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CHAPTTER 1

Problem solving

This book is not about programming,. It is about how to define a problem for people to
solve by programming a computer. Defining such a problem means providing all of the
information that programmers and interface designers need in order to make a com-
puter bring about effects outside of the computer. The complete statement of this prob-
lem is called the requirements for the software.

Whereas programming is the act of configuring a machine to behave in a certain
way, writing software requirements is a form of communication between people. The
people who desire effects from the software—the people who want to print reports, con-
trol manufacturing processes, generate 3D images, or whatever may be the intended use
of the software—need to communicate those desires to the people who design the
machine behavior that brings about those effects: the interface designers. The people
who design the machine behavior need to communicate their ideas to the people who
actually configure the machines: the programmers. Other people who work on the soft-
ware—the testers and the people who write the user manuals—need the same informa-
tion in order to do their jobs. This book is about how to give all of these people the
information they need.

Thus, this book is about a certain kind of technical writing: how to write software
requirements documents. Sometimes technical writing is narrowly construed as covering
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Figure 1.1 What this book is about

only the mechanics of grammar and formatting. This book takes a much broader view:
both the choice of the content to include in the document and all aspects of the choices
about how to present it, from small derails of wording to the largest decisions about
overall organization.®

The niceties of grammar and punctuation are covered in hundreds of other books
about writing, so we won't cover them here. We also won’t cover the principles of what
makes a good choice for a problem to solve, or how to think up good problems to solve,
or what makes a good user interface, and so forth. This book is only about how to write
documents in order to make them useful to a software development team, including all
of the information they need, and techniques for presenting that information so real
people can understand and use it.

In chapter 1, we'll explore the fundamental principles of requirements, interfaces,
and programs—what they are and how they're different from each other. But first,
before we can define software problems well, we'll need to understand how program-
mers go about solving them in real life. We'll start by learning a few lessons from the
software industry’s experiences of the last few decades—a period of still-unfinished tran-
sition from software as pure research field to sofeware as engineering discipline.

* [Schriver 1997) is an excellent, wide-ranging introduction to this broad conception of technical writing,
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1.1 The myth of functional

decomposition

The goal of any kind of engineering, not just software engineering, is to give people the
ability to do something that they currently can’t do—for example, travel from Los Ange-
les to Sydney in less than 24 hours, get information no more than five seconds out of
date about any stock trading at the New York Stock Exchange, wash clothes with very
lictle muscular effort. The task of the engineer is to design a device that gives people the
desired ability—an airplane, an information system, or a washing machine.

Loosely defined, requirements are any criteria that an artifact to be designed must
meet in order to be considered successful—roughly, what the customer can't do until the
artifact is created, and the reason for creating it. We'll provide a more precise definition
of requirements in chapter 3, but this will serve for now. To write 2 useful requirements
document, we will need to understand what engineers do in order to produce a design
that meets the requirements.

Engineering is essentially bridging the gap between requirements and available
materials. Different engineering fields consist of techniques for bridging different kinds
of gaps between different kinds of requirements and different kinds of materials. An
acronautical engineer is a person who knows how metal and other materials can be
shaped and combined to make an airplane, meeting requirements pertaining to flight; a
chemical engineer is someone who knows how to design apparatus to drive chemical
reactions, meeting requirements pertaining to substances to be produced; and so forth.

A software engineer is someone who knows how to configure computers to perform
various tasks related to information, such as providing information to people, transmit-
ting information, and causing objects to behave in accordance with specified rules. The
materials of a software engineer are unusual because they are intangible. They are the
instructions that the computer is capable of executing, or the subroutines and instruc-
tion blocks made available by operating systems, subroutine libraries, and high-level
programming languages.

Bridging the requirements/materials gap is seldom an easy business, particularly
when the gap is large. Given a sponge, its easy to se¢ a way to get dishes clean, but
there’s an enormous gap between having only natural materials on hand and building a
dishwasher. It took centuries for engineers to find a way to make airplanes, involving
exploration of countless dead ends. Once someone figures out how to bridge the gap, as
the Wright brothers did in the case of flight, the design can be repeated and slightly var-
ied to solve new problems, but how do you bridge the gap when it’s very large? How, for
example, do you approach writing a program to manage the operations of a nationwide
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business when your materials are tiny statements in computer languages that merely add
or substract numbers, write and read blocks of data to and from a disk, execute either
one block of instructions or another depending on the value of a certain memory loca-
tion, and so on?

1.1.1 Functional decomposition
Many theories about how to bridge large engineering gaps have been proposed. In the
1970s, one theory about how engineers can reliably bridge a large gap between materials
and requirements became popular. Known as functional decomposition, or sometimes
top-down design or stepwise refinement, it dominated the software industry for about
twenty years and had particular influence on system analysts—the people who write
software requirements.

According to the theory of functional decomposition, by following the steps shown
below, an engineer can produce a design that meets any requirements that can be met:

1 The engineer identifies the function of the system to be built. The function is
what the system is to do, as opposed to how the system will do it or what the sys-
tem will be. So, for example, we don’t say that the customer wants a washing
machine; we say only that the customer wants to be able to wash a load of clothes
of a specified size within a specified time, using no more than a specified amount
of muscular effort.

2 If the function maps directly onto available parts—nuts, bolts, computer instruc-
tions—the engineer allocates the function to those parts and the design is done.

3 Otherwise, the engineer divides the function into subfunctions and repeats steps 2

and 3 until every subfunction is small enough to map onto the smallest parts of the
design. The engineer is careful to exclude any design decisions from the specifica-
tion of these subfunctions. Again, each subfunction says what the subsystem must
do, not how it will do it.
For example, the subfunctions of the wash clothes function might include: accept
clothes from user, return clothes to user, and remove dirt particles from clothes.
The first two would be allocated to the door of the washing machine; the last func-
tion would be further subdivided. Notice that the last function is specified without
mentioning soap or a rinse cycle or a motor. Those would be describing how the
dirt particles are to be removed and would, therefore, be a design decision.

At first glance, this appears to be a perfectly rational, systematic approach to engi-
neering. If a function is too big for the human mind to figure out how to implement it
all at once, then break it down into smaller functions and repeat until you reach func-
tions small enough to handle. Every main function required by the user gets allocated to
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exactly one element of the design, ensuring that every function is implemented. Every
design element traces back to the required functions, ensuring that the design includes
no superfluous elements.

An added bonus is that different subfunctions can be allocated to different engi-
neers. On a large project, such as an airplane or an operating system, such a division of
labor is a necessity. On a large project, a major task of the analyst or system engineer is
to identify the major subfunctions of the system so that they can be allocated to distinct
design units. People can then implement and test the design units independently before
intcgrating them.

[t sounds good—until you try it.

1.1.2 Lets put it to the test

While this book isnt about how to write programs, we need to understand what pro-
grammers do when writing a program in order to write useful requirements documents
for them. To see how functional decomposition works in practice—or rather, doesn’t
work—let’s follow the plight of a student taking a beginning programming course. Here
is a typical, simple assignment given to a student in such a course:

Assignment—functional requirements:

(1) Converr numbers expressed in binary digits to decimal.
(2) Convert numbers expressed in decimal digits to binary.
For both types of numbers, allow fractions, indicated by digits to the right

of a decimal point, and a plus or minus sign at the beginning of the number
to indicate whether the number is positive or negative.

The student knows only the statements available in one programming language,
such as C or BASIC, and has been taught that the rational approach to program design
is functional decomposition. Those are the only weapons the student has to attack this
assignment: knowledge of the programming language plus the theory of functional
decomposition.

Notice that for the student, despite the fact that the assignment is fairly elementary,
the engineering gap is quite large. He or she knows of no C or BASIC statements to per-
form the desired functions, has access to no subroutine libraries to do the job, and has
never solved a problem like this before. So the student will have to break the functions
down, perhaps to many levels, in order to implement them.

So, what are the subfunctions? Nearly any beginning programmer will draw a total
blank. If they do come up with something, it might go like this:

THE MYTH OF FUNCTIONAL DECOMPOSITION ’ 7




bin—dec

conversion

binary decimal
numbers numbers
user numbers » numbers user
decimal binary
numbers numbers
dec—bin
. conversion
{a) Top-tevel decomposition
single-digit
converter
0,1,2,3,4,
5,6,7.8.9 0.4
decimal number
plus, minus, plus, minus,

decimal point decimal point

punctuation

. . converter
(b) Decomposition of dec—bin function

Figure 1.2 Beginning programmer’s attempt at functional decomposition of base conversion
program

“Let’s see, I suppose there’s an input function and an output function, and I guess
there will be two conversion functions. Now, how should I decompose the conversion
functions? Umm...maybe one subfunction handles the digits and the other subfunction
handles the punctuation marks. Each time a conversion function receives a character, it
calls the appropriate subfunction to convert it and sends the converted character to the
output function.” Figure 1.2 diagrams this functional breakdown.

An experienced programmer would know that such a program structure is a disas-
ter. It’s bug-prone because nearly all the subroutines “know” too much about what the
others do; their responsibilities overlap in ways that can easily become unsynchronized.
The program is unnecessarily long (and therefore bug-prone) because four functions are
doing very similar work which could be done more cleanly by a single function. Finally,
the requirement that each conversion function output a digit each time it receives a digit
is impossible to fulfill. When the single-digit binary-to-decimal conversion function
receives a 1, what can it output? There’s no way to know until it receives more digits:
101 should produce 5, 10110 should produce 22, and so forth.
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igits
user |99

digits bin—dec
conversion

bipary decimal
digec™ | qer
decimal binapy.
dig?Ts;‘ . deIYS

dec—bin

conversion

Figure 1.3 Second attempt at functional decomposition

After writing some code, the student would likely discover most of these prob-
lems. Okay, back to the drawing board. Brooks says, “Plan to throw one away; you
will, anyhow.”*

After struggling a while with the conversion functions—the hard part of the assign-
ment—the student now decides that maybe there should be a digit-reversing function.
One difficulty the student encountered in writing the conversion functions was the need
to access digits that appear later in the stream in order to determine the numerical value
of earlier digits. For example, the function can'’t tell that the 4 in 426 stands for 400, not
40 or 40,000, until it’s read the remaining two digits. So the input function collects the
entire string of digits, and, when the entire number is done, the input function sends
the string to the reversing function. The reversing function then sends the string to the
appropriate conversion functions, but in reverse order. Now the conversion functions
know that the first digit received—at least in a number with no fractional part—is in
the ones position, the second digit is in the tens position, and so on.

The new design (shown in figure 1.3) is a litle better—maybe—but an
expertienced programmer would do it very differently. He knows some tricks such as
internal representations that are independent of input or output formats, and something
called a parser, The programmer sees that these tricks apply very nicely to this problem,
and adds a parameter to the parser indicating what base to convert from, thereby
collapsing two functions into one. The parser is concerned with creating the base-

" [Brooks 1975), p. 116.
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user

digits Aumber ‘base-independent oumber  digita
user parsef represematxon

initialization: N =0, sign =1, F = 1

digitis {0,1,2,3,4,5,6,7,8,9 } if converting from decimal, { 0, 1} if from binary

state char action next state
START + (none) LEFT_OF_DECIMAL
- sign =-1 LEFT_OF_DECIMAL
digit N = digit LEFT_OF_DECIMAL
. {none} RIGHT_OF_DECIMAL
other error DONE
LEFT_OF_DECIMAL digit N =N * base + digit LEFT_OF_DECIMAL
. (none) RIGHT_OF_DECIMAL
return  done DONE
ather error DONE
RIGHT_OF_DECIMAL digit F = F/base; N =N + digit* F RIGHT_OF_DECIMAL
returm  done DONE
other error DONE

Figure 1.4 Experienced programmer’s design

independent representation, but not with generating the output. The programmer gives
to the output function the job of converting the base-independent representation to a
specific base, effecting a very different separation of concerns than that found in the
student’s program. Coding the parser requires a trick called a state-transition table, but
the programmer has written those before and tosses it off in five minutes without a
mistake. This approach is shown in figure 1.4.

Why, armed with the theory of functional decomposition, was the beginning stu-
dent unable to invent a design even remotely like the design produced almost instan-
taneously by the experienced programmer? The beginning student could have
decomposed functions into subfunctions into subsubfunctions for the next six
months and still not found the idea of a state-transition table—the key to a simple,
bug-free design.

1.2 Problem solving and design patterns

Functional decomposition is just one of many generalized techniques of problem solv-
ing—that is, techniques that aim to help people solve a wide variety of problems across
a wide variety of fields. The following is an exhaustive list of 4// problem solving tech-
niques, arranged in order of decreasing effectiveness:

1 Already knowing the solution
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5 Already knowing the solution to a similar problem
3 All other techniques

The third—enormous—category lumps functional decomposition together with
whacks on the side of the head, thinking outside the box, and all the others because,
cOmparecl to the first two techniques, they are nearly worthless. All of them, including
functional decomposition, have considerable value, but none can compare with either
already having the solution or already having the solution to a problem similar enough
(hat it requires no great leaps of creativity to make the necessary adjustments.

This might seem like cheating. Already knowing the solution hardly seems like a
technique for solving problems. Maybe so. But as engineers, we are not interested in giv-
ing problems a sporting chance. We want dependable ways to create designs that meet
requirements and please customers, and the fact is that none of the techniques, other
than the first two, reliably generate results.

There’s a simple reason for this: only the first two techniques have features that are
specific to the problem to be solved. Engineering problems are so different from each
other that very few of the ideas or knowledge that enable you to solve one problem will
help you solve a problem from a different field. Knowing how to design a sailboat
doesn’t tell you much about how to design a low-power light source. Completely gener-
alized ideas that are so unfocused that they apply equally to all problems can give you
some help, but not much. What help does “break the problem down into subproblems”
give you when your problem is to build an accounting system out of computer instruc-
tions? However, knowing how to design a small sailboat gives you an enormous head
start on designing a slightly larger one.

1.2.1 How engineering really works
Now we can see both why functional decomposition doesn’t work and how engineering
really works.

Functional decomposition doesn’t work because there are many different ways
to divide a high-level function into subfunctions, and there is no way to tell
which of those possible divisions are good or bad until you've gotten to the
lowest level of design.

That’s one reason why the student was at a loss to come up with a good functional
breakdown, and why the first two that he tried worked out so poorly. The student
couldn’® tell that he or she had made the conversion functions impossible to write until
they had started trying to write them. It’s only at the bottom level, once you've started
writing code, that you're in a position to evaluate a particular functional breakdown. By
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then, it’s often too late to correct errors at the top level, especially if you've allocated the
subfunctions to different programmers and you're three months into the project.
The way engineering really works is as follows:

1 Engineers apply and slightly vary already existing, time-tested designs.

2 Engineers engage in unstructured exploration of new designs and new ways to put
old designs together.

Both types of problem solving can occur in the same project, of course.

The reason the experienced programmer was able to invent a wonderful design on
the spot is because an experienced programmer knows several excellent designs that have
been used thousands of times before. They know about parsers and display-independent
representations, as well as a few other tricks, and see how they can solve the base conver-
sion problem. That’s all there is to it.

The reason the student failed to invent a good program structure is because the stu-
dent didn't know about such clever tricks as state-transition tables and display-indepen-
dent representations. There’s nothing in the idea of functional decomposition that says
“make a state-transition table and a display-independent representation,” so functional
decomposition didn’t help him.

You might object that the student should have known better than to specify the
conversion functions in their first design in a way that was impossible to imple-
ment—that he or she should have known more number theory, or should have
known some programming techniques that would have made the job easier. How-
ever, that amounts to demanding that the student already know some of the major
elements of the solution. Of course, students will learn these things from later
courses and as they find good designs to imitate. Those will help the student—not
general problem solving techniques.

1.2.2 Design patterns
Strangely, despite the importance of standard designs in all engineering fields, the
concept has never been given a common name, and its role in engineering has mostly
been left implicit in engineering practice and curricula. People learn standard designs
for bridges, D.C. generators, brakes, smelters, microphones, and so forth, but they
don’t learn that use of standard designs is what separates professional engineering
from tinkering.

In software, the term design pattern has recently come to denote such a standard
design.* The word pattern emphasizes that the design can be applied “a million times

* Brought to widespread use mainly by [Gamma 1995].
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e, without ever doing it ic same way twicc.”*‘While some pateerns (like the bri.ck)
vary litele from one .appll.cauon to an(.)thert mO‘St (like the suspension bridge) are ﬂex1.ble
idcas that require intelligence and imagination to apply. Thus, no two suspension
bridgCS arc alike. ) .

This use of the word pattern comes from the work of architect Christopher Alex-
ander, who found the same principle at work in town planning and architecture. In 4
Pattern Language, Alexander set about cataloging numerous patterns commonly
found in towns and buildings that people like. Many of these patterns are simple
things that we all know: street cafe is a pattern, corner grocery is a pattern, dormer win-
dow is a pattern, waist-high shelf is a pattern. Just as possessing a rich vocabulary of
words enables you to write well, possessing a rich vocabulary of design patterns
cnables you to design well.

A pattern is not the same thing as a reusable component. A component is a specific
physical object (or, in the case of software, a specific configuration). Two different
instances of the same component are identical; both are instances of the same design. A
pattern is a reusable idea. No two instances of a pattern are quite the same. The applica-
tion of patterns is called design or engineering; the creation of new instances of the same
design is called manufacturing.

1.3 Why software is hard

Early in the history of an engineering field, its practices tend more toward unstructured
exploration than toward application of time-tested designs. This is natural because, in
the early days, there are fewer time-tested designs.

Also in the early days, because of the emphasis on innovation, the field does not
produce reliable results. Every new design involves numerous untested ideas, and
untested ideas often fail.

When an engineering field is mature, engineers spend most of their time combin-
ing and making tiny variations to time-tested designs. They solve problems from a well-
defined set of problems. For example, one well-defined set of problems is how to build
transformers that convert between different voltages. For different voltages and power
ratings, there are precise, step-by-step methods to build the transformer: how to choose
the materials for the windings and the cores, how many windings to make, and so forth.
Since transformers are part of the standard designs in electrical engineering, you can go
to an electrical engineer, tell him the electrical characteristics that you desire, and be

" [Alexander 1977], page x.
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confident that he can build exactly what you have asked for. If you ask him for some-
thing that he cant design, he can probably tell you on the spot. Whenever a solution
technique is well defined, so is the type of problem that it applies to.

Naturally, the vast majority of projects still require ingenuity to solve unexpected
problems. Combining existing designs always requires imagination. Also, the invention
of entirely new kinds of designs continues, such as the tiles on the Space Shuttle and
composites for airplane wings and bodies. Every large project still involves trying out
and rejecting a number of designs until a good one is found. But an extensive vocabu-
lary of time-tested designs makes possible a remarkably systematic and reliable engineer-
ing discipline. Few bridges or homes collapse of their own weight today; few
transformer designs fail to meet their electrical requirements.

We'll distinguish, then, between two types of engineering project, corresponding
to two types of activity, keeping in mind that these are a continuum rather than a
sharp dichotomy:

Orderly engineering is characterized more by the application and slight
variation of time-tested design patterns.

Exploratory engineering is characterized more by the unstructured
exploration of new kinds of designs.

These are simply names for the two kinds of engineering activities described earlier.
Both types of activities occur in any project, of course. Every problem contains some-
thing new, and no problem is without some similarity to problems solved before. But
overall, the more mature the field, the more it is characterized by orderly engineering.

Software engineering is still in an immature state, although this is rapidly changing.
The reason for the high failure rate of software projects is not primarily because of bad
business processes or because programmers don’t derive their code from calculations.
The major reason is that often there is a large gap between the system that the customer
wants delivered and the available time-tested designs.

For example, suppose that you're writing the software for a phone switch. A phone
switch is a device that attaches to many (hundreds, thousands, even more) pairs of wires,
each pair capable of connecting to a telephone. Hardware inside the switch has the abil-
ity to electrically connect any pair to any other pair. The job of the software is to control
the creation and dissolution of connections between pairs in order to connect calls. The
switch also needs to forward calls according to user requests, generate busy and ring sig-
nals, parse touch tones, as well as many other support functions.

What algorithms are available to draw upon in order to solve this quite complex
problem? What standard data structures apply to it with little or no modification?
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Not many. Therefore, the programmers will have to exercise great ingenuity in
order to write the software. And, therefore, they will likely finish behind schedule and
the code will likely contain bugs.

If you haven't programmed, the following task (see figure 1.5) should illustrate why
software projects so often fail or come in late:

Solve this—but first, schedule
each phase of your solution, and
figure out how long it will take
you to solve it.

Figure 1.5 Exploratory engineering is difficult to plan

Solving a Rubik’s cube is mostly a matter of stumbling onto a few key insights such
as the following:

There’s a sequence of four moves that rotates three pieces without

disturbing any others: @ .

If you have a useful sequence A that moves only a few pieces, such as the
one shown above, you can easily change which pieces it moves by
preceding it with a sequence Band following it with Bin reverse. Bmoves
pieces into position to be moved by A. The key is that Bis very easy to
invent because you needn’t worry about causing side effects elsewhere on
the cube. Running Bin reverse after A cancels the side effects, leaving only

the desired changes. BAB™ = @ .

No one can possibly anticipate such insights. You can’t even vaguely anticipate what
they’ll be like. Nor is there any systematic way to search for such insights. You can't base
Plans around the totally unknown. All you can do is keep your mind alert for the unex-
pected and struggle a while until you do find them.

Programming is often the same way. However, once you have solved a Rubik’s cube,
it's fairly easy to solve similar puzzles, such as those shown in figure 1.6:
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Figure 1.6 Solve one, and the rest become easier

The same insights apply. It’s still difficult to know in advance how long it will take
to solve these, but you now have a fairly well-defined class of problems along with a set
of solution techniques, or heuristics, for solving them. Such solution techniques are, of

course, analogous to design patterns.*

1.4 Pattern composition and
decomposition

Fortunately, a great number of patterns have arisen in the world of software. There are
sorting algorithms, searching algorithms, numerous types of data structures, algorithms
for performing all manner of floating-point calculations, parsing techniques, algorithms
for rendering three-dimensional images, and many more—far more than can fit into
even a four-year college curriculum. Thus, the situation is not quite as bad as the Rubik’s
cube analogy suggests.

These patterns are what enabled the experienced programmer to make design deci-
sions with confidence at a higher level than program code. Whereas the beginning pro-
grammer could only tentatively explore different ways to divide the program into
modules, trying out different functional decompositions and hoping to find some key
insight, the experienced programmer knew that dividing the program into a state-transi-
tion table for parsing input, a display-independent representation, and an output func-
tion would produce a program that both worked and was simple. So there is such a
thing as orderly software engineering, at least for many types of software.

The experienced programmer is able to perform a task superficially similar to func-
tional decomposition but, in reality, quite different. The experienced programmer

" Sce [Polya 1957] for the classic work on heuristics, the art of finding hypotheses worth investigating, or
provisional reasoning.
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engages in what we .can call pattern decomposition 07 artzfact defomp?sition—rccognizing
a pattern that is built from smaller pattf.:rns, and either 1mpleme.ntmg the smaller pat-
cerns or specifying them in enough detail that someone else can implement them. The
programmer recognizes  that the problem to be solved requires a parset, and he also
knows that a parser is composed of a few elementary patterns: the state-transition table
and the little trick of accumulating an ever-growing number in a variable. So he can
decompose the pattern into subpatterns.

But there is a big difference between this and functional decomposition. The pro-
grammer was able to decompose the high-level pattern into subpatterns only because
those subpatterns have been put together before. That's how the high-level pattern was
created. In functional decomposition, you avoid any consideration of the underlying
design. Rather, you try to deduce the design by breaking down the top-level function
into subfunctions that you don't necessarily know in advance how to design. In pattern
decomposition, you only break down a known design into known parts.

In functional decomposition, an engineer divides a complex task into smaller tasks.
He divides “I need a way to do 2” into “I need ways to do 4, ¢, and 4, such that if all
those were done, 2 would be done.” The zhings that perform these tasks are intention-
ally omitted from functional decomposition. Functions—tasks to be done, conditions
to be achieved, or mappings between inputs and outputs—are mapped onto smaller
functions at each stage of decomposition, with allocation to specific things deferred
until the very end.

The real myth of functional decomposition is that we're capable of deferring con-
crete decisions to such an extent, deriving a working, concrete design from such a long
train of purely abstract deductions and divisions. In fact, when people divide large func-
tions into simpler functions, they always draw heavily upon their knowledge of the
types of artifacts that they know can be built. However, this knowledge is left implicit. It
guides the functional breakdown—as, indeed, it should—but the myth that design con-
siderations are left out of their thinking goes unexamined. Thus, functional decomposi-
tion gets the credit for breaking down large, complex problems when, in fact, the
problems were already broken down by existing knowledge of design patterns.

It’s been said that functional decomposition is what enabled the Wright brothers to
succeed where their predecessors failed. Whereas other people who attempted to enable
people to fly created designs that borrowed heavily from the structure of birds, the
Wright brothers decomposed flight into its subfunctions, enabling them to implement
cach subfunction by further decomposition, as shown in figure 1.7.

However, understanding that there are an unimaginably large number of ways
to break down a function, you can see how unlikely it is that they designed their air-
plane by functional decomposition. Without assuming any design decisions about
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Subfunction Implementation
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; SReT Lift Wings
"\g o Steering Rudder,
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Figure 1.7 Functional decompasition of Wright brothers’ airplane

up
Subfunction Implementation
north Up/down ?
propulsion
North/south ?
west east propulsion
East/west ?
propulsion

south

Figure 1.8 Another functional decomposition of flight

what objects the airplane will be made from, how can you criticize the functional
decomposition in figure 1.8? If each subfunction were implemented, then the com-
plete flight function would be implemented. Why not allocate one team of engi-
neers to up/down propulsion, another to north/south propulsion, and a third team
to east/west propulsion?

The reason the Wright brothers used wings, an engine, a propeller, and a rudder
was because they had those things. Currently, no one has components that implement
the up/down, north/south, and east/west functions, so no one breaks airplane design
down that way, despite its mathematical elegance.

If we had components that implemented those functions, then we could indeed
allocate each function to one component and the design would work. The fact that we
do not have any such components nor do we see any way to make them is not supposed
to deter us when decomposing functions. We're supposed to apply the procedure to the
smaller functions and repeat until we find functions small enough to implement. But
the great difficulty of functional decomposition is finding a way of dividing the top-level
functions in such a way that we won't be further subdividing them until the end of time,
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like the beginning student trying to write the base conversion program. All that can
enable us to do that is knowledge of specific things that can implement the functions—
thoroughly tainting our functional decomposition with early design decisions.

If the internal combustion engine were not available, it’s unlikely that the Wright
brothers would have specified a forward propulsion function and then, through con-
tinuing stepwise refinement, deduced cylinders, pistons, spark plugs, and crankshafts.
The only reason they used an engine was because it was an available component that
they knew how to use. Indeed, the majority of the Wright brothers™ airplane was
designed by imiration. The idea of wings, with their peculiar shape, came from birds.
One of the steering mechanisms came from observing the way that birds bend their
wings to change direction. And, of course, the Wright brothers did not invent the inter-
nal combustion engine, though they did design their own—a variation on existing
designs, tailored to the needs of the airplane.*

In pattern decomposition, people think, “I want an artifact of type x that meets
such-and-such requirements.” For example, a town planner can request of a civil engi-
neer, “Build me a bridge that goes across this bay, has two lanes going in each direction,
can support 30-ton semi-trailers, and meets the land at these two points.” The civil
engineer then opens up the ridge pattern into its subpatterns—the girders, supports,
rivets, and so on—which have been pur together many times before, though always in
slightly different ways. Each level of pattern decomposition consists of smaller #hings,
not smaller abstract functions. At every level, we know what we're talking about and we
know how to build it.

Exploratory engineering usually works the other way around— composing patterns
into larger designs in new ways. People have existing patterns and think, “I wonder what
we could build out of these?” When people first built computers in the 1940s, they had
no idea that computers could be used for digital manipulation of photographs, page lay-
out in newspapers and magazines, paint mixing at hardware stores, or nearly any other
modern application of computers. They simply explored ways in which you could build
highly configurable machines, different ways that you could configure them, and what
kinds of results you could achieve.

As is often the case in exploratory engineering, they built a solution in search of 2
problem. They did not start with the problem, “enable people to lay out pages in maga-
zines on a screen.” Their problem was to find out what is possible to do with these new
machines. We're still a long way from finding out all of it; hence, the continued large
amount of exploratory engineering in software.

In orderly engineering, where pattern decomposition is the rule, we start with
problems for which there are known solutions, like “print a list of employees in alpha-
betical order.” We exploit our existing knowledge of what is possible to build, rather
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than expanding it. Eatlier exploratory engineering has found the techniques; now we apl

= Before we leave functional decomposition behind, there were two key elements to the Wright brothers’

success that are well worth noting. to
The first was [Cayley 1809)’s famous observation that (a) machines could generate much more force in the
proportion to their weight than could animals, and (b) birds are capable of generating lift without flapping
their wings, that is, forward motion of the wing through the air produces enough lift to keep the bird from
falling. This article is sometimes taken as a demonstration that lift and propulsion are distinct functions,
though it’s better understood as a demonstration thar a certain kind of design is feasible. In other words,
Cayley did not discover the true subfunctions of flight because, as we have seen, other divisions are possi-
ble. He argued that a certain breakdown of functions could be implemented by technology that seemed
right around the corner. The article concludes with a design for a toy that lifts itself off the ground by spin-
ning little propellers made from feathers, proving that it is possible to generate substantial lift merely by
pushing a wing shape through the air instead of flapping the wing—just the sort of design that seemed
feasible given current understanding of machines capable of continuously exerting force far in excess of

their weight.
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The second element, which truly distinguished the Wright brothers from their competitors, was genuinely
successful functional decomposition. Other people at the time built whole airplanes, flew them, and then
tried to guess why they crashed. Because they measured only global characteristics of the airplane, like “how
far did it fly?”, they could seldom trace problems to their source. Indeed, the source was seldom one wrong
variable, but many: a combination of wing placement, wing shape, rudder placement, skill in rudder con-
trol, and so on. The Wright brothers, on the other hand, created and tested designs for one function at a
time. They built their own wind tunnel to measure the lift that different wing shapes produced. They flew
gliders to test different methods of steering. At each stage, the Wright brothers had a much smaller design
space to search than aviators who wandered through the much vaster space of complete airplane designs.
Once they had a successful design for lift, another for steering, and another for propulsion, they were able
to combine them into a successful whole-airplane design. Read [Bradshaw 1992] for a short but very in-
sightful discussion about the role of functional decomposition in the Wright brothers’ success.

The success of the Wright brothers (and many exploratory engineering projects that followed similar meth-
ods) shows that functional decomposition is a useful general-purpose problem-solving technique, well
worth its space in any engineer’s bag of tricks. However, it does not show that functional decomposition
is a reliable, systematic engineering method unto itself. Imitation of birds and Cayley’s observation that
machines could produce lift by pushing a wing shape through the air were equally important parts of de-
signing the first airplane. Even armed with these preliminary and ultimately successful design ideas, as well
as the technique of refining one subsystem at a time, the Wright brothers could not have scheduled their
first flight when they first began designing,

Notice also that for many problems, functional decomposition does not even provide a hint of a solution.
How, for example, do you break speech recognition into subfunctions? In general, for functional decom-
position to be helpful, the number of creative steps between function and design must be very small, and
it must be possible to create a fairly independent design for each function. If the Wright brothers had also
to invent the internal combustion engine for propulsion, they probably would not have succeeded in build-
ing an airplane; and if the available methods of generating propulsion intetfered with the methods of gen-
erating lift, the decomposition into lift and propulsion would not have significantly reduced the size of the
design space they had to search.

The fact remains thar, when trying to build something for which there are no existing, time-tested design
patterns, or when the gap between the patterns and the problem is large, there is no guarantee of ever find-
ing a solution that meets requirements, much less a systematic method for doing so, and still less a way to
know in advance how long it will take.

’ Py
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apply them. . . '
While the principles of requirements documentation taught in this book can apply

to exploratory engincering, we will concentrate on orderly engineering—projects where
the goal is to apply existing knowledge of software techniques to problems that we know
we can solve. In exploratory engineering, requirements can even be a hindrance. The
idea is to find out what's possible, to grow the new techniques organically from the exist-
ing techniques, and to discover what program code can do—especially, what it can do
casily.® You can’t predict in advance what you're going to discover, whereas requirements
define exactly what problem the program code is to solve.

Pattern decomposition enables an important division of labor in engineering. You
don't need to know how to design all the patterns that, together, form an artifact. You
only need to know that the patterns exist and that people can build the artifacts. The
town planner does not need to know all about bridge building in order to ask the civil
engineer to build the bridge. The civil engineer specializes in understanding different
types of bridges and how to build them. From the town planner’s point of view, the
bridge is just one of many elements of his own design. Furthermore, the civil engineer,
while able to decompose the bridge pattern into subpatterns, need not know how to
design instances of those subpatterns. If the bridge needs to raise up to allow ships to
pass through, the civil engineer doesnt need to know how to design the motor to lift the
bridge. He just needs to know that such motors can be built and who can build them.

" [Booch 1996] calls this an “architecture-driven project” as opposed to a “requirements-driven project.”
These are apt terms. An architecture-driven project starts with an implementation idea and looks for ways
to extend it that provide new and unanticipated benefits to the customer. A requirements-driven project
starts with well-defined benefits and draws upon existing, proven implementarion ideas.
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CHAPTEHR 2

Problem defining

2.1 Requirements and design patterns

When a town planner decides that the ferry that transports people across a bay in his
city no longer has sufficient capacity to carry all the traffic, he is likely to ask a civil engi-
neer to design a bridge. The town planner does not ask the civil engineer, “Say, I've got
people on opposite sides of this bay, and 1 need some way to transport them across. Got
any ideas?” Before the town planner contacts an engineer, he has already decided what
he wants built. He knows a standard type of artifact—a bridge—and he knows who is
capable of designing one specifically for the traffic across the bay.

The fact that orderly engineering starts with some type of design pattern bhas an
important implication for requirements:

Rigorous research and definition of requirements is possible only in
relation to a specific design pattern.

Only because the civil engineer knows that he’s going to build a bridge can he ask
pertinent questions of the town planner. “What traffic do you want the bridge to carry?
Cars, or just pedestrians? Trucks? If so, what maximum weight? How many lanes do you
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want? Where on the land do you want the points of access to the bridge?” These ques-
tions enable the civil engineer to calculate parameters such as the width of the bridge
and the load that it needs to support. He can also inspect underwater to learn how deep
the bay is where the bridge is needed, and how solid its floor is in those places.

With a ferry, there is a whole different set of questions to ask. “How many lanes?”
would be silly. Instead, one would ask, “How many cars and trucks do you want to be
able to carry on each trip? How much total tonnage? How fast do you want the ferry to
go? Are there any bridges in the way that the ferry must pass under? How high is their
clearance? How wide is the entrance to the harbor?”

If we were to write requirements on the premise that engineers design by functional
decomposition, every requirement purely a matter of what the device must do without
assuming any design decision as to how it will do it, then the questions for the town
planner would float into starry-eyed abstraction. Why try to find out the width of the
bridge when you might, instead, build a ferry? Or a fleet of cargo planes? Or a teleporta-
tion device? We don’t want our questions to rule out any possible design, after all. Per-
haps the civil engineer should get the town planner to specify the speed at which the
bay-transit device is to move the cars and trucks and then write this into the contract in
order to specify every parameter that any design would have to meet. Oops—such a
parameter makes no sense in regard to bridges.

Now we can explain one of the common complaints about requirements documents,
heard from customers, programmers, testers, and everyone else involved in software devel-
opment—they're so abstract that no one can understand them. This is the result of the
analyst’s diligence in avoiding assuming any imaginable design decision. (More common
problems in requirements documents are described in sections 13.3 through 13.5.)

Implicit in the bridge pattern is the set of questions asked by the civil engineer
about how the bridge is to be used. The answers to these questions define the problem
to be solved by the bridge in enough detail to enable the engineer to apply and adjust
the pattern to the town planner’s needs. These answers constitute the requirements of

the bridge.
Thus:

Corresponding to every design pattern is a set of questions to ask about
the type of problem that the pattern solves. A requirements document
answers these questions.

Writing requirements, then, is answering a set of questions. The particular set of
questions is determined by the type of artifact—the design pattern—for which you
are writing requirements. The answers define a problem in enough detail—and the
right kinds of details—to enable an engineer to apply that design pattern to create a
new design.




2.2 Software problems

We know what sort of problem a bridge solves: provide a path for certain objects to
move by ground travel (that is, with weight fully supported) from one place to another
without falling into the space below. The generic problem definition makes clear what
kind of questions you need to ask to write the requirements for a bridge. Most funda-
mentally, they are: what are the size and weight of the objects that are to move across,
and what are the points where the bridge is to meet with the land on cither side? Addi-
tional information pertains to the environment of the bridge: other types of loads on the
bridge, such as wind, and where the bridge can get its own support, such as the floor of
a river.

What sort of problems, then, does software solve? All software problems are of this
form:

Configure machine M to produce effects R in domain D.

The machine M is the computer to be programmed, including its input/output
devices. The effects R are the requirements. The domain D is a necessary part of the
problem definition because it is the part of the world in terras of which the require-
ments are defined, and because the machine can rarely produce the desired effects all by
itself. The design of the software exploits properties of its environment by making use of
redundancy to detect errors, making use of people or other software to gather informa-
tion, making use of motors t© control other machinery, and so forth.

The reason that computers are so powerful and so useful throughout so many
industries is the fact that they are extraordinarily configurable machines. Every program
is just one of the astronomical number of useful configurations of the bits in the com-
puter. On most computers, you can load one program—that is, one configuration—and
operate it for a while and then replace it with a completely different program later; for
example, swapping a word processor for a spreadsheet. (The reason for saying “most
computers” instead of %11 is that in embedded applications, where the program is
stored in read-only memory, reconfiguring is difficult or impossible.) The same program
can even reside in different places in memory at different times, or it can be swapped in
and out from disk in segments, if the computer lacks sufficient memory to hold the
entire program at once.

This is also the reason that software is so casily misundesstood and that software
engineering is sO different from other engineering fields. Software is not a tangible arti-
fact, like a bridge, a motor, or a computer. Software is a particular configuration of a
computer—not the hardware, but the way the hardware is set up, 2 possible state of the
hardware. Being a mere potentiality for configuration, software does not weigh anything

25




or occupy any space. The software can exist, in the form of source code or object code

stored on tape, even if no computer currently bears that configuration. To put it another
way, the materials of software are not physical objects, as in other enginecring fields;
they are the instructions that a computer is capable of executing, or, more broadly, the
bits in a computer.

Adding to the potential for confusion, the machine M of which a piece of soft-
ware is a potential configuration might well be a combination of hardware and other
software. We don’t usually write software simply for PCs. Writing software for a PC
running Windows is very different from writing software for a PC running Linux.
From the standpoint of a programmer, the operating system is itself part of the
machine to be configured.

Software engineering, then, is the art of exploiting the extraordinary configurability
of computers—the art of inventing useful ways to configure them. The general form of
all software problems suggests three fundamental questions to answer in order to write
software requirements: what type of machine do you want configured, what effects do
you want the configuration to produce, and what are the properties of the outside world
that the machine can exploit to produce those effects?

In orderly engineering, we must limit ourselves to the types of software problems
that people already know how to solve—effects that we know how te achieve.
Chaptet 5, Five problem frames, describes five standard types of software problem in
detail, including all the questions to ask to fully define each problem. The following is
just a taste.

One of these standard problems is the information problem. In an information prob-
lem, the task of the software developer is to configure a computer into an information
system—that is, a combination of hardware and software that supplies information to
users, on demand, about the current state of some part of the world. The principal ques-
tions to answer in a requirements document for an information system are therefore:
(1) What machine is to be configured to act as an information system?, (2) What ques-
tions can the users ask of the information system?, (3) What part of the world do these
questions concern, and what events happen there?, and (4) How can the machine get
access to these events? For example, must people relay the information ro the machine
by typing it in manually, or are there automatic sensors, or are there other computers or
databases that can supply the information? Information problems have many variations,
and different variations need different questions answered, bur these illustrate the funda-
mental pattern. Question (2) provides the requirements: answer these questions on
demand. Questions (3) and (4) provide the relevant information about the domain of
the requirements. .

In practice, question (1), about the type of machine, or platform, to be configured
into the desired information system tends to fade into the background, especially in large-
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scale information systems where we have a great number of machine-independent pro-
gramming techniques. Programs written in high-level languages, for example, can be com-
piled to run on a variety of different machines with very little modification to the source
code. However, high-level languages mainly make possible a high degree of CPU (central
processing unit) independence, not independence from the input/output devices.

In most requirements documents, the principal information that we need to know
about the machine is its input/output devices. The interface design is essentially a design
for how the input/ output devices should behave; the program is what makes them
behave according to the interface design. Without knowing the input/output devices,
we would not be able to create the interface design. '

For example, it makes a great difference to the design of both interfaces and programs
whether there are bar-code readers attached to the computer or whether users must enter
data manually. If a computer that controls a laboratory apparatus has a pH sensor, the pro-
grammers need to know how the pH sensor works in order to write code to control it and
read data from it. A user-interface design for a Macintosh or Windows program can call
upon different hardware and operating-system services than a user-interface design for
software that communicates only through 25 X 80 text-only terminals.

And in some projects, facts about the machine’s CPU, memory, and non-volatile
storage are no less important to include in the requirements document. In an embedded
system, where the software runs on, $ay, a custom microprocessor in a very limited
amount of memory, describing the internals of the machine takes on a level of impor-
tance that cannot be masked through such tools as high-level programming languages.

2.3 Requirements engineering

Requirements are sometimes contrasted wich design, where design is understood as a
choice of means to bring about a desired effect. The requirements are the desired effect,
and the interfaces, program code, and so forth are the means to bring it about. This is
unfortunate because requirements themselves are design—no less than program code.

To take a simple example, suppose that a company’s marketing department has
made a Web site and wants to evaluate the site’s effectiveness for purposes of improving
it. Someone might propose writing a tiny information system with the following
requirement: “report how many hits each page received and from what Internet
domains.” This requirement is an effect to be produced by the software, but it’s also a
means to bring about another effect: improving the Web site by helping the marketing
department tune the pages to the people who are actually reading them.

The decision to write software that meets thar requirement is a creative act—an
invention, a choice, a design, a perceived way of bringing about improvement—no less
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than the design of a subroutine or data structure. If this is an effect that no one desires,

then people will likely reject the software or leave it unused. If people want this effect,
then the software will likely be successful.

Requirements engineering—the design of requirements—is very often the most criti-
cal phase of a software project. The requirements are the desired effects to be achieved
by the software. Someone has to think up those effects. Someone must decide that those
effects would be good to achieve. If the effects do not bring about any real improve-
ment—that is, further effects, such as improvements to the Web site and increases in
sales—then the software will fail even if it implements the requirements perfectly.

Software quality is, therefore, much more than meeting requirements. The require-
ments themselves must be a good design. Many times, software has failed not because it
contained bugs or ran too slowly or contained any other fault within the purview of pro-
gram code. It failed because people refused to buy or use the software because the prob-
lem that it solved was of no concern to them, or even because they preferred to leave
that problem unsolved. A typical example is software for doctors’ ofhices that facilitated
communication among doctors about diagnoses of a patient. It turns out that while the
software worked perfectly, most doctors preferred to form their diagnoses from scrarch.
The culture of doctors’ offices made software to perform this task unwanted. Thus, the
software, for all practical purposes, was of low quality because the requirements were of
low quality, not because of the quality of the user interface or program code.

Furthermore, there are always many, many ways of meeting requirements. No one,
for example, can write down all the criteria for judging one user interface superior to
another. No one can measure how readable or modifiable program source code is.
Requirements engineering certainly has the greatest influence on software quality, but
all aspects of software design affect quality in a variety of different ways. There is no for-
mula for measuring the quality of requirements, no formula for measuring the quality of
a user interface, and no formula for measuring the quality of program code. We simply
design each as well as we can, drawing upon the accumulated knowledge of the field as
embodied in both theory and the software design patterns that have evolved so far.

Even though requirements are design no less than user interfaces and program
code, there is a key difference. A set of requirements defines a problem such that we can
say that the interfaces and program code either solve it or fail to solve it. The software
either meets the requirements or it doesn't. As just mentioned, there is much more to
software quality than meeting requirements, but requirements do provide the baseline
for the remainder of a software design.

Inventing requirements is a matter of inventing a well-defined problem to solve:

A well-defined problem is a set of criteria according to which proposed
solutions either definitely solve the problem or definitely fail to solve it,
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along with any ancillary information, such as which materials are available
to solve the problem.

The requirements themselves, however, do not necessarily measure up against strict
criteria of success and failure. During requirements engineering, you design against an
open-ended problem:

An open-ended problem is a situation in which we believe thar some
improvement is possible, bur we have no definite criteria for measuring
improvement. Discovering good criteria is, itself, part of the problem.

A typical example of an open-ended problem is that faced by the town planner
before asking the civil engineer to design a bridge. The town planner’s problem was to
do something about the traffic along the roads connecting two sides of a bay. Bur did
the town planner have any definite requirements to meer? Was the requirement to
reduce the number of cars traveling along the existing roads by ar least 10%? Well, no,
that could easily be achieved by blocking off the roads. Was it to increase the speed of
trips during rush hour by at least 10%? Well, no, that might not even be possible.

In fact, the town planner simply faces an enormous set of alternative actions. A
major part of his effort will be discovering and exploring those options, as well as trying
to discover good criteria for determining which options are better and which are worse.
The town planner could widen the existing roads, build a bridge, dig a tunnel, order a
new freeway, or he could do some surprising things. He could narrow the existing roads
in order to cause people more frustration as they drive to work, encouraging them to
either ride the bus or move to within walking distance of their jobs. If he changes the
zoning laws to allow offices to be interspersed among residences, and apartments to be
built above shops at street level, people just might move their place of residence and stop
driving so much.

How is he to measure such an option? Traffic along the existing roads might flow
much more slowly than before, but people would get to work faster. If he had tried to
start with a well-defined problem where the requirement was to speed up traffic, this
option would have been ruled out prematurely. Furthermore, as he examines each of his
many options, he continually discovers new criteria for evaluating them. By causing less
traffic to flow instead of more, he would help out the city’s smog problem—a problem
that he wasn’t even trying to solve. By encouraging people to walk, the streets become
more alive with pedestrians, changing the culture and character of the city—an aspect of
town planning that he might not even have thought about before. Now he has new cri-
teria for measuring the options of widening the roads, building a bridge, and all of the
rest. Perhaps, when he re-examines those options, he will discover new criteria by which
to evaluate the option to frustrate people into moving closer to their destinations,

’
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All engineering begins with open-ended problems: no requirements, just the belief
that some sort of improvement is possible. Noticing that rush-hour traffic was becoming a
nuisance, the town planner thought he could do something to “improve the situation.”

By understanding that requirements are design, we know to avoid two common
mistakes: settling on strict evaluation criteria too early, and trying to write requirements
so vaguely—so untainted by design decisions—that they don't define any definite prob-
lem at all. For example, “design a data model that meets the needs of the business” or
“design a system to ensure that baggage is processed correctly” are useless criteria with-
out a precise description of the business’s needs or an extensive definition of “correctly.”

In requirements engineering, you start with an open-ended problem, and finish
with a well-defined problem—so well defined that you can entrust it to someone else to
work out a solution. The decision about what type of artifact to build—in our case, the
decision to write a piece of software—is the most fundamental decision in requirements
engineering. If you haven't yet made the decision to write software, you are not yet ready
to hand off the problem to software engineers. You're still engaged in requirements
design, not interface design or program design.

A software requirements document presents software engineers with a well-
defined software problem. There is no sense in giving software engineers a problem in
town planning, business management, manufacturing, typesetting, or anything other
than software.

The full subject of requirements engineering—the art of inventing and choosing
requirements—is far beyond the scope of this book, or indeed any book. Here, we cover
only what information needs to be put into written form for the rest of the development
staff to implement software requirements. We won't explore techniques for coming up
with ideas for requirements or criteria for judging whether those requirements would
serve customers well or poorly.

2.4 Lessons learned

Before we move on to a precise definition of requirements and their relation to inter-
faces and programs, let’s pause to look over what we've learned in the first two chapters
about how engineering really works. What we've learned boils down to just this:

Generalized problem-solving methods don’t work, at least not well
enough to base a method of requirements-writing on them.

So, we won't premise that programmers and interface designers will implement
requirements by decomposing high-level functions into low-level functions. Real-life
programming just doesn’t work that way. Therefore, we won't write a set of high-level
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software functions connected by data flows; we'll let the programmers write their
own subroutines.

We won't try to document an entire open-ended problem in a requirements docu-
ment. So, in the case of the software to count Web hits, we won’t make the requirement
anything so broad as “help the marketing department improve the Web pages” or
“increase sales.”

Instead, we will always premise that programmers and interface designers will
implement requirements by making soffware. The only type of problem we'll describe in
a software requirements document is a software problem, as defined in section 2.2.

We'll go even further and tailor the information in requirements documents to spe-
cific kinds of software and specific known design patterns and programming techniques.
“Provide information about specific events in domain D” s a type of requirement that
we know how to fulfill, so that’s the type of requirement that we write for the software to
monitor the marketing department’s Web page: “Provide reports showing the number of
hits to the Web page.”

While the specificity of our documentation techniques has the great advantage that
it allows us to write very concretely and in a way instantly and obviously useful to inter-
face designers and programmers, we need to be aware of an important implication: the
documentation techniques taught in this book do not apply to every conceivable type of
software. Neural nets and expert systems, to take two examples, are types of software
whose design techniques work in different ways than most ordinary software; each has
an unusual set of questions to ask in order to apply the design patterns.

Another type of software excluded by this book’s focus on natural-language docu-
mentation is software that performs tasks so complex that it is difficult to be sure that
the design of the interface or program is correct. If you're writing software where you
can't prove the validity of a design by fairly straightforward, simple techniques, then you
need to investigate formal methods. Formal methods are ways of making and validating
descriptions—of the requirements, interfaces, and program—that derive from mathe-
matical notations. Mathematical notations make it possible to express mathematical
ideas of much higher complexity than we can achieve with natural language and simple
graphics. Formal methods also make possible, to some extent, automated validation of
interfaces and programs. For example, sometimes you can run software to check
whether the software will really meer the requirements or whether the requirements con-
tain gaps or internal contradictions.

Nevertheless, the basic principles taught in the next chapter do apply to virtually all
kinds of software, and you can probably vary many of the techniques to come in later
chapters to work with other kinds of software. That’s how patterns are—not inflexible
rules, but helpful ideas that always need a lictle bit of creativity and variation to apply in
each case.
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CHAPTER 3

Two worlds and three designs
3.1 The problem domain

Imagine that you are working on a project to develop software for a trucking company.
- The company has trucks, drivers, cargoes, and customers scattered all over the country.
The job of the software is to track all of these things so that employees can know where
any truck, driver, or cargo is at any time. Your task is to write the requirements docu-
ment. What information do you include?

You might start by describing the behavior of the software desired by the customer
in as much derail as possible: the appearance of the screens, what information goes in
cach field, and how the program responds to keystrokes and mouse clicks.

If you start by documenting those things, then you have skipped requirements.

This might come as a surprise. Didn't we just say that we know what kind of thing
we're going to build, and that this knowledge should guide the way we write require-
ments? Yes, but that doesnt mean that we confuse description of the software with
requirements. Requirements define the problem to be solved by the software; they do
not describe the software thar solves it.
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A customer rarely desires software behavior. What the customer wants was
described above: “employees can know where any truck, driver, or cargo is at any time.”
Trucks, drivers, and cargoes are not part of the software, nor is knowledge held by the
company staff. These make up the part of the world that is of interest to the customer.

This part of the world is called the problem domain. It gets its name from the fact
that the problem to be solved by the software is defined in terms of it. What the cus-
tomer wants is for certain conditions to be realized in the problem domain—in this case,
for employees to be able to know the locations of the company’s trucks, drivers, and car-
goes.

More precisely:

The problem domain is the part of the world where the computer is to
produce desired effects, together with the means available to produce
them, directly or indirectly.

The problem domain includes everything selevant to describing the desired
effects: objects that queries pertain to, people to be informed, objects to be controlled,
parameters (such as voltage) to be kept within a certain range, even desired output for-
mats for queries.

The means available to the software designers to produce these effects are also part
of the problem domain. Indirect means include users whom the computer can ask to
perform tasks, motors that the machine can turn on and off, people or other machines
that can supply information—anything that is not part of the software to be written. For
example, a requirement of the trucking company’s software might be to send cargoes
from one location to another, on command. The means available include trucks and
drivers. The software fulfills the requirement by scheduling trucks and calling upon
drivers to drive them.

Where there are indirect means, there must be direct means. The only type of effect
that a computer can cause directly is the behavior of its input/output devices. The most
obvious examples are keyboards, screens, and printers—the means by which the com-
puter receives commands for where to pick up and deliver cargoes, and the means by
which the computer communicates instructions to the drivers. In embedded applica-
tions, input/output devices are a more obvious part of the problem domain. In order to
write, for example, machine code to control a microwave oven, the programmers need
to know what inputs the microprocessor receives from the control panel and how the
microprocessor is connected electrically to the other parts of the oven.

It might be convenient to define the problem domain as “the world outside of the
computer,” but this is not quite true, for three reasons. First, without knowledge of the
input/output devices, we would have an abstract problem, not a concrete engineering
problem. To design the software, we must be able to follow the causal chain from objects
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from other problem tpes. Its a workpiece problem. The problem is not to report on or
control existing objects, but to create entirely new, intangible, software objects inside the
computer for people to work on, '

Some of the most widely used software in the world solves workpiece problems—
word processors, spreadsheets, even operating systems. However, most software develop-
ment solves problems in which the problem domain already exists—custom inventory
software, embedded applications, software to perform scientific calculations, and so
forth. So, while we will cover workpiece software, most of our emphasis will be on the
other types of problems.

The third reason why the problem domain is more than just the world outside the
computer is that, in some applications, the requirements are specifically for the input/
output devices to behave a certain way. A customer might want forms to appear a cer-
tain way on the screen, Entertainment sofrware provides the most extreme examples. In
a video game, the on-screen appearance makes up the majority of the requirements.

3.2 Requirements

We are now ready for a precise definition of requirements:

Requirements are the effects thar the compurter is to exerr in the problem
domain, by virtue of the computer’s programming,

precise and more useful by limiting requirements to conditions in the problem
domain. We are interested, not in sofrware behavior, but in the effects roduced 4
p y
software behavior.
Another way to think of the relation between requirements and the problem
domain is as follows. Re uirements are statements ident; ing what the customer wants
q g
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to achieve: to be able to perform some type of action in the problem domain, to have
access to information about some part of the problem domain, to keep parameters in
the problem domain (such as temperature) within a certain range, and so forth. Each
term in a requirement statement refers to something in the problem domain.

So, for example, the requirements for the trucking company’s software use terms
like truck, cargo, client, driver, road, and so on. Those all refer to objects in that software’s
problem domain. For example, “an employee can find out, for any given truck, what
cargo, if any, it is currently holding.”

The requirements do not include terms like database, keystroke, doubly-linked list,
file, ox field. These terms all refer to the software. The software developer will probably
create all those things in order to fulfill the requirements, but let’s not confuse the solu-
tion with the problem.

3.3 Interface design

The solution to the problem defined by the requirements and description of the prob-
lem domain is to write a program, of course—to configure a computer to execute
instructions that bring about the requirements. However, no current-day computer’s
instruction set includes such operations as “Find out where Burnside’s truck is right now
and make this known to Smithers.”

Software solves problems by interacting with the outside world. While there are
no computer instructions that put information in people’s minds, there are instruc-
tions that write to memory that corresponds to pixels on a monitor. There are instruc-
tions that read input registers that are activated by keystrokes, instructions that
control read/write heads on disks, and so on. What each of these examples has in
common is that each action takes place simultaneously within the machine world and
the outside world—that is, each instruction either affects or is affected by the
machine’s input/output devices.

The program specification, or interface design, is a set of rules relating behavior of
the computer’s output devices to all possible behavior of the input devices. We design
the specification to cause the requirements—that is, to cause desired effects in the prob-
lem domain, directly or indirectly. The specification thus pertains to the tiny part of the
world that instructions inside the program can affect or be affected by directly—the tiny
part of the world that the computer shares with the problem domain.

The program, in turn, is the configuration of the computer’s memory that results in
its behaving as described in the specification. The program, not being a tangible input/
output device, is no part of the problem domain at all. Intangible things, such as a
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possible way for an object to be configured, cannot cause effects by themselves. Stricely
speaking, the object is what interacts wich the rest of the world; the configuration
determines which of the object’s many possible ways of behaving actually occurs. For
convenience, we will speak of the program causing the computer to behave a certain
way, but never of the program directly exerting effects outside the computer.

For example, software to control a printing press is responsible for moving paper
through the press and applying ink at the correct locations on the page. The computer
lacks instructions to cause these effects directly, so it causes them indirectly, through its
connection with the motors that attach to rollers in the printing press. While the
requirements describe paper and ink movements, the specification describes the activa-
tion and deactivation (changing of voltage to 5 volts or 0 volts) of the wires connecting
the computer to the motors. These activations and deactivations initiate the chain of
events that result in paper moving through the press and receiving the desired images.
Finally, the program is what makes the computer cause the activations and deactivations
of the wires to occur, as described in the specification.

Thus, software design as a whole involves three principal designs: the design of the
requirements, the design of the interfaces that bring about the requirements, and the
design of the program that makes the computer behave as specified by the interface
design. These three designs span two worlds: the requirements are contained completely
within the problem domain and exclude the machine; the interfaces pertain to the tiny
overlap between the problem domain and the machine; and the program design
describes only the configuration of the machine. All of these relationships are shown
together in figure 3.1,*

Most specifications contain two further pieces of information beyond a strict
description of the behavior of input/output devices. First, in order to relate past events
at the input devices to future events at output devices, a specification usually must pos-
tulate szates of the machine. The specification can say that a certain input event, such as
typing in some data at one time, changes the state of the machine such that ifanother
event occurs later, such as requesting a query, the data displayed in the query is the data
typed in earlier. If someone types in new data, that can change the state of the machine
again, so that now the same query would produce different results,

The one rule for describing machine states in a specification is that these states
must make some distinguishable difference in the problem domain. So we can say that
the machine stores dara, such as names and phone numbers, and even say how many
characters are allowed in the names and how long the phone numbers can be, but we
don't say anything about the internal representation of this data inside the computer.

* Figure 3.1 is adapted from the diagram on p. 170 of [Jackson 1995).
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Figure 3.1 Relationship between requirements, specifications, and programs

We must say how many characters a user can type in when entering a name, but we have
no reason to say whether the name is stored in an object-oriented, relational, network,
fat-file, or other type of database. We don't even need to say whether the characters in
the name are represented according to the American Standard Code for Information
Interchange (ASCII) code. For purposes of this book, the design of database tables is
considered a part of programming; it’s “behind the scenes.”

The second main type of additional information to include in a specification is any
rules that parts of the problem domain must follow in order for the software to work
propetly. For example, when a program interfaces with human users, you do more than
design screens and invent data for the computer to store. You also impose responsibili-
ties on the users. If the users are the computer’s source of information about mainte-
nance being performed on trucks, then you make it the users’ responsibility to enter this
information as it happens.
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The behavior that the sofrware requires of users is called the software’s operating
procedures. The users must follow the operating procedures correctly, or you can’t guar-
antee that the computer will call for maintenance checks at appropriate times, print cor-
rect data in reports, and so forth, A specification must document all operating
procedures, or the testers, programmers, technical writers, and especially the users will
be at quite a disadvantage.

Naturally, the option to make demands on parts of the problem domain is not
available to all specifications. Software to control a crane must take the behavioral prop-
erties of the crane as they are. Normally, when users are involved, an interface designer
can impose responsibilities on them. There is litde or no leeway when designing an
interface to hardware or other software.

Creating a specification often involves a great deal of imagination and ingenuity.
There are often many possible specifications that could solve the problem defined in the
Tequirements, some better and some worse. Especially in designing a user interface, the
job of specifying software is often exploratory engineering rather than orderly engineer-
ing. Despite the fairly refined vocabulary of user-interface patterns already in use, the
open-endedness of user-interface design is not likely to end soon, or ever. Thus user-
interface design is a stage of software development especially in need of prototyping and
early testing. Interfaces to software and hardware, on the other hand, tend not to admit
of such flexibility.

Very often, the customer needs to be involved in both requirements design and
interface design. Though two user interfaces might both meet requirements, the cus.

completely unacceptable. When presenting an interface design, you need to explain how
it addresses each requirement. In addition to letting the customer judge the interface,
this gives the customer an opportunity to notice requirements that were missing or
improperly defined and to judge for himself whether or not the interface really satisfies
the requirement.
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Figure 3.2 Logical structure of requirements, specifications, and programs

domain. Conclusion: the requirements are fulfilled. If the conclusion does not follow
from the premises, then the interface design is invalid.*

The reason for including premise (2) is that the computer fulfills requirements by
interacting with objects in its environment. If the interface designer has misunderstood
the environment, it is unlikely that the interface will be correct. For example, part of the
problem domain of the software that controls a printing press is the motors that attach
to the rollers. One of the premises of the interface design, then, is that when the motor
runs, the roller turns. Another premise is that the motor is attached to a certain output
port on the computer—when the output port is at 5 volts, the motor runs. Only by
adding premises about the computer’s environment to premises about the behavior of
the input/output devices can we deduce that the requirements will be fulfilled.

The relation of programming to interface design follows the same pattern. You
prove the validity of a program as follows. Premises: (1) The program consists of the
specified instructions. (2) The platform on which the program runs possesses the speci-
fied library, operating-system, and hardware properties. Conclusion: the behavior
described in the interface design occurs.

Or, more simply, a program design is validated against a specification; a specifica-
tion is validated against requirements and the problem domain. Therefore:

Without requirements, there is no way to validate a program design—that
is, no way to logically connect the program to the customer’s desires.

This is true even if the requirements are not documented. Writing down require-
ments is primarily a device to help many people work together on the same project, as

* [Jackson 1995], p. 171.
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we will discuss in chaprer 13. Requirements, domain descriptions, and interface designs
are propositions and concepts, not sentences or diagrams on paper. This book has much
to say about sentences and diagrams on paper, bur this is always for the purpose of com-
munication between people. Sometimes you might want to trust less formal techniques
of communication; for some factors to consider, see section 12.6.

The fundamental reason for carefully distinguishing interface design from require-
ments is that requirements are designed in response to an open-ended problem, but
interfaces are defined in response to a well defined problem. That is, there are no rigid
criteria for evaluating requirements; we simply make a decision to build software to
bring about certain effects. An interface, on the other hand, derives from a well-defined

system analysis, this shift in perspective is difficult. It's tempting to push the unfamiliar
world of the problem domain aside, directing your attention instead to the familiar
world of software. Bur the interfaces and program code will be much more useful to the
customer if you've carefully framed the problem entirely in terms other than program
structure,

3.5 Descrzptz'on

problem domain 7.
Table 3.1 includes some common problem-domain information that needs to be in
a requirements document.

Table 3.1 Types of information needed in a problem-domain description

Information Examples
Entities in the domain and Trucks: manufacturer, maximum cargo weight, maintenance record,
their attributes whether includes refrigeration, and so forth.

Hurricanes: name, location, shape, direction of rotation, and so forth.
Cardinalities of relations For every customer, there can be zero or more invoices; for every
between entities invoice, there is exactly one customer.
Events that the entities are Trucks move along roads, from City to city. A new truck can be bought;
capable of the company can sell or otherwise retire a truck from service.

A hurricane can move, possibly overlapping a city.
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Table 3.1 Types of information needed in a problem-domain description {continued)

Information Examples

Causal rules A cargo never moves unless it is in a moving truck. A truck never moves
uniess moved by a driver. When a truck moves, its driver moves to the
same place.
The fuel injector refeases 1 ml of fuel into the cylinder when address line
A17 goes high.

Interfaces that provide the A time clock that connects to the computer that the software will run on,

software indirect access to providing electronic records of when employees punched in and out

entities of interest
Data fermats The format of the data sent by the time clock

Notice that it’s not the responsibility of the software to enforce any of the above
statements. Rather, knowledge of the above statements is needed by the software design-
ers in order to design sofiware to bring about the requirements. If the software is o
print reports on how many hours each employee works each week, the programmers
need to know that there is a time clock, that the employees are supposed to punch ir,
and the format of the data sent by the time clock.

Without purely descriptive information about the problem domain, designing soft-
ware to meet the needs of the customer would be impossible. Requirements, or prescrip-
tive statements, are not enough.™

In fact, on most software projects, a well-written requirements document needs
much more problem-domain description than requirement statements. The number of
pages of pure description might easily be five times as many as the number of pages of
requirement statements.

This might not be as much of a surprise as the principle that requirements say lit-
tle or nothing about the software to be built. The principle is really the same in both
cases, though. The problem that the customer wants to solve is always to make certain
things happen in the problem domain. The job of a requirements document is to
define that problem in enough detail that people can design software to make those
things happen. In real-world problems, the problem domain tends to be complex,
while requirements are often not much more than, “Let me query about anything in
our inventory” or “Play back the recorded messages into the phone line when the

caller dials the passcode.”

Uackson 1995}, pp. 125-128, and [Zave 1997} propose a more elegant terminology, distinguishing be-
tween statements in the indicative and oprative moods. Indicative statements are those that merely point
out facts; optative statements say what we consider good, what we would opt for. We'll say descriptive and
prescriptive in this book only because they’re more familiar.
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The complexity of the problem domain might make it seem hopeless to even
attempt to describe it in detail. How can you know, while still writing the requirements
document, which facts about the problem domain will turn out to be relevant and
which won'? And aren't there millions of such facts?

The key to keeping domain description from becoming open-ended is the principle
that the information in a requirements document always derives from the type of arti-
fact to be built or, more specifically, from the type of well defined problem solved by
that artifact. When writing the requirements document for an information system, there
are specific questions to answer about the problem domain: what objects reside there
about which the user can initiate queries, what events do those objects undergo that
change the proper results of those queries, and what sources of information share phe-
nomena with the machine, enabling it to track those events? Chapter 5 provides detailed
checklists of all the problem-domain information needed to define five of the most com-.
mon problem types.

Further restricting the type of information needed in a requirements document is
the principle that you need only include the very specific information needed by a well-
defined software problem, not the potentially limitless information needed to choose
the requirements themselves. When building an information system, the requirements
reflect (but do not justify) your decision to build such a system, what queries to allow
usets to initiate, and so forth. You do not need to attempt to document such aspects of
the outside world as the culture of the users, upon which you based your judgement that
they would accept and make use of such a system.

3.6 Invention versus validation

Validation works one way only: you validate an interface design on the basis of require-
ments and problem-domain description, and you validate a program on the basis of the
interface design. The process of inventing requirements and interfaces, however, follows
no such simple pattern. Requirements stimulate ideas for interfaces, but designing an
interface can also lead to new ideas for requirements. Similarly, even though a program
is an implementation of an interface design, writing the program often leads to new
ideas for the interface, and often, the act of designing an internal data structure can lead
people to discover clearer ways of understanding the problem domain or omissions in
the requirements.

A typical example is that you show some users a mockup of a screen to perform
a type of query, and the users say, “You mean you can do that?” By the time you
answer affirmatively, they've noticed what a small leap it would be to provide many
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more queries that would be even more useful to them. Any kind of designing,
including requirements engineering, is a creative process, and creative processes sel-
dom follow a predictable path. Every new idea leads people to notice new, previously
unanticipated possibilities. A beneficial side effect of exploring and documenting
requirements is that everyone on the project can contribute ideas for requirements
and specifications—users, programmers, testers, and technical writers, too, not just
the analysts and interface designers.

While we always evaluate interface designs for correctness according to whether they
produce the requirements (and programs for correctness according to whether they pro-
duce the specified interface behavior), there is nothing wrong with choosing require-
ments on the basis of what we know abour interface designs and programming. Indeed,
this is the idea of basing the questions answered in a requirements document on known
design patterns. There’s nothing unseemly about changing requirements because of the
difficulties with making an easy-to-use or elegant interface, or changing an interface
design because it’s difficult to program. We invent requirements and interface designs on
the basis of what we believe we can feasibly implement. To put it another way, knowl-
edge of programming guides our choice of requirements (similarly for interface designs)
no less than knowledge of the open-ended problem that the software solves. In the same
way, knowledge of building materials guides an architect’s choice of how to shape a
house, no less than knowledge of how people live and work.

So, while we try to make our techniques for documenting requirements such thac
there are existing programming techniques for implementing them, we should not think
that writing requirements necessitates a rigid, clockwork progression of software devel-
opment. While the art of project management is far beyond the scope of this book, a
few words are in order.

I’s virtually impossible to write excellent requirements at the very beginning ofa
complex project. Only when we see the interfaces and allow programming to start can
we begin to truly refine our ideas for the requirements. This is a brute fact that a project
manager must contend with, not a problem that can be solved by a “perfect” method of
requirements design. To enable the requirements to profit from what we learn from
interface design and programming, we can develop the software incrementally, improv-
ing the requirements at each stage.

There are two principal strategies for managing incremental improvement of design
(remembering that requirements are designed, no less than interface designs and pro-
gram designs). One is to start with sketchy requirements, adding detail at each stage, or
to postpone rigorous requirements definition until the very end, at which time the
requirements are somewhat superfluous. In this case, we do not start with a well-defined
problem; we start by tentatively building solutions and hope that a well-defined prob-
lem eventually comes into focus.
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The other strategy is to take a spiral approach: start with a modest, well-defined
problem, solve it, and then expand the problem in the next phase, repeating the process
as many times as necessary. With the spiral approach, you have rigor, not sketchiness, at
each stage of development. Each stage produces a provably correct solution to a well-
defined problem, resulting in software that runs and contains few, if any, holes. From
cach solution, we learn how to expand the problem—that is, improve the require-
ments—in the next stage.

Perhaps the most famous example of the strategy of rigorously solving a series of
progressively more complex problems was the United States space program of the
1960s. The goal was to land a man on the Moon and return him safely to Earth, but
that was far too ambitious to attempr all at once. Over a decade, NASA designed, builr,
and launched numerous complete spacecraft solely for the purpose of learning about
each of the many problems involved in 2 Moon mission. Project Mercury solved prob-
lems of orbital dynamics and human life support in space; Project Gemini solved the
problems of extravehicular activity and space docking, among many others; Project
Apollo, in many stages, solved the final problems of actually landing on the Moon and
returning. Each of the many spacecraft designs was driven rigorously by requirements,
and each experience improved the requirements for the next design.

The advantage of the strategy of growing the solution in whichever direction it
wants to grow is that it can solve problems we had never before thought to identify.
When successful, it can generate spectacular results, such as new programming tools and
entirely new kinds of software. Its danger, as in any exploratory engineering, is that it
can stray considerably from what a customer wants, veering instead toward areas that
the programmers find most interesting and within their area of expertise. This danger is
especially clear in contract programming, in which a customer simply wants software to
perform a specific task, for example, to control a certain piece of machinery or to keep
track of accounts and inventory. With no well-defined problem against which to vali-
date the interfaces and program, holes and problem misfits turn up well after the soft-
ware has been installed, when they’re most expensive to correct.

The spiral approach, with well-defined requirements supporting validation of each
version of the interface design (and well-defined interfaces supporting validation of each
version of the program), is much more conducive ro rigor. Since you consciously design
the desired effects of the software in the problem domain at each stage, you have more
opportunity to catch mistakes early in the process—while they're still requirements on
paper rather than thousands of lines of inappropriate code. Also, you have something
well defined to test against at each stage. The disadvantage—a small price in most every-
day software projects—is that the more clearly defined the goal, the less likely it is that
you'll make totally unexpected kinds of innovations.
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Rapid prototyping is a strategy for inventing requirements that blends the benefits
of both approaches: free-form exploration of interfaces and program designs that do not
fully solve a well-defined problem, as well as rigorous problem definition and solution.
When you write the real software, you throw away the prototype—the sloppy part that
you made only to stimulate ideas. Pencil-and-paper mockups of screens, sometimes
called paper prototypes, are one example of this technique. They are very tentative user-
interface designs that are inexpensive to produce and whose sole purpose is to stimulate
ideas for both requirements and the final, detailed user-interface specification.

So, while writing requirements does not preclude a flexible, incremental style of
development, neither must flexibility conflict with rigor. Modern project management
techniques, such as the spiral method and rapid prototyping, enable programs to rigor-
ously map to requirements even as we improve requirements by observing the software
in action.

3.7 What software requirements are not

Terminology in the software industry is far from standardized, especially in regard to the
term requirements. This book rigorously adheres to one definition, but many others are
also in common use. The following serves both to distinguish this book’s concept of
requirements from some older ones, as well as to clarify it by describing other concepts
with which it is easily confused. Section 12.5 briefly describes a few more.

3.7.1 Not top-down

Structured analysis is an approach to requirements based on the idea of extending cer-
tain techniques of program design outward to requirements. The program design tech-
niques are:

e Form each subroutine by combining blocks of code without gotos, iterations of
such blocks, and execution of one block or another based on a condition.

* Functional decomposition: when a given function is too complex to implement in
a single subroutine, break it into smaller functions. When one function is decom-
posed into several, the functions exchange data with each other, as shown in a data-

flow diagram like that of figure 1.2.

These are the principles of structured programming. In structured analysis, the idea is to
bring the same hierarchical, structured method to requirements.

The analyst, then, describes a set of top-level functions, perhaps leveling (decom-
posing) them a few times to make functions small enough to begin implementing. The
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intent is that the programmers will translate each of these functions into a high-level
subroutine in the program. The requirements document is, thus, a high-level descrip-
tion of the program structure, making software development flow smoothly from begin-
ning to end.

can be allocated to different programmers, enabling them to work in parallel. Different
functions can also be allocated to different testers,

We've already seen that programming does not consist of breaking down high-level
functions hierarchically into low-level functions.* Structured analysis, however, has an
additional flaw. It is concerned with the wrong subject matter—the program rather than
the problem domain.

If software development starts by describing the top level of the program struc-
ture and working down to individual instructions, the only thing that ever gets
described is the configuration of the machine—the program. Regardless of the fact
that this kind of functional decomposition doesn’t work, no logical connection from
the problem domain to the program is ever established. In many projects that try to
follow structured analysis and design, the important job of interface design (especially
user-interface design) is neglected—perhaps sketched our by the analyst and lacer
completed by a programmer, regarded as part of coding a subroutine rather than a

only the inputs and outputs that directly supply or receive data to or from the system.
Effects to be achieved indirectly by the software, as well as indirect sources of data, are

functions. The practical difficulty of modifying programs designed top-down is described further in
[Jackson 1983], PP- 9-11, as well as in most texts on aobject-oriented design, such as [Jacobson 1992],
PP- 73~76 and pp. 135-141. Further difficulties, discussed in Uackson 1995] , PP: 196-199, are the fact
that functional decomposition leads you to make the most momentous decisions when you understand the
problem the least, and, perhaps most fundamentally, the real world does not have the kind of neat, hier-
archical structure found in a hierarchy of functions, making it difficult to devise a simple, robust mapping
between a real-world problem and the elemens of 2 program designed top-down. See also [Jackson 1983],
pp- 370-371.

T See [Yourdon 1989a] or nearly any other book on sttuctured analysis,
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explicitly excluded from the context diagram, and consequently excluded from consid-
eration. We will see in chapter 4 that these indirect connections between the machine to
be configured and the domain of interest are the source of much of the complexity in
software problems. It’s tempting enough to sweep them under the rug, without a
method of writing requirements that explicitly demands it.

A berter metaphor for the progression of the principal design stages in software
development (or each trip around a spiral) than “top-down” is the “left-to-right” pro-
gression shown in figure 3.1. Each stage of design is concerned with a different subject
matter than the previous stage. This is very different from starting with a description of
high-level subroutines and fleshing them out with program code and low-level subrou-
tines. Our concern is to relate the program to desired effects in the outside world, logi-
cally or causally. And indeed, in both requirements and specifications, we do not
describe the program ar 2/l. Programming is the programmers’ job.*

3.7.2 Not sketches

In practice, trying to approach software development top-down often leads people to
view requirements as a sketch of the program. In this approach, the requirements phase
of the project is the creation of an outline of the major features of the program, leaving
the details for later, similar to the way an architect’s first drawing of a house is a sketch
that omits many details. The key distinction between requirements and later stages of
design, following the sketch approach, is the level of abstraction. Requirements are sup-
posed to abstract out details, allowing them to be filled in as development progresses.
The requirements are high-level; the final design is low-level or detailed.

So, for example, development might start with a requirement like: “The program
must enable paralegals to research statutes pertaining to workmen’s compensation
claims.” Program design consists of progressively adding more detail to this fundamental
idea: fleshing out data structures, algorithms, screen designs, and so forth.

How, though, can programmers make good decisions about these data structures
without knowledge of small details of the problem domain, such as the formats of legal
citations? To write the program well, someone needs to inform the programmers that
one type of statutory law citation has the following format:

% In the terminology of chapter 5 of this book, structured analysis demands that all software problems be
framed as transformation problems.

However, don't get the idea that structured analysis is worthless. Its strength has been its techniques for
describing data—actually, a borrowing from relational database theory. These techniques for describing
models are so good thart they can also be applied to describing the problem domain itself. This book freely
draws upon them in chapter 9. Data-flow diagrams are good for describing things that are already well un-
derstood; we’ll see them again in chapter 11. And our graphics for describing software problems, presented
in chapter 4, are a variation on data-flow diagrams.
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AR.S. 23-613(A)2)(a) =—=—  Arizona Revised Statutes Annotated,
Title 23, section 613, section A,
subsection 2, sub-subsection a

while citations from case law have a different format:

San Francisco Arts & Athletics, Inc. v. ==y Case: San Francisco Arts & Athletics, Inc. v,
U.S. Olympic Committee, 107 S.Ct. 2971, U.S. Olympic Committee.
483 U.S. 522, 97 L.Ed.2d 427 (1987)
Published in: Supreme Court Reports,
volume 107, page 2971.

Also published in: United States Reports,
volume 483, page 522.

Also pubfished in: Supreme Court Reports,
Lawyers Edition, second series, volume 97,
page 427.

Date of decision: 1987. Because the main
citation implies the court of record, it is not
indicated next to the date; otherwise, the
last part would read: (U.S.; S.Ct. 1987).

The rules for legal citations are among the tiniest of details, yet the program must
parse and print legal citations in a wide variety of formats or it won't be of much use in
legal research. Unless the programmers just happen to have basic legal training, they
would never guess these details correctly.

This, once again, illustrates that the difference between requirements and program
design is not level of detail or level of abstraction, but subject matter. The formats of
legal citations, whether described sketchily or down to the last detail, are facts from the
problem domain, discovered by research and by talking with the customer. Facts about
data structures are facts entirely within the machine domain, invented by the program-
mers to solve a problem expressed entirely in terms of the problem domain.

A further difficulty with writing a sketch of a single domain, rather than a detailed
description of one domain and how it is to be affected by another, is that there is no well
defined problem to solve—no baseline against which to test or evaluate the final design.
It a tester finds that the program allows a citation to list only a single publication, should
he mark this as a bug, or should he infer that this was one of the detailed decisions made
by the programmers?

The principle of exhaustive detail is worth formulating explicitly:

When a requirements document is done, the development staff should
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need to undertake no further research of the problem domain in order to
design the software.

In other words, a completed requirements document must contain every last rele-
vant detail about the problem domain. A completed interface design contains every last
detail about an interface. Programmers don’t flesh out missing derails; they create an
entirely new domain, which indirectly brings about the indicated effects in the problem
domain.

There is one main exception to the above principle. Much of the project-specific
knowledge needed by a user-interface designer is an intuitive understanding of the users:
what they understand, how they speak, what they like and don't like, and so forth. Since
this kind of information cannot be written down precisely, no attempt should be made
to do so.

Sometimes you simply can’t get access to all of the necessary problem-domain
information early in the project. As noted at the beginning of section 3.6, there is noth-
ing wrong with revising the requirements and the description of the problem domain
after having done some prototyping or building some interfaces. Like the other princi-
ples, the “no further research” principle describes the logical relation between the pro-
gram and the requirements to be achieved by the time the software is completed and
accepted by the customer, but getting to that acceptance is not necessarily a neat, clock-
work sequence of development stages. The principle says that, at some point, all the
domain information must be available to the programmers and interface designers, even
if it isn't all available on day one of the project.* To put it another way, people can begin
tentative interface design and program design even if the requirements document is not
completely finished.

Furthermore, by no means does the above discussion mean that rough sketches
have no role to play in orderly software development. On the contrary, they play an
indispensible role in nearly every project. In the carly stages of designing the require-
ments, you will likely create a sketch of the requirements in order to help you refine
your ideas and to help you communicate them with others on the project. You might
throw out all, some, or none of the ideas in this sketch when you write the completed
requirements document. Similarly, you might sketch out a specification before writing
the detailed version, and similarly again for the program.

The two important things to understand are that a sketch of the requirements is
not sufficient to make a detailed interface design or program, and that a sketch of
requirements is not an outline of a program. Also, because a sketch is made withour full

* [Parnas 1986] discusses many aspects of bringing together all the parts of software documentation logically
even when the process cannot occur in the ideal chronological sequence.
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knowledge of details, you cannot bank on a smooth flow from high-level to detailed
description. If you had enough information to guarantee that, you wouldn’t need to
write a sketch; you would be ready to write the final, detailed document. A sketch is an
exploration of ideas, an essay into the unknown. When you explore, you do not know in
advance what you will find.

3.7.3 Not what versus how

Requirements are sometimes defined as “what” software must do, while design is “how”
the software does it. These definitions are far too vague to be of use in a real project, as a
simple example will demonstrate. Suppose that you're creating a program to map data
between certain relational databases and object-oriented databases. You plan to run this
program to enable some new insurance software to work with existing databases in the.
insurance industry, permitting incremental change instead of large, instantaneous
change. You've decided that to effect the mapping, you'll have a human being manually
create a map file for every pair of databases that need to exchange data. The software will
then translate dara according to the mappings in the map file specified when the soft-
ware starts up.

Now, which is “what the software does” and which is “how it does it”? Should the
requirements describe the insurance business? What the software does there is reduce
costs and increase profits. The requirements would be, “The mapping software shall
reduce total operating costs by at least 0.8%.” Or does the software map data between
databases? If so, should we exclude discussion of the map file from the requirements, as
part of “how” the software performs the mapping? Or does the software read the map
file and map data between databases in accordance with a set of map-file interpretation
rules?

In fact, everything in engineering is what and everything is how. Everything that a
piece of software does is what it does, and everything that a piece of software does is how
it does something.* This is true equally of databases, user interfaces, subroutine calls,
local variables, and arithmetic instructions.

The program is a design for performing mappings according to the map-file inter-
pretation rules. The map file is also designed by software engineers to serve the purpose
of mapping, The map file overlaps between the world of wsers and databases and the
world of the program, so it’s part of the specification, as are the user interfaces for any
programs for editing map files, along with the procedures for operating those programs.
The problem domain is the database files. The requirements of the program are to per-
form the mappings. The requirements are 2o how. They are a set of conditions to be

* See also [Davis 1993], p. 17, foran amusing refutation of the what/how distinction.
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achieved in the problem domain, which people carefully designed in order to bring
about still other effects: helping shepherd the insurance industry toward acceptance of
new standards, and reducing operating costs.

3.8 Summary

Figure 3.3 summarizes all the fundamental components of software problems and their

solutions.
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CHAPTEHR 4

Problem framing
4.1 The knights tour

Consider the following problem, known as the knight’s tour. The knight starts at the cen-
ter of the board, as shown in figure 4.1. The problem is to find a sequence of moves that
lands the knight on every square, without land-
ing on any square more than once.*

Even on the miniature chessboard, this is
a difficult problem. You try out a sequence of
moves and soon can’t remember which squares

you've already covered. Lacking a systematic
approach, you resort to trial and €rror, never
able to know if you've painted yourself into a
corner until it's too late. Should you try to
cover the quadrants of the board one at a time?
Or spiral outward from the middle? The diffi-
culty of the task and lack of a systematic
approach remind one a litde of solving a

Figure 4.1 The knight's tour
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Rubik’s cube, as in section 1.3.

Now, in figure 4.2, look at a new version of the same problem.

In the new diagram, the squares of the chessboard have been moved. Each square is
connected by a line to all the squares that are a single knight's move away. Miraculously,
the “difficult problem” is now trivial. You can find a path that touches each square only
once in only a second or two. Just start on square 13 and follow the lines.

What makes the second version of the knight’s tour so much easier is that the prob-
lem has been reframed to expose its essentials. The real problem is to find a chain of
squares such that a knight can jump, in a single move, between the two squares con-
nected by any one link of the chain. The arrangement of the squares on the chessboard
is of secondary importance, so we can freely modify it in order to make the “chain”
aspect of the problem more conspicuous.*

The first and perhaps most important step in documenting software requirements
is to frame the problem—to put it into a definite form, with definite parts, and definite
relations between the parts.f The way the problem is framed should make the details of
the problem, no matter how complex, fit into a simple, coherent framework so that a
person can systematically analyze them without becoming overwhelmed. In the knight’s
tour, the numbers on the squares—that is, the locations of the squares on the original
board—are the potentially overwhelming details. The chain diagram still includes all the
details, but puts them into a framework that allows you to see each in proper relation to
the others, referring to the numbers only as necessary.

4.2 Domains

Software problems seldom fit into frames like the knight's tour, of course. How, then, do
you frame a software problem? You've already seen the most fundamental technique, sep-
aration into domains, in the general diagram of a software problem from chapter 3,
reproduced here in figure 4.3.

For non-chessplayers, a knight’s move goes cither two squares vertically and one square horizontally, or
two squares horizontally and one square verrically.

Figure 4.2 is adapted from [Sawyer 1955], a book overflowing with similar examples and insights from all
throughout mathematics.

T Framing the problem is also one of the most important steps in researching it, as there’s no way to do sys-
tematic research without specific questions to ask.

56 CHAPTER 4 PROBLEM FRAMING



12 3 4 5
6 7 8 91
111513 14 15
18 1718 19 20
2122 23 24 25

Figure 4.2 The knight’s tour, reframed

What, exactly, is the difference between th

Each domain contains a set of individuals—rthat is, distinguishable things about

¢ two domains indicated by the ovals?

which we want to make statements. The individuals in the problem domain are the
trucks, cities, cargoes, drivers, customers, users, and so forth—the physical part of the
world in terms of which the requirements are defined. The individuals jn the machine
domain are all the subroutines and data structures that make up the machine’s pro-
gramming, as well as the input/output devices of the machine. The only rule about

individuals is that you can always distinguish one individual from another—no indi-
vidual s also another individual,

Also included in each domain is eve
uals. So, for example, we can say
former #s now carrying the latter,
time, that a certain customer o

rything that we want to say about those individ-
about a certain truck and a certain cargo that the
or that a certain driver drove a certain truck at a certain
wns a certain cargo,
to be able to assert or deny of one or more ind
machine domain contains a different set of pred
range of memory locations,

and so forth. Everything that we want
ividuals, we will call a predicate. The

icates: a subroutine occupies a certain
one subroutine calls another, and so forth.

DOMAINS




Problem domain Machine domain

Pick up cargoes

i

Haul cargoes to destinations

Database schemas

Interfaces

Subroutines

raul_charge = c.0;
box_count = §;

for {pitem ¢ items; pitem: pitem = pitem->next): {
baul_charge += price(pitam->code, pitam-rqtyl;
box_count += pitemeaqty;

Linked lists

/ | \

Requirements Specification Program

Figure 4.3 Separation into domains

A domain, then, is a set of individuals with accompanying predicates. The individu-
als need not be individuals that exist now or ever; they can be merely potential individu-
als that the software must be capable of dealing with. So, for example, all potential
customers are part of the problem domain in the trucking example. When defining a
domain, we do not necessarily know all of the actual individuals that it now contains or
will contain; however, we do specify all the predicates that we intend to apply to them.

When we make statements within the problem domain, the individuals and predi-
cates that exist only in the machine domain are not availabje to talk about. Occupying a
certain range of memory is not the kind of predicate that one asserts of a truck driver.
Since requirements are expressed in terms of the problem domain, they can only refer to
individuals in the problem domain, and all they can assert about those individuals is

predicates from the problem domain. So the requirements document says nothing about
linked lists and subroutines.
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Domain description generally occupies the majority of a requirements document—
even more than the list of requirements. For readers to understand a domain well
enough to design software to function with it, you must provide one or more of the fol-
lowing types of information, depending on the type of problem:

Table 4.1 Domain information

Type of information Details in
What kinds of entities are or can be in the domain—for example, people, cars, Chapter 9
musical compositions, fuel injectors, road names.

What kinds of attributes those entities can possess—for example, color, com- Chapter 9
pletion status, due date, how much money is in an account.

Relationships that can exist between the entities—for exampie, a driver owns Chapter 9
a vehicle, two parties are plaintiff and defendantin a court case. ’

The types of events that can occur within the domain—for example, that cars Chapter 10

can be sold, that rollers can turn, that the Supreme Court can decide to hear a
case or throw it out.

The causal laws according to which the entities behave—for example, that servo- Chapter 11
motor A is on if and only if bit 7 of I/O port OxFOO is high, and when servomotor A
is on, roiler R1 rotates clockwise.

Events are often best treated as individuals, just like entities. When you frame the
problem, you don’t necessarily know which events will happen, but you know all of
the possible attributes they can possess and all of the relations of interest between
them. The attributes of an event are the entities that parricipated in the event, and
possibly the time and duration of the event; relations between events are such things
as before and afier.

Understanding the information described in table 4.1, you can incorporate it
into  propesitions: assertions or denjals that certain individuals possess certain
attributes or bear certain relations to each other. Attributes and relations can ejther
identify an individual for the purpose of making a proposition about it, or they can
server as the predicate asserted about the individual. A question, such as a query that a
user asks of a piece of software, is also a proposition—a proposition whose truth or
falsity is unknown, or a proposition with the type of predicate stated but the specific
predicate missing, (For example, you know that a quantity of tires was sold, but not
exactly how many.) A user runs a query to find out whether the proposition is true or
to find out the missing predicate.

Everything that you can say with individuals and predicates, along with various
types of relations between propositions, is the subject of two branches of mathemat-
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ics known as the predicate calculus and the propositional calculus. In this book, we'll
limit ourselves to the relatively simple types of propositions that you can express in
natural languages. The predicate and propositional calculi play a more explicit role in
formal methods.

For purposes of most everyday software projects, all you need to know is that in
describing each domain, you must explain the entire vocabulary in terms of which you
describe it—all the types of individuals that you want to talk about and all the predi-
cates that you want to use to describe them—and frame all of your descriptions in terms
of that vocabulary. Usually, this means providing each of the five types of information
listed in table 4.1.

The choice of what to call an individual and what to call a predicare depends only
on whar propositions you are interested in asserting or asking. It is not a rule that physi-
cal objects have to be individuals, nor is it a rule that intangible things, like names and
numbers, have to be predicates. If you make an assertion about a name or a number,
then you are treating that name or number as an individual. The only rules are that no
part of the domain can be two individuals at once, and you must know in advance all of
the predicates that you want to assert of the individuals. Sometimes, the choice of how
to go abour describing a domain—what individuals to talk about what what predicates
to use in describing them—is one of the trickiest and most critical parts of framing the
problem, as the following simple example demonstrates.

Suppose that you are writing the requirements for sofeware to figure out routes
for bus riders to take to get from one place to another. Many of the propositions of
interest to you will involve roads, such as: “Route 102 stops at the northwest corner of
28th street and Pearl street.” It might be very tempting to make roads your individu-
als, and road names your predicates. But there is a problem with this scheme. Roads
sometimes overlap. For example, 28th Street might also be Highway 36 for a stretch
of a few miles and then the two roads go their separate ways. Are they one individual
or two? The solution is to define two kinds of individuals: road segments and road
names. Highway 36 then becomes a collection of individuals: all road segments with
name Highway 36. Some of these segments also have the name 28¢5 Streez.* A single
road segment can have more than one road name. Your main predicate is now: has
such-and-such name.

* Adapted from [Jackson 1995], pp. 100-103.
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4.3 Shared phenomena

Separation into domains is the most fundamental technique of framing software prob-
lems. We separate domains for two main reasons.

First, if we choose our individuals and predicates wisely, we can limit the scope of
our concerns. We can talk about one set of phenomena without having to include
another. It’s hard enough to describe the problem domain for the trucking software
without having to describe the program at the same time.

Second, we can talk about causation across domains, or other relations between
domains, such as representation, in a carefully delimited and disciplined way. In order
for one domain to exert effects in or communicate information to another, it must
partially overlap with that other domain. In the case of figure 4.3, this overlap is the
input/output devices of the computer. There are actions, such as the user typing in
data about a new driver, that are simultaneously acts in the problem domain and in
the machine domain. Following Jackson, we will call these overlaps between domains
shared phenomena.*

Shared phenomena are all states, events, and objects that are shared between two
domains. The input/output devices whose behavior is described in a software specifica-
tion are only one type of shared phenomena. They can occur between any two domains.
If you choose to treat the trucks as one domain and the drivers as another, then there are
truck driving events that occur in both domains—that is, events in which a driver drives
a truck, causing them both to move from one location to another—as well as events that
occur in only one domain, such as engine maintenance and hiring,

Here are some typical examples of shared phenomena:

* Keystrokes typed by a user are keystrokes received by software.

* Every pixel displayed on a monitor by software is also a pixel seen by the user.

* A block of memory shared by two running processes in a computer, holding sema-
phores by which one process tells the other whether or not it’s safe to perform a cer-
tain operation. Record-locking is a typical example of this.

* The signals sent by an oxygen sensor to a microprocessor inside a car
* The signals sent by the same microprocessor to the car’s fuel injectors

* A directory in which one program places files for later retrieval by another pro-
gram, or a mail folder in which a mail receiver places new mail for later retrieval
by a mail reader

* [Jackson 1995], pp. 178-181.
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* All of the data sent over coaxial cables in a local area network is shared by the net-
work software running on all the computers connected to the network.

* Ink being sprayed onto paper by an inkjet printer is also the paper receiving ink at
the location where the ink lands.

* An employee punching a time clock is the time clock recording the event.

In this book, our main interest in shared phenomena is to identify which individu-
als in one domain can directly affect or be affected by individuals in another, and in pre-
cisely what ways. There are, however, more advanced uses of the concept of shared
phenomena, for example, the types of overlap studied in process algebras, such as that
described in [Hoare 1985].

Sometimes, for purposes of requirements, we treat slightly disconnected phenom-
ena as if they were truly shared. For example, you would treat ‘motion of subject in front
of video camera’ as shared with ‘change of state of image on camera’ even though these
two events are mediated by light traveling from the subject to the camera. This is no
serious distortion of reality, because all that matters from the standpoint of shared phe-
nomena is that the same event can occur within and be described in terms of two (or
more) domains. If, however, the in-between domain can introduce serious distortion or
delay—such as the data-entry staff who type information into the computer—then you
cannot ignore it. It is a connection domain, described in the next section.

4.4 Connection domains

Consider an information system to report on current temperatures all over the world.
The computer sits in a room at a meteorological research center and, consequently, has
no direct access to these temperatures. Instead, there are weather stations placed all over
the world, containing both temperature sensors and communication equipment. The
computer must communicate with the weather stations to learn the temperatures and
report these temperatures to researchers on demand. We thus have four domains, as
shown in figure 4.4. The problem domain as a whole consists of three of them: the tem-
peratures, weather stations, and researchers.

The weather stations share phenomena with the actual temperatures that the com-
puter is supposed to report on because events that affect temperature also affect the
temperature sensors on the weather stations. Inside the weather stations there is equip-
ment to convert the analog readings at the temperature sensors into digital signals suit-
able for sending to the computer. The computer shares phenomena with the weather
stations because data sent or received by a weather station is data received or sent by
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Figure 4.4 A software problem with four domains

the computer. Finally, the computer shares phenomena with the researchers so it can
communicate directly with them via the screens and keyboard.

The requirement of the software is to create a relation between the researchers and
the temperatures all over the world: the researchers must be able to query the tempera-
tures on demand. The weather stations thus form a special type of domain: a connection
domain, that is, a domain that shares phenomena with two domains that we wish had a
direct connection, but don’t—in this case, the computer and the temperatures.

Connection domains play an important role in most real-life software problems
because they put upper limits on how well you can fulfill requirements. A connection
domain nearly always introduces some form of distortion and delay which may impact
the users of the software. The weather stations do not always function properly.
Sometimes their power goes out, sometimes their serial connection to the compurer is
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broken, and sometimes their temperature sensors go out of calibration. During these
times, the software is unable to fulfill its requirement of delivering current, accurate
information about the temperatures in each location where a weather station is placed.
You'll need to inform the customer, while still discussing the requirements, about these
limitations that are imposed by the connection domain.

You will also need to invent desired results when any of these conditions holds, and
you'll need to learn enough about the temperature and weather-station domains to
enable the software to detect those conditions. If you know that air temperature never
changes by more than ten degrees in one second, and a weather station reports just that,
you can exploit this knowledge in the design of the software. The software can reject the
weather station’s report and output “unknown” in queries about the temperature at that
station’s location.

4.5 Realized domains

A pharmacy and a health insurance company have computers that talk to each other.
When a patient fills a prescription at the pharmacy, the pharmacy’s computer asks for
approval from the insurance company’s computer. If the transaction meets the insur-
ance company’s approval rules, the insurance company’s computer sends back the
amount of the co-payment to be paid by the patient. The pharmacist then collects the
co-payment, and the insurance company owes the pharmacy the price of the drug
minus the co-payment.

Where is the domain that contains the amount owed by the insurance company?
It’s not part of the insurance company’s approval rules. It’s not part of the pharmacy’s
drugs or prices. Is it shared phenomena connecting the two? OFf course not. If jt’s neither
in one nor the other, it can’t be common to both. But we have to know where the debts
are in order to design the system containing both computers because we have to know
how the system can get access to them in order to control them or report on them.

The answer is that the debts have no tangible existence outside the system. There-
fore, the system can enact no cause to control them, and no activity in the debts domain
can ever exert an effect detectable by the system. Debts exist only within the conceptual
world of human agreement.

What the system can do, however, is create a proxy for the debts inside itself, The
pharmacy and the insurance company agree that when certain bit patterns exist within
the computer, the insurance company will owe a corresponding amount of money to
the pharmacy, as long as these bit patterns were created in accordance with various rules,
such as, “Only an authorized employee can create a debt.” We will say, then, that the
system realizes the debts within itself; the debts are a realized domain.
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By creating a realized domain as a proxy for the real debts, the system is able to con-
trol the debts. Without the agreement berween the insurance company and the phar-
macy, there would be no point in fiddling with the bits in the computer. Neither party
would really owe anything to the other. '

Another computer system, perhaps run by the government, that reports on the
amount spent on presctiptions all throughout the country also needs to access the debrs,
but its job is not to realize the debts within itself. No one is bound by the debt records
stored in the government computer. The debts exist entirely outside the government
computer. It accesses debts only for information-gathering purposes, perhaps by com-
municating with the insurance company’s computer.

This distinction between a realized domain and a real domain is both simple and
subtle. It is something people rarely need to articulate, but it is critically important.
Nearly any type of commitment between people, if a computer is to manage it, must
appear as a realized domain in a requirements document. This includes most debts,
accounts, responsibilities to perform tasks, scheduled times at which to meet, the
right to use a conference room at a certain time, and so on. If the debts, accounts, and
so on are not to be realized, but merely reported on, then the requirements document
must treat them very differently. The document must indicate how the computer can
access them (perhaps through a connection domain—a realized domain in another
computer).

A much more familiar type of realized domain are documents created in a word
processor or graphics in a graphics editor. Here, too, the domains do not exist prior to
the operation of the software. A word processor doesn’t access a document by interacting
with something in the outside world cither directly or through a connection domain.
The word processor’s job—one of its requirements—is to realize documents within itself
in response to user commands, just as the insurance company’s computer realizes debts
within itself in response to commands initiated by a pharmacist.

4.6 Frame diagrams

The notation of overlapping ovals, as in figure 4.4, does a nice job of illustrating
domains, shared phenomena, and direct versus indirect connections, but it’'s somewhat
unwieldy. In this section, we introduce a simple graphical notation for depicting all the
principal parts of a software problem. We'll call a diagram made in this notation a frame
diagram.*

In a frame diagram, each domain is represented by a rectangle, and shared phenom-
ena berween two domains are represented by a line connecting two rectangles. The
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Figure 4.5 Part of the frame diagram for the temper-
ature information system: domains only

machine to be programmed is indicated by a rectangle with a double border, The words
written inside the double border are the type of machine that the computer becomes as
a result of programming, for example, the name of the software, or (in generic examples
as in this book) a phrase like “information system” or “controller.” The domains in the
temperature information system are drawn in this notation in figure 4.5.

If one domain is contained entirely within another, such as the set of documents
that is contained entirely within a computer, a frame diagram fepresents this with a big
dot, as in figure 4.6, The big dot also provides a way to draw the rare case of shared phe-
nomena between three or more domains, as would occur if you chose to distinguish
trucks, drivers, locations, and cargoes as distinct domains. Shared phenomena are, by
definition, wholly contained in two or more domains at once.

for the weather information system is shown in figure 4.7.
The frame diagram for a program, or part of a program, that manipulates digital
images of photographs is shown in figure 4.8. The problem domain consists of two

-—

* Frame diagrams are from Jackson 1995, PP- 158-162 and 84-87; the underlying €oncepts are presented
in the same book. The sample problem frames described in the following chapters are derived from, bur
are not identical to, the problem frames also described in that book.

* See section 2.2.
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Figure 4.8 Frame diagram for image-processing software

stations. The weather stations, thus, add an important element of complexity to the
problem. In figure 4.8, however, both primary domains of interest connect directly to
the machine because the machine can read and write image files directly. Therefore, no
connection domains complicate this problem.

Notice that a frame diagram does not attempt to depict all aspects of a problem.
Users initiate queries, and the queries are about temperatures; temperatures do not ini-
tiate queries about users. This asymmetry is not shown in figure 4.7. The diagram pro-
vides you with a quick way to sketch out all of the major elements of the problem in
order to help you plan out a systematic way to document them. The derailed, rigorous
description is what you'll create when you write the document. No simple diagram can
do all that.

Therefore, you can only understand a frame diagram with some accompanying
commentary. The requirement is not simply queries, as shown in the oval in
figure 4.7, but to answer queries on demand. Frame diagrams are perhaps best under-
stood as napkin art—not necessarily something to include in a requirements docu-
ment, but an aid for sketching out a software problem as a first step toward writing a
requirements document.

Of course, you might want to include a frame diagram in the overview section of a
requirements document. It does indicate all the principal elements of most software
problems, but most people are not familiar with the notation. Or you might add arrows
to it to indicate one-way flows of information, thus converting it into a sort of data-flow
diagram, or add notational devices that are specific to the one problem you're trying to
describe. The examples in the following chapters will add a few nuances as the need
arises.
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4.7 From dz’agmm to documentation

Having framed the problem to be solved by the temperature information system (see

gure 4.7), you can now document it systematically by writing the details correspond-
ing to each element of the frame diagram. Include all of the following information, and
your requirements document will contajn enough information to enable the rest of the
development staff to devise and implement a solution:

* Alist of all the queries that users can initiate, that is, all the questions that they can
ask about temperatures and thar we want the system to be able to answer. If the
customer desires, the format of these queries—both format of the input and the
formar of the results—can be included in the problem.

* A description of temperatures (very easy)

* A description of how the weather stations interact with temperature. Usually, the
instruments at the weather station accurately record the temperature, but not
always, such as during malfunctions, power outages, and instruments falling out of
calibration. The requirements document needs to cover everything that can go
wrong in the connection between the computer and the temperatures.

* A description of how the weather stations interact with the computer, that is, the
communication protocols that the system will need to adhere to in order to extract
information about temperature from the weacher stations.

* A description of the connection between the researchers and the computers, that
is, the input/output devices available to the user-interface designer. If the soft-
ware is to run on a standard type of machine and operating system, such as a
Windows machine or Macintosh, then you need say only that, along with any
more specific information, such as the lowest screen resolution that the user
interface must support.

* Possibly, a description of the researchers, if there’s anything unusual about them
that would affect the design of the user interface

ments document. The diagram breaks the problem domain into its principal ele-
ments, and shows how the machine to be programmed connects with them. A frame
diagram is not an outline of program structure, nor is it a description of the behavior
rules that make up the specification. It’s strictly a graphical overview of a sofrware
problem, not its solution.

Once the problem is framed, people can approach documenting and solving it sys-
tematically, but there is no systematic way to frame a problem. There is no rigorous
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method for finding _%mous method. There are, however, common patterns to recog-
nize and draw upon when framing new problems. Presenting these patterns is the pur-
pose of chapters 5 and 6.

When you frame a problem well, you are readying it for the development staff to
apply the design patterns that they know. Ideally, when you write up the descriptions of
the queries, a programmer is able to think, “Ah, I know just the search algorithm for
this—Algorithm T from [Knuth 1973], p. 481.” The problem description doesn't
describe the algorithm, of course; it describes the problem solved by the algorithm in
such a way that it’s easy to recognize. ’

4.8 Notation summary

For reference, the meaning of each symbol in a frame diagram is summarized in

figure 4.9.
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Each rectangle is a domain: a collection of objects or portion of the
world, singled out for the purpose of making statements about it.

A rectangle with a doubie border is the machine domain: the
computer to be programmed. The words inside the rectangle
indicate what kind of special-purpose machine the computer wilf
become when it runs the program; usually the name of the program
belongs here,

An oval is a set of requirements: propositions to be made true by
virtue of the computer’s programming. Ovals collect together criteria
that the interface designs and program must meet in order to count
as a success. In this case, the system’s job is to answer queries.

A line connecting two domains represents shared phenomena:
states or events that overlap between two domains. Causation
between domains and flow of data always involve shared
phenomena. In this case, the state of the outdoor temperature is
assumed to overlap with the state of measuring instruments on the
weather stations—they reach the same temperature. The states
and events by which the weather stations communicate with the
computer are different, of course.

A line connecting an oval to one or more domains indicates that the
requirements apply to those domains. Requirements always specify
relationships to be realized within or between domains. In this case,
the job of the system is to maintain a relationship between the
users and the temperatures: the users are able to get information
about temperatures by making queries.

A big dot indicates that one domain is completely contained in
another: the entire domain is phenomena shared with the domain
marked by the dot. The dot is needed to describe any problem
where part of the software’s job is to create or embody a domain
within the machine. A domain created by the software is calied a
realized domain.

Figure 4.9 Symbols used in frame diagrams
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CHAPTEHR

Five problem frames

5.1 Overview

This chapter presents five different problem frames, corresponding to the five types of

requirements shown in table 5.1:

Table 6.1 Five different problem frames

Requirement type Description Problem frame

Queries Requests for information about some part of the Information
problem domain

Behavioral ruies Rules according to which the problem domain is to Contro!
behave

Mappings Mappings between data input to and output by the Transformation
software

Operations on Operations that users can perform on objects that Workpiece

realized domains exist only inside the software

Correspondences Keeping domains that have no shared phenomena Connection

between domains

in corresponding states
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For each type of requirement, there is a corresponding set of problem-domain
information needed to devise a specification that implements the requirement. Queries,
for example, need a description of the part of the world that the queries are about. The
five problem frames of this chapter include both the requirements and associated prob-
lem-domain information.

These five problem frames are not an exhaustive list. They describe very common
large scale software patterns. Like any pattern, each describes a specific kind of problem,
never claiming to be a general method of describing all problems solvable by software.
They help you in the same way that knowledge of hashing techniques helps a program-
mer. When a programmer sces a situation where a hashing algorithm is appropriate, he
applies hashing, perhaps varying the implementation slightly if the problem is a little
different from what the books describe. No one claims that a programmer should try to
solve all programming problems only with hashing algorithms.

When you see a problem to document that fits one of these problem frames, you'll
know how to systematically document the problem in a manner useful to programmers,
though perhaps varying the frame slightly if the problem is a little different. If none of
the problem frames fit, then you'll have to invent a new one, but hopefully they'll still
help you by providing successful models to start from.

Furthermore, most software problems involve several of the above types of require-
ments at the same time. In this case, you have a multi-frame problem.* Chapter 6 pro-
vides some guidelines for combining problem frames.

To summarize, then:

The purpose of framing problems is not to force-fit them into existing
categories; rather, it is to recognize familiar problems when you see them
and gain a head start on unfamiliar problems by varying the familiar.

The following is a brief introduction to each of the problem frames discussed in the
rest of this chapter.

Software that solves an information problem

answers queries about a certain part of the real worid
real world. Documenting an information \ ) :

1 H queries information
problem involves describing the types of system
information requests to be satisfied, the part sebormation /
of the real world to which the requests apply, reauestors

and how the software can get access to that
part of the real world. Sce section 5.2.

Information problem

* [Jackson 1995], pp. 128-134.

74 CHAPTER 5 FIVE PROBLEM FRAMES




In a control problem, the software is responsi-
ble for ensuring that some part of the world
behaves in accordance with specified rules.
Documenting a control problem involves
describing the objects that inhabit that part
of the world and the causal rules they obey,

behavior rutes

controtied
domain

controlter

Control problem

the rules according to which they are supposed to behave, and the phenomena shared
with the software through which the software can monitor the state of the world and
initiate causal chains that result in the rules being followed. See section 5.3.

To solve a transformation problem, the soft-
ware generates output data that maps to
input data in accordance with specified
rules. Documenting a transformation prob-
lem involves describing the entire set of all
possible inputs and the mapping rules that
indicate, for each possible input, the correct
output. See section 5.4.

In a workpiece problem, the software serves
as a tool for creating objects that exist only
within the software, the same way a lathe is
a ool for creating wooden workpieces.
Documenting a workpiece problem consists
of describing the objects to exist within the
computer and the operations that users can
perform on them. See section 5.5.

Finally, in a connection problem the sofrware
must simulate or make do with a connec-
tion between domains that do not really
share phenomena. This diagram shows one
form of connection problem in which the
principal information to document is the
delay and distortion characteristics of the
connection domain, and the behavioral

input data tilter

output data

Transformation problem

operations

users tool

workpieces

Workpiece problem

achievable
correspondence;

domain of
interest

connection
domain

system

Connection problem

characteristics of the domain of interest, so that the system can detect invalid data

received from the connection domain. See section 5.6.

OVERVIEW
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5.2 Information problems

In an information problem, you are charged with building software thar satisfies queries
for information about some part of the world, usually outside the software. Hence, to
document the requirements for an information problem, you must describe the relevant
part of the world, the queries, and the people or things that initiate the queries.

All of this is shown in the information problem’s frame diagram in figure 5.1:

real world \

information
requestors

information
system

Figure 5.1 Information problem

The requirement is to satisfy queries initiated by the information requestors—
users, hardware, or software that needs information. The query oval is connected to the
real world and the information requestors to indicate that the job of the system is to
maintain 2 relationship between the two in order to enable the information requestors
to get information about the real world on demand.

Queries are always defined in terms of content—a question about the real world
that the system is required to answer. Sometimes, but not always, customers have partic-
ular ideas about the form in which they want to ask the questions or the form in which
they want the answers to be presented. An example of the latter is a preprinted form,
such as bills thar contain the company logo along with spaces to fill in customer name,
address, amount, and so on. In this case, describing the formart of the bills—that is, the
output of the queries—is also part of defining the problem.

In most information problems, describing the queries is fairly easy. You simply
write, “User can receive a list of all purchases made by any specified customer,” and so
on for each type of question that you want to make the computer answer, perhaps
including the output format if the customer specified one. The larger job is describing
the real world—that is, the part of the world, usually outside the software, that the que-
ries pertain to. You must describe all of the types of objects that the queries can ask
about, as well as all the events that happen to them that affect the results of the queries.
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Often the information requestors require little or no description. They may be
end users, or perhaps any line of code that calls a function that returns information.
If, however, the information requestors are special hardware, such as electronic devices
that change voltages on wires connected to the computer on which the software is to
run, the hardware needs to be described, or ar least what the changing voltages on
each wire mean.

Notice that since the only requirement is to satisfy queries, causation is no part of
an information problem. The system reports on the state of the world, but it is not
responsible for affecting the state of the world. Affecting the world is a different kind of
requirement, described in section 5.3. Both types of requirements can be different parts
of a single, complex problem, of course.

Example software that solves information problems:

* Part of an inventory control system: displays amount in stock of any item, prints
reports of items low on stock, prints reports of sales at end of each day, week,
month, and year

* A program to search texts of Cretan Linear A documents for user-specified
sequences of characters

* A web search engine: finds pages on the world-wide web relevant to user-specified
topics

* A subroutine or operating-system function that returns information about the
graphics adapter attached to the computer: current resolution, current color pal-
ette, amount of video RAM, list of supported graphics modes

* An electronic thesaurus

* A library catalog system: informs users of what books are in the library, their call
letters and other attributes, and whether or not the books have been checked out

* A small part of a library catalog system: logs library searches by content, which ter-
minal the search was initiated from, and number of matches, to help people look
for ways to improve the searching system described just above. In this case, the real
world component of the problem is another part of the sofrware—a part that solves
a different information problem.

5.2.1 Connection domains

Because computers are not psychic, nearly all information problems include a connec-
tion domain—something that relays information from the real world to the sofrware to
be built. Typically, this connection domain is people performing manual data entry.

Thus, many real life information problems have frame diagrams that look like
figure 5.2.
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Figure 5.2 Information problem including a typical connection domain

Data gathering equipment is another likely connection domain, as illustrated by
the weather stations in figure 4.7.

An example of an information system with no connection domain is a program
that lists the files contained in a directory on the same computer that the program runs
on. Such information systems are definitely the exception rather than the rule.

5.2.2 Static and dynamic

Most information systems report on the state or history of a real world that is constantly
changing—changes to account balances, current stock prices, current contents of a
warehouse. These we can call dynamic information systems.

A static information system, by contrast, reports on a real world that changes little or
not at all—the interaction properties of drugs, strengths of materials, decisions and
opinions of the United States Supreme Court, the collected dialogues of Plato. The dis-
tinction is not precise, of course. While Plato’s dialogues will never change, new infor-
mation is continually discovered about drug interactions, and the Supreme Court
announces new decisions and opinions each year. Nevertheless, there are somewhat dif-
ferent approaches to implementing information systems that report on a static or a
dynamic world.

In 2 dynamic information system, the collection of information available to report
on builds up while the system is in operation. Typically, a static information system
comes with all of its available information built in. The texts of the Supreme Court deci-
sions, for example, might be stored on the same compact disc that includes the program.
If the information changes very slowly, the software manufacturer might provide quar-
tetly or yearly updates.

To document a dynamic information problem, you must indicate how the soft-
ware can get access to each event that changes the results of possible queries. For
example, is the information available only from users performing manual data entry?
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If so, how will they get access to the information—from newspapers, from customers,
by direct observation? Is there equipment that registers when these events happen? Are
there existing databases or computers that already supply this information? If moe
than one data source is available for the same information, which is more trustworthy
or up-to-date?

To document a static information problem, you must indicate, not how the soft-
ware can access the relevant part of the real world, but how the sofrware developers can.
They may have to get it from people who type it in manually, as in the case of software
that enables users to search and display Plato’s dialogues in the original, ancient Greek.
If there are existing sources for the data, the requirements document should indicate
these, along with any shortcomings, such as missing sections or a manner of representa-
tion that omits diacritical marks. Often in a static information problem, the great
majority of the work is not programming or even writing requirements, but entering
and editing the data.

Many real life dynamic information problems require that the system start off able
to answer queries about events that occurred before the system is put into operation.
This is most often the case when the customer already has an information system in
place, and the new system is merely a replacement for it. The customer does not want to
lose access to the years’ worth of data stored in the old system. Just as in a static informa-
tion problem, the requirements document must indicate how the software developers
can access the legacy data. Often this involves documenting the file formats, or at least
documenting your guesses abour the format because documentation on the details of
the old system is often poor, if it exists at all. You need to document the meaning of the
data, not just the files and record types and fields. The programmers need to know how
to map the data to the real world if they are to build a system that answers questions
about that real world. If the legacy data is not sufficient to answer all the queries that the
customer wants to make, the customer should know this as early as possible.

Finally, a snapshot problem is a very simple case of dynamic information problem.
In a snapshot problem, the system reports on the current state of some part of the real
world, such as the current temperature, or perhaps displays a snapshot, via the World
Wide Web, of Times Square in New York. Such problems are usually best framed as
connection problems, described in section 5.6.

5.2.3 Passive and active

So far, we've mentioned only queries initiated by users: user types in query about x, sys-
tem displays requested information about x. In these cases, an information system
responds only passively to user input.
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Some information systems also deliver information to their users without their hav-

ing requested it. For example, a burglar alarm notifies police or security personnel that
an intruder has entered a building without the people at the police station continually
querying to see if anything has happened. Similarly, an inventory control system might
notify employees in the purchasing department whenever an item is running low on
stock and needs to be reordered. Other software, rather than a person, might be the
recipient of a notification, as in UNIX, where the operating system notifies a process
when one of that process’s child-processes dies. In these cases, the information system
plays an active role, effectively initiating queries and showing users their results.

Active queries, or notifications, sometimes require a little more documentation in
requirements than do passive queries. What event triggers the notification? Whar kind
of lag between the occurrence of the event and the notification of the user is permissible?
If the user does not receive the notification, must the system take some other action? If
50, how can the system know that the notification has succeeded?

Very often, the real reason for requiring that the system perform notifications is to
ensure that a business operate according to certain rules. In this case, the notifications
are the means by which the system exerts control over a domain, and the problem is bet-
ter framed as a control problem, described in section 5.3.

5.2.4 Solving an information problem
The normal solution to an information problem is to build a model of the real world
inside the computer. The model consists of bits in the computer that change state
following rules that map them to activity in the real world. The model, then, behaves
in a manner analogous to the real world, enabling the software to answer queries
directly, on the basis of the model, instead of contacting the real world in response to
cach new query.*

For example, when a clothing store receives a new shipment of sweaters, the model
maintained by its inventory software changes: the qty_in_stock field in the item record

* The software industry is somewhat notorious for its nearly all-encompassing use of the word model, In this
book, model means only the most mundane sense of the word: an object whose properties bear a useful
analogy to something else, as a model of a building is useful to examine when planning to construct a real
building, or you can examine a model of a molecule to learn about the actual molecule. The analogy be-
oween a model and what it is a model of can be useful to varying degrees, but the model itself is neither
true nor false; it’s just another object. A description, or statement, by contrast, is true or false. Requirements
and specifications, then, are descriptions, not models. They describe the problem domain, the effects that
the software is to achieve there, and the interface between the software and the problem domain. The prob-
lem domain description is simply true or false, and the requirements and specifications become true when
and if the software is implemented without bugs and operated correctly. The bits in a computer that bear
a useful analogy to the real world are a genuine model. As these two concepts are among the most funda-
mental to keep distinct, we will not use the words that stand for them interchangeably.
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corresponding to that style of sweater increases by the number of sweaters in the ship-
ment. When a user queries on the number of sweaters of that style in the store, the soft-
ware simply reports the current contents of the same qty_in_stock field.

Therefore, the specification that describes the solution to an information problem
needs to describe the model maintained by the software as well as, for each event in the
real world that changes the answer to any possible query, the corresponding interface
event that changes the model.

For example, when the store receives the new shipment, it becomes the responsibil-
ity of a user to type in the item type and the quantity of the shipment. The software
updates the model in response to the user-interface event, not the actual receipt of the
shipment, since the software has no direct access to the latter. We will call each such
action an event response.

An event response involving human users has two parts: the action that the user is
responsible for performing (getting to a certain screen in the program and typing in
some dara) and the update of the model. The user’s action is one of the operating proce-
dures for the software. If the users do not operate the software as described in the speci-
fication, the software cannot be relied upon to answer queries correctly.

The description of the model describes the data only insofar as it affects the outcome
of queries—that is, only states of the model that are distinguishable at the interface to the
problem domain. Whether the model is implemented as a relational, hierarchical, net-
work, object-oriented, or other type of database is no part of the specification.

When hardware or software, rather than users, supplies information at the interface,
the principle is the same. The specification must state, for each event initiated by the hard-
ware or software, how the system responds to it—that is, how the system updates the
model. In most cases, these event responses do not include anything analogous to operat-
ing procedures because only rarely is it possible for the interface designer to specify how
the hardware or software that it communicates with must behave. Rather, the design must
conform to known and unalterable behavior of the hardware and software.

The specification of a static information system does not include any event
responses, of course, because no events happen in the problem domain. The specifica-
tion does include a description of how the information gets into the system in the first
place. This might involve writing requirements for another program to create and edit
the model. Such a tool would most likely fit the workpiece frame, described in
section 5.5.

If the problem domain changes occasionally, or if knowledge of it changes—such
as pharmacologists’ knowledge of drug interactions—then the specification must
describe how these events lead to an update of the model. For example, if there is to
be a monthly update of pharmacies’ databases, the specification must describe how
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the new drug interaction information enters the main system, how the main system
generates updates for distribution to end users, and how users enter the updates into
their own systems.

To try to counteract the distortions introduced by a connection domain, a specifi-
cation usually includes a set of validation rules, Each rule must state criteria for rejecting
data and what the system does if a user (or hardware or software) attempts to enter data
that fails the criteria. For other types of connection problem and their solution, see
section 5.6.

Lastly, the specification contains all of the screens in the application, including a
description of every action that a user can take. The user-interface description tells how
the users enter queries and how the results appear on the screen. In most projects, before
designing the screens, it’s wise to write up each event response only in terms of data
entered by the user and the effect on the model. The user-interface designer then adds
the screens, indicating exactly what fields the user enters and buttons the user presses in
each event response. The programmers can implement the operations on the model
while the user-interface designer designs and tests the screens.

5.2.5 Checklists

Tables 5.2 and 5.3 list the information needed to fully document both the requirements
and the specification for an information problem. See also chapter 8 for generic infor-
mation that applies to nearly all software, such as installation and backup procedures.

Table 5.2 Information problem: requirements document

Topic See

Objects in the real world and their attributes and relations Chapter 9

Data to be stored about the objects® Chapter 9

Al real world events that change the results of queries, and all possible Chapter 10

sequences in which those events can occur

Queries Section 9.9

How can the system access the objects and events? (Or, in a static information (Not covered in

problem, how can the software developers access them?) this book)

File formats for any existing files that the system needs to access (or refer to Chapter 10

existing documentation)

Distortions and delays introduced by any connection domains {Not covered in
this book)

a. As mentioned in section 8.1, while a description of data to be stored is technically part of the
specification, it's usually most convenient to include it in the requirements document.
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Table 5.3 Information problem: specification

Topic See

Event responses Section 10.3

Validation rules? (Not covered in this book)
User interface, and any additions to the data model necessitated by the Section 8.2

user interface, such as preferences
Operating procedures Section 11.5

a.Validation rules can also be appropriate to include in the requirements document instead of in
the specification. The specification says, in addition, what the system does in response to entry of
any data that violates the validation rules.

5.3 Control problems

A control problem focuses exclusively on causation—that is, in making part of the
world behave in accordance with specified rules.

To document a control problem, you need to describe three things: (a) the causal
properties of the relevant part of the world and the rules that the objects in that world
follow by virtue of their nature, regardless of the software; (b) the rules that we would
like them to follow; and (c) the phenomena shared between the computer and the prob-
lem domain, through which the software monitors the problem domain and initiates
actions that result in the rules in (b) being followed.

Part (b) is the requirement, shown in the figure 5.3 as bebavior rules. The rest is
problem-domain description.

The software in a microprocessor-controlled video camera solves a simple control
problem. The behavior rules link button presses with motor activity, as in, “Motor runs
at normal speed while record button is depressed, unless tape cartridge is at end of tape
or no cartridge is loaded.” The description of the controlled domain consists of

behavior rules

controlled
domain

controller

Figure 5.3 Control problem
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statements such as, “The motor is always in one of the following three states: off,
running at normal speed, running at high speed” and “The motor can only run at high
speed when the battery charge is at least 0.2.” Finally, the shared phenomena are
described by statements connecting the I/O ports on the microprocessor to other parts
of the problem domain, such as, “When output port 0x0A00 is 0x01, the motor runs at
normal speed” and “Input port 0x0A01, bit 0, registers the current status of the record
button: 1 if depressed, 0 if raised.”
More examples of software that solve control problems:

* Heating control system in a large office building; turns fans, furnaces, and air-con-
ditioning units on and off to make the best compromise among the varying settings
of numerous thermostats located throughout the building

* Traffic-light controller: switches lights between red, green, and yellow according to
timing rules, activity registered at sensors, and timing relationships with activity at

neighboring traffic lights

* Telephone switch software: directs switches to connect incoming calls to wires that
lead directly to telephones, parses pulses and touch tones from telephones to find
out what number they’re calling, and connects the two telephones or connects the
call to another service, such as a long-distance carrier, to complete the next segment
of the connection

* Inventory control system: fills or rejects orders, logs the acquisition of new inven-
tory, directs stock pickers to the correct shelves, reorders new inventory at econom-
ically most efficient times

* Mail transfer agent: software that runs on an electronic mail server that receives
notifications from delivery programs that new email has arrived, calls upon appro-
priate delivery programs to forward email to its destination address according to
rules about how bandwidth is to be used and knowledge about which communica-
tion protocols are supported by each destination computer. (A delivery program is
one that exchanges email via a specific communication protocol.)

As diverse as these examples are, stating their requirements involves essentially the
same principles: state the causal rules that describe how the relevant objects in the world
behave, and state the desired behavior that the system should cause.

5.3.1 Connection domains

A very common type of control problem, especially in business applications, involves
directing people to perform various activities. This is perhaps better named a direction
problem, because the computer can only direct people, it can’t control them. They might
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Figure 5.4 Connection domain in a control problem

or might not do as the computer directs them, Thus, the users in such a problem are a
connection domain, as shown in figure 5.4.

The behavior rules say only to move inventory into the warehouse when it’s
received and to ship it to customers in response to orders. The inventory control system
must rely on employees to tell it when inventory and new orders are received. The only
way the inventory control System can cause inventory to move is by directing employees
to move it,

The inventory control system also keeps track of accounts and responds to queries.
These, however, form an information problem, and we should not let them distract us
when considering the control aspects of the problem. More information about the
inventory control system’s multiple problem frames is in section 6.2,

In addition to sometimes moving the wrong items, or entering order data incor-
rectly, the employees introduce another difficulty. There is a delay between the time the
system gives a direction and an employee moves the inventory, and a delay between the
time inventory or an order is received and an employee enters this into the system. Fur-
thermore, the software cannot tell when or whether inventory was actually shipped.

The software designers cannot entirely remove distortion and delay, but they can
reduce them to some extent. If there is redundancy in the problem domain—for
example, products that have unique numbers as well as unique names—the software
can require that users enter both the number and a name, and reject the data if they
don’t match.

What's that big rectangle enclosing the warehouse and the orders? It wasn't on the
list of symbols in figure 4.9. It’s just a way to group domains together so that one line
can connect to all of them without making a messy diagram. Frame diagrams are not a
formal language. They are diagrams that you can draw on a napkin in two minutes or
less. Modify them to suit whatever you want to depict.
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5.3.2 Solving a control problem

The specification of a program that solves a control problem is a description of yet more
behavior rules: rules that describe the behavior of the shared phenomena, this time
including the behavior of the computer. Continuing the example of the video camera,
part of the specification might state, “When input port 0x0A01, bit 0, changes from 0
to 1, program changes output port 0x0A00 to 0x01.”

Often, timing plays a role in the specification, just as in the requirements. If the
requirements state that the VCR’s motor must not run in pause mode on the same seg-
ment of tape for more than 180 seconds, then the specification includes rules for chang-
ing the settings of output ports in accordance with similar timing rules.

In many cases, the behavior rules in the specification are more complex than can be
expressed by statements in the form of, “When x happens, y happens.” Often, the pro-
gram must respond differently to the same event, depending on which events preceded
it. In this case, the solution is to postulate a set of states that the software takes on. Each
state specifies, for each possible input, the visible response in the problem domain and
the next state for the software to change to. For example, if a single press of a clear but-
ton on a photocopier is supposed to cancel the current job, and a second press is sup-
posed to clear all the copier settings to their defaults, the specification would need to
describe two states. More information about states and state-transitions is in chapter 11.

When you solve a direction problem, you create a specification describing two
things: notifications to tell users when to perform tasks, and event responses to tell the
system when relevant events happen. Both notifications and event responses are the
same as described under information problems. Both typically need a special user inter-
face designed.

5.3.3 Checklists

Tables 5.4 and 5.5 list the information needed to fully document both the requirements
and the specification for a control problem. See also chapter 8 for generic information
that applies to nearly all software, such as installation and backup procedures.

Table 5.4 Control problem: requirements document

Topic See

Objects in the controlled domain; data model, if any Chapter 9
Causal laws of the controlled domain, including events that the objects are Chapter 11
capable of

Behavior rules Section 11.5
Actions in the problem domain that the computer is capable of initiating Section 11.2
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Table 5.4 Control problem: requirements document {continued)

Topic See

Shared phenomena through which the computer can monitor the controlled {Not covered in

domain . this book)

Any connection domains {Not covered in
this book)

Table 5.5 Control probiem: specification

Topic See

Trigger rules or state tables, relating actions initiated by the computer to detectable Section 11.1
actions in the problem domain

Event responses, if the system maintains a data mode| Section 10.3
User interface and operating procedures, if any Section 10.3

5.4 Transformation problems

Software that solves a transformation problem generates output data that maps to input
dara according to specified rules. Its problem frame is shown in figure 5.5.

The input data and output data are elements from two sets. Documenting a trans-
formation problem consists of describing the following: the set of all possible inputs, the
set of all possible outputs, and the rule relating each possible input to its corresponding
output. The rule, shown in the frame diagram as mapping, is the only requirement.

A transformation problem could just as easily be called a calculation or mapping
problem. Calculation is simply mapping input numbers to output numbers according
to a rule. A four-function hand calculator solves four straightforward transformation

mapping

input data filter output data

Figure 5.5 Transformation problem
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problems: given a pair numbers, output their sum; given a pair of numbers, output their
difference; given a pair of numbers, output their product; and given a pair of numbers,
output their quotient.

More examples of software that solves transformation problerms:

* A program to convert between the file formats of rwo different word processors, or
two different graphics file formats

* A subroutine thar translates bar codes into numbers

* A program to assign students, professors, and classes to rooms for a semester at a
university

* Image-processing software to perform such operations as removing dust and
scratches from digitized photographs

* A program that tells a bus rider which buses to take to get from one location to
another, arriving by a specified time

* A program to generate weather maps from meteorological data

* A printer driver: converts printer-control commands from the operating system
into equivalent commands to control a specific printer

* Software that helps archacologists find buried villages based on satellite data. Such
software applies complex rules to transform information about how the surface of
the Earth reflects light both within and beyond the visible spectrum, into guesses
about what lies beneath the surface.

It is the job of requirements to specify the entire mapping completely. Software that
tries to place elements of complex diagrams into aesthetically pleasing and readable
arrangements should not have the requirement “arrangements must be aesthetically pleas-
ing and readable.” Converting “aesthetically pleasing and readable” into mathemarical
rules would be the main work of writing the requirements in this case. Similarly, for soft-
ware thar calculates a most efficient route, the requirements must define “most efficient” in
the form of a rule specifying, for any two possible routes, which is most efficient.

5.4.1 Solving a transformation problem

The great majority of the work of solving a transformation problem is programming,
not interface design. All that a specification needs to add to the requirements is the user
interface, if needed, or an API if the software is to be accessed by other programs.

5.4.2 Checklists

Tables 5.6 and 5.7 list the information needed to fully document both the requirements
and the specification for a control problem. See also chaprer 8 for generic information
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that applies to nearly all software, such as installation and backup procedures.

Table 5.6 Transformation problem: requirements document

Topic See
input and output sets Chapters 9 and 10
Source and destination of the data {Not covered in this book)

Mapping between input and output sets Subsection 11.5

Table 5.7 Transformation problem: specification

Topic See
User interface and operating procedures, if any Subsection 10.3
API, if any {Not covered in this book)

5.5 Workpiece problems

In a workpiece problem, the job of the software is to enable users to create objects, such
as documents or designs, similar to the way a lathe helps a carpenter create wooden
workpieces. The workpieces are intangible, sofrware objects that exist only in a realized
domain, though the software may also generate tangible versions of them, such as
printed documents.

There are two requirements: to enable the users to perform the given operations on
the workpieces, and to realize the workpieces within the software. The vast majority of
documenting a workpiece problem is describing the workpieces.

aperations

users tool workpieces

Figure 5.6 Workpiece problem
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Example software that solves workpiece problems:

* A word processor: creates documents inside the computer. The documents contain
sections, pages, paragraphs, characters, graphics, and so on. All of these are to have
properties and behavior invented by the software designer.

* A program to create business graphics

* A program for designing cable TV networks. A user places each type of cable and

equipment on a map of a neighborhood to receive service.
* A program to build and display models of organic molecules
* A music editor

* A program to generate composite sketches of police suspects. A witness selects from
a library of chins, mouths, hairlines, cheekbones, and so on, to create an accurate
drawing of a person they saw.

* A recipe file

Not all programs that solve workpiece problems involve letting users creare work-
pieces. In typical educational software, students can manipulate objects within the com-
puter—for example, taking tests—but they can’t create their own tests. A companion
program would likely enable a test designer to create them.

The workpiece problem, perhaps better than any other type of software problem,
illustrates that requirements themselves are creative design, usually a solution to some
other problem not solvable directly by software techniques. The requirements for a
workpiece problem are not “Create an outline processor tailored to the needs of law-
yers,” but a detailed description of all of the text elements and outlining operations that
the software is to realize. Only a person who knew a lot about the needs of lawyers could
invent these text elements and outlining operations. Therefore it’s part of requirements,
not specification or programming,

5.5.1 Solving a workpiece problem

The majority of the work in solving a workpiece problem is usually user-interface
design. The rest is programming;: representing the workpieces and performing the oper-
ations, which don’t concern us in this book.

5.5.2 Checklists

Tables 5.8 and 5.9 list the information needed to fully document both the requirements
and the specification for a control problem. See also chapter 8 for generic information
that applies to nearly all software, such as installation and backup procedures.
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Table 5.8 Workpiece problem: requirements document

Topic See

Workpieces Chapter 9

Operations Same as event responses, in
section 10.3

Table 5.9 Workpiece problem: specification

Topic See

User interface and operating procedures Section 10.3

5.6 Connection problems

In a connection problem, there are domains that do not share phenomena directly but
are, instead, connected by another domain between them—a connection domain. The
problem is to make the two indirectly connected domains behave as if they were directly
connected, to the extent tha this is possible.

Figure 5.7 shows the two principal types of connection problem. In type (a), the
system needs to interact with the domain of interest, but must make do with a connec-
tion domain to relay information from the domain of interest to the system, or carry out

commands sent by the system. In type (b), the system to be built i the connection
domain, responsible for bringing system Binto states corresponding to the current state
of system A, as system A changes (or vice versa). The requirement, in both cases, is
merely an achievable correspondence of states, not a perfect correspondence, because a
perfect correspondence is usually impossible to achieve.

Connection problems seldom occur in isolation. Rather, they usually occur as part

of a larger problem. We've already seen them in information problems and control prob-
lems. Inside another problem, a connection problem usually does not need require-
ments spelled out explicitly, such as “Achieve such-and-such level of correspondence.”
But the requirements document should spell out such matters as the timeliness of the
data to be elicited by queries (so the interface designers can design a way to achieve it),
as well as the limitations imposed by the connection domain (so the customer knows
what is possible and what is not).
Example connection problems:

* The data-entry staff that supports an information system (discussed in sec-
tion 5.2). Human data entry introduces distortion, in the form of typographical
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Figure 5.7 Connection problems
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errors, and delay, in that events often happen well before people have time to
enter data about them.

A data warehouse answers queries based on the data in a number of operational data
stores—databases, such as order-entry systems, inventory systems, and so on, that
are each tailored to a specific task that they support on a daily basis. The data ware-
house allows exploration of all that data in unanticipated ways. The real problem,
however, is to get information about the real world. Often, different operational
data stores overlap in the parts of the world they cover, and they differ in the accu-
racy and timeliness with which they cover it. The designer of the dara warehouse,
therefore, faces a problem: how to supply the most accurate and up-to-date infor-
mation in response to queries, given a variety of different sources of data.

Error-free data transfer across a noisy phone line. Of course, it can’t be completely
error-free because random line noise can foil any error-correction scheme. All errot-
correcting protocols sacrifice speed for accuracy. The more careful the error-detec-
tion, the more overhead the protocol introduces and the slower the transmission.
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* Video conferencing: as people move and speak in one location, they can be seen
and heard in another.

Documenting a connection problem like that in figure 5.7(a) consists of describing
the mapping between the shared phenomena linking the connection domain to the
domain of interest, and the shared phenomena between the system and the connection
domain. This mapping should include the types of distortion and delay introduced by
the connection domain: which type of information is the least reliable? how long is the
lag between an event at one end of the connection domain and the corresponding event
at the other?

It is especially valuable to document ways by which the system can detect that
the connection domain is not functioning properly. Continuing the weather station
example, if there are shared phenomena by means of which the system can detect
that the weather stations are off or in need of calibration, these should be described
in the requirements document. Information about what types of activity in the
domain of interest are possible and what types are impossible also enables the sys-
tem to detect errors.

When the connection domain is human users, of course the requirements docu-
ment need not explain the numerous patterns of human error. The branch of cognitive
psychology known as mistake theory s part of the background knowledge of a user-inter-
face designer, and, as noted in chapter 7.1, does not belong in a requirements docu-
ment. However, the requirements document should still contain as much information
as possible about the domain of interest in order to detect invalid data entered by users.

If, as in figure 5.8, there are multiple connection domains that connect to the same
domain of interest, then the reliability of each can be rated relative to the others. For

database A

domain of
interest

database B

information
system

database C

users

Figure 5.8 Multiple connections to the same domain of interest
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Figure 5.9 Creating a connection across a communication medium

example, if three different databases contain information about people’s names,
addresses, and phone numbers, the requirements document can state that for names,
database A is more reliable than database B, and B is more reliable than C, but for
addresses, Band C are of equal reliability, and both are better than A. If the databases
contain information about the reliability of a particular record, such as a date_entered
field, the requirements document should indicate that 100, so a specification can take
advantage of it. The requirements document can also describe “voting rules” to resolve
disagreements when two databases give results disagreeing with one another.

Documenting 2 connection problem like that in figure 5.7(b) involves describing
the same type of mapping between states and/or events, except that now it is a desired
mapping, with desired distortion and delay characteristics—requirements rather than
problem-domain description.

Often in a type (b) connection problem, the problem domain includes yet another
connection domain, as shown in figure 5.9. An error-correcting protocol runs simulta-
neously at two different systems separated by a communication medium. The distortion
characteristics of the medium need to be described in the requirements document, just
as in a type (a) connection problem.

Communication media, such as copper wires, often have very different distortion
characteristics at different data rates, different radio frequencies, and so on. Also, the
medium may have different distortion characteristics at different times. Some telephone
connections, for example, are much clearer than others. The requirements document
should describe distortion as a function of these other variables, to enable the specifica-
tion to rake fullest advantage of the capabilities of the communication medium.
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5.6.1 Solving a connection problem

Solving a connection problem is primarily a matter of exploiting redundancy in the
problem domain and, in the case of a type (b) connection problem, creating redundancy
to exploit.

In a type (a) connection problem, the specification states rules according to which
the system rejects data, and what the system does in response to bad data. If there is no
redundancy whatsoever in the domain of interest—that is, if every theoretically possible
state or event of interest is equally likely, and every possible state or event in the connec-
tion domain maps to a legitimate state or event in the domain of interest—then no solu-
tion to the connection problem is possible. The system can' reject any data from the
connection domain because any data might be valid.

Fortunately, nearly all problem domains contain large amounts of redundancy. Peo-
ple’s names don't contain control characters; atmospheric temperatures do not change
faster than one degree per second; ISBN numbers map to book titles, and so forth. Even
if there is no simple rule for detecting invalid data received from a connection domain,
the development staff can define operating procedures, such as double entry, on the
assumption that two different people are unlikely to make the same error typing in the
same data.

Another trick, applicable to a few types of connection problem, is to have the sys-
tem make guesses in response to queries when data from a connection domain is
delayed. For example, if the news last heard from an airplane was that it would arrive at
a certain time, the system can report this arrival time in response to queries even if no
news has been heard from the airplane or the originating airport for the last five hours.
Guessing that the arrival time is unchanged might be right 95% of the time, and this
accuracy might be good enough for displaying on public monitors in airports. On the
other hand, if a loss of communication correlates with a long delay in arrival time, then
the specification can indicate that the system makes 2 different guess, taking this correla-
tion into account.

If the connection problem appears in a control problem, as in the inventory control
system mentioned in section 5.3, a common difficulty is to ensure that the requested
actions actually got performed in the domain of interest. The specification may state
that users must click a certain button in the software to indicate that the action is com-
plete, or the software might be able to recognize that the action was not completed or
not done correctly if it later fails to detect expected activity, such as boxes being bar-
coded for shipment.

In a type (b) connection problem, the usual solution is to add various checks to the
data. These, in turn, become redundancy to exploit in the same manner as in a type (a)
problem. Checksums, sent along with the data, are related to the data by a precise math-
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ematical rule. The receiver can then reject data blocks whose checksums do not match
the data. This doesn’t guarantee that the receiver never accepts bad data, of course, but
sophisticated mathematical techniques can reduce the probability to any desired level.

Redundancy in the data to be transmitted also figures into the design of 2 commu-
nication protocol. The protocol can exploit redundancy by the way it encodes data for
transmission over the communication medium by encoding the most probable pieces of
data with the shortest sequences of bits. This enables the protocol to achieve the same
high reliabilicy of accurate transmission without sacrificing as much speed. Modems that
perform data compression exploit redundancy in the English language; they send text at
a faster bit rate than they send executable programs.

5.6.2 Checklists

Is difficult to make a checklist for connection problems because they vary so much
from case to case. Tables 5.10 and 5.11 list information to consider for inclusion in both
requirements documents and specifications that involve connection problems. Very few
real problems would involve everything listed here, and many problems would probably
need additional information.

Table 5.10 Connection problem: requirements document

Topic See
States and events in domain of interest Section 11.1
Redundancy in domain of interest {Not covered in
this book)
Mapping, actual or desired, between states and events in different domains Section 11.5
Distortion and delay introduced by connection domain, actual or desired {Not covered in
this book)
Rules for telling which of several connection domains has the most reliable data Section 11.5
Table 5.11 Connection problem: specification
Topic See
Validation rules; actions that the system takes when validation rules are violated Chapter 7
Operating procedures that increase redundancy Chapter 8
Communication protocols {Not covered
in this book)
Guessing rules Chapter 7
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Multi-frame problems
6.1 Combining problem Sframes

The clock is a well known design pattern. The AM/FM radio s another. They have

fidelity. But there js 5 small area where they interact. The radio must turn on and off
according to times set o7 she clock by the user.

Ideally, whenever you encounter a complex problem in software, you can break it
into distinct problem frames that interact through 2 similarly narrow logical channel in
which the description of the part of the problem thar fizs one frame refers very little to
the part of the problem that fits the other frame. Some problems just won’t yield to any
simple breakdown, but fortunately, in practice, the vast majority do.

97




Framing the total problem as a set of smaller problems thart overlap slightly—shar-
ing only one or a few domains—is your most important weapon against overwhelming
complexity in a requirements document. By framing the problem in this way, you can
talk about one thing at a time—the only way to write comprehensibly—but still system-
atically cover everything and everything’s relation to everything else.

An opposite approach would be to describe a great number of different scenarios,
each involving many aspects of the system. Each scenario is difficult to understand with-
out first understanding all the others. The scenarios involve effects that overlap in ways
that can be understood only by carefully looking over each one, holding them all in your
mind in their entirety, and comparing them against each other. And, without a system-
atic approach, it’s difficult to be sure that the scenarios have not left any holes in the
description—categories of domain activity left unaddressed in the requirements. This
entanglement is the result of failing to divide a problem at its seams.

While you need a systematic approach to fully document requirements, it need not
be the same systematic approach that you follow on a different project. There’s no need
to subscribe to one “methodology” for all software; all you need is a method suited to
the one piece of software that youre working on right now. Framing the problem is the
step wherein you create a systematic method specially tailored to just that one problem.
More than anything else, experience with other software (enough to have noticed the
patterns of software) is what enables you to frame a new problem well.

The scams of a large problem usually follow groups of requirements of the same
kind, that is, requirements that correspond to one type of problem frame and pertain to
the same set of domains. For example, a piece of software might need to both report on
an activity and control it. Reporting calls for the information frame; control calls for the
control frame. Having split up the problem this way, you can describe each set of
requirements without mingling it with the other. You can describe the domains that are
common to each part of the problem one at a time, without mingling them with the
requirements. The table at the beginning of section 5.1 shows the correspondence
between requirement types and frame types.

The rest of this chapter provides a few examples to show how problem frames com-
bine in practice.

6.2 [nventory COﬂt?‘O! system

The primary job of an inventory control system is to guide the transport of goods in and
out of a warehouse: directing employees to store goods as they come in, and directing
the employees to retrieve the goods when orders are received and ship them to custom-
ers. However, filling orders follows certain rules: customers who are too far behind in
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Figure 6.1 “Move goods through warehouse” part of inventory problem
orders
goods
warehouss
inventory
employees control
system

Figure 6.2 “Print reports” part of inventory problem

their payments are not to have their orders filled, different orders get different priority,

and so on.

Another job of an inventory control system is to report on the activity of the ware-
house: its current state and the past flow of money and goods. Talking about reports
means describing information to be supplied to a user (the contents of the report) and
possibly how the report is to be formatted. This is very different than describing the
rules for how the business would like to see goods flow in and out of the warehouse.

INVENTORY CONTROL SYSTEM
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orders
goods
warehouse
inventory
employees control
system

Figure 6.3 Control and information aspects of inventory problem on one diagram

So, you need two problem frames: the control frame and the information frame.
These are shown in the frame diagrams in figures 6.1 and 6.2.

The employees are the only direct connection to the system. The business rules,
defining the flow of goods through the warehouse in response to orders, pertain only to
the goods, warehouse, and orders, but not to employees. The employees are simply
means called upon by the control system to implement the business rules. Because this
is a control frame, it calls upon you to document the causal powers of the employees:
what they can do and how the inventory control system can get them to do it. The
employees can affect the goods, warehouse, and orders; therefore, a line connects them.

The diagram in figure 6.2 shows the information problem: generating reports
about the goods, warehouse, and orders in response to employee requests. The employ-
ees once again are a connection domain. In addition to requesting informarion, they
supply the system with all of its informartion about the goods, warchouse, and orders.

You can also put both types of requirement on the same diagram, as in figure 6.3.

A very common requirement is for users to be able to change the rules by which the
system operates. For example, managers might need to modify the business rules from
time to time. This means that we also have a workpiece problem: the managers must be
able to define the business rules. A frame diagram that simultaneously shows all three
types of requirement is in figure 6.4.

It may seem a little strange to treat the business rules as a domain, but, in fact, all
sets of requirements are domains. Anything that you could ever talk aboutr with the
same set of concepts is a domain. For example, a set of like requirements is a domain.

100 CHAPTER 6 MULTI-FRAME PROBLEMS




orders

business
rules

goods

warghouse

inventory

control
employees /

system
managers [

managers
define rules

Figure 6.4 Composite frame diagram for inventory control system

Even the reports could be a realized domain, in the very likely possibility that users
would be able to define their own reports.

So, from the standpoint of the “managers define rules” problem—a workpiece
problem—the business rules are workpieces realized within the system. From the stand-
point of the “move goods through warehouse” problem—a control problem—the (vari-
able) business rules are the requirements. This is fairly typical overlap between problem
frames. You can sce how important it is that the text cover each domain in each of its
roles one at a time (a domain typically having one role per problem frame). In still more
complex problems, this kind of overlap could become mind-boggling without a careful
breakdown into small problem frames.

Notice that even though these frame diagrams describe something very complex—
the requirements and problem domain of an inventory control system-—each diagram,
with the possible exception of figure 6.4, is very simple. The business rules might be
very complex, but now you can see how to document them. One section says what they
are and their relation to the motion of goods in and out of the warchouse. Another sec-
tion describes the operations thar managers can perform on them. The different
employees’ roles in moving goods around might be somewhat complex, but you can talk
about those elsewhere in the document without simultaneously talking about the busi-
ness rules. No matter how complex the problem, you can—jyou must—break it down
into humanly comprehensible subproblems, or else no human will be able to compre-
hend the problem as a whole.
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6.3 Statistics package

A program to perform complex, user-definable statistical calculations combines a trans-
formation frame and a workpiece frame. The transformation frame covers the calcula-
tions, of course. The workpiece frame covers the user’s ability to define the formulas
used in those calculations. Both subproblems are presented in a single diagram in

figure 6.5.

calculation
rules

input

/ data /
statistics
formulas
users package ormu
\ output

\ data

create and
edit formulas

Figure 6.5 Frame diagram for a statistics package, combining transformation frame and work-
piece frame

6.4 Digital answering machine

The software inside an answering machine thar stores messages digitally rather than on
an audio cassette combines a control frame and a transformation frame. The control
frame addresses the recording and playing of messages in response to activity at the con-
trols and on the phone line. The transformation frame addresses the mapping between
sound and its representation in memory.

Ordinarily, statements about representation in memory would not belong in a
requirements document. However, the answering machine is specifically a digital
answering machine. The rules for digitizing speech are part of the problem domain, not
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Figure 6.6 Frame diagram for digital answering machine, combining control frame and transfor-
mation frame

part of ordinary programming knowledge. Also, the intent is that the software imple-
ment certain digitizing techniques because these will be one of the main selling points of
the answering machine. The digitization rules are, thus, one of the givens of the prob-
lem, something that the programmers must implement, not something the program-
mers must invent. Figure 6.6 diagrams these relationships.

Notice that the software has no shared phenomena with the sound, but the sound
is supposed to be represented in memory. The phone line and the speaker/ microphone
and telephone line are actually connection domains to sound, whether generated or
received. If the requirements document describes known, common parterns of distor-
tion, the programmers can design ways to recognize and compensate for them, improv-
ing sound quality.

As is nearly always the case in embedded applications, the user is not mentioned in
the requirements. The user is mentioned in the system requirements, but not the soft-
ware requirements. From the standpoint of the software, the only problem is to respond
to activity at the controls. The controls are assumed simple enough to reflect the user’s
intentions without distortion.
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6.5 Compiler

A compiler is often thought of as purely a transformation problem, shown in figure 6.7.
There is a mapping between source code and the object file, and the job of the compiler
is to produce the object file in accordance with that mapping.

The truth is that inventing the mapping is actually the main work of compiler
design. The rule is that the mapping must be such that when the compiled program
runs, the target machine behaves according to the semantics of the source file. So here
we have a variation on the usual way that problem frames combine. Part of the solution
is to define a transformation problem such that solving it will also solve a control prob-
lem. The transformation problem is the mapping from source statements to machine
instructions. The control problem is to make the target machine behave as specified in
the source file.

The correct problem frame, shown in figure 6.8, shows a critical element missing
from figure 6.7: the target machine. The programmers need to know the instruction set
of the target machine in order to design the translation rules. The requirement is to
make the target machine behave as specified in a source file written in a given language,
by generating an object file that, when run on the target machine, brings about the spec-
ified behavior.

Compilers are a well understood type of program, so it’s unlikely that anyone
would make a mistake like that shown in figure 6.7. When writing 2 C compiler for a
new microprocessor, no one would demand that the manufacturer supply the transla-
tion rules to go from a source file to machine instructions, and no one would forget to
get documentation on the instruction set from the manufacturer.

Bur in a less well understood type of program—say, one being written for the first
time—this type of mistake is very easy to make. Many requirements documents omit
the domains that the requirements pertain to, leaving the programmers to infer them.

language
semantics

source file compiler

e

Figure 6.7 Compiler misframed as a transformation problem

object file
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Figure 6.8 Correct problem frame for compiler

6.6 Electronic mail

An electronic mail system combines the workpiece and connection frames. Both frames
are combined in figure 6.9,

The main domain informarion needed to solve the connection problem “send and
receive mail” is the protocols follow,

ed by both the Internet and the other
The requirement is to get mail to th

e other users,
mail systems. As in most connecti

on problems,
perfectly. The Internet is not always reliable;

protocols correctly; and other users do not
The workpiece problem “create and e
offloaded onto an existing editor.

mail systems.
not merely to the Internet or the other
the requirement is impossible 1o meet
other mail systems do not always follow the
always log in regularly.

dit email” is straightforward, and can even be

» t0o. Which ones can support which types
of attachments? Which ones can support rich (formatted) text? The other maijl systems

include the readers operated by the other users. Is there any way for the system to find
out what encodings an addressee’s majl reader supports? (Yes, and when our user finds

out, he or she can type it into our system. The choice to do tha,
interface design and belongs in the specification.)

however, is part of
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Figure 6.9 Frame diagram for an electronic mail system

An information problem frame would likely be added to any real electronic mail
system, for reports given to a system administrator about Internet traffic and usage.
Notice that the other problems can be described independently of this one. Once the
other problems are documented, including the domains, the real world part of the infor-
mation problem is already documented. All that remains is to write the requirements:
the queries or automatically generated reports available to the system administrator.

This information problem would likely be added as part of the specification, not
the requirements, because system administrators are not part of the problem domain
and because the details of mail traffic can’t be known until much of the specification has
been designed.

6.7 Satellite reconnaissance

The following description of the requirements for a program to control a satellite that
gets images of the Earths surface, simplified though it is, involves five simultaneous
problem frames. An interesting exercise is to see how much more complicated you could
make it, without adding any more information, by dividing it differently.

Most fundamentally, the job of retrieving images is shown in figure 6.10 in an
information frame. Here we have an instance of a snapshot problem because the object
of the queries is changing, but the problem is not to keep track of the object, only to
report its current state on demand.
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Figure 6.10 Most fundamental frame dia

gram for satellite controller: get images of surface of
Earth on demand

There are two connection domains: first, the satellite creates images that must be

relayed to the controller, and second, the satellite dish (antenna) must receive the images
from the sarellite. Establishing communication with the satellite involves a control
problem. The dish must be pointed at the satellite, requiring that the commands for
controlling the dish be documented, as well as the rules for determining exactly where
to point it. This control problem is shown in figure 6.11.

transceiver/ satellite
satellite dish controller
point dish
at satellite satellite
location

Figure 6.11 Control problem: point dish at satellite to make communication possible

Where does the satellite location come from? This is a transformation problem
shown in figure 6.12. The controller must calculate the current location of the satellite
based on its last known location. There is no other source for this information.
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Figure 6.12 Transformation problem: calculate the satellite’s current location

Figure 6.12 includes a connection domain: NIST-7, the atomic clock operated by
the National Institute of Science and Technology in Boulder, Colorado, is the control-
ler’s source for the current time.

Once the satellite controller has established communication with the satellite, there
is another control problem: to point the satellite at the desired location on the surface of
the Earth, shown in figure 6.13. The xin the requirement comes from the request made
by the user in figure 6.10.

This second control problem omits the connection domain of the satellite dish. For
purposes of this problem, we assume that the commands sent by the satellite controller
are phenomena shared with the satellite, so we can concentrate on documenting the
commands that control the satellite and how they affect the satellite in relation to the

surface of the Earth.

satellite satellite
controller
point at
{ocation x, surface
take image
°mas of Earth

Figure 6.13 Another control problem: pointing the satellite at the de-
sired location on the surface of the Earth and taking the image
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Figure 6.14 Another transformation problem: enhancing the image for human viewing

Finally, once the image is retrieved from the satellite, the controller must enhance it
for human viewing. This is another transformation problem, shown in figure 6.14.
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CHAPTEHR 7

Software development

To write any kind of technical document, you first need to know who will read the docu-
ment and what jobs they will perform with the information that it contains. This chapter
tells who are the members of the software development team who read (and write) require-
ments and specifications, and how they apply them to their jobs. We do not cover each job
in detail, nor undertake a comprehensive coverage of software development, such as can
already be found in such texts as [Metzger 1981}, [Sommerville 1989], and
[Pressman 1996]. We are concerned here only with the people who read and write require-
ments and specifications, and how they use the information in them.
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7.1 A division of cognitive labor

If you regularly switch between two mail programs, you might write a program to con-
vert mail messages between each program’s folder format. When you write a program all
by yourself like this, to use all by yourself, you understand everything. You understand
the purpose of the program; you've researched the file formats; you've carefully thought
through what information needs to be displayed on the screen and how it should look;
you know exactly how to invent tests that exercise the most critical junctures in the pro-
gram; you know what changes you're most likely to want in the future. Consequently,
when you write the program code, you can make the hundreds of small trade-offs and
design decisions that tailor the program code perfectly to your needs.

When a group of people work together on a software project, all of this thinking,
analysis, and background knowledge needs to be at least partly shared among all the par-
ticipants. Ideally, if the information is shared perfectly, the final product is made as if by
a single, multi-talented person who possesses the knowledge of all the participants—far
more knowledge than any one person could possess, resulting in a higher-quality prod-
uct than any one person could create.

The purpose of internal documentation is to share the knowledge of the partici-
pants, to come as close to that ideal as possible.

Except for the documentation of the problem domain, internal documentation
does not describe generalities. It describes only specific information needed by each par-
ticipant for each job. For example, it is not the task of internal documentation to
explain to everyone on the project how to design good user interfaces. That kind of
knowledge is nearly impossible to put into words. Rather, internal documentation cap-
tures the resule of the user-interface designer’s thinking about this one project so that the
programmers can implement it without knowing how to invent such a design them-
selves. The resulting program is made as if by a single person who is both an expert user-
interface designer and an expert programmer, even though neither the user-interface
designer nor the programmers has the other’s expertise.

As the project progresses, cach new document or artifact embodies more and more
knowledge, as depicted by the gradually widening arrow in figure 7.1.

Even more types of knowledge figure into a complete software project. A manager
applies management knowledge; the deployment team applies its own brand of knowl-
edge, and so forth. These groups are not the principal audience of requirements and
specifications, but we will mention them when relevant.

Figure 7.1 should not be construed as a depiction of a waterfall process—a step-by-
step procedure for designing software in which once a step is complete, its results are
never revisited or revised. Iterative or spiral processes also result in the same kind of
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Figure 7.1 Division of cognitive labor in software engineering

division of cognitive labor, each participant contributing the type of knowledge shown
in the figure.

Notice that the difference between each type of knowledge that feeds into the final
product is about a different subject matter: the problem domain, user-interface design,
programming, and so on. This is very different than a division of labor in which each
party contributes knowledge of the same subject matter but in progressively more detail.
Such a division of labor is possible, but it has more the character of 2 brainstorming ses-
sion. In a brainstorming session, each person hears a vague idea from another partici-
pant and attempts to refine it or allow themselves to be led in an entirely new direction
of thought. The participants are not given well-defined problems to solve on their own;
they're given vague problems to flesh out or modify however they see fit. '

Due to the size and complexity of software projects, as well as the diversity of spe-
cialized knowledge applied in them, the brainstorming approach is not feasible as an
overall strategy of software development. In section 1.1 we've already examined the dan-
gers of functional decomposition—another conception of software engineering based
on progressing from less detail to more.

7. 1.1 Five tasks and five audiences

Five tasks related to requirements and specifications, and five audiences for them, are
shown in figure 7.2:
The rest of this chapter gives an overview of each task.
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Figure 7.2 Tasks, documents, and audiences

7.2 Analysis

Notice thar the first kind of knowledge shown in figure 7.1 is problem-domain knowl-
edge normally provided by the customer. Thus, the customer is the first participant in
the division of cognitive labor that results in the completed software. The system analyst
is the liaison between the customer (“subject-matter expert”) and the rest of the develop-
ment team.

Analysis has two main parts:

* Learning the problem and the problem domain from the customer, known as efici-
tation.

* Communicating this information to the rest of the development staff by writing a
requirements document.

The analyst, however, is more than just a funnel of informarion. Overlapping both
of these two main parts is the job of faming the problem, as described in chapters 4
through 6.

Framing the problem is casting it in a form suitable for solution with software. The
customer, not being an expert in software, is not likely to know how to do this

116 CHAPTER 7 SOFTWARE DEVELOPMENT




cularly well; customers really don’t know all the ways in which business problems
ap to software problems. Thus, in the process of framing the problem, the analyst
suggest changing the problem from what the customer had originally intended so
the resulting software delivers a greater benefit. At the same time, by expressing the
blem in terms appropriate to software solution, the analyst has taken the first step
ward writing the requirements. The way in which the analyst chooses to frame the
blem dictates both the types of results the customer will expect and the organization
f the requirements document.

Of all the work the analyst does, nothing better fits the word analysis than answer-
g such questions as, “Is the customer interested in using the computer simply to
trieve information, or is the software better understood as a controller for the opera-
ions of his business? Does this software respond to a long list of requests for data sent
by other applications, or does it most fundamentally map data from one database to
another?” Framing the problem in these ways is the act of finding the essential simplicity
that underlies any system, no matter how complex.

Though there might be hundreds of pages of details in the final document, there
must be a simple, one-sentence answer to the question, “What is this for?” If the analyst
can find the answer and communicate it, the project makes sense and everyone can see
" how every part fits neatly into the whole. If not, the details of the project disperse like

ink into cotton, never making sense. Later in the project, it seems that every bug fixed
leads to two new bugs cropping up, because no one had the global perspective to see
how every part interacts with every other part.

Thus the analyst, perhaps more than any other participant, has the greatest influ-
ence over the success or failure of the project, through the quality of the thinking that he
or she puts into the requirements document.

As noted in the preface, writing the requirements document is technical writing.
Conceivably, an analyst could hand off this job to a technical writer—the same type
of person who writes the user documentation and on-line help—but many prefer to
do it themselves.

Some analysts double in other roles. “Programmer/analyst” was once a popular job
title. Indeed, many programmers do analysis as part of their jobs, but they don't call it
analysis and don’t include it in their job title. An analyst is just anyone who defines a
software problem, whether called by that name or not. Many programmers find this
part of their job the most fascinating,

Analysts with an artistic bent sometimes double in user-interface design, an apt
combination because both analysis and user-interface design require close understand-
ing of the problem domain. A role particularly enjoyed by many analysts is data model-
ing—especially, designing a relational database to model a problem domain. Many
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analysts started off working in a problem domain—say, chemical engineering—and
only later in their careers moved to system analysis. In such esoteric fields, few other
people could do a good job of analysis because the amount of time it takes to become
familiar with the problem domain is so great.

Ideally, the analyst oversees and reviews all other work in the project, finding unan-
ticipated places to apply his or her up-close knowledge of the problem domain.

7.3 User-interface design

The job of the user-interface designer is to (a) draw each screen in the software under
development and describe the behavior of each control—each button, each text field,
and so on—in enough detail for programmers to implement it; and (b) design the oper-
ating procedures for the software. One user-interface designer is enough on most soft-
ware projects, but larger projects may require more than one.

Not all programs have user interfaces, or at least not user interfaces that a special
member of the development team must design. In many embedded systems, such as a
controller for a microwave oven, the user interface is just another part of the hardware
that the software communicates with. Others, such as controllers for fuel injectors in
automotive engines, have no direct user interface at all. Naturally, in regard to programs
such as these, you should simply disregard statements in this book about how to write
requirements to best serve the needs of the user-interface designer.

A user-interface designer needs the following information to make a good user
interface:

s The vocabulary of the problem domain—specifically, the vocabulary of the users

« The data types to be stored by the software—that is, the data model. These usually
correspond closely to the problem-domain vocabulary. (The user-interface designer
often adds more data types, such as user preferences.)

« All the tasks to be performed by the user. These tasks should be easy to derive from
the requirement statements.

* Supplementary information, such as sample data, patterns of common errors
learned from previous versions of the software, and the most common sequences in
which users are expected to perform tasks

* An understanding of how the users think, whar their tastes and preferences are, and
what they find easy or difficult to understand

All but the last item belong in a requirements document and/or data model. As
mentioned at the beginning of section 2.4, the last item is too difficult to express
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precisely in written form. Therefore, this book will provide no tips for documenting it.
The user-interface designer can learn it only through direct interaction with real users.

As a means to creating the screens and operating procedures, a user-interface
designer also invents a set of concepts for the user to learn and apply while operating the
software—in effect, an abstract world for the user to imagine existing behind the
screens. The user-interface designer might want to document this conceptual framework
for his own benefit, for future designers who will work on later versions of the software.
Documentation of this conceptual framework can also help the technical writer write a
useful manual.

Not even the most skillful user-interface designer can come up with a good design
the first time. A high-quality user-interface design almost always grows out of several
iterations of prototyping and testing on real users. A fortunate side effect of the proto-
type is that the user-interface designer can capture the screens and put them into the
user-interface design document.

The customer is not listed in figure 7.2 as one of the audiences of the user-interface
design document. This may come as a surprise because feedback from the customer is so
important in making a good user interface. However, a user-interface design document,
like any specification, is somewhat terse, difficult reading. It’s simply a list a screens, but-
tons, fields, and so on, along with the effect of every possible user action on the database
or the hardware/software interfaces. The best way for a customer to understand the user
interface is to experiment with a prototype, perhaps guided by the user-interface
designer who can describe the effects of functionality that won't be implemented until
the first release. ’

The user-interface designer needs to consult with the programmers before commit-
ting to a design. User-interface designers can easily come up with wonderful ideas that
are not feasible to implement with the tools available to the programmers. The pro-
grammers then need to point out which parts are difficult, possibly suggesting changes.
This is as it should be. Programmers are likely to invent only user-interface ideas that are
easy and obvious in their favored tool. “Anything is possible to the man who does not
have to do it himself.” The user-interface designer can often suggest more innovative
and difficult designs, stretching the programmers to search for implementation strare-
gies they would otherwise have bypassed. Often, the crazy design requires only a few
more lines of code than designs that are squarely on the beaten path.

/4 Programming

In this book, the word programmers refers to all the people who create the configuration
of the machine—the program domain, not the problem domain and not the user
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interface. This includes the people who write the program code, the people who design
the program architecture, and the people who design the physical database. Some
members of this group might not want to be lumped in with the rest, but from the
point of view of requirements and specifications, their concerns are the same: the
program domain rather than the problem domain.

Once upon a time, programmers did everything: analysis, user-interface design,
testing, and, if there were a few hours left before the deadline, documentation. Even
today, many companies adhere to no rigorous distinction between requirements design,
interface design, and program design, and many programmers see all of these as pro-
gramming. This is particularly true if the company takes the sketch approach to require-
ments.” In this book, however, we take a very restricted view of programming: devising
a configuration of the machine to produce defined interface behavior, where the inter-
face, in rurn, was designed to produce defined effects in the problem domain. That is,
by programming we mean writing the source code, configuring the database tables, and
so on—inventing the parts of the machine configuration that remain stable even as the
machine stores different data.

Naturally, many programmers are good at requirements design and user-interface
design as well as programming, because all three tasks require the combination of rigor
and creativity that makes for a good program. However, we want to carefully distinguish
between problem domain, interface, and program. We want to judge the program ulti-
mately by how well it produces certain effects in the problem domain, and we can’t do
that if we don't carefully distinguish between designing effects in the problem domain
(requirements design), designing physical machine behavior to produce those effects
(interface design), and designing the intangible configuration of the machine that pro-
duces that behavior (programming).

In some companies, designing the user interface and programming it are regarded
as the same task. This is unfortunate because when program design is put into conflict
with user-interface design, program design usually wins. Programmers, usually the fur-
thest removed from the problem domain of anyone on the project, have a natural ten-
dency to design screens and error messages that reflect the internal structure of the
program rather than concepts familiar to the user.t

This is explained by the nature of programming. Programming is an intricate task
with an intricate set of concepts that are far removed from anything outside software. To
write a program is to build a little world of loops, functions, objects, local variables,
jump tables, and so forth. Being immersed in this world, it’s difficult to retain the ability

* See section 3.7.2.

t See figure 7.4 for an example,



to see the program in any way except from this behind-the-scenes perspective. For this
reason, and because of the tendency to let user interfaces be governed by what is easiest
to implement, it’s best that a user-interface designer not double as a programmer on the
same project, even if the same person possesses both skills.

A non-programming task that is best left to programmers is the design of non-
human interfaces: interfaces to hardware and other software. These require software
expertise and, unlike user interfaces, are best designed with an eye toward the result-
ing program code. Of course the analyst or anyone else can design them, but
designing them is much more like solving a programming problem than designing a
human interface.

In order to start programming, programmers need to know the following;

* The requirements and problem-domain description and/or data model (the dara as
seen in the outside world, not the internal representation of the data)

* The program specification: the user interface, and all interfaces to hardware or

software

The hardware and operating system on which the software is to run

Supplementary information, such as test data, information about the frequencies of
different kinds of data and sequences of operations, to help the programmers
design the program to run efficiently

A list of changes anticipated in later releases, to help the programmers design the
program for easy modification in the future

The description of the problem domain is usually of secondary interest to program-
mers, although, if they read about it, they can often point out subtle holes that others
overlook because of their focus on the details of how to model t.

/.5 lesting

Requirements and specifications are necessarily abstract, as they cover an infinity of pos-

sible cases. The first job of a tester is zest planning: converting requirements and specifi-
cations into a set of concrete actions to take, that prove that the software as actually built
really brings about the requirements—or to prove this with as much completeness as is
practical. Each of these actions to take, together with its expected response, is called a
test case.

Of course, there is no way to test software completely. If one were to make a test
case for every possible pathway through the software—not just every possible input, but
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¢ Acceptance
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Specification <
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design testing

Program

Figure 7.3 The V diagram, showing each main type of test in relation to the documents
that supply the propositions to be tested

every possible sequence of inputs—one could never finish the test plan. A tester must be
judicious, strategically choosing test cases that exercise the most important sections of
the software in ways carefully designed to expose the parts that are most prone to bugs.
To find those potential weak points and to aid in choosing the most effective test strate-
gies, testers often make use not only of requirements and specification documents, but
program design documents and the program source code as well.

Testing is often broken down into acceptance testing, system testing, and module test-
ing, shown in the traditional V diagram in figure 7.3.

In module testing, large chunks of the program are tested to verify that they perform
as the program design specifies that they should. Not shown on the diagram is unit rest-
ing, the testing of the smallest pieces of the program. Unit testing is normally performed
by programmers.

In system testing, testers supply inputs at the interfaces of the system to verify that
the program generates the outputs described in the specification.

In acceptance testing, the system is given a trial run in its real environment, or possi-
bly in a realistic substitute, to verify that the requirements are really achieved. Whereas
system testing verifies only that the microprocessor activates bits in its I/O ports at the
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specified time, acceptance testing verifies that, for example, the fuel injectors really
squirt gasoline into the cylinders in the correct sequence, correctly synchronized with
the spark plugs and throttle. In an inventory system, acceptance testing verifies that the
system really does tell receivers the names of real shelves on which to place new inven-
tory, that stock pickers really do find inventory on the shelves indicated by the software,
that the orders delivered to the packers really do match the orders placed, and so on
Acceptance testing gets its name because the contract to develop the software usually
specifies that if all the test cases in the acceptance test plan happen as indicated, the cus-
tomer will then accept the software and pay up.

If something goes wrong during acceptance testing, there can be two reasons: either
the program is not operating according to specification, or the specification itself is
wrong. A specification is derived from both the requirements and the description of the
problem domain: what makes the fuel injectors squirt, how the software can determine
the state of the throttle, or how many shelves are in the warehouse. If these premises
about the problem domain are wrong, the specification can be perfectly faithful to the
requirements document but still fail to generate the required phenomena. A third prob-
lem that can be exposed during acceptance testing is simply that requirements of interest
to the customer were omitted.

Correcting mistakes in the description of the problem domain can have the most
far-reaching effects on a program because the logical foundation upon which the pro-
gram was constructed has been undermined. Unfortunately, acceptance testing necessar-
ily comes last in the sequence. You need a program before you can give it a trial run, and
you need the modules to be working before you can test the program in the lab.

Approaches to software development, such as the spiral method, attempt to allevi-
ate this difficulty by going through many small acceptance tests, the earliest ones testing
the barest minimum of functionality that can usefully be tried out. The choice of the
sequence in which to develop and test parts of the program is not part of the require-
ments and specification, of course, and is not covered in this book.

Naturally, the testing terminology is far from standardized. Integration testing some-
times means the same as system testing, and sometimes means only testing a group of
modules that do not, together, compose the whole system.

Acceptance testing is not to be confused with the usability testing often performed
by a user-interface designer with real users, usually done early in the development pro-
cess. The intent of usability testing is to find out what screen layouts and terminology
the users find casiest to understand and most efficient to work with. Usability testing is
not usually the responsibility of the testing staff.

To write system and acceptance test plans, testers need to know:

* The requirements and problem-domain description and/or data model
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* The program specification: the user interface and all interfaces to hardware or
software

As much about the problem domain as possible to design realistic tests such as real-
istic data and informarion about the frequencies of different kinds of data and
sequences of operations

¢ The hardware and operating system on which the software is to run. If the cus-
tomer has a variety of different machines, such as a network of PCs of varying
speeds, the testers need to know the most typical machines and slowest machines
that will run the software in order to catch performance problems as early as possi-
ble. Information abourt such troublemakers as TSRs (terminate-and-stay-resident
utilities) and operating-system extensions on users’ machines also enables testers to
reproduce problems before they have a chance to happen on users’ machines.

Testers test requirements and behavioral statements in specifications. They do not
test preferences. There is no way to test whether the designers gave higher priority to
speed than to storage space. However, preferences listed in a requirements document do
provide information to testers about what aspects of the system should be given highest
priority when testing.*

A good idea when writing requirements is always to bear in mind that when a tester
is reading them, one question is on the tester’s mind: “How could this be tested?” The
answer should be fairly obvious, at least in principle. For example, it is no puzzle to
think of how to test a requirement that a user can query to find out all flights to a speci-
fied destination with arrival times on Saturday or Sunday.

On the other hand, a requirement that says, “The general design philosophy of the
user interface should be to arrange screens so that work proceeds as efficiently as possi-
ble,” is no requirement at all. Neither is “The DEX system shall communicate with
VERBIS” a genuine requirement, as you can see by trying to invent a test case for it. A
real requirement says something that you can try out to see if it’s true—something like
“System prints day-end report at time of day specified by administrator,” along with a
precise description of all the information included in the day-end report. You can run
the system, specify a time of day, see if the day-end report really gets printed at that
time, and if it contains all the information stated in the description.

By framing problems as described in chapters 4 through 6, you'll seldom find yourself
writing requirement statements that say nothing specific. Lack of specificity in many
requirements documents is often the result of stopping at sketch of the system, where the
details are left to be filled in by programmers.t Even without writing sketch requirements,

* For an explanation of preferences, see section 8.1.

t Described in the last part of section 2.3,
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it pays to imagine yourself in the tester’s position as you are writing, Often you can catch
and correct vagueness very early that way.

7.6 User documentation

Usually delayed until the last possible moment, a technical writer creates the user’s man-
uals and online help (more than one technical writer in a large project). If coding or
debugging rakes longer than expected, as it always does, the time will just have to come
out of documentation’s share of the schedule. The technical writer cant write much
before the program is done because the only way to find out what the program does is to
try it out and see.

It doesn’t have to be this way. If the requirements and user interface are docu-
mented, the technical writer can begin organizing the manual, writing the procedures
for using the software, and writing the glossary well before the program is done. Ide-
ally, the technical writer can even cut and paste from the requirements document.
Screens do change a lot during development, but recapturing a screen and putting it
into the manual with a few changes to the text is a short task. The hard part of writing
the manual is understanding what the users do with the software and choosing the
content and organization.

When requirements are not well documented, the technical writer must research
the problem domain in order to write the manual, either by spending a long time inter-
viewing the analyst, or by doing the analyst’s work. The latter requires calling people at
the customer site and asking them about their jargon and what they expect to do with
the sofcware.

The technical writer is also often called upon to patch up mistakes in the user inter-
face. A common reason why screens aren’t done until the very end is because program-
mers sometimes design them as an afterthought

to the underlying code. The programmers, = TR
knowing only the world inside the computer,
often design screens like figure 7.4. Spec file:

In figure 7.4 you see a somewhat simplistic sotvent detoy: [ min

screen to control a (very fictitious) mass spec-
trometer. A mass spectrometer is a machine

used by scientists to find out what things are
made of by knocking molecules off them,
attaching a charge w the molecules (ionizing

Figure 7.4 Screen that exposes
, i program design
them) so they’ll fly through a detector in a mag-

netic field, and then sorting the molecules by
mass. If you don’t understand, you're not alone.
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Just imagine trying to write a user's manual for a program to control a mass spectrome-
ter without understanding what one is.

The spec file list in figure 7.4 has the following options:

esic_081597.spec
esid_011898.spec
fabc_100997.spec
fabd..090997.spec
malc_091297.spec
mald_093097.spec

Here is the story behind this list. The mass spectrometer can work with three differ-
ent ionization sources, which the programmers abbreviated esi, fab, and mal. For each
ionization source, there are two possible acquisition modes: continuous and discrete,
which the programmers abbreviated to ¢ and d. Controlling the mass spectrometer
properly involves setting many, many parameters exactly right, and the parameters vary
for each combination of ionization source and acquisition mode.

The programmers decided to invent a special text-file format to describe all of these
parameters. Each such file they called a spec file. Finding just the right settings was diffi-
cule and took a lot of experimentation. During development, the programmers had to
make many different versions of the spec files, so they included the date of the revision
in the filename in order to distinguish them and to keep track of which worked best.

From the programmers’ point of view, the
job of the program code that runs the screen in
figure 7.4 is to send the name of the spec file

lonization source:

for the next run of the mass spectrometer to a @ Fast atom bombardment (FAB)
subroutine that reads the file and sets up the O Electraspray lonization (ES1)
mass spectrometer according to the settings in O Nitrogen laser (MALDD)

the file. The job of the user, then, is to choose a Requisition mode:

spec file. What, then, could be more logical @ Continuous

than showing the user a list of all the most up- O Discrete

to-date spec files? Solvent detay: [ | min.
However, spec files are not part of the
problem domain. From the user’s point of view,
the screen should look like the one in figure 7.5.
ight not hat all

You might not know what those words Figure 7.5 Screen redrawn with
mean, but the type of person who would use terms from problem domain
this mass spectrometer does. Notice that the

ionization sources are not in alphabetical order.

The top option, which is also the default, is the
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one that the users at this particular site will select most frequently. Alas, the technical
writer is not in a position to improve the user interface.

What the technical writer is called upon to do in this situation is explain the
mapping between the problem-domain concepts and the spec files, without letting the
dates in the filenames sound too foolish. To figure out how to write this section of the
manual, the technical writer needs to know what the spec file names mean, as well as
the types of measurements that call for each combination of ionization source and
acquisition mode. That would be the most pertinent possible information to put into
the manual. Even if the user interface is designed well, the manual should still contain
this information.

If no one has researched and documented these things early in the project, they’ll
be difficult to find out with only a week until the deadline—which is often when a tech-
nical writer is introduced to the project for the first time. Also, if no one understands
these things, it's unlikely that the program will work correctly.

In summary, to write the user’s manual or on-line help, a technical writer needs to
know the exact same information as a user-interface designer, plus one more:

* The user-interface design

There are a number of reasons why software documentation has a reputation for
being incomprehensible. One of most common reasons is not that the technical writer
couldn’t write well, but that information about the problem domain just wasn't available
to him. Good requirements and specifications documents can fix that.
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CHAPTEHR 8

Two documents

Chaprer 5 provided checklists of problem-specific information for each of five standard
problem frames. This chapter presents complete lists of contents for both requirements
and specifications: the additional details that flesh out each document as well as the
main building blocks.

Note that figure 8.1 shows Jists of contents, not tables of contents. Choosing a table
of contents is a matter of document organization, the topic of chapter 14. Some organi-
zations try to follow industry standard tables of contents, but it’s hard to think of a
worse error in technical writing than to fit one document’s information into the table of
contents from a document that described the requirements for some other project.
Thar's whar following a prefabricated table of contents amounts to. For that matter, you
may well decide to break either document into many—the requirements document per-
haps being split into several domain-description documents, a system overview docu-
ment, several documents that give only brief lists of requirements, and a project glossary.

Furthermore, while the lists of contents are very extensive, there is no way that
they can be exhaustive. Software is simply too varied a subject. The lists cover all the
information needed in the vast majority of software projects, but don’t hesitate to add
more if you believe that your project needs them. However, in most projects, you

129




A requirements document A specification

Requirements Event responses
queries
behavioral rules Data model; additions
mappings
operations on realized domains Screens
Problem-domain description S
entities, atwributes, relations Shared such as ¥
{data model} .o
sequences of events File formats (externally visible only)
causal rules
file formats Protocols
information sources .. .
hardware and software to interface with Administrative users
mapping betwesn /O ports and hardware o .
perating procedures
Expectations
H ures
Preferences instaliation proced
Invariants Invariants
Platform: hardware and operating system Preferences

Global characteristics Overview

Design constraints
Likely changes
Glossary

Document information

Overview
Document information

Figure 8.1 Contents of the two types of document that this hook is about

should describe fewer. Only a very large project would require everything shown in
figure 8.1.

8.1 Contents of a requirements document

Requirements are the effects that the computer is to exert in the problem domain by vir-
tue of the computer’s programming. Different types of requirements and the problem-
domain information that each needs have already been described in chapter 5.

Also, you may want to include some measure of each requirement’s relative impor-
tance or priority, for purposes of deciding what to cut if the schedule starts to slip. How-
ever, its difficult to be precise about importance. You can define a litdle set of
importance ratings, each with a somewhat vague definition, like “3: critical to success of
project,” “2: strongly desired but possible to do without,” “1: nice but not necessary.”
Unfortunately, these rating systems often leave much to be desired. Why not rate impor-
tance like this: “3: Must be implemented perfectly,” “2: Needs to work, but not spectac-
ularly well,” “1: May have bugs”?
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A simpler approach, however, is perfectly precise—just indicate the release numbers
in which every requirement is to be implemented. The only reason you care about priot-
ity is to decide the sequence in which to implement features. Trying to numerically
encode all the information that the customer would use to choose a sequence in which
to implement features, such that you can make that choice without consulting the cus-
tomer, is similar to the mistake of trying to document an entire open-ended problem in
a requirements document. Since you need agreement from the customer to determine
the sequence in which to implement features anyway, you actually gain nothing by try-
ing to precisely document the customer’s decision-making criteria.

You can, however, communicate the importance of implementing a feature cor-
rectly, at least to some extent, by explaining why the customer wants it—thar is, the
use to which the customer plans to apply the feature. “The ability to enter diacritical
marks into messages is a convenience now that extended character sets are becoming
standard,” suggests one level of importance. “Most of the messages will be in Viet-
namese, where diacritical marks carry a great deal of the meaning: for example, bz
means father, 64 means aunt, and b2 means grandmother,” clearly indicates a very dif-
ferent level of importance.

Remarks like these will help the development team make a good compromise
between time spent designing and verifying all the different features. They also enable
the team to make a type of judgement that the simple, numerical ratings don’t help
with: judgements about whether one feature would be useless without another feature.
Knowing that most of the messages will be in Vietnamese probably affects many differ-
ent features, not just one.

Problem-domain description, as noted earlier, normally takes up the majority of the
document. Techniques of domain description are presented throughout chapters 9
through 11.

This book recommends, in most cases, including the data model with the domain
description, even though the data model is part of the specification. The data model is
simply the sets of data elements that are stored in the computer and is not to be con-
fused with the part of the world it represents. Also, the description of the dara model
that belongs in either a requirements or specification document describes only states of
the software that can be distinguished from the outside. It doesn’t specify a relational
database, an object-oriented database, an array of bytes in memory, or any other aspect
of how the data is represented by the software.

The reason for merging specification into requirements in this one instance is that a
good domain description maps very simply to a good data model. It’s often simplest to
just write both descriptions at once. We might as well say things like, “Customer name
has a maximum of 40 characters,” right along with the description of customer name.
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File formats are also listed under domain description for programs whose require-
ments necessitate their reading files generated by other software. File formats should
already be documented. But they often aren't, and understanding them precisely is often
critical to a successful project. If the file formats are already documented, however, then
you needn’t duplicate the documentation. Just refer the reader to the correct place in
another document.

In fact, you should try to refer as much as possible to existing documentation.
Problem-domain description is a time-consuming and difficult task. If it’s already been
done, you can save yourself a great deal of effort by simply referring to it. If you refer to
other documentation, though, you must provide a map between your own terminology
and that found in the other document. A reader should not have to guess that loader in
your document is filler in the document you referred to.

If your organization plans to make a number of different programs for roughly
the same problem domain, then a useful strategy is to create a single, master problem-
domain document. Each program’s requirements document can then be very short
because it merely refers to the master problem-domain document rather than dupli-
cates it.

Expectations are the results of the software that are the customer’s motive for paying
for it—the expected effect of fulfilling the requirements. This does not have to be a
detailed section, nor does it need to be included at all in many documents (for example,
in the requirements for a controller for an anti-skid braking system). However, it’s a
great advantage to the development staff to know that the reason new software is being
ordered is because the previous software was too difficult to use, or because employees
were spending too much time going to the shelves to verify that inventory records were
correct. Expectarions tells the staff what the customer is really interested in.

Preferences are criteria for choosing among different designs that meet require-
ments: principles by which to make trade-offs. You may have thought, with all the
emphasis on precision in requirements, that surely something is missing because not
everything that a customer wants is so precise. Indeed, there are two common mistakes
regarding vague desires about the software: to omit them, or to force them into precise
language. Preferences are the place to describe vague desires.

For example, it may be most important to the customer that the user interface be
as fast as possible. The customer may consider ease of learning, and ease of use for peo-
ple without long experience with the software, fairly unimportant. This is valuable
information, so mention it as a preference. It can’t be a requirement because you can-

not test a statement like, “The designers chose speed over ease of learning whenever
faced with a trade-off.”
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It would be a mistake, however, to describe this preference in precise, quantative
terms. Should you specify a precise, numerical formula to balance operation time
against ease of use as reported by first-time users on a scale of 1 to 10, like this?

Maximize: 3 x (10 sec. — median operation time) + 2 X (median case-of-use learning rating)

By trying to be so precise, it’s casy to lose sight of the actual preference. So, just write down,
“Speed of use by experienced users is more important than ease of learning,” and explain
the reasons for this preference. Knowing that the customer plans to hire only four daily
users for this program, the development staff understands much more about how to make
trade-offs to serve the customer than any numerical rating could possibly communicate.

Note that preferences are not necessarily vague. They're just the one place where
vagueness is acceptable. A more precise preference might be, “The faster the block-trans-
mission speeds, the better, but only up to 1 block per 0.7 milliseconds. Speeds faster
than that provide no benefit, since the microwave transmitter won't be able to keep up.”
Notice again how explaining the rationale makes the preference much dlearer.

Invariants are conditions that are never to change, or at least never to be violated
berween events even though they may be temporarily violated during an event. There
are two main types of invariants: (a) requirements that state conditions that the system
is supposed to maintain even as other operations take place, such as “Room temperature
stays berween high-setting and low-setting of thermostat”; and (b) redundancy added 1o
requirements to help ensure their correctness,

There’s no need to treat type (a) invariants any differently from other requirements,
The interface designer tries to design machine behavior that keeps them true, the same
as any other type of requirement. Type (b) invariants are different, They state conditions
that the requirements themselves are intended to maintain so that if some combination
of the behavior described by the requirements would violate the invariant, then there is
an error in the requirements. Because readers must interpret these starements differently
from requitements, you must distinguish them by explicitly calling them invariants,

For example, the requirements may describe accounts to be stored in the computer,
along with a set of transaction types that can affect them.* Each transaction in the doc-
ument has been carefully defined so that the books always balance; that is, the result of
any transaction is to add as much to account A as jt removes from account B, Defining
the more complex transactions is tricky and error-prone. A way to help catch errors in
the requirements is to explicitly state the condition that each transaction was trying to
achieve: “Invariant: For any transaction, the sum of all additions and subtractions to all
affected accounts is zero,” and/or “Invariant: assets plus liabilities equals equity.”

* Such accounts would form a realized domain, described in section 4.5,
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Explicitly stating these invariants becomes especiaily helpful when people modify
the requirements in future versions of the software. Often the people who make the
changes are not as familiar with the problem as the people who wrote the original docu-
ment, yet they must define more-complex features. If they add a transaction that shuf-
fles money between three different accounts, they may well inadvertently violate one of
the invariants. A person reviewing the document, even without knowledge of account-
ing, might well spot the error if the invariants are stated explicitly.

Invariants are supported by assertions, a programming technique that also works by
redundantly stating what the rest of the program is intended to bring about. (Assertions
are explained more in depth in the glossary) Thus, the program itself can serve as a
check on the correctness of requirements. Furthermore, if the requirements are correct,
assertions based on invariants help find programming errors. In formal methods, special
software can check requirements and specifications directly against the invariant state-
ments. See Invariants in chapter 15 for specific writing tips.

The platform is the machine to be configured. As software is a configuration of a
very configurable machine, the most fundamental piece of information needed to create
any piece of software is what kind of machine is to be configured. Here machine means
both hardware and operating system and/or other software that runs on the same hard-
ware. A PC running Windows and a PC running Linux are the same hardware, but
from the standpoint of a programmer, they are two different machines. For a Java pro-
gram that is interpreted by a Web browser, the Web browser is the platform. The hard-
ware and operaring system are, implicitly, anything that can run the Web browser. Be
sure to include version numbers: “XYZ/OS version 4.6 or later.” See also the informa-
tion needed by testers in section 7.5.

Global characteristics (a non-standard term) are properties that the system as a
whole is to possess, as opposed to the separate requirement statements that usually
have a nearly one-to-one mapping to segments of program code. Four of the most
common global characteristics that people want to see included in a requirements
document are system availability, reliability, safety, and security. Another that is worth
mentioning is scale.

System availability is the time each day that the system is to be available for use and
able to fulfill the requirements. For example, if users must be able to operate the system
24 hours a day, 7 days a weck, this needs to be stated explicitly.

Reliability is a tricky matter in software. Most other engineering fields build arti-
facts out of components that break down at known rates. For example, a beam made of
a certain material supporting a certain load might have a mean time to failure (MTTF)
of ten years. You can specify that the assembly that the beam is part of has an MTTF of
as long as you like—say, a hundred years or a thousand years. The engineers can choose
different materials, different manufacturing techniques, or different testing techniques
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to achieve the desired MTTE or they can add redundancy to the assembly: more beams
that support the same load, other subsystems that perform the same tasks, and so on.
The more redundant subsystems in an assembly, the longer the assembly’s MTTF—
longer than the MTTF of any individual component.

Software doesnt work that way. Software never wears out. The storage medium
containing the software has an MTTE bur the software itself always works exactly the
same way. A fuel pump might work fine today and fail tomorrow, but software is a pat-
tern of bits—a configuration of a machine, not the machine itself—and therefore fol-
lows the same rules every day.

Software failures are due to those rules being wrong. There is currently no way to
design software to a specified MTTF—to design the rules so that they generate inappro-
priate behavior only once every ten or hundred years. Adding redundant code-—say, two
or three subroutines to perform the same function—may well cause new bugs rather
than mask them.

This makes reliability requirements for software somewhat useless. What's the point
of telling the programmers to design the system to have an MTTF of a hundred years if
they know of no design techniques to achieve this? Some people are doing research on
statistical checks for faulty lines of code, but it's a long way from something that pro-
grammers or testers can apply to yield a specified MTTE What if the problem is not
that an individual line is wrong, but that the logic of the whole subroutine is wrong?
What about the likelihood—much more important in most software—that program-
mers will introduce new bugs when making modifications because the comments were
incorrect or too hard to understand? How do you design the comments to achieve a
specified MTTF over ten years of maintenance?

Instead of making a quantitative statement of how reliable the software is supposed
to be, you can try to give some measure of the cos of bugs and downtime. For example,
if the customer’s salesmen bring in $120,000 per hour while the system is up, from
1:00 p.m. to 4:00 p.m. on business days, this should indicate how important it is that
the system not crash during those times. This is not a genuine reliability requirement,
but it’s much better than nothing.

If safety is a factor in the design of the software, it is best treated as either an ordi-
nary requirement or an invariant, such as, “Invariant: The paper-cutting blade never
moves while any part of a human operator is within the blade path.” Statistical measures
of safety apply to software no better than statistical measures of reliability.

In many cases, security is best treated as a requirement or attribute of requirements.
If there are queries that only managers are allowed to run, then those queries should say,
“Can be run only by managers.” Security as a global characteristic should pertain to who
is to be allowed to operate the software, who is to be allowed to access its data, or who is
to be prevented from doing so. Again, a brief description of the costs of allowing data
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out, or allowing it to be corrupted, gives people a better idea of how they should figure
security into their specifications and program designs. The cost need not be in dollars:
“Allowing Splenetix Corporation’s chemical-bond database to leave the company would
complertely destroy its competitive advantage. Sacrifice performance, functionality, and
the schedule rather than allow any breach of security on this database.”

For many projects, the above global characteristics are not very important. When
they’re not important, trying to state them precisely makes the document sound silly
and undermines its credibility. “Required security level on cat-lover’s mailing list: 0.0.
Safety requirements: the cat-lover’s mailing list shall not cause injury to persons or prop-
erty.” In these cases, it’s best to omit them entirely.

A global characteristic that is worth stating for virtually all software, however, is
scale. Scale is the number of instances of the various objects and activities described in
the requirements and problem-domain description. An accounting system for ten or
twenty people to run in a small business might have identical requirements and prob-
lem-domain concepts as an accounting system for a small business with offices in three
cities. The software, however, needs to be designed very differently. The larger system
needs much more parallelism, which is more complex and difficult to design.

So, how many users will there be? How many queries will they likely run per day?
How many flights take off per day? How many planes are there? The answers to these
questions do not have to be precise, but they should at least give an order-of-magnitude
estimate, providing enough precision to enable the programmers to design a system that
can handle a real workload.

Peak levels are also important to document, especially in large systems, such as how
many flights are booked on an average day, and how many the day before Thanksgiving.
If the system works beautifully for 364 days and crashes on the airline’s most profitable
day of the year, you can imagine how the customer will react.

Sometimes included among global characteristics is performance: how fast the sys-
tem runs. However, performance is usually best understood as an attribute of specific
requirements, not as a global characteristic. If the system needs to generate a certain
report in no more than fifteen minutes, this is best documented as part of the descrip-
tion of that report. If the software must generate an acknowledgement signal within
0.2 ps upon receipt of a cerain input signal, this is best documented as part of the rules
for how the software is to respond to the input signal.

Documenting performance characteristics can be tricky, again because software is
different from physical artifacts. The average response time for a type of query depends
heavily on exactly which queries the users make most often and what data is currently
stored in the system. Again, a good strategy is to provide the programmers with some
background so they can make intelligent trade offs. For example, knowing that the users

136 CHAPTER 8 TWO DOCUMENTS




nearly always run queries about transactions within the past month, but during a yearly
audit, they run queries stretching back the past year, allows the programmers to opti-
mize performance accordingly.

However, programmers can often design for specific worst-case response times. If
you know that the system would be useless if it took more than a certain amount of time
to answer a query, this is critical information to include in the document. Don’t, how-
ever, pull numbers out of the air just for the sake of being numerical and precise; this
undermines the credibility of the document.

Because the phrase global characteristics is neither self-explanatory nor standard,
it’s best not to title a section by that name. Just find places for each topic that you
need to cover. They can all be subsections of an introductory section, or you can have
a Safety and Reliability section—whatever provides the simplest organization within
that one document.

Design constraints are statements that deliberately violate the separation of subject
matters shown in figure 3.1. If the customer insists that every variable in the source code
be in upper case, you know thar that’s part of program design and not a requirement,
but what are you going to say? In the document, call this a design constraint rather than
2 requirement. This shows that you arent confused about the difference between
requirements and program design.

More realistic design constraints include matters pertaining to the source code’s
usefulness to the customer once development is done. For example, the customer may
have a staff of COBOL programmers who will take over maintenance of the program
once development is done. In this case, it may be of the highest importance to the cus-
tomer that the program be written in COBOL, and even that it follow their coding con-
ventions-—say, putting every variable in the source code in upper case.

As this example illustrates, you should explain the reason for each design con-
straint—the descriptive statements that are the basis for the prescriptive constraint. If a
design constraint sounds arbitrary, programmers are likely to disregard it, thinking that
you put it in only because you either didn’t know what you were doing or because you
were following a standard that demands that the programming language and coding
conventions be mentioned in every requirements document.

Likely changes are changes that you expect in future versions of the software, such
as future requirements or changes to the problem domain. You don’t have to describe
the changes in enough detail to implement them. The purpose of writing them down
now is to help the programmers design in order to make the future modifications easier.
It is impossible to design a program to make any kind of modification easy. You can
design to allow modifications in one direction or modifications in another direction, but
seldlom—even with object-oriented programming—can you design for all possible
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directions of modification, and it’s unlikely that a program will be easy to modify in
ways that are totally unexpected. You can't possibly anticipate all future changes, but you
can usually anticipate some. Documenting them now, however briefly, can be a very
effective way to cut future development costs.

A glossary is a great help in all but the smallest documents. Include not only the
major terms from the problem domain, but any term that you use that some readers
might not understand. For example, if you mention TSRs in an example somewhere,
you should define TSR in the glossary, even if TSRs are only tangentially related to the
subject of the document.

On a large project with many requirements documents, you can save yourself a lot
of duplication by creating a single glossary for all of them and just refer to it in each doc-
ument. Or, people can cut and paste from the master glossary when they write new
requirements documents. See glossary in chapter 15 for specific writing tips.

An overview is almost always necessary to show readers how each of the document’s
many parts—all the different requirements as well as the many parts of the problem
domain—fit together. An overview says the very same thing as the rest of the document;
it is a helpful redundancy. The difference is that the overview omits details in order to
make the overall structure clear. It is similar to a rough sketch.

Document information is the following information about the document:

« Table of contents

¢ List of related documents

* Typographical conventions

o Software version that the document applies to
* Date when the document was last modified

* Change log

* Document preparer(s)

* An index, for large documents

Naturally, information about the document should take up a tiny proportion of
both the document and your time. The document is about requirements, not itself.

The list of related documents is especially important if there are file formats or pro-
tocols that the programmers need to read.

If the document is especially huge, or you've split it into a group of documents,
then you may need to write a document overview to explain how all the parts fit
together. Normally, though, the table of contents alone should provide an adequate
overview of the document.
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A T e

A requirements document should briefly state its typographical conventions for
indicating which statements are requirements and which statements are not, that is,
which statements are prescriptive and which are descriptive. For example:

Typographical Conventions
Requirements and preferences are shown in bold sans-serif type, like this:

R-2.4 Approve no prescription refill if the number of days since the last fill
is less than 90% (rounding up) of the number of daily doses in the last fill.

All other text is purely descriptive, unless otherwise indicated.

The example to illustrate the convention should be a real example, copied from
later in the document. In many documents, the convention is so obvious that it doesn’t
even need to be stated explicitly. See zzble of contenss and title page in chapter 15 for
more tips.

8.2 Contents of a specification

A program specification is the description of interfaces. A specification document con-
tains little else but descriptions of events that involve both a user or a piece of hardware
or software that interacts with the system, and the system’s response to that event. If the
system interfaces with two or more other systems, perhaps in addition to human users,
it’s often wisest to create a separate document for each interface.

Most of the concepts and techniques for describing interfaces are the same as those
for describing requirements and the problem domain: there are externally visible objects
in the system (instead of outside the system) to describe, state transitions made by the
system in response to events (instead of state transitions that happen outside the sys-
tem), decision rules about how the system behaves (instead of rules describing how
objects outside the system behave), and so forth.

Event responses are how the system responds to events in the problem domain:
what data stored by the system changes, and any activity initiated by the system in
response. Very often, the events of interest are not phenomena shared with the system.
So, the specification addresses the question of how the event of interest gets to the sys-
tem—for example, by manual data entry, or by other means. See section 10.3 for
more informarion.
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Additions to the data model are data to be stored in the system that was not
described in the requirements document, usually to serve a purpose pertaining to the
maintenance of the software rather than a purpose found in the problem domain. For
example, the system needs to store user preferences and passwords, even if these do not
correspond directly to any requirements or problem-domain phenomena.

The specification of a user interface must contain screens. Screen layout is a subtle,
skilled job, best performed by a user-interface designer with a prototyping tool, and not
left for a programmer to do casually while coding. Ideally, the screens in the document
are bitmaps captured from the prototyping tool. If you don't have a prototyping tool,
drawing the screens with pencil and paper and scanning them in also works.

Shared states are objects or states of objects that the system shares with the outside
world, as opposed to events. The most common type of shared state is a shared segment
of memory, as in a program that communicates by semaphore with other programs run-
ning concurrently. The specification needs to document all the information needed to
implement this shared memory: its location, size, and contents.

The specification also needs to document the file formats of any files that are
designed to fulfill the requirements and are of importance outside the software. A typ-
ical example is a configuration file, such as a .IN! file in Microsoft Windows. Docu-
menting file formats is similar to documenting shared memory. You need to indicate
the name of the file, the directory where it resides, and its contents. Files that users
can conceivably access but which they have no reason to access don’t need to be
described in the specification.

Protocols are any communication protocols that the development staff designs in
order to fulfill requirements, as opposed to protocols already defined in the problem
domain. Most software doesn’t include them, but software that provides services to
other, software not yet written, often does. Similarly, if the software has an application
program interface (API), the specification must include that, too; in fact, that may be
the vast majority of the specification.

Administrative users are special users whose roles are invented in order to fulfill
requirements, rather than users found in the problem domain. Typical roles for adminis-
trative users are editing configuration files, setting up user privileges, and backing up
and restoring data.

Descriptions of administrative users should not be allowed to pollute the require-
ments document. They are strictly part of the solution, not of the problem. Describing
them in a requirements document makes it appear that the purpose of the software is to
serve them, whereas the truth is that their purpose is to serve the software. Inventing
them is only one of many possible design decisions.

Operating procedures are activities that users are responsible for performing—that
is, the correct way to operate the software. When you design screens and buttons and
fields, you have in mind particular sequences in which users are supposed to open the
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screens, click the buttons, and fill the fields. If you keep this information only in your
head, it is unlikely that users will be able to divine it. The operating procedures ate series
of action-response pairs. Each pair says what the user is supposed to do, and what the
system does in response.

The testers and technical writer are especially interested in the operating proce-
dures. You might simply tell them to the technical writer, who can immediately put
them into the user’s manual.

An important type of operating procedure is backing up and restoring data. This
does not correspond to any particular requirement or clement of the problem domain
because it corresponds simultaneously to all the requirements. It’s an action taken to
keep the software functioning, Backup and restore procedures are strictly specification,
not requirements. Like administrative users, they serve the software, rather than the
software being designed to serve them.

Installation procedures are a special type of operating procedures to install the soft-
ware onto its platform. It’s often difficult to know what the installation procedures will
be until most of the programming is done. There’s no harm in deferring the writing of
this part of the specification until near the end of the project. However, every time the
programmers produce an interim release for the testers and technical writer to look at,
they should document the installation procedures. Especially in those chaotic times, it
can be difficult for the staff to figure out how to install the program correctly without
written documentation.

The installation procedures should also state how the program recognizes previous
versions of the software and what the program does to them. In effect, the platform and
existing versions of the sofcware form a secondary problem domain that the specification
must address, just as it addresses the problem domain described in the requirements.
This means that the installation procedures also have to describe every possible kind of
thing that can go wrong, such as running out of disk space and how the software
behaves in response.

Finally, invariants and preferences are the same as in requirements, except they’re a
direction to the programmers who implement the interfaces, as opposed to a direction
to the interface-designers who devise ways to fulfill requirements. The overview and doc-
ument information are, again, the same as in requirements.
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Classes and relations

What's in the problem domain? This chapter shows how to answer that question and
how to describe the individuals in the problem domain, the attributes they possess, and
the types of relations that can exist between individuals.

The techniques for describing individuals, artributes, and relations apply equally
well to describing the problem domain as to describing sets of data to be stored in the
computer, so you might apply these techniques in both a requirements document and a
specification. Data items are individuals in the machine domain, just as the real world
objects they represent are individuals in the problem domain. As noted in chapter 8, in
many projects, particularly simpler ones, it's most convenient to describe both the prob-
lem domain and data in the requirements document by including this one part of the
specification in the requirements.

The next two chapters tell how to answer the questions, “What happens in the
problem domain?” and “What causes it to happen?”
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9.1 Two Finds of sets

Figure 9.1 depicts two kinds of sets that appear in many different domains, especially in
information problems:

customer

name invoice
address ﬂﬂ&ﬁ_@% invoice number
city date

state amount

zip

Figure 9.1 A class diagram

One kind of set is shown by the two boxes marked customer and invoice. Some-
times called an entity set or class, this is a set whose members all possess the same
attributes. Every customer has a name, address, city, state, and zip code. Every invoice
has an invoice number, date, and amount.

Sometimes it’s convenient to draw a class diagram without attributes, as shown in
figure 9.2. This can be a helpful choice if a diagram becomes especially complex.

customer H4 ¢ invoice

Figure 9.2 Class diagram without attributes

The word entity literally means “thing,” but these sets do not need to contain phys-
ical objects. They can contain anything from clements of a database to scenes in seven-
teenth-century British plays. The only rule is that all the members of an entity set have
attributes that make sense to compare: any two names are comparable, any two
addresses are comparable, and so on.

The other kind of set is shown by the line connecting the two boxes. Called a
relation, each element of this kind of set is a pair of members of entity sets (or, less
commonly, groups of three or four or more). In this case, the relation matches each
customer with that customer’s invoices. The set of pairs (customer, invoice) includes
one pair for each invoice, showing which customer the invoice belongs to. For exam-
ple, these two pairs:

(George Gibbons, invoice #1 019)
(George Gibbons, invoice #1 184)
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customer invoice

Figure 9.3 Chen ERD

link the customer George Gibbons with both of his invoices.

Relations are described further in section 9.5. For now, it will suffice to say that
the funny symbols on the line connecting customer and invoice indicate that for every
customer, there correspond zero er more invoices, but for every invoice there is only
one customer.

The term class is becoming more popular than entity set, so this book will stay with
class and class diagram. However, a term still in common use for the type of diagram
shown in figure 9.1 is entity-relation diagram, or ERD, invented by Peter Chen. Chen's
original entity-relation diagrams depicted “relations with triangles, as shown in
figure 9.3; this notation is also still in use.

Much of the terminology in the world of software is in a state of flux, including
the terminology for concepts pertaining to sets. Whereas entity-relation diagrams
were originally conceived as a way to describe the world outside the computer, the
term class originated in object-oriented programming. There, it referred not to a set
but rather to the combination of a data structure with program code that operated on
it. The subroutines associated with the darta structure are listed in a third segment of
the class’s box in a class diagram. Consequently, sometimes class is defined in ways like
“an abstraction of behavior.”” As people have attempted to apply concepts from
object-oriented programming to requirements, the word class has started to lose some
of its connection to programming.

In this book, by class we mean nothing more or less than a set of comparable ele-
ments. The elements can be things in the real world, like trucks, tractors, and cornfields,
or they can be data stored in a database, such as the records stored on disk of a corpora-
tion’s trucks, tractors, and cornfields. They can be anything whatsoever. However, since
the focus of this book is requirements, here we most often define classes of things that
exist outside the computer.

Naturally, in your own documentation, substitute entity-ser, type, category set or
whatever you, the customer, and the development staff are most comfortable with.

Be aware that there is a danger in using the word class. Many programmers and
other people who've read about object-oriented programming stop hearing the word

* A lirde more information about object-oriented programming techniques versus requirements is in
section 12.2.
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class in its everyday sense of a set of like elements, and understand it to mean only a type
of representation created in object-oriented programming—a data structure with a set
of associated subroutines. It's not unusual for them to keep interpreting it that way even
if you tell them otherwise, and even if you add text to the requirements document tell-
ing them that that’s not what you mean. This is a common effect of a programmer’s nat-
ural concern with the world of programming; the problem domain disappears over the
horizon, along with the vocabulary for talking about it.

“This is all design,” someone complains, “because you're talking about objects.”
In fact, the word object never appears in the document. Only the word class does, but
sometimes that's enough to trigger the the mental association with object-oriented
programming,

“But the world is filled with objects,” you reply, “and I need to talk about them.
What do you suggest?”

The complainer suggests, “You're supposed to describe the software in a design-
independent way: a logical model of the system, without specifying whether the design
will be object-oriented or not.”

You reply, “But I'm not trying to describe the software art all. I'm trying to describe
bicycle parts and the stages in which people assemble them into bicycles.”

If this happensto you, try calling them sezs. This book would call them sets, were
there not a host of other kinds of sets to describe, too.

9.2 Classes

The purpose of documenting classes and relations is to provide the vocabulary in terms
of which to make statements later on, such as requirement statements, statements about
actions that occur in the problem domain, and statements about causal rules. To serve
this purpose, a requirements document must provide the following information about
each class:

Table 9.1 Information to document about each class

Class information Where described
The name of the class {Not covered in this
book)

A definition of what kind of thing the class can contain. In other words, an Definitions in chapter 15
answer to the guestion, “What are you taiking about?”

Alist of each of the class’s attributes, including a definition of each Sections 9.2-9.4
attribute, the set of all possible values of the attribute, and the meaning
of each possible value
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Table 9.1 Information to document about each ciass

Class information Where described
Which attributes uniquely identify members of the class, if any Section 9.8
Each ciass to which the class bears a refation Sections 9.5-9.7

Each event, if any, that affects members of the class, and which attributes Section 10.2
and relations it affects

Here is an example from requirements for restaurant software:

—

2.4 Orders
order ftem Jist >
L
(subtotal) table -
(tax) "
tip current server -
{total) " ’
CC transaction id
in Attributes in (parentheses) are
out derived attributes, capable of
paid being caiculated from other
attributes.

An order is a set of menu items ordered by one or more people at a table. A party at a
single table might have more than one order, such as if they ask for “separate checks.”
Also called a “check,” “bill,” or “tab.”

Attribute  Description Affected by

item list One-to-many: The list of items on this order (sce  open, change
section 2.9). For any order, there are zero or more
items in the item list; for any item, there is exactly
one order. An order has zero items when the party
has sat down at the table but not yet ordered
anything.

table Many-to-one: The table where the party who open, order-moves
placed the order is currently sitting. For any order,
there is exactly one table; for any table, there are
zero or more orders.
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Attribute  Description Affected by

current Many-to-one: The server currently responsible for ~ open,

server this order. For any order, there is exactly one server-takes-over
Current server; at any time, a server is responsible
for zero or more orders.

subtotal Dollars and cents: the sum of the amounts of cach ~ open, change
item in the order. (Derived artribute.)

tax Dollars and cents: the amount of sales tax on the ~ open, change
order.

tip Dollars and cents: the amount of the tip. close

total Dollars and cents: the sum of subtotal + tax + tip. open, change,
(Derived attribute.) close

cc 20-character alphanumeric ID code returned by~ close

it(;ansactlon credit card bank, uniquely identifying the
transaction in which a customer paid the order.
Applicable only if the customer paid by credit card.

in Date/time: when the order was opened. open

out Date/time: when the order was closed. close

paid True/false: whether the bill was paid. close

The preceding documentation is called a class description. A class description
describes, in text, the following:

e The definition of the kind of thing included in the class, as shown by the first
sentence above: “An order is a set of menu items ordered by one or more people
at a table.”

* A definition of each of the class’s artributes, including the set of all the possible val-
ues of each arttribute

* Optionally, a list of each of the events that affect the attribute, or a complete
description of each of the events along with the set of all possible sequences in
which they occur. This information needs to be somewhere in the document, not
necessarily in a class description. Deciding where to place the description of events
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is 2 matter of organization, discussed in chapter 14. Techniques for describing
events are in section 10.2.

* Any other information about the class that you think would be helpful to a reader

A nice technique is to cut the class’s rectangle out of a larger class diagram, includ-
ing the connecting lines, and paste it above the class description, as shown at the top of
the example. (The larger class diagram is shown in-figure 9.11.) This serves a number of
purposes. It helps the reader see the class in relation to all the other classes without being
overwhelmed by a complex diagram. It encourages the reader to go look at the more
complex diagram that includes all the classes, because now the reader has something
specific to look for—this class, and the other classes that it connects to. Finally, the
graphic breaks up a section of the document that could easily consist of many pages of
uninterrupted text, making the document easier to skim through when looking for
highlights or an overall feel for the content.

Describing the artributes in a table s another good technique. This makes the
attributes much easier to find than if they were buried within a stream of paragraphs.
The first three attributes in the example, item list, table, and current server, are relations,
described in section 9.5.

There are several noteworthy points about this particular class description. First of
all, even though it’s from a familiar, everyday domain, it makes some distinctions that
we normally pass by. For example, one might have simply associated an order with a
table: one order, one table. The definition above carefully notes that a single table can
have multiple orders.

Second, note that the Affected by column is strictly descriptive. It makes statements
about events that take place in the real world, regardless of how the software behaves, It
does not state that the software must affect anything. That will come when we write
requirement statements.

Third, notice that after current-server, there is not a single complete sentence.
Instead of writing:

in The in areribute is the exact date and timewhenthe The in attribute is
order was opened. The in atrribute’s typeis date/  affected by the
time. open event,

we simply write:

in Date/time: when the order was opened. open ’
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The shorter version is easier to read and understand, and omits no information. It’s also
easier to write.

Finally, there is nothing sacred about the layout of the table. Even the Affected by
column is just a convenience for the reader, not a necessity. You should feel free to adjust
or completely rework the format of the table to suit whatever you are describing, per-
haps omitting the Affected by column if you see no need to cross-reference attributes to
events or if a lot of the attributes are affected by many events. Add lines to the table if it
becomes difficult to read without them. (See tables in chapter 15.)

If an attribute requires a long description, then it’s best to describe it only briefly in
the table and reserve the long description for the text that follows the table. The need for
this is most common in attributes that are states that the members of a class can take on.
We'll see some of these in the next section.

9.2.1 Esoteric problem domains

A common mistake in writing requirements for fields that everyone knows about is to
omit critical details, either because the analyst assumed that the programmers would
know them or because the analyst didn’t research the problem domain carefully—
“I already know all that stuff.” So typical mistakes in restaurant software include failing
to track commonplace aspects of the restaurant business that most of us seldom think
about: that a server’s shift ended before a customer finished eating, leaving the server
who replaces him to take the entire tip, or failing to track the percentage of tips that is
owed to the busboys.

When the problem domain is esoteric, a more common problem is that the analyst
is very familiar with the problem domain, perhaps because they worked in it for many
years, and while the analyst researches and understands the problem domain perfectly,
the analyst writes documentation that only a fellow expert can understand.

Here is an example of a poorly written class description from the somewhat esoteric
field of telephone networks:

A nodl is the top-level division of the network. Nodes are the most important break-
down for purposes of design.

Attribute  Description

name This is the node’s six-letter code.
state The status of the node with respect to its point in the design cycle.
polygon This is the precise location of the node.
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Attribute Description

house count  Identifies the node’s house count.

The problem with this description is that if you don’t already know what a node is,
or you don't already know how nodes are named, or you don' already know what states
nodes go through, and so on, this description doesn't tell you. The analyst is writing in
his own internal mental shorthand, and not the language of readers who are ignorant of
nodes. Saying that nodes are “important” communicates nothing to someone who
doesn’t already know why they’re important.

Here is a much better description:

F A nodeis the geographical area served by a single launch amp. It includes up to 440 sub-
scriber services—the maximum that a single launch amp can supply.

Attribute Description

name A six-letter code uniquely identifying the node. Formar is
described below.

state The current phase of the node’s design cycle. See below for
complete description.

polygon A series of x, Y coordinates (NADSG), each of which is a vertex of
a polygon bounding the node. Typical node polygons have no
more than 10 vertices, though conceivably one could have as many
as several hundred.

house count  The number of buildings in the node.

The format of a node name s as follows:

AJA T[0 0 2]

One-letter county code: Three-digit node ID:
A Outagamie distinguishes nodes
B Starling Two-letter city code. See  within a city,
C  Fisher list of cities and codes in
D Manitowoc appendix B. In the example

above, AT denotes Appleton.

No two nodes have the same node name,

CLASSES 151



The possible states of a node are as follows:

proposed The phone company has proposed to the public utilities
commission to build the node and is awaiting approval.

design The node is currently being designed.
construction The design is currently being constructed.
operational The node is delivering service to subscribers.

The terms launch amp, subscriber service, and NADSG would likely be explained
elsewhere, following the principle of not trying to say everything at once. Here is how
those definitions might read:

A launch amp is a piece of equipment that converts the digiral signals from a fiber-opric
cable into equivalent analog signals to be sent over coaxial cable. A single launch amp
can source up to 440 subscriber services connected via coaxial cable.

A subscriber service is a single phone line and/or cable TV hookup. That is, a subscriber
service can be a phone line, a cable TV subscription, or both at once. This is because
our equipment sends both types of signals over the same cable; we need only connect a
single coaxial cable to deliver both services. Sometimes called “service” for short.*

NADS8G6 (North American Datum 1986) is a coordinate system dcscribing the entire
surface of the Earth, based on satellite measurements made in 1986, and superseding
the NAD27 coordinate system made by land measurements in 1927. To give the accu-
racy required to locate telephone equipment, NADSG coordinates require at least six
digits both to the right and left of the decimal point.

This isn’t easy reading, but it’s readable, and when you've read it, you know what
nodes are. The information is now on paper, not just in the analyst’s head.

Now you, too, know something of the language of the problem domain. You can
think of new questions to ask, like, “Once a node is operational, does all design stop, or
does the phone company continue to design and construct changes even while people
are receiving service?” or “Does the public utilities commission approve designing the
node or constructing the node? If the latter, does the phone company ever start designing

“ If you're interested in learning about telephony, be aware that these definitions vary a bit from reality in
order to illustrate techniques of documentation.
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while the node is still proposed but not approved?” These are possible errors in the anal-
ysis. Perhaps the reality is that there are three somewhar independent status attributes. A
programmer, thinking about how to model these states, could come up with these ques-
tions despite having no prior knowledge of what is done at telephane companies. Thar
probably wouldn’t happen if all the document provided was the names of the four node
states, o1, worse, a single-letter code for each state.

The brief description of polygons provides important information often left out of
requirements documents: what are the most likely values, and what are the most
extreme values? Without the mention of “typically no more than 10” and “conceivably
as many as several hundred,” a programmer may have assumed that no more than eight
vertices would ever be needed and hard-coded the data structure for nodes to contain
exactly eight slots for polygon vertices. Now the programmer knows to apply a more
flexible design pattern when designing the data structure. The numbers provided are not
precise, but they are good enough.

There’s nothing like a simple graphic to describe each segment of an alphanumeric
code. Note that both the graphic and the discussion of node states go after the table of
attributes, not inside it. Even this is not a rule; burt it’s a option to keep in mind if a table
youre making becomes unwieldy.

9.3 All possible values

Table 9.1 suggests that you need to indicate all the possible values that each attribute
can have. That may seem like an outlandish demand—“All of them? But there could be
trillions!” Actually, in most cases it is very easy.

There are two main strategies. One is to refer to a well-known set of possible values,
such as the sets of integers or real numbers. Often this is called a data type, but of course
you aren't necessarily describing data when you talk about attributes. Figure 9.2 some
common attribute types and information thar you need to specify whenever you
describe an attribute.

If people had always indicated what future dates they were interested in, or the pro-
grammers had told customers whart range of dates their software supported, there would
have been no Year 2000 problem. (In the latcer case, the customers would have pro-
tested long before the year 2000.)

Also of interest to the programmers are the most common values, as well as the
extreme ones. Sometimes, by knowing that a narrow range of values is most common, a
programmer can make great improvements to the speed of the program.
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Table 9.2 Common attribute types

Type Extra information

integer Is zero allowed, or just positive numbers? Are negative numbers possible? What is
the highest integer value possible? The lowest?

Real number How many digits to the right of the decimal point? How many to the left? What are

Dollars and cents

Date
Time of day

Dateftime
Trueffalse
Text

the highest and lowest values possible?

Keep track of pennies? What is the greatest possible amount? Are negative
amounts allowed?

What is the earliest date of interest? The furthest in the future?

With what precision—hours, hours and minutes, hours and minutes and seconds, or
even more precise than that?

Same as for date and time of day.

{None.}

Maximurn number of characters. Do any characters not occur, such as lower-case
characters? Are any special characters possible, such as characters with diacritical
marks, like &?

I£ all or most of the dates and times that will be of interest to the program will be
between 1990 and 2050, you can save yourself the trouble of repeating this in every
attribute definition by stating it once near the beginning of the document in a lictle sec-

tion called Areribute Types. Similarly, for integers or other types of numeric ranges, you
might want to define—“Angle (real number in range 0..360, or 0..2m),” “Capacity
(0..100,000 gallons),” and so on.

If you define such a set of attribute types, you can also define one- or two-letter
codes for them. You can then put these codes into a middle column in a table of

attributes:

Attribute Type Description

item list 1M  The list of items on this order (see section 2.9). For any order,
there are zero or more items in the item list; for any item, there
is exactly one order. An order has zero items when the party has
sat down at the table but not yet ordered anything.

table M—=>1  The table where the party who placed the order is currently
sitting. For any order, there is exactly one table; for any table,
there are zero or more orders.

current M—1  The server currently responsible for this order. For any order,

server there is exactly one current server; at any time, a server is
responsible for zero or more orders.
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Attribute Type Description

subtotal $ The sum of the amounts of each item in the order. (Derived
attribute.)

tax $ The amount of sales tax on the order.

tip $ The amount that the customer tipped the server.

total $ The sum of subtotal + tax + tip. (Derived attribute.)

cc S20 20-character alphanumeric ID code returned by credit card

transaction bank, uniquely identifying the transaction in which a customer

id paid the order. Applicable only if the customer paid by credit
card.

in DT Date/time when the order was opened.

out DT Date/time when the order was closed.

paid T/F Whether the bill was paid.

In this case, you would define each type code early in the document, in a table like

this:

Type code Description

| Integer: a whole number in the range -32768 to +32767. Range may be
restricted in attribute description.

I+ A positive integer—a “count.”

0+ A natural number: an integer zero or greater.

$ Dollars and cents.

Fm.n A floating-point number with up to 7 digits to the left of the decimal

point and up to 7 digits to the right.

Sn A string: text containing up to 7 characters. Characters may come only
from the 7-bit ASCII character set

text Free-form text, with no limit on the number of characters. Implementa-
tion must support at least 4096 characters, preferably more.
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Type code Description

D A date from January 1, 1900 to December 31, 2099. (Implementation
may support a wider date range.)

T A time of day: includes hours and minutes, but nor seconds.

DT Combination of Dand T.

T/F True or false.

Special type; list of possible values is provided in ateribute description.

M—1 Many-to-one relation: a member of another class that can correspond to
many members of this class.

1-M One-to-many relation: a set of members in another class that correspond
to a single member of this class.

M—>M Many-to-many relation: a set of members in another class that correspond
to a set of members of this class.

Of course, there is no standard set of type codes; this list is only an example.

Notice that the true/false type is called T/F, not B or boolean. Everyone knows what
true and false are, but few aside from programmers and mathematicians know what
Boolean algebra is.

The second main strategy for indicating all the possible values of an attribute is
simply to list them all, one by one. This strategy works best on two types of attributes:
state attributes and attributes whose values must be described with words rather than
numbers. We've seen an example of state attributes in the node states previously
described. States are further described in section 11.1.

Here are some typical examples of attributes whose values need words. Such
attributes are often said to have enumerated types.

inkjet cyan, magenta, yellow, black
phosphor type green, amber, color
outlet type grounded, ungrounded

outlet voltage 110 volts AC, 220 volts AC
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The last example uses numbers, but we still consider it an enumerated type,
because it has such a small set of possible values.

Notice that outiet type is “grounded or ungrounded,” not “outlet is grounded: true
or false.” The true/false pair of attribute values is best reserved for attributes whose
names you want to use in sentences to describe a condition, as in “If approved, initiate
transaction,” or “List all invoices that are not paid.” The adjectives #rue and false apply to
any proposition whatsoever, and therefore aren’t very descriptive. By choosing words or
phrases that apply only to this one attribute, you can often give the reader a clearer idea
of what you're describing.

In light of this, we can revise the description of the paid attribute. Instead of:

paid True/false: whether the bill was paid.

we can omit true/false by writing;

closing status Either of these values:
paid Customer paid.

walkedout  Customer walked out without paying.

The latter version tells the reader much more about what this attribute is and why it’s an
important part of the problem domain. To keep true/false but provide more informa-
tion, write:

paid True if the customer paid, false if the customer walked out without
paying.

When naming true/false attributes, choose the name so that in the sentences in
which that name will aopear, you'll need the word nor as lictle as possible. Since the
attribute above would most likely appear in sentences like “Total all paid orders,” nam-
ing it paid is berter than naming it walked out. The latter would result in sentences like
“Toral all not-walked out orders.” Especially try to avoid names that require negating a
negative: “Total all not-unpaid orders.” Theres nothing ungrammatical about such sen-
tences, but they’re confusing.

If you find yourself listing an enormous number of possible values or, especially,
if the attribute’s set of possible values is capable of change during the lifecycle of the
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program, then you do not have an autribute, you have a whole different class. For
example, flower type is not merely an attribute of flower. As there are hundreds of
thousands of flower types, all of which must be entered into the program, flower type
is a class that bears a one-to-many relation with flower. (See section 9.5 for more
information about relations.)

A less common strategy for indicating all the possible values of an attribute is illus-
trated by the polygon attribute. It’s described as a “series of vertices.” A series or list or
collection of anything is a perfectly acceptable attribute in a domain description. When
the programmers create a representation of polygon, they will probably create a distinct
vertex class, or perhaps a distinct table in a relational database, for purposes of storage
and retrieval. But that does not mean that we should define a separate class for a concept
that is well known to the customer, well known to the programmers, and contains no
variations specific to this problem.

9.4 Impossible values

Listing all the possible values of attributes is mandatory. It is helpful, but not manda-
tory, to indicate the impossible values, too. This kind of information helps a user-inter-
face designer invent ways to prevent invalid data from being inadvertently entered into
the computer, and helps a programmer to add checks and redundancy to the program to
catch bugs, including all the kinds of tricks described in section 4.4.

If you know, for example, that a table cannot possibly have two legs, then you can
indicate in the description of the table class that its legs attribute must be three or
more. By stating the range of possible values, you automatically exclude all the impos-
sible values.

Be aware, however, that this strategy can backfire. Reality is filled with oddball cases
that violate the rules we thought they would always obey. For example, in a program for
a company that insures cars, you might write: )

appraised value Dollars and cents: value of the car; amount that we pay if the car is
totaled. Range: $100 to $200,000.

Now the user-interface designer knows to design the system to display an error
message if a user enters a number greater than 200,000 for appraised value. This prevents
data-entry mistakes, such as those caused by unwittingly holding down a number key
long enough to make it auto-repeat.
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One day, however, a customer walks in to insure a 1961 Volkswagen Beetle that he’s
spent a decade customizing—a huge, computerized array of light bulbs on the outside
that display a spectacular light show, larger engine, expensive metallic trim, and numer-
ous other work. He estimates that it would cost $500,000 to replace; it’s a one-of-a-kind
car, probably destined for a museum.

If the system rejects the appraised value, it will reject what is probably the largest
and most exciting order in the insurance agent’s career!

Fortunately, there’s an easy solution. Just say that violations of these kinds of rules
are unlikely, not impossible:

appraised value  Dollars and cents: value of the car; amount that we pay if the car is
totaled. Range: above $0. Very rarely below $200 or above
$100,000.

Now, the user-interface designer can design the system to not reject the large values,
but to display, perhaps, a confirmation screen if the user enters a large appraised value:

A $508,000 is a unusually large appraised
value. Are you sure this is right?

‘ 1t’s a mistake ’ | 1’s right ]

Notice also that we narrowed the range somewhat, down to $200 to $100,000. We
can do this because we don’t have to worry about excluding the occasional strange case.

Most frequently, the impossibilities that a system can exploit to detect invalid data
involve relations between attribute values, not just individual attribute values. For exam-
ple, software for the Department of Motor Vehicles tracks powered vehicles of all kinds.
One of the parameters for a vehicle is wheels: some trucks have as many as eighteen,
while boats have none. Another is vehicle type: car, truck, motorcycle, and so on. A
mortorcycle can have only two wheels, but a car can't. Therefore we know that if the user
enters both “car” and “2 wheels”, one of those must be in error.

A few attributes contain redundancy already designed in the problem domain. For
example, credit card numbers are calculated from a formula that allows only about one in
20,000 sixteen-digit numbers to be valid, making credit card fraud more difficult. ISBN
numbers (International Standard Book Numbers), used by libraries to identify book titles,
include a check digit. In cases like these, all you have to do to exclude the impossible values
is describe the validation formula or explain how the check digit is calculated.
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9.5 Relations

In Hawaii, there’s a business that offers boat rides among several of the islands. Any

given boat can travel from any island to any other on any given day. The business rotates
the boats through the islands according to weather conditions that day and which boats
are in working order. Abigail Stevenson, a customer, suspects that she dropped her
address book in one of the boats within the last few days. She would like us to search the
boat for her, but she doesn’t remember the ID number of the boat, of course, and she
doesnt remember exactly which day it was. All she remembers is the starting island and
destination island of the journey.

What kind of set does the computer need to keep track of in order to tell us which
boat Abigail Stevenson rode? Looking at the set of all customers wouldn't suffice. A sin-
gle customer can go on many different rides on many different boats, so the customer
class couldnt have a boat ridden attribute that would answer our question. Searching the
set of all islands or the set of all boats wouldn't give us the information we need, either.
Each boat can visit all the islands, so boat docked couldn't be an artribute of island, nor
could istand visited be an attribute of boat.

What we need is a type of set called a relation: a set of tuples, each of which con-
tains elements from other sets.* A zuple is an ordered set, such as:

(Abigail Stevenson, Moloka‘i, Lana‘i, 76R805)

“Ordered set” means only that the order of the elements in the set is significant. We
couldn', say, reverse their order and have the same tuple. Ordinary sets, such as classes,
have no particular order.

The tuple above has elements from three different classes:

Tuple element(s) Class
Abigail Stevenson customer
Moloka'‘i, Lana‘i island
76R805 boat

* In some terminology, including that of UML (Unified Modeling Language), a relation is called an associ-
ation. The term relation is standard in mathematics in the sense used here—as a set that maps elements
from one set to elements in one or more other sets. Since we mean the mathematical concept, and not a
concept pertaining to the peculiarities of object-oriented implementations, adhering to the terminology of

mathematics is more appropriate.
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This relation contains one tuple for each passenger-trip: each time a boar carried a
passenger from one island to another, counting all the passengers on each trip separately.
Described schematically, each tuple looks like this:

(customer, from-island, to-island, boa?)
The complete set would contain many, many tuples:

(Mark Spencer, Maui, Hawai‘i, 76R802)

(Jane Spencer, Maui, Hawai', 76R802)

(Tkuro Ishigure, Moloka'i, Lana'i, 76R805)
(Abigail Stevenson, Moloka‘i, Lanai, 76R805)
(Maynard Williams, Oahu, Moloka'i, 76R802)

Now we can rephrase the query to find the boat as:

Find the boat element of the tuple in this relation having Abigail
Stevenson as customer, Moloka'i as Srom-island, and Lana‘i as to-island,

If more than one tuple satisfies those conditions, then there may be more than one
boat to search.

Happily, the vast majority of relations contain tuples with only two elements,
known as pairs. For the curious, table 9.3 shows the terminology for all different tuple
sizes.* Nonstandardly, we'll call each of the positions within a tuple a sloz. Each tuple in
the boat example, therefore, has four slots: boat, customer, from-island, and to-island,

Table 8.3 What tuples and relations of various sizes are called

Number of elements

in each tuple Type of relation Name of tuple
2 binary pair

3 ternary triple

4 quaternary quadruple

any ary rruple, tuple

-_—

On class diagrams, binary relations are indicated by lines between the classes repre-
sented in each slot of the pairs, as shown in figure 9.4.

* More rigorous circles would demand that we call these ordered Ppair, ordered triple, and so on, but this is
more than enough terminology for our purposes,
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customer invoice line item
precinct
parent
squad car person Child

Figure 9.4 Some binary relations

The (precinct, squad car) relation indicates, for each precinct, all of the squad cars
based there. Customers are connected with invoice line items by a chain of two rela-
tions, one mapping each customer to all of his invoices and another mapping each
invoices to all of the line items that it contains. The (parent, child) relation is an example
of a relation in which both elements of each pair are from the same class: person.

How to diagram ternary and higher-order relations will be shown on page 169.

If tuples seem a bit strange, you might note that if you understand classes, you
are already familiar with tuples. A class is nothing more than a set of tuples, having
one slot for each attribute. The only difference between a class and a relation is that a
class’s tuples contain members of attribute sets, whereas a relation’s tuples contain
members of classes.

9.6 Cardinality

There are two fundamental rules to state about the correspondence between customers
and invoices:

(1) For every customer, there correspond zero or more invoices.

(2) For every invoice, there corresponds exactly one customer.

Together, these two rules define the cardinality of the relation—the range of pos-
sible numbers of tuples having the same element in any one slot, corresponding to a
single element found in the other slot.* To put it another way, a relation’s cardinality
is the answer to the question, “Given specific elements for all but one slot, how many
different tuples can the relation contain having different elements in the remaining
slot?” The concept is more intuitive than its definition sounds; it’s easiest to learn
through examples.

* In some terminology, including that of UML, cardinality is called multiplicity.
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/T\ branching out into three lines,

Maximum number of Maximum number of represents many—no upper
customers per invoice: invoices per customer: fimit.
one many

Figure 9.5 Cardinality symbols

In a class diagram, a relation is symbolized by a line connecting two classes. The
relation’s cardinality is symbolized by the symbols at each end of the line, as shown in
figure 9.5.

The maximum number of tuples that contain elements from class A corresponding
to a single element from class B is shown by the symbol closest to class A. Thus, in the
example, the crow’s foot next to invoice indicates that a single customer may have an
unlimited number of invoices. The short perpendicular line next to customer indicates
that an invoice can correspond to no more than one customer.

The minimum number of tuples that contain elements from class A corresponding
to a single element from class B is shown by the symbol second-nearest to A. Thus the
circle near invoice indicates that a customer need not have an invoice. The short perpen-
dicular line second-nearest to customer indicates that for any invoice, there must corre-
spond at least one customer.

There are numerous other conventions for indicating cardinality. Two are shown in
figure 9.6. UML simply writes numbers, an asterisk serving as shorthand for “any num-
bet.” OMT (Object Modeling Technique) had a notation that resulted in some pretty
and very readable diagrams: a hollow ball meant “zero or one,” a solid ball meant “zero
or more,” an unadorned line meant “exactly one,” and other ranges were indicated
explicitly with numbers.

What is important is not the graphical notation, but describing cardinalities pre-
cisely. Regardless of your graphical notation, you should always describe cardinalities
in the text, as in item list in section 9.2. A reader can easily skim over some symbols in
a graphic. A sentence prompts a reviewer to stop and judge whether the sentence is
true or false.
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Figure 9.6 Other cardinality symbols

Yourdon* recommends simply drawing a line to indicate a relation and not
attempting to show its cardinality at all on the graphic, leaving that information for the
accompanying text. That is always a good option to consider when drawing a class dia-
gram because the purpose of a class diagram is only to provide an overview of the details
described in the text, not to make statements that appear nowhere in the texe. If the dia-
gram becomes too cluttered to serve as an overview, it’s not serving its purpose.

Relations and their cardinalities can be very tricky to get right. Yet they conrain a
great deal of the structure of the problem domain. Understand why a relation is one-or-
more-to-zero-or-more rather than one-or-more-to-zero-or-one, and you often uncover
subtle but critical distinctions in the problem domain.

To aid in recognizing some of the different cardinalities, figure 9.7 shows a set of
concrete examples. For many people, it’s easier to remember the “ranch/horse” relation
than the “zero-or-one-to-zero-to-many” relation. Included with each relation is the text
description of the cardinality. There is no substitute for the text description in docu-
mentation, especially if it explains why the cardinality is as it is.

These examples are meant to be easy to remember and understand because they
deal with commonplace classes. It’s easy to remember that “a horse can roam free.” They
are not necessarily the best ways to describe the above classes and relations in a real
requirements document. For example, making a class diagram for the square/piece rela-
tion is overkill. Ifs better to just draw a chessboard with pieces on it, and explain the
relation in text. Classes and relations, remember, are types of sets, not graphics.

The professor/class relation brings up an important point about the difference
between writing a requirements document and designing a database. Relational data-
bases do not allow many-to-many relations. The database designer must break them up

* [Yourdon 1989a], p. 240.
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customer Ht o€ invoice

For every customer, there are zero
or more invoices. Every invoice
belongs to exactly one customer.

O

ranch S horse

At every ranch there reside zero or
more horses. A horse either resides
at a ranch or roams free.

professor P> SoB

During any one semester, a .
professor teaches zero or more

city M +] postal code

For every city, there are one or

more postal codes. Every postal
code belongs 1o a single city; no
postal code straddles two cities.

square HO SH piece

A square on a chessboard is either
empty or occupied by one piece. A
piece either occupies a square or
has been captured, in which case it
occupies no square.

veh. ownerP>} vehicle

Every vehicle owner owns one or
more vehicles. Every vehicle is

owned by a set of one or more
vehicle owners (possibly the state).

classes. Every class in that
semester is taught by one or more
professors.

Figure 9.7 Some cardinalities to remember

into two relations, many-to-one and one-to-many. So, our professor/class relation
would be invalid according to relational-database theory.

However, we are not describing a relational database. In a requirements document,
we are first of all describing the real world of professors and classes. There, a professor
can teach many classes in one semester, and the same class can be taught by more than
one professor in the same semester. That is the way it is. If a type of database software
needs to have the description modified, the programmers can make the modification in
their design documents. In object-oriented databases, many-to-many relations are
allowed. This type of distinction is invisible to the problem domain. Users don’t know
or care about it, 5o it has no role to play in requirements. In requirements, we provide all
the information about the problem domain necessary to design software using available
tools and techniques. We don’t distort descriptions of the real world in order to conform
to the quirks of one particular database management system.

The “one semester” qualifier in the professor/class relation raises one final point
about cardinalities:
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week’s
employee [ td work employee H} og work
items items

(a} b

Figure 9.8 Two versions of a relation in a timesheet system

To state the cardinality of a relation is to make assertions about the
problem domain over certain range of time.

This range of time is normally the time between events of interest to the system,
that is, any two consecutive events that require a change to the data stored in the system.
There is no reason to limit the scope of the assertion to such a small range, however. In
the case of the professor/class relation, this range of time is one semester. Over a profes-
sor’s entire career, the professor would have to teach at least one class. The “zero” in the
cardinality is for sabbaticals and summer vacations. Whatever the range of time over
which the cardinality is to apply, it is important that the reader know what it is.

The assertion, in the case of 2 minimum and maximum of one tuple, is a guarantee
that a member of class A has exactly one corresponding member of class B. Thus, you
guarantee to the programmers and user-interface designer that for every invoice, there is
a corresponding customer. If, in fact, a single invoice can have multiple customers, con-
trary to all the diagrams so far, then the description is wrong and the programmers and
user-interface designer will design the system on false premises. Such mistakes, unfortu-
nately, are commonplace and quite frustrating to end users.

A typical example is in a system for employees to track their hours. The only
hours tracked are those for which an employee is paid: hours billable to clients, hours
in training classes, hours working on internal projects, vacation hours, and so on. Fol-
lowing the relation in figure 9.8(a), a programmer would set up the database to disal-
low any completed weeks with zero work items, and a user-interface designer would
specify that the program refuse to accept a timesheet with zero items, displaying an
error message instead.

However, if an employee takes off for 2 two-week unpaid sabbatical to write
some difficult chapters in a book, the system won't accept the employee’s
rimesheets. It then becomes necessary for the employee and the accounting staff to
sort through spurious error messages every day as the system displays reminders that
the timesheets are late. Or, in a common type of workaround, they can adopt a con-
vention for entering spurious items into timesheets to make the system accept these
weeks, and then manually subtract them from the totals output on reports. The cor-
rect cardinality is that shown in figure 9.8(b). Identifying this in the requirements
would save a lot of people a lot of time.
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9.7 Relations as attributes

What do you call the relation between customers and invoices? One method is to name
it as in figure 9.9, with a verb or preposition that you would use in making a statement
about the relation, such as, “Every customer has zero or more invoices.”

has >

” arrests > .

1 ad
customer Hy O <] suspect

invoice officer

Figure 9.9 Awkward method of naming relations

For many relations, this results in some surprisingly undescriptive names . Has is as
bland and generalized as can be. Even when the name is descriptive, as in “officer arrests
suspect,” where do you describe the arrests relation—in the description of officer, in the
description of suspect, or separately from both? It seems that all three are unsatisfactory.

Fortunately, in most cases there is a better way: treat the relation as an attribute of
both classes. The value of the attribute in class A is the subset of class B corresponding to
a given member of class A. We'll call such an attribute a reference attribute because it
refers to members of another class.*

In figure 9.10, the relation between customers and invoices is shown as two
attributes, one attaching to customer and one attaching to invoice. The other, non-refer-
ence attributes are omitted from this diagram. The attribute attaching to customer is
invoices: the set of invoices that are payable by one customer. Attaching to invoice is an
attribute called customer: the customer responsible for paying a given invoice.

invoices-> <customer, S
customer 22 O invoice
A\~ Suspects > < arresting ~
officer PO arrested officer —  Person

Figure 9.10 Relations as attributes

* Programmers will notice the similarity between reference attributes and pointer variables. However, refer-
ence attributes are just a way of describing sets of tuples. Whether they’re implemented as pointer variables
or as table joins in a relational database is a matter of program design.
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The officer/suspect relation has changed in figure 9.10. A person who was not a
suspect can become one; from the point of view of his attorney, he is a client; from the
point of view of his prison, he is an inmate. Thus, a person is a suspect only in relation
to another class. So we call a person a “suspect arrested” in relation to the arresting
officer, a “client” in relation to his attorney, and so forth. The accompanying text must
indicate that if a person is an arrested suspect, he has an arresting officer. A graphic can
only show so much.*

Relations are sets of tuples, but talking about sets of tuples is often confusing. The
above method of treating relations as attributes takes a lot of the confusion out of
describing relations. By always talking only about the subsets of class B that correspond
to a single member of class 4, we can talk about a simpler kind of set—just a set of
members of class B.

Reference attributes also enable you to naturally describe relations without a sepa-
rate “Relations” section following all the classes. Such a section tends to be awkward
reading, containing many small snippets of text, each describing one set of tuples, and
difficult to understand without repeatedly cross-indexing back to the classes. The class
descriptions, too, are difficult to understand because, in many cases, a relation that a
class participates in is the most important aspect of the class. Defer describing the rela-
tion until forty pages later in the document, and the class can easily seem like an arbi-
trary collection of attributes.

Even when a relation is described as a pair of reference attributes, the reader must
«till cross-index between two classes. However, in general, a reader can read a single class
description and understand it without having to jump ahead in the document. All the
:nformation that is directly pertinent to the class is collected in one place. The fact that
other, related information—the relation as scen from the other class—is described else-
where is not a fault.

The description of the order class in section 9.2 is an example of how to document
relations as attributes. The item list from which the subtotal is calculated is described
right in the class description, as part of the class, which is how the customer and end
users think about it most naturally. The complete set of classes that order connects to is
shown in figure 9.11.

Notice that order item lacks a reference attribute for its relation with order. Similarly
for menu iterrs relation with order item. No attribute is named because there is no occa-
sion in the requirements to speak of the order corresponding to a given order item. An

* Readers familiar with UML or OMT should take care 0.1 *
not to confuse the roles from those notations with refer- officer [ osting arrested| P
officer suspect

ence attributes. In fact, they are exactly opposite. The
person’s role in relation to the officer is “arrested suspect™; the officer’s role is “arresting officer.”
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order item fist >~ A order item A~ menuitem=> 1) menu item
1 oK T T
{subtotal} price ’ name
{tax) - menu price
tip 4
{total) \
CC transaction id enables server to
in override price on menu
out
paid \
table~
current server\ Attributes in (parentheses) are
derived attributes, capable of
current orders T K currént grders being calculated from other
attributes.
(4
server table
tables> <server,
name number
employee ID

Figure 9.11 Some classes and relations in a restaurant application

order has an item list, and that’s all. What we never need to talk about, we don’t bother
to name.

The text accompanying the relation between order item and menu item should note
explicitly that a single order can contain multiple instances of a single menu item. The
cardinality symbols are ambiguous as to what range they apply to. The diagram above
does not indicate whether a single menu item can correspond to many order items
within a single order or only across the set of all orders—that is, whether a single menu
item could correspond to different order items only if the order items came from differ-
ent orders.

This ambiguity is a further argument in favor of Yourdon’s recommendation to
omit cardinality symbols from graphics. You should decide on a project-by-project basis
whether to include them; there is no general rule. This book shows cardinality symbols
in nearly all class diagrams, mainly for the purpose of teaching concepts of cardinality.
In real documentation, you should omit them far more often. Sometimes they illumi-
nate, sometimes they obfuscate—or, worse, convey an impression of more rigor than
they really deliver.

9.7.1 Ternary relations

A hospital wants to collect data to evaluate the effectiveness of different treatments for
different conditions. Linking in the patients on whom treatments are applied yields a
ternary relation, shown in figure 9.12.
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patient condition

treatment

Figure 9.12 A ternary relation

treatment treatment
history ¥ instances
patient Y condition
Kpatient condition”,
| treatment
instance
treatment

clinical history ™
+

treatment

Figure 9.13 Ternary relation shown as a class

In a ternary relation, our trick of avoiding talk of tuples by treating relations as ref-
erence attributes won't work, at least not as well. The problem is that there are two other
classes, not just one. Every patient corresponds to a set of (condition, treatment) pairs.
Each condition and treatment similarly corresponds to pairs of elements from the other
two classes. We could define a “set of pairs” attribute, with a name like condition/treat-
ment, but there’s another strategy: treat the relation as a class.

Creating a treatment instance class consisting of nothing but reference attributes, as
in figure 9.13, we can refer to the relation from every class via meaningful attribute
names. A patient has a patient history, a treatment has a clinical history, and so forth.

The new diagram conveys much more information about the medical activity
about which data is to be collected, and it leads the reader very naturally to think in
terms of a set of triples connecting patient, condition, and treatment. The four sets
depicted are exactly the same as those in figure 9.12, but now, because the description is
entirely in terms of binary relations, they’re much easier to understand.
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treatment treatment

X histo « instances .
patient s condition

Kpatient condition”
treatment

instance

date/time
result
cost

treatmenty

clinical history
+

treatment

Figure 9.14 Attributes added to the ternary relation

In a real application, the relation would be even more complicated because the doc-
tor administering the treatment would have to be included, making treatment instance a
quaternary relation. By following the strategy of figure 9.13, adding a doctor class would
not unduly complicate the diagram.

Converting ternary relations into classes is especially natural because, in nearly all
real-world cases, there is further information to describe about each triple in the rela-
tion. This means that the ternary relation needs to be a class anyway. Figure 9.14 shows
some of the non-reference artributes that belong to treatment instance.*

9.7.2 Directed attributes

In some cases, it’s inconvenient to treat a relation as a class just because it has one or two
attributes. For example, a business might buy the same product from several different
vendors. The price is not simply an attribute of the product because the same product

* UML and OMT would call treatment instance a link class: an association with accompanying attributes,
In requirements and specifications, however, there js no need to distinguish between a link class and any
other class that participates in relations with other classes. It is important, however, to state in the accom-
panying text what all the cardinalities are: that a single patient can be treated for many conditions, that
many treatments can be applied to the same patient for the same condition, and that many patients can
have the same conditions and receive the same treatments. The fact that a class diagram does not show
these cardinalities is true not only for link classes, but for any classes related as A~B—C the cardinality of
the implicit relation berween A and C, if it is of any importance, must always be described explicitly in rext
accompanying the diagram.
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product vendor
prices > & vendor product-> & prices
vendor [H &€ vendor- BG H{ product
product
price

{a) Relating price to vendor and produict via a class

products - «vendors
vendor price | product

{b) Diagramming price as a directed attribute

Figure 9.15 Two ways to diagram a directed attribute

can have a different price for each vendor. Nor is the price an attribute of the vendor
because each vendor can offer many products. Mathematically, prices are related to ven-
dors and products by a set of triples: (vendor, product, price).

Figure 9.15 shows two ways to describe the price. In diagram (a), the price has been
put into a class with three attributes: price, the vendor associated with the price and
product, and the product associated with that price and vendor. The vendor-product
class, then, is simply the set of triples described above.

Diagram (b) shows another way to link prices to vendors and products: by mak-
ing the price what we shall call, non-standardly, a directed attribute. A directed
attribute is an attribute of class B that has a different value for different elements of
class A. People naturally think of price as an attribute of a product, regardless of the
fact that it all boils down to the set of triples (vendor, product, price). To make the doc-
ument easier for them to understand, you can treat price as a special kind of attribute
of product. Draw price outside product, connected to the relation to vendor, as shown.

Now, in the class description, you can simply treat both price and vendor as attributes,
as illustrated below.*

* A directed artribute is different from the gualifier 1%

found in UML’s and OMT’s notations. A qualifi- chorrows from__1 { ” i
er is an arttribute attaching to class 4 that distin-

guishes elements in class B. For example, no two patrons of the same library may have the same card
number at that library, but a single patron may have the same card number at different libraries. In the
author’s experience, many people, even programmers, find qualifiers confusing because i’s more natural
to think of card number as an attribute of patron, not of library. They tend to draw qualifier attributes as
described above—that is, attaching to class B—not as the UML standards stipulate. Also, note that price
could not be a qualifier artaching to vendor because products are not distinguished by price: two products
sold by the same vendor could have the same price.
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2.11 Product

< vendors _
price | product

A producr is anything that XYZ Corporation purchases from any vendor,

Attribute Description

vendors One-to-many: The set of vendors that sell this product.

price Dollars and cents: The price at which a specific vendor sells this product.

There is one price for each vendor in the vendors set,

i

Note that diagram 9.15(a) provides the general solution. In a real application, it is
likely that a set of mere triples would not be enough. Vendors also have, for each prod-
uct, a product code, a minimum quantity, a lot size or even a set of several lot sizes, a
delivery time, a rush-order delivery time, a rush-order premium, and so on. The
directed atcribute approach becomes cumbersome with more than two or three
attributes. On the other hand, you can simply draw price, ot size, and so on. the same as
any other attributes, and Just describe their relation to vendor in the text, as above. The

text is king; the graphic merely aids the reader in seeing how the different statements in
the text fit together.

9.8 Uniqueness and functional
dependence
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{a) one class {b} two classes

part type part type

instances

Figure 9.16 Two class diagrams for car parts

Diagram (a) is better, because the warehouse does not distinguish individual parts
of the same type. This brings up an important principle of class diagrams:

The only classes and relations worth describing are those in which
individual elements are distinguished by propositions or questions about
the problem domain.

The part type class would have a quantity attribute: the number of parts of that type
currently in stock. That would suffice for defining rules that tell when to reorder new
stock, and it would suffice for queries about how many of any type of part are in stock.

Diagram (b) would be appropriate only if the warehouse needed to find out the
answers to questions like, “Which customer bought the type A64G gasket with
ID 780-D1-09?” In that case, you would add an attribute named ID to part.

Another important piece of information to include in each class’s description,
therefore, is what attribute or combination of attributes the development staff can
depend on to uniquely identify each member of the class.

The simplest way to indicate which attributes uniquely distinguish members of a
class is a sentence in the class description that speaks of “no two” members of the class,

like this:

No two employees can have the same employee ID.

If there are two or more rules guaranteeing methods of uniquely identifying class
members, express them as a list, so you don’t have to repeat the same sentence structure
over and over:
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No two patients can have the same:
—  Social security number.

—  Combinarion of insurer and insurance ID.

Diagrams used for relational database software often include a special segment in
the class box (there called an enzity), to indicate which attributes can distinguish individ-
ual members of classes. Sometimes there are two such boxes: one for attributes con-
tained within in the class (“keys”), and one for attributes in related classes (*foreign
keys”). This technique is helpful for designing a relational database, but it's more com-
plexity than a diagram needs for describing the problem domain when no particular
method of representation has been chosen.

Sometimes the problem domain does not provide any information that can be
relied upon with certainty to distinguish individual members of a class, but they must
be distinguished anyway. For example, orders in a restaurant* have a time at which
they were created, a table number, a server, and so on, but none of these or any com-
bination can be guaranteed to be unique for any order. In these cases, you might want
to mention in the class description that the available attributes can’t uniquely identify
any one order. The user-interface designer can then either add an ID-number
attribute, or not, if there are other ways to distinguish orders on the screen, such as by
displaying them in separate windows.

9.8.1 Functional dependence

If there is a rule in the problem domain such that for any value of one artribute (or a set
of attributes), another attribute (or set of attributes) can only have a certain, correspond-
ing value, the second attribute is said to be functionally dependent on the first. For exam-
ple, every product might have both a number and a corresponding name. In this case,
product name would be functionally dependent on product number (and vice versa, if no
two products can have the same name).

A database designer must understand all the functional dependencies in the prob-
lem domain in order to take full advantage of the capabilities of relational database
software. One of the stages of creating the tables of a relational database is to normal-
ize them—convert a single table into multiple tables, redefine keys, and so on, such
that no operation on the database can put it into an invalid state.t An invalid state is
one in which the information stored in the database is not merely false, but internally

* See section 9.2.

% See, among many other sources on database normalization, [Date 1977], chapter 9.
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inconsistent. Internally inconsistent means only that it violates functional dependen-
cies—for example, a line item on an invoice having a product number and product
name that did not correspond.

The correspondence rule referred to in the definition of functional dependence is a
rule in effect at a certain time, not necessarily permanently. That is, the rule may
change, though there is always some rule in effect. For example, a user may change the
name of product #1547 from Southwestern Couch to Southwestern Sofa. What is impor-
tant for functional dependence is that the problem domain follow a rule that can be
stated independently of a list of all the product numbers and corresponding product
names. A different kind of correspondence is that between customer numbers and
invoice numbers. We wouldn't say, if a certain customer somehow got associated with an
invoice from some other customer, that the association was logically inconsistens; it
would just be wrong,

By explicitly stating uniqueness rules, you have already described the vast majority
of information about functional dependence that a database designer needs to know.
However, it’s valuable to understand the concept explicitly in order to recognize and
document any unusual kinds of functional dependence that you might come across.

9.9 Queries

All the previous sections of this chapter have presented only techniques for describ-
ing the problem domain—specifically, sets. At last, we are ready to make a require-
ment statement.

A query s a request for information—a question. Some typical types of questions to
ask abour sets are:

* What are all the elements in the set?

» How many elements are in the set?

* Are there any elements in the set having values x, 3 and z for attributes a, b, and c?
* What are the values of attributes a and b for all elements having attribute ¢ = ?

¢ What are all the elements in set B, corresponding via relation R to the elements in

set A having attribute a = x?

As the above query types illustrate, a query always contains information: a specific
set of elements to receive information about, and the type of information to receive. To
describe a query, then, all that’s necessary is to describe two things: the information that
the user enters and the information that the user receives in response. In most cases, the
set to search is implied by the choice of query, so this can be left out of the list of infor-
mation entered by the user. Most queries do, however, need the user to supply some
attribute values.
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A variety of typical exam
described are unrealisticall
realistically show what a Ii

ple queries is shown in the table below, The queries

y drawn from a wide mix of applications so that the table can
st of queries looks like.

—

R-1 The system answers the following queries on demand:

Query User Result

Specifies
a City start, List of all flights fsuch that fstart = szare and fdest =
Find flights City dest dest; total number of such flights.
?;;zg:i Autributes displayed for each Jf number, service_type,
citics airplane_type.

Sort by: fnumber.

Q2 text, up to 40 List of all prescriptions p such that the leftmost /en
One characters, characters of p.customer.name = zexz
customer’s where len is the . "
prescriptions  number of Display all attributes of .

characters Sort by: p.refill_date, earliest date first.

actually entered
Q3 Month mon For each department 4 d.name; list of all
Department  (including year; expenditures e where e.department = d and e.date s
expenditure  for example, within mon; sum of all e.amount.
detail 05/98)

For each expenditure e e.employee.name, e.date.
e.amount,

Sort departments by d.name, expenditures by
e.date.

The promised requirement statement ap

peared at the beginning of the list of que-

ries, numbered R-1. If the requirements document describes only a simple informa-

tion problem, you can leave off the R number,
other documentation. Another workable strate
number (R number) to each query,

The query descriptions follo
putting query and requirement numbers in a bold
anywhere else in the document, names of classes a
here, a normal-weight sans serif font. The second is
to specific elements of classes—anything that can va

QUERIES

and refer only to the Q numbers in
gy is to assign a different requirement
in place of the Q number.

W two typographical conventions in addition to
sans serif font. The first is that, as
nd attributes are in a special font:
that attribute values and references
ry from one query or from element
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A

to element within the same query—are in italics in the serif font. This enables the
attribute value or class element to be referred to more than once without the use of
ungainly phrases like “the prescription that matched the first condition above” or “the
second telephone number that the user entered.” Everyone who has ever seen a
mathematics text for even a moment is already familiar with this convention, at least
subconsciously, so it needs no explanation.

The period between words indicates an attribute of an element of a class:

element.attribute_name

So prefill_date means the refill_date of element p, which was defined earlier as an
element of the prescription class. When an attribute is a set of elements from another
class, two (or more) periods in a row can denote the resulting chain of relations:

p.customer.name

denotes the name attribute of the customer related to p.

Notice that in Q1, the user specifies two cities, not the names of two cities. This
way of describing the query lets the user-interface designer decide how the user specifies
the cities: by typing in their names, by selecting the cities from a list, and so forth.

The algebraic style of describing queries provides precision and flexibility for very
complex queries. Sometimes, however, you can describe queries more simply, depending
a little more on the reader’s understanding of the problem domain to interpret the
description, as shown below:

Query User Result

specifies
Q1 Start and The number, service_type, and airplane_type of all
Find flights  destination flights from the start city to the destination city,
between ciies. sorted by flight.number.
specified
cities
Q2 text, up to 40 List of all attributes of all prescriptions with leftmost
Customer’s characters, len characters matching customer.name.
prescriptions  where lenisthe ¢, by: refill_date, earliest date first.

number of

characters

actually entered
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—
Query User Resuit

specifies
Q3 Month men For each department: name, list of all expenditures
Department (includingyear;  with date within 7oz, sum of amounts of all expen-
expenditure  for example, ditures.
detail 05/98)

For each expenditure: the name of the employee
who made the expenditure, the date of the expendi-
ture, and the amount.

Sort departments by name, expenditures by date.

Is important in a requirements document is only to describe what data the user enters
and what data the system displays in response, and to do s0 clearly enough for any likely
reader of the document o understand.

Notice that the second version of Q3 contains an ambiguity: does the “sum of
amounts of all expenditures” refer to all expenditures within one department/month, alt
expenditures displayed in the query; or all expenditures in the entire history of the sys-
tem? A reader who understands the purpose of the query is likely to be able to tell which
interpretation is correct. But in more esoteric domains, the customer will often make
the correct interpretation when reviewing the document, failing to notice that there are
others, while the programmers are likely to make a different interpretation, again not
noticing that there are others.

today’s sophisticared feport generators, an option to consider js creating the definition of
the formar of a report in the report generator and only referring to it in the requirements
document. There, it’s casy to modify, usually easy to understand, and, best of all, imple-
mented exactly as specified.

For reports that print onto preprinted forms, such as bills of invoices bearing the
customerss logo, attach a copy of the preprinted form to the requirements document, or
include a scanned image, and simply provide a table mapping the names of fields on the
form to names of attributes in the query.
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9.10 Naming classes, attributes,
and relations

The following are a few guidelines for naming classes, attributes, and relations—collec-
tively called sets.

+ Wherever possible, name sets whatever they're called in the problem domain—that
is, whatever the customer calls them. A requirements document should invent as
little new terminology as possible.

e Often, unfortunately, the customer uses the same name for several different sets
that you must distinguish. The word shipper, for example, might apply equivocally
to both the people who put packages onto trucks for delivery to customers, and the
companies that actually perform the delivery. Sometimes, in a case like this, you
can find synonyms already in use: shipping clerk and shipping company. Do not call
either set by the ambiguous word; avoid it entirely. In other cases, you must invent
genuinely new terms. See also the section on Tjpe in chapter 15.”

¢ If at all possible, when inventing terminology, do not invent new acronyms. (See
Acronyms in chapter 15.) Acronyms already in common use by the customer are
fine, however. The development staff needs to learn the language of the customer,
including its acronyms.

« Make a set’s name singular or plural according to what best applies to an individ-
ual element of the set. A class whose elements are trucks, then, should be named
truck, not trucks. If a single truck can have more than one license plate, then the
attribute linking to the license plate class should be license plates, because each
instance of the attribute is a set of one or more license plates. The license plate
class, on the other hand, has a singular name, because each of its elements is just
a single license plate.

+ Don’t name a binary relation if you don't have to, or at least don't define it sepa-
rately from the classes that it connects. As described in section 9.7, define refer-
ence attributes in the classes at both ends of the relation, whose values are subsets
of the other class—for example, an invoices attribute of customer, whose value is

* An excellent example of how to meet the need to replace the customer’s terminology is in [Zave 1998].
The word call does not single out telephone-equipment activity with enough precision to write require-
ments for software to control that equipment. Zave shows how she solved this problem and many others.
An especially good example of coining a new term is voice path, her name for the series of connections that
carries a signal through the telephone network from one place to one or more others. Many people’s lives
are made much easier by such an intuitive term; bur finding such a term is often quite difficult.
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the set of a given customer’s invoices, rather than a has relation, which is awk-
ward to talk abour,

* Consider converting ternary relations into named classes, as described in
section 9.7.

* If you must name a binary relation, consider making its name a noun, especially if
the relation is symmetrical (that is, neither class is “firse” or “second”). A binary
relation is a set of pairs, 5o its name should suggest tha, for example, sister-cities,
not is sister city of. Another technique is to create a class consisting of nothing but
two relation attributes; for example, twin-pair or twins, whose attributes are the two
members of the person class who are twins,

* Naming a relation a verb or prepositional phrase, like arrests or fives at, is most suit-
able when you want to speak of the relation as a predicate, that s, as an expression
that is either true or false. For example, in a query you might want to say “for spec-
ified officer, list all persons such that arrests(officer, person).” Note, however, that in
such a case, as in many relations named with a verb, the name of the arrests relation
is better converted to the past participle: arrested(officer, person). Also in this case,
the query is more simply described if the relation js named following the class
attribute  strategy  recommended above: “for specified  officer, list  all
suspects_arrested.”

* If your programmers are using a tool, such as a commercial database or a CASE
(computer-aided software engineering) tool, you might want to follow the tool’s
naming conventions. This might make life a little easier for the programmers. For
example, if the ool does not aliow Spaces in names, then substitute hyphens or
underscores for spaces in your own names. This is convenient for other reasons, as
well, such as describing queries as in section 9.9. Don't, however, pollute your
description of the problem domain with any programming concepts—a strong

the tool’s naming conventions if they're too restrictive, such as a maximum of eight
characters per name.

* Never give a name 1o any set that you don't refer to elsewhere jn the document.

* Whenever you refer either to a set or to data to be stored in the computer, put the
name of a set in a special, sans serif font, to distinguish it from different usages of
the same word. For example, road is the name of the set of all roads. Actual
instances of roads, you should just call “roads,”
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CHAPTEHR

Sequences and events

Now that you know how to describe the inhabitants of the problem domain, the next
question is: What events happen to them? In this chapter, we'll see how to describe the
events themselves, how to describe all the possible sequences of those events, and how to
describe the machine’s response to those events. The events and their possible sequences
are information that belongs in a requirements document; the responses to events are
part of the program specification. The techniques for describing sequences of events also

apply to any other kind of sequence, including the sequence of data in a file, as we'll see
in the first example.
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10.1 Structure

Here is a simple log file for a mail server—a program that exchanges electronic mail with
other mail servers. It conrains data recording each message sent and received by the
server. Your task is to document the format of the file so that programmers can write
programs to read it and answer queries about the mail server’s activity.

ALIASES
forbin=apteryx@splenetix.com,gibbons@splenetix.com,zimmer@marquette.edu
support=Ff.hall@splenetix.com

MESSAGES

receive,887923440,chalmers@cogswell.com,forbin
send,887923448,gibbons@splenetix.com,fairbourne@dat.com
send,887923480,clark@splenetix.com,info@camshaft.org
receive,887923489,morisawa@mail 1.torque.com,support
receive,887923501,services@camshaft.org,clark@splenetix.com

A text file is a sequence of characters. To describe its format, you collect charac-
ters together into groups, enabling you to see the file as a sequence of groups. Those
groups, in turn, you collect together into larger groups, and so on, forming a hierar-
chical structure.

The characters in the log file are organized into lines. The lines, in turn, compose
two main sections in the file: an ALIASES section defining aliases that stand for one or
more email addresses, followed by a MESSAGES section listing each message’s time sent,
‘from’ address, and ‘to’ address. This structure is depicted in a Jackson diagram, shown in
figure 10.1.

A Jackson diagram breaks down a structure in four ways:

* By sequence. one element always follows another, illustrated by the left-to-right
sequence of four boxes in the second row.

* By selection: exactly one of a set of elements occurs, illustrated by the send and
receive boxes in the third row. The circles in the upper right corners indicate that
send and receive are alternatives rather than elements in a sequence.

» By iteration: a single element occurs zero or more times, illustrated by the alias and
message boxes. The asterisks in the upper right corners indicate that atias and mes-
sage can occur any number of times.

e By hierarchy. one element is composed of one or more subelements, illustrated by
the lines branching out from log file and message.

184 CHAPTER 10 SEQUENCES AND EVENTS




log file

* *
ALIASES alias MESSAGES message

o o
Legend send receive

Ais composed of 8
followed by zero or
mare C

Each occurrerice of ¢
is eithera Doran £,

Figure 10.1 A Jackson diagram

What the Jackson diagram describes is a set: the set of all possible sequences in
which lines in the log file can appear, that is, all possible log files in this format. Readers
with programming experience will notice that the four types of breakdown correspond
to the elements of structured programming: a sequence of instructions containing no
branches, an if-then or switch statement, a while loop, and block structure.*

When describing a file format, you must describe the set of a// possible valid files,
whether you're describing a file that the program reads or a file that the program gener-
ates. The same applies to any sequence of relevance to the program: a sequence of events
in the problem domain, a sequence of keystrokes, a sequence of mouse clicks, a
sequence of hardware interrupts, a sequence of statements in a programming language,
and so forth. To write the program, the programmers must know the set of all possible
valid sequences.

Even though such sets are almost always infinite, describing them is often very
straightforward when you break the formar down in the four ways listed above.

What makes the set infinite is the presence of iterated elements which occur zero or
more times.

* Jackson diagrams, also called strucrure diagrams, were introduced in [Jackson 1975], a book on how to
translate such sets of all possible sequences into program code. Though many of the examples involve decks
of punch cards, the principles are timeless, and the book is still a classic work on program design.
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product code lot number expiration date
* * *
01 digit 23 digit 17 digit
14 digits 19 digits 6 digits

Figure 10.2 Jackson diagram of simple bar-code structure, with annotations

Jackson diagrams are easily extended. For example, a popular extension is to write a
plus sign in the upper right corner of a box to mean “one or more.” However, the great
virtue of Jackson diagrams is their simplicity. No structure notation is particularly intui-
tive; they all require explanation, such as the legend in figure 10.1. The more extensions
you add to the notation, the more explanation it requires and the harder it is to under-
stand. Fortunately, there is a very easy way to add information to the diagram without
complicating the notation. Just add annotations, as in figure 10.2. Annotations also
allow you to describe unusual sequences not describable in terms of sequence, selection,
and iteration, such as palindromes.

In most cases, when you describe a sequence, in addition to presenting the
sequence schematically, as in a Jackson diagram, you must also include a textual descrip-
tion of each element in the sequence and an example of the sequence. Most people find
it difficult to grasp the set of all possible sequences from the abstract description alone.
By looking at the example, people can usually infer the pattern. The schematic view of
the sequence confirms or perhaps corrects their inference. The example also grounds the
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schematic view in something concrete. Abstract ideas for which we know of no concrete
example are generally poorly understood abstract ideas.

We've provided an example of the mail server’s log file at the beginning of section
10.1. Here’s the description of each type of line in the log file:

alias States that one email address, the alias, stands for a list of one or more other
email addresses. The mail server redirects email addressed to the alias to each
of the addresses in the list. The list may contain aliases, though self-reference,
whether direct or indirect, is not allowed.

Format:

alias=address| ,address...]

If the domain name of the alias is omitted, it defaults to the domain name of
the mail server. If the domain name of any of the addresses in the list is
omitted, it defaults to the alias’s domain name.

send A record of the mail server successfully sending 2 message.
Formar:
send, time, from-address, to-address

receive A record of the mail server’s successfully receiving a message.
Format:

receive, time, from-address, to-address

The #imein both the send and receive lines is the number of seconds since midnight (start

of day), January 1, 1970.

We could have made Jackson diagrams for each line’s structure, but the above nota-
tion is simpler and easier to understand, given the non-hierarchical structure of each
line. More sequence notations are described in section 10.4.

10.1.1 Boundary clashes

A word processor is a spectacularly difficult kind of program to specify. The main reason
for this is that the various groupings of characters that you need to describe do not form
a hierarchical structure. The boundaries of the various elements clash.

The first step in dealing with a boundary clash is to recognize that you have one,
and not imagine a hierarchy like that shown in figure 10.3. A single paragraph can
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Figure 10.3 Incorrect Jackson diagram for text in a word processor
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Figure 10.4 Multiple, overlapping hierarchies in a word processor

188 CHAPTER 10 SEQUENCES AND EVENTS




straddle two (or more) pages; therefore, a paragraph is not a subelement of a page. Sim-
ilarly, a word can straddle two lines. It’s particularly difficult to tell where to put left
indent and right indent. The same problem occurs frequently in the output of a report. A
page has a header and a footer, and a group of records contains records and a subtotal,
but group of records can straddle any number of pages.

The solution is to draw multiple diagrams, one for each hierarchy. The bottommost
element in each hierarchy should be the same, as in figure 10.4. Otherwise, you don't
have a boundary clash. You simply have hierarchies composed of different elements. You
can then define a mapping between the hierarchies, requiring further description in text
accompanying the diagram. Mappings are discussed further in section 11.5.

10.2 FEvents

Part of the problem-domain description in any dynamic information problem is a list of
all the events within the problem domain that change the answers to queries. Just as the
description of a file format lists all possible sequences of the elements of the file, along
with a description of each element, a description of events lists all possible sequences of
events, along with a description of each event.

Figure 10.5 shows all the events in the lifecycle of a corporate bond from the per-
spective of a pension fund that keeps a portfolio of bonds (that is, a collection of bonds).
The reason for the “from the perspective of” clause is that there are events in the history
of 2 bond thar are not shown because they are of no interest to an information system
that answers queries about the portfolio. For example, the first event in the history of a
corporate bond is that a corporation issues it—that is, makes it available for sale. Many
other parties might buy and sell the bond before it reaches the portfolio of interest to the
information system. The first event shown in the diagram, however, is purchase: the pur-
chase of the bond by the company that owns the portfolio. This is because the informa-
tion system is not called upon to answer any queries about the history of the bond
before it was purchased.

For each event at the leaves of the tree—that is, the elements of the diagram that
aren’t broken down into subelements—the development staff needs to know:

* All sets affected by the event: which classes, class members, attributes, and relations
are affected by the event

* All parameters of the event: attributes that can vary from one instance of the event
to the next

* How the system can find out that the event has happened and what its parameters
are: the source or sources of the information
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Figure 10.5 Lifecycle of a corporate bond

The first few events in the lifecycle of a corporate bond are shown below. ACS is a
fictional accounting system that receives updates from a commercial financial-reporting
service and is available to supply data to the portfolio system at night. ACS would be
described earlier in the document. Earlier parts of the document would also explain the
various entities and attributes involved in the events: bonds, par values, issuers, Moody
ratings, and so forth.

The various record types referred to below need not be described in detail in the
portfolio system’s requirements document, as long as programmers can find them in
ACS documentation. However, the requirements document would need to supply a
table mapping event parameters to fields in the record types if the mapping is anything
less than obvious.

purchase The fund purchases a bond. The bond enters the portfolio, and
cash equal to the price of the bond leaves the cash account. Only a
manager ever makes the decision.
Parameters: issuer, CUSIP code, bond type, par value, payment
schedule, call features, price, Moody rating.

Source: The manager making the purchase knows all of the
parameters at the time of the purchase. An ACS PRCH record has
the same parameters available the night following the purchase.
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interest A scheduled payment from the issuer of the bond to the portfolio’s
payment cash account,

Parameters: payment number. The amount of the payment is always
equal to the amount in the bond’s payment schedule corresponding
to payment number.

Source: The transmission of a PYMT record from ACS, with ptype
= INT, indicates that an interest payment has happened.

price change A change in the current market price of the bond. Happens con-
tinuously, 24 hours a day.

Parameters: price.
Source: Managers have access to current price data during the day;

ACS reports the bond’s price at 5:00 p.m. on the last trading day,
in a BPRI record.

change of The Moody corporation changes the rating of the bond. A very
Moody rating rare event: roughly 98% of corporate bonds finish their entire life-
cycles without a change in Moody rating.
Parameters: Moody rating.

Source: an ACS MODY record indicates a change. Managers
generally know about a change during the day, too, since changes
in Moody rating are usually big news.

For purposes of illustration, the sources in this example are deliberately a little bit
irregular. In most applications, all the data comes from one source, typically, a data-
entry staff. In that case, you can state that once, early in the document, and omit the
“Source” paragraph in each event’s description. Or, if there are different sources for dif-
ferent data, you might indicate which events are detectable by which information source
in a matrix rather than in “Source” paragraphs.

Naming the first event in the history of an object is sometimes difficult. In object-
oriented programming, the first event in the history of a piece of data is often called
“create.” However, that is often a poor name for the first event of the object that the data
represents because, often, the object already existed before it entered the problem
domain. For example, a book already exists before it becomes the property of a library. If
you say that the book is created, then you're talking about stored data, not about books,
but in a requirements document, you talk about the problem domain, not the software.
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A better name for the book’s first event, as seen by the library, is acquire.* A few
other good words to keep in mind when naming the first event: discover, purchase, start.

Of course, create is the appropriate word when speaking of something that is really
created, like a paragraph in a document or a bubble in a liquid. However, you can often
find synonyms for create that apply more specifically to the problem domain: a corpora-
tion is incorporated; the first event in a person’s life is birth (or conception, depending on
what kinds of queries the information system answers).

The first event often has many parameters. Whereas most later events modify a sin-
gle ateribute of a member of a class, the first event usually must supply values for all the
attributes at once.

In the bond example, there was an implicit parameter for each event except the
first: which bond was affected. This is fine documentation, because it’s stated that every
event in the diagram pertains to the same bond. However, if a set of events can pertain
to more than one object, then each event must include as a parameter which object or
objects are affected, and, if necessary, how the source identifies the objects—for exam-
ple, by employee ID.

10.3 Event responses

The specification for software that describes a dynamic information problem includes,
for each event in the problem domain, a corresponding event response that updates the
model maintained by the software. Event responses also make up the majority of control
problems whose solution involves the maintenance of a model, or any other type of
problem solved by that technique.

Every event-response description actually lists two events:

* An event at the interface between the software and the problem domain—that is,
shared phenomena—that is initiated by a person, software, or hardware in direct
contact with the system.

* The resulting change to the model maintained by the system and any other shared
events to be caused by the system, such as turning on indicator lights or performing
notifications.

A good name for event responses initiated by a person is operating procedures. In an
operating procedure, the specification dictates how the users should operate the system:

* [Cameron 1986] takes a few Jackson diagrams of acriviry at a library from initial description to program
design, discussing some of the theoretical basis for giving such importance to describing complete sequenc-
es of events.
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when such-and-such event happens in the problem domain, a user is responsible for
entering such-and-such data. If there are many classes of user—for example, administra-
tors, managers, and data-entry staff—the procedure should indicate which user is
responsible for carrying it out.

Operating procedures indicate not only the data that users enter into the system,
but also the specific windows and fields the users enter the data into and any burton-
presses they need to make in order to reach the right windows and fields. Without this
information, testers wouldn’t know how to simulate operating the system, and the tech-
nical writer wouldn’t know what information to include in the user’s manual.

If the system rejects data that fails to meet validation rules, the event response
should indicate the applicable validation rules and how the system responds to each type
of invalid data—with an error message, with a notification to an administraror, update
of a log file, and so on. Every error message and every line of text that appears in a log
file must be written out, word-for-word, in a specification.

In most cases, the same validation rules apply across many different event
responses. To keep the document from becoming unnecessarily repetitious, the valida-
tion rules and their accompanying error messages should be collected together into a
single table. The statement that the system is to display a certain error message if a vali-
dation rule is violated can be placed in the description of the OK buttons on the appro-
priate screens, rather than repeated over and over again in each event response. Having
thus fully documented each error-response, each operating procedure can be made very
simple by assuming that all data entered is valid and the user does no backtracking.

There is no need, therefore, to include such statements in event responses as, “If the
user clicks Cancel, the procedure is aborted.” It’s enough that the description of the win-
dow says what the OK and Cancel buttons do,

Each operating procedure should be described as a series of action-response pairs:
the user performs an action, and the system performs an action in response; the user
performs the next action, and so on. The actions are button-clicks, selection of menu
items, typing data into a field, and so forth. The responses are the effects on the dara
model or unusual actions in the user interface, such as a graph appearing. The user’s
manual should mention such responses as the opening of new windows, but in the spec-
ification, the more mundane actions can be left to descriptions of buttons and menu
items and left out of event responses. Even for user actions, in most cases it’s sufficient
merely to state which window must be active for the action to take place; saying “User
opens such-and-such window” is unnecessary.

The specification for the system that tracks corporate bonds would read like this:
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Portfolio managers are responsible for performing the following procedures in
response to bond events:

Event Procedure

purchase In New Bondwindow, manager enters issuer, CUSIP code, bond
type, par value, payment schedule, call features, price, and Moody
rating.

System creates a new bond, with the specified attributes.

price change In Bond window, manager selects bond by CUSIP code and enters
new price.

change of In Bondwindow, manager selects bond by CUSIP code and enters
Moody rating | new Moody rating,

A manager need only enter a price change or change of Moody rating to ensure that
system data is up-to-date for reports printed before that night. If a manager omits
entering this data, the system will receive it from ACS that night. A manager must
enter all purchases, however; the system uses data from ACS only as a check on the
manually entered data (see section 4.1).

The agent that performs the responses is “the system.” This makes for much clearer
reading than passive sentences like “A new bond is created.” By what? By whom? Simi-
larly, the agent of each action is stated explicitly in each sentence. In the above examples,
the manager is the subject of each sentence. More often, the most descriptive word is
simply user.

Notice that while create was usually a poor name for an event in the problem
domain, the event responses speak of creating a bond. Here, create is appropriate,
because something new really is being created: a data element inside the system.

Notice also that each description is very terse and written in the present tense.
Writing system responses in the future tense mostly creates wordiness and confusion.
Also in the interest of terseness, system responses to events that change a single attribute
are omitted. It’s enough to say that the user enters the data. If the system makes changes
to other data——say, to a list of delinquent customers—this must be stated explicitly in
the event response.
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On most projects, it’s helpful to write an interim document that describes the oper-
ating procedures without mentioning the windows and fields. The user-interface
designer can then design the user interface around this document. The analyst can write
the interim document without delving into the details of the user interface. One tech-
nique is to create a table of event responses with three columns: the two shown in the
example above, plus a column headed “Window.” The analyst leaves the third column
blank; the user-interface designer fills it in.

10.3.1 Every event

The specification must include an event response for every event in the problem
domain. It answers the question, “For each event, what is the system going to do about
it?” If the requirements are dlearly and simply written, and rigorously describe the set of
all possible events, you can check very systematically that the specification addresses
every event,

One could say that event responses are use cases. However, the term use case is
much broader than event response. A use case is any single path through system function-
ality, involving a dialogue between the system and some outside entity that interacts
with it—that is, action-response pairs. An event response is much more limited. You
define an event response for every event in the problem domain. Thus, event responses
are part of a process of rigorously mapping the solution—system behavior—to a well-
defined problem. Use cases are much more free form, Also, event responses are very nar-
rowly delimited. Each operating procedure, for example, tells only what a user should
do in response to one event distinguished in the requirements document. A use case
often tells a longer story, perhaps showing how different users interact with the same
piece of dara, or tracing one user’s activity across several events and several pieces of data.

In addition to covering all the problem-domain events, the specification often
needs to define some more events and event responses: those pertaining to administer-
ing the system. One of the most elementary is dealing with corrections to data-entry
ertors. Some poorly designed systems give users only one chance to enter data correctly.
If it’s wrong, changing it is difficult or impossible.

In addition to correction events, the specification must also describe procedures for
installing the software and for backing up and restoring data, as well as any special,
administrative users called upon to perform these tasks. Describing administrative pro-
cedures is essentially no different from describing other operating procedures. The only
difference is that there is no event from the problem domain to map to, so you simply
name the procedure: “back up,” “restore,” “revert,” and so on.

10.3.2 Responding to hardware and software events
When interfacing with hardware or software, the specification usually cannot dictate
procedures to be followed by that hardware or software; their actions are part of the
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problem domain, a given. In this case, the event responses are not operating procedures;
they're simply events and responses. For the corporate-bond portfolio, each of these
events is the receipt of a record from the ACS system during the nightly update. The
part of the specification chat addresses how the system responds to these records would

read like this:

The system responds to records received from ACS as follows: A‘
ACS Record | Response
PRCH If no bond is in the system with CUSIP code = PRCH.CSIR

append the following message to the ACS log file:

| (0004) ACS reports purchase of a bond with CUSIP code
‘ csip, but no such bond was entered during the day.

Rationale: Managers need all bond purchases to be reflected in
reports generated at 5:00 p.m. cach night, before the ACS update.
Therefore, managers are required to enter purchases manually,

| making the data received from ACS redundant. The system can

| still make use of the redundant data, however, by performing the

| check described here.

PYMT | Mark thart the bond with CUSIP code = PYMT.CSIP has received
| interest payment number PYMT.INUM.

BPRI For bond with CUSIP code = BPRI.CSIR change price to

| BPRI.PRIC.
I e
MODY | For bond with CUSIP code = MODY.CSIR, change Moody rating

| to MODY.NRAT. See page 30 for table of NRAT codes and
Ii corresponding Moody ratings.

Realistically, the system would perform more checking on PRCH records than
.ndicated here. However, checking all the other fields in the PRCH record wouldn’
belong in the event response for PRCH because the system should generate an error
message only if the PRCH record contains a discrepancy and no later records from ACS
resolve the discrepancy. Therefore, the rules for generating such an error message
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belong in a description of how the system responds to the nightly update as a whole,
not to any individual record.

For unusual responses, the specification explicitly indicates a rationale. If rationales
become too large or there are too many, then collect them into a separate section of the
document or in a different document altogether.

Here, since every response is performed entirely by the system, the system need not
be mentioned explicitly in each sentence. The imperative mood enables you to describe
the responses both clearly and tersely.

You'll notice a certain amount of repetition in the responses. For example, the bond
affected by each record is indicated by a field in the record named CSIP. This suggests a
way to improve the table. If the table describes responses to many, many records and this
pattern continues to hold, then state, immediately before the table, that the bond
affected by the record always has a CUSIP code equal to the record’s CSIP field. Or make
two tables, one for records that follow the pattern and one for all other records.

Rather than complicate the table, the description of the response to a MODY record
refers the reader to another table where they can find out how to translate from the
codes in the MODY record to the Moody ratings that they stand for.

There is one type of problem where the specification can dictate procedures for
other software to follow. That is a software library or operating system—any software
that provides services to software to be written in the future. In this case, the event
responses form an application program interface (APY). Such a specification should gener-
ally be written by a programmer familiar with APIs, and it should look like an API: a list
of function calls, parameters, return values, throw objects, and so on. In fact, there
should be little difference between the specification and the programmer’s reference
manual released with the final product.

10.4 More sequence notations

In the 1960s and 1970s, people invented many different notations for different types of
sequences, centering around the basic concepts of sequence, selection, iteration, and
hierarchy. This section describes a few more of them. All are well worth considering
when writing any requirements document or specification that must describe a set of all
possible sequences of one kind.

10.4.1 Backus-Naur Form

Backus-Naur Form (BNF) is mainly used for describing the syntax of computer lan-
guages, though there’s nothing fundamentally different about describing the set of all
possible sequences of characters in a program source file and describing a set of all possi-
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ble sequences of events. BNF introduces one more concept to the basic quartet of
sequence, selection, iteration and hierarchy: recursion. An element in a sequence can be
an instance of the very same sequence. The need for sequences that can contain
instances of themselves is most commonly needed in programming languages thar allow
nested block structure, as in this fragment from Pascal:

x:=1;
repeat
y=1
repeat
alx, y] := 0;
yi=y+1
untily = 10;
Xi=x+1;
untilx = 10

As the example illustrates, a Tepeat statement can contain another repeat state-
ment. A tiny excerpt from the full grammar of Pascal shows how BNF describes the
above syntax:

<statement> ::= <repeat-statement> | <other-statement>
<repeat-statement> ::= ‘repeat’ <stmt-sequence> ‘until’ <boolean-expression>
<stmt-sequence> ::= <statement> | <statement> *;’ <stmt-sequence>

A <repeat-statement> can contain a <stmt-sequence>, which can contain a
<statement>, which in turn can contain another <repeat-statement>. Thus <repeat-
statement> is defined recursively, allowing an infinite number of levels of nesting.

The words in quotation marks are terminal symbols: elements that appear in the lan-
guage exactly as they appear in BNE, without being decomposed hierarchically into
other elements. They correspond to the leaf elements of the tree structure shown in a
Jackson diagram. Hierarchy is shown simply by referring to an element in one definition
and defining it in another.

An element that has a definition is called a non-terminal symbol. By convention, all
non-terminal symbols are enclosed in angle brackets. Each definition is sometimes
called a production.

BNF indicates selection by the vertical bar: a <statement> can be either a <repeat-
statement> or an <other-statement>. An element can also be optional, shown by enclos-
ing it in square brackets. An if statement, for example, may include an else clause but
doesn’t have to;

<if-statement> ::= ‘if’ <boolean-expression>
‘then’ <statement> [ ‘else’ <statement> ]
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Notice that BNF has no symbol for iteration. To indicate iteration in BNE, you
must combine selection with recursion, as shown in <stmt-sequence>. Put a single ele-
ment of the iteration, that is, the shortest possible iteration, as the first option; make the
next option the single clement followed by the iteration as a whole. Putting another ele-
ment in between, like the semicolon in the definition of <stmt-sequence>, indicates a
separator that must appear berween any two consecutive elements of the iteration.

This method of defining an iteration denotes a one-or-more iteration, not a zero-
or-more iteration such as is found in Jackson diagrams. A zero-or-more iteration in BNF
is an optional one-or-more iteration, that 1s, a one-or-more iteration enclosed in square
brackets and included in the definition of another non-terminal symbol.

BNF is somewhat difficult to use. It describes sequences textually rather than visu-
ally, requiring most readers to perform a kind of mental translation in order to under-
stand it. BNF's principal virtues are its great compactness, easy handling of recursion,
and facility for describing sequences of text, making it especially suitable for the descrip-
tion of command languages and programming languages which might contain hun-
dreds of different syntactic elements. (Jackson diagrams can also describe recursion,
following the same technique: a box lower in the tree has the same name as a box higher
in the tree.) Though BNF’s assortment of constructs is very sparse, because it’s textual,
it’s very easy to extend.

10.4.2 Syntax diagrams
Another type of sequence notation most commonly used for describing grammars is syn-
tax diagrams. Syntax diagrams were brought to wide popularity in the definition of the
grammar of Pascal, in [Jensen 1985]. However, syntax diagrams are probably the most
readable of all the sequence notations, and they apply far beyond descriptions of syntax.
Their arrows make them especially intuitive for describing sequences of events.

Figure 10.6 is the lifecycle of a corporate bond redrawn as a syntax diagram:

interest payment

price change

bullet payment

change of Moody rating

Figure 10.6 Lifecycle of a corporate bond in a syntax diagram
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Figure 10.7 Syntax diagram for a repeat statement in Pascal

Sequence is shown by following the arrows from left to right as they take you from
from one element to the next. Selection is shown by a line branching out into several
lines. Iteration is shown by a line looping back to the left. An option, or a zero-or-more
iteration, is shown by an arrow in a selection group that passes through no element, as
in the group immediately following purchase.

There is really only one rule for reading syntax diagrams: the set of all possible
sequences they describe is the set of all possible paths that you can take by following the
arrows. The rules for creating syntax diagrams, however, are very restrictive, ensuring
that a reader can examine all possible paths systematically. Elements can be arranged
only by sequence, selection, and iteration; lines can't lead just anywhere.

Notice that whereas the Jackson diagram in figure 10.5 included the names normal
activity and termination as placeholders, neither of which was a term from the problem
domain, the syntax diagram does not include any placeholder terms. Also, the syntax
diagram scarcely needs a legend to explain what the symbols mean.

Syntax diagrams show hierarchy in the same manner as BNF: by including a non-
terminal symbol in a definition. A non-terminal symbol appears in a box with sharp cor-
ners as opposed to rounded corners. Putting the name of the element in italics helps
emphasize the distinction. The same device indicates recursion, as shown in the syntax
of Pascal’s repeat statement in figure 10.7.

Notice that the syntax diagram requires no stmt-sequence to be defined, as in BNE.
The semicolon that separates statements is conveniently indicated by drawing it on the
lefrward-moving line that shows that statement can be iterated.

The primary disadvantage of syntax diagrams is that they take more effort to
draw than the other notations. However, this is easily remedied with a modern-day
charting program.

In light of the fact that there is nothing in syntax diagrams that is specific to syntax,
and because they are perhaps the most intuitive of all the sequence notations, a better
name for them might be sequence diagrams.
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10.4.3 Warnier-Orr diagrams

Warnier-Orr diagrams* add yet another construct to the description techniques of
sequence, selection, iteration, hierarchy, and recursion: concurrency. Two elements are

said to be concurrent if both must be present in a sequence, but they can occur in either
order: A before B, or Bbefore A,

( purchase

interest payment

@
normal event price change
(G, n) &

change of Moody rating

bond iifecycle 4

sale
@
call
termination =)
defauit
32}
builet payment

.

Figure 10.8 Warnier-Orr diagram of the lifecycle of a corporate bond

In the diagram in figure 10.8, the braces indicate hierarchy: that the element on the
left is composed of the sub-elements on the right. Sequence is shown by the vertical
placement of elements: a sequence starts at the top and continues downward. The @
symbol, meaning exclusive or (either but not both), indicates selection. Iteration is
shown by putting the minimum and maximum numbers of iterations in parentheses
below the iterated element, as illustrated by normal event. The minimum number of nor-
mal events is zero; that the maximum js infinity is shown by writing the name of a vari-
able, n, instead of a number. This variable can then be referred to elsewhere in the
documentation where it denotes the actual number of jterations in a specific occurrence.

That two elements are concurrent is shown by a plus sign without an enclosing cir-
cle. Aside from the obvious use of describing subprocesses that occur in parallel, concur-
rency can also describe the simultaneous multiple hierarchies involved in a boundary

" Another of the classic 1970s books on converting sequential data structures into program designs was
(Warnier 1974], which introduced the basic brace notation that grew into Warnier-Orr diagrams.
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Figure 10.9 Overlapping hierarchies in a Warnier-
Orr diagram, expressed as concurrency

clash, as shown in figure 10.9, or any hierarchical but unordered collection, such as the
set of parts and subassemblies in an assembly.

Warnier-Orr diagrams tend to fit better on a page than Jackson diagrams, partly
because of the lack of boxes, but also due to the vertical rather than horizontal orienta-
tion. A page is usually taller than it is wide. A word or phrase, however, is usually wider
than it is tall, and in practice, hierarchies tend to have relatively few levels but many
items at each level; that is, hierarchies tend to be bushy rather than deep. Consequently
it’s usually possible to include a lot more information in a Warnier-Orr diagram on one
page, whereas the corresponding Jackson diagram might need to be broken up into sev-
eral pages.

Warnier-Osr diagrams include a great number of extensions beyond the basic
sequence-and-hierarchy constructs. Variations on the concurrency operator give Warn-
ier-Orr diagrams a simple way to describe even such things as algebraic expressions. Dif-
ferent idioms specialize Warnier-Orr diagrams for descriptions of processes, descriptions
of things, and descriptions of serial data streams. For more information on Warnier-Orr

diagrams, see [Orr 1981].
10.4.4 Flow charts

The flow chart has been criticized a great deal in the past twenty-five years, but it is quite
suitable for describing many simple types of sequences, especially those with a very lin-
ear structure with very little branching or iteration. Many business processes are, indeed,
this simple.

In a flow chart, as shown in figure 10.10, each rectangle represents an action that
has only one possible outcome. An action that involves a decision, or more than one
possible outcome, is shown by a diamond with a different, labeled line emerging for
each outcome.
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The principal danger of flow charts is that
when you draw one, you can easily overlook possi-
ble sequences. If several actions have several possible
outcomes, including going back and repeating pre-
vious actions, it’s hard to be systematic in covering
every possible way that an action can be initiated.
Drawing a flow chart is essentially the same as writ-
ing a program with goto statements. Beyond a low
level of complexity, the program quickly degener-
ates into spagherti,

10.4.5 State-transition diagrams

The most common use for state-transition diagrams is
to state how something responds to every possible
sequence of events, that is, to describe causal rules.
However, a state-transition diagram can also simply
describe a set of all possible sequences, as in
figure 10.11. Each rectangle represents a state that
something can be in at a certain time or range of time;
each arrow denotes an event that changes its state.

Because state-transition diagrams can make
wo types of assertions—here is how such-and-such
responds to stimuli, and here is a set of all possible
sequences—you must indicate which type you
mean, as in the introductory sentence in
figure 10.11.

propose

design

fail

pass

> build

fail

pass

install

Figure 10.10 Flow chart of a
simple design-and-build pro-
cess; QA/QC stands for “quality
assurance/quality control”

status of a train.

start trip

cancel mission

€n route

The following diagram shows all events that affect the operational

decommission

out of
commission

Figure 10.11 A simpie state-transition diagram
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Notice that the state diagram does not emphasize the events, but what the train is
doing when it’s not engaged in an event. Notice also that the set of all possible sequences
of events shown in figure 10.11 would be awkward to depict in a Jackson diagram or
with any of the other techniques that rely exclusively on the sequence/selection/iteration
type of breakdown.

The problem is that for any possible sequence that goes ABC,
there is another that goes BCA and another that goes CBA, forcing
you to draw a separate tree for each one. You cant make 4, B, and C
alternative subelements of a single interated element because that
would imply that A4, B, and Ccould come in any sequence at all.

On the other hand, when the sequence/selection/iteration
approach is enlightening, a state-transition diagram often isn’t, as in figure 10.12. By
emphasizing current state over sequence of events, the diagram wrongly makes it appear
that the main fact of interest is whether the bond is in or out of the portfolio.

interest
pymt

sale

purchase . .
in portfolio default

change of
Mocody rating

price
change

Figure 10.12 Lifecycle of a corporate bond, shown in a state-transition diagram

More information about state-transition diagrams, including guidelines on how to
name states, is in section 11.1.

10.4.6 Ad hoc notations

All the preceding notations for describing sequences are quite generic in that they are so
well known and so general as to have names. This means that they address only what is
common to a great variety of sequences and ignore what is different. However, very
often what makes the best documentation is a notation that fits the subject matter very
closely, showing the reader exactly what is distinctive about the subject and no more. It
doesn't matter if the notation doesn’t fit anything else.

You've already seen one ad hoc notation in the descriptions of the contents of each
line in the mail server’s log file. Italicized words indicate text that can vary from line to
line, text in brackets indicates optional text, and an ellipsis (three periods in a row) indi-
cates a one-or-more iteration of the preceding text element.
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Figure 10.13 Ad hoc notation showing sequence of bars in a bar code

Another ad hoc sequence notation was the description of the format of a node
name. There, a graphic simply divided a six-letter code into three segments and spelled
out what characters could g0 into each segment and what they stood for.

The diagram of bar codes in figure 10.2 becomes much more descriptive when
redrawn, as in figure 10.13,

The data consists of a sequence of pairs, with each pair containing an identifier
code and identifier contents. The data in each identifier’s contents varies according to
the identifier code. Code/content pairs can appear in any order, bur no two pairs can
have the same code,

All this can be indicated by stating it explicitly in text, as in the previous paragraph,
and then providing a table:

—

Identifier Code Contents

Conuainer serial number 00 exactly 18 digits
Container type code 01 exactly 14 digits

Batch number 10 up to 20 alphanumerics
Production date (YYMMDD) 11 exactly 6 digits
Expiration date (YYMMDD) 17 exactly 6 digits

Serial number 21 up to 20 alphanumerics
Lot number 23 up to 19 alphanumerics

If there were fifty of these identifier types, the table would be the only reasonable
form in which to document them; diagrams would become a mess. Similarly, the width
of a quiet zone, the way digits and characters are encoded in black and white stripes, the
start and stop codes, and the checksum should all be described in text of tables.
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CHAPTTER 1 1

Causation and control

Chapter 10 described events only with respect to the sequence in which they can occur,
what they affect, and how the computer can tell when one has happened—enough to
define most dynamic information problems. Defining a control problem involves two
more kinds of information: what causes the events, and the desired problem-domain
behavior. This chapter presents a number of techniques for describing both the causal
relations and the desired behavior. These techniques apply both to describing the prob-
lem domain and to writing the program specification. In the problem domain, you
describe both the rules that objects there obey regardless of how the machine is pro-
grammed and the additional rules that the machine is to enforce. In the specification,
you describe the causal rules that the machine’s input/output devices are to obey.

While this book is concerned only with presenting some parterns that prove useful
in a variety of problems (without making a claim of total generality) this limitation
applies especially to the discussion of causation. Control problems are among the tricki-
est and most varied in software, and while we have a few useful patterns, the state of the
art is a long way from having a satisfactory library of patterns that map to a set of well
defined problems. For causation, we don’t yet have anything like the sequence/selection/
iteration/hierarchy technique for imposing a simple order on most sequences. Most
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research in software engineering to date has focused on how to structure programs and
how to describe programs without including all the details, not with how to describe the
wotld outside the software. So, the patterns in this chapter consist mainly of techniques
that have been applied to describing programs that solve control problems, adapted to
describing the problem itself.

11.1 State transitions

Objects in the world can take on different szates at different times: the air can take on
different temperatures, inventory items can be in different places, proposals can be
approved or not approved, a car can move at different speeds or sit stationary, and so on.
It is an axiom of states that at any time, an object is in exactly one of its possible states.

Controlling objects in the world entails causing them to take on desired states at
desired times. To control them, we must know what causes them to change state. For
some types of object, the rules by which they change state are best expressed in the form
of mathematical equations. For example, a satellite’s location relative to the Earth
changes continuously according to a set of differential equations. The density of the air,
wind speed and direction, and the positions of the elevators, ailerons, and rudder affect
the motion of an airplane according to a set of complex mathematical equations.

Deriving the specifications for software to control such objects is a highly special-
ized discipline which is a part of control theory. Here we will cover only a much more ele-
mentary type of causation: discrete events that cause an object to perform an action,
possibly switching from one state to another when the action is complete, where the
number of states is finite and very small—small enough that you can document each of
them one by one. The action performed by the object might vary depending on the
object’s current state.

A simple example is the light bulb in a room and the switch that turns it on and
off. The turn on event moves the light to the on state; the turn off event moves it to the
off state. This simple pair of state transitions is shown in figure 11.1(a). Each rectangle
represents a state that an object can be in for a duration of time; each arrow represents
an event.

Many kinds of objects react differently to the same events, depending on which
events have already happened to them. The simplest form of this type of state transition
is shown in figure 11.1(b): a light switch that toggles state each time it’s pressed.

A more complex example is dialing a telephone. The first digit you dial might be a
7, and the last digit you dial might be a 7, but the two, identical events cause different
effects in the telephone system. The first 7 initiates the call, stopping the dial tone; the
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(a) Different turn on

events changing
an object’s state off on

turn off

{b} Same event
having different
effects
depending on
object’s state

press button

button up,
light off

button down,
light on

press button

Figure 11.1 Simple state-transition diagrams

final 7 completes the call, causing the telephone equipment to generate a busy signal,
ringing sound, or recorded message, depending on what you dialed.

Figure 11.2 shows the behavior of 2 telephone line in the United States. There are a
number of simplifications: receiving a call (ringing and answering) is omitted, as well as
international dialing sequences, operator interruptions, special features like call waiting,
and nearly everything else outside the normal procedure of placing a call. The only
events are dialing numbers, hanging up and lifting the receiver, doing nothing for too
long while the phone is off hook and no call has been placed (timeout), and having the
other party hang up.

The diagram shows several fundamental techniques for keeping complexity under
control. When the same event has the same effect in many states, you can group the
states into a superstate, enclosed in a larger rectangle.* The hang up event can happen in
eleven different states, and in each case, the result is the same: the telephone line moves
to the on hook state. So all eleven states are grouped together into the off hook superstate.
Similarly, the timeout event applies to all states in the dialing superstate. Drawing the
superstates in thick gray lines helps reduce visual confusjon caused by closely spaced
paralle] lines.

As a complexity-reduction technique, even though there are actually different states
for each digit in the area code and each digit in the local number, the diagram collapses
them into two states each. There is actually more state information, not shown on the dia-
gram: the telephone number that is accumulated as digits are dialed. The state transition

The simplifying technique of the superstate comes from [Harel 1987]. [Harel 1987} also contains some
important extensions to state-transition diagrams not covered here, such as techniques for diagramming
concurrent states. Harel’s extended form of the state-transition diagram, which he calls a Statechart, is also
incorporated into UML; see [Rational 1997].
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Figure 11.2 State-transition diagram for a telephone line in the United States {simplified}

when the last digit is dialed depends on the state of the other telephone line: busy, avail-
able, or not working due to disconnection, change of phone number, and so forth. The
rule for which state becomes current after the last digit is dialed is not shown on the dia-
gram because it would cause clutter. The diagram is difficult enough to follow as it is.

You can omit whatever you like from the graphic because you always have the
option of explaining it all in text anyway. The more complex or tricky the diagram is,
the more you should consider adding an all-text description of the state transitions.
Graphics tend to leave important facts unstated, such as whether an event not shown is
impossible or is supposed to be ignored, and often there isn't room to describe activity
that occurs while a state is current, on entry to a state, on exit from a state, or special
conditions thar affect which state becomes current in response to a specific event.

UML provides some typographical conventions for putting all this text on the
diagram itself—italics means one thing, text after a slash means another, and so on—
though many people find them confusing when all are used at once in the same
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diagram. Always keep in mind that your goal is to fully document an object and its
states in the easiest way possible for a reader to understand, not to force every
description into a standard graphical notation. Text is the ever-reliable standby.

To fully document an object and its states, you need to include the following infor-

mation in one form or another:

A list of all the states

For each state, what, if anything, the object does during this state, or any externally
detectable difference about this state. For example, one state of a garage-door
opener is opening, during which the motor pulls the door open. In the light bulb’s
on state, the light is shining,

For each state, which events are possible, and for each possible event, how the
object responds while in that state: any action that the object performs, and the
object’s state after the event

Any additional state information of the sort that does not lend itself well to state-
transition diagrams, such as the telephone number accumulated while dialing

Which state is the start state, if any

Which state (or states) is the end state(s), if any

The following is a partial text version of figure 11.2.

Five state variables apply to each telephone line, in addition to the states shown in the
diagram:

area code A string of up to three digits: the area code being dialed, if the call
is long distance.

local number | A string of up to seven digits: the telephone number within the
area code.

timer A 60-second countdown timer. The timer is either off or counting
down (running).

transmit Where the telephone system sends audio signals originating from
the telephone line. Off if not transmitting.

receive The source of audio signals sent to the telephone line. Off if the
telephone system is not sending any audio signals.
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svents:

lift receiver Loop is closed. Possible only in on hook state. (The loop is the
electrical circuit thas goes through your telephone, connecting it to the
telephone companys equipment.)

hang up Loop is opened. Possible only in states other than on hook.

timeout The timer reaches zero by counting down.

01,234, A touch-tone or pulse digit is dialed.

567,89

other party Possible only during a call: the other party hangs up. The other

hangs up party is either the operator or another telephone line.

States and responses:

State Event Action Next State
on hook 0.9 — i on hook
(transmit off, - _
receive off lift receiver — dial tone
tmer off) timeout (Not supposed to on hook
happen.) Turn timer
off.
dial tone 0 — connected to
{(transmit off, operator
receive dial
tone, 1 -— in area code,
on entry, set awaiting first digit
timer to 60
° 2.9 local number = digit in local number,
seconds) o
awaiting 2nd..7th
digits
hang up — on hook
timeout — recorded message

for timeout
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State Event Action Next State
in area code, 0,1 | — recorded message
awaiting 1st for invalid number
digit .
(transmit off, 2.9 area code = digit in area code,
receive off, awaiting 2nd, 3rd
timer runs) digits
hang up — on hook
timeout — recorded message
for timeout
inareacode, 0.9 append digit to area if area code now has
awaiting 2nd, code three digits: in focal
3rd digits number, awaiting
(transmit off, 1st digit;
receive off, otherwise: in area
timer runs) code, awaiting 2nd,
3rd digits
hang up — on hook
timeout — recorded message

for timeout

(Remaining states omitted for brevity. )

connected to
other party
{(transmit to
line specified
by local
number, in
local area code
if no area code
dialed,
otherwise in
area code;
receive from
same line;
timer off)

0.9 — connected to other
party

hang up — on hook

timeout (Not supposed to connected to other

happen.) Turn timer
off.

party
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Notice that the table addresses what happens if there’s a timeout in each state. Look-
ing only at figure 11.2, it would have been easy to overlook this case, because it’s never
supposed to happen in some states, but it’s not physically impossible for it to happen
(the way a hang up event is impossible if the phone is on hook). This is probably insignif-
icant, but you can’t know that until you've checked every case. By writing a table, you
systematically address every possible case.

While the text doesn't show the big picture the way the diagram does, it does make
it easy to understand one state at a time. It’s easy to tell what the events are and whether
all the events have been covered. It’s easy to tell what the actions are. Everything is
spelled out, one point at a time. It’s easy to read it systematically, from beginning to end,
because it has a beginning and an end and a linear sequence leading from one to the
other. These are the strengths of a table and the weak points of a graphic. The handling
of spurious timeouts always leads back to the state that received the spurious timeout.
This is awkward to show in a graphic. All the states that are off hook but not dialing
would have to have an extra transition arrow leading back to themselves. But the table
has a cell for everything.

Because many states respond the same way to hang up and timeout, you can define
these responses in a separate table and refer to it as needed in the main table. This makes
it easier to modify the document in future revisions without introducing inconsisten-
cies. However, this also increases the danger of misinterpretation, since each state is not
described completely in one place. If there are only a few repetitions, it’s best to keep
them, in order to retain the simple table structure.

Another way to systematically address every event in every state is to draw a matrix
with one row for each event and one column for each state (or the other way around).
This works fine under the following conditions: there are no actions other than chang-
ing states, there aren’t so many columns that you can’t fit the matrix on the page, there
are no tricky state transitions involving conditions, or if you find another, readable way
to organize the information, perhaps by making a separate table of actions and includ-
ing references to it in the matrix.

The example above is meant to be very general; it’s filled with just the sorts of trou-
blesome irregularities that prevent many real life problems from fitting into a marrix.
Naturally, apply simpler means to simpler problems, as long as you include all the neces-
sary information.

Note that while the table makes the state-transition diagram in figure 11.2 redun-
dant, the table does not make the diagram useless. In the text, the relationships between
the states are difficult to grasp. Typically, a reader will read a little bit about one state,
refer to the diagram to check what states can transition to that state, continue a little
further in the text, go back to the diagram, and so on. Without the diagram, a reader
would either have to visualize everything in their head—very difficult for something like
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the telephone diagram—or try to comprehend all the state transitions purely abstractly,
with no visualization, a feat of which relatively few people are capable.

All this has an important implication for the diagram: you must not slap it out
carelessly or let a CASE tool arrange it automatically. Since its sole purpose is to help a
reader visualize, you must give careful thought to how you lay out all the elements. The
layout should be harmonious. The eye should be able to follow the flow of the diagram
easily. The diagram stresses what is conceptually important—something a CASE tool
knows nothing about. The dial tone state, for example, is the “home base” of dialing.
Therefore, instead of burying it in the middle, figure 11.2 puts it in the upper left, sur-
rounded by much more white space than most of the other states. The recorded message
for timeout state is an odd, unusual case, so it doestt line up with any of the other states.

These are the kinds of considerations to keep in mind when drawing a state-transi-
tion diagram. Faichfully representing the transitions is not enough. If you draw a snarl,
you mighe as well draw nothing ar all, because the text already provides a complete
description (even though it gives the reader no help with visualizing). If you draw a snarl
diagram without the text, then you might as well not bother writing a document.

11.1.1 Naming states and events

Be sure to name states in such a way that it is obvious that they are states and not events,
and events so that it is obvious that they are events and not stares. It’s surprisingly easy
to do it the other way around. For example, it might be tempting to call the hang up
event on hook, since the event consists of making the telephone line “on hook.” But
that’s exactly why you should not call the event on hook: that's the state that persists
when the event is done. Another common tempration is to name a state for the event
that normally follows it; for example, dial 1st digit instead of dial tone.

The name of an event should be cither a verb or a noun (or a phrase that functions
as a verb or noun) that clearly suggests an event that happens at a certain time and is
over. Another option for hang up, then, is go on hook. In the telephone example, the
names for digits are nouns; in context—that is, inside a description of dialing a tele-
phone number—these clearly denote events.

The name of a state should be an adjective or a noun (or a phrase that functions as
an adjective or noun) that clearly suggests a state that can persist through time. You
should be able to use it in a sentence that says, “An object of this type is either 4 or B,
where A and Bare state names. A light bulb, for example, is on or off.*

An important type of adjective for naming states is the participle: a verb that has
been converted into an adjective. English has two kinds of participles: present participles

* The words onand offare also prepositions in English, but in the sentence “A light bulb is either on or off,”
they function as adjectives. Most words in English can function in more than one part of speech, making
it difficult to invent terminology that is both clear and very concise.
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and past participles. The present participle is the verb with -ing added: blinking, running,
printing.* The past participle is usually identical to the past tense: connected, depleted,
magnetized. Some irregular verbs have a past participle that is different from their past
tense such as broken, shown, and done. If you're not sure which is the past tense and
which is the past participle, the past participle is the one that fits into this sentence:
“The object is past-participle.”

The following are a number of words that are often useful when naming states and
events:

States Events

start start

in header segment create

target acquired acquire target

got password get password (or just password)
detected intrusion detect intrusion (or just intrusion)

received confirmation (or confirmed) receive confirmation (or just confirmation)
awaiting confirmation status changes

done abort

The word start appears in both columns, because it’s often useful for both states
and events, though not when describing the same object, of course. As a state, startis a
good name for the state that an object is in before it has undergone any events. As an
event, start is a good name for the event that begins the process described by the state-
transition diagram.

11.1.2 Four interpretations
State-transition diagrams (and tables) suffer from a fundamental ambiguity. They can be
intended—and interpreted—in any of the following four ways:
e The events that come out of any state are the only events possible when the object is
in that state. If an event is not shown, then it is impossible.

« The events that come out of any state are how the object responds to events when in
that state. If an event is not shown, then it has no effect or is impossible.

* The -ingending also indicates another form of the verb, the gerund, bur this distinction is more subtle than
nced concern us when naming states.
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* The events that come out of any state are the only evenrs allowable when the
object is in that state. If an event is not shown, then the system must prevent it
from happening.

* The events that come out of any state are the desired response of the object to events
when in that state. If an event is not shown, then it is either impossible or the
desired response is to ignore the event.

The first two possible interpretations are as problem-domain description: the first is
adescription of a set of all possible sequences of events (discussed on page 203); the sec-
ond is a description of causal rules. The third and fourth interpretations are as prescrip-
tive statements—design decisions to be implemented, whether requirements or
specifications.

If you were writing a requirements document for software to control an automated
telephone dialer for a business, then the state-transition diagram for a telephone line in
figure 11.2 would be purely descriptive. It would tell how the telephone line responds to
events, for the purpose of enabling the programmers to design software to control the
telephone line. The requirements would say that the dialer places calls to telephone
numbers and at times according to rules stated elsewhere in the document. The pro-
grammers rely on the truth of the statements in the text form of the table, such as what
the transmit and receive lines are connected to in different states, in order to create a
design that fulfills the requirements.

On the other hand, if you were writing a requirements document for software to
control the equipment at the telephone company that connects calls, then you would
intend figure 11.2 prescriptively. In this case, the statements in the text form of the table
about what the transmit and receive lines are connected to in different states would be
the requirements. The programmers wouldn'c rely on those statements being true. Their
job would be to make them true. The document would need other, purely descriptive
statements that tell what events connect the transmit and receive channels to the various
telephone lines, recorded messages, and so on. The programmers would rely on those
statements when designing the part of the specification concerned with changing the
states of those channels.

To resolve the ambiguity, you must explicitly indicate which interpretation is cor-
rect. You can easily accomplish this with a sentence introducing the diagram or table:

The following diagram shows all events that affect the oxygen sensor:
The oxygen sensor responds to events as shown below:

R-3.1 For each state of the oxygen sensor, the system allows only the
events shown below to occur:

R-3.1 The oxygen sensor responds to events as shown below:
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In the third and fourth examples, the fact that the statements are requirements is
indicated by giving it a requirement number and setting it in the font reserved for
requirements. To make the distinction even clearer, you can add a modal verb, like must
or shall, though if you do so, you should word all requirement statements that way con-
sistently, and modal verbs make some statements rather wordy.* Including it in a section
titled “Requirements” also helps, especially if that section contains no domain-descrip-
tion statements.t Finally, by wording the descriptions of the actions as commands, such
as “append digiz to local number,” you reinforce that you are making prescriptive state-
ments; by wording them as indicative sentences, such as “digiz appends to local number,”
you reinforce that you are making descriptive statements.

In requirements documents for software that controls equipment or other software,
often you actually need to write very litcle description of the causal rules followed by the
controlled objects, because this documentation already exists. You can simply refer the
reader to the appropriate documentation. (Be sure that it’s readily available.) For soft-
ware that controls new equipment, however, often there is no documentation available
which is suitable for use by software developers. A new manufacturing robot is unlikely
to have a state table documented already; your task of writing the software requirements
is just one stage of the whole job of designing the robot.

The third interpretation most often applies to software that is supposed to guide
something through a certain process when it might otherwise go around the process or
stop at one point in the process, such as approving a proposal. The following are some
states that a typical type of proposal moves through: awaiting approval by department
chair, awaiting approval by dean, awaiting approval by provost, awaiting approval by board of
trustees, approved. Such a set of state transitions is equivalent to saying: a proposal is not
to be marked as approved unless approved by the chair, the dean, the provost, and the
board of trustess; the dean is to be notified when the chair approves; the provost is to be
notified when the dean approves; and so on.

A state-transition diagram in a specification is not subject to ambiguity between
descriptive and prescriptive interpretations because a specification describes only the
designed—that is, desired—behavior of the system at the interface between the system
and the problem domain. Therefore, only the prescriptive interpretations make sense;
you don’t need to explicitly disavow the descriptive ones. Furthermore, the specification
describes little other than how the system responds to events, so usually only the fourth
interpretation is reasonable. The introductory sentence still doesn't hurr, though.

* See Requirement statementsin chapter 15.

T This is a matter of document organization, the subject of chapter 14.
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11.2 Actions

Software that solves a control problem causes actions that bring about desired results,
The desired results are usually functions of other actions, which the software doesn’t
cause, like button-presses on a photocopier’s control panel or changes to a camera’s focus
to sharpen an image. The software usually can't bring abour the desired results directly.
For example, the microprocessor in a photocopier cant produce copies directly. The
microprocessor can only affect the voltage of wires directly connected to it. State-
changes in these wires, in turn, cause a chain of further actions that result in the creation
of a photocopy.
Thus, in a control problem, there can be three types of action to document:

* Spontaneous actions: those initiated in the problem domain, such as the button-
presses at the photocopier’s control panel.

* Immediate actions: those that the software can initiate directly, such as changing the
voltage of wires. An immediate action is shared phenomena; it’s simultaneously an
action in the software and an action in the problem domain.

* Mediate actions: those that are caused by other actions, such as the actual produc-
tion of the photocopy. A mediate action can be caused by a spontaneous action, an
immediate action, or another mediate action.

Most control problems boil down to this: “How can the software make the right
mediate actions happen in response to the right spontaneous actions?”

These types of actions are not mutually exclusive. An action thar can occur sponta-
neously might also be indirectly causable by the computer. In this case, it would have
two modes of causation: spontaneous and mediate,

The word spontaneous might seem inappropriate, since a button-press doesn't
really occur spontancously. A person presses a button, so it might seem to be a medi-
ate event caused by a person, and this action, in turn, might be caused by someone
else needing to prepare some hand-outs for a meeting. However, the above classifica-
tion of actions is strictly in relation to the software. Spontaneous actions are those
that, from the perspective of the software, happen “out of the blue,” not as a conse-
quence of any other action in the problem domain. A person pressing a button is just
something that happens—in this case, something that charges the software with the
duty of making something else happen.

The same action does not always cause the same result. The roller that feeds paper
into a printer might succeed in getting a sheet of paper and might fail. In a high-preci-
sion printer, the roller might bring the sheet into the printer at the wrong orientation.
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So the result of roller turns would be the entire set of possible orientations, plus the pos-
sibility of not getting a sheet of paper at all.

The words action and event mean roughly the same thing, though event suggests a
very short action, perhaps even one that can be located at a single point in time, or the
beginning or end of an action. We'll use the word action as the more general term, limit-
ing event to the narrower sense, especially to mean a short action that affects the state of
an object, as described in section 11.1.

The information needed to document each action is as follows:

* The type of causation: spontaneous, immediate, or mediate. Instead of using
these somewhat esoteric words, you can simply group actions of each type
together, preceded by a statement like, “The microprocessor can cause the follow-
ing actions directly.”

* All of the types of objects involved in the action: the objects that do the action,
such as the buttons on the control panel, and any objects that are affected by the
action, such as the sheet of paper turned by the feed roller. The objects that do the
action might also be affected by it. Direct actions are done by the computer; group-
ing them with the other direct actions indicates their “doer.” The list of objects
involved in the action is sometimes called its signarure.

* Any parameters that the action has: attributes of the action that can vary from
instance to instance, such as specifically which objects are affected

* In the case of indirect actions, the condition or event that triggers the action: “hap-
pens when.”

* If the action continues as long as a certain condition is true, like a servomotor that
turns as long as a certain wire is at 9 volts, then say this explicitly: “happens while.”

* The duration of the action, unless the action is short enough that its duration can

be disregarded

* All the possible results of the action: for each object affected, whar effects can there
be? The results of an action can themselves be events that trigger other actions or
cause state transitions in objects. For example, “successfully connect telephone
lines” might be one result of the action of placing a call; “get busy signal” is another.

Also helpful is to include the relative frequencies of each result, for example, success
95% of the time, failure 5%.

* If more than one result is possible, how, or whether, the software can detect which
actually occurred

Here are two examples of complete documentation of an action. First, from a pho-
tocopier:
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feed original
Objects: Feed roller A, original

Happens when: Output line 0xA0, bir 1 goes high for 0.4 sec.

Duration: 0.4 sec (happens while output line 0xAO, bit 1 s high)

Possible results: ()] Original is on glass platen, face down. (97% probability if there
Was an original in the feed slot.)

(2) Original is not on glass platen, (3% probability if original was in
feed slot, 100% if i¢ wasn’.)

If and only if result (1) has occurred, microswitch B js activated.

Second, from a warehouse:

pick item

Participants: Stock picker, items, storage locations.
Parameters: List of one or more items and storage locations where they reside.
Happens when:  Printed order, showing list of items and storage locations, is at

printer A, and a stock picker detaches the order.

Duration: From the time the stock picker detaches the order, less than 5 min.
In most cases; if more than 10 min., there s a problem (see below),

Possible results: (1) The stock picker finds the items and brings them to the packing
station.

(2) The stock picker searches for the items, but fails to find one or
more,

(3) The stock picker never gets the order and/or never searches for
the items.

After 10 min., it is safe to assume that either (2) or (3) has happened.
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The fact that an action can have more than one result has an important implication
for requirements. What is the desired response for each result? For example, if the feed
roller fails to bring a sheet of paper into the photocopier, what should it do? Display a
light? Try again? How many times before giving up? In the warehouse, a stock picker
goes to the warehouse to get an item and it’s not there, even though the database says
that it’s in stock. What should the software do? Notify someone? Cancel the order?
Change the order?

This means that there are two kinds of requirements in a typical control problem:
those involving a relation between a trigger event and a desired result, such as “when the
start button is pressed, make a copy,” and those pertaining to everything that can possi-
bly go wrong in the process that brings about that result—or rather, every alternative
sequence of actions within that process.

The above discussion is as general as possible. In the vast majority of control prob-
lems, however, you can write documentation that is much easier to understand than a
long list of actions. It’s quite unnecessary to present the programmers with a jigsaw puz-
Zle of actions to assemble into a sequence that produces the desised behavior because, in
nearly all cases, the person who designed the machinery or procedures already under-
stands the sequence in which they’re supposed to happen.

Photocopying, for example, consists of a series of events planned out by the engi-
neer who designed the photocopier. You can explicitly describe the intended series of
events and then, for each action in the series, ask the engineer what all the possible
results are and what is the desired response for each. The same principle applies when
asking about and documenting procedures in a business.

Techniques for simplifying the description of the causal properties of the prob-
lem domain, based on a designer’s intended sequence of events, are given in the next
two sections.

11.3 Dependency

A photocopier works as follows. Inside the photocopier there is a surface coated with a
substance that is a strong resistor in the dark but a good conductor where exposed to
light. In most modern photocopiers, this surface is usually on the outside of a rotating
drum or belt, called the photoreceptor drum or photoreceptor belt. A corona wire sprays
ions onto the photoreceptor surface, charging it at every point. An image of the paper to
be copied is then projected onto the photoreceptor. Wherever light shines, the charge
leaks away. Thus, after exposure, the photoreceptor bears an image that is a copy of the
image on the paper. The photoreceptor image, however, is made of electric charges
rather than ink.
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Next, toner—tiny, dark particles—js brought into contact with the photorecepror.

The toner has a staric charge, applied at the factory where the roner i made, that is
Opposite to the charge of the photoreceptor image, making the toner stick to the photo-
receptor at the regions corresponding to the dark regions of the original.

While the toner is being applied to the photoreceptor, another corona wire charges
a blank sheet of Paper with a charge of the same sign as that on the Photoreceptor but of
greater intensity. When the Paper is brought into contact with the photoreceptor, the
toner moves to the paper. Finally, the toner is fused to the paper by moving through a
pair of heated rollers, and the paper is sent to the output tray. Any remaining charge on

readying the Photoreceptor for the next copy.
The entire process is shown in figure 11.3.

Lens
Photoreceptor pelr
receives electrostatic image
of original
Corona wire A p’: Q
charges photoreceptor beft (. ———————
C Magnetic brush
Cleaning brush — applies toner to beft
remaves stray toner
\\
Eraser
femoves charge ——— E
To output tray .
o
) Feed rofler
Fusing roflers \ @  getsblank sheet
melt toner into sheet from paper tray
Transfer rollers

apply toner to sheet Corona wire B

charges blank sheet

Figure 11.3 Parts of a photocopier and their functions
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The requirements for the photocopier’s controller are simple:

R-1 When the start button is pressed, if there is an original in the feed slot, the photo-
copier makes /V copies of it, and places them in the output tray.

Nis the number currently registering in the count display.
If the start button is pressed while photocopying is in progress, it has no effect.

R-2 The number NVin the count display updates in response to button-presses accord-
ing to the following state table.

At power-on, N« 1, and current state is sart.

State Button Response Next State
start 0 — start
1.9 N « button in number
clear i — start
start - start
- — _'_ _— — — —_— . .
interrupt | — start
in number 0.9 If N2 100, beep. in number
Otherwise: N «— N x 10 + burton.
clear Ne1 start
start — ! start
interrupt — ! start

For simplicity, we'll ignore double-sided copies, sorting and collating, indicating
that the fusing rollers are not warmed up yet, and so on. Descriptions of the buttons
and how to control the display are simple and are omitted in this example.

How, then, should you describe the process by which the copies are made? Should
you explain the principles of electrostatics and the properties of the amorphous
selenium on the photoreceptor surface? Should you describe each of the events—the
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erasing of the charge, the cleaning of the surface, the charging of the surface, the expo-
sure to the image, and so on-—in a random order and leave it to the programmers to fig-
ure out how to make the copy come out?

Of course, there are much better ways. Since the designer of the photocopier—the
system engineer—already knows the sequence in which each action is to occur, you can
put this into the requirements. A dependency diagram, such as figure 11.4, shows what
conditions must obtain before an action is supposed to happen and what conditions can
result when the action is complete. Note that the dependency diagram says when
actions must occur in order for a certain final result to occur. The preconditions shown
in the diagram are not trigger conditions; they do not cause the action to occur. Rather,

it is the responsibility of the software to cause the action when the preconditions
become true.

Feed original only to
make first copy: original
original avaifable stays on glass platen remove
until beit is exposed for original
the last copy.

Belt must cycle once
before first copy after
power-on, to ensure

f_egd that belt is charged.
original original on last image
glass platen exposed
beit charge
charged belt
no original roner

expose belt

on glass plate: .
glass praten to light

removed
blank sheet
available

electrostatic

. remove
image on beit

notify

operator

stray toner

belt
transfer erased
copy toner

charged

no sheet
erase

charge

toner
on copy

sheet in
feeder

copy
complete

fusing rollers
heated

move
copy to
output tray,

Figure 11.4 Dependency diagram showing results and preconditions of each action in the pro-
cess of producing a single photocopy
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Each circle represents an action; each arrow represents a condition. All the arrows
emerging from an action are all the possible results of that action. The results are not
necessarily mutually exclusive. All of the conditions resulting from an action could be
crue at once. An arrow with no label means only “action complete.” The arrows leading
into an action are the preconditions for that action. When all those conditions become
true, the action is ready to begin.

For each condition, you must also document how the software can detect whether
the condition is true or false. For software that controls machinery, you can usually
accomplish this with a simple table relating bits in input/output ports to conditions. In
business applications, some conditions might be accessible only by manual data entry,
while for others there are machines to detect them, such as bar code readers that indicate
when a part has reached a certain place on an assembly line.

Figure 11.4 makes life much easier for the programmers than simply describing the
effects of all twelve actions and telling them to implement requirement R-1. You can
also supplement it with text by adding a “perform when” or “ready when” line to each
action’s description, as in the example below. Another way is to collect all the “perform
when” lines together into a section of the document that describes only the process. This
is helpful when the same actions are parts of several different processes. The diagram
helps readers see how all the actions fit together; the text version is better for systematic
reading and double checking.

feed original

Objects: Feed roller A, original

Happens when: ~ Output line 0xAO, bit 1 goes high for 0.4 sec.
Duration: 0.4 sec (happens while output line 0xAQ, bit 1 is high)

Possible results: (1) Original is on glass platen, face down. (97% probability if

there was an original in the feed slot.)

(2) Original is not on glass platen. (3% probability if original
was in feed slot, 100% if it wasn’t.)

If and only if result (1) has occurred, microswitch B is activated.

While copying, Original available AND blank sheet available AND fusing
perform when: rollers heated.

226 CHAPTER 11 CAUSATION AND CONTROL




Note that the entire process in figure 11.4 is itself an action, and could be repre-
sented by a single circle in another, higher-level dependency diagram. The pressing of
the start button is omitted from figure 11.4 because the Process occurs once per copy,
but one press of the start button can produce up to 999 copies. The notation does not

Figure 11.4 introduces a new requirement, to address two ways that the process can

fail:

R-3 While making a copy, the following events happen in response to failures:

Action Failure Response
R-3.1  feed original no original on glass Beep, and abort copying process.
platen

R-3.2  feed blank COpY  noshestin feeder 1. Beep, and turn on paper empty
light.
2. When start button s pressed, turn
off paper empty light, and resume
copying process with M copies
remaining; M= N- number of
copies produced so far.

_

All the other actions are merely part of the process for fulfilling requirement R-1.
You could describe them as requirements, but they’re really just the means available to
make copies. The people who design the specification are interested in proving that cop-
fes get made when the user presses the start button, not that corona wire A charges the
photoreceptor belt. The diagram shows the reader how to combine all the actions to
make a copy; the real requirement, however, is just to make a copy. If you do make
requirement statements out of figure 11.4, be sure to indicate that they are secondary to
the main requirement of R-1. The reader should understand thar R-1 s the end while
the clockwork of actions is the means,
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button when the preconditions for copying are false: original available, blank sheet avail-
able, and fusing rollers heated. They’re omitted here for reasons of space.
It’s possible to make figure 11.4 simpler by exploiting this principle:

The only information about the problem domain of relevance to a control
problem is that which pertains to alternative actions that could occur at
any point in time.

Most of the actions have only one possible result—or at least, for purposes of the
diagram, they are assumed to have only one possible result. Therefore, for purposes of
inventing the specification, it doesn’t matter what the resulting condition is. All that
matters is that the action completed. Figure 11.5 omits the unconditional results, leav-
ing only completion arrows. The beit charged condition remains because it has to be true
before the first copying cycle can begin.

Feed original only to
make first copy; original

original available stays on glass platen untit remove Belt must cycle once
belt is exposed for the original before first copy after
foed last copy. \ power-on, to ensure
ee that belt is charged.
original original on last image
glass platen exposed
belt charge
charged belt
no original

expose belt
to light

on glass platen

blank sheet
available

remove
stray toner

notify
operator

transfer
toner
to copy

no sheet

in feeder erase

) chart
sheet in arge

feeder

fusing roflers
heated

move
copy to
output tray,

Figure 11.5 Simplified dependency diagram, omitting conditions assumed to occur uncondition-
ally upon completion of an action
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Including the conditions can still be valuable in order to show readers in graphical
form what the result of each action is. There is a trade off, however. By omitting uncon-
ditional results, figure 11.5 directs your eye straight to the conditions that require spe-
cial treatment in the specification; you can tell at a glance which conditions you need to
detect and which conditions are just there for background knowledge. A diagram
like 11.4 can provide the necessary background knowledge to understand the depen-
dency diagram, so usually there is no need to repeat it.

The number of actions with unconditional results in figure 11.5 suggests a way
to simplify the diagram even more, shown in figure 11.6. In fact, all of the actions
from transfer toner to copy to charge belt are, from the standpoint of the software,
just one action: rotating the belt. When the blank copy reaches point B, rotating the

remove
original

Feed original only to
make first copy; original
stays on glass platen unti!
belt is exposed for the
last copy.

original available

last image

feed
original

original on
glass platen

to light

Belt must cycle once
before first copy after
power-on, to ensure
that belt is charged.

no orjginal
on glass platen

blank sheet
availabie

rotate
belt (1)

notify
operator

rotate

belt {2} ais any

arbitrarily
chosen point on
the belt.\ A

move
copy to
output tray,

and Bare
fixed points on
the copier, outside

& the belt,

fusing rofters
heated

Figure 11.6 Final dependency diagram for photocopier, showing only actions and conditions
where the software faces an alternative
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belt also rotates the copy through the fusing rollers, so there’s no need for a separate
step to fuse the toner to the paper. When a portion of the belt passes by a corona
wire, that portion of the belt is charged by the ions spraying from the corona wire,
and so on.

The two rotate-belt actions are to stop when point 2 on the belt reaches specified
fixed points A and B. How to determine when point z has reached points Aand Bis a
matter for the text. There could be switches at points 4 and B, or pethaps the only way
for the software to tell is by timing.

These three dependency diagrams, each simpler than the previous, illustrate a very
frequent phenomenon in system analysis: the more you think about the problem, the
simpler it becomes. Sometimes the opposite is claimed, and indeed sometimes the
opposite is true, but one of the most important jobs performed by a system analyst is to
boil all the complexity down, discovering the simple, underlying principles and remov-
ing irrelevant details. A simple diagram, accompanied by some simple text that includes
all the information in an easily understood form, is usually the result of much greater
intellectual effort than a sprawling, complex diagram in which secondary or irrelevant
details obscure the main facts. A reader should not have to study a diagram for two
weeks and then draw his own, simpler diagram; that’s the analyst’s job.

There are other ways to make dependency diagrams. [Martin 1985] includes
(among other variations) notations for indicating that if any of a set of conditions is
true, an action should proceed. The approach taken here, however, is that it’s easier and
clearer to simply write the word “or” in the diagram, and to express in words any infor-
mation that’s difficult to draw in a graphic. Also, note that diagrams 11.4 through 11.6
describe the problem domain, not the software.

The types of concurrent processes described by dependency diagrams are the sub-
ject matter of an entire branch of mathematics, known as Petri nets. A dependency dia-
gram is really just a somewhat less formal and somewhat more readable version of a
standard Petri net diagram.

11.3.1 Interruptions

Complicating most control problems, especially those involving the control of machin-
ery, is the possibility of interruptions: spontaneous actions that can occur at any time and
that necessitate stopping a process, possibly aborting it, or recovering in some way once
the interruption has finished.

For each possible interruption, the requirements document needs to include the

following information:
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* The nature of the interruption. In the photocopier, examples would be paper jams
and door openings.

* Any effects of the interruption. Opening the door of the photocopier, for example,
causes all charge to be removed from the photoreceptor belt, destroying any electro-

* Any parameters that can vary from one instance of the interruption to the next

* How the interruption can be detected. For example, detector switches in the photo-
copier that connect to /O ports on the microprocessor

* Which actions the interruption can interrupt

* How to respond to the interruption; especially, how or whether to resume the
interrupted process

The last item is usually another requirement; it's equivalent to the requirement for
how to respond to 2 failed action. In the Photocopier, responding to a jam involves
beeping, turning on a light corresponding to the jam, and waiting for the operator to fix
the jam, Resuming the interrupted process, however, can be more complicared. Perhaps
the current step can be restarted, perhaps it’s necessary to back up one or more steps,

different compound.,

We think of the people or machines as active, and the objects that they operate on
as passive. The people or machines are the agents of the software, performing operations
on the passive objects in fesponse to requests initiated by the software, readying the
objects for the nexe phase of the process.*

This kind of process lends itself well to a variation on 3 depcndcncy diagram,

* The noun corresponding to passive is patient, but in contemporary usage, the only patients that we call by
that name are the ones found in doctors’ offices, so we'll just call them passive objects or simply objecss.
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Figure 11.7 Two processes in a book distributor's warehouse, depicted in flow diagrams

transformed, ready for a transformation, or both. Figure 11.7 shows two examples,
from a book distributor’s warehouse.

These diagrams are very similar to the much-criticized data-flow diagrams. There
are two important differences. The first difference is that what is flowing is not data, but
physical objects—in this case, books. For this reason, we'll call this simply a flow dia-
gram, not a data-flow diagram.* There is some information flowing, such as the stock

* Gane-Sarson charts are a kind of data-flow diagram that also allows “physical flows.” See [Martin 1985],
p. 103,
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pickers’ notification that they can' find a book, bur the data does not necessarily flow to
or from the software. The diagram simply traces objects through a set of transformations
by agents.

The second difference is the way we use a flow diagram. A flow diagram describes
something that already exists or, at least, thar is already designed. It is not a high-level
sketch of the program to be designed. Rather, it provides information about the problem
domain that is relevant to the design of the program. The accompanying text provides
all the remaining detail: how the stock pickers can be told to go to the warehouse to pick
books, rules for determining which orders to satisfy and which to reject, and so on. So
we aren't trying to design by functional decomposition; we're merely describing a flow in
asimple way.

Even though many agents or actions in a flow diagram produce only one result, the
diagram shows the result in words in each case, The reason for this difference from a
dependency diagram is thar the purpose of a flow diagram is to show a reader the conti-
nuity from process to process. A reader should be able to easily trace each object as it
moves from agent to agent.

Naturally, there is no reason that you can’t combine a dependency diagram with a
flow diagram. Figure 11.7(b) does that to some extent, with the thinner arrows denoting
problems encountered by the stock pickers, shippers, and delivery services.

11.5 Rules

The following is from page 7 of the instructions for the 1997 edition of Form 1040, the
form for decla.ring income, expenses, and taxes owed to the United States government:

| THEN file a
return if your

AND at the end of gross income**
IF your filing status is ... 1997 you were* ... was at least ...
Single under 65 $6,800

65 or older 7800
Married filing jointly* * * under 65 (both spouses) $12,200

65 or older (one spouse) 13,000

65 or older {both spouses) 13,800
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Married filing separately any age $2,650

Head of household under 65 $8,700
{see page 10)

65 or older 9,700
Qualifying widowl(er} with under 65 $9,550
dependent child
{see page 10) 65 or older 10,350

*If you turned 65 on January 1, 1998, you are considered to be age 65 at the end of
1997.

**Gross income means all income that you received in the form of money, goods,
property, and services that is not exempt from tax, including any gain on the sale of
your home (even if you may exclude or postpone part or all of the gain). Do not in-
clude social security benefits unless you are married filing a separate return and you
lived with your spouse at any time in 1997.

***if vou did not live with your spouse at the end of 1997 {or on the date your spouse
died) and your gross income was at least $2,650, you must file a return regardiess of
your age.

Here we have a first-rate description of a moderately complex rule.* The descrip-
tion techniques applied here work well on a great many rules. They are:

¢ Make a table (a matrix).

« Keep complicated exceptions and definitions out of the table and in notes that
accompany the table.

* The instructions prepared by the United States Internal Revenue Service are some of the finest technical
writing in existence. They’re hard to appreciate because you read them only to do a task you would much
rather not do, but that makes them all the more worthy of appreciation. The instructions are written for
an audience that does not want to read them. Much of the audience does not read well or is uncomfortable
with arithmetic, and the information to be communicated is tremendously complicated—special cases and
exceptions abound. We learn far more from imitating great examples than from abstract explanations—
even those in this book—but in the compurer field, due to the fact that nearly all work is proprictary, we
seldom have opportunity to inspect great examples. But you can learn from other sources, too. In the Form
1040 instructions, notice how complex the information is, how simple the presentation is, and the tech-
niques of wording, layout, and organization that bring about that simplicity. There are clever flow charts,
effective use of shading to make numerical charts easier to read, lines of text that don’t contain too many
characters (see Page layout in chapter 15), references to other pages and other documents in place of saying
100 many things at once, and so on.
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A terrible way present this same rule would be to split it into many complete sen-
tences, like this:

R-22 If your filing status was single and at the end of 1997 you were under age 65 and
your gross income was at least $6,800, then you must file a return.

R-23 If your filing status was single and at the end of 1997 you were age 65 or older
and your gross income was at least $7,800, then you must file a return.

R-24 If your filing status is married filing jointly and you did not live with your spouse
at the end of 1997 or on the date your spouse died and your gross income was at least
$2,650, then you must file a return.

R-25 If your filing status is married filing jointly and you lived with your spouse at the
end of 1997 or on the date your spouse died and at the end of 1997 both spouses were
under age 65 and your gross income was at least $12,000, then you must file a reurn,

R-26 If your filing status is married filing joindy and you lived with your spouse at the
end of 1997 or on the date your spouse died and at the end of 1997 only one spouse
was age 65 or older and your gross income was at least $13,000, then you must file a
return.

And so on.

Notice that in the one-statement-at-a-time version, you can't easily see relationships
between different parts of the rule. For example, you can' easily see that every rule per-
tains to whether or not you're supposed to file a return! The fact that each filing starus
has a cut-off point of age 65 for different minimum gross incomes is also buried in the
text. Finally, the text has serious problems with ambiguity because English syntax has
difficulties expressing any but the simplest 4nd and or relationships.*

11.5.1 Mappings and completeness

Every rule is a mapping: a set of tuples, each containing an element from one set and a
corresponding element from another set (or perhaps involving more than two sets).
Rules are thus exactly the same as the relations described in chaper 9.

* The practice of writing requirements as long series of nearly identical statements derives from the unfor-
tunate theory that a requirement should be “atomic”—incapable of division into smaller propositions. A
much better philosophy is that each proposition should be clear to the reader and that groups of proposi-
tions should be numbered according to whatever is most convenient for referring to them in other docu-
ments. See Requirement statementsin chapter 15.
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trouble types departments

terminal/workstation won't respond

network administrators

need new connection wired up
web-access problems maintenance

TeX problems

software gurus
Mathematica problems

printer problems Macintosh lab staff

Figure 11.8 Domain and range in trouble-ticket rule

However, chapter 9 explained how to describe a set of tuples that could potentially
be included in a relation—the cardinality of the relation and the kinds of sets that it
relates. When describing a rule, you indicate the actual tuples in the relation. You don't
merely say, “Every combination of filing status, age, and gross income has a correspond-
ing yes or no for whether to fle a return.” You actually say which combinations of filing
status, age, and gross income correspond to having to file a return.

A simple rule is shown in figure 11.8, relating classifications of trouble tickets in a
university computer system to the departments that fix them. A piece of software might
be responsible for routing trouble tickets to the correct deparument.

The set on the left, trouble type, s the set of all possible inputs to the rule. The job
of the rule is to produce the output that corresponds to a given input. The set of inputs
is called the domain of the relation; a variable that stands for an element of the domain is
called an independent variable. The set of all possible outputs is called the range a vari-
able that stands for a corresponding element of the range is called a dependent variable.

A rule is complete and consistent if it maps cach element in the domain to exactly
one corresponding element in the range. Elements in the range need not map back to
the domain in the same way. In figure 11.8, none of the trouble types maps to Macintosh
lab staff, and the rest of the departments map back to more than one trouble type.

* Unfortunately, the word domain also means any st distinguished for the purpose of making propositions
about its elements, as in chapter 4, and the word range also means a set of clements having a lower bound
and an upper bound. Hopefully this multiplicity of senses won't cause too much confusion.
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If, for some reason, a single trouble type could map to more than one department,
then the range would be “sets of departments” rather than just “departments.”

While you can sometimes depict the tuples that make up a rule by drawing lines
from one set to another, as in figure 11.8, usually a matrix is your best bet:

trouble type department
terminal/workstation won't respond network administrators
need new connection wired up maintenance
web-access problems network administrators
TeX problems software gurus
Mathematica problems software gurus
printer problems maintenance

i other software gurus

11.5.2 Discontinuities

In the case of the rule for filing tax returns, the range is very small: {must file tax return,
need not file tax return}. But the range is enormous: it’s the set of all combinations of all
filing statuses, ages, and gross incomes. The complete rule looks like this:

((Single, age 0, gross income $0), no need to file return)
((Single, age 0, gross income $1), no need to file return)
((Single, age 0, gross income $2), no need to file return)
((Single, age 0, gross income $3), no need to file return)

The excerpt from the Form 1040 instructions illustrates an important technique in
rules with very large domains: exploit discontinuities in the rule—borders in the domain
between subsets that follow different, simple patterns. Where many elements of the
domain follow a simple pattern, you can cover them all in a single row or column of a
matrix, as at the beginning of section 11.5. A separate row or column covers the next
group, and so on. Thus, you reduce a complex rule to a conjunction of simple ones.
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Usually, it’s obvious when you can exploit discontinuities, but if you're having
difficulty describing a rule, it’s wise to see if you can find a relatively small number of
discontinuities.

11.5.3 The bird’s-eye view

Sometimes it’s tempting to describe a rule by writing it in program code or in “struc-
tured English” pseudocode. For example, when describing the rule for how lines from
the record groups in a report fit onto pages, in between the header and footer, you might
write the rule as a procedure, like this:

N=0
print header
while there is at least one more record-line
print next record-line
N=N+1
if N > page-lines - (header-lines + footer lines}
print footer
eject page
end if

end while

Much better is to take a bird’s-eye view of the record lines, and talk about entire
groups of them at once, like this:

N = page-lines - (header-lines + footer-lines).

Distribute record-lines to pages as follows. Each consecutive page contains either
the next N record-lines, or however many record-lines are left to print, whichever
is less. For each page, print the following in sequence:

The header.
The record-lines for this page, in ascending order.
The footer.
Page break.

If you take a moment to look at the pseudocode above, you'll notice that it’s full of
bugs. Despite the best efforts of language designers, general-purpose programming
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languages are terrible ways to describe almost anything but computer programs.
Programming languages, after all, are devices for configuring hardware, nor for
communicating mathemarical relations or business rules or anything else. There s 5
feason why mathematicians don’ talk to each other in Fortran and accountants don’t
talk to each other in COBOL. Leave programming to the programmers_*

_—

If you're not a programmer, you’re probably no¢ accustomed to spotting this kind of bug. Even program-
mers make these bugs frequently. The bugs are: the header prints only on the first page; the total number
of lines printed on each page is one more than page-lines; and the program does not print a footer og the
last page or eject the Jast Page unless the last record-line in the report also comes ar the very end of a page.
It’s amazing how many mistakes can find their Way into a short segment of pseudocode!
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CHAPTTER 1T 2

Special topics
12.1 Elicitation

Elicitation, the process of interviewing people to learn abour the problem domain and
discover requirements, goes beyond the scope of this book, as it includes many elements
that are unrelated to documentation, such as:

* Navigating through an organization to find the people who really understand the
problem. Because of their thorough knowledge, these people are usually the busiest
in the organization and don'’t have time to talk.

* Asking people questions that, to them, seem stupid or ignorant without losing your

credibility
* Resolving contradictions between statements made by different people
* Noticing that different people are using the same term to denote different concepts

* Sensing when people dont understand what you're talking or asking about, and
adjusting your presentation to suit them
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e Sifting through reams of (usually) out-of-date and badly written documentation to
find 2 few nuggets of fact. How can you tell which are the most likely to be worth
staring at for three hours?

o Hearing what people really have to say when you came to ask about something
else. The problem domain is often very difficult to ask about because you know
lictle or nothing about it in advance. How can you ask about the requirements of
the capacity-planning committee if you've never even heard of the capacity-plan-
ning committee?

+ Keeping the project from going beyond its scope. Once customers find out that you
can give them something, they immediately want more. Should that be included in
the current project or contracted for separately?

o The art of asking pertinent questions

However, understanding what content is needed in a requirements document is the
most fundamental part of elicitation. If you don’t know what kind of information you're
searching for, you're going to have a very difficult time asking people for it.

There are two classic mistakes in elicitation that are easily avoided once you under-
stand that requirements pertain to the problem domain, not the software:

1. “The customer don'’t know what he wants.”

If the customer is not an expert in software, it follows that he can't be very specific about
how the sofoware should behave, how the database should be organized, or whether the
sofcware should have a client-server or three-tier organization, nor can you depend on
him to specify backup procedures. The customer understands the problem domain, not
the sofoware. It was to bring about some condition in the problem domain that the cus-
tomer contracted with you to write the software. Ask about that, and miraculously the
customer does know what he wants after all.

When analysts pooh-pooh the problem domain in favor of their own domain of
expertise, the result is almost always angry customers. Today, you can go to almost any
large organization that has paid tens of millions of dollars for custom software to help
it manage its procedures and find rancor throughout the staff, still directed at the con-
tractor years after the project failed. Employees will tell you, “They never came
around to ask us how we do our work. They never learned our terminology. It was as
if they weren't even interested in how people here would use the sofcware. We tried to
tell them that the admissions department uses a different approval procedure, but they
just wouldn’t listen!”
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2. Asking the customer to design the software.

The opposite error of ignoring the customer is dutifully taking down and implementing
everything the customer says—about the software. “Do you want this to be a Boolean
field or a real? Single or double precision floating-point? Where do you want the fields
arranged on this screen? Radio buttons or drop-downs?”

This leads to confused customers and poor software. If the customer has some sug-
gestions for things like screen layouts, certainly listen; indeed, solicit such suggestions
and always test out prototype screens on real users. But first-rate software development
comes from people who know software well and who learn the problem domain well
enough to apply their skills.

Documentation is, itself, a tool of elicitation. If the customer can understand the
documentation and sees that it’s relevant to their business (rather than a lot of jargon
that they can’t understand), they can provide a lot of valuable information by review-
ing the requirements.

If the customer says nothing at the first review of the requirements, except perhaps
to nit-pick about wording in a couple places, that is a strong sign that the customer did
not understand the document, When people have read and understood a document,
they usually have many comments and new ideas, all pertaining to the content, not to
spelling or whether the same statement was worded identically each time it was made.

12.2 Object-orientation

Often a junior technical writer is put onto a new project and hears from the program-
mers that the program is being writcen in an object-oriented language. Many then ask,
“How do you write the user’s manual for an object-oriented program?”

The answer, of course, is thar it is written exactly the same way as for a computer
program written in COBOL-68 or hand-coded machine language. In other words, there
is no difference at all. The reason is that object-orientation is a way of structuring pro-
gram code, whereas a user’s manual describes the user interface and, in some cases, the
problem domain. Program structure and user interface are two different subject mat-
ters—two different domains.

As object-orientation pertains exclusively to program structure, and neither
requirements nor specifications describe program structure, it follows that there can be
no such thing as object-oriented requirements. “Object-oriented requirements” is a
phrase like “roasted effervescence”; the two concepts just don’t go together.
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Nevercheless, a lot of people in the software industry today are excited about apply-
ing object-orientation 0 requirements. 1t's worth understanding why because it often
leads to a more SErious mistake than an incongruous phrase.

12.2.1 Tiwo types of program Structure
Back in the days when structured programming——programming partly based on func-
tional decomposition—Wwas the state of the art in program design, some people had the
idea of extending it outward to analysis. Thus was born structured analysis.

Programs at that time tended to have what we now call a function-oriented struc-
ture. Program code was distributed among a number of subroutines called functions.
Fach function operated on data in some way, receiving data from a function that
invoked it, and generating output dara in return. Data that needed to persist from one
function invocation to the next was stored in “data stores.” Each darta store held one
type of data. A single data store might hold all the customer data, another all the invoice
data, and so on. Any function could access any data store.”

This structure was well suited to data-flow diagrams, as illustrated in figure 12.1.

Structured analysis called upon the analyst to describe system behavior in terms of
functions analogous to the functions of programming languages. Just as each program
funcrion accepted input data and generated output data, sometimes depositing data in

PEE——— ]
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data
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data store data

et —————

Figure 12.1 Typical data-flow diagram from
structured analysis

o

+ There’s more to structured programming than che functon-oriented program structufc, bue this is all
that's relevant to our discussion of applying programming methods to requirements. In fact, the majority
of structured programming lives on in object-oriented programming.
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or retrieving it from a data store, system functions did the same. A programmer’s job
was to decompose the system functions into program code. As described in section 3.7,
the analyst dictated the high-level structure of the program; the programmers then
refined each function into executable code. The functions specified by the analyst would
become the design units tested by the testers ar the firsc stage of testing.

Requirements, as described in this book, were still a long way off. Analysis was seen
as essentially no different from program design, just not concerned with the details,
Hence, it scemed reasonable to extend the principles of program structure to the specifi-
cation of the program. This, of course, we now sce as a mistake. Most fundamental of all
is to describe the problem domain and state what the customer desires there in terms of
the problem domain. A program specification is properly the description of an interface
still written in terms of the problem domain, not the program domain.

In an object-oriented program, data types are bound together with subroutines,
called functions or methods, Only the functions associated with a given data type can
access or modify data of that type. Other functions can only access the data indirectly by
calling those functions. For example, a customer data type might have functions that
create a new customer, delete a customer from the database, change a customer’s
address, retrieve a customer’s balance, and so on. The data type in the abstrac, along
with its functions, is called a class. An instance of such a data type, such as data about an
individual customer, is called an object—hence, object-oriented programming.

The purpose of organizing the program to allow data to be accessed only through
restricted channels is to ensure the integrity of the data, as shown in figure 12.2. The
get_name and set_name subroutines are the only functions that can access the name data
clement. Only the get_amount subroutine can access the amount dara in an invoice
object. For update_balance to access the amount of an invoice, it must call upon
get_amount,

customer invoice

name invoice_number
addresz\ amount A
balance Create

create delete

delete add_line_item
get_name delete_ine_item
set_name get_amount
get_address

set_address
bupdate_balance f

Figure 12.2 Narrow channeling of data flow in an object-oriented design
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By limiting access to data through a very narrow channel, when data definitions
change—the most common result of a change in the problem domain—an object-ori-
ented program doesn't need to change in as many places as an equivalent function-ori-
ented program. In a function-oriented program, if twenty different functions read or
write the customer data store, and the format of the customer data store changes, then
twenty different functions need to be modified. Each modification has a small but sig-
nificant chance of introducing a bug; twenty changes almost guarantee a bug. In an
object-oriented program, the only functions that need to be changed are the relatively
few and simple ones that provide the interface to the data in the customer class.

12.2.2 The mistake

Now we can understand the temptation to create object-oriented analysis, extending
program structure to requirements just as structured analysis did. The job of the object-
oriented analyst is to define a set of classes along with their accompanying attributes and
operations. The job of programmers is then to convert the class operations into subrou-
tines, adding whatever internal support the programmers find necessary.

You will recognize this as precisely the same mistake at the foundation of structured
analysis. Requirements describe the problem domain. Describing program structure is
no way to describe the world outside the computer. Attempting to describe the problem
domain in programming terms is a force-fit; the problem domain must be distorted to
fit the description techniques, instead of the other way around.

The distortion is well illustrated by an example commonly used to introduce peo-
ple to object-oriented analysis and design. Consider an oven and a cookie. Which gets
the bake operation?

Many people reply that the oven should have the bake operation. After all, ovens
bake cookies; cookies do not bake ovens.

In a good object-oriented design, however, the bake operation properly belongs in
the cookie class. Seeing things this way is the “paradigm shift” that’s required in order to
do object-oriented analysis.

The reason the bake operation belongs in the cookie class is because there are likely
to be many different kinds of food, each with its own set of instructions for how to bake

Figure 12.3 Which gets the ‘bake’ operation?
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it. A roast cooks at a different temperature and for a different time than a cookie or a pie
or a soufflé. Some foods need to cook at one temperature for a certain time, and then
cook some more at a different temperature. The possibility for special cases in the bak-
ing process is endless.

If the oven class contained the bake operation, it would consist of a very large
switch statement, where each case contained the instructions for one type of food. Thus
the bake operation would have to “know” about every kind of food. It would be a mon-
strously large subroutine, and people would have to modify it every time a new kind of
food was added to the requirements.

If the bake operation is a part of each food class, however, each bake subroutine can
be very small. Each bake subroutine only knows how to call the oven subroutines, such
as set_temperature. You can add a new food class by simply adding it; you don’t need to
modify any existing code. Thus the program organization is much more resilient. The
most likely changes to requirements will lead to very small changes to the program
structure, each with a virtually negligible chance of introducing a bug elsewhere in the
program. Therefore the requirements document should state that cookies do the baking,
and ovens merely have their temperatures set.

Now wait just a minute. What is the state of affairs in the problem domain? In the
problem domain, there is simply the action of baking, involving both an oven and a
cookie. The action occurs as long as there’s a cookie in the oven and the oven is on. Dif-
ferent types of food have different oven temperatures and durations of baking.

That is all. We do not need a “paradigm shift” to understand the rules for how
ovens bake cookies. So how did the description become so warped when object-orienta-
tion got hold of it? Notice that all of the reasons for associating the bake operation with
cookie had to do with program maintainability and program simplicity. But what rele-
vance does program maintainability have to baking? In the pure problem-domain
description, there was no need to associate baking with just the oven or just the cookie.
The need to atrach an operation to just one class is part of object-oriented design. An
object-oriented program consists of a number of classes with associated subroutines. A
subroutine can be associated with one class, no more.* In the real world, by contrast,
there are no such limitations, and we have no reason to conform to such limitations

when describing the real world.

* One might objecr that friends in C++ enable bake to operate on both classes without being bound to ei-
ther, and that so-called generalized object models do not require operations to be bound to a single class.
Indeed, whenever we discover a misfit between program elements and the problem-domain elements they
are supposed to map to, we can define new kinds of program elements. Thus, progress in software methods
marches ever onward. However, this is all beside the point. Allocating the bake opetation to cookie s good
design. The lesson is that we should describe the problem domain in its own terms, not transiate it into
program terms. That’s the programmers’ job.
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Douglas Bennett gives the name behavior allocation to the act of choosing which
subroutines to associate with which dlasses, and which subroutines call which other sub-
routines. “The behavior-allocation decision has the biggest impact on the system.””
Behavior allocation will become a central concern of the programmers when they design
the program, but it is of no concern to a requirements document or a specification
(except, as usual, in that requirements and specifications provide the information
needed by the programmers to make the design).

So the next time an object-orientation enthusiast tells you that their classes and
operations are an abstraction—that is, 2 description—of the problem domain, you will
know better. If the description includes predicates involving message-passing or one
subroutine (or “function” or “operation” Of “method”) calling another, then you will
know that it’s really a description of a program.

The opposite, and more common, mistake from distorting the description of the
problem domain to suit a particular method of structuring programs is to have the ana-
lyst design the classes and methods. Whereas in structured analysis, the analyst specifies
the top-level subroutines for programmers {0 implement, an object-oriented analyst
specifies the top-level classes and methods for programmers 0 implement (methods just
being subroutines that interface to the data in classes).

This is an even worse disaster than merely writing down a distorted picture of the
problem domain. Behavior allocation is not only one of the most momentous decisions
in program design, it s one of the most difficult 1o do well. Object-oriented design is
just as prone to spaghetti as function-oriented design. The difference is that in the hands
of a skilled practitioner, an object-oriented design can be much cleaner and open t©
likely modifications than the best function-oriented design. If the system analyst does
not have experience with object-oriented programming, then it is very unlikely that
their choice of behavior allocation will turn out well once the programmers flesh it out
in code. Here we see the fallacy of top-down design all over again (see section 1.1).

Notice also that object-oriented analysis implicitly casts all software problems into
the workpiece frame. This is not necessarily a disaster. You can certainly create a func-
tioning information system by treating it as a set of workpieces that users can create,
view, update, and delete. But during analysis, it’s better © keep one’s focus on the prob-
len domain: to describe the real world of things and sequences of events, rather than t©0
start by inventing the operating procedures and computer activity that respond to those
events—the “use cases” that are popular with object-oriented methods  (see
section 12.3).

e

* [Bennett 1997}, p. 132.
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12.2.3 A different kind of. design pattern

The explicit recognition of design patterns began in the object-oriented programming
community.* As this book advocates an approach to requirements based on known
design patterns, it may seem that object-oriented programming might still have some-
thing to offer requirements. Alas, it is not s0.

The types of patterns of concern to requirements are patterns of entire software sys-
tems and the problems they solve, These patterns, such as the information system and
the controller, are based on a wide variety of techniques in computer programming:
well-known algorithms, data structures, the principles of relational dartabases, I/0 buff-
ers, standard user-interface elements, lookup tables, parsing methods, and so on. Most
of these techniques apply to more than one problem frame, but the existence of these
techniques guarantees that, in most cases, a problem that fits any of the frames can be

solved. We've learned to recognize the patterns at the level of the software system as a
whole mainly because people have combined the underlying techniques—the program-
level design patterns—so many times. Ideas such as hash tables and state-table-driven
parsers enabled us to write software that solved problems that we did not know how to
solve before. Writing a compiler was once a research project. Now that the tools and
techniques are well understood, students write them in undergraduate courses,

Object-oriented design is a different kind of innovation. It pertains to how to orga-
nize the program code that implements the other kinds of ideas. It is not itself a new
algorithm or data structure, and it does not solve a customer’s problem. Rather, it
solves a problem of the programmer’s: how to manage the complexity of a large program
and allow its data types to change without requiring massive changes throughout the
program. Anyone who has written a program of 1000 lines or longer knows what an
important problem this is.

However, object-orientation provides no new capabilities to the world outside the
computer. No new requirements-level problem frames can be defined for object-ori-
ented techniques.

An example of a type of software innovation that does entail a new problem frame
is encryption algorithms. Encryption could conceivably be forced into the control
problem’s frame, in that encryption enforces rules about who can and can’t access data.
However, different encryption methods involve different kinds of parameters than
those that pertain to control in general. The major questions to answer before choosing
and implementing a known encryption technique are what kinds of keys there are and

* [Gamma 1995] is the watershed work,

t Except, perhaps, to reduce bugs and lower maintenance COsts.
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how each party is to access the keys. The particular algorithm itself might be specified
in the requirements.

Encryption techniques, like the methods of sorting and searching, enable us to
solve new kinds of problems in software. All object-orientation can add is very clean
ways of delimiting encryption subroutines from the rest of a program.

12.3 Use cases and feature-interaction

There is a style of programming known as “hacking around.” When you hack around,
you write a little bit of code to address one case that the program needs to handle. When
another case comes along, you tack on a little more code. When you discover a problem,
you tweak a little bit of code here and a little bit there until the problem goes away.

The resulting program is a “hack’—a patchwork of little snippets of code and
litele fixes, usually containing more bugs than anyone could find and correct in sev-
eral lifetimes. The reason for the bugs is that each little fix addresses only one case
without considering its impact on other parts of the program. Nearly all programs,
no matter how well-structured, have complex interactions between all their parts.
Changing one part of a program often necessitates changing other parts, too. The
more hacks, the more complex the interactions, and the more damage can be done
by the next hack.

A use case is a description of one case of a program being used—a single path
through system functionality, showing each action initiated by a user, piece of hardware,
or other software (collectively called acrors) and the program's response.T The program
can also initiate a use case, such as when performing a scheduled event. A use case is,
thus, a little dialogue between one or more actors and the program. A use case might
have a few alternative behaviors to handle unusual conditions, but a use case should flow
linearly from beginning to end; otherwise, it’s not one case but several.

Here’s a typical use case:

Check out book

Librarian scans in library card of borrower. If the card won’t scan, do Replace cardand
try again. Librarian scans in bar code from book. If the bar code won’t scan, the librar-
ian types in the book number. The system marks the due date of the book two weeks
later than the current date, and the small printer prints out a slip showing the due date.
The librarian gives the slip to the borrower.

* Not to be confused with the practice hacking into computer systems—that is, gaining unauthorized access.
+ Use cases were first presented in [Jacobson 1992], pp. 159-1 66.
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The grear virtue of use cases is that they are very easy to understand. The great
danger is that, by themselves, they are unsystematic. You probably noticed a com-
mon theme in chapters 4 through 11: always have a systematic method for covering
all possible cases. Only by getting a bird’s-eye view of af] possible sequences of

cvents can you see all possible cases and understand how changes made to one case
affect others.

WIIting use cases as they come to mind is the equivalent, in requirements, of program-
ming by hacking around. There are two main problems. First, because use cases describe
interaction between the system and the outside world, use cases are specification, not
requirements. They are descriptions of interfaces in terms of information flow; leaving
out such matters as screens. This means that you're plunging into interface design before

display book availability, make new card, replace card, add new book, delete book. Are
those all the use cases? No, there’s also: send mail for lare fees. The mail is sent electron-
ically if the borrower has an emaj] address, and by regular mail if not. Are those two use
cases or one? Are we done? No, there’s also a use case to change a book’s information if
it’s wrong. But that’s all going to be on the same screen as the use cases for adding and
deleting, so do we really need a separare use case for it? Now, suppose that the customer
wants the system to support something new, such as, borrowers from outside the univer-
sity who have to pay $40 a year for borrowing privileges and have a different amount of
time that they can borrow books, Do you make new use cases for this new kind of bor-
rower or do you modify the old use cases? Which use cases have to change?

A good problem frame constrains the problem, enabling you to be systematic. The
types of frames shown in chapter 4 apply only to specific types of problems: for control
problems, you document the causal rules that govern the problem domain and the
additional causal rules to be imposed on it; for information problems, you document
all possible behavior in the problem domain and all information about the problem
domain to be supplied, and leave oyt causation; and so forth. Recognizing one of those

problems, you have the beginnings of a systematic approach (though only the begin-
nings, of course).

Use cases can’t constrain 2 problem, because they can fit any problem. The “use-case
frame” looks like figure 12.4. The requirement is: the system responds in specified ways
when the actors act in specified ways, or the other way around; in other words, the sys-
tem interacts with actors. What wouldn’t fit this problem frame? Because the use-case
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actors system

Figure 12.4 Probiem frame for use cases

frame applies equally well to all software problems, it includes no information specific to
any software problem. It gives you no pertinent questions to ask in researching it, and it
provides no help in finding the seams in the problem for purposes of dividing it into
smaller pieces. The only question it leads you to ask is the most generic one: “What
would you like to do with the system and how would you like it to behave?”

If your requirements document is a set of sixty somewhat-connected use cases, you
need to reframe the problem. No one will ever be able to understand how they all interre-
late. Even software for a small college library can easily grow to over a hundred use cases.

On the other hand, use cases can be applied in a disciplined manner—nort as
requirements, bur as parts of a specification that solve a problem that has been well
defined in the requirements. If the requirements document describes the lifecycle of a
book, showing each stage that the book goes through, from being acquired, through
borrowing and returning, and finally being lost, sold, or given away, you can write a use
case for each of these events. This type of use case is described in section 10.3 as event
responses and operating procedures.

When you write an operating procedure, you begin with a very specific question
derived from the problem: “How do I get the system to know that 2 borrower is
attempting to borrow a book?” or “How do I get the system to know that a book has
been returned?” The problem itself is not framed in terms of use cases, but in terms of
controlling books and tracking events that change the state of books.

If the library’s administration or lending procedures change, you now have a sys-
tematic way to sce which operating procedures the change affects. You have diagrams
showing all possible sequences of events. The diagrams show you which event descrip-
tions to change. Because the event descriptions map to operating procedures, you know
which operating procedures to change. The process is seldom this mechanical, but hay-
ing a well defined problem that maps to a suite of simple operating procedures makes it
much easier to update software in response to changing requirements.

252 CHAPTER 12 SPECIAL TOPICS




Call forwarding on busy

Caller A places call to caller B Caller B’ Jj

on busy active. The system reroutes
Connect call,

What could be a simpler and more lo

€ase, covers it very clearly, and even covers
Now let’s move on to cal] waiting:

gical description than this? It covers just one
it from the user’s point of view,

Call waiting

and caller B has cal| waiting ac-
makes a clicking sound on caller

en the programmers
implement the two identified cases.
It's unlikely that anyone wo

full-scale telephone switch as a set of use cases, but this exampl
are dangerous. Here, the problem has been
describe the behavior

¢ illustrates why use cases
grossly misframed. The problem is to

of certain telephone equipment: which telephone lines are

USE CASES AND FEATURE-INTERA CTION 252




supposed to connect to which other telephone lines in response to which events. The
telephone equipment is not even mentioned in these use cases, due to a misguided focus
on “the user.” By systematically describing events that affect specific categories of
telephone equipment, the interaction would be obvious.”

These two use cases also contain an ambiguity, common when use cases are applied
to complex software: which actions in the use case necessarily happen, and which could
happen another way, in another use case? If you make “Call to busy line” one use case,
and “Call to open line” another, then you must indicate which events in each use case
distinguish the use case from all others, which events the designers can safely assume will
happen, and which events the designers are required to make happen. You might also
consider describing the activity in terms of state changes, or any way you can think of
that enables you to see all possible alternatives at once.

12.4 Reviews

Before signing off on a requirements or specification document and sending the team
off to implement it, you should have the document reviewed by everyone concerned:

¢ The customer

The project manager

The user-interface designer

The programmers
¢ At least one tester

¢ At least one technical writer

These people can help improve both the form of the document and the design deci-
sionst expressed in it. Each reviewer can see problems that you couldnt have antici-
pated, because your concerns and areas of expertise are so different.

The classic work on the subject of document reviews (as well as code reviews) is
[Yourdon 1989b). It’s filled with useful procedures and techniques (as well as psycholog-
ical insights into many of the participants) explaining why they sometimes get derailed
from the task of improving the document. None of that will be repeated here, except
this one principle: during the review, the participants bring up problems that they

* See [Zave 1993] for an excellent introduction to feature-interaction, including many wonderfully thorny
examples from the world of telephony.

+ Remember, requirements are design. See section 2.3.
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would like to see addressed, and that is all. There should be no attempt made to reach a
consensus about how to best solve the problem. Afterward, you talk to each reviewer
about how you've decided to solve the problem, or perhaps you solicit suggestions for
solving it. If you try to combine both problem-identification and solution in the same
meeting, you probably won' get through the document in an entire afternoon, unless
it’s only two pages long,

12.4.1 Document ratings

One type of feedback that you should not solicit is numerical ratings of the document
on various scales, such as completeness, clarity, precision, and so on. There are several
problems with these ratings. First, few people will give you a zero for clarity even if
they didn’t understand the document. Few people want to hurt their co-workers’ feel-
ings, and fewer still are willing to risk looking stupid by admitting that they didn’t
understand something that everyone else might have understood. Most people are
intimidated by badly written documents; they assume thar the problem is with them
and not the document.

Second, these scales pertain to global attributes of the document and are, chere-
fore, of little use in spotting and solving problems. They're similar to the testing done
by the early airplane inventors (described in the footnote abour the Wright brothers in
chapter 1), testing attributes of the whole instead of testing targeted to specific parts of
the documenr’s content, During the review, you should be trying to determine if people
have understood specific ideas that you wanted to get across. You can't find that out by
asking them to numerically rate their understanding of it. You find that out by striking up
a conversation with them about it. “What did you think of the rules for detecting invalid
nucleotide sequences?” is a better question than “On a scale of one to ten, how feasible are
the requirements?” The former question might elicit such useful answers as, “Oh, sorry, |
didnt read that part,” “ thought that was a great strategy,” or “Since any possible
sequence can occur within an intron, how can any nucleotide sequence be invalid ?”

Finally, the scales themselves are often vague and/or impossible for reviewers to
have informed opinions about. How can the programmer tell whether the document
“addresses customer need” so accurately that he can distinguish a quality level of eight
out of a possible ten from a quality level of nine? Does “completeness” refer to how com-
pletely the problem domain is described, or whether there is enough information to
enable a programmer or user-interface designer to start designing interfaces?

Numerical answers to such questions are inherently arbitrary. It’s no wonder that
most are in the range of five to ten, clustering around 7.5, regardless of the scale or the
quality of the document.
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(On scales of one to five, most people pick four regardless of the level of qualiry.
Picking three would merely be “average” and therefore negative, because everyone wants
to be above average. Picking five, however, would suggest perfection, so four is the per-
fect compromise.)

Document ratings grow out of the unfortunate theory that if we are assigning
numbers to things, we are gathering data precisely and scientifically. Better to heed the
words of John von Neumann: “There’s no sense in being exact about something if you
don’t even know what you're talking about.” Just find out if the readers know what
you're talking about and whether they agree with it. You accomplish that by asking
meaningful, specific questions and keeping your ears open for answers and topics that
you didn’t expect.

12.5 Requirements jargon

The requirements jargon used in this book is far from standard. The software field lacks
any well standardized terminology for the requirements-and-specifications phases of
development. However, if you have to work with requirements documents that are writ-
ten according to the theory that requirements are a high-level sketch of the program,
then you'll need to know some of the other terms in use.

The chart below lists some terminology in common use. Note that many terms are
often used to indicate the very distinction that another term was created for. The more
correct definition is given first when there are more than one.

user requirements What the user requires of the software or the system as a
whole; what the user wants. User requirements are either
written by the user or taken down by a system analyst in
consultation with the user.

system requirements 1. What is required of the system as a whole: both
hardware and software together; desired system behavior

2. What is required of.the software; desired software
behavior

System requirements are developed by engineers, as a
refinement of user requirements, by translating them into
engineering terms.
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software requirements 1. What is required of the software; desired sofcware
behavior

2. User requirements for software

Sofeware requirements are developed by engineers, as a
refinement of user requirements by translating them into
engineering terms,

functional 1. An action to be performed by the software, including its

requirement input, the processing to be performed, perhaps including
interaction with a user or other hardware or software, and
the resulting output. Similar to a use case except thar
functional requirements often feed into one another, the
output of one being the input of another. Functional
requirements appear in user requirements, system
requirements, and software requirements; they’re a category
of requirement within each level of requirement,

2. Any system requirement or software requirement, as
distinct from a user requirement

non-functional An attribute of a functional requirement, such as how
requirement (NFR) easily the function can be modified or how easily users are
able to use the function

performance One type of non-functional requirement: how long it takes
requirement the system to perform the function
constraint A design constrain, as defined in section 8.1, as well as the

hardware platform and operating system

reliability, safery, Various non-functional requirements brought over from
maintenance, etc. other engineering fields, such as mean time to failure;
requirements described under global characteristics in section 8.1.

If you don’t see much difference between user requirements and software requirements,
you're not alone. Many requirements documents, attempting to conform to the user/
system/software breakdown, double their size by including functional requirements
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(software requirements) that are identical to the user requirements, with just the word-
ing changed, as in the following example:

UR-3 User shall be able to store grocery inventory data.

UR-4 User shall be able to retrieve grocery inventory data.

Later, in the Functional Requirements section:

FR-3 System shall store grocery inventory data.

FR-4 System shall retrieve grocery inventory data.

A traceability matrix might show that FR-3 implements UR-3 and that FR-4
implements UR-4, just in case that isn’t clear. This is one strange result of the “start
high-level and become more detailed” view of requirements and software development.

The above jargon might seem confusing. It is. The hardware that software is sup-
posed to run on is a constraint? A non-functional requirement pertains to a function?
Most people would think that’s a requirement that doesnt work. User requirements are
what is required by a user, but system requirements are what is required of the system?
Who is the user in the requirements for a programmer’s library to aid user-interface
designers—the programmers who use it, the user-interface designers who use it, or the
end users who use the user-interfaces? It's no wonder that customers are little more than
baffled as they skim through documents couched in such jargon.

Even people who've been using the old jargon for a long time seldom have a clear
idea what it means. If the above terminology is in use at your company, an interesting
experiment is to ask different people what a functional requirement is. Seldom do two
people give the same answer.

By making the principal divisions in software documents pertain to subject matter
rather than to level of detail, you avoid the theoretical problems that gave rise to the old
jargon, and you can have much clearer, precise, and useful definitions of the content
that you put in each section.

12.6 Cutting corners

You say that you don’t have the time or resources to do it right? Well, here are some
tips how to do it wrong. Be warned, however, that for every corner that you cut for
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short-term gain, there is a long-term loss. It is a fact of life, though, that sometimes this
is 2 wise trade-off. Sometimes, if you don't take care of the short-term now, there will be
no long term in which to enjoy long-term benefits. Many softrware companies routinely
cut the corners described below, yet they are still in business and have satisfied custom-
ers, so curting a corner does not mean the end of the world. (However, their develop-
ment costs could probably be lower and their quality could probably be higher.)

To put it another way, there is a risk to writing documentation: it delays the writing
of code. If imperfection is not a concern, the risk of being late may well outweigh the
tisk of having bugs. It is the job of management to weigh these risks anew on every soft-

ware project,

Cut these corners

Face these risks

In the requirements document,
omit the description of the
problem domain. Thar is, write
requirement  statements only.
This results in a vastly shorter
document—perhaps one or two

pages of terse requirement
statements with no
commentary.

Omit the requirements

document altogether. That is,
write only the specification: a
description of the software
behavior at the interface to the
outside world.

CUTTING CORNERS

When the system analyst leaves or works on a
different project, it is likely that no one else will
understand the customer’s business. Maintenance
of the program will be difficult, and people will
fall into the pattern of “I don't know why it’s in
there, but wed better not change it because there
might be a reason for it.” .

Leaving out the problem-domain description also
pre-empts creative solutions. By understanding
the customer’s world, reviewers or interface
designers can often come up with solutions that
the analyst would never have thought of, or they
may suggest new and useful requirements. Given
only the requirements—the analyst’s final solu-
tion—with none of the background, people can
only implement it unquestioningly.

One more risk is that the requirement statements
themselves will be easy to misinterpret, when not

understood in relation to the world that gave rise
to them.

Without any definite  requirements, the
programmers and user-interface designers are free
to design whatever they find most fun. Theyre
likely to include features that the customer has
lictle use for, and omit or downplay features that
the customer thought critical.
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Cut these corners

Omit  the  user-interface
document. Just prototype, Of
even omit prototyping, and leta
programmer design the wuser
interface while coding it.

Omit the specification
documents as well as the
requirements. That is, skip
writing any of  the
documentation  described  in
this  book.  Thus, the
programmers specify  the

software only implicitly and
concurrently  with  program
design, with a vague idea of the
requirements communicated
only through oral tradition (see

section 13.1).

20

Face these risks

Expect a mediocre user interface that frustrates
end users with its obliviousness t0 the problem
domain and its insistence that users think in terms
of the program domain. Human nature being
what it is, programmers are tempted to skip user-
interface ideas that are tedious or time-consuming
to implement. A dedicated user-interface designer
typically pays more attention to the small details
that make a user interface easy to use in ways that
people seldom notice, and the “Anything is
possible to the man who doesnt have 1 do it
himself” syndrome frees the designer to include
unusual or imaginative features that

programmers would rather not think about.

many

In addition to all of the above risks, expect the
sofcware to be released with numerous bugs
because, lacking a specification, the testers cannot
create a test plan. If you regularly cur this corner,
you probably don’t have any testers, anyway.

Expect to have conversations like this with your
customer: “Oh, is that why you wanted that fea-
ture? Oh, yeah, I guess the way we did it isn’t very
useful, after all.”

Realistically, when you go this far in omitting doc-
umentation, often you do not achieve even short-
term benefits. The bugs, confusions, and unneces-
sary rewrites often result in more man hours spent
1o deliver the first release, not fewer.

Note that writing documentation that no one can
understand or that no one reads is equivalent to
not writing it at all, except that it costs more.
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12.7 A few good books

The following are a few good books, well worthy of a location on or near any analyst’s
desk. This is not an exhaustive list, just a few books that the author has found especially
stimulating and/or useful in daily practice:

Software Requirements and Specifications: A Lexicon of Practice, Principles, and Prejudices,
by Michael A. Jackson, ACM Press, 1995

An intellectual journey. This is the book in which Jackson presents such ideas as prob-
lem frames, shared phenomena, and connection domains. A wide variety of topics in
software engineering are covered, and some topics beyond it in a set of 75 short articles
meant to be read in no particular sequence. Each time you wander through it, you see
connections between areas that you thought had nothing in common; you see funda-
mental principles that you had never dreamed of. You return from the journey a wiser
software engincer.

Analysis Patterns: Reusable Object Models, by Martin Fowler, Addison-Wesley, 1997

We learn best from examples, and here is a book of example “conceptual models” of a
variety of problem domains, mostly in the business world—inventory, accounting, cor-
poration finance, and others. These “models” are primarily the types of domain descrip-
tions covered in chapter 9. When you start mapping out a new domain, you can often
find similar problems in one of the domains that Fowler covers, saving you from rein-
venting a number of difficult wheels.

Envisioning Information, by Edward R. Tufte, Graphics Press, 1990
Not a book on software, but a classic work on informational graphics. It contains exam-
ple graphics, from the most brilliant to the most opaque, showing infurmation about an
enormous variety of subjects. Tufte transforms bad graphics into lucid ones, showing
you how to revise, and illustrating the principles he uses. Ultimately, the book trains
you to look at problem domains more perceptively, as you become aware of the types of
relations that a good graphic can make clear.

Two more books on graphics by Tufte, The Visual Display of Quantitiative Informa-
tion and Visual Explanations, emphasize types of graphics that are less frequently applica-
ble to software engineering, but are also well worth reading.
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Documentation

13.1 Why document?

On any project involving two or more people, there arises an oral tradition, Peter tells
Larry how he’s planning to structure 2 certain interface. Larry mentions this to Margot
in a conversation about a data structure that he’s working on. Charles hears about a new

tales existed in ancient times, Each bard learns the story from another bard. Human
memory being what it is, each person distorts a little bir, and human inventiveness
being what it is, each person embellishes a bit. There is still story circulating and evoly-
ing out there among the bards, but no two bards have the same version.

A software project will always have an oral tradition, and we should make no
atempt to stop it. It’s how people work together. However, in a software project of any
size, an oral tradition is not enough. Here, “any size” means roughly four or more peo-
ple, including the people who test, design the user interface, and write the manual. If

the tester wasn’t in the room when the rogrammer convinced the user-interface
prog
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designer to make a change, the tester should not have to waste hours writing a test plan
for a feature that’s no longer a part of the software.

The cure, of course, is writing things down. Here are the principal benefits of doc-
umentation—two obvious ones, and three less well known:

1. Extends what the mind can  In any project large enough to need require-

grasp and remember ments, the amount of information is more than
any one person can retain, even after an
cight-hour meeting that covers every detail. The
written word can be referred to later, and it
doesn’t fade the way human memory does.

2. Gives the same story to A written document is exactly the same each
each member of the team dime irs read. So the user-interface designer,
programmers, testers, and documenter can all
read the same material, which they surely
wouldn’t be able to do if they were all given the

information in individual conversations.

3. Introduces new team mem- People on projects come and go. A new tester,

bers to the project for example, has a hard time catching up with
the oral tradition. A well-written document can
bring them up to date in only a few days.

4. Protects intellectual equity  Very often, only one or two people ata software
company understand the problem domain or
the design of the software. They’re the only
people who can intelligently judge proposed
changes, notice holes in reasoning about the
application, or even think of new ideas for soft-
ware to write. If these people’s precious knowl-
edge is put into written form, the company is
no longer so dependent on them. Their intel-
lectual equity won't walk out the door if they
get a better job offer.
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5. Helps the writer to better Describing requirements or a specification in

understand the problem written form inevitably forces one to adopt a
higher standard of rigor than spoken conversa-
tion calls for. Anyone who’s ever documented
requirements has had the experience of discov-
ering holes or even conceptual incoherence in
their understanding of the problem. This is the
observation that leads people to conclude that
“the document isnt important, only the docu-
menting is.” As we've seen above, the document
is important for other reasons, as well,

Of all the things to document, requirements are the most important for the long
term and specifications for the shorr term. The specification tells the programmers and
testers exactly what to do and what to test for. But they won't have the background
knowledge to make trade-offs intelligently or to propose new ideas for future develop-
ment. The requirements are usually people’s only source of information about the prob-
lem domain. If theyre left to the oral tradition, the team must contact the system
analyst or resort to guessing. In practice, by the time development begins, the system
analyst has usually flown to another part of the country to do the scope of work for
another project, so guessing is the only option.

Understanding what the benefits of documentation are, we can target our methods
of documentation at providing those benefits. Many companies take documentation of
fequirements very seriously, but they don'’t realize many of its benefits because, in thejr
practice, oral tradition is the only way that real information s communicated, only the
system analyst understands the problem domain, and so on,

If we want the programmers to refer to the document o supplement what they
remember from meetings, then we must make the reference information easy to find.
Scattering it throughour the document will defeat benefic #1, even though the docu-

their jobs.
We can see now that while cranking out text is easy, achieving the benefits of docu-
mentation will take some thought.
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13.2 Broad principles

The following are 2 number of very broad principles of technical writing. The list is far

from exhaustive, of course, but these are helpful to bear in mind when writing and espe-
cially when Jearning about writing. They guide many of the techniques discussed
throughout this book.

1. Writing is a craft

Reading a book on woodworking will not make you an expert carpentet or even 2
mediocre carpenter. The problem is not with the book; it's that woodworking is an enor-
mously complex craft. Making a cabinet involves thousands of tiny decisions about pre-
cise placement of each tool, the sequence in which to perform operations, fine muscle
control when cutting the curves, and s0 forth. These decisions are mostly unconscious
for an expert carpenter because years of practice have made them second-nature,
enabling the carpenter tO draw upon them as needed while his or her mind focuses on
justa few, key aspects of the work.

Technical writing is the same Way: There is no rote procedure or ten simple steps for
creating an excellent technical document. Rather, the difference between a document
that is readable and gets read and a document that no one can understand and no one is
willing to read is thousands of tiny decisions——each word choice, each choice of sen-
cence structure, each choice of where to place objects on graphics. No one of these deci-
sions makes much difference. Making thousands of them well or thousands of them
poorly makes an enormous difference.

As with woodworking, reading a book about technical writing won't make you very
good at it. Acquiring the skill takes practice, and no matter how good you get, you can
always get much better with another year of practice. Learning technical writing is a life-
long activity. Every document has something new to teach you: a helpful phrase, a trick
for breaking up sentences, a bad habit to unlearn.

The same is true of other people’s documents. In fact, other people’s documents are
even more helpful. Many analysts have read only their own documents and never bene-
fit from seeing how other people solve the same problems. A good document has tech-
niques to imitate. 1£ someone else’s document s hard to understand, you can figure out
what made it hard to understand and avoid making that mistake yourself or think of a
better way to express it- However, if your own document is hard t© understand, often
you don't notice that because you already know what i’s supposed to say- Other people’s
bad documents are the casiest to learn from. The best technical writing flows so easily
that you cant tell that there were any problems to be solved while writing it.
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If writing documents is a large part of your job, as it is for most system analysts and
program designers, it pays to be literate. People will judge you not on the basis of your
thinking, but on the basis of your writing,

2. Write for human beings

There is an awful truth about software requirements: most requirements documents go
unread. Booch writes of an 8,000-page requirements document thar “no one could
understand.” Even the more ordinary 50- to 100-page requirements documents go
unread. The usual reason is that they are written to conform to abstract standards of cor
rectness rather than to communicate project-specific information to real human
beings—more like writing a program than writing in English.

Such abstract standards usually derive from “methodologies” or from overly specific
documentation standards. These methodologies usually propose expressing a very lim-
ited set of information abour the software in a very limited set of ways of expressing it—
one notation for all diagrams, one sentence structure for all requirements, one table of
contents for all documents.

Conforming to the standards becomes an end in itself, If anyone is able to decipher
the document, that is merely a benign side-effect. Not surprisingly, when most people
look over such a document, they figure it was made only to satisfy some arbitrary rules
and not to communicate anything to them, so they put it aside after a few minutes of
skimming and find some other way to get their information. Many programmers are
now convinced that writing requirements documents is a waste of time and that, how-
ever flawed it may be to jump straight into program design after some informal talks
with the customer, at least that strategy avoids the time and expense of writing an enor-
mous document that serves no purpose.

Writing for human beings means constantly asking yourself questions such as the
following:

* Is there a way to express this that would be easier to understand?
y P

* Am I overloading the reader with too much information at once? Should I provide
some sort of roadmap, or break it up into smaller sections or smaller sentences?

* Which details are more important to my readers and which are less important?
How can I make clear which details are which?

* Is this statement too abstract for my readers to understand without illustration? Are
these details too narrow and disconnected for my readers to understand without
explaining the underlying principle common to all of them?

* [Booch 1996], p. 17.
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* What reasonable misinterpretations could my readers make when reading this
passage?

* Will my readers see any benefit in reading this section? How does it relate to any
specific reader’s job? Does anyone have a reason to care about this? Will people see
this as a waste of their time?

* What is the feel of the writing—formal but friendly, stuffy and pompous, scatter-
brained and rambling, simple and direct, flows like sludge?

* Is the document boring? Would anyone want to read it? Will anyone read it?

[t may seem strange to be concerned about whether or not a document is boring or
not. Shouldn’t your readers read it whether they like it or not? That’s what they're paid
to do, isn’t it? That attitude, unfortunately, is likely to make people only briefly peruse
your documents. If you describe a problem that your readers have made a career of solv-
ing, then your readers will find it interesting,

People generally want to do a good job, and they enjoy doing it. Testers want to
devise test cases, user-interface designers want to think up ways to present information,
programmers want to write code to implement specifications. A requirements document
or specification that is pure content all the way through is anything but boring to these
readers. A document that hides the content behind requirements jargon and a gauntlet
of bureaucratic sections, or omits most or all of the content (not so unusual), would be
boring to anyone.

If you really want to learn to write for human beings, try working in their capacity
for a little while, with someone else’s requirements document. Trying working in the
testing department for a week. Try programming. If you want to understand the frustra-
tions that people go through when reading requirements documents, there’s no better
way to learn than first-hand. “Why is this information missing?” “Why is this informa-
tion buried so deep in this document, when its the only information that actually
counts, anyway?” “It took me a week to figure out what these thirty pages meant, but it’s
actually so simple! Why does it have to be such a struggle to decipher these documents?”
When you've suffered trying to read a bad requirements document up against a dead-
line, then you'll have some ideas about how to write one.

None of the above questions have to do with the correctness of the information in
the document. A good technical document is much more than correct: it is geared to
human readers.

3. Alternatives, not rules

Many books on writing state rules like “never end a sentence with a preposition” and
“never write in the passive voice.” Some even go as far as to prescribe precise rules for the
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number of sentences in a paragraph: some say “no more than ten” while some even say
“every paragraph should be three sentences long.”

These rules are nonsense.* The skill of writing is not that of following rules, but of
exploring alternatives and choosing the one that best fits the content. Sometimes the
passive voice emphasizes exactly what you want to emphasize and deemphasizes exactly
what you want to deemphasize; converting to the active voice would obscure your
point.t You should be able to consider both the active and the passive voice, rather than
treating one as a sin even in thought. In the vast majority of cases, you'll probably want
to choose the active voice, but that doesn’t mean that there is something wrong with
choosing the passive voice in the remainder of cases. The point here is that you should
choose, consciously, rather than thoughlessly write in one or the other.

Just as in part I1, this book tries to give you sets of alternatives to consider, without
prejudging which alternative best fig the problem you're currently solving, or even
claiming to have identified all possible alternatives. In many cases, when you're stuck
with a difficult sentence, all you need is for someone to come along and point out an

,

alternative that you hadn’t considered.
This book also supplies principles for choosing among alternatives, These are prin-

ent problems. To apply a principle to a new problem, you need to see the unique way in
which that principle applies to that one problem.

For example, “Write for human beings” can lead you, in one instance, to reject one
sequence of presenting material in a document because the carly sections of the docu-
ment dont seem to have any purpose until a very late section explains them. People
need to know why information is in a document in order to retain it and understand it.
So, when you reject that sequence and begin to search for another, you are applying the
principle by imagining yourself in the position of a reader, thinking of whar will go on
in people’s minds while reading the document—going beyond making the document
technically correct, and adjusting it for real people. On the other hand, you might

Winston Churchill is reported to have said, upon being corrected for violating the rule about ending a sen-
tence with a preposition, “Thar is the sort of arrant pedantry up with which [ will not put.” The supersti-
tion about ending a sentence with a Preposition was started by 18th-century grammarians who believed
that Latin had the one, true grammar, which all other languages should emulare. In Latin, prepositions
work differently than in English and, indeed, there’s no place for them at the end of 2 sentence. No ancient
Roman would need to be told this, of course, any more than you need to be told thac “Clapping
margarining the” is not a valid sentence. The mythical rule against split infinitives started the same way.
T [Pinker 1994], p. 228, gives an excellent illustration of the passive voice, showing how the corresponding
sentence in the active voice would “feel like a non sequitur.”
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notice, while looking over a first draft of a document, that it seems somehow boring and
monotonous. You discover that you used the same sentence structure in ten consecutive
sentences, so you vary the sentence structures to keep from losing the reader’s interest.
Again, you're drawing upon your empathy with human readers to make the document
more than correct—same broad principle, but a very different application.

Thus principles of writing are similar to legal principles. The principle of free-
dom of speech is not appli=d mechanically, the way one would apply a rule like “no
paragraph shall have more than three sentences.” Judges try to understand the basis of
the principle—the way the principle brings about justice—and apply it only in situa-
tions where the basis of the principle can be found. They must simultaneously con-
sider other legal principles and weigh all the consequences of each possible decision.
So, limited censorship is allowed in wartime, there is no right to receive subsidies for
publication, and so forth.

Principles of technical writing seek to bring about clarity, the same way legal princi-
ples attempt to bring about justice. You can’t apply them mechanically, but they are nev-
ertheless an indispensible aid in choosing among the many different ways to write a
sentence or organize a document.

4. People like lists

When people create a specification or a test plan or a program, they want to have sys-
tematic way to check that their creation meets every requirement. Nothing fulfills this
need better than a list. Readers can check each item on a list one by one; when they
are finished with one item, they can forget it. As much as possible, try to make evalu-
ation criteria—requirements and preferences—stand out from the rest of the text, and
submit to systematic, one-step-at-a-time reading. Naturally, some information just
can’t be presented this way, but when you have information that can, this is the first
option to consider.

5. Form follows content

Rather that expressing the content in a form chosen in advance of writing the docu-
ment, choosing the way in which to say something should derive from the content. The
opposite approach is particularly dangerous when, say, the prefabricated table of con-
tents does not include slots for all of the content needed in the document. Furthermore,
sometimes a table is better than a diagram; sometimes a diagram is better than a table.
Making policy decisions about these things achieves the fairly negligible goal of unifor-
mity at the expense of clear presentation in each instance.

This principle is taken up in more detail in chapter 14.
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‘

6. A place for every detail, and every detail in s place
This is the fundamental principle of organization. A document’s organization is a set of
slots for holding detais: big slots for holding big details thar are made up of small

details, the sequence of slots chosen carefully so that each detail js prepared by all the

Sometimes it is sajd thar a requirements documeng should contain no redundancy, buc
this is not quite true. Repetition is seldom 2 good idea because it adds length to the doc.
“ment unnecessarily and confises readers about which Statement is definitive, if the rep-
etitions are not al] identical. Repetition s also decoy text (see section 13.3), dissuading

reinforced by giving an example or two, Strictly speaking, the examples add no new
content, but they confirm of correct the reader’s understanding of a statement that js

the end users, this reinforces their undcrstanding of the feature or perhaps clarifies the
feature. If the feature does nor have any apparent use, a reader may doubt that haye

Even skillful choice of section headings js reinforcement. If it seems that a variety of
Tequirements all work jp service of one goal, say, performance monitoring, then the
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reader’s understanding of the role of those requirements is confirmed by including them
all in a section titled “Performance Monitoring.”

Reinforcement is one of the technical writer’s basic tools for making complex mate-
rial understandable. It’s also an instance of the principle of writing for human beings.
Reinforcement has no place in machine language; if the machine language is correct, the
computer performs correctly. But any form of human communication needs a great deal
of redundancy in order for the listener to be sure that they understand.

The rest of this chapter describes a number of common violations of these broad
principles.

13.3 Decoy text

The nineteenth-century French novelist Victor Hugo peppered his novels with essays
describing the periods of history in which his stories were set. They're fascinating essays,
but many people find them a distraction from the plot. People who want to skip them
encounter a problem, illustrated by the essay on the Battle of Waterloo in Les Misérables.

After fifty pages and eighteen chapters of description and analysis of Waterloo,
there’s a discussion of what happens at night after a battle. “The day after a battle
dawns on naked corpses.” At night, a litde army of thieves robs all the valuables,
including clothes, from the dead soldiers still lying on the battlefield. Hugo describes
one of these thieves stealing a silver cross of the Legion of Honor from an almost-dead
nobleman. The thief’s name is Thenardier, and both he and his loot turn out to be
important elements of the story. A reader who skipped these digressions would miss the
important plot points buried within them.

You might think that there’s no harm in adding some extra text to a document.
After all, the reader can just skip it if it doesn’t apply to them.

But there is harm. All text that isn’t pare of requirements—purpose of document,
purpose of task, summary of task, inclusions, exclusions, acceptance criteria—obscures
the genuinely relevant information. It’s decay text.

As in Les Misérables, a reader can’t easily know in advance whether a section or
paragraph is decoy text or not. By including decoy text, you're encouraging the devel-
opment staff to skip and skim rather than to read carefully. You're saying, “much of
the text in this document doesn’t really matter.” In other words, you're saying, “I'm

* [Hugo 1862], p. 352.
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wasting your time.” This is not a good message to send if you want your readers to
review a document carefully.

Various types of decoy text are described below. The way to fix all decoy text is sim-
ple: delete it.

13.3.1 Metatext

The most common type of decoy text is meratext—text that describes the text that fol-
lows. Sometimes metatext is necessary, but usually it’s decoy text. If the title of the doc-
ument is “BPM Requirements,” you don’t need a Purpose of Document section that
says “The purpose of this document is to describe the requirements for BPM,” perhaps
followed by another sentence or two just to make the section a lictle longer.

For more information, see Metatext in chapter 15.

13.3.2 Generalities

All information in a requirements document should be specific to the software to be
built. A requirements document or specification is not the place to give people a course
on general principles of good data modeling, user-interface design, program design, or
even how to evaluate requirements.

Some requirements documents contain small dissertations on what makes a good
requirement:

Requirements shall possess the following attributes to be considered acceptable:
Atomic: The requirement shall describe one and only one function.

Comoplete: The requirement shall describe the system behavior in response to all inputs.
Testable: The requirement shall be observable.

Non-redundant: The requirement shall be unique and contain no overlap with other
requirements.

Unambiguous: The requirement shall not be open to interpretation.

Traceable: The requirement shall be able to be tracked forward to change requests, code
modules, and test scripts.

And so on.
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These lists of required attributes of requirements usually have a number of prob-
lems. First, despite their call for precision, they’re ambiguous. Whar is “one and only
one function”? Second, they often make no distinction. How could a requirement not
be traceable, as defined above? Third, they’re often impossible to achieve. Some things,
like user-friendliness, just can’t be quantified precisely. Response time can, with a fre-
quency-distribution function, but that's unnecessarily precise for most applications. And
in many cases, it makes more sense to have some requirements overlap instead of cram-
ming them into a single, huge sentence.

What is a reader to make of such a list? He could object to nearly every requirement
in the document for failing to meet these standards. Or he could be sane and ignore the
list. Now consider his position: “Clearly this section was never meant to be taken seri-
ously. But how am I to know which of the remaining sections were intended seriously
and which were intended to be ignored? I guess I'll just ask someone.” This is the decoy
principle in action, driving people away from the benefits of documentation and back to
the oral tradition.

More dangerous is a requirement that expresses a generality:

R/UI-8.5.2 Each input screen shall fit entirely within the window and shall use as little
scrolling as possible to display and/or retrieve information.

This is not merely decoy text, this is a decoy requirement. A good user-interface
designer knows this principle already and will try to apply it to the information that this
particular program needs to display. Sometimes you can make everything fit in one win-
dow, and sometimes you can’t. That depends on the information to be displayed—
which is what the document should be talking about.

13.3.3 Piling on

Piling on takes its name from a type of foul in American football. The ball carrier has
already been tackled and is at the bottom of a pile of defenders. The play is over and the
whistle has been blown, but one more defender throws himself onto the pile, further
pinning the already immobile ball carrier, and costing his team a penalty.

Something similar happens in requirements documents. A two-paragraph descrip-
tion of a functional requirement has just made the requirement clear. Instead of another
requirement or some new problem-domain information, the next section expresses the
same requirement in input-process-output format. The section after that says the same
thing again, this time in the form of a use case, complete with its own introductory
description that says everything that’s been said before.
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Piling on can be observed at a large scale or a small scale-—even inside the title of a
document. At a small scale, it consists of piling words onto a word or phrase that has
already made its meaning clear, as in the following examples.

Before piling on After
Requirements Requirements Specification
Use Case Business Use Case

13.3.4 Including other documents

There are a number of important documents produced in software development that are
neither requirements nor specifications. A common temptation is to throw them into
the requirements document.

Scope of work

A document describing each of the tasks to be carried out during development and any
associated deliverables; usually written for the purpose of billing and/or scheduling.

Because scope-of-work information is similar to some requirements, it causes con-
fusion when inserted in a requirements document. Notice the incongruity between the
following two “requirements”:

R2.5 Resolve Discrepancy
Inputs: Discrepancy record.

Process: IF discrepancy valid THEN operator resolves discrepancy and marks
discrepancy resolved ELSE operator moves discrepancy to rejection list.

Outputs: Discrepancy log, rejection list.

and:

R2.6 User Manual
Inputs: Requirements document, design document.
Process: Research and documentation.

Ourputs: User manual.
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The general rule is: describe the requirements and problem domain of, in a specifica-
tion, describe the software; but don’t describe the development process that will produce
the sofcware. That's another topic, for another place.

The one exception is that a requirements document should list materials needed by
the development staff: documents from the customer describing protocols, customer-
supplied daa files, and so forth.

Schedules

Schedules change much more frequently than requirements do, and they pertain to all
aspects of development, including testing, coding, delivery, and training Therefore, a
schedule is best made a separate document.

Acceptance criteria

Acceptance critefia, like specifications, need to be carefully crafted after requirements
are complete.

Approval signatures

A form for approvals is signed once by a few parties, but the requirements document is
printed out 30 to 100 times, over years. Make a separate form; have the parties involved
sign it, and keep it in a special place—not inside the requirements document.

Traceability matrix

I¢s not entirely unreasonable o include a traceability matrix in the requirements docu-
ment and fll it in over the course of the rest of the project. However, for people not
accustomed to their use, seeing a traceability matrix with only the left column filled in is
baffling. “Oh well, yet another arbitrary section to ignore,” they say.

If you have a document management system, Of even 2 directory on a network
drive, it’s probably best to put the traccability matrix there, near the requirements docu-
ment. If your company has procedures for sign-offs on changes 10 documents, there will
probably be much more ceremony to change requirements document than to change a
traceability matrix. Also, filling in a column on 2 traceability matrix does not throw the
requirements out of date—an important consideration in an ISO 9000 company. (1SO
i the International Organization for Standards.)

Feedback forms

Feedback forms are not entirely unreasonable to include, but they generally are regarded
as more fluff, especially if the form is more than one page long. Also, as with approval
forms, a requirements document needs to be printed out many more times than a feed-
back form. See also section 12.4.
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No one of the last several extra documents js particularly bothersome to include in
a requirements document. However, the attitude of “there’s no harm in throwing one
extra thing in” soon leads to throwing all of it in, and then people can't discern the pur-
pose of the document.

13.4 More common mistakes

Decoy text is certainly the most common mistake in both requirements and specifica-
tions. This section describes a few more.

13.4.1 Jigsaw puzzles

A popular pastime is assembling jigsaw puzzles with large numbers of pieces—some-
times thousands. Here’s a piece that’s part of a sail. Where’s another sail piece that
connects to it? It’s probably very far away, buried in that large pile with all the other
pieces. To solve the puzzle, you must keep in mind that you're looking for a sail piece
as you slowly sift through the pile, simultaneously looking for missing pieces in other
small groups.

Many requirements documents are jigsaw puzzles in their own way. It says on
page 16 that a grant deed has grantor, grantee, consideration, and address, but on
page 45 it lists grantor, grantee, title company, consideration, and property transfer
tax—whatever those are. So I guess the attributes of a grant deed are the union of those
two sets. “No,” replies the author of the document, “in the use case on page 62, there’s a
step where the user types in both address and assessor’s parcel number, You really should
read the document more carefully.”

statement of the attributes of 2 grant deed on page 16, a reader js simply not going to
expect to have to read any more, certainly not some use case on page 62. Always bear in
mind that people skim ar first to get a general idea of what the document says, and then
refer to the document afterward for specific information,

To read a document like this one, you have to keep the whole thing in mind ac
once. You have to treat it as a sea of details, just like the sea of pieces in the jigsaw puzzle,
However, no human brain can do this.

Note, however, that nearly every large document is a jigsaw puzzle to a slight
extent. Your objective is to reduce the number of places where a reader can make a rea-
sonable interpretation of text in one place that turns out to be wrong because of some
other statement made very far away.

That does not include situations where you write an unfamiliar word or phrase in
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one place but define it elsewhere. The fact that the word is unfamiliar tells the reader to
expect to find a definition elsewhere, such as in an overview or a glossary.

Principles of organization—mostly, the prevention of jigsaw puzzles—are presented
in chapter 14. The most basic principle for fixing jigsaw puzzles is to collect a descrip-
rion that is scattered and implied throughout a document and put it all in one place. In
the above example, the solution is to have a single section that definitively lists all the
atributes of a grant deed. Then the reader doesn't have to puzzle it together by gather-
ing use cases from throughout the document.

Sometimes, though, you can’t cover all related information in one section. To help
guide your reader, add page references to related material. For example, if there is some-
thing on page 62 that you need to know to properly understand what it says on page 16,
then on page 16 write, “See page 62 for more information about grant deeds.” There’s
nothing wrong with including a lot of cross-references within a document; the far graver
danger is leaving these cross-references implicit.

13.4.2 Means confused with ends

Some requirements documents confuse description of the problem domain with
requirements. For example, there might be a connection domain consisting of a pro-
gram called HOLA, which can answer certain queries about some domain of interest. It
would be a mistake to write:

R-15 The system shall communicate with HOLA.

Of course the system’s going to communicate with HOLA: it’s a source for information
about the real world that another requirement says the system is to produce in response
to queries. Describe the relevant part of the real world, the queries, the information that
HOLA can supply, and the protocols for communicating with HOLA, and you are
done. R-15 is really a redundant requirement, obscuring the problem by confusing it
with the solution.

These kinds of requirements also undermine the coherence of the document—the
opposite of the reinforcement principle mentioned in section 13.2. Is this a require-
ments document or a specification or maybe a partial specification or maybe some sort
of mixture of the two? Does the document describe the problem domain or the system’s
behavior? The reader really can’t tell your intention, if you mix the two.

13.4.3 Force fir

The following is the way, in some forms of structured analysis, to indicate that the soft-
ware is supposed to accept some data as valid and reject other data as invalid. You define
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validation

data
acceptance/

rejection
messages

user data

Figure 13.1 Data-flow diagram for data validation

say thar the validation function sends other data back to the user input function; this
other data is a stream of messages indicating acceptance or rejection of the data sent by
the user input function.

The documentation consists of 2 data-flow diagram like figure 13.1, and a set of
requirement statements like these:

—

R-4 The user input function shall receive data from the user,

R-4.1 The user input function shail send data to the validation function.

R-4.2 The user inpur function shall receive acceptance and rejection messages sent by
the validation function.

R-4.3 The user input function sha]] reject data received from the user corresponding to
rejection messages received from the validation function.

R-5 The validation function shall validate dara.

R-5.1 The validation function shall receive daca from the user input function.

R-5.2 The validation function shall send acceptance and rejection messages to the user
input function, in response to the data received from the user input function.

R-5.3 The validation function shall send an acceptance message to the user input func-
tion for each darta element that has a valye greater than or equal to zero and that has a
value less than or equal 1o 26.

R-5.4 The validation function shall send 2 rejection message to the user input function

for each data element that has a value less than zero or thar has a value greater than 26.
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The data-flow diagram shows three data streams, each of which must be docu-
mented, precisely describing each element of each data stream, but withour saying any-
thing about how the data stream will be implemented.

Now just a minute here. Forgetting structured analysis and everything else you
know about requirements, how would you say that the system rejects numbers typed in
by the user that are not in the range 0..26? Maybe something like this:

R-4 The user is not allowed to type in a number outside the range 0..26.

The same principle would apply if the validation rules were more complex. Youd
put the validation rules in a big table, preceded by this:

{ R-4 The user is not allowed to type in data that violates the rules in table 1.1.

How, then, did half a page of dizzying text plus a data-flow diagram get produced
just to make this tiny statement? The enormous version is the result of force-fitting the
content to a very limited form of expression. If your entire vocabulary is functions and
data flows, you have no choice but to force-fi everything you say into functions and
data flows.

If you find yourself taking that much text to say something so simple, it’s time to
put aside your first strategy for describing it and search for another way. Try talking to
someone who is totally unfamiliar with what you want to describe. Very often, you
find yourself explaining it very simply just by speaking out loud to a person who
doesnt already know what you have to say. Or if you can get that person to put it in
his own words after you explain it to him, you might have a much better strategy for
explaining it.

Notice that all of the above requirements are really program design, not require-
ments or even specification.

13.4.4 Duckspeak requirements

In the preceding set of requirements from structured analysis, you may have noticed a
certain gnawing vagueness. Consider the following requirement:

R-461 The airplane reservation data validation function shall validate airplane reserva-
tion data.
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What does that mean? Why write that sentence? How would you test it? Try saying
it out loud. It’s remarkably similar to the duckspeak described in the novel 7984, Duck-
speak was speech intended to agree with the official standards, but spoken so quickly
and in such a monotone that it hardly mattered what the words were. All that counted
was the dutiful, predictable tone.* Usually duckspeak requirements come in great num-
bers, one after the other, something like the requirements on page 281, but more of
them. Reading them is hypnotic; they put people to sleep.

Duckspeak requirements are the worst type of force fit: requirements that say noth-
ing at all, included in the document only to conform to standards. Strictly speaking,
they’re decoy text.

If you find yourself writing meaningless sentences only to conform to a standard,
consider reframing the problem. Chapter 5 provides a variety of ways to frame a prob-
lem. You should try to find some strategy of presentation or document organization
that does not include any slots that demand to be filled by sentences whether mean-
ingful or not.

Framing all problems as a set of of functions—that is, as a set of transformation
problems—is often the cause of awkward descriptions. Even a transformation problem
can be described straightforwardly, though. Just describe the inputs, the outputs, and
the rule relating them.

Another cause of duckspeak is the practice of treating requirements as high-level
program design. The analyst is trying to describe subroutines that exist inside the soft-
ware, but without including any implementation details—a self-contradictory goal.
Leave the subroutines to the programmers and describe only the problem domain (or
phenomena shared between the software and the problem domain, in a specification),
and you'll avoid the dilemma of choosing between statements that are specific but bias
implementation and statements that say nothing about implementation because they
say nothing at all.

13.4.5 Unnecessary invention of terminology

Another ill effect of force-fitting all requirements into functions and data flows is that you
have to invent an enormous amount of terminology that no one will ever use. For exam-
ple, you need to define a “user input function,” a “user presentation function,” an “air-
planc reservation data validation function,” and so on. These phrases gum up your prose,
and yet no one will ever talk about the things they mean. The testers and programmers
just talk about screens and validation rules. So do the users, and therefore so do the techni-
cal writers who put together the user's manual. The force fit to functions requires that

* [Orwell 1949], p. 254.
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readers translate between their simple concepts that directly refer to the reality of the soft-
ware or the problem domain, and the awkward language of functions. You might as well
save them the trouble and write only in terms that readers will actually use.

13.4.6 Mixing levels

Another mistake you can see in the preceding examples is that even though they claim
to be requirements, they’re really high-level program design. Many requirements docu-
ments jump back and forth between program design and specification, often saying very
litte about the problem domain. They dabble a bit in user-interface design, saying what
happens when the user clicks the OK button and that the user can click the Cancel but-
ton at any time to cancel the changes, almost in the same breath with statements about
leasing policies or approval procedures. Suffice to say, this is confusing.

The solution is to be rigorous about what sort of content you include in the doc-
ument. As described in chapter 1, a requirements document is only about the problem
domain. It does not describe the software (except, of course, for realized domains).
Don't slip into user-interface design or even describing the software behavior, unless,
of course, the customer insists on some design ideas of their own. And don’t slip into
program design, describing subroutines internal to the software, with inputs, outputs,
and processing. It doesn’t matter if you describe the program at a high level, leaving
out details; that’s still describing the program, and leaving out details makes it even
more confusing.

If youre writing a specification, then simply describe the shared events and shared
states that constiture the interface. The shared states of a user interface are the screen;
the shared events are the input from the user and the changes to the screen. In a hard-
ware or software interface, you simply describe the rules for how the system responds
to inputs.

If the customer does include some special provisions about the user interface or any
other aspect of the software, be sure to indicate that these intrusions into interface
design or program design are special requests of the customer—design constraints. If
you mix design constraints with normal requirements without some indication that
that’s what you intend, you harm the coherence of the document,

13.4.7 Prefabricated table of contents

One source of a lot of force fits is a prefabricated table of contents, usually called a tem-
plate. These templates usually have many sections and subsections, and it is company
policy that each be filled out in every requirements document. For describing the func-
tionality of the software, the software is to be divided into a set of functions, and each
function is to include a set of inputs, some processing, and an output. We've already
seen on page 281, how these lead to convoluted descriptions of simple things.
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As noted in chapter 8, starting with a prefabricated table of contents js equivalent
to forcing the content of one document into the table of contents of another. Document
organization is not a task that you can do once and copy over and over again, the way
type can be designed and repeated identically millions of times in millions of docu-
ments. Inventing a document structure is one of the tasks of writing 2 document, and it
is seldom an easy one. The other tasks are choosing the content, and filling the organiza-
tion with the written and graphical expression of that content.

Another side-effect of a prefabricated table of contents is that, often, no two people
interpret the headings the same way. (A worthwhile experiment is to go around to every-
one in your department and ask them to define functional requirement. The amount of
variety is astounding.) Typical sections are Assumptions and Dependencies. What's the
difference? If you look at how different people fill out these sections, you can see that
they have radically different ideas abour what they should contain. There is often an
Inclusions section—apparently that would have to contain the entire document. Next
there’s an Exclusions section—apparently a list of everything that the software will not
do. A long list, probably.

Most analysts simply fill these sections with a little bit of perfunctory gobbledygook
and move on. No one is really sure why they’re there. In review meetings, however,
clashes about what belongs in each section sometimes lead to semantic arguments about
what 2 use case “really is,” or exegetical schisms over how to interpret the headings and
template instructions.

If you're stuck in chis situation and you have some content that desperately needs to
go into the document, even though the prefabricated document structure has no room
for it, there is usually an our: put it in an appendix. If you have to, put 99% of the infor-
mation in a set of appendices that are the equivalent of a logically organized document.

None of this should be construed as an argument against template files that contain
style definitions, handy macros, and even a tiny amount of starter text. These kinds of
files greatly speed the writing of a document because they make consistent formatting
either automatic or very close to automatic. These template files are only a speed-up for
the word processor, however; they are not a speed-up for document organization and
choice of content,

13.4.8 Inconsistent terminology

While people are deciding on requirements, they often invent and then change termi-
nology several times as they get new ideas for terminology and as their understanding of
the problem improves. A common side effect of this is that the document accumulates
both older and newer terminology for the same things. Here ir's an angle, there it’s a
rotation, and there it’s an orientation. Before you release the document, be sure to do a
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global search-and-replace on all the old terminology. If you've been maintaining 2 glos-
sary during the discussions, this will be very straightforward.

13.4.9 Writing for the hostile reader

Your writing must satisfy many different kinds of readers—not just readers with differ-
ent jobs, but readers with different reading styles. There are detail-oriented readers,
who methodically examine each detail one at a time without worrying about why each
detail is as it is; big-picture readers, who don’t trust their understanding of any detail
unless they can deduce it themselves from the underlying principles; and so on. There
s another kind of reader that many analysts go out of their way to try to satisfy: the
hostile reader.

The hostile reader, upon reading any statement, tries to misinterpret it—and
always succeeds. If you write, “Each inventory -rem has a unique identification code,”

the hostile reader counters: « Each inventory item? In the whole world?” So you change it
o “Fach inventory item in the XYZ warehouse has a unique «dentification code.” The
hostile reader is not yet satisfied: “Tables and chairs and dollies in the warehouse are
items. Do they have unique identification codes?” No, that’s not what you meant, s0
you change it to “Each item in the XYZ warehouse that is bought from a supplier or
sold to a customer has a unique «dentification code.” Still not good enough. The hostile
reader objects: “So if you get an item for free and have not yet sold it to a customer, it
has no identification code?” You fix that, and the next objection, and so on, and on each
iteration, the sentence becomes ever longer and more difficult to understand.

You can try defining a term once and reusing it many times, so you don't have to
write the definition into each sentence to satisfy the hostile reader. That wont work,
though. The hostile reader never reads more than one sentence at a time. What the con-
rext of a sentence supplies, the hostile reader ignores. So you resort to the strategy of say-
ing everything in the document in every sentence.

Before you get 100 worried about the hostile reader, see if you can remember the
Jast one you met ini person. I€ there are any genuinely hostile readers, they must be very
rare. The author has not met one. There are a few testy readers out there, who don't try
as hard as they possibly could to answer the question, «“\What is the author’s intention
here?” but they’re also rare, and they're especially rare among people who are reading a
requirements document in order to learn the next problem upon which to ply their
okills. The hostile reader is a bogeyman. You don’t need to fear him.

The hostile reader illustrates a fundamental principle of language: speaking assumes
a cooperative listener, and listening assumes 2 cooperative speaker.* The same principle

-

* {Pinker 1994], p. 228.
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applies to written language, of course. There is another principle: while you can’t make
yourself understood to the hostile reader, by trying to do so, you make yourself incom-
prehensible to all real readers.

This is why many legal documents are so opaque. They’re written for a hostile
reader assumed eager to find a loophole by exploiting the ambiguities inherent in natu-
ral languages. Even legal documents don't succeed in ruling out all possible unreasonable
interpretations. They do succeed, however, in being incomprehensible. Sometimes the
meaning is exactly the opposite from what the lawyer intends, the switling syntax being
s byzantine that not even the author can follow it.

Furthermore, when you read legal verbiage, your first thought is to try to find a
loophole. When treated with hostility, naturally, you react with hostility. By writing in
such a way that you do not draw upon the reader’s intelligence to understand you, you
turn the reader’s intelligence to misinterpreting you—you make them a hostile reader.

13.4.10 Putting the onus on the development staff

When grumblings are overheard from the development staff about lack of good require-
ments, management sometimes proposes to solve the problem by putting the onus on
the staff. “Before we sign off on a project, we will show you the requirements document,
and we won't proceed without your approval. If there’s anything you don’t understand,
point it out and the analyst will clarify it or get it corrected. You will have every oppor-
tunity to make sure the document is just right. And then, once you do sign off, you will
be accountable. There will be no more pointing fingers or complaints that the docu-
ment wasn't correct,”

This solution is also proposed when management learns that no one on the devel-
opment staft is reading requirements. “We'll make them read the requirements docu-
ments by announcing that they’ll be accountable if there’s something wrong with them.”

The United States Congress has failed to balance the federal budget for many years
now. Some have proposed an indirect type of solution: change the process by which
Congress makes budgets by requiring them to balance the budget, as one of the rules
that they have to follow. Yet there is a law on the books, passed in the 1970s, already
requiring a balanced budget. A constitutional amendment would face the same prob-
lem: who's going to make Congress balance the budget, and what decisions will this
party make regarding how much funding to give to each department and program?
These process solutions don’t work because the only way to balance the budget is to
balance the budge:.

Similarly, the only way to make requirements documents readable is to make them
readable. When programmers read a poorly written requirements document, they see a
maze of information that appears to be of no relevance to them. Why are there user

MORE COMMON MISTAKES 287




fequirements that are almost identical to functional requirements: except that the word-
ing is slightly Jifferenc? What's chis ferociously complex data-flow diagram for? Why
does each function have inputs and outputs that aren’t inputs and outputs? They appeat
10 be destinations for data, since some of them are called data stores, but the data itself 1s
missing.

Faced with a document in which so litde 1s understandable to you, you’re likely to
infer that it was never intended for you t© read. Perhaps managers understand and have
a use for all that strange prose. Maybe the legal department insists on having an Exclu-
sions section that lists what's not t0 be included in the software, and maybe there’s a rea-
<on why that list jsrc infinite. All through the document, the same things are said three
or four times, often on the same page: No one could have made a document so intricate
if there werenT good reasons for it.

So you give Your approval, meaning “the few Jirtle bits that scemed to have some”
thing o do with my job <cemed okay.” You figure that you'll get most of the informa-
ton that you peed by word of mouth. Aftet all, that's how it's always been done.

" On the other hand, if only three or four things seemed wrong Of unclear, then
youd know exactly what © object to. Changing the approval process won't get the doc-
ument to that Jevel of clasity. Only improving the document will.

The above should not be raken to mean chat well-honed and well-defined business
processes are unimportant. Indeed, the development staff should review requirements
documents and sign off on them only when they contain a1l the information they need
to do their jobs. However, process jmprovements, at least those concerning interaction
between people, should always be understood as 2 Way of enhancing the division of

labor, notas 2 substitute for the labor jtself.

13.5 Poor uses of Aocumentation

13.5.1 Documentation for the sake of documentation
Documentation is sometimes put 0 uses unrelated to Of contrary getting the software
completed and functioning correctly. One is conformity t0© documentation standards.
For example, 2 poorly designed 1SO 9000 quality process Of the standards for a govern-
ment contract might specify chat 2 requirements document describe the software, pet-
haps by casting it into the concepts of structured analysis, and fit all the information
into a one-size-fics-all table of contents.

The theory behind this is chat in order t© have consistent quality, we need a set of
quality criteria that can be defined independently of any particular project. A person
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should be able to judge the quality of the requirements document without knowing
anything about the problem domain, and without any experience as a programmer. Is
there a Gane-Sarson chart? Yes, Is there a section titled Dependencies? No—return to
system analyst for revision. Suffice to say, this is focus on non-essentials,

A project where this kind of documentation is written tends to be a project that is
not focused on delivering a high-quality, correctly functioning product. Instead of the
requirements document being a vehicle to enable the development team to do its jobs,
writing the requirements document and many other documents is an end in itself. The
hundreds or thousands of pages of documentation prove that we did everything cor-
rectly, in accordance with official standards, so if there’s something wrong with the prod-
uct, its not our fault. Many of these kinds of projects never reach completion and,
perhaps, were never intended to.

This book won't help you write that kind of document. If you're forced to work
with such standards, one strategy is to write two documents: one to conform to the
standards, and one for real human beings to read. Indeed, many project managers pro-
vide this service to their teams when a requirements document is incomprehensible.
The manager talks to the system analyst, learns what the requirements really are, and
then makes a list that fits on a Page or two of all the requirements that the team really
has to address.

13.5.2 Doubletall

Another highly questionable use of documentation is impressing the customer, not with
the accuracy of your analysis, but with how much more you know than the customer,
The theory is that the customer sees all the arcane terminology, sections with no ingellj-
gible purpose, and indecipherable graphics, and thinks, “It’s a good thing we didnt
attempt this ourselves! There’s no way we could have produced anything like this. These
people sure must know what they’re doing.”

That might work sometimes, Of course, it also breaks the link between the
requirements document and the customer. So, the written description of the problem
domain never gets verified by the domain experts. Also, the programmers can’t under-
stand such a document, so they miss out on the content that’s buried within it,
whether it’s right or wrong.

If the customer has ever dealt with requirements documents before, you'e sure to
impress them much more with a simple, short, clear one. Impress the customer with the
clarity of your document and the completeness of your analysis. “Wow, you really
understood our situation here. No one has ever done that before.”

If you absolutely must write a mystifying document to impress a customer, be sure
to write a second document that is useful to the development team.
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13.5.3 CYA documents

One more unfortunate attitude toward the writing of requirements and specifications is
to treat them as CYA documents. (You will have to use your imagination to tell whart this
acronym stands for.) Such a document does not provide anyone with informarion neces-
sary to do a job. Instead, its purpose is to have something to point to if disputes arise
late in the development process.

The procedure is as follows. First, write a hopelessly convoluted set of specifica-
tions, filled with references to documents that are difficult to find, impenetrable
requirements jargon, lots of repetition so that it’s difficult to tell which of a set of state-
ments is the definitive one, and statements whose import can’t be properly grasped
without first reading a seemingly insignificant subordinate clause in a sentence that
comes 61 pages later.

Next, the customer sees the document. The customer doesn’t read the document,
of course, because that’s not humanly possible. The customer is perhaps awed by how
much more arcane is the discipline of software description than they ever imagined.
The customer figures, or perhaps just hopes, that everything that was talked about in
the preceding discussions must be included in such a long, complex document. After
skimming the text a while, perhaps finding a sentence or two to reword, the customer
signs off.

Now the development team takes over. Naturally, 90% of the information about
the software will be communicated orally because no one on the team can understand
the document, except for a few tables that the system analyst tells them to look at. But
let’s suppose that the software is written exactly as specified.

At last the software is delivered. The customer tries out the software and notices
that there’s a backup feature but can’t figure out how to restore. It turns out that the
software can’t restore; it can only back up. The programmers said there was an unusual
technical snag with restoring, so the system analyst decided to make it a possible
future enhancement.

“How can you deliver a piece of software that lets you back up without restoring?”
the customer bellows.

“Look under Acceptance Criteria, on page 73. It doesn't list any criteria pertain-
ing to restoring,” the analyst replies coolly, like a chessplayer who's just cornered his
opponent.

“But what’s the point of backing up, then? What if a hard disk crashes?”

“I'm sorry, but you signed off on the specification document, and the contract
states that you will make final payment for the software if it meets the acceptance crite-
ria in that document. If you want additional features, we can discuss new development

work to add them.” Checkmate?
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Exclusions in the CYA document. So the sales and marketing folks are brought in. To
ty to retain the customer, they offer some sort of sweet deal—on support, on training,
on the next job—in addition to promising to add the needed features for no charge.

A CYA document does not cover you in case of disputes arising late in develop-
ment. Not only does it force most information needed by the development staff to be
communicated by oral tradition, it tends to backfire and anger the customer.

A better way to handle such disputes is to try to prevent them. Driving safely pro-
tects you much better than an airbag,

First of all, the contract must budget for change, simply because we can’t spot every
fequirement at the beginning, and we probably won't get the specification perfect at
sign-off time, either. Even today, many customers think that software engineering works
like manufacturing. So, you need to tell the customer about these imperfections of
requirements gathering and software design at the beginning of the job. Each time you
change a requirement or part of a specification that the customer signed off on, you'll
need to get agreement from the customer and charge the new costs to the change bud-
get. If the customer knows that the changes are coming, this won’t be so painful.

understood, the customer will probably read and understand it. The customer would
then notice early on thar, for technical reasons, the restore feature is deferred to a later
release. There wouldn’t be any big surprise at the end, where the customer is made to
feel hoodwinked.

Finally, never forget thar the customer is the first participant in the division of cog-
nitive labor that produces software.
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CHAPTEHR 1 4

Orgam’zdtz'on

14.1 Content furst

The first principle of organization is: a place for every detail, every detail in its place.
Organization is the process of inventing places for all the details. Therefore, to organize,
you must first have some details in need of organization.

In elementary school, you were probably taught that the first step in writing a doc-
ument is to make an outline. First you state all your main topics. Then you break each
topic down into subtopics, and, if necessary, you break those down into subsubtopics.
Each bottom-level topic will correspond to exactly one paragraph. Once you finish the
outline, writing the document then becomes very simple and systematic: just write the
paragraph corresponding to each bottom-level topic.

Of course it never works so easily in practice, except in simple examples from
elementary school. Alert readers will recognize the top-down approach, already criti-
cized in chapter 1: how can you tell if the overall structure of the document is any
good until you've written the paragraphs? How do you know thar it makes sense to

break down the subject matter along the lines of your top-level topics, instead of
some other way?

293



There is a further problem with writing an outline first: it doesn’t make sense to
choose an organization without first having some content to organize. Therefore, your
first step in writing a document should be to make a list of the content that you want to
include—an unordered list conraining big topics, tiny topics, concepts, propositions,
ideas for graphics, and anything else that you want to include in the document. Just add
items to the list as you think of them without worrying about the sequence or hierarchy
in which they’ll appear in the final document or about whether an item corresponds to
one paragraph or two or twenty. Don'’t even worry, at this point, if some items overlap.
Part 11 of this book provides guidance for identifying the content items appropriate to
the document that you're writing.

An outline processor is a wonderful device for creating your list of content. You can
begin grouping related items together and choosing a sequence as you type them in, but
don’t become attached to the first way of organizing the document that occurs to you.
You want to make use of the outline processor’s ability to let you quickly make radical
changes to the way the document is organized.*

There are two principal aspects of organization: how information is grouped
together into units, and the sequence in which information is presented. Choosing a
good grouping and a good sequence is a matter of identifying the logical structure of the
content, that is, which items logically depend on which. The following two sections
provide guidance on making this choice, though the full subject of logical structure is
far beyond the scope of this book.

14.2 Grouping

Ideally, information that is more closely related to other information logically should be
located closer to it in the document physically, and the principal divisions in the docu-
ment should correspond to the principal logical divisions in the content.

* Very eatly in writing this book, I made a list in an outline processor of about 600 content items to organize.
Organization was very difficult, and I had to abandon many early attempts. The original idea of having
one chapter per problem frame, conraining all the documentation techniques needed for that type of prob-
lem, just didn’t work: nearly all of the documentation techniques overlap between two or more problem
frames. Presenting requirements techniques in one section and specification techniques in another didn’t
work, cither, again due to the overlap problem. An early attempr at presenting a complete, example re-
quirements document for each frame didn’t work: most readers didn’t want to trudge through even a ten-
page requirements document to see the techniques in action. I had to scrap about 100 pages of writing in
response to that piece of feedback. The point of this example is that it’s typical. Organization of any doc-
ument longer than a couple pages is almost always difficult, requiring careful thought and a willingness to
delete, reorganize, and rewrite.
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These ideals can be difficult to achieve in practice. For example, if many different
classes participate in the same sequence of events, you would likely have one section for
each class, followed by one section to describe the sequence of evens, The class docu-
mented in the first section, however, is logically related no less closely to the sequence of
events than all the other classes. Thirty pages may well separate the first section from the

whole than to the classes, so you have to bundle the events into one group, even though
this means distancing them from the classes.
Fortunately, you've already done most of the work of finding the logical seams in

ment oval can also make a section, or you might put it at the end of a section about one
domain. (See the tips for classes and events below; the same decision applies to them.)
The rest of this section focuses primarily on smaller choices about how to combine
details into groups.

The following are a few ways in which two or more Propositions (statements) can
be logically close and, thus, candidates for inclusion in the same group:

Logical relationship Example

Propositions A4 and B are about the A gene consists of a sequence of codons.

same subject. . .
) A gene codes for a specific protein.

Propositions 4 and B have the same  Servomotor 3 can close valve G,

redicate. .
P A member of the maintenance staff can

close valve G.

Propositions 4 and B have subjects  1/0  port 0x7000, bit 0, turns on
in the same class, or that are different  servomoror 3.

values of the same variable, /O port 0x7000, bits 4-7, select one of

16 speeds for servomotor 3.

Propositions A and B have the same  Data mining must happen before data
kind of predicate—thar is, answer analysis.
the same question or have parallel

Data analysis must happen before data
structure.

transmission.
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However, it is virtually impossible to deduce from general principles whether a
given set of content items should be grouped together or not. Better to systematically

consider alternatives and use your common Sensc. Usually, just by looking over some
alternatives, you can easily see which fits your subject matees best.
Here are three ways to group classes and events:

(1) 2) 3)
class A class A, including events class A
class B class B, including events class B
class C class C, including events class C
class D cdlass D, including events events that affect 4, B,
events and C
class D, including events
class E
class F
events thar affect Eand F

Organization (1) makes sense if the set of events straddles classes 4, B, G, and D.
Organization (2) is more appropriate when cach sequence of events affects only one
class. Naturally, within each section, you describe the class in one subsection and the
events in another subsection; you don’t let one complicate the other. Organization (3) is
a more general case: a mixture of the previous two. There’s no need to consistently fol-
low one grouping strategy throughout the entire document.

You can see that classes and events are just one instance of a common pattern of
logical relationship: one set of naturally grouped propositions pertains to one or more
other sets of naturally grouped propositions. The vast majority of grouping decisions,
whether at the level of paragraphs, tables, or sections, boil down to choosing from
among the above three types of organization.

A type of grouping mistake to avoid is illustrated by an application that has a set of
queries as well as the capability for a manager to decide which employees can run which
queries. The temptation is to say, along with the description of each query, that a man-
ager can decide which employees can run it:

query A, manager can set up authorization
query B, manager can set up authorization
query C, manager can set up authorization
query D, manager can set up authorization
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The first rule of style is to have something to say. The second rule of style

is to control yourself whep, by chance, you have two things to say; say first
one, then the other, not both at the same time.*

content all the way through,
If you're lookin

g for a principle of logical relationships thar guides this decision,
here it is:

* [Polya 1957], p. 172,
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For example, what defines a query is its content and any other information that is
inherent in the query, such as its input or output formats. They say what the query 1.
That information belongs all in one place, uninterrupted by anything else. The ability
to decide who can run a query is, something that presupposes a query to talk about and,
therefore, does not belong within the same group.

However, a fine compromise is to create a larger group, containing two parts: One
part describing the queries, and the other describing the authorization capabilities. Usu-
ally, you don’t even need to explicitly designate these as members of the same group; you
can simply place the section on authorization immediately following the section on the
queries. Then the reader will learn abour authorization jmmediately after learning about
queries and will hardly be able to help noticing that they're related. The basic grouping
principle pertains to keeping related statements close together in the document, not
necessarily keeping them in the same section.

Another helpful standby, whenever you want to be sure that a reader understands
that information elsewhere in the document affects what a certain section says, is the
cross-reference. Just write “See section 2.4” or “See page 17 for information on which
users can run each query.”

14.2.2 Seven plus or minus two

In the 1956 article “The Magical Number Seven Plus or Minus Two,” almost certainly
the most widely read article ever published in cognitive psychology, George A. Miller
wrote about some interesting “limits on our capacity for processing information.”
Many have understood this article as scientific proof that a graphic should have no
more than 7 + 2 circles or rectangles in it because then the mind won't be able to under-
stand it; more circles or rectangles would exceed our capacity for processing informa-
dion. Some have gone further and taken the article as scientific proof that the human
mind cannot understand a section in a document that contains more than nine subsec-
tions. 7 + 2 = 9, therefore nine subsections is the limit; if the section contains ten sub-
sections, then the readers can't help but become confused. A procedure cannot have
more than nine steps, or people won't be able to carry it out reliably, and so on: when-
ever any group contains more than nine clements, it’s beyond human comprehension.
If you think something must be wrong with this idea, you're right. In fact, the arti-
cle made no such statements. More importantly, those statements are not true, as a few
observations will demonstrate. The Old Testament is not any less comprehensible for
having Ten Commandments rather than Nine. A road map shows you thousands of
symbols at once, and yet people navigate with road maps every day. A typical dictionary
contains 50,000 subsections all grouped together—one for each word—and yet people
have no trouble using it. You can carry out a written procedure with a hundred steps by
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just doing one step at a time and then reading the next step. The English alphabet is 26
letters long, and yet children learn it. You have probably understood sentences contain-
ing more than nine words, and whistled melodies of more than nine notes.

When a subtle idea becomes popular, it often becomes distorted; a simplistic sub-
stitute takes the original idea’s name in popular culture. Miller’s article is actually about
two main subjects. In the first section, the majority of the article, he observed thar in
many experiments involving quick, perceptual measurements of stimuli that varied
along a single axis—such as the pitch of a tone, the loudness of a tone, the salinity of
water, the length of an arc—most people could accurately distinguish only about seven
different levels, give or take quite a lot depending on the type of stimulus. Miller called
this range of levels the span of absolute Judgement.

Given that the span of absolute judgement is only about seven levels, this raises
an important question: how, then, are we able distinguish such complex phenomena
as faces? We all recognize far more than seven faces, and with amazing accuracy. Miller
doesn't provide a definitive answer, but he discusses some tricks, such as, judging stim-
uli that vary on several dimensions at once to achieve a much greater number of dis-
tinctions.

The article then turns to the span of immediate memory. how much information we
an keep in our short-term memories at once, measured by giving someone some infor-
mation that they have never heard before and asking them to recite it back. Most peo-
ple, upon hearing a random sequence of binary digits, can recite it back correctly only if
the sequence is no longer than about nine digits. This would seem to indicate that the
span of immediate memory is about nine bits of information.

Now here is the truly noteworthy part of the article, at least for writing documenta-
tion. There is a trick by which you can accurately recite back a string of forey binary dig-
its. When you hear five digits, think of the corresponding decimal number from zero to
thirty-one: for example, when you hear 10010, think “18” and forget the 10010. Do the
same with each group of five digits. This breaks the string down into eight decimal
numbers, which you can keep in your head all at once (just barely), and use to recon-
struct the original binary number. It takes some practice, but anyone can do it

In the terminology of information theory, this trick is called recoding. By recoding
the binary digits, you've increased the amount of information you can keep in your head
at once from nine bits to forty bits—a huge increase, considering that every increase of
one bit doubles the number of distinctions that you can make. The span of immediate
memory is therefore properly measured in chunks, not bits, and through recoding, each
chunk can be worth many, many bits. The number of chunks you can hold in your
immediate memory varies somewhat according to the type of chunk. For simple things
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like digits, it's as high as nine, but more often it’s around seven ot even five for arbitrary
lists of words.

Recoding is far more commonplace and of far more importance than as a patlor
erick for reciting binary digits. Just as our brains have means for extending the span of
absolute judgement to astounding levels in order to recognize thousands of faces, we
Jlso have means for extending the span of immediate memory, enabling us to consider
problems of spectacular complexity—Tlike software requirements and computer pro-
grams. Recoding is foremost among them, and ir's everywhere; you do it all the time. It’s
how you're able to read a 400-page book and ot get lost. When one topic is done, you
put it and all its details away in your mind, and think about the next topic. If the two
are connected in some way, you can mentally reopen the first topic, as needed, to under-
stand the consequences of the connection and then forget about it again.

So, if you have 700 clements that belong in 2 cable, make a table with 700 ele-
ments. Just make the table so that the reader can read it one row at a time and so that
there is an obvious commonality to all the rows. Commonality allows the reader to
chunk the table, thinking of it as only one thing, such as, “the table that lists all the field
mappings.” If you have a procedure with cighteen steps, the same principle applies:
make your description such that the reader can read one step at a time, knowing his
place in the whole procedure without having to keep all 18 steps in mind at once.

So here is the real lesson to learn from Miller’s famous article:

The Recoding Principle: Make it easy for your readers to recode, or chunk,
the information, so that they seldom or never have to consider more than
four or five things at once (not ninel).

In fact, you can set up nearly all documentation so that a reader never needs to
think about more than one or two things at once. There are almost always a few compli-
cated parts that require juggling three or four or five at once, but, through skillful
grouping—saying one thing at a time—you can keep those to a minimum.

14.3 Sequence

The ideal sequence in which to present information is such that no statement ever
appears before any statements that are logically required to understand it.

Like the ideals for grouping information into sections, this ideal is much harder w0
put into practice than it sounds. Especially in software, it seems that all the parts are 0
tightly intertwined that no one part can be described in isolation. The key to solving
this problem—to the extent that it can be solved—is to put that which is more logically

300 CHAPTER 14 ORGANIZATION




fundamental first. Every new piece of material builds on all the previous pieces, ulti-
mately creating the desired logical structure in the reader’s mind.

For purposes of understanding material, the rule for deciding which of two con-
cepts or propositions is more fundamental is simple:

If a concept or proposition B refers to another concept or proposition 4,
then A is more fundamental and should come first.

The principal way that one concept refers to another is by including it in its defini-
tion. For example, you cant understand whar a two-pair connection is until you under-
stand what a pair is and what a connection is.

A proposition refers to another proposition by extending it, varying it, talking
about it, or including it. For example, you can’t understand “If a timeout occurs, resyn-
chronize the channel” until you know that it is possible for timeouts to occur and that it
is possible to resynchronize the channel.

A proposition refers to a concept by including it. You can’t understand what “Inside
plant is equipment located in a central office” means until you understand what “inside
plant” and “central offices” are.

Here are a few heuristics for determining which of two pieces of information is log-
ically more fundamental:

* Facts not within one’s power to choose are more fundamental than facts that one
can choose. So descriptive statements should generally come before requirements,
as requirements are really just descriptions of conditions that the customer
chooses to make true. To put it another way, the problem is more fundamental
than the solution.

* Things are more fundamental than their attributes, relations between them and
other things, and the actions they can do or have done to them. For example, you
need to understand what nations are (things) before you can understand foreign
policy (action). This is the principle that guided the placement of classes before
sequences of events in all the examples in section 14.2. Similarly, in a class descrip-
tion, the definition of the class precedes the description of its attributes.

* A corollary: Relations are less fundamental than what they are relations between,
This includes relations between actions, such as causal relations.

* A corollary: Actions are less fundamental than what gets changed during the
action.

* A corollary: Attributes are less fundamental than what they are actributes of. This
includes attributes of relations and actions, or even of other attributes.
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« The normal case is more fundamental than the exceptional cases. Exceptional cases
are variations or extensions of normal cases.

¢ What a thing i is more fundamental than any roles that it plays in different situa-
tions or how it is used.

+ A description of agents should usually precede a description of the passive objects
that they act on. For example, usually a detailed description of users should precede
derailed descriptions of the things they act on. Both, however, tend to be very inter-
twined: the agents are defined by what they do to the passive objects, and the pas-
sive objects capabilities are exercisable only by certain agents. The reason for
putting the agents first has less to do with logical structure and more to do with the
fact that there are usually few agents and many passive objects. Describing the
agents first leads to fewer forward references.

You'll notice that these suggestions can casily conflict. What if a class A contains
actributes that refer to class B, and class B contains attributes that refer to class 42 That’s
very common because that’s the situation each time you have a relation berween two
classes. In this case, you simply have to choose one or the other, knowing that the reader
might be temporarily perplexed the first time reading through the document.

The above tips can help you minimize incomprehensibility due to one piece of
informarion’s logically depending on a later picce of information, but they can’t guaran-
tee you a way to eliminate it. As with difficulties in grouping, you can always refer to 2
later section or page number to help the reader find the information that hasn’t been
covered yet.

However, there is a simple technique for giving the reader enough information in
advance of any section to understand it on first reading, even if it refers to information
in later sections: an overview. An overview should try to follow the principles of logical
sequence inside itself. This is easier than in the main text because an overview leaves out
nearly all derail. However, the overview provides enough information so that readers
have some introduction to all the main concepts, enabling them to understand sen-

rences that refer to those concepts, even if they haven't read about them in detail.

14.4 Emphasis

Emphasis is a way of distinguishing the two percent of the content that is most impor-
cant from the remaining ninety-eight percent. It is not a way of indicating that certain
information is important. Of course, every statement is so important that your reader
should know about it; otherwise you wouldn’t have put it in the document.
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to properly understand other statements.

For example, in the requirements for a photocopier, a reader needs to understand
that the purpose of the whole thing is to make copies. Understanding this, a reader can
look at all the details with a critically focused eye: “If thig happens and then that hap-
pens, how is that supposed to produce 2 copy? What if such-and-such happens firse?
How would you recover from thac?” Burying so important a statement deep in the doc-
ument would leave the reader with 4 heap of seemingly arbitrary details, and no good
questions to ask about each one, In a photocopier, this wouldn't be a problem, but what

.

importance that matches their logical importance. Here are 2 few techniques of empha-
sis, ordered by roughly decreasing strength;

* A graphic emphasizes its content.

* Whatever appears first is automatically emphasized.

* Whatever you refer 1o many tmes is emphasized—no¢ Page and section references,

many other things, each time adding more information,

* Surrounding content with white space emphasizes . Look at page 300. Which sen.-
tence do you see first?

* Bullets emphasize.

* Repetition in another form emphasizes; for example, giving an example or drawing
a graphic.

* Taking more Space emphasizes, A long section seems to be more important than a

short section.

* Any kind of contrast emphasizes the contrasting element. If one row in a table is
shaded and the rest are not shaded, the shaded row i emphasized. If one row s
unshaded and the rest are shaded, the unshaded row is emphasized.

Or more strained tone of vojce than the surrounding text—seldom needed in tech-
nical documents,

It may seem surprising to hear that taking more space could be 1 good thing to do
in a document, as a way of giving a piece of information jts proper degree of emphasis,
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However, “express everything in the fewest words possible” is a crude rule and, if taken
literally, would lead to incomprehensibly terse (but literally correct) documents. It is
better to understand that you have alternatives, and those alternatives include a wide
range of different lengths.

If you want to make a section longer, you can: add examples, or add more examples
or more-detailed examples; add a graphic; add an explanation of the rationale for the
information in that section; add usage scenarios; say the same information in more than
one way.

Be aware that all the techniques of emphasis can work in reverse, too. Whatever
you put first will be emphasized, whether you want it emphasized or not. If you start the
document with a lot of bureaucratic sections, the principle of “whatever appears first is
automarically emphasized” causes the genuinely important text to be deemphasized.
This is essentially why decoy text is the bane of good documentation.

Strangely, talking about importance explicitly usually backfires. Writing the words
“IMPORTANT?” or “NOTE:” before important statements often makes people skip
over them.

Furthermore, such extreme forms of emphasis, or emphasis applied to much more
than the two percent that genuinely touches nearly every other statement in the docu-
ment, undermines your credibility. Iralicizing every not makes you sound like a person
who continually raises his voice or repeats himself—that is, a person who does not
expect anyone to listen to him. Usually when people expect to be ignored, it’s because
they have reason to: they know that what they have to say is not relevant to other peo-
ple’s concerns. You probably don't want to communicate to your readers that what you
have to say is irrelevant to their jobs. Say everything once, with no more and no less
emphasis than each statement deserves.
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acronyms

Whenever possible, try to avoid inventing new acronyms. They're opaque to the
uninitiated, and, of course, you're writing for the uninitiated. They take a person a lot
longer to learn than a word or a two-word phrase. However, if an acronym is already
part of the vocabulary of the problem domain, then you must explain it in the
requirements document.

The meaning of an acronym is seldom made clear by indicating what its letters stand
for. If you know that OSS stands for “operations support system,” do you know what an
0SS is? For more information, see DEFINITIONS and GLOSSARIES.

“affectleffect”
Words easily confused. Affect is most often a verb, and effect most often a noun:

Affecting something is causing an effect within it.

Adding to the confusion are a noun usage of affect, having a completely unrelated
meaning, and a verb usage of effect, meaning “make” or “bring about.” Fortunately,
these additional senses are seldom needed in technical documents.

<< »
always

It is sometimes claimed that a requirement should never assert that something is to
always or never happen. For example, a requirement should not say that the system
should always reject an order from a customer on credit hold. This is because a require-
ment is supposed to be finite, and an “always” or “never” statement pertains to a poten-
dally infinite amount of time. The reason for wanting requirements to be finite is
because requirements are supposed to be testable, and it’s impossible to test an infinity
of cases.

This is a mistake. Test cases are necessarily finite. You test a system, say, for three
weeks. The purpose of testing is not to determine that the system worked for three
weeks. The purpose of testing is to either gather evidence that supports an inference that
the system will meet requirements indefinitely far into the future, or to uncover evi-
dence that it won't. Testing is always imperfect. Even finite requirements that have a
mere quadrillion possible cases (many fewer than in most real-world system) are impos-
sible to test one by one. Testers carefully choose their test cases to expose evidence that
has as much logical leverage as possible, to learn as much as possible about how the sys-
tem will perform during the potentially infinite span of time when it is not being tested.

Furthermore, the people who design specifications and write programs are not
trying to produce a system that works only during testing. The problem they are trying
to solve is, “How can we make such-and-such always happen?” The requirements
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document should state that problem and not confuse it with the separate problem of
how to verify that the software meets the requirements.

To put it another way, the customer will be somewhar nonplussed if you write that
the cutting blade will not fall while a person is in the cutting area—but only during the
first three weeks of operation.

assumptions
The word assumption, like its frequent companion DEPENDENCY, s vague. There are a
wide variety of things in software development that are equally well named by the word
assumption, so you can never safely—ahem-—assume that the reader will understand the
one that you intended, without providing some clarification.

Faced with a template containing a section named Assumptions, it can be tempting

to include anything you can think of, only for the sake of having something to include
in that section:

1.8 Assumptions
This document assumes that DEX will be developed according to XYZ Corporation
Software Development Standards, doc. no. 045-71001.

Assumptions worth stating are those where you can identify something in the doc-
ument that would have to be changed if the assumption were changed. Identifying an
assumption is useful only if you explicitly indicate what would have to be changed.

For example:

This user interface is designed on the assumption that it will be implemented in Visual
Basic. If we switch to a different tool, we would probably need to change the appearance
and functionality of a number of the controls,

Its neither necessary nor possible to state exactly which controls would have to be
changed, without redesigning the user interface for every other available tool. But even
though this paragraph doesn’t go into detail, it communicates useful information to the
reader. If a programmer is considering switching to 2 different tool, they will be on the
alert for user-interface decisions thar exploit capabilities of Visual Basic that are not
available in the new tool. If a user-interface designer is considering a different tool, they
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will also be on the alert for compromises made in response to the limitations of Visual
Basic that don’t need to be made with the new tool.

Notice that this definition of assumption includes all problem-domain intorma-
tion. If the objects in the problem domain have different attributes than those you
describe, or if events can come in different sequences than those you describe. then, of
course, you would change the document. The majority of a good requirements docu-
ment is problem-domain description, but therd’s no need ro call it “assumptions.”
Reserve this word only for specific assumptions about the development process on
which you have premised some of the decisions expressed in the requirements docu-

ment or specification.

“click on”

A small improvement, 1o decrease wordiness, is to consistently write that a user “clicks”

an objecr rather than “clicks on™ an object.

‘composelcomprise”

Two surprisingly tricky words that occur often in requirements. The standard usages are:

The whole comprises the parts.
The parts compose the whole.

The wholc is composed of the parrs.

Comprise, in other words, means to encompass, or include. Compose means to fic
together to form something larger, like the way that musical notes together form a musi-
cal composition.

Therefore the digits do not comprise the identification code, but they do com-
pose the identification code. The identification code is not comprised of digits (a non-
sensical phrase), but it is composed of digits, and, o say the same thing, it also
compriscs the digis.

With such a subtlery of English usage, it may be most prudent to abandon tradi-
tion and simply treat these words as synonyms. Fewer and tewer people know or care
abour the difference, anyway.

A better solution is to not word a sentence in such a way that a reader’s ignorance of
the distinction could lead them to misunderstand. One way to do thac is by always pro-
viding redundant clues indicating which word you intend as the whole and which you
intend as the parts. This is very casy because, as in “digits” and “identification code”, the
whole is normally singular and the parts are normally plural.

Another wav to avoid the confusion is by using different words altogether, like con-
S75t5 of
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Ihe identification code consists of 9 hexadecimal digits.

Includes and conrains are poor substituies, since they suggese chat more might be
included than what you list. “The identification code includes 9 hexadecimal digics.”

And what ¢lse does it include?

conventions
The following text demonstrates both some recommended typographical conventions

and a good way to describe them:

ST

I “This document observes the following rypographical conventions.

, Requirenents are testable effects or conditions to be created by GEO: services 10 be pro- ’
vided to users, rules to be enforced, exc. Requirements are wricten in bold sans serif ‘

type and given an identification number preceded by an R. For example: ’

! R-5 A user can enter a separate orientation for each of a structure’s ‘
| attachments, independently of the structure’s orientation. ’

Datato be stored by GEO is written in sans serif type, to distinguish it from real-world |
objects and ateribures that it represents. For example: a structure is an outdoor object,

such as a telephone pole or building, 1o which cables can conncer; bue a structure is a |
I collecrion of data scored in the GEO databasc abourt a scruccure, A structure type is one ’

\ ol the picces of data in that collection. ‘

Named diata valies are written in italic sans serif type. For example, the possible values |

of structure type are: pole, pedestal. building, manhole. :

| S . . N
String literal—alphanumeric dara to go into the system exactly as shown, such as file- ‘

| names- —are written in sans serif type. ’
Program code is written in the Courier font.
| Names of windows and controls arc written in italic sans serif type. ‘

| Preferences are evaluation criteria for choosing between two or more designs that mece |
| the requirements. There's no way to test a preference: a preference only provides guid- |
ance in making the mos: useful possible design. Preferences are written in bold sans |
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serif type and given an identification number preceded by a P For example: |

5 P-1 Preference: GEO's user interface should give priority to ease of use in |
working with copper networks over hybrid fiber-coax networks. i

[evariants are conditions that are not to be changed by any cvent, or by a speciﬂed set |
of events, though they might be changed temporarily during the event. Invariants are a |
I redundant check on the correctness of the requirements. If any requirements describe |
an operation or possible scquence of operations that could result in an invariant being |
violazed. the requirements are incorrect. Invariants arc written in bold sans serif type |

and given an identification number preccded bya V. Tor example: |

| V-1 Invariant: No structure’s orientation ever points into a sector |
:‘ narrower than 5 degrees. |

Notice that all of the examples to illustrate the conventions are taken from later in
the document, and the name of the software—GEO—Is mentioned explicitly, instead
of a generic term like “the system.”

Naturally, omit any paragraphs for conventions chat don apply to the document
chat vou're writing. You may well omit the entire discussion of the conventions, if you're
sure that your readers dont need to have them explained. Cood typ()graphical conven-
tions are intuitive enough that chey really need no explanation, though the above text
also provides a place to explain the concepts of requirement, preference, and invariant,
which might be unfamiliar to many readers. Fven if you include the section explaining
the typographical conventions, you should stll strive to write the remainder of the text
<o that someone could understand it without having read the discussion of the conven-
tions. Most readers skip that section anyway.

There is « litde bit more to the conventions that a reader does not need to know,

but that you need to know when writing the document:

e The identificarion numbers of requirements, preferences, and invariants arc out in
the left margin, away from the main body text (see PAGE LAYOUT).

¢ A requirement, preference, or invariant 1s always in a paragraph by irself, Scparated
from prcccding and following text.

« In a definition, the name of the concept being defined is italicized, except in the
GLOSSARY (sce DEFINITIONS). Another good convention for defined terms is to put
them in bold serif type. This makes the rerms very casy to spot when scanning over
a page, but it can also clutter the page if chereare a lot of them or the page also con-

tcins requirements or other bold text.
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* When describing a variable that muse be replaced by a definire number or sequence
of characters in any concrete instance, the variable’s name is in jzalic sertf fype, even

it the surrounding texe is in the sans serif font. For example:

| Landbase filenames have the formar by dwa, where xxxand yyy are the cand yeo- ‘
i ordinates of the upper left corner of the map, respectively, J'

The convention of wriling requircments, preferences, and invariancs in bold sans
serif type, putting them on separate lines from the rest of the text, and putting the iden-
tification numbers in the lefe margin, makes it easy for a reader to scan ch rough the doc-
ument looking for “just the meat.” This way, you can add commentary w cach
requirement without the extra rexe camouflaging the requirement statement.

The reason for the convention of putting variables in italic serif rype even when
inside sans serif text is that izalic sans serif text docs not stand out very well. For example,
m bxxxyyy.dwg, the coordinates do not stand out nearly as well as when theyre written
in the serif font.

« »”
correct

Similar remarks as for INVALID.

cross-references

If you find yourself needing to repeat something explained at length elsewhere in the
document, keep in mind thar, instead of repeating it, you can refer to it by page num-
ber or section number. Cross-references are an indispensible weapon against the temp-
tation to say everything in one senteace, bore the r -ader through repetition, or create
a jigsaw puzzle.*

When you make i cross-reference, be sure to include the page number or section
number explicitly, via a special instruction to the word processor, rather than write “the
following section”™ or “above.” Later, you might insert another section, necessitating thar
you change the cross reference to “two sections below” or “two scetions before chis one.”
It yvou let the word processor fill in the page number or section number automatically,
you won' have this problem.

There's nothing wrong with reterring forward in the document. The ideas in a
requirements document or specification are usually so incerconnecred that there’s no
way to avoid forward references.

Y See seetion 13,4,

CHAPTER IS SMALL DETAILS 317



“ata”

Some grammartans and data as a plural noun

ou treat the word

editors insis that y
al of datum. For example, thevd

n. where it’s the plur

a borrowing from lLad
s the phl of the ;1qu;1rimn” 10 “These data

vou reword “This data represent

Decause it's
insist that
represent the pH of the aquarium.”

Hlowever, usage in compuiers h
proven oo convenient to abandon because of ctymology.
inection with datimn, and when trylng © follow the rule “data is plural.”
ces for lack of a singular If you're editing

a¢ established a singular meaning of data. which has

Most pcoplc today dont even

know the cot

have often touled up otherwise readable senten

wsh this obsolete rule.

someone elses document, dont pt
of data” or “scts of data.”

o indicate plurality, write “Types

definitions
A definition is a4 statement il
¢ umccpnml fr

ofers to. by identifying the

vat idenrifies what a concept 1
art. A proper definition

concepts location in th amework of which irisap
mdicating the broader concepts called the genus (p!uml: g(’;mw), of
4l case, and onc or more distinguishing, char-

that distingui:h the concept from

achieves this by
which the concept being defined is a spect
crenstics, called differentiac (singular: c[{ﬁi’l‘z'iitizl).
others of its genus.

Some rypicnl defimittons:

pt from athers of its

diiferentia distirguishes conce
hat do conductl Qiectncity

narme of concent
peing dehned GenLs
1 that docs not conduct electricity.

genus: in (his case, matenals t

An insulator 1s 2 matert

pamic of Concept

heing delined aenus

Lion in the quality of signal, not due to decrease in the

Distortion is (ivgr;&d
1 whole, but o variatons in the relany

strength of the sign‘ll as ¢ intensities
of the signal ut difterent frequendics.
diftererua distinguishes concept from others of 115 genust i ihis case, other iorms of
degragauon signal gualty

4 definition 15 O omit the genus. This results

A common wn'lpratkm when wrinng
ader can't infer the genus and conscqucntly

in an unclear Jdefinition because, often, a re

cant el what kind of thing youre ralking about. Deanidons that are ph rased “is when”

“1¢ where” almost alwavs omi almost always u nclear.

or ¢ the genus, and arc
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Missing Cenus Clearer

A compiler tanslates source code Nt A compiler is a program that translares
machine language. source code into machine language.

What performs this translation? A compuirer?

A person? If you've writing for someone who

doesn’t bnow whar compiler s, you cant

expect him 10 know that ity a bind of

[) l‘()g Yd .

An ozerplos is when two chines overlap. An overplos is an overlap between Wo or
g f [
An overplot is not a point in time, bur this ™0 graphic entities drawn ac the same

CL .. blace on a pae,
definition seems to say that it is. Pk pag

HC: Identifies the house count at a HC: The aumber of houses that connect
telephone pole. to asingle telephone pole: “house count.”
1his definition makes o reader ask what

[hing does the 1’([(’1/1{@5}@. I fact, nothing

does; see the d(ﬁnilial.’ at right.

Notice that a definition is much more than a synonym for a word. A definition
indicates a way of mentally dividing realicy for purposes of talking and thinking about
it. Tralicizing the word or phrase for the concept being defined is a helpful cuc o the
reader to Interpret the sentence as a description of a named mental distinction, rather
than an assertion about the things included within that distinction,

A circular definition is one rthat includes the concept to be defined in the genus or
difterentia. OF course this is illegitimate, because the definition is meant to communi-
cate a concept to someone who docsn't already know it. A definition draws upon the
reader’s knowledge of all the concepts in the genus and differentia to help the reader
form a new distinetion.

This does not imply, however, thar the words that describe the genus or ditferentia
can’t be among the words that name the concept to be defined. For example, the follow-

ing is a perfectly good definition:

A patron request is a request made by a patron for a bibliographic item. withou spect-

fving the lending institution from which the bibliographic item is to be retrieved.
The fact thart the name of the concept being defined is patron request does not mean

that there’s anything wrong with referring to patrons and requests in the definition, A

patron requesr is a cerrain kind of request, and whar (partly) distinguishes it from other
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rvpes of requests is the fact that a pacron makes it. Many made-up terms contain their
genus and differentia within them; that's what makes them self-explanacory terms.

Here are some helpful genera for tricky definitions: the act of, a method of. the
responsibility to. a commitment to, a set of, a type of x that, information about, facts about,

the aimount of, the number of, a measure of, the ratio between. A tew examples:

Final post is the act of permanently recording all additions, deletions, and changes made

to physical plant, once all work on a work print has been completed.
A bookingis the commitment of a seat on a specific flight and day to a specific passenger.

dBmVis a measure of the voltage level of a signal, equal to 20 logy, mV, where mV is

i
i the number of millivoles measured across a resistance of 75 ohms.
I
|

Some concepts are actually tuples—rthat is, groups of two or more kinds of things
mentally grouped together. Since you probably don't want to have to define the concepr
tuple, you can give the genus as combindtion, as in “a problem is a combination of data,
an unknown, and a condition relating the unknown to the data.”™*

When defining an attribute, often it helps to write “said of” to indicate the type of
thing that the attribute applies to. In this case, you don’t need to explicitly state the
genus as “attribute of entity-rype &7 The same technique is sometimes helpful when

defining relations and actions, to. For example:

aerial: Suspended from poles or similar overhead structures; said of cable, strand, any-
thing that can be hung from poles.

attenuare: T'o decrease in sl'rcnglh; said of a signal passing throug'n a trarsmission me-

dium.

The above is a rypical format for a definition in a GLOSSARY: the term to be defined
at the lefr, and just the defining information at right, instead of a complete sentence. If
you were to include the aerial definition inside a narrative paragraph, you could word it

this way:

Cable or strand is said to be @erialif it is suspended from poles or other overhead struc-

rares.

his is G Polya’s “problem o find,” which he wrote much abous in [Polya 1957].

S 4
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Some concepts are too fundamental to be defined: they don't have a genus, or there
are no concepts to relate them o others of the same genus. Examples arer entiy,
attribute, relation, action, event, suate, quantity, quality, point in time, fype. Some con-
cepts, like record, Jfreld, responsibility, commitment, program, and data, do have defini-
nons, but they require more theoretical discussion than vou probably want to include in
a requirements document. You seldom neced to communicate the meaning of such a
term, but if you do, don’t try to give it a proper definition. You may have to rely on syn-
onyms; better yet, give an example that guides the reader to see how the concept s
abstracted. For example, “Entitics are objccts that possess attribures, engage in actions,
or participate in relations, as a person has height and weight, can travel from one place
to another, and can be the parent, sibling, or child of anocher person.”

Orther conceprs are difficult to define because we form the distinetion percepually.
Who. other than a biologist, can define romato? We distinguish tomatocs from other
foods by appearance, not by an casily verbalizable relation with ocher concepts. Fortu-
nately, there is almost no need to define such concepts. It's enough to say “a type of veg-
ctable” (or “a type of fruic” if any biologists are around); that is, provide the genus but
skip the differentia. If you must indicate to a reader enough information to help him
recognize a plant or other visually distinguished type of object, then provide a picture,

To define a particular kind of staze or status, list the complete set of mutually exclu-
sive states. For example, “A proposal’s approval status is its current stage in the process for
granting or denying it: awaiiing department approval, awaiting chair approval, awaiting
board approval, or denied.” The word current is helpful when defi ning states.

Some conceprs arc distinguished only by their level in a hicrarchy. For example, a
typical copper-wire telephone neework has three Jevels of cables: feeder cables, distribu-
tion cables, and drop cables. Obviously. a good genus o define these concepts is cable or
cable in a copper-wire telephone network, but differentiae like top-level, mid-level, and bot-
tom-level would not communicate much, There are two solutions here: define each cable

by the things chat it connects to, and draw a picture.

- - _
| Wirecenter: the geographical arca scrved by a single central office.
| Central oftfice: a building where local call switching takes place.
| Main distribution frame: 4 large connecror at a central office, which connects (he
‘ switching cquipment to feeder cables.
’ Feeder cable; a large cable that conneets to the main distribution frame at a central of-

fice and feeds into distriburion cables.
,‘ Distribution cable: a cable that conneces between a feeder cable and one or more |
I terminals, ’
L . ]
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Waleserier

serrinals

0

o000

serascTer B

subscriber

distribut.on canes

feedor cables

A wirccenier in a copper network, showing cable route from central office to
subscriber, Terminals, drop cables, and connector blocks are shown on only ‘

ane distribution cable. ‘

Drop cable: a small, usually two-pair cable that connects between a terminal and the ‘
connector box at a subscriber’s building, l

(Remaining definitions omitted.) ’

As this last example illustrates, concepts often come in groups where cach concept
is distinguished by its relation to the others. A diagram that simultancously depicts all of
them is an indispensible way to help a reader grasp cach distinction, much better than
words alone can. If you bombard the reader with a series of terms and definitions—
wirecenter, central office, call switching, main distribution frame, feeder cable, diseribu-
tion cable, drop cable, terminal, dead end, and cross connect—he can't possibly retain it
all. The diagram presents the same n umber of concepes without being overwhelming. A
reader can refer to it many times while reading the text, cach time able to sec how cach

concept relates to all the others, not just o the onc or two listed in each definition.
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dependencies
The word dc‘/)mdm(_'y s vague. There are many ways in which one thing can depend on

another. So, ag when writing abour ASSUMPTIONS, you musi be explicit:

Vigue Explicir

XYZ depends  on the f‘o”owing The f()”owing software  must be
software: complete before Programmers ar ARC
Corp. can begin dcvcfoping XYZ:

XYZ7 depends  on the H)H()wing The f()”(;)wing software  muyse be
software: installed on any computer on which

XYZ is to run:

Don't say thar the customer cannor depend on the software o generare correce
results if the users don't carry out the operating procedures 4 described in the specifica-
ton or user’s manual, If vou're £0ing 1o say thar, you mighe as well say thar the customer
can't depend on the software if the users make random patches to the exccurtable fle. See
"\‘(’rit'ing for the hostile reader” in section 13.4,

documeny titles

The tite of a documen; should be clear and terse, instantdy informing potengial rcaders
of its content and purpose. Shown below are some WaYs Lo improve common doy.
ment tides:

Wordy, unclear, ,r onfusing Direer

XYZ SRS XYZ chuirvmcn ts
XYZ Software Requirements

Specification

XYz Requirements Specification

XYz Requirementes Specifications

XYZ Detailed Functiona) Requirementy
Specihications Document (DFRSD)
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Wordy, unclear, or confusing

XYZ High-lLevel Requirements

XYZ Functional Specification

XYZ T'unctional Requirements

XY7. Logical Data Entities and
Attributes

XYZ. User Interface Requirements

XYZ. External Interface Requirements

XYZ Guidebook to Terminology and

Nomenclature

See also TTULE PAGE.
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Dirvect

XYZ Preliminary Sketch

or
Preliminary Sketch of XYZ
Requirements
The veason for this (/)zmg(’ m wording s to
; . gy N ! " "y .
avoid suggesting a higher degree of rigor oy
commitment than a4 high-level
requirements” document actually delivers.
Calling it ‘preliminary” is alo an
invitation for wide-ranging comnients and
SUEIESHIONS.

XYZ Specification

or

XYZ Program Specification

XYZ Data Dictionary

XYZ User Interface
Or

XYZ Uscr-Interface Design

XYZ/ABC Intertface

or
XYZ/ABC Interface Design

or
Interfuce Berween XY7Z and ABC
An important improvement here is that
ABC is mentioned explicitly in the title.

XYZ Glossary
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‘entry”
Can denote cither the ace ()Fcn[cring, oran item in a list. In the lateer SCRSE, entryis usu-
ally awkward and confusing. Ity substita ting item or element. For example, a pull-down
menu contains “icems,” not “entries,”

Jancy cover
A requirements or specification document is scaffolding. Especially before customer sign
oft, it’s incomplete, nor fully thoughe through, and continuing to change as the result of
reader feedback. The appearance of the document should reflect this,

If the purely cosmetic details of the document are too refined, such as a fancy,

glossy cover, or an artistic typeface, the document sends a different message to its reader,
[t leads the reader to understand that it contains the final, perfected result of the best
expertise your company has to offer. Consequently, any flaw, such as missing details
about the customer’s business processes, a section that's hard to understand, or gram-
matical or spelling crrors tends to be scen as a reflection on your level of competence.
You probably doa't wanrt a customer to take thar atticude roward your document. The
customer should see flaws not as reasons ro reconsider the deal, but as opportunities to
help improve the software, and as a normal, expected part of the design process.

These documents should certainly be as professional and readable as you can make
them, but it’s unwise to polish their appearance. Stapling the document or putting it in
an old, three-ring binder is good enough.

[first sentence

The first sentence of a requirements document should tel] the reader what thing the
requircracnts pertain to—the picce of software to be developed. The structure of this
first senrence should follow the same principles as a DEFINITION. For cxample, the very
beginning of a document titled GO Reguirements might read:

———— - - .
| 1.1 Overview ’
| GEQ s a program ro allow users to add x, y coordinates to objects stored in the DBG

, .

i dd[ﬂ L)(l.\(‘. )

This seatence tells the reader what the document is about: GEO. The rest of the
paragraph might describe the DB( database, x, y coordinates, and the sorts of objects
stored in the DBG database. 165 almost always worthwhile to supplement this opening
description with a very simple block diagram—pcrhaps a diagram derived from the
frame diagram you made while thinking through the requirements, or the frame dia-
gram itself. Now the reader knows what you're talking about, and you can start making
statements abour GEO: jts problem domain, its requirements, the platform it’s sup-
posed to run on, and so on.
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The thing thae the requirements are about is the single most important, most tun-
damental picce of informartion to include in a requirements document. Thats why it
should come first. Yer this information is often entircly omitted from requirements doc-

uments, in favor of a useless “purpose and scope” scetion, like this one:

1.1 Purpose and Scope
The purpose of this document is to describe the requirements for GEO. ‘

Notice the difference between this sentence and the one recommended above. The
“purpose” sentence communicates nothing that wasn’t already clear from the dtle of the
document. If the reader did not already know what GEQ s, this sentence doesn't help.

The recommended sentence gives the reader new information: it answers the ques-
tion, “What is GLO?" Without an answer to that question, the reader will have a very
hard time understanding the rest of the document. A litde later on the page, once you've
introduced all the main concepes, you can spell out details such as which version of the
software the document applies to. (This information should also be on the TITLE PAGE.)

Since you're defining a particular thing rather than a concept, finding the genus can
be tricky; yvou have a lot of options. Fortunately, almost all of them are good. Here are
some helptul genera to choose trom: program, software, picce of sofiware, software package,
library, AP dataluse, system.

More example first sentences:

Labeonis a Ca+ library for controlling laboratory instruments manufactured by Exsys,

Inc.
Urasmus is a full-text darabase of medieval literature.

VERBIS is a sofrware package to track all aspects of a human-resources department:
& )
fringe benehits, vacation time. job postings, job descriptions, employee skills, company
g I a I plo} )

organization, and cmployee training,

The Meusis 2000 s a court-reporting machine: a machine to enable court reporters to

ranscribe courtroom conversation and print it out word-tor-word later, This docu-

ment describes the requirements for the software inside the Mensis 2000.

Italicizing the name of the product further indicates that the sentence is the defini-
tive, fundamental statement of what the product is.

The Jast example ends with a sentence similar to the “purposce” sentence, with the
difference that the preceding sentence renders it meaningful, by describing the machine
that the software is a part of. This strategy of “describe the machine first, then say that
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this document describes the software for the machine” is suitable for most embedded
applications, where the sofrware has no name of its own,

glossary
In a glossary, place each term in the left margin (sec PAGE LAYOUT), as it would appear
in the middle of a sentence. That is, write the term in lower case unless 1cs always capi-
talized. If you capitalize all the terms, the reader won't know whether to capiralize them
in the middle of a sentence. Put the terms in bold sans serif type, to make them casy for
a reader to scan through when scarching tor a specific term.

Write the DEFINTITONS in a column to the right of the terms. You dont need o pue
any METATEXT between the glossary heading and the first teem,

Glossary
active device

ADSL

aerial

Often, a single term has more than one sense (more than one distiner concept that
the term can mean). In this case, number the senses and define them in separate para-
graphs, like this:

—— —

| tap L. A place where a cables stiraTti has been opened for the purpose of
|' connecting to one or mote of the PAIRS inside. |
2. Ina BROADBAND network, a twpe of SPLITTER that connects DROPCABLES |
| H0 @ DINTRIBUTION CABLE. A tap typically has 2, 4, or 8 ports for supplving |

| signal to 2, 4, or 8 SUBSCRIBIRS, Some common symbols for taps:

| © &) ||

Z-port tap 4-port tap 8-port tap |

The number on the inside indicates the tap value, or approximate
amount of signal strength, in dBmV, lost by the tap between the input |
and cach tap port. This is not the INSERTION LOSS of the taps: the greater |

the tap value, che lower the inscreion loss. |
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The above example shows two other techniques helpful in writing a glossary. First,
a glossary is a good place for adding a licde bit of supplementary information in addi-
tion to the pure definition. Don’t try to say everything you know abourt the concept, but
it helps to hint at why the concept is important, add extra introducrory information
such as typical sizes or typical values, and clarify any likely misunderstandings. A glos-
sary is also a good place to explain graphical symbols for the concepts being dehined.
Sceond, if you usc a term in a definition that is defined elsewhere in the glossary,
write the term in small capitals the first time it appears in the definition.
When defining an ACRONYM, it is seldom enough to say what cach letrer stands for.

You must also define the concepe that the acronym as a whole denotes:

\ 0ss Operations Support System: As defined by the FCC, a computer system
i and/or database used at a telephone company for pre-ordering, ordering,
! 3 £ £

srovisioning, maintenance and repair, or billing.
g

Often, during a project you change terminology several times, or you find it neces-
sary to revise your definitions of problem-domain terminology. Be sure to make all the
terminology in the document consistent before you release it. It helps a lot it you update
the glossary every day as you talk with the customer and write the document.

On a large project with many different requirements documents, you might want
to make one big glossary for all the documents. This saves a loc of cutting, pasting, and
inconsistency. This cumulative glossary can be quite a useful repository of knowledge for
future projects. Another strategy is to collect all the new terms from each project and
add them to a company-wide glossary. People can cutand paste from the company glos-
sary on new projects. The company glossary can even help introduce new employecs to
their jobs.

»

“l.e.” and ‘e.g.’

Two Lartin abbreviations, often confused. Their meanings:

ie. thatis

eg. for example

If you can't keep them straight, your readers probably cant, either. Just write

33 «Mm YN » b
that is” or “for example” and you can’t go wrong,

e L 22
invalid
A statement disallowing “invalid data” can be appropriate in an overview or preliminary

sketch, but not in a requirement, unless “invalid daca™ is preciscly defined. It should not
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be up to the programmers 1o invent their own criteria of whar sort of dara is valid or
mvalid. Their job is to implement the actions described in the requirements or specifica-
ton: if the input daca is in such-and-such format, store it if it’s in such-and-such for-
mat, display such-and-such Crror message: it its in yer another format, display yer
another crror message. When dcscribing the desired ourpat of the program at this level
of detail, there is no need for the concepts valid and invalid cxeepr to help a reader
understand why it’s useful for the computer to take this or that action.

metatext

Metatext is text that describes text in the document rather than the document’s subject
matter. For example, “The following paragraph describes...” or “This chapter
describes...” Some metatext is unavoidable, such as o description of typographical CON-
VENTIONS, or a documentation guide to describe a sec of documents or the contents of
a large document, However, most metatext js nothing bur clucter. It distracts from the
ordinary text and therefore from the content; deleting metatext almost always improves
a document.

A common place to Put metatext is righe after a section heading. The concern 18
that it you don’t explain what's going to come in the section, a reader won't be able o

understand it. For example:

r_%_____________________________E__H_]
ll 3. Email

| ‘this scction deseribes email,

4. Format of Emaii Messages
This section describes the formar of email mgssages.

4.1 Address Part /

| This subsection describes the address part of an emajl message,

| The address part consists of four name/domain pairs ., . l

Much bertter than merely repeating a secrion hcading in a sentence {a practice that
s somewhat condescending o the reader) is o star by presenting some contene thar
self introduces the rest of the section. The most likely candidarte for mtroductory con-
©entis a DEFINITION. Another good way to introduce content is to sketch it our, similar
0 an overview.

With introductory content in place of metatext, the above example could read like
this:
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3. Email

Fraail is clectronic mail: documents sent clectronically from one user at one computer
10 one of more other users, possibly at different compurers.

4. Format of Email Messages

Asingle email message consists of an address part, a body part. and zero or more attach-

ments.

4.1 Address Part

The address part consists of four name/domain pairs .

If vou find yourself writing metatext. try deleting it and seeing if the text s hard to
follow. 1F ics casier to follow, as it usually is when inrerruptions are removed, then leave
the metatext out. I it's harder to follow, then cither put the metatext back—sometimes
i is indeed necessarv—or consider adding content that you may have skipped, like deti-
nitions, or rearranging the content so that each picce of information helps introduce the
next, as described in section 14.3.

Good metatext is usually very short. Here's a very quick way to distinguish some
examples from other text:

| An address has the format loghi@domain, where login is the user’s login name and |
| dmain is the name of the computer that exchanges mail for that uscer. |
| Examples: george.gibbons@paydirt.com, v3373092@bryant.edu. ‘
- — —— T T —_— PR |

This same quick technique also makes a nice introduction to digressions about
rationale or special implications that you want the reader to undesstand. The word
Rationale or Implication followed by a colon is the bare minimum of metatext you need
and, therefore, the right amount.

Your motto as a technical writer should be “content right now,” not “content nexe
paragraph D

“model”

One of the most overworked words in the compurer ficid. Save this word to mean an
object that has been made to bear a usetul analogy to something clse, so that the modecl
can be observed to learn something about what icis a model of. Modcl-building is a fun-
damental technique in software: the dara stored in a computer is & model of the part of
the world that the data represents. Often, users read the data to learn about some part of
the world, hoping that the analogy between the data and the real world holds for the
information thev're tying to learn. Models themselves are neither true nor false, though
the inferences that we base on theny are.

Dont write model to mean concept, abstraction, conceptual framework, specification,
process, description, diagram, or anything other chan the plain sense of the word model.
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[(s too confusing, especially to customers unfamiliar with che strange linguisric habits of
the software communiry.
Here are a few simple subtitutions to illustrace how to fix phrases thar contain these

non-model senses of the word maodcl:

Confusing Clearer
waterfall model watcrfall process
requirements modcl requirements
use case model use cascs

page layout

The f})llt')wing 15 a rccommended page layout for a requircments document or specifi-

cztion.,
N o \ﬂ}\\
W S T
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You can adjust this layout slightly—for example, you might move the outer mar-
gins around if yvoure making a double-sided document—but there are a few important
aspects of it that you should retain.

The goal of a good page layour is to place everything harmoniously on the page so
chat 'r's easy to read, the reader’s attention is directed to what they need to find, and the
reader is never distracted by the page layour itself. This is a very casy goal to achieve, but
some word processors” defaules creace a cluttered layouc that's difficult to read. Especially
in a document that presents complex material that a reader muse consider very caretully,
you do not want the physical appearance of the page to make the material secm harder
to understand than it really is.

Typical defaults in a word processor set the font to 10-point Times Roman with a
Jine spacing of 11 points, and a rext margin that is only 1/2” in from the left margin.
The result is quite difficult o read, not just because the type is small, but because therc
are too many characters per line. Optimal readability is ar about 40-70 characters per
line; the defaults make lines with around 100 characters per line. By increasing the font
size and making the Jeft indent on normal text a whole inch, the number of characters
per line is reduced to about 80. That’s still above optimum, so you need another trick to
improve readability: increase the line spacing.” With a line spacing of 14 points, even
11-point Times Roman at 80 characters per line looks quite spacious and readable.

This might scem complicated, but fortunarely you only need to set it up in your
word processor once; then you can forget about it.

The other important consideration in the recommended page layout is to frame the
page. An 8-1/2"x11" page is so large that it loses ics visual unity if text and graphics
dont line up with the margins. Adding horizontal lines to the header and footer also
helps the reader perceive the page as a cohesive whole. The left edge of screen shots
should line up with the left margin or text margin, instead of being centered. Only very
small graphics should be cen tered.

Paragraphs should be in block style: with onc line of space between them, and not
indented. This helps requirement, preference, and invariant statements fit harmoniously

onto the page, in their highly emphasized formar.

“‘paradigm”
A word to avoid in most circumstances, due to its vagucness.

Philosopher Thomas Kuhn started the contemporary usage of the word paradigm
in the book The Structure of Scientific Revolutions, where it was parc of his theory that

normal science is puzze-solving with a well defined puzzle type—which he called a

© [Schriver 19971, pp. 260203, presents some of the research on line spacing, linc length, and readabiliey,
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paradigm (remarkably similar to a problem frame).* Scientific revolutions, in his theory,
are periods when scientists abandon one puzzle type for another.

Since then, the term has encered popular usage and changed somewhar. With
Kuhn's original idea now faded and forgoteen, paradigm serves mostly as a conveniencly
vague word to resort to when you don't wanr to g0 to the cffort of clearly identifying
whart vou want to say and then saying it—or, worse, where YOU Want to impress some-
one with fancy lslllguagc. Herc are a few examples of how to improve sentences that con-
tain the word paradigm:

Vague Clearer

The DEX and VERBIS Systems operate There is no one-to-one mapping benween

on different paradigms, the data elements stored in DEX and
VERBIS.

VERBIS represents a new paradigm in Betrer to say nothing at all, or else wrize:

printed-circuit assembly.

The following features in VERBIS have
never before been implemented in software
for  automation  of printed-circuir
assembly:

Jollowed by a list of specifically whar differen-
niates VERBIS from its competitors—though
a survey of the market and the competition
does not normally belong in a requirements
doctment.

The alarm-response process conformstoa When an alurm appears on the main
three-step paradigm. monitor screen, the sceurity stafl” carries
out the following three steps:
or

When the system receives ar alarm signal,
it checks the following three conditions to
ensure that it’s not a false alarm:

The older meaning of paradign was an example that illustrated a pateern in its most ordinary or arche-
wpal form. An example is asmo, amas, conat, aindmus, amdaiss, wnant, lluscrating the patrern of inflections
of one of the major types of verbs in Ladin, by showing how just one verb, amare, meaning “love,” is in-
fleceed. Memorize the paradigm and you can inflect snother verb that follows the same pattern: seczre,
meaning “eut,” goes seen, secay, secat, secamus, secatis, secant. This sense of the word paradigmis very useful,
and not unduly vague, Unfortunately, most people are not familiar with it, and that's 1 reason to avoid
itin most cireumstances- -in addition to ics having been supplanted by the vague variations on Kuhn's
sense of the word.

CHAPTER 15 SMALL DETA LS 327



Virgae Clearer

Accommodating the data warchouse will - The types of read requests iniciated by the
recuire a shift o a new paradigm. data warehouse software differ from the
read requests that our software fulfills, in

the following ways:

or
We will need to redesign our record-
locking scheme rom scratch in order 10
accommodate the dara warchouse.

Here are some words that can replace paradigm, depending on your meaning:
system, method, framework, scheme, description, technique, structure, set, set of predi-
cates. Don't just replace paradigm with model, unless, of course, you're rcally talking

about a MODEL.

“represents”

Representation is the relation between computer data and the real world. When we
devise a convention for scrting computer data to one of a set of states to indicare that
something in the real world is in one of a corresponding sct of states, we are making the
data represent the real world.

Thus representation is one of the basic concepts of computers. Orher sorts of repre-
sentation implement the same principle: a sales representative informs potential custom-
ers of the offerings of the company that he represents. Both the human representative
and the computer data “re-present” something that exists somewhere clse and can’t
present itself directly.

Unfortunately, all two often people write the big word represents as a synonym for

the licde word 7s. For example:

Compliance with the new tax laws represents the most important goal of the new

ACCOUNTNg System.

No, comphance with the new tax laws does not represent anything. It's nor stored
informartion or an indirect way of communicating. Sentences like that are usually the
resulc of trying to make things more complicated than they really are. Berter to just

write:

Compliance with the new tax laws is the most important goal of the new

ACCOUNTING SVSTem.

Write the word represents only when you really mean it
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requirement statements

There are three main ways to word

modal verb like must or shall, and in the imperative mood (as a command).

In the present tense:

R-1

R-2

R-3

A user can view landbase files in AutoCAD format.
A user can run any of the following queries on demand:

When the passcode is entered at the gate, the gate toggles between
locked and unlocked.

WATCHCOM notifies the user when the gas pressure on any
pressurized cable falls below its allowable minimum.

With a modal verb:

R-1

R-2

or

R-2

R-3

R-4

A user must be able to view landbase files in AutoCAD format.

A user shall be able to run any of the following queries on demand:

VSYS shall answer any of the following queries on demand:

When the passcode is entered at the gate, the gate must toggle
between locked and unlocked.

WATCHCOM shall notify the user when the gas pressure on any
pressurized cable falls below its allowable minimum.

In the imperative mood:

R-1

R-2

R-3

R-4

CHAPTER 15

View landbase files in AutoCAD format.
Answer any of the following queries on demand:

When the passcode is entered at the gate, toggle the gate between
locked and unlocked.

Notity the user when the gas pressure on any pressurized cable falls
below its allowable minimum.
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It's hard 10 go wrong with the present-tense format. It easily accommodartes
mentioning both the user and the system, if necessary, and it is especially well suited
to describing required problcm—domain activity without mentioning the system, as
in R-2 above.

Writing requirements with 2 modal verb almost always creates longer, more obscure
sentences, and is thercfore not recommended. For example, where the present tense
allows you to say “a user can,” the modal-verb format requires “a user shall be able to.”
Unfortunately, some organizations, including the United States government, require use
of the word shall in requirements as part of the terms of the contract. In this case, you
have no choice; but if you have a choice, you should pick one of the other two formats.
Also, if you write requirements with a modal verb, be sure to make it consistently must
or consistently shall throughout the document. The modal verb should is best reserved
for preferences, not requircments, as it does not connote the kind of finality that you
want in a requircment statement.

The imperative mood creates the simplest requirement statements. However, as in
R-1 and R-2 above, sometimes it omits too much. If the user is supposed to activate
some capability of the software, such as a query, it’s best ro mention the user explicitly: as
the present tense allows. The imperative mood works best for requirements involving
notifying a user: there the sentence can mention the user as the object of the verb. You
can mix requirement statements in the present tepse and indicative mood in the same
document, reserving the indicative mood for notification and the present tense for all
other types of requirements.”

I¢s usually best to avoid the future tense in requirement statements. The future
tense is best reserved for describing development acuvity o occur after the document is
complete, like “Furure versions will add support for more landbase formats, as needed.”

Often, a requirement contains a lot of small details: various different activities thar
arc supposed to occur depending on several different conditions. Rather chan write an
enormously complex sentence, or a serics of many ncarly identical sentences, make the
requirement refer to a TABLE describing the rule. The rable from the tax instructions in
section 11.5, along with the accompanying “many sentences” version, gives a good illus-
tration of how much more readable the table is. You can word the requircment state-
ment thart precedes the table like chis:

R-5 Send delinquency notices to customers as described in the following
table:

Technically, mood and tense are two independent variables of a verb. The first group of requirement state-
ments shown above is in the indicative mood and the present tense, and the third group is in the im perative
mood and the present tense. For most purposes, though, it's enough to call them “present ense” require-

ments and “imperative mood” or “command” requirements.
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or

R-5 Send delinquency notices to customers as described in table 1.1.

Rules are abstract. Because requirements almost always describe rules, require-
ments are also abstrace, and, consequently, they can be difficult to understand without
some commentary. Typical helpful commentary is definirions, examples, and explana-
tions of rationale. By putting requirements into bold sans serif type, as nored under
CONVENTIONS, you can easily weave short comments into the requirements without
creating confusion.,

Here’s an example. The figure 10 referred to below is a graphic illustrating each
concept, omitted here for brevity. Page numbers that the example refers to arc indicated

by XX.

]
R-6 A user can view the following landbase features:
‘ R-6.1 - Right-of-ways, including text.
’ A right-of-way (ROW) is any street, road, alley, etc. Most right-of-ways
! have names; henee the “texe” clause of this requirement. Figure 10 shows
four right-of—ways, induding text: N. Roannc St., W. Greenleaf Av.,
W. Grecnacre Av., and N. Geneva St
R-6.2 - Centerlines.
A centerlineis a line in a landbase drawn down the middle of a right-of-
way. Some landbases do not have centerlines. More informarion about
cencerlines is on page XX.
R-6.3 - Property boundaries and addresses.
Property boundaries are lines thar show where one street address ends
and another begins. The rectangular shapes surrounding the right-of-
ways in figure 10 arc property boundaries.
- ]
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|

R-6.4 - Span footages. |

Some landbases, though not all, include graphical representations of |
spans. These are lines fron sTrucrure t Sricture, showing the footuge of
! the span. Tigure 10 shows many span footages; the two p()intcd to are 95
and 1247 A landbase might measure span in meters, not feer. Being able |
| to see the footage in meters is often helpful for a user to find out where |
| a structure should go on a landbase. especially during nerwork design |
| (sce page XX). |
J

. T

Notice that the principles of grouping and sequence discussed in chapter 14 are at
work in this example. All the information grouped under R-6 has a simple and obvious
common denominator: landbase features that a viewer can view. All of this information
is collected rogether in one place, not scattered throughour the document. However, the
description is not allowed to stray from its purpose. The reader is referred elsewhere for
more details about centerlines and network design; these are covered in depth in other
sections. The principles of sequence are at work in the decision to describe centerlines
after right-of-ways: the DEFINITION of centerline refers to right-of-ways in its differentia
and. therefore, requires the ceader to first understand what a right-of-way is.

in addition to showing how to intersperse commentary with requirements, this
example also demonstrates a simplifying technique that is almost indispensible in any
requircments document: writing many endings to a single sentence. It you need to write
several requirements about the same thing, write the common part as the beginning ofa
sentence, and write the difterent parts as “sentence-completions.”

The following is mind-numbing:

|| R-7 A calling application shall be able to read bibliographic data from the—_\|
| AV database by direct function call. |
‘ R-8 A calling application shall be able to read bibliographic data from the |
i AV database through a secure firewall connecting to the Internet. |
| R-9 A calling application shall be able to read bibliographic data from the |
| AV database through a direct TCP/IP connection. ‘
|| R-10 A calling application shall be able to write bibliographic data to the ’

AV database by direct function call. ‘
| R-11 A calling application shall be able to write bibliographic data to the ’
| AV database through a secure firewall connecting to the Internet.

|| And so on.
L |

T'he following says the same thing, but is much simpler and easier to understand:
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' R-7 A calling application ¢an create, read, update, and delete bibliographic
| data in the AV database:

| R-71 - By direct function call.

| |

|

i R-7.2 - Through a firewall connecting to the Internet. |

| ‘,
R-7.3 - Through a direct TCP/iP connection, |

|
- —_— ]

The en dashes help to visually relare the sentence-completions to the sentence-
beginning ar the top. They're especially valuable if you intersperse commentary with the
requirements, as in che example of R-6, above.

Usually vou can combine create, read, update, and delete inro « single requireniene
statement. People think of them as four aspects of a single capability: full access ro g
database. While, technically, they are four separate capabilities and will require at least
four separace rest cases, writing them as four separate statements usually makes the
mformation seem four times as complex as ic really is.

tables

Almost any group of very similar scatements js best communicared with a table. Tf you
find yourself writing a very long series of sentences that have the same structure, a table
is likely ro be both clearer and casier to make,

Confusi ng Clearer

The Address group contains strect Group Layers Description
addresses and is stored on layer 20.

- ) Address 29 Street addresses
I'he Drops group  contains  drop

cables and is stored on lavers 11, 12, Drops 11,12, 50, Drop cables
50, 65, 66, 102,104, and 119, The 65, 66, 102,

Land group concains all landbase 104, 119

features and s stored on layers 1 )

through S0. The Quartz group Land 150 ’i\” landbase
contains Quartz output and is scored features

on lavers 123 through 244 and 25 Quartz 123-244,
through 255, The PoleNc group
contains accribuce texr of utility poles
and is stored on layer 70 PoleNo 70 Attribute texr of

Quartz ourpur
251-255

utilicy poles
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Conftsing Clearer

A bug must be assigned o both a Must be assigned ro:
progzammer and a tester unless its
status is Code or NFBC, in which slaws ¥ programmer tester

case it nced not be assigned o

cither, except that a bug in Fixed

statis - muost be  assigned to a Code O O
programmer but doesn’t have to be
. ciease
assigned o a tester, . ® e
Test ® ®
NFBC O @]
Fixed o O

Notice how few horizontal and vertical lines a table needs. Many tables need no
lines at all. The fewer lines you can draw on a table while still grouping all information
that needs to be grouped, the less clutter you add and the more you emphasize the con-
tents of the table.

title page
You can reduce the apparent complexity of the document by putting information on the
ticle page thar would atherwise go into separate numbered sections. each introduced by
METATEXT.

It the table of contents can fit on the title page, then it belongs on the tide page.
There it provides a quick overview of the document, inviring people inside if the head-
ings appear relevant to their work.

Information to include on the title page:

* The title of the document

* The version number of the software

* The date of the last revision of the document

* The name of your company and, optionally, your company logo

* Who prepared the document

* The name of the party for whom the software is being developed

* If your company has codes for billing time spent on the software, the code for this
particular project
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o If necessary, the words "pmpricmry and confidential,” or whatever vour lawver

advises

* The table of contents, if the whole thing fits without making @ mess of the page

An eye accustomed to reading English normally scans « page from upper left to
lower right. Since the company logo is merely a nicety rather than information specific
to the project, puc it in the upper right or lower left, out of the cyes customary parh.
Whatever you do, don’t cencer i,

Under “Prepared by,” note that these aren’t movic credits, so you need only men-
tion the people who actually wrote the document. There should only be onc or a few
such people. You don't need to meation EVLIY Manager, programmer, tester, or customer
representative who reviewed the document, nor the company thar catcred the mectings.

Mention names of people, not merely a company. A phrase like “Prepared by
Splenetix Corporation” hides the people involved, suggesting that no one wants to rake
responsibility for the contents or to be contacted if there is a problem. Induding vour

name says, “/ did this, and [ stand by it.”

i »

Lype

Everything scems to have a “type” or “type code” of some sort. That's what makes che
word fype s0 vague. Burt there’s an easy solution: coin a phrase (there’s no need for an
ACRONYM) that explicitly states the type of the type. Inside a gravel class, you might
have a type attribuce to indicate whether it's lawn gravel, parking-lot gravel, and so forch.
Name this arcribute gravel type, even though ir's in the gravel class. ‘That way, clsewhere
in the same application, vou won't be confused by the type codes in the truck, scale,
mine, and pulverizer classes. Those atribuces, of course. vou should name truck type,
scale type, mine type, and pulvernzer type.

Naturally, before being sarisfied with such a generic strategy, first try to And substi-
tute words at a lower level of abstraction. pulverizer type might be better named pulverizer
method or pulverizer size—or you might need boch acrribuces,

underlining
Don’t underline. Underlining is a subsritute for italics, invented for typewrirers and
handwriting. When applied to a proportional font such as Times Roman or Arial, it
adds clutter more than emphasis.

The exception is monospace fonts like Courier, which have no italics or bold face.
(Most software can create an italic or bold version of them, but only by mechanically
slanting or darkening the leteers, resulting in an ugly and unreadable distortion.) Under-

lining is meanr for monospace fonts, and only for monospace fonts.
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use

Every tme you write the word #se, think a second time. Usually you can replace it with
a more specific verb, though not always. Use is an extraordinarily vague word: it means
any sort of process involving an object to yicld a resulr. if the reader does not already
know this process, they won't understand. Uhe writer, however, s often baffied by this
lack of comprchension because when the writer sces the word ase in the same coneext,
he unconsciously fills in the derails of the process. When you write it, you might be
thinking, “the system reads the barometric pressure from the sensor and plugs it into the
forccast formula,” bue a reader won't understand that if all they sec is, “rhe system uses
the sensor to make forecasts.”

Some alternatives: a user ris a program: the system reads or stores data; a variable
or state indicates some condition (instead of “the system uses this variable to check some
condition™); a program or function calls 2 function or service. Spell out the meaning as
concrecely as possible.

The phrase s used to is especially confusing. Very often, you're trying to say what
something 7, but s used ro describes what people do with the ching rather than the thing
itself. If you say that a function in an APl “is used to” calculate some value, you're writ-
ing vagucly about why a programmer might write code to call that function, but you
haven't said what the function does. [f the funcdion is used 1o calculate some value, does
that mean that it returns thar value or that it performs some intermediate calculation
thar “is used to” calculate the final result in combination with other processing? Just say
what value the function returns or what effects ic has. It is often useful to explain why a
function in an APT is useful to a calling program; but do so in a scparate sentence of

paragraph, afier you've explained what the functon docs.
Vague or wordy Clearer

The Permissions window is used to set  In the Permissions window. the system
up the authorization database. administrator sets up the authorization
datrabasc.

Test 16A is used to test the report  Test 16A tests the report generator.

gen crator.

The Monitor window is used to In the Monitor window, a uscr disables
choose which track to disable. a track by sclecting it and dicking the
disable button.

Notice how much dearer sentences become when you mention the user explicitly.
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“valid”

See INVALID.

voice

A verb is said to be in the zesipe voice if its subject is the agent of the action denoted by
the verb, or in the passive voice if its subject is the object of the action. For example, the
verb in “VSYS prints month-end reports” is active; the verb in “Month-end reports are
printed by VSYS” is passive,

The active voice emphasizes the agent of the action; the passive voice emphasizes
the object. Emphasizing the object entails de-emphasizing the agent. This is especially
so when a sentence with 2 passive verb omits the agent entirely, as in “Month-end
reports are printed.”

form of emphasis, not as your habitual way of framing a sentence. The temptation
comes from the fact that when youTe writing, especially about something in computers,
what’s on your mind is how some object is affected by an action, not the agent of the
action, and often it’s hard to identify any distince agent. However, for a reader to under-

Vague passive Explicit active

When the Scheduled Reports window  When the user closes the Scheduled
is closed, the month-end report is  Reports window, VSYS prints the
printed. month-end report.

Obsolete bar codes prevent products  The system cannot identify a product if
from being identified. it has an obsolete bar code,

or

An audiror cannot identify a producr if
it has an obsolete bar code.
MDU dara is exported only once to Once a caller has exported MDU data
VSYS. to VSYS, it can never €Xport it again.

or

VSYS requests MDU data from a caller

only once per session.
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Sometimes a sentence has every verb in the active voice but still has the vagueness

or woodenness usually associated with the passive:

Active in form, passive in spirit Explicit and divect

Failure to include an authorization If the caller does not include an
record will result in rejection of the file  authorization record in the file, VSYS
by VSYS. rejects the entire file.

If vour word processor has a grammar checker, it probably tries to tell you what
proportion of verbs in a document are passive, or perhaps flags every passive verb with
the recommendation that you change it to active. However, many verbs that have the
appearance of being passive actually refer to states and not to actions. For example, most
grammar checkers would flag 75 loaded as passive in the sentence “If a rape is loaded, the
tape drive begins reading it.” However, loaded in this context is actually an adjective
referting to the state of the tape: loaded or not loaded. States don’t have agents, so there
is no way to reword the sentence to make the verb active, at least not without talking

about something clsc; the 7f part of the sentence is not about an action.
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Bug Log requirements

The example documents in chapters 16 and 17 are tuken from a successful real-world
project at Information + Graphics Systems, Inc., in Boulder, Colorado. In review meet-
ings, readers had much to say about the content—cheir understanding of the problem
domain and new ideas for results to be achicved by the software and/or improvements
to the user inrerface. Readers did not nitpick about conformance ro documentation
standards or minutiac of wording. The documents also gencrated comments like “1've
been to a lot of requirements review meetngs, but this is the first time I've ever read the
document all the way through.”

The project is very small, but by no means is it a toy project. The problems
solved in this project are typical of many larger information systems, just on a much
smaller scale.

Despite the success, cach document has been edited for purposes of this book. The
documents have been shortened somewhat to Save space, proprictary information and
names of customers have been deleted or changed, and a few things have been added in
order to beter illustrate the principles taught in this book. The documents have not,
however, been edited for pertection. These are real documents of realistic quality, made

in all the rush and chaos of a real project.
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hugs

LEers i Bug Loy |

Figure 16.1 Main problem frame for the Bug Log

The first document is the requirements tor a program called the Bug Log: a program tor
rracking bugs as people discover and fix them during software development. The two
main problems solved by the Bug Log are shown in the frame diagram in figure 16.1.
The answer aueries requirement refers to queries abour bugs thar users need to be able
run on demand. The other requirement oval, notify users, refers to the the nced to
inform users when they are responsible for performing a task related to a bug: a pro-
grammer needs to know when he's been assigned to a bug, so he can fix it; a tester needs
1o know when the fix is complete, so he can est it; and so on.

Notice that the Bug Log is not connceted to the bugs. Only the users have disect
interaction with bugs, so the frame diagram indicartes that the Bug Log depends entirely
on the users to get informartion about the bugs. fven though the users arc a party that
requests information about bugs, the users are also a connection domain for supplying
that information to the Bug Log.

Different users have direct access to the same bugs, introducing a connection prob-
lem: different users can discover the same bug, but they can enter it into the system dif-
ferently. We don't want different programmers being notified that they need to fix the
same bug. 1¢s enough for the requirements document to describe the connection prob-
fem: it will be the job of the specification to solve i—imperfectly, just as all connection
problems arc solved impertectly.

1n addirion to the two information problems, the Bug Log also solves a small work-
picce problem, shown in figure 16.2. Managers need to assign bugs to other uscrs or
have the Bug Log assign them automatically. These assignments are not acts that occur
outside the Bug Log: the Bug Log must realize the assignments inside itself, as is usually

the case when a domain involves buman commirment or responsibility. For purposes of

the first frame diagram, the act of assigning bugs to people is considered part of the

-
+a
[N}
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ass gn users
1o bugs

bags
staff ass'gnments
managers
\ Bug Log
LSCrs

Figure 16.2 Small workpiece problem solved by the Bug Log

acrivity in the bugs domain; notifications and the results of queries depend on which
bugs have been assigned to which people.
The frame diagrams immediacely suggest a way to organize the document:

1 Overview and cxpectations

2 Users

3 Bugs, including software-development activiey thar pertains ro bugs
4 Assignments

5 On-demand querics

6 Auromated notifications

7 General informarion, such as scale and platform

The overview and the section on general information don't come from the problem
frames, of course; thev're parts of nearly every requirements document. Each of the
remaining sections corresponds to cither a domain rectangle or a requirement oval.

Thus, the frame diagrams make grouping the major pacts of the subject mater
casy. The choice of sequence derives from the principles presented in scction 14,3,
Users are described before bugs because users are the agents and the bugs are the

p:lSSi\-"C ()bjCClS. ASSigl’lIﬂCl][S come 'dj:[Cl' bugs bCC&lLlSC ;lssig,nmcms pC’l'[Llin o bUgS.
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Queries and automated notifications come afier bugs and assignments because they
reflect informartion about bugs, whercas bugs can be described without mentioning
the queries and notifications.

Naturally, che final wable of contents is not exactly the same as that shown above.
The actual document groups miscellancous software-development activity into a sepa-
e section before a complete section on bugs. The scction on bugs includes assign-
ments. which turn out to require very lictle documentadon. Queries and notificanions
are similar enough that they go into a single section. Within cach scction, descriptions
of events follow the descriptions of the things involved in the events.

There are a couple of other small realized domains in the Bug Log: the Bug Log
assigns 11D numbers to bugs and allows managers 1o assign each bug a priority, and there
are rules about how a bug’s status 1s allowed 1o change, requiring that the Bug Log not
merely track status but exert some control over it. These are too small to affect docu-
ment organization. The document simply includes them under the description of bugs.

Just like many other business applications, the Bug Log can also be framed as solv-
ing a control problem instead of two information problems (plus the workplece prob-
lem of creating assignments). In that case, the requirement would be, “Get bugs fixed,
tested, and so on.” Indeed that is the reason that Bug Log is being written: to aid in get-
ting bugs fixed. tested, and so on.

However, so much is involved in that activity, including decisions that the Bug Log

: cant make, that its more seraightforward to think of the Bug Log mainly as informing

people about the status of bugs and their responsibilitics fos working on them. Very

importantly, there arent any rules of desired behavior that we would want the Bug Log

o enforce. The customer simply wants managers and the development staff to know
about bugs as they're discovered and worked on; there are no hard and fully general rules
about bug fixing thar would be suitable for encoding into software. Best to leave those
dedisions to buman beings; hence, the principal requirements say to give human beings
information, not to cause bugs to be fixed.

The shaded arcas in the following document are the author’s asides to readers of

this book.
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1. Overview

a program, 10 be devcloped and used internally at 1GS, for

The Bug lLog is
d in the cours¢ of software development. The Bug log

wracking bugs foun
already in use at 1GS, called BT.

replaces a program

discover and
waork on

notifies users of
pug activity and
ANSWers gueries

pug og

Figure 1 The Bug Log

nt at 1GS, for both new software and upgrades ©© existing
a requircmen[s«gathcring stage, followed by
rictly for

Software developme
software, normally consists of
coding, tesung: and documentation. The Bug Log is
delimited changes made during the testing stage and after
sofrware s relcased 1O clients, not for tracking changes 1© requirements of
the inital coding stage- Most, but not all, of these
oftware; SOME, however, are

design,
tracking small.

tasks pcrformed during
changes are 10 correct dcfccts——bugs;‘m the s

{ minor improvements or code changes due to very late changes

suggestions fo
to requirements.
the Bug Logs (main jobs are 10 notify users of activity

As shown in figure 1,
either on-screen OF printed, about

Sertaining 1o bugs and to answer QuUETLCS,
o L=
bugs. The notificattons cell users when they are rcsponsib\c for

che status of
o task rlated to @ bug: fixing the bug, verifiying that the fix

pcrfﬂrming som
Was successtul, et Managers assign bugs © the other users.

1.1 Expectations
The current bug—track'mg program. BT, was Writ
Microsoft Access and has a aumber of deficiencies. The pr'mcipal reason for

writing the Bug Log is to fix the following complaints from users:

ten somewhat hastdly n

e There is no defined process for how 10 fill in the felds that describe cach

bug. or whose responsibility i is to All them in. For example, a bug is
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assigned to a programmer, but who makes chis assignment? “The person
who enters the bug? The manager of the projece 1f the person who enrers
the bug is supposed to assign it to a programmer, how do they know which
programmer to assign it to? Should a programmer query for “bugs assigned

to me” or “bugs that pertain to the project 'm working on’?

*  There is no automated mechanism for notitving people that bugs they
need to fix have been entered. Users must actively query for bugs. Some
users stay logged into BT and query frequently; ochers rarely log into B1
and conscequently often are unaware of new bugs for several days.

¢ Ifs not cdlear when a bug fix is ready for testing because, even though a
programmer has marked a bug “fixed” after making the change., e
change isn't available for testing until the next internal release of the soft-
ware, which can be as long as a day or two larer.

*  Its difhcult and error-prone to create queries and reports. To create «
query, onc must manually define joins between tables. Often, bugs are
left out of reports because one must override Access’s default join type—
an item of Access minutiae known to few users of BT,

¢ To runa report, a uscr must sift through a menu listing all cthe TEPOrts cre-
ated by all other users of BT, most of which are irrelevant to any one
user’s tasks.

*  There’s no way to scarch for a specific bug by 1D.

*  There’s no user interface for administrative funcrions, such as, creating
new users, entering new pick-list values (such as product names), and
archiving old bugs. Thesc tasks can only be performed by people with
intimate knowledge of Access and the B1" tables, or the databasc can eas-
ily be corrupted.

*  The current BT is astonishingly slow. The slowness is increased by the
need to hil in a large number of fields for each bug instead of having BT
pre-populate them with default values. During a rypical session, a user
enters several bugs in which nearly all the ficlds are identical, so there’s a
lot of room for speeding up data entry with intelligent defaults.

¢ In the user interface, it's not obvious how to create a new bug: you click a
button that has a triangle and an asterisk on it.

*  Because users don’t log in to BT, Access doesn't know who they are, and
they must manually fill in the “created by” field of each bug.

¢ Afew [GS employecs are not at the Boulder office, but still need access to
BT. The slowness of the program prevents them from running it via
modem even though chey can log in to the Boulder network via RAS,
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2. Software Development

Software development ac IGS, insofar as it is of concern to the Bug Log,

involves the classes of objects shown in figure 2.

user

—assignments

user v

assignment

name
login
standard capacities

bugs found

capacity

Each assignment relates 1o
any one of: bug, project,
KprOdUCT, of feature

& assignments

+finder

bug

348

project

= |
NP0 Tame

bugs -~

products .

project -

product

N = pool | name

release number

features o
product *
feature
\ < pool
name

« project

< product

« feature

A reference atribuce Is an atteibute
consisting of a set of clements of
another dass. Follow ehe line to find
the ather class.

The presence or absence of a doc at
the end of a line indicates how many
elements are in the set referenced by 3

D

bug type

bug status

NFBC reason

date discovered
documentation status
priority

bug release

fixed release
description

steps to reproduce
database server/name
action teken

Legend

class A reference attribute » _
reference attribute
attributes..

relerence attribure.

- A dot means "many” or “an unlimired

number”; 0o dor means “exactly one”.
So each element of class A has one
carresponding clement of B, and
carcesponds 5 an unlimired number
of elemencs o7 C.

Figure 2 Classes and relations of concern to the Bug Log
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Class

user

bug

project

product

feature

assignment

In an overview thar lists clements described in deviil later in the
document, irs offen helpful to include references 1o the mose-detailed

sections. This also indicates that the document has wmore to sy abuit

each element than the shor description, discouraging ritpicking.

Description

Any person at IGS who finds bugs or needs

information abour bugs.

A detectin IGS sofiware in need of change,

orasmall improvement 1o be implemented.

A billing category at [GS: a project to which
work performed is billed.
A single piece of software or 4 sottware
package, devcloped as part of one project.
Part of a product.
Data 1o be stored in the Bug Log indicating
who is responsible for working on a specific
bug, project, product, or featurce, and in

8 J I
whar capacity.

Assignments, unlike the ather classes, are defined as data to be stored,

beciise assignments are a realized domain, The other clusses exist inde-

pendeinly of the Bug Log; assignments are part of the Bug Log, or will
be. ance the Bug Log is implemented.

2.1 Users

assignmern:s

The wsers of the Bug log

under development or needs information about those bugs. All users have

user

s {oara

name
0N

ndard capacities

Figure 3 User and relared classes
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ACTCSE

o [GSY local-area network, including users who work ac sites other

than -he Boulder office. Users outside the Boulder oftice access the local-arca

network via RAS, usually on laprop computers with 28,800-bps modems.

Notice that none of the descriptions starts

Attribute Description with the words “this is".

name The users full name.

login The 10 with which the user logs in to 1GS’s local-arca
nerwork.

stancard A list of the capacirics in which the user most frequently

capacities works on bugs. See below for a description of capacities.

assignments  Specific bugs, projects, products, and features that che user

is assignud to, and in what capacity. Sce section 2.3.1,

A user can work on bugs in zero or more of the following capacities:

Since there are so fetw
capacities, simply
listing them all
defines the term
capacity very clearly,
while simultaneously
defining each
distinct capacity.

A programmer fixes bugs.
A tester verifies that bugs have been fixed correctly.
A docrmenter updares user's manuals to reflect bug fixes.

A manager decides which bugs to fix, what priority to give each bug, and

who should work on which bugs and in which capacities.

Most users work in only a single capacity on all the bugs thar they work on.

Occasionally, however, there are exceptions. A programmer might be called in

as a tester on a programming tool, or if 1 tester is out of the othce one day, a

docu

menter might fll in for him. The standard capacities are the users

Il(')l'ITl.ll CJPLICi[iC‘S, not thL‘ CXCCPTiOil;Il mles.

The capacity of finding bugs does not have a name; any user can find a bug.

Curr

ently no two users have the same name, but some mightin the future. No

WO users can ever have [h(’ samge l()gil}.

Current numbers of users who work in cach capacity:
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Capacity Number of Users

This table presents valu-

programmer 35
able information about
scale, enabling program- tester )
mers to choose suitable
implementation tools. cocumenter 3
manager 11

2.1.1 User Activity

The following events affect us

2]
o

Legend

Alis composed of 8 tollowed

|)_\' 7ero of more

user Lach occurrence ot Cis
activty cither 2 Joran
adced 10 change removed
network o info from retwork

Figure 4 Uscr activity

Event Description
added to The IGS system administrator creates a | ogin for the user on
network the local-arca neowork ar the Boulder office.

Parameters: name, login. Optional parameter: standard

capaciries.
change of Any data pertaining to a user can change at any time.
info - . "
Parameters: One or more of name, login, standurd capacities.
removed The IGS system administracor removes the user's login from
from the local-area nerwork.
network

Parameters: HSCH
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The sources of information from which the Bug Log can learn when the above

events occur are the system administrator and the user’s manager.

Fvents that affect the user’s assignments are described in section 2.3.1.

2.2 Projects, Products, and Features

2.2.1 Projects

pool project

name

progucts .

Figure 5 Project and related classes

A projectis a billing category to which the accounting department at IGS bills
work performed. Some  projects arc ‘nternal, some are external. The
accounting department bills customers for time spenc on external projects;

time spent on incernal projects is part of our operating expenscs.

Attribute Description

name The name of the project: no more than six characters.
Most external projects have names chatare abbreviations
for a specific IGS customer. For example, SPLNX is the
project name for work billed to Splenctix Corporation.
Mast internal work has che project name CCRE. No two

projects have the same name.

products The set of all products that are included in this project.
pool The sct of people assigned to this project.
bugs The sct of all bugs thac have been found in all products

within :his project, whether ‘xed or not.
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2.2.2 Products

project - !

product

: < POl [ hame bugs -
H 3436 vy L S A v v e e
R e release numoer

features :,

H

Figure 6 Product and related classes
A product is a single piece of software or software package developed at IGS.

Attribute Description

project The project to which work on this product is billed.
Every product is part of one and only one project.

features Theserofall fearures, ifany, into which this product has
been subdivided for purposes of tracking bugs.

pool The set of people assigned to this product.

bugs The set of all bugs that have been found in this product,
whether fixed or not.

name The name of the product, Up to 30 characters. No two
products within the same project have the same name,
bur two different projects can have products rthat are
named the same but include very different source code.

release number  The current release number of the producr.
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A release number consists of four numbers, cach separated from the next by a

period:

The first number is the

major release number,

incremented only on

releascs that introduce * 0

majot new functionality. 490 0‘ 001, The fourth number is the
build number, incremented
cach time the program is
The second number is the compiled and linked. Build
minor release number, numbers are for internal use

incremented on any new only and are not included in

version, except that when the release numbers in
major relcase number documentation for clients.
changes, the minor release

number is set back to zcro. U'he third number is the

patch number, incremented
only for special releases thar
contain only small fixes.

Each number inside a release number can be up to three digits long.
Somerimes release numbers are written without leading zeroes, but there is

also a standard format, as follows:

major release number No leading zeroes.

minor release number At least two digits: add leading zeroes if
necessary.

patch number At least two digits: add leading zeroes if
necessary.

build number At least three digits: add leading zeroes if
n CCCSSHIY.

Some users are accustomed to writing the first and second periods in a releasc
number as underscores. This practice is a carryover from when we pur entire
release numbers into MS-DOS filenames, which could include only one
period, preceded by up to cight characiers and followed by up to three

characters.
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2.2.3 Features

product k&

feature
5 = pool bugs
EAS O T K2 . 1 name o -

Figure 7 Feature and related classes

A feature is part of a product, typically a part for which a single programmer is
responsible (sec figure 7).

Attribute Description

product The product of which the feature is a part. Every feature is
part of one and only one product.

pool The set of people who are assigned to the feature.

bugs The sct of all bugs that have been found in this feature,

whether fixed or not.

name The rame of the fearure. Lp to 30 characters. No two
features within the same product have the same name, but
wwo different products can have features that are named the

same,

2.2.4 Project Activity

Software developmenc work wichin a single project consists of the cvents
shown below in figure 8. At any time, any number of projects can be in

progress simultancously.

CHAPTER 16 BUG LOG REQUIREMENTS 355



project
activity

;

5 * )
oroject product project
starts activity s terminated

|

]

|

|

]

product *

: development development ~ product

i starts activity is terminated
(o] o} o]
feature bug naw
activity activity release
A feature is always defined
! before being canceled.
Oyther than this. feature
acuvities. bug
activities. and Fo) fo) Legend
new releases can teature teature
occur in any 15 de‘inec s terminated Ais composed of 8 followed
sequence. by rero or more C.

Each occurrence of Cis
eithera Doran £

Figure 8 Project activity

The source of informarion for all events listed below, with che exceptions of

bug activity and new release, is IGS management.

Event Description

Paramcters: name of project.

project starts IS management defines a new project.

| project is 1GS management decides to bill no further work to a
i terminated project.

Paramcters: The terminated project.
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Event

product
deveopmert
Starts

product is
terminated

featura is
defined

feature is
terminated

bug activity

new relegse

Description

TGS management decides to start development on 4 new

product.

Paramcrers: The name of the new product, and the project of
which it is a pare.

A products initial release number is 0.00.00.000.

IGS management decides to stop work on a producr.
Paramecers: The terminated product.
[GS management defines a new feature within a produce,

for purposes of assigning responsibilitics,

Parameters: 1'he name of the new teature, and che prodicrof
which it is a part.

IGS management decides to stop work on a specific feature.

Parameters: The terminaced Jeature.

A wide varicty of events, described in seetion 2.3.

The programmers compile and link a new release of a
product, and configuration management makes it available
to the rest of the staff and/or che customer. Every new
release changes the relcase number of the product. On
average, there are roughly twenty new releases thac change
only the build number (that is, in:crnal releases) for cach
release thut changes any of the other pares of the release

number (external rel eases).

Paramcrers: ‘|he product that had the new release, and its

new selease number,

Source: Con figuration management.
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2.3 Bugs

“finder

bug

ID

oug type

Jug status

NFBC reason
assignments | date discovered

' documentation status

aniority
. oug release
- project fixed release
) ) description
« product steps tc¢ reproduce
databass server/name

action taken

- - _feature

Figure 9 Bug and related classes

A bugis a defect in a picce of IGS software, a small improvement to be made
to that software, or a group of small, relaied improvements and/or defects.
This usage of the word bug is somewhat broader than indusiry standard, in
that it includes more than defects, but it’s become part of usage at IGS as a
result of the BT program’s user interface, which referred to boch defecrs and

improvements as bugs.

Making the change called for by a bug is called fixing the bug, whether the bug

is a defect or an improvement.

Attribute Description

iD A number uniquely identifying the bug, assigned by the
Bug Log.
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Attribute Description

bug type Which of the f()llowing categorics describes the bug:

bug A defect thar needs o be corrected: 4

failure to meet requirements.

suggestion A suggestion for improvement, not
specified in requirements. We often
implement small suggestions to
improve the quality of the software
ceven if the customer doesn’t
specifically ask for them and we
reccive no additional payment for
them.

enhancement A change request going beyond the
original written requirements for the
sofrware, requiring contractual
agreement with the customer before
being assigned to a programmer to

implement.

finder The user who found the bug. Often two uscrs find the
same bug. Approximarely 1 in 7 bugs entered into BT
were superfluous duplicaces. For simplicity, we'll say that
every bug has a sirgle finder but that owo bug records
stored in the Bug Log can be duplicates.

date found The date that someone first found the bug. (No querics
pertain to the dates when more people found the bug, it

\
any.,
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Attribute

bug status

An early version of the requirements
document named the bug statuses
awaiting assignment, awaiting coding,
and so on, as recommended in section
11.1.1. These had the advantage of
being self-explanatory but were wordy.
During user-interface testing, the staff’
decided to change the names of the
statuses to the shorter names shown here,
due 10 the frequency with which people
would use them in spoken CONVErSation,
even though they are properly the names

of actions, not statuses.

360

Description

The current stage in the process of tixing the bug. There

are sIX statuses:

assign

code

build

test

NFBC

fixed

T'he bug s awaiting assignment bya

Ill‘(ll\ElgC[’ toa !_,)rogl'ammcr ili]d ester.

['he bug s assigned to a programmer
and awaiting change to the source

code.

The programmer has changed the
¢

source code to fix the bug: the

version of the software containing

the fix is now awaiting rclease.

The version of the software
containing the fix has been released:

the bug is awaiting testing by a tester.

“Not Fixed But Closed™: 1GS has
decided not o fix the bug. Sce NFBC

reason, below.

The bug has been fixed and the fix

has been verified by a tester.

The first four bug statuses, assign, code, build, and test,
are collecrively reterred to as open. T'he final two, NFBC

and fixed, are collectively referred to as closed.
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Attribute Description

NFBC reason The reason why the bug was marked NFBC. Onc of the
following;

not reproduciple  1GS staff was unable to reproduce the
bug.

deferred IGS is not going to fix the bug now,
and will make a decision about
whether to fix the bug larer.

software IGS has decided not 1o fix the bug

constraint due to limitations in our
development tools; for example, the
bug is due to a limitation in
Powerbuilder.

canceled IGS has decided not to fix the bug, or
the bug is not a genuine problem
with the software.

A bug has an NFEC reason only if its bug status is NFBC.

documentation  ‘The current stage in the process of updarting end-user
status documentation to reflect the bug fix. There ate three
documentation statuses:

none required  Fixing the bug entails no change to
the documentation.

awaiting A change is required and pending,
documentation
done A documenter has completed the
change.
pioject, The project, product, and feature thac the bug perrains

product, feature (o, All bugs pertain 1o a single project and produce; some

bugs pertain to a specific feature and some do not.
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Attribute

assignments

priority

bug release

fixed release

Description

The programmer, tester, and documenter that the bug s
assigned to. A bug can be assigned to a maximum of one

person in each of these three capacities.

At different times, depending on bug status, there must
be a person assigned to the bug in a specific capaciry.

Details are in section 2.3.5.

A measure of how important it is to fix the bug.
Programers decide which bugs to work on first,
according to their priority: it is the responsibility of
managers to assign priorities. There are four priority

levels:

critical Bug renders the software unusable in
a catastrophic way, such as crashing
it.

high Bug should be fixed before the next
external relcase, if possible. ft
definitely needs to be fixed before the

final release.

medium Bug needs to be fixed before final
release, but isn’t so important that it
must be fixed in the next external

release.

low Bug would be nice to fix, but is not

necessary to fix in final release.

A bug has a priority level only when a manager assigns

it. Before then, the bug has no priority at all.

The relcase number of the software in which the bug was

found. Release numbers are described in section 2.2.2.

The relcase number of the software that incorporates the
bug fix. A bug has no fixed release until i’s fixed. Release

numbers are described in section 2.2.2.
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Attribute Description

description Free-form text dcscrihing the bug, Bug Log must allow
at least 1K of text.

steps to Free-form texe telling a programmer how o reproduce
reproduce the bug. Bug Log must allow at least 1K of text.

database Ifapplicable, the name of the database To connect to in
server/name order to teproduce the bug, along with the name of the

database’s server.

action taken Free-form text describing the actions thar the bug’s
programmer and/or documenter have taken so far to fix
the bug; written by che programmer and/or documenrer.
Bug Log must allow at least 1K of rext.

2.3.1 Assignments

user1

— &

assignment

capacity
3

Figure 10 Assignment and related classes

An assignment is data stored in the Bug Log indicating that a particular user is

responsible for working on a bug, product, or feature in a specific capacity.
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Attribute Description
user ‘The person assigned.
capacity The capacity in which uscr is assigned: manager, programmer,

tester, or documenter (described on page 330).

bug, project, The bug, project, product, or feature to which user is assigned.
product, or
feature

2.3.2 Events that Affect Bug Status

Figure 11 and the accompanying table show all events that affect a bug’s
bug status (as described on page 360).

open
user hnds
bug !
>| assign
~—
manager assigns
the bug to a
pregrammer and
tester
Y
( 1 user
reopens bu
‘\_coie__J ) p g
/ programmer
fixes the bug
!ﬁx will appear ) closed
in a futurs user decides
v releasel that bug does
programmer 4 tester not need 10
fixes the bug . determines be fixed R
[tix is availahle build that the iix is > NFBC
immedately] \ not correct
fix reaches
current
release tester
\} . determines
that the fix is
successfuf 3
test > fixed

Figure 11 Events that affect bug status
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Event

user finds bug

R-1

manager
assigns bugto
programmer
and tester

programmer
fixes the bug

Finding out when bug fixes appear
in new releases is the hidden, tricky
connection problem in the Bug Log,
and i1 is the trickiest thing 1o design
for. Without careful focus on the
problem domain, including asking
questions like “what source of infor-
mation can the Bug Log rely on 1o
find out when bug fixes get released? )
it would be easy 1o overlook this
problem. The BT software, which
the Bug Log replaces, was designed
by starting with the database tables
and user interface and had no recog-
wition of a distinct build state—the
time between the programmer’s
fixing the bug and its being released
and veady for testing.

CHAPTER 16

BUG 1LOG REQUIREFMENTS

Description
A user finds the bug, Bug status begins at assign.

Parameters: bug type. project, pr'n//m‘t,_[E)zmm' (i!llm)iimhlu}.
description, steps to reproduce, finder (the user who found the
bug), database server/name (i applicable), bug reledse.

Optionally, the user can assign the bug a priority
The Bug Log assigns the bug a unique 1D.

This same cvent also sets a bug’s documentation status; sec

section 2.3.4.

The manager responsible for the product thar the bug
pertains to assigns the bug to both a programmer and a
tester. If the bug does not have a priority, the manager gives

it one. Bug status changes from assign to code.

Parameters: bug, programmer and reszerassigned, priority (it
applicable).

The programmer modifies source code and/or database

tables in an attemprt to fix the bug.

Sometimes, the fix is available immediarely o a tester for
testing. In this case, bug status changes dircedy to test. The
most likely reason for the fix being immediately available is

that the only change was to a database table.

Otherwise, the fix must go through configuration
management 1o be included in a new release. In this case,
bug status changes to bu Id. Sometimes the programmer
knows the release number in which the fix will appear;
other times, the fx must wait until other progmmming is
completed, and the programmer docs not know when the
fix will be released. The most common case is that the fix
comes out in the next release, and the programmer knows

this immediately upon completing the fix.

Parameters: bug, new bug status, fixed release (if known),
action taken.
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Event Description

fix reaches The bug fix reaches che current release, through

current conﬁgumtion management, and is available for testing. Bug

release status changes to test.

Configuration management does not know which bug fises

are included in cach releasc. Only the programmers know.

Parameters: bug ﬁxed yelease (equal to current releasc).

chat the bug

tester The tester tests the program and determines

determines has been fixed. Bug status changes to fixed.

that fix is

successiul Parameters: bug:

tester "The tester tests the program and determines that the bug

determines has not been fixed. Bug status returns o code.
that fix is not

correct Parameters: bug.

user decides A user decides that the bug does not need to be fixed, for
that bug does  onc of the reasons described under NFBC reascn on
notneedtobe  page 361 Bug starus changes to NFBC.

“ixed

Parameters: bug, NFB C reason.

A user decid
bug status changes to code or assign, at the user's discretion. It

user reopens es that a closed bug needs to be fixed. Bug

bug status was NFBC, the bug loses its NFBC reason.

Parameters: bug, new /letg statis.

2.3.3 Who Can Change Bug Status

The Bug fog is responsible for ensuring that only authorized employees
change the data representing bug satus. That is, we want the Bug Log ©
enforce certain rules about wha can change bug status, not merely track

changes to bug, status. These rules are described below.
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R-2 The Bug Log allows data representing bug status to change from one
value to another only by users assigned to the bug as shown in the
table below:

To
From | assign® code ‘release test INFBC  fixed
(non-existent) |any — — - - P—
user ' ’
assign — — — — “any —
~user
code — — ‘programmer  programmer  any —
; user |
build — programmer, — {programmer  any f—
tester | user
test — programmer, programmer, |— any ‘tester
tester tester user
NFBC any cany user P— — — tester
user 3 :
fixed any any user |~ - any —
user ' ruser
There is one exception to the table:
R-2.1 Any IGS manager can change data representing bug status from any

value to any other value, subject to the validity conditions described
in section 2.3.5.

“['his is how bug status moves trom assign to code.

This comment on requirement 2., while small, is critical. Whenever
tabular data or a set of statements together imply a conclusion of impor-
tance 1o the reader, you muust stare that conclusion explicitly or expect the
reader not to grasp it.
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2.3.4 Events that Affect Documentation Status

Figure 12 and the accompanying text show all cvents thar affect a bug's

documentation status (as described on page 361).

user finas
bug

~——>» none required

user delermines
that bug fix
requires change
o documemnation

documenter compieies
awaiting change to documentation
documentation

> done

Figuze 12 Events that affect a bugs documentation status

Event

user finds bug

user
deiermines that
bug fix requires
change to
documentation
documenter
completes
change to
