

243–245
rebooting 249
setting permanent configu-

rations on servers
246–248

setting up networking 246
starting installation

248–249
NFS server software 268
oc OpenShift command-line

utility 261–263
confirming installation

of 263
installing on Linux 262–263
installing on macOS 262
installing on Windows 262

OpenShift 257–261
creating inventory 257–260
machine resource

requirements 243

metrics 81–84
prerequisites for 239–242
running deployment

playbook 260
software on application-node

servers 255
software on master

servers 253–255
integration, native 121
interfaces, linking containers

to 200–201
internet, access to 240
inventory

creating 257–260
updating 265–266

ip a command 199
ip utility 55
IPC namespace 46
iptables command 273
IPv4 settings, in CentOS 7 248
isolating

applications with kernel
namespaces 45–57

container networking
55–57

mount namespace 47–52
PIDS in containers 53–55
shared memory

resources 55
UTS namespaces 52–53

resources with Linux 42–43
traffic, with ovs-multitenant

plugins 212–214

J

jeduncan component 277
Jenkins server

as backbone of CI/CD
pipelines 116–121

triggering from Gogs 119–121
Jenkinsfile, native integration

with 121
JGroups 152

K

kernel namespaces, isolating
applications with 45–57

container networking 55–57
mount namespace 47–52
PIDS in containers 53–55
shared memory resources 55
UTS namespaces 52–53

INDEX287

KUBE_PING 152
kubelet service 72
kubepods-besteffort.slice 188
kubepods-burstable.slice 188
Kubernetes 6, 40–41

L

labels 65–68, 219
latest tag 101
limit ranges 176
LimitRange object 87
limits 86–87, 185–187

applying to existing
applications 185–186

confirming cgroup resource
limits 190–192

limit ranges 176–180
verifying container CPU

limits 191–192
verifying container memory

limits 192
Linux OS

containers and
application isolation with

kernel
namespaces 45–57

OpenShift components
38–45

installing oc OpenShift
command-line utility
on 262–263

isolating resources
with 42–43

limiting resources with 42–43
managing pod

capabilities 227
liveness probes 72–76
logging in 22–23

as admin user 131–132
oc command-line

application 22–23
to OpenShift web

interface 32
logic layer 69
loopback interface 197
lsblk command 48, 255
lsns command 45
LV (logical volume) 48
LVM (logical volume

management) 255

M

MAC (mandatory access
control) 218

mappingMethod 281
maxLimitRequestRatio 178
MCS (multi-category

security) 219
MCS levels 224–226
memory

shared resources 55
verifying container memory

limits 192
metrics

autoscaling with
determining expected

workloads 81
installing OpenShift

metrics 81–84
triggering pod autoscaling

with pod metrics 84–89
stacks 83–84

millicores 86
Minishift 21
monolith applications 15
mount namespace 47–52
mounting storage disk at

startup 270–272
activating mountpoint

271–272
creating mountpoint

directory 270
editing /etc/fstab to include

volume 271
storage drive block ID 270

N

-n parameter 23
--name parameter 137
nameserver parameter 251
namespaces 42
NAT (Network Address

Translation) 156
native API object support, for

stateful applications with
stateful sets 160–167

consistent persistent storage
mappings 165–166

deterministic sequencing of
startup and shutdown
order with stateful
sets 161–162

examining a stateful set
162–164

predictable network
identity 164–165

stateful applications without
native solutions 166–167

stateful set limitations 166
network design 194–196
network file system application.

See NFS (Network File
System) application

network identity,
predictable 164–165

Network namespace 46
network traffic, handling in

clusters 9
networking

configuring application node
networks 197–199

configuring OpenShift
SDN 211–216

creating advanced network
designs with ovs-net-
workpolicy plugins 214

enabling ovs-multitenant
plugins 214–215

isolating traffic with
ovs-multitenant
plugins 212–214

testing multitenant
plugins 215–216

using ovs-subnet
plugins 212

containers 55–57
in CentOS 7 246
installing DNS resolution in

pod networks 209–210
locating services with internal

DNS 208–210
managing OpenShift

SDN 197–202
configuring application

node networks
197–199

linking containers to host
interfaces 200–201

working with OVS 201–202
routing application

requests 202–207
investigating HAProxy

pods 205–206
routing HAProxy requests

to correct pods
206–207

with HAProxy 203–205
NetworkManager,

configuring 252–253

INDEX 288

networkPluginName
parameter 214

new_nodes group 266
NFS (network file system)

application
configuring 272–273
configuring storage for

269–270
confirming volume 274–275
enabling 274–275
installing server software 268
starting services 274
traffic, setting firewall rules to

allow 273–274
nfs-utils package 268
NGINX 160
nip.io domain 241–242
nodes

adding 263–267
configuring application node

networks 197–199
configuring container storage

for 255–256
configuring SELinux on 256
enabling Docker on 256
master, configuring 265–266

updating inventory
265–266

updating playbooks 265
scheduling applications across

with Kubernetes 40–41
starting Docker on 256

NotBestEffort pods 182
NotTerminating pods 182
nsenter command 50

O

oadm (OpenShift
administration) 173

object triggers, invoking 98–100
oc autoscale command 84
oc command-line

application 22–23
oc create command

133, 136, 179
oc delete pod command 129
oc describe command 64, 88
oc describe resourcequota

command 184
oc export command 226
oc get pod command 129
oc get pods command 27
oc get pv command 134
oc get quota command 184

oc login command 179
oc new-app command

28, 99, 234
oc new-project command 23
oc OpenShift command-line

utility 261–263
confirming installation of 263
installing

on Linux 262–263
on macOS 262
on Windows 262

oc path command 160
oc policy command 111
oc project command 173
oc rsh command 210
oc set probe command 75
oc set triggers command 107
Open vSwitch. See OVS
OpenFlow 213
OpenSCAP 234
OpenShift

components 38–45
creating containers with

Docker 41
isolating and limiting

resources with
Linux 42–43

scheduling applications
across nodes with
Kubernetes 40–41

containers in 4–5
installation 257–261
installation, prerequisites

for 239–242
administrator or root

access 240
available systems or creating

virtual machines 240
communication between

servers 240–241
creating inventory 257–260
DNS resolution 241–242
internet access 240
machine resource

requirements 243
networking

information 242
running deployment

playbook 260
server access 240

installing metrics 81–84
metrics stacks 83–84

managing deployments
with 38–40

querying API server from
pods 151–152

SDN, configuring 211–216
creating advanced network

designs with ovs-net-
workpolicy plugins 214

enabling ovs-multitenant
plugins 214–215

isolating traffic with ovs-
multitenant
plugins 212–214

testing multitenant
plugins 215–216

using ovs-subnet
plugins 212

SDN, managing 197–202
configuring application

node networks
197–199

linking containers to host
interfaces 200–201

working with OVS 201–202
web interface

logging in to 32
OpenShift SDN network

plugin 196
orchestration engine 4
OVS (Open vSwitch)

multitenant plugins
enabling 214–215
isolating traffic with

212–214
testing 215–216

networkpolicy plugins, creat-
ing advanced network
designs with 214

overview 201–202
subnet plugins 212

ovs-multitenant 211
ovs-networkpolicy 211
ovs-subnet 211

P

-p option 45
PATH variable 263
Pending phase, pod 27
permissions 171–173
persistent storage 130, 135–142

adding to application using
web interface 138–142

adding volume to applica-
tions on command
line 137–138

INDEX289

persistent storage (continued)
consistent mappings 165–166
container storage vs 129–130
creating persistent

volume 131–135
creating new resources

from command
line 132–133

creating physical
volume 133–135

logging in as admin
user 131–132

creating persistent volume
claims

with command line 136
with web interface 138–139

handling permanent data
requirements 130

mounting storage disk at
startup 270–272

activating mountpoint
271–272

creating mountpoint
directory 270

editing /etc/fstab to
include volume 271

storage drive block ID 270
NFS (Network File System)

configuring 272–273
configuring storage

for 269–270
confirming volume 274–275
enabling and starting

274–275
installing server

software 268
setting firewall rules to

allow traffic 273–274
starting services 274

testing applications after
adding 142–145

forcing pod restart 143–144
persistent volume

mounts 144–145
persistent volume

claims
creating with web

interface 138–139
using command line 136

creating 131–135
logging in as admin

user 131–132
new resources from com-

mand line 132–133
physical volume 133–135

mounts 144–145

persistentVolumeClaim 137
pet set 161
php-demo-app component 277
physical volume, creating

133–135
selecting reclaim policy 135
selecting storage access

mode 134–135
PID (process ID) 45
--pid option 54
PIDS (process identification

numbers)
in containers 53–55

playbook code, Ansible 257
playbooks

running deployment
playbook 260

updating 265
pod network 195
pods

controlling user ID 227–228
DNS resolution in

networks 209–210
forcing restart 143–144
HAProxy 205–206
isolating with MCS levels 224
managing Linux

capabilities 227
querying OpenShift API

server from 151–152
routing HAProxy requests

to 206–207
security contexts 224–228
triggering autoscaling with

pod metrics 84–89
avoiding thrashing 89
creating HPA objects 84–88
testing autoscaling

implementation 88–89
use cases for direct

access 153–154
policies, SELinux 219
PostStart hook 159
presentation layer 69
preStop hook 159
privileged option 227
privileged pod 206
process identification numbers,

in containers 53–55
production environments, mask-

ing sensitive data in 109–115
config maps for environment-

specific settings 113–115
protecting sensitive data with

secrets 112–113

project admins 174
project quotas 180
projects, creating 23–24
promoteToTest tag 101, 108
promoting images 93
property accessor 278
ps command 53
PVCs (persistent volume

claims) 135
python-pip package 254

Q

QoS (quality of service) 176
querying OpenShift API server,

from pods 151–152
quotas

applying to existing
applications 185–186

changing for deployed
applications 186–187

creating compute
quotas 181–183

for resources 180–185

R

-R option 273
RC (replication controllers)

62–64
readiness probes, creating

76–78
reclaim policy, selecting 135
Recycle option 135
replica set 163
replicas, maintaining 26
replication controllers (RC)

62–64
repositories, configuring on

servers 250
requests 86–88
resiliency of applications,

testing 61–68
labels 65–68
replication controllers 62–64
selectors 65–68

resource limit 86
resources

creating from command
line 132–133

isolating with Linux 42–43
limit ranges 176–180

INDEX 290

resources (continued)
limiting with cgroups 187–192

confirming limits 190–192
identifying container

cgroups 188–189
overview 187–188

limiting with Linux 42–43
machine resource

requirements 243
quotas 180–185

creating compute
quotas 181–183

creating resource
quotas 183–185

restart of pods, forcing 143–144
Retain option 135
rolling upgrades 27
rollout command 106
routes 64
routing

application requests 202–207
investigating HAProxy

pods 205–206
with HAProxy 203–205

exposing services with
routes 30–31

HAProxy requests to correct
pods 206–207

routing layer 7
ROX (Read-only many) 134
runAsUser parameter 227
Running phase, pod 27
RWO (Read/Write once) 134
RWX (Read/Write many) 134

S

S2I 158
scale command 164
scaling applications 16, 68–71

See also autoscaling
scanning container images

228–234
changing SCCs for application

deployment 232–234
deploying image-scanning

applications 229–231
installing software on 234
obtaining image-scanning

applications 228–229
viewing events on command

lines 231–232
SCCs (security context

constraints) 232–234

scheduling applications across
nodes with Kubernetes
40–41

scopes 182
SDN (software-defined

networking) 9, 196
search parameter 253
secrets, protecting sensitive data

with 112–113
secure socket shell protocol. See

ssh (secure socket shell)
protocol

security
annotating images with secu-

rity information 235–236
pod security contexts

224–228
controlling pod user

ID 227–228
managing pod Linux

capabilities 227
MCS levels 225–226

scanning container
images 228–234

changing SCCs for an
application
deployment 232–234

deploying image-scanning
applications 229–231

obtaining image-scanning
applications 228–229

viewing events on command
lines 231–232

viewing security scan
results 234

SELinux core concepts
218–224

applying labels with SELi-
nux contexts 220–221

enforcing SELinux with
policies 221–224

isolating pods with MCS
levels 224

SELinux labels 219
security context constraints,

changing for application
deployment 232–234

selectors 65–68
SELinux module 218–224

configuring on nodes 256
contexts, applying labels

with 220–221

enforcing with policies
221–224

isolating pods with MCS
levels 224

labels 219–221
seLinuxOptions 226
semanage command 221
servers

access to 240
application-node servers,

installing software
on 255

communication
between 240–241

configuring DNS resolution
on 250–253

configuring /etc/
resolv.conf 251–252

configuring
NetworkManager
252–253

configuring repositories
on 250

master servers, installing
software on 253–255

setting permanent configura-
tions on 246–248

service component 28
services 64

discovery 103–106
DNS 104
environment variables

104–105
fixing ToDo by injecting

environment
variables 105–106

exposing with routes 30–31
maintaining applications

71–78
creating liveness

probes 72–76
creating readiness

probes 76–78
providing consistent applica-

tion access with 28–30
scaling applications 68–71
testing application

resiliency 61–68
labels 65–68
replication controllers

62–64
selectors 65–68

with internal DNS,
locating 208–210

See also headless services

INDEX291

serving applications 9–11
shared storage, NFS 258
shells, in containers 278
show-all=false option 53
shutdown order, with stateful

sets 161–162
signals, Linux 159
SIGTERM signal 159
SkyDNS 104
software-deployment

pipeline 92
ssh (secure socket shell) proto-

col, access to 240, 254
ssh-copy-id command 254
ssh-keygen command 254
startup, deterministic

sequencing of 161–162
stateful applications

demonstrating sticky
sessions 154–157

enabling headless
services 148–154

application clustering with
Wildfly 149–151

querying OpenShift API
server from pods
151–152

use cases for direct pod
access 153–154

verifying Wildfly data
replication 153

graceful shutdowns 157–160
container lifecycle

hooks 159–160
selecting method 160
setting grace periods for

application
cleanup 157–159

integrating 16–19
native API object support for,

with stateful sets 160–167
without native solutions

166–167
stateful sets

deterministic sequencing of
startup with 161–162

examining 162–164
limitations of 166
native API object support for

stateful applications
with 160–167

consistent persistent storage
mappings 165–166

predictable network
identity 164–165

stateful applications without
native solutions
166–167

shutdown order with 161–162
stateless applications,

integrating 16–19
sticky sessions 154–157
storage 15–16

attaching to applications, with
web interface 140–142

container storage, configuring
for application
nodes 255–256

disks, creating filesystems
on 269–270

selecting access mode 134–135
See also persistent storage

storage disks, mounting at
startup 270–272

activating mountpoint 271–272
creating mountpoint

directory 270
editing /etc/fstab to include

volume 271
storage drive block ID 270

storage layer 69
Succeeded phase, pod 27
system users 172
systemctl command 256
systemctl-cgls command 190
systemd command 46

T

tar utility 262
TCP socket checks 72
Terminating pods 182
test environments, promoting

dev images into 101–109
automating image promotion

with image stream
triggers 107–109

service discovery 103–106
testing

application resiliency 61–68
labels 65–68
replication controllers

62–64
selectors 65–68

applications after adding per-
sistent storage 142–145

forcing pod restart 143–144

persistent volume
mounts 144–145

autoscaling
implementation 88–89

ovs-multitenant plugins
215–216

thrashing, avoiding 89
time sharing, Unix 52
Timeout value 74
timeslices 86
ToDo application, fixing by

injecting environment
variables 105–106

toggling sticky sessions 155–157
traffic, isolating with ovs-

multitenant plugins
212–214

tun0 interface 202
type enforcement 223

U

Unix time sharing
namespaces 52–53

Unknown phase, pod 27
updating

inventory 265–266
playbooks 265

upgrades, managing
methods 27

usebuttons property 114
user roles 173–176

assigning 173–174
creating administrators

174–175
creating cluster

admins 174–175
creating project

admins 174
setting default 175–176

users 227–228
See also admin users

UTS (Unix time sharing)
namespaces 52–53

UUID (unique identifier) 270

V

veth (virtual Ethernet
interface) 198, 202

virtual machines 80, 240
VNID (VXLAN network

identifier) 213

INDEX 292

volume
adding to applications on

command line 137–138
editing /etc/fstab to

include 271
volume claim template 165
VXLAN (virtual extensible local

area network) 197

W

watch command 82
web interface

adding persistent storage to
applications 138–142

attaching storage to applica-
tions with 140–142

creating persistent volume
claims with 138–139

deploying applications
with 32–36

OpenShift, logging in to 32
webhooks, Gogs 98
wildcard record, DNS 241
Wildfly server

clustering applications
with 149–151

verifying data replication 153
workloads, determining 81

Y

YAML format 132
yum command 254

Z

-Z option 220

Duncan ● Osborne

C
ontainers let you package everything into one neat place,
and with Red Hat OpenShift you can build, deploy, and
run those packages all in one place! Combining Docker

and Kubernetes, OpenShift is a powerful platform for cluster
management, scaling, and upgrading your enterprise apps.

OpenShift in Action is a full reference to Red Hat OpenShift
that breaks down this robust container platform so you can
use it day-to-day. Starting with how to deploy and run your
fi rst application, you’ll go deep into OpenShift. You’ll dis-
cover crystal-clear explanations of namespaces, cgroups, and
SELinux, learn to prepare a cluster, and even tackle advanced
details like software-defi ned networks and security, with real-
world examples you can take to your own work. It doesn’t
matter why you use OpenShift—by the end of this book you’ll
be able to handle every aspect of it, inside and out!

What’s Inside
● Written by lead OpenShift architects
● Rock-solid fundamentals of Docker and Kubernetes
● Keep mission-critical applications up and running
● Manage persistent storage

For DevOps engineers and administrators working in a Linux-
based distributed environment.

Jamie Duncan is a cloud solutions architect for Red Hat, focus-
ing on large-scale OpenShift deployments. John Osborne is
a principal OpenShift architect for Red Hat.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/openshift-in-action

$44.99 / Can $59.99 [INCLUDING eBOOK]

OpenShift IN ACTION

SOFTWARE DEVELOPMENT/LINUX

M A N N I N G

“The fi rst holistic view of
OpenShift in print …

a soup-to-nuts approach that
combines both the developer
and operator perspectives.”

—From the Foreword by
Jim Whitehurst, Red Hat

“At last, a much-needed
guide to OpenShift!

An excellent read crammed
with practical

hands-on exercises.”—Michael Bright, Containous

“The defi nitive guide
to the base technologies
 of the containers era.”

—Ioannis Sermetziadis
Numbrs Personal Finance

“An essential resource.
Gives a clear picture of

 a complex ecosystem.”
—Bruno Vernay, Schneider Electric

See first page

	OpenShift in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: a roadmap
	About the code
	Book forum

	about the authors
	about the cover illustration
	Part 1: Fundamentals
	Chapter 1: Getting to know OpenShift
	1.1 What is a container platform?
	1.1.1 Containers in OpenShift
	1.1.2 Orchestrating containers

	1.2 Examining the architecture
	1.2.1 Integrating container images
	1.2.2 Accessing applications
	1.2.3 Handling network traffic in your cluster

	1.3 Examining an application
	1.3.1 Building applications
	1.3.2 Deploying and serving applications

	1.4 Use cases for container platforms
	1.4.1 Technology use cases
	1.4.2 Use cases for businesses
	1.4.3 When containers aren’t the answer

	1.5 Solving container storage needs
	1.6 Scaling applications
	1.7 Integrating stateful and stateless applications
	1.8 Summary

	Chapter 2: Getting started
	2.1 Cluster options
	2.2 Logging in
	2.2.1 Using the oc command-line application

	2.3 Creating projects
	2.4 Application components
	2.4.1 Custom container images
	2.4.2 Build configs
	2.4.3 Deployment configs
	2.4.4 Image streams

	2.5 Deploying an application
	2.5.1 Providing consistent application access with services
	2.5.2 Exposing services to the outside world with routes

	2.6 Deploying applications using the web interface
	2.6.1 Logging in to the OpenShift web interface

	2.7 Deploying applications with the web interface
	2.8 Summary

	Chapter 3: Containers are Linux
	3.1 Defining containers
	3.2 How OpenShift components work together
	3.2.1 OpenShift manages deployments
	3.2.2 Kubernetes schedules applications across nodes
	3.2.3 Docker creates containers
	3.2.4 Linux isolates and limits resources
	3.2.5 Putting it all together

	3.3 Application isolation with kernel namespaces
	3.3.1 The mount namespace
	3.3.2 The UTS namespace
	3.3.3 PIDs in containers
	3.3.4 Shared memory resources
	3.3.5 Container networking

	3.4 Summary

	Part 2: Cloud-native applications
	Chapter 4: Working with services
	4.1 Testing application resiliency
	4.1.1 Understanding replication controllers
	4.1.2 Labels and selectors

	4.2 Scaling applications
	4.2.1 Modifying the deployment config

	4.3 Maintaining healthy applications
	4.3.1 Creating liveness probes
	4.3.2 Creating readiness probes

	4.4 Summary

	Chapter 5: Autoscaling with metrics
	5.1 Determining expected workloads is difficult
	5.2 Installing OpenShift metrics
	5.2.1 Understanding the metrics stack

	5.3 Using pod metrics to trigger pod autoscaling
	5.3.1 Creating an HPA object
	5.3.2 Testing your autoscaling implementation
	5.3.3 Avoiding thrashing

	5.4 Summary

	Chapter 6: Continuous integration and continuous deployment
	6.1 Container images as the centerpiece of a CI/CD pipeline
	6.2 Promoting images
	6.3 CI/CD part 1: creating a development environment
	6.3.1 Invoking object triggers
	6.3.2 Enabling automated and consistent deployments with image streams

	6.4 CI/CD part 2: promoting dev images into a test environment
	6.4.1 Service discovery
	6.4.2 Automating image promotion with image stream triggers

	6.5 CI/CD part 3: masking sensitive data in a production environment
	6.5.1 Protecting sensitive data with secrets
	6.5.2 Using config maps for environment-specific settings

	6.6 Using Jenkins as the backbone of a CI/CD pipeline
	6.6.1 Triggering Jenkins from Gogs
	6.6.2 Native integration with a Jenkinsfile

	6.7 Deployment strategies
	6.8 Summary

	Part 3: Stateful applications
	Chapter 7: Creating and managing persistent storage
	7.1 Container storage is ephemeral
	7.2 Handling permanent data requirements
	7.3 Creating a persistent volume
	7.3.1 Logging in as the admin user
	7.3.2 Creating new resources from the command line
	7.3.3 Creating a physical volume

	7.4 Using persistent storage
	7.4.1 Creating a persistent volume claim using the command line
	7.4.2 Adding a volume to an application on the command line
	7.4.3 Adding persistent storage to an application using the web interface

	7.5 Testing applications after adding persistent storage
	7.5.1 Data doesn’t get mixed up
	7.5.2 Forcing a pod restart
	7.5.3 Investigating persistent volume mounts

	7.6 Summary

	Chapter 8: Stateful applications
	8.1 Enabling a headless service
	8.1.1 Application clustering with WildFly
	8.1.2 Querying the OpenShift API server from a pod
	8.1.3 Verifying WildFly data replication
	8.1.4 Other use cases for direct pod access

	8.2 Demonstrating sticky sessions
	8.2.1 Toggling sticky sessions

	8.3 Shutting down applications gracefully
	8.3.1 Setting a grace period for application cleanup
	8.3.2 Using container lifecycle hooks

	8.4 Native API object support for stateful applications with stateful sets
	8.4.1 Deterministic sequencing of startup and shutdown order with stateful sets
	8.4.2 Examining a stateful set
	8.4.3 Predictable network identity
	8.4.4 Consistent persistent storage mappings
	8.4.5 Stateful set limitations
	8.4.6 Stateful applications without native solutions

	8.5 Summary

	Part 4: Operations and security
	Chapter 9: Authentication and resource access
	9.1 Proper permissions vs. the Wild West
	9.2 Working with user roles
	9.2.1 Assigning new user roles
	9.2.2 Creating administrators
	9.2.3 Setting default user roles

	9.3 Limit ranges
	9.3.1 Defining resource limit ranges

	9.4 Resource quotas
	9.4.1 Creating compute quotas
	9.4.2 Creating resource quotas

	9.5 Working with quotas and limits
	9.5.1 Applying quotas and limits to existing applications
	9.5.2 Changing quotas for deployed applications

	9.6 Using cgroups to limit resources
	9.6.1 Cgroups overview
	9.6.2 Identifying container cgroups
	9.6.3 Confirming cgroup resource limits

	9.7 Summary

	Chapter 10: Networking
	10.1 OpenShift network design
	10.2 Managing the OpenShift SDN
	10.2.1 Configuring application node networks
	10.2.2 Linking containers to host interfaces
	10.2.3 Working with OVS

	10.3 Routing application requests
	10.3.1 Using HAProxy to route requests
	10.3.2 Investigating the HAProxy pod
	10.3.3 How HAProxy gets requests to the correct pods

	10.4 Locating services with internal DNS
	10.4.1 DNS resolution in the pod network

	10.5 Configuring OpenShift SDN
	10.5.1 Using the ovs-subnet plugin
	10.5.2 Isolating traffice with the ovs-multitenant plugin
	10.5.3 Creating advanced network designs with the ovs-networkpolicy plugin
	10.5.4 Enabling the ovs-multitenant plugin
	10.5.5 Testing the multitenant plugin

	10.6 Summary

	Chapter 11: Security
	11.1 Understanding SELinux core concepts
	11.1.1 Working with SELinux labels
	11.1.2 Applying labels with SELinux contexts
	11.1.3 Enforcing SELinux with policies
	11.1.4 Isolating pods with MCS levels

	11.2 Investigating pod security contexts in OpenShift
	11.2.1 Examining MCS levels in OpenShift
	11.2.2 Managing pods Linux capabilities
	11.2.3 Controlling the pod user ID

	11.3 Scanning container images
	11.3.1 Obtaining the image-scanning application
	11.3.2 Deploying the image-scanning application
	11.3.3 Viewing events on the command line
	11.3.4 Changing SCCs for an application deployment
	11.3.5 Viewing security scan results

	11.4 Annotating images with security information
	11.5 Summary

	Appendix A: Installing and configuring OpenShift
	A.1 Prerequisites
	A.1.1 Available systems or creating virtual machines
	A.1.2 Administrator or root access
	A.1.3 Internet access
	A.1.4 Access to the servers
	A.1.5 Communication between servers
	A.1.6 DNS resolution
	A.1.7 Networking information

	A.2 Machine resource requirements
	A.3 Installing CentOS 7
	A.3.1 Launching the installer
	A.3.2 Configuring the disk setup
	A.3.3 Setting up networking
	A.3.4 Setting the permanent configurations on the servers
	A.3.5 Starting the installation
	A.3.6 Wrapping up and rebooting

	A.4 Preparing to install OpenShift
	A.4.1 Software prerequisites
	A.4.2 Configuring DNS resolution on both servers
	A.4.3 Installing software on the master server
	A.4.4 Configuring container storage for application nodes
	A.4.5 Enabling and starting docker on your OpenShift nodes
	A.4.6 Configuring SELinux on your OpenShift nodes

	A.5 Installing OpenShift
	A.5.1 Creating the OpenShift inventory
	A.5.2 Running the deployment playbook

	A.6 Installation complete
	A.7 Installing the oc OpenShift command-line utility
	A.7.1 Installing oc on Windows
	A.7.2 Installing oc on macOS
	A.7.3 Installing oc on Linux
	A.7.4 Confirming that oc is installed and functioning correctly

	A.8 Adding an OpenShift node
	A.8.1 Preparing the new application node

	A.9 Configuring the master node
	A.9.1 Updating OpenShift playbooks
	A.9.2 Updating your OpenShift inventory

	A.10 Adding the node

	Appendix B: Setting up a persistent storage source
	B.1 Installing the NFS server software
	B.2 Configuring storage for NFS
	B.2.1 Creating a filesystem on your storage disk

	B.3 Mounting your storage disk at startup
	B.3.1 Creating a mountpoint directory
	B.3.2 Getting your storage drive’s block ID
	B.3.3 Editing /etc/fstab to include your volume
	B.3.4 Activating your new mount point

	B.4 Configuring NFS
	B.4.1 Setting ownership of the mountpoint

	B.5 Setting firewall rules to allow NFS traffic
	B.6 Enabling and starting NFS
	B.6.1 Starting NFS services
	B.6.2 Confirming that your NFS volume is exported and ready to use

	Appendix C: Working directly with Docker
	C.1 Getting running containers
	C.2 Using docker inspect
	C.3 Interactive shells in a container

	Appendix D: Configuring identity providers
	D.1 Introduction to htpasswd
	D.2 Creating the htpasswd database
	D.3 Changing authentication providers

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	Back Cover

