
BENJAMIN l.. KOVITZ

AManual of
Content 6 Style

30mm

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Practical Sofia/are
Requirements

A MAN! «11 (:UNHN'\ r\NHS|\|l

1H \HWN l.. Kan/

MANN‘NG

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

contents

mm.“mm m
(Ackmmr/rdgnumn m
MINIMUM/1w wm

Part] Grounduwrh I

l I’m/I/mnw/I'mg ,v

I l The myxh DHunmuml Acmmpuuuon i
[,1 thlm mmngnml drugu pJurth m

“(M(ngmrunmrrdh \Amh ‘ u WWW“ m u
Ii \X

w 4 mm mmpmmn ml All-mmlmwnmn n,
,
software H mm 13

2 PwI/lem dzfim'ng 23
.\ RmImrrnu-mhmddrwlgn palulm 3x
1 sunwm pmmum 2s1

2 Ixcqmremmmmgmecnng 17
lawn“ [turned 10

www.allitebooks.com

http://www.allitebooks.org

< hmmn/MXM/MmMpggm H
, \M Wmummm n
u Pn'nmmum 6
W .Mu. dawn m

n \.‘HlH\HHH‘H1(‘\.(‘\\“}YH‘¥\HHV w
«2 Hvxmwlum w

w M'M'HWHuzymn‘u‘mmv H
‘ \Hmzwhmm Mmmm m w m

\MHMMW m-wmm \ mm ‘ M»
n \mrmm w:

I /’H////:'H//nmI/Hg ;»

:mp‘vhlum ~<

, Hu-HH'M -,

' a ‘Wum‘Nmmmnnv m
w ’1 « mvrmrnm40:11am» 01

m RuhmHu-nwu m
m um Amgmm (n
or MrwJugrw-m«fmumvnmmm m
4S \mumwmm. ‘n

3 hr wwwmmm fiw‘

w m Hun ';
l‘flmmuhm‘vaMm r»\ Mm” \‘n mm mm ,, m _
m . m: mm: ..- unnur q _ vaw

,x mumpmmm u

u mWWW”,Mm.“ <

m
u w

H w

“M‘Mmm m

H pvx-w‘n ”L.“ :(
MM M‘um m

.mwm Hm
v umnam W
Hdmom h um‘mm m

w n “MW < mummmm 1 V

mm W ‘ «VJ-Um
(Mn M 7m
muny‘x.‘»wm,tmm ,4“!me w

m mmmm/:/m’mm/_\ IN}

HM \Huum m
w xx

\ «whwumm w
m :4»

Hum» w’
mm mm H w \ m mm mm

mm ummur

.H‘ MMQH‘ w H mmnlm

// (1/HulM/H ‘I/rI/‘HWI/H/ ,W'
\W mmmm m
\m-rfl“mmwm MM W, \ H

mum ‘w
Awmm 1::
mm AM

Im
mu v

// (hymns/Hum .w
H‘ (mmmfim w:
H ' Mmupw 1w

u w“ W m
w \ \(qmuu’ um
w - lum‘mm m:

[3 \m.z//(/m;/. ms

Hm /\' [mm/Mm W)

1/. mungwqmmmm 34/

/" Hug lug mm' [um/m ‘

yummy m1

y'n/r/mw/ym m
mr/av ,, I7

“HM“

CHAPTER 1

Problem solving
This book is not about programming. It is about how to define a problem for people to
solve by programming a computer. Defining such a problemmeans providing all of the
information that programmers and interface designers need in order to make a com—
puter bring about efl'ects outside of the computer. The complete statement of this prob—
lem is called the requirement: for the software.

Whereas programming is the act of configuring a machine to behave in a certain
way, writing software requirements is a form of communication between people. The
people who desire effects from the software—the people whowant to print reports, con-trol manufacturingprocesses, generate 3D images, or whatever may be the intended useof the software—need to communicate those desires to the people who design the
machine behavior that brings about those effects: the interface designers. The people
who design the machine behavior need to communicate their ideas to the people who
actually configure the machines: the programmers. Other peoplewho work on the soft—
ware—the testers and the people who write the user manuals—need the same informa—
tion in order to do their jobs. This book is about how to give all of these people the
information they need.

Thus, this book is about a certain kind of technical writing: how to write software
requirements documents. Sometimes technical writing is narrowly construed as covering

3

Specifications
Requirements (interface design documents)
documents

Not programming

Database schemes

£3
Pick up cargoesDHaul cargoes

to destinations
Ar

interfaces

Figure 1.1 What this book is about

only the mechanics of grammar and formatting.This book takes a much
broader view:

both the choice of the content to include in the document and all aspects of the choices

about how to present it, from small details of wording to the largest decisions about

overall organization.‘
The niceties of grammar and punctuation are covered in hundreds of other books

about writing, so we won’t cover them here. We also won’t cover the principles of what

makes a good choice for a problem to solve, or how to think up good problems to solve,

or what makes a good user interface, and so forth. This book is only about how to write

documents in order to make them useful to a software development team, including all

of the information they need, and techniques for presenting that information so real

people can understand and use it.
In chapter 1, we’ll explore the fundamental principles of requirements, interfaces,

and programs—what they are and how they’re different from each other. But first,

before we can define software problems well, we’ll need to understand how program-

mers go about solving them in real life. We’ll start by learning a few lessons from the

software industry’s experiences of the last few decades—a period of still-unfinished tran-

sition from software as pure research field to software as engineering discipline.

“ [Schriver 1997] is an excellent, wide—rangingintroduction to this broad conceptionof technical writing.

4 CHAPTER 1 PROBLEM SOLVING

1.1 The 771th offimctz'omzl
decomposition

The goal of any kind of engineering, not just software engineering, is to give people the

ability to do something that they currently can’t do—for example, travel from Los Ange-

les to Sydney in less than 24 hours, get information no more than five seconds out of
date about any stock trading at the New York Stock Exchange, wash clothes with very
little musculareffort. The task of the engineer is to design a device that gives people the
desired ability—an airplane, an information system, or a washing machine.

Loosely defined, requirements are any criteria that an artifact to be designed must
meet in order to be considered successful—roughly, what the customer can’t do until the
artifact is created, and the reason for creating it. We’ll provide a more precise definition
of requirements in chapter 3, but this will serve for now. To write a useful requirements
document, we will need to understand what engineers do in order to produce a design
that meets the requirements.

Engineering is essentially bridging the gap between requirements and available

materials. Different engineering fields consist of techniques for bridging different kinds
of gaps between different kinds of requirements and different kinds of materials. An
aeronautical engineer is a person who knows how metal and other materials can be

shaped and combined to make an airplane, meeting requirements pertaining to flight; a
chemical engineer is someone who knows how to design apparatus to drive chemical

reactions, meeting requirementspertaining to substances to be produced; and so forth.
A software engineer is someone who knows how to configurecomputers to perform

various tasks related to information, such as providing information to people, transmit—

ting information, and causing objects to behave in accordance with specified rules. The
materials of a software engineer are unusual because they are intangible. They are the
instructions that the computer is capable of executing, or the subroutines and instruc—

tion blocks made available by operating systems, subroutine libraries, and high—level

programming languages.
Bridging the requirements/materialsgap is seldom an easy business, particularly

when the gap is large. Given a sponge, it's easy to see a way to get dishes clean, but
there’s an enormous gap between having only natural materials on hand and building a
dishwasher. It took centuries for engineers to find a way to make airplanes, involving
exploration of countless dead ends. Once someone figures out how to bridge the gap, as
the Wright brothers did in the case of flight, the design can be repeated and slightly var-
ied to solve new problems, but how do you bridge the gap when it’s very large? How, for

example, do you approachwriting a program to manage the operations of a nationwide

THE MYTH OF FUNCTIONAL DECOMPOSITION 5

business when yourmaterials are tiny statements in computer languages that merely add

or substract numbers, write and read blocks of data to and from a disk, execute either

one block of instructions or another depending on the value of a certain memory loca—

tion, and so on?

I . I. 1 Functional decomposition
Many theories about how to bridge large engineering gaps have been proposed. In the

1970s, one theory about how engineers can reliably bridge a large gap between materials

and requirements became popular. Known as fienm’onal decomposition, or sometimes

top—down design or stepwise refinement, it dominated the software industry for about

twenty years and had particular influence on system analysts—the people who write

software requirements.
According to the theory of functional decomposition,by following the steps shown

below, an engineer can produce a design that meets any requirements that can be met:

1 The engineer identifies the function of the system to be built. The function is

what the system is to do, as opposed to how the system will do it or what the sys—

tem will be. So, for example, we don’t say that the customer wants a washing

machine;we say only that the customerwants to be able to wash a load of clothes

of a specified size within a specified time, using no more than a specified amount

ofmuscular effort.
2 If the function maps directly onto available parts—nuts, bolts, computer instruc—

tions—the engineer allocates the function to those parts and the design is done.

3 Otherwise, the engineer divides the function into subfunctions and repeats steps 2

and 3 until every subfunction is small enough to map onto the smallest parts of the

design. The engineer is careful to exclude any design decisions from the specifica—

tion of these subfunctions.Again, each subfunction says what the subsystem must

do, not how it will do it.
For example, the subfunctions of the was/1 clot/9e: function might include: accept
clothes from user, return clothes to user, and remove dirt particles from clothes.

The first two would be allocated to the door of the washing machine; the last func—

tion would be further subdivided. Notice that the last function is specified without

mentioning soap or a rinse cycle or a motor. Those would be describing how the

dirt particles are to be removed and would, therefore, be a design decision.

At first glance, this appears to be a perfectly rational, systematic approach to engi-

neering. If a function is too big for the human mind to figure out how to implement it
all at once, then break it down into smaller functions and repeat until you reach func—

tions small enough to handle. Every main function required by the user gets allocated to

6 CHAPTER I PROBLEM SOLVING

exactly one element of the design, ensuring that every function is implemented. Every
design element traces back to the required functions, ensuring that the design includes
no superfluous elements.

An added bonus is that different subfunctions can be allocated to different engi«
ncers. On a large project, such as an airplane or an operating system, such a division of
labor is a necessity. On a large project, a major task of the analyst or system engineer is

to identify the major subfunctionsof the system so that they can be allocated to distinct
design units. People can then implement and test the design units independentlybefore
integrating them.

It sounds good—until you try it.

1.1.2 Let’sput it to the test
While this book isn’t about how to write programs, we need to understand what pro-
grammers do when writing a program in order to write useful requirements documents
for them. To see how functional decompositionworks in practice—or rather, doesn’t
work—let’s follow the plight of a student taking a beginningprogrammingcourse. Here
is a typical, simple assignment given to a student in such a course:

Assignment—functionalrequirements:

(1) Convert numbers expressed in binary digits to decimal.
(2) Convert numbers expressed in decimal digits to binary.

For both types of numbers, allow fractions, indicated by digits to the right
ofa decimal point, and a plus or minus sign at the beginningof the number
to indicatewhether the number is positive or negative.

The student knows only the statements available in one programming language,
such as C or BASIC, and has been taught that the rational approach to program design
is functional decomposition.Those are the onlyweapons the student has to attack this
assignment: knowledge of the programming language plus the theory of functional
decomposition.

Notice that for the student, despite the fact that the assignment is fairly elementary,
the engineering gap is quite large. He or she knows of no C or BASIC statements to per—
form the desired functions, has access to no subroutine libraries to do the job, and has
never solved a problem like this before. So the student will have to break the functions
down, perhaps to many levels, in order to implement them.

So, what are the subfunctions? Nearly any beginningprogrammerwill draw a total
blank. If they do come up with something, it might go like this:

THE MYTH 0F FUNCTIONAL DECOMPOSITION / 7

bin—>dec
converSlon

binary decimal
numbers numbers

user numbers numbers user

declmal binary
numbers numbers

decabln
. . COI'IVEI’SIOn

(a) Top-level decomposrtlon

single-digit
converter

0,1

decimal number

plus. minus. plus. minus.
decrmal point decimal point

punctuation
Convener

(b) Decomposmon of decabin function

Figure 1.2 Beginning programmer's attempt at functional decompositionof base conversion
program

“Let’s see, I suppose there’s an input fisnction and an output function, and I guess
there will be two conversion functions. Now, how should I decompose the conversion
functions? Umm. . .maybe one subfunction handles the digits and the other subfimction
handles the punctuation marks. Each time a conversion function receives a character, it
calls the appropriate subfunction to convert it and sends the convertedcharacter to the
output function." Figure 1.2 diagrams this functional breakdown.

An experienced programmerwould know that such a program structure is a disas—

ter. It’s bug—prone because nearly all the subroutines “know” too much about what the
others do; their responsibilities overlap in ways that can easily become unsynchronized.
The program is unnecessarily long (and therefore bug-prone) because four functions are
doing very similar workwhich could be done more cleanly by a single function. Finally,
the requirement that each conversion function output a digit each time it receives a digit
is impossible to fulfill. When the single—digit binary—to—decimal conversion function
receives a 1, what can it output? There’s no way to know until it receives more digits:
101 should produce 5, 10110 should produce 22, and so forth.

8 CHAPTER 1 PROBLEM SOLVING

1 its
[1567

d E

dlfilts bin—ydec
conversion

loamy decimal
dlgllS dlgits

“a“??? ’

user

decimal binary.
digits: digits

dec—tbin
conversion

Figure 1.3 Second attempt at functional decomposition

After writing some code, the student would likely discover most of these prob-
lcms. Okay, back to the drawing board. Brooks says, “Plan to throw one away; you
will, anyhow.”

After struggling a while with the conversion functions—thehard part of the assign-
ment—the student now decides that maybe there should be a digit—reversing function.
One difficulty the student encountered in writing the conversion fimctionswas the need
to access digits that appear later in the stream in order to determine the numerical value
of earlier digits. For example, the function can’t tell that the 4 in 426 stands for 400, not
40 or 40,000, until it’s read the remaining two digits. So the input function collects the
entire string of digits, and, when the entire number is done, the input function sends
the string to the reversing function. The reversing function then sends the string to the
appropriate conversion functions, but in reverse order. Now the conversion functions
know that the first digit received—at least in a number with no fractional part—is in
the ones position, the second digit is in the tens position, and so on.

The new design (shown in figure 1.3) is a little better—maybe—but an
CXperienced programmer would do it very differently. He knows some tricks such as
internal representations that are independentof input or output formats, and something
czdled a parser. The programmer sees that these tricks apply very nicely to this problem,
and adds a parameter to the parser indicating what base to convert from, thereby
C0““PSngI, two functions into one. The parser is concerned with creating the base-x' [Brooks 1975], p. 116.[HE MYTH OF FUNCTIONAL DECOMPOSITION 9

userd‘afls number baseindependent numb” 4'6““SE" parser
represen__t_ation

mmahzarron: N = 0, Slgl'l = 1, F = 1

digitisi 0,123,455,193) ri convemng ivom declmal, i o, 1 lil imm blnary

nm dill onion nll‘fll‘l
START + inonei LEFT_OF_DECIMAL

- sign = -i LEFT_OF_DECIMAL
mgr: N = '91? LEFT_0FVDECIMAL
. (none) RIGHT_0F_DECIMAL
other error DONE

LEFLOKDECIMAL drgr‘r N = N ' base + drgrr LEFTVOFVDECIMAL

. lnane) RiGHT_OF_DECIMAL
return dons DONE
other error DONE

RIGHT_OF_DECiMAL digit F = F/bsss;N = N + digit ' F RIGHT_OF_DECiMAL
return done DONE
other error DONE

Figure 1.4 Experienced programmer'sdesign

independent representation, but not with generating the output. The programmergives
to the output function the job of converting the base-independent representation to a
specific base, effecting a very different separation of concerns than that found in the
student’s program. Coding the parser requires a trick called a state-transition table, but
the programmer has written those before and tosses it off in five minutes without a
mistake. This approach is shown in figure 1.4.

Why, armed with the theory of functional decomposition,was the beginning stu—

dent unable to invent a design even remotely like the design produced almost instan—
taneously by the experienced programmer? The beginning student could have
decomposed functions into subfunctions into subsubfunctions for the next six
months and still not found the idea of a state—transition table—the key to a simple,
bug-free design.

1.2 Problem solving and design patterns
Functional decomposition is just one ofmany generalized techniques of problem solv-
ing—that is, techniques that aim to help people solve a wide variety of problems across
a wide variety of fields. The following is an exhaustive list of all problem solving tech—

niques, arranged in order of decreasing effectiveness:

1 Already knowing the solution

10 CHAPTER 1 PROBLEM SOL VING

2 Already knowing the solution to a similar problem

3 All other techniques

The thirdflenormous—category lumps functional decomposition together with

whacks on the side of the head, thinking outside the box, and all the others because,

COmpared to the first two techniques, they are nearly worthless. All of them, including
functional decomposition, have considerable value, but none can compare with either

alread)’ having the solution or already having the solution to a problem similar enough
that it requires no great leaps of creativity to make the necessary adjustments.

This might seem like cheating. Already knowing the solution hardly seems like a

technique for solving problems. Maybe so. But as engineers, we are not interested in giv—

ing problems a sporting chance. We want dependableways to create designs that meet
requirements and please customers, and the fact is that none of the techniques, other
than the first two, reliably generate results.

There’s a simple reason for this: only the first two techniques have features that are
specific to the problem to be solved. Engineeringproblems are so different from each
other that very few of the ideas or knowledge that enable you to solve one problemwill
help you solve a problem from a different field. Knowing how to design a sailboat
doesn’t tell you much about how to design a low—power light source. Completelygener-
alized ideas that are so unfocused that they apply equally to all problems can give you
some help, but not much. What help does “break the problem down into subproblems”
give you when your problem is to build an accounting system out of computer instruc—
tions? However, knowing how to design a small sailboat gives you an enormous head
start on designing a slightly larger one.

1.2.1 How engineering really war/e5
Now we can see both why fiinctional decompositiondoesn’twork and how engineering
really works.

Functional decompositiondoesn’twork because there are many diEerentways
to divide a high—level function into subfimctions, and there is no way to tell
which of those possible divisions are good or bad until you’ve gotten to the
lowest level ofdesign.
That’s one reason why the student was at a loss to come up with a good functional

breakdown, and why the first two that he tried worked out so poorly. The student
couldn’t tell that he or she had made the conversion functions impossible to write until
they had started trying to write them. It’s only at the bottom level, once you’ve started
writing code, that you're in a position to evaluate a particular functional breakdown. By

PROBLEM SOL VINGAND DESIGN PATTERNS 11

then, it’s often too late to correct errors at the top level, especially if you’ve allocated the
subfunctions to different programmers and you’re three months into the project.

The way engineering really works is as follows:

1 Engineers apply and slightly vary already existing, time-tested designs.

2 Engineers engage in unstructured exploration of new designs and new ways to put
old designs together.

Both types ofproblem solving can occur in the same project, of course.
The reason the experienced programmerwas able to invent a wonderful design on

the spot is because an experienced programmerknows several excellent designs that have
been used thousandsof times before. They know about parsers and display—independent
representations, as well as a few other tricks, and see how thw can solve the base conver-
sion problem. That’s all there is to it.

The reason the student failed to invent a good program structure is because the stu-
dent didn’t know about such clever tricks as state-transition tables and display-indepen—
dent representations. There’s nothing in the idea of functional decompositionthat says
“make a state—transitiontable and a display—independent representation,” so functional
decompositiondidn’t help him.

You might object that the student should have known better than to specify the
conversion functions in their first design in a way that was impossible to imple—

ment—that he or she should have known more number theory, or should have
known some programming techniques that would have made the job easier. How—

ever, that amounts to demanding that the student already know some of the major
elements of the solution. Of course, students will learn these things from later
courses and as they find good designs to imitate. Those will help the student—not
general problem solving techniques.

1.2.2 Design patterns
Strangely, despite the importance of standard designs in all engineering fields, the
concept has never been given a common name, and its role in engineering has mostly
been left implicit in engineering practice and curricula. People learn standard designs
for bridges, D.C. generators, brakes, smelters, microphones, and so forth, but they
don’t learn that use of standard designs is what separates professional engineering
from tinkering.

In software, the term design pattern has recently come to denote such a standard
design.* The word pattern emphasizes that the design can be applied “a million times

* Brought to widespread use mainly by [Gamma 1995].

12 CHAPTER 1 PROBLEM SOL VING

without ever doing it the same way twice.M While some patterns (like the brick)
vero ’

from one application to another, most (like the suspenSion bridge) are fleXible
var litth

‘y
re intelligence and imagination to apply. Thus, no two suspenSionideas that requi

bridges are alike. . .

This ”56 0f the Word pattern Comes from the work of architect Christopher Alex—

1ndcr, who found the same principle at work in town planning and architecture. In A

‘1’1mm! Language, Alexander set about cataloging numerous patterns commonly
Found in towns and buildings that people like. Many of these patterns are simple

things that we all know: street cafe is a pattern, comer grocery is a pattern, dormer win—

dow is a pattern, waist—high shelfis a pattern. Just as possessing a rich vocabulary of
words enables you to write well, possessing a rich vocabulary of design patterns
enables you to design well.

A pattern is not the same thing as a reusable component.A component is a specific
physical object (or, in the case of software, a specific configuration). Two different

instances of the same component are identical; both are instances of the same design. A
pattern is a reusable idea. No two instances ofa pattern are quite the same. The applica-
tion of patterns is called design or engineering; the creation of new instances of the same
design is called manufacturing.

1.3 Why sofiware is lmm’
Early in the history of an engineering field, its practices tend more toward unstructured
exploration than toward application of time—tested designs. This is natural because, in
the early days, there are fewer time—tested designs.

Also in the early days, because of the emphasis on innovation, the field does not
produce reliable results. Every new design involves numerous untested ideas, and
untested ideas often fail.

When an engineering field is mature, engineers spend most of their time combin—
ing and making tiny variations to time—tested designs. They solve problems from a well—

defined set of problems. For example, one well—defined set of problems is how to build
transformers that convert between different voltages. For different voltages and power
ratings, there are precise, step-by—step methods to build the transformer: how to choose
the materials for the windings and the cores, how manywindings to make, and so forth.
Since transformers are part of the standard designs in electrical engineering, you can go
to an electrical engineer, tell him the electrical characteristics that you desire, and be

[Alexander 1977], page X'

WHY SOFTWAREIS HARD I3

confident that he can build exactly what you have asked for. If you ask him for some-

thing that he can’t design, he can probably tell you on the spot. Whenever a solution
technique is well defined, so is the type of problem that it applies to.

Naturally, the vast majority of projects still require ingenuity to solve unexpected
problems. Combining existing designs always requires imagination. Also, the invention
of entirely new kinds of designs continues, such as the tiles on the Space Shuttle and
composites for airplane wings and bodies. Every large project still involves trying out
and rejecting a number of designs until a good one is found. But an extensive vocabu—

lary of time-testeddesigns makes possible a remarkably systematic and reliable engineer-
ing discipline. Few bridges or homes collapse of their own weight today; few
transformer designs fail to meet their electrical requirements.

We’ll distinguish, then, between two types of engineering project, corresponding
to two types of activity, keeping in mind that these are a continuum rather than a
sharp dichotomy:

Orderly engineering is characterized more by the applicationand slight
variation of time—tested design patterns.

Exp/oratory engineering is characterized more by the unstructured
exploration of new kinds ofdesigns.

These are simply names for the two kinds of engineering activities described earlier.
Both types of activities occur in any project, of course. Every problem contains some—

thing new, and no problem is without some similarity to problems solved before. But
overall, the more mature the field, the more it is characterized by orderly engineering.

Software engineering is still in an immature state, although this is rapidly changing.
The reason for the high failure rate of software projects is not primarily because of bad
business processes or because programmers don’t derive their code from calculations.
The major reason is that often there is a large gap between the system that the customer
wants delivered and the available time-testeddesigns.

For example, suppose that you’rewriting the software for a phone switch. A phone
switch is a device that attaches to many (hundreds, thousands,even more) pairs ofwires,
each pair capable of connectingto a telephone. Hardware inside the switch has the abil—

ity to electrically connect any pair to any other pair. The job of the software is to control
the creation and dissolution of connectionsbetween pairs in order to connect calls. The
switch also needs to forward calls according to user requests, generate busy and ring sig-
nals, parse touch tones, as well as many other support functions.

What algorithms are available to draw upon in order to solve this quite complex
problem? What standard data structures apply to it with little or no modification?

[4 CHAPTER 1 PROBLEM SOLVING

Not many. Therefore, the programmers will have to exercise great ingenuity in
order to write the software. And, therefore, they will likely finish behind SChEdule and
the code will likely contain bugs.

Ifyou haven’t programmed, the following task (see figure 1.5) should illustrate why
software projects so often fail or come in late:

Solve this—but first, schedule
each phase of your solution, and
figure out how long it will take
you to solve it.

Figure 1.5 Exploratory engineering is dlfiioult to plan

Solving a Rubik’s cube is mostly a matter ofstumbling onto a few key insights such
as the following:

There’s a sequence of four moves that rotates three pieces without
disturbing any others:@ .

If you have a useful sequence A that moves only a few pieces, such as the
one shown above, you can easily change which pieces it moves by
preceding itwith a sequence B and following itwith B in reverse. Bmoves
pieces into position to be moved by A. The key is that B is very easy to
invent because you needn’tworry about causing side effects elsewhere on
the cube. RunningB in reverse after A cancels the side elfects, leaving only
the desired changes. BAB'1 =fl .

No one can possibly anticipate such insights. You can’t even vaguely anticipatewhat
they’ll be like. Nor is there any systematic Way to search for such insights. You can’t base
plans around the totally unknown.All you can do is keep your mind alert for the unex-
pected and struggle a while until you do find them.

Programming is often the same way. However, once you have solved a Rubik’s cube,
it's fairly easy to solve similar puzzles, such as those shown in figure 1.6:

WHY SOFTWAREIS HARD 15

Figure 1.6 Solve one. and the rest become easier

The same insights apply. It’s still difficult to know in advance how long it will take
to solve these, but you now have a fairly well—defined class of problems along with a set
of solution techniques, or heuristics, for solving them. Such solution techniques are, of
course, analogous to design patterns.*

1.4 Pattern composition and
decomposition

Fortunately, a great number of patterns have arisen in the world of software. There are
sorting algorithms, searching algorithms, numerous types of data structures, algorithms
for performing all manner offloating-point calculations, parsing techniques, algorithms
for rendering three—dimensional images, and many more—far more than can fit into
even a four-year college curriculum.Thus, the situation is not quite as bad as the Rubik’s
cube analogy suggests.

These patterns are what enabled the experienced programmer to make design deci-
sions with confidence at a higher level than program code. Whereas the beginning pro—

grammer could only tentatively explore different ways to divide the program into
modules, trying out different functional decompositions and hoping to find some key
insight, the experienced programmerknew that dividing the program into a state-transi-
tion table for parsing input, a display-independentrepresentation, and an output func—
tion would produce a program that both worked and was simple. So there is such a
thing as orderly software engineering, at least for many types ofsoftware.

The experienced programmer is able to perform a task superficially similar to func-
tional decomposition but, in reality, quite different. The experienced programmer

* Sec [Polya I957] for the classic work on heuristics, the art of finding hypotheses worth investigating, or
provisional rentaning.

16 CHAPTER 1 PROBLEMSOLVING

engaggs in what we can call pattern decompositionor artifizct decomposition—recognizing
a pattern that is built from smaller patterns, and either implementing the smaller pat-
terns or specifying them in enough detail that someone else can implement them. The
programmer recognizes that the problem to be solved requires a parser, and he also
knows that a parser is composed of a few elementary patterns: the state—transitiontable
and the little trick of accumulating an ever—growing number in a variable. 50 he can
decompose the pattern into subpatterns.

But there is a big difference between this and functional decomposition. The pro—
grammer was able to decompose the high<level pattern into subpatterns only because
those subpatterns have been put together before. That’s how the high—level pattern was
created. In functional decomposition, you avoid any consideration of the underlying
design. Rather, you try to deduce the design by breaking down the top—level function
into suhfunctions that you don’t necessarily know in advance how to design. In pattern
decomposition, you only break down a known design into known parts.

In functional decomposition,an engineer divides a complex task into smaller tasks.
He divides “I need a way to do a” into “I need ways to do 5, t‘, and i such that if all
those were done, a would be done.” The thing: that perform these tasks are intention-
ally omitted from functional decomposition. Functions—tasks to be done, conditions
to be achieved, or mappings between inputs and outputs—are mapped onto smaller
functions at each stage of decomposition, with allocation to specific things deferred
until the very end.

The real myth of functional decomposition is that we’re capable of deferring con—
crete decisions to such an extent, deriving a working, concrete design from such a long
train ofpurely abstractdeductions and divisions. In fact, when people divide large func-
tions into simpler functions, they always draw heavily upon their knowledge of the
types ofartifacts that they know can be built. However, this knowledge is left implicit. It
guides the functional breakdown—as, indeed, it should—but the myth that design con—
siderations are left out of their thinking goes unexamined. Thus, functional decomposi—
tion gets the credit for breaking down large, complex problems when, in fact, the
problems were already broken down by existing knowledge of design patterns.

It’s been said that functional decomposition is what enabled the Wright brothers to
succeed where their predecessors failed. Whereas other people who attempted to enable
people to fly created designs that borrowed heavily from the structure of birds, the
Wright brothers decomposed flight into its subfunctions, enabling them to implement
each subfunction by further decomposition,as shown in figure 1.7.

However, understanding that there are an unimaginably large number of ways
to break down a function, you can see how unlikely it is that they designed their air—

plane by functional decomposition. Without assuming any design decisions about

PA TTERN COMPOSITION AND DECOMPOSITION 17

. ‘ . Subfun on Implementation} s
‘

,
_

’ Forward Four—cylinder engine,
propulsion propeller
Lift Wings
Steering Rudder.

bendable wmgtips

Figure 1.7 Functional decompositionof Wright brothers’ airplane

UP

Subfunction Implementation

Up/down ?

propulsron
North/south .7

propulsion
East/west .7

propulsion

south

Figure 1.8 Another functional decompositionof flight

what objects the airplane will be made from, how can you criticize the functional
decomposition in figure 1.8? If each subfunction were implemented, then the com—

plete flight function would be implemented. Why not allocate one team of engi-
neers to up/down propulsion, another to north/south propulsion, and a third team
to east/west propulsion?

The reason the Wright brothers used wings, an engine, a propeller, and a rudder
was because they had those things. Currently, no one has components that implement
the up/down, north/south, and east/west functions, so no one breaks airplane design
down that way, despite its mathematical elegance.

If we had components that implemented those functions, then we could indeed
allocate each function to one component and the design wouldwork. The fact that we
d0 110! have any such components nor do we see any way to make them is not supposed
to deter us when decomposing functions. We’re supposed to apply the procedure to the
smaller functions and repeat until we find functions small enough to implement. But
tliC great difficulty of functionaldecomposition is finding a way of dividing the top—level
functions in Such a way that we won’t be further subdividing them until the end of time,

18 CHAPTER I PROBLEMSOLVING

like the beginning student trying to write the base conversion program. All that can
C"able us to do that is knowledge of specific things that can implement the functions—
(horoughly tainting our functional decompositionwith early design decisions.

If the internal combustion engine were not available, it’s unlikely that the Wright
brothers would have specified a forward propulsion function and then, through con-
tinuing stepwise refinement, deduced cylinders, pistons, spark plugs, and crankshafts.
The only reason they used an engine was because it was an available component that
they knew how to use. Indeed, the majority of the Wright brothers’ airplane was
designed by imitation. The idea of wings, with their peculiar shape, came from birds.
One of the steering mechanisms came from observing the way that birds bend their
wings to change direction. And, of course, the Wright brothers did not invent the inter—

nal combustion engine, though they did design their own—a variation on existing
designs, tailored to the needs of the airplane.*

In pattern decomposition, people think, “I want an artifact of type x that meets
such—and—suchrequirements.” For example, a town planner can request of a civil engi—
neer, “Build me a bridge that goes across this bay, has two lanes going in each direction,
can support 30-ton semi—trailers, and meets the land at these two points.” The civil
engineer then opens up the bridge pattern into its subpatterns—the girders, supports,
rivets, and so on—which have been put together many times before, though always in
slightly different ways. Each level of pattern decomposition consists of smaller things,
not smaller abstract functions. At every level, we knowwhat we’re talking about and we
know how to build it.

Exploratory engineering usually works the other way around—composing patterns
into larger designs in new ways. People have existing patterns and think, “I wonderwhat
we could build out of these?”When people first built computers in the 19405, they had
no idea that computers could be used for digital manipulationofphotographs,page lay—

out in newspapers and magazines, paint mixing at hardware stores, or nearly any other
modern applicationof computers. They simply explored ways in which you could build
highly configurable machines, different ways that you could configure them, and what
kinds of results you could achieve.

As is often the case in exploratory engineering, they built a solution in search of a
problem. They did not start with the problem, “enable people to lay out pages in maga—
Zines on a screen.” Their problemwas to find out what is possible to do with these new
machines. We’re still a long way from finding out all of it; hence, the continued large
amount of exploratory engineering in software.

In orderly engineering, where pattern decomposition is the rule, we start with
problems for which there are known solutions, like “print a list of employees in alpha—
betical order.” We exploit our existing knowledge of what is possible to build, rather

PA TTERN COMPOSITION AND DECOMPOSITION 19

apply them.
. . ,While the principles of requirements documentation taught in this book can apply

fl, exploratory engineering, we will concentrate on orderly engineering—projects where
the goal is to apply existing knowledge ofsoftware techniques to problems that we know
we can solve. In exploratory engineering, requirements can even be a hindrance. The
idea is to find out what’s possible, to grow the new techniques organically from the exist-
ing techniques. and to discover what program code can do—especially, what it can do
mgilyf You can’t predict in advance what you’re going to discover, whereas requirements
dcl‘ine exactly what problem the program code is to solve.

Pattern decomposition enables an important division of labor in engineering. You
don't need to know how to design all the patterns that, together, form an artifact. You
only need to know that the patterns exist and that people can build the artifacts. The
town planner does not need to know all about bridge building in order to ask the civil
engineer to build the bridge. The civil engineer specializes in understanding different
types of bridges and how to build them. From the town planner’s point of view, thebridge is just one ofmany elements of his own design. Furthermore, the civil engineer,while able to decompose the bridge pattern into subpatterns, need not know how todesign instances of those subpatterns. If the bridge needs to raise up to allow ships topass through, the civil engineer doesn’t need to know how to design the motor to lift thebridge. He just needs to know that such motors can be built and who can build them.

\' lBooch 1996] calls this an “architecture-drivenproject" as opposed to a “requirements-drivenproject.”These are apt terms. An architecture-drivenproject starts with an implementation idea and looks for waysto eXtend it that provide new and unanticipated benefits to the customer. A requirements-drivenprojectStartswith well—defined benefits and draws upon existing, proven implementation ideas.

I’A TTERN COMPOSITION AND DECOMPOSITION 21

CHAPTER 2

Problem defining
2.1 Requirementsand design patterns
When a town planner decides that the ferry that transports people across a bay in his

city no longer has sufl'icient capacity to carry all the trafl‘ic, he is likely to ask a civil engi-

neer to design a bridge. The town planner does not ask the civil engineer, “Say, I’ve got
people on opposite sides of this bay, and I need some way to transport them across. Got

any ideas?” Before the town planner contacts an engineer, he has already decided what

he wants built. He knows a standard type of artifact—a bridge—and he knows who is

capable of designing one specifically for the trafl'ic across the bay.
The fact that orderly engineering starts with some type of design pattern has an

important implication for requirements:

Rigorous research and definition of requirements is possible only in
relation to a specific design pattern.

Only because the civil engineer knows that he’s going to build a bridge can he ask

pertinent questions of the town planner. “What traflic do you want the bridge to carry?

Cars, or just pedestrians? Trucks? If so, what maximumweight? How many lanes do you

73

want? Where on the land do you want the points of access to the bridge?” These ques—

tions enable the civil engineer to calculate parameters such as the width of the bridge
and the load that it needs to support. He can also inspect underwater to learn how deep
the bay is where the bridge is needed, and how solid its floor is in those places.

With a ferry, there is a whole different set of questions to ask. “How many lanes?”
would be silly. Instead, one would ask, “How many cars and trucks do you want to be
able to carry on each trip? How much total tonnage? How fast do you want the ferry to
go? Are there any bridges in the way that the ferry must pass under? How high is their
clearance? HowWide is the entrance to the harbor?”

Ifwe were to write requirementson the premise that engineers design by functional
decomposition, every requirement purely a matter ofwhat the device must do without
assuming any design decision as to how it will do it, then the questions for the town
planner would float into starry—eyed abstraction. Why try to find out the width of the
bridge when you might, instead, build a ferry?Or a fleet ofcargo planes? Or a teleporta—
tion device? We don’t want our questions to rule out any possible design, after all. Per—

haps the civil engineer should get the town planner to specify the speed at which the
bay—transit device is to move the cars and trucks and then write this into the contract in
order to specify every parameter that any design would have to meet. Oops—such a

parameter makes no sense in regard to bridges.
Now we can explain one of the common complaints about requirements documents,

heard from customers, programmers, testers, and everyone else involved in software devel-

opment—they're so abstract that no one can understand them. This is the result of the
analyst’s diligence in avoiding assuming any imaginable design decision. (More common
problems in requirements documents are described in sections 13.3 through 13.5.)

Implicit in the bridge pattern is the set of questions asked by the civil engineer
about how the bridge is to be used. The answers to these questions define the problem
to be solved by the bridge in enough detail to enable the engineer to apply and adjust
the pattern to the town planner’s needs. These answers constitute the requirements of
the bridge.

Thus:

Corresponding to every design pattern is a set ofquestions to ask about
the type of problem that the pattern solves. A requirementsdocument
answers these questions.

Writing requirements, then, is answering a set of questions. The particular set of
questions is determined by the type of artifact—the design pattern—for which you
are writing requirements. The answers define a problem in enough detail—and the
right kinds of details—to enable an engineer to apply that design pattern to create a

new design.

2.2 Sofiware problems
We know what sort of problem a bridge solves: provide a path for certain objects to

move by ground travel (that is, with weight fully supported)
from one place to another

without falling into the space below. The generic problem definition makes clear what

kind of questions you need to ask to write the requirements for a bridge. Most funda—

mentally, they are: what are the size and weight of the objects that are to move across,

and what are the points where the bridge is to meet with the land on either side? Addi-

tional informationpertains to the environment of the bridge:
other types of loads on the

bridge, such as wind, and where the bridge can get its own support, such as the floor of

a river.
What sort of problems, then, does software solve? All software problems are of this

form:

ConfiguremachineM to produce effects R in domain D.

The machineM is the computer to be programmed, including its input/output

devices. The effects R are the requirements.The domain D is a necessary part of the

problem definition because it is the part of the world in terms of which the require-

ments are defined, and because the machine can rarely produce the desired effects all by

itself. The design of the software exploits propertiesof its environment
by making use of

redundancy to detect errors, making use of people or other software to gather informa—

tion, making use of motors to control other machinery,
and so forth.

The reason that computers are so powerful and so useful throughout so many

industries is the fact that they are extraordinarily configurable machines. Every program

is just one of the astronomical number of
useful configurations of the bits in the com—

puter. On most computers,you can
load one program—that is, one configuration—and

operate it for a while and then replace it with a completelydifferent program later; for

example, swapping a Word processor for a spreadsheet. (The reason for saying “most

computers" instead of “all” is that in embedded applications, where the program is

stored in read-only memory, reconfiguring is difficult or impossible.)
The same program

can even reside in different places in memory at
different times, or it can be swapped in

and out from disk in segments, if the computer lacks sufficient memory
to hold the

entire program at once.
This is also the reason that software is so easily misunderstood and that software

engineering is so different from other engineeringfields. Software is not a tangible arti—

fact, like a bridge, a motor, or a computer. Software
is a particular configuration of a

computer——not the hardware, but the way the
hardware is set up, a possible state of the

hardware. Being a mere potentiality for configuration, software
does not weigh anything

25

or occupy any space. The software can exist, in the form of source code or object code

stored on tape, even if no computer currentlybears that configuration.
To put it another

way, the materials of software are not physical objects, as in other engineering fields;

they are the instructions that a computer is capable of executing, or, more broadly,
the

bits in a computer.
Adding to the potential for confusion, the machineM ofwhich a piece of soft—

ware is a potential configuration might well be a combination of hardware and other

software. We don’t usually write software simply for PCs. Writing software for a PC

running Windows is very different from writing software for a PC running Linux.

From the standpoint of a programmer, the operating system is itself part of the

machine to be configured.
Software engineering, then, is the art of exploiting the extraordinaryconfigurability

of computers—the art of inventing useful ways to configure them. The general form of

all software problems suggests three fundamental questions to answer in order to write

software requirements: what type of machine do you want configured, what effects do

you want the configuration to produce, and what are the properties
of the outsideworld

that the machinecan exploit to produce those effects?

In orderly engineering,we must limit ourselves to the types of software problems

that people already know how to solve—effects that we know how to achieve.

Chapter 5, Five problem framer, describes five standard types of software problem in

detail, including all the questions to ask to fully define each problem. The following is

just a taste.
One of these standard problems is the information problem. In an information prob-

lem, the task of the software developer is to configure a computer into an information

system—that is, a combination of hardware and software that supplies information to

users, on demand, about the current state of some part of the world. The principal ques—

tions to answer in a requirements document for an information system are therefore:

(1) What machine is to be configured to act as an information system?, (2) What ques—

tions can the users ask of the information system?, (3) What part of the world do these

questions concern, and what events happen there?, and (4) How can the machine get

access to these events? For example, must people relay the information to the machine

by typing it in manually, or are there automatic sensors, or are there other computers or

databases that can supply the information?Information problems have many variations,

and dilferentvariations need differentquestionsanswered, but these illustrate the funda—

mental pattern. Question (2) provides the requirements: answer these questions on

demand. Questions (3) and (4) provide the relevant information about the domain of

the requiremenm. ,

In practice, question (1), about the type ofmachine, or platform, to be configured

into the desired informationsystem tends to fade into the background,especially in large—

26 CHAPTER 2 PROBLEMDEFINING

scale information systems where we have a great number ofmachine-independentpro-gramming techniques. Programs written in high-level languages, for example, can be com-piled to run on a variety of different machines with very little modification to the sourcecode. However, high-level languages mainly make possible a high degree of CPU (central
processing unit) independence, not independence from the input/output devices.In most requirementsdocuments, the principal information that we need to knowabout the machine is its input/output devices. The interface design is essentially a designfor how the input/output devices should behave; the program is what makes thembehave according to the interface design. Without knowing the input/output devices,we would not be able to create the interface design. ‘

For example, it makes a great difference to the design ofboth interfaces and programswhether there are bar-code readers attached to the computer or whether usersmust enterdata manually. If a computer that controls a laboratoryapparatus has a pH sensor, the pro—grammers need to know how the pH sensor works in order to write code to control it andread data from it. A user—interface design for a Macintosh or Windows program can call
upon different hardware and operating—system services than a user—interface design forsoftware that communicates only through 25 X 80 text—only terminals.

And in some projects, facts about the machine’s CPU, memory, and non—volatile
storage are no less important to include in the requirementsdocument. In an embedded
system, where the software runs on, say, a custom microprocessor in a very limitedamount ofmemory, describing the internals of the machine takes on a level of impor—tance that cannot be masked through such tools as high—level programming languages.

2.3 Requirements engineering
Requirements are sometimes contrasted with design, where design is understood as achoice ofmeans to bring about a desired effect. The requirementsare the desired effect,and the interfaces, program code, and so forth are the means to bring it about. This isunfortunate because requirements themselves are design—no less than program code.To take a simple example, suppose that a company’s marketing department hasmade a Web site and wants to evaluate the site’s effectiveness for purposes of improvingit. Someone might propose writing a tiny information system with the followingrequirement: “report how many hits each page received and from what Internetdomains.” This requirement is an effect to be produced by the software, but it’s also ameans to bring about another effect: improving theWeb site by helping the marketingdepartment tune the pages to the peoplewho are actually reading them.The decision to write software that meets that requirement is a creative act—aninvention, a choice, a design, a perceived way of bringing about improvement—no less

REQUIREMENTSENGINEERING 27

than the design of a subroutine or data structure. If this is an effect that no one desires,
then people will likely reject the software or leave it unused. If people want this effect,
then the software will likely be successful.

Requirement: engineering—the design of requirements—isvery often the most criti-
cal phase of a software project. The requirements are the desired effects to be achieved
by the software. Someone has to think up those effects. Someone must decide that those
effects would be good to achieve. If the effects do not bring about any real improve—
ment—that is, further effects, such as improvements to the Web site and increases in
sales—then the software will fail even if it implements the requirementsperfectly.

Software quality is, therefore, much more than meeting requirements.The require—
ments themselves must be a good design. Many times, software has failed not because it
containedbugs or ran too slowly or contained any other fault within the purviewof pro—
gram code. It failed because people refused to buy or use the software because the prob—

lem that it solved was of no concern to them, or even because they preferred to leave
that problem unsolved. A typical example is software for doctors’ offices that facilitated
communication among doctors about diagnoses of a patient. It turns out that while the
software worked perfectly, most doctors preferred to form their diagnoses from scratch.
The culture of doctors’ oflices made software to perform this task unwanted. Thus, the
software, for all practical purposes, was of low quality because the requirementswere of
low quality, not because of the quality of the user interface or program code.

Furthermore, there are always many, manyways of meeting requirements. No one,
for example, can write down all the criteria for judging one user interface superior to
another. No one can measure how readable or modifiable program source code is.

Requirements engineering certainly has the greatest influence on software quality, but
all aspects ofsoftware design affect quality in a variety ofdifferentways. There is no for-
mula for measuring the quality of requirements,no formula for measuringthe quality of
a user interface, and no formula for measuring the quality of program code. We simply
design each as well as we can, drawing upon the accumulated knowledge of the field as
embodied in both theory and the software design patterns that have evolved so far.

Even though requirements are design no less than user interfaces and program
code, there is a key difference. A set of requirementsdefines a problem such that we can
say that the interfaces and program code either solve it or fail to solve it. The software
either meets the requirements or it doesn’t. As just mentioned, there is much more to
software quality than meeting requirements, but requirements do provide the baseline
for the remainderof a software design.

Inventing requirements is a matter of inventing a well—defined problem to solve:

A well-definedproblem is a set of criteria accordingto which proposed
solutions either definitely solve the problem or definitely fail to solve it,

28 CHAPTER 2 PROBLEM DEFINING

along with any ancillary information, such as which materials are availableto solve the problem.
The requirements themselves, however, do not necessarily measure up against strictcriteria of success and failure. During requirements engineering, you design against anopen-endedproblem:

An open—endea'prob/em is a situation in which we believe that someimprovement is possible, but we have no definite criteria for measuringimprovement.Discovering good criteria is, itself, part of the problem.
A typical example of an open-ended problem is that faced by the town plannerbefore asking the civil engineer to design a bridge. The town planner’s problem was todo something about the traffic along the roads connecting two sides of a bay. But didthe town planner have any definite requirements to meet? Was the requirement toreduce the number of cars traveling along the existing roads by at least 10%? Well, no,that could easily be achieved by blocking off the roads. Was it to increase the speed oftrips during rush hour by at least 10%.> Well, no, that might not even be possible.In fact, the town planner simply faces an enormous set of alternative actions. Amajor part ofhis effort will be discovering and exploringthose options, as well as tryingto discover good criteria for determining which options are better and which are worse.The town planner could widen the existing roads, build a bridge, dig a tunnel, order anew freeway, or he could do some surprising things. He could narrow the existing roadsin order to cause people more frustration as they drive to work, encouraging them toeither ride the bus or move to within walking distance of their jobs. If he changes thezoning laws to allow oflices to be interspersed among residences, and apartments to bebuilt above shops at street level, peoplejust might move their place of residence and stopdriving so much.

How is he to measure such an option? Traffic along the existing roads might Howmuch more slowly than before, but people would get to work faster. If he had tried tostart with a well-defined problem where the requirement was to speed up traffic, thisoption would have been ruled out prematurely. Furthermore, as he examines each ofhismany options, he continually discovers new criteria for evaluating them. By causing lesstraffic to flow instead ofmore, he would help out the city’s smog problem—a problemthat he wasn’t even trying to solve. By encouragingpeople to walk, the streets becomemore alivewith pedestrians, changing the culture and characterof the city—an aspect oftown planning that he might not even have thought about before. Now he has new cri-teria for measuring the options ofwidening the roads, building a bridge, and all of therest. Perhaps, when he re-exarnines those options, he will discover new criteria by whichto evaluate the option to frustrate people into moving closer to their destinations.

REO UIREMENTS ENGINEER/Alf:

All engineering begins with open—ended problems: no requirements, just the belief
that some sort of improvement is possible. Noticing that rush—hour traffic was becoming a
nuisance, the town planner thought he coulddo something to “improve the situation.”

By understanding that requirements are design, we know to avoid two common
mistakes: settlingon strict evaluation criteria too early, and trying to write requirements
so vaguely—so untainted by design decisions—that they don’t define any definite prob—
lem at all. For example, “design a data model that meets the needs of the business” or
“design a system to ensure that baggage is processed correctly” are useless criteria with-
out a precise descriptionof the business’s needs or an extensive definition of “correctly.”

In requirements engineering, you start with an open-ended problem, and finish
with a well—defined problem—sowell defined that you can entrust it to someone else to
work out a solution. The decision about what type of artifact to build—in our case, the
decision to write a piece ofsoftware—is the most fundamental decision in requirements
engineering. If you haven’t yet made the decision to write software, you are not yet ready
to hand off the problem to software engineers. You’re still engaged in requirements
design, not interface design or program design.

A software requirements document presents software engineers with a well—
defined software problem. There is no sense in giving software engineers a problem in
town planning, business management, manufacturing, typesetting, or anything other
than software.

The full subject of requirements engineering—the art of inventing and choosing
requirements—is far beyond the scope of this book, or indeed any book. Here, we cover
onlywhat information needs to be put into written form for the rest of the development
staff to implement software requirements.We won’t explore techniques for coming up
with ideas for requirements or criteria for judging whether those requirements would
serve customers well or poorly.

2.4 Lessons learned
Before we move on to a precise definition of requirements and their relation to inter—
faces and programs, let’s pause to look over what we’ve learned in the first two chapters
about how engineering really works. What we’ve learned boils down to just this:

Generalized problem—solvingmethods don’t work, at least not well
enough to base a method of requirements—writing on them.

So, we won’t premise that programmers and interface designerswill implement
requirements by decomposing high—level functions into low—level functions. Real—life
programming just doesn’t work that way. Therefore, we won’t write a set of high—level

30 CHAPTER 2 PROBLEM DEFINING

software functions connected by data flows; we’ll let the programmers write their
own subroutines.

We won’t try to document an entire open-ended problem in a requirements docu—
ment. So, in the case of the software to countWeb hits, we won’t make the requirement
anything so broad as “help the marketing department improve the Web pages” or“increase sales.”

Instead, we will always premise that programmers and interface designers will
implement requirementsby makingmfiware. The only type ofproblem we’ll describe in
a software requirements document is a software problem, as defined in section 2.2.

We’ll go even further and tailor the information in requirementsdocuments to spe—cific kinds of software and specific known design patterns and programming techniques.
“Provide information about specific events in domain D” is a type of requirement that
we knowhow to fulfill, so that’s the type of requirement that we write for the software tomonitor the marketingdepartments Web page: “Provide reports showingthe number ofhits to theWeb page.”

While the specificity ofour documentation techniques has the great advantage that
it allows us to write very concretely and in a way instantly and obviously useful to inter-
face designers and programmers,we need to be aware of an important implication: the
documentation techniques taught in this book do not apply to every conceivable type ofsoftware. Neural nets and expert systems, to take two examples, are types of softwarewhose design techniqueswork in differentways than most ordinary software; each has
an unusual set of questions to ask in order to apply the design patterns.

Another type of software excluded by this book’s focus on natural—languagedocu-
mentation is software that performs tasks so complex that it is difiicult to be sure thatthe design of the interface or program is correct. If you’re writing software where youcan’t prove the validity ofa design by fairly straightforward,simple techniques, then youneed to investigate firmalmet/Jodi. Formal methods are ways ofmaking and validating
descriptions—ofthe requirements, interfaces, and program—that derive from mathe—
matical notations. Mathematical notations make it possible to express mathematicalideas ofmuch higher complexity than we can achieve with natural language and simple
graphics. Formal methods also make possible, to some extent, automated validation of
interfaces and programs. For example, sometimes you can run software to check
whether the software will reallymeet the requirementsor whether the requirementscon-
tain gaps or internal contradictions.

Nevertheless, the basic principles taught in the next chapter do apply to virtuallyall
kinds of software, and you can probably vary many of the techniques to come in later
chapters to work with other kinds of software. That’s how patterns are—not inflexible
rules, but helpful ideas that always need a little bit of creativity and variation to apply in
each case.

LESSONS LEARNED 31

CHAPTER 3

Two worlds and three designs
3.] Tkeproblem domain
Imagine that you are working on a project to develop software for a trucking company.
The companyhas trucks, drivers, cargoes, and customers scattered all over the country.
The job of the software is to track all of these things so that employees can know where
any truck, driver, or cargo is at any time, Your task is to write the requirements docu—
ment. What information do you include?

You might start by describing the behavior of the software desired by the customer
in as much detail as possible: the appearance of the screens, what information goes in
each field, and how the program responds to keystrokes and mouse clicks.

If you start by documenting those things, then you have skipped requirements.
This might come as a surprise. Didn’t we just say that we knowwhat kind of thing

we’re going to build, and that this knowledge should guide the way we write require—
ments? Yes, but that doesn’t mean that we confuse description of the software with
requirements. Requirements define the problem to be solved by the software; they do
not describe the software that solves it.

33

A customer rarely desires software behavior. What the customer wants was
described above: “employees can knowwhere any truck, driver, or cargo is at any time.”

Trucks, drivers, and cargoes are not part of the software, nor is knowledge held by the

company staff. Thesemake up the part of the world that is of interest to the customer.
This part of the world is called the problem domain. It gets its name from the fact

that the problem to be solved by the software is defined in terms of it. What the cus—

tomer wants is for certain conditions to be realized in the problem domain—in this case,
for employees to be able to know the locations of the company’s trucks, drivers, and car—

goes.
More precisely:

The problem domain is the part of the world where the computer is to
produce desired effects, togetherwith the means available to produce
them, directly or indirectly.

The problem domain includes everything relevant to describing the desired
effects: objects that queries pertain to, people to be informed, objects to be controlled,

parameters (such as voltage) to be kept within a certain range, even desired output for—
mats for queries.

The means available to the software designers to produce these effects are also part
of the problem domain. Indirect means include users whom the computer can ask to
perform tasks, motors that the machine can turn on and ofl’, people or other machines
that can supply information—anything that is not part of the software to be written. For
example, a requirement of the trucking company’s software might be to send cargoes
from one location to another, on command. The means available include trucks and
drivers. The software fulfills the requirement by scheduling trucks and calling upon
drivers to drive them.

Where there are indirectmeans, there must be direct means. The only type ofeffect
that a computer can cause directly is the behavior of its input/output devices. The most
obvious examples are keyboards, screens, and printers—the means by which the com—

puter receives commands for where to pick up and deliver cargoes, and the means by
which the computer communicates instructions to the drivers. In embedded applica—

tions, input/output devices are a more obvious part of the problem domain. In order to
write, for example, machine code to control a microwave oven, the programmers need
to knowwhat inputs the microprocessor receives from the control panel and how the

microprocessor is connected electrically to the other parts of the oven.
It might be convenient to define the problem domain as “the world outside of the

computer,” but this is not quite true, for three reasons. First, without knowledgeof the
input/output devices, we would have an abstract problem, not a concrete engineering
problem. To design the software, we must be able to follow the causal chain from objects

34 CHAPTER 3 TWO WORLDS AND THREE DESIGNS

in the external part of the problem domain all the way to the computer. Otherwrse, forexample, we wouldn’t know how to cause the microwave oven to behave in the specified

from other problem types. It’s a workpzecepmblem. The problem is not to report on orcontrol existing objects, but to create entirely new, intangible, software objects inside thecomputer for people to work on. 1

Some of the most widely used software in the world solves workpiece problems—word processors, spreadsheets, even operating systems. However, most software develop-ment solves problems in which the problem domain already exists—custom inventorysoftware, embedded applications, software to perform scientific calculations, and soforth. So, while we will cover workpiece software, most of our emphasis will be on theother types ofproblems.
The third reason why the problem domain is more than just the world outside thecomputer is that, in some applications, the requirements are specifically for the input/output devices to behave a certain way. A customer might want forms to appear a cer-tain way on the screen. Entertainment software provides the most extreme examples. Ina video game, the on—screen appearance makes up the majorityof the requirements.

3.2 Requirements
We are now ready for a precise definition of requirements:

Requirements are the effects that the computer is to exert in the problemdomain, by virtue of the computer’s programming.
These are the “effects I?’ discussed in section 2.2. We’ve made the definition moreprecise and more useful by limiting requirements to conditions in the problemdomain. We are interested, not in software behavior, but in the effects produced bysoftware behavior.
Another way to think of the relation between requirements and the problemdomain is as follows. Requirementsare statements identifyingwhat the customerwants

REQUIREMENTS
35

to achieve: to be able to perform some type of action in the problem domain, to have

access to information about some part of the problem domain, to keep parameters in

the problem domain (such as temperature) within a certain range, and so forth. Each

term in a requirementstatement refers to something in the problem domain.
50, for example, the requirements for the trucking company’s software use terms

like true/e, cargo, client, driver, road, and so on. Those all refer to objects in that software’s

problem domain. For example, “an employee can find out, for any given truck, what

cargo, if any, it is currentlyholding.”
The requirements do not include terms like database, keystroke, doubly—linked list,

file, or field. These terms all refer to the software. The software developer will probably
create all those things in order to fulfill the requirements, but let’s not confuse the solu-

tion with the problem.

3.3 Inteiface design
The solution to the problem defined by the requirements and description of the prob—

lem domain is to write a program, of course—to configure a computer to execute

instructions that bring about the requirements However, no current—day computer’s

instruction set includes such operations as “Find out where Burnside’s truck is right now
and make this known to Smithers.”

Software solves problems by interacting with the outside world. While there are

no computer instructions that put information in people’s minds, there are instruc-
tions that write to memory that corresponds to pixels on a monitor. There are instruc—
tions that read input registers that are activated by keystrokes, instructions that
control read/write heads on disks, and so on. What each of these examples has in

common is that each action takes place simultaneouslywithin the machine world and

the outside world—that is, each instruction either affects or is affected by the
machine’s input/outputdevices.

The program specification, or interfizce a'exig'n, is a set of rules relating behavior of
the computer’s output devices to all possible behavior of the input devices. We design

the specification to cause the requirements—that is, to cause desired eiTects in the prob—

lem domain, directly or indirectly. The specification thus pertains to the tiny part of the
world that instructions inside the program can affect or be affected by directly—the tiny

part of the world that the computer shares with the problem domain.
The program, in turn, is the configuration of the computer’s memory that results in

its behaving as described in the specification. The program, not being a tangible input/

output device, is no part of the problem domain at all. Intangible things, such as a

36 CHAPTER 3 TWO WORLDS AND THREE DESIGNS

possible way for an object to be configured, cannot cause effects by themselves. Strictlyspeaking, the object is what interacts with the rest of the world; the configurationdetermines which of the object’s many possible ways of behaving actually occurs. Forconvenience, we will speak of the program causing the computer to behave a certainway, but never of the program directly exerting effects outside the computer.For example, software to control a printing press is responsible for moving paperthrough the press and applying ink at the correct locations on the page. The computerlacks instructions to cause these effects directly, so it causes them indirectly, through itsconnection with the motors that attach to rollers in the printing press. While therequirements describe paper and ink movements, the specification describes the activa-tion and deactivation (changing ofvoltage to 5 volts or 0 volts) of the wires connectingthe computer to the motors. These activations and deactivations initiate the chain ofevents that result in paper moving through the press and receiving the desired images.Finally, the program is what makes the computer cause the activations and deactivationsof the wires to occur, as described in the specification.
Thus, software design as a whole involves three principal designs: the design of therequirements, the design of the interfaces that bring about the requirements, and the

overlap between the problem domain and the machine; and the program designdescribes only the configuration of the machine. All of these relationships are showntogether in figure 3.1.*
Most specifications contain two further pieces of information beyond a strictdescription of the behavior of input/output devices. First, in order to relate past eventsat the input devices to future events at output devices, a specification usually must pos-tulate state: of the machine. The specification can say that a certain input event, such astyping in some data at one time, changes the state of the machine such that {fanotherevent occurs later, such as requestinga query, the data displayed in the query is the datatyped in earlier. If someone types in new data, that can change the state of the machineagain, so that now the same querywould produce different results.The one rule for describing machine states in a specification is that these statesmust make some distinguishable difference in the problem domain. 50 we can say thatthe machine stores data, such as names and phone numbers, and even say how manycharacters are allowed in the names and how long the phone numbers can be, but wedon’t say anything about the internal representation of this data inside the computer.\‘ Figure 3.1 is adapted from the diagramon p. I70 of [Jackson 1995].

[NTERFACE DESIGN
37

Two worlds
Problem domain Machine domain

Pick up cargoes

m
Haul cargoes to destinations

Database schemas

Interfaces
Subroutines

mum“ n n:

. pram.» me: = Fitmemall: i

prrceimianocadei prtmrmyir

Linked listsPrint reports

Requirements Specification Program

Three designs
Figure 3.1 Relationship between requiremenh, specifications, and programs

We must say how many characters a user can type in when entering a name,
but we have

no reason to say whether the name is stored in an object—oriented, relational, network,

flat—file, or other type of database. We don’t even need to say whether the characters in

the name are represented according to the American Standard Code for Information

Interchange (ASCII) code. For purposes of this book, the design of database tables is

considered a part of programming; it’s “behind the scenes.”

The second main type of additional information to include in a specification
is any

rules that parts of the problem domain must follow in order for the software to work

properly. For example, when a program interfaces with human users, you do more than

design screens and invent data for the computer to store. You also impose responsibili—

ties on the users. If the users are the Computer’s source of information about mainte-

nance being performedon trucks, then you make it the users’ responsibilityto enter this

informationas it happens.

38 CHAPTER 3 TWO WORLDS AND THREE DESIGNS

The behavior that the software requires of users is called the software’s operatingprotedurer.The users must follow the operating procedures correctly, or you can’t guar—antee that the computerwill call for maintenance checks at appropriate times, print cor-rect data in reports, and so forth. A specification must document all operatingprocedures, or the testers, programmers, technical writers, and especially the users willbe at quite a disadvantage.
Naturally, the option to make demands on parts of the problem domain is notavailable to all specifications. Software to control a crane must take the behavioral prop—erties of the crane as they are. Normally, when users are involved, an interface designercan impose responsibilities on them‘ There is little or no leeway when designing aninterface to hardware or other software.
Creating a specification often involves a great deal of imagination and ingenuity.There are often many possible specifications that could solve the problem defined in therequirements, some better and some worse. Especially in designing a user interface, thejob of specifying software is often exploratoryengineering rather than orderly engineer—ing. Despite the fairly refined vocabulary of user—interface patterns already in use, theopen-endedness of user—interface design is not likely to end soon, or ever. Thus user—interface design is a stage ofsoftware developmentespecially in need ofprototyping andearly testing. Interfaces to software and hardware, on the other hand, tend not to admitof such flexibility
Very often, the customer needs to be involved in both requirements design andinterface design. Though two user interfaces might both meet requirements, the cus—tomer might greatly prefer one to the other. The customer might consider one of themcompletely unacceptable. When presenting an interface design, you need to explain howit addresses each requirement. In addition to letting the customer judge the interface,this gives the customer an opportunity to notice requirements that were missing orimproperly defined and to judge for himselfwhether or not the interface really satisfiesthe requirement.

VALIDATION OF INTERFACES AND PROGRAMS 39

Program

Interface
design Properties of

languages,
libraries,
operating
system, and
hardwareDescription ofBe uirements .q problem domain

Figure 3.2 Logical structure of requirements, specifications, and programs

domain. Conclusion: the requirements are fulfilled. If the conclusion does not follow
from the premises, then the interface design is invalid.*

The reason for including premise (2) is that the computer fulfills requirements by
interactingwith objects in its environment. If the interface designer has misunderstood
the environment, it is unlikely that the interface will be correct. For example, part of the
problem domain of the software that controls a printing press is the motors that attach
to the rollers. One of the premises of the interface design, then, is that when the motor
runs, the roller turns. Another premise is that the motor is attached to a certain output
port on the computer~when the output port is at 5 volts, the motor runs. Only by
adding premises about the computer’s environment to premises about the behavior of
the input/output devices can we deduce that the requirementswill be fulfilled.

The relation of programming to interface design follows the same pattern. You
prove the validity of a program as follows. Premises: (1) The program consists of the
specified instructions. (2) The platform on which the program runs possesses the speci—
fied library, operating-system, and hardware properties. Conclusion: the behavior
described in the interface design occurs.

Or, more simply, a program design is validated against a specification; a specifica—
tion is validated against requirementsand the problem domain. Therefore:

Without requirements, there is noway to validate a programdesign—that
is, no way to logically connect the program to the customer’s desires.

This is true even if the requirements are not documented. Writing down require-
ments is primarily a device to help many people work together on the same project, as

* [Jackson 1995], p. 171.

40 CHAPTER 3 TWO WORLDS AND THREE DESIGNS

we will discuss in chapter 13. Requirements, domain descriptions, and interface designsare propositions and concepts, not sentences or diagrams on paper. This book has muchto say about sentences and diagrams on paper, but this is always for the purpose of com—munication between people. Sometimes you might want to trust less formal techniquesof communication;for some factors to consider, see section 12.6.The fundamental reason for carefully distinguishing interface design from require—ments is that requirements are designed in response to an open-ended problem, butinterfaces are defined in response to a well defined problem. That is, there are no rigidcriteria for evaluating requirements; we simply make a decision to build software tobring about certain effects. An interface, on the other hand, derives from a well-defined

system analysis, this shift in perspective is difficult. It’s tempting to push the unfamiliarworld of the problem domain aside, directing your attention instead to the familiarworld ofsoftware. But the interfaces and program code will be much more useful to the
structure.

3.5 Descrzptz'on
It follows from the principles of validating an interface design that you need to describethe problem domain in addition to writing requirement statements.That is, in additionto statements about how the problem domain is to be affected, you need to say how theproblem domain is.

Table 3.1 includes some common problem-domain information that needs to be ina requirements document.

Table 3.1 Types of information needed in a problem-domaindescription
Information Examples
Entities in the domain and Trucks: manufacturer, maximumcargo weight, maintenance record,their attributes whether includes refrigeration,and so forth.

Hurricanes: name, location, shape, direction of rotation, and so forth.Cardinalities of relations For every customer, there can be zero or more invoices; for everybetween entltles invoice, there is exactly one customer.Events that the entities are Trucks move along roads, from city to city. A new truck can be bought;capable of the company can sell or otherwise retire a truck from service.A hurricane can move, possiblyoverlappinga city.

DESCRIPTION
4’]

Table 3.1 Types of information needed in a problem-domaindescription (continued)

Information Examples
Causal rules A cargo never moves unless it is in a moving truck. A truck never moves

unless moved by a driver. When a truck moves, its driver moves to the
same place.
The fuel injector releases 1 ml of fuel into the cylinder when address line
A17 goes high.

Interfaces that provide the A time clock that connects to the computer that the software will run on,
software indirect access to providing electronic records of when employees punched In and out
entities of interest
Data formats The format of the data sent by the time clock

Notice that it’s not the responsibility of the software to enforce any of the above
statements. Rather, knowledge of the above statements is needed by the software design-
ers in order to design software to bring about the requirements. If the software is to
print reports on how many hours each employee works each week, the programmers
need to know that there is a time clock, that the employees are supposed to punch it,
and the formatof the data sent by the time clock.

Without purely descriptive information about the problem domain, designing soft-
ware to meet the needs of the customerwould be impossible. Requirements,or prescrip-
tive statements, are not enough.*

In fact, on most software projects, a well-written requirements document needs
much more problem-domain description than requirement statements.The number of
pages of pure descriptionmight easily be five times as many as the number of pages of
requirement statements.

This might not be as much of a surprise as the principle that requirements say lit—

tle or nothing about the software to be built. The principle is really the same in both
cases, though. The problem that the customer wants to solve is always to make certain
things happen in the problem domain. The job of a requirements document is to
define that problem in enough detail that people can design software to make those
things happen. In real—world problems, the problem domain tends to be complex,
while requirements are often not much more than, “Let me query about anything in
our inventory" or “Play back the recorded messages into the phone line when the
caller dials the passcode.”

Uaclrson 1995], pp. 125—128, and [Zave 1997} propose a more elegant terminology, distinguishing be-
tween statements in the indicative and oputiue moods. Indicative statements are those that merely point
out facts; oprative statements saywhatwe considergood, what we would opt for. Well sayderm'ptiwand
prescriptive in dlis book only because they’re more familiar.

42 CHAPTER 3 TWO WORLDS AND THREE DESIGNS

The complexity of the problem domain might make it seem hopeless to even
attempt to describe it in detail. How can you know, while still writing the requirements
document, which facts about the problem domain will turn out to be relevant and
which won’t? And aren’t there millions of such facts?

The key to keeping domain description from becomingopen-ended is the principle
that the information in a requirements document always derives from the type of arti—
fact to be built or, more specifically, from the type ofwell defined problem solved by
that artifact. When writing the requirementsdocument for an information system, there
are specific questions to answer about the problem domain: what objects reside there
about which the user can initiate queries, what events do those objects undergo that
change the proper results of those queries, and what sources of information share phe—
nomena with the machine, enablingit to track those events? Chapter 5 provides detailed
checklistsofall the problem—domain information needed to define five of the most com-
mon problem types.

Further restricting the type of information needed in a requirements document is
the principle that you need only include the very specific information needed by a well-
defined software problem, not the potentially limitless information needed to choose
the requirements themselves. When building an information system, the requirements
reflect (but do not justify) your decision to build such a system, what queries to allow
users to initiate, and so forth. You do not need to attempt to document such aspects of
the outside world as the culture of the users, upon whichyou based your judgement that
theywould accept and make use of such a system.

3.6 Invention versus validation
Validation works one way only: you validate an interface design on the basis of require—
ments and problem—domaindescription, and you validate a program on the basis of the
interface design. The process of inventing requirementsand interfaces, however, follows
no such simple pattern. Requirements stimulate ideas for interfaces, but designing an
interface can also lead to new ideas for requirements. Similarly, even though a program
is an implementation of an interface design, writing the program often leads to new
ideas for the interface, and often, the act of designing an internal data structure can lead
people to discover clearer ways of understanding the problem domain or omissions in
the requirements.

A typical example is that you show some users a mockup of a screen to perform
a type of query, and the users say, “You mean you can do that?” By the time you
answer affirmatively, they’ve noticed what a small leap it would be to provide many

INVENTION VERSUS VALIDATION 43

more queries that would be even more useful to them. Any kind of designing,
including requirements engineering, is a creative process, and creative processes sel-

dom follow a predictable path. Every new idea leads people to notice new, previously
unanticipated possibilities. A beneficial side effect of exploring and documenting
requirements is that everyone on the project can contribute ideas for requirements
and specifications—users, programmers, testers, and technical writers, too, not just
the analysts and interface designers.

Whilewe always evaluate interface designs for carrermer: according to whether they
produce the requirements (and programs for correctness accordingto whether they pro—

duce the specified interface behavior), there is nothing wrong with thawing require—
ments on the basis of what we know about interface designs and programming. Indeed,
this is the idea of basing the questions answered in a requirementsdocument on known
design patterns. There’s nothing unseemly about changing requirements because of the
difl'iculties with making an easy-to—use or elegant interface, or changing an interface

design because it’s diflicult to program. We invent requirementsand interface designs on
the basis ofwhat we believe we can feasibly implement. To put it another way, knowl-

edge of programmingguides our choice of requirements (similarly for interface designs)

no less than knowledge of the open-ended problem that the software solves. In the same
way, knowledge of building materials guides an architect’s choice of how to shape a
house, no less than knowledge ofhow people live and work.

So, while we try to make our techniques for documenting requirements such that
there are existing programmingtechniques for implementing them, we should not think
that writing requirements necessitates a rigid, clockwork progression of software devel-

opment. While the art of project management is far beyond the scope of this book, a
few words are in order.

It’s virtually impossible to write excellent requirements at the very beginning of a
complex project. Only when we see the interfaces and allow programming to start can
we begin to truly refine our ideas for the requirements.This is a brute fact that a project
manager must contend with, not a problem that can be solved by a “perfect” method of
requirements design. To enable the requirements to profit from what we learn from
interface design and programming,we can develop the software incrementally, improv—

ing the requirements at each stage.
There are two principal strategies for managing incremental improvementofdesign

(remembering that requirements are designed, no less than interface designs and pro—

gram designs). One is to start with sketchy requirements, adding detail at each stage, or
to postpone rigorous requirements definition until the very end, at which time the
requirements are somewhat superfluous. In this case, we do not start with a well-defined

problem; we start by tentatively building solutions and hope that a well—defined prob—

lem eventually comes into focus.

44 CHAPTER 3 TWO WORLDS AND THREE DESIGNS

The other strategy is to take a spiral approach: start with a modest, well-defined
problem, solve it, and then expand the problem in the next phase, repeating the processas many times as necessary.With the spiral approach, you have rigor, not sketchiness, ateach stage of development. Each stage produces a provably correct solution to a well-defined problem, resulting in software that runs and contains few, if any, holes. Fromeach solution, we learn how to expand the problem—that is, improve the require—
ments—in the next stage.

Perhaps the most famous example of the strategy of rigorously solving a series of
progressively more complex problems was the United States space program of the
19605. The goal was to land a man on the Moon and return him safely to Earth, butthat was far too ambitious to attempt all at once. Over a decade, NASA designed, built,and launched numerous complete spacecraft solely for the purpose of learning abouteach of the many problems involved in a Moon mission. Project Mercury solved prob—lems of orbital dynamics and human life support in space; Project Gemini solved the
problems of extravehicular activity and space docking, among many others; Project
Apollo, in many stages, solved the final problems of actually landing on the Moon and
returning. Each of the many spacecraft designs was driven rigorously by requirements,and each experience improvedthe requirements for the next design.

The advantage of the strategy of growing the solution in whichever direction it
wants to grow is that it can solve problems We had never before thought to identify.When successful, it can generate spectacular results, such as new programming tools and
entirely new kinds of software. Its danger, as in any exploratory engineering, is that it
can stray considerably from what a customer wants, veering instead toward areas thatthe programmers find most interesting and within their area of expertise. This danger is
especially clear in contract programming, in which a customer simply wants software toperform a specific task, for example, to control a certain piece ofmachinery or to keeptrack of accounts and inventory. With no well—defined problem against which to vali—
date the interfaces and program, holes and problem misfits turn up well after the soft—
ware has been installed, when they’remost expensive to correct.

The spiral approach, with well—defined requirements supporting validation of each
version of the interface design (and well—defined interfaces supporting validationofeach
version of the program), is much more conducive to rigor. Since you consciously designthe desired effects of the software in the problem domain at each stage, you have more
opportunity to catch mistakes early in the process—while they’re still requirements on
paper rather than thousands of lines of inappropriate code, Also, you have somethingwell defined to test against at each stage, The disadvantage—asmall price in most every—day software projects—is that the more clearly defined the goal, the less likely it is that
you’ll make totally unexpected kinds of innovations.

INVENTION VERSUS VALIDATION 45

'____’,,
Rapid prototyping is a strategy for inventing requirements that blends the benefits

ofboth approaches: free-form explorationof interfaces and program designs that do not
fully solve a well—defined problem, as well as rigorous problem definition and solution.

When you write the real software, you throw away the prototype—the sloppy part that

you made only to stimulate ideas. Pencil—and-papermockups of screens, sometimes
called paperpratmypes, are one example of this technique. They are very tentative user—
interface designs that are inexpensive to produce and whose sole purpose is to stimulate
ideas for both requirementsand the final, detailed user—interface specification,

So, while writing requirements does not preclude a flexible, incremental style of
development, neither must flexibility conflict with rigor. Modern project management
techniques, such as the spiral method and rapid prototyping, enable programs to rigor—

ously map to requirements even as we improve requirements by observing the software
in action.

I

3.7 What software requirements are not
Terminology in the software industry is far from standardized,especially in regard to the

term requirements.This book rigorously adheres to one definition, but many others are
also in common use. The following serves both to distinguish this book’s concept of
requirements from some older ones, as well as to clarify it by describingother concepts
with which it is easily confused. Section 12.5 briefly describes a few more.

3. 7. I Not top—down
Structured analysis is an approach to requirements based on the idea of extending cer—

tain techniques of program design outward to requirements.The program design tech—

niques are:

' Form each subroutine by combining blocks of code without gotos, iterations of
such blocks, and execution of one block or another based on a condition.

0 Functional decomposition:when a given function is too complex to implement in
a single subroutine, break it into smaller functions When one function is decom-
posed into several, the functions exchange data with each other, as shown in a data-
flow diagram like that of figure 1.2.

These are the principles ofstructured programming. In structured analysis, the idea is to
bring the same hierarchical, structured method to requirements.

The analyst, then, describes a set of top—level functions, perhaps leveling (decom—

posing) them a few times to make functions small enough to begin implementing.The

46 CHAPTER 3 TWO WORLDS AND THREE DESIGNS

intent is that the programmers will translate each of these functions into a high—levelsubroutine in the program. The requirements document is, thus, a high—level descrip-tion of the program structure, making software developmentflow smoothly from begin—ning to end.

functions can also be allocated to different testers.We’ve already seen mat programming does not consist of breaking down high-levelfunctions hierarchically into low—level firnctions.‘ Structured analysis, however, has anadditionalflaw. It is concernedWith the wrong subjectmatter—the program rather thanthe problem domain.
If software development starts by describing the top level of the program struc—ture and working down to individual instructions, the only thing that ever getsdescribed is the configuration of the machine—the program. Regardless of the factthat this kind of functional decomposition doesn’t work, no logical connection fromthe problem domain to the program is ever established. In many projects that try tofollow structured analysis and design, the important job of interface design (especiallyuser-interface design) is neglected—perhaps sketched out by the analyst and latercompleted by a programmer, regarded as part of coding a subroutine rather than a

only the inputs and outputs that directly supply or receive data to or from the system.:l:Efl‘ects to be achieved indirectly by the software, as well as indirect sources of data, are

that Functional decompositionleads you to make the most momentous decisions when you understand theproblem the least, and, perhapsmost Fundamentally, the real world does not have the kind of neat, hier-archical structure found in a hierarchyof functions,making it difficult to devise a simple, robust mappingbetween a real-world problemand the elemean ofa programdesignedtop-down. See also Uackson 1983],pp. 370—371.
1' See [Yourdon 1989a] or nearly any other book on structured analysis.

WHAT SOFTWAREREQUIREMENTS ARENOT 47

explicitly excluded from the context diagram, and consequently excluded from consid—

eration. We will see in chapter 4 that these indirect connections between the machine to
be configured and the domain of interest are the source ofmuch of the complexity in
software problems. It’s tempting enough to sweep them under the rug, without a
method ofwriting requirementsthat explicitly demands it.

A better metaphor for the progression of the principal design stages in software
development (or each trip around a spiral) than “top—down" is the “left—to—right” pro—
gression shown in figure 3.1. Each stage of design is concerned with a diEerent subject
matter than the previous stage. This is very different from starting with a description of
high—level subroutines and fleshing them out with program code and low-level subrou—
tines. Our concern is to relate the program to desired effects in the outsideworld, logi—

cally or causally. And indeed, in both requirements and specifications, we do not
describe the program at all Programming is the programmers’ job.*

3. 7.2 Not sketches
In practice, trying to approach software development top-down often leads people to
view requirements as a sketch of the program. In this approach, the requirements phase
of the project is the creation of an outline of the major features of the program, leaving
the details for later, similar to the way an architect’s first drawing of a house is a sketch
that omits many details. The key distinction between requirements and later stages of
design, following the sketch approach, is the level of abstraction. Requirements are sup-
posed to abstract out details, allowing them to be filled in as development progresses.
The requirements are high-level; the final design is low—level or detailed.

50, for example, developmentmight start with a requirement like: “The program
must enable paralegals to research statutes pertaining to workmen’s compensation
claims.” Program design consists ofprogressively adding more detail to this fundamental
idea: fleshing our data structures, algorithms, screen designs, and so forth.

How, though, can programmersmake good decisions about these data structures
without knowledge of small details of the problem domain, such as the formats of legal
citations? To write the program well, someone needs to inform the programmers that
one type of statutory law citation has the following format:

t In the terminologyof chapter 5 of this book, structured analysis demands that all software problems be
framed as transformationproblems.
However, don't get the idea that structured analysis is worthless. Its strength has been its techniques for
describing dataiactually, a borrowing from relational database theory. These techniques for describing
models are so good that they can also be applied to describingdie problem domain itself. This book freely
draws upon them in chapter 9. Data-flowdiagrams are good for describingthings that are alreadywell un-
derstood; we’ll see them again in chapter 1 1. And our graphics for describingsoftware problems,presented
in chapter4, are a variationon data-flow diagrams.

48 CHAPTER 3 TWO WORLDS AND THREE DESIGNS

A R S. 23-613lA)l2Jla) __) Arizona ReVised Statutes Annotated,
‘fitle 23, section 613, section A,
subsection 2, sub—subsection a

while citations from case law have a different format:

San Francisco Arts & Athletics, Inc. v. —p Case: San FranciscoAns 84 Athletics, Inc. v.US Olympic Committee, 107 S.Ct, 2971, U.S. Olympic Committee.483 US. 522, 97 L.Ed,2d 427 (1987)
Published in: Supreme Court Reports,
volume 107, page 2971.

Also published in: United States Reports,volume 483, page 522.

Also published in: Supreme Court Reports,
Lawyers Edition, second series, volume 97,
page 427.

Date of decision: 1987. Because the main
citation implies the court of record, it is notindicated next to the date; otherwise, thelast part would read: (U.S.; S.Ct. 1987).

The rules for legal citations are among the tiniest of details, yet the program mustparse and print legal citations in a wide variety of formats or it won’t be ofmuch use inlegal research. Unless the programmers just happen to have basic legal training, theywould never guess these details correctly.
This, once again, illustrates that the diEerence between requirements and programdesign is not level of detail or level of abstraction, but subject matter. The formats oflegal citations, whether described sketchily or down to the last detail, are facts from theproblem domain, discovered by research and by talking with the customer. Facts aboutdata structures are facts entirely within the machine domain, invented by the program—mers to solve a problem expressed entirely in terms of the problem domain.A further difficulty with writing a sketch of a single domain, rather than a detaileddescription ofone domain and how it is to be affected by another, is that there is no welldefined problem to solve—no baseline against which to test or evaluate the final design.Ifa tester finds that the program allows a citation to list only a single publication, shouldhe mark this as a bug, or should he infer that this was one of the detailed decisions madeby the programmers?
The principleof exhaustive detail is worth formulating explicitly:

When a requirements document is done, the development staffshould

WHA T SOFTWAREREQUIREMENTS ARENOT 49

need to undertake no further research of the problem domain in order to
design the software.

In other words, a completed requirements document must contain every last rele—

vant detail about the problem domain. A completed interface design contains every last

detail about an interface. Programmers don’t flesh out missing details; they create an

entirely new domain, which indirectlybrings about the indicated effects in the problem
domain.

There is one main exception to the above principle. Much of the project—specific

knowledge needed by a user—interface designer is an intuitive understanding of the users:
what they understand, how they speak, what they like and don’t like, and so forth. Since

this kind of information cannot be written down precisely, no attempt should be made

to do so.
Sometimes you simply can’t get access to all of the necessary problem—domain

information early in the project. As noted at the beginningof section 3.6, there is noth—

ing wrong with revising the requirements and the description of the problem domain
after having done some prototyping or building some interfaces. Like the other princi—

ples, the “no further research” principle describes the logical relation between the pro-
gram and the requirements to be achieved by the time the software is completed and

accepted by the customer, but getting to that acceptance is not necessarily a neat, clock-

work sequence of development stages. The principle says that, at some point, all the

domain informationmust be available to the programmersand interface designers, even

if it isn’t all available on day one of the project.* To put it another way, people can begin
tentative interface design and program design even if the requirementsdocument is not
completely finished.

Furthermore, by no means does the above discussion mean that rough sketches

have no role to play in orderly software development. On the contrary, they play an

indispensible role in nearly every project. In the early stages of designing the require—

ments, you will likely create a sketch of the requirements in order to help you refine

your ideas and to help you communicate them with others on the project. You might
throw out all, some, or none of the ideas in this sketch when you write the completed

requirements document. Similarly, you might sketch out a specification before writing
the detailed version, and similarly again for the program.

The two important things to understand are that a sketch of the requirements is

not sufficient to make a detailed interface design or program, and that a sketch of
requirements is not an outline of a program. Also, because a sketch is made without full

* [Parnas 1986] discusses manyaspects ofbringing together all the partsofsoftware documentation logically
even when the process cannot occur in the ideal chronologicalsequence.

50 CHAPTER 3 TWO WORLDS AND THREE DESIGNS

knowledge of details, you cannot bank on a smooth flow from high—level to detailed
description. If you had enough information to guarantee that, you wouldn’t need towrite a sketch; you would be ready to write the final, detailed document. A sketch is an
exploration of ideas, an essay into the unknown.When you explore, you do not know in
advance what you will find.

3. 7.3 Not what versus how
Requirements are sometimes defined as “what” software must do, while design is “how”
the software does it. These definitions are far too vague to be of use in a real project, as a
simple example will demonstrate. Suppose that you’re creating a program to map databetween certain relational databases and object-oriented databases. You plan to run this
program to enable some new insurance software to work with existing databases in the
insurance industry, permitting incremental change instead of large, instantaneous
change. You’ve decided that to effect the mapping, you’ll have a human being manually
create a map file for every pair of databases that need to exchange data. The software will
then translate data according to the mappings in the map file specified when the soft—
ware starts up.

Now, which is “what the software does” and which is “how it does it”? Should the
requirements describe the insurance business? What the software does there is reduce
costs and increase profits. The requirements would be, “The mapping software shall
reduce total operating costs by at least 0.8%.” Or does the software map data betweendatabases? If so, should we exclude discussion of the map file from the requirements, as
part of “how” the software performs the mapping? Or does the software read the mapfile and map data between databases in accordance with a set ofmap-file interpretationrules?

In fact, everything in engineering is what and everything is how. Everything that a
piece ofsoftware does is what it does, and everythingthat a piece ofsoftware does is how
it does something.‘ This is true equally of databases, user interfaces, subroutine calls,
local variables, and arithmetic instructions.

The program is a design for performing mappings according to the map—file inter—
pretation rules. The map file is also designed by software engineers to serve the purposeof mapping. The map file overlaps between the world of users and databases and the
world of the program, so it’s part of the specification, as are the user interfaces for any
programs for editing map files, along with the procedures for operating those programs.The problem domain is the database files. The requirementsof the program are to per—form the mappings. The requirements are alto how. They are a set of conditions to be

' See also [Davis 1993], p. 17, for an amusing refutation of the what/how distinction.

WHATSOFTWARE REQUIREMENTS ARE NOT 5]

achieved in the problem domain, which people carefully designed in order to bring
about still other effects: helping shepherd the insurance industry toward acceptance of
new standards, and reducingoperating costs.

3. 8 Summary
Figure 3.3 summarizes all the fundamental components of software problems and their
solutions.

52 CHAPTER 3 TWO WORLDS AND THREE DESIGNS

CHAPTER 4

Problemfidmz'ng
4.1 The knight} tour
Consider the following problem, known as the (might? taur, The knight starts at the cen—ter of the board, as shown in figure 4.1. The problem is to find a sequence ofmoves thatlands the knight on every square, without land—
ing on any square more than once.*

Even on the miniature chessboatd, this is
a difficult problem. You try out a sequence of
moves and soon can’t rememberwhich squares
you’ve already covered. Lacking a systematic
approach, you resort to trial and error, never
able to know if you’ve painted yourself into a
corner until it’s too late Should you try to
cover the quadrants of the board one at a time?
Or spiral outward from the middle? The difl-i—

culty of the task and lack of a systematic
approach remind one a little of solving a

55

Figure 4.1 The knight’s tour

Rubik’s cube, as in section 1.3.
Now, in figure 4.2, look at a new version of the same problem.
In the new diagram, the squares of the chessboard have been moved. Each square is

connected by a line to all the squares that are a single knight’s move away. Miraculously,
the “difficult problem” is now trivial. You can find a path that touches each square only
once in only a second or two. Just start on square 13 and follow the lines.

What makes the second version of the knights tour so much easier is that the prob—
lem has been refrained to expose its essentials. The real problem is to find a chain of
squares such that a knight can jump, in a single move, between the two squares con—
nected by any one link of the chain. The arrangement of the squares on the chessboard
is of secondary importance, so we can freely modify it in order to make the “chain”
aspect of the problemmore conspicuous.*

The first and perhaps most important step in documenting software requirements
is to flame the problem—to put it into a definite form, with definite parts, and definite
relations between the partsfl‘ The way the problem is framed should make the details of
the problem, no matter how complex, fit into a simple, coherent framework so that a
person can systematically analyze them without becoming overwhelmed. In the knight’s
tour, the numbers on the squares—that is, the locations of the squares on the original
board—are the potentiallyoverwhelming details. The chain diagram still includes all the
details, but puts them into a framework that allows you to see each in proper relation to
the others, referring to the numbers only as necessary.

4.2 Domains
Software problems seldom fit into frames like the knights tour, ofcourse. How, then, do
you frame a software problem? You’ve already seen the most fundamental technique, rep—
aratiun into domains, in the general diagram of a software problem from chapter 3,
reproduced here in figure 4.3.

For non—chessplayers,a knighr’s move goes either two squares vertically and one square horizontally, or
two squares horizontallyand one square vertically.

Figure 4.2 is adapted from [Sawyer 1955], a book overflowing with similarexamples and insights from all
throughout mathematics.

T Framing the problem is also one of the most importanr steps in researchingit, as there’s no way to do sys-tematic research without specific questions to ask.

56 CHAPTER 4' PROBLEM FRAMING

12 3 4 5
6 7 a 910
171x~131¢15
wwwwsgo
21%232425

Figure 4.2 The knight's tour, refrained

What, exactly, is the difference between the two domains indicated by the ovals?Each domain contains a set of individuals—that is, distinguishable things aboutwhich we want to make statements. The individuals in the problem domain are thetrucks, cities, cargoes, drivers, customers, users, and so forth—the physical part of theworld in terms ofwhich the requirements are defined. The individuals in the machinedomain are all the subroutines and data structures that make up the machine’s pro—gramming, as well as the input/output devices of the machine. The only rule aboutindividuals is that you can always distinguish one individual from another—no indi—vidual is also another individual.
Also included in each domain is eve

uals. So, for example, we can say
former is new carrying the latter,

rything that we want to say about those individ—
about a certain truck and a Certain cargo that the

or that a certain driver drove a certain truck at a certaintime, that a certain customer owma certain cargo,
to be able to assert or deny of one or more ind
machine domain contains a different set of pred
range ofmemory locations,

and so forth. Everythingthat we want
ividuals, we will call a predicate. The
icates: a subroutine occupies a certain

one subroutine call: another, and so forth.

DOMAINS

Problem domain Machine domain

Pick up cargoesm
Haul cargoes to destinations

Database schemas

I nterfaces

Subroutines
, 43%.%We

Print reports Linked lists

l \
Requirements Specification Program

Figure 4.3 Separation into domains

A domain, then, is a set of individuals with accompanyingpredicates. The individu—
als need not be individuals that exist now or ever; they can be merely potential individu—als that the software must be capable of dealing with. So, for example, all potentialcustomers are part of the problem domain in the trucking example. When defining adomain,we do not necessarily know all of the actual individuals that it now contains orwill contain; however, we do specify all the predicates that we intend to apply to them.When we make statements within the problem domain, the individuals and predi—
cates that exist only in the machine domain are not available to talk about. Occupying acertain range of memory is not the kind ofpredicate that one asserts of a truck driver.Since requirements are expressed in terms of the problem domain, they can only refer toindividuals in the problem domain, and all they can assert about those individuals is
predicates from the problem domain. So the requirementsdocument says nothing aboutlinked lists and subroutines.

58 CHAPTER 4 PROBLEM FRAMING

Domain description generally occupies the majorityof a requirementsdocument—even more than the list of requirements. For readers to understand a domain wellenough to design software to hinction with it, you must provide one or more of the fol—lowing types of information, depending on the type of problem:

Table 4.1 Domain information

Type of information
Details in

What kinds of entities are or can be in the domain—forexample, people, cars, Chapter 9musical compositions, fuel injectors, road names.
What kinds of attributes those entities can possess—for example, color, com- Chapter 9pletion status, due date, how much money is In an account.
Relationships that can exist between the entities—for example, a driver owns Chapter 9a vehicle, two parties are plaintiffand defendantin a court case.The types of events that can occur within the domain—forexample, that cars Chapter 10can be sold, that rollers can turn, that the Supreme Court can deCIde to hear acase or throw it out.
The causal laws according to which the entities behave—forexample, that servo~ Chapter 11motorA is on if and only If bit 7 of I/O port OXFOO is high, and when servomotor Ais on, roller R1 rotates clockwise.

Events are often best treated as individuals, just like entities. When you frame theproblem, you don’t necessarily know which events will happen, but you know all ofthe possible attributes they can possess and all of the relations of interest betweenthem. The attributes of an event are the entities that participated in the event, andpossibly the time and duration of the event; relations between events are such thingsas before and afler.
Understanding the information described in table 4.1, you can incorporate itinto proporitiam: assertions or denials that certain individuals possess certainattributes or bear certain relations to each other. Attributes and relations can eitheridentify an individual for the purpose of making a proposition about it, or they canserver as the predicate asserted about the individual.A question, such as a query that auser asks of a piece of software, is also a proposition—a proposition whose truth orfalsity is unknown, or a proposition with the type of predicate stated but the specificpredicatemissing. (For example, you know that a quantity of tires was sold, but notexactly howmany.) A user runs a query to find outwhether the proposition is true orto find out the missing predicate.
Everything that you can say with individuals and predicates, along with varioustypes of relations between propositions, is the subject of two branches ofmathemat-

DOMAINS
59

ics known as the predicate calculus and the propositional calculus. In this book, we’ll
limit ourselves to the relatively simple types of propositions that you can express in
natural languages. The predicate and propositional calculi play a more explicit role in
formal methods.

For purposes of most everyday software projects, all you need to know is that in
describing each domain, you must explain the entire vocabulary in terms ofwhich you
describe it—all the types of individuals that you want to talk about and all the predi—
cates that you want to use to describe them—and frame all ofyour descriptionsin terms
of that vocabulary. Usually, this means providing each of the five types of information
listed in table 4.1.

The choice of what to call an individual and what to call a predicate depends only
on what propositionsyou are interested in asserting or asking. It is not a rule that physi—
cal objects have to be individuals, nor is it a rule that intangible things, like names and
numbers, have to be predicates. If you make an assertion about a name or a number,
then you are treating that name or number as an individual.The only rules are that no
part of the domain can be two individuals at once, and you must know in advance all of
the predicates that you want to assert of the individuals. Sometimes, the choice ofhow
to go about describing a domain—what individuals to talk about what what predicates
to use in describing them—is one of the trickiest and most critical parts of framing the
problem, as the following simple example demonstrates.

Suppose that you are writing the requirements for software to figure out routes
for bus riders to take to get from one place to another. Many of the propositions of
interest to you will involve roads, such as: “Route 102 stops at the northwest corner of
28th street and Pearl street.” It might be very tempting to make roads your individu—
als, and road names your predicates. But there is a problem with this scheme. Roads
sometimes overlap. For example, 28th Street might also be Highway 36 for a stretch
of a few miles and then the two roads go their separate ways. Are they one individual
or two? The solution is to define two kinds of individuals: road segments and road
names. Highway 36 then becomes a collection of individuals: all road segments with
name Highway 36. Some of these segments also have the name 28th Street?” A single
road segment can have more than one road name. Your main predicate is now: has
such—and—such name.

* Adaptedfrom Uackson 1995], pp. 100—103.

60 CHAPTER 4 PROBLEM FRAMING

4.3 Sharedp/Jmomma
Separation into domains is the most fundamental technique of framing software prob—
lems. We separate domains for two main reasons.

First, ifwe choose our individuals and predicates wisely, we can limit the scope of
our concerns. We can talk about one set of phenomena without having to include
another. It’s hard enough to describe the problem domain for the trucking software
without having to describe the program at the same time.

Second, we can talk about causation across domains, or other relations between
domains, such as representation, in a carefully delimited and disciplined way. In order
for one domain to exert effects in or communicate information to another, it must
partially overlap with that other domain. In the case of figure 4.3, this overlap is the
input/output devices of the computer. There are actions, such as the user typing in
data about a new driver, that are simultaneously acts in the problem domain and in
the machine domain. Following Jackson, we will call these overlaps between domains
:haredp/yenomena.‘

Shared phenomena are all states, events, and objects that are shared between two
domains.The input/output devices whose behavior is described in a software specifica—
tion are only one type of shared phenomena. They can occur between any two domains.
If you choose to treat the trucks as one domain and the drivers as another, then there are
truck driving events that occur in both domains—that is, events in which a driver drives
a truck, causing them both to move from one location to another—aswell as events that
occur in only one domain, such as engine maintenance and hiring.

Here are some typical examples of shared phenomena:

' Keystrokes typed by a user are keystrokes received by software.

' Every pixel displayed on a monitor by software is also a pixel seen by the user.
' A block of memory shared by two running processes in a computer, holding sema—
phores by which one process tells the other whether or not it’s safe to perform a cer—

tain operation. Record-locking is a typical example of this.
' The signals sent by an oxygen sensor to a microprocessor inside a cat
' The signals sent by the same microprocessor to the car’s fuel injectors
' A directory in which one program places files for later retrieval by another pro—
gram, or a mail folder in which a mail receiver places new mail for later retrieval
by a mail reader

* [Jackson 1995], pp. 1787181r

SHARED PHENOMENA 61

0 All of the data sent over coaxial cables in a local area network is shared by the net-
work software running on all the computers connected to the network.
' Ink being sprayed onto paper by an inkjet printer is also the paper receiving ink at
the location where the ink lands.

' An employee punching a time clock is the time clock recording the event.
In this book, our main interest in shared phenomena is to identifywhich individu—

als in one domain can directly afiect or be affected by individuals in another, and in pre-
cisely what ways. There are, however, more advanced uses of the concept of shared
phenomena, for example, the types of overlap studied in process algebras, such as that
described in [Hoare 1985].

Sometimes, for purposes of requirements,We treat slightly disconnected phenom—
ena as if they were truly shared. For example, you would treat ‘motion ofsubject in front
ofvideo camera’ as shared with ‘change of state of image on camera’ even though these
two events are mediated by light traveling from the subject to the camera. This is no
serious distortion of reality, because all that matters from the standpoint of shared phe—
nomena is that the same event can occur within and be described in terms of two (or
more) domains. If, however, the in—between domain can introduce serious distortion or
delay—such as the data—entry stall~who type information into the computer—then you
cannot ignore it. It is a connection domain, described in the next section.

4.4 Connection domains
Consider an information system to report on current temperatures all over the world.
The computer sits in a room at a meteorological research center and, consequently, has
no direct access to these temperatures. Instead, there are weather stations placed all over
the world, containing both temperature sensors and communication equipment. The
computer must communicatewith the weather stations to learn the temperatures and
report these temperatures to researchers on demand. We thus have four domains, as
shown in figure 4.4. The problem domain as a whole consists of three of them: the tem—
peratures, weather stations, and researchers.

The weatherstations share phenomena with the actual temperatures that the com—
puter is supposed to report on because events that affect temperature also afiect the
temperature sensors on the weather stations. Inside the weather stations there is equip—
ment to convert the analog readings at the temperature sensors into digital signals suit-
able for sending to the computer. The computer shares phenomena with the weather
stations because data sent or received by a weather station is data received or sent by

62 CHAPTER 4 PROBLEM FRAMING

The weather
Weather stations

Analog-to—dlgnal
converterTemperature

sensor
Temperatures

The computer
Serial

interfaces ' ‘

ProgramUser
interface

Figure 4.4 A softwareproblem with four domains

the computer. Finally, the computer shares phenomena with the researchers so it cancommunicate directly with them via the screens and keyboard.
The requirementof the software is to create a relation between the researchers and

the temperatures all over the world: the researchers must be able to query the tempera—tures on demand. The weather stations thus form a special type ofdomain: a connectiondomain, that is, a domain that shares phenomena with two domains that we wish had adirect connection, but don’t—in this case, the computer and the temperatures.Connection domains play an important role in most real—life software problemsbecause they put upper limits on how well you can fulfill requirements.A connectiondomain nearly always introduces some form of distortion and delay which may impactthe users of the software. The weather stations do not always function properly.Sometimes their power goes out, sometimes their serial connection to the computer is

CONNECTIONDOMAINS 63

broken, and sometimes their temperature sensors go out of calibration. During thesetimes, the software is unable to fulfill its requirement of delivering current, accurateinformation about the temperatures in each location where a weather station is placed.You’ll need to inform the customer, while still discussing the requirements, about theselimitations that are imposed by the connection domain.
You will also need to invent desired results when any of these conditions holds, and

you’ll need to learn enough about the temperature and weather—station domains toenable the software to detect those conditions. If you know that air temperature neverchanges by more than ten degrees in one second, and a weather station reports just that,you can exploit this knowledge in the design of the software. The software can reject theweather station’s report and output “unknown” in queries about the temperature at thatstation’s location.

4.5 Realized domains
A pharmacy and a health insurance company have computers that talk to each other.When a patient fills a prescription at the pharmacy, the pharmacy’s computer asks forapproval from the insurance company’s Computer. If the transaction meets the insur-ance company’s approval rules, the insurance company’s computer sends back theamount of the co—payment to be paid by the patient. The pharmacist then collects the
co-payment, and the insurance company owes the pharmacy the price of the drugminus the co—payment.

Where is the domain that contains the amount owed by the insurance company?It’s not part of the insurance company’s approval rules. It’s not part of the pharmacy’sdrugs or prices. Is it shared phenomena connecting the two? Of course not. Ifit’s neitherin one nor the other, it can’t be common to both. But we have to knowwhere the debts
are in order to design the system containing both computers because we have to knowhow the system can get access to them in order to control them or report on them.The answer is that the debts have no tangible existence outside the system. There-fore, the system can enact no cause to control them, and no activity in the debts domain
can ever exert an effect detectable by the system. Debts exist onlywithin the conceptualworld ofhuman agreement.

What the system can do, however, is create a proxy for the debts inside itself. Thepharmacy and the insurance company agree that when certain bit patterns exist withinthe computer, the insurance company will owe a corresponding amount of money tothe pharmacy, as long as these bit patternswere created in accordance with various rules,such as, “Only an authorized employee can create a debt.” We will say, then, that the
system realize: the debts within itself; the debts are a realized domain.

64 CHAPTER 4’ PROBLEM FRAMING

By creating a realized domain as a proxy for the real debts, the system is able to con—trol the debts. Without the agreement between the insurance company and the phar-
macy, there would be no point in fiddlingwith the bits in the computer. Neither partywould really owe anything to the other.

Another computer system, perhaps run by the government, that reports on the
amount spent on prescriptionsall throughout the country also needs to access the debts,but its job is not to realize the debts within itself. No one is bound by the debt records
stored in the government computer. The debts exist entirely outside the government
computer. It accesses debts only for information—gathering purposes, perhaps by com—
municating with the insurance company’s computer.

This distinction between a realized domain and a real domain is both simple andsubtle. It is something people rarely need to articulate, but it is critically important.
Nearly any type of commitment between people, if a computer is to manage it, must
appear as a realized domain in a requirements document. This includes most debts,
accounts, responsibilities to perform tasks, scheduled times at which to meet, the
right to use a conferenceroom at a certain time, and so on. If the debts, accounts, and
so on are not to be realized, but merely reported on, then the requirements document
must treat them very differently. The document must indicate how the computer can
access them (perhaps through a connection domain—a realized domain in another
computer).

A much more familiar type of realized domain are documents created in a Word
processor or graphics in a graphics editor. Here, too, the domains do not exist prior tothe operation of the software. Aword processor doesn’t access a document by interactingwith something in the outside world either directly or through a connection domain.
Theword processor’s job—one of its requirements—isto realize documents within itself
in response to user commands, just as the insurance company’s computer realizes debtswithin itself in response to commands initiated by a pharmacist.

4. 6 Frame diagrams
The notation of overlapping ovals, as in figure 4.4, does a nice job of illustrating
domains, shared phenomena, and direct versus indirect connections, but it’s somewhat
unwieldy. In this section, we introduce a simple graphical notation for depicting all the
principal parts of a software problem.We’ll call a diagram made in this notation aflame
diagram.*

In a frame diagram, each domain is represented by a rectangle, and shared phenom—
ena between two domains are represented by a line connecting two rectangles. The

FRAME DIA GRAMS 65

temperatures

weather
stations

information
system

researchers

Figure 4.5 Part of the frame diagram for the temper-ature information system: domains only

machine to be programmed is indicated by a rectangle with a double border. The wordswritten inside the double border are the type ofmachine that the computer becomes asa result ofprogramming, for example, the name of the software, or (in generic examplesas in this book) a phrase like “information system” or “controller,” The domains in thetemperatureinformation system are drawn in this notation in figure 4.5.If one domain is contained entirely within another, such as the set of documentsthat is contained entirely within a computer, a frame diagram represents this with a bigdot, as in figure 4.6. The big dot also provides a way to draw the rare case ofshared phe—nomena between three or more domains, as would occur if you chose to distinguishtrucks, drivers, locations, and cargoes as distinct domains. Shared phenomena are, bydefinition,wholly contained in two or more domains at once.We now have symbols for two of the principal parts of a software problem: themachine M and the domain D.‘ All that's left is the effects R that the machine is tobring about by virtue of its programming—the requirements.We symbolize the require—ments by an oval, with one or more lines connecting it to the domains that the require—

The frame diagram for a program, ,or part of a program, that manipulates digitalimages of photographs is shown in figure 4.8. The problem domain consists of two
" Frame diagrams are from [Jackson 1995], pp. 158—162and 84—87; the underlyingconceptsare praented
in the same book. The sample problem frames described in the followingchapters are derived from, butare not identical to, the problem frames also described in that book.* See section 2.2.

66
CHAPTER 4 PROBLEM FRAMING

word
driversprocessor

documents

truck-drivingtrucks
events

locations

Figure4.6 The big dot indicatesthat one domain is wholly contained in another

temperatures \ weather
stations

queries
information
system

researchers

notice which domains it re
iem, in its most fundamental form,
order to enable users to make queries about temperatures (as in H

FRAME DIA GRAMS

cargoes

image-
processing
algorithm

input image filter output image

Figure 4.8 Frame diagram for image-processingsoftware

stations. The weather stations, thus, add an important element of complexity to the
problem. In figure 4.8, however, both primary domains of interest connect directly to
the machine because the machine can read and write image files directly. Therefore, no
connectiondomains complicate this problem.

Notice that a frame diagram does not attempt to depict all aspects of a problem.
Users initiate queries, and the queries are about temperatures; temperatures do not ini-
tiate queries about users. This asymmetry is not shown in figure 4.7. The diagrampro-
vides you with a quick way to sketch out all of the major elements of the problem in
order to help you plan out a systematic way to document them. The detailed, rigorous
description is what you’ll create when you write the document. No simple diagram can
do all that.

Therefore, you can only understand a frame diagram with some accompanying
commentary. The requirement is not simply queries, as shown in the oval in
figure 4.7, but to answer queries on demand. Frame diagrams are perhaps best under—
stood as napkin art—not necessarily something to include in a requirements docu—

ment, but an aid for sketching out a software problem as a first step toward writing a
requirements document.

Of course, you might want to include a frame diagram in the overview section of a
requirements document. It does indicate all the principal elements of most software
problems, but most people are not familiar with the notation. Or you might add arrows
to it to indicate one-way flows of information, thus converting it into a sort of data—flow
diagram, or add notational devices that are specific to the one problem you’re trying to
describe. The examples in the following chapters will add a few nuances as the need
arises.

68 CHAPTER 4 PROBLEM FRAMING

4.7 From diagram to documentation

' A list of all the queries that users can initiate, that is, all the questions that they canask about temperatures and that we want the system to be able to answer. If thecustomer desires, the format of these queries—both format of the input and theformat of the results—can be included in the problem.' A description of temperatures (very easy)
' A description of how the weather stations interact with temperature. Usually, theinstruments at the weather station accurately record the temperature, but notalways, such as during malfunctions,power outages, and instruments falling out ofcalibration. The requirements document needs to cover everything that can gowrong in the connection between the computer and the temperatures.' A description of how the weather stations interact with the computer, that is, thecommunicationprotocols that the system will need to adhere to in order to extractinformationabout temperature from the weather stations.' A description of the connection between the researchers and the computers, thatis, the input/output devices available to the user-interface designer. If the soft—ware is to run on a standard type of machine and operating system, such as aWindows machine or Macintosh, then you need say only that, along with anymore specific information, such as the lowest screen resolution that the userinterface must support.
' Possibly, a description of the researchers, if there’s anything unusual about themthat would affect the design of the user interface
Notice that frame diagrams depict only the information to include in a require-ments document. The diagram breaks the problem domain into its principal ele—ments, and shows how the machine to be programmed connects with them. A framediagram is not an outline of program structure, nor is it a description of the behaviorrules that make up the specification. It’s strictly a graphical overview of a softwareproblem, not its solution.
Once the problem is framed, people can approach documenting and solving it sys-tematically, but there is no systematic way to frame a problem. There is no rigorous

FROM DIAGRAM TO DOCUMENTATION
69

method for findingétggamusmethod. There are, however, common patterns to recog—nize and draw apt);when framing new problems. Presenting these patterns is the pur-
pose of chapters 5 and 6.

When you frame a problem well, you are readying it for the development stag to
apply the design patterns that they know. Ideally,when you write up the descriptionsofthe queries, a programmer is able to think, “Ah, I know just the search algorithm for
this—Algorithm T from [Knuth 1973], p. 481.” The problem description doesn’t
describe the algorithm, of course; it describes the problem solved by the algorithm in
such a way that it’s easy to recognize.

4.8 Notation summary
For reference, the meaning of each symbol in a frame diagram is summarized in
figure 4.9.

70 CHAPTER 4 PROBLEM FRAMING

weather
stations

information
system

answer
queries

rsmvelatures
weather
swarms

temperatures

users

0W

Each rectangle is a domain:a collection of objects or portion of theworld, singled out for the purpose of making statements about it.

A rectangle with a double border is the machine domain: the
computer to be programmed. The words inside the rectangleindicate what kind of special-purpose machine the computer willbecome when it runs the program; usually the name of the programbelongs here.

An oval is a set of requirements: propositions to be made true byvirtue of the computer's programming.Ovals collect together criteriathat the interface designs and program must meet in order to countas a success, In this case, the system's job is to answer queries.
A line connecting two domains represents shared phenomena:states or events that overlap between two domains. Causationbetween domains and flow of data always involve sharedphenomena. In this case, the state of the outdoor temperature isassumed to overlapwith the state of measuring instruments on theweather stations—they reach the same temperature. The statesand events by which the weather stations communicate with thecomputer are different, of course.
A line connecting an oval to one or more domains indicates that therequirements apply to those domains. Requirements always specifyrelationshipsto be realized within or between domains. In this case,the job of the system is to maintain a relationshipbetween theusers and the temperatures: the users are able to get informationabout temperatures by making queries.

A big dot indicates that one domain is completely contained inanother: the entire domain is phenomena shared with the domainmarked by the clot. The dot is needed to describe any problemwhere part of the software's job is to create or embody a domainwithin the machine. A domain created by the software is called arealized domain.

Figure 4.9 Symbols used in framediagrams

NOTATION SUMMARY 71

CHAPTER

Fiveproélemflames
5.1 Overview
This chapter presents five different problem frames, corresponding to the five types of
requirements shown in table 5.1:

Table 5.1 Five different problemframes

Requirement type Description Problem frame
Queries Requests for information about some part of the information

problemdomain
Behavioral rules Rules according to which the problem domain is to Control

behave
Mappings Mappingsbetween data input to and output by the Transformation

software
Operations on Operations that users can perform on objects that Workpiecerealized domarns exist only inside the software
Correspondences Keeping domains that have no shared phenomena Connectionbetween domains in corresponding states

73

For each type of requirement, there is a corresponding set of problem-domain
information needed to devise a specification that implements the requirement. Queries,for example, need a descriptionof the part of the world that the queries are about. The
five problem frames of this chapter include both the requirements and associated prob-lem-domain information.

These five problem frames are not an exhaustive list. They describe very commonlarge scale software patterns. Like any pattern, each describes a specific kind ofproblem,
never claiming to be a general method of describing all problems solvable by software.
They help you in the same way that knowledge of hashing techniques helps a program—mer. When a programmer sees a situation where a hashing algorithm is appropriate, he
applies hashing, perhaps varying the implementation slightly if the problem is a littledifferent from what the books describe. No one claims that a programmer should try tosolve all programmingproblems only with hashing algorithms.

When you see a problem to document that fits one of these problem frames, you’llknow how to systematically document the problem in a manner useful to programmers,though perhaps varying the frame slightly if the problem is a little different. If none ofthe problem frames fit, then you’ll have to invent a new one, but hopefully they’ll still
help you by providingsuccessful models to start from.

Furthermore,most software problems involve several of the above types of require-
ments at the same time. In this case, you have a multi—fiame problem.‘ Chapter 6 pro—vides some guidelines for combiningproblem frames.

To summarize, then:

The purposeof framingproblems is not to force—fit them into existing
categories; rather, it is to recognize familiar problemswhen you see themand gain a head start on unfamiliarproblems by varying the familiar.

The following is a brief introduction to each of the problem frames discussed in the
rest of this chapter.

Software that solves an information prob/em
answers queries about a certain part of the "WWW“
real world. Documenting an information

- - ~ queries .mormauonproblem involves describing the types of system
information requests to be satisfied, the part WWW”/of the real world to which the requests apply, “”35”“
and how the software can get access to that Information problem
part of the real world. See section 5.2.

‘ Uackson 1995]. pp. 128—134.

74 CHAPTER 5 FIVE PROBLEM FRAMES

In a mntrolproblem, the software is responsi-
ble for ensuring that some part of the world
behaves in accordance with specified rules.
Documenting a control problem involves
describing the objects that inhabit that part
of the world and the causal rules they obey,

behavror rules

controlled
domain controller

Control problem

the rules according to which they are supposed to behave, and the phenomena shared
with the software through which the software can monitor the state of the world and
initiate causal chains that result in the rules being followed. See section 5.3.

To solve a transformation problem, the soft-
ware generates output data that maps to
input data in accordance with specified
rules. Documenting a transformation prob-
lem involves describing the entire set of all
possible inputs and the mapping rules that
indicate, for each possible input, the correct
output. See section 5.4.

In a workpiece problem, the software serves
as a tool for creating objects that exist only
within the software, the same way a lathe is
a tool for creating wooden workpieces.
Documenting a workpiece problem consists
of describing the objects to exist within the
computer and the operations that users can
perform on them. See section 5.5.

Finally, in a connectionproblem the software
must simulate or make do with a connec-
tion between domains that do not really
share phenomena.This diagram shows one
form of connection problem in which the
principal information to document is the
delay and distortion characteristics of the
connection domain, and the behavioral

Input data filter output data

Transformationproblem

operations

users tool workpieces

Workpieca problem

achlevable
Correspondence

system connection
domain

domain 0!
Interest

Connection problem

characteristics of the domain of interest, so that the system can detect invalid data
received from the connection domain. See section 5.6.

OVERVIEW 75

5.2 Information problems
In an information problem, you are charged with building software that satisfies queries
for information about some part of the world, usually outside the software. Hence, to
document the requirements for an information problem, you must describe the relevant
part of the world, the queries, and the people or things that initiate the queries.

All of this is shown in the information problem’s frame diagram in figure 5.1:

real world\information
requestors

information
system

Figure 5.1 Information problem

The requirement is to satisfy queries initiated by the information requestors—
users, hardware, or software that needs information The query oval is connected to the
real world and the information requestors to indicate that the job of the system is to
maintain a relationship between the two in order to enable the information requestors
to get informationabout the real world on demand.

Queries are always defined in terms of content—a question about the real world
that the system is required to answer. Sometimes, but not always, customers have partic—
ular ideas about the form in which they want to ask the questions or the form in which
they want the answers to be presented. An example of the latter is a preprinted form,
such as bills that contain the company logo along with spaces to fill in customer name,
address, amount, and so on. In this case, describing the format of the bills—that is, the
output of the queries—is also part of defining the problem.

In most information problems, describing the queries is fairly easy. You simply
write, “User can receive a list of all purchases made by any specified customer,” and so
on for each type of question that you want to make the computer answer, perhaps
including the output format if the customer specified one. The larger job is describing
the real world—that is, the part of the world, usually outside the software, that the que—
ries pertain to. You must describe all of the types of objects that the queries can ask
about, as well as all the events that happen to them that affect the results of the queries.

76 CHAPTER 5 FIVE PROBLEM FRAMES

Often the information requestors require little or no description. They may be
end users, or perhaps any line of code that calls a function that returns information.
If, however, the information requestors are special hardware, such as electronic devices
that change voltages on wires connected to the computer on which the software is to
run, the hardware needs to be described, or at least what the changing voltages on
each wire mean.

Notice that since the only requirement is to satisfy queries, causation is no part of
an information problem. The system reports on the state of the world, but it is not
responsible for affecting the state of the world. Affecting the world is a different kind of
requirement, described in section 5.3. Both types of requirementscan be differentpartsof a single, complex problem, of course.

Example software that solves information problems:
Part of an inventory control system: displays amount in stock of any item, prints
reports of items low on stock, prints reports of sales at end of each day, week,
month, and year

' A program to search texts of Cretan Linear A documents for user—specified
sequences of characters

0 A web search engine: finds pages on the world—wide web relevant to user—specified
topics

0 A subroutine or operating-system function that returns information about the
graphics adapter attached to the computer: current resolution, current color pal-
ette, amount ofvideo RAM, list of supported graphics modes

' An electronic thesaurus
' A library catalog system: informs users ofwhat books are in the library, their call
letters and other attributes, and whether or not the books have been checked out
' A small part ofa library catalog system: logs library searches by content, which ter—
minal the search was initiated from, and number ofmatches, to help people look
for ways to improve the searching system described just above. In this case, the real
world componentof the problem is another part of the software—a part that solves
a different information problem.

5.2.1 Connection domains
Because computers are not psychic, nearly all information problems include a connec-
tion domain—something that relays information from the real world to the software to
be built. Typically, this connection domain is people performingmanual data entry.

Thus, many real life information problems have frame diagrams that look like
figure 5.2.

INFORMA TION PROBLEMS 77

real world \ data—entry
staff

information/ SYStem

users

Figure 5.2 Information problem including a typical connectiondomain

Data gathering equipment is another likely connection domain, as illustrated by
the weather stations in figure 4.7.

An example of an information system with no connection domain is a program
that lists the files contained in a directory on the same computer that the program runs
on. Such information systems are definitely the exception rather than the rule.

5.2.2 Static anddynamic
Most information systems report on the state or history of a realworld that is constantly
changing—changes to account balances, current stock prices, current contents of a
warehouse. Thesewe can call dynamic information systems.

A static information system, by contrast, reports on a real world that changes little or
not at all—the interaction properties of drugs, strengths of materials, decisions and
opinions of the United States Supreme Court, the Collected dialogues ofPlato. The dis—

tinction is not precise, of course. While Plato’s dialogues will never change, new infor-

mation is continually discovered about drug interactions, and the Supreme Court
announces new decisions and opinions each year. Nevertheless, there are somewhat dif—

ferent approaches to implementing information systems that report on a static or a
dynamic world.

In a dynamic information system, the collection of information available to report
on builds up while the system is in operation. Typically, a static information system
comeswith all of its available information built in. The texts of the Supreme Court deci—
sions, for example, might be stored on the same compact disc that includes the program.
If the information changes very slowly, the software manufacturer might provide quar—

terly or yearly updates.
To document a dynamic information problem, you must indicate how the soft—

ware can get access to each event that changes the results of possible queries. For
example, is the information available only from users performing manual data entry?

78 CHAPTER 5 FIVE PROBLEM FRAMES

If so, how will they get access to the information—from newspapers, from customers,by direct observation? Is there equipment that registers when these events happen? Arethere existing databases or computers that already supply this information? If morethan one data source is available for the same information, which is more trustworthy0t up-to—date?
To document a static information problem, you must indicate, not how the soft—

ware can access the relevant part of the real world, but how the software developers can.Theymay have to get it from peoplewho type it in manually, as in the case of softwarethat enables users to search and display Plato’s dialogues in the original, ancient Greek.If there are existing sources for the data, the requirements document should indicatethese, alongwith any shortcomings,such as missing sections or a manner of representa—tion that omits diacritical marks. Often in a static information problem, the greatmajority of the work is not programming or even writing requirements, but enteringand editing the data.
Many real life dynamic information problems require that the system start off ableto answer queries about events that occurred before the system is put into operation.This is most often the case when the customer already has an information system in

place, and the new system is merely a replacementfor it. The customer does not want tolose access to the years’ worth ofdata stored in the old system. Just as in a static informa—tion problem, the requirements document must indicate how the software developerscan access the legacy data. Often this involves documenting the file formats, or at leastdocumenting your guesses about the format because documentation on the details ofthe old system is often poor, if it exists at all. You need to document the meaning of thedata, not just the files and record types and fields. The programmers need to know howto map the data to the real world if they are to build a system that answers questionsabout that real world. If the legacy data is not sufficient to answer all the queries that the
customerwants to make, the customer should know this as early as possible.

Finally, a mapxbat problem is a very simple case of dynamic information problem.In a snapshot problem, the system reports on the current state of some part of the realworld, such as the current temperature, or perhaps displays a snapshot, via the WorldWide Web, of Times Square in New York. Such problems are usually best framed asconnection problems, described in section 5.6.

5.2.3 Passive and active
So far, we’vementioned only queries initiated by users: user types in query about x, sys—tem displays requested information about x. In these cases, an information systemresponds only passively to user input.

INFORMATIONPROBLEMS 79

Some informationsystems also deliver information to their users without their hav-
ing requested it. For example, a burglar alarm notifies police or security personnel that
an intruder has entered a building without the people at the police station continually
querying to see if anything has happened. Similarly, an inventory control system might
notify employees in the purchasing department whenever an item is running low on
stock and needs to be reordered. Other software, rather than a person, might be the
recipient of a notification, as in UNIX, Where the operating system notifies a process
when one of that process’s child—processes dies. In these cases, the information system
plays an active role, effectively initiating queries and showingusers their results.

Active queries, or notifications, sometimes require a little more documentation in
requirements than do passive queries. What event triggers the notification?What kind
of lag between the occurrence of the event and the notification of the user is permissible?
If the user does not receive the notification, must the system take some other action? If
so, how can the system know that the notification has succeeded?

Very often, the real reason for requiring that the system perform notifications is to
ensure that a business operate according to certain rules. In this case, the notifications
are the means bywhich the system exerts control over a domain, and the problem is bet—

ter framed as a control problem, described in section 5.3.

5.2.4 Solving on informationproblem
The normal solution to an information problem is to build a model of the real world
inside the computer. The model consists of bits in the computer that change state
following rules that map them to activity in the real world. The model, then, behaves
in a manner analogous to the real world, enabling the software to answer queries
directly, on the basis of the model, instead of contacting the real world in response to
each new query.‘

For example, when a clothing store receives a new shipment of sweaters, the model
maintained by its inventory software changes: the qtygin_stock field in the item record

‘ The software industry is somewhatnotorious for its nearly all-encompassinguse ofthe wordmodel In this
book, model means only the most mundane sense of the word: an object whose properties bear a useful
analogy to somethingelse, as a model of a building is useful to examinewhen planning to construct a real
building, or you can examine a model of a molecule to learn about the aetual molecule. The analogy be
tween a model and what it is a model of can be useful to varying degrees, but the model itself is neither
true nor false; it’s just another object. A dermption,or statement, bycontrast, is true or false. Requirements
and specifications, then, are descriptions, not models. They describe the problem domain, the effects that
the software is to achieve there, and the interface betweenthe software and the problemdomain. The prob-lem domain descriptionis simply true or false, and the requirementsand specifications become true when
and if the software is implementedwithout hugs and operated correctly. The bits in a computer that bear
a useful analogy to the real world are a genuinemodel. As these two concepts are among the most funda—mental to keep distinct, we will not use the words that stand for them interchangeably,

80 CHAPTER 5 FIVE PROBLEM FRAMES

corresponding to that style of sweater increases by the number of sweaters in the ship—

ment. When a user queries on the number ofsweaters of that style in the store, the soft-
ware simply reports the current contents of the same qty_in_stockfield.

Therefore, the specification that describes the solution to an information problem
needs to describe the model maintained by the software as well as, for each event in the
real world that changes the answer to any possible query, the corresponding interface
event that changes the model.

For example,when the store receives the new shipment, it becomes the responsibil—
ity of a user to type in the item type and the quantity of the shipment. The software
updates the model in response to the user-interface event, not the actual receipt of the
shipment, since the software has no direct access to the latter. We will call each such
action an event response.

An event response involving human users has two parts: the action that the user is
responsible for performing (getting to a certain screen in the program and typing in
some data) and the update of the model. The user’s action is one of the operating proce—
dures for the software. If the users do not operate the software as described in the speci—
fication, the software cannot be relied upon to answer queries correctly.

The description of the model describes the data only insofar as it affects the outcome
ofqueries—that is, only states of the model that are distinguishable at the interface to the
problem domain. Whether the model is implemented as a relational, hierarchical, net-
work, object—oriented, or other type ofdatabase is no part of the specification.

When hardware or software, rather than users, supplies information at the interface,
the principle is the same.The specification must state, for each event initiatedby the hard—
ware or software, how the system responds to it—that is, how the system updates the
model. In most cases, these event responses do not include anything analogous to operat—
ing procedures because only rarely is it possible for the interface designer to specify how
the hardware or software that it communicates with must behave. Rather, the design must
conform to known and unalterable behavior of the hardware and software.

The specification of a static information system does not include any event
responses, of course, because no events happen in the problem domain. The specifica—
tion does include a descriptionof how the information gets into the system in the first
place. This might involve writing requirements for another program to create and edit
the model. Such a tool would most likely fit the workpiece frame, described in
section 5.5.

If the problem domain changes occasionally, or if knowledgeof it changes—such
as pharmacologists’ knowledge of drug interactions—then the specification must
describe how these events lead to an update of the model. For example, if there is to
be a monthly update of pharmacies’ databases, the specification must describe how

INFORMA TION PROBLEMS 81

the new drug interaction information enters the main system, how the main system
generates updates for distribution to end users, and how users enter the updates intotheir own systems.

\

To try to counteract the distortions introduced by a connection domain, a specifi-cation usually includes a set ofvalidation rules. Each rule must state criteria for rejectingdata and what the system does ifa user (or hardware or software) attempts to enter datathat fails the criteria. For other types of connection problem and their solution, seesection 5.6.
Lastly, the specification contains all of the screens in the application, including adescription of every action that a user can take. The user—interface description tells howthe users enter queries and how the results appear on the screen. In most projects, before

designing the screens, it’s wise to write up each event response only in terms of dataentered by the user and the effect on the model. The user-interface designer then addsthe screens, indicating exactly what fields the user enters and buttons the user presses ineach event response. The programmers can implement the operations on the modelwhile the user—interface designer designs and tests the screens.

5.2.5 Checklists
Tables 5.2 and 5.3 list the information needed to fully document both the requirementsand the specification for an information problem. See also chapter 8 for generic infor—
mation that applies to nearly all software, such as installation and backup procedures.

Table 5.2 Information problem: requirements document
Topic

See
Objects in the real world and their attributes and relations Chapter 9Data to be stored about the objects5 Chapter 9
All real world events that change the results of queries, and all possible Chapter 10sequences In which those events can occur
Queries

Section 9.9How can the system access the objects and events? (Or, in a static information (Not covered inproblem, how can the software developers access them?) this book)
File formats for any existing files that the system needs to access (or refer to Chapter 10existing documentation)
Distortions and delays introduced by any connection domains (Not covered in

this book)
a. As mentioned in section 8.1, while a descriptionof data to be stored is technicallypart of thespecification, it's usually most convenient to include it in the requirementsdocument.

82 CHAPTER 5 FIVE PROBLEM FRAMES

Table 5.3 Information problem: specification

Topic See
Event responses Section 10.3
Validation rulesa (Not covered in this book)
User Interface, and any additions to the data model necessitated by the Section 8.2
user interface, such as preferences
Operating procedures Section 11.5

a.Validation rules can also be appropriate to include in the requirements document instead of in
the specification. The specificationsays, in addition, what the system does in response to entry of
any data that violates the validation rules.

5.3 Controlproblems
A control problem focuses exclusively on causation—that is, in making part of theworld behave in accordance with specified rules.

To document a control problem, you need to describe three things: (a) the causal
properties of the relevant part of the world and the rules that the objects in that world
follow by virtue of their nature, regardless of the software; (b) the rules that we would
like them to follow; and (C) the phenomena shared between the computer and the prob-
lem domain, through which the software monitors the problem domain and initiates
actions that result in the rules in (b) being followed.

Part (b) is the requirement, shown in the figure 5.3 as behavior ruler. The rest is
problem—domain description.

The software in a microprocessor—controlled video camera solves a simple control
problem. The behavior rules link button presses with motor activity, as in, “Motor runs
at normal speed while record button is depressed, unless tape cartridge is at end of tape
or no cartridge is loaded.” The description of the controlled domain consists of

behavror rules

controlled
domain controller

Figure 5.3 Control problem

CONTROL PROBLEMS

statements such as, “The motor is always in one of the following three states: off,
running at normal speed, running at high speed” and “The motor can only run at high
speed when the battery charge is at least 0.2,” Finally, the shared phenomena are
described by statements connecting the I/O ports on the microprocessorto other parts
of the problem domain, such as, “When output port OXOAOO is 0x01, the motor runs at
normal speed” and “Input port OXOAOI, bit 0, registers the current status of the record
button: 1 if depressed, 0 if raised.”

More examples of software that solve control problems:

' Heating control system in a large office building: turns fans, furnaces, and air—con—

ditioning units on and off to make the best compromiseamong the varying settings
of numerous thermostats located throughout the building

- Traffic—light controller: switches lights between red, green, and yellow according to
timing rules, activity registered at sensors, and timing relationships with activity at
neighboring trafiic lights

° Telephone switch software: directs switches to connect incoming calls to wires that
lead directly to telephones, parses pulses and touch tones from telephones to find
out what number they’re calling, and connects the two telephones or connects the
call to another service, such as a long-distancecarrier, to complete the next segment
of the connection

' Inventory control system: fills or rejects orders, logs the acquisition of new inven—

tory, directs stock pickers to the correct shelves, reorders new inventory at econom-
icallymost efficient times

' Mail transfer agent: software that runs on an electronic mail server that receives
notifications from delivery programs that new email has arrived, calls upon appro-
priate delivery programs to forward email to its destination address according to
rules about how bandwidth is to be used and knowledge about which communica—
tion protocols are supported by each destination computer. (A delivery program is
one that exchanges email via a specific communication protocol.)
As diverse as these examples are, stating their requirements involves essentially the

same principles: state the causal rules that describe how the relevant objects in the world
behave, and state the desired behavior that the system should cause.

5.3.1 Connection domains
A very common type of control problem, especially in business applications, involves
directing people to perform various activities. This is perhaps better named a direction
problem, because the computer can only direct people, it can’t control them. They might

84 CHAPTER 5 FIVE PROBLEM FRAMES

business rules

warehouse

inventory
employees control

system

orders

Figure 5.4 Connection domain in a control problem

or might not do as the computer directs them. Thus, the users in such a problem are aconnection domain, as shown in figure 5.4.
The behavior rules say only to move inventory into the warehouse when it’sreceived and to ship it to customers in response to orders. The inventory control systemmust rely on employees to tell it when inventory and new orders are received. The onlyway the inventory control system can cause inventory to move is by directing employeesto move it.
The inventorycontrol system also keeps track of accounts and responds to queries.These, however, form an information problem, and we should not let them distract uswhen considering the control aspects of the problem. More information about theinventory control systems multiple problem frames is in section 6.2.In addition to sometimes moving the wrong items, or entering order data incor»rectly, the employees introduce another difficulty. There is a delay between the time thesystem gives a direction and an employee moves the inventory, and a delay between thetime inventory or an order is received and an employee enters this into the system. Fur—thermore, the software cannot tell when or whether inventorywas actually shipped.The software designers cannot entirely remove distortion and delay, but they canreduce them to some extent. If there is redundancy in the problem domain—forexample, products that have unique numbers as well as unique names—the softwarecan require that users enter both the number and a name, and reject the data if theydon’t match.

What’s that big rectangle enclosing the warehouse and the orders? It Wasn’t on thelist of symbols in figure 4.9. It’s just a way to group domains together so that one linecan connect to all of them without making a messy diagram. Frame diagrams are not aformal language. They are diagrams that you can draw on a napkin in two minutes orless. Modify them to suit whatever you want to depict.

CONTROLPROBLEMS
85

5.3.2 Solvingzz controlproblem
The specification of a program that solves a control problem is a descriptionofyet more
behavior rules: rules that describe the behavior of the shared phenomena, this time
including the behavior of the computer. Continuing the example of the video camera,
part of the specification might state, “When input port 0x0A01, bit 0, changes from 0
to 1, programchanges output port OXOAOO to 0x01.”

Often, timing plays a role in the specification, just as in the requirements. If the
requirements state that the VCR’s motor must not run in pause mode on the same seg—

ment of tape for more than 180 seconds, then the specification includes rules for chang—
ing the settings ofoutput ports in accordance with similar timing rules.

In many cases, the behavior rules in the specification are more complex than can be
expressed by statements in the form of, “When at happens,y happens.” Often, the pro-
gram must respond diEerently to the same event, depending on which events preceded
it. In this case, the solution is to postulate a set of states that the software takes on. Each
state specifies, for each possible input, the visible response in the problem domain and
the next state for the software to change to. For example, if a single press of a clear but-
ton on a photocopier is supposed to cancel the current job, and a second press is sup-
posed to clear all the copier settings to their defaults, the specification would need to
describe two states. More information about states and state—transitionsis in chapter 11.

When you solve a direction problem, you create a specification describing two
things: notifications to tell users when to perform tasks, and event responses to tell the
system when relevant events happen. Both notifications and event responses are the
same as described under information problems. Both typically need a special user inter-
face designed.

5.3.3 Checklists
Tables 5.4 and 5.5 list the information needed to fully document both the requirements
and the specification for a control problem. See also chapter 8 for generic information
that applies to nearly all software, such as installation and backup procedures.

Table 5.4 Control problem: requirements document

Topic See

Objects in the controlleddomain; data model, if any Chapter 9
Causal laws of the controlleddomain, including events that the objects are Chapter 11

capable of
Behavior rules Section 11.5
Actions in the problem domain that the computer is capable of initiating Section 11.2

86 CHAPTER 5 FIVE PROBLEM FRAMES

Table 5.4 Control problem: requirementsdocument (continued)
Topic

See
Shared phenomena throughwhich the computer can monitor the controlled (Not covered indomain ,

this book)
Any connection domains

(Not covered in
this book)xTable 5.5 Control problem: specification¥ \ 7_\Topic

See
Trigger rules or state tables, relating actions initiated by the computer to detectable Section 11]actions in the problemdomain
Event responses, if the system maintains a data model Section 10.3User Interface and operating procedures, if any Section 103‘\5.4 Pumformation problem:
Software that solves a transformationproblem generates output data that maps to inputdata according to specified rules. Its problem frame is shown in figure 5.5.The input data and output data are elements from two sets. Documenting a trans—formation problem consists ofdescribing the following: the set ofall possible inputs, theset of all possible outputs, and the rule relating each possible input to its correspondingoutput. The rule, shown in the frame diagram as mapping, is the only requirement.A transformationproblem could just as easily be called a calculation or mappingproblem. Calculation is simply mapping input numbers to output numbers accordingto a rule. A four—function hand calculator solves four straightforward transformation

mapping

input data filter output data

Figure 5.5 Transformation problem

TRANSFORM/1TION PROBLEMS 87

problems: given a pair numbers, output their sum; given a pair ofnumbers, output their
difference; given a pair of numbers, output their product; and given a pair of numbers,
output their quotient.

More examples of software that solves transformation problems:
A program to convert between the file formats of two differentword processors, or
two different graphics file formats
A subroutine that translates bar codes into numbers
A program to assign students, professors, and classes to rooms for a semester at a
university

Image—processing software to perform such operations as removing dust and
scratches from digitized photographs
A program that tells a bus rider which buses to take to get from one location to
another, arriving by a specified time
A program to generate weather maps from meteorological data
A printer driver: converts printer—control commands from the operating system
into equivalent commands to control a specific printer
Software that helps archaeologists find buried villages based on satellite data. Such
software applies complex rules to transform information about how the surface of
the Earth reflects light both within and beyond the visible spectrum, into guessesabout what lies beneath the surface.

It is the job of requirements to specify the entire mapping completely. Software that
tries to place elements of complex diagrams into aesthetically pleasing and readable
arrangements should not have the requirement “arrangements must be aesthetically pleas-
ing and readable.” Converting “aesthetically pleasing and readable” into mathematical
rules would be the main work ofwriting the requirements in this case. Similarly, for soft—
ware that calculates a most efficient route, the requirements must define “most efficient” in
the form ofa rule specifying, for any two possible routes, which is most efficient.

5.4.1 Solvinga transfiwmationproblem
The great majority of the work of solving a transformation problem is programming,
not interface design. All that a specification needs to add to the requirements is the user
interface, if needed, or an API if the software is to be accessed by other programs.
5. 4.2 Checklists
Tables 5.6 and 5.7 list the information needed to fully document both the requirements
and the specification for a control problem. See also chapter 8 for generic information

88 CHAPTER 5 FIVE PROBLEM FRAMES

that applies to nearly all software, such as installation and backup procedures.
Table 5.6 Transformation problem: requirementsdocument
Topic

See
input and output sets

Chapters 9 and 10Source and destination of the date (Not covered in this book)Mapping between input and output sets Subsection 11.5

Table 5.7 Transformation problem: specification
Topic

See
User Interface and operating procedures, if any Subsection 10.3APl, if any

(Not covered in this book)

5.5 W/orkpz'eceproélems
in a workpiece problem, the job of the software is to enable users to create objects, suchas documents or designs, similar to the way a lathe helps a carpenter create woodenworkpieces. The workpieces are intangible, software objects that exist only in a realizeddomain, though the software may also generate tangible versions of them, such asprinted documents.

There are two requirements: to enable the users to perform the given operations onthe workpieces, and to realize the workpieces within the software. The vast majority ofdocumenting a workpiece problem is describing the workpieces.

operations

users tool workpieces

Figure 5.6 Workpiece problem

WORKPIECE PROBLEMS
89

Example software that solves workpiece problems:

0 A word processor: creates documents inside the computer. The documents contain
sections, pages, paragraphs, characters, graphics, and so on. All of these are to have
properties and behavior invented by the software designer.

0 A ro ram to create business ra hicsP g g P
0 A program for designing cable TV networks. A user places each type of cable and
equipment on a map of a neighborhood to receive service.

' A program to build and display models of organic molecules

' A music editor

' A programto generate composite sketches ofpolice suspects. A witness selects from
a library of chins, mouths, hairlines, cheekbones, and so on, to create an accurate
drawing ofa person they saw.

' A recipe file

Not all programs that solve workpiece problems involve letting users create work-

pieces. In typical educationalsoftware, students can manipulate objects within the com-
puter—for example, taking tests—but they can’t create their own tests. A companion
program would likely enable a test designer to create them.

The workpiece problem, perhaps better than any other type of software problem,
illustrates that requirements themselves are creative design, usually a solution to some
other problem not solvable directly by software techniques. The requirements for a
workpiece problem are not “Create an outline processor tailored to the needs of law-
yers,” but a detailed descriptionof all of the text elements and outlining operations that
the software is to realize. Only a personwho knew a lot about the needs of lawyers could
invent these text elements and outlining operations.Therefore it’s part of requirements,
not specification or programming.

5.5.1 Solving a warkpieceproblem
The majority of the work in solving a workpiece problem is usually user—interface

design. The rest is programming: representing the workpieces and performing the oper—
ations, which don’t concern us in this book.

5.5.2 Checklists

Tables 5.8 and 5.9 list the information needed to fully document both the requirements
and the specification for a control problem. See also chapter 8 for generic information
that applies to nearly all software, such as installation and backup procedures.

90 CHAPTER 5 FIVE PROBLEM FRAMES

Table 5.8 Workpiece problem: requirementsdocument
Topic See

Workpieces Chapter9
Operations Same as event responses. in

section 10.3\Table 5.9 Workpiece problem: specification

Topic See
User Interface and operating procedures Section 10.3

5.6 Connection proélems
In a connection problem, there are domains that do not share phenomena directly butare, instead, connected by another domain between them—a connection domain. Theproblem is to make the two indirectly connected domains behave as if theywere directlyconnected, to the extent that this is possible.

Figure 5.7 shows the two principal types of connection problem. In type (a), the
system needs to interactwith the domain of interest, but must make do with a connec-tion domain to relay information from the domain of interest to the system, or carry outcommands sent by the system. In type (b), the system to be built is the connectiondomain, responsible for bringing system B into states corresponding to the current stateof systemA, as systemA changes (or vice versa). The requirement, in both cases, ismerely an achievable correspondence of states, not a perfect correspondence,because aperfect correspondence is usually impossible to achieve.

Connection problems seldom occur in isolation. Rather, they usually occur as partofa larger problem. We’ve already seen them in information problems and control prob-lems. Inside another problem, a connection problem usually does not need require—ments spelled out explicitly, such as “Achieve such—and—such level of correspondence.”But the requirements document should spell out such matters as the timeliness of thedata to be elicited by queries (so the interface designers can design a way to achieve it),as well as the limitations imposed by the connection domain (so the customer knowswhat is possible and what is not).
Example connectionproblems:

' The data—entry staff that supports an information system (discussed in sec—tion 5.2). Human data entry introduces distortion, in the form of typographical

CONNECTION PROBLEMS 91

(3) Making do with an
indirect connection

(b) Creating an indirect
connection achievable

correspondence

communicationm A Bsyste system system

achievable
correspondence

connection domain of
domain interestsystem

Figure 5.7 Connection problems

92

errors, and delay, in that events often happen well before people have time to
enter data about them.
A datawarehouse answers queries based on the data in a number of operational data
storer—databases, such as order-entry systems, inventory systems, and so on, that
are each tailored to a specific task that they support on a daily basis. The data ware-
house allows exploration of all that data in unanticipated ways. The real problem,
however, is to get information about the real world. Often, different operational
data stores overlap in the parts of the world they cover, and they differ in the accu—

racy and timeliness with which they cover it. The designer of the data warehouse,
therefore, faces a problem: how to supply the most accurate and up-to—date infor—

mation in response to queries, given a variety ofdifl'erent sources of data.
Error—free data transfer across a noisy phone line. Of course, it can’t be completely
error-free because random line noise can foil any error-correctionscheme. All error-
correcting protocols sacrifice speed for accuracy. The more careful the error-detec—
tion, the more overhead the protocol introduces and the slower the transmission.

CHAPTER 5 FIVE PROBLEM FRAMES

' Video conferencing: as people move and speak in one location, they can be seen
and heard in another.

Documenting a connection problem like that in figure 5.7(a) consists ofdescribing
the mapping between the shared phenomena linking the connection domain to the
domain of interest, and the shared phenomena between the system and the connection
domain. This mapping should include the types of distortion and delay introduced by
the connection domain:which type of information is the least reliable? how long is the
lag between an event at one end of the connection domain and the correspondingevent
at the other?

It is especially valuable to document ways by which the system can detect that
the connection domain is not functioning properly. Continuing the weather station
example, if there are shared phenomena by means of which the system can detect
that the weather stations are off or in need of calibration, these should be described
in the requirements document. Information about what types of activity in the
domain of interest are possible and what types are impossible also enables the sys-
tem to detect errors.

When the connection domain is human users, of course the requirements docu—
ment need not explain the numerous patterns ofhuman error. The branch of cognitive
psychologyknown as mistake theory is part of the backgroundknowledge of a user—inter—
face designer, and, as noted in chapter 7.1, does not belong in a requirements docu-
ment. However, the requirements document should still contain as much information
as possible about the domain of interest in order to detect invalid data entered by users.

If, as in figure 5.8, there are multiple connection domains that connect to the same
domain of interest, then the reliability of each can be rated relative to the others. For

database A

domain of
interest

database 5

information
system

database C

users

Figure 5.8 Multiple connectionsto the same domain of interest

CONNECTION PROBLEMS 93

achievable
correspondence

communicatio communication ommunicatiosystem A system Bsystem medium system

Figure 5.9 Creating a connectionacross a communicationmedium

example, if three different databases contain information about people’s names,
addresses, and phone numbers, the requirements document can state that for names,
database A is more reliable than database B, and B is more reliable than C, but for
addresses, B and C are of equal reliability, and both are better than A. If the databases
contain information about the reliability of a particular record, such as a date_entered
field, the requirements document should indicate that too, so a specification can take
advantage of it. The requirementsdocument can also describe “voting rules” to resolve
disagreements when two databases give restdts disagreeing with one another.

Documenting a connection problem like that in figure 547(b) involves describing
the same type ofmapping between states and/or events, except that now it is a deriml
mapping, with desired distortion and delay characteristics—requirementsrather than
problem—domaindescription.

Often in a type (b) connection problem, the problem domain includes yet another
connection domain, as shown in figure 5.9. An error-correctingprotocol runs simulta—
neously at two different systems separated by a communication medium. The distortion
characteristics of the medium need to be described in the requirements document, just
as in a type (a) connection problem.

Communication media, such as copper wires, often have very different distortion
characteristics at different data rates, different radio frequencies, and so on. Also, the
mediummay have different distortion characteristics at different times. Some telephone
connections, for example, are much clearer than others. The requirements document
should describe distortion as a function of these other variables, to enable the specifica—
tion to take fullest advantage of the capabilities of the communication medium.

94 CHAPTER 5 FIVE PROBLEM FRAMES

5.6 1 Solvinga connection problem
Solving a connection problem is primarily a matter of exploiting redundancy in the
problem domain and, in the case ofa type (b) connection problem, creatingredundancyto exploit.

In a type (a) connection problem, the specification states rules according to which
the system rejects data, and what the system does in response to bad data. If there is noredundancywhatsoever in the domain of interest—that is, if every theoretically possible
state or event of interest is equally likely, and every possible state or event in the connec-tion domain maps to a legitimate state or event in the domain of interest—then no solu—
tion to the connection problem is possible. The system can’t reject any data from the
connection domain because any data might be valid.

Fortunately, nearly all problem domains contain large amounts of redundancy. Peo—
ple’s names don’t contain control characters; atmospheric temperatures do not changefaster than one degree per second; ISBN numbers map to book titles, and so forth. Evenif there is no simple rule for detecting invalid data received from a connection domain,the development stafl: can define operating procedures, such as double entry, on the
assumption that two dilierent people are unlikely to make the same error typing in the
same data.

Another trick, applicable to a few types of connection problem, is to have the sys—tem make guesses in response to queries when data from a connection domain is
delayed. For example, if the news last heard from an airplanewas that it would arrive ata certain time, the system can report this arrival time in response to queries even if nonews has been heard from the airplane or the originating airport for the last five hours.
Guessing that the arrival time is unchanged might be right 95% of the time, and this
accuracymight be good enough for displaying on public monitors in airports. On theother hand, if a loss of communication correlates with a long delay in arrival time, thenthe specification can indicate that the system makes a difierent guess, taking this correla—
tion into account.

If the connectionproblem appears in a control problem, as in the inventory control
system mentioned in section 5.3, a common difficulty is to ensure that the requestedactions actually got performed in the domain of interest. The specification may statethat users must click a certain button in the software to indicate that the action is com—
plete, or the software might be able to recognize that the action was not completed ornot done correctly if it later fails to detect expected activity, such as boxes being bar-coded for shipment.

In a type (1)) connectionproblem, the usual solution is to add various checks to thedata. These, in turn, become redundancy to exploit in the same manner as in a type (a)
problem. Checksums, sent along with the data, are related to the data by a precise math-

CONNECTION PROBLEMS 95

ematical rule. The receiver can then reject data blocks whose checksums do not match
the data. This doesn’t guarantee that the receiver never accepts bad data, of course, but
sophisticated mathematicaltechniques can reduce the probability to any desired level.

Redundancyin the data to be transmitted also figures into the design of a commu-
nication protocol. The protocol can exploit redundancy by the way it encodes data for
transmission over the communication medium by encoding the most probable pieces of
data with the shortest sequences of bits. This enables the protocol to achieve the same
high reliability of accurate transmission without sacrificing asmuch speed. Modems that
performdata compression exploit redundancy in the English language; they send text at
a faster bit rate than they send executable programs.

5. 6.2 Checklists
It’s difl‘icult to make a checklist for connection problems because they vary so much
from case to case. Tables 5.10 and 5.1 1 list information to consider for inclusion in both
requirements documents and specifications that involve connection problems. Very few
real problems would involve everything listed here, and many problemswould probably
need additional information,

Table 5.10 Connection problem: requirements document

Topic See

States and events in domain of interest Section 11.1

Redundancyin domain of interest (Not covered in

this book)
Mapping, actuai or desired, between states and events in different domains Section 11.5
Distortion and delay introduced by connection domain, actuai or desired (Not covered in

this book)
Rules for telling which of several connection domains has the most reliable data Section 11.5

Table 5.11 Connection problem: specification

Topic See

Validation ruies; actions that the system takes when validation rules are violated Chapter 7

Operating procedures that increase redundancy Chapter 8

Communication protocols (Not covered
in this book)

Guessmg ruies Chapter 7

96 CHAPTER 5 FIVE PROBLEM FRAMES

Multi—fiamepmé/ems
61 Coméiningpmb/emfiumes
The clock is a well known design pattern. The AM/FM radio is another. They have

For the most part, each part of the clock-radio problem can be described indepen-dently of the other. The clock needs to rotate hands or display numbers at a certain rate

fidelity. But there is a small area where they interact. The radio must turn on and offaccording to times set on the clock by the user,Ideally, whenever you encounter a complex problem in software, you can break itinto distinct problem frames that interact through a similarly narrow logical channel inwhich the description of the part of the problem that fits one frame refers very little to
the part of the problem that fits the other frame. Some problemsjust won’t yield to any
simple breakdown, but fortunately, in practice, the vast majority do.

97

Framing the total problem as a set of smaller problems that overlap slightly—shat—
ing only one or a few domains—isyour most important weapon against overwhelming
complexity in a requirements document. By framing the problem in this way, you can
talk aboutone thing at a time—the onlyway to write comprehensibly—butstill system—
atically cover everything and everything’s relation to everythingelse.

An opposite approachwould be to describe a great number of different scenarios,
each involving many aspects of the system. Each scenario is difficult to understand with—

out first understanding all the others. The scenarios involve effects that overlap in ways
that can be understoodonly by carefully looking over each one, holding them all in your
mind in their entirety, and comparing them against each other. And, without a system—
atic approach, it’s difficult to be sure that the scenarios have not left any holes in the
description—categories of domain activity left unaddressed in the requirements. This
entanglement is the result of failing to divide a problem at its seams.

While you need a systematic approach to fully document requirements, it need not
be the same systematic approach that you follow on a difl’erent project. There’s no need
to subscribe to one “methodology” for all software; all you need is a method suited to
the one piece of software that you’reworking on right now. Framing the problem is the
step wherein you create a systematic method specially tailored to just that one problem.
More than anything else, experience with other software (enough to have noticed the
patterns of software) is what enables you to frame a new problemwell.

The seams of a large problem usually follow groups of requirements of the same
kind, that is, requirements that correspondto one type ofproblem frame and pertain to
the same set of domains. For example, a piece of software might need to both report on
an activity and control it. Reporting calls for the information frame; control calls for the
control frame. Having split up the problem this way, you can describe each set of
requirements without mingling it with the other. You can describe the domains that are
common to each part of the problem one at a time, without mingling them with the
requirements. The table at the beginning of section 5.1 shows the correspondence
between requirement types and frame types.

The rest of this chapter provides a few examples to show how problem frames com-
bine in practice.

6.2 Inventory control system
The primary job ofan inventorycontrol system is to guide the transport ofgoods in and
out of a warehouse: directing employees to store goods as they come in, and directing
the employees to retrieve the goods when orders are received and ship them to custom—
ers. However, filling orders follows certain rules: customers who are too far behind in

98 CHAPTER 6 MULTI-FRAME PROBLEMS

busmess
rules

orders

goods

warehouse

inventory
employees control

system

Figure 6.1 "Move goods through warehouse" part of inventory problem

orders

goods

warehouse

inventory
employees control

system

Figure 6.2 'Print reports" part of inventory problem

their payments are not to have their orders filled, different orders get different priority,
and so on.

Another job of an inventory control system is to report on the activity of the ware-
house: its current state and the past flow of money and goods. Talking about reports
means describing information to be supplied to a user (the contents of the report) and
possibly how the report is to be formatted. This is very different than describing the
mles for how the business would like to see goods flow in and out of the warehouse,

INVENTORYCONTROL SYSTEM 99

business
rules

orders

goods

warehouse

inventory
employees control

system

Figure 6.3 Control and information aspects 0! inventory problemon one diagram

So, you need two problem frames: the control frame and the information frame.
These are shown in the frame diagrams in figures 6.1 and 6.2.

The employees are the only direct connection to the system. The business rules,
defining the flow of goods through the warehouse in response to orders, pertain only to
the goods, warehouse, and orders, but not to employees. The employees are simply
means called upon by the control system to implement the business rules. Because this
is a control frame, it calls upon you to document the causal powers of the employees:
what they can do and how the inventory control system can get them to do it. The
employees can affect the goods, warehouse, and orders; therefore, a line connects them.

The diagram in figure 6.2 shows the information problem: generating reports
about the goods, warehouse, and orders in response to employee requests. The employ-
ees once again are a connection domain. In addition to requesting information, they
supply the system with all of its information about the goods, warehouse, and orders.

You can also put both types of requirement on the same diagram, as in figure 6.3.
A very common requirement is for users to be able to change the rules by which the

system operates. For example, managers might need to modify the business rules from
time to time. This means that we also have a workpiece problem: the managers must be
able to define the business rules. A frame diagram that simultaneouslyshows all three
types of requirement is in figure 6.4.

It may seem a little strange to treat the business rules as a domain, but, in fact, all
sets of requirements are domains. Anything that you could ever talk about with the
same set of concepts is a domain. For example, a set of like requirements is a domain.

100 CHAPTER 6 MULTI-FRAME PROBLEMS

orders

busmess
rulesgoods

warehouse

inventory
control
system

employees

managers
define rules

managers ’
Figure 6.4 Composite frame diagram for inventory control system

Even the reports could be a realized domain, in the very likely possibility that userswould be able to define their own reports.
So, from the standpoint of the “managers define rules” problem—a workpiece

problem—the business rules are workpieces realized within the system. From the stand-
point of the “move goods through warehouse” problem—a control problem—the (vari—
able) business rules are the requirements. This is fairly typical overlap between problemframes. You can see how important it is that the text cover each domain in each of its
roles one at a time (a domain typically having one role per problem frame). In still more
complex problems, this kind of overlap could become mind—bogglingwithout a careful
breakdown into small problem frames.

Notice that even though these frame diagrams describe something very complex—the requirements and problem domain of an inventory control system—each diagram,with the possible exception of figure 6.4, is very simple. The business rules might be
very complex, but now you can see how to document them. One section says what they
are and their relation to the motion of goods in and out of the warehouse. Another sec—
tion describes the operations that managers can perform on them. The different
employees’ roles in moving goods around might be somewhatcomplex, but you can talkabout those elsewhere in the document without simultaneouslytalking about the busi-
ness rules. No matter how complex the problem, you can—you must—break it down
into humanly comprehensible subproblems, or else no human will be able to compre—hend the problem as a whole.

INVENTORYCONTROL SYSTEM 101

7

c,

6.3 Statisticspackage
A program to perform complex, user—definable statistical calculations combines a trans-
formation frame and a workpiece frame. The transformation frame covers the calcula—
tions, of course. The workpiece frame covers the user’s ability to define the formulas
used in those calculations. Both subproblems are presented in a single diagram in
figure 6.5.

calculation
rules

input /data
statistics fr Iasusers
package 0 mu\ output

create and
edit formulas

Figure 6.5 Frame diagram for 3 statistics package,combining transformation frame and work-
piece frame

64 Digital answering mac/Jim
The software inside an answering machine that stores messages digitally rather than on
an audio cassette combines a control frame and a transformation frame. The control
frame addresses the recording and playingofmessages in response to activity at the con—
trols and on the phone line. The transformation frame addresses the mapping between
sound and its representation in memory.

Ordinarily, statements about representation in memory would not belong in a
requirements document. However, the answering machine is specifically a digital
answering machine. The rules for digitizingspeech are part of the problem domain, not

102 CHAPTER 6 MU]. TI-FRAME PROBLEMS

speech
digitlzation

rules

sound /
oh 9 memoryon
line

speake r/
microphone\record/

playback \ software

controls /
Figure 6.6 Frame diagram tor digital answeringmachine, combining controlframe and transfor-
mation frame

part of ordinary programming knowledge. Also, the intent is that the software imple-
ment certain digitizing techniquesbecause these will be one of the main selling points of
the answering machine. The digitization rules are, thus, one of the givens of the prob—
lem, something that the programmers must implement, not something the program—
mersmust invent. Figure 6.6 diagrams these relationships.

Notice that the software has no shared phenomena with the sound, but the sound
is supposed to be represented in memory. The phone line and the speaker/microphone
and telephone line are actually connection domains to sound, whether generated or
received. If the requirements document describes known, common patterns of distor—
tion, the programmers can design ways to recognize and compensate for them, improv—
ing sound quality.

As is nearly always the case in embedded applications, the user is not mentioned in
the requirements.The user is mentioned in the system requirements, but not the soft—

ware requirements. From the standpoint of the software, the only problem is to respond
to activity at the controls, The controls are assumed simple enough to reflect the user’s
intentions without distortion.

DIGITAL ANSWERING MACHINE 103

6.5 Compiler
A compiler is often thought of as purely a transformation problem, shown in figure 67.
There is a mappingbetween source code and the object file, and the job of the compiler
is to produce the object file in accordance with that mapping.

The truth is that inventing the mapping is actually the main work of compiler
design. The rule is that the mapping must be such that when the compiled program
runs, the target machine behaves according to the semantics of the source file. So here
we have a variation on the usual way that problem frames combine. Part of the solution
is to define a transformation problem such that solving it will also solve a control prob—
lem. The transformation problem is the mapping from source statements to machine
instructions. The control problem is to make the target machine behave as specified in
the source file.

The correct problem frame, shown in figure 6.8, shows a critical element missing
from figure 6.7: the target machine. The programmers need to know the instruction set
of the target machine in order to design the translation rules. The requirement is to
make the target machine behave as specified in a source file written in a given language,
by generating an object file that, when run on the targetmachine, brings about the spec—
ified behavior.

Compilers are a well understood type of program, so it’s unlikely that anyone
would make a mistake like that shown in figure 6.7. When writing a C compiler for a
new microprocessor, no one would demand that the manufacturer supply the transla-
tion rules to go from a source file to machine instructions, and no one would forget to
get documentation on the instruction set from the manufacturer.

But in a less well understood type of program—say, one being written for the first
time—this type of mistake is very easy to make. Many requirements documents omit
the domains that the requirementspertain to, leaving the programmers to infer them.

language
semantics

source file I compiler object file

Figure 6.7 Compiler misframad as a transformationproblem

104 CHAPTER 6 MULTI-FRAME PROBLEMS

language
semantics

source file .
. . targetcompiler object file

machine

translation
rules

Figure 6.8 Correct problem frame for compiler

6.6 Electronic mail

ther users, not merely to the Internet or the other
problems, the requirement is impossible to meetperfectly. The Internet is not always reliable; other mail systems do not always follow theprotocols correctly; and other users do not always log in regularly.The workpiece problem “create and edit email” is straightforward, and can even beoflioaded onto an existing editor.

The mail itself bears extensive description in the document. Is the mail just text ort contain binary attachments? The more sophisticated the type ofmail to be sent,the more complications enter the connection problem as well as the workpiece problem.The 0th ‘

, too. Which ones can support which types

cani

y the other users. Is there any way for the system to findout what encodings an addressee’s mail reader supports? (Yes, and when our user findsout, he or she can type it into our system. The choice to do that, however, is part ofinterface design and belongs in the specification.)

ELECTRONICMAIL

send and
receive mail

create and
edit mail

mail

mail other otherusers Internet mailm rsyste
systems use 3

Figure 6.9 Frame diagram for an electronic mail system

An information problem frame would likely be added to any real electronicmail
system, for reports given to a system administrator about Internet trafiic and usage.
Notice that the other problems can be described independently of this one. Once the
other problems are documented, including the domains, the realworld part of the infor—
mation problem is already documented. All that remains is to write the requirements:
the queries or automatically generated reports available to the system administrator.

This information problem would likely be added as part of the specification, not
the requirements, because system administrators are not part of the problem domain
and because the details ofmail traffic can’t be known until much of the specification has
been designed.

6. 7 Satellite reconnaissance
The following description of the requirements for a program to control a satellite that
gets images of the Earth’s surface, simplified though it is, involves five simultaneous
problem frames. An interesting exercise is to see how much more complicatedyou could
make it, without adding any more information, by dividing it differently.

Most fundamentally, the job of retrieving images is shown in figure 6.10 in an
information frame. Here we have an instance of a snapshot problem because the object
of the queries is changing, but the problem is not to keep track of the object, only to
report its current state on demand.

106 CHAPTER 6 MULTI-FRAME PROBLEMS

surface
of Earth \ satellite

transceiver/
satellite dishget images

of location x \ satellite
controller

users

Figure 6.10 Most fundamentalframe dingram for satellite controller: get images of surface ofEarth on demand

There are two connection domains: first, the satellite creates images that must berelayed to the controller, and second, the satellite dish (antenna) must receive the imagesfrom the satellite. Establishing communication with the satellite involves a control
problem. The dish must be pointed at the satellite, requiring that the commands for
controlling the dish be documented, as well as the rules for determining exactly where
to point it. This control problem is shown in figure 6.1 1.

transceiver/ satellite ‘
satellite dish controller

point dish
at satellite satellite

location

Figure 6.11 Control problem: point dish at satellite to make communicationpossible

Where does the satellite location come from? This is a transformation problemshown in figure 6.12. The controller must calculate the current location of the satellite
based on its last known location. There is no other source for this information.

SA TELLITE RECONNAISSANCE 107

orbital—
mechanics
formulae

last known .
. . satellite satellitecurtent time

.location Of
controller locationsatellite

NlSTr7

Figure 6.12 Transformation problem: calculate the satellite’s current location

Figure 6.12 includes a connection domain: NIST—7, the atomic clock operated by
the National Institute of Science and Technology in Boulder, Colorado, is the control-
ler’s source for the current time.

Once the satellite controller has established communication with the satellite, there
is another control problem: to point the satellite at the desired location on the surface of
the Earth, shown in figure 6.13. The x in the requirement comes from the request made
by the user in figure 6.10.

This second control problem omits the connection domain of the satellite dish. For
purposes of this problem, we assume that the commands sent by the satellite controller
are phenomena shared with the satellite, so we can concentrate on documenting the
commands that control the satellite and how they afiect the satellite in relation to the
surface of the Earth.

satellite satellite
controller

point at
location x, surfacetak m8 age of Earth

Figure 6.13 Another control problem: pointingthe satellite at the de-
sired location on the surface of the Earth and taking the image

108 CHAPTER 6 MUL TI—FRAMEPROBLEMS

image»
enhancement
algorithms

satellite satellite Image seen
image controller by user

Figure 6.14 Another transformationproblem: enhancingthe image for human viewing

Finally, once the image is retrieved from the satellite, the controller must enhance itfor human viewing. This is another transformation problem, shown in figure 6.14.

SATELLITE RECONNAISSANCE

Content

CHAPTER 7

Sofia/are development
To write any kind of technical document, you first need to knowwho will read the docu—

ment and what jobs they will perform with the information that it contains. This chapter
tells who are the members of the software development teamwho read (and write) require—
ments and specifications, and how they apply them to their jobs. We do not cover each job
in detail, not undertake a comprehensive coverage of software development, such as can
already be found in such texts as [Metzger 1981], [Sommerville 1989], and
[Pressman 1996]. We are concerned here only with the people who read and write require—

ments and specifications, and how they use the informationin them.

113

7. I A division ofcognitive labor
If you regularly switch between two mail programs, you might write a program to con—
vert mail messages between each program’s folder format. When you write a program all
by yourself like this, to use all by yourself, you understand everything. You understand
the purpose of the program; you’ve researched the file formats; you’ve carefully thought
through what information needs to be displayed on the screen and how it should look;
you know exactly how to invent tests that exercise the most critical junctures in the pro—
gram; you know what changes you’re most likely to want in the future. Consequently,
when you write the program code, you can make the hundreds of small trade—offs and
design decisions that tailor the program code perfectly to your needs.

When a group of people work together on a software project, all of this thinking,
analysis, and backgroundknowledge needs to be at least partly shared among all the par—
ticipants. Ideally, if the information is shared perfectly, the final product is made as if by
a single, multi—talentedperson who possesses the knowledge of all the participants—far
more knowledge than any one person could possess, resulting in a higher—qualityprod—
uct than any one person could create.

The purpose of internal documentation is to share the knowledge of the partici—
pants, to come as close to that ideal as possible.

Except for the documentation of the problem domain, internal documentation
does not describe generalities. It describes only specific information needed by each par-
ticipant for each job. For example, it is not the task of internal documentation to
explain to everyone on the project how to design good user interfaces. That kind of
knowledge is nearly impossible to put into words. Rather, internal documentation cap—
tures the result of the user-interface designer’s thinking about this one project so that the
programmers can implement it without knowing how to invent such a design them-
selves. The resulting program is made as if by a single personwho is both an expert user—
interface designer and an expert programmer, even though neither the user-interface
designer nor the programmershas the other’s expertise.

As the project progresses, each new document or artifact embodiesmore and more
knowledge, as depicted by the gradually widening arrow in figure 7.1.

Even more types of knowledge figure into a complete software project, A manager
applies managementknowledge; the deployment team applies its own brand of knowl—
edge, and so forth. These groups are not the principal audience of requirements and
specifications, but we will mention them when relevant.

Figure 7.1 should not be construed as a depiction of a waterfall process—a step-by—
step procedure for designing software in which once a step is complete, its results are
never revisited or revised. Iterative or spiral processes also result in the same kind of

114 CHAPTER 7 SOFTWAREDEVELOPMENT

Problemoomain
knowledge

General
software
knowiedge

User-interface
knowledge

Progra mming
Requirements knowledge

Testing Documentation
knowledge knowledge\\

Test Dims Manuals/help

Hardware Br

software
InterfacesSpecmcation

Program code

Product
Figure 7.1 Division of cognitive labor in software engineering

division of cognitive labor, each participant Contributing the type of knowledge shownin the figure.
Notice that the difierence between each type of knowledge that feeds into the finalproduct is about a different subject matter: the problem domain, user-interface design,programming, and so on. This is very different than a division of labor in which each

party contributes knowledge of the same subjectmatter but in progressively more detail.Such a division of labor is possible, but it has more the characterof a brainstorming ses—sion. In a brainstormingsession, each person hears a vague idea from another partici-pant and attempts to refine it or allow themselves to be led in an entirely new directionof thought. The participantsare not given well-defined problems to solve on their own;they’re given vague problems to flesh out or modify however they see fit.Due to the size and complexity of software projects, as well as the diversity of spe—cialized knowledge applied in them, the brainstorming approach is not feasible as anoverall strategy ofsoftware development.In section 1.1 we’ve already examined the dan—
gers of functional decomposition—another conception of software engineering basedon progressing from less detail to more.

7.1.] Five tau/e5 andfive audiences
Five tasks related to requirements and specifications, and five audiences for them, areshown in figure 7.2:

The rest of this chaptergives an overview of each task.

A DIVISION OF COGNITIVE LABOR 115

PrincipalTasks Documents audiences

Analysis\ / Customer

Requirements\User-interface User»interface
design designer

Programming User interface: Programmers

. KTesting Hardware and Testers
software interfaces

User documentation ' Technical writer

Figure 7.2 Tasks, documents,and audiences

7.2 Analysis
Notice that the first kind of knowledge shown in figure 7.1 is problem—domain knowl—
edge normally provided by the customer. Thus, the customer is the first participant in
the division of cognitive labor that results in the completed software. The system analyst
is the liaison between the customer (“subject-matter expert”) and the rest of the develop—
ment team.

Analysis has two main parts:
° Learning the problem and the problem domain from the customer, known as eliti—
tatian.

' Communicating this information to the rest of the development staff by writing a
requirements document.

The analyst, however, is more than just a funnel of information. Overlappingboth
of these two main parts is the job offlaming the problem, as described in chapters 4
through 6.

Framing the problem is casting it in a form suitable for solution with software. The
customer, not being an expert in software, is not likely to know how to do this

116 CHAPTER 7 SOFTWAREDEVELOPMENT

larly well; customers really don’t know all the ways in which business problems
ap to software problems. Thus, in the process of framing the problem, the analyst

suggest changing the problem from what the customer had originally intended so
the resulting software delivers a greater benefit. At the same time, by expressing the
blem in terms appropriate to software solution, the analyst has taken the first stepd writing the requirements. The way in which the analyst chooses to frame the
blem dictates both the types of results the customerwill expect and the organization
the requirements document.
Of all the work the analyst does, nothing better fits the word unalyri: than answer—

g such questions as, “Is the customer interested in using the computer simply to
trieve information, or is the software better understood as a controller for the opera-
'ons of his business? Does this software respond to a long list of requests for data sent
by other applications, or does it most fundamentally map data from one database to
another?"Framing the problem in these ways is the act offinding the essential simplicity
that underlies any system, no matter how complex.

Though there might be hundreds of pages of details in the final document, there
must be a simple, one—sentence answer to the question, “What is this for?” If the analyst
can find the answer and communicate it, the project makes sense and everyone can see
how every part fits neatly into the whole. If not, the details of the project disperse like
ink into cotton, never making sense. Later in the project, it seems that every bug fixed
leads to two new bugs cropping up, because no one had the global perspective to see
how every part interacts with every other part.

Thus the analyst, perhaps more than any other participant, has the greatest influ—
ence over the success or failure of the project, through the qualityof the thinking that he
or she puts into the requirementsdocument.

As noted in the preface, writing the requirements document is technical writing.
Conceivably, an analyst could hand off this job to a technical writer—the same typeof person who writes the user documentation and on—line help—but many prefer todo it themselves.

Some analysts double in other roles. “Programmer/analyst” was once a popular jobtitle. Indeed, many programmersdo analysis as part of their jobs, but they don’t call it
analysis and don’t include it in their job title. An analyst is just anyone who defines asoftware problem, whether called by that name or not. Many programmers find this
part of their job the most fascinating.

Analysts with an artistic bent sometimes double in user—interface design, an aptcombination because both analysis and user—interface design require close understand—
ing of the problem domain.A role particularlyenjoyed by many analysts is data model-
ing—especially, designing a relational database to model a problem domain. Many

ANAL YSIS 117

analysts started off working in a problem domain—say, chemical engineering—and

only later in their careers moved to system analysis. In such esoteric fields, few other

people could do a good job of analysis because the amount of time it takes to become

familiar with the problem domain is so great.
Ideally, the analyst oversees and reviews all other work in the project, finding unan—

ticipated places to apply his or her up—close knowledge of the problem domain.

7.3 User-interface design
The job of the user-interface designer is to (a) draw each screen in the software under

development and describe the behavior of each control—*ach button, each text field,

and so on—in enough detail for programmers to implement it; and (b) design the oper—

ating procedures for the software. One user—interface designer is enough on most soft-

ware projects, but larger projects may require more than one.

Not all programs have user interfaces, or at least not user interfaces that a special

member of the development team must design. In many embedded systems, such as a

controller for a microwave oven, the user interface is just another part of the hardware

that the software communicateswith. Others, such as controllers for fuel injectors in

automotive engines, have no direct user interface at all. Naturally, in regard to programs

such as these, you should simply disregard statements in this book about how to write

requirements to best serve the needs of the user—interface designer.

A user-interface designer needs the following information to make a good user

interface:

' The vocabulary of the problem domain—specifically, the vocabulary of the users

° The data types to be stored by the software—that is, the data model. These usually

correspond closely to the problem—domain vocabulary. (The user—interface designer

often adds more data types, such as user preferences.)

0 All the tasks to be performedby the user, These tasks should be easy to derive from

the requirementstatements.

' Supplementary information, such as sample data, patterns of common errors

learned from previous versions of the software, and the most common sequences in

which users are expected to perform tasks

' An understandingofhow the users think, what their tastes and preferences are, and

what they find easy or difficult to understand

All but the last item belong in a requirements document and/or data model. As

mentioned at the beginning of section 2.4, the last item is too difficult to express

118 CHAPTER 7 SOFTWAREDEVELOPMENT

precisely in written form. Therefore, this bookwill provide no tips for documenting it.The user—interface designer can learn it only through direct interaction with real users.As a means to creating the screens and operating procedures, a user—interface
designer also invents a set ofconcepts for the user to learn and applywhile operating thesoftware—in effect, an abstract world for the user to imagine existing behind the
screens. The user—interface designer might want to document this conceptual frameworkfor his own benefit, for future designers who will Work on later versions of the software.
Documentation of this conceptual frameworkcan also help the technical writer write auseful manual.

Not even the most skillful user-interface designer can come up with a good designthe first time. A high—quality user—interface design almost always grows out of severaliterations of prototyping and testing on real users. A fortunate side effect of the protatype is that the user—interface designer can capture the screens and put them into the
user—interface design document.

The customer is not listed in figure 7.2 as one of the audiences of the user-interface
design document. This may come as a surprise because feedback from the customer is soimportant in making a good user interface. However, a user—interface design document,like any specification, is somewhat terse, difficult reading. It’s simply a list a screens, but—
tons, fields, and so on, along with the effect of every possible user action on the database
or the hardware/ software interfaces. The best way for a customer to understand the userinterface is to experiment with a prototype, perhaps guided by the user—interface
designer who can describe the effects of functionality that won’t be implemented untilthe first release. '

The user—interface designer needs to consult with the programmers before commit—
ting to a design. User—interface designers can easily come up with wonderful ideas that
are not feasible to implement with the tools available to the programmers. The pro-grammers then need to point out which parts are difficult, possibly suggesting changes.This is as it should be. Programmers are likely to invent only user-interface ideas that are
easy and obvious in their favored tool. “Anything is possible to the man who does nothave to do it himself." The user—interface designer can often suggest more innovativeand dimcult designs, stretching the programmers to search for implementation strate—
gies they would otherwise have bypassed. Often, the crazy design requires only a few
more lines ofcode than designs that are squarely on the beaten path.

7.4 Programming
In this book, the wordprogrammers refers to all the peoplewho create the configurationof the machine—the program domain, not the problem domain and not the user

PROGRAMMING 1 I9

interface. This includes the people who write the program code, the people who design
the program architecture, and the people who design the physical database. Some
members of this group might not want to be lumped in with the rest, but from the
point of view of requirements and specifications, their concerns are the same: the
progratn domain rather than the problem domain.

Once upon a time, programmers did everything: analysis, user-interface design,
testing, and, if there were a few hours left before the deadline, documentation. Even
today, many companies adhere to no rigorous distinction between requirements design,
interface design, and program design, and many programmers see all of these as pro—
gramming. This is particularly true if the company takes the sketch approach to require—
ments.* In this book, however, we take a very restricted view of programming: devising
a configurationof the machine to produce defined interface behavior, where the inter-
face, in turn, was designed to produce defined effects in the problem domain. That is,
by programmingwe mean writing the source code, configuring the database tables, and
so on—~inventing the parts of the machine configuration that remain stable even as the
machine stores difierent data.

Naturally, many programmers are good at requirements design and user—interface
design as well as programming,because all three tasks require the combination of rigor
and creativity that makes for a good program. However, we want to carefully distinguish
between problem domain, interface, and program. We want to judge the program ulti—

mately by how well it produces certain effects in the problem domain, and we can’t do
that if we don’t carefully distinguish between designing effects in the problem domain
(requirements design), designing physical machine behavior to produce those effects
(interface design), and designing the intangible configuration of the machine that pro—
duces that behavior (programming).

In some companies, designing the user interface and programming it are regarded
as the same task. This is unfortunate because when program design is put into conflict
with user-interface design, program design usually wins. Programmers, usually the fur—

thest removed from the problem domain of anyone on the project, have a natural ten—
dency to design screens and error messages that reflect the internal structure of the
program rather than concepts familiar to the user.'l‘

This is explained by the nature of programming. Programming is an intricate task
with an intricate set of concepts that are far removed from anything outside software. To
write a program is to build a little world of loops, functions, objects, local variables,
jump tables, and so forth. Being immersed in this world, it’s difficult to retain the ability

* See section 37.2.
T See figure 7.4 for an example.

to see the program in any way except from this behind—the-scenesperspective. For this
reason, and because of the tendency to let user interfaces be governed by what is easiest
to implement, its best that a user-interface designer not double as a programmer on the
same project, even if the same person possesses both skills.

A non—programming task that is best left to programmers is the design of non-human interfaces: interfaces to hardware and other software. These require software
expertise and, unlike user interfaces, are best designedWith an eye toward the result-
ing program code. Of course the analyst or anyone else can design them, but
designing them is much more like solving a programming problem than designing ahuman interface.

In order to start programming, programmersneed to know the following:
' The requirements and problem—domain description and/or data model (the data as
seen in the outside world, not the internal representationof the data)

' The program specification: the user interface, and all interfaces to hardware orsoftware

The hardware and operating system on which the software is to run
Supplementary information, such as test data, information about the frequencies ofdifferent kinds of data and sequences of operations, to help the programmersdesign the program to run efi‘iciently

A list of changes anticipated in later releases, to help the programmers design the
program for easymodification in the future
The description of the problem domain is usually ofsecondary interest to program—mers, although, if they read about it, they can often point out subtle holes that others

overlook because of their focus on the details ofhow to model it.

7.5 Testing
Requirements and specifications are necessarily abstract, as they cover an infinity ofpos—sible cases. The first job of a tester is testplanning: converting requirements and specifi—
cations into a set of concrete actions to take, that prove that the software as actually built
really brings about the requirements—orto prove this with as much completeness as is
practical. Each of these actions to take, together with its expected response, is called atest [1158.

Of course, there is no way to test software completely. If one were to make a test
case for every possible pathway through the software—notjust every possible input, but

TESTING 121

Acceptance
testing

Requirements

SystemSpecuficatlon 4... testing

Program K} __________________
Module

design testing

Prog ram

Figure 7.3 The V diagram, showingeach main type of test in relationto the document
that supply the propositionsto be tested

every possible sequence of inputs—one could never finish the test plan. A tester must be
judicious, strategically Choosing test cases that exercise the most important sections of
the software in ways carefully designed to expose the parts that are most prone to bugs.
To find those potentialweak points and to aid in choosing the most effective test strate—
gies, testers often make use not only of requirements and specification documents, but
program design documents and the program source code as well.

Testing is often broken down into acceptance testing, system testing, and module test—

ing, shown in the traditionalV diagram in figure 7.3.
In module testing, large chunks of the program are tested to verify that they perform

as the program design specifies that they should. Not shown on the diagram is unit test—
ing, the testing of the smallest pieces of the program. Unit testing is normally performed
by programmers.

In system testing, testers supply inputs at the interfaces of the system to verify that
the program generates the outputs described in the specification.

In acceptance testing, the system is given a trial run in its real environment, or possi—
bly in a realistic substitute, to verify that the requirements are really achieved. Whereas
system testing verifies only that the microprocessor activates bits in its I/O ports at the

122 CHAPTER 7 SOFTWAREDEVELOPMENT

specified time, acceptance testing verifies that, for example, the fuel injectors really
squirt gasoline into the cylinders in the correct sequence, correctly synchronized withthe spark plugs and throttle. In an inventory system, acceptance testing verifies that the
system really does tell receivers the names of real shelves on which to place new inven-
tory, that stock pickers really do find inventoryon the shelves indicated by the software,that the orders delivered to the packers really do match the orders placed, and so on
Acceptance testing gets its name because the contract to develop the software usually
specifies that if all the test cases in the acceptance test plan happen as indicated, the cus-tomerwill then accept the software and pay up.

If something goeswrong during acceptance testing, there can be two reasons: eitherthe program is not operating according to specification, or the specification itself is
wrong. A specification is derived from both the requirements and the descriptionof the
problem domain: what makes the fuel injectors squirt, how the software can determine
the state of the throttle, or how many shelves are in the warehouse. If these premisesabout the problem domain are wrong, the specification can be perfectly faithful to the
requirements document but still fail to generate the requiredphenomena. A third prob—
lem that can be exposed during acceptance testing is simply that requirementsof interest
to the customer were omitted.

Correcting mistakes in the description of the problem domain can have the most
far-teaching effects on a program because the logical foundation upon which the pro-
gram was constructedhas been undermined. Unfortunately,acceptancetesting necessar—
ily comes last in the sequence. You need a program before you can give it a trial run, and
you need the modules to be working before you can test the program in the lab.

Approaches to software development, such as the spiral method, attempt to allevi-
ate this difficulty by going through many small acceptance tests, the earliest ones testingthe barest minimum of functionality that can usefully be tried out. The choice of the
sequence in which to develop and test parts of the program is not part of the require—
ments and specification, of course, and is not covered in this book.

Naturally, the testing terminologyis far from standardized. Integration testing some-
times means the same as system testing, and sometimes means only testing a group ofmodules that do not, together, compose the whole system.

Acceptance testing is not to be confused with the usability testing often performed
by a user-interface designer with real users, usually done early in the development pro—
cess. The intent of usability testing is to find out what screen layouts and terminology
the users find easiest to understand and most efficient to work with. Usability testing is
not usually the responsibility of the testing staff.

To write system and acceptance test plans, testers need to know:

' The requirements and problem-domain description and/or data model

TESTING I23

' The program specification: the user interface and all interfaces to hardware or
software

As much about the problem domain as possible to design realistic tests such as real—

istic data and information about the frequencies of different kinds of data and
sequences of operations

' The hardware and operating system on which the software is to run. If the cus—

tomer has a variety of different machines, such as a network of PCs of varying
speeds, the testers need to know the most typical machines and slowest machines
that will run the software in order to catch performanceproblems as early as possi—
ble. Information about such troublemakers as TSRs (terminate—and—stay-resident
utilities) and operating—systemextensions on users’ machines also enables testers to
reproduce problems before they have a chance to happen on users’ machines.

Testers test requirements and behavioral statements in specifications. They do not
test preferences. There is no way to test whether the designers gave higher priority to
speed than to storage space. However, preferences listed in a requirementsdocument do
provide information to testers about what aspects of the system should be given highest
prioritywhen testing.‘

A good idea when writing requirements is always to bear in mind that when a tester
is reading them, one question is on the tester’smind: “How could this be tested?” The
answer should be fairly obvious, at least in principle. For example, it is no puzzle to
think ofhow to test a requirement that a user can query to find out all flights to a speci-
fied destinationwith arrival times on Saturday or Sunday.

On the other hand, a requirement that says, “The general design philosophy of the
user interface should be to arrange screens so that work proceeds as efficiently as possi—
ble," is no requirement at all. Neither is “The DEX system shall communicate with
VERBIS” a genuine requirement, as you can see by trying to invent a test case for it. A
real requirement says something that you can try out to see if it’s true—something like
“System prints day—end report at time of day specified by administrator,” along with a
precise description of all the information included in the day-end report. You can run
the system, specify a time of day, see if the day—end report really gets printed at that
time, and if it contains all the information stated in the description.

By framing problems as described in chapters 4 through 6, you’ll seldom find yourself
writing requirement statements that say nothing specific. Lack of specificity in many
requirements documents is often the result of stopping at sketch of the system, where the
details are left to be filled in by programmersfl‘ Even without writing sketch requirements,

* For an explanation of preferences, see section 8.1.
‘r Described in the last part ofsection2.3.

124’ CHAPTER 7 SOFTWAREDEVELOPMENT

it pays to imagine yourself in the tester’s position as you are writing. Often you can catchand correct vagueness very early that way.

Z6 User documentation
Usually delayed until the last possible moment, a technical writer creates the user’s man—uals and online help (more than one technical writer in a large project). If coding ordebugging takes longer than expected, as it always does, the time will just have to comeout of documentarion’s share of the schedule. The technical writer can’t write muchbefore the program is done because the onlyway to find out what the program does is totry it out and see.

It doesn’t have to be this way. If the requirements and user interface are docu—mented, the technical writer can begin organizing the manual, writing the proceduresfor using the software, and writing the glossary well before the program is done. Ide—
ally, the technical writer can even cut and paste from the requirements document.Screens do change a lot during development, but recapturing a screen and putting itinto themanualwith a few changes to the text is a short task. The hard part ofwritingthe manual is understanding what the users do with the software and choosing thecontent and organization.

When requirements are not well documented, the technical writer must researchthe problem domain in order to write the manual, either by spending a long time inter—
viewing the analyst, or by doing the analyst’s work. The latter requires calling people atthe customer site and asking them about their jargon and what they expect to do withthe software.

The technical writer is also often called upon to patch up mistakes in the user inter-face. A common reason why screens aren’t done until the very end is because program-mers sometimes design them as an afterthought
to the underlying code. The programmers,
knowing only the world inside the computer,
often design screens like figure 7.4. Spec rile:In figure 7.4 you see a somewhatsimplistic

Snluenl delay: :1 min.screen to control a (very fictitious) mass spec—
trometer. A mass spectrometer is a machine
used by scientists to find out what things are
made of by knocking molecules off them,
attaching a charge to the molecules (ionizing
them) so they’ll fly through a detector in a mag—
netic field, and then sorting the molecules by
mass. If you don’t understand, you’re not alone.

Figure 7.4 Screen that exposes
program design

USER DOCUMENT/1TION 125

one that the users at this particular site will select most frequently. Alas, the technical
writer is not in a position to improve the user interface.

What the technical writer is called upon to do in this situation is explain the
mapping between the problem—domain concepts and the spec files, without letting the
dates in the filenames sound too foolish, To figure out how to write this section of the
manual, the technical writer needs to know what the spec file names mean, as well as
the types of measurements that call for each combination of ionization source and

acquisition mode. That would be the most pertinent possible information to put into
the manual. Even if the user interface is designedwell, the manual should still contain
this information.

if no one has researched and documented these things early in the project, they’ll
be difficult to find out with only a week until the deadline-which is oftenwhen a tech—

nical writer is introduced to the project for the first time. Also, if no one understands
these mings, it’s unlikely that the programwill work correctly.

In summary, to write the user’s manual or on—line help, a technicalwriter needs to
know the exact same information as a user-interface designer, plus one more:

' The user—interface design

There are a number of reasons why software documentation has a reputation for

being incomprehensible. One ofmost common reasons is not that the technical writer
couldn’t write well, but that information about the problem domain justwasn’t available

to him. Good requirements and specifications documents can fix that,

USER DOCUMENTATION 127

CHAPTER 8

Two documents
Chapter 5 provided checklists of problem—specificinformation for each of five standard
problem frames. This chapter presents complete lists of contents for both requirements
and specifications: the additional details that flesh out each document as well as the
main building blocks.

Note that figure 8.1 shows [1313 of contents, not tablesof contents. Choosing a table
of contents is a matter ofdocument organization, the topic of chapter 14. Some organi-
zations try to follow industry standard tables of contents, but it’s hard to think of a
worse error in technical writing than to fit one document’s information into the table of
contents from a document that described the requirements for some other project.
That’s what following a prefabricated table of contents amounts to. For that matter, you
may well decide to break either document into many—the requirementsdocument per—
haps being split into several domain-description documents, a system overview docu—

ment, several documents that give only brief lists of requirements,and a project glossary.
Furthermore, while the lists of contents are very extensive, there is no way that

they can be exhaustive. Software is simply too varied a subject. The lists cover all the
information needed in the vast majority of software projects, but don’t hesitate to add
more if you believe that your project needs them. However, in most projects, you

129

A requirementsdocument

Requirements
queues
behavloval rules
mappings

A specification

operations on realized domains

Problem-domain description
entmes, anllbulas, relations
(data model)
sequences 0? events
causal rules
Ne formats
ln'OVmElVOnsources
hardware and software to interface with
mapping between v0 ports and hardware

Event responses
Date model; additions

Screens

shared states, such as sit-red memory

File formats (externaliyvisibleonly)

Protocols

Administrativeusers

Owningprocedures
Expectntions
Preferences

InsteIletionprocedures

Invariants Invariants

Platform: hardware and operating system Preferences
Global characteristics Overview

My" mnflim Document inlormetion
Likeiy changes
Glomrv
Overview

Documentinformltion

Figure 8.1 Contentsof the two types of document that this book is about

should describe fewer. Only a very large project would require everything shown in
figure 8.1.

8.] Contents of4 requirements document
Requirement: are the effects that the computer is to exert in the problem domain by vir—

tue of the computer’s programming. Different types of requirements and the problem—

domain information that each needs have already been described in chapter 5.
Also, you may want to include some measure of each requirement’s relative impor—

tance or priority, for purposes ofdecidingwhat to cut if the schedule starts to slip. How-
ever, it’s difficult to be precise about importance. You can define a little set of
importance ratings, each with a somewhatvague definition, like “3: critical to success of
project,” “2: strongly desired but possible to do without,” “1: nice but not necessary.”
Unfortunately, these rating systems often leavemuch to be desired Why not rate impor—

tance like this: “3: Must be implemented perfectly,” “2: Needs to work, but not spectac—
ularly well,” “1: May have bugs”?

130 CHAPTER 8 TWO DOCUMENTS

A simpler approach, however, is perfectly precise—justindicate the release numbers
in which every requirementis to be implemented.The only reason you care about prior—
ity is to decide the sequence in which to implement features. Trying to numerically
encode all the information that the customerwould use to choose a sequence in which
to implement features, such that you can make that choice without consulting the cus-
tomer, is similar to the mistake of trying to document an entire open—ended problem in
a requirements document. Since you need agreement from the customer to determine
the sequence in which to implement features anyway, you actually gain nothing by try-
ing to precisely document the customer’s decision—makingcriteria.

You can, however, communicate the importance of implementing a feature cor—
rectly, at least to some extent, by explaining why the customer wants it—that is, the
use to which the customer plans to apply the feature. “The ability to enter diacritical
marks into messages is a convenience now that extended character sets are becoming
standard,” suggests one level of importance. “Most of the messages will be in Viet—
namese, where diacritical marks carry a great deal of the meaning: for example, ba
means father, 64’ means aunt, and 512 means grandmother,” clearly indicates a very dif—

ferent level of importance.
Remarks like these will help the development team make a good compromise

between time spent designing and verifying all the diEerent features. They also enable
the team to make a type of judgement that the simple, numerical ratings don’t help
with: judgements about whether one feature would be useless without another feature.
Knowing that most of the messages will be in Vietnamese probably affects many differ—
ent features, not just one.

Problem—domaindescription, as noted earlier, normally takes up the majorityof the
document. Techniques of domain description are presented throughout chapters 9
through 1 1.

This book recommends, in most cases, including the data model with the domain
description, even though the data model is part of the specification. The data model is
simply the sets of data elements that are stored in the computer and is not to be con—
fused with the part of the world it represents. Also, the description of the data model
that belongs in either a requirementsor specification document describes only states of
the software that can be distinguished from the outside. It doesn’t specify a relational
database, an object—orienteddatabase, an array of bytes in memory, or any other aspect
of how the data is represented by the software.

The reason for merging specification into requirements in this one instance is that a
good domain descriptionmaps very simply to a good data model. It’s often simplest to
just write both descriptions at once. We might as well say things like, “Customer name
has a maximum of40 characters,” right alongwith the description ofcustomer name.

CONTENTS OF A REQUIREMENTS DOCUMENT 131

File formats are also listed under domain description for programs whose require-
ments necessitate their reading files generated by other software. File formats should
already be documented. But they often aren’t, and understanding them precisely is often
critical to a successful project. If the file formats are already documented, however, then
you needn’t duplicate the documentation. Just refer the reader to the correct place in
another document.

In fact, you should try to refer as much as possible to existing documentation.
Problem-domain description is a time—consuming and difficult task. If it’s already been
done, you can save yourselfa great deal of effort by simply referring to it. If you refer to
other documentation, though, you must provide a map between your own terminology
and that found in the other document. A reader should not have to guess that loader in
your document is filler in the document you referred to.

If your organization plans to make a number of different programs for roughly
the same problem domain, then a useful strategy is to create a single, master problem—
domain document. Each program’s requirements document can then be very short
because it merely refers to the master problem—domain document rather than dupli-
cates it.

Expectations are the results of the software that are the customer’s motive for paying
for it—the expected effect of fulfilling the requirements. This does not have to be a
detailed section, nor does it need to be included at all in many documents (for example,
in the requirements for a controller for an anti—skid braking system). However, it’s a
great advantage to the developmentstaff to know that the reason new software is being
ordered is because the previous software was too difficult to use, or because employees
were spending too much time going to the shelves to verify that inventory records were
correct. Expectations tells the staffwhat the customer is really interested in.

Preferences are criteria for choosing among different designs that meet require-
ments: principles by which to make trade-offs. You may have thought, with all the
emphasis on precision in requirements, that surely something is missing because not
everything that a customerwants is so precise. Indeed, there are two common mistakes
regarding vague desires about the software: to omit them, or to force them into precise
language. Preferences are the place to describe vague desires.

For example, it may be most important to the customer that the user interface be
as fast as possible. The customermay consider ease of learning, and ease of use for peo—
ple without long experience with the software, fairly unimportant. This is valuable
information, so mention it as a preference. It can’t be a requirement because you can-
not test a statement like, “The designers chose speed over ease of learning whenever
faced with a trade-OH.”

132 CHAPTER 8 TWO DOCUMENTS

i figIt would be a mistake, however, to describe this preference in precise, quantativeterms. Should you specify a precise, numerical formula to balance operation timeagainst ease of use as reported by first—time users on a scale of l to 10, like this?
Maximize: 3 X (10 sec. — median operation time) + 2 X (median ease-of-use learning rating)
By trying to be so precise, it’s easy to lose sight ofthe actual preference. So, just write down,“Speed of use by experienced users is more important than ease of learning, and explainthe reasons for this preference. Knowing that the customer plans to hire only four dailyusers for this program, the development staff understands much more about how to maketrade-offs to serve the customer than any numerical rating could possibly communicate.Note that preferences are not necessarily vague. They’re just the one place wherevagueness is acceptable. A more precise preference might be, “The faster the block—trans—mission speeds, the better, but only up to I block per 0.7 milliseconds. Speeds fasterthan that provide no benefit, since the microwave transmitterwon’t be able to keep up.”Notice again how explaining the rationale makes the preference much clearer.Invariant: are conditions that are never to change, or at least never to be violatedbetween events even though they may be temporarily violated during an event. Thereare two main types of invariants: (a) requirements that state conditions that the systemis supposed to maintain even as other operations take place, such as “Room temperaturestays between high—setting and low—setting of thermostat”; and (b) redundancy added torequirements to help ensure their correctness.
There’s no need to treat type (a) invariants any differently from other requirements.The interface designer tries to design machine behavior that keeps them true, the sameas any other type of requirement.Type (b) invariants are different. They state conditionsthat the requirements themselves are intended to maintain so that if some combinationof the behavior described by the requirementswould violate the invariant, then there isan error in the requirements. Because readers must interpret these statements difi‘erentlyfrom requirements, you must distinguish them by explicitly calling them invariants.For example, the requirements may describe accounts to be stored in the computer,along with a set of transaction types that can affect them?” Each transaction in the doc-ument has been carefully defined so that the books always balance; that is, the result ofany transaction is to add as much to account A as it removes from account B. Definingthe more complex transactions is tricky and error—prone. A way to help catch errors inthe requirements is to explicitly state the condition that each transaction was trying toachieve: “Invariant: For any transaction, the sum of all additions and subtractions to allaffected accounts is zero,” and/or “Invariant: assets plus liabilities equals equity.”\’ Such accounts would form a realized domain, described in section 4.5.

CONTENTS OF A REQUIREMENTS DOCUMENT I33

Explicitly stating these invariants becomes especially helpful when people modify
the requirements in future versions of the software. Often the people who make the
changes are not as familiar with the problem as the people who wrote the original docu-
ment, yet they must define more—complex features. If they add a transaction that shuf—
fles money between three different accounts, theymay well inadvertentlyviolate one of
the invariants. A person reviewing the document, even without knowledge of account—
ing, might well spot the error if the invariants are stated explicitly.

Invariants are supported by wurtiom, a programming technique that also works by
redundantlystatingwhat the rest of the program is intended to bring about. (Assertions
are explained more in depth in the glossary.) Thus, the program itself can serve as a
check on the correctness of requirements.Furthermore, if the requirements are correct,
assertions based on invariants help find programming errors. In formal methods, special
software can check requirements and specifications directly against the invariant state—
ments. See Invariant: in chapter 15 for specific writing tips.

The plafibrm is the machine to be configured. As software is a configuration of a
very configurable machine, the most fundamental piece of information needed to create
any piece of software is what kind ofmachine is to be configured. Here mat/vine means
both hardware and operating system and/or other software that runs on the same hard—

ware. A PC running \Vindows and a PC running Linux are the same hardware, but
from the standpoint of a programmer, they are two differentmachines. For a Java pro—
gram that is interpreted by a Web browser, theWeb browser is the platform. The hard-
ware and operating system are, implicitly, anything that can run the Web browser. Be
sure to include version numbers: “XYZ/OS version 4.6 or later.” See also the informa-
tion needed by testers in section 7.5.

Global thamcten'rtics (a non—standard term) are properties that the system as a
whole is to possess, as opposed to the separate requirement statements that usually
have a nearly one-to—onemapping to segments of program code. Four of the most
common global characteristics that people want to see included in a requirements
document are system availability, reliability, safety, and security. Another that is worth
mentioning is scale.

System availability is the time each day that the system is to be available for use and
able to fulfill the requirements. For example, if users must be able to operate the system
24 hours a day, 7 days a week, this needs to be stated explicitly.

Reliability is a tricky matter in software. Most other engineering fields build arti-
facts out of components that break down at known rates, For example, a beam made of
a certain material supporting a certain load might have a mean time to failure (MTTF)
of ten years. You can specify that the assembly that the beam is part of has an MTTF of
as long as you like—say, a hundred years or a thousand years. The engineers can choose
different materials, different manufacturing techniques, or different testing techniques

134 CHAPTER 8 TWO DOCUMENTS

to achieve the desired MTTF, or they can add redundancy to the assembly: more beams
that support the same load, other subsystems that perform the same tasks, and so on.
The more redundant subsystems in an assembly, the longer the assembly’s MTTF—
longer than the MTTF ofany individual component.

Software doesn’t work that way. Software never Wears out. The storage medium
containing the software has an MTTF, but the software itself always works exactly the
same way. A fuel pump might work fine today and fail tomorrow, but software is a pat—
tern of bits—a configuration of a machine, not the machine itself—and therefore fol—
lows the same rules every day.

Software failures are due to those rules being wrong. There is currently no way to
design software to a specified MTTF—to design the rules so that they generate inappro—
priate behavior only once every ten or hundred years.Adding redundant code—say, two
or three subroutines to perform the same function—may well cause new bugs rather
than mask them.

Thismakes reliability requirementsfor software somewhatuseless. What’s the point
of telling the programmersto design the system to have an MTTF ofa hundred years if
they know of no design techniques to achieve this? Some people are doing research on
statistical checks for faulty lines of code, but it’s a long way from something that pro—
grammers or testers can apply to yield a specified MTTF. What if the problem is not
that an individual line is wrong, but that the logic of the whole subroutine is wrong?
What about the likelihood—muchmore important in most software—that program-
mers will introduce new bugs when making modifications because the comments were
incorrect or too hard to understand? How do you design the comments to achieve a
specifiedMTTF over ten years ofmaintenance?

Instead ofmaking a quantitative statement ofhow reliable the software is supposed
to be, you can try to give some measure of the tortof bugs and downtime. For example,
if the customer’s salesmen bring in $120,000 per hour while the system is up, from
1:00 pm. to 4:00 pm. on business days, this should indicate how important it is that
the system not crash during those times. This is not a genuine reliability requirement,
but it’s much better than nothing.

If safety is a factor in the design of the software, it is best treated as either an ordi—

nary requirement or an invariant, such as, “Invariant: The paper—cutting blade never
moves while any part ofa human operator is within the blade path.” Statistical measures
of safety apply to software no better than statistical measures of reliability.

In many cases, security is best treated as a requirement or attribute of requirements.
If there are queries that onlymanagers are allowed to run, then those queries should say,
“Can be run only by managers.” Security as a global characteristic should pertain to who
is to be allowed to operate the software, who is to be allowed to access its data, or who is
to be prevented from doing so. Again, a brief description of the costs of allowing data

CONTENTS OF A REQUIREMENTS DOCUMENT 135

out, or allowing it to be corrupted, gives people a better idea ofhow they should figure
security into their specifications and program designs. The cost need not be in dollars:
“Allowing Splenetix Corporation’s chemical—bonddatabase to leave the companywould
completely destroy its competitive advantage. Sacrifice performance, functionality, and
the schedule rather than allow any breach of security on this database.”

For many projects, the above global characteristics are not very important. When
they’re not important, trying to state them precisely makes the document sound silly
and undermines its credibility. “Required security level on cat-lover’s mailing list: 0.0.
Safety requirements: the cat—lover’s mailing list shall not cause injury to persons or prop—
erty.” In these cases, it’s best to omit them entirely.

A global characteristic that is worth stating for virtually all software, however, is
scale. Scale is the number of instances of the various objects and activities described in
the requirements and problem—domain description. An accounting system for ten or
twenty people to run in a small business might have identical requirements and prob-
lem—domain concepts as an accounting system for a small business with offices in three
cities. The software, however, needs to be designed very differently The larger system
needs much more parallelism, which is more complex and difficult to design.

50, how many users will there be? How many queries will they likely run per day?
How many flights take off per day? How many planes are there? The answers to these
questions do not have to be precise, but they should at least give an order-of—magnitude
estimate, providingenough precision to enable the programmers to design a system that
can handle a real workload.

Peak levels are also important to document, especially in large systems, such as how
many flights are booked on an average day, and how many the day before Thanksgiving.
If the system works beautifully for 364 days and crashes on the airline’smost profitable
day of the year, you can imagine how the customerwill react.

Sometimes included among global characteristics is perfbrmame: how fast the sys—

tem runs. However, performance is usually best understood as an attribute of specific
requirements, not as a global characteristic. If the system needs to generate a certain

report in no more than fifteen minutes, this is best documented as part of the descrip—
tion of that report. If the software must generate an acknowledgement signal within
0.2 us upon receipt of a cerain input signal, this is best documented as part of the rules
for how the software is to respond to the input signal.

Documenting performance characteristics can be tricky, again because software is
different from physical artifacts. The average response time for a type of query depends
heavily on exactly which queries the users make most often and what data is currently
stored in the system. Again, a good strategy is to provide the programmerswith some
background so they can make intelligent trade offs. For example, knowing that the users

136 CHAPTER 8 TWO DOCUMENTS

nearly always run queries about transactions within the past month, but during a yearlyaudit, they run queries stretching back the past year, allows the programmers to opti-mize performance accordingly.
However, programmers can often design for specific worst-case response times. If

you know that the system would be useless if it took more than a certain amount of time
to answer a query, this is critical information to include in the document. Don’t, how—
ever, pull numbers out of the air just for the sake of being numerical and precise; thisundermines the credibility of the document.

Because the phrase global thamrterirtits is neither self-explanatory nor standard,it’s best not to title a section by that name. Just find places for each topic that youneed to cover. They can all be subsectionsof an introductory section, or you can have
a Safety and Reliability section—whatever provides the simplest organization withinthat one document.

Design constraintsare statements that deliberately violate the separationof subject
matters shown in figure 3.1. If the customer insists that every variable in the source codebe in upper case, you know that that’s part of program design and not a requirement,butwhat are you going to say? In the document, call this a design constraint rather than
a requirement. This shows that you aren’t confused about the diHerence between
requirements and program design.

More realistic design constraints include matters pertaining to the source codesusefulness to the customer once development is done. For example, the customer mayhave a staffof COBOL programmerswho will take over maintenance of the programonce development is done. In this case, it may be of the highest importance to the cus-tomer that the program be written in COBOL, and even that it follow their coding con—
ventions—say, putting every variable in the source code in upper case.As this example illustrates, you should explain the reason for each design con—straint—thedescriptive statements that are the basis for the prescriptive constraint. If adesign constraint sounds arbitrary, programmersare likely to disregard it, thinking that
you put it in only because you either didn’t knowwhat you were doing or because youwere following a standard that demands that the programming language and codingconventions be mentioned in every requirementsdocument.

Likely changes are changes that you expect in future versions of the software, such
as future requirements or changes to the problem domain. You don’t have to describethe changes in enough detail to implement them. The purpose ofwriting them down
now is to help the programmersdesign in order to make the future modificationseasier.It is impossible to design a program to make any kind of modification easy. You candesign to allow modificationsin one direction or modificationsin another direction, butseldom—even with object-oriented programming—can you design for all possible

CONTENTS OFA REQUIREMENTS DOCUMENT 137

directions of modification, and it’s unlikely that a program will be easy to modify in

ways that are totally unexpected. You can’t possibly anticipate all future changes, but you
can usually anticipate some. Documenting them now, however briefly, can be a very
effective way to cut future developmentcosts.

A glossary is a great help in all but the smallest documents. Include not only the

major terms from the problem domain, but any term that you use that some readers

might not understand. For example, if you mention TSRs in an example somewhere,

you should define TSR in the glossary, even ifTSRs are only tangentially related to the

subject of the document.
On a large projectwith many requirementsdocuments, you can save yourselfa lot

of duplicationby creating a single glossary for all of them and just refer to it in each doc—

ument. Or, people can cut and paste from the master glossary when they write new

requirements documents. See glossary in chapter 15 for specific writing tips.
An overview is almost always necessary to show readers how each of the document’s

many parts—all the different requirements as well as the many parts of the problem
domain—fit together. An overview says the very same thing as the rest of the document;
it is a helpful redundancy. The diKerence is that the overview omits details in order to
make the overall structure clear. It is similar to a rough sketch.

Document infbrmatian is the following information about the document:

' Table of contents
° List of related documents

' Typographical conventions

' Software version that the document applies to

' Date when the document was last modified

' Change log

' Document preparer(s)
0 An index, for large documents

Naturally, information about the document should take up a tiny proportion of

both the document and your time. The document is about requirements, not itself.

The list of related documents is especially important if there are file formats or pro—
tocols that the programmers need to read.

If the document is especially huge, or you’ve split it into a group of documents,
then you may need to write a document overview to explain how all the parts fit

together. Normally, though, the table of contents alone should provide an adequate
overviewof the document.

138 CHAPTER 8 TWO DOCUMENTS

A requirements document should briefly state its typographical conventions forindicating which statements are requirements and which statements are not, that is,which statements are prescriptive and which are descriptive. For example:

Typographical Conventions

Requirements and preferences are shown in bold sans-seriftype, like this:
R-2.4 Approve no prescription refill if the number of days since the last fillis less than 90% (rounding up) of the number of daily doses in the last fill.
All other text is purely descriptive, unless otherwise indicated.

The example to illustrate the convention should be a real example, copied fromlater in the document. In many documents, the convention is so obvious that it doesn’teven need to be stated explicitly. See table ofcontent: and title page in chapter 15 formore tips.

8.2 Contents ofa specification
A program specification is the description of interfaces. A specification document con—tains little else but descriptionsof events that involve both a user or a piece ofhardwareor software that interacts with the system, and the system’s response to that event. If the
system interfaces with two or more other systems, perhaps in addition to human users,it’s often wisest to create a separate document for each interface.

Most of the concepts and techniques for describing interfaces are the same as thosefor describing requirements and the problem domain: there are externally visible objectsin the system (instead of outside the system) to describe, state transitions made by thesystem in response to events (instead of state transitions that happen outside the sys—tem), decision rules about how the system behaves (instead of rules describing howobjects outside the system behave), and so forth.
Event responses are how the system responds to events in the problem domain:what data stored by the system changes, and any activity initiated by the system in

response. Very often, the events of interest are not phenomena sharedwith the system.So, the specificationaddresses the question ofhow the event of interest gets to the sys-tem—for example, by manual data entry, or by other means. See section 10.3 for
more information.

CONTENTS OF A SPECIFICATION 139

Additions to the data model are data to be stored in the system that was not
described in the requirements document, usually to serve a purpose pertaining to the
maintenance of the software rather than a purpose found in the problem domain. For
example, the system needs to store user preferences and passwords, even if these do not
correspond directly to any requirementsor problem-domain phenomena.

The specification of a user interface must contain :treem. Screen layout is a subtle,
skilled job, best performed by a user-interface designer with a prototyping tool, and not
left for a programmer to do' casually while coding. Ideally, the screens in the document
are bitmaps captured from the prototyping tool. If you don’t have a prototyping tool,
drawing the screenswith pencil and paper and scanning them in also works.

Sharedstates are objects or states of objects that the system shares with the outside
world, as opposed to events. The most common type of shared state is a shared segment
ofmemory, as in a program that communicatesby semaphore with other programs run—

ning concurrently. The specification needs to document all the information needed to
implement this shared memory: its location, size, and contents.

The specification also needs to document the file firmats of any files that are
designed to fulfill the requirements and are of importance outside the software. A typ—
ical example is a configuration file, such as a .INI file in Microsoft Windows. Docu-
menting file formats is similar to documenting shared memory. You need to indicate
the name of the file, the directory where it resides, and its contents. Files that users
can conceivably access but which they have no reason to access don’t need to be
described in the specification.

Protocols are any communication protocols that the development staff designs in
order to fulfill requirements, as opposed to protocols already defined in the problem
domain. Most software doesn’t include them, but software that provides services to
other, software not yet written, often does. Similarly, if the software has an application
program interface (API), the specification must include that, too; in fact, that may be
the vastmajorityof the specification.

Administrative user: are special users whose roles are invented in order to fulfill
requirements, rather than users found in the problem domain. Typical roles for adminis—
trative users are editing configuration files, setting up user privileges, and backing up
and restoring data.

Descriptions of administrativeusers should not be allowed to pollute the require—
ments document. They are strictly part of the solution, not of the problem. Describing
them in a requirements document makes it appear that the purpose of the software is to
serve them, whereas the truth is that their purpose is to serve the software. Inventing
them is only one of many possible design decisions.

Operatingproceduresare activities that users are responsible for performing—that
is, the correct way to operate the software. When you design screens and buttons and
fields, you have in mind particular sequences in which users are supposed to open the

140 CHAPTER 8 TWO DOCUMENTS

screens, click the buttons, and fill the fields. If you keep this information only in yourhead, it is unlikely that users will be able to divine it. The operating procedures are seriesof action-response pairs. Each pair says what the user is supposed to do, and what the
system does in response.

The testers and technical writer are especially interested in the operating proce-dures. You might simply tell them to the technical writer, who can immediately putthem into the user’s manual.
An important type of operating procedure is backing up and restoring data. Thisdoes not correspond to any particular requirement or element of the problem domain

because it corresponds simultaneously to all the requirements. It’s an action taken tokeep the software functioning. Backup and restore procedures are strictly specification,
not requirements. Like administrative users, they serve the software, rather than thesoftware being designed to serve them.

Installationproceduresare a special type ofoperating procedures to install the soft—
ware onto its platform. It’s often difficult to knowwhat the installation procedureswillbe until most of the programming is done. There’s no harm in deferring the writing ofthis part of the specification until near the end of the project. However, every time the
programmers produce an interim release for the testers and technical writer to look at,they should document the installation procedures Especially in those chaotic times, it
can be diflicult for the staff to figure out how to install the program correctly withoutwritten documentation.

The installation procedures should also state how the program recognizes previousversions of the software and what the program does to them. In effect, the platform and
existing versions of the software form a secondary problem domain that the specification
must address, just as it addresses the problem domain described in the requirements.This means that the installation procedures also have to describe every possible kind of
thing that can go wrong, such as running out of disk space and how the software
behaves in response,

Finally, invariant: and pnfi’mnce: are the same as in requirements, except they’re adirection to the programmerswho implement the interfaces, as opposed to a direction
to the interface—designers who devise ways to fulfill requirements.The overview and zlot—
ument information are, again, the same as in requirements.

CONTENTS OF A SPECIFICATION 141

Classes and relations
What's in the problem domain? This chapter shows how to answer that question andhow to describe the individuals in the problem domain, the attributes they possess, andthe types of relations that can exist between individuals.

The techniques for describing individuals, attributes, and relations apply equallywell to describing the problem domain as to describing sets of data to be stored in the
computer, so you might apply these techniques in both a requirementsdocument and a
specification. Data items are individuals in the machine domain, just as the real world
objects they represent are individuals in the problem domain. As noted in chapter 8, in
many projects, particularly simplerones, it’s most convenient to describe both the prob—
lem domain and data in the requirements document by including this one part of thespecification in the requirements.

The next two chapters tell how to answer the questions, “What happens in the
problem domain?” and “What causes it to happen?”

143

9.1 Two kinds ofsets
Figure 9.1 depicts two kinds of sets that appear in many different domains, especially ininformation problems:

customer
name invowe
address MW mvorce number
City date
State amount
Zip

Figure 9.1 A class diagram

One kind of set is shown by the two boxes marked customer and invoice. Some-
times called an entity set or class, this is a set whose members all possess the sameattributes. Every customer has a name, address, city, state, and zip code. Every invoicehas an invoice number, date, and amount.

Sometimes it’s convenient to draw a class diagram without attributes, as shown in
figure 9.2. This can be a helpful choice if a diagram becomes especially complex.

customer I, " invoice

Figure 9.2 Class diagram without attributes

The word entity literally means “thing,” but these sets do not need to contain phys—ical objects. They can contain anything from elements of a database to scenes in seven—
teenth-centuryBritish plays. The only rule is that all the members of an entity set haveattributes that make sense to compare: any two names are comparable, any twoaddresses are comparable, and so on.

The other kind of set is shown by the line connecting the two boxes. Called arelation, each element of this kind of set is a pair of members of entity sets (or, less
commonly, groups of three or four or more). In this case, the relation matches each
customer with that customers invoices. The set of pairs (customer, invoice) includes
one pair for each invoice, showingwhich customer the invoice belongs to. For exam—ple, these two pairs:

(George Gibbons, invoice #1019)
(George Gibbons, invoice #1 184)

144 CHAPTER 9 CLASSES AND RELATIONS

customer invoice

Figure 9.3 Chen ERD

link the customerGeorge Gibbonswith both ofhis invoices.
Relations are described further in section 9.5. For now, it will suffice to say that

the funny symbols on the line connecting customer and invoice indicate that for every
customer, there correspond zero or more invoices, but for every invoice there is only
one customer.

The term class is becoming more popular than entity set, so this bookwill stay with
class and class diagram. However, a term still in common use for the type of diagram
shown in figure 9.1 is entity—relation diagram, or ERD, invented by Peter Chen. Chen’s
original entity-relation diagrams depicted ' relations with triangles, as shown in
figure 9.3; this notation is also still in use.

Much of the terminology in the world of software is in a state of flux, including
the terminology for concepts pertaining to sets. Whereas entity-relation diagrams
were originally conceived as a way to describe the world outside the computer, the
term class originated in object—oriented programming. There, it referred not to a set
but rather to the combination of a data structure with program code that operated on
it. The subroutines associated with the data structure are listed in a third segment of
the class’s box in a class diagram. Consequently, sometimes class is defined in ways like
“an abstraction of behavior,” As people have attempted to apply concepts from
object—oriented programming to requirements, the word class has started to lose some
of its connection to programming.

In this book, by classwe mean nothing more or less than a set of comparable ele—

ments. The elements can be things in the real world, like trucks, tractors, and cornfields,
or they can be data stored in a database, such as the records stored on disk of a corpora—
tion's trucks, tractors, and cornfields. They can be anything whatsoever. However, since
the focus of this book is requirements, here we most often define classes of things that
exist outside the computer.

Naturally, in your own documentation, substitute entity—set, type, category set or
whateveryou, the customer, and the development staffare most comfortablewith.

Be aware that there is a danger in using the word class. Many programmers and
other people who’ve read about object—oriented programming stop hearing the word

" A little more information about object-oriented programming techniques versus requirements is in
section 122.

TWO KINDS OF SETS 145

class in its everyday sense of a set of like elements, and understand it to mean only a type
of representation created in object-orientedprogramming—a data structure with a set
ofassociated subroutines. It’s not unusual for them to keep interpreting it that way even
if you tell them otherwise, and even if you add text to the requirements document tell—

ing them that that’s not what you mean. This is a common efiect of a programmer’s nat-
ural concern with the world of programming: the problem domain disappears over the
horizon, along with the vocabulary for talking about it.

“This is all design,” someone complains, “because you’re talking about objects.”
In fact, the word object never appears in the document. Only the word class does, but
sometimes that’s enough to trigger the the mental association with object—oriented
programming.

“But the world is filled with objects,” you reply, “and I need to talk about them.
What do you suggest?”

The complainer suggests, “You’re supposed to describe the software in a design—
independent way: a logical model of the system, without specifying whether the design
will be object—orientedor not.”

You reply, “But I’m not trying to describe the software at all. I’m trying to describe
bicycle parts and the stages in which people assemble them into bicycles.”

If this happensto you, try calling them sets. This book would call them sets, were
there not a host ofother kinds of sets to describe, too.

9.2 Classes
The purpose ofdocumenting classes and relations is to provide the vocabularyin terms
ofwhich to make statements later on, such as requirement statements, statements about
actions that occur in the problem domain, and statements about causal rules. To serve
this purpose, a requirements document must provide the following information about
each class:

Table 9.1 Information to document about each class
Class information Where described
The name of the class (Not covered in this

book)
A definition of what kind of thing the class can contain. In other words, an Definitions in chapter 15answer to the question, "What are you talking about?"
A list of each of the class's attributes, including a definition of each Sections 9.2—9.4
attribute, the set of all possible values of the attribute, and the meaningof each possible value

146 CHAPTER 9 CLASSES AND RELATIONS

Table 9.1 Information to document about each class
Class information

Where described
Which attributes uniquely identify members of the class, if any Section 9.8 ¥Each class to which the class bears a relation Sections 9.5—9]Each event, if any, that affects members of the class, and which attributes Section 10.2and relations it affects\Here is an example from requirements for restaurant software:

F
2.4 Orders

order item is! —>

(subtotal)
l table a)

(tax)
tip ll current server —>

(total)
CC transaction id
In Attributes in (parentheses) areout derived attributes, capable of
paid belng calculated from other

attributes.

An order is a set ofmenu items ordered by one or more people at a table, A party at asingle table might have more than one order, such as if they ask for “separate checks.”Also called a “check,” “bill,” or “tab.”

Attribute Description Affectedby
item list One—to—many:The list of items on this order (see Open, change

section 2.9) For any order, there are zero or more
items in the item list; for any item, there is exactly
one order. An order has zero items when the partyhas sat down at the table but not yet ordered
anything.

table Many-to-one:The table where the party who open, order-moves
placed the order is currently sitting. For any order,there is exactly one table; for any table, there are
zero or more orders.

CLASSES
I47

Attribute Description Affected by
current Many—to—one:The server currently responsible for Open,
server this order. For any order, there is exactly one server-takeg-over

current server; at any time, a server is responsible
for zero or more orders.

subtotal Dollars and cents: the sum ofthe amounts ofeach open, Change
item in the order. (Derived attribute.)

tax Dollars and cents: the amount ofsales tax on the open, change
order.

tip Dollars and cents: the amount of the tip. close

total Dollars and cents: the sum ofsubtotal + tax + tip. open, change.
(Derived attribute.) Close

CC
.

20—character alphanumeric ID code returned by (21036

itéansactlon credit card bank, uniquely identifying the
transaction in which a customer paid the order.
Applicable only ifthe customerpaid by credit card.

in Date]time: when the orderwas opened. open

OUI Date/time: when the orderwas closed. Close

paid True/false: whether the bill was paid. ClOSe

The preceding documentation is called a class description. A class description
describes, in text, the following:

' The definition of the kind of thing included in the class, as shown by the first
sentence above: “An order is a set ofmenu items ordered by one or more people
at a table.”

' A definition of each of the class’s attributes, including the set of all the possible val—

ues of each attribute
' Optionally, a list of each of the events that affect the attribute, or a complete
description of each of the events along with the set of all possible sequences in
which they occur. This information needs to be somewhere in the document, not
necessarily in a class description. Decidingwhere to place the description of events

148 CHAPTER 9 CLASSES AND RELA TIONS

is a matter of organization, discussed in chapter 14. Techniques for describingevents are in section 10.2.
' Any other information about the class that you think would be helpful to a reader
A nice technique is to cut the class’s rectangle out of a larger class diagram, includ»ing the connecting lines, and paste it above the class description, as shown at the top ofthe example. (The larger class diagram is shown in figure 9.1 I.) This serves a number ofpurposes. It helps the reader see the class in relation to all the other classes without beingoverwhelmed by a complex diagram. It encourages the reader to go look at the morecomplex diagram that includes all the classes, because now the reader has somethingspecific to look for—this class, and the other classes that it connects to. Finally, thegraphic breaks up a section of the document that could easily consist ofmany pages ofuninterrupted text, making the document easier to skim through when looking forhighlights or an overall feel for the content.
Describing the attributes in a table is another good technique. This makes theattributes much easier to find than if they were buried within a stream of paragraphs.The first three attributes in the example, item list, table, and current server, are relations,described in section 9.5.
There are several noteworthy points about this particular class description. First ofall, even though it’s from a familiar, everyday domain, it makes some distinctions thatwe normally pass by. For example, one might have simply associated an order with atable: one order, one table. The definition above carefully notes that a single table canhave multiple orders.
Second, note that the Affected by column is strictly descriptive. It makes statementsabout events that take place in the real world, regardless ofhow the software behaves. Itdoes not state that the software must affect anything. That will come when we writerequirementstatements.
Third, notice that after current-sewer, there is not a single complete sentence.Instead ofwriting:

In The in attribute is the exact date and timewhen the The in attribute isorder was opened. The in atrribute’s type is date/ affected by thetime.
open event.

we simply write:

in Date/time:when the orderwas opened. Open

CLASSES
149

The shorter version is easier to read and understand, and omits no information. It’s also
easier to write.

Finally, there is nothing sacred about the layout of the table. Even the Affected by
column is just a convenience for the reader, not a necessity.You should feel free to adjust
or completely rework the format of the table to suit whatever you are describing, per—

haps omitting the Affected by column if you see no need to cross-reference attributes to
events or if a lot of the attributes are affected by many events. Add lines to the table if it
becomes difficult to read without them. (See table: in chapter 15.)

If an attribute requires a long description, then it’s best to describe it only briefly in
the table and reserve the long description for the text that follows the table. The need for
this is most common in attributes that are states that the membersof a class can take on.
We’ll see some of these in the next section.

9.2.1 Esotericproblem domain:
A common mistake in writing requirements for fields that everyone knows about is to
omit critical details, either because the analyst assumed that the programmers would
know them or because the analyst didn’t research the problem domain carefully—
“I already know all that stuff.” So typical mistakes in restaurant software include failing
to track commonplace aspects of the restaurant business that most of us seldom think
about: that a server’s shift ended before a customer finished eating, leaving the sewer
who replaces him to take the entire tip, or failing to track the percentage of tips that is
owed to the busboys.

When the problem domain is esoteric, a more common problem is that the analyst
is very familiar with the problem domain, perhaps because they worked in it for many
years, and while the analyst researches and understands the problem domain perfectly,
the analyst writes documentation that only a fellow expert can understand.

Here is an example of a poorlywritten class description from the somewhat esoteric
field of telephone networks:

A node is the top-level division of the network. Nodes are the most important break-
down for purposes ofdesign.

Attribute Description

name This is the node’s six-letter code.

state The status of the node with respect to its point in the design cycle.

polygon This is the precise location of the node.

150 CHAPTER 9 CLASSES AND RELA TIONS

Attribute Description
house count Identifies the node’s house count.

The problem with this description is that ifyou don’t already knowwhat a node is,or you don’t already know how nodes are named, or you don’t already knowwhat statesnodes go through, and so on, this description doesn't tell you. The analyst is writing inhis own internal mental shorthand, and not the language of readers who are ignorant ofnodes. Saying that nodes are “important” communicates nothing to someone whodoesn’t already knowwhy they’re important.
Here is a much better description:

A node is the geographical area served by a single launch amp. It includesup to 440 sub-scriber services—the maximum that a single launch amp can supply.

Attribute Description

name A six—letter code uniquely identifying the node. Format is
described below.

state The current phase of the node’s design cycle. See below for
completedescription.

polygon A series ofx, y coordinates (NAD86), each ofwhich is a vertex of
a polygon bounding the node. Typical node polygonshave nomore than 10 vertices, though conceivably one could have as manyas several hundred.

house count The number of buildings in the node.

The formatofa node name is as follows:

I-m
One-lettercounty code: Three-digit node ID:

A Outagamie distinguishes nodes3 Starling Twoletter city code. See within a city.c Fisher list of cities and codes in
D Manitowoc appendix B. In the example

above, AT denotes Appleton.

No two nodes have the same node name.

CLASSES
I51

The possible states ofa node are as follows:

proposed The phone company has proposed to the public utilities
commission to build the node and is awaiting approval.

design The node is currently being designed.

construction The design is currently being constructed.

operational The node is delivering service to subscribers.

The terms [dune/I amp, subscriber service, and NAD86 would likely be explained
elsewhere, following the principle of not trying to say everything at once. Here is how
those definitionsmight read:

A [dune/7 amp is a piece ofequipment that converts the digital signals from a fiber—optic
cable into equivalent analog signals to be sent over coaxial cable. A single launch amp
can source up to 440 subscriber services connectedvia coaxial cable.

A subscriberservice is a single phone line and]or cable TV hookup. That is, a subscriber
service can be a phone line, a cable TV subscription, or both at once. This is because
our equipment sends both types of signals over the same cable; we need only connect a
single coaxial cable to deliver both services. Sometimes called “service” for short.*

NAD86(North American Datum 1986) is a coordinate system describingthe entire
surface of the Earth, based on satellite measurementsmade in 1986, and superseding
the NAD27 coordinatesystem made by land measurementsin 1927. To give the accu-
racy required to locate telephone equipment, NAD86 coordinates require at least six
digits both to the right and left of the decimal point.

This isn’t easy reading, but it’s readable, and when you’ve read it, you know what
nodes are. The information is now on paper, not just in the analyst’s head.

Now you, too, know something of the language of the problem domain. You canthink of new questions to ask, like, “Once a node is operational, does all design stop, ordoes the phone company continue to design and construct changes even while people
are receiving service?” or “Does the public utilities commission approve designing the
node or constructing the node? If the latter, does the phone company ever start designing

“ If you’re interested in learning about telephony, be aware that these definitions vary a bit from reality inorder to illusnate techniquesofdocumentation.

152 CHAPTER 9 CLASSES AND RELATIONS

while the node is still proposed but not approved?” These are possible errors in the anal—
ysis. Perhaps the reality is that there are three somewhat independent status attributes. A
programmer, thinking about how to model these states, could come up with these ques—tions despite having no prior knowledge ofwhat is done at telephone companies. Thatprobably wouldn’t happen if all the document providedwas the names of the four node
states, or, worse, a single-letter code for each state.

The brief descriptionof polygons provides important information often left out ofrequirements documents: what are the most likely values, and what are the mostextreme values? Without the mention of “typically no more than 10” and “conceivablyas many as several hundred,” a programmermay have assumed that no more than eightvertices would ever be needed and hard—coded the data structure for nodes to containexactly eight slots for polygon vertices. Now the programmer knows to apply a moreflexible design pattern when designing the data structure.The numbers provided are notprecise, but they are good enough.
There’s nothing like a simple graphic to describe each segment of an alphanumericcode. Note that both the graphic and the discussion ofnode states go after the table ofattributes, not inside it. Even this is not a rule; but it’s a option to keep in mind ifa table

you’re making becomes unwieldy.

9.3 Al/possz'éle values
Table 9.1 suggests that you need to indicate all the possible values that each attributecan have. That may seem like an outlandish demand—“All of them? But there could betrillions!” Actually, in most cases it is very easy.

There are two main strategies. One is to refer to a well—known set ofpossible values,such as the sets of integers or real numbers. Often this is called a data type, but ofcourse
you aren’t necessarily describing data when you talk about attributes. Figure 9.2 somecommon attribute types and information that you need to specify whenever youdescribe an attribute.

Ifpeople had always indicatedwhat fiiture dates theywere interested in, or the pro—grammers had told customers what range ofdates their software supported, therewouldhave been no Year 2000 problem. (In the latter case, the customers would have pro—tested long before the year 2000.)
Also of interest to the programmers are the most common values, as well as theextreme ones. Sometimes, by knowing that a narrow range ofvalues is most common, aprogrammer can make great improvements to the speed of the program.

ALL POSSIBLE VALUES I53

Table9.2 Common attribute types

Type Extra information

integer ls zero allowed, or just positive numbers? Are negative numbers possible?What is
the highest integer value possible? The lowest?

Real number How many digits to the right of the decimal point? How many to the left? What are

Dollars and cents

Date
Time of day

Date/time
True/false
Text

the highest and lowest values possible?
Keep track of pennies? What is the greatest possible amount? Are negative
amounts allowed?
What is the earliest date of interest? The furthest in the future?

With what precision—hours,hours and minutes, hours and minutes and seconds, or
even more precise than that?
Same as for date and time of day.
(None)
Maximum number of characters. Do any characters not occur, such as lower-case
characters? Are any special characters possible, such as characters with diacritical
marks, like a?

If all or most of the dates and times that will be of interest to the programwill be

between 1990 and 2050, you can save yourself the trouble of repeating this in every
attribute definition by stating it once near the beginningof the document in a little sec-
tion called AttributeTypes. Similarly, for integers or other types ofnumeric ranges, you
might want to define—“Angle (real number in range 0.360, or 0.210,” “Capacity
(O..100,000 gallons),” and so on.

lfyou define such a set of attribute types, you can also define one- or two—letter

codes for them. You can then put these codes into a middle column in a table of
attributes:

Attribute Type Description

item list l——>M The list of items on this order (see section 2.9). For any order,

there are zero or more items in the item list; for any item, there
is exactly one order. An order has zero items when the party has

sat down at the table but not yet ordered anything.

table M—>l The table where the partywho placed the order is currently
sitting. For any order, there is exactly one table; for any table,
there are zero or more orders.

current M—>‘l The server currently responsible for this order. For any order,

server there is exactly one current server; at any time, a server is

responsible for zero or more orders.

154 CHAPTER 9 CLASSES AND RELATIONS

Attribute Type Description

subtotal $ The sum of the amounts of each item in the order. (Derived
attribute.)

tax $ The amount of sales tax on the order.

tip $ The amount that the customer tipped the server.

total $ The sum of subtotal + tax + tip. (Derived attribute.)

CC 520 20-characteralphanumeric ID code returned by credit card
transaction bank, uniquelyidentifyingthe transaction in which a customer
id aid the order. A licable onl if the customer aid b creditP PP Y P Y

card.

in DT Dare/time when the orderwas opened.

out DT Date/time when the order was closed.

paid T/F Whether the bill was paid.

In this case, you would define each type code early in the document, in a table like
this:

Type code Description
l Integer: a whole number in the range —32768 to +32767. Range may be

restricted in attribute description.

|+ A positive integer—a “count.”

0+ A natural number: an integer zero or greater.

5 Dollars and cents.

Fun: A floating—pointnumber with up to m digits to the left of the decimal
point and up to n digits to the right.

Sn A string: text containing up to 71 characters. Charactersmay come only
from the 7-bit ASCII characterset

ieXI Free—form text, with no limit on the number of characters. Implementa-
tion must support at least 4096 characters, preferably more.

ALL POSSIBLE VALUES 155

Type code

D

M—>M

Description

A date from January 1, 1900 to December 31, 2099. (Implementation
may support a wider date range.)

A time of day: includes hours and minutes, but not seconds.

Combination of D and T.

True or false.

Special type; list of possible values is provided in attribute description.

Many-to-one relation: a member of another class that can correspond to
manymembersof this class.

One-to—many relation: a set ofmembers in another class that correspond
to a single member ofthis class.

Many-to—manyrelation: a set ofmembers in another class that correspond
to a set ofmembersof this class.

Of course, there is no standard set of type codes; this list is only an example.
Notice that the true/false type is called T/F, not B or boolean. Everyone knows what

true and false are, but few aside from programmers and mathematicians know what
Boolean algebra is.

The second main strategy for indicating all the possible values of an attribute is
simply to list them all, one by one. This strategy works best on two types of attributes:
state attributes and attributes whose values must be described with words rather than
numbers. We've seen an example of state attributes in the node states previously
described. States are further described in section 11.1.

Here are some typical examples of attributes whose values need words. Such
attributes are often said to have enumerated types.

inkjet cyan, magenta, yellow, black

phosphor type green, amber, color

outlet type grounded, ungrounded

outlet voltage 110 volts AC, 220 volts AC

156 CHAPTER 9 CLASSES AND RELATIONS

The last example uses numbers, but we still consider it an enumerated type,
because it has such a small set of possible values.

Notice that outlet type is “grounded or ungrounded,” not “outlet is grounded: true
or false." The true/false pair of attribute values is best reserved for attributes whose
names you want to use in sentences to describe a condition, as in “If approved, initiate
transaction,” or “List all invoices that are not paid.” The adjectives true andflzlxeapply to
any proposition whatsoever, and therefore aren’t very descriptive. By choosing words or
phrases that apply only to this one attribute, you can often give the reader a clearer idea
of what you’re describing.

In light of this, we can revise the descriptionof the paid attribute. Instead of:

paid True/false: whether the bill was paid.

we can omit true/false by writing:

closing status Either of these values:

paid Customer paid.

walked out Customerwalked out without paying.

The latter version tells the reader much more about what this attribute is and why it’s an
important part of the problem domain. To keep true/false but provide more informa—
tion, write:

paid True if the customer paid, false if the customerwalked out without
paying.

When naming true/false attributes, choose the name so that in the sentences in
which that name will appear, you’ll need the word not as little as possible. Since the
attribute above would most likely appear in sentences like “Total all paid orders,” nam—
ing it paid is better than naming it walked out. The latter would result in sentences like
“Total all not-walked out orders.” Especially try to avoid names that require negating a
negative: “Total all not-unpaid orders.” There’s nothing ungrammatical about such sen-
tences, but they’re confusing.

If you find yourself listing an enormous number of possible values or, especially,
if the attributes set of possible values is capable of change during the lifecycle of the

ALL POSSIBLE VALUES 157

program, then you do not have an attribute, you have a whole diKerent class. For
example, flower type is not merely an attribute of flower. As there are hundreds of
thousands of flower types, all ofwhich must be entered into the program, flower type
is a class that bears a one—to—many relation with flower. (See section 9.5 for more
informationabout relations.)

A less common strategy for indicating all the possible values of an attribute is illus—
trated by the polygon attribute. It’s described as a “series of vertices.” A series or list or
collection of anything is a perfectly acceptable attribute in a domain description.When
the programmers create a representationof polygon, they will probably create a distinct
vertex class, or perhaps a distinct table in a relational database, for purposes of storage
and retrieval. But that does not mean that we should define a separate class for a concept
that is well known to the customer, well known to the programmers, and contains no
variations. specific to this problem.

9.4 Impossible values
Listing all the possible values of attributes is mandatory. It is helpful, but not manda—
tory, to indicate the impossible values, too. This kind of information helps a user—inter—

face designer inventways to prevent invalid data from being inadvertently entered into
the computer, and helps a programmerto add checks and redundancy to the program to
catch bugs, including all the kinds of tricks described in section 4.4.

Ifyou know, for example, that a table cannot possibly have two legs, then you can
indicate in the description of the table class that its legs attribute must be three or
more. By stating the range ofpossible values, you automatically exclude all the impos—
sible values.

Be aware, however, that this strategy can backfire. Reality is filled with oddball cases
that violate the rules we thought they would always obey. For example, in a program for
a company that insures cars, you might write:

4

appraised value Dollars and cents: value of them; amount that we pay if the car is
totaled. Range: $100 to $200,000.

Now the user-interface designer knows to design the system to display an error
message ifa user enters a number greater than 200,000 for appraised value.This prevents
data—entry mistakes, such as those caused by unwittingly holding down a number key
long enough to make it auto—repeat.

158 CHAPTER 9 CLASSES AND RELA TIONS

One day, however, a customerwalks in to insure a 1961 Volkswagen Beetle that he's
spent a decade customizing—a huge, computerized array of light bulbs on the outside
that display a spectacular light show, larger engine, expensive metallic trim, and numer-
ous otherwork. He estimates that it would cost $500,000 to replace; it’s a one—of—a—kind
car, probably destined for a museum.

If the system rejects the appraised value, it will reject what is probably the largestand most exciting order in the insurance agents career!
Fortunately, there’s an easy solution. Just say that violations of these kinds of rules

are unlikely, not impossible:

appraised value Dollars and cents: value of the car; amount that we pay if the car is
totaled. Range: above $0. Very rarely below $200 or above
$ 100,000.

Now, the user—interface designer can design the system to not reject the large values,but to display, perhaps, a confirmation screen if the user enters a large appraisedvalue:

A $500,000 is a unusually large appraised
name. are yuu sure this Is right?

.
:

Notice also that we narrowed the range somewhat, down to $200 to $100,000.We
can do this because we don’t have to worry about excluding the occasional strange case.Most frequently, the impossibilities that a system can exploit to detect invalid data
involve relations between attribute values, not just individual attribute values. For exam—
ple, software for the Department ofMotor Vehicles tracls powered vehicles of all kinds.
One of the parameters for a vehicle is wheels: some trucks have as many as eighteen,
while boats have none. Another is vehicle type: car, truck, motorcycle, and so on. A
motorcycle can have only two wheels, but a car can’t. Thereforewe know that if the user
enters both “car” and “2 wheels”, one of those must be in error.

A few attributes contain redundancy already designed in the problem domain. For
example, credit card numbers are calculated from a formula that allows only about one in
20,000 sixteen—digit numbers to be valid, making credit card fraud more difficult. ISBN
numbers (International Standard Book Numbers), used by libraries to identify book titles,
include a check digit. In cases like these, all you have to do to exclude the impossible values
is describe the validation formula or explain how the check digit is calculated.

IMPOSSIBLE VALUES 159

9.5 Relations
In Hawaii, there’s a business that offers boat rides among several of the islands. Any

given boat can travel from any island to any other on any given day. The business rotates

the boats through the islands accordingto weather conditions that day and which boats

are in working order. Abigail Stevenson, a customer, suspects that she dropped her

address book in one of the boats within the last few days. She would like us to search the

boat for her, but she doesn’t remember the ID number of the boat, of course, and she

doesn't remember exactly which day it was. All she remembers is the starting island and

destination island of the journey.
What kindof set does the computer need to keep track of in order to tell us which

boat Abigail Stevenson rode? Looking at the set of all customers wouldn’t suffice. A sin—

gle customer can go on many different rides on many different boats, so the customer

class couldn’t have a boat ridden attribute that would answer our question. Searching the

set of all islands or the set of all boats wouldn’t give us the information we need,
either.

Each boat can visit all the islands, so boat docked couldn’t be an attribute of island, nor
could island visrted be an attribute of boat.

What we need is a type of set called a relation: a set of tuples, each of which Con—

tains elements from other sets.* A ruple is an ordered set, such as:

(Abigail Stevenson, Moloka‘i, Lana‘i, 76R805)

“Ordered set” means only that the order of the elements in the set is significant. We

couldn’t, say, reverse their order and have the same tuple. Ordinary sets, such as classes,

have no particular order.
The tuple above has elements from three different classes:

Tuple elements) Chm

Abigail Stevenson customer

Moloka‘i, Lana‘i island

76R805 boat

‘ In some terminology, including that ofUML (Unified ModelingLanguage), a relation is called an assuri—

ation. The term reLmbn is standard in mathematics in the sense used here——as a set that maps elements

from one set to elements in one or more other sets. Since we mean the mathematical concept, and not a

concept pertaining to the peculiarities of object-oriented implementations, adhering to the terminologyof
mathematics is more appropriate.

160 CHAPTER 9 CLASSES AND RELA TIONS

This relation contains one tuple for each passenger—trip: each time a boat carried apassenger from one island to another, counting all the passengers on each trip separately.Described schematically, each tuple looks like this:
(customer; flora-island, to-island, boat)

The complete set would contain many, many tuples:
(Mark Spencer, Maui, Hawai‘i, 76R802)
(Jane Spencer, Maui, Hawaii, 76R802)
(Ikuro lshigure, Moloka‘i, Lana‘i, 76R805)
(Abigail Stevenson, Moloka‘i, Lana‘i, 76R805)
(Maynard Williams, O‘ahu, Moloka‘i, 76R802)

Now we can rephrase the query to find the boat as:
Find the boat element of the tuple in this relation having AbigailStevenson as customer, Moloka‘i as fiam—irlami and Lana‘i as ta-irbmi

Ifmore than one tuple satisfies those conditions, then there may be more than oneboat to search.
Happily, the vast majority of relations contain tuples with only two elements,known as pain. For the curious, table 9.3 shows the terminology for all different tuplesizes.* Nonstandardly, we’ll call each of the positionswithin a tuple a slot. Each tuple inthe boat example, therefore, has four slots: boat, custamer, fiam—irland,and to—irland

Table 9.3 What tuples and relationsof varioussizes are called
Number Of elements

Type of relation Name of tuplein each tuple

2 binary pair
3 ternary triple
4 quaternary quadruple
5W n-ary n—uple, tuple\On class diagrams, binary relations are indicated by lines between the classes repre-sented in each slot of the pairs, as shown in figure 9.4.X‘ More rigorous circles would demand that we call these orderedpair, ordered triple, and so on, but this ismore than enough terminologyfor our purposes.

RELATIONS
I61

customer invoice line item
precinct

parent

squad car P950" child

Figure 9.4 Some binary relations

The (precinct, squad tar) relation indicates, for each precinct, all of the squad cars
based there. Customers are connected with invoice line items by a chain of two rela-
tions, one mapping each customer to all of his invoices and another mapping each
invoices to all of the line items that it contains.The (parent, child) relation is an example
of a relation in which both elements of each pair are from the same class: person.

How to diagram ternary and higher—order relations will be shown on page 169.
If tuples seem a bit strange, you might note that if you understand classes, you

are already familiar with tuples. A class is nothing more than a set of tuples, having
one slot for each attribute. The only difference between a class and a relation is that a
class’s tuples contain members of attribute sets, whereas a relation’s tuples contain
members of classes.

9.6 Cardinality
There are two fundamental rules to state about the correspondencebetween customers
and invoices:

(1) For every customer, there correspond zero or more invoices.
(2) For every invoice, there corresponds exactly one customer.

Together, these two rules define the cardinalityof the relation—the range of pos—
sible numbers of tuples having the same element in any one slot, corresponding to a
single element found in the other slot.‘ To put it mother way, a relation’s cardinality
is the answer to the question, “Given specific elements for all but one slot, how many
different tuples can the relation contain having different elements in the remaining
slot?” The concept is more intuitive than its definition sounds; it’s easiest to learn
through examples.

‘ In some terminology, includingthat ofUML, cardinality is called multipliciq.

162 CHAPTER 9 CLASSES AND RELA TIONS

M’ . b f
Minimum numberinimum num er 0 Of Invoices percustomers per '"Vo‘ce: customer: zero

l
A short stroke drawn throughone

\ the line represents one.

customer u invoice O A circle represents zero.

The "crow's foot, " a line/I\ branchingout into three lines,Maximumnumber of Maxrmum number of represents many—nouppercustomers per invoice: invoices per customer: limit.one many

Figure 9.5 Criminality symbols

In a class diagram, a relation is symbolized by a line connecting two classes. Therelation’s cardinality is symbolized by the symbols at each end of the line, as shown in
figure 9.5.

The maximumnumber of tuples that contain elements from class A correspondingto a single element from class B is shown by the symbol closest to class A. Thus, in the
example, the Crow’s foot next to invoice indicates that a single customer may have anunlimited number of invoices. The short perpendicular line next to customer indicatesthat an invoice can correspondto no more than one customer.

The minimum number of tuples that contain elements from class A correspondingto a single element from class B is shown by the symbol second-nearestto A. Thus thecircle near invoice indicates that a customer need not have an invoice. The short perpen—dicular line second—nearest to customer indicates that for any invoice, there must corre-spond at least one customer.
There are numerous other conventions for indicating cardinality. Two are shown infigure 9.6. UML simply writes numbers, an asterisk sewing as shorthand for “any num—ber.” OMT (Object ModelingTechnique) had a notation that resulted in some prettyand very readable diagrams: a hollow ball meant “zero or one,” a solid ball meant “zeroor more,” an unadorned line meant “exactly one,” and other ranges were indicated

explicitlywith numbers.
What is important is not the graphical notation, but describing cardinalities pre—cisely. Regardless of your graphical notation, you should always describe cardinalitiesin the text, as in item list in section 9.2. A reader can easily skim over some symbols in

a graphic. A sentence prompts a reviewer to stop and judge whether the sentence is
true or false.

CARDINALITY I63

Zero or more. Exactly one Zero or more

customer invoice customer

0..10 Zero to ten
———0 Zero or one

1..* One or more

(a) Cardinality in UML (b) Cardinality in GMT

Figure 5.6 Other cardinality symbols

Yourdon“ recommends simply drawing a line to indicate a relation and not
attempting to show its cardinalityat all on the graphic, leaving that information for the
accompanying text. That is always a good option to considerwhen drawing a class dia—

gram because the purpose of a class diagram is only to provide an overview of the details
described in the text, not to make statements that appear nowhere in the text. If the dia-
gram becomes too cluttered to serve as an overview, it’s not sewing its purpose.

Relations and their cardinalities can be very tricky to get right. Yet they contain a

great deal of the structure of the problem domain. Understandwhy a relation is one—or—

more—to—zero—or—more rather than one-or-more—to—zero—or-one, and you often uncover
subtle but critical distinctions in the problem domain.

To aid in recognizing some of the different cardinalities, figure 9.7 shows a set of
concrete examples. For many people, it’s easier to remember the “ranch/horse” relation
than the “2ero-or—one-to—zero-to-many” relation. Included with each relation is the text
description of the cardinality. There is no substitute for the text description in docu—

mentation, especially if it explains why the cardinality is as it is.
These examples are meant to be easy to remember and understand because they

deal with commonplace classes. It’s easy to remember that “a horse can roam free.” They
are not necessarily the best ways to describe the above classes and relations in a real

requirements document. For example, making a class diagram for the square/piece rela—

tion is overkill. It’s better to just draw a chessboard with pieces on it, and explain the
relation in text. Classes and relations, remember, are types of sets, not graphics.

The professor/class relation brings up an important point about the difierence
between writing a requirements document and designing a database. Relational data—

bases do not allow many-to-many relations. The database designer must break them up

‘ [Yourdon 1989a], p. 240.

164 CHAPTER 9 CLASSES AND RELATIONS

customer ii V invoice city I
l

. postal code

For even/ customer, there are zero For every city, there are one or
or more invoices. Every invoice more postal codes. Every postal
belongs to exactly one customer. code belongs to a Single city; no

postal code straddles two Cities.

ranch :0 0V horse square EC Ci piece

At every ranch there reSIde zero or A square on a chessboard is either
more horses. A horse either resides empty or occupied by one piece. A
at a ranch or roams free. piece either occupies a square or

has been captured, in which case it
occupies no square.

professor ' N class veh. owner I

1 vehicleI U\ .

During any one semeger, a . Every vehicle owner owns one or
professor teaches zero or more more vehicles. Every vehicle IS

classes. Every class in that owned by a set 0f one or more
semester is taught by one or more vehicle owners (POSSIbly the statel.
professors.

Figure 9.7 Some cardinalities to remember

into two relations, many-to-one and one—to—many. So, our professor/class relation
would be invalid according to relational-database theory.

However, we are not describing a relational database. In a requirements document,
we are first of all describing the real world of professors and classes. There, a professor
can teach many classes in one semester, and the same class can be taught by more than
one professor in the same semester. That is the way it is. If a type of database software
needs to have the descriptionmodified, the programmerscan make the modification in
their design documents. In object—oriented databases, many—to—many relations are
allowed. This type of distinction is invisible to the problem domain. Users don’t know
or care about it, so it has no role to play in requirements. In requirements,we provide all
the information about the problem domain necessary to design software using available
tools and techniques. We don’t distort descriptionsof the real world in order to conform
to the quirks of one particulardatabase management system.

The “one semester” qualifier in the professor/class relation raises one final point
about cardinalities:

CARDINALITY 165

week’s

employee ' '
I work emponee ' ' u work

items
items

(a)
(b)

Figure 9.8 Two versionsof a relation in a timesheet system

To state the cardinality of a relation is to make assertions about the

problem domain overa certain range oftime.

This range of time is normally the time between events of interest to the system,

that is, any two consecutive events that require a
change to the data stored in the system.

There is no reason to limit the scope of the assertion to such a small range, however. In

the case of the professor/ class relation, this range
of time is one semester. Over a profes—

sor’s entire career, the professor would have to teach at least one class. The “zero” in the

cardinality is for sabbaticals and summer vacations. Whatever the range of time over

which the cardinality is to apply, it is important that the reader
knowwhat it is.

The assertion, in the case of a minimum and maximum of one tuple, is a guarantee

that a member of class A has exactly one correspondingmember of class
B. Thus, you

guarantee to the programmers and user-interface designer that for every invoice, there is

a corresponding customer. If, in fact, a single invoice can have multiple customers, con—

trary to all the diagrams so far, then the description is wrong and the programmers
and

user—interface designer will design the system on false premises. Such mistakes, unfortu-

nately, are commonplace and quite fmstrating to end users.

A typical example is in a system for employees to track their hours. The only

hours tracked are those for which an employee is paid: hours billable to clients, hours

in training classes, hours working on internal projects,
vacation hours, and so on. Fol-

lowing the relation in figure 9.8(a), a programmer would set up the database to disal—

low any completed weeks with zero work items, and a user-interface designer would

specify that the program refuse to accept a timesheet with zero items, displaying an

error message instead.
However, if an employee takes off for a two—week unpaid sabbatical to write

some difficult chapters in a book, the system won’t accept the employee’s

timesheets. It then becomes necessary for the employee and the accounting staff to

sort through spurious error messages every day as the system displays reminders that

the timesheets are late. Or, in a common type of workaround, they can adopt a
con—

vention for entering spurious items into timesheets to
make the system accept these

weeks, and then manually subtract them from the totals output on reports. The cor—

rect cardinality is that shown in figure 9.8(b). Identifying this in the requirements

would save a lot of people a lot of time.

166 CHAPTER 9 CLASSES AND RELATIONS

9.7 Relations as attributes
What do you call the relation between customers and invoices? One method is to name
it as in figure 9.9, with a verb or preposition that you would use in making a statement
about the relation, such as, “Every customer has zero or more invoices.”

base _ , arrests»customer H V Invoice officer H O\ suspect

Figure 9.9 Awkward method of naming relations

For many relations, this results in some surprisingly undescriptivenames . Has is as
bland and generalized as can be. Even when the name is descriptive, as in “ofl‘icer arrests
suspect,” where do you describe the arrests relation—in the description of officer, in the
description of suspect, or separately from both? It seems that all three are unsatisfactory.

Fortunately, in most cases there is a better way: treat the relation as an attribute of
both classes. The value of the attribute in class A is the subset ofclass B correspondingto
a given member of class A. We'll call such an attribute a rzfermce attribute because it
refers to members of another class.*

In figure 9.10, the relation between customers and invoices is shown as two
attributes, one attaching to customer and one attaching to invoice. The other, non—refer—

ence attributes are omitted from this diagram. The attribute attaching to customer is
invoices: the set of invoices that are payable by one customer. Attaching to invoice is an
attribute called customer: the customer responsible for paying a given invoice.

invoices9 (—customer . .customer : l C "“10!”

“suspectsa 6 arrestingAofficer N arrested officerV“ pamn

Figure 9.10 Relations as attributes

‘ Programmers will notice the similaritybetween reference attributes and pointer variables. However, refer-
ence attributes are just a way ofdmcribingsets oftuples. Whether they're implemented as pointer variables
or as table joins in a relational database is a matter ofprogram design.

RELA TIONS AS A TTRIBUTES 167

The officer/suspect relation has changed in figure 9.10. A person who was not a

suspect can become one; from the point of View of his attorney, he is a client; from the

point ofview of his prison, he is an inmate. Thus, a person is a suspect only in relation

to another class. So we call a person a “suspect arrested” in relation to the arresting

officer, a “client” in relation to his attorney, and so forth. The accompanyingtext must

indicate that if a person is an arrested suspect, he has an arresting oflicer. A graphic can

only show so much.*
Relations are sets of tuples, but talking about sets of tuples is often confusing. The

above method of treating relations as attributes takes a lot of the confusion out of

describing relations. By always talking only about the subsets of class B that correspond

to a single member of class A, we can talk about a simpler kind of set—just a set of

members of class 8.
Reference attributes also enable you to naturally describe relations without a sepa—

rate “Relations” section following all the classes. Such a section tends to be awkward

reading, containing many small snippets of text, each describingone set of tuples, and

difficult to understand without repeatedly cross—indexing back to the classes. The class

descriptions, too, are difficult to understand because, in many cases, a relation that a

class participates in is the most important aspect of the class. Defer describing the rela—

tion until forty pages later in the document, and the class can easily seem like an arbi—

trary collection of attributes.
Even when a relation is described as a pair of reference attributes, the reader must

still cross—index between two classes. However, in general, a reader can read a single class

description and understand it without having to jump ahead in the document. All the

information that is directly pertinent to the class is collected in one place. The fact that

other, related information——the relation as seen from the other class—is described else-

where is not a fault.
The description of the order class in section 9.2 is an example ofhow to document

relations as attributes. The item list from which the subtotal is calculated is described

right in the class description, as part of the class, which is how the customer and end

users think about it most naturally. The complete set of classes that order connects to is

shown in figure 9.11.
Notice that order item lacks a reference attribute for its relation with order. Similarly

for menu item’s relation with order item. No attribute is named because there is no occa-

sion in the requirements to speak of the order corresponding to a given order item. An

* Readers familiar with UML or OMT should take care 0. i .x.

not to confuse the roles from those notations with refer— “mu" arresting arrested pm“
ence attributes. In fact, they are exactly opposite The Officer suspect

person’s role in relation to the officer is “arrested suspect“; the officer’s role is “arrestingofficer.”

168 CHAPTER 9 CLASSES AND RELATIONS

order I i item list 9 0 order item Cmenu item 9 ii menu item
(subtotal) price ' name
(tax) menu price
up \
More!) \
CC transaction id enables sewer to
m override once on menu
out
paid

tables
cur/emSen/€741 Attributes In Iparentheses) are

denved attributes, capable of
current orders”? Kcurren!orders being Calculated from other

attributes,

server table
“tab/225$ ése/ver

name u number
employee ID

Figure 9.11 Some classes and relations in a restaurant application

order has an item list, and that’s all. What we never need to talk about, we don’t bother
to name.

The text accompanying the relation between order item and menu item should note
explicitly that a single order can contain multiple instances of a single menu item. The
cardinality symbols are ambiguous as to what range they apply to. The diagram above
does not indicate whether a single menu item can correspond to many order items
within a single order or only across the set of all orders—that is, whether a single menu
item could correspond to different order items only if the order items came from differ—

ent orders.
This ambiguity is a further argument in favor of Yourdon’s recommendation to

omit cardinality symbols from graphics. You should decide on a project—by—project basis
whether to include them; there is no general rule. This book shows cardinality symbols
in nearly all class diagrams, mainly for the purpose of teaching concepts of cardinality.
In real documentation, you should omit them far more often. Sometimes they illumi—

nate, sometimes they obfuscate—or, worse, convey an impression of more rigor than
they really deliver.

9.7. 1 Emmy relations
A hospital wants to collect data to evaluate the effectiveness of different treatments for
different conditions. Linking in the patients on whom treatments are applied yields a
ternary relation, shown in figure 9.12.

REL/1 TIONS AS A TTRIBUTES I69

patient condition

treatment

Figure 9.12 A ternary relation

treatment treatment
his to a K instances _patient ry eondnion

Kpatient condition)
treatment
instance

treatment t

elm/ca! history 4‘
:i:

treatment

Figure 9.13 Ternary relation shown as a class

In a ternary relation, our trick of avoiding talk of tuples by treating relations as ref—

erence attributeswon’t work, at least not as well. The problem is that there are two other
classes, not just one. Every patient corresponds to a set of (mnditian, treatment) pairs.
Each condition and treatment similarly correspondsto pairs of elements from the other
two classes. We could define a “set of pairs” attribute, with a name like condition/treat—
ment, but there’s another strategy: treat the relation as a class.

Creating a treatment instance class consisting ofnothing but reference attributes, as
in figure 9.13, we can refer to the relation from every class via meaningful attribute
names. A patient has a patient history, a treatment has a clinical history, and so forth.

The new diagram conveys much more information about the medical activity
about which data is to be collected, and it leads the reader very naturally to think in
terms of a set of triples connecting patient, condition, and treatment. The four sets
depictedare exactly the same as those in figure 9.12, but now, because the description is
entirely in terms ofbinary relations, they’remuch easier to understand.

I70 CHAPTER 9 CLASSES AND RELATIONS

treatment treatmenthisto z instancespatient W N

condition
Kpatient conditionztreatment

instance

date/time
result
cost

treatment l

clinical histwy ’T

4:

treatment

Figure 9.14 Attributesadded to the ternary relation

In a real application, the relation would be even more complicatedbecause the doc—
tor administering the treatment would have to be included, making treatment instance aquaternary relation. By following the strategy offigure 9.13, adding a doctor class wouldnot unduly complicate the diagram.

Converting ternary relations into classes is especially natural because, in nearly allreal—world cases, there is further information to describe about each triple in the rela-tion. This means that the ternary relation needs to be a class anyway. Figure 9.14 showssome of the non—reference attributes that belong to treatment instance.*
9.7.2 Directedattributes
In some cases, it’s inconvenient to treat a relation as a class just because it has one or twoattributes. For example, a business might buy the same product from several differentvendors. The price is not simply an attribute of the product because the same product

' UML and OMT would call treatment instance a link the: an association with accompanyingartributes.In requirements and specifications, however, there is no need to distinguish betweena link class and anyother class that participates in relations with other classes. It is important, however, to state in the accom—panying text what all the cardinalities are: that a single patient can be treated for many conditions, thatmany treatments can be applied to the same patient for the same condition, and that many patients canhave the same conditions and receive the same treatments. The fact that a class diagram does not showthese mrdinalities is true not only for link classes, but for any classes related asA—B—C: the cardinalityofdie implicit relation berweenA and C, if it is ofany importance,must always be described explicitly in textaccompanying the diagram.

RELA TIONS AS A TTRIBUTES I71

product vendor
prices —> «vendor producte <— prices

vendor H C\ vendor— A II product
product
price

(a) Reiating price to vendor and product via a class

products -‘r e vendors
vendor price product

(b) Diagramming price as a directed attribute

Figure 9.15 Two ways to diagram a directed attribute

can have a different price for each vendor. Nor is the price an attribute of the vendor
because each vendor can offer many products.Mathematically, prices are related to ven-
dors and products by a set of triples: (vendor,product, price).

Figure 9.15 shows two ways to describe the price. In diagram (a), the price has been

put into a class with three attributes: price, the vendor associated with the price and
product, and the product associated with that price and vendor. The vendor»product
class, then, is simply the set of triples described above.

Diagram (b) shows another way to link prices to vendors and products: by mak—

ing the price what we shall call, non-standardly, a directed attribute. A directed
attribute is an attribute of class B that has a different value for different elements of
class A. People naturally think of price as an attribute of a product, regardless of the
fact that it all boils down to the set of triples (vendor, product,price). To make the doc—

ument easier for them to understand, you can treat price as a special kind of attribute
of product. Draw price outside product, connected to the relation to Vendor, as shown.
Now, in the class description, you can simply treat both price and vendor as attributes,
as illustratedbelow.*

‘ A directed attribute is different from the qualifier 1 1*

found in UML’s and OMT’s notations.A qualifi—

er is an attribute attaching to class A that distin—
guishes elements in class B. For example, no two patrons of the same library may have the same card
number at that library, but a single patron may have the same card number at different libraries. In the
author’s experience, many people, even programmers, find qualifiers confusing because it’s more natural
to think of card number as an attribute ofpatron, not of library. They tend to draw qualifier attributes as
described aboveithat is, attaching to class B—nor as die UML standards stipulate.Also, note that price
could not be a qualifierattaching to vendor because products are not distinguishedby price: two products
sold by the same vendor could have the same price.

172 CHAPTER 9 CLASSES AND RELA TIONS

2.11 Product

6 vendors
price product

A product is anything that XYZ Corporation purchases from any vendor.

Attribute Description
vendors One-to—many:The set ofvendors that sell this product.
price Dollars and cents: The

There is one price for
price at which a specific vendor sells this product.each vendor in the vendors seti

Note that diagram 9.15(a) provides the general solution. In a real application,likely that a set ofmere triples would not be
uct, a product code,

it IS
enough. Vendors also have, for each prod—

a lot size or even a set of several lot sizes, a
a rush—order premium, and so on. The
bersome with more than two or three
y draw price, lot size, and so on. the same asrelation to vendor in the text, as above. Thehic merely aids the reader in seeing h

a minimum quantity,
delivery time, a rush—order delivery time,
directed attribute approach becomes cumattributes. On the other hand, you can simpl
any other attributes, and just describe their
text is king; the grap
the text fit together. ow the different statements in

9.8 Uniqueness nnn’firncz‘z'onal
dependence

UNIQUENESS AND FUNCTIONAL DEPENDENCE I73

(a) one class (b) two classes

part type Pa" type

instances ~L

twat

part

Figure 9.16 Two class diagrams for car parts

Diagram (a) is better, because the warehouse does not distinguish individual parts
of the same type. This brings up an important principle ofclass diagrams:

The only classes and relations worth describingare those in which
individualelementsare distinguishedby propositionsor questionsabout
the problemdomain.

The part type class would have a quantity attribute: the number ofparts of that type
currently in stock. That would suFfice for defining rules that tell when to reorder new
stock, and it would suffice for queries about how many of any type ofpart are in stock.

Diagram (b) would be appropriate only if the warehouse needed to find out the
answers to questions like, “Which customer bought the type A64G gasket with
ID 780-D1—09?” In that case, you would add an attribute named ID to pan.

Another important piece of information to include in each class’s description,
therefore, is what attribute or combination of attributes the development staff can
depend on to uniquely identify each member of the class.

The simplest way to indicate which attributes uniquely distinguish members of a
class is a sentence in the class description that speaks of “no two” members of the class,
like this:

No two employees can have the same employee ID.

If there are two or more rules guaranteeingmethods of uniquely identifying class
members, express them as a list, so you don’t have to repeat the same sentence structure
over and over:

174’ CHAPTER 9 CLASSES AND RELATIONS

No two patients can have the same:

— Social security number.

— Combination of insurer and insurance ID.

Diagrams used for relational database software often include a special segment in
the class box (there called an entity), to indicatewhich attributes can distinguish individ—
ual members of classes. Sometimes there are two such boxes: one for attributes con-
tained within in the class (“keys”), and one for attributes in related classes (“foreign
keys”). This technique is helpful for designing a relational database, but it’s more com-
plexity than a diagram needs for describing the problem domain when no particular
method of representation has been chosen.

Sometimes the problem domain does not provide any information that can be
relied upon with certainty to distinguish individual members of a class, but they must
be distinguished anyway. For example, orders in a restaurant“ have a time at which
they were created, a table number, a server, and so on, but none of these or any com—

bination can be guaranteed to be unique for any order. In these cases, you might want
to mention in the class description that the available attributes can’t uniquely identify
any one order. The user—interface designer can then either add an ID—number
attribute, or not, if there are other ways to distinguish orders on the screen, such as by
displaying them in separate windows.

9.8.1 Functional dependence
If there is a rule in the problem domain such that for any value of one attribute (or a set
of attributes), another attribute (or set of attributes) can only have a certain, correspond—
ing value, the second attribute is said to be fitnctiomzlly dependent on the first. For exam—
ple, every product might have both a number and a corresponding name. In this case,
product name would be functionallydependent on product number (and vice versa, if no
two products can have the same name).

A database designermust understand all the functional dependencies in the prob—

lem domain in order to take full advantage of the capabilities of relational database
software. One of the stages of creating the tables of a relational database is to normal—

ize them—convert a single table into multiple tables, redefine keys, and so on, such
that no operation on the database can put it into an invalid state.T An invalid state is
one in which the information stored in the database is not merely false, but internally

‘ See section 9.2.
1' See, amongmany other sources on database normalization, [Date 1977], chapter 9.

UNIQUENESSAND FUNCTIONAL DEPENDENCE 175

inconsistent. Internally inconsistent means only that it violates functional dependen-
cies#for example, a line item on an invoice having a product number and product
name that did not correspond.

The correspondence rule referred to in the definition offimctional dependence is a
rule in effect at a certain time, not necessarily permanently. That is, the rule may
change, though there is always same rule in effect. For example, a user may change the
name ofproduct #1547 from Southwestern Couch to Southwestern Sofa. What is impor—
tant for functional dependence is that the problem domain follow a rule that can be
stated independently of a list of all the product numbers and corresponding product
names. A different kind of correspondence is that between customer numbers and
invoice numbers. We wouldn’t say, if a certain customer somehowgot associated with an
invoice from some other customer, that the association was logically inconsistent; it
would just be wrong.

By explicitly stating uniqueness rules, you have already described the vast majority
of information about functional dependence that a database designer needs to know.
However, it’s Valuable to understand the concept explicitly in order to recognize and
document any unusual kinds of functional dependence that you might come across.

9.9 Queries
All the previous sections of this chapter have presented only techniques for describ—
ing the problem domain—specifically, sets. At last, we are ready to make a require—

ment statement.
A query is a request for information—a question. Some typical types ofquestions to

ask about sets are:

' What are all the elements in the set?
0 Howmany elements are in the set?

' Are there any elements in the set having values x, y, and z for attributes a, b, and c?

What are the values of attributes a and b for all elements having attribute c =)4?

What are all the elements in set B, correspondingvia relation R to the elements in

set A having attribute a = x?

As the above query types illustrate, a query always contains information: a specific
set of elements to receive information about, and the type of information to receive. To
describe a query, then, all that’s necessary is to describe two things: the information that
the user enters and the information that the user receives in response. In most cases, the
set to search is implied by the choice of query, so this can be left out of the list of infor—
mation entered by the user. Most queries do, however, need the user to supply some
attribute values.

176 CHAPTER 9 CLASSES AND RELATIONS

A variety of typical example queries is shown in the table below. The queriesdescribed are unrealistically drawn from a wide mix of applications so that the table canrealistically show what a list of queries looks like.

FM The system answers the following queries on demand:

Query User Result
Specifies

Q1
_

city .rmrt, List ofall flightsfsuch thatfstart = start andfdest =Find flights city (lest den; total number ofsuch flights.3:32: Attributes displayed for eachf, number, service_type,
cities airplane_type,

Sort byzfnumber.
02 text, up to 40 List of all prescriptions1) such that the leftmost [enOne characters, characters ofpcustomemame = textcustomer’s where [m is the - -

prescriptions number of Display all attributes ofp.
characters Sort by: p.refill_date, earliest date first.
actually entered

03 Month 7mm For each department 11: dname; list ofallDepartment (includingycar; expenditures e where :.department= d and adate isexpenditure for CWPIC, within man; sum ofall e‘amount.detail 05/98)
.For each expenditure 6: e.employee.name, edate.

e.amount.
Sort departments by dname, expenditures byadate.

L\The promised requirement statement appeared at the beginning of the list ofque—ries, numbered R—l. If the requirements document describes only a simple informa-tion problem, you can leave off the R number, and refer only to the Q numbers inother documentation. Another workable strategy is to assign a different requirementnumber (R number) to each query, in place of the Qnumber.The query descriptions follow two typographical conventions in addition toputting query and requirement numbers in a bold sans serif font. The first is that, asanywhere else in the document, names of classes and attributes are in a special font:here, a normal—weight sans serif font. The second is that attribute values and referencesto specific elements of classes—anything that can vary from one query or from element

QUERIES
I77

T—v
to element within the same query—are in italics in the serif font. This enables the
attribute value or class element to be referred to more than once without the use of
ungainly phrases like “the prescription that matched the first condition above” or “the
second telephone number that the user entered.” Everyone who has ever seen a
mathematics text for even a moment is already familiar with this convention, at least
subconsciously, so it needs no explanation.

The period between words indicates an attribute of an element of a class:

elemmt.attribute_name

So p.refill_date means the refi||_date of element [7, which was defined earlier as an
element of the prescription class. When an attribute is a set of elements from another
class, two (or more) periods in a row can denote the resulting chain of relations:

p.6ustomer.name

denotes the name attribute of the customer related to p.
Notice that in Q1, the user specifies two cities, not the names of two cities. This

way of describing the query lets the user—interface designer decide how the user specifies
the cities: by typing in their names, by selecting the cities from a list, and so forth.

The algebraic style of describing queries provides precision and flexibility for very
complex queries. Sometimes, however, you can describe queries more simply, depending
a little more on the reader’s understanding of the problem domain to interpret the
description, as shown below:

Query User Result
specifies

01 Start and The number, service_type, and airplane_typeof all
Find flights destination flights from the start city to the destination city,
between Cities. sorted by flightnumber.
specified
cities

02 text, up to 40 List of all attributes of all prescriptions with leftmost
Customer’s characters, [en characters matching customername,
prescriptions where [en 15 the Sort by: refii|_date,earliest date first.number of

characters
actually entered

178 CHAPTER 9 CLASSES AND RELA TIONS

Query User Result
specifies

03 Month man For each department: name, list of all expendituresDepartment (includingyear; with date within man, sum ofamounts of all expen—expenditure for example, ditures,detail 05/98)
For each expenditure: the name of the employeewho made the expenditure, the date of the expendi-ture, and the amount,
Sort departments by name, expenditures by date.

is important in a requirements document is only to describe what data the user entersand What data the system displays in response, and to do so clearly enough for any likelyreader of the document to understand.
Notice that the second version of Q3 contains an ambiguity: does the “sum ofamounts of all expenditures” refer to all expenditures within one department/month, allexpenditures displayed in the query, or all expenditures in the entire history of the sys—tem?A reader who understands the purpose of the query is likely to be able to tell whichinterpretation is correct. But in more esoteric domains, the customer will often makethe correct interpretationwhen reviewing the document, failing to notice that there areothers, while the programmers are likely to make a different interpretation, again notnoticing that there are others.

today’s sophisticated report generators, an option to consider is creating the definition ofthe formatofa report in the report generatorand only referring to it in the requiremenmdocument.There, it’s easy to modify, usually easy to understand, and, best ofall, imple—mented exactly as specified.
For reports that print onto preprinted forms, such as bills or invoices bearing thecustomer’s logo, attach a copy of the preprinted form to the requirementsdocument, orinclude a scanned image, and simply provide a table mapping the names offields on theform to names ofattributes in the query.

QUERIES
179

9.10 Naming classes, attributes,
and relations

The following are a few guidelines for naming classes, attributes, and relations—collec—

tively called sets.

0 Wherever possible, name sets whatever they’re called in the problem domain—that
is, whatever the customer calls them. A requirements document should invent as
little new terminologyas possible.

' Often, unfortunately, the customer uses the same name for several different sets
that you must distinguish. The word shipper, for example, might apply equivocally

to both the people who put packages onto trucks for delivery to customers, and the

companies that actually perform the delivery. Sometimes, in a case like this, you
can find synonyms already in use: shipping clerk and shipping company. Do not call

either set by the ambiguous word; avoid it entirely. In other cases, you must invent

genuinely new terms. See also the section on Upe in chapter 153‘

' If at all possible, when inventing terminology, do not invent new acronyms. (See

Acronyms in chapter 15.) Acronyms already in common use by the customer are
fine, however. The development staff needs to learn the language of the customer,
including its acronyms.

' Make a set’s name singular or plural according to what best applies to an individ—

ual element of the set. A class whose elements are trucks, then, should be named

truck, not trucks. If a single truck can have more than one license plate, then the
attribute linking to the license plate class should be license plates, because each

instance of the attribute is a set of one or more license plates. The license plate

class, on the other hand, has a singular name, because each of its elements is just
a single license plate.

' Don’t name a binary relation if you don’t have to, or at least don’t define it sepa—
rately from the classes that it connects. As described in section 9.7, define refer—

ence attributes in the classes at both ends of the relation, whose values are subsets

of the other class—for example, an invoices attribute of customer, whose value is

‘ An excellent example of how to meet the need to replace the customer’s terminology is in [Zave 1998].

The word call does not single out telephone»equipmentactivity with enough precision to write require-
ments for software to control that equipment. Zave shows how she solved this problem and many Others.

An especially good example ofcoining a new term is vaitepath, her name for die series of connections that
carries a signal through the telephone network from one place to one or more others. Many people's lives

are made much easier by such an intuitive term; but finding such a term is often quite difficult.

180 CHAPTER 9 CLASSES AND RELA TIONS

the set of a given customer's invoices, rather than a has relation, which is awk-ward to talk about.
' Consider converting ternary relations into named classes, as described insection 9.7.

' lfyou must name a binary relation, consider making its name a noun, especially ifthe relation is symmetrical (that is, neither class is “first” or (‘second”). A binaryrelation is a set of pairs, so its name should suggest that, for example, sister—cities,not is sister City of. Another technique is to create a class consistingof nothing buttwo relation attributes; for example, twin-pair or twins, whose attributes are the twomembers of the person class who are twins.
' Naminga relation a verb or prepositionalphrase, like arrests or lives at, is most suit-able when you want to speak of the relation as a predicate, that is, as an expressionthat is either true or false. For example, in a query you might want to say “for spec—ified officer, list all persons such that arrests(officer, person).” Note, however, that insuch a case, as in many relations namedwith a verb, the name of the arrests relationis better converted to the past participle: arrested(officer, person). Also in this case,the query is more simply described if the relation is named following the classattribute strategy recommended above: “for specified officer, list allsuspects_arrested.”

example, if the tool does not allow spaces in names, then substitute hyphens orunderscores for spaces in your own names. This is convenient for other reasons, aswell, such as describing queries as in section 9.9. Don’t, however, pollute yourdescription of the problem domain with any programming concepts—a strongtemptation if one is thinking in terms of a programming tool—and don’t followthe tool’s naming conventions if they’re too restrictive, such as a maximum of eightcharacters per name.
' Never give a name to any set that you don’t refer to elsewhere in the document.° Whenever you refer either to a set or to data to be stored in the computer, put thename of a set in a special, sans serif font, to distinguish it from different usages ofthe same word. For example, road is the name of the set of all roads. Actualinstances of roads, you should just call “roads.”

NAMING CLASSES. ATTRIBUTES, AND RELATIONS 181

CHAPTER

Sequences and events
Now that you know how to describe the inhabitants of the problem domain, the next
question is: What events happen to them.> In this chapter, we’ll see how to describe the
events themselves, how to describe all the possible sequences of those events, and how to
describe the machine’s response to those events. The events and their possible sequences
are information that belongs in a requirements document; the responses to events are
part of the program specification. The techniques for describingsequences ofevents also
apply to any other kind of sequence, including the sequence ofdata in a file, as we’ll see
in the first example.

183

10.1 Structure
Here is a simple log file for a mail server—a program that exchanges electronic mail with
other mail sewers. It contains data recording each message sent and received by the
server. Your task is to document the format of the file so that programmers can write
programs to read it and answer queries about the mail server’s activity.

ALIASES
forbin=apteryx@splenetix.com,gibbons@splenetix.com,zimmer@marquette.edu
support=f.hall®splenetix.com
MESSAGES
receive,887923440,chalmers@cogswel|.com,forbin
send,887923448,gibbons@splenetix.com,fairbourne@dat.com
send,887923480,clark@splenetix.com,info@camshaft.org
receive,887923489,morisawa@mai|1.torque.com,support
receive,887923501 ,serviees®camshaft.org,clark@splenetix.com

A text file is a sequence of characters.To describe its format, you collect charac—
ters together into groups, enabling you to see the file as a sequence of groups. Those
groups, in turn, you collect together into larger groups, and so on, forming a hierar—

chical structure.
The characters in the log file are organized into lines. The lines, in turn, compose

two main sections in the file: an ALiASES section defining aliases that stand for one or
more email addresses, followed by a MESSAGES section listing each message’s time sent,
‘from’ address, and ‘to’ address. This structure is depicted in a [ac/mm diagram, shown in
figure 10.1.

AJackson diagram breaks dOWn a structure in four ways:

' By sequence. one element always follows another, illustrated by the left—to-right

sequence of four boxes in the second row.

' By xelertion: exactly one of a set of elements occurs, illustrated by the send and
receive boxes in the third row. The circles in the upper right corners indicate that
send and receive are alternatives rather than elements in a sequence.

' By iteration: a single element occurs zero or more times, illustratedby the alias and
message boxes.The asterisks in the upper right corners indicate that alias and mes-
sage can occur any number of times.

' By hierarchy one element is composed of one or more subelements, illustrated by
the lines branchingout from log file and message.

184 CHAPTER 10 SEQUENCES AND EVENTS

log file

* *ALIASES alias MESSAGES message

O 0
Legend send rece rve

A .s composed of 5
followed by zero or
more I:

Each occurrenceof C
is elther a Do! an E.

Figure 10.1 A Jackson diagram

What the Jackson diagram describes is a set: the set of all possible sequences inwhich lines in the log file can appear, that is, all possible log files in this format. ReadersWith programming experience will notice that the four types of breakdown correspondto the elements of structured programming: a sequence of instructions containing nobranches, an if-then or switch statement, a while loop, and block structure.*When describing a file format, you must describe the set of allpossible valid files,whether you’re describing a file that the program reads or a file that the program gener-ates. The same applies to any sequence of relevance to the program: a sequence of eventsin the problem domain, a sequence of keystrokes, a sequence of mouse clicks, asequence of hardware interrupts, a sequence of statements in a programming language,and so forth. To write the program, the programmersmust know the set of all possiblevalid sequences.
Even though such sets are almost always infinite, describing them is often verystraightforward when you break the format down in the four ways listed above.What makes the set infinite is the presence ofiterated elements which occur zero ormore times.* Jackson diagrams, also called mucture diagrams, were introduced in Uackson 1975], a book on how [0translate such sets ofall possible sequences into programcode. Though manyofthe examples involve decksof punch cards, the principles are timeless, and the book is still a classic work on program design.

STRUCTURE
I85

bar code

quiet zone start data checksum stop quiet zone

* one to three

No identifier type may appear
identifier

more than once in the same data
segment; a product code
must appear.

0 O 0
product code lot number expiration date

* * -x-

01 digit 23 digit 17 diglt

14 digits 19 digits 6 digits

Figure 10.2 Jackson diagram of simple bar-code structure, with annotations

Jackson diagrams are easily extended. For example, a popular extension is to write a
plus sign in the upper right corner of a box to mean “one or more.” However, the great
virtue of Jackson diagrams is their simplicity. No structure notation is particularly intui-
tive; they all require explanation, such as the legend in figure 10.1. The more extensions
you add to the notation, the more explanation it requires and the harder it is to under-
stand. Fortunately, there is a very easy way to add information to the diagramwithout
complicating the notation. Just add annotations, as in figure 10.2. Annotations also
allow you to describe unusual sequences not describable in terms of sequence, selection,
and iteration, such as palindromes

In most cases, when you describe a sequence, in addition to presenting the
sequence schematically, as in a Jackson diagram, you must also include a textual descrip—
tion of each element in the sequence and an example of the sequence. Most people find
it difficult to grasp the set of all possible sequences from the abstract description alone.
By looking at the example, people can usually infer the pattern. The schematic view of
the sequence confirm or perhaps corrects their inference. The example also grounds the

186 CHAPTER 10 SEQUENCES AND EVENTS

schematic view in something concrete. Abstract ideas for whichwe know of no concrete
example are generally poorly understood abstract ideas.

We’ve provided an example of the mail server’s log file at the beginning of section
10.1. Here’s the descriptionof each type of line in the log file:

alias States that one email address, the alias, stands for a list ofone or more other
email addresses. The mail server redirects email addressed to the alias to each
of the addresses in the list. The list may contain aliases, though self—reference,
whether direct or indirect, is not allowed.

Format:

fl]iflf=fld’d’rt15{,addfefl...]

If the domain name of the alias is omitted, it defaults to the domain name of
the mail server. If the domain name of any of the addresses in the list is
omitted, it defaults to the alias’s domain name.

send A record of the mail server successfully sending a message.
Format:

send , timefiam—addrm, tin-address

receive A record of the mail servers successfully receiving a message.

Format:

receive, timt,fiam-addrm, to—addrm

The timtin both the send and receive lines is the number ofseconds since midnight (start
ofday), January 1, 1970.

We could have made Jackson diagrams for each line’s structure, but the above nota—
tion is simpler and easier to understand, given the non—hierarchical structure of each
line. More sequence notations are described in section 10.4.

10.1.] Boundary clashes
A word processor is a spectacularly difficult kind ofprogram to specify.The main reason
for this is that the various groupings ofcharacters that you need to describe do not form
a hierarchical structure. The boundariesof the various elements clash.

The first step in dealing with a boundary clash is to recognize that you have one,
and not imagine a hierarchy like that shown in figure 10.3. A single paragraph can

STRUCTURE I87

documem

page

*
ieft indem Vagray right indent

/Ime ;

word

-)(-

character

Figure 10.3 Incorrect Jackson diagram for text in a word processor

documem document paragraph

-)(- * *
page paragraph word

f/I/ f\\\

* * *
characier line characxer

*
lefi Indent character right indent

Figure 10.4 Multiple, overlapping hierarchies in a word processor

188 CHAPTER 10 SEQUENCES AND EVENTS

straddle two (or more) pages; therefore, a paragraph is not a subelementof a page. Sim-
ilarly, a word can straddle two lines. It’s particularly difficult to tell where to put left
indent and right Indent. The same problem occurs frequently in the output ofa report. A
page has a header and a footer, and a group of records contains records and a subtotal,
but group of records can straddle any number ofpages.

The solution is to draw multiple diagrams, one for each hierarchy. The bottommost
element in each hierarchy should be the same, as in figure 10.4. Otherwise, you don’t
have a boundaryclash. You simply have hierarchies composedof different elements. You
can then define a mapping between the hierarchies, requiring further description in text
accompanying the diagram. Mappings are discussed further in section 11.5.

[0.2 Events
Part of the problem-domaindescription in any dynamic information problem is a list of
all the events within the problem domain that change the answers to queries. Just as the
description of a file format lists all possible sequences of the elements of the file, along
with a description of each element, a descriptionof events lists all possible sequences of
events, along with a descriptionof each event.

Figure 105 shows all the events in the lifecycle of a corporate bond from the per—
spective of a pension fund that keeps a portfolio ofbonds (that is, a collection ofbonds).
The reason for the “from the perspective of” clause is that there are events in the history
of a bond that are not shown because they are of no interest to an information system
that answers queries about the portfolio. For example, the first event in the history of a
corporate bond is that a corporation issues it~that is, makes it available for sale. Many
other parties might buy and sell the bond before it reaches the portfolio of interest to the
information system. The first event shown in the diagram, however, is purchase: the pur—
chase of the bond by the company that owns the portfolio. This is because the informa—
tion system is not called upon to answer any queries about the history of the bond
before it was purchased.

For each event at the leaves of the tree—that is, the elements of the diagram that
aren’t broken down into subelements—thedevelopment staffneeds to know:

' All sets affected by the event: which classes, class members, attributes, and relations
are affected by the event

' All parameters of the event: attributes that can vary from one instance of the event
to the next

' How the system can find out that the event has happened and what its parameters
are: the source or sources of the information

EVENTS I89

bond lifecycle%-)(-

purchase normal event termination

_
O

_

O 0Interest pnce change of
payment change Moody rating

° ° o b n
o

sale call default u at
payment

Figure 10.5 Lifecyele of a corporate bond

The first few events in the lifecycle of a corporate bond are shown below. ACS is a
fictional accounting system that receives updates from a commercial financial-reporting
service and is available to supply data to the portfolio system at night. ACS would be
described earlier in the document. Earlier parts of the document would also explain the
various entities and attributes involved in the events: bonds, par values, issuers, Moody
ratings, and so forth.

The various record types referred to below need not be described in detail in the
portfolio system’s requirements document, as long as programmers can find them in
ACS documentation. However, the requirements document would need to supply a
table mapping event parameters to fields in the record types if the mapping is anything
less than obvious.

purchase The fund purchases a bond. The bond enters the portfolio, and
cash equal to the price of the bond leaves the cash account. Only a
managerever makes the decision.
Parameters: issuer, CUSIP code, bond type, par value,payment
schedule, tallfearurer,price, Mandy rating.
Source: The managermaking the purchaseknows all of the
parametersat the time of the purchase. An AC5 PRCH record has
the same parameters available the night following the purchase.

190 CHAPTER 10 SEQUENCES AND EVENTS

interest A scheduledpayment from the issuer of the bond to the portfolio’s
payment cash account.

Parameters: paymentnumberThe amount of the payment is always
equal to the amount in the bonds payment schedule corresponding
to paymentnumber.
Source: The transmissionofa PYMT record from AC5, with ptype
= INT, indicates that an interest payment has happened.

price Change A change in the current market price of the bond. Happens con-
tinuously, 24 hours a day.
Parameters: price.
Source: Managers have access to current price data during the day;
AC5 reports the bonds price at 5:00 p.m. on the last trading day,
in a BPRI record.

change of The Moody corporation changes the rating of the bond. A very
Moody rating rare event: roughly98% ofcorporate bonds finish their entire life—

cycleswithout a change in Moody rating.
Parameters: Maud] rating.
Source: anACS MODY record indicates a change. Managers
generally know about a changeduring the day, too, since changes
in Moody rating are usually big news.

For purposes of illustration, the sources in this example are deliberately a little bit
irregular. In most applications, all the data comes from one source, typically, a data—

entry staH. In that case, you can state that once, early in the document, and omit the
“Source” paragraph in each event’s description.Or, if there are different sources for dif—

ferent data, you might indicate which events are detectableby which information source
in a matrix rather than in “Source” paragraphs.

Naming the first event in the history of an object is sometimesdifficult. In object—
oriented programming, the first event in the history of a piece of data is often called
“create.” However, that is often a poor name for the first event of the object that the data
represents because, often, the object already existed before it entered the problem
domain. For example, a book already exists before it becomes the property ofa library. If
you say that the book is created, then you’re talking about stored data, not about books,
but in a requirements document, you talk about the problem domain, not the software.

EVENTS I91

A better name for the book’s first event, as seen by the library, is acquire?‘ A few
other good words to keep in mind when naming the first event: discover, purchase, start.

Of course, create is the appropriateword when speaking of something that is really
created, like a paragraph in a document or a bubble in a liquid. However, you can often
find synonyms for create that applymore specifically to the problem domain: a corpora-
tion is incorporated; the first event in a person’s life is birth (or conception, depending on
what kinds of queries the information system answers).

The first event often has many parameters. Whereas most later events modify a sin—

gle attribute of a member of a class, the first event usually must supply values for all the
attributes at once.

In the bond example, there was an implicit parameter for each event except the
first: which bond was affected. This is fine documentation, because it’s stated that every
event in the diagram pertains to the same bond. However, if a set of events can pertain
to more than one object, then each event must include as a parameter which object or
objects are affected, and, if necessary, how the source identifies the objects—for exam-
ple, by employee ID.

10.3 Event responses
The specification for software that describes a dynamic information problem includes,
for each event in the problem domain, a corresponding event response that updates the
model maintained by the software. Event responses also make up the majorityofcontrol
problems whose solution involves the maintenance of a model, or any other type of
problem solved by that technique.

Every event—response description actually lists two events:

' An event at the interface between the software and the problem domain—that is,
shared phenomena—that is initiated by a person, software, or hardware in direct
contactwith the system.

' The resulting change to the model maintained by the system and any other shared
events to be caused by the system, such as turning on indicator lights or performing
notifications.

A good name for event responses initiated by a person is operating procedures. In an
operating procedure, the specification dictates how the users should operate the system:

* [Cameron 1986] takes a few Jackson diagrams of acriviry at a library from initial description to program
design, discussing some ofthe theoreticalbasis for giving such importance to describingcomplete sequenc—
es ofevents.

192 CHAPTER 10 SEQUENCES AND EVENTS

when such—and—such event happens in the problem domain, a user is responsible forentering such—and—such data. If there are many classes of user—for example, administra-
tors, managers, and data—entry staff—the procedure should indicate which user isresponsiblefor carrying it out.

Operating procedures indicate not only the data that users enter into the system,but also the specific windows and fields the users enter the data into and any button-
presses they need to make in order to reach the right windows and fields. Without thisinformation, testers wouldn’t know how to simulate operating the system, and the tech-nical writer wouldn’t knowwhat information to include in the user’s manual.If the system rejects data that fails to meet validation rules, the event responseshould indicate the applicable validation rules and how the system responds to each typeof invalid data—~withan error message, with a notification to an administrator, updateof a log file, and so on. Every error message and every line of text that appears in a logfile must be written out, word-for—word, in a specification.

In most cases, the same validation rules apply across many different eventresponses. To keep the document from becoming unnecessarily repetitious, the valida—tion rules and their accompanying error messages should be collected together into asingle table. The statement that the system is to display a certain error message if a vali-dation rule is violated can be placed in the description of the OK buttons on the appro—priate screens, rather than repeated over and over again in each event response. Havingthus fully documented each error—response, each operating procedure can be made verysimple by assuming that all data entered is valid and the user does no backtracking.There is no need, therefore, to include such statements in event responses as, “If theuser clicks Cancel, the procedure is aborted.” It’s enough that the descriptionof the win—dow says what the OK and Cancel buttons do.
Each operating procedure should be described as a series of action-responsepairs:the user performs an action, and the system performs an action in response; the userperforms the next action, and so on. The actions are button—clicks, selection of menuitems, typing data into a field, and so forth. The responses are the effects on the datamodel or unusual actions in the user interface, such as a graph appearing. The user’smanual should mention such responses as the opening ofnewwindows, but in the spec—ification, the more mundane actions can be left to descriptions of buttons and menuitems and left out of event responses. Even for user actions, in most cases it’s sufficient

merely to state which windowmust be active for the action to take place; saying “User
opens such—and—such window" is unnecessary.

The specification for the system that tracks corporate bonds would read like this:

EVENT RESPONSES I93

Portfolio managers are responsible for performing the following procedures in
response to bond events:

Event Procedure

purchase In New Bondwindow, managerenters issuer, CUSIP code, bond
type, parvalue, payment schedule, call features, price, and Moody
rating.

System creates a new bond, with the specified attributes.

price change In Bondwindow,managerselects bond by CUSIP codeand enters
new price.

change of In Bondwindow,managerselects bond byCUSIP code and enters
Moody rating new Moody rating,

A manager need only enter a price changeor change ofMoody rating to ensure that
system data is up-to—date for reports printed before that night. If a manageromits
entering this data, the system will receive it from ACS that night. A managermust
enter all purchases, however; the system uses data from ACS only as a check on the
manually entered data (see section 4.1).

The agent that performs the responses is “the system.” This makes for much clearer
reading than passive sentences like “A new bond is created.” By what? By whom? Simi-
larly, the agent of each action is stated explicitly in each sentence. In the above examples,
the manager is the subject of each sentence. More often, the most descriptive word is

simply user.

Notice that while create was usually a poor name for an event in the problem
domain, the event responses speak of creating a bond. Here, create is appropriate,
because somethingnew really is being created: a data element inside the system.

Notice also that each description is very terse and written in the present tense.
Writing system responses in the future tense mostly creates wordiness and confusion.
Also in the interest of terseness, system responses to events that change a single attribute
are omitted. It’s enough to say that the user enters the data. If the system makes changes
to other data—say, to a list of delinquent customers—thismust be stated explicitly in
the event response.

194 CHAPTER 10 SEQUENCES AND EVENTS

On most projects, it’s helpful to write an interim document that describes the oper-ating procedures without mentioning the windows and fields. The user—interface
designer can then design the user interface around this document. The analyst can writethe interim documentWithout delving into the details of the user interface. One tech—
nique is to create a table of event responses with three columns: the two shown in the
example above, plus a column headed “Window.” The analyst leaves the third columnblank; the user-interface designer fills it in.

10.3.] Every event
The specification must include an event response for every event in the problemdomain. It answers the question, “For each event, what is the system going to do aboutit?” If the requirements are clearly and simply written, and rigorously describe the set ofall possible events, you can check very systematically that the specification addresses
every event.

One could say that event responses are use cases. However, the term we care ismuch broader than event response. A use case is any single path through system Function-
ality, involving a dialogue between the system and some outside entity that interactswith it—that is, action-response pairs. An event response is much more limited. Youdefine an event response for every event in the problem domain. Thus, event responsesare part of a process of rigorously mapping the solution—systembehavior—to a well—defined problem. Use cases are much more free form. Also, event responses are very nar—rowly delimited. Each operating procedure, for example, tells only what a user shoulddo in response to one event distinguished in the requirements document. A use caseoften tells a longer story, perhaps showing how different users interact with the samepiece of data, or tracingone user’s activity across several events and several pieces ofdata.In addition to covering all the problem—domain events, the specification oftenneeds to define some more events and event responses: those pertaining to administer-ing the system. One of the most elementary is dealing with corrections to data—entry
errors. Some poorly designed systems give users only one chance to enter data correctly.If it’s wrong, changing it is difficult or impossible.

In addition to correction events, the specification must also describe procedures forinstalling the software and for backing up and restoring data, as well as any special,administrative users called upon to perform these tasks. Describingadministrative pro—cedures is essentially no different from describing other operating procedures. The onlydifference is that there is no event from the problem domain to map to, so you simplyname the procedure: “back up,” “restore,” “revert,” and so on.

10.3.2 Responding to hardware and sofiware event:
When interfacing with hardware or software, the specification usually cannot dictateprocedures to be followed by that hardware or software; their actions are part of the

EVENTRESPONSES 195

problem domain, a given. In this case, the event responses are not operating procedures;

they’re simply events and responses. For the corporate—bond portfolio, each of these

events is the receipt of a record from the ACS system during the nightly update. The

part of the specification that addresses how the system responds to these records would

read like this:

The system responds to records received from ACS as follows:
#l

ACS Record Response //Ifno bond is in the system with CUSIP code = PRCHCSIP,

append the following message to the ACS log file:

(0004) ACS reports purchase of a bond with CUSIP code

trip, but no such bond was entered during the day.

Rationale: Managers need all bond purchases to be reflected in

reports generatedat 5:00 p.m. each night,
before theACS update.

Therefore,managers are required to enter purchases manually,

l‘ making the data received from ACS redundant. The system can

still make use of the redundant data, however, by performing
the

l check described here.

i /PYMT 1 Mark that the bondwith CUSIP code = PYMTCSIP has received

1

interest payment number PYMTJNUM.

l For bond with CUSlP code = BPRLCSIP,change price to
BPRI

l‘ BPRIPRIC./,/MODY l For bond with CUSIP Code = MODY.CSIP,change Moody rating
l to MODY.NRAT. See page 30 for table of NRAT codes and

l‘ correspondingMoody ratings.

J
Realistically, the system would perform more checking on PRCH records than

indicated here. However, checking all the other fields in the PRCH record wouldn’t

belong in the event response for PRCH because the system should generate an error

message only if the PRCH record contains a discrepancyand no later records fromACS

resolve the discrepancy. Therefore, the rules for generating such an error message

196 CHAPTER 10 SEQUENCES AND EVENTS

belong in a description of how the system responds to the nightly update as a whole,

not to any individual record,
For unusual responses, the specification explicitly indicates a rationale. If rationales

become too large or there are too many, then collect them into a separate section of the
document or in a different document altogether.

Here, since every response is performed entirely by the system, the system need not
be mentioned explicitly in each sentence. The imperative mood enables you to describe

the responses both clearly and tersely.
You’ll notice a certain amount of repetition in the responses. For example, the bond

affected by each record is indicated by a field in the record named CSIP. This suggests a
way to improve the table. If the table describes responses to many, many records and this
pattern continues to hold, then state, immediately before the table, that the bond
affected by the record always has a CUSIP code equal to the record’s CSIP field. Or make
two tables, one for records that follow the pattern and one for all other records.

Rather than complicate the table, the descriptionof the response to a MODY record
refers the reader to another table where they can find out how to translate from the
codes in the MODY record to the Moody ratings that they stand for.

There is one type of problem where the specification can dictate procedures for
other software to follow. That is a software library or operating system—any software

that provides services to software to be written in the future. In this case, the event

responses form an application program inmfizce (API). Such a specification should gener-
ally bewritten by a programmerfamiliar withAPIs, and it should look like an API: a list
of function calls, parameters, return values, throw objects, and so on. In fact, there
should be little difference between the specification and the programmer’s reference

manual releasedwith the final product.

10.4 More sequence notations
In the 19605 and 19705, people inventedmany different notations for different types of
sequences, centering around the basic concepts of sequence, selection, iteration, and
hierarchy. This section describes a few more of them. All are well worth considering
when writing any requirements document or specification that must describe a set of all
possible sequences of one kind.

10.4.1 Backus—Nam Form
Backus-Naur Form (BNF) is mainly used for describing the syntax of computer lan—

guages, though there’s nothing fundamentally different about describing the set of all
possible sequences of characters in a program source file and describing a set of all possi-

MORE SEQUENCE NO TA TIONS I97

7rble sequences of events. BNF introduces one more concept to the basic quartet ofsequence, selection, iteration and hierarchy: recursion. An element in a sequence can be
an instance of the very same sequence. The need for sequences that can containinstances of themselves is most commonly needed in programming languages that allownested block structure, as in this fragment from Pascal:

y:=y+1
unti|y=10;
x:=x+ 1;

unti|x=10
As the example illustrates, a repeat statement can contain another repeat state-ment. A tiny excerpt from the full grammar of Pascal shows how BNF describes theabove syntax:

<statement> ::= <repeat—statement> I <other—statement>
<repeat-statement> ::= ‘repeat’ <stmt—sequence> ‘until’ <boolean-expression>
<stmt-sequence> ::= <statement> I <statement> ‘;’ <stmt—sequence>
A <repeat—statement> can contain a <stmt—sequence>, which can contain a<statement>, which in turn can contain another <repeat—statement>. Thus <repeat-statement> is defined recursively, allowing an infinite number of levels of nesting.The words in quotation marks are terminalsymbols: elements that appear in the lan—

guage exactly as they appear in BNF, without being decomposed hierarchically intoother elements. They correspond to the leaf elements of the tree structure shown in aJackson diagram. Hierarchy is shown simply by referring to an element in one definitionand defining it in another.
An element that has a definition is called a non-terminalsymbol. By convention, allnon—terminal symbols are enclosed in angle brackets. Each definition is sometimescalled a pradurtion.
BNF indicates selection by the vertical bar: a <statement> can be either a <repeat—statement> or an <other-statement>.An element can also be optional, shown by enclos—

ing it in square brackets. An if statement, for example, may include an else clause butdoesn’t have to:

<if—statement> : ‘if’ <boolean-expression>
‘then’ <statement> [‘else' <statement>]

198 CHAPTER 10 sEQUENCES AND EVENTS

Notice that BNF has no symbol for iteration. To indicate iteration in BNF, you
must combine selection with recursion, as shown in <stmt-sequence>. Put a single ele-
ment of the iteration, that is, the shortest possible iteration, as the first option; make the
next option the single element followed by the iteration as a whole. Putting another ele—

ment in between, like the semicolon in the definition of <stmt-sequence>, indicates a
separator that must appear between any two consecutive elements of the iteration.

This method of defining an iteration denotes a one—or-more iteration, not a zero—
or—more iteration such as is found in Jackson diagrams. A zero—or-more iteration in BNF
is an optional one-or—more iteration, that is, a one-or—more iteration enclosed in square
brackets and included in the definition of another non—terminalsymbol.

BNF is somewhat difficult to use. It describes sequences textually rather than visu—
ally, requiring most readers to perform a kind ofmental translation in order to under—
stand it. BNF’s principal virtues are its great compactness, easy handling of recursion,
and facility for describing sequences of text, making it especially suitable for the descrip-
tion of command languages and programming languages which might contain hun-
dreds of different syntactic elements. (Jackson diagrams can also describe recursion,
following the same technique: a box lower in the tree has the same name as a box higher
in the tree.) Though BNF’s assortment of constructs is very sparse, because it’s textual,
it’s very easy to extend.

10.4.2 Syntax diagrams
Another type ofsequence notation most commonly used for describinggrammars is tyn-
tax diagrams. Syntax diagrams were brought to wide popularity in the definition of the
grammar of Pascal, in [Jensen 1985]. However, syntax diagrams are probably the most
readable of all the sequence notations, and they apply far beyonddescriptionsofsyntax.
Their arrows make them especially intuitive for describing sequences ofevents.

Figure 10.6 is the lifecycle of a corporate bond redrawn as a syntax diagram:_change of Moody rating bullet payment

Figure 10.6 Lifecycle of a corporate bond in a syntax diagram

MORE SEQUENCEN0 TA TIONS 199

(repeat statement untii H boo/ean—express/on I

Figure 10.7 Syntax diagram for a repeat statement in Pascal

Sequence is shown by following the arrows from left to right as they take you from
from one element to the next. Selection is shown by a line branching out into several
lines. Iteration is shown by a line looping back to the left. An option, or a zero-or—more
iteration, is shown by an arrow in a selection group that passes through no element, as
in the group immediatelyfollowing purchase.

There is really only one rule for reading syntax diagrams: the set of all possible
sequences they describe is the set of all possible paths that you can take by following the
arrows. The rules for creating syntax diagrams, however, are very restrictive, ensuring
that a reader can examine all possible paths systematically. Elements can be arranged
only by sequence, selection, and iteration; lines can’t lead just anywhere.

Notice that whereas the Jackson diagram in figure 10.5 included the names normal
activity and termination as placeholders, neither ofwhich was a term from the problem
domain, the syntax diagram does not include any placeholder terms. Also, the syntax
diagram scarcely needs a legend to explain what the symbols mean.

Syntax diagrams show hierarchy in the same manner as BNF: by including a non-
terminal symbol in a definition.A non-terminal symbol appears in a box with sharp cor-
ners as opposed to rounded corners. Putting the name of the element in italics helps
emphasize the distinction. The same device indicates recursion, as shown in the syntax
of Pascal’s repeat statement in figure 10.7.

Notice that the syntax diagram requires no stint-sequence to be defined, as in BNF.
The semicolon that separates statements is conveniently indicated by drawing it on the
leftward—moving line that shows that statement can be iterated.

The primary disadvantage of syntax diagrams is that they take more effort to
draw than the other notations. However, this is easily remedied with a modern—day
charting program.

In light of the fact that there is nothing in syntax diagrams that is specific to syntax,
and because they are perhaps the most intuitive of all the sequence notations, a better
name for them might be sequence diagrams.

200 CHAPTER 10 SEQUENCES AND EVENTS

10.4.3 VVamier—Orr diagram:
Warnier-Orr diagrams" add yet another construct to the description techniques ofsequence, selection, iteration, hierarchy, and recursion: concurrency. Two elements aresaid to be mm‘um’ntif both must be present in a sequence, but they can occur in eitherorder: A before B, or B before A.

(purchase

interest payment
69

normal event price change
(0, n)

a;

change of Moody rating

bond lifecycie 4

sale
$

cail
termination a

default
83

bullet paymentK

Figure 10.8 Warnier-Orr diagram of the lifecycle of a corporate bond

In the diagram in figure 10.8, the braces indicate hierarchy: that the element on theleft is composed of the sub—elements on the right. Sequence is shown by the verticalplacement of elements: a sequence starts at the top and continues downward. The 69symbol, meaning exclusive or (either but not both), indicates selection. Iteration isshown by putting the minimum and maximum numbers of iterations in parenthesesbelow the iterated element, as illustrated by normal event. The minimum number of nor—mal events is zero; that the maximum is infinity is shown by writing the name of a vari-able, n, instead of a number. This variable can then be referred to elsewhere in thedocumentation where it denotes the actual number of iterations in a specific occurrence.That two elements are concurrent is shown by a plus sign without an enclosing cir—cle. Aside from the obvious use ofdescribing subprocesses that occur in parallel, concur—rency can also describe the simultaneous multiple hierarchies involved in a boundary\" Another of the classic 19705 books on converting sequential data structures into program designs was[Warnier 1974], which introduced the basic brace notation that grew into Warmer—Orr diagrams.

MORE SEQUENCE NO TA TIONS 201

record
group (O, r)

(0, 9)
group total

report
+

header

page record
(0, p) (0, r)

footer

Figure 10.9 Overlapping hierarchies in a Warnier-
Orr diagram, expressed as concurrency

clash, as shown in figure 10.9, or any hierarchical but unordered collection, such as the
set of parts and subassemblies in an assembly.

Warnier-Orr diagrams tend to fit better on a page than Jackson diagrams, partly
because of the lack of boxes, but also due to the vertical rather than horizontal orienta—
tion. A page is usually taller than it is wide. A word or phrase, however, is usually wider
than it is tall, and in practice, hierarchies tend to have relatively few levels but many
items at each level; that is, hierarchies tend to be bushy rather than deep. Consequently
it’s usually possible to include a lot more information in a Warmer—Orrdiagram on one
page, whereas the correspondingJackson diagrammight need to be broken up into sev-
eral pages.

Warmer—Orr diagrams include a great number of extensions beyond the basic
sequence—and—hierarchy constructs. Variations on the concurrency operator give Warn—

ier—Orrdiagrams a simple way to describe even such things as algebraic expressions. Dif—
ferent idioms specializeWarnier—Orrdiagrams for descriptionsofprocesses, descriptions
of things, and descriptions of serial data streams. For more information onWarmer—Orr
diagrams, see [Orr 1981].

10.4.4 Flow charts
Theflow [hart has been criticized a great deal in the past twenty-five years, but it is quite
suitable for describing many simple types of sequences, especially those with a very lin—

ear structurewith very little branching or iteration. Many business processes are, indeed,
this simple.

In a flow chart, as shown in figure 10.10, each rectangle represents an action that
has only one possible outcome. An action that involves a decision, or more than one
possible outcome, is shown by a diamond with a different, labeled line emerging for
each outcome.

202 CHAPTER 10 SEQUENCES AND EVENTS

The principal danger of flow charts is that
when you draw one, you can easily overlook possi— proposeble sequences. If several actions have several possible
outcomes, including going back and repeating pre-vious actions, it’s hard to be systematic in covering
every possible way that an action can be initiated. design
Drawing a flow chart is essentially the same as writ-
ing a program with goto statements. Beyond a low
level of complexity, the program quickly degener—
ates into spaghetti. fail

10.4.5 State—transition diagrams pass
The most common use for state—transition diagrams is
to state how something responds to every possible bUi'd
sequence of events, that is, to describe causal rules.
However, a state—transition diagram can also simply
describe a set of all possible sequences, as in
figure 10.11. Each rectangle represents a state that
somethingcan be in at a certain time or range of time;

fail

each arrowdenotes an event that changes its state. pass
Because state—transition diagrams can make

two types of assertions—here is how such-and—such mm"
responds to stimuli, and here is a set of all possible
sequences—you must indicate which type you Figure 10.10 Flow chart of a
mean, as in the introductory sentence in :3'373'3321bz'flzzzmfigure 10'] 1-

assurance/quality control'

The following diagram shows all events that affect the operationalstatus of a train.

decommissron

cancel mission
out of

commission
en route

Figure 10.11 A simple stale-transition diagram

MORE SEQUENCE N0 TA TIONS 203

Notice that the state diagram does not emphasize the events, but what the train is
doing when it's not engaged in an event. Notice also that the set of all possible sequences
of events shown in figure 10.11 would be awkward to depict in a Jackson diagram or
with any of the other techniquesthat rely exclusively on the sequence/ selection/ iteration
type of breakdown.

The problem is that for any possible sequence that goes ABC,
there is another that goes BCA and another that goes CBA, forcing
you to draw a separate tree for each one. You can’t make A, B, and C
alternative subelements of a single interated element because that
would imply that A, B, and Ccould come in any sequence at all.

On the other hand, when the sequence/ selection/ iteration
approach is enlightening, a state-transition diagram often isn’t, as in figure 10.12. By
emphasizing current state over sequence of events, the diagram wrongly makes it appear
that the main fact of interest is whether the bond is in or out of the portfolio.

Interest
”m

_m portfoliow,purchase

change of price
Moody rating change

Figure 10.12 Lifecycleof a corporate bond, shown in a state-transition diagram

More information about state—transitiondiagrams, including guidelines on how to
name states, is in section 11.1.

10.4. 6 Ad laoc notations
All the preceding notations for describing sequences are quite generic in that they are so
well known and so general as to have names. This means that they address only what is
common to a great variety of sequences and ignore what is different. However, very
often what makes the best documentation is a notation that fits the subject matter very
closely, showing the reader exactly what is distinctive about the subject and no more. It
doesn’t matter if the notation doesn’t fit anything else.

You’ve already seen one ad hoc notation in the descriptionsof the contents of each
line in the mail server’s log file. Italicized words indicate text that can vary from line to
line, text in brackets indicates optional text, and an ellipsis (three periods in a row) indi—

cates a one—or—more iteration of the precedingtext element.

204 CHAPTER 10 SEQUENCES AND EVENTS

wet check» quietzone 5w: oaia sum Slop zone7*rd 7
lllllllllllllllllWHT

Figure 10.13 Ad hoc notation showing sequence of bars in a bar code

Another ad l/oc sequence notation was the description of the format of a nodename. There, a graphic simply divided a six-letter code into three segments and spelledout what characters could go into each segment and what they stood for.The diagram of bar codes in figure 10.2 becomes much more descriptive whenredrawn, as in figure 10.13.
The data consists of a sequence of pairs, with each pair containing an identifiercode and identifier contents. The data in each identifier’s contents varies according tothe identifier code, Code/content pairs can appear in any order, but no two pairs canhave the same code.
All this can be indicated by stating it explicitly in text, as in the previous paragraph,and then providing a table:

Identifier Code Contents
Container serial number 00 exactly 18 digits
Container type code 01 exactly 14 digits
Batch number 10 up to 20 alphanumerics
Productiondate (YYMMDD) 11 exactly 6 digits

Expiration date (YYMMDD) 17 exactly 6 digits
Serial number 21 up to 20 alphanumerics
Lot number 23 up to 19 alphanumerics

If there were fifty of these identifier types, the table would be the only reasonableform in which to document them; diagrams would become a mess. Similarly, the widthof a quiet zone, the way digits and characters are encoded in black and white stripes, thestart and stop codes, and the checksum should all be described in text or tables.

MORE SEQ UENCENO TA TIONS
205

CHAPTER 11

Causation and control
Chapter 10 described events onlywith respect to the sequence in which they can occur,what they affect, and how the computer can tell when one has happened—enough todefine most dynamic information problems. Defining a control problem involves twomore kinds of information: what causes the events, and the desired problem-domainbehavior. This chapter presents a number of techniques for describing both the causalrelations and the desired behavior. These techniques apply both to describing the prob—lem domain and to writing the program specification. In the problem domain, youdescribe both the rules that objects there obey regardless of how the machine is pro—grammed and the additional rules that the machine is to enforce. In the specification,
you describe the causal rules that the machine’s input/output devices are to obey.While this book is concerned onlywith presenting some patterns that prove usefulin a variety of problems (without making a claim of total generality) this limitation
applies especially to the discussion of causation. Control problems are among the tricki—
est and most varied in software, and while we have a few useful patterns, the state of theart is a long way from having a satisfactory library ofpatterns that map to a set ofwelldefined problems. For causation, we don’t yet have anything like the sequence/selection/
iteration/hierarchy technique for imposing a simple order on most sequences. Most

207

research in software engineering to date has focused on how to structure programs and
how to describe programs without including all the details, not with how to describe the
world outside the software. So, the patterns in this chapter consist mainly of techniques
that have been applied to describing programs that solve control problems, adapted to
describing the problem itself.

11.] State tmmz'tz'om
Objects in the world can take on different state: at different times: the air can take on
different temperatures, inventory items can be in different places, proposals can be
approved or not approved, a car can move at different speeds or sit stationary, and so on.
It is an axiom of states that at any time, an object is in exactly one of its possible states.

Controlling objects in the world entails causing them to take on desired states at
desired times. To control them, we must know what causes them to change state. For
some types ofobject, the rules by which they change state are best expressed in the form
of mathematical equations. For example, a satellite’s location relative to the Earth
changes continuouslyaccording to a set of differential equations. The density of the air,
wind speed and direction, and the positions of the elevators, ailerons, and rudder affect
the motion of an airplane according to a set of complex mathematical equations.

Deriving the specifications for software to control such objects is a highly special—

ized discipline which is a part of central theory Herewe will cover only a much more ele-
mentary type of causation: discrete events that cause an object to perform an action,
possibly switching from one state to another when the action is complete, where the
number of states is finite and very small—small enough that you can document each of
them one by one. The action performed by the object might vary depending on the
object’s current state.

A simple example is the light bulb in a room and the switch that turns it on and
off. The turn on event moves the light to the on state; the turn off event moves it to the
off state. This simple pair of state transitions is shown in figure 1 l. 1 (a). Each rectangle
represents a state that an object can be in for a duration of time; each arrow represents
an event.

Many kinds of objects react differently to the same events, depending on which
events have already happened to them. The simplest form of this type of state transition
is shown in figure 11.1(b): a light switch that toggles state each time it’s pressed.

A more complex example is dialing a telephone.The first digit you dial might be a
7, and the last digit you dial might be a 7, but the two, identical events cause different
effects in the telephone system. The first 7 initiates the call, stopping the dial tone; the

208 CHAPTER 1 1 CA USA TION AND CONTROL

(a) Different turn on
events changing
an object's state off on

turn off

(b) Same event
having different
effects
depending on
object's state

press button

button up.
light off

button down,
light on

press button

Figure 11.1 Simple state—transition diagrams

final 7 completes the call, causing the telephone equipment to generate a busy signal,ringing sound, or recorded message, depending on what you dialed,
Figure 1 1.2 shows the behavior ofa telephone line in the United States. There are anumber of simplifications: receiving a call (ringingand answering) is omitted, as well asinternational dialing sequences, operator interruptions, special features like call waiting,and nearly everything else outside the normal procedure of placing a call. The onlyevents are dialing numbers, hanging up and lifting the receiver, doing nothing for toolong while the phone is OE hook and no call has been placed (timeout), and having theother party hang up.
The diagram shows several fundamental techniques for keeping complexity undercontrol. When the same event has the same effect in many states, you can group thestares into a :uperrtate, enclosed in a larger rectangle.* The hang up event can happen ineleven different states, and in each case, the result is the same: the telephone line movesto the on hook state. So all eleven states are grouped together into the off hook superstate.Similarly, the timeout event applies to all states in the dialing superstate. Drawing thesuperstates in thick gray lines helps reduce visual confusion caused by closely spacedparallel lines.
As a complexity—reductiontechnique, even though there are actually diEerent statesfor each digit in the area code and each digit in the local number, the diagram collapsesthem into two states each.There is actually more state information,not shown on the dia-

gram: the telephone number that is accumulated as digits are dialed, The state transition\‘ The simplifying techniqueof the superstate comes from [Harel 1987]. [Harel 1987] also contains someimportant extensions to stare-transitiondiagrams not covered here, such as techniques for diagmmmingconcurrent states. Harel’s extendedform ofthe state—transition diagram,which he calls a Statechart, is alsoincorporated into UML; see [Rational 1997].

STA TE TRANSITIONS 209

m1 receiver hang up

, umx
g Quaimg timeout
E 2.9

f dial tone ‘ recorded
. es a e i
In area code, in area code, 0'3 m tirfiegut or

0 awaiting awaiting (2nd d‘gm
1st dlgil 2nd. 3rd digits I

0.30'1
13rd dlgiti

in Iocai number, in local number,
awaiting awaiting
ist digit 2nd..7th digits

(7m digit) I

h—I n—n-I- / -
connected mreescgdsrior connected bus si nal ($233303?
to operator .

g to other line y g g
Invalid number number

operator other party
i hangs up hangs up

k j)
Figure 11.2 State-transitiondiagram for a telephone line in the United States (simplified)

when the last digit is dialed depends on the state of the other telephone line: busy, avail-
able, or not working due to disconnection, change of phone number, and so forth. The
rule for which state becomes current after the last digit is dialed is not shown on the dia—

gram because itwould cause clutter. The diagram is difficult enough to follow as it is.
You can omit whatever you like from the graphic because you always have the

option of explaining it all in text anyway. The more complex or tricky the diagram is,
the more you should consider adding an all—text description of the state transitions.
Graphics tend to leave important facts unstated, such as whether an event not shown is

impossible or is supposed to be ignored, and often there isn’t room to describe activity
that occurs while a state is current, on entry to a state, on exit from a state, or special
conditions that affect which state becomes current in response to a specific event.

UML provides some typographical conventions for putting all this text on the
diagram itself—italics means one thing, text after a slash means another, and so on—
though many people find them confusing when all are used at once in the same

210 CHAPTER 1 1 CA USA TION AND CONTROL

diagram. Always keep in mind that your goal is to fully document an object and its
states in the easiest Way possible for a reader to understand, not to force every
description into a standard graphical notation. Text is the ever—reliable standby.

To fully document an object and its states, you need to include the following infor-
mation in one form or another:

' A list of all the states
' For each state, what, if anything, the object does during this state, or any externally
detectable difference about this state. For example, one state of a garage—door
opener is opening, during which the motor pulls the door open. In the light bulbs
on state, the light is shining.

' For each state, which events are possible, and for each possible event, how the
object responds while in that state: any action that the object performs, and the
object’s state after the event

' Any additional state information of the sort that does not lend itselfwell to state—
transition diagrams, such as the telephone number accumulatedwhile dialing

' Which state is the start state, if any
' Which state (or states) is the end state(s), ifany
The following is a partial text version offigure 11.2.

Five state variables apply to each telephone line, in addition to the states shown in the
diagram:

area Code A stringofup to three digits: the area code beingdialed, if the call
is long distance.

local number A string of up to seven digits: the telephone number within the
area code.

timer A 60-secondcountdown timer. The timer is either off or counting
down (running).

transmit Where the telephone system sends audio signals originating from
the telephone line. Off ifnot transmitting.

receive The source ofaudio signals sent to the telephone line. Off if the
telephone system is not sending any audio signals.

STA TE TRANSITIONS 21 I

212

Events:

lift receiver Loop is closed. Possible only in on hook state. (T17: leap is the
‘ electrical circuit thatgoes througlyyaur telephone, connecting it to the
telephone company}equipment.)

hang up Loop is opened. Possible only in states other than on hook.

timeout The timer reaches zero by counting down.

0, 1, 2. 3. 4. A touch-tone or pulse digit is dialed.
5, 6, 7, 8, 9

other party Possible only during a call: the other party hangs up. The other
hangs UP party is either the operator or another telephone line.

States and responses:

State Event Action Next State
on hook 0.9 — f on hook
(transmit off,

_
_

receive off lift receiver — dial tone
timer Off) timeout (Not supposed to on hook

happen.)Turn timer
off.

dial tone 0 — connected to
(transmit off, operator
receive dial
tone, 1 — in area code,
on entry, set awaiting first digit
t’ 60

.imer to 2.9 local number = digit in local number,seconds)
. .awaiting 2nd,,7th

digits

hang up — on hook

timeout — recorded message
for timeout

CHAPTER 11 CA USA TION AND CONTROL

State Event Action Next State
in area code, 0, 1 recorded message
awaiting 1st for invalid number
digit

V

(transmit off, 2.8 area code = digit in area code,
receive off awaiting 2nd, 3rd
timer runs) digits

hang up — on hook

timeout —— recorded message
for timeout

in area code, 0.9
awaiting2nd,
3rd digits
(transmit off,
receive off,
timer runs)

append digit to area
code

ifarea code nowhas
three digits: in local
number, awaiting
181 digit;
otherwise: in area
code, awaiting2nd,
3rd digits

hang up — on hook

timeout — recorded message
for timeout

(Remaining state: omittm'fir brevity.)

connected to 09 connected to other

local area code
if no area code
dialed,
otherwise in
area code;
receive from
same line;
timer off)

happen.) Turn timer
off.

other party party
(transmit to
line specified hang up — on hook
by local

. timeout (Not supposed [0 connected to othernumber, in
party

STA TE TRANSITIONS 213

Notice that the table addresses what happens if there’s a timeout in each state. Look—
ing only at figure 11.2, it would have been easy to overlook this case, because it's never
supposed to happen in some states, but it’s not physically impossible for it to happen
(the way a hang up event is impossible if the phone is on hook). This is probably insignif—
icant, but you can’t know that until you’ve checked every case. Bywriting a table, you
systematically address every possible case.

While the text doesn’t show the big picture the way the diagram does, it does make
it easy to understand one state at a time. It’s easy to tell what the events are and whether
all the events have been covered. It’s easy to tell what the actions are. Everything is

spelled out, one point at a time. It’s easy to read it systematically, from beginning to end,
because it has a beginning and an end and a linear sequence leading from one to the
other. These are the strengths of a table and the weak points of a graphic. The handling
of spurious timeouts always leads back to the state that received the spurious timeout.
This is awkward to show in a graphic. All the states that are off hook but not dialing
would have to have an extra transition arrow leading back to themselves. But the table
has a cell for everything.

Because many states respond the same way to hang up and timeout, you can define
these responses in a separate table and refer to it as needed in the main table. This makes
it easier to modify the document in future revisions without introducing inconsisten-
cies. However, this also increases the dangerofmisinterpretation, since each state is not
described completely in one place. If there are only a few repetitions, it’s best to keep
them, in order to retain the simple table structure.

Anotherway to systematically address every event in every state is to draw a matrix
with one row for each event and one column for each state (or the other way around).
This works fine under the following conditions: there are no actions other than chang—

ing states, there aren’t so many columns that you can’t fit the matrix on the page, there
are no tricky state transitions involving conditions, or if you find another, readable way
to organize the information, perhaps by making a separate table of actions and includ—

ing references to it in the matrix.
The example above is meant to be very general; it’s filled with just the sorts of trou—

blesome irregularities that prevent many real life problems from fitting into a matrix.
Naturally, apply simpler means to simpler problems, as long as you include all the neces—

sary information.
Note that while the table makes the state-transition diagram in figure 11.2 redun-

dant, the table does not make the diagram useless. In the text, the relationships between
the states are difficult to grasp. Typically, a reader will read a little bit about one state,
refer to the diagram to check what states can transition to that state, continue a little
further in the text, go back to the diagram, and so on. Without the diagram, a reader
would either have to visualize everything in their head—verydifficult for something like

214 CHAPTER 1 1 CA USA TION AND CONTROL

the telephone diagram—or try to comprehend all the state transitions purely abstractly,with no visualization, a feat ofwhich relatively few people are capable.All this has an important implication for the diagram: you must not slap it outcarelessly or let a CASE tool arrange it automatically. Since its sole purpose is to help areader visualize, you must give careful thought to how you lay out all the elements. Thelayout should be harmonious. The eye should be able to follow the flow of the diagrameasily. The diagram stresses what is conceptually important—something a CASE toolknows nothing about. The dial tone state, for example, is the “home base” of dialing.Therefore, instead ofburying it in the middle, figure 11.2 puts it in the upper left, sur-rounded bymuchmore white space than most of the other states. The recorded messagefor timeout state is an odd, unusual case, so it doesn’t line up with any of the other states.These are the kinds of considerations to keep in mind when drawing a state-transi-tion diagram. Faithfully representing the transitions is not enough. If you draw a snarl,you might as well draw nothing at all, because the text already provides a completedescription (even though it gives the reader no help with visualizing). Ifyou draw a snarldiagram without the text, then you might as well not bother writing a document.
11.1.1 Naming state: and events
Be sure to name states in such a way that it is obvious that they are states and not events,and events so that it is obvious that they are events and not states. It’s surprisingly easyto do it the other way around. For example, it might be tempting to call the hang upevent on hook, since the event consists of making the telephone line “on hook.” Butthat’s exactly why you should not call the event on hook: that’s the state that persistswhen the event is done. Another common temptation is to name a state for the eventthat normally follows it; for example, dial 151 digit instead of dial tone.The name of an event should be either a verb or a noun (or a phrase that functionsas a verb or noun) that clearly suggests an event that happens at a certain time and isover. Another option for hang up, then, is go on hook. In the telephone example, thenames for digits are nouns; in context~that is, inside a description of dialing a tele-phone number—theseclearly denote events.

The name of a state should be an adjective or a noun (or a phrase that functions asan adjective or noun) that clearly suggests a state that can persist through time. Youshould be able to use it in a sentence that says, “An object of this type is either A or B,”whereA and B are state names. A light bulb, for example, is on or off.*An important type of adjective for naming states is the participle. a verb that hasbeen converted into an adjective. English has two kinds ofparticiples: present participles\‘ The words on and aflare also prepositionsin English, but in the sentence “A light bulb is either on or off,"they function as adjectives. Mostwords in English can function in more dian one part of speech, makingit dimcult to invent terminologythat is both clear and very concise.

5 TA TE TRANSITIONS 215

and past participles. The present participle is the verb with —ing added: blinking, running,

printing.* The past participle is usually identical to the past tense: connected, depleted,

magnetized. Some irregular verbs have a past participle that is different from their past
tense such as broken, shown, and done. If you’re not sure which is the past tense and
which is the past participle, the past participle is the one that fits into this sentence:
“The object is part-partiriple.”

The following are a number ofwords that are often useful when naming states and

events:

Siam Events

start start

in header segment create

target acquired acquire target

got password get password (or just password)

detected intrusion detect intrusion (or just intrusion)

received confirmation (or eonfirmeul receive confirmation (or just confirmation)

awaitingconfirmation status change;

done abort

The word start appears in both columns, because it’s often useful for both states
and events, though not when describing the same object, of course. As a state, start is a
good name for the state that an object is in before it has undergone any events. As an

event, start is a good name for the event that begins the process described by the state-
transition diagram.

11.1.2 Four interpretations
State-transition diagrams (and tables) suffer from a fundamental ambiguity. They can be

intended—and interpreted—in any of the following four ways:

' The events that come out of any state are the only event:possiblewhen the object is
in that state. If an event is not shown, then it is impossible.

' The events that come out of any state are how the object responds to events when in
that state. If an event is not shown, then it has no effect or is impossible.

‘ The —ingending also indicates another fotm ofthe verb, thegeruna', but this distinction is more subtle than
need concern us when naming states.

216 CHAPTER 1 1 CA USA TION AND CONTROL

' The events that come out of any state are the (mly event: allowable when theobject is in that state. If an event is not shown, then the system must prevent itfrom happening.
0 The events that come out of any state are the desired response ofthe object to eventswhen in that state. If an event is not shown, then it is either impossible or thedesired response is to ignore the event.
The first two possible interpretations are as problem—domaindescription: the first isa description ofa set ofall possible sequences ofevents (discussed on page 203); the sec-ond is a description of causal rules. The third and fourth interpretations are as prescrip-tive statements—design decisions to be implemented, whether requirements orspecifications.
If you were writing a requirementsdocument for software to control an automatedtelephone dialer for a business, then the state-transition diagram for a telephone line infigure 11.2 would be purely descriptive. It would tell how the telephone line responds toevents, for the purpose of enabling the programmers to design software to control thetelephone line. The requirements would say that the dialer places calls to telephonenumbers and at times according to rules stated elsewhere in the document. The pro—grammers rely on the truth of the statements in the text form of the table, such as whatthe transmit and receive lines are connected to in different states, in order to create adesign that fulfills the requirements.
On the other hand, if you were writing a requirements document for software tocontrol the equipment at the telephone company that connects calls, then you wouldintend figure 1 1.2 prescriptively. In this case, the statements in the text form of the tableabout what the transmit and receive lines are connected to in difierent states would bethe requirements. The programmerswouldn’t rely on those statements being true, Theirjob would be to make them true. The document would need other, purely descriptivestatements that tell what events connect the transmit and receive channels to the varioustelephone lines, recorded messages, and so on. The programmerswould rely on thosestatements when designing the part of the specification concerned with changing thestates of those channels.
To resolve the ambiguity, you must explicitly indicate which interpretation is cor—rect. You can easily accomplish this with a sentence introducing the diagramor table:

The following diagram shows all events that affect the oxygen sensor:
The oxygen sensor responds to events as shown below:
R-3.1 For each state of the oxygen sensor, the system allows only theevents shown below to occur:
R-3.1 The oxygen sensor responds to events as shown below:

5 TATE TRANS] TIONS 217

In the third and fourth examples, the fact that the statements are requirements is
indicated by giving it a requirement number and setting it in the font reserved for
requirements. To make the distinction even clearer, you can add a modal verb, like must
or shall, though if you do so, you should word all requirement statements that way con-
sistently, and modalverbs make some statements ratherwordy.‘ Including it in a section
titled “Requirements” also helps, especially if that section contains no domain—descrip—
tion statements.'l‘ Finally, by wording the descriptionsof the actions as commands, such
as “append digit to local number,” you reinforce that you are making prescriptive state—

ments; by wording them as indicative sentences, such as “digitappends to local number,"
you reinforce that you are making descriptive statements.

In requirements documents for software that controls equipment or other software,
often you actually need to write very little descriptionof the causal rules followed by the
controlled objects, because this documentation already exists. You can simply refer the
reader to the appropriate documentation. (Be sure that it’s readily available.) For soft—

ware that controls new equipment, however, often there is no documentation available
which is suitable for use by software developers. A new manufacturing robot is unlikely
to have a state table documented already; your taskofwriting the software requirements
is just one stage of thewhole job ofdesigning the robot.

The third interpretation most often applies to software that is supposed to guide
something through a certain process when it might otherwise go around the process or
stop at one point in the process, such as approving a proposal. The following are some
states that a typical type of proposal moves through: awaiting approval by department
chair, awaiting approval by dean, awaiting approval by provost, awaiting approval by board of
trustees, approved. Such a set ofstate transitions is equivalent to saying: a proposal is not
to be marked as approved unless approved by the chair, the dean, the provost, and the
board of trustess; the dean is to be notified when the chair approves; the provost is to be
notified when the dean approves; and so on.

A state—transitiondiagram in a specification is not subject to ambiguity between
descriptive and prescriptive interpretations because a specification describes only the
designed—that is, desired—behavior of the system at the interface between the system
and the problem domain. Therefore, only the prescriptive interpretations make sense;
you don't need to explicitly disavow the descriptive ones. Furthermore, the specification
describes little other than how the system responds to events, so usually only the fourth
interpretation is reasonable. The introductory sentence still doesn’t hurt, though.

‘ See Requirtment :mttmentx in chapter 15.
T This is a matter ofdocument organization, the subject of chapter 14.

218 CHAPTER 11 CA USA TION AND CONTROL

11.2 Actions
Software that solves a control problem causes actions that bring about desired results.The desired results are usually functions of other actions, which the software doesn’tCause, like button—presses on a photocopier’s control panel or changes to a camera’s focusto sharpen an image. The software usually can’t bring about the desired results directly.For example, the microprocessor in a photocopier can’t produce copies directly. Themicroprocessor can only aEect the voltage of wires directly connected to it. State-changes in these wires, in turn, cause a chain of further actions that result in the creationof a photocopy.

Thus, in a control problem, there can be three types of action to document:
° Spontaneous actions: those initiated in the problem domain, such as the button»presses at the photocopier’s control panel.
' Immediate atrium: those that the software can initiate directly, such as changing thevoltage ofwires. An immediate action is shared phenomena; it’s simultaneouslyanaction in the software and an action in the problem domain.' Mediate artinm: those that are caused by other actions, such as the actual produc—tion of the photocopy. A mediate action can be caused by a spontaneous action, animmediate action, or another mediate action.
Most control problems boil down to this: “How can the software make the rightmediate actions happen in response to the right spontaneous actions?”These types ofactions are not mutually exclusive. An action that can occur sponta—neously might also be indirectly causable by the computer. In this case, it would havetwo modes ofcausation: spontaneousand mediate.
The word :pontaneour might seem inappropriate, since a button—press doesn’treally occur spontaneously. A person presses a button, so it might seem to be a medi—ate event caused by a person, and this action, in turn, might be caused by someoneelse needing to prepare some hand-outs for a meeting. However, the above classifica-tion of actions is strictly in relation to the software. Spontaneous actions are thosethat, from the perspective of the software, happen “out of the blue,” not as a conse-quence of any other action in the problem domain. A person pressing a button is justsomething that happens—in this case, something that charges the software with theduty of making something else happen.
The same action does not always cause the same result. The roller that feeds paperinto a printer might succeed in getting a sheet ofpaper and might fall. In a high—preci—sion printer, the roller might bring the sheet into the printer at the wrong orientation.

ACTIONs
219

So the result of roller turns would be the entire set of possible orientations, plus the pos-
sibility of not getting a sheet of paper at all.

The words attizm and eventmean roughly the same thing, though event suggests a
very short action, perhaps even one that can be located at a single point in time, or the
beginning or end ofan action. We’ll use the word action as the more general term, limit-
ing event to the narrower sense, especially to mean a short action that affects the state of
an object, as described in section 11.1.

The information needed to document each action is as follows:

° The type of causation: spontaneous, immediate, or mediate. Instead of using
these somewhat esoteric words, you can simply group actions of each type
together, preceded by a statement like, “The microprocessor can cause the follow-
ing actions directly.”

° All of the types of objects involved in the action: the objects that do the action,
such as the buttons on the control panel, and any objects that are affected by the
action, such as the sheet of paper turned by the feed roller. The objects that do the
action might also be affected by it. Direct actions are done by the computer; group-
ing them with the other direct actions indicates their “doer.” The list of objects
involved in the action is sometimes called its signature.

0 Any parameters that the action has: attributes of the action that can vary from
instance to instance, such as specifically which objects are affected

' In the case of indirect actions, the condition or event that triggers the action: “hap-
pens when."

0 If the action continues as long as a certain condition is true, like a servomotor that
turns as long as a certain wire is at 9 volts, then say this explicitly: “happenswhile.”
' The duration of the action, unless the action is short enough that its duration can
be disregarded

' All the possible results of the action: for each object affected, what effects can there
be? The results of an action can themselves be events that trigger other actions or
cause state transitions in objects. For example, “successfully connect telephone
lines”might be one result of the action of placing a call; “get busy signal” is another.
Also helpful is to include the relative frequencies ofeach result, for example, success
95% of the time, failure 5%.
' If more than one result is possible, how, or whether, the software can detect which
actually occurred

Here are two examples of complete documentation of an action. First, from a pho—
tocopier:

220 CHAPTER 1 1 CA USA TION AND CONTROL

feed original

Objects: Feed roller A, original

Happenswhen: Output line OXAO, bit 1 goes high for 0.4 sec.
Duration: 0.4 sec (happens while output line OxAO, bit I is high)
Possible results: (1) Original is on glass platen, face down. (97% probability iftherewas an original in the feed slot.)

(2) Original is not on glass platen. (3% probability iforiginal was infeed slot, 100% ifit wasn’t.)

Ifand only if result (1) has occurred,microswitch B is activated.

Second, from a warehouse:

pick item

Participants: Stock picker, items, storage locations.

Parameters: List ofone or more items and storage locations where they reside.
Ha ens when: Printed order, showin list of items and stora e locations, is at

P
g gprinter A, and a stock picker detaches the order.

Duration: From the time the stock picker detaches the order, less than 5 min‘in most cases; ifmore than 10 min., there is a problem (see below).
Possible results: (1) The stockpickerfinds the items and brings them to the packingstation.

(2) The stock picker searches for the items, but fails to find one ormore.

(3) The stock picker never gets the order and/or never searches forthe items.

After 10 min., it is safe to assume that either (2) or (3) has happened.

ACTIONS
221

The fact that an action can have more than one result has an important implication
for requirements. What is the desired response for each result? For example, if the feed

roller fails to bring a sheet of paper into the photocopier,what should it do? Display a

light? Try again? How many times before giving up? In the warehouse, a stock picker

goes to the warehouse to get an item and it’s not there, even though the database says

that it’s in stock. What should the software do? Notify someone? Cancel the order.>

Change the order?
This means that there are two kinds of requirements in a typical control problem:

those involving a relation between a trigger event and a desired result, such as “when the

start button is pressed, make a copy,” and those pertaining to everything that can possi-

bly go wrong in the process that brings about that result—wt rather, every alternative

sequence of actions within that process.
The above discussion is as general as possible. In the vast majorityof control prob—

lems, however, you can Write documentation that is much easier to understand than a

long list of actions. It’s quite unnecessary to present the programmerswith a jigsaw puz-

zle of actions to assemble into a sequence that produces the desired behavior because, in

nearly all cases, the person who designed the machinery or procedures already under—

stands the sequence in which they’re supposedto happen.
Photocopying, for example, consists of a series of events planned out by the engi—

neer who designed the photocopier. You can explicitly describe the intended series of

events and then, for each action in the series, ask the engineer what all the possible

results are and what is the desired response for each. The same principle applies when

asking about and documenting procedures in a business.

Techniques for simplifying the description of the causal properties of the prob-
lem domain, based on a designer’s intended sequence of events, are given in the next

two sections.

1 1.3 Dependency
A photocopierworks as follows. Inside the photocopier there is a surface coated with a

substance that is a strong resistor in the dark but a good conductor where exposed to

light. In most modern photocopiers, this surface is usually on the outside of a rotating

drum or belt, called the photoreceptor drum or photoreceptor belt. A corona wire sprays

ions onto the photoreceptor surface, charging it at every point. An image of the paper to
be copied is then projected onto the photoreceptor.Wherever light shines, the charge

leaks away. Thus, after exposure, the photoreceptor bears an image that is a copy of the

image on the paper. The photoreceptor image, however, is made of electric charges

rather than ink.

222 CHAPTER 11 CAUSATION AND CONTROL

Next, toner—tiny, dark particles—is brought into contact with the photoreceptor.The toner has a static charge, applied at the factory where the toner is made, that isopposite to the charge of the photoreceptor image, making the toner stick to the photo—receptor at the regions correspondingto the dark regions of the original.While the toner is being applied to the photoreceptor, another coronawire chargesa blank sheet ofpaper with a charge of the same sign as that on the photoreceptor but ofgreater intensity. When the paper is brought into contact with the photoreceptor, thetoner moves to the paper. Finally, the toner is fused to the paper by moving throug apair of heated rollers, and the paper is sent to the output tray. Any remaining charge on
readying the photoreceptor for the next copy.The entire process is shown in figure I 1.3.

Photoreceptor belt
receives electrostatic image

of original

Corona wire A
charges photoreceptor belt

ECleaning brush
removesstray toner Magneticbrush/ applies toner to belt

Eraser
removes charge\ E

To output tray

Feed rollerFusing rollers / \‘\ . /gets blank sheet
melt toner Into sheet

from paper trayTransfer rollers
apply toner to sheet Corona wlre B

charges blank sheet
Figure 11.3 Parts of a photocopierand their functions

DEPENDENCY
223

The requirements for the photocopier’s controller are simple:

R-1 When the start button is pressed, if there is an original in the feed slot, the photo-
copier ma.kes N copies of it, and places them in the output tray.

N is the number currently registering in the count display.

If the start button is pressed while photocopying is in progress, it has no effect.

R-2 The numberN in the count display updates in response to button-pressesaccord—
ing to the following state table.

At power—on, N(— 1, and current state is start.

State Button Response Next State
start 0 — stan

1..9 Ne— button in number

clear ; — Stan

start ‘ — start

interrupt
‘

— start

in number 0.9 IfNZ 100, beep. in number
Otherwise:N <— N X 10 + button.

clear N <— 1 start
l

start — 3 Stan

interrupt
‘
— 1

Stan,7 7, l

For simplicity, we’ll ignore double-sided copies, sorting and collating, indicatingthat the Rising rollers are not warmed up yet, and so on. Descriptions of the buttons
and how to control the display are simple and are omitted in this example.

How, then, should you describe the process by which the copies are made? Should
you explain the principles of electrostatics and the properties of the amorphousselenium on the photoreceptor surface? Should you describe each of the events—the

224 CHAPTER II CAUSATION AND CONTROL

erasing of the charge, the cleaning of the surface, the charging of the surface, the expo—
sure to the image, and so on——in a random order and leave it to the programmers to fig-
ure out how to make the copy come out?

Of course, there are much better ways. Since the designer of the photocopier—the
system engineer—already knows the sequence in which each action is to occur, you can
put this into the requirements. A dependency diagram, such as figure 11.4, shows what
conditionsmust obtain before an action is supposed to happen and what conditions can
result when the action is complete. Note that the dependency diagram says when
actions must occur in order for a certain final result to occur. The preconditions shown
in the diagram are not trigger conditions; they do not cause the action to occur. Rather,
it is the responsibility of the software to cause the action when the preconditions
become true.

Feed original only to
make first copy: original
stays on glass platen
until belt lS exposed for
the last copy

remove
original

orlglnal Evallable Belt must cycle once
before first copy after
power-on, to ensure
that belt is charged.

feed
original original on

glass platen GXDOSEU

charge

no or glnal
on glass platen

to light
blank sheet
available

electrostatic
Image on beltnotify

operator
transfer
toner
to copyno sheet

erase
charge

fusing rollers
heated move

copy to
output tray

Figure 11.4 Dependency diagram showing results and preconditionsof each action in the pro-
cess of producing a single photocopy

DEPENDENCY 225

Each circle represents an action; each arrow represents a condition. All the arrows

emerging from an action are all the possible results of that action. The results are not
necessarily mutually exclusive. All of the conditions resulting from an action could be

true at once. An arrow with no label means only “action complete." The arrows leading

into an action are the preconditions for that action. \When all those conditions become

true, the action is ready to begin.
For each condition, you must also document how the software can detect whether

the condition is true or false. For software that controls machinery, you can usually

accomplish this with a simple table relating bits in input/output ports to conditions. In

business applications, some conditions might be accessible only by manual data entry,
while for others there are machines to detect them, such as bar code readers that indicate

when a part has reached a certain place on an assembly line.

Figure 11.4 makes life much easier for the programmersthan simply describing the

effects of all twelve actions and telling them to implement requirement R—l. You can

also supplement it with text by adding a “perform when” or “ready when” line to each

action’s description, as in the example below. Another way is to collect all the “perform
when” lines together into a section of the document that describes only the process. This

is helpful when the same actions are parts of several different processes. The diagram
helps readers see how all the actions fit together; the text version is better for systematic
reading and double checking.

feed original

Objects: Feed roller A, original

Happenswhen: Output line OXAO, bit 1 goes high for 0.4 sec.

Duration: 0.4 sec (happens while output line OxAO, bit 1 is high)

Possible results: (1) Original is on glass platen, face down. (97% probability if

therewas an original in the feed slot.)

(2) Original is not on glass platen. (3% probability if original

was in feed slot, 100% if it wasn’t.)

Ifand only if result (1) has occurred,microswitchB is activated.

While copying, Original available AND blank sheet available AND fusing

perform when: rollers heated.

226 CHAPTER 11 CA USA TION AND CONTROL

Note that the entire process in figure 11.4 is itself an action, and could be repre—sented by a single circle in another, higher—level dependency diagram. The pressing ofthe start button is omitted from figure 11.4 because the process occurs once per copy,but one press of the start button can produce up to 999 copies. The notation does not

Figure 11.4 introducesa new requirement, to address two ways that the process canfail:

R-3 Whilemaking a copy, the following events happen in response to failures:

Action Failure Response
R-3.1 feed original no original on glass Beep, and abort copying process.platen
R-3.2 feed blank copy no sheet in feeder 1. Beep, and turn on paper empty

light.
2.When start button is pressed, turn
of? paper empty light, and resume
copying process withM copies
remaining; M: N - number of
copies produced so far.

All the other actions are merely part of the process for fulfilling requirement R—l.You could describe them as requirements, but they’re really just the means available tomake copies. The people who design the specification are interested in proving that cop—ies get made when the user presses the start button, not that coronawire A charges thephotoreceptor belt. The diagram shows the reader how to combine all the actions tomake a copy; the real requirement, however, is just to make a copy. If you do makerequirement statements out offigure 11.4, be sure to indicate that they are secondary tothe main requirement of R—l. The reader should understand that R—I is the end whilethe clockwork of actions is the means.

DEPENDENCY
227

button when the preconditions for copying are false: original available, blank sheet avail-
able, and fusing rollers heated. They’re omitted here for reasons of space.

It’s possible to make figure 11.4 simpler by exploiting this principle:
The only informationabout the problemdomain ofrelevance to a control
problem is that which pertains to alternative actions that could occur at
any point in time.

Most of the actions have only one possible result—or at least, for purposes of the
diagram, they are assumed to have only one possible result. Therefore, for purposes of
inventing the specification, it doesn’t matter what the resulting condition is. All that
matters is that the action completed. Figure 11.5 omits the unconditional results, leav—

ing only completionarrows. The belt charged condition remains because it has to be true
before the first copying cycle can begin.

Feed original only to
make first copy: original
stays on glass platen until
belt Is exposed for the
last copy,

original available remove
_ _ Belt must cycle onceoriginal before first copy after

power—on, to ensure
that belt Is charged.

feed
original original on

glass platen exoosed
charge
belt

no original
on glass platen SXpose be“

to light
blank sheet
available

rem ove
stray tonernotify

operator
transfer
toner

"0 sheet to COPY

erase
charge

fusmg rollers
heated move

copy to
output tray

Figure 11.5 Simplified dependencydiagram, omitting conditionsassumed to occur uncondition-
ally upon completion of an action

228 CHAPTER 11 CAUSA TION AND CONTROL

Including the conditions can still be valuable in order to show readers in graphicalformwhat the result of each action is. There is a trade off, however. By omitting uncon-ditional results, figure 11.5 directs your eye straight to the conditions that require spe-cial treatment in the specification; you can tell at a glance which conditions you need todetect and which conditions are just there for background knowledge. A diagramlike 11.4 can provide the necessary background knowledge to understand the depen—
dency diagram, so usually there is no need to repeat it.

The number of actions with unconditional results in figure 1 1.5 suggests a wayto simplify the diagram even more, shown in figure 11.6. In fact, all of the actionsfrom transfer toner to copy to charge belt are, from the standpoint of the software,
just one action: rotating the belt. When the blank copy reaches point B, rotating the

remove
original

Feed original only to
make first copy; original
stays on glass platen until
belt is exposed for the
last copy

orlglnal available

feed
original

original on
glass platen

to light
Belt must cycle once
before first copy after
powemn, to ensure
that belt Is charged.

no or gmal
on glass platen

blank sheet
available

notify
operator

rotate
belt (1)

(01818
belt (2) a is any

arbitrarily
chosen polnt on
the belt.\ A

move
copy to

output tray
A and B are

fixed points on
the copier, outside

g; the belt,

fusxng rollers
heated

Figure 11.6 Final dependencydiagram for photocopier,showing only actions and conditionswhere the software faces an alternative

DEPENDENCY 229

belt also rotates the copy through the fusing rollers, so there’s no need for a separate
step to fuse the toner to the paper. When a portion of the belt passes by a corona
wire, that portion of the belt is charged by the ions spraying from the corona wire,
and so on.

The two rotate—belt actions are to stop when point d on the belt reaches specified
fixed points A and B. How to determine when point a has reached points A and B is a
matter for the text. There could be switches at points A and B, or perhaps the onlyway
for the software to tell is by timing.

These three dependencydiagrams, each simpler than the previous, illustrate a very
frequent phenomenon in system analysis: the more you think about the problem, the
simpler it becomes. Sometimes the opposite is claimed, and indeed sometimes the
opposite is true, but one of the most important jobs performed by a system analyst is to
boil all the complexity down, discovering the simple, underlying principles and remov—

ing irrelevant details. A simple diagram, accompaniedby some simple text that includes
all the information in an easily understood form, is usually the result ofmuch greater
intellectual effort than a sprawling, complex diagram in which secondary or irrelevant
details obscure the main facts. A reader should not have to study a diagram for two
weeks and then draw his own, simpler diagram; that’s the analyst’s job.

There are other ways to make dependency diagrams. [Martin 1985] includes
(among other variations) notations for indicating that if any of a set of conditions is
true, an action should proceed. The approach taken here, however, is that it’s easier and
clearer to simply write the word “or” in the diagram, and to express in words any infor—

mation that’s difficult to draw in a graphic. Also, note that diagrams 11.4 through 11.6
describe the problemdomain, not the software.

The types of concurrent processes described by dependency diagrams are the sub-
ject matter of an entire branch ofmathematics, known as Petri nets. A dependency dia—

gram is really just a somewhat less formal and somewhat more readable version of a
standard Petri net diagram.

11.3.1 Interruptions
Complicating most control problems, especially those involving the control ofmachin-
ery, is the possibility of interruptions: spontaneous actions that can occur at any time and
that necessitate stopping a process, possibly aborting it, or recovering in some way once
the interruption has finished.

For each possible interruption, the requirements document needs to include the
following information:

230 CHAPTER 11 CA USA TION AND CONTROL

' The nature of the interruption. In the photocopier, examples would be paper jamsand door openings.
' Any effects of the interruption. Opening the door of the photocopier, for example,causes all charge to be removed from the photoreceptor belt, destroying any electro—

' Any parameters that can vary from one instanceof the interruption to the next° How the interruption can be detected. For example, detector switches in the photo-copier that connect to I/O ports on the microprocessor' Which actions the interruption can interrupt' How to respond to the interruption; especially, how or whether to resume theinterrupted process
The last item is usually another requirement; it’s equivalent to the requirement forhow to respond to a failed action. In the photocopier, responding to a jam involvesbeeping, turning on a light correspondingto the jam, and waiting for the operator to fixthe jam. Resuming the interrupted process, however, can be more complicated.Perhapsthe current step can be restarted, perhaps it’s necessary to back up one or more steps,

parts enter the process, and are transformed into assemblies—or the transformationmight be as simple as moving the part from one place to another. Or, in a chemical pro—cessing plant, material enters a machine in one state and exits in another, perhaps as adifferent compound.
We think of the people or machines as active, and the objects that they operate onas passive. The people or machines are the agent: of the software, performing operationson the passive objects in response to requests initiated by the software, readying theobjects for the next phase of the process.*This kind of process lends itself well to a variation on a dependency diagram,

’ The noun correspondingto passive is patient, but in contemporary usage, the only patients that we all by
that name are the ones found in doctors’ offices, so we’ll just call thempassive abjemor simply objects.

FLOW

727

(a) Ordering books
from a publisher.

publisher books
order

purchasmg receiving
dept, dept.

books

warehouse

(b) Fulfilling an
order from a
customer.

k
books at

k dstoc Wang pac e

pickers
‘ station books

delivery service books loaded

books can't find book refuses shipment onto vehicles

can't deliver
warehouse customer to customer deliyery

servroe proposed serVIces
changes fulfilled

order

orders,
changes,

cancellations

Figure 11.7 Two processes in a book distributor’swarehouse. depicted in flow diagrams

transformed, ready for a transformation, or both. Figure 11.7 shows two examples,
from a book distributor’s warehouse.

These diagrams are very similar to the much—criticizeddata—flow diagrams There
are two important differences, The first difference is that what is flowing is not data, but
physical objects—in this case, books. For this reason, we’ll call this simply a flow did-

gmm, not a data—flow diagram?“ There is some information flowing, such as the stock

* Gane—Sarson charts are a kind ofdaravflowdiagram that also allows “physical flows.” See [Martin 1985},

p. 103‘

232 CHAPTER 1 1 CA USA TION AND CONTROL

pickers’ notification that they can’t find a book, but the data does not necessarily flow toor from the software. The diagram simply traces objects through a set of transformationsby agents.
The second difl‘erence is the way we use a flow diagram.A flow diagram describes

something that already exists or, at least, that is already designed. It is not a high—levelsketch of the program to be designed. Rather, it provides information about the problemdomain that is relevant to the design of the program. The accompanying text providesall the remaining detail: how the stock pickers can be told to go to the warehouse to pickbooks, rules for determining which orders to satisfy and which to reject, and so on. Sowe aren’t trying to design by functional decomposition;we’re merely describinga How ina simple way.
Even though many agents or actions in a flow diagram produce only one result, thediagram shows the result in words in each case. The reason for this difTerence from adependency diagram is that the purpose of a flow diagram is to show a reader the conti-nuity from process to process. A reader should be able to easily trace each object as itmoves from agent to agent.
Naturally, there is no reason that you can’t combine a dependency diagramwith aflow diagram. Figure 11.7(b) does that to some extent, with the thinner arrows denotingproblems encounteredby the stock pickers, shippers, and delivery services.

11.5 Rules
The following is from page 7 of the instructions for the 1997 edition ofForm 1040, theform for declaring income, expenses, and taxes owed to the United States government:

‘l THEN file a
, return if your
l AND at the end of gross income”IF your filing status is I 1997 you were‘ was at least

Single under 65 $6,800

65 or older 7,800
Married filingjointly*** under 65‘(both spouses) $12,200

65 or older (one spouse) 13,000

65 or older (both spouses) 13,800

RULES
233

Married filing separately any age $2,650

Head of household under 65 $8,700
(see page 10)

65 or o|der 9,700

Qualifying widow(er) with under 65 $9,550
dependent child
(see page 10) 65 or older 10,350

*lf you turned 65 on January 7, 1998, you are considered to be age 65 at the end of
1997.

”Gross income means all income that you received in the form of money, goods,
property, and services that is not exempt from tax, including any gain on the sale of

your home (even if you may exclude or postpone part or all of the gain). Do not in-
clude social security benefits unless you are married filing a separate return and you
lived with your spouse at any time in 1997.

*" *If you did not live with your spouse at the end of 1997 (or on the date yourspouse
died) and your gross income was at least $2, 650, you must file a return regardless of
your age.

Here we have a first-rate description of a moderately complex rule.‘ The descrip—

tion techniques appliedhere workwell on a great many rules. They are:

' Make a table (a matrix).
0 Keep complicated exceptions and definitions out of the table and in notes that

accompany the table.

" The instructions prepared by the United States Internal Revenue Service are some ofme finest technical
writing in existence They’re hard to appreciatebecause you read them only to do a task youwould much
rather not do, but that makes them all the more worthy of appreciation The instructions are written for

an audience that does not want to read them. Much of the audiencedoes not read well or is uncomfortable
with arithmetic,and the information to be communicated is tremendouslycomplicated—specialcases and

exceptions abound. We learn far more from imitating great examples than from abstract explanations—
even those in this book—but in the computer field, due to the Fact that nearlyall work is proprietary,we
seldom have opportunity to inspectgreat examples. But you can learn from other sources, too. In the Form
1040 instructions, notice how complex the information is, how simple the presentation is, and the tech—

niques ofwording, layout, and organization that bring about that simplicity. There are clever flow charts,

eKectiVe use ofshading to make numerical charts easier to read, lines of text that don't contain too many
characters (see Page layoutinchapter 15), references to other pages and other documents in place of saying
too many things at once, and so on.

234 CHAPTER 11 CA USA TION AND CONTROL

A terrible way present this same rule would be to split it into many complete sen—
tences, like this:

R—22 Ifyour filing status was single and at the end of 1997 youwere under age 65 and
your gross income was at least $6,800, then you must file a return.
R—23 Ifyour filing status was single and at the end of 1997 youwere age 65 or olderand your gross incomewas at least $7,800, then you must file a return.
R—24 Ifyour filing status is marriedfilingjointly and you did not livewith your spouse
at the end of 1997 or on the date your spouse died and your gross incomewas at least
$2,650, then you must file a return.

R—25 Ifyour filing status is married filingjointly and you lived with your spouse at theend of 1997 or on the date your spouse died and at the end of 1997 both spouses wereunder age 65 and your gross incomewas at least $12,000, then you must file a reurn.
R—ZG Ifyour filing status is married filingjointly and you lived with your spouse at theend of 1997 or on the date your spouse died and at the end of 1997 only one spouse
was age 65 or older and your gross incomewas at least $13,000, then you must file a
return.

And50 an.

Notice that in the one—statement-at—a-time version, you can’t easily see relationshipsbetween different parts of the rule. For example, you can’t easily see that every rule per—tains to whether or not you’re supposed to file a return! The fact that each filing statushas a cut-ofi' point of age 65 for differentminimum gross incomes is also buried in the
text. Finally, the text has serious problems with ambiguity because English syntax has
difficulties expressing any but the simplest andand or relationships.*

11.5.1 Mapping: and completeness
Every rule is a mapping: a set of tuples, each containing an element from one set and a
corresponding element from another set (or perhaps involving more than two sets).
Rules are thus exactly the same as the relations described in chapter 9.

The practice ofwriting requirements as long series of nearly identical statemenm derives from the unfor-
tunate theory that a requirement should be uatomic"—incapableof division into smaller propositions.Amuch better philosophy is that each proposition should be clear to the readerand that groups ofproposi-tions should be numbered according (0 whatever is most convenient for referringto them in other docu-
ments. See Requirement rtatmmtr in chapter 15.

RULES 235

trouble types departments

terminal/workstation won't respond

.

network administrators

need new connectionwrred up

webeaccess problems maintenance

TeX problems software gurus

Mathematics problems

printer problems
Macmtosh lab staff

Figure 11.8 Domain and range in trouble-ticket rule

However, chapter 9 explained how to describe a set of tuples that could potentially

be included in a relation—the cardinality of the relation and the kinds of sets that it

relates.When describing a rule, you indicate the actual tuples in the relation. You don’t

merely say, “Every combination offiling status, age, and gross income has a correspond—

ing yes or no for whether to file a return.”You actually saywhich combinations offiling

status, age, and gross income correspond to having to file a return.

A simple rule is shown in figure 11.8, relating classifications of trouble tickets in a

university computer system to the departments that fix them. A piece of software might

be responsible for routing trouble tickets to the correct department.

The set on the left, trouble type, is the set of all possible inputs to
the rule. The job

of the rule is to produce the output that correspondsto a given input. The set of inputs

is called the damain of the relation; a variable that stands for an
elementof the domain is

called an independent variable. The set of all possible outputs is called the range, a vari-

able that stands for a correspondingelement of the range
is called a dependent variable.*

A rule is complete and consistent if it maps each element
in the domain to exactly

one correspondingelement in the range. Elements in the range need not map back to

the domain in the same way. In figure 11.8, none of the trouble types maps to Macintosh

lab staff, and the rest of the departments map back to more
than one trouble type./’ Unfortunately,the word damainalso means any set distinguished for the purposeofmaking propositions

about its elements, as in chapter 4, and the word range
also means a set ofelementshaving a lower bound

and an upperbound. Hopefully this multiplicity
of senses won't cause too much confusion.

236 CHAPTER 11 CAUSATION AND CONTROL

If, for some reason, a single trouble type could map to more than one department,then the range would be “sets ofdepartments”rather than just “departments.”While you can sometimes depict the tuples that make up a rule by drawing linesfrom one set to another, as in figure 1 1.8, usually a matrix is your best bet:

trouble type department
terminal/workstationwon’t respond network administrators
need new connection wired up maintenance

webaccess problems network administrators
TeX problems software gurus
Mathematics problems software gurus
printer problems maintenance

L
other software gurus

11.5.2 Discontinuities
In the case of the rule for filing tax returns, the range is very small: {must file tax return,need not file tax return}. But the range is enormous: it’s the set of all combinations of allfiling statuses, ages, and gross incomes. The complete rule looks like this:

((Single, age 0, gross income $0), no need to file return)
((Single, age 0, gross income $1), no need to file return)
((Single, age 0, gross income $2), no need to file return)
((Single, age 0, gross income $3), no need to file return)

The excerpt from the Form 1040 instructions illustrates an important technique inrules with very large domains: exploit discontinuities in the rule—borders in the domainbetween subsets that follow different, simple patterns. Where many elements of thedomain follow a simple pattern, you can cover them all in a single row or column of amatrix, as at the beginning of section 11.54 A separate row or column covers the nextgroup, and so on. Thus, you reduce a complex rule to a conjunction of simple ones.

RULES
237

Usually, it’s obvious when you can exploit discontinuities, but if you’re having

difficulty describing a rule, it’s wise to see if you can find a relatively small number of
discontinuities.

11.5.3 The bird’s—eye view
Sometimes it’s tempting to describe a rule by writing it in program code or in “struc—

tured English” pseudocode. For example, when describing the rule for how lines from

the record groups in a report fit onto pages, in between the header and footer, youmight
write the rule as a procedure, like this:

N = 0
print header
while there is at least one more record-line

print next record-line
N = N + 1

if N > page-lines - (header-lines + footer lines)

print footer
eject page

end if
end while

Much better is to take a bird’s—eye View of the record lines, and talk about entire

groups of them at once, like this:

N = page-lines — (header-lines + footer—lines).

Distribute record—lines to pages as follows. Each consecutive page contains either
the next N record-lines, or however many record-lines are left to print, whichever
is less. For each page, print the following in sequence:

The header.
The record-lines for this page, in ascendingorder.
The footer.
Page break.

If you take a moment to look at the pseudocode above, you’ll notice that it’s full of
bugs. Despite the best efforts of language designers, general—purpose programming

238 CHAPTER 11 CA USA TION AND CONTROL

\RULES 239

CHAPTER 12

Special topics
12.] Elicitation
Elicitation, the process of interviewing people to learn about the problem domain anddiscover requirements, goes beyond the scope of this book, as it includes many elementsthat

241

are unrelated to documentation, such as:

Navigating through an organization to find the people who really understand theproblem. Because of their thorough knowledge, these people are usually the busiestin the organization and don’t have time to talk.
Askingpeople questions that, to them, seem stupid or ignorant without losing yourcredibility

Resolving contradictionsbetween statementsmade by differentpeople
Noticing that different people are using the same term to denote different conceptsSensing when people don’t understand what you’re talking or asking about, andadjusting your presentation to suit them

‘ Sifting through reams of (usually) out—of—date and badlywritten documentation to

find a few nuggets of fact. How can you tell which are the most likely to be worth

staring at for three hours?

' Hearing what people really have to say when you came to ask about something

else. The problem domain is often very difiicult to ask about because you know

little or nothing about it in advance. How can you ask about the requirements of

the capacity—planning committee if you’ve never even heard of the capacity—plan-

ning committee?
° Keeping the project from going beyond its scope. Once customers find out that you

can give them something, they immediatelywant more. Should that be included in

the current project or contracted for separately?

- The art of asking pertinent questions

However, understandingwhat content is needed in a requirements document
is the

most fundamental part of elicitation. Ifyou don’t knowwhat kind of information you’re

searching for, you’re going to have a very difficult time asking people for it.

There are two classic mistakes in elicitation that are easily avoided once you under-

stand that requirementspertain to the problem domain, not the software:

I. “The customer don’t know what lye wants. ”

If the customer is not an expert in software, it follows that he can’t be very specific about

how the software should behave, how the database should be organized, or whether the

software should have a client-server or three—tier organization, nor can you depend on

him to specify backup procedures. The customer understands the problem domain, not

the software. It was to bring about some condition in the problem domain that the cus—

tomer contractedwith you to write the software. Ask about that, and miraculously
the

customer does knowwhat he wants after all.
When analysts pooh—pooh the problem domain in favor of their own domain of

expertise, the result is almost always angry customers. Today, you can go to
almost any

large organization that has paid tens ofmillions of dollars for custom software to help

it manage its procedures and find rancor throughout the staff, still directed at the con-

tractor years after the project failed. Employees will tell you, “They never came

around to ask us how we do our work. They never learned our terminology. It was as

if they weren’t even interested in how people here would use the software. We tried to

tell them that the admissions department uses a different approval procedure, but they

just wouldn’t listen!”

242 CHAPTER 12 SPECIAL TOPICS

2. Arking the customer to design the rofi‘wzzre.
The opposite error of ignoring the customer is dutifully taking down and implementingeverything the customer says—about the software. “Do you want this to be a Booleanfield or a real? Single or double precision floating—point? Where do you want the fieldsarranged on this screen? Radio buttons or drop-downs?”

This leads to confused customers and poor software. If the customerhas some sug-gestions for things like screen layouts, certainly listen; indeed, solicit such suggestionsand always test out prototype screens on real users. But first-rate software developmentcomes from people who know software well and who learn the problem domain wellenough to apply their skills.

Documentation is, itself, a tool of elicitation. if the customer can understand thedocumentation and sees that it’s relevant to their business (rather than a lot of jargonthat they can’t understand), they can provide a lot of valuable information by review-ing the requirements.
If the customer says nothing at the first review of the requirements, except perhapsto nit-pick about wording in a couple places, that is a strong sign that the customer didnot understand the document. When people have read and understood a document,they usually have many comments and new ideas, all pertaining to the content, not tospelling or whether the same statementwas worded identically each time it was made.

[2.2 Object-orientation
Often a junior technical writer is put onto a new project and hears from the program-mers that the program is being written in an object—orientedlanguage. Many then ask,“How do you write me user’s manual for an object—orientedprogram?”The answer, of course, is that it is written exactly the same way as for a computerprogramwritten in COBOL—68 or hand—coded machine language. In other words, thereis no difference at all. The reason is that object-orientation is a way of structuring pro—gram code, whereas a user’s manual describes the user interface and, in some cases, theproblem domain. Program structure and user interface are two different subject mat—ters—two different domains.

As object-orientation pertains exclusively to program structure, and neitherrequirements nor specifications describe program structure, it follows that there can beno such thing as object-oriented requirements, “Object—oriented requirements” is aphrase like “roasted effervescence”; the two concepts just don’t go together.

OB15c:ORIENTA TION 243

Nevertheless, a lot of people in the software
industry today are excited about apply-

ing object—orientation to requirements. It’s worth understanding why because it often

leads to a more serious mistake than an incongruous
phrase.

12.2.1 Two types ofprogram structure
Back in the days when structured programming—programmingpartly

based on func—

tional decomposition-was the state of the art in program design, some people had the

idea of extending it outward to analysis. Thus was born
structured analysis.

Programs at that time tended to
have what we now call a function—oriented struc-

ture. Program code was distributed among a number of subroutines
called functions.

Each function operated on data in some way, receiving data from a function that

invoked it, and generating output data in return. Data
that needed to persist from one

function invocation to the next was stored in “data stores." Each data store held one

type of data. A single data store might hold all the customer
data, another all the invoice

data, and so on. Any function could access any
data store.*

This structurewas well suited to
data—flow diagrams, as illustrated in figure

12.1.

Structured analysis called upon the analyst to
describe system behavior in terms of

functions analogous to the functions of programming
languages. Just as each program

function accepted input data and generated output data, sometimes depositing data in

__’_——
data data store’—data

data

Idata store ““3

——-——

Figure 12.1 Typical data-flowdiagram from

structured analysis//" There's more to structured programming than the function-oriented program structure, but this is all

that’s relevant to our discussion ofapplyingprogramming
methods to requirements. In fact, the majority

of structuredprogramminglives on in object—oriented programming.

"” CHAPTER 12 SPECIAL TOPICS

or retrieving it from a data store, system functions did the same. A programmer’s jobwas to decompose the system functions into program code. As described in section 3.7,the analyst dictated the high—level structure of the program; the programmers thenrefined each function into executable code. The functions specified by the analyst wouldbecome the design units tested by the testers at the first stage of testing.Requirements, as described in this book, were still a longway off. Analysis was seenas essentially no diEerent from program design, just not concerned with the details.Hence, it seemed reasonable to extend the principles ofprogram structure to the specifi-cation of the program. This, ofcourse, we now see as a mistake. Most fundamental ofallis to describe the problem domain and state what the customer desires there in terms ofthe problem domain. A program specification is properly the description of an interfacestill written in terms of the problem domain, not the program domain.In an object—orientedprogram, data types are bound together with subroutines,called functions or methods. Only the fiinctions associated with a given data type canaccess or modify data of that type. Other functions can only access the data indirectlybycalling those functions. For example, a customer data type might have functions thatcreate a new customer, delete a customer from the database, change a customer’saddress, retrieve a customer’s balance, and so on. The data type in the abstract, alongwith its functions, is called a class. An instance ofsuch a data type, such as data about anindividual customer, is called an object—hence, object—orientedprogramming.The purpose of organizing the program to allow data to be accessed only throughrestricted channels is to ensure the integrity of the data, as shown in figure 12.2. Theget_name and seLname subroutines are the only functions that can access the name dataelement. Only the get_amount subroutine can access the amount data in an invoiceobject. For update_baiance to access the amount of an invoice, it must call uponget_amoum.

customer invoice
name invoicemumber
addres:\ amount\balance

createcreate deletedelete addilmejternget_name deletefiiineJtemseLname get_amountget_address
set_address
\updaieibalance .i

Figure 12.2 Narrow channeling of data flow in an object-orienteddesign

OBJECT-ORIENTATION 245

By limiting access to data through a very narrow channel, when data definitions
change—the most common result of a change in the problem domain—an object—ori—
ented program doesn't need to change in as many places as an equivalent function—ori-
ented program. In a function—oriented program, if twenty different functions read or
write the customer data store, and the format of the customer data store changes, then
twenty different functions need to be modified. Each modification has a small but sig-
nificant chance of introducing a bug; twenty changes almost guarantee a bug. In an
object—oriented program, the only functions that need to be changed are the relatively
few and simple ones that provide the interface to the data in the customer class.

12.2.2 The mistake
Now we can understand the temptation to create object—oriented analysis, extending
program structure to requirementsjust as structured analysis did. The job of the object—
oriented analyst is to define a set ofclasses alongwith their accompanyingattributes and
operations. The job ofprogrammers is then to convert the class operations into subrou-
tines, adding whatever internal support the programmersfind necessary.

You will recognize this as precisely the same mistake at the foundation ofstructured
analysis. Requirementsdescribe the problem domain. Describing program structure is
no way to describe the world outside the computer.Attempting to describe the problem
domain in programming terms is a force—fit; the problem domain must be distorted to
fit the description techniques, instead of the other way around.

The distortion is well illustrated by an example commonly used to introduce peo—
ple to object—orientedanalysis and design. Consider an oven and a cookie. Which gets
the bake operation?

Many people reply that the oven should have the bake operation. After all, ovens
bake cookies; cookies do not bake ovens.

In a good object-orienteddesign, however, the bake operation properly belongs in
the cookie class. Seeing things this way is the “paradigm shift” that’s required in order to
do object—orientedanalysis.

The reason the bake operation belongs in the cookie class is because there are likely
to be many different kinds of food, each with its own set of instructions for how to bake

Figure 12.3 Which gets the ‘baka' operation?

246 CHAPTER 12 SPECIAL TOPICS

it. A roast cooks at a different temperature and for a different time than a cookie or a pieor a soufl'le’. Some foods need to cook at one temperature for a certain time, and thencook some more at a different temperature.The possibility for special cases in the bak—
ing process is endless.

If the oven class contained the bake operation, it would consist of a very largeswitch statement, where each case contained the instructions for one type of food. Thusthe bake operation would have to “know” about every kind of food. It would be a mon-strously large subroutine, and people would have to modify it every time a new kind offood was added to the requirements.
If the bake operation is a part ofeach food class, however, each bake subroutine canbe very small. Each bake subroutine only knows how to call the oven subroutines, such

as set_temperature. You can add a new food class by simply adding it; you don’t need tomodify any existing code. Thus the program organization is much more resilient. Themost likely changes to requirements will lead to very small changes to the programstructure, each with a virtually negligible chance of introducing a bug elsewhere in the
program. Therefore the requirementsdocument should state that cookies do the baking,and ovens merely have their temperaturesset.

Now wait just a minute. What is the state of affairs in tbeproblemdomain? In theproblem domain, there is simply the action of baking, involving both an oven and acookie. The action occurs as long as there’s a cookie in the oven and the oven is on. Dif-ferent types of food have differentoven temperaturesand durations of baking.That is all. We do not need a “paradigm shift” to understand the rules for how
ovens bake cookies. 50 how did the description become so warpedwhen object-orienta—tion got hold of it? Notice that all of the reasons for associating the bake operation withcookie had to do with program maintainability and program simplicity. But what rele—
vance does program maintainability have to baking? In the pure problem—domain
description, there was no need to associate bakingwith just the oven or just the cookie.The need to attach an operation to just one class is part of object-oriented design. Anobject-oriented program consists of a number of classes with associated subroutines.Asubroutine can be associated with one class, no more.": In the real world, by contrast,there are no such limitations, and we have no reason to conform to such limitationswhen describing the real world.\‘ One might object that friends in C++ enable bake to operate on both classeswithout being bound to ei-ther, and that so-called generalized objectmodels do not requireoperations to be bound to a single class.Indeed, whenever we discover a misfit between program elementsand the problem—domain elementstheyare supposed to map to, we can definenew kinds ofprogram elements. Thus, progress in software methodsmarches ever onward. However, this is all beside the point. Allocatingthe bake operation to cookie is gooddesign. The lesson is that we should describe the problem domain in its own terms, not translate it intoprogram terms. That’s the programmers’ job.

OBJEC T- ORIENTA TION 247

Douglas Bennett gives the name behavior allocation to the act of choosing which

subroutines to associatewith which classes,
and which subroutines callwhich other

sub—

routines. “The behavior-allocation decision has the biggest impact on the system.”

Behavior allocation will become a central concernof the programmers
when they design

the program, but it is of no concern to a requirements document or a specification

(except, as usual, in that requirements and specifications provide the information

needed by the programmersto make the design).

So the next time an object—orientation enthusiast tells you
that their classes and

operations are an abstraction—that is, a description—0f the problem domain, you will

know better. If the description includes predicates involving message—passing or one

subroutine (or “function” or “operation" or “method”) calling another, then you will

know that it’s really a descriptionof a program.
The opposite, and more common, mistake

from distorting the description of the

problem domain to suit a particularmethod of structuring programs
is to have the ana—

lyst design the classes and methods. Whereas in structured analysis, the analyst
specifies

the top-level subroutines for programmers to
implement, an object-oriented analyst

specifies the top—level classes and methods for programmers to
implement (methods just

being subroutines that interface to
the data in classes).

This is an even worse disaster than merely Writing down a distorted picture of the

problem domain. Behavior allocation is not only one of the most momentous decisions

in program design, it is one of the most difficult to
do well. Object—oriented design is

just as prone to spaghetti as function—oriented design. The difference is that in the hands

of a skilled practitioner, an object—oriented design can be much cleaner and open to

likely modifications than the best function-oriented design. If the system analyst does

not have experience with object—oriented programming, then it is very unlikely that

their choice of behavior allocation will turn out well once the programmers
flesh it out

in code. Herewe see the fallacy of top—down design all over again (see section 1.1).

Notice also that object—orientedanalysis implicitly casts all software problems into

the workpiece frame. This is not necessarily a disaster. You can certainly create a func-

tioning information system by treating it as a set of workpieces that users can create,

view, update, and delete. But during analysis,
it’s better to keep one’s focus on the prob—

lem domain: to describe the real world of things and sequences of events, rather
than to

start by inventing the operating procedures and computer activity that respond to
those

events—the “use cases” that are popular with object—oriented methods (see

section 12.3)./* [Bennett 1997], p. 132.

’71}?
CHAPTER 12 SPECIAL TOPICS

12.2.3 A dzfifermt kind ofdang”patternThe explicit recognition of design patterns began in the object-oriented programmingcommunity." As this book advocates an approach to requirements based on knowndesign patterns, it may seem that object—orientedprogramming might still have some—thing to offer requirements. Alas, it is not so.
The types of patternsofconcern to requirementsare patterns of entire software sys—tems and the problems they solve. These patterns, such as the information system andthe controller, are based on a wide variety of techniques in computer programming:well—known algorithms, data structures, the principles of relational databases, I/O bufl;ers, standard user—interface elements, lookup tables, parsing methods, and so on. Mostof these techniques apply to more than one problem frame, but the existence of thesetechniques guarantees that, in most cases, a problem that fits any of the frames can besolved. We’ve learned to recognize the patterns at the level of the software system as awholemainly because people have combined the underlying techniques—the program-level design patterns—so many times. Ideas such as hash tables and state-table—drivenparsers enabled us to write software that solved problems that we did not know how tosolve before. Writing a compilerwas once a research project. Now that the tools andtechniques are well understood, studentswrite them in undergraduate courses.Object-oriented design is a different kind of innovation. It pertains to how to orga-nize the program code that implements the other kinds of ideas. It is not itself a newalgorithm or data structure, and it does not solve a customer’s problem.T Rather, itsolves a problem of the programmer’s: how to manage the complexity ofa large programand allow its data types to change without requiring massive changes throughout theprogram. Anyone who has written a program of 1000 lines or longer knows what animportant problem this is.

However, object—orientation provides no new capabilities to the world outside thecomputer. No new requirements-level problem frames can be defined for object—ori—ented techniques.
An example of a type of software innovation that does entail a new problem frameis encryption algorithms. Encryption could conceivably be forced into the controlproblems frame, in that encryption enforces rules about who can and can’t access data.However, different encryption methods involve different kinds of parameters thanthose that pertain to control in general. The major questions to answer before choosingand implementinga known encryption technique are what kinds of keys there are and\‘ [Gamma 1995] is the watershed work.

1' Except, perhaps, to reduce bugs and lower maintenance costs.

OBJECT-ORIENTA TION
249

how each party is to access the keys. The particular algorithm itselfmight be specified

in the requirements.
Encryption techniques, like the methods of sorting and searching, enable us to

solve new kinds of problems in software. All object—orientation can add is very clean

ways of delimiting encryption subroutines from the rest of a program.

12.3 Use cases andfézzture—intemction
There is a style of programmingknown as “hacking around.”When you hack around,

you write a little bit ofcode to address one case that the program
needs to handle. When

another case comes along, you tack on a little more code. When you discover a problem,

you tweak a little bit of code here and a little bit
there until the problem goes away.

The resulting program is a “hack”——a patchwork of little snippets of code and

little fixes, usually containing more bugs than anyone could find and correct in sev—

eral lifetimes. The reason for the bugs is that each little fix addresses only one case

without considering its impact on other parts of the program. Nearly all programs,

no matter how well-structured, have complex interactions between all their parts.

Changing one part of a program often necessitates changing other parts, too. The

more hacks, the more complex the interactions, and the more damage can be done

by the next hack.
A use [are is a description of one case of a program being used—a single path

through system functionality, showing each action initiated by a user, piece of hardware,

or other software (collectively called actors) and the program’s response.T The program

can also initiate a use case, such as when performing a scheduled event. A use case is,

thus, a little dialogue between one or more actors and the program. A use case might

have a few alternative behaviors to handle unusual conditions, but a use case should flow

linearly from beginning to end; otherwise, it’s not one case but several.

Here’s a typical use case:

Chet/e out boo/e
Librarian scans in library card of borrower. If the card won’t scan, do Replacemm'and

try again. Librarian scans in bar code from book. If the bar code won’t scan, the librar—

ian types in the book numberi The system marks the due date of the book twoweeks

later than the current date, and the small printer prints out a slip showingthe due
date.

The librarian gives the slip to the borrower.”’4‘ Not to be confused with the practice hackinginto computer systems—thatis, gainingunauthorized access.

T Use caseswere first presented in [Jacobson 1992], pp. 159—166.

250 CHAPTER 12 SPECIAL TOPICS

events can you see all possible cases and understand how Changes made to one caseaffect others.

writing use cases as they come to mind is the equivalent, in requirements, of program—ming by hacking around. There are two main problems. First, because use cases describeinteraction between the system and the outside world, use cases are specification, notrequirements. They are descriptionsof interfaces in terms of information flow, leavingout such matters as screens. This means that you’replunging into interface design before

display book availability, make new card, replace card, add new book, delete book. Arethose all the use cases? No, there’s also: send mail for late fees. The mail is sent electron—ically if the borrower has an email address, and by regular mail ifnot. Are those two usecases or one? Are we done? No, there’s also a use case to change a book’s information ifit’s wrong. But that’s all going to be on the same screen as the use cases for adding anddeleting, so do we really need a separate use case for it? Now, suppose that the customerwants the system to support somethingnew, such as, borrowers from outside the univer—sity who have to pay $40 a year for borrowingprivileges and have a different amount oftime that they can borrow books. Do you make new use cases for this new kind of bor—rower or do you modify the old use cases? Which use cases have to change?A good problem frame constrains the problem, enabling you to be systematic. Thetypes of frames shown in chapter 4 apply only to specific types ofproblems: for controlproblems, you document the causal rules that govern the problem domain and theadditional causal rules to be imposed on it; for information problems, you documentall possible behavior in the problem domain and all information about the problemdomain to be supplied, and leave out causation; and so forth. Recognizing one of thoseproblems, you have the beginnings of a systematic approach (though only the begin—nings, ofcourse).
Use cases can’t constrain a problem, because they can fit any problem.The “use-caseframe” looks like figure 12.4. The requirement is: the system responds in specified wayswhen the actors act in specified ways, or the other way around; in other words, the sys-tem interacts with actors. What wouldn’t {it this problem frame? Because the use—case

USE CASES AND FEA TURE-INTERACTION
251

actors system

Figure 12.4 Problem frame for use cases

frame applies equally well to all software problems, it includes no information specific to
any software problem. It gives you no pertinent questions to ask in researching it, and it
provides no help in finding the seams in the problem for purposes of dividing it into
smaller pieces. The only question it leads you to ask is the most generic one: “What
would you like to do with the system and howwould you like it to behave?”

If your requirements document is a set of sixty somewhat—connected use cases, you
need to reframe the problem. No one will ever be able to understandhow they all interre—
late. Even software for a small college library can easily grow to over a hundred use cases.

On the other hand, use cases can be applied in a disciplined manner—not as
requirements, but as parts of a specification that solve a problem that has been well
defined in the requirements. If the requirements document describes the lifecycle of a
book, showing each stage that the book goes through, from being acquired, through
borrowing and returning, and finally being lost, sold, or given away, you can write a use
case for each of these events. This type of use case is described in section 10.3 as event
responses and operating procedures.

When you write an operating procedure, you begin with a very specific question
derived from the problem: “How do I get the system to know that a borrower is
attempting to borrow a book?” or “How do I get the system to know that a book has
been returned?” The problem itself is not framed in terms of use cases, but in terms of
controllingbooks and tracking events that change the state of books.

If the library’s administration or lending procedures change, you now have a sys-
tematic way to see which operating procedures the change affects. You have diagrams
showing all possible sequences of events. The diagrams show you which event descrip—
tions to change. Because the event descriptionsmap to operating procedures, you know
which operating procedures to change. The process is seldom this mechanical, but hav-
ing a well defined problem that maps to a suite of simple operating proceduresmakes it
much easier to update software in response to Changing requirements.

252 CHAPTER 12 SPECIAL TOPICS

12.3.1 Feature interactian
Whenever you write requirements or specifications, you need to be on guard against aproblem that plagues nearly all such descriptions: feature interaction. Feature interac-tion is unanticipatedoverlap between two different descriptions, such that they conflictor leave a gap. They’re best illustrated by two use cases:

Callfomam’ing an 514;]
Caller A places call to caller B. Calle
on busy active. The system reroutes
Connect call.

What could be a simpler and more logical description than this? It covers just oneCase, covers it very clearly, and even covers it from the user’s point ofview.Now let’s move on to call waiting:

Call waiting

It’s unlikely that anyone would seriously consider writing the requirements for afull—scale telephone switch as a set of use case , but this example illustrates why use casesare dangerous. Here, the problem has been grossly misftamed. The problem is todescribe the behavior of certain telephone equipment: which telephone lines are

USE CASES AND FEA TURE-INTERACTION
25?

supposed to connect to which other telephone lines in response to which events. The

telephone equipment is not even mentioned in these use cases, due to a misguided focus

on “the user.” By systematically describing events that affect specific categories of
telephone equipment, the interaction would be obvious.‘

These two use cases also contain an ambiguity, common when use cases are applied
to complex software: which actions in the use case necessarily happen, and which could

happen another way, in another use case? If you make “Call to busy line” one use case,

and “Call to open line” another, then you must indicate which events in each use case

distinguish the use case from all others, which events the designers can safely assume will

happen, and which events the designers are required to make happen. You might also
consider describing the activity in terms of state changes, or any way you can think of
that enables you to see all possible alternatives at once.

12.4 Reviews
Before signing OH on a requirementsor specification document and sending the team
off to implement it, you should have the document reviewed by everyone concerned:

' The customer
' The project manager
0 The user—interface designer

The programmers
° At least one tester
° At least one technical writer

These people can help improve both the form of the document and the design deci—

sions‘l‘ expressed in it. Each reviewer can see problems that you couldn’t have antici-

pated, because your concerns and areas of expertise are so different.
The classic work on the subject of document reviews (as well as code reviews) is

[Yourdon 1989b]. It’s filledwith useful procedures and techniques (as well as psycholog—
ical insights into many of the participants) explaining why they sometimes get derailed
from the task of improving the document. None of that will be repeated here, except
this one principle: during the review, the participants bring up problems that they

* See [Zave 1993] for an excellent introduction to feature—interaction, includingmanywonderfully thorny
examples from the worldof telephony.

T Remember, requirementsare design. See section 2.3.

254 CHAPTER 12 SPECIAL TOPICS

rwould like to see addressed, and that is all. There should be no attempt made to reach aconsensus about how to best solve the problem. Afterward, you talk to each reviewerabout how you’ve decided to solve the problem, or perhaps you solicit suggestions forsolving it. If you try to combine both problem—identification and solution in the samemeeting, you probablywon’t get through the document in an entire afternoon, unlessit's only two pages long.

[2.4. 1 Document ratings
One type of feedback that you should not solicit is numerical ratings of the documenton various scales, such as completeness, clarity, precision, and so on. There are severalproblems with these ratings. First, few people will give you a zero for clarity even ifthey didn’t understand the document. Few people want to hurt their co-workers’ feel-ings, and fewer still are willing to risk looking stupid by admitting that they didn’tunderstand something that everyone else might have understood. Most people areintimidated by badly written documents; they assume that the problem is with themand not the document.

Second, these scales pertain to global attributes of the document and are, there-fore, of little use in spotting and solving problems. They’re similar to the testing doneby the early airplane inventors (described in the footnote about the Wright brothers inchapter 1), testing attributes of the whole instead of testing targeted to specific parts ofthe document’s content. During the review, you should be trying to determine if peoplehave understood specific ideas that you wanted to get across. You can’t find that out byasking them to numerically rate their understandingof it. You find that out by striking upa conversation with them about it. “What did you think of the rules for detecting invalidnucleotide sequences?” is a better question than “On a scale ofone to ten, how feasible arethe requirements?” The former questionmight elicit such useful answers as, “Oh, sorry, Ididn’t read that part,” “I thought that was a great strategy,” or “Since any possiblesequence can occur within an intron, how can any nucleotidesequence be invalid .7”
Finally, the scales themselves are often vague and/or impossible for reviewers tohave informed opinions about. How can the programmer tell whether the document“addresses customer need” so accurately that he can distinguish a quality level of eightout ofa possible ten from a quality level ofnine? Does “completeness” refer to how com—pletely the problem domain is described, or whether there is enough information toenable a programmeror user-interface designer to start designing interfaces?
Numerical answers to such questions are inherently arbitrary. It’s no wonder thatmost are in the range offive to ten, clustering around 7.5, regardless of the scale or thequality of the document.

REVIEWS
255

(On scales of one to five, most people pick four regardless of the level of quality.
Picking three would merely be “average” and therefore negative, because everyone wants
to be above average. Picking five, however, would suggest perfection, so four is the per—

fect compromise.)
Document ratings grow out of the unfortunate theory that if we are assigning

numbers to things, we are gathering data precisely and scientifically. Better to heed the
words of John von Neumann: “There’s no sense in being exact about something if you
don’t even know what you’re talking about.” Just find out if the readers know what
you’re talking about and whether they agree with it. You accomplish that by asking
meaningful, specific questions and keeping your ears open for answers and topics that
you didn’t expect.

12.5 Requirements jargon
The requirements jargon used in this book is far from standard.The software field lacks

any well standardized terminology for the requirements—and—specificationsphases of
development. However, if you have to workwith requirementsdocuments that are writ—

ten according to the theory that requirements are a high-level sketch of the program,
then you’ll need to know some of the other terms in use.

The chart below lists some terminologyin common use. Note that many terms are
often used to indicate the very distinction that another term was created for. The more
correct definition is given first when there are more than one.

user requirements What the user requires of the software or the system as a
whole; what the user wants. User requirements are either
written by the user or taken down by a system analyst in
consultationwith the user.

system requirements 1. What is required of the system as a whole: both
hardware and software together; desired system behavior

2. What is required of.the software; desired software
behavior

System requirements are developed by engineers, as a
refinement of user requirements, by translating them into
engineering terms.

256 CHAPTER 12 SPECIAL TOPICS

software requirements 1. What is required of the software; desired software
behavior

2. User requirementsfor software

Software requirements are developed by engineers, as arefinement of user requirements by translating them into
engineering terms.

functional 1. An action to be performed by the software, including itsrequirement input, the processing to be performed, perhaps includinginteraction with a user or other hardware or software, andthe resulting output. Similar to a use case except thatfunctional requirements often feed into one another, the
output of one being the input of another. Functional
requirements appear in user requirements, system
requirements, and software requirements; they’re a categoryof requirementwithin each level of requirement.
2. Any system requirement or software requirement, asdistinct from a user requirement

non—functional An attribute of a fianctional requirement, such as howrequirement (NFR) easily the function can be modified or how easily users areable to use the function

performance One type ofnon-functional requirement: how long it takesrequirement the system to perform the function

constraint A design constraint, as defined in section 8.1, as well as the
hardware platform and operating system

reliability, safety, Various non-functional requirements brought over frommaintenance, etc. other engineering fields, such as mean time to failure;requirements described under global characteristics in section 8.1.

If ou don’t see much difference between user re uirements and software re uirements,qyou’re not alone. Many requirements documents, attempting to conform to the user/
system/software breakdown, double their size by including functional requirements

REQUIREMENTSjARGON 257

n-

(software requirements) that are identical to the user requirements,with just the word—

ing changed, as in the following example:

UR—3 User shall be able to store grocery inventory data.

UR—4 User shall be able to retrieve grocery inventorydata.

Later, in the Functional Requirementssection:

FR—3 System shall store grocery inventorydata.

FR—4 System shall retrieve grocery inventorydata.

A traceability matrix might show that FR-3 implements UR—3 and that FR—4

implements UR—4, just in case that isn’t clear. This is one strange result of the “start
high—leveland become more detailed” view of requirementsand software development.

The above jargon might seem confusing. It is. The hardware that software is sup—

posed to run on is a constraint? A non—functional requirement pertains to a function?
Most people would think that’s a requirement that doesn’t work. User requirements are
what is required by a user, but system requirements are what is required of the system?
Who is the user in the requirements for a programmer’s library to aid user—interface

designers—the programmerswho use it, the user—interface designers who use it, or the
end users who use the user—interfaces? It’s no wonder that customers are little more than
baffled as they skim through documents couched in such jargon.

Even people who’ve been using the old jargon for a long time seldom have a clear
idea what it means. If the above terminology is in use at your company, an interesting
experiment is to ask different people what a functional requirement is. Seldom do two
people give the same answer.

By making the principal divisions in software documents pertain to subject matter
rather than to level ofdetail, you avoid the theoretical problems that gave rise to the old
jargon, and you can have much clearer, precise, and useful definitions of the content
that you put in each section.

12.6 Cutting comers
You say that you don’t have the time or resources to do it right? Well, here are some
tips how to do it wrong. Be warned, however, that for every corner that you cut for

258 CHAPTER 12 SPECIAL TOPICS

short—term gain, there is a long—term loss. It is a fact of life, though, that sometimes this
is a wise trade-off. Sometimes, if you don't take care of the short-term now, there will be
no long term in which to enjoy long-term benefits. Many software companies routinely
cut the corners described below, yet they are still in business and have satisfied custom-
ers, so cutting a corner does not mean the end of the world. (However, their develop—
ment costs could probably be lower and their quality could probably be higher.)

To put it anotherway, there is a risk to writing documentation: it delays the writing
of code. If imperfection is not a concern, the risk of being late may well outweigh the
risk of having bugs. It is the job ofmanagement to weigh these risks anew on every soft-
ware project.

Cut time tamer: Face there rirkr

In the requirements document,
omit the description of the
problem domain. That is, write
requirement statements only.
This results in a vastly shorter
document—perhaps one or two
pages of terse requirement
statements with no
commentary.

Omit the requirements
document altogether. That is,
write only the specification: 3
description of the software
behavior at the interface to the
outside world.

CUTTING CORNERS

When the system analyst leaves or works on a
different project, it is likely that no one else will
understand the customer’s business. Maintenance
of the program will be difficult, and people will
fall into the pattern of “I don’t know why it’s in
there, but we’d better not change it because there
might be a reason for it.” .

Leaving out the problem—domain description also
pre—empts creative solutions. By understanding
the customer’s world, reviewers or interface
designers can often come up with solutions that
the analyst would never have thought of, or they
may suggest new and useful requirements. Given
only the requirements—the analyst’s final solu-
tion—with none of the background, people can
only implement it unquestioningly.
One more risk is that the requirement statements
themselves will be easy to misinterpret, when not
understood in relation to the world that gave rise
to them.

Without any definite requirements, the
programmers and user-interface designers are free
to design whatever they find most fun. They’re
likely to include features that the customer has
little use for, and omit or downplay features that
the customer thought critical.

259

Cm: there corner:,/Omit the
document. Just prototype, or

user—interface

even omit prototyping, and let a

programmer design the user
interface while coding it.

Omit the specification
documents as well as the

requirements. That is, skip

writing any of the
documentation described in

this book. Thus, the

programmers specify the
software only implicitly and
concurrently with program
design, with a vague idea of the

requirements communicated
only through oral tradition (see

section 13.1).

75/)

Fare there rir/e:

user interface that frustrates

end users with its obliviousness to the problem

domain and its insistence that users think
in terms

of the program domain.

Expect a mediocre

Human nature being

what it is, programmers are tempted to skip user—

interface ideas that are tedious or time—consuming

to implement.A dedicated user—interface designer

typically pays more attention to the small details

that make a user interface easy to use in ways that

people seldom notice, and the “Anything is

possible to the man who doesn’t have to do it

himself” syndrome frees the designer to include

imaginative features that many

programmerswould rather not
think about.

unusual or

In addition to all of the above risks, expect the

software to be released with numerous bugs

because, lacking a specification, the testers cannot

create a test plan. If you regularly cut this corner,

you probably don’t have any testers, anyway.

Expect to have conversations like this with your

customer: “Oh, is that why you wanted that fea-

ture? Oh, yeah, I guess the way we did it isn’t very

useful, after all.”

Realistically,when you go this far in omitting
doc—

umentation, often you do not achieve even short—

term benefits. The bugs, confusions, and unneces—

sary rewrites often result in more man
hours spent

to deliver the first release, not
fewer.

Note that writing documentation that no one can

understand or that no one reads is equivalent to

not writing it at all, except that it costs
more.

CHAPTER 12 SPECIAL TOPICS

12.7 A few good books
The following are a few good books, well worthy of a location on or near any analyst'sdesk. This is not an exhaustive list, just a few books that the author has found especiallystimulating and/or useful in daily practice:

Sofiware Requirementsand Speeifitations:A Lexicon ofPraetiee, Principles, and Prejudiees,by Michael A. Jackson, ACM Press, 1995
An intellectual journey. This is the book in which Jackson presents such ideas as prob—lem frames, shared phenomena, and connection domains. A wide variety of topics insoftware engineering are covered, and some topics beyond it, in a set of 75 short articlesmeant to be read in no particular sequence. Each time you wander through it, you seeconnections between areas that you thought had nothing in common; you see funda—mental principles that you had never dreamed of. You return from the journey a wisersoftwareengineer.

Analysis Patterns: ReusableObjectModels, byMartin Fowler, Addison-Wesley, 1997We learn best from examples, and here is a book of example “conceptual models” of aVariety of problem domains, mostly in the business world—inventory,accounting, cor-poration finance, and others. These “models” are primarily the types ofdomain descrip—tions covered in chapter 9. When you start mapping out a new domain, you can oftenfind similar problems in one of the domains that Fowler covers, saving you from rein-venting a number of difficult wheels.

Envisioning[nfiirmatiom by Edward R. Tufte, Graphics Press, 1990
Not a book on software, but a classicworkon informationalgraphics. It contains exam—ple graphics, from the most brilliant to the most opaque, showing information about anenormous variety of subjects. Tufte transforms bad graphics into lucid ones, showing
you how to revise, and illustrating the principles he uses. Ultimately, the book trains
you to look at problem domainsmore perceptively, as you become aware of the types ofrelations that a good graphic can make clear.

Two more books on graphics by Tufte, The VisualDis-pal] ofQuantitiative Informa—tion and VisualExplanations, emphasize types ofgraphics that are less frequentlyapplica-ble to software engineering, but are also well worth reading.

A FEW GOOD BOOKS 261

Sly/e

Documentation
13.] W/oy document?
On any project involving two or more people, there arises an oral tradition. Peter tellsLarry how he’s planning to structure a certain interface. Larry mentions this to Margotin a conversation about a data structure that he’s working on. Charles hears about a newrequirement and mentions it to Margot, but it never gets around to Peter.None of this information gets written down, but it exists in the way that Homerictales existed in ancient times. Each bard learns the story from another bard. Humanmemory being what it is, each person distorts a little bit, and human inventivenessbeing what it is, each person embellishes a bit. There is still a story circulatingand evolv—ing out there among the bards, but no two bards have the same version.A software project will always have an oral tradition, and we should make noattempt to stop it. It’s how people work together. However, in a software project of anysize, an oral tradition is not enough. Here, “any size" means roughly four or more peo—ple, including the people who test, design the user interface, and Write the manual. Ifthe tester wasn’t in the room when the programmer convinced the user—interface

265

designer to make a change, the tester should not
have to waste hours writing a test plan

for a feature that’s no longer a part of the software.

The cure, of course, is writing things down.
Here are the principal benefits of doc—

umentation—two obvious ones, and three less well known:

1. Extends what the mind can

grasp and remember

2. Gives the same story to
each member of the team

3. Introduces new team mem—

bers to the project

4. Protects intellectual equity

7fifi

In any project large enough to need require—

ments, the amount of information
is more than

any one person can retain, even after an

eight—hour meeting that covers every detail.
The

written word can be referred to later, and it

doesn’t fade the way human memory does.

A written document is exactly the same each

time it’s read. 50 the user—interface designer,

programmers, testers, and documenter can all

read the same material, which they surely

wouldn’t be able to do if theywere all given the

information in individual conversations.

People on projects come and go. A new tester,

for example, has a hard time catching up with

the oral tradition. A well—written document can

bring them up to date in only a few days.

Very often, only one or two people at a software

company understand the problem domain or

the design of the software. They’re the only

people who can intelligently judge proposed

changes, notice holes in reasoning about the

application,or even think of new ideas for soft—

ware to write. If these people’s precious knowl—

edge is put into written form, the company is

no longer so dependent on them. Their intel—

lectual equity won’t walk out the door if they

get a better job offer.

CHAPTER 13 DOCUMENTATION

5. Helps the writer to better Describing requirements or a specification inunderstandthe problem written form inevitably forces one to adopt ahigher standard of rigor than spoken conversa—tion calls for. Anyone who’s ever documented
requirements has had the experience of discov-
ering holes or even conceptual incoherence in
their understanding of the problem. This is the
observation that leads people to conclude that
“the document isn’t important, only the docu—
menting is.” As we’ve seen above, the document
is important for other reasons, as well.

Of all the things to document, requirements are the most important for the longterm and specifications for the short term. The specification tells the programmers andtesters exactly what to do and what to test for. But they won’t have the backgroundknowledge to make trade-offs intelligentlyor to propose new ideas for future develop—ment. The requirements are usually people’s only source of information about the prob—lem domain. If they’re left to the oral tradition, the team must contact the systemanalyst or resort to guessing. In practice, by the time development begins, the systemanalyst has usually flown to another part of the country to do the scope ofwork foranother project, so guessing is the only option.
Understandingwhat the benefits ofdocumentation are, we can target our methodsofdocumentation at providing those benefits. Many companies take documentation ofrequirements very seriously, but they don’t realize many of its benefits because, in theirpractice, oral tradition is the only way that real information is communicated, only thesystem analyst understands the problem domain, and so on.If we want the programmers to refer to the document to supplement what theyremember from meetings, then we must make the reference information easy to find.Scattering it throughout the document will defeat benefit #1, even though the docu—ment would still be complete and correct.
Ifwe want the members of the team to have the information in the document, thenwe must write the document in such a way that they will read it. Many requirementsdocuments go unread because people can’t understand them and they seem irrelevant totheir jobs.
We can see now that while crankingout text is easy, achieving the benefits of docu—mentation will take some thought.

WHYDOCUMENT?
267

13.2 Broadprinciples
The following are a number of very

broad principles of technical writing.
The list is far

from exhaustive, of course, but these are
helpful to bear in mind when

writing and espe—

cially when learning about writing. They guide many of the techniques discussed

throughout this book.

1. Writing is a craft
Reading a book on woodworkingwill not make you an expert carpenter, or even a

mediocre carpenter. The problem
is not with the book;

it’s that woodworking is an enor—

mously complex craft. Making a cabinet involves
thousands of tiny decisions about pre-

cise placement of each tool, the sequence in which to perform operations, fine muscle

control when cutting the curves, and so forth. These decisions are mostly unconscious

for an expert carpenter because years of practice have made them second—nature,

enabling the carpenter to draw upon them as neededwhile his or her mind focuses on

just a few, key aspects
of the work.

Technical writing is the same way.
There is no rote procedureor ten simple steps

for

creating an excellent technical document.
Rather, the difference between a document

that is readable and gets read
and a document that no one can

understand and no one is

willing to read is thousands of tiny decisions——each word choice, each choice of sen-

tence structure, each
choice ofwhere to place objects on graphics.

No one of these deci—

sions makes much difference. Making thousands of them
well or thousands of them

poorly makes an enormous difference.

As with woodworking, reading a book about technical writing
Won‘t make you very

good at it. Acquiring the skill takes practice, and no matter how good you get, you can

always get muchbetter with
another year of practice. Learning

technicalwriting is a life—

long activity. Every document
has something new to teach you: a helpful phrase, a

trick

for breaking up sentences, a bad habit to unlearn.

The same is true of other people‘sdocuments.
In fact, other people’s documents

are

even more helpful. Many analysts have read only their own documents
and never bene—

fit from seeing how other people solve the same problems. A good document has
tech—

niques to imitate. If someone else’s document is hard to understand, you can figure out

what made it hard to understand
and avoid making that mistake yourselfor

think of a

better way to express it. However,
if your own document is hard to understand,

often

you don’t notice
that because you already knowwhat it’s supposedto say. Other people’s

bad documents are the easiest to learn from. The best technical writing
flows so easily

that you can’t tell that there were any problems to be solved while
writing it.

”(0
CHAPTER 13 DOCUMENTATION

Ifwriting documents is a large part ofyour job, as it is for most system analysts and
program designers, it pays to be literate. People will judge you not on the basis of your
thinking, but on the basis of yourwriting.

2. Writefor human beings
There is an awful truth about software requirements: most requirements documents g0unread. Booch writes of an 8,000-page requirements document that “no one could
understand.W Even the more ordinary 50— to 100-page requirements documents gounread.The usual reason is that they are written to conform to abstractstandardsofcor-
rectness rather than to communicate project-specific information to real human
beings~more like writing a program than writing in English.

Such abstract standards usually derive from “methodologies” or from overly specific
documentation standards. These methodologies usually propose expressing a very lim—
ited set of informationabout the software in a very limited set ofways of expressing it—
one notation for all diagrams, one sentence structure for all requirements, one table of
contents for all documents,

Conforming to the standards becomes an end in itself. If anyone is able to decipher
the document, that is merely a benign side-efl'ect. Not surprisingly, when most peoplelook over such a document, they figure it was made only to satisfy some arbitrary rules
and not to communicate anything to them, so they put it aside after a few minutes of
skimming and find some other way to get their information. Many programmers are
now convinced that writing requirementsdocuments is a waste of time and that, how-
ever flawed it may be to jump straight into program design after some informal talks
with the customer, at least that strategy avoids the time and expense ofwriting an enor—
mous document that serves no purpose.

Writing for human beings means constantly asking yourselfquestions such as the
following:

' Is there a way to express this that would be easier to understand?
' Am I overloading the reader with too much information at once? Should I provide
some sort of roadmap, or break it up into smaller sections or smaller sentences?
' Which details are more important to my readers and which are less important?
How can I make clear which details are which?

' Is this statement too abstract for my readers to understand without illustration? Are
these details too narrow and disconnected for my readers to understand without
explaining the underlyingprinciplecommon to all of them?

‘ [Booch 1996], p. 17,

BROAD PRINCIPLES 269

' What reasonable misinter retations could m readers make when readin thisP Y 5
passage?

0 Will in readers see an benefit in readin this section? How does it relate to anY Y y
specific reader’s job? Does anyone have a reason to care about this?Will people see
this as a waste of their time?

0 What is the feel of the writing—formal but friendly, stuffy and pompous, scatter—
brained and rambling, simple and direct, flows like sludge?
' Is the document boring? Would anyone want to read it? Will anyone read it?

It may seem strange to be concerned about whether or not a document is boring or
not. Shouldn’t your readers read it whether they like it or not? That’s what they’re paid
to do, isn’t it? That attitude, unfortunately, is likely to make people only briefly peruse
your documents. Ifyou describe a problem that your readers have made a career of solv—
ing, then your readers will find it interesting.

People generally want to do a good job, and they enjoy doing it. Testers want to
devise test cases, user—interface designers want to think up ways to present information,
programmers want to write code to implement specifications. A requirementsdocument
or specification that is pure content all the way through is anything but boring to these
readers. A document that hides the content behind requirements jargon and a gauntlet
of bureaucratic sections, or omits most or all of the content (not so unusual), would be
boring to anyone.

Ifyou reallywant to learn to write for human beings, try working in their capacity
for a little while, with someone else’s requirements document. Trying working in the
testing department for a week, Try programming. Ifyou want to understand the frustra—

tions that people go through when reading requirements documents, there’s no better
way to learn than first—hand. “Why is this information missing?” “Why is this informa-
tion buried so deep in this document, when it’s the only information that actually
counts, anyway?” “It took me a week to figure out what these thirty pages meant, but it’s
actually so simple!Why does it have to be such a struggle to decipher these documents?”
When you’ve suffered trying to read a bad requirements document up against a dead-
line, then you’ll have some ideas about how to write one.

None of the above questions have to do with the correctness of the information in
the document. A good technical document is much more than correct: it is geared to
human readers.

3. Alternatives, not rule:
an 00 on wri in s a e ru es i e “never en a sen ence wi a re osi ion” anM b ks t t t l l k d t th t d

“neverwrite in the passive voice.” Some even go as far as to prescribe precise rules for the

270 CHAPTER 13 DOCUMENTATION

number of sentences in a paragraph: some say “no more than ten” while some even say“every paragraph should be three sentences long. ”
These rules are nonsense.* The skill ofwriting is not that of following rules, but of

passive voice emphasizes exactly what you want to emphasize and deemphasizes exactlywhat you want to deemphasize; convening to the active voice would obscure yourpointfl' You should be able to considerboth the active and the passive Voice, rather thantreatingone as a sin even in thought. In the vast majorityof cases, you’ll probablywantto choose the active voice, but that doesn’t mean that there is something wrong withchoosing the passive voice in the remainder of cases. The point here is that you shouldt/Jowe, consciously, rather than thoughtlessly write in one or the other.Just as in part II, this book tries to give you sets of alternatives to consider, withoutprejudging which alternative best fits the problem you’re currently solving, or evenclaiming to have identified all possible alternatives. In many cases, when you’re stuckwith a difficult sentence, all you need is for someone to come along and point out analternative that you hadn’t considered.
This book also supplies principles for choosing among alternatives. These are prin—ciples, not rules. A principle is a fundamental insight or idea from which good decisions

ent problems. To apply a principle to a new problem, you need to see the uniqueway inwhich that principle applies to that one problem.
For example, “Write for human beings” can lead you, in one instance, to reject onesequence of presentingmaterial in a document because the early sections of the docu-ment don’t seem to have any purpose until a very late section explains them. Peopleneed to knowwhy information is in a document in order to retain it and understand it.So, when you reject that sequence and begin to search for another, you are applying theprinciple by imagining yourselfin the position of a reader, thinking ofwhat will go onin people’s minds while reading the document—going beyond making the documenttechnically correct, and adjusting it for real people. On the other hand, you might\‘ Winston Churchill is reported to have said, upon beingcorrectedfor violatingthe rule about ending a sen-tence with a preposition, “That is the sort ofartant pedantry up with which I will n0t put. ” The supersti-tion about ending a sentence with a prepositionwas started by 18th—centurygrammarianswho believedthat Latin had the one, true grammar,which all other languages should emulate. In Latin, prepositionswork differently drain in English and, indeed, there’s no place for them at the end ofa sentence. No ancientRoman would need to be told this, of course, any more than you need to be told that "Clappingmargarining the" is n0t a valid sentence. The mythical rule against split inflnitivesstarted the same way.1' [Pinker 1994], p. 228, gives an excellent illustrationof the passive voice, showinghow the correspondingsentence in the active voice would “feel like a nun :equitur.”

BROAD PRINCIPLES
271

notice, while looking over a first draft of a document, that it seems somehowboring
and

monotonous. You discover that you used the same sentence structure in ten consecutive

sentences, so you vary the sentence structures to keep from losing the reader's interest.

Again, you’re drawing upon your empathy with human readers to make the document

more than correct—same broad principle, but a very different application.

Thus principles of writing are similar to legal principles. The principle of free—

dom of speech is not applied mechanically, the way one would apply a rule like “no

paragraph shall have more than three sentences.” Judges try to understand the basis of

the principle—the way the principle brings about justice——and apply it only in situa-

tions where the basis of the principle can be found. They must simultaneously con—

sider other legal principles and weigh all the consequences of each possible decision.

50, limited censorship is allowed in wartime, there is no right to receive subsidies for

publication, and so forth.
Principles of technical writing seek to bring about clarity, the same way

legal princi—

ples attempt to bring about justice. You can't apply
them mechanically, but they are nev—

ertheless an indispensible aid in choosing among the many different ways to write a

sentence 01' organize a document.

4. People like list:
When people create a specificationor a test plan or a program, they want to

have sys—

tematicway to check that their creation meets every requirement.
Nothing Fulfills this

need better than a list. Readers can check each item on a list one by one; when they

are finished with one item, they can forget it. As much as possible, try to make evalu-

ation criteria—requirementsand preferences—standout from the rest of the text, and

submit to systematic, one—step-at—a-time reading. Naturally, some information just

can’t be presented this way, but when you have information that can, this is the first

option to consider.

5. Formfizllowrcontent
Rather that expressing the content in a form chosen in advance of writing the docu—

merit, choosing theWay in which to say something should derive from
the content. The

opposite approach is particularly dangerouswhen, say, the prefabricated table of con—

tents does not include slots for all of the content needed in the document. Furthermore,

sometimes a table is better than a diagram; sometimes a diagram is better than a table.

Making policy decisions about these things achieves the fairly negligible goal of unifor—

mity at the expense of clear presentation in each instance.

This principle is taken up in more detail in chapter 14.

272 CHAPTER 13 DOCUMENTATION

fl6 Aplacefbr every detail, andmay detail in it:placeThis is the fundamentalprinciple of organization. A document’s organization is a set of
slots for holding details: big slots for holding big details that are made up of small
details, the sequence of slots chosen carefully so that each detail is prepared by all the

etitions are not all identical. Repetition is also decoy text (see section 13 3), dissuading
the reader from taking the text seriously. The reader is encouraged to skip and skimthe document rather than in every sentence.But repetition is not the only form of redundancy. Reinfarrmmtis giving confir—

in different forms. For example, a reader’s understanding of an abstract statement is
reinforced by giving an example or two. Strictly speaking, the examples add no new
content, but they confirm or correct the reader’s understanding of a statement that isprone to misinterpretation. If readers understands why a certain feature is useful to
the end users, this reinforces their understanding of the feature or perhaps clarifies the
feature. If the feature does not have any apparent use, a reader may doubt that haveunderstoodit correctly.

Even Skillfill choice ofsection headings is reinforcement.If it seems that a variety ofrequirements all work in service of one goal, say, performance monitoring, then the

BROAD PRINCIPLES

273

reader’s understandingof the role of those requirements is confirmed by including them
all in a section titled “Performance Monitoring.”

Reinforcement is one of the technical writer’s basic tools for making complex mate—

rial understandable. It’s also an instance of the principle ofwriting for human beings.
Reinforcement has no place in machine language; if the machine language is correct, the

computerperforms correctly. But any form ofhuman communication needs a great deal
of redundancy in order for the listener to be sure that they understand.

The rest of this chapter describes a number of common violations of these broad
principles.

13.3 Decoy text
The nineteenth—century French novelist Victor Hugo peppered his novels with essays

describing the periods of history in which his stories were set. They’re fascinatingessays,
but many people find them a distraction from the plot. People who want to skip them

encountera problem, illustrated by the essay on the Battle ofWaterloo in L2:Mirémbles.

After fifty pages and eighteen chapters of description and analysis ofWaterloo,
there’s a discussion of what happens at night after a battle. “The day after a battle
dawns on naked corpses.” At night, a little army of thieves robs all the valuables,

including clothes, from the dead soldiers still lying on the battlefield. Hugo describes

one of these thieves stealing a silver cross of the Legion ofHonor from an almost—dead

nobleman. The thief’s name is Th‘enardier, and both he and his loot turn out to be

important elements of the story. A reader who skipped these digressions would miss the

important plot points buried within them.
You might think that there’s no harm in adding some extra text to a document.

After all, the reader can just skip it if it doesn’t apply to them.
But there is harm. All text that isn’t part of requirements—purposeof document,

purpose of task, summary of task, inclusions, exclusions, acceptance criteria—obscures

the genuinely relevant information. It’s decoy text.
As in Le: Misémbles, a reader can’t easily know in advance whether a section or

paragraph is decoy text or not. By including decoy text, you’re encouraging the devel-

opment staff to skip and skim rather than to read carefully. You’re saying, “much of
the text in this document doesn’t really matter.” In other words, you’re saying, “I’m

* [Hugo 1862], p. 352.

274 CHAPTER 13 DOCUMENTATION

wasting your time.” This is not a good message to send if you want your readers to
review a document carefully.

Various types ofdecoy text are described below. The way to fix all decoy text is sim—

ple: delete it.

13.3.1 Metatext
The most common type of decoy text is metatext—text that describes the text that fol-
lows. Sometimes metatext is necessary, but usually it’s decoy text. If the title of the doc—

ument is “BPM Requirements,” you don’t need a Purpose of Document section that
says “The purpose of this document is to describe the requirements for BPM,” perhaps
followed by another sentence or two just to make the section a little longer.

For more information, see Metatext in chapter 15.

13.3.2 Generalities
All information in 9. requirements document should be specific to the software to be
built. A requirements document or specification is not the place to give people a course
on general principles of good data modeling, user—interface design, program design, or
even how to evaluate requirements.

Some requirements documents contain small dissertations on what makes a good
requirement:

Requirements shall possess the following attributes to be considered acceptable:

Atomic: The requirement shall describe one and only one function.

Complete: The requirementshall describe the system behavior in response to all inputs.

Testable: The requirement shall be observable.

Non-redundant: The requirement shall be unique and contain no overlap with other
requirements.

Unambiguous:The requirement shall not be open to interpretation.

Traceable: The requirementshall be able to be trackedforward to changerequests, code
modules, and test scripts.

And so on.

DECOy TEXT 275

These lists of required attributes of requirements usually have a number of prob—
lems. First, despite their call for precision, they’re ambiguous. What is “one and only

one function”? Second, they often make no distinction. How could a requirement not
be traceable, as defined above?Third, they’re often impossible to achieve. Some things,
like user-friendliness, just can’t be quantified precisely. Response time can, with a fre-

quency-distributionfunction, but that’s unnecessarily precise for most applications. And
in many cases, it makes more sense to have some requirementsoverlap instead of cram—
ming them into a single, huge sentence.

What is a reader to make of such a list? He could object to nearly every requirement
in the document for failing to meet these standards. Or he could be sane and ignore the
list. Now consider his position: “Clearly this section was never meant to be taken seri—

ously. But how am I to know which of the remaining sections were intended seriously

and which were intended to be ignored? I guess I’ll just ask someone.” This is the decoy
principle in action, driving people away from the benefitsof documentation and back to
the oral tradition.

More dangerous is a requirement that expresses a generality:

R/UI-8r5.2Each input screen shall fit entirely within the windowand shall use as little

scrolling as possible to display and/or retrieve information.

This is not merely decoy text, this is a decoy requirement. A good user-interface

designer knows this principle already andwill try to apply it to the information that this

particular program needs to display. Sometimes you can make everything fit in one win—

dow, and sometimes you can’t. That depends on the information to be displayed—
which is what the document should be talking about.

13.3.3 Piling on
Piling an takes its name from a type of foul in American football. The ball carrier has

already been tackled and is at the bottom of a pile of defenders. The play is over and the
whistle has been blown, but one more defender throws himself onto the pile, fiarther

pinning the already immobileball carrier, and costing his team a penalty.

Something similar happens in requirementsdocuments. A two-paragraph descrip-
tion of a functional requirement has just made the requirement clear. Insteadof another
requirement or some new problem—domain information, the next section expresses the

same requirement in input—process—output format. The section after that says the same
thing again, this time in the form of a use case, complete with its own introductory
description that says everything that’s been said before.

276 CHAPTER 13 DOCUMENTATION

Piling on can be observed at a large scale or a small scale~even inside the title of a
document. At a small scale, it consists of piling words onto a word or phrase that has
already made its meaning clear, as in the following examples.

Btfirepiling on After

Requirements RequirementsSpecification

Use Case Business Use Case

13.3.4 Including other documents
There are a number of important documents produced in software development that are
neither requirements nor specifications. A common temptation is to throw them into
the requirements document.

Scope ofwar/e
A document describing each of the tasks to be carried out during development and anyassociated deliverables; usually written for the purpose of billing and/or scheduling.

Because scope—of—work information is similar to some requirements, it causes con-
fusion when inserted in a requirementsdocument. Notice the incongruity between the
following two “requirements”:

R25 Resolve Discrepancy

Inputs: Discrepancy record.

Process: IF discrepancy valid THEN operator resolves discrepancy and marks
discrepancy resolved ELSE operatormoves discrepancy to rejection list.

Outputs: Discrepancy log, rejection list.

and:

R2.6 User Manual

Inputs: Requirementsdocument, design document.

Process: Research and documentation

Outputs: User manual.

DECOY TEXT 277

The general rule is: describe the requirements and problem domain or, in a specifica—

tion, describe the software; but don’t
describe the developmentprocess that

will produce

the software. That’s another topic, for
another place.

The one exception is that a requirementsdocument should
list materials neededby

the development staff: documents from
the customer describing protocols, customer-

supplied data files, and so forth.

Schedules
Schedules change much more frequently than requirements do, and they pertain to all

aspects of development, including testing, coding, delivery,
and training. Therefore, a

schedule is best made a separate document.

Acceptance criteria
Acceptance criteria, like specifications, need to be carefully crafted after requirements

are complete.

Approvalsignatures
A form for approvals is signed once by a few parties, but the requirements document

is

printed out 30 to 100 times, over years. Make a separate form; have the parties
involved

sign it, and keep it in a special place—not inside the requirements
document.

Traceability matrix
It’s not entirely unreasonable to include a traceability matrix in the requirements docu—

ment and fill it in over the course of the rest of the project. However, for people not

accustomed to their use, seeing a traceability
matrix with only the left column filled in is

baffling. “Oh well, yet another arbitrary
section to ignore,” they say.

If you have a document management system, or
even a directory on a network

drive, it’s probably best to put the traceability matrix there, near the requirements docu—

ment. If your companyhas procedures
for sign—offs on changes to documents, there

will

probably be muchmore ceremony to change a requirementsdocument than to
change a

traceability matrix. Also, filling in a column on a traceability matrix does not throw the

requirements out of date—an important consideration in an ISO 9000 company. (ISO

is the International Organization for
Standards.)

Feedback form:
Feedback forms are not entirely unreasonable to include, but they generally are regarded

as more fluff, especially if the form
is more than one page long. Also, as

with approval

forms, a requirements document needs to
be printed out many more times than a feed-

back form. See also section 12.4.

278
CHAPTER 13 DOCUMENTATION

No one of the last several extra documents is particularly bothersome to include in2 requirements document. However, the attitude of “there’s no harm in throwing oneextra thing in” soon leads to throwing all of it in, and then people can’t discern the pur-pose of the document.

[3.4 More common mistakes
Decoy text is certainly the most common mistake in both requirements and specifica—tions. This section describes a few more.

times thousands. Here’s a piece that’s part of a sail. Where’s another sail piece thatconnects to it? It’s probably very far away, buried in that large pile with all the otherpieces. To solve the puzzle, you must keep in mind that you’re looking for a sail pieceas you slowly sift through the pile, simultaneously looking for missing pieces in othersmall groups.
Many requirements documents are jigsaw puzzles in their own way. It says onpage 16 that a grant deed has grantor, grantee, consideration, and address, but onpage 45 it lists grantor, grantee, title company, consideration, and property transfertax—whatever those are. So I guess the attributes of a grant deed are the union of thosetwo sets. “No,” replies the author of the document, “in the use case on page 62, there’s astep where the user types in both address and assessor’s parcel number. You really shouldread the document more carefully.”

statement of the attributes of a grant deed on page 16, a reader is simply not going toexpect to have to read any more, certainly not some use case on page 62. Always bear inmind that people skim at first to get a general idea ofwhat the document says, and thenrefer to the document afterward for specific information.
To read a document like this one, you have to keep the whole thing in mind atonce. You have to treat it as a sea ofdetails, just like the sea ofpieces in the jigsaw puzzle.However, no human brain can do this.
Note, however, that nearly every large document is a jigsaw puzzle to a slightextent. Your objective is to reduce the number of places where a reader can make a rea—sonable interpretation of text in one place that turns out to be wrong because of someother statementmade very far away.
That does not include situationswhere you write an unfamiliarword or phrase in

MORE COMMONMISTAKES
279

one place but define it elsewhere. The fact that the word is unfamiliar tells the reader to
expect to find a definition elsewhere, such as in an overview or a glossary.

Principles of organization—mostly, the preventionofjigsaw puzzles—are presented
in chapter 14. The most basic principle for fixing jigsaw puzzles is to collect a descrip—
tion that is scattered and implied throughout a document and put it all in one place. In
the above example, the solution is to have a single section that definitively lists all the
attributes of a grant deed. Then the reader doesn’t have to puzzle it together by gather-
ing use cases from throughout the document.

Sometimes, though, you can’t cover all related information in one section. To help
guide your reader, add page references to related material. For example, if there is some—
thing on page 62 that you need to know to properlyunderstand what it says on page 16,
then on page 16 write, “See page 62 for more information about grant deeds.” There’s
nothingwrongwith including a lot ofcross—references within a document; the far graver
danger is leaving these cross—references implicit.

13.4.2 Mam: confinedwith end:
Some requirements documents confuse description of the problem domain with
requirements. For example, there might be a connection domain consisting of a pro—

gram called HOLA, which can answer certain queries about some domain of interest. It
would be a mistalte to write:

R-lS The system shall communicatewith HOLA.

Of course the system’s going to communicatewith HOLA: it’s a source for information
about the real world that another requirement says the system is to produce in response
to queries. Describe the relevant part of the real world, the queries, the information that
HOLA can supply, and the protocols for communicating with HOLA, and you are
done. R—lS is really a redundant requirement, obscuring the problem by confusing it
with the solution.

These kinds of requirements also undermine the coherence of the document—the
opposite of the reinforcement principle mentioned in section 13.2. Is this a require—
ments document or a specification or maybe a partial specification or maybe some sort
ofmixture of the two? Does the document describe the problem domain or the system’s
behavior?The reader really can’t tell your intention, ifyou mix the two.

13.4.3 Forcefit
The following is the way, in some forms of structured analysis, to indicate that the soft-
ware is supposed to accept some data as valid and reject other data as invalid. You define

280 CHAPTER 13 DOCUMEN TA TION

validation

data
acceptance/
rejection
messages

user data

Figure 13.1 Data~ilowdiagram for data validation

The documentation consists of a data-flow diagram like figure 13.1, and a set ofrequirement statements like these:

R-4 The user input fianction shall receive data from the user.
R—4.1 The user input function shall send data to the validation function.
R-4.2 The user input function shall receive acceptance and rejection messages sent bythe validation function
R—4.3 The user input function shall reject data received from the user corresponding torejection messages received from the validation function.
R-S The validation function shall validate data.
R-5.1 The validation function shall receive data from the user input function.
R—5.2 The validation function shall send acceptance and rejection messages to the userinput function, in response to the data received from the user input function.
R—5.3 The validation function shall send an acceptance message to the user input fianc-tion for each data element that has a value greater than or equal to zero and that has avalue less than or equal to 26.
R-5.4 The validation function shall send a rejection message to the user input functionfor each data element that has a value less than zero or that has a value greater than 26.

MORE COMMON M15 TAKES
281

The data—flow diagram shows three data streams, each of which must be docu-

mented, precisely describing each element of each data stream, but without saying any-

thing about how the data stream will be implemented.
Now just a minute here. Forgetting structured analysis and everything else you

know about requirements, how would you say that the system rejects numbers typed in

by the user that are not in the range 0.26? Maybe something like this:

R—4 The user is not allowed to type in a number outside the range 0.26.

The same principle would apply if the validation rules were more complex. You’d

put the validation rules in a big table, preceded by this:

‘7 R—4 The user is not allowed to type in data that violates the rules in table 1.1.

How, then, did half a page of dizzying text plus a data—flow diagram get produced

just to make this tiny statement? The enormous version is the result of force—fitting the

content to a very limited form of expression. If your entire vocabulary is functions and

data flows, you have no choice but to force—fit everything you say into functions and

data flows.
Ifyou find yourself taking that much text to say something so simple, it’s time to

put aside your first strategy for describing it and search for another way. Try talking to

someone who is totally unfamiliar with what you want to describe. Very often, you
find yourself explaining it very simply just by speaking out loud to a person who

doesn’t already knowWhat you have to say. Or if you can get that person to put it in

his own words after you explain it to him, you might have a much better strategy for

explaining it.
Notice that all of the above requirements are really program design, not require—

ments or even specification.

13.4.4 Duckrpetz/e requirements
In the preceding set of requirements from structured analysis, you may have noticed a

certain gnawing vagueness. Consider the following requirement:

R—461 The airplane reservation data validationfunction shall validate airplane reserva—

tion data.

282 CHAPTER 13 DOCUMENTATION

What does that mean? Why write that sentence.> How would you test it? Try saying
it out loud. It’s remarkably similar to the duckxpeakdescribed in the novel I984. Duck-
speak was speech intended to agree with the oH-icial standards, but spoken so quickly
and in such a monotone that it hardly mattered what the words were. All that counted
was the dutiful, predictable tone.‘ Usually duckspeakrequirements come in great num—
bers, one after the other, something like the requirements on page 281, but more of
them. Reading them is hypnotic; they put people to sleep.

Duckspealt requirements are the worst type of force fit: requirements that say noth-
ing at all, included in the document only to conform to standards. Strictly speaking,
they’re decoy text.

Ifyou find yourselfwriting meaningless sentences only to conform to a standard,
consider reframingthe problem. Chapter 5 provides a variety ofways to frame a prob—
lem. You should try to find some strategy of presentation or document organization
that does not include any slots that demand to be filled by sentenceswhether mean—
ingful or not.

Framing all problems as a set of of functions—that is, as a set of transformation
problems—is often the cause of awkward descriptions. Even a transformation problem
can be described straightforwardly, though. Just describe the inputs, the outputs, and
the rule relating them.

Another cause of duckspeak is the practice of treating requirements as high—level
program design. The analyst is trying to describe subroutines that exist inside the soft—

ware, but without including any implementation details—a self—contradictory goal.
Leave the subroutines to the programmers and describe only the problem domain (or
phenomena shared between the software and the problem domain, in a specification),
and you’ll avoid the dilemma of choosing between statements that are specific but bias
implementation and statements that say nothing about implementation because they
say nothing at all.

13.4.5 Unnecessary invention ofterminology
Another ill effect of force—fitting all requirements into functions and data flows is that you
have to invent an enormous amount of terminology that no one will ever use. For exam—
ple, you need to define a “user input function,” a “user presentation function,” an “air—

plane reservation data validation function,” and so on. These phrases gum up your prose,
and yet no one will ever talk about the things they mean. The testers and programmers
just talk about screens and validation rules. 50 do the users, and therefore so do the techni-
cal writers who put together the user’s manual. The force fit to functions requires that

‘ [Orwell 1949], p. 254.

MORE COMMONMISTAKES 283

readers translate between their simple concepts that directly refer to the reality of the soft-
ware or the problem domain, and the awkward language of functions. You might as well
save them the trouble andwrite only in terms that readers will actually use.

13.4.6 Mixing [we]:
Another mistake you can see in the preceding examples is that even though they claim
to be requirements, they’re really high—level program design. Many requirements docu—
ments jump back and forth between program design and specification, often saying verylittle about the problem domain. They dabble a bit in user-interface design, saying what
happenswhen the user clicks the OK button and that the user can click the Cancel but-
ton at any time to cancel the changes, almost in the same breath with statements about
leasing policies or approval procedures. Suffice to say, this is confiasing.

The solution is to be rigorous about what sort of content you include in the doc—
ument. As described in chapter 1, 3 requirements document is only about the problem
domain. It does not describe the software (except, of course, for realized domains).
Don’t slip into user-interface design or even describing the software behavior, unless,
of course, the customer insists on some design ideas of their own. And don’t slip into
program design, describing subroutines internal to the software, with inputs, outputs,and processing. It doesn’t matter if you describe the program at a high level, leaving
out details; that’s still describing the program, and leaving out details makes it even
more confusing.

If you’rewriting a specification, then simply describe the shared events and shared
states that constitute the interface. The shared states of a user interface are the screen;the shared events are the input from the user and the changes to the screen. In a hard—
ware or software interface, you simply describe the rules for how the system responds
to inputs.

If the customerdoes include some special provisions about the user interfaceor anyother aspect of the software, be sure to indicate that these intrusions into interface
design or program design are special requests of the customer—designConstraints. If
you mix design constraints with normal requirements without some indication that
that’swhat you intend, you harm the coherence of the document.

13.4.7 Prefabricated til/ale ofcontents
One source of a lot of force fits is a prefabricatedtable of contents, usually called a tem—
plate. These templates usually have many sections and subsections, and it is companypolicy that each be filled out in every requirements document. For describing the func—
tionality of the software, the software is to be divided into a set of functions, and each
function is to include a set of inputs, some processing, and an output. We’ve already
seen on page 281, how these lead to convoluteddescriptionsofsimple things.

284 CHAPTER 13 DOCUMENTATION

As noted in chapter 8, starting with a prefabricated table of contents is equivalentto forcing the content of one document into the table ofcontents ofanother. Documentorganization is not a task that you can do once and copy over and over again, the waytype can be designed and repeated identically millions of times in millions of docu—ments. Inventing a document structure is one of the tasks ofwriting a document, and itis seldom an easy one. The other tasks are choosing the content, and filling the organiza-tion with the written and graphical expression of that content.Another side—effectofa prefabricatedtable ofcontents is that, often, no two peopleinterpret the headings the same way. (A worthwhile experiment is to go around to every-one in your department and ask them to definefinttiondl requirement. The amount ofvariety is astounding.) Typical sections are Assumptions and Dependencies.What’s thedifference? If you look at how different people fill out these sections, you can see thatthey have radically different ideas about what they should contain. There is often anInclusions section—apparently that would have to contain the entire document. Nextthere’s an Exclusions section—apparentlya list of everything that the software will notdo. A long list, probably.
Most analysts simply fill these sections with a little bit ofperfunctory gobbledygookand move on. No one is really sure why they’re there. In review meetings, however,clashes about what belongs in each section sometimes lead to semantic arguments aboutwhat a use case “really is,” or exegetical schisms over how to interpret the headings andtemplate instructions.
Ifyou’re stuck in this situation and you have some content that desperatelyneeds togo into the document, even though the prefabricateddocument structure has no roomfor it, there is usually an out: put it in an appendix. Ifyou have to, put 99% of the infor—mation in a set ofappendices that are the equivalentof a logically organizeddocument.None of this should be construed as an argument against template files that containstyle definitions, handy macros, and even a tiny amount of starter text. These kinds offiles greatly speed the writing of a document because they make consistent formattingeither automatic or very close to automatic. These template files are only a speed—up forthe word processor, however; they are not a speed—up for document organization andchoice ofcontent.

13.4.8 Inconsistent terminology
While people are deciding on requirements, they often invent and then change termi-nology several times as they get new ideas for terminologyand as their understanding ofthe problem improves. A common side effect of this is that the document accumulatesboth older and newer terminology for the same things. Here it’s an angle, there it’s arotation, and there it’s an orientation. Before you release the document, be sure to do a

MORE COMMON MISTA [(55 285

global search—and—replace on all the old terminology. If you’ve been maintaining a glos—

sary during the discussions,
this will be very straightforward.

13.4.9 Writingfor the hostile reader
Your writing must satisfy many differentkinds

of readers~not just readers with differ-

ent jobs, but readers with different reading styles. There are detail—oriented readers,

who methodically examine each detail one at a time without worrying
about why each

detail is as it is; big—picture readers, who don't trust their understanding
of any detail

unless they can deduce it themselves from the underlying principles; and so on. There

is another kind of reader that many analysts go out of their way to try to satisfy: the

hostile reader.
The hostile reader, upon reading any statement, tries to misinterpret it—and

always succeeds. If you write, “Each inventory item has a unique identification
code,”

the hostile reader counters: “Each inventory
item? In thewhole world?” So you change

it

to “Each inventory item in the XYZ warehouse has a unique identification
code.” The

hostile reader is not yet satisfied: “Tables and
chairs and dollies in the warehouse are

items. Do they have unique identification codes?” No,
that’s not what you meant, so

you change it to “Each item in the XYZ warehouse that is bought from a supplier or

sold to a customerhas a unique
identification code.” Still not good enough.The hostile

reader objects: “50 if you get an item for free and have not yet sold it to a customer, it

has no identificationcode?” You
fix that, and the next objection, and so on,

and on each

iteration, the sentence becomes ever longer
and more difficult to understand.

You can try defining a term once and reusing it many times, so you
don’t have to

write the definition into each sentence to satisfy the hostile reader. That won’t work,

though. The hostile reader never
reads more than one sentence at a time. What the con—

text of a sentence supplies, the
hostile reader ignores. So you resort to

the strategy of say—

ing everything in the document in every sentence.

Before you get too worried about
the hostile reader, see if you can remember the

last one you met in person. If there are any genuinely hostile readers, they must be very

rare. The author has not met one.
There are a few testy readers out there, who don’t try

as hard as they possibly could to answer the question, “What is the author’s intention

here?” but they’re also rare, and they‘re especially rare among people
who are reading a

requirements document in order to learn the next problem upon which to ply their

skills. The hostile reader is a bogeyman.
You don’t need to fear him.

The hostile reader illustrates a
fundamental principle of language: speaking

assumes

a cooperative listener, and listening
assumes a cooperative speaker.* The same principle/" [Pinker 1994], p. 228.

“’9‘
CHAPTER 13 DOCUMENTATION

applies to written language, of course. There is another principle: while you can’t make
yourself understood to the hostile reader, by trying to do so, you make yourself incom—
prehensible to all real readers.

This is why many legal documents are so opaque. They’re written for a hostile
reader assumed eager to find a loophole by exploiting the ambiguities inherent in natu-ral languages. Even legal documents don’t succeed in ruling out all possible unreasonable
interpretations.They do succeed, however, in being incomprehensible.Sometimes the
meaning is exactly the opposite fromwhat the lawyer intends, the swirling syntax being
so by7antine that not even the author can follow it.

Furthermore, when you read legal verbiage, your first thought is to try to find a
loophole. When treated with hostility, naturally, you react with hostility. By writing insuch a way that you do not draw upon the reader’s intelligence to understand you, youturn the reader’s intelligence to misinterpretingyou—youmake them a hostile reader.

13.4.10 Putting the onus on the development stafl
When grumblings are overheard from the developmentstaff about lack ofgood require-
ments, management sometimes proposes to solve the problem by putting the onus onthe stall”. “Beforewe sign offon a project, we will show you the requirementsdocument,
and we won’t proceed without your approval. If there’s anything you don’t understand,
point it out and the analyst will clarify it or get it corrected. You will have every oppor—
tunity to make sure the document is just right. And then, once you do sign off, you willbe accountable. There will be no more pointing fingers or complaints that the docu—
mentwasn’t correct.”

This solution is also proposedwhen management learns that no one on the devel-
opment staff is reading requirements. “We’ll make them read the requirements docu-
ments by announcing that they’ll be accountableif there’s somethingwrongwith them.”The United States Congress has failed to balance the federal budget for many years
now. Some have proposed an indirect type of solution: change the process by which
Congress makes budgets by requiring them to balance the budget, as one of the rulesthat they have to follow. Yet there is a law on the books, passed in the 19705, already
requiring a balanced budget. A constitutional amendment would face the same prob-lem: who’s going to make Congress balance the budget, and what decisions will this
party make regarding how much funding to give to each department and program?These process solutions don’t work because the only way to balance the budget is tobabmce the budget.

Similarly, the only way to make requirementsdocuments readable is to make them
readable. When programmers read a poorly written requirements document, they see a
maze of information that appears to be of no relevance to them. Why are there user

MORE COMMONMISTAKES 287

requirements that are
almost identical to

functional requirements,
except that the

word—

ing is slightly different? What’s this ferociously complex data—How diagram for? Why

does each function
have inputs and outputs

that aren’t inputs and
outputs? They appear

to be destinations
for data, since some

of them are Called data stores,
but the data itself

is

missing.
Faced with a document in

which so little is understandable to you,
you’re likely to

infer that it was never
intended for you to read. Perhaps managers

understand and have

a use for all that strange
prose. Maybe the legal department

insists on having an
Exclu-

sions section that lists
what’s not to be included

in the software, and
maybe there’s a rea—

son why that list
isn’ t in nite. All through the

document, the same things
are said three

or four times,
often on the same page.

No one could have
made a document so

intricate

if there weren’t good
reasons for it.

So you give your approval
meaning “the few little bits that seemed to have some—

thing to do With my job seemed okay.” You figure that you‘ll get
most of the informa—

tion that you need by word of mouth.
After all, that’s how

it's always been done.

On the other hand, if
only three or four things

seemed wrong or unclear, then

you’d know exactlywhat to object to. Changing
the approval process

won't get the doc—

ument to that level
of clarity. Only improving

the documentwill.

The above should not be taken to mean that
well—honed and well—defined business

processes are unimportant.
indeed, the development

staff should review requirements

documents and sign
off on them only when they contain all the information

t ey need

to do their jobs. However,
process improvements,

at least those
concerning interaction

between people, should always be understood as a way of enhancing the
division of

labor, not as a substitute
for the labor itself.

13.5 Poor uses ofdocumentation

13.5.1 Documentationfor the sake of
documentation

Documentationis sometimes put
to uses unrelated to

or contrary to getting
the software

completed and functioning
correctly. One is conformity to

documentation standards.

For example, a poorly
designed 150 9000 quality process or the

standards for a govern—

ment contract might
specify that a requirements

document describe
the software, per—

haps by casting it into the concepts of structured analysis, and fit all the information

into a one—size—fits—all table of contents.

The theory behind
this is that in order to have consistent

quality, we need a set of

quality criteria that can be defined independently of any particular project.
A person

CHAPTER 13 DOCUMENTATION

should be able to judge the quality of the requirements document without knowinganything about the problem domain, and without any experience as a programmer. Isthere a Gane-Sarson chart? Yes. Is there a section titled Dependencies? No—return tosystem analyst for revision. Suffice to say, this is focus on non-essentials.A project where this kind ofdocumentation is written tends to be a project that isnot focused on delivering a high-quality, correctly functioning product. Instead of therequirements document being a vehicle to enable the development team to do its jobs,writing the requirements document and many other documents is an end in itself. Thehundreds or thousands of pages of documentation prove that we did everything cor—rectly, in accordance with official standards, so if there’s somethingwrongwith the prod-uct, it’s not our fault. Many of these kinds of projects never reach completion and,perhaps, were never intended to.
This book won’t help you write that kind of document. If you’re forced to Workwith such standards, one strategy is to write two documents: one to conform to thestandards, and one for real human beings to read. Indeed, many project managers pro—vide this service to their teams when :1 requirements document is incomprehensible.The manager talks to the system analyst, learns what the requirements really are, andthen makes a list that fits on a page or two of all the requirements that the team reallyhas to address.

13.5.2 Doubleta/k
Another highly questionable use ofdocumentation is impressing the customer, not withthe accuracy of your analysis, but with how much more you know than the customer.The theory is that the customer sees all the arcane terminology, sections with no intelli-gible purpose, and indecipherable graphics, and thinks, “It’s a good thing we didn’tattempt this ourselves!There’s no way we could have produced anything like this. Thesepeople sure must knowwhat they’re doing.”

That might work sometimes. Of course, it also breaks the link between therequirements document and the customer. So, the written description of the problemdomain never gets verified by the domain experts. Also, the programmers can’t under—stand such a document, so they miss out on the content that’s buried within it,whether it’s right or wrong.
If the customer has ever dealt with requirementsdocuments before, you’re sure toimpress them muchmore with a simple, short, clear one. Impress the customerwith theclarity of your document and the completeness of your analysis. “Wow, you reallyunderstood our situationhere. No one has ever done that before.”Ifyou absolutely must write a mystifying document to impress a customer, be sureto write a second document that is useful to the development team.

POOR USES OF DOCUMENTATION 289

13.5.3 CYA documents
One more unfortunate attitude toward the writing of requirementsand specifications is

to treat them as CYA documents. (You will have to use your imagination to tell what this

acronym stands for.) Such a document does not provide anyone with information neces—

sary to do a job. Instead, its purpose is to have something to point to if disputes arise

late in the developmentprocess.
The procedure is as follows. First, write a hopelessly convoluted set of specifica—

tions, filled with references to documents that are difficult to find, impenetrable

requirements jargon, lots of repetition so that it’s difficult to tell which of a set of state—

ments is the definitive one, and statements whose import can’t be properly grasped

without first reading a seemingly insignificant subordinate clause in a sentence that

comes 61 pages later.
Next, the customer sees the document. The customer doesn’t read the document,

of course, because that’s not humanly possible. The customer is perhaps awed by how

much more arcane is the discipline of software description than they ever imagined.

The customer figures, or perhaps just hopes, that everything that was talked about in

the preceding discussions must be included in such a long, complex document. After

skimming the text a while, perhaps finding a sentence or two to reword, the customer

signs off.
Now the development team takes over. Naturally, 90% of the information about

the software will be communicated orally because no one on the team can understand

the document, except for a few tables that the system analyst tells them to look at. But

let’s suppose that the software is written exactly as specified.
At last the software is delivered. The customer tries out the software and notices

that there’s a backup feature but can’t figure out how to restore. It turns out that the
software can’t restore; it can only back up. The programmers said there was an unusual

technical snag with restoring, so the system analyst decided to make it a possible

future enhancement.
“How can you deliver a piece of software that lets you back up without restoring?”

the customerbellows.
“Look under Acceptance Criteria, on page 73. It doesn’t list any criteria pertain—

ing to restoring,” the analyst replies coolly, like a chessplayer who’s just cornered his

opponent.
“But what’s the point of backing up, then? What if a hard disk crashes?”

“I’m sorry, but you signed off on the specification document, and the contract

states that you will make final payment for the software if it meets the acceptance
crite—

ria in that document. If you want additional features, we can discuss new development

work to add them.” Checkmate?

290 CHAPTER 13 DOCUMENTATION

communicated by oral tradition, it tends to backfire and anger the customer.A better way to handle such disputes is to try to prevent them. Driving safely pro-tects you much better than an airbag.
First ofall, the contract must budget for change, simply because we can’t spot everyrequirement at the beginning, and we probably won’t get the specification perfect atsign-offtime, either. Even today, many customers think that software engineeringworkslike manufacturing. So, you need to tell the customer about these imperfections of

change a requirement or part of a specification that the customer signed off on, you’llneed to get agreement from the customer and charge the new costs to the change bud—get. If the customerknows that the changes are coming, this won’t be so painful.

at the expense of relevant detail, of course. If the document is made to be read andunderstood, the customer will probably read and understand it. The customer wouldthen notice early on that, for technical reasons, the restore feature is deferred to a laterrelease. There wouldn’t be any big surprise at the end, where the customer is made tofeel hoodwinked.
Finally, never forget that the customer is the first participant in the division of cog—nitive labor that produces software.

p001e USES OF DOCUMENTATION
291

CHAPTER 14

Organization
14.] Contentfirst
The first principle of organization is: a place for every detail, every detail in its place.Organization is the process of inventing places for all the details. Therefore, to organize,you must first have some details in need oforganization.

In elementary school, you were probably taught that the first step in writing a doc-ument is to make an outline. First you state all your main topics. Then you break eachtopic down into subtopics, and, if necessary, you break those down into subsubtopics.Each bottom—level topic will correspond to exactly one paragraph. Once you finish theoutline, writing the document then becomes very simple and systematic: just write theparagraph corresponding to each bottom-level topic.Of course it never works so easily in practice, except in simple examples fromelementary school. Alert readers will recognize the topvdown approach, already criti-cized in chapter 1: how can you tell if the overall structure of the document is anygood until you’ve written the paragraphs? How do you know that it makes sense tobreak down the subject matter along the lines of your top—level topics, instead ofsome other way?

293

There is a further problem with writing an outline first: it doesn’t make sense to
choose an organization without first having some content to organize. Therefore, your
first step in writing a document should be to make a list of the content that you want to
include—an unordered list containing big topics, tiny topics, concepts, propositions,
ideas for graphics, and anything else that you want to include in the document. Just add
items to the list as you think of them without worryingabout the sequence or hierarchy
in which they’ll appear in the final document or about whether an item corresponds to
one paragraph or two or twenty. Don’t even worry, at this point, if some items overlap.
Part II of this book provides guidance for identifying the content items appropriate to
the document that you’re writing.

An outline processor is a wonderful device for creatingyour list of content. You can
begin grouping related items together and choosing a sequence as you type them in, but
don’t become attached to the first way of organizing the document that occurs to you.
You want to make use of the outline processor’s ability to let you quickly make radical

changes to the way the document is organized.*
There are two principal aspects of organization: how information is grouped

together into units, and the sequence in which information is presented. Choosing a
good grouping and a good sequence is a matter of identifying the logical structure of the
content, that is, which items logically depend on which. The following two sections

provide guidance on making this choice, though the full subject of logical structure is

far beyond the scope of this book.

14.2 Grouping
Ideally, information that is more closely related to other information logically should be
located closer to it in the document physically, and the principal divisions in the docu-
ment should correspondto the principal logical divisions in the content.

" Very early in writing this book, 1 made a list in an outline processor ofabout 600 content items to organize.
Organizationwas very difiicult, and I had to abandon many early attempts. The original idea of having
one chapter per problem frame, containing all the documentation techniquesneeded for that typeofprob-
lem, just didn’t work: nearly all of die documentation techniques overlap between two or more problem
frames. Presentingrequirements techniques in one section and specification techniques in another didn’t
work, either, again due to the overlap problem. An early attempt at presenting a complete, example re-

quirementsdocument for each frame didn't work: most readers didn’t want to trudge through even a tena

page requirements document to see the techniques in action. I had to scrap about 100 pages ofwriting in

response to that piece of feedback. The point of this example is that its typical. Organization ofany doc—

ument longer than a couple pages is almost always difficult, requiring careful thought and a willingness to
delete, reorganize, and rewrite.

294 CHAPTER 14 ORGANIZATION

These ideals can be diflicult to achieve in practice. For example, if many differentclasses participate in the same sequence of events, you would likely have one section foreach class, followed by one section to describe the sequence of events. The class docu—mented in the first section, however, is logically related no less closely to the sequence ofevents than all the other classes. Thirty pages may well separate the first section from the

whole than to the classes, so you have to bundle the events into one group, even thoughthis means distancing them from the classes.
Fortunately, you’ve already done most of the work of finding the logical seams inthe subject matter when you framed the problem as described in chapters 4 through 6.In a requirements document, each domain naturallyfits into one section. Each require-ment oval can also make a section, or you might put it at the end ofa section about onedomain. (See the tips for classes and events below; the same decision applies to them.)The rest of this section focuses primarily on smaller choices about how to combinedetails into groups.
The following are a few ways in which two or more propositions (statements) canbe logically close and, thus, candidates for inclusion in the same group:
Logiml rehtiom/n‘p Example

Propositions A and B are about the A gene consists of a sequence of codons.same sub'ect.
. .

l
A gene codes for a specific protein.

Propositions A and B have the same Servomotor3 can close valve G.redicate.
.

P
A member of the maintenance stag canclose valve G.

Propositions A and B have subjects I/O port 0x7000, bit 0, turns onin the same class, or that are different servomotor3.values 0f the same variable.
I/O port Ox7000, bits 4—7, select one of16 speeds for servomotor3.

Propositions A and B have the same Data mining must happen before datakind of predicate—that is, answer analysis.the same question or have parallel
Data analysis must happen before datastructure.
transmission.

GROUPING
295

However, it is virtually impossible to deduce from general principles whether a

given set of content items should be grouped together
or not. Better to systematically

consider alternatives and use your common sense. Usually, just by looking over some

alternatives, you can easily see which fits your subject matter best.

Here are three ways to group classes and events:

(1) (2) (3)

class A class A, including events class A

class B class B, includingevents class B

class C class C, including events class C

class D class D, including events events that affect A, B,

events
and C
class D, including events
class E
class F
events that affect E and F

Organization (1) makes sense if the set of events
straddles classes A, B, C, and D.

Organization (2) is more appropriate when each sequence of events affects only one

class. Naturally, within each section, you describe the class in one subsection and the

events in another subsection; you don’t
let one complicate the other. Organization

(3) is

a more general case: a mixture of the previous two. There’s no need to consistently fol—

low one grouping strategy throughout the entire
document.

You can see that classes and events are just one instance of a common pattern of

logical relationship: one set of naturally grouped propositions pertains to
one or more

other sets of naturally grouped propositions. The vast majority of grouping decisions,

whether at the level of paragraphs, tables, or sections, boil down to choosing from

among the above three types of organization.
A type of groupingmistake to avoid is illustratedby an application that has a set of

queries as well as the capability for a manager to decide which employees can run
which

queries. The temptation is to say, along with the description of
each query, that a man-

ager can decide which employees can run
it:

query A, manager can set up authorization

query B, manager can set up authorization

query C, manager can set up authorization

query D, manager can set up
authorization

296
CHAPTER 14 ORGANIZATION

The first rule ofstyle is to have something to say. The second rule ofstyleis to controlyourselfwhen, by chance, you have two things to say; sayfirstone, then the other, not both at the same time.’k

any user can run query A unconditionally You’re trying to avoid the jigsaw puzzle prob-
lem described in section 13.4.

However, the eperirious organization clearly won

content all the way through
lfyou’re looking for a principle of logical relationships that guides this decision,

here it is:

‘ [Polya 1957], pl 172.

GROUPING

——————V—,_
For example, what defines a query is its content and any other information that

is

inherent in the query, such as its input or output formats. They say what the query is.

That information belongs all in one place, uninterrupted by anything else. The ability

to decide who can run a query is, something that presupposes a query
to talk about and,

therefore, does not belong within the same group.
However, a fine compromise is to create a larger group, containing two parts: one

part describing the queries, and the other describing the authorization capabilities. Usu—

ally, you don’t even need to explicitly designate
these as membersof the same group; you

can simply place the section on authorization immediatelyfollowing
the section on the

queries. Then the reader will learn about authorization immediately
after learningabout

queries and will hardly be able to help noticing that they’re related. The basic grouping

principle pertains to keeping related statements close together in the document, not

necessarily keeping them in the same section.

Another helpful standby, whenever you want to
be sure that a reader understands

that information elsewhere in the document
affects what a certain section says, is the

crass—reference. Just write “See section 2.4" or “See page 17 for information on which

users can run each query.”

14.2.2 Seven plus or minus two
In the 1956 article “The Magical Number Seven Plus or Minus Two,” almost certainly

the most widely read article ever published in cognitive psychology, George A. Miller

wrote about some interesting“limits on our capacity
for processing information.”

Many have understood this article as scientific proof that a graphic should have no

more than 7 i 2 circles or rectangles in it because then the mind won’t be able to
under—

stand it; more circles or rectangles would exceed our capacity for processing informa-

tion. Some have gone further and taken the article as scientific proof that the human

mind cannot understand a section in a document that contains more than nine
subsec-

tions. 7 + 2 = 9, therefore nine subsections is the limit; if the section contains ten sub-

sections, then the readers can‘t help but become confused. A procedure cannot have

more than nine steps, or people won’t be able to carry it out reliably, and so on: when—

ever any group containsmore than nine
elements, it’s beyond human comprehension.

Ifyou think somethingmust be wrong
with this idea, you’re right. In fact, the arti—

cle made no such statements. More importantly, those statements are not true, as a
few

observations will demonstrate. The Old Testament is not any less comprehensible for

having Ten Commandments rather than Nine. A road map shows you thousands of

symbols at once, and yet people navigate with road maps every day. A typical dictionary

contains 50,000 subsections all grouped together—one for each word—and yet people

have no trouble using it. You can carry out a written procedurewith a hundred steps by

298 CHAPTER 14 ORGANIZATION

just doing one step at a time and then reading the next step. The English alphabet is 26letters long, and yet children learn it. You have probably understood sentences contain-
ing more than nine words, and whistled melodies ofmore than nine notes.

When a subtle idea becomes popular, it often becomes distorted; a simplistic sub-
stitute takes the original idea’s name in popular culture. Miller’s article is actually about
two main subjects. In the first section, the majority of the article, he observed that in
many experiments involving quick, perceptual measurements of stimuli that varied
along a single axis—such as the pitch of a tone, the loudness of a tone, the salinity of
water, the length of an arc—mostpeople could accurately distinguish only about sevendifferent levels, give or take quite a lot depending on the type of stimulus. Miller called
this range of levels the span ofabsolutejudgement.

Given that the span of absolute judgement is only about seven levels, this raises
an important question: how, then, are we able distinguish such complex phenomena
as faces? We all recognize far more than seven faces, and with amazing accuracy. Miller
doesn’t provide a definitive answer, but he discusses some tricks, such as, judging stim—
uli that vary on several dimensions at once to achieve a much greater number of dis-tinctions.

The article then turns to the rpm ofimmediate memmy: how much informationwe
can keep in our short—term memories at once, measured by giving someone some infor—
mation that they have never heard before and asking them to recite it back. Most peo—ple, upon hearing a random sequence ofbinary digits, can recite it back correctly only ifthe sequence is no longer than about nine digits. This would seem to indicate that the
span of immediate memory is about nine bits of information.

Now here is the truly noteworthypart of the article, at least for writing documenta—
tion. There is a trick by which you can accurately recite back a string offirty binary dig-its. When you hear five digits, think of the correspondingdecimal number from zero tothirty-one: for example, when you hear 10010, think “18” and forget the 10010. Do the
same with each group of five digits. This breaks the string down into eight decimal
numbers, which you can keep in your head all at once (just barely), and use to recon—
struct the original binary number. It takes some practice, but anyone can do it.In the terminology of information theory, this trick is called recoding. By recodingthe binary digits, you’ve increased the amount of information you can keep in your headat once from nine bits to forty bits—a huge increase, considering that every increase of
one bit doubles the number ofdistinctions that you can make. The span of immediate
memory is therefore properlymeasured in chunks, not bits, and through recoding, eachchunk can be worth many, many bits. The number of chunks you can hold in yourimmediate memory varies somewhat according to the type of chunk. For simple things

GROUPING 299

like digits, it‘s as high as nine, but more often it’s around seven or even five for arbitrary

lists ofwords.
Recoding is far more commonplace and of far more importance

than as a parlor

trick for reciting binary digits. Just as our
brains have means for extending the span

of

absolute judgement t0 astounding levels in order to recognize thousands of faces, we

also have means for extending the span of immediatememory, enabling us to
consider

problems of spectacular complexity—like software requirements and computer pro-

grams. Recoding is foremost among them, and it's everywhere; you
do it all the time. It’s

how you’re able to read a 400—page book and not get lost.
When one topic is done, you

put it and all its details away in your mind, and
think about the next topic. If the two

are connected in some way, you can mentally reopen the first topic, as needed, to
under—

stand the consequences of the connection
and then forget about it again.

So, if you have 700 elements that belong in a table, make a table with 700 ele—

ments. Just make the table so that the reader can read it one row at a time and so that

there is an obvious commonality to all the rows. Commonality allows the reader to

chunk the table, thinking of it as only one
thing, such as, “the table that lists all the

field

mappings.” If you have a procedure with eighteen steps, the same principle applies:

make your description such that the reader can read one step at a time, knowing his

place in thewhole procedurewithout
having to keep all 18 steps in mind at once.

So here is the real lesson to learn from Miller’s famous article:

The Rema'ingPrinciple: Make it any for your readers to
recode, or chunk,

the information, so that they seldom or never have to considermore
than

four or five things at once (not ninel).

In fact, you can set up nearly all documentation so that a reader never needs to

think aboutmore than one or two things at once. There are almost always
a few compli—

cated parts that require juggling three or four or five at once, but, through skillful

grouping—saying one thing at a time—you can keep those to a
minimum.

14.3 Sequence
The ideal sequence in which to present information

is such that no statement ever

appears before any statements
that are logically required to understand

it.

Like the ideals for grouping information
into sections, this ideal is much

harder to

put into practice than it sounds. Especially in software, it seems that all the parts are so

tightly intertwined that no one part can be described in isolation. The key to solving

this problem—to the extent that it can be solved-is to put
that which is more logically

300
CHAPTER 14 ORGANIZATION

findamenta/ first. Every new piece of material builds on all the previous pieces, ulti-
mately creating the desired logical structure in the reader’smind.

For purposes of understanding material, the rule for deciding which of two con—
cepts or propositions is more fundamental is simple:

If a concept or proposition B refers to another concept or propositionA,thenA is more fundamental and should come first.
The principal way that one concept refers to another is by including it in its defini-

tion. For example, you can’t understand what a two—pair connection is until you under-
stand what a pair is and what a connection is.

A proposition refers to another proposition by extending it, varying it, talkingabout it, or including it. For example, you can’t understand “If a timeout occurs, resyn-chronize the channel” until you know that it is possible for timeouts to occur and that itis possible to resynchronize the channel.
A proposition refers to a concept by including it. You can’t understand what “Inside

plant is equipment located in a central office” means until you understand what “inside
plant” and “central offices” are.

Here are a few heuristics for determiningwhich of two pieces of information is log-
ically more fundamental:

' Facts not within one’s power to choose are more fundamental than facts that onecan choose. So descriptivestatements should generally come before requirements,
as requirements are really just descriptions of conditions that the customerchooses to make true. To put it another way, the problem is more fundamentalthan the solution.

' Things are more fundamental than their attributes, relations between them andother things, and the actions they can do or have done to them. For example, youneed to understand what nations are (things) before you can understand foreign
policy (action). This is the principle that guided the placement of classes before
sequences of events in all the examples in section 142. Similarly, in a class descrip—
tion, the definitionof the class precedes the descriptionof its attributes.
° A corollary: Relations are less fundamental than what they are relations between.
This includes relations between actions, such as causal relations.

0 A corollary: Actions are less fundamental than What gets changed during the
action.

' A corollary: Attributes are less fundamental than what they are attributes of. This
includes attributes of relations and actions, or even ofother attributes.

SEQUENCE 301

r—y- The normal case is more fundamental than the exceptional
cases. Exceptional cases

are variations 01' extensions of normal Cases.

0 What a thing is is more fundamental than any roles that it plays in different situa-

tions or how it is used.

° A description of agents should usually precede a description of the passive objects

that they act on. For example, usually a detailed descriptionof users should precede

detailed descriptions of the things they act on. Both, however, tend to be very inter-

twined: the agents are defined by what they do to the passive objects, and the pas—

sive objects’ capabilities are exercisable only by certain agents. The reason for

putting the agents first has less to do with logical structure
and more to do with the

fact that there are usually few agents and many passive objects. Describing the

agents first leads to fewer forward references.

You’ll notice that these suggestions can easily conflict. What if a class A contains

attributes that refer to class B, and class B contains attributes that refer to class A? That’s

very common because that’s the situation each time you have a relation between two

classes. in this case, you simply have to choose one or the other, knowing
that the reader

might be temporarily perplexed the first time reading through the document.

The above tips can help you minimize incomprehensibilitydue to one piece of

information’s logically depending on a later piece of information, but they can’t guaran—

tee you a way to eliminate it. As with difl'iculties in grouping, you can always refer to a

later section or page number to help the reader find the information that hasn’t been

covered yet.
However, there is a simple technique for giving the reader enough information in

advance of any section to understand it on first reading, even if it refers to information

in later sections: an overview. An overview should try to follow the principles of logical

sequence inside itself.This is easier than in
the main text because an overview leaves out

nearly all detail. However, the overview provides enough information so that readers

have some introduction to all the main concepts, enabling them to understand sen—

tences that refer to those concepts, even if they haven’t read about them in detail.

14.4 Emphasis
Emphasis is a way of distinguishingthe two percent of the content

that is most impor—

tant from the remaining ninety-eight percent. It is not a way of indicating that
certain

information is important. Of course, every statement is so important that your reader

should know about it; otherwise you wouldn’t have put it in the document.

302 CHAPTER 14 ORGANIZATION

to properly understandother statements.
For example, in the requirements for a photocopier, a reader needs to understandthat the purpose of the whole thing is to make copies. Understanding this, a reader canlook at all the details with a critically focused eye: “If this happens and then that hap-pens, how is that supposed to produce a copy.> What if such-and—suchhappens first?Howwould you recover from that?” Burying so important a statement deep in the doc—ument would leave the reader with a heap of seemingly arbitrary details, and no goodquestions to ask about each one. In a photocopier, this wouldn’t be a problem, but what

' A graphic emphasizes its content.' Whatever appears first is automaticallyemphasized.' Whatever ou refer to man times is em hasized—not e and section references,
Y Y

many other things, each time adding more information.
0 Surroundingcontent with white space emphasizes it. look at page 300. Which sen-tence do you see first?
' Bullets emphasize.
0 Repetition in another form emphasizes; for example, giving an example or drawinga graphic.

short section.
' Any kind of contrast emphasizes the contrasting element. If one row in a table isshaded and the rest are not shaded, the shaded row is emphasized. If one row isunshaded and the rest are shaded, the unshaded row is emphasized.

or more strained tone of voice than the surrounding text—seldomneeded in tech—nical documents.

It may seem surprising to hear that taking more space could be a good thing to doin a document, as a way of giving a piece of information its proper degree of emphasis.
EMPHASIS

303

viHowever, “express everything in the fewest words possible” is a crude rule and, if taken

literally, would lead to incomprehensibly terse (but literally correct) documents. It is

better to understand that you have alternatives, and those alternatives include a wide

range of different lengths.
Ifyou want to make a section longer, you can: add examples, or add more examples

or more—detailed examples; add a graphic; add an explanation of the rationale for the

information in that section; add usage scenarios; say the same information in more than

one way.
Be aware that all the techniques of emphasis can work in reverse, too. Whatever

you put first will be emphasized, whether youwant it emphasized or not. Ifyou start the

document with a lot of bureaucratic sections, the principle of “whatever appears first is

automatically emphasized” causes the genuinely important text to be deemphasized.

This is essentially why decoy text is the bane ofgood documentation.
Strangely, talking about importance explicitly usually backfires. Writing the words

“IMPORTANT!" or “NOTE” before important statements often makes people skip

over them.
Furthermore, such extreme forms of emphasis, or emphasis applied to much more

than the two percent that genuinely touches nearly every other statement in the docu—

ment, undermines your credibility. Italicizing every not makes you sound like a person
who continually raises his voice or repeats himself—that is, a person who does not

expect anyone to listen to him. Usually when people expect to be ignored, it’s because

they have reason to: they know that what they have to say is not relevant to other peo-

ple’s concerns. You probably don’t want to communicate to your readers that what you
have to say is irrelevant to their jobs. Say everything once, with no more and no less

emphasis than each statement deserves.

304 CHAPTER 14' ORGANIZATION

how to make useful TABLES and how to

acronyms
Whenever possible, try to avoid inventing new acronyms. They’re opaque to the

uninitiated, and, of course, you’rewriting for the uninitiated. They take a person a lot

longer to learn than a word or a two—word phrase. However, if an acronym is already

part of the vocabulary of the problem domain, then you must explain it in the

requirements document.
The meaning of an acronym is seldom made clear by indicating what its letters stand

for. If you know that 055 stands for “operations support system,” do you knowwhat an

055 is? For more information,see DEFINITIONS and GLOSSARIES.

‘igfifect/e ect”
Words easily confused. Affi'ct is most often a verb, and (flirtmost often a noun:

Aflom‘ngsomething is causing an efli’rtwithin it.

Adding to the confusion are a noun usage of afitt, having a completely unrelated

meaning, and a verb usage of (#26:, meaning “make” or “bring about.” Fortunately,

these additional senses are seldom needed in technical documents.

“always”
It is sometimes claimed that a requirement should never assert that something is to

always or never happen. For example, a requirement should not say that the system

should always reject an order from a customer on credit hold. This is because a require—

ment is supposed to be finite, and an “always” or “never” statement pertains to a poten—

tially infinite amount of time. The reason for wanting requirements to be finite is

because requirementsare supposed to be testable, and it’s impossible to test an infinity

of cases.
This is a mistake. Test cases are necessarily finite. You test a system, say, for three

weeks. The purpose of testing is not to determine that the system Worked for three

weeks.The purpose of testing is to either gather evidence that supports an
inference that

the system will meet requirements indefinitely far into the future, or to uncover evi-

dence that it won’t. Testing is always imperfect. Even finite requirements that have a

mere quadrillionpossible cases (many fewer than in most real—world system) are impos-

sible to test one by one. Testers carefully choose their test cases to expose evidence that

has as much logical leverage as possible, to learn as much as possible about how the sys-

tem will performduring the potentially infinite span of time when it is not being tested.

Furthermore, the people who design specifications and write programs are not

trying to produce a system that works only during testing. The problem they are trying

to solve is, “How can we make such—and—such always happen?” The requirements

306 CHAPTER 15 SMALL DETAILS

document should state that problem and not confuse it with the separate problem ofhow to verify that the software meets the requirements.
To put it another way, the customerwill be somewhat nonplussed ifyou write thatthe cutting blade will not fall while a person is in the cutting area—but only during thefirst three weels ofoperation.

assumptions
The word Imumption, like its frequent companion DEPENDENCY, is vague. There are awide variety of things in software development that are equally well named by the wordassumption, so you can never safely—ahem—assume that the reader will understand theone that you intended, without providing some clarification.

Faced with a template containing a section namedAssumptions, it can be temptingto include anything you can think of, only for the sake of having something to includein that section:

1.8 Assumptions
This document assumes that DEXwill be developed according to XYZ CorporationSoftware DevelopmentStandards, doc. no. 045-71001.

And what if the staff does not develop the software according to X17 CorporatianSofiwareDevelopment Standards?What useful information does this sentence communi-cate to the reader? Since it communicatesnothing, it should be deleted.
Assumptions worth stating are thosewhere you can identify something in the doc-ument that would have to be changed if the assumptionwere changed. Identifying anassumption is useful only ifyou explicitly indicatewhat would have to be changed.For example:

This user interface is designed on the assumption that it will be implemented in VisualBasic. Ifwe switch to a different tool, wewouldprobablyneed to change the appearanceand Functionality of a number of the controls.

It’s neither necessary nor possible to state exactly which controls would have to bechanged, without redesigning the user interface for every other available tool. But eventhough this paragraph doesn’t go into detail, it communicates useful information to thereader. If a programmer is consideringswitching to a different tool, they will be on thealert for user-interface decisions that exploit capabilities of Visual Basic that are notavailable in the new tool. If a user-interface designer is consideringa different tool, they

CHAPTER 15 SMALL DETAILS 307

requirement statements
There 'Jl‘i‘ thrcc main ways to word a rcquircmcm smtt’mcnl: in the prcscnt must. with Amodal verb like mm?or .i/Vlll, and in the imperative mood (as 1 command).

Ill [119 present [CDSL‘Z

R-1 A user can View landbase files in AutoCAD format.
R-2 A user can run any of the following queries on demand:
R-3 When the passcode is entered at the gate, the gate toggles betweenlocked and unlocked.

R-4 WATCHCOM notifies the user when the gas pressure on anypressurized cable falls below its allowableminimum.
\Virh zl modal vcrb:

R-1 A user must be able to view landbase files in AutoCAD format.
R-Z A user shall be able to run any of the following queries on demand:

()7‘

R-Z VSYS shall answer any of the following queries on demand:
R-3 When the passcode is entered at the gate, the gate must togglebetween locked and unlocked.

R-4 WATCHCOM shall notify the user when the gas pressure on anypressurized cable falls below its allowableminimumt
In the imperative mood:

R-1 View landbase files in AutoCADformat.
R-Z Answer any of the following queries on demand:
R‘3 When the passcode is entered at the gate, toggle the gate betweenlocked and unlocked

R-4 Notify the user when the gas pressure on any pressurized cable fallsbelow its allowable minimum.

(.‘HAI’I'E/e IS Alli/11,1. [JET/1115 329 ?

“valid”
See INVALID

voice

reports are printed.”
While both forms of emphasis have their uses, the passive voice is often a terribletemptation. You should use it only consciously and deliberately to achieve an unusualform of emphasis, not as your habitual way of framing a sentence. The temptationcomes from the fact that when you’re writing, especially about something in computers,what’s on your mind is how some object is affected by an action, not the agent of theaction, and often its hard to identify any distinct agent. However, for a reader to under-stand the action you’re talking about, often you must make the agent explicit.The following are a few examples of how to convert passive sentences to active:
Vaguepassive Explicit active
When the Scheduled Reports window When the user closes the Scheduledis closed, the monthvend report is Reports Window, VSYS prints theprinted.

month-end report.
Obsolete bar codes prevent products The system cannot identify a product iffrom being identified. it has an obsolete bar code.

Ur

An auditor cannot identify a product ifit has an obsolete bar code.
MDU data is exported only once to Once a caller has exported MDU dataVSYS.

to VSYS, it can never export it again.
07

VSYS requests MDU data from a calleronl once er session.Y

CHAPTER 15 SMALL DETAILS
337

Sometimes a sentence has every verb in the active voice but still has the vagueness
or woodenness usually associated with the passive:

xlrtizxe [71 fin'm, passive in spirit Explicit and dire”

l'ailure to include an authorization if the caller does not include an
record will result in rejection of the file authorization record in the file, VSYS
by VSYS. rejects the entire file.

it your word processor has a grammar checker, it probably tries to tell you what
proportion of verbs in a document are passive, or perhaps flags every passive verb with
the recommendation that you change it to active. However, many verbs that have the
appearance ot‘heing passive actually refer to states and not to actions. For example, most
grammar checkers would flag it [added as passive in the sentence “ll-a tape is loaded, the
tape drive begins reading it," However, [added in this context is actually an adjective
referring to the state of the tape: loaded or not loaded. States don’t have agents, so there
is no way to reward the sentence to make the verb active, at least not without talking
about something else; the zfpart of the sentence is not about an action.

5.38 CHAPTER [5 SMALL/311771115

Examples

Bug Log Requirements

Last updated: October 14. 19%
Document ID: I-CORE/BUGQU‘LUI
Preparcd by: Ben Kovirz

1. OVERVIEW ... 346
1.1EXPECTATIONS.........................,..,........346
2. SOFTWARE DEVELOPMENT 348
2.1 USERS ... 3492.1.1. USER AC’I‘IVITY3512.2 PROJECTS, PRODUCTS, AND FEATURES 3522.2.1. PROJECTS ..3522.2.2.PRODUCTS.......................................353
2.2.3. FEATURES.. 3552.2.4. PROJECT ACTIVITY35523BUOS3582.3.1 ASSIGNMENTS3632.3.2. EVENTS THAT AFFECT BUG STATUS. 364
2.3.3.WHOCANCHANGEBUGSTATUS...................,.366
2.3.4. EVENTS THAT AFFECT DOCUMENTATION STATUS 3682.3.5. VALIDITYCONDITIONS3693. QUERIES... 370
3.1.QUERIES3703.2.NOTIEICATIONS.....................................371
4. RUNTIME ENVIRONMENT 373
5. LIKELY CHANGES 374
6. GLOSSARY ... 375

CHAPTER [6 BUG LOG REQUIREMENTS 345

2.2.2 Products

protect 5

product
*DOOl name bUQS ’

release numoer
features

Figure 6 Product and minted (lasacx

A firm/m1 is a single piece ofsnftware or softwate package developed at 1G5.

Attribute Description
ptOJect The project [0 which work nn this product is billed.

Every product is part ofone and only one project.
features The set oliall features, if‘any, into which this product hasbeen subdivided For purposes of tracking bugs.
pool The set ofpeople assigned [0 this product.
bugs The set ofall bugs that have been found in this product.whether fixed or not.
name The name ofthe product, Up to 30 characters. No twoproductswithin the same project have the same name,but two different projectx can have products that arenamed the same but include very different source code,
release number The current release number ofthe product.

CHAP TIER [6 Bm; t 06 REQ U/REMENTS
353

2.2.3 Features

product ‘3
feature

e pool bugsms; » ‘ name " —

Figure 7 Feature and related claw-s

Afi’aturc is part ut‘a product, typically :1 part for which a single programmer is
responsible (see figure 7).

Attribute Description

product The product nfwhich the Feature is a part Every feature is

part ofonc and only one product.

pool The set ofpeople who are assigned to the feature.

bugs 'l‘hc act ofall bugs that have been found H1 this feature,
whether l'ixcd or not

name 'l‘he mime olithe tl‘aturo Lp to 30 charactt‘rs. No two
featurcs within thc same product have the sdmc name, but
two differentproducts can have Features that arc named the
aunt,

2.2.4 Project Activity
Software development work within a single project consists of the events
shown below in figure 8, At any time, any number of. projects can be in
progress sim ul tancuusly,

CHAPTER 16 BUG 1.00 REQUIREMENTS 355

r

r

r project
l actrvrty
l

r

nrorecl product D’OleCl
starts aewrw :5 terminated

l

r

l

l

1 product
‘

* roductdevelopment deve Opment
rs tgrmmetedstarts actrvrty

O O
feature bug new
actrvrty actrvrtv release

A feature)3 always defined
‘ before being canceled.

Other than this. feature
RLKIVlIlL‘s. hug
JLIIVIUCS and Legend
new releases um teaure feature
mu" ”1 my rs defrrrec rs terminated A N mmpmed ofotilluwcd
:cqucncc by 7cm in mnrc C.

I‘ ugh occurrenceof C n
either a D or gm t

356

Figure 8 Project activity

The source of information For all events listed below, with the exceptions of
bug actrvity and new release, is IGS management.

Event

prorect starts

prorect rs

terminated

Description

IGS management defines 21 new project,

Parameters: mzme of project.

IGS management decides to bill no further wurk to a
project.

Parameters: The terminatedproject.

CHAPTER 16 BUG LOG REQUIRE/WENTS

2.3 Bugs

imtler

bug
lD

Dug tvpe
Jug Siam
\lFBC realm

asstgnments date dtscoveted
documentatton status
onouty
Dug release

,
' project fixed release

descrtptton
‘ ”9%“ steps tc tentodJce

database servet/name
_ feature action taken

Figure ‘) Bug and related (Litmus

A hugis a defect in a plL'CC UHGS software, a small improvement to be made
[0 that Softwfllt', or a group of mull, relalcd improvements and/0r defects.
This usage of the word bug is somewhat broader [111111 industry Still‘lLliu'Ll‘ in
that it includes‘ more than defects, but it’s ht'eome part of usage at [US :15 a
testtlt mi the Bl program‘s user interface, which referred to both defects and
improvementsas hugs.

Making the change called for h)‘ a bug is CllllCd/ILYIV‘r/gti‘luhug, whether the hug
is a defect or an improvement.

Attribute Description

D A number uniquely identifyingthei)t1g,ttssigi)edbythc
Bug Log.

358 CHAPTER 16 b’l/(i1.!)(1‘REQL/Rlz'fifF/VTS

Attribute Description

bug tvpe Which of the following categories describes the hug:

bug A defect that needs to he corrected: A

failure to meet requirements.

suggest/on A suggestion for improvement, not
specified in requirements We often
implement small suggestions to
improve the quality of the sttttxvztte
even iFthe customer doesn’t
specifically ask for them and we
receive no additional payment {or
them.

enhancement A change request going beyond the
original written requirements for the
software, requiring contractual
agreementwith the customer before
being assigned to a programmer to
itnpl emen t.

finder The user who found the hug. ()l‘ten two users find the
same bug. Approximately 1 in 7 bugs entered into BT
were superfluousduplicates. For simplicrty we'll say that
every bug has a single Finder but that two bug records
stored in the Bug 1.0g can be duplicates.

date found The date that someonefirst Found the bug. (N0 queries
pertain to the dates when more people lbund the bug, it~

any.)

[HA/”YER [(1 ENG LOG REQL’IRILWFNTIS’ 359

Attribute Description
deSCHpUOfl Free—form tcxt describing the bug Bug Lot,y must allow

at least 1K of text,

steps to Free—form [Cxt telling a programmer how to reproducereproduce the bug. Bug Log must allow at least 1K olitext.
database Ifapplicqblc, the name oi‘thc databast to connect to inserver/name order to reproduce the bug, along with the namc oftliedatabase: server.

action taken Free-form text describing the actions that the bug’s
programmerand/or documentcr have taken so Fat to fix
the bug; written by the programmerand/or (lOCleenICL
Bug log must allow at least 1K of. text.

2.3.1 Assignments
~u

user i

assignment
capacuty

Figure 10 Assrgnmem and related classes

An zli‘trgnmmz is data stored in the Bug Log indicating tlmt a particular user isresponsible for Working on a bug, prmluct, or feature in a spccific Capacity.

CHART/5R 16 [fl/(7' LOG REQUIREMENTS 365

Attribute Description

user The person a igncdr

ca acrt The ca)acirv in which user is assi yncd: maria er, m rammcr,I
V

E g P g
tester, or documentcr (described on pagc 3‘30),

bug, project, Thc hug, project, product, or feature [0 which uscr is assigned.
product, or
feature

2.3.2 Events that Affect Bug Status
Figure 11 and the accompanying table show all events that affect a hug‘s

bug status (as dcscrihed on page 360)

open

user finds fihug
_.7—> assign

manager ass/gns
tr'strug_ a
programmer and
raster

user
reopensbug

‘ code

___J/ programmer
fixes me bug
[fix V/W appear
m a future user decrdes
release] mat bug does

programmer / tester not need m
fixes (no, hug _ determmfi be fixed
m rs war/awe b""" that me frx rs

cmmedraresy/ \ not carrec!

fix reaches
Current
’0’9359 tester\ derermrnes7 that me frx rs

successfu/
test

Figure 11 Events than affect hug status

364 CHAPTER 16 BUG LOG REQUIREMENTS

R-2 The Bug Log allows data representing bug status to change from one
value to another only by users assigned to the bug as shown in the r

table below:

To

From i assrgn Code ‘release test ‘ {\FBC frxod

(non-exrstent) any i i i ‘7 —
user

assrgn i 7 i A any ,7
user

code i i programmer programmer any j,
‘

user

burld i programmer, i programmer any ——

tester r user
., , m, ,,,,, ,,,,f .77, , ,,,,,,
test ‘ programmer, programmer, ‘7 any tester

tester tester user

NFBC any any user ‘7 e — tester
user

”7,, fl," , , 7W, , . ,. WW, , W, ,

fixed any any user 1w 7
‘

any ——

user . user

There is one cxcn‘prion [0 the table:

R-2.1 Any IGS manager can change data representing bug status from any
value to any other value, subiect to the validity conditions described
in section 2.3.5.

This is how bug status moves from assrgn to Code.

Thismmmmt on rcqm'rrmth l . while small, it tritiml. Whtmwr
tahulw‘ data 07' (I set qfstalemmtx together imply a rmzrlmizmafimparv
tam? tn thr reader. you mm: mm that ram/mm; affirm)or expat the
rma’rr hat to gray/i [1,

CHAPTER I6 RUG LOG REQI,‘IRFMI:I\"1'S 367

2.3.5 Validity Conditions
R-3 Data representing bugs always meets the conditions shown in thetable below, to ensure internal consistency:

Bug must be assigned to. Bug must have

fixed NFBCstatusi programmer tester documenter bugrype prromy release reason

. : requred O : nor requrreu

There validity tandilionx could bay: been deflrred to 3/72 mer—intcrfizce
dengn. Hamel/n: becauseso many aft/Ir Bug Log} quuiremzntrpertainto the data new! by the BugLog—thatix, to realizeddomaim—it}5m to raver t/me mlia'ity conditions in the requirement: document.
Notice haw mat/1 more mmplzx this Information would appearhad itbeen written a: one individual('htomz'c’? requiremenr Itattmenlformoi: Hat/e dat in t/ze tab/a.

CHAP ['ER 1 6 1; US L 0 r; REQUIREMENTS 369

The bug's programmer, tester, or documenter changes, either from
one user to another, or from being unassigned to being assigned to a
definite user (or vice versa).

A history query displays the following data:
R-5.6 - Which of the above actions occurred.
R»5.7 — For changes of bug status, documentation status,

programmer tester, and documenter, the new value of the
changed ‘attribute.

R-5.8 — The user who performed the action.
R-SB — The date and time (hours and minutes) of the action.
R7310 Just as with bug queries, a user can view the history of a bug onscreen or in a printed report.

3.2 Notifications
R-G The Bug Log notifiesa user when any of the following events occurs:
R-6.11 — A bug becomes "current" for the user, as defined below.
R-6.12 — A bug ceases to be current for the user.
R-6.13 — Any of a bug’s attributes, other than bug status, changes

while the bug is current for the user, and after the user hasread the notificationthat the bug has become current.
Rdtiflml/e: This ensures that, for example, a programmerworkingon
a bug is notified ifthe tester modifies the bugs deSCleilOf‘lor steps
to reproduce.

R-6.14 Exception: The Bug Log never notifies a user of the user's ownaction.

St), For example. a programmer is not notifiedwhen when a hug ceases to be
current {or that programmer, it'the reason it ceased to be current is that the
programmer fixed the bug and changed its bug status [0 build.

\Vhat exactly constitutes a “notification" will he determined during user—
interface design: whether it's an email message, a special query that a user

CHAPTER 16 BUG LOG REQUIREMENTS 371

5. Likely Changes

374

Future versions oFthc Bug ling are likely [0 have requirements for:

Trouble tickets called in by (ustomers, including installation and

configurationprnhletns as well as bugsi

Data entered directly into the Bug Lug by customers.

Queries to display counts ofbugs in various categories, broken down
by priority and the age ot‘the bug

Tracking more of the software developmentprocess, including initial
definition of requirements, interface design, and all change requests.

Ordinal priority levels instead of the critical/liigh/medium/low
classification described in this document Ordinal priority levels

would allow 21 manager to say, for any bug, that it is othighcr or lower
priority than any other given bug, in effect telling programmers the
desired sequence in which to fix bugs.

CHAPTER 16 BUG LOG REQUIRE/LililYTs

CHAPTER

Bug Log user interfizce
This chapter presents the program specification for the Bug Logithe first stage of the
solution to the problem defined in the requirements. The Bug Log interfaces only to
people, so the only interface document is the user-interface design.

The complete user»interface design document was about 80 pages long, This chap-
ter only includes a few excerpts to show you the general technique of how to document
a graphical user interface: a list ofoperating procedures, and a hunch ofscreen shots and
tables ofbuttons and fields with terse descriptions of how they behave.

The userrintcrface design document was almost three times the length of the
requirements document. This illustrates the most common pattern in normal software
development: the requirements document is fairly short; the interface documents are
two or three times as long, especially if they're user interfaces; and the program is longer
and more complex still.

This might come as a surprise because the real world is far more complex than a
user-interface design or program. However, the increasing complexity of each stage is

readily explained by two facts. First, while reality as a whole is far more complex than
any program or user»interface that we invent. we always frame the software problem so
that it includes only a relatively simple and narrowly delimited part of realityithe tiny
bit that is relevant to the design of the program.

377

Second, each stage embodies not only all of the information from the preceding

stage but also a large set of elements from the domain being designed. The user interface

embodies everything in the requirements and all the complexity of menu bars, access

keys, and numerous types of onscreen controls. The program embodies everything in

the requirements and user interface and all the complexity of accessing a database, call—

ing upon services From the operating system, memory allocation, passing and returning

parameters between subroutines, and SO OIL

378 CHAPTER I7 BUGLOG‘ USER INTERFACE

R-6 Notifications.

A user has the option, settahlc in the Users window {see st'ctitm 4.15), to

receive notifitations Via email, There is also a special hug attribute that usm
can query on. Awaiting ACTION By; that includes bugs that are current tor a

specified user; see section 4.8. Most users will run this query to find (7L1l\\'l1lLll

bugs they need [0 work on. 50, except for the email option, List-rs reccivv

notificationsonly by actively polling.

R-7 Compatibility with all Windows platforms.

The user interface is drawn entirely in standardWindows controls available in

Visual Basic

R-8 Server accessible through Boulder local-area network.

Not applicable to usenimcrl’ace design,

R-9 Passwords.

The user had to supply a password [0 log in to Windows, and the Bug Log:

knows the users Windows login ID, so there’s no need to specially log in to

the Bug Log.

R-10 Accessible via modem.

Not applicablc [() uscrvinterl'ace design.

CHAPTER 17 BUG 1.00 USER INTERFAC}: .381

Message

Bug has “BUilc” status, but ‘ixed release l3

neither ”Next Release”, "Future Release”, nor
a speCific number. You need to indicate in the
Fixed Release field which release Will contain
the fix.

Bug has "Test" status, but fixed release is not
a specttic number. You need to indicate in the
Fixed Release field which release of the
software contains the fix.

Bug has ”Fixec” status, but fixed release is
not a speCific number. You need to indicate in
the Fixed Release field which release of the
software contains the fix.

2.3 DefaultsWhen Creating a New Bug

Control with Focus
after Message ls
Displayed

Fixed Release

Fixed Release

Fixed Release

When the user Creates a new bug, the Bug Log prevpopulatcs its fields as
described in the table below In the table, the phrase “the current hug"
means the current bug at the time the user created the new bug (that is,
when the user clicked the New Bug button on the Main window). not the
newly created bug‘

ID A unique number, greater than the ID ofany other
hug,

PrO/ect The Pro/est of the current bug.

Product The Productol' the current bug.

Feature The Feature of the current bug
Bug Re/ease The Bug Release number of the current bug.

Type Blank

CHAPTER I7 BUG LOG USER IN'I'ERFA (712" 385

Found By

Bug Descr/pt/on

Steps to Reproduce

Database Server

Database Name

Programmer

Tester

Documenter

Prior/1y

F/xed He/ease

NFBC Reason

Status

Documentation
Status

Act/on Taken

2.4 Online Help

Blank, iFthe currently loggedvin user is not defined
in the Users screen (see page [omitted]).
Otherwise, the user’s name

Blank.

Blank

The Database Server of the current bug.

The Database Name ofthc current hug.

Blank

Blank.

Blank

Blank,

Blank.

Blank.

Assrgn

None Ream/red.

Blank.

At all times, pressing F1 opens the online help to the page for the current
screen, and, ifappropriatc, the current tab.

CHAPTER 17 BUG LOG USER INTERFACE

Name

other
notifications

Event(s)
Addressed

Changes to hug
attributes and a
bug’s ceasing [0 be

current. as

described in
requirements
R—6.2 to R764

Procedure

Bug Log sends affected user email for these events,
regardless oFsetting ofemail preference flag. See section 3.

create new
bug

assrgn bug

388

user finds bug

manager assrgns
beg to
programmer and
tester (alm
documenter)

User should run a query on the bugs project, product,
and feature and look through the most recent bugs (0 see

ifanother user has found the same bug.

ll‘rhe bug has not already been entered into the Bug Log,
user clicks New Bug.,. in Mam window. fills in Type,

Prorect, Product Feature (if applicable), Descnpt/on,
Steps to Reproauce, Bug Release, and Database
Server/Name (ifapplicable), Ifrhe Bug Log recognizes
the user’s login ID, the Bug Log fills in Found By;

otherwise, the user must fill it in manually,

Manuger finds the bug and fills in Programmer, Tester,
and PNOHIV fields in Status/Action [21hr

CHAPTER 17 BUG LOG USER INTERFACE

Data Scroll

Or, if the current query is a saved query with a name different than its text
{0111]. Shows:

The saved name of the current query, in italics,

Sec section 4.6 to find out how a query is translated into text form.

Not editable gray background.

Examples:

SPLNX Connectivity A typical query, in text form.

Master bug report A saved query.

Moves From one bug to another. Buttons function as follows:

Button Action When Clicked

Moves to the first bug in the current query.

Move: to the previous bug in the current query.

Moves to the next bug in the current query.

Moves to the last bug in [ht Current query:

If the action specified above is impossible to carry outifor example. if the
user clicks the “move to previous” button, and [1142 current bug is the first in
the queryithen the button has no effect. (No beep!)

In the space between the buttons, the Following message is displayed:

Bug mm of mmm

CHAPTER 17 RUG LOG USER INTERFACE

Field: ID (gray background; not editable) Buttons: New Bug
and Print...

Button: ID buw‘rufimWAN, .____. 3V3.1»..._1 Palm: In“ :3 E {

$de ,. 9mm; 31: r—“H'Td!MNFawnflFields:
Bug Class-
ification

Ens “Dram-175m:kw 777777

Fields: Bug Description Fields: Database Server
and Steps to Reproduce and Name

Tabbingorder:

Project
Product
Feature
Bug Release
Type
Created By
Bug Descriptron
Steps To Reproduce
Database Server
Name
New Bug
Prrnt.
Change Query...
\D (buttnn)

There is nu default button (button activated when user presses Enter).

396 CHAPTER 17 BUG LOG USER INTERFACE

Field: ID

Shows the ID ofthe current hug. Gray background; not editable except when
the /D button is down (sec bclowl

Doubletlicking the ID field has the same effect as clicking the ID button.

Has the same location on all tabs that Contain it (Descr/pI/on, Status/Action,
and H/story).

Button: lD

Has the same location on all tabs that contain it (Description, Status/Action,
and HISZO/y).

Behaves as follows:

State User Action Response

Up Clicks htitton. “the current bug does not meet the validation criteria in
section 22, the appropriate error message From that sec-
tion is displayed, and the /D button returns to thc Up
state.

Otherwise: the [D FIClLllS background turns white, and all
l other fields in the window go gray and uneditahle. The
1 focus moves to the ID field, and all text in that field is see

lcctcd. The ID button stays Down,

Down Presses Enter or Value qf/Dfield Response
clicks /D button,

1
Blank ID button returns to Upstate, and ID

field returns to the value it had be»
tore the user clicked /D.

l ID nfany bug in Identified bugbccomcs current bug,
the database, and /D button returns to Up state,
whether or not
in the current
query

L'HA P TER I 7 B [/6 I. 0 c: USER IN 1 ERFACE 397

3 98

r

i A non—numeric Mesxagc box: A bug ID can comem
‘ valuc onty numbers.

A number that is 'Metsugr box: There rs no bug wnh
not the ID ofany \D 717111

‘hug

‘

W, 7,, t 7* ~77 77777

:Clicks any other ‘ID bnrmn returns r0 Up state, and ID field returns [0 thc
;bu[rm:, presses ESE, value it had bcfln‘e the user clicked /D.
‘ur brings the Bug
Lrst, Hrsrory, 0r
Bug Caunts ml) to
the top

Whenever the /D button returns to the Up state, all fields return In their
normal state (ID gray. othm white).

CHA I’TtR 1,7 IfUG [.(JG UStR INTERFACE

Fields: Bug Classification

Field ‘ Items in Drop-Down List
Protect All pl‘OiCCtS in database.

Product
‘ All products defined for the
selected project.

‘

Empty list it. PrO/ecr is blank.

Feature
‘
All features defined for the
selected product.

Empty llSt it Product is blank.

Bug Release (No list.)

Type All valid bug types (Bug.
Enhancement, Suggest/on:t

Found Bv All users in the database.

(JI/AP’IER 1,7 BUG LOG USF/t’ [XVTFRFACI‘

Special Actions

If the user changes the Pm/ect lit-1d (0
a pl't)j(‘C[Forwhich tmly orc pmtlut t is
dt‘l‘incd, Product immediatelyultangcs
[0 that product. lt‘there is ”1011‘ than
one product For that project, Product
goes hlank.

Blank if Project is hlank.

lfthc ust't‘ Changcs the Product field [0
a product for which only one feature is

‘ defined, Psalmsintrnediatclythanges
to that Feature. lt‘therc is more than
one feature {or that product‘ Feature
goes blank.

Blank if Product is blank

When user selects a new pmjcct/
turtttlttt‘t/tbtttttrc combination (or
project/pruduct combination, for

‘

produt’ts not subdivided into features).
automaticallychanges to the t'urrt'nt
release, unless any user had already
manually t'ntt'red a release numlvcr (in
the current session or any ()lllCl').

39‘)

Fields: Bug Description and Steps To Reproduce

Multi/iinc edit boxes, with automatic word wrap according to current width

of [iii ficld.

Spain} keystrokes:

Enter 01 (irrlilintcr inserts a paragraph brczilxx

(ltrL'lllb inserts u I’Jb.

(ltl’H Toggics bCFVVL‘k'I] italic and normal YL‘XI Attributes

for CLU'I'L‘I‘II selection, or, ii‘no text is sclctted. For
nL‘Xl tcxt L‘nlel‘sd.

Fields: Database Server and Name

Siligle«lit1c edits, containing the sc and namc of thc database to use [0

tcpmducc the bug. I\0 special behavior.

The remain/1n qf't/Je Bug Lag zm’Hnmj/"aa’deiig‘n ix omitteI/flzr brevity,

Mort/y it mil/11in; mare Screws mid rz’z'u'riptimzx o[firldt and Ingram, just
like 211v me: 0}] My Descan/onml).

400 (.'l1'/1/’7'ER I7 BUG LOG USER INTERFACr?

bur/r m/z/B

[min/MIMI

I'M/brrmltz'rm

problem

in ngm‘

406

compiler" is a program, and compilers are distinguished from other
types of programs. Compare DllrFiRlaN'I‘lAi

A type otdata structure that enables rapid searching {or stored data
elements. Whereas most search techniques take more time if there
are more elements to search through, hashing usually takes the
same, very short amount of time regardless of the number of data
elements. The disadvantage is that the maximum number of ele—

ments must be known in advance and space allocated for all of it.
Thus, hashing is most appropriate For applications such as looking
up words in a spelling checker, where the size of. the dictionary is

known in advance and does not increase much at runtime.

Notice that this is not a true definition, it tells what hash tables are
useful For, as well as some of their properties, but it doesn’t tell
What a hash table it in fact, a hash table is a data structure that col»
lects elements into small groups, each element being mapped to a

group by a “hash function.” A programmer must invent a hash
Function For each application, carefirllv designing it to distribute
elements evenly among the groups. 'l‘h . ntormation, however, is
otlittle relevance for a book on requirements, so its left out of the
definition. This is an example of how a good definition is one that
fits the reader and the readers purpose in readinginot necessarily
one that explains what is truly most fundamental about the con—

cept being defined.

Any uniquely distinguishable element of the world about Which it
is possible to as ert or deny a given l‘lU'ZDICA'J‘F.

A problem to be solved by software, in which the software is to
supply information about some part or the real world,

A Whole number: a number with no fractions or digits after the
decimal point. 'l‘ypically, integers are the kinds of numbers
appropriate for counting things: the number ol‘books you own is

an integer, the number of. people in your family is an integer.
Negative whole numbers and zero are also integers Compare
Rl‘Al NLlNlBER.

(IL USS/1R Y

[/0 part

[50 9000

Liar/1w iuzz/e./ o

li’gfltj/ {'VXR’WI

Nznnorpdvrfbflt

m ulti‘fl/zme
pmHem

OMY‘

(IL USS/IR Y

Short for input/output port. A piece of computer hardware that
sends and/or receives signals from other hardware. \Vlien the com
puter changes the state or the 1/0 port, the state of something in
the outside world changes, tooior, conversely, when the state ol
something in the outside world changes, the state or the HO port
changes, enabling the computer to respond to it. For example. by
changing the state ofan l/O port, your computer sets the graphics
mode currently displayed on the monitor. Macintosh computers
poll the monitor through 1/0 ports to determine what graphics
modes the monitor supports. An l/O port typically has a numeri»
cal address, like OXFUO, distinguishing it from all other l/O ports in
the same computer.

An international standard For husinesses. especially manufacturers,
requiring the existence of quality procedures and that all company
procedures be documented.

A document in which closely related information is scattered
throughout, requiring the reader to piece it together as if assent»
hling a jigsaw pu'/./,le.

Software already in place at a customer site. Sometimes new soft»

\ 'are replaces a legacy system, and, sometimes new software needs
to communicate with one or more legacy systems that stay in

place. In the latter case, legacy systems are often the most complex
part ot'the problem domain.

A {out in which each character has the same Width, such as COU—

rie r.

A complex software problem that contains different. overlapping
partsi

Ohiect»Modeling Technique. A set ofiechniques For descrihing the
structure of an objecteoriented program, now subsumed and
superseded by UML.

407

[VIZ‘IUI'H

//t>tmn/msitiorz

[1 rmlmi'zv

f‘I’VltY’

prob/km domain

pn)pl;Will 7111/
_
fl)nI

11/1jet 'For/rnlrd
/1 rag/mmmi71g

ripen/Width]
[fink/em

om/ [7715/1 firm

(In/£7171 Wt

408

The techniqueof breaking down a known type ofsuccessful design
into the known design elements ofwhich it is composed.

Something that can be asserted or denied of one or more INDIVHL
UAIS, forming a true or false proposition. For example, 0pm and
filmed are predicates that can be asserted or denied ol‘a given elec7
trical switch; delinquent is a predicate that can be asserted or
denied Ufa given customer.

A criterion For making design trade—offs, or choosing between dif»
{went designs that meet RFQIJIRI‘JHIN'I‘S. For example, a prefer
ence might state that the user interface should give priority to
ell‘iciency in the hands of experienced users over ease of learning.

The part of the world where the problem solved by a piece of sot?
ware resides, and in terms ot'which that problem is defined.

A font in which different characters have different widths, such as

limes Roman, Helvetica, and Anal.

A method ofprogramming in which one structures the program as
a set of data structures combined with sets of subroutines that
operate on them, as opposed to a collection of subroutines that all
have access to all the data.

A situation in which we believe that some improvement is possi/
ble, but we have no definite criteria For measuring improvement.
Discovering good criteria is, itself, part of the problemr Compare
\‘{'IZI.I.»[>liI‘l.\11DI’Rtmli‘M.

The body of. knowledge communicated informally among the
development statit'during a project and never written down. Often,
the oral tradition contains more information and is more upto—
date than the documentation

A set whose elements have a specific order; you couldIft re; mge
them and have the same ordered set. To illustrate» the set ofall cit—

ies in Canada has no particular order. You might write the names

aofthe cities in alphabetical order, hut the cities themselves do not
have any order. By contrast, if. you travel from one city to another,
you can define a set (Saskatoon. Medicine 1 lat) indicating the start
point and destination ot‘your journey. The first element is the start
point; the second element is the destination.This is an ordered set.
Exchanging Medicine Hat with Saskatoon would describe a (lit. Ll-
ent journey. (There are definitions having a more mathematical
character, See [VNR 1975], p. 324 or any book on set theory.)

ordergy engineering Engineering characterized by application and slight variation of
time—tested designs, Compare EXI‘LORA’IURY EMANFJ'RING.

realized domain A domain that does not exist tangihly outside the software and is,
therefore. realized within the software in order to be controlled.
For example, debts that one party owes another have no tangible
existence. To control them, we must create a proxy {or them within
the software. which both parties agree will constitute a debt. Other
types ol- realized domains are the documents created on word prw
cessors and the imaginary worlds realized in Video games.

real number A number of the sort that applies to continuously variable quantie
tiesia number that can have any number ot'digits after the deci—
mal point. The distance from the liarth to the Sun is a real
number; your Weight is a real numberi Compare IN'l .I‘R.

*rrm'e [Uni/ml? An attribute of a CLASS consisting of. a subset of elements of
another class (or perhaps the same class). For example, one of the
attributes of an invoice line item class is the corresponding element
from an inventory item class; one of the attributes ofan InvOice c ass
is one or more mvmce line iterrsi

refill/an A set oli'I‘L PUTS that maps elements From one CLASS to elements of
one or more other classes. For example, a customemnvoce relation
might map customers to their invoices by containing tuples like
(George Gibbons, #20647), (Charles Mangano, 7320648). and so
on. Each tuple maps one element From the customer class to one
element From the invOice class.

0'1.05 874R Y 409

uv‘l/w/«fifiw/ A set of'critcria according to which proposed solutions cithcr defi»
pm/I/t’m nitcly solve a problem or dcl‘initcly fail to solve it, along with any

ancillary information, such as which materials are available to 50va
the problem. Compare ()I’ITN»ENDEI) PROBLEM.

workp/i’ajn‘ob/em A problem to be solved by software, in which the software is to
enable people to arc-arc and edit objects that cxist within the Soft-
ware, SLlClI “AS documents and graphics.

412
GLOSSARY

JIM.» 19951 Alan M. Davis. Safi‘wnrc Requircmenlrs Gig/em, Funninnx, and Slater.
lunglewoud Cliffs, N,J.: Prentice/Hall International. 1993.

[Gamma 1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Dmign Prim/rm: Lirmrntj If Retry/1H8 Olgjer/»Orientrd Sofia/11m Reading, Mass;
AddisoniWcslcy, 1995.

[Gause 1982] Donald (:1 Cause and Gerald M. Weinberg. Are Your big/715 0179\Y/in—
throp Publishers, 1982. Reprinted by New York: Dorset House Publishing, 1990

[Hare] 1987] David Hare]. “State-charts: A Visual Formalism for Complex Systems.”
Sriena’ nfCompzmwProgramming 8 (1987): 2517274. Amsterdam: North Holland
Publishing Co.

[110arc1985] C,A.Ri Hoarei Communicating .S'équcntia/ [’mrm‘m. Englewood Clifls,
NJ: Prentice/Hall International, 1985.

[Hugo 1862] Victor Hugo. 1.1).: [Wish/(Met. Trans, Charles E. Wilbour, Lcc Fahnestock,
and Norman MacAfee. New York: New American Library, 1987.

[Jackson 1975] Michael A, Jackson l’rinciplm qumgmm Design. London and New
York: Academic Press, 1975.

[Jackson 1983] Michael A. Jackson. System Development. Englewood Cliffs, N.J.: Pren»
rice/Hall International, 1983.

[Jackson 1995] Michael A. Jackson. Sofia/are Requirgmmlx d” Sheri/imiiom: 1/1 Leximn 0f
I’i‘rzrlirr, l’i'inrip/(av and l’rr’im/ir‘zts‘. New York: ACM Press. Association for CoinpllF
ing Machinery. 1119,, 1993.

[Jaeohson 1992] Ivar Jacobson, 1\lagnus Christerson, Patrik Jonsson, and Gunnar Over»
guard, 0/{i5’rl»0rirntrd Sqfiwarr Engineering: /1 Use C115? Driven Antiwar/1. Reading,
Mass: Addison»\X/esley, 1992

[Jensen 1985] Kathleen Jcnsen, Niklaus \Wirth, Andrew B. Mickel, and James F. Miner,
P115171! l/m‘M/lnmz/ and Report. New York: Springer-Verlag. 1985.

[Joseph 1916] H.WB. Joseph. [ntmductinn tn Lagit‘, 2nd ed. Oxford University Press,
1916. Oxford: Clarendon Press, 1906, 1967.

[Knuth 1973] Donald 1‘1. Knuth. 77m Art ofCompztz‘fr Programming: Sawing and SI’tZI‘L‘IP

ing. Vol, 3. Reading, 1\/1ass.: Addison»\Wcs1ey, 1973.
[Kuhn 1970] Thomas S. Kuhn. 7710 Structure ufSrimli/zl‘ RfL’U/I/tfiW/J‘, 2nd ed Chicago:

The University of Chicago Press, 1970.
[Martin 1983] James Martin and Carma IVICChIre. Diagramming Yéc‘lmiqucsfiir Analyst;

find [’mgmmmt’ry. Englewood Cliffs, NJ: Prentice/Hall, 1985.

414 BIBLIOGRAPHY

[Mazza 1994] C. Mazza,]. Fairclough, 13. Melton, D. de Pablo, A. Schel‘fer, and
R. Stevens. Soflware Engineering Standards, New York: Prentice/ Hall, 1994.

[Metzger 1981] Philip W Merzger, [Managing a Programming Pro/en, 2nd ed. Engle»
wood Cliffs, N]: Prentice/Hall, 1981,

[Kliller 1956] George A. Miller. “TheMagical Numlier Seven Plus or Minus Two: Some
Limitations on Our Capacity For Processing information,“ l’g/r/Jn/agiea/ Review 63,
(1956): 81797. Reprinted in 77/: Pryv/w/ogy quommuniration: Seven Essays, New
York: Basic Books, 1967; and Psychological Review 101. no. 2 (1994): 343-352.

[Montalbano 1974] Michael Montalbano. Derisian Tail/ex. Worthington, Ohio: Science
Research Associates, Inc., 1974,

[Orr 1981] Ken Orr. Structured Requirement: Definition. Topeka, Kan.: Ken Orr and
Associates. 1981.

[Orwell 1949] George Orwell. 1984. New York: Harcourt Brace Jovanovicli, 1949.
Paperback edition reprinted by New York: New American Library.

[Parnas 1986] David Lorge Parnas and Paul C. Clements. “A Rational Design Process:
How and Why to Fake 1t.“ [Ii/{E Tranmrtiom on Sofiu/are Engineering 511—12, no. 2
(February 1986]: 2517257. The Institute of Electrical and Electronics Engineers,
Inc.

[Pinker 1994] Steven Pinker. The Language Instinct: Haw t/ye Mimi Creates Language.
New York: William Morrow and Company, 1994. Reprinted by New York: Harper
Collins, 1995.

[Polya 1957] G. Polya. How to Solve II, 2nd ed. Garden City, N.Y.: Doubleday, 1957.
[Pressman 1996] Roger S. Pressman. Soflware Engineering A Practitianer} Approar/a,

4th ed. New York: McGraW—Hill, 1996.
[Rational 1997] U111]. Natation Guide, version 1.1. Rational Software Corporation,

1 September 1997.

[Sawyer 1955] WW. Sawyer. Prelude to Mar/Jematirr. Baltimore, Md.: Penguin Books,
1955, 1961.

[Schriver 1997] Karen A. Schriver. Dynamir‘s in Daeument Design. New York: John
Wiley and Sons, 1997.

[Sommervillc 1989] [an Sommervillc. Sofia/are engineering, 3rd ed. Reading, Mass;
AddisonNVesley, 1989.

[Tufte 1983] Edward R. Tufte. The VisualDisplay quuantitative lnfirmarion. Cheshire,
Conn; Graphics Press, 1983.

3131 IOGRAI’HY 415

lTLIlit‘ W90] Edward R, Tillie, Envisioning Infilrmnfiun. Cheshire, Conn; Graphics
Press, 1990.

Hittite 1997] Edward R. Tulic. Visual Explanations. Cheshire, Conn.: Graphics Press,
1 997.

[VNR1975J \W. Gellert, S. Gottwald, M. llellwich, H. Kiistncr, H.Kiistner. eds. 7776
VNR Candy Emyr/opfllin an/It/Jcmatiry, 2nd ed. New York: Van Nostrand Rein—
hold, Routledgc, 1975.

[\X/arnier 1974] jeaerominiun W'arniei: Logir/z/ Cnnrtrm‘z‘ian ({megr/zmr, 3rd Cd.
Trans. BM. Flanagan. New York: Van Nostrand Reinhold, 19,74.

[Yourdon 1989a] Ed Yourdon. Mndz’rn Strurmrr'd Ana/yrij. New York: Yourdon Press,
1989.

[Yourdon 1989b] Ed Yourdon. Strnrtm‘n/ Mil/(through. 4th edition. New York: YoLu‘A
don Press, 198‘).

[lave 1993l Pamela lave. uFeature Interactions and Formal Specifications in Telecom—
munications.” Cam/MtKrZG, no. 8 (August 1993): 20—30. The Institute of Electri—
cal and Electronics Engineers, Inc.

[Zave 1997] Pamela Z11ve and Michael Jackson. uFour Dark Corners of Requirements
Engineering.” AC/W Pmuzu‘linnr on 5419101176 Enginz'rring [Ind Met/10401115! 6, no. 1

(Jan. 1997): 1730. Association For Computing Machinery, Inc,
[Zave 1998] Pamela Zave, “Calls Considered Harmfiil‘ and Other Observations: 1’\

Tutorial in Telephony," Sandra and Virzt/zlizatznn: row/17715 [Iver—Friendly Deng/n.
New York: Springer»Verlag, 1998.

416 BIBLIOGRAPHY

index

Numerics
1984 283
7 i 2 298

A

acceptance criteria 278
acceptance testing 1227123
acronyms 180, 306

defining 322
action«responscpairs 19}, 195
actions 21‘), 222, 226, 301

failed 227
with more than one result 222
See also cvcnts

active voice 271, 337
(1/1, lwz' notations 20/1
administrative procedures 195
administrators 140
~‘affect’v 306
agents 231, 302
“always" 306
ambiguity 1797180, 235, 370

in staieetransition tables and
diagrams 216

of cardinality symbols 16‘)
analysis 116

object—oriented 246
annotations 186, 227
anticipatedchanges See likely changes
API 336

A1’1. See application program interface
appendices 285
application program interface 140, 19,7
approval process 288
approval signatures 278
artifact decomposition. See pattern

decomposition
assertion 134, 401
association 160
assumptions 285, 307
atomicity 235, 275, 369
attributes 5‘), 1437144, 148‘ 178

Boolean 156
dirccred 171
enumerated type 156
impossible values 1 58
naming 157, 180
reference 167
types of 154
where to place in document 301

audicmcs 115

B

backup procedures 14], 195
BackuyNaur Form 197
bar code 205
baseAconvcrsion 7, 1O

behavior allocation 248
big dot 67
binary»to-decin1al conversion 7

modal wrln 218, 32‘)
”model" 324
models 80, 192

contrasted with descriptions 80
module testing 122
mood 42
M'lvl‘F 1347135
multiframe problem 97, 407
multiplicity 162

N

naming
classes, attributes, relations 180
events 215
states 215

NASA 45
neural net 31

NFR 2‘37
node 1507151
nomenclature. See terminology
nothlunctional requirements (NFRs) 257
nonetcrminal symbol 198
normal Case 302
“not" 157
notifications 80, 86, 342

O

object—orientedanalysis 246
forcefit to workpiece frame 248

object—oriented
databases 165
programming 137, 145, 243. 24‘), 408

()M’l' 164,168,171-172,407
one thing at a time 297
online help 125
openAended problem 31, 408

defined 29
operatingprocedures 3‘), 81, 95, 140,

192»1‘)5
as solution to problem defined in

requirements 252
operating system 35, 197
optative mood 42
oral tradition 265, 408

422

ordered set 160, 408
orderly engineering 14, 1‘), 23, 26, 409
organization 293, 344
Orwell, George 283
outline processor 294
outlines 293
oval 66767
overview 138, 141, 302, 34‘)

as redundancy 273
example 346
ofdocutnent 138

p

page layout 325
pairs 161

paper prototypes 46, 140
“paradigm" 326
participles 215
Pascal 198
passive objects 231, 302
passive voice 270, 337
pattern decomposition 16, 408
peak levels 136
performance [36
performance requirements 257
period 178
Petri nets 230
pharmacy 64
phone switch 14, 217, 253
photocopier 219-220, 222, 303
piling on 276
platform 134, 2‘37
pointer Variables 167
Polya, G. 297
preconditions 225
predicate calculus 60
predicates 58760, 248, 408
preferences 132, 141, 330, 408

impossibilityol'testing 124
typographical convention For 309

preposition 270
preprinted forms 179
present tense 194, 329
principles

distinguished from rules 271

INDEX

2‘!

underlining 335
uniqueness 173
usability testing 123
~(115.0“ 33G
use cases 195, 250, 411
user interface 82, 411
user requirements 256
user's manuals 125, 193
user—interface design 39, 117—118, 195

and programmers 119
exploiting redundancy 159
intuitive knowledge ofusers and 50
problem domain and 12,7

programmersand 125
title nfdocument 318

users 118
who is the user? 258

V

V diagram 122
vagueness

a place For 132
“valid” 337
validation 3‘)

automated 31
contrastedwith invention 43

validation rules 82, 195, 36‘)
verbs, modalr See modal verbs
video game 35
Vietnamese 131
Voice 337
Volkswagen 15')

426

W

Warehouse 221, 232
Warnier—Orr diagram 201
Washing machine 6
waterfall process 114
weather stations 62763, 66767, 69
web browser

as platform 134
web site 27
well-defined problem 43, 412

as basis for testing 49
defined 28

what vs. how 24, 51
white space 303
wirecenter 5157316
word processor 35, 65, 187
workpiece problem 35, 89, 342, 412

checklists 90
forcevfit due to objectioricnted

analysis 248
in electronic mail 105
in inventory Control System 98
in statistics packagc 102

Wright brothers 17720
writingr See technical writing

Y

year 2000 153
Yourdon, Ed 164, 169

Z

Zave, Pamela 180

INDEX

