
Pro PowerShell
Desired State
Configuration

An In-Depth Guide to
Windows PowerShell DSC
—
Second Edition
—
Ravikanth Chaganti

www.allitebooks.com

http://www.allitebooks.org

Pro PowerShell Desired
State Configuration

An In-Depth Guide to Windows
PowerShell DSC

Second Edition

Ravikanth Chaganti

www.allitebooks.com

http://www.allitebooks.org

Pro PowerShell Desired State Configuration: An In-Depth Guide to Windows
PowerShell DSC

ISBN-13 (pbk): 978-1-4842-3482-2 ISBN-13 (electronic): 978-1-4842-3483-9
https://doi.org/10.1007/978-1-4842-3483-9

Library of Congress Control Number: 2018941469

Copyright © 2018 by Ravikanth Chaganti

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Gwenan Spearing
Development Editor: Laura Berendson
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484234822. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Ravikanth Chaganti
Saideep Helicon
Bengaluru, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3483-9
http://www.allitebooks.org

This work, without a doubt, is dedicated to my lovely family. Especially,
my wife, Silpa, and my sons, Kaustubh and Srivathsa. We missed

many moments of being together as I worked on this. Words cannot
express how much I love you all!

www.allitebooks.com

http://www.allitebooks.org

v

Part I: Getting Started with Windows PowerShell DSC 1

Chapter 1: Introduction to Infrastructure as Code and PowerShell DSC 3

Lab Requirements ��� 4

The Operations Challenge ��� 4

The DevOps Challenge �� 8

Infrastructure as Code ��� 10

Understanding Desired State Configuration �� 12

Imperative vs� Declarative Syntax ��� 13

Enabling Desired State Configuration �� 17

Tools for the Job �� 19

Summary��� 19

Chapter 2: Getting Started with DSC ... 21

Lab Requirements ��� 21

PowerShell DSC: A 10,000-Foot View ��� 22

Configuration Authoring and Staging �� 23

PowerShell DSC Language Extensions �� 24

Configuration Enacting and Reporting �� 34

Local Configuration Manager �� 38

About the Author ...xv

About the Technical Reviewer ...xvii

Acknowledgments ..xix

Introduction ..xxi

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

vi

PowerShell DSC Features ��� 45

DSC Pull Server ��� 45

Partial Configurations �� 47

Cross-Machine Synchronization �� 48

Configuration Encryption at Rest ��� 49

Configuration and Module Signature Validation �� 50

The PowerShell DSC Platform ��� 50

Summary��� 51

Chapter 3: The Local Configuration Manager ... 53

Lab Requirements ��� 53

LCM CIM Classes ��� 54

LCM Properties �� 56

Configuration Store ��� 65

Meta Configurations �� 65

Node Configuration �� 67

Monitoring Configuration Drift �� 69

Summary��� 72

Chapter 4: Writing Configurations .. 73

Lab Requirements ��� 73

What’s Not Covered in This Chapter �� 73

Back to Basics �� 74

Anatomy of a Configuration Document �� 74

Finding and Installing DSC Resource Modules �� 76

Your First Configuration �� 85

Using the Import-DscResource Keyword ��� 87

Exploring DSC Resources �� 93

Multi-Node Configurations �� 97

Parameterized Configurations ��� 102

Dependent Resource Configurations��� 105

Summary��� 108

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

vii

Chapter 5: Writing Advanced DSC Configurations .. 111

Lab Requirements ��� 111

Using Credentials in a Configuration ��� 111

Configuration Data ��� 116

Using PSDscRunAsCredential �� 124

Using Certificates to Encrypt Credentials �� 132

Separating Configuration Data from Environment Data �� 140

Creating Reusable Configurations ��� 147

Nested Configurations ��� 147

Summary��� 152

Chapter 6: Writing Composite and Custom DSC Resource Modules 155

Lab Requirements ��� 155

Composite Resource Modules��� 156

Packaging a Composite Resource Module �� 159

Using a Composite Resource in a Configuration ��� 163

Custom DSC Resource Modules �� 165

Functions in a DSC Resource Script �� 168

MOF-Based DSC Resources �� 170

Class-Based DSC Resources ��� 184

DSC Resource Design Patterns ��� 194

Inducing a Reboot After a Configuration Change ��� 195

Localizing Verbose and Debug Messages ��� 195

Adding Help Content �� 201

Granularity in DSC Resources �� 203

Choosing the Right Key Property ��� 203

Single Instance Resources �� 204

Developing HQRM Modules ��� 205

Adding Examples ��� 206

Adding Tests �� 206

Adding Inline Help for Resource Functions�� 207

Adding Helper Modules ��� 208

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

viii

Publishing DSC Resource Modules ��� 213

Creating a Private Repository �� 213

Summary��� 217

Chapter 7: Validating DSC Resources ... 219

Lab Requirements ��� 219

Ensuring That the Resource Is Discoverable via Get- DscResource �� 220

Using xDscResourceDesigner for MOF-Based Resources �� 220

Testing for PowerShell Code Guidelines ��� 222

Using Invoke-DscResource ��� 225

Invoking the Test Method �� 226

Invoking the Set Method �� 227

Invoking the Get Method ��� 228

Authoring Pester Tests for DSC ��� 229

DSC Resource Unit Tests ��� 231

Test Template��� 236

HostsFile Unit Tests ��� 239

DSC Integration Tests �� 255

Summary��� 259

Part II: Advanced DSC Concepts ... 261

Chapter 8: Configuration Delivery Methods .. 263

Lab Requirements ��� 263

Push Mode �� 263

Stage and Enact �� 264

Background Enact ��� 266

Throttling an Enact �� 271

Pull Mode �� 274

oData-based (HTTP/HTTPS) Pull Service ��� 275

SMB-Based Pull Service �� 297

Staging Resource Modules �� 301

Disabled Mode ��� 309

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

ix

Using Resource Repositories with Push Mode �� 311

How Configuration and Resource Modules Are Downloaded �� 312

Summary��� 313

Chapter 9: Reporting, Monitoring, and Correcting a Configuration 315

Lab Requirements ��� 316

DSC Consistency Check Workflow �� 316

DSC Event Logs ��� 318

Configuration Reporting �� 323

Testing for Desired State Against a Reference Configuration �� 327

Reviewing the Configuration Run History �� 330

DSC Reporting Endpoint �� 333

Summary��� 340

Chapter 10: Partial Configurations ... 341

Lab Requirements ��� 341

Introduction ��� 342

Incremental Configurations ��� 342

Delegated Configuration Management �� 343

Getting Started �� 344

OS Configuration �� 348

SQL Configuration �� 351

Firewall Configuration ��� 353

Enacting a Partial Configuration: Push Mode �� 354

Partial Configuration Dependencies �� 356

Enacting a Partial Configuration: Pull Mode �� 358

Enacting a Partial Configuration: Mixed Mode �� 360

Exclusive Resource Reservation ��� 362

Partial Configuration Life Cycle ��� 366

Limitations �� 368

Exclusive Resource Reservations �� 368

Resource Naming Conflicts ��� 368

Summary��� 369

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

x

Chapter 11: Cross-Node Synchronization ... 371

Lab Requirements ��� 375

Getting Started �� 375

Prerequisites for Using Cross-Node Synchronization �� 377

The WaitForAll Resource ��� 378

Cluster Nodes Configuration �� 379

Creating a Cluster Configuration ��� 380

The WaitForAny Resource ��� 385

The WaitForSome Resource �� 386

What Happens Behind the Scenes? �� 387

Limitations �� 390

Summary��� 390

Chapter 12: Debugging DSC Resources .. 391

Lab Requirements ��� 391

LCM DebugMode ��� 391

Forcing Module Import �� 394

Debugging the DSC Resource Script ��� 397

Summary��� 403

Chapter 13: Security in DSC ... 405

Lab Requirements ��� 405

Configuration Encryption �� 405

Signature Validation �� 409

Signing a Certificate �� 410

The LCM Configuration for Signature Validation �� 412

Signing DSC Resource Modules �� 415

Enabling DSC Access Delegation �� 418

Enabling Non-Administrator User Permissions ��� 419

Creating a JEA Endpoint for DSC ��� 424

Summary��� 431

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

xi

Part III: DSC and the Release Pipeline .. 433

Chapter 14: DSC and the Release Pipeline ... 435

Lab Requirements ��� 435

Source Control �� 437

Build �� 437

Test ��� 440

Deploy ��� 441

Executing the Build Script ��� 443

Automating the Release Pipeline with Git Hooks �� 444

Git Hooks ��� 444

Deploying Modules to a Pull Server ��� 447

Summary��� 452

Chapter 15: DSC with AppVeyor CI ... 453

Lab Requirements ��� 453

AppVeyor CI ��� 453

Publishing a Repository on GitHub �� 454

Connecting to AppVeyor �� 454

Build Configuration �� 455

Summary��� 464

Part IV: DSC Platform, Cloud, and Containers ... 465

Chapter 16: DSC as a Platform ... 467

Lab Requirements ��� 467

The DSC Configuration Management API �� 467

Configuration MOF to Byte Array ��� 469

GetConfiguration �� 470

SendConfiguration ��� 472

ApplyConfiguration �� 473

TestConfiguration ��� 474

RollBack��� 475

Summary��� 476

Table of ConTenTs

xii

Chapter 17: Microsoft Azure and DSC .. 477

Lab Requirements ��� 477

Pushing DSC Configurations Remotely ��� 478

A DSC Configuration in an Azure VM Using the VM Extension Handler ������������������������������������� 481

Using Azure PowerShell Cmdlets��� 481

Using the Azure Resource Manager Template ��� 485

Using Azure CLI 2�0 �� 494

Azure Automation DSC �� 497

Setting Up Azure Automation ��� 498

Registering Azure and On-Premises Machines in AA DSC ��� 502

Adding DSC Resource Modules to the AA DSC �� 511

Summary��� 512

Chapter 18: DSC and Google Cloud Platform .. 513

Lab Requirements ��� 513

Using DSC with GCE Windows Instances �� 514

Pushing DSC Configurations Remotely �� 515

Enact During a GCE Instance Startup �� 520

On-Boarding a GCE Instance to AA DSC Pull Service ��� 523

Summary��� 529

Chapter 19: Amazon Web Services and DSC... 531

Lab Requirements ��� 531

Push a Configuration to an EC2 Instance �� 532

On-Board EC2 Instances to AA DSC �� 534

DSC Configuration Using CloudFormation ��� 537

Using the EC2 Systems Manager Run Command�� 548

Summary��� 550

Table of ConTenTs

xiii

Chapter 20: DSC with Containers.. 553

Lab Requirements ��� 553

Getting Started with Windows Containers �� 553

Pulling Container Images ��� 555

DSC Configurations in a Container �� 557

Summary��� 565

Index ... 567

Table of ConTenTs

xv

About the Author

Ravikanth Chaganti is a well-known blogger and a member of the PowerShell

community. He has been a Microsoft MVP in Cloud and Data Center Management since

2010 and works at Dell EMC as lead engineer in the Converged Platform and Solutions

Division. He is passionate about automation and works in his free time writing scripts

and tools to help automate management tasks for Windows OS and applications on

Windows OS. Ravikanth has more than 15 years of industry experience and a broad set

of skills in the IT infrastructure domain ranging from servers to storage to networking.

He started scripting in early 2000 and continued to hone in his skills from that point

on. In 2006, he fell in love with an early release of Windows PowerShell and has been

evangelizing PowerShell ever since.

xvii

About the Technical Reviewer

Ben Gelens is a technician in heart and soul. He likes

working with cutting-edge technology and implementing

innovative solutions, often before the technology has been

commoditized. His strength is that he can automate almost

anything. Ben transitioned from a traditional infrastructure

consultant/engineer to a DevOps- and Cloud-focused

consultant/engineer. Ben is an active IT community

participant and speaker and has been awarded the Microsoft

MVP award for his contributions.

xix

Acknowledgments

When I wrote the first edition of this book, I was overwhelmed because it was my first

published book. PowerShell DSC has evolved quite a bit since then and completing the

second edition was equally overwhelming because I had to rewrite almost every chapter

and then add a few completely new chapters. I certainly wrote this whole thing all by

myself, but it would not have been possible without the direct or indirect help from

many folks in the community and at Microsoft.

First and foremost, I am grateful to the Almighty and my parents for what I am

today. Thanks to every reader of the first edition for your feedback and encouragement;

your support made me think about the second edition. I am thankful to the people at

Microsoft who made PowerShell DSC possible. These people have been around for me

whenever I had questions. Abhik Chatterjee, Travis Plunk, and Narine Mossikyan were

very helpful while authoring the first edition, which was the foundation for this book.

Hemant Mahawar and Narayanan Lakshmanan (Nana) were always there whenever I

had questions. Steven Murawski (former Microsoft MVP) was one of the first ones to

write about PowerShell DSC and evangelize it; I owe a lot of my learning to him.

Finally, huge thanks to my friend, fellow MVP, and PowerShell DSC expert Ben

Gelens. He was more than just the technical reviewer of this book. His suggestions

certainly made this book better. If I ever decide to write another book, I know who I want

to review or co-author it with me.

xxi

Introduction

When Windows PowerShell DSC was first released in 2013, it was very exciting.

I developed a deep interest in exploring the technology. This curiosity helped me

understand the internals. The first edition of this book was published in the year 2014

and is still one of the most in-depth books on DSC out there. So, naturally, I wanted

the second edition to be a better book than the first one. Therefore, I took the time

and effort to rewrite more than 90% of the first edition; in this book, I narrate an

end-to-end story with DSC.

Configuration management that is native to the Windows platform is no longer a

dream. With DSC, we have a very powerful configuration management platform. As

DSC has evolved, there is now more integration with third-party software and there are

different methods to use DSC with public cloud platforms. At this time of writing, there

are hundreds of custom DSC resources published by Microsoft teams alone. When we

combine that with what the community has delivered, it’s not an exaggeration to say

that there is a DSC resource module for almost everything that runs on the Windows

platform. Several companies use DSC as their primary configuration management

solution for Windows-based workloads and platforms. I have personally built

deployment automations of large hybrid cloud infrastructures that solely use DSC as the

configuration management platform.

With all this experience and love for DSC, my goal for the second edition is to show

you the end-to-end story with DSC. This means that I start with the very basics, go

all the way to the internals of DSC, explain all of the advanced concepts in using and

implementing DSC, show how to build release pipelines for your custom DSC resources,

and show how to use DSC with different public cloud infrastructure and containers. This

is the essence of this book.

xxii

 An Overview of This Book
Pro PowerShell Desired State Configuration is divided into four distinct parts. Each part

contains related chapters that help you understand thoroughly the concepts that are

covered.

 Part I: Getting Started with Windows PowerShell DSC
Part I provides an introduction to Infrastructure as Code (IaC) and the role DSC plays

within IaC. This part also provides an introduction to the basic DSC concepts.

 Chapter 1: Introduction to Infrastructure as Code and
PowerShell DSC

This chapter introduces you to the concepts of DevOps, IaC, and Configuration as Code

(CaC). Once these concepts are well understood, you explore the role that the release

pipeline plays in IaC and the role DSC plays in IaC. The chapter ends with a quick

overview of what DSC is and how to enable DSC in your infrastructure.

 Chapter 2: Windows PowerShell DSC Architecture and Feature
Overview

In this chapter, you look at the DSC component architecture and understand how the

components relate to each other. This chapter builds upon the foundation supplied by

Chapter 1 and provides an in-depth explanation of various components in DSC. I look

at the new and updated features in DSC and review each one of them. The subsequent

chapters dive into each of these features.

 Chapter 3: Windows PowerShell DSC Local Configuration
Manager

DSC Local Configuration Manager (LCM) is the core of PowerShell DSC. Think of this as

the agent that sits in the operating system and performs the configuration management

tasks. Therefore, it is very important to understand this component in-depth and learn

how to configure LCM. You look at a subset of the LCM configuration settings and deal

with others in subsequent chapters. You learn how DSC is implemented and explore

various classes and properties in its CIM-based implementation.

InTroduCTIon

xxiii

 Chapter 4: Writing Configurations

Once you understand the basics of DSC architecture and how to configure LCM for

different configuration management scenarios, you can write your first configuration

document. You learn different parts of the declarative syntax used in writing these

configuration scripts. In this chapter, you also learn how to explore in-box DSC resources

and how to download and install resource modules from the official PowerShell gallery.

You look at parameterizing configuration scripts and building dependent resource

instances in a configuration script.

 Chapter 5: Writing Advanced DSC Configurations

In this chapter, you look at the concept of configuration data and why you need it, how you

can use configuration data to create flexible and reusable configurations, how to secure

sensitive data such as credentials and secure strings in the configuration authoring and

enact process, and many other advanced configuration authoring concepts.

 Chapter 6: Writing Composite and Custom DSC Resource
Modules

You extend the knowledge from Chapters 4 and 5 to create composite resource modules.

The composite resource modules enable us to package the parameterized configuration

scripts that we author into resource modules so that they become discoverable and can

be distributed in a similar manner as the custom DSC resource modules. You then write

your own custom DSC resource modules, both MOF-based and class-based. You end the

chapter by publishing modules to a local private PowerShell repository.

 Chapter 7: Validating DSC Resources

There is a formal way to approach testing of DSC resources and modules. In this chapter,

you learn exactly that. You learn some basic testing, you start writing a DSC resource

script, and you evolve it into a complete set of tests that validate different code paths

in the resource script. This is done using Pester, which is the framework for unit testing

and beyond. At the end of this chapter, you should have the necessary knowledge to

implement both unit and integration tests for the MOF-based DSC resources. Pester

testing for class-based DSC resources is still evolving and there is no standard or method

that works across different resources. Therefore, this chapter does not cover class-based

resource testing.

InTroduCTIon

xxiv

 Part II: Advanced DSC Concepts
Part II is more than just basics. With a solid understanding of DSC concepts, you move

on to the DSC ecosystem and other features such as a pull service, DSC reporting, partial

configurations, cross-node synchronization, debugging DSC resource modules, and

security in DSC.

 Chapter 8: DSC Configuration Delivery Modes

All earlier chapters looked at pushing DSC configurations to target nodes, which is not

a very scable method and requires firewall ports to be open, among other things. This

is where the pull mode configuration delivery really helps. In this chapter, I discuss a

few more concepts around the push model and move towards the other configuration

refresh modes.

 Chapter 9: Reporting, Monitoring, and Correcting Configuration

DSC provides interfaces to monitor and report configuration from the target systems

and also a method to auto-correct a configuration drift. In this chapter, you take a look

at the internals of configuration management using DSC, monitoring, and correcting

configuration on target systems, and finally, reporting configurations from target systems

using built-in methods.

 Chapter 10: Partial Configurations

Partial configurations can help in an IT organization where multiple individuals are

responsible for the configuration of the infrastructure. Partial configurations enable

delegation of configuration management tasks and separation of the common

configuration from node-specific configurations. This chapter goes in-depth into partial

configurations and provides a walk-through of how partial configurations can be built

and used. You look at preparing the necessary infrastructure to start enacting partial

configurations. Finally, you see an updated configuration life cycle that presents a

complete view of configuration management including partial configurations.

InTroduCTIon

www.allitebooks.com

http://www.allitebooks.org

xxv

 Chapter 11: Cross-Node Synchronization

With WMF 5.0, Microsoft introduced a new feature called cross-node synchronization

in DSC. At the surface, what you see are three DSC resources that help you wait for

dependencies to be in a desired state before proceeding to finalizing the configuration.

But, behind the scenes, there is something more interesting. This chapter explores the

xNode synchronization feature in DSC and describes scenarios where it can be useful.

 Chapter 12: Debugging DSC Resources

Testing is a great way to ensure that the functionality that you intended to build is indeed

available and not broken. You saw in Chapter 9 how DSC debug and analytics logs can

help you retrieve more information around DSC operations. However, bugs may get

introduced because of an environmental configuration where the resource module is

being used or could just be a test miss. If so, you need to use the available debugging

techniques to root-cause the bug and fix it. DSC as a platform offers a way to debug

resource modules while the enact is in progress. In this chapter, you look at how to debug

DSC resource module issues. It’s a quick one but I really suggest that you practice the

debugging technique that you learn with not just the simple example in this chapter but

with a module of your own, too.

 Chapter 13: Security in DSC

Securing configuration documents is not just about encrypting the credentials and

other sensitive strings in it. The configuration documents describe a blueprint of the

configuration on the system where they are enacted. Therefore, you must consider the

entire MOF contents as a document containing sensitive information. In this chapter,

you look at how DSC secures the MOF documents at rest in the local configuration

store and also how you can ensure that the LCM enacts only trusted configurations and

uses only trusted resource modules. You look at creating constrained endpoints and

delegating DSC-based configuration management to non-administrator users in the IT

organization.

InTroduCTIon

xxvi

 Part III: DSC and the Release Pipeline
In Part II, you looked at creating and validating custom DSC resource modules. In this part,

you look at automating these tests through the implementation of a release pipeline.

 Chapter 14: DSC and the Release Pipeline

In Chapter 6, you learned about authoring your own DSC resource modules and looked

at validating these resource scripts in Chapter 7. You looked at how you can publish the

module to a private PowerShell repository hosted on an SMB share as well. It was all

manual. But, with the help of a release pipeline implementation, this entire process can

be automated from source control to a private repository. In this chapter, you will explore

one such implementation using a few community PowerShell modules that enable a

build-to-release pipeline implementation.

 Chapter 15: DSC with AppVeyor CI

Chapter 14 presents an implementation of a release pipeline for DSC resource modules

using all open source tooling and libraries. However, within this method, building a

complete automated pipeline involves tinkering with Git hooks. Also, this method

provides no reporting around the build success or failure and any historical reporting for

the builds. This is where more evolved tools such as AppVeyor, among many others, can

help. In this chapter, you implement a release pipeline with AppVeyor.

 Part IV: DSC Platform, Cloud, and Containers
The final part this book covers DSC as a management platform and how DSC can be

used with different public cloud IaaS instances and containers running on Windows

Server 2016 or Windows 10 FCU.

 Chapter 16: DSC as a Platform

Windows PowerShell DSC is a platform rather than just a set of tools to perform

configuration management. DSC uses the CIM standard data representation for node

configurations and uses WS-MAN as a standard transport for sending the configurations

to the target nodes. This architecture is what makes DSC a platform. The cmdlets in the

PSDesiredStateConfiguration module are a way to use the interfaces provided in the

InTroduCTIon

xxvii

DSC platform. In this chapter, you explore the platform aspect of Windows PowerShell

DSC and learn how to perform the DSC operations without the need for any cmdlets in

the PSDesiredStateConfiguration module.

 Chapter 17: Microsoft Azure and DSC

Microsoft Azure offers different cloud service models, such as Infrastructure as a Service

(IaaS), Platform as a Service (PaaS), and Software as a Service (Saas) among many

others. With the release of Microsoft Azure Stack (MAS), many of these services can now

be extended into on-premises infrastructure in hybrid cloud deployment model as well.

As a part of the IaaS offerings, the virtual machines created in the Azure cloud can be

configured using PowerShell DSC in a few different ways. For the IaaS VMs on Azure, you

can use the Azure VM DSC extension handler to enact configurations in the VM. Another

approach that internally uses the DSC extension handler is provided by an Azure service

called the Azure Automation DSC (AA DSC) service. In this chapter, you explore how

Azure IaaS virtual machines can be configured using the DSC extension handler and

how the AA DSC service can be used to manage both Azure IaaS VMs and the systems

on-premises.

 Chapter 18: DSC and Google Cloud Platform

Google Cloud Platform (GCP) is yet another but very important player in the IaaS public

cloud space. As a part of Google Compute Engine (GCE), GCP offers a wide range of

IaaS VM instances and operating systems. Windows Server 2008 R2, Windows Server

2012 R2, Windows Server 2016, and Windows Server 2016 version 1709 are parts of the

GCE offerings. In this chapter, you learn how to use DSC to configure the GCE Windows

instances.

 Chapter 19: Amazon Web Services and DSC

The previous two chapters showed you how to use PowerShell Desired State

Configuration with Windows instances running on Azure and Google Cloud services.

You looked at how the Azure Automation DSC service can help with both cloud and on-

premises instances of Windows systems. In this chapter, you look at how to use DSC with

AWS Elastic Compute 2 (EC2) instances.

InTroduCTIon

xxviii

 Chapter 20: DSC with Containers

Containers have been around for a while in the Linux world, and with Windows 10

and Windows Server 2016, containers have entered the Microsoft Windows world,

too. Containers accelerate application development, testing, and deployment, and

are useful in dynamic data centers and cloud environments where DevOps practices

are implemented. You can get an application from the development environment to

production in a completely automated way by building the container images in the

development stage and then shipping the same image through validation and finally to

production. The configuration needed for the application to work can be packaged into

the image itself. In this chapter, you explore how to use DSC with Windows containers

using Server Core.

InTroduCTIon

Windows PowerShell DSC isn’t a new technology anymore. It has evolved from its

infant phase into a mature, powerful platform. The first part of the book provides a good

overview of DevOps and Infrastructure as Code (IaC) practices and explains where DSC

plays a role in these practices. After a quick overview of DSC, you dive into the DSC

component architecture and learn the internals of LCM.

With the knowledge of DSC architecture and the internals of LCM, you start writing

your first configuration script and learn the declarative syntax provided by DSC. You

extend this knowledge into creating advanced configurations that use configuration

data, secure strings, and encrypted credentials, and common DSC resource properties

such as the PsDscRunAsCredential.

The section ends by looking at writing composite DSC resource modules from

reusable configurations and writing your own MOF-based or class-based DSC resource

modules. You look at performing unit and integration tests for these custom DSC

resource modules towards the end of this part.

By the end of this section, you will be proficient in not just the basics of PowerShell

DSC but also in writing your own custom DSC resource modules and validating them

using Pester.

PART I

Getting Started with
Windows PowerShell DSC

3
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_1

CHAPTER 1

Introduction to
Infrastructure as Code
and PowerShell DSC

> You can learn from anyone, it doesn’t matter who they are or what their
experience is.

—Neil Patel (Entrepreneur)

In this era of cloud computing, communication and collaboration along with an agile

way of delivering both infrastructure and software are critical. With the rise of the cloud

infrastructure, starting with the Amazon Web Services announcement in 2006, there has

been a constant effort to make the infrastructure dynamic and responsive to changes

in business. The traditional methods of building and managing IT infrastructure do

not help with web-scale infrastructures that are dynamic and work at a different scale

than their traditional counterparts. Being an automation and efficiency fanatic, I always

find an opportunity to evangelize DevOps practices. When we implement some of the

DevOps practices in the context of infrastructure management, we call it Infrastructure

as Code (IaC). In fact, IaC is an integral part of DevOps practices. Automation is certainly

one of the most important enablers in DevOps practices and it makes Infrastructure as

Code possible.

When I talk about these practices to a room full of infrastructure administrators,

at least 50% of them think that it is irrelevant in terms of their day-to-day tasks.

To explain the relevance of DevOps practices to IT professionals, I usually start with one

of my own experiences to set the context around why DevOps practices are relevant in

infrastructure management. That said, this chapter isn’t about DevOps practices. You will

4

learn about this in the context of what you, an IT professional, can learn from practices

usually followed by brothers and sisters from the other side of the wall (developers) and

in the DevOps world.

Gene Kim highlighted the issues that are faced by IT organizations very well in his

book The Phoenix Project. In his book, he narrates how an IT organization evolved to a

great business enabler by developing and implementing DevOps practices. For an IT

professional like you, DevOps practices sound completely alien. Even though you may

not be interfacing with developers and deploying their code in production, it is helpful

to understand some of the DevOps practices and how they can be leveraged in the

infrastructure world.

Before I dive into what IaC is, let’s first look at the infrastructure deployment and

configuration challenges faced by IT organizations. I will expand this knowledge into a

DevOps discussion and show how practices like IaC and/or Configuration as Code (CaC)

can help achieve continuous delivery and deployment. I will conclude this chapter

by looking at an introduction to Windows PowerShell Desired State Configuration

(DSC), explain the role DSC plays in IaC, and show you how to enable DSC in your

infrastructure.

 Lab Requirements
In order to try out examples and exercises in this chapter, you will need at minimum a

Windows Server 2008 R2 or above system with WMF 5.1 installed. I recommend a system

with Windows Server 2016.

 The Operations Challenge
I started my career in IT back in 2000. It was the time when the Microsoft Windows NT

4.0 Server operating system was popular for both good and bad reasons. I was managing

a small data center at a customer site that had a mix of different operating systems

including Windows NT and Unix. I was also responsible for the network infrastructure

that had Cisco switches and routers connecting the data center to the public Internet as

well as branch offices. Being the only IT administrator was not an easy thing, especially

when the IT manager and developers on the systems team had god-mode access to all

IT infrastructure. These developers could push configuration and code changes without

Chapter 1 IntroduCtIon to InfrastruCture as Code and powershell dsC

5

any prior change requests and approvals. This severely impacted the services running in

production. And, not just that! We had issues recovering servers when something went

wrong. There was not even a documented way of recovering server configuration.

This is not just my story but the story of several IT administrators. What I really

needed was a way to identify changes that were needed, ensure these changes were

reviewed, and the ability to deploy the changes through a system that provided a method

to document and track these changes. A few IT organizations that realized the value

of these change management processes had implemented systems and tools that help

them manage change in the data center environment. A typical configuration change

management process has different phases, such as change submission, review, approval,

deployment, and monitoring and reporting, which combine to form the configuration

management cycle. Parts of this process are manual, and others can be automated.

Overall, configuration change management is a process that involves both people and

systems. Therefore, collaboration between teams and people is an important aspect.

A typical configuration management life cycle is shown in Figure 1-1. This is a

high-level representation of the different phases involved in configuration

management and does not represent a granular configuration process.

Each configuration change in the data center may include more than one

configuration item and may involve disparate systems. For example, deploying a

new web application might require changes to the web servers and database servers.

Depending on how the application is architected, there might be a middleware tier, too,

Figure 1-1. A typical configuration management cycle

Chapter 1 IntroduCtIon to InfrastruCture as Code and powershell dsC

6

that gets changed. The initial deployments are always easy and usually adhere to the

standards defined in IT service management. However, the subsequent changes are not.

Some of these changes may involve only updates at one of the tiers of the application

architecture. This is where the stringent process or phases of the configuration life cycle

play a critical part in IT service management. Each of the configuration items going

through this life cycle finally get stored in a configuration store usually referred to as a

configuration management database (CMDB). In an ideal world, the CMDB must be

up-to-date, with all changes performed on an entity either on-premises or in the cloud.

We should be able to use the information stored in the CMDB to trace faults in the

data center management to their exact cause and location and, thus, help data center

administrators avoid configuration drift. However, we are not always in an ideal world,

especially when talking about enterprise data centers.

What I faced early in my career is a classic example of configuration drift. Often

developers (and even an IT manager) changed the configuration of servers and

applications running on those servers without following a standard procedure, thereby

creating islands of configurations. It was never easy to restore a failed server to its

functional configuration. Configuration drift refers to these unmanaged changes made

to an entity in the scope of IT service management. Going back to the example of a web

application, the changes performed at any tier of the architecture must be properly

documented and implemented. Any failure to do so while performing changes to the

application or the infrastructure hosting the applications will result in a configuration

drift. Simply put, this drift represents a deviation from the known desired configuration

state, and such a drift can have bad consequences for service management and can

make fault isolation difficult. It is essential for IT managers to address these challenges

in configuration management and to eliminate configuration drift. To this extent, we can

modify the Monitor and Report phase shown in Figure 1-1 to make it Monitor, Report,
and Remediate. This is shown in Figure 1-2.

Chapter 1 IntroduCtIon to InfrastruCture as Code and powershell dsC

7

The extended phase (Remediate) in the configuration management life cycle, shown

in Figure 1-2, is used to enforce the configuration changes. This means we not only have the

ability to report but also to take action based on how the remediation policies are created.

Within the extended phases shown within the Monitor, Report, and Remediate

phase, Detect provides a mechanism to detect the state of configuration items. This

includes the ability to list what configuration items are being monitored and the means

to retrieve the state of each configuration item.

The Compare phase should provide the ability to compare the state of the

configuration items retrieved in the Detect phase to a predefined baseline or a baseline

that has been updated through a managed configuration change process. This phase

also builds a report of the deviations, if there are any. Detect and Compare are the most

important steps in the Monitor and Remediate phase of configuration management.

Within the scope of our definition, these two phases provide insights into what has

changed or not changed in the system being monitored. Without these insights, there is

no meaning in monitoring and remediating a configuration drift.

Through the final phase, Automate, we should be able to automate the actions,

based on how we configure the remediation policies. You may choose to verify the

configuration drift manually and then take action to remediate. This is perfectly fine, and

this is what makes automated remediation optional: it is not always mandatory to fix the

configuration differences automatically.

Figure 1-2. Extended phases of configuration management

Chapter 1 IntroduCtIon to InfrastruCture as Code and powershell dsC

8

The first three phases of the configuration management life cycle are related to IT

service processes. There are various tools that help users to submit change requests

and appropriate people to approve or reject the same. The next phases in the life cycle

can be automated using scripts and existing frameworks. This is generally referred to

as Configuration as Code. By saying Configuration as Code, we are not just referring to

a bunch of scripts that perform automated deployments or configuration management

automation. We need a consistent, reliable, and repeatable method to perform

configuration management of the data center infrastructure. This is a major part of

an IaC practice, which brings software development best practices to infrastructure

deployment and configuration management. Before I dive into what IaC is, let’s

complete the discussion around the DevOps challenge and then talk about what role IaC

plays in it.

 The DevOps Challenge
Back in August 2012, Knight Capital lost over $460 million in a span of just 45 minutes

due to an issue in its automatic trading system. What and how it happened is a long story

and is detailed in the SEC filing (http://azrs.tk/secKCA) by Knight Capital. Here is an

excerpt from the SEC filing that briefly indicates what happened:

during the deployment of the new code, however, one of Knight’s technicians did
not copy the new code to one of the eight sMars computer servers. Knight did not
have a second technician review this deployment and no one at Knight realized that
the power peg code had not been removed from the eighth server, nor that the new
rlp code added. Knight had no written procedures that required such a review.

What happened at Knight Capital is similar to what you as an IT administrator might

be facing in your organization. If you remember the operations challenge discussion, this

is what I was trying to solve but just within the infrastructure configuration. However,

when you are managing infrastructure where code from development teams needs to be

deployed, you have a larger problem. For an investment banker such as Knight Capital,

the lack of procedures and collaboration between development and operations team

was a disaster. This is where DevOps practices play a major role. DevOps shouldn’t be

a new term and you must have already heard or read about it elsewhere. With the rise

Chapter 1 IntroduCtIon to InfrastruCture as Code and powershell dsC

http://azrs.tk/secKCA

9

of web-scale infrastructures, it is important for IT organizations to be more agile and

efficient to support the ever-growing need for flexible infrastructures that a normal IT

professional would have ever imagined. Wikipedia reflects upon DevOps:

devops (a clipped compound of “development” and “operations”) is a culture,
movement, or practice that emphasizes the collaboration and communication of
both software developers and other information-technology (It) professionals while
automating the process of software delivery and infrastructure changes. It aims
at establishing a culture and environment where building, testing, and releasing
software, can happen rapidly, frequently, and more reliably.

Let’s keep the collaboration and communication part of this definition out of this

discussion; they are soft skills that should be nurtured between the development

and operations teams. There are even tools that enforce this communication and

collaboration. Let’s focus on the later part the DevOps definition about automating

the process of software delivery and infrastructure changes and building, testing, and

releasing software rapidly, frequently, and more reliably. A picture is worth a thousand

words. So, Figure 1-3 shows the technical part of the DevOps definition in a picture!

Figure 1-3. Application development flow from source control to production

What this picture depicts is the typical application code flow from development

to production. The phases such as continuous integration and continuous delivery

ensure that the developed application code is tested and is stable for deployment in

production. The tests that run at these phases provide an assurance that the code will

run as expected in all sorts of environments (development, QA, staging, and production)

where the code gets deployed. One thing you must note here is that for the application

Chapter 1 IntroduCtIon to InfrastruCture as Code and powershell dsC

10

code to run as expected in any of the environments, you must have the same or similar

infrastructure configuration. For example, when you start making changes to the

application code, the development infrastructure where you perform unit testing of your

code must mimic the production infrastructure. If the application code in development

requires infrastructure configuration changes, these configuration changes must move,

along with the application code, from development to other environments as the code

gets tested and deployed.

While delivering and deploying the application code in a rapid and efficient manner

is important, it is equally important to ensure that the infrastructure where this code gets

deployed is dealt with the same way we deal with the application code. I already discussed

the importance of these processes in the preceding section. For reusable, consistent, and

rapid deployments of infrastructure, you need automation. When you have automation,

you always want to validate what you are doing because there are no humans sitting and

watching the deployment as it happens or clicking buttons to complete the deployment.

And, finally, when something goes wrong, you want to quickly see what changed in your

infrastructure automation and roll back those changes when needed.

 Infrastructure as Code
It is easy to argue that what I described—a need for automated configuration

management—is just infrastructure automation, which you and I as IT professionals

have been doing for ages. Right? One thing you must notice here is that IaC is not just

about code alone. Infrastructure automation does play a role within IaC. After all, how

else do we create reusable and repeatable infrastructure without automation? IaC

mandates software development practices in managing IT infrastructure.

The three major components of IaC are

• Source Control: Enables the method to track and roll back changes

to your infrastructure as needed. There are many tools that you can

use here. My favorite has been Git.

• Unit/Integration/Operational Testing: Enables validation of your

infrastructure code within various phases of the infrastructure

release pipeline or outside the release pipeline and lets you feel

confident about what you are pushing to production. The PowerShell

Unit Testing framework, Pester, can be used here. You will learn more

about the release pipeline towards the end of this section.

Chapter 1 IntroduCtIon to InfrastruCture as Code and powershell dsC

11

• Infrastructure Automation: Enables consistent, reusable, and

rapid deployment part of IaC. This is referred to as Configuration

as Code and it is the main component within the IaC practice.

Within CaC, the configuration management tools or platforms

enable a declarative way of handling infrastructure configuration.

This automation should always go hand-in-hand with unit/

integration/operations testing. When talking about Infrastructure

and Configuration as Code, version control and testing become

very important. However, to enable a consistent, reusable, and

repeatable method of infrastructure deployment and configuration,

it is important that we go beyond imperative scripting. You will learn

more about the imperative style of scripting in the “Imperative vs.

Declarative Syntax” section.

If you want to understand the IaC practices with in-depth examples and real-world

scenarios, I recommend Infrastructure As Code by Kief Morris (http://azrs.tk/

IacDSC). It provides an excellent introduction to IaC and explains the concepts with

several examples.

The process of getting infrastructure code from source control to production should

not be a manual process. The different phases should be completely automated. This

is usually referred to as a release or deployment pipeline. Figure 1-4 shows the release

pipeline representation of what was shown in Figure 1-3.

What we see in Figure 1-4 can be considered a blueprint for implementing IaC. It

represents the essential elements of IaC as implementable artifacts such as build

systems, tests, and releases. You will see implementations of this pipeline in Chapters 14

and 15 when you look at using automated release pipelines for publishing custom DSC

resource modules from source control all the way to a PowerShell module repository

or pull server for resource module distribution. There are several open source and

proprietary tools that help us build these release pipelines. Chapter 14 presents one

Figure 1-4. Infrastructure code release pipeline

Chapter 1 IntroduCtIon to InfrastruCture as Code and powershell dsC

http://azrs.tk/IacDSC
http://azrs.tk/IacDSC

12

implementation with all open source PowerShell libraries and Chapter 15 discusses

more evolved tools such as AppVeyor.

Automated build and release systems are nothing new in the Linux space, and over

the last few years we have been seeing these systems or libraries get implemented in the

Windows space as well. Historically, Microsoft Windows focused on user experience.

Until Windows PowerShell was released, the focus was never on developing a scripting

language (VB Scripting existed but had many limitations) or an engine for automating

day-to-day administration tasks. There were disparate places where the Windows

OS and applications on it stored configurations. For example, OS and application

configurations were stored in the Windows registry, in INI and CONFIG files, and many

other places. Utilities such as reg.exe were used to manage configuration stored in the

Windows registry while INI and CONFIG file changes are done either by underlying OS

interfaces or proprietary ways defined within the OS and applications. This resulted in

script sprawl.

In the pre-PowerShell era, this meant hundreds of lines of Windows batch scripts

or VB Scripts. Even with Windows PowerShell, this still meant a bunch of scripts and

often really complex ones. For example, changing the configuration stored within the

registry using Windows PowerShell was easy but ensuring that this configuration stayed

as-is and any drifts caused by misconfiguration were handled properly wasn’t easy. We

needed to schedule scripts that checked the configuration of a specific entity within the

OS and then set or reset it as needed. The lines of code only increased with the increase

in number of configuration items. It wasn’t a scalable approach.

With the recent DevOps adoption and growing need for managing CaC, there is a strong

desire to build a platform that provides open and consistent configuration management

interfaces across Windows and other Operating Systems such as Linux. This is where the

Windows PowerShell Desired State Configuration (DSC) feature plays a role.

 Understanding Desired State Configuration
Windows PowerShell Desired State Configuration has evolved into a powerful platform

since its inception back in 2011. DSC is built on and makes use of a standards- based

management platform. DSC uses a common information model (CIM) for representing

a device or resource configuration and a WS-Management (WS-Man) remote

management protocol for transporting the configuration to target nodes.

Chapter 1 IntroduCtIon to InfrastruCture as Code and powershell dsC

13

To reiterate, DSC should be seen as a configuration management platform rather

than a complete configuration management solution. Unlike the other configuration

management tools or solutions, DSC does not provide an end-to-end tool set to manage

and monitor configuration. Instead, DSC offers an application programming interface

(API) and a platform that even other tools and frameworks can leverage. That said, the

integrations available with the Azure Automation and Operations Management Suite

provide a way to get insights into the configuration being managed by DSC. Other

configuration management tools such as Puppet and Chef leverage DSC APIs to perform

configuration management of Windows systems. PowerShell DSC supports separation

of environmental configuration from structural or resource configuration. You can use

the configuration data in your DSC documents to make your infrastructure automation

reusable. I will discuss using configuration data in Chapter 5.

Also, understand that PowerShell DSC does not represent the entire IaC practice. It is

one of the enablers that is referred to as Configuration as Code. I mentioned CaC as being

a major part of IaC. It is where PowerShell DSC comes into play. It enables a declarative

way of expressing your infrastructure configuration. Using this declarative syntax, you can

create what I referred to as infrastructure automation in the earlier section. Although the

declarative syntax might be new to some of you, it is still PowerShell. And it is my favorite

part of using DSC. I can use my existing PowerShell skills to write DSC configuration

documents and the DSC resource modules. I will discuss writing your own DSC resource

modules in Chapter 5.

As mentioned, within CaC, the intent is described in terms of the declarative

syntax. The imperative scripts, in this case the DSC resource modules, take care of

implementation of the configuration or make it so. The following section provides a

brief overview of the distinction between the imperative and declarative syntaxes using

PowerShell and DSC as examples. You may not understand everything in the DSC syntax

but just hang in there. I have an in-depth discussion on that in Chapter 2.

 Imperative vs. Declarative Syntax
Windows PowerShell is imperative in nature. What that means is that when we write

a script in PowerShell, we tell PowerShell how to perform a specific task, using either

the built-in cmdlets or the functions or modules we write. Let’s look at an example that

describes this in detail. So, the task at hand is to ensure that the Windows Update Service

Chapter 1 IntroduCtIon to InfrastruCture as Code and powershell dsC

14

is running and the startup type is set to Automatic. This can be done using just two lines

of PowerShell:

Set-Service -Name wuauserv -StartupType Automatic

Start-Service -Name wuauserv

However, doing this using a production quality script will require some changes.

Here is how I put these commands into a script:

[CmdletBinding()]

param

(

 [Parameter(Mandatory = $true)]

 [string]

 $Name,

 [Parameter()]

 [string]

 [ValidateSet('Running', 'Stopped')]

 $Status,

 [Parameter()]

 [string]

 [ValidateSet('Automatic', 'Disabled', 'Manual')]

 $StartupType

)

$service = Get-Service -Name $Name -ErrorAction Stop

if ($service.StartType -ne $StartupType)

{

 Write-Verbose -Message "Setting startup type for $Name to $StartupType"

 Set-Service -Name $Name -StartupType $StartupType

}

if ($service.Status -ne $Status)

{

 if ($Status -eq 'Running')

Chapter 1 IntroduCtIon to InfrastruCture as Code and powershell dsC

15

 {

 Write-Verbose -Message "Starting service $Name"

 Start-Service -Name $Name

 }

 else

 {

 Write-Verbose -Message "Stopping service $Name"

 Stop-Service -Name $Name

 }

}

In reality, a production PowerShell script usually contains the following:

• It expresses the intent or the desired state of the service (in this case,

the intent is to ensure that Windows Update service is running and its

startup type is automatic).

• It contains the logic to get the service to the desired state.

• It has logging, error handling, and reporting.

As you can see, bulk of the code contains how to get the task done and not the intent.

In the declarative style of programming, we describe the end state and not how it

needs to be done. In this programming style, we are not concerned about how things are

done. We depend on the underlying automation or programming framework to know

how to perform a given set of tasks. Of course, there has to be explicit support within

the underlying framework to perform these tasks. Essentially, the declarative approach

separates the two: the intent and the how to make it so. This enables a developer or an IT

pro to understand what the end state or the desired state of the system should look like.

PowerShell DSC enables this approach. In this example, the desired state of the system

will look like the following:

Configuration MyServices

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 Node MyServer

 {

 Service WindowsUpdate

Chapter 1 IntroduCtIon to InfrastruCture as Code and powershell dsC

16

 {

 Name = 'wuauserv'

 State = 'Running'

 StartupType = 'Automatic'

 }

 }

}

As you can see, the declarative language is a lot easier to understand because it

focuses on the intent. Someone who is not familiar with PowerShell can still change the

intent of the system since it is more readable and easy to understand.

This is what DSC helps achieve: a declarative way for defining the desired state of the

system. The following are the various parts of the declarative syntax:

• Configuration: A function that describes that the desired state of the

system will be expressed declaratively

• Import-DscResource: A keyword indicating which modules to

import resources from

• Node: A keyword that indicates list of nodes in which this

configuration will be applied

• Service: A resource whose desired state can be expressed

declaratively

• WindowsUpdate: A name that identifies this instance of the resource

in the PowerShell script

• Name, State, and StartupType: Properties of the resource that are

configurable

The example showing the declarative syntax in PowerShell is indeed a DSC

configuration. Using the DSC configurations, we can specify what configuration items

have to be managed and how. You will explore the configurations more and write your

first configuration in Chapter 2, but first, how do you get the DSC feature in Windows?

Chapter 1 IntroduCtIon to InfrastruCture as Code and powershell dsC

17

 Enabling Desired State Configuration
The Windows PowerShell Desired State Configuration feature was first released with

Windows Management Framework (WMF) 4.0. The most recent version of DSC feature

is released with WMF 5.1. Windows Server 2016 and Windows 10 operating systems

come with WMF 5.1 preinstalled and therefore, there is no WMF 5.1 download for these

operating systems.

The WMF 5.1 package is available for down-level operating systems, such as

Windows Server 2012 R2, Windows Server 2012, Windows Server 2008 R2 SP1,

Windows 8.1, and Windows 7 SP1.

Table 1-1 lists the WMF 5.1 prerequisites and download locations. All examples listed

in this book will use only WMF 5.1.

As mentioned, all examples in this book will be based on WMF 5.1 only. Also,

I discussed earlier that DSC uses CIM for representing resource configuration and

WS-Man for transporting the configurations to the target nodes. Therefore, the target

Table 1-1. WMF 5.1 Prerequisites and Download Locations

Operating System Prerequisites Download Links

windows server 2012 r2 na https://go.microsoft.com/

fwlink/?linkid=839516

windows server 2012 na https://go.microsoft.com/

fwlink/?linkid=839513

windows server 2008 r2 .net framework 4.5.2 https://go.microsoft.com/

fwlink/?linkid=839523

windows 8.1 na x64: https://go.microsoft.com/

fwlink/?linkid=839516

windows 8.1 na x86: https://go.microsoft.com/

fwlink/?linkid=839521

windows 7 sp1 .net framework 4.5.2 x64: https://go.microsoft.com/

fwlink/?linkid=839523

windows 7 sp1 .net framework 4.5.2 x86: https://go.microsoft.com/

fwlink/?linkid=839522

Chapter 1 IntroduCtIon to InfrastruCture as Code and powershell dsC

https://go.microsoft.com/fwlink/?linkid=839516
https://go.microsoft.com/fwlink/?linkid=839516
https://go.microsoft.com/fwlink/?linkid=839513
https://go.microsoft.com/fwlink/?linkid=839513
https://go.microsoft.com/fwlink/?linkid=839523
https://go.microsoft.com/fwlink/?linkid=839523
https://go.microsoft.com/fwlink/?linkid=839516
https://go.microsoft.com/fwlink/?linkid=839516
https://go.microsoft.com/fwlink/?linkid=839521
https://go.microsoft.com/fwlink/?linkid=839521
https://go.microsoft.com/fwlink/?linkid=839523
https://go.microsoft.com/fwlink/?linkid=839523
https://go.microsoft.com/fwlink/?linkid=839522
https://go.microsoft.com/fwlink/?linkid=839522

18

nodes require a WinRM service in running state with listeners configured to accept

remote connections. WinRM supports both HTTP (port 5985) and HTTPS (port 5986)

listeners. On systems running Windows Server 2012 and above, WinRM service with

an HTTP listener is enabled by default. The HTTPS listener can be created and it is the

recommended way to perform remote management.

 Configuring a WinRM HTTPS Listener

Since we can use WinRM HTTPS listeners with DSC and it is the recommended method,

I will quickly look at configuring these listeners. A WinRM HTTPS listener requires

deploying certificates on the target node.

For the purpose of this demonstration, you will use self-signed certificates. The

HTTPS endpoint requires a Server Authentication certificate with its CN matching the

hostname of the target node.

$certificate = New-SelfSignedCertificate -DnsName $env:COMPUTERNAME

-CertStoreLocation cert:\LocalMachine\My

Once the certificate is created, you can create a listener and associate the certificate.

New-Item -Path WSMan:\Localhost\Listener -Transport HTTPS -Address *

-CertificateThumbprint $certificate.Thumbprint

New-NetFirewallRule -DisplayName "Windows Remote Management (HTTPS-In)"

-Name "WinRM HTTPS-In" -Profile Any -LocalPort 5986 -Protocol TCP

The connectivity to the HTTPS listener can be tested using the New-CimSession

cmdlet. Since you are using a self-signed certificate, you need to ensure that you skip CA

checks.

$cimSessionOption = New-CimSessionOption -SkipCACheck -UseSsl

$session = New-CimSession -SessionOption $cimSessionOption -ComputerName

S16-01

When you run the New-CimSession cmdlet you should not see any errors related

to the WinRM connection. This session object can then be used to query remote CIM

classes using the CIM cmdlets and as an argument to the -CimSession parameter with

Chapter 1 IntroduCtIon to InfrastruCture as Code and powershell dsC

19

the DSC cmdlets as well. And that is what enables you to work with DSC on remote target

nodes using the WinRM HTTPS listener.

Get-DscConfiguration -CimSession $cimSession

Ok, don’t worry about that command. I just mentioned it here to show you how to

use DSC cmdlets with WinRM endpoints. Chapter 2 provides an in-depth overview of

DSC and its components.

 Tools for the Job
As with any other technology, it is important that you choose right tools for the job. For

working with DSC, you will need PowerShell. Code editors such as Visual Studio Core

and script editors such as PowerShell ISE will be very useful in working with DSC. These

editors provide IntelliSense, which helps you discover DSC resources and the declarative

syntax. For most part of the book, I have used either of these tools.

 Summary
This chapter provided an introduction to configuration management and continuous

delivery in the context of IaC. You looked at some of the challenges involved in IT service

management with regard to configuration management and the role of configuration

management as a part of continuous delivery and integration. The need for enforcing

automation in IT service management is unquestionable and a necessity. DSC

provides the required feature set to enable the automation required for configuration

change management and continuous delivery. DSC is designed to be a configuration

management platform, and any existing configuration management tools in the

enterprise can use the interfaces provided by DSC. The prerequisites for enabling this

new feature are a part of the Windows operating system and are configurable using

well-known administration interfaces in the Windows OS. For example, you saw how to

configure WinRM HTTPS listeners. For IT administrators who are already familiar with

Windows PowerShell and with writing PowerShell scripts, the learning curve to adapt

PowerShell DSC will be small.

Chapter 1 IntroduCtIon to InfrastruCture as Code and powershell dsC

21
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_2

CHAPTER 2

Getting Started with DSC
Chapter 1 discussed the philosophy behind DevOps practices, explained the need for

Infrastructure as Code, and looked at different aspects of IaC including Configuration as

Code where PowerShell Desired State Configuration plays a role. It ended with a quick

introduction to PowerShell DSC and how to install WMF 5.1 on down-level operating

systems such as Windows Server 2012 R2. In this chapter, I take this knowledge further

down the rabbit hole and show what DSC has to offer—its features and component

architecture.

When learning any new technology, it is essential for the learner to understand the

different components involved in making that technology functional. PowerShell DSC

is no exception. This is how I learned and this book is a reflection of what I followed in

an attempt to learn DSC in-depth. So, you’ll start your journey into the DSC world by

first seeing a list of all the components that make up DSC and then exploring each one.

This chapter won’t dive into the components fully. You will get an overview of each

component and how they glue together to make configuration management possible

with PowerShell DSC. Once you have this foundation, the subsequent chapters dive

into all of these components and show how they are used in the real world. If you don’t

understand everything that is explained in this chapter, it is fine. You will get the big

picture once you read the subsequent chapters and you will be able to stitch things

together easily. On that note, let’s get started with DSC!

 Lab Requirements
To try out the examples and exercises in this chapter, you will need at a minimum a

Windows Server 2008 R2 or above system with WMF 5.1 installed. I recommend a system

with Windows Server 2016.

22

 PowerShell DSC: A 10,000-Foot View
A picture is worth a thousand words. So, before we delve into the component details,

take a look Figure 2-1. The rest of this chapter uses this component architecture as

the basis for this discussion. Figure 2-1 provides a high-level overview of the DSC

components and some of its features.

In Figure 2-1, the text at the bottom indicates that there are two distinct phases of

configuration management in DSC or rather in any configuration management platform

or tool.

 1. Configuration Authoring and Staging

 2. Configuration Enacting and Reporting

The Configuration Authoring and Staging phase is where we write configuration

documents that define what and how the resources on target systems must be configured

and how this configuration gets staged for enacting. Although Authoring and Staging

refer to two different aspects of configuration management, it is prudent to discuss them

together because the Configuration Authoring phase leads to Staging as a natural next

step. I discussed the declarative style of writing configuration documents and reviewed a

Figure 2-1. Configuration management phases of DSC and DSC components

Chapter 2 GettinG Started with dSC

23

related example in Chapter 1. You may understand the declarative scripts, but you have

not learned how the declarative syntax is made possible. You will do so in this chapter.

You will also look at different configuration staging choices available when using DSC.

The Configuration Enacting and Reporting phase is when the staged configuration

gets enacted on a target system. There are two different modes, push and pull, through

which we can deliver the configuration for enacting. While Configuration Staging

refers to a place where the configuration in managed object format (MOF) gets stored,

Enacting refers to receiving this configuration MOF on a target system and performing

the required configuration changes. In this chapter, I will briefly show the different

configuration delivery modes and explain how each of these methods can be used to

enact configuration. Finally, the Reporting part of this phase becomes very important

after the configuration enact is complete. You always want to track the target systems’

configuration for any drift and be notified about it. In a larger infrastructure, you may

need to get a holistic view of the configuration status on several nodes. I will go through

an overview of the tools and infrastructure that DSC provides to support configuration

reporting.

Figure 2-1 depicts how different DSC components are used across the two phases

of configuration management. As you move forward in your journey towards mastering

PowerShell DSC, an understanding of these components and how they fit in the overall

DSC configuration management will play a major role in building the foundation to

master PowerShell DSC.

 Configuration Authoring and Staging
Configuration document authoring is one of the first steps in configuration management.

DSC provides a set of PowerShell language extensions that make configuration authoring

an easier task by enabling the declarative syntax you looked at in Chapter 1.

Note the phrases configuration document and configuration script refer to
system(s) configuration definition. there are other definitions that exist as well.
For example, Puppet refers to a configuration document or script as a manifest
while Chef refers to the same as a recipe. whatever the name, they all refer to a
declarative configuration. in the context of powerShell dSC, i prefer to call these
scripts configuration documents.

Chapter 2 GettinG Started with dSC

24

 PowerShell DSC Language Extensions
In PowerShell DSC, a function called Configuration and dynamic keywords called

Node and Import-DscResource are used as the starting point for writing configuration

documents.

The following is another example to show the declarative syntax enabled by the

language extensions in DSC:

Configuration FileCopyConfiguration

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 Node S16-01

 {

 File FileCopyInstance1

 {

 DestinationPath = 'C:\Scripts\build.tag'

 Type = 'File'

 Contents = 'Version:1.0.0.0'

 Ensure = 'Present'

 }

 }

}

In this example, you can see that the Configuration function, Node and Import-

DscResource keywords are used. These language extensions are exported by the

PSDesiredStateConfiguration module. This module lives in ${env:SystemRoot}\

System32\WindowsPowerShell\v1.0\Modules. The functionality provided by

this module, in terms of keywords, functions, and cmdlets, is used not just in the

authoring but also in the staging, enact, and reporting parts of the DSC-based

configuration management.

You can see the Configuration function listed as one of the exported commands in

Figure 2-2.

Chapter 2 GettinG Started with dSC

25

Note the Microsoft.Windows.DSC.CoreConfProviders.dll
located at C:\Windows\Microsoft.Net\assembly\GAC_MSIL\
Microsoft.Windows.DSC.CoreConfProviders is the root module
for the PSDesiredStateConfiguraton powerShell module. this
binary module implements the Start-DscConfiguration and
Set-DscLocalConfigurationManager cmdlets. however, this
binary module does not export any of these cmdlets. therefore, the
PSDesiredStateConfiguration script module is used to export these cmdlets.

The Configuration command is like any other PowerShell function but with

a special role. FileCopyConfiguration is the name given to the configuration

example. What follows that name is a script block that defines a set of one or more

nodes and resources (inside the Node script block) that you need to configure. When

this configuration function is loaded into memory, you can access it like any other

PowerShell function. You can observe this in Figure 2-3.

Figure 2-2. Commands exported in the PSDesiredStateConfiguration module

Figure 2-3. FileCopyConfiguration command

Chapter 2 GettinG Started with dSC

26

In Figure 2-3, you can observe that the CommandType for FileCopyConfiguration is

shown as Configuration and therefore identifies it as a PowerShell DSC configuration.

The Get-Help cmdlet output for this configuration shows a few parameters that are

automatically added to every command of configuration type. You will learn more about

these parameters and why you need them in Chapter 4 when you start writing DSC

configurations.

Going back to the discussion of language extensions, in the list of exported

commands from the PSDesiredStateConfiguration module, you do not see the Node

and Import-DscResource keywords. This is because they are the dynamic keywords and

not commands. For example, trying the Get-Command cmdlet for them would not result in

anything. This is shown in Figure 2-4.

So, how do you confirm that the PSDesiredStateConfiguration module is where

these dynamic keywords coming from? You can verify using the following function:

Function Get-CimKeyword

{

 [CmdletBinding()]

 param (

 [Parameter(Mandatory, ValueFromPipeline)]

 [ValidateNotNullOrEmpty()]

 [string] $ImplementingModule

)

Figure 2-4. Node and Import-DscResource are not commands

Chapter 2 GettinG Started with dSC

27

 Begin

 {

 [Microsoft.PowerShell.DesiredStateConfiguration.Internal.

DscClassCache]::ClearCache()

 $functionsToDefine = New-Object -TypeName 'System.Collections.

Generic.Dictionary[string,ScriptBlock]'([System.StringComparer]::Or

dinalIgnoreCase)

 $builtInModules = @('PSDesiredStateConfiguration','PSDesiredState

ConfigurationEngine')

 }

 Process

 {

 #Load the default CIM Keywords

 [Microsoft.PowerShell.DesiredStateConfiguration.Internal.DscClass

Cache]::LoadDefaultCimKeywords($functionsToDefine)

 if ($builtInModules -notcontains $ImplementingModule)

 {

 #We need to import either CIM or Script or Class keywords

 #Check if the module exists

 $modInfo = Get-Module -Name $ImplementingModule -ListAvailable

 $dscResourceFolder = "$($modInfo.ModuleBase)\DscResources"

 foreach ($resource in (Get-ChildItem -Path $dscResourceFolder

-Directory -Name))

 {

 $schemaFilePath = $null

 $keywordErrors = New-Object -TypeName ‘System.Collections.

ObjectModel.Collection[System.Exception]’

 $foundCimSchema = [Microsoft.PowerShell.

DesiredStateConfiguration.Internal.DscClassCache]::Im

portCimKeywordsFromModule($modInfo, $resource, [ref]

$SchemaFilePath, $functionsToDefine, $keywordErrors)

Chapter 2 GettinG Started with dSC

28

 $foundScriptSchema = [Microsoft.PowerShell.

DesiredStateConfiguration.Internal.DscClassCache]::Imp

ortScriptKeywordsFromModule($modInfo, $resource, [ref]

$SchemaFilePath, $functionsToDefine)

 }

 }

 $keywords = [System.Management.Automation.Language.

DynamicKeyword]::GetKeyword()

 $keywords.Where({$_.ImplementingModule -eq $ImplementingModule}) |

Select-Object Keyword, ResourceName

 }

}

The Get-CimKeyword function, in the above example, loads all the default CIM

keywords from the DscClassCache. The GetKeyword() method of the DynamicKeyword

class is then used to get a list of all keywords that are loaded into the DscClassCache.

Finally, for the list of keywords, you filter only the keywords that are implemented in the

PSDesiredStateConfiguration module.

The output in Figure 2-5 shows all the keywords exported by the

PSDesiredStateConfiguration module. In the bottom-most rows, you can see Node and

Import-DscResource. Don’t worry about other keywords and the associated resource

name values in that list; you will explore the rest of the keywords in the coming sections

of this chapter or other chapters of this book.

Chapter 2 GettinG Started with dSC

www.allitebooks.com

http://www.allitebooks.org

29

Tip reading and understanding the contents of
PSDesiredStateConfiguration.psm1 is a great deal of learning.

The Import-DscResouce keyword is used to import the DSC resource modules

that are needed to enact the configuration of the resources in the DSC configuration

document. This dynamic keyword can only be used inside the Configuration script

block. At the time of configuration authoring, including this keyword in the configuration

Figure 2-5. CIM keywords exported by the PSDesiredStateConfiguration module

Chapter 2 GettinG Started with dSC

30

document helps editors such as PowerShell ISE, and Visual Studio code enables

IntelliSense and tab completion for resource names and resource properties.

The Node keyword identifies of the node(s) where the configuration needs to be

enacted. As you see in the above sample configuration, you can either put a single node

name or a list of comma-separate node names. Following the node name(s) is a script

block that contains the resource configuration definitions. As you will see in Chapter 4,

adding the Node keyword in a configuration document is not mandatory.

What goes inside the Node script block or the configuration script block directly (in

the absence of the Node keyword) is a set of resource instance definitions. In the example

above, you are using the File resource which comes in-box with PowerShell DSC. While

the DSC configuration documents offer a declarative method to define the resource

configurations, the resource modules are the imperative scripts that work behind the

scenes to enact the resource instance configuration or make it so. Without the imperative

resource scripts, the DSC configuration documentations are just non-functional

PowerShell scripts.

 PowerShell DSC Resource Modules

PowerShell DSC, by default, comes with a set of in-box resources. Figure 2-6 shows the

list of in-box DSC resources on a system with WMF 5.1.

Figure 2-6. In-box DSC resources in WMF 5.1

Chapter 2 GettinG Started with dSC

31

Note a system with only wMF 4.0 will only have a subset of the in-box resource
modules listed here.

Do you find anything common between output in Figure 2-6 and Figure 2-5? Do

you see some keywords from the PSDesiredStateConfiguration module appearing in

Figure 2-6 as well? Yes, that is because a DSC resource in a resource module is exported

as CIM keyword as well. The PSDesiredStateConfiguration module is what houses all

in-box DSC resources and therefore you see those resource names appearing as CIM

keywords as well in the context of PSDesiredStateConfiguration module.

As you can see in Figure 2-6, the first column in the output shows the type of DSC

resources. Table 2-1 provides a brief overview of these different types.

And, of course, as you have guessed, the in-box DSC resources are no way sufficient

for all the configuration needs in a data center. This is where you can either look for

custom DSC resource modules that are community developed or develop your own

custom DSC resource modules implemented as one of the above modules types listed in

Table 2-1.

The PowerShell product team at Microsoft has a GitHub repository (https://github.

com/powershell/dscresources) that has the official DSC resource kit modules. You

can download these official resource kit modules and other community-submitted DSC

resource modules from the official PowerShell Gallery (www.powershellgallery.com).

Table 2-1. Resource Types in DSC

DSC Resource Type Description

powerShell resources written as powerShell script modules using MOF-based

schema or written as class modules

Binary resources written in C# or written as Management infrastructure (Mi)

modules

Composite resources that combine predefined dSC configurations into a new dSC

resource

Chapter 2 GettinG Started with dSC

https://github.com/powershell/dscresources
https://github.com/powershell/dscresources
http://www.powershellgallery.com/

32

Note You can use the cmdlets from the PowerShellGet module to find
and install dSC resource modules from the gallery. You will learn about using
PowerShellGet cmdlets in Chapter 4.

You will learn about the composite resource modules and custom DSC resource

module implementations and how to author your own custom DSC resource modules

and publish them to the PowerShell gallery in Chapter 6.

So far you have seen how the PSDesiredStateConfiguration module helps in DSC

configuration document authoring and the need for resource modules. In PowerShell

DSC, the configuration document is just a way to author resource configuration

definitions in a declarative manner. These configuration documents have to be compiled

into an intermediate format (Managed Object Format, MOF) to be able to enact them on

the target system. This is necessary because the current implementation of DSC heavily

relies on the Common Information Model (CIM) for defining resource configurations in

a platform-independent manner.

So, how do you compile a configuration document to a MOF file? Simple; you

execute the configuration function in memory. Let’s see a quick example:

FileCopyConfiguration -OutputPath C:\configurations\ -Verbose

This is it, really! If you take a look at Figure 2-3, the FileCopyConfiguration function

was loaded into memory. You can also see that there are several parameters added to

that configuration. You are using only the -OutputPath in the above example to ensure

that the generated MOF file gets stored at the path specified. This is shown in Figure 2-7.

Figure 2-7. Compiling DSC configuration to MOF

Chapter 2 GettinG Started with dSC

33

The MOF format is a standard representation. Here is the MOF file for your

configuration:

/*

@TargetNode='S16-01'

@GeneratedBy=Administrator

@GenerationDate=07/04/2017 09:42:23

@GenerationHost=S16-JB-01

*/

instance of MSFT_FileDirectoryConfiguration as

$MSFT_FileDirectoryConfiguration1ref

{

 ResourceID = "[File]FileCopyInstance1";

 Type = "File";

 Ensure = "Present";

 Contents = "Version:1.0.0.0";

 DestinationPath = "C:\\Scripts\\build.tag";

 ModuleName = "PSDesiredStateConfiguration";

 SourceInfo = "::7::9::File";

 ModuleVersion = "1.0";

 ConfigurationName = "FileCopyConfiguration";

};

instance of OMI_ConfigurationDocument

{

 Version="2.0.0";

 MinimumCompatibleVersion = "1.0.0";

 CompatibleVersionAdditionalProperties= {"Omi_BaseResource:Configuration

Name"};

 Author="Administrator";

 GenerationDate="07/04/2017 09:42:23";

 GenerationHost="S16-JB-01";

 Name="FileCopyConfiguration";

};

Chapter 2 GettinG Started with dSC

34

In this MOF that you just compiled, you can see the resource configuration

parameters you put in the configuration document along with a lot of other metadata.

Generating a MOF from the configuration document completes the authoring process

of the DSC configuration.

Before you enact a configuration, the associated MOF can be stored either locally

or on a pull server, either an SMB share or DSC pull service configuration repository.

This is called configuration staging. When you stage the compiled configuration

locally, you push the configuration to a target node. And, when the configuration is

staged on a DSC pull server, the target node pulls the configuration and enacts it.

Therefore, a DSC configuration can be staged either for a push or a pull configuration

delivery method. I discuss these methods in-depth in Chapter 8.

 Configuration Enacting and Reporting
Once the configuration is staged, the enact phase is when the target node gets into a

desired state declared in the configuration document. PowerShell DSC, to be specific the

PSDesiredStateConfiguration module, provides several cmdlets that are helpful in the

configuration staging, enacting, and reporting phases. You saw this list in Figure 2-2 and

but Figure 2-8 shows a more refined list.

Figure 2-8. Commands that help in configuration staging, enacting, and reporting

Figure 2-8 provides a subset of cmdlets or functions exported by the

PSDesiredStateConfiguration module. Table 2-2 provides a brief overview of these

cmdlets.

Chapter 2 GettinG Started with dSC

35

You will take a look at each of these commands in-depth in later chapters but for

now, take a look at the Start-DscConfiguration command to enact the configuration

you generated in an earlier example:

Start-DscConfiguration -Path C:\configurations -Wait -Verbose

Table 2-2. An Overview of Cmdlets Used in Staging, Enacting, and Reporting

Cmdlet or Function Name Description Phase of Configuration
Management

Get-DscConfiguration retrieves the current state of

the resource configuration

Configuration reporting

Get- DscConfigurationStatus retrieves the status of

completed configuration runs

Configuration reporting

Test-DscConfiguration tests if a target node's

configuration is in the desired

state or not

Configuration reporting

Publish- DscConfiguration publishes a MOF file to a target

node as pending configuration

Configuration Staging

Start-DscConfiguration publishes a MOF file to a target

node as pending configuration

and also enacts it

Configuration Staging and

enacting

Update-DscConfiguration publish and enact configuration

in one go or enact a staged

configuration by using

-UseExisting

Configuration Staging and

enacting

Stop-DscConfiguration Stops a running configuration Configuration enacting

Restore- DscConfiguration restores target node to a

previous configuration

Configuration enacting

Remove-

DscConfigurationDocument

removes a specified

configuration from the target

node's configuration store

Configuration Staging and

enacting

Chapter 2 GettinG Started with dSC

36

In an earlier example, when you compiled the configuration, you provided

C:\Configurations as the argument to -OutputPath, which copied the generated MOF

to that folder. In this example of a configuration enact, you are using the same path as

an argument to -Path parameter of the Start-DscConfiguration cmdlet. I will go into

the details of what exactly the Start-DscConfiguration cmdlet does later, but for now

just understand that it takes the configuration MOF from the local system and pushes it

to the target node as pending configuration and immediately enacts that configuration.

This is shown in Figure 2-9.

So, how does this cmdlet know which is the target node?

Go back and take a look at the MOF that was generated in an earlier example. It does

not contain the target node name.

For identifying the target node name, the Start-DscConfiguration cmdlet looks

at the name of the MOF file and then derives the target node name. For example, when

you compiled your configuration earlier, the name of the MOF was S16-01.mof with

S16-01 being the name of the node. So, when you enacted this configuration, the Start-

DscConfiguration cmdlet looked at the filename and identified S16-01 as the target

node. If the target folder specified as an argument to -Path contains more than one MOF

file, this cmdlet looks at each file and tries to enact configuration on each target node

that is identified from the filenames. You will take a look at the overall enact process in

Chapter 4 when I discuss writing configurations in-depth.

Once the enacting is complete, you can verify the current state of the configuration

using the Get-DscConfiguration cmdlet. For your node configuration, the current state

of the File resource is shown in Figure 2-10.

Figure 2-9. The configuration enacting process using the Start-DscConfiguration
cmdlet

Chapter 2 GettinG Started with dSC

37

Tip Make it a habit, at least initially, to use the -Verbose switch parameter
with all of these dSC-related commands. the verbose output helps a great deal in
understanding what is happening behind the scenes.

The Get-DscConfiguration command provides one way of reporting a DSC

configuration. However, remember that this is only the current state of the resource,

which may not be the desired state. To verify if a resource is in the desired state or not,

use the Test-DscConfiguration cmdlet. The output from this is shown in Figure 2-11.

Figure 2-10. Current state of the file resource

Figure 2-11. Output from the Test-DscConfiguration cmdlet

Chapter 2 GettinG Started with dSC

38

Within the reporting phase of the DSC-based configuration management, you

can use the Get-DscConfiguration, Get-DscConfigurationStatus, and Test-

DscConfiguration cmdlets. There are other centralized reporting methods provided

through the DSC pull service endpoints. You will learn more about DSC configuration

reporting in Chapter 9.

So, are the Start-DscConfiguration and other reporting cmdlets just discussed

responsible for configuration enacting and reporting? The answer is yes and no. Yes,

because these cmdlets are what you are using to enact and report configuration, like

the front end of the web application. Without the application logic and the back-end

databases, the beautiful UX that the front end provides is just like a wire-frame with no

real use.

Similar to this web application analogy, the real meat of configuration enacting and

reporting is not in these cmdlets but rather provided by the DSC Local Configuration

Manager (LCM).

 Local Configuration Manager
The LCM is at the heart of PowerShell DSC architecture. It is responsible for

enacting a pending configuration, and monitoring and managing any drift

that happens over a period of time. In summary, the LCM is what takes care of

configuration life cycle on a target node. This is implemented as a CIM class

named MSFT_DSCLocalConfigurationManager in the root/Microsoft/Windows/

DesiredStateConfiguration. This class implements the methods that are necessary for

configuration life cycle management.

Get-CimClass -Namespace root/Microsoft/Windows/DesiredStateConfiguration

-ClassName MSFT_DSCLocalConfigurationManager | Select -ExpandProperty

CimClassMethods

Chapter 2 GettinG Started with dSC

39

If you run the above command, you will see a list of all methods implemented by the

MSFT_DSCLocalConfigurationManager CIM class. This is shown in Figure 2-12.

So, how is this all related to what you have learned so far? Go back and take a look at

the enact process output in Figure 2-9 and read the first line in the output.

The verbose output clearly tells you that the SendConfigurationApply CIM method

from the MSFT_DSCLocalConfigurationManager class is being invoked.

What this implies is that the Start-DscConfiguration cmdlet is just an easy-to-use

wrapper around the SendConfigurationApply CIM method. So, for every cmdlet or

function shown in Table 2-2, there is method in the CIM class that implements LCM.

Note You will see a mapping of methods in the MSFT_
DscLocalConfigurationManager CiM class to commands in the
PSDesiredStateConfiguration module in Chapter 3.

The LCM itself is a configurable resource in the context of DSC and it can be

configured using the declarative syntax that DSC provides.

The PSDesiredStateConfiguration module provides cmdlets that are used to get

and set DSC location configuration manager settings.

Get-Command -Module PSDesiredStateConfiguration -Noun

DscLocalConfiguration

Figure 2-12. CIM methods in the MSFT_DscLocalConfigurationManager class

Chapter 2 GettinG Started with dSC

40

Figure 2-13 shows the commands exported by the PSDesiredStateConfiguration

module to manage the LCM configuration. There are several configurable settings in

LCM. The Get-DscLocalConfigurationManager provides the current state of these settings.

Figure 2-13. Commands that help in LCM configuration

Figure 2-14. DSC LCM configuration settings

Chapter 2 GettinG Started with dSC

41

Figure 2-14 lists all the settings in their default state. Now these settings can be

modified by generating what is called a meta configuration document or a meta MOF

once it is compiled. The following code snippet provides a simple example of a LCM

configuration:

[DscLocalConfigurationManager()]

Configuration metaConfiguration

{

 Node S16-01

 {

 Settings

 {

 ConfigurationModeFrequencyMins = 30

 ConfigurationMode = 'ApplyAndAutoCorrect'

 }

 }

}

What is defined in the above example is a meta configuration. This is similar to

the FileCopyConfiguration you saw early in this chapter except for the fact that this

example configures the LCM itself. There are similarities in the declarative syntax as

well. There are minor differences too. Don’t worry about that for now. You will take an

in-depth look at all this in Chapter 3.

Note the [DscLocalConfigurationManager()] attribute is available only
in wMF 5.0 and above. Chapter 3 discusses the differences in meta configurations
between wMF 4.0 and wMF 5.0 and above.

For the sake of clarity, i will refer to configurations such as FileCopyConfiguration
as node configurations and configurations that change the LCM settings as meta
configurations.

Chapter 2 GettinG Started with dSC

42

In Figure 2-15, you can see that metaConfiguration is also a command of type

Configuration and it has similar properties as a node configuration. So, you compile it

the same way:

metaConfiguration -OutputPath C:\configurations -Verbose

Do you see anything different from what was generated when we compiled the node

configuration (shown in Figure 2-7) and what is generated now with metaConfiguration

in Figure 2-16?

There is a difference in the filename. The MOF generated from metaConfiguration

has the word meta as a part of its filename. This tells you that the contents of this MOF

represent LCM meta configuration. So, can you use Start-DscConfiguration to enact

this meta configuration?

No! You need to use the Set-DscLocalConfigurationManager cmdlet.

Set-DscLocalConfigurationManager -Path C:\configurations -Verbose

Figure 2-15. The metaConfiguration command

Figure 2-16. Compiling a meta configuration to meta MOF

Chapter 2 GettinG Started with dSC

43

The syntax used to enact a meta configuration is similar to that of a node

configuration. In this example, you point the Set-DscLocalConfigurationManager

cmdlet to the same folder as the node configurations. This cmdlet identifies the target

node and the configuration to apply by looking at all file names in that folder.

This is shown in Figure 2-17. To show that the Set-DscLocalConfigurationManager

picks only the meta MOF, I have listed the contents of the folder as well.

You can see in Figure 2-17 that the Set-DscLocalConfigurationManager cmdlet

internally invokes a CIM method called SendMetaConfigurationApply. Now, execute the

Get-DscLocalConfigurationManager cmdlet again and see if the settings are applied.

Figure 2-17. Enacting LCM configuration

Chapter 2 GettinG Started with dSC

44

Compare the output shown in Figure 2-18 to Figure 2-14. You can see that the

ConfigurationMode and ConfigurationModeFrequencyMins have been updated.

I will discuss other LCM settings and what they really mean in Chapter 3. But,

looking at the available LCM settings leads us into a discussion on PowerShell DSC

features.

Figure 2-18. Updated LCM configuration

Chapter 2 GettinG Started with dSC

45

 PowerShell DSC Features
What you have seen so far is about the configuration management phases. You looked at

how to author configuration documents and compile them for staging. You also looked

at enacting (push delivery) and reporting of DSC configuration on target nodes. LCM

plays the central role in most of this except the authoring phase.

The LCM settings offer a peek into other features that PowerShell DSC implements.

In this section, let’s take a brief look at these features.

 DSC Pull Server
I discussed earlier in this chapter that target nodes using DSC can pull configurations and

DSC resource modules from a central DSC pull server. The pull mode of configuration

delivery resolves the scalability issues and limitations of the push mode while providing a

central store for both configurations and DSC resource modules. To implement this, pull

mode can be built using a file server (Server Message Block [SMB]) share or an OData

web service. A target system can be configured to use the pull mode of configuration

delivery, which means the system will periodically poll a central repository or service to

get the configuration changes and DSC resource modules required for the change.

In this section, I will show the two pull mode configurations available and explain

the pros and cons of these methods. For pull mode, whether over an SMB or OData

endpoint, you need this special configuration on the target systems. These settings are

defined as the meta-configuration of the LCM.

 Pull Mode Over SMB

The pull mode over SMB is the simplest method to implement. All you need to do is create

an SMB file share and copy all configurations you generate and the resources required for

the configurations. The advantage of this method, of course, is the simplicity in setting it

up. The only configuration you need is to assign proper permissions to the SMB file share.

You will see this in detail when I discuss configuration delivery methods in Chapter 8.

 Pull Mode Over OData or HTTP

This method requires special configuration of an OData endpoint. On Windows Server

2008 R2, 2012 systems with WMF 4.0 or later, or on systems with Windows Server 2012

R2, this OData endpoint can be configured by installing the Windows PowerShell

Chapter 2 GettinG Started with dSC

46

Desired State Configuration Service (DSC-Service) feature. The target systems can then

be configured to pull the configuration and the DSC resource modules from this OData

endpoint.

When using the pull mode, either over SMB or REST, you must create a checksum

for the configuration MOF files being pulled to the target systems for configuration

change. Once again, the PSDesiredStateConfiguration PowerShell module provides

the necessary functionality for this. The configuration checksum can be created using

the New-DscChecksum function. This function is used only in staging the configuration for

delivery in pull mode. It is possible to create a file checksum without using the

 New- DscChecksum function. This function uses the SHA-256 hashing algorithm and the

New- FileHash cmdlet to generate the checksum for each configuration MOF.

You will take a look at configuring DSC LCM as a pull client in Chapter 8 but to give

you an overview of what is involved, the following section describes the LCM settings

that are used in a pull client configuration.

The ConfigurationDownloadManagers in LCM settings can be used to configure the

LCM to download configurations from a central pull server. If you plan on using the SMB

share-based pull server for configurations, the ConfigurationRepositoryShare needs to

be configured. The ConfigurationRepositoryWeb is what needs to be configured if you

have a REST-based pull service to distribute configurations.

Similar to the ConfigurationRepositoryWeb and ConfigurationRepositoryShare,

custom resource modules can also be retrieved from a central pull server by configuring

the ResourceRepositoryWeb and ResourceRepositoryShare settings in LCM.

As Figure 2-1 depicts, “file download manager” and “web download manager”

are used for both configuration and resource module downloads from a pull server

implemented as SMB share and REST-based pull service respectively.

The recommended configuration for a pull server is the REST-based DSC pull service

endpoint. When you implement the REST-based DSC pull service, the target nodes

register with the central DSC pull service endpoint and the state of the configuration on

target nodes can be retrieved by querying the report server endpoint.

The ReportManagers configuration (shown in Figure 2-14) in LCM settings is used

to configure where the LCM sends configuration status reports to. The report manager

endpoint deployed using DSC pull service is an oData endpoint. Querying this with the

node details provides access to the configuration status on the target nodes. I will explain

more about this topic in Chapter 9.

Chapter 2 GettinG Started with dSC

47

 Partial Configurations
In a typical enterprise IT scenario, there is usually more than one IT administrator

deploying and managing the same IT infrastructure. For example, in case of a server

hosting Microsoft SQL Server databases, there will be an administrator for taking care of

the OS deployment and configuration and there will be another one for managing the

SQL database deployment on this server.

In such a scenario where multiple people are responsible for configuration of the

infrastructure, it makes sense to have configuration documents authored by these

individuals as separate fragments. This enables delegation of configuration management

tasks. Each administrator responsible for his/her configuration can author and manage

it independently of what the other administrator is authoring by eliminating any human

errors involved in updating a single configuration document.

This is why the partial configurations feature was added in WMF 5.0. Figure 2-19

depicts an overview of this feature.

Figure 2-19. Partial configurations overview

Chapter 2 GettinG Started with dSC

48

As you can see in Figure 2-19, two different fragments of the DSC configuration get

staged (local system or on a pull server). The LCM then copies these fragments into the

partial configuration store and converges these fragments into a pending configuration

for enact. The advantage with partial configurations is that these fragments can be

updated independently as long as they do not have any conflicts in the resources each

fragment is trying to configure.

You will learn more about partial configurations and examine the pros and cons of

using partial configurations along with several examples in Chapter 10.

 Cross-Machine Synchronization
When you build an application infrastructure, it is apparent that this infrastructure

requires multiple instances of the services for high availability and load balancing.

Also, the application server instances in the infrastructure will have dependencies on

other elements in the infrastructure such as database servers and other application

servers. When configuring such an infrastructure, you will need to ensure that these

dependencies between instances in the same tier or across tiers are taken care of. In a

scenario where an orchestrator is used for infrastructure deployment, the dependencies

are handled by the orchestrator’s task flow. However, when the application infrastructure

is deployed using a configuration management tool, the capability to define inter-node

or cross-machine dependencies for configuration is a must.

With PowerShell 5.0, Microsoft added the capability to define inter-node

dependencies in the form of in-box DSC resources. These are referred to as the WaitForX

resources in general and listed in Figure 2-6.

• WaitForAll is used when a node’s configuration must wait for all

other nodes’ configurations of a specific resource or resources to

complete.

• WaitForAny is used when a node’s configuration can start if

any one of the nodes completes a specific resource or resources

configuration.

• WaitForSome is used when a node’s configuration needs to wait

for at least x number of nodes to complete their configuration of a

specific resource.

Chapter 2 GettinG Started with dSC

49

This new feature can be effectively used to validate if a dependent configuration

on remote system exists before configuring the local system for any resource.

Chapter 11 provides an in-depth explanation of how these WaitForX resources work

with an example of deploying a multi-tier and multi-machine application using

PowerShell DSC.

 Configuration Encryption at Rest
Figure 2-1 shows a configuration store that contains the current, pending, and previous

MOF files. The current.mof is the current configuration on the system, previous.mof

is the earlier configuration that can be rolled back to, and pending.mof is the pending

configuration that needs to be enacted. I will discuss this in-depth in Chapter 13 but

for now understand that these MOF used to be plain-text files in PowerShell 4.0 or the

initial release of PowerShell DSC. The DSC configuration MOF files contain sensitive

information such as passwords and access keys depending on what resource you are

configuring. Passwords are encrypted using certificates. But, if an administrator forces

plain-text credentials in a configuration document, these passwords will be seen in

plain text even after the configuration enact is complete. And, in general, you can

consider the entire MOF itself to be a document containing sensitive information,

essentially a blueprint of your node configuration. Therefore, any user who has access

to the C:\Windows\System32\Configuration folder can open the MOF files at rest and

see the sensitive information in these MOF documents.

To address this, encryption of the configuration MOF files was added in PowerShell 5.0.

Using this method, even when the administrator forces plain-text credentials in

a configuration document, the configuration MOFs at rest (current, pending, and

previous) are always encrypted. The DSC LCM uses Windows Data Protection API

(DPAPI) to encrypt the MOFs files.

Since you have a system that you just pushed configuration to, try opening the

Current.mof file stored in the C:\Windows\System32\Configuration folder. What do

you see? Can you read and comprehend the contents of Current.mof?

Note the meta configuration MOF is not encrypted at rest. this behavior may
change in future.

Chapter 2 GettinG Started with dSC

50

 Configuration and Module Signature Validation
In an earlier section of this chapter, I mentioned downloading and installing

community-developed DSC resource modules. While no one wants to reinvent a wheel,

downloading from the Internet and using the DSC resource modules in your data center

has certain risks associated with it. An attacker with a malicious intent can embed

code into the resource modules that can potentially damage your IT infrastructure

and cause business loss. The same applies to the configurations that are staged as

well. For example, if you have staged all configurations on a pull server and it becomes

compromised, an attacker can modify the configuration MOF files with malicious code.

To address this potential security risk in DSC configuration management, Microsoft

added a signature validation feature in the LCM for both configurations and modules.

When configured, the LCM always looks for the digital signature from trusted authority

in both the configuration MOF and resource modules that are used for enact process.

You will look at using signed configurations and modules in Chapter 13.

 The PowerShell DSC Platform
So far in this book, I have referred to PowerShell DSC as a configuration management

platform and not a tool or a complete solution. This means DSC provides an API that can

be used in programming languages other than just PowerShell. Using this API, you can

build similar language extensions that PowerShell provides today. This aspect is depicted

in Figure 2-1 through the representation of third-party tools. Let’s explore this further.

Think about the role of a declarative configuration script written in PowerShell after

the MOF is compiled. Do you need it when there are no further changes needed to the

configuration? The answer is no.

In the configuration authoring stage, if you have the capability to generate a MOF

directly without using an intermediate declarative script, do you still need PowerShell?

The answer is no again! Yes, generating a MOF is tricky and complex. You need to

understand the resource schema and ensure that there are no errors in the configuration

definition. This is where the language extensions helps. Any third party can create those

language extensions and in any programming language.

For example, take a look at the Vamp project (https://github.com/bundyfx/vamp) by

Flynn Bundy. Although this is a PowerShell module, the project aims to use Yet Another

Markup Language (YAML) for the declarative definition of resource configurations instead

of PowerShell scripts.

Chapter 2 GettinG Started with dSC

https://github.com/bundyfx/vamp

51

So, that clears the air about configuration authoring and generating a MOF. But,

what about configuration enacting and reporting? Well, as I discussed in the “Local

Configuration Manager” section of this chapter, most or all of the commands used

in the enacting and reporting phase of DSC configuration management are just

wrappers around the CIM methods implemented in the root/Microsoft/Windows/

DesiredStateConfiguration WMI namespace. So, if the programming or scripting

language that you plan to use has the ability to invoke CIM methods, you have an

alternative to using PowerShell.

The DSC Pull Server has an open specification that can be used to develop your

own pull service and probably with better features than what Microsoft ships with the

Windows Server operating system. Even if you don’t, Microsoft’s implementation of

Pull Server specification provides a report server endpoint that is oData-compliant.

Accessing an oData endpoint is relatively straightforward; using most of the modern

scripting and programming languages, you can create your own visual dashboards for

reporting configuration status of your infrastructure.

In Chapter 16, you will look at the third-party integration opportunities and explore

how the CIM methods provided by DSC configuration management platform can be

accessed directly in PowerShell.

 Summary
This chapter was a whirlwind tour of PowerShell DSC and its components.

Understanding the architecture and components involved in making a technology

work is the most important thing to master in any technology. This chapter provided

an overview of different phases of PowerShell DSC-based configuration management.

You looked at the components that are used across these different phases. You also

learned about the features that DSC supports in WMF 5.0 and above. As mentioned,

this chapter is just an overview of what is coming later in this book. You tackled most

of the basics here and you will build on this foundation as you move forward. The next

chapter discusses the DSC Local Configuration Manager. You will learn about LCM CIM

interfaces, differences in LCM implementation in the first generation of DSC, how LCM

is configured using the declarative syntax that DSC implements, and how LCM handles

configuration life cycle.

Chapter 2 GettinG Started with dSC

53
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_3

CHAPTER 3

The Local Configuration
Manager
The Local Configuration Manager (LCM) is the heart of configuration management

in PowerShell DSC. The LCM is like an OS agent that receives the configuration

document in the form of a MOF, enacts it, monitors that configuration for any drift,

and finally, corrects the drift when configured to do so. As you go forward in this book,

a good understanding of the LCM is a must to be able to troubleshoot issues that you

may observe during a DSC enact or in overall configuration management. Being this

important, the LCM certainly deserves a chapter of its own!

In this chapter, you will dive into LCM fundamentals, look at how the LCM is

implemented, what the different LCM settings mean, how the LCM manages the

configuration life cycle, and how the LCM does configuration drift monitoring and

correction. Chapter 2 provided an overview using the DSC declarative syntax for meta

configurations. Therefore, I will not focus on the “how” part of LCM configuration. This

chapter will become a reference when you move towards advanced concepts on your

journey towards mastering PowerShell DSC.

 Lab Requirements
To try the examples and exercises in this chapter, you will need at minimum a Windows

Server 2008 R2 or above system with WMF 5.1 installed. I recommend a system with

Windows Server 2016.

54

 LCM CIM Classes
As discussed briefly in Chapter 2, the Local Configuration Manager is implemented

as a set of CIM classes in the root/Microsoft/Windows/DesiredStateConfiguration

namespace. Let’s take a look at it again to understand it better:

Get-CimInstance -Namespace root/Microsoft/Windows -ClassName __NAMESPACE |

Format-Wide

This command will list all CIM providers under the root/Microsoft/Windows

namespace. This is shown in Figure 3-1.

Note For the sake of simplicity and to reduce the number of words, I will use
DSC CIM namespace wherever I have to refer to the complete path identified by
root/Microsoft/Windows/DesiredStateConfiguration.

CIM cmdlets require administrative privileges. Ensure that you try out this and
subsequent examples in an elevated session.

Figure 3-1. DSC namespaces in CIM

As can be seen in Figure 3-1, there are two namespaces that are related to PowerShell

DSC: DesiredStateConfigurationProxy and DesiredStateConfiguration. Let’s first

take a peek at the DSC CIM namespace.

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

55

Figure 3-2 shows a list of CIM classes in this namespace.

While there are many classes in the output shown in Figure 3-2, you are

mostly interested, in the context of a basic LCM configuration, in the MSFT_

DSCLocalConfigurationManager and MSFT_DSCMetaConfiguration classes.

The MSFT_DSCMetaConfiguration class implements the LCM properties you saw

in Chapter 2 while the MSFT_DSCLocalConfigurationManager CIM class implements

methods that support managing node and meta configurations. This can be seen in

Figure 3-3.

Figure 3-2. CIM classes in DSC CIM namespace

Figure 3-3. DSC meta and local configuration manager CIM class details

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

56

As seen in Figure 3-3, the MSFT_DSCMetaConfiguration class implements

the properties that can be used to configure LCM behavior and the MSFT_

DSCLocalConfigurationManager class implements the methods that perform node and

meta configuration management.

 LCM Properties
Let’s look at a summary of all LCM properties before I discuss the CIM methods to get

and set the LCM configuration. As you learned in the above section, these properties are

implemented as an MSFT_DSCMetaConfiguration CIM class. Each of the configurable

properties has a certain CIM data type and possible values. The following script will help

you investigate these properties in a better way than simply listing them out. It will also

serve as a documented reference when you want to quickly check the possible values for

a given CIM property in this class.

[CmdletBinding()]

param (

 [Parameter(Mandatory)]

 [String] $ClassName,

 [Parameter(Mandatory)]

 [String] $Namespace,

 [Parameter()]

 [String] $PropertyName

)

function extractProperty($cimProperty, $Namespace)

{

 $cimProperty | Select Name, CimType, `

 @{

 l='EmbeddedInstanceOf';e={

 if ($_.Qualifiers.Name -contains 'EmbeddedInstance')

 {

 $embeddedClassName = $_.Qualifiers.Where({$_.Name -eq

'EmbeddedInstance'}).Value

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

57

 $embeddedClass = Get-CimClass -ClassName $embeddedClass

Name -Namespace $Namespace

 if ($embeddedClass.CimClassQualifiers['Abstract'].Value)

 {

 $derivedClasses = (Get-CimClass -Namespace $Namespace).

Where({ $_.CimSuperClassName -eq $embeddedClassName}).

CimClassName

 $derivedClasses

 }

 else

 {

 $embeddedClassName

 }

 }

 }

 },

 @{

 l='IsReadyOnly';e={

 $_.Qualifiers.Name -contains 'read'

 }

 },

 @{

 l='AllowedValues';e={

 if ($_.Qualifiers.Name -contains 'ValueMap') {

 $_.Qualifiers.Where({$_.Name -eq 'ValueMap'}).Value

 }

 }

 },

 @{

 l='IsKey';e={

 $_.Qualifiers.Name -contains 'Key'

 }

 }

}

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

58

try

{

 $cimClass = Get-CimClass -ClassName $ClassName -Namespace

$Namespace -ErrorAction Stop

 if ($PropertyName)

 {

 $cimProperty = $cimClass.CimClassProperties.Where({ $_.Name -eq

$PropertyName })

 if ($cimProperty)

 {

 extractProperty -cimProperty $cimProperty -Namespace

$Namespace

 }

 else

 {

 throw "${PropertyName} does not exist in the CIM Class"

 }

 }

 else

 {

 foreach ($property in $cimClass.CimClassProperties)

 {

 extractProperty -cimProperty $property -Namespace $Namespace

 }

 }

}

catch

{

 Write-Error $_

}

A complete list of properties from the MSFT_DSCMetaConfiguration class along with

type and other details is shown in Figure 3-4.

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

59

As you can see in Figure 3-4, not all LCM properties are of simple data types

such as String, UInt32, or Boolean values. There are certain properties, such as

PartialConfigurations, that can be seen referring to embedded instances of other

CIM classes. These classes are called meta configuration extension classes. You can see

these extension classes listed in Figure 3-2 as well and they are a part of the DSC CIM

namespace. You won’t have to directly instantiate or work with these extension classes at

any time when using DSC. PowerShell DSC provides better declarative ways to configure

the properties represented by these extension classes. You will see this when you look

at the list of meta resources in PowerShell DSC. So, we can safely skip any discussion or

details around these classes for now.

Tip You can use the Get-CimClassProperty script provided above to gather
details about these extension classes and explain the possible configuration
settings for each of those classes.

Table 3-1 provides an overview of the configurable LCM properties. For now, use this

table as a reference for what each property means. You will see their usage and how to

create a meta configuration document for these properties in later chapters.

Figure 3-4. Properties of the MSFT_DscMetaConfiguration class

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

www.allitebooks.com

http://www.allitebooks.org

60

Table 3-1. LCM Configuration Settings Overview

LCM Property Description Default Value

ActionAfterReboot Specifies if the pending configuration

should be enacted after a node reboot

or not.

ContinueConfiguration

AllowModuleOverwrite Specifies if the new configuration is

allowed to overwrite the modules already

existing on the node.

False

CertificateID Specifies a thumbprint of a certificate

to be used for decrypting the secure

credentials in a configuration.

na

ConfigurationDownload

Managers

used only in WMF 4 for specifying a pull

server location for the configurations.

na

ConfigurationID unique ID that identifies the

configuration file to get from a pull

server. used mostly in WMF 4.0

deployments. For WMF 5.0 and above

only deployments, use registration

keys and configuration names.

na

ConfigurationMode Specifies what actions needs to be taken

after configuration enact is complete.

applyonly

ConfigurationMode

FrequencyMins

Specifies how often the configuration

is checked and applied.

15 minutes

Credential Specifies the credentials to access

configurations and resources stored in a

SMB pull share. applies only to WMF 4.0.

na

DebugMode Specifies LCM behavior during a

configuration enact for resource

module import and debugging of

resource scripts.

none

DownloadManagerCustomData obsolete in WMF 5.0 and above. na

(continued)

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

61

Table 3-1. (continued)

LCM Property Description Default Value

DownloadManagerName obsolete in WMF 5.0 and above. na

MaximumDownloadSizeMB the maximum module size in MB that

can be downloaded.

500MB

PartialConfigurations Specifies a reference to the

MSFT_PartialConfiguration

class settings.

na

RebootNodeIfNeeded Specifies that a node should be

rebooted automatically if a

configuration enact requires so.

False

RefreshFrequencyMins the time interval, in minutes, at which

the LCM checks a pull server to get

updated configurations.

30 minutes

RefreshMode Specifies if the LCM is configured to

receive configurations via push, pull,

or disabled.

push

ReportManagers obsolete in WMF 5.0 and above. na

ResourceModuleManagers obsolete in WMF 5.0 and above. na

SignatureValidationPolicy Specifies the current signature

validation policy configuration.

na

SignatureValidations Specifies an instance of MSFT_

SignatureValidation that

identifies if configuration and module

files need to be signed and validated.

na

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

62

Note the properties that are listed as obsolete are still supported in powerShell
DSC for backward compatibility.

If you have experience with PowerShell CIM cmdlets and Windows Management

Instrumentation (WMI) in general, you may think that you can get values of LCM

properties (as an alternative to Get-DscLocalConfigurationManager) by creating

an instance of the MSFT_DscMetaConfiguration class. However, this is not the case.

If you want to get the current LCM configuration using CIM, you need to invoke the

GetMetaConfiguration method in the MSFT_DSCLocalConfigurationManager class. This

CIM class has many other methods that handle the node and meta configurations. These

methods are listed in Figure 3-5.

As you saw in Chapter 2, the PSDesiredStateConfiguration module exports

commands that are used in managing node and meta configuration. You also saw

in some of the verbose output that those commands internally call some of the CIM

methods in the MSFT_DSCLocalConfigurationManager class. Table 3-2 provides a

mapping between the CIM methods in this class and commands exported by the

PSDesiredStateConfiguration module.

Figure 3-5. CIM methods that are used for node and meta configuration

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

63

You will look at invoking these CIM methods directly in Chapter 16.

From Table 3-2, you can infer that the GetMetaConfiguration and

SendMetaConfigurationApply CIM methods are used in managing the meta

configurations. You saw in Chapter 2 how to configure the LCM using a DSC-style

Table 3-2. Mapping Between CIM Methods and PowerShell Commands

CIM Method PowerShell Command

SendConfiguration Publish-DscConfiguration

SendConfigurationApply Start-DscConfiguration

GetConfiguration Get-DscConfiguration

TestConfiguration Test-DscConfiguration

ApplyConfiguration Start-DscConfiguration with -UseExisting

SendMetaConfigurationApply Set-DscLocalConfigurationManager

GetMetaConfiguration Get-DscLocalConfigurationManager

RollBack Restore-DscConfiguration

StopConfiguration Stop-DscConfiguration

GetConfigurationStatus Get-DscConfigurationStatus

SendMetaConfigurationApplyAsync Start-DscConfiguration without -Wait

RemoveConfiguration Remove-DscConfigurationDocument

ResourceGet Invoke-DscResource with -Method Get

ResourceSet Invoke-DscResource with -Method Set

ResourceTest Invoke-DscResource with -Method Test

EnableDebugConfiguration Enable-DscDebug

DisableDebugConfiguration Disable-DscDebug

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

64

declarative syntax. However, that meta configuration document used a few meta

configuration resources such as Settings. Here is that example again:

[DscLocalConfigurationManager()]

Configuration metaConfiguration

{

 Node S16-01

 {

 Settings

 {

 ConfigurationModeFrequencyMins = 30

 ConfigurationMode = 'ApplyAndAutoCorrect'

 }

 }

}

You know how to gather information about which DSC resources are available using

the Get-DscResource cmdlet. This cmdlet returns information only about resources

that support node configuration and not meta configuration. So, how do you know what

meta resources are available? Each of the DSC resources from either in-box or built-in

modules are available as CIM keywords. Similar to this, the meta configuration resources

are also exported as CIM keywords, not by the PSDesiredStateConfiguration module

but by the PSDesiredStateConfigurationEngine module.

Note the PSDesiredStateConfigurationEngine module is available
only in WMF 5.0 and above. In WMF 4.0, the PSDesiredStateConfiguration
module exports the LocalConfigurationManager resource which is used
for meta configuration. You can see this listed in the CIM keywords (in
Figure 2-5 of Chapter 2) from the PSDesiredStateConfiguration module.
this meta resource can’t be used for meta configuration properties that are
available only in WMF 5.0 and above. however, the meta resources from the
PSDesiredStateConfigurationEngine are backward compatible and support
configuration of the LCM running on WMF 4.0 system.

You can retrieve the meta resource information in WMF 5.0 and above using the

Get- CimKeyword function from Chapter 2. Figure 3-6 shows this list.

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

65

In Figure 3-6, if you look at the associated resource names, you will observe that they

are CIM classes in the DSC CIM namespace. You can also correlate some of these class

names to the configurable LCM properties and their associated CIM embedded class

instance names listed in Figure 3-5.

Equipped with this information about how LCM is implemented, let’s take a look at

how LCM helps in the enact process of both meta and node configurations. Let’s start

with the local storage location for node and meta configurations.

 Configuration Store
In Chapter 2, the component architecture diagram (Figure 2-1) illustrated the

configuration store that holds node and meta configuration as a set of MOF files. There

is also a partial configuration store but let’s postpone that discussion until Chapter 10

where you will dive into DSC partial configurations.

 Meta Configurations
On a system with no LCM configuration ever applied, you will not see the meta

configuration MOF files in the configuration store. Once you enact any meta configuration,

you will see the MetaConfig.mof and MetaConfig.backup.mof files in the C:\Windows\

System32\Configuration directory. Both files contain the same LCM configuration

settings. When there is no custom meta configuration present on the system, the

Get-DscLocalConfigurationManager PowerShell command or the GetMetaConfiguration

CIM method will simply instantiate the MSFT_DSCMetaConfiguration class with default

values. The default configuration can be seen in Figure 3-7.

Figure 3-6. Meta configuration resources in WMF 5.0 and above

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

66

A successful enact of a meta configuration using the Set-

DscLocalConfigurationManager PowerShell command or by invoking the

SendMetaConfiguratonApply CIM method will create the MetaConfig.mof and

MetaConfig.backup.mof files in the configuration store. Deleting the MetaConfig.mof

file will reset the LCM configuration to defaults.

Figure 3-7. Default meta configuration settings

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

67

 Node Configuration
The state of the meta configuration is like a binary number. It either exists or it

doesn’t. However, a node configuration has multiple states. This is where the LCM

plays a role in managing these states. The component architecture diagram

(Figure 2-1) in Chapter 2 illustrates these states as multiple MOF files in the

configuration store: Pending.mof, Current.mof, and Previous.mof. The methods in

the MSFT_DSCLocalConfigurationManager CIM class or the associated PowerShell

commands exported by the PSDesiredStateConfiguration module are what you use to

manage these configuration states. Figure 3-8 illustrates these configuration states and

the associated PowerShell commands.

Freshly deployed systems will not have any existing DSC configuration in the store.

So, when you run the Get-DscConfiguration command, you will see an error message

(shown in Figure 3-9) that there is no current configuration.

Figure 3-8. Node configuration states

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

68

You cannot directly set the configuration into the current state. Before that, you

need to have the configuration in the pending state so that it can be enacted. There are

multiple ways to do so:

• In the push configuration delivery mode,

• You can use the Publish-DscConfiguration cmdlet to send the

configuration as pending.mof into the configuration store and

then enact it using the Start-DscConfiguration command with

the -UseExisting switch parameter.

• Using the Start-DscConfiguration PowerShell command will

send the configuration as pending.mof and also immediately

enact it.

• In the pull configuration delivery mode,

• LCM will check the pull server for a new or updated configuration

and download it as pending.mof. The enact process of the

pending configuration usually follows the pending configuration

download.

• The Update-DscConfiguration command can be used to force

LCM to check for an updated or new configuration on the pull

server. If there is an updated or new configuration available, it

will be downloaded as pending.mof and enacted immediately.

As described above, the enact process is usually done automatically (except in the

case of Publish-DscConfiguration) after receiving the pending configuration. Once the

enact is successful, the pending.mof gets renamed as current.mof.

If the enact process results in a failure, the pending.mof will be left in the

configuration store. On systems with WMF 4.0, pending.mof gets deleted in case of enact

failure. This bug was fixed in WMF 5.0.

Figure 3-9. No current configuration error

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

69

At this point, if you run the Get-DscConfiguration command again, you will see the

current state of the resources being configured using DSC. As depicted in Figure 3- 8,

 LCM will copy the current.mof as Get.mof and use it to retrieve the current resource

configuration. And this is the reason for error message shown in Figure 3-9 when there

is no current configuration or current.mof in the configuration store. The Get.mof is a

transient state (therefore the dotted line in Figure 3-8) and you won’t see that file in the

configuration store once the Get action completes successfully.

If you enact an updated configuration either via pull or push mode, once the

enact completes successfully, the current.mof gets copied as previous.mof (and gets

overwritten if there is an existing previous.mof file) and pending.mof gets renamed

to current.mof. The previous.mof is what gets enacted when you use the Restore-

DscConfiguration command.

You can remove any of these configurations from the store using the Remove-

DscConfigurationDocument command. If you delete the current configuration

or current.mof, LCM will no longer monitor the node for any configuration drift.

Monitoring for the drift and for compliance are the next logical things after the node

configuration enact is complete. Let’s learn about how LCM manages configuration

compliance.

 Monitoring Configuration Drift
For any configuration management system or tool, it is very important to have the ability

to manage configuration compliance. This includes monitoring a configuration for

any drift and either reporting or correcting it as needed. PowerShell DSC has built this

capability into the LCM.

In WMF 4.0, PowerShell DSC used scheduled tasks to invoke what are called

consistency checks, which are used to check if the node configuration is in a desired

state or not. However, in WMF 5.0 and above, a WMI provider implemented as the

MSFT_DscTimer class in the DSC CIM namespace is used to invoke the consistency

checks based on the configuration and refresh frequency intervals configured in LCM.

As you saw in Table 3-1, ConfigurationModeFrequencyMins and

RefreshFrequencyMins are used by the LCM to determine when to perform the

consistency checks and to check for updated configurations. Let’s look a few more

details around these two values.

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

70

• RefreshFrequencyMins specifies how often the LCM will reach out

to the pull server to check if there is a new or updated configuration.

This is applicable only when the RefreshMode setting is configured

to be pull. If there is current configuration on the node that was

received from a pull server, the LCM verifies if the checksum on the

pull server is different from the local checksum for the configuration.

If so, the LCM initiates a download of the updated configuration

and any required modules from the pull server. RefreshMode and

RefreshFrequencyMins aren’t methods of validating configuration

compliance to a desired state; instead, they are methods to ensure

that the node always has the updated configuration that is being

placed on the pull server.

• ConfigurationModeFrequencyMins specifies how often the LCM

validates if the current node configuration is in the desired state

or not. This validation depends on the configured value of the

ConfigurationMode property. As you can see from Figure 3-4, this

property has three possible values: ApplyOnly, ApplyandMonitor,

and ApplyandAutoCorrect. ApplyandMonitor is the default value.

• When ConfigurationMode is set to ApplyOnly, no configuration

drift checks will be performed after the initial configuration enact

is complete.

• When ConfigurationMode is set to ApplyandMonitor,

the LCM will periodically (based on the

ConfigurationModeFrequencyMins value) trigger a consistency

check to verify if the current configuration is in the desired state

or not. If not, the LCM will report this in the event log and to a

report server if configured in the LCM settings.

• When ConfigurationMode is set to ApplyandAutoCorrect, the

consistency check that gets triggered at regular intervals will not

only check for configuration drift but also correct it automatically

by reenacting the current configuration.

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

71

Note If there is no current configuration (current.mof) on the node, the
consistency checks do not get triggered.

In the preceding sections, you looked at several CIM methods in the DSC namespace

that are used for managing meta and node configurations. So, is there a CIM method that

is used for performing consistency checks as well?

Yes, and it is called PerformRequiredConfigurationChecks. This method was listed

in Figure 3-5 and some more details are available in Figure 3-10.

This CIM method takes only one parameter: Flags. This accepts an unsigned integer

of value 1 or 2 or 4 or 5 or 8. See Table 3-3.

You can call this CIM method directly by specifying one of the values in Table 3-3

as an input to the Flags property. You will see this as a part of the DSC as a platform

discussion in Chapter 16.

Table 3-3. Description of Flag Values

Flag Value Description

1 Specifies a normal consistency check.

2 Specifies a continuation of a consistency check after a reboot.

4 Specifies that the configuration should be obtained from the pull server. this value

should always be combined with 1, for a value of 5.

8 Specifies that the current configuration status be sent to the report server.

Figure 3-10. The CIM method that is used in consistency checks

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

72

I mentioned that the LCM triggers these consistency checks at regular intervals

based on what is configured as a value for the ConfigurationModeFrequencyMins. But

how? In WMF 4.0, two scheduled tasks were registered and configured to run based on

the ConfigurationModeFrequencyMins value. However, in WMF 5.0 and above, these

scheduled tasks do not exist anymore. What, then, triggers these checks?

The answer is in the DSC_Timer CIM class in the DSC namespace. Timer events get

registered by the WinRM service at the system boot up to trigger these LCM checks. On a

system that has the current configuration and the LCM configuration mode set to values

other than ApplyOnly, you can see the event log messages indicating that the DscTimer

is performing consistency checks. These event logs will be under Application and

Services Logs\Microsoft\Windows\Desired State Configuration\Operational.

The DSC_Timer class is also responsible for restarting the DSC provider from a crash.

 Summary
This chapter provided an in-depth understanding of how the LCM is implemented and

how it performs the enacting and monitoring processes. This understanding helps with

troubleshooting issues that arise out of the enact or overall configuration management

process. Use this chapter as a reference while reading subsequent chapters.

ChaptEr 3 thE LoCaL ConFIguratIon ManagEr

73
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_4

CHAPTER 4

Writing Configurations
So far, you’ve examined the need for IaC, the role that PowerShell DSC plays in IaC, an

overview of DSC architecture and features, and how the LCM (which is the core part

of PowerShell DSC) makes it so. Armed with this knowledge, let’s go forward and start

creating a few configurations to explore PowerShell DSC’s declarative syntax. You will

start with some very basic examples and make your way towards creating more complex

and reusable configurations. You will write more advanced configurations that use

secure credentials and configurations that can be transformed into composite resource

modules in the next chapter.

 Lab Requirements
To try the examples and exercises in this chapter, you will need two or more systems

installed with WMF 5.1 or above. I recommend a system with Windows Server 2016. You

also need Internet connectivity on one of these systems to find and install custom DSC

resource modules from the PowerShell gallery.

 What’s Not Covered in This Chapter
In this chapter, you will learn the basics of configuration authoring and how to explore

DSC resources. With this knowledge and the knowledge that you gained from Chapter 2,

it won’t be difficult to write your own configuration documents.

There are many in-box DSC resources and many others developed by the

community. It is not practical to cover every DSC resource in this chapter or book and

I won’t do so for a couple of reasons.

74

Firstly, in the first edition, I described each in-box DSC resource in-depth and

showed how to use them in a configuration document. At the time of the first edition,

DSC documentation was almost non-existent, so I had to cover those resources

in- depth. However, with Microsoft’s new documentation strategy and the community

contributions towards the documentation, it is no longer difficult to find a quick

reference to the in-box resource usage.

The second reason is the open source work that is happening in bug fixing and

enhancing the in-box DSC resources as a PSDscResources module (more about this

later in this chapter) in the gallery. At the time of writing this chapter, this module is at

version 2.8.0.0. By the time we release this book and it gets into your hands, I wouldn’t be

surprised if this module is much updated. So, any in-depth discussion on these in-box

resource modules will quickly become stale.

However, all that said, I strongly recommend that you use the methods that you will

learn in this chapter to understand the in-box DSC resources and experiment writing a

few configurations that use these in-box resources.

 Back to Basics
In the “Configuration Authoring” section of Chapter 2, you looked at the language

extensions that enable you to author configuration documents in an easy manner. The

Configuration function and the Node and Import-DscResource dynamic keywords are

examples of these language extensions in PowerShell DSC.

 Anatomy of a Configuration Document
Let’s look at a sample configuration to understand the anatomy of a DSC configuration

document:

Configuration ConfigurationName

{

 #Module import using Import-DscResource

 #This has different possible parameters

 Import-DscResource -ModuleName ModuleName

Chapter 4 Writing Configurations

75

 #Optional Node block with one or more node names

 Node @(NodeNameArray) #Or a string literal

 {

 #One or more resource instances

 ResourceName ResourceInstanceName

 {

 KeyProperty = Value

 AnotherProperty = AnotherValue

 }

 }

}

As shown in the above code and from what you saw in Chapter 2, a PowerShell

DSC configuration always starts with the Configuration command. Like a function

in PowerShell, you need to provide a name. The constraints that apply to naming a

PowerShell function apply here as well.

Within the configuration script block, you can use the Import-DscResource keyword

to import DSC resource modules. This keyword has certain parameters and can be used

in different ways. You will learn more about it later in this chapter.

Note if you are using any of the in-box resources in a configuration document,
you should import the PSDesiredStateConfiguration module using the
Import-DscResource keyword. Without it, you will see a warning message
when you compile the configuration.

The configuration script block may also contain one or more optional Node blocks

that take an array of node names or just a literal string representing a target node.

When the Node block is not specified, the compiled configuration is assumed to be for

localhost and the generated MOF name will be localhost.mof. There is an advanced

use of the Node block that you will see in Chapter 5 when you look at writing complex

and reusable configurations.

Chapter 4 Writing Configurations

76

Inside the Node block or directly inside a Configuration script block (in the

absence of a Node block) is a set of one or more resource configurations. Each resource

instance configuration starts with a resource keyword followed by a unique name for

that resource instance. They are nothing but the resource names shown in the

Get- DscResource cmdlet output for any given DSC resource module. Each DSC resource

has certain properties that are used to configure it. They are specified as key-value pairs

inside the resource instance. Each resource will have one or more key properties and

one or more mandatory and/or optional properties. Once again, you can use the

 Get- DscResource cmdlet to examine, with a few limitations, these resource properties.

Of course, there are other better ways that you will learn about later in this chapter.

In Chapter 2, you learned that the configuration resources available on the

authoring station are exported as the dynamic keywords and can be used inside

the Configuration function to define the desired state of resource configuration.

You used the Get-CimKeyword function to list these keywords exported by the

PSDesiredStateConfiguration module. The configuration resources exported by this

module are the in-box resources. These resources are available on any system that

has WMF 5.1 installed and therefore the term in-box is used here. However, this list is

just a subset of various configurations possible on a system running Windows. This is

where you need to either use community-developed custom DSC resource modules

or write your own. In Chapter 2, I briefly discussed that you can use the cmdlets in the

PowerShellGet PowerShell module to find and install DSC resource modules from the

official PowerShell gallery. Let’s spend a few minutes exploring how to use these cmdlets

and installing some custom DSC resource modules.

 Finding and Installing DSC Resource Modules
On systems with WMF 5.1, you can see a list of cmdlets that offer the functionality to

interact with the PowerShell gallery. This is shown in Figure 4-1.

Chapter 4 Writing Configurations

77

Do It Yourself the version of PowerShellGet that comes by default on Windows
server 2016 is 1.0.0.1. there is an updated version of this module available
on powershell gallery and it can be installed using Install-Module -Name
PowerShellGet -Force.

While there are many commands in this module, what you are interested for now are

only the Find-Module, Find-DscResource, Install-Module, and Save-Module cmdlets.

 Finding DSC Resources

To find the custom DSC resources published on the PowerShell gallery, you can use

either the Find-Module or the Find-DscResource cmdlet. I say both, because you can!

Figure 4-1. Commands in the PowerShellGet module

Chapter 4 Writing Configurations

78

Note a few cmdlets in the PowerShellGet module such as Install-Module,
Find-Module, and so on require internet connectivity to be able to download
resource modules from the powershell gallery.

With the Find-Module cmdlet, you can use the -Includes parameter with

DscResource as an argument to list only modules that export DSC resources. Let’s see an

example:

Find-Module -Includes DscResource

Figure 4-2 shows partial output from this command.

Figure 4-2. Modules containing DSC resources from the PowerShell gallery

If you run this command on your system, you will see many custom modules from

the gallery listed in the output. A few of them are authored by teams at Microsoft and

the community together. You can see the author of a module by looking at the Author

property of each module listed in the output. This is shown in Figure 4-3.

Chapter 4 Writing Configurations

79

If you need to know what DSC resources a specific module exports, you can take a

look at the DSCResources property in the AdditionalMetaData property of the module:

Find-Module -Name cWindowsOS | Select -ExpandProperty AdditionalMetaData |

Select -ExpandProperty DSCResources

You can search for DSC resources with a specific name using the -DscResource

parameter. You can specify more than one resource name an argument.

Find-Module -DscResource cDiskImage

The -DscResource parameter does not accept the wildcard input and therefore you

need to know the complete name of the DSC resource you are looking for.

Finally, if you want to search if a specific DSC resource exists in a given module, you

can use -Name and -DscResource parameters together, like so:

Find-Module -Name cWindowsOS -DscResource cDiskImage

Figure 4-3. Modules and the Author property

Chapter 4 Writing Configurations

80

In the second method, using the Find-DscResource, you will more specifically

search only for DSC resources published to the PowerShell gallery.

Note the Find-DscResource module is a wrapper around the Find-Module
cmdlet.

Without any parameters, this cmdlet returns a list of all DSC resources available in

the gallery. Sample output from this command is shown in Figure 4-4.

Figure 4-4. DSC resources published to the gallery

If you observe the difference between Figure 4-4 and Figure 4-2, Find-Module returns

the module names that contain the DSC resources whereas Find-DscResource returns

the resources within the modules that were found in the gallery.

The -ModuleName parameter can be used to specify the name of a module that

contains the resources you are looking for and the -Name parameter for a specific DSC

resource within that module. An example of this is shown in Figure 4-5.

Chapter 4 Writing Configurations

81

As you see in Figure 4-5, the Find-DscResource cmdlets lists only the most recent

and publicly listed version of the DSC resource. Using the -AllVersions switch

parameter, you can list all available versions of the module and/or resource.

Figure 4-5. Using both Name and ModuleName parameters

Figure 4-6. All versions of a DSC resource

As seen in Figure 4-6, there are multiple versions of this resource available in the

gallery. If you want an older version of the module, you can use the -RequiredVersion

parameter to download a specific version of the resource module.

Do It Yourself Both Find-Module and Find-DscResource have many other
parameters that i did not show. take a few minutes to explore these two cmdlets
and understand the differences.

 Installing DSC Resource Modules

Once you know how to find the resource modules published to the gallery, you can use

the Install-Module cmdlet to install them on the local system.

You can pipe the output from the Find-Module or Find-DscResource cmdlets directly

into the Install-Module cmdlet to download and install the resource module on a

local system. This is shown in Figure 4-7. The -Force switch parameter suppresses any

confirmation prompts.

Chapter 4 Writing Configurations

82

Note if this is the first time you are using the Install-Module cmdlet on your
system, you will receive a prompt to download and install the nuget provider even
when using -Force switch. You need to accept the prompt to download the nuget
binary.

By default, this cmdlet installs the module at ${env:ProgramFiles}\

WindowsPowerShell\Modules and therefore requires administrator privileges. If you

need to install the DSC resource module in the user modules path, you need to specify

the -Scope parameter with CurrentUser as the argument. However, installing modules at

the current user module path is only useful if the system is solely used for configuration

authoring and not enacting. For enacting, the modules must exist at a system module

path such as ${env:ProgramFiles}\WindowsPowerShell\Modules.

Find-Module -Name xNetworking | Install-Module -Scope CurrentUser -Force

Before you go on to writing configurations, let’s look at one more aspect of the DSC

resource modules. Like everything else in this world, code written by me or you or

anyone else for that matter is not perfect. There will be bugs and updates that we might

have to do frequently. The in-box DSC resource modules are no exception. In WMF 4.0,

we had to wait for an OS update to bring the updated in-box resource modules. However,

with WMF 5.1 and above, we can simply get updates for these resource modules from the

PowerShell gallery. In fact, a subset of the in-box DSC resource modules is available in

open source at https://github.com/PowerShell/PSDscResources.

Figure 4-7. Installing a DSC resource module from the PowerShell gallery

Chapter 4 Writing Configurations

https://github.com/PowerShell/PSDscResources

83

I strongly recommend updating the in-box DSC resources to the most recent version

on the PowerShell gallery.

Note the open source PSDscResources module does not replace the existing
in-box DsC resources but simply provides another version of some of those
resources.

 Updating In-Box DSC Resource Modules

If you observed the output of the Find-DscResource command in Figure 4-2, you saw

a module named PSDscResources. It contains the updates to in-box DSC resource

modules. You can see the in-box resources listed in Figure 4-4 with PSDscResources as

the module name.

You may think that you can use the Update-Module command in the PowerShellGet

module to download an update to the in-box DSC resources, as a different module of

course and not overwrite existing in-box resources. However, the Update-Module cmdlet

can be used to update modules that are installed using the Install-Module cmdlet

only. Also, there won’t be a module by the name PSDscResources; you will see the error

message shown in Figure 4-8.

Figure 4-8. Update-Module error

Therefore, you need to use the Install-Module cmdlet to update the in-box resource

modules for the first time. Once this module from the gallery is installed, you will be able

to use the Update-Module cmdlet to download any future updates.

Install-Module -Name PSDscResources -Force

Although partial, you will see two different versions of same resources listed in

Figure 4-9.

Chapter 4 Writing Configurations

84

As you know from Chapter 2, the Get-CimKeyword function provides a list of

resource names and their associated keywords that you can use in configuration

documents. For example, using that function with PSDscResources as the argument

to -ImplementingModule parameter will provide the output shown in Figure 4-10.

Figure 4-9. Updated in-box resources

Figure 4-10. Dynamic keywords implemented by the PSDscResources module

Chapter 4 Writing Configurations

85

As you can see from Figure 4-10, the keywords listed are same as the resource names

listed in Figure 4-9.

If you have any systems that do not have Internet connectivity to download the

resource modules from the gallery, you can use the Save-Module cmdlet on a system

with Internet connectivity and then copy over to the offline systems through a network

share or other means.

Save-Module -Name PSDscResources -Path C:\Modules -Force

Similar to the Install-Module cmdlet, you can use the -RequiredVersion parameter

to download a specific version of the module.

This concludes my brief discussion on finding and installing custom DSC resource

modules from the gallery. You will see how to set up your own file share-based repository

that works with the PowerShellGet cmdlets in Chapter 6; you will also write your own

custom resource modules.

Let’s start writing configurations!

 Your First Configuration
Technically, you’ve already seen some PowerShell DSC configuration documents and

even enacted the configuration using the push method. At the beginning of this chapter,

you looked at the anatomy of a configuration document. Let’s review it with the help of a

real example. In the process, you will learn how the Import-DscResource keyword works

and how to use the different parameters available with this keyword.

Configuration FirstConfiguration

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 Node localhost

 {

 Archive FirstArchiveConfiguration

 {

 Path = 'C:\Scripts\test.zip'

 Destination = 'C:\Demo'

 Ensure = 'Present'

Chapter 4 Writing Configurations

86

 }

 }

}

FirstConfiguration

When you compile the configuration in this example, it generates a node

configuration MOF file. The following is a part of this MOF:

instance of MSFT_ArchiveResource as $MSFT_ArchiveResource1ref

{

ResourceID = "[Archive]FirstArchiveConfiguration";

 Path = "C:\\Scripts\\test.zip";

 Ensure = "Present";

 Destination = "C:\\Demo";

 SourceInfo = "::4::5::Archive";

 ModuleName = "PSDesiredStateConfiguration";

ModuleVersion = "1.0";

 ConfigurationName = "FirstConfiguration";

};

instance of OMI_ConfigurationDocument

Observe the value of ModuleVersion. It is set to 1.0 whereas the updated version of

the Archive resource in PSDscResources module is 2.8.0.0. This is because you have

not explicitly mentioned the module version to be used for the module containing the

Archive resource. Since the in-box resources and updated OSS resources exist side by

side, you need to import the right version of the resource using the Import-DscResource

keyword. Therefore, here is the updated configuration document:

Configuration FirstConfiguration

{

 Import-DscResource -ModuleName PSDscResources

 Node localhost

 {

 Archive FirstArchiveConfiguration

 {

Chapter 4 Writing Configurations

87

 Path = 'C:\Scripts\test.zip'

 Destination = 'C:\Demo'

 Ensure = 'Present'

 }

 }

}

FirstConfiguration

Compiling this configuration results in a MOF that reflects the right version of the

Archive resource:

instance of MSFT_Archive as $MSFT_Archive1ref

{

ResourceID = "[Archive]FirstArchiveConfiguration";

 Path = "C:\\Scripts\\test.zip";

 Ensure = "Present";

 Destination = "C:\\Demo";

 SourceInfo = "::4::5::Archive";

 ModuleName = "PSDscResources";

 ModuleVersion = "2.8.0.0";

 ConfigurationName = "FirstConfiguration";

};

instance of OMI_ConfigurationDocument

Therefore, you need to consider PSDscResources as a custom DSC resource module

and import it in a configuration document using the Import-DscResource keyword. This

applies to every custom DSC resource module that you need to use in a configuration

document.

 Using the Import-DscResource Keyword
There are different ways to use the Import-DscResource keyword in a configuration

document. Table 4-1 shows a list of parameters available with this keyword.

Chapter 4 Writing Configurations

88

Unlike the usual PowerShell cmdlets or functions, the Import-DscResource does not

support positional parameters. Therefore, using named parameters is mandatory. While

the parameters appear straightforward, there are some gotchas in the usage.

If you specify the -Name parameter, you can only provide a single module name as

the argument to the -ModuleName parameter. This behavior is shown in Figure 4-11 with

an example that fails compilation.

Figure 4-11. The argument to ModuleName can only be a single string

Table 4-1. Import-DscResource Keyword Parameters

LCM Property Description

name specifies the name of the resource to import. You can specify a comma-separated

list of resource names.

Modulename specifies the name of the resource module to import. You can specify a

comma- separated list of module names.

ModuleVersion specifies the required version of the module to be imported.

Chapter 4 Writing Configurations

89

Using the Name parameter without using the ModuleName parameter has performance

implications, especially when there are many resource modules installed on the system.

The parser, while compiling the configuration, will iterate through all resource modules

and find the resource specified. Also, the parser stops searching as soon it finds the

first instance of the resource name in a module. This behavior may have unintended

consequences if there are multiple resources with the same name and the parser finds

the resource that you don’t intend to use in the configuration.

Therefore, when you use the -Name parameter, it is recommended that you always

use the -ModuleName parameter to make it faster for the parser to find the right module

for you.

What if you have multiple versions of the resource module on the system? For

example, download an older version of xNetworking resource module using the

Install-Module cmdlet. Here is how you do that:

Find-Module -Name xNetworking -AllVersions

Install-Module -Name xNetworking -RequiredVersion 4.1.0.0 -Force

Once you have a second version of the module installed, try compiling the following

resource configuration:

Configuration FirstConfiguration

{

 Import-DscResource -Name xHostsFile -ModuleName xNetworking

 xHostsFile HostsFileConfiguration

 {

 IPAddress = '10.0.0.1'

 HostName = 'TestHost10'

 }

}

FirstConfiguration

Chapter 4 Writing Configurations

90

This will result in an error, as shown in Figure 4-12.

The reason for this is obvious. The parser won’t make a decision for you. Unlike

the -Name parameter parsing, it won’t use the first version or most recent version found

on the system. You can certainly use the module specification object as shown in the

error message in Figure 4-11 but I recommend using it only when you have multiple

modules to import in the configuration. If you have only one module name to import,

you should ideally use the -ModuleVersion parameter of the Import-DscResource

keyword. Here is a configuration document that uses –ModuleVersion:

Note specifying ModuleName and ModuleVersion is always the best practice
when authoring configurations. this will ensure that the configuration compiles
at a later time in future too, successfully using the version that you specified
even when there is an updated module version that might have breaking changes
compared to what you used for authoring.

Configuration FirstConfiguration

{

 Import-DscResource -ModuleName xNetworking -ModuleVersion 5.0.0.0

Figure 4-12. Error when there are multiple versions of the same module

Chapter 4 Writing Configurations

91

 xHostsFile HostsFileConfiguration

 {

 IPAddress = '10.0.0.1'

 HostName = 'TestHost10'

 }

}

FirstConfiguration

Note that you are not using the -Name parameter anymore in the above configuration

document. While it is supported, it is not required.

What if you want to import more than one module and also specify a version for each

module? There are two ways to do this.

The first method is to use an array of module specification objects and an argument

to the -ModuleName parameter. A module specification object is nothing but a hashtable

with specific keys in it. Here is an example:

Configuration FirstConfiguration

{

 Import-DscResource -ModuleName @{ModuleName='xNetworking';Required

Version='5.0.0.0'}, @{ModuleName='PSDscResources';

ModuleVersion='2.8.0.0'}

 xHostsFile HostsFileConfiguration

 {

 IPAddress = '10.0.0.1'

 HostName = 'TestHost10'

 }

 Archive ArchiveConfiguration

 {

 Path = 'C:\Scripts\Test.xip'

 Destination = 'C:\Demo'

 Ensure = 'Present'

 }

}

FirstConfiguration

Chapter 4 Writing Configurations

92

The error message in Figure 4-12 showed the usage of a module specification object.

In the example above, you see two variants of this module specification, one that uses

RequiredVersion and the second that uses ModuleVersion to specify the version of the

module to import. Both specifications are valid.

When I need to specify multiple modules like this in a configuration document, I

don’t use the module specification object. There is nothing wrong with it, but it is not

quite readable. Instead, I prefer what is shown in the following example:

Configuration FirstConfiguration

{

 Import-DscResource -ModuleName xNetworking -ModuleVersion 5.0.0.0

 Import-DscResource -ModuleName PSDscResources -ModuleVersion 2.8.0.0

 xHostsFile HostsFileConfiguration

 {

 IPAddress = '10.0.0.1'

 HostName = 'TestHost10'

 }

 Archive ArchiveConfiguration

 {

 Path = 'C:\Scripts\Test.xip'

 Destination = 'C:\Demo'

 Ensure = 'Present'

 }

}

FirstConfiguration

This usage of Import-DscResource is more readable even when you have many

modules to import.

Note the module specification object way of using Import-DscResource
keyword comes from WMf 4.0 days when there was no explicit support
for -ModuleVersion parameter.

Chapter 4 Writing Configurations

93

Alright. You have seen your first configuration document and what it means to

use custom DSC resource modules in a configuration. In the preceding section, you

looked at the Import-DscResource keyword usage and its parameters in-depth. So, let’s

start using some of the in-box DSC resources and learn some more DSC configuration

authoring concepts.

Note all preceding examples use either the in-box resources updated via the
PSDscResources module or resources from custom DsC resource modules
available on the powershell gallery. the examples that use in-box resources may
or may not fully work with the PSDesiredStateConfiguration module.

 Exploring DSC Resources
As a part of your journey towards mastering configuration authoring, let’s look at

exploring the properties of a DSC resource and how to know the possible values of any

given property within that resource. Yes, the IntelliSense provided by PowerShell ISE and

other editors will be helpful in finding the possible properties and auto-completing their

values, but learning at the lowest level possible is always better and in this process you

will learn about the DSC commands in the PSDesiredStateConfiguration module.

Let’s dive in. Here’s an example:

Get-DscResource -Name xHostsFile -Module xNetworking -Syntax

The -Syntax switch parameter provides a textual representation of the properties

that are available for a DSC resource. Figure 4-13 shows an example of this for the

xHostsFile DSC resource.

Figure 4-13. DSC resource syntax

Chapter 4 Writing Configurations

94

In Figure 4-13, the properties that are not enclosed in the square brackets are the

mandatory properties. While this representation is good, remember it is just text. Not

really the PowerShell way of doing things!

Get-DscResource -Name xHostsFile -Module xNetworking | Select-Object

-ExpandProperty Properties

This command may be a bit verbose but it gives the DSC resource properties as an object.

As shown in Figure 4-14, by retrieving an object, you can use it in any further

automation that you may build.

There is, in fact, a better way to retrieve resource property metadata information.

In this case, you inspect the dynamic keywords exported by the DSC resource module

and then derive the property metadata. This is the method I prefer to examine the DSC

resource properties.

Function Get-DscResourceProperty

{

 [CmdletBinding()]

 param (

 [Parameter(Mandatory)]

 [String]

 $ModuleName,

 [Parameter(Mandatory)]

 [String]

 $ResourceName

)

Figure 4-14. DSC resource properties as an object

Chapter 4 Writing Configurations

95

[Microsoft.PowerShell.DesiredStateConfiguration.Internal.

DscClassCache]::ClearCache()

 $functionsToDefine = New-Object -TypeName 'System.Collections.Generic.

Dictionary[string,ScriptBlock]’([System.StringComparer]::

OrdinalIgnoreCase)

 [Microsoft.PowerShell.DesiredStateConfiguration.Internal.DscClassCache]

::LoadDefaultCimKeywords($functionsToDefine)

 $modInfo = Get-Module -Name $ModuleName -ListAvailable

 $schemaFilePath = $null

 $keywordErrors = New-Object -TypeName 'System.Collections.ObjectModel.

Collection[System.Exception]'

 $foundCimSchema = [Microsoft.PowerShell.DesiredStateConfiguration.

Internal.DscClassCache]::ImportCimKeywordsFromModule($modInfo,

$ResourceName, [ref] $SchemaFilePath, $functionsToDefine, $keywordErrors)

 $foundScriptSchema = [Microsoft.PowerShell.DesiredStateConfiguration.

Internal.DscClassCache]::ImportScriptKeywordsFromModule($modInfo,

$ResourceName, [ref] $SchemaFilePath, $functionsToDefine)

 $resourceProperties = ([System.Management.Automation.Language.DynamicKe

yword]::GetKeyword($ResourceName)).Properties

 foreach ($key in $resourceProperties.Keys)

 {

 $resourceProperties.$key | Select Name, TypeConstraint, IsKey,

Mandatory, Values, Range

 }

}

When you use this function, you will see output similar to what is shown in Figure 4- 15.

Chapter 4 Writing Configurations

96

In Figures 4-13, 4-14 and 4-15, you can see two parameters named DependsOn and

PsDscRunAsCredential. These are the common properties that get added to every DSC

resource on the system. You will learn about the DependsOn property in this chapter and

the PsDscRunAsCredential property in the next chapter.

One difference that you can see between Figures 4-13, Figure 4-14, and Figure 4-15 is

the property named IsKey. In PowerShell DSC configuration documents, each resource

instance is uniquely identified using a Key property in the resource definition and these

key properties are mandatory. From Figure 4-15, the Key property in the Service resource

is the Name property. Scripting editors such as PowerShell ISE provide a visual indication

of the Key properties as a required property when authoring a configuration document.

Note You will learn more about the key properties in DsC resource modules in
Chapter 6.

An example of this is shown in Figure 4-16.

Figure 4-15. DSC resource property metadata

Chapter 4 Writing Configurations

97

 Multi-Node Configurations
Now that you know the basic anatomy of a configuration document and how to explore

the DSC resources and their properties, let’s extend your knowledge. It’s time to write

slightly more useful and complex configurations. You will start with a simple example

again but with a common configuration that needs to be applied on multiple nodes:

Configuration DemoGroupConfiguration

{

 Import-DscResource -ModuleName PSDscResources

 Node @('S16-01','S16-02')

 {

 User DemoGroup

 {

 GroupName = 'DemoGroup'

 Description = 'Demo Group'

 Ensure = 'Present'

 }

 }

}

DemoGroupConfiguration -OutputPath C:\DemoGroupConfiguration -Verbose

Figure 4-16. PowerShell ISE indicating the Key property as the first required
property

Chapter 4 Writing Configurations

98

In this example, you have two nodes specified as the target nodes within the Node

script block. You are using the Group resource to create a group named DemoGroup. The

Ensure property set to Present specifies that the group should exist on the target nodes.

Compiling this configuration generates two MOF files that are named S16-01.mof

and S16-02.mof. See Figure 4-17.

Figure 4-18. Enacting the configuration

Figure 4-17. Compiled configuration

You know that you can enact the configurations shown in Figure 4-17 using the

Start-DscConfiguration. Figure 4-18 shows the output of this enacting process

on both nodes.

Chapter 4 Writing Configurations

99

As you can see in Figure 4-18, there is an error message that the PSDscResources

module does not exist on the target nodes. If you have followed the examples from the

beginning and tried everything in order, you will know that you have updated the

in- box resources only on the authoring station and not these target nodes. So, the

updated resources in the form of the PSDscResources module do not exist on the target

nodes, thus the message shown here.

So, how do you install this custom DSC resource module on the target nodes? DSC

provides a way for the target nodes to pull missing resource modules from a central

repository but you must wait until Chapter 8 to see it. So, for now, you can either install

it directly using the Install-Module cmdlet on the target nodes or use PowerShell

remoting to install these modules using the Invoke-Command cmdlet. You will use the

second method since it is easy and you can do it from the authoring station:

Invoke-Command -ComputerName S16-01, S16-02 -ScriptBlock { Install-Module

-Name PSDscResources -RequiredVersion 2.8.0.0 -Force } -Verbose

Invoke-Command -ComputerName S16-01, S16-02 -ScriptBlock { Get-Module -Name

PSDscResources -ListAvailable } -Verbose

Note You may see a couple of prompts to install the nuget provider.

As shown in Figure 4-19, you now have the required custom DSC resource modules

on the target nodes so you can try the enacting process one more time.

Figure 4-19. Installing modules using PowerShell remoting and Install-Module
cmdlet

As you see in Figure 4-20, the configuration enacting works this time and the group

gets created on the target nodes. So, the point that you need to understand through this

exercise is that the custom DSC resource modules used in the configuration should exist

on the target node before the configuration enacting can be successful.

Chapter 4 Writing Configurations

100

Now, what if you want to have different resource configurations on target nodes

but define all that in the same configuration document? In the preceding example, you

created the DemoGroup on target nodes but now you want to remove one of the nodes.

How do you specify this resource configuration in a single document?

I mentioned that a Configuration block can have one or more optional Node blocks.

You will use that technique now. Here is how you do so:

Configuration DemoGroupConfiguration

{

 Import-DscResource -ModuleName PSDscResources

 Node 'S16-01'

 {

 Group DemoGroup

 {

 GroupName = 'DemoGroup'

 Description = 'Demo Group'

 Ensure = 'Present'

 }

 }

Figure 4-20. The enacting of the configuration

Chapter 4 Writing Configurations

101

 Node 'S16-02'

 {

 Group DemoGroup

 {

 GroupName = 'DemoGroup'

 Description = 'Demo Group'

 Ensure = 'Absent'

 }

 }

}

DemoGroupConfiguration -OutputPath C:\DemoGroupConfiguration -Verbose

As seen in this code, for the node named S16-02 you are setting the Ensure property

to 'Absent'. This is a very common pattern that you will see in many in-box and custom

DSC resource modules to indicate whether the resource configuration should exist or

not. However, it is just one of the ways to design a resource module and not a standard.

You will learn more about this in Chapter 6.

Figure 4-21. A configuration enact to remove a group

Chapter 4 Writing Configurations

102

When you compile the above configuration, it will generate two MOF files, one for

each node. When you enact them again with the Start-DscConfiguration cmdlet,

you will see that the DemoGroup gets removed from the node named S16-02. Figure 4-21

shows the result of this enact.

While it is easier to combine simple configuration across multiple target nodes in

a single configuration document, this is not easily maintainable. Any change for even

a single node in the configuration node triggers regeneration of the MOF for each

target node mentioned in the document. This is an anti-pattern when it comes to IaC

and/or DevOps practices. Therefore, for each node that is being managed using DSC,

you should maintain a separate configuration document unless there are nodes that

share a resource configuration. PowerShell DSC even provides better ways to share

configurations across different nodes. You will see these methods in Chapters 8 and 10

when I discuss the configuration delivery methods and partial configurations.

 Parameterized Configurations
In one of the previous examples, you created a group called DemoGroup across multiple

target nodes. However, there were resource configuration values such as GroupName and

Description hard-coded into the configuration document. This makes the configuration

document inflexible and it cannot be reused without changing those values manually.

This is where you can parameterize a configuration and implement some reusability.

Let’s first see an example of how to change that earlier example.

Configuration DemoGroupConfiguration

{

 param (

 [Parameter(Mandatory)]

 [String]

 $GroupName,

 [Parameter(Mandatory)]

 [String]

 $Description,

Chapter 4 Writing Configurations

103

 [Parameter()]

 [String[]] $Nodes = 'localhost'

)

 Import-DscResource -ModuleName PSDscResources

 Node $Nodes

 {

 Group DemoGroup

 {

 GroupName = $GroupName

 Description = $Description

 Ensure = 'Present'

 }

 }

}

DemoGroupConfiguration -OutputPath C:\DemoGroupConfiguration `

 -GroupName 'DemoGroup' `

 -Description 'Demo Group' `

 -Nodes 'S16-01','S16-02'

All you did was add a parameter block inside the configuration and add a few

parameters to collect the group name, description, and the list of target node names

where the configuration needs to get enacted. This is the same as how you define

parameters in a function and use them. However, notice how you compile the

configuration. The parameters you define in the configuration become parameters to the

DemoGroupConfiguration command. Figure 4-22 shows these parameters along with a

bunch of other common parameters including -OutputPath that you have been using

when compiling configurations.

Chapter 4 Writing Configurations

104

Also, in the above example, notice how you use the Parameter attribute to specify the

$GroupName and $Description parameters as mandatory parameters. This indicates that

you can use other attributes that you generally use in a function definition here in the

configuration definition as well.

The above parameterized configuration example is useful only if you want to

configure the target nodes in a similar manner. What if you want to implement your

multi-node block example using parameterized configurations? For example, based

on the role of a target node, you either want the group to get created or removed. How

would you implement that?

Think about it and try some implementations. You will revisit this example in the

next chapter and see how DSC makes such as scenario very easy to implement with what

is called DSC configuration data.

Figure 4-22. Configuration command parameters

Chapter 4 Writing Configurations

105

 Dependent Resource Configurations
In a real-world scenario, node configurations won’t be as simple as what you have seen

here. In the real world, when configuring complex target node deployments, you want to

ensure that a dependent resource configuration is successful before moving on to another

resource configuration. Let’s explore how DSC supports this with a simple example.

In the following example, you check for a specific registry value and set it before you

can create the setup script that you need. So, you want to create the file configuration

only when the registry configuration exists in a desired state.

Configuration DependentConfigurationDemo

{

 Import-DscResource -ModuleName PSDscResources -Name Registry

 Node S16-01

 {

 File SetupScript

 {

 DestinationPath = 'C:\Scripts\setup.cmd'

 Contents = 'C:\Windows\System32\Sysprep.exe /oobe /generalize /

shutdown'

 Type = 'File'

 Ensure = 'Present'

 DependsOn = '[Registry]OOBEInProgress'

 }

 Registry OOBEInProgress

 {

 Key = 'HKEY_LOCAL_MACHINE\SYSTEM\Setup'

 ValueName = 'OOBEInProgress'

 ValueData = 0

 ValueType = 'DWord'

 Ensure = 'Present'

 }

 }

}

DependentConfigurationDemo -OutputPath C:\DependentConfigurationDemo

Chapter 4 Writing Configurations

106

Note When you compile this configuration, you will see a warning message
that you are not importing the PSDesiredStateConfiguration module. at
the time of this writing, there is a bug in DsC that prevents importing both of the
in-box PSDesiredStateConfiguration and PSDscResources modules you
downloaded from the gallery at the same time.

In this example, within the File resource configuration, you use a property

called DependsOn. If you refer to the earlier conversation on understanding resource

properties, you will understand that the DependsOn and PSDscRunAsCredential

properties automatically get added to every DSC resource on the system. The DependsOn

property is what you need here to define the dependencies between resource instance

configurations on a target node.

When you enact this configuration, since there is a dependency on a registry value’s

desired state, DSC first enacts Registry resource configuration and then, if successful,

proceeds to the File resource configuration. This can be seen in Figure 4-23.

Figure 4-23. Dependent resource configuration enact

Chapter 4 Writing Configurations

107

As you can see in Figure 4-23, even though the Registry resource instance

configuration is mentioned after the File resource instance, using the DependsOn

property changes the resource enact ordering. In the example above, you defined both

File and Registry resources within the same node block. Within the File resource

definition, you add the DependsOn property and assign it a value to indicate that it

depends on the Registry resource within the configuration. If you look at the value of

the DependsOn property, it has a specific syntax. The general syntax is "[Resource Type]

ResourceName". So, following that, "[Registry]OOBEInProgress" defines that the File

resource is dependent on the Registry resource defined by OOBEInProgress.

In WMF 4.0, the resource configuration execution was not necessarily sequential

and therefore needed the DependsOn definitions to define a proper resource instance

enact ordering. However, with WMF 5.0 and above systems, the resource enact is always

sequential and goes from top to bottom. Therefore, the DependsOn property is needed

only when you want to ensure that the subsequent resource enact processes will stop if a

dependent resource does not turn into a desired state.

Now, how do you add multiple such dependencies? For example, what if you want

to ensure the setup.cmd gets created only after configuring multiple registry values to

a desired state? The DependsOn property is a string array, and therefore, you can add

multiple resource definitions to the DependsOn value as a comma-separated list. This is

shown in the following example:

Configuration DependentConfigurationDemo

{

 Import-DscResource -ModuleName PSDscResources -Name Registry

 Node S16-01

 {

 File SetupScript

 {

 DestinationPath = 'C:\Scripts\setup.cmd'

 Contents = 'C:\Windows\System32\Sysprep.exe /oobe /generalize /

shutdown'

 Type = 'File'

 Ensure = 'Present'

 DependsOn = '[Registry]OOBEInProgress', '[Registry]SetupType'

 }

Chapter 4 Writing Configurations

108

 Registry OOBEInProgress

 {

 Key = 'HKEY_LOCAL_MACHINE\SYSTEM\Setup'

 ValueName = 'OOBEInProgress'

 ValueData = 0

 ValueType = 'DWord'

 Ensure = 'Present'

 }

 Registry SetupType

 {

 Key = 'HKEY_LOCAL_MACHINE\SYSTEM\Setup'

 ValueName = 'SetupType'

 ValueData = 0

 ValueType = 'DWord'

 Ensure = 'Present'

 }

 }

}

DependentConfigurationDemo -OutputPath C:\DependentConfigurationDemo

The DependsOn property can be used to define only resource instance dependencies

within a node’s configuration. For dependencies across different nodes, you need to use

something called cross-machine synchronization and that is enabled using the in-box

DSC resources WaitForAny, WaitForSome, and WaitForAll. You will learn more about

these resources in Chapter 11.

 Summary
This chapter was intense. I spent several hours reviewing this chapter’s content (before

even the tech reviewer) and made several revisions to the content to ensure that the

flow was proper and that I described the concepts around configuration authoring in

an easy way. I started this chapter with a quick introduction to configuration anatomy

and showed how to find and install custom DSC resource modules from the official

PowerShell gallery. Then I moved on to your first configuration and explained how to

Chapter 4 Writing Configurations

109

use the Import-DscResource keyword. Then I showed you DSC resources and their

properties, and finally how to create multi-node, parameterized, and dependent

configurations. While the goal of this chapter was to only show you how to write some

basic to moderately complex configurations, there are some snippets of code that you

should review. For example, the Get-DscResourceProperty function snippet that you

used has tons of internal API calls that are used in the PSDesiredStateConfiguration

module. It may not be completely relevant at this point in time but do spend some time

reading and understanding what’s in there. It will certainly help you on your journey

towards mastering PowerShell DSC.

In the next chapter, you will delve further into writing complex and reusable

configurations. You will learn how to build and share these reusable configurations

as resource modules. You will also learn how to use credentials in a configuration

document and understand the different methods that enable credentials in a resource

configuration.

Chapter 4 Writing Configurations

111
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_5

CHAPTER 5

Writing Advanced DSC
Configurations
In the previous chapter, you learned the basics of configuration authoring and how to

write reusable configurations by parameterizing the configuration documents. You used

the DependsOn property in a configuration document to define dependencies between

resource instances in a configuration. That was all very basic and but a good start.

This chapter will look at the concept of configuration data and why we need it,

how we can use configuration data to create flexible and reusable configurations, how

to secure sensitive data such as credentials and secure strings in the configuration

authoring and enacting process, and many other advanced configuration authoring

concepts.

 Lab Requirements
To try examples and exercises in this chapter, you will need at minimum two or more

systems with Windows Server 2008 R2 or above with WMF 5.1 installed. I recommend

a system with Windows Server 2016. The credential encryption requires certificates, so

trying the configuration examples that use credentials will require either a certificate

authority or self-signed certificates.

 Using Credentials in a Configuration
In Chapter 4, you saw some basic examples of DSC configurations. Before you start

writing a moderately complex configuration, let’s look at a configuration that uses the

in-box File resource:

112

Configuration FileCopyConfiguration

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 Node S16-01

 {

 File FileCopyDemo

 {

 SourcePath = '\\S16-JB\Share\Unattend.xml'

 DestinationPath = 'C:\Scripts\Unattend.xml'

 Type = 'File'

 Force = $true

 }

 }

}

FileCopyConfiguration

In this example, you are copying a file from a remote computer UNC path to a local

folder on the target node. By setting the Force property to $true, if the destination folder

does not exist, it will be created. Let’s enact this configuration and check what happens.

See Figure 5-1.

Figure 5-1. Enact failure with File resource

Chapter 5 Writing advanCed dSC ConfigurationS

113

As you can see in Figure 5-1, the enact process indicates that the target node is

unable to access the remote UNC path. This might need a little bit of investigation.

Let’s see if the remote node can really access the UNC path or not. You will do this

interactively on the remote node, as shown in Figure 5-2.

As seen in Figure 5-2, on the target node you can access the remote file share. So,

what is the problem with the configuration enacting process on the remote node? Let’s

investigate this with a simple DSC configuration that uses a Script resource:

Configuration DSCRunDemo

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 Node S16-01

 {

 Script DSCRunDemo

 {

 SetScript =

 {

 Write-Verbose -Message $(whoami)

 }

 TestScript =

 {

 return $false

 }

Figure 5-2. Accessing a remote file on the target node

Chapter 5 Writing advanCed dSC ConfigurationS

114

 GetScript =

 {

 return @{}

 }

 }

 }

}

DSCRunDemo

In this example, you are using the Script resource that has GetScript, SetScript,

and TestScript properties. Each of these properties takes an arbitrary script block as

an argument. However, there are some rules. The script block provided as GetScript

must return a hashtable, the argument to TestScript must return a Boolean value, and

finally the SetScript argument should do something useful. Without going into too

many details here, just understand that these properties are synonymous to the Get-

TargetResource, Set-TargetResource, and Test-TargetResource functions in the

DSC resource modules, which you will learn more about in Chapter 6 when you look at

writing custom DSC resource modules.

For now, understand that when you enact this configuration, the TestScript script

block runs first and returns $false, which causes the script block argument provided to

SetScript to run. In this example, you just have a simple Write-Verbose statement that

prints the output from the whomai.exe command. So, when you enact this configuration,

you should see the user context in which DSC is executing. Figure 5-3 shows the output

from my lab system.

Figure 5-3. Enacting script configuration

Chapter 5 Writing advanCed dSC ConfigurationS

115

From Figure 5-3, you can see that whoami.exe returned nt authority\system as the

user that DSC is running as. You can infer from the above output that DSC is running as

a LOCAL SYSTEM account and that the account has no permission to read the remote

file share. And this is precisely the reason why the target node was unable to access the

remote UNC share during the configuration enact in the earlier example. So, how do you

resolve this?

The File resource has a property called Credential. This can be used to specify

the credentials required to authenticate and access the remote UNC path. Here is an

example of how to use it:

Configuration FileCopyConfiguration

{

 Param

 (

 [Parameter(Mandatory)]

 [pscredential] $Credential

)

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 Node S16-01

 {

 File FileCopyDemo

 {

 SourcePath = '\\S16-JB\Share\Unattend.xml'

 DestinationPath = 'C:\Scripts\Unattend.xml'

 Type = 'File'

 Credential = $Credential Force = $true

 }

 }

}

FileCopyConfiguration -Credential (Get-Credential)

In this updated example, you add a parameter called Credential to the

configuration and use it as the argument to Credential property of File resource. Using

this parameter, you can provide the credentials required to authenticate to the remote

UNC share during the enact process. Figure 5-4 shows what happens when you try to

compile this configuration.

Chapter 5 Writing advanCed dSC ConfigurationS

116

In this case, the configuration does not compile and fails with an error that says

converting and storing passwords as plain text is not recommended. While the error

message does not tell you the real solution, there are (again) a couple of ways to

address this:

• Allowing the PSDscAllowPlainTextPassword key in

configuration data

• Using certificates to encrypt passwords in a configuration

The first method should never be used in a production environment. It is meant

only for development and test purposes. The second method is the one that should be

adopted by all configurations that use credentials and secure strings. Both methods

require the use of configuration data in the DSC configuration documents. Let’s explore

what this is about.

 Configuration Data
Some of the earlier examples showed that configuration commands often have a

common parameter called ConfigurationData. This is shown again in Figure 5-5.

Figure 5-4. Error during configuration compile with credentials

Chapter 5 Writing advanCed dSC ConfigurationS

117

As shown in Figure 5-5, the ConfigurationData parameter in the configuration is a

hashtable that can be used to separate environmental data from configuration data. Here

is the general syntax of a configuration data hashtable:

$configurationData =

@{

 AllNodes = @()

 EnvironmentData = ""

}

The value of the AllNodes key is an array of hashtables. Each hashtable in this array

must contain a key named NodeName.

$configurationData =

@{

 AllNodes =

 @(

 @{

 NodeName = 'S16-01'

 },

 @{

 NodeName = 'S16-02'

 }

)

 EnvironmentData = ''

}

Figure 5-5. The ConfigurationData parameter in a configuration command

Chapter 5 Writing advanCed dSC ConfigurationS

118

Note the second key in the above example is named EnvironmentData.
But you can name it whatever you want and you can add any number of such
additional keys with hashtables as their values.

Before I discuss other aspects of the configuration data, let’s see a complete example

and build on it as I discuss it in-depth:

$configurationData =

@{

 AllNodes =

 @(

 @{

 NodeName = 'S16-01'

 SourceFile = '\\S16-JB\Share\S16-01.xml'

 DestinationFile = 'C:\Scripts\Unattend.xml'

 },

 @{

 NodeName = 'S16-02'

 SourceFile = '\\S16-JB\Share\S16-02.xml'

 DesitnationFile = 'C:\Scripts\Unattend.xml'

 }

)

}

Configuration FileCopyConfiguration

{

 Param

 (

 [Parameter(Mandatory)]

 [pscredential] $Credential

)

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 Node $AllNodes.NodeName

 {

Chapter 5 Writing advanCed dSC ConfigurationS

119

 File FileCopyDemo

 {

 SourcePath = $Node.SourceFile

 DestinationPath = $Node.Destinationfile

 Type = 'File'

 Credential = $Credential

 Force = $true

 }

 }

}

FileCopyConfiguration -Credential (Get-Credential) -ConfigurationData

$configurationData

Don’t compile this yet; there are a few things we should discuss in the above

example.

In the $configurationData hashtable, you have data defined for two nodes

each as a separate hashtable under the AllNodes array. Each node hashtable has the

mandatory NodeName key along with other custom keys such as the SourceFile and

DestinationFile. You can have any number of such custom keys in each of these

hashtables. Observe that you don’t have the NonNodeData key in the configuration data.

You will come to that in a later section of this chapter.

Now, to access this configuration data inside the resource configuration, you need to

first use the $AllNodes automatic variable. The $AllNodes automatic variable provides

access to the data you defined within each hashtable.

In a normal configuration document, a target node’s computer name follows the

Node keyword. But, when you use the configuration data, you use $AllNodes.NodeName.

This works like an iterator and provides access to the keys you define inside the AllNodes

hashtables. To access the hashtable key values inside the resource instance definition,

you need to use the $Node automatic variables. This is roughly equivalent to writing an

iterator like foreach ($Node in $AllNodes) { #Do something }.

If you look at the hashtables in the AllNodes array, you have the DestinationFile

key with the same value listed in each hashtable. This is redundant and there is, of

course, a way to optimize this. Here is an updated example:

Chapter 5 Writing advanCed dSC ConfigurationS

120

$configurationData =

@{

 AllNodes =

 @(

 @{

 NodeName = '*'

 DestinationFile = 'C:\Scripts\Unattend.xml'

 },

 @{

 NodeName = 'S16-01'

 SourceFile = '\\S16-JB\Share\S16-01.xml'

 },

 @{

 NodeName = 'S16-02'

 SourceFile = '\\S16-JB\Share\S16-02.xml'

 }

)

}

Configuration FileCopyConfiguration

{

 Param

 (

 [Parameter(Mandatory)]

 [pscredential] $Credential

)

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 Node $AllNodes.NodeName

 {

 File FileCopyDemo

 {

 SourcePath = $Node.SourceFile

 DestinationPath = $Node.Destinationfile

Chapter 5 Writing advanCed dSC ConfigurationS

121

 Type = 'File'

 Credential = $Credential

 Force = $true

 }

 }

}

FileCopyConfiguration -Credential (Get-Credential) -ConfigurationData

$configurationData

In this example, you add one more hashtable to the AllNodes array and set the

NodeName key to ‘*’. This indicates that any custom keys defined within this hashtable are

available as a property with the $Node automatic variable. Therefore, you can now move

the DestinationFile key as well since that is common across all nodes. And that is the

exact change you did in this updated example.

Note if there are keys with the same name in hashtables defined within
NodeName='*' and other node specific hashtables, the explicit node hashtables
take precedence. this is one way to override a few common settings when needed.

Coming back to the credentials aspect in your file configuration, you haven’t

specified yet in any of your examples how to deal with credentials.

PowerShell DSC can be forced (again, not recommended) to use plain-text

passwords by setting a key called PSDscAllowPlainTextPassword to $true. But where do

you add this key? A hint here: this key should be accessible across all nodes defined in

the configuration data.

You might have easily guessed it. Yes, it needs to be in the hashtable where NodeName

key is set to ‘*’. Remember that you cannot have a configuration document with a few

nodes with credentials and secure strings encrypted and others not encrypted. So, the

PSDscAllowPlainTextPassword cannot be in any hashtable other than the one with

NodeName set to ‘*’.

Also, if you want to use domain credentials, you may want to set the

PSDscAllowDomainUser key to $true as well. This will suppress any warning messages

during the compile process if the supplied credentials have a \ format or have an ‘@’

symbol in the user name. Once again, it is not recommended to use domain credentials

in a PowerShell DSC configuration document. This is because any user with access to

Chapter 5 Writing advanCed dSC ConfigurationS

122

the C:\Windows\System32\Configuration folder can look at the domain credentials

(encrypted or not) and use them for bad intent such as decrypting the credentials and

using them in any possible way to attack. Or the same encrypted credentials can be used

in another MOF to use the LCM to configure the system for malicious intent.

Here is the complete example:

$configurationData =

@{

 AllNodes =

 @(

 @{

 NodeName = '*'

 DestinationFile = 'C:\Scripts\Unattend.xml'

 PsDscAllowPlainTextPassword = $true

 PSDscAllowDomainUser = $true

 },

 @{

 NodeName = 'S16-01'

 SourceFile = '\\S16-JB\Share\S16-01.xml'

 },

 @{

 NodeName = 'S16-02'

 SourceFile = '\\S16-JB\Share\S16-02.xml'

 }

)

}

Configuration FileCopyConfiguration

{

 Param

 (

 [Parameter(Mandatory)]

 [pscredential] $Credential

)

 Import-DscResource -ModuleName PSDesiredStateConfiguration

Chapter 5 Writing advanCed dSC ConfigurationS

123

 Node $AllNodes.NodeName

 {

 File FileCopyDemo

 {

 SourcePath = $Node.SourceFile

 DestinationPath = $Node.Destinationfile

 Type = 'File'

 Credential = $Credential

 Force = $true

 }

 }

}

FileCopyConfiguration -Credential (Get-Credential) -ConfigurationData

$configurationData

When you compile this configuration, you will see two MOF files generated, one for

each node in the configuration data. This is shown in Figure 5-6.

Figure 5-6. Compiling MOF with configuration data

The reason why you should not force plain-text passwords in a production

environment becomes very clear if you look at the compiled MOF. Here is a snippet from

one of the MOF files from my system:

/*

@TargetNode='S16-01'

@GeneratedBy=administrator

@GenerationDate=08/21/2017 16:03:18

@GenerationHost=S16-JB

*/

Chapter 5 Writing advanCed dSC ConfigurationS

124

instance of MSFT_Credential as $MSFT_Credential1ref

{

Password = "P0wer$hell1234";

 UserName = "psdsc\\administrator";

};

Enacting this configuration will copy the files from remote UNC share to the target

nodes.

 Using PSDscRunAsCredential
What if a resource does not provide the Credential property to authenticate to remote

resources? This is where the PSDscRunAsCredential property comes in handy.

Note one thing that i realized while writing this section is that you can’t use
PSDscRunAsCredential with the File resource to authenticate to a remote
share.

In Chapter 4, when exploring DSC resources, you looked at a way to retrieve resource

properties. This was done using the Get-DscResourceProperty function provided in one

of the examples. Figure 5-7 shows it again.

Figure 5-7. File resource properties

Chapter 5 Writing advanCed dSC ConfigurationS

125

As shown in Figure 5-7, two properties, DependsOn and PSDscRunAsCredential,

are added to each DSC resource in the system. You learned about using the DependsOn

property in the previous chapter. The PSDscRunAsCredential property can be used to

change the user context in which DSC enacts the resource instance configuration. Let’s

look an updated version of the earlier Script resource example again:

$configurationData =

@{

 AllNodes =

 @(

 @{

 NodeName = 'S16-01' PsDscAllowPlainTextPassword = $true

 PSDscAllowDomainUser = $true

 }

)

}

Configuration DSCRunDemo

{

 Param

 (

 [Parameter(Mandatory)]

 [pscredential] $Credential

)

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 Node $AllNodes.NodeName

 {

 Script DSCRunDemo1

 {

 SetScript =

 {

 Write-Verbose -Message $(whoami)

 }

 TestScript =

 {

Chapter 5 Writing advanCed dSC ConfigurationS

126

 return $false

 }

 GetScript =

 {

 return @{}

 }

 PSDscRunAsCredential = $Credential

 }

 }

}

DSCRunDemo -configurationData $configurationData -Credential

(Get- Credential)

This is similar to what you saw earlier in this chapter except that you use the

configuration data and set the PSDscRunAsCredential property in the script resource.

By setting the PSDscRunAsCredential within a resource instance definition, you

are instructing DSC to enact that resource instance’s configuration in the context of

credentials supplied. Figure 5-8 shows what you see when you enact this configuration.

See the difference in output between Figure 5-3 and Figure 5-8? In Figure 5-8, you

can see that whoami.exe returns psdsc\administrator as the username. So, using this

method, you can enforce DSC to use different user credentials and context for enacting a

resource instance’s configuration.

Figure 5-8. Script resource with PSDscRunAsCredential

Chapter 5 Writing advanCed dSC ConfigurationS

127

Let’s extend the above example to add one more Script resource but only one

instance of the Script resource configured with PSDscRunAsCredential property:

$configurationData =

@{

 AllNodes =

 @(

 @{

 NodeName = 'S16-01' PsDscAllowPlainTextPassword = $true

 PSDscAllowDomainUser = $true

 }

)

}

Configuration DSCRunDemo

{

 Param

 (

 [Parameter(Mandatory)]

 [pscredential] $Credential

)

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 Node $AllNodes.NodeName

 {

 Script DSCRunDemo1

 {

 SetScript =

 {

 Write-Verbose -Message $(whoami)

 }

 TestScript =

 {

 return $false

 }

Chapter 5 Writing advanCed dSC ConfigurationS

128

 GetScript =

 {

 return @{}

 }

 PsDscRunAsCredential = $Credential

 }

 Script DSCRunDemo2

 {

 SetScript =

 {

 Write-Verbose -Message $(whoami)

 }

 TestScript =

 {

 return $false

 }

 GetScript =

 {

 return @{}

 }

 }

 }

}

DSCRunDemo -ConfigurationData $configurationData -Credential (Get- Credential)

Try to compile and enact this configuration. What do you see? An error. This is

shown in Figure 5-9.

Figure 5-9. Conflicting PSDscRunAsCredential values

Chapter 5 Writing advanCed dSC ConfigurationS

129

This is a compile-time error in Windows Server 2016 before Windows Server version

1709. It is therefore preferred to author and compile configurations on Windows Server

version 1709 over earlier versions so you don’t have to work around this issue.

If you can’t compile on Windows Server 2016 version 1709, the workaround is to

either have all resource instances with the same PSDscRunAsCredential value or none at

all but keep in mind that this will give a very different end result.

What if all resource instances (same or different) configuration documents require to

be run as the same user using PSDscRunAsCredential? For this, you can either add the

PSDscRunAsCredential automatic property in all resource instances or specify this as a

parameter for the configuration command.

Here is an updated example that does not use PSDscRunAsCredential in the

resource instance definition:

$configurationData =

@{

 AllNodes =

 @(

 @{

 NodeName = 'S16-01' PsDscAllowPlainTextPassword = $true

 PSDscAllowDomainUser = $true

 }

)

}

Configuration DSCRunDemo

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 Node $AllNodes.NodeName

 {

 Script DSCRunDemo1

 {

 SetScript =

 {

 Write-Verbose -Message $(whoami)

 }

 TestScript =

Chapter 5 Writing advanCed dSC ConfigurationS

130

 {

 return $false

 }

 GetScript =

 {

 return @{}

 }

 }

 Script DSCRunDemo2

 {

 SetScript =

 {

 Write-Verbose -Message $(whoami)

 }

 TestScript =

 {

 return $false

 }

 GetScript =

 {

 return @{}

 }

 }

 }

}

DSCRunDemo -ConfigurationData $configurationData -PsDscRunAsCredential

(Get-Credential)

Observe how you are compiling the configuration in the above example.

PSDscRunAsCredential, similar to ConfigurationData, is another automatic parameter

added to the configuration commands. However, using this parameter with the

configuration command can have unintended consequences since the runas credential

will be used for all resources in the configuration.

Chapter 5 Writing advanCed dSC ConfigurationS

131

Try It use the method you saw earlier to investigate the parameters available on
a configuration command. do you see the PSDscRunAsCredential parameter?

Therefore, compiling and enacting this will show the same username in both

resource instance enact processes. This is shown in Figure 5-10.

This concludes our discussion on using configuration data and forcing plain-text

credentials in DSC configuration documents. However, this is not a recommended or

a secure method, as mentioned, especially when the compiled MOF files are staged on

a pull server share or pull service configuration repository. If you remember the DSC

feature discussion from Chapter 2, the MOF files (at rest) on the target node (running

WMF 5.1 or above) are always encrypted. This should be considered only an obfuscation

(through encryption) of configuration MOF files but not a measure towards encrypting

credentials in a MOF. The right method to securing credentials in a configuration

document is to use certificate-based encryption. Let’s dive into that.

Figure 5-10. Using PSDscRunAsCredential during MOF compilation

Chapter 5 Writing advanCed dSC ConfigurationS

132

 Using Certificates to Encrypt Credentials
Securing credentials in PowerShell DSC the right way requires encryption certificates.

The error message shown in Figure 4-5 has a link to an article written by PowerShell

team about how to secure credentials in PowerShell DSC configuration documents. Here

it is for easy reference: http://go.microsoft.com/fwlink/?LinkId=393729.

Before you can start securing credentials in DSC configurations, there are a few

prerequisites that must be met:

• You must generate encryption certificates and copy the public keys to

the authoring station.

• You must configure the target node LCM to use the certificate to

decrypt credentials.

• You must author a configuration document that uses credential

encryption.

 Generating Encryption Certificates

First and foremost, an encryption certificate is needed for securing credentials. If you

have a Certificate Authority (CA) in the infrastructure, this is the most preferred way.

However, a self-signed certificate is good enough since this is only credential encryption

and not authentication. But be aware that self-signed certificates are a management

nightmare. Unlike a complete public key infrastructure (PKI), with self-signed

certificates there is management overhead in terms of storing, constraining the usage,

and auditing of usage.

Installing and configuring a CA is certainly outside the scope of this chapter (and

book!). If you have a CA already, go ahead and ensure that the target nodes where you

plan to try the examples have an encryption certificate installed. If not, read on. You will

look at creating a self-signed certificate for the purpose of credential encryption.

Note this section assumes that you have prior understanding of different
certificate types and have experience in creating certificates. if you have a
certificate authority in your infrastructure, you can skip this section and proceed to
next section on configuring the target node LCM to use certificates for credential
decryption.

Chapter 5 Writing advanCed dSC ConfigurationS

http://go.microsoft.com/fwlink/?LinkId=393729

133

There are two ways you can generate a self-signed certificate.

• Generate the certificate on the authoring station, and copy and install

the entire certificate pair on the target node.

• Generate the certificate on the target node, and export and copy only

the public key to the authoring station.

The documentation link at the beginning of this section explains these methods

in-depth. Therefore, I will not repeat that info here; instead, I will walk you through a

function that generates these certificates on the target nodes and copies over the public

key and thumbprint to the authoring station. This is the recommended method since the

private key stays on the target node.

Note the following function uses the New-SelfSignedCertificate cmdlet
with desired functionality for this example and is available only in Windows Server
2016 and above. if you are trying self-signed certificate generation on a low-
level operating system such as Windows Server 2012 r2, you can try the New-
SelfSignedCertificateEx function available from the technet script center
(http://azrs.tk/newSscert).

function New-DscCredentialCertificate

{

 [CmdletBinding()]

 param

 (

 [Parameter(Mandatory)] [String]

 $AuthoringStation,

 [Parameter(Mandatory)] [String]

 $PublicKeyPath

)

 #Generating a new certificate and exporting the public key

 Write-Verbose -Message "Generating a new encryption certificate for

computer ${env:ComputerName}"

 $certificate = New-SelfSignedCertificate -Type DocumentEncryption

CertLegacyCsp -DnsName ${env:ComputerName} -HashAlgorithm SHA256

Chapter 5 Writing advanCed dSC ConfigurationS

http://azrs.tk/newSscert

134

 $null = $certificate | Export-Certificate -FilePath "${env:Temp}\${env:

ComputerName}.cer" -Force

 #Copying public key to authoring station

 Write-Verbose -Message "Creating a new PS Session to ${AuthoringStation}"

 $psSession = New-PSSession -ComputerName $AuthoringStation

 try

 {

 #Ensure the target path exists on authoring station

 Write-Verbose -Message "Copying public key to ${AuthoringStation}"

 Invoke-Command -Session $psSession -ScriptBlock {

 if (-not (test-Path -Path $using:PublicKeyPath))

 {

 $null = New-Item -Path $using:PublicKeyPath -ItemType

Directory -Force

 }

 }

 Copy-Item -ToSession $psSession -Path “${env:Temp}\${env:Computer

Name}.cer” -Destination “${PublicKeyPath}\${env:ComputerName}.cer”

-Force

 }

 finally

 {

 Remove-PSSession -Session $psSession

 }

}

I use this function on the DSC target nodes in my lab. This function generates a

new encryption certificate, exports the public key, and copies over the public key to the

authoring station. Here is how you use it:

AuthoringStation - Computer name of the system where you are authoring

DSC configurations.

PublicKeyPath - A local folder on the authoring station to copy the

public key files.

Chapter 5 Writing advanCed dSC ConfigurationS

135

New-DscCredentialCertificate -AuthoringStation S16-JB -PublicKeyPath C:\

PublicKeys -Verbose

Figure 5-11 shows this function in action.

I have run this function on a few systems in my lab and Figure 5-12 shows the copied

public keys on the authoring station.

 Configuring the Target Node LCM to Use Certificates
for Decryption

Once a certificate is created (or enrolled using a PKI) on the target node, you can

configure the LCM on the target node to use the newly created encryption certificate

for any credential decryption. This can be done by creating a meta configuration and

enacting it on the target node.

The property that you need to update in the LCM configuration is the CertificateID

property. It needs to be configured using the Settings meta resource you saw in

Chapter 3. The value for the CertificateID property is the thumbprint of the encryption

certificate that you just created on the target node.

Here is how to do this:

#Get the certificate thumbprint

$requiredCertificate = Get-ChildItem -Path Cert:\LocalMachine\My |

Figure 5-11. Generating an encryption certificate and copying the public key

Figure 5-12. Public keys of DSC target nodes

Chapter 5 Writing advanCed dSC ConfigurationS

136

 Where-Object {

 ($_.Subject -eq "CN=${env:COMPUTERNAME}") -and `

 ($_.EnhancedKeyUsageList.FriendlyName -contains

'Document Encryption')

 }

#Define meta configuration

[DscLocalConfigurationManager()]

Configuration CertificateConfig

{

 Settings

 {

 CertificateID = $requiredCertificate.Thumbprint

 }

}

#Compile meta configuration

CertificateConfig -OutputPath C:\LCMConfig -verbose

#Enact LCM Configuration

Set-DscLocalConfigurationManager -Path C:\LCMConfig -Force -Verbose

The first non-comment statement in this code snippet retrieves the certificate

whose subject matches the local computername and the EKU list contains document

encryption.

The subsequent statements in the snippet generate the meta configuration, compile

it, and enact it. Once the enact is complete, you can verify that the CertificateID

property is set to the value of the $requiredCertificate.Thumbprint by using the

Get-DscLocalConfigurationManager command. Figure 5-13 shows this from one of the

target nodes in my lab.

Chapter 5 Writing advanCed dSC ConfigurationS

137

Since the public keys for all nodes are available on the authoring station, the

certificate thumbprints needed for the credential and secure string encryption can be

retrieved using the following code snippet:

foreach ($item in (Get-ChildItem -Path C:\PublicKeys -Filter *.cer))

{

 $cert = [System.Security.Cryptography.X509Certificates.

X509Certificate2]::new()

 $cert.Import($item.FullName)

 $cert

}

This example code will iterate over all available public keys within the

C:\PublicKeys folder and retrieve the thumbprint and subject name for each

public key. Figure 5-14 shows this example in action.

Figure 5-13. LCM settings after configuring CertificateID

Chapter 5 Writing advanCed dSC ConfigurationS

138

 Authoring a Configuration Document to Use Certificates

Now that you have the right infrastructure in place to encrypt the credentials in a

configuration document, let’s see how to do it. There is, in fact, not much that you don’t

know. You already learned about the configuration data usage in PowerShell DSC; for

credential encryption you just need to implement two additional keys in the node data

to let the configuration compiling process know which public key to use for credential

encryption.

Here is how the configuration data from one of the earlier examples needs to be

changed to enable credential encryption:

$configurationData =

@{

 AllNodes =

 @(

 @{

 NodeName = 'S16-01'

 CertificateFile = 'C:\publicKeys\S16-01.cer'

 Thumbprint = 'E62AAD02E93E8C3082E96AA408032D0325C23FD6'

 PsDscAllowDomainUser = $true

 }

)

}

Configuration DSCRunDemo

{

 Param

 (

 [Parameter(Mandatory)]

 [psCredential] $Credential

)

Figure 5-14. Thumbprints from public keys on the authoring station

Chapter 5 Writing advanCed dSC ConfigurationS

139

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 Node $AllNodes.NodeName

 {

 Script DSCRunDemo

 {

 SetScript =

 {

 Write-Verbose -Message $(whoami)

 }

 TestScript =

 {

 return $false

 }

 GetScript =

 {

 return @{}

 }

 PSDscRunAsCredential = $Credential

 }

 }

}

DSCRunDemo -configurationData $configurationData -Credential $Credential

As you see in this example, within the node data hashtable for S16-01, you specify

the CertificateFile key and set it to the path where node’s public key is stored. And,

the second one you added is the Thumbprint key whose value is the thumbprint value

associated with node’s public key. This is shown in Figure 5-14.

A node data hashtable, like the one shown in the above example, needs to be

specified for every node that needs to receive the encrypted credentials. Let’s compile

this configuration and take a look at the resulting MOF.

Chapter 5 Writing advanCed dSC ConfigurationS

140

As shown in Figure 5-15, if the credential encryption is successful, you will see the

password as encrypted string in the compiled MOF file.

Note CMS encryption is used in dSC v2. the Mof files complied with this
encryption can’t be used on systems with dSC v1 and vice versa.

This concludes the discussion on securing credentials and secure strings in DSC

configurations. There are still a few things you need to know about using configuration data.

 Separating Configuration Data from
Environment Data
Configuration data forms the basis of separating environmental data from node

configuration data. To better understand this, let’s look at an example:

Configuration WebDBDemo

{

 Import-DscResource -ModuleName PsDscResources -Name Archive

 Import-DscResource -ModuleName PSDesiredStateConfiguration -Name

WindowsFeature

 Node @('WebServer01', 'WebServer02', 'WebServer03', 'WebServer04')

 {

 WindowsFeature WebServer

Figure 5-15. Encrypted password in the compiled MOF

Chapter 5 Writing advanCed dSC ConfigurationS

141

 {

 Name = 'Web-Server'

 IncludeAllSubFeature = $true

 Ensure = 'Present'

 }

 Archive SetupScripts

 {

 Path = '\\S16-JB\Share\Websetup.zip'

 Destination = 'C:\Scripts'

 Force = $true

 }

 }

 Node @('DBServer01','DBServer02')

 {

 WindowsFeature NET35

 {

 Name = 'NET-Framework-Core'

 Source = '\\S16-JB\Share\S16OS\Sources\Sxs'

 Ensure = 'Present'

 }

 Archive SetupScripts

 {

 Path = '\\S16-JB\Share\DBSetupScripts.zip'

 Destination = 'C:\Scripts'

 Force = $true

 }

 }

}

In this example, you have node configuration for four nodes that are web servers

and two DB servers. For the web server nodes, you have two resources, WindowsFeature

and Archive, being configured. And, for the DB server nodes, you are installing the .NET

Framework 3.5 from a UNC share and also copying the DB scripts from a zip archive

available at a UNC path.

Chapter 5 Writing advanCed dSC ConfigurationS

142

What if some of these nodes are used for a development environment and some in

production? What if you want the development servers to deploy the most recent build

of web scripts while production gets only the stable build? Each resource across these

nodes has some common configuration and some that is very specific to the node. As you

might have guessed it, there is still room for optimizing this configuration script and using

configuration data here. Let’s see what the configuration data might look like in this case.

First, construct the configuration data:

@{

AllNodes =

 @(

 @{

 NodeName = '*'

 ScriptDestinationPath = 'C:\Scripts'

 OSSourcePath = '\\S16-JB\Share\S16OS\Sources\Sxs'

 }

 @{

 NodeName = 'WebServer01'

 Role = 'WebServer'

 Environment = 'Production'

 }

 @{

 NodeName = 'WebServer02'

 Role = 'WebServer'

 Environment = 'Production'

 }

 @{

 NodeName = 'WebServer03'

 Role = 'WebServer'

 Environment = 'Development'

 }

 @{

 NodeName = 'WebServer04'

 Role = 'WebServer'

 Environment = 'Development'

 }

Chapter 5 Writing advanCed dSC ConfigurationS

143

 @{

 NodeName = 'DBServer01'

 Role = 'DBServer'

 Environment = 'Production'

 }

 @{

 NodeName = 'DBServer02'

 Role = 'DBServer'

 Environment = 'Development'

 }

)

 EnvironmentData =

 @{

 'WebServer' = @{

 'Production' = @{

 'ScriptsPath' = '\\S16-JB\Share\Websetup-Prod.zip'

 }

 'Development' = @{

 'ScriptsPath' = '\\S16-JB\Share\Websetup-Dev.zip'

 }

 }

 'DBServer' = @{

 'Production' = @{

 'ScriptsPath' = '\\S16-JB\Share\DBsetup-Prod.zip'

 }

 'Development' = @{

 'ScriptsPath' = '\\S16-JB\Share\DBsetup-Dev.zip'

 }

 }

 }

}

In this configuration data, you define roles for each of the servers and define the

data specific to the production and development environments in a hashtable that is

associated with the server role within which you have environment-specific settings.

Chapter 5 Writing advanCed dSC ConfigurationS

144

The non-node data named EnvironmentData helps you define the settings that differ

from production to development. Since the destination path for the script extraction is

same across all environments, you put that property under NodeName='*' so that it is

available for all nodes during compilation.

You can save this configuration data hashtable as a PowerShell data file (.psd1) and

use it while compiling the configuration.

Tip if you want to quickly validate if the configuration data hashtable you built is
correct or not, you can use the Import-PowerShellDataFile cmdlet in WMf
5.0 and above.

Let’s now update the configuration document to use the configuration data:

Configuration WebDBDemo

{

 Import-DscResource -ModuleName PsDscResources -Name Archive

 Import-DscResource -ModuleName PSDesiredStateConfiguration

-Name WindowsFeature

 #Add what is specific to web server role

 Node $AllNodes.Where{$_.Role -eq 'WebServer'}.NodeName

 {

 WindowsFeature WebServer

 {

 Name = 'Web-Server'

 IncludeAllSubFeature = $true

 Ensure = 'Present'

 }

 }

 #Add what is specific to DB server role

 Node $AllNodes.Where{$_.Role -eq 'DBServer'}.NodeName

 {

 WindowsFeature NET35

 {

 Name = 'NET-Framework-Core'

Chapter 5 Writing advanCed dSC ConfigurationS

145

 Source = $Node.OSSourcePath

 Ensure = 'Present'

 }

 }

 #Add configuration that is common across but may have separate

environment data

 Node $AllNodes.NodeName

 {

 $NodeRole = $Node.Role

 $NodeEnvironment = $Node.Environment

 Archive SetupScripts

 {

 Path = $ConfigurationData.EnvironmentData.$NodeRole.

$NodeEnvironment.ScriptsPath

 Destination = $Node.ScriptDestinationPath

 Force = $true

 }

 }

}

WebDBDemo -ConfigurationData C:\Scripts\ConfigurationData.psd1 -Verbose

As you can see from this updated configuration document, there are two conditions

that check for the role of the nodes and add necessary Windows feature configurations.

For the script archive extraction, you use the environment-specific data defined in

the configuration data. Notice how the EnvironmentData is accessed. You use the

$ConfigurationData parameter passed on as an argument to the configuration script

and access EnvironmentData as its property. Since the $Node automatic variable contains

the Role and Environment configuration for each node, you can avail those values to get

to the right ScriptsPath value for the node.

Chapter 5 Writing advanCed dSC ConfigurationS

146

Figure 5-16 shows the compiled configurations. You can open any of the generated

MOFs to see if the configuration is generated based on the environmental data specified

in the configuration data file. Here is a snippet from what is generated on my system:

instance of MSFT_RoleResource as $MSFT_RoleResource1ref

{

ResourceID = "[WindowsFeature]WebServer";

 IncludeAllSubFeature = True;

 Ensure = "Present";

 SourceInfo = "C:\\Scripts\\WebDBConfig.ps1::9::9::WindowsFeature";

 Name = "Web-Server";

 ModuleName = "PSDesiredStateConfiguration";

ModuleVersion = "1.0";

 ConfigurationName = "WebDBDemo";

};

instance of MSFT_Archive as $MSFT_Archive1ref

{

ResourceID = "[Archive]SetupScripts";

 Path = "\\\\S16-JB\\Share\\Websetup-Prod.zip";

 Destination = "C:\\Scripts";

 SourceInfo = "C:\\Scripts\\WebDBConfig.ps1::34::9::Archive";

 Force = True;

Figure 5-16. Compiled configurations with configuration data

Chapter 5 Writing advanCed dSC ConfigurationS

147

 ModuleName = "PSDscResources";

 ModuleVersion = "2.8.0.0";

 ConfigurationName = "WebDBDemo";

};

 Creating Reusable Configurations
Chapter 4 contained an example where you added parameters to configuration

documents. This, in turn, made the configuration document a reusable one. You can

compile the configuration with different parameter values to generate MOF documents

for different nodes. This is just one method of making DSC configuration documents

reusable. You can use the configuration data construct as well to achieve the same goal.

You just saw an example where you achieved some level of reusability by moving

the configuration data into a separate data file. In all of the examples so far, you have

a single configuration script that defines the configuration that has to be managed on

target system(s). So, depending on the number of resources you add to this script, it can

become quite big and cumbersome to manage. This is where nested configurations help

to simplify authoring complex configuration scripts.

 Nested Configurations
Nested configurations (a.k.a composite configurations) are configurations that wrap

around other configurations. In this section, you will learn how to create nested

configurations and see how this can help take the configuration reusability to a next

level. To understand this, you will start with an example. You will begin with the

configuration data first:

@{

 AllNodes = @(

 @{

 NodeName="*"

 SourcePath = "C:\Temp\Generic-Scripts.zip"

 Destination = "C:\Deployment\Scripts"

 }

Chapter 5 Writing advanCed dSC ConfigurationS

148

 @{

 NodeName="WebServer01"

 Role = "Web"

 Force = 'False'

 }

 @{

 NodeName="DBServer01"

 Role = "Database"

 Force = 'True'

 }

 @{

 NodeName="WebServer03"

 Force = 'False'

 }

)

 DBConfig = @{

 SourcePath = "C:\Temp\Database-Scripts.zip"

 ServiceToCheck = "MSSQLSERVER"

 }

 WebConfig = @{

 SourcePath = "C:\Temp\WebServer-Scripts.zip"

 ServiceToCheck = "inetsrv"

 }

}

You saw the following example earlier, so let’s build a nested configuration that uses

this configuration data.

You will now build several small configurations to compose a larger nested

configuration at the end. The first one you need is a web server configuration. This is

simple; you just want to ensure that the Web-Server role is installed.

Configuration IIS

{

 Import-DscResource –ModuleName 'PSDesiredStateConfiguration'

Chapter 5 Writing advanCed dSC ConfigurationS

149

 WindowsFeature WebServer

 {

 Name = 'Web-Server'

 IncludeAllSubFeature = $true

 Ensure = 'Present'

 }

}

If you review the preceding configuration, you’ll note that it doesn’t have the Node

block. The next configuration you need is a service check configuration. Based on the

role of the target system, database, or web, you want to enforce a specific service into

running state. This code shows how:

Configuration ServiceCheck {

 param

 (

 [Parameter(Mandatory)]

 [String] $Name

)

 Import-DscResource –ModuleName 'PSDesiredStateConfiguration'

 Service $Name

 {

 Name = $Name

 State = 'Running'

 }

}

You parameterize this configuration so that it can be reused, based on the role, to

provide a different set of input values. The third configuration you require is an Archive

resource configuration that takes only the different input parameters and unpacks an

archive. Once again, you have the parameters defined on this to make it reusable:

Configuration ArchiveUnpack {

 param

 (

 [Parameter(Mandatory)]

 [String]$Source,

Chapter 5 Writing advanCed dSC ConfigurationS

150

 [Parameter(Mandatory)]

 [String] $Destination,

 [Parameter()]

 [Boolean] $Force = $false

)

 Import-DscResource –ModuleName 'PSDesiredStateConfiguration'

 Archive Unpack

 {

 Path = $Source

 Destination = $Destination

 Force = $Force

 }

}

You can copy these configuration definitions into PS1 files and load them into

memory. Once the configuration is loaded into memory, you can use the Get-Command

cmdlet to see a list of configurations that are defined in the PS1 file (see Figure 5-17).

From Figure 5-17, you can see that the configuration documents from the PS1 loaded

as configuration commands. You will now use these configuration commands in a larger

configuration document:

Configuration NestedConfiguration {

 Node $AllNodes.NodeName

 {

 Switch ($Node.Role)

Figure 5-17. Configurations in memory

Chapter 5 Writing advanCed dSC ConfigurationS

151

 {

 'Web'

 {

 IIS IISInstall { }

 ServiceCheck SvcCheck

 {

 Name = $ConfigurationData.WebConfig.ServiceToCheck

 }

 ArchiveUnpack ExtractZip

 {

 Source = $ConfigurationData.WebConfig.SourcePath

 Destination = $Node.Destination

 Force = $False

 }

 }

 'Database'

 {

 ServiceCheck SvcCheck

 {

 Name = $ConfigurationData.DBConfig.ServiceToCheck

 }

 ArchiveUnpack ExtractZip

 {

 Source = $ConfigurationData.DBConfig.SourcePath

 Destination = $Node.Destination

 Force = $true

 }

 }

 Default

 {

 ArchiveUnpack ExtractZip

Chapter 5 Writing advanCed dSC ConfigurationS

152

 {

 Source = $Node.SourcePath

 Destination = $Node.Destination

 Force = $true

 }

 }

 }

 }

}

When you compile the configuration with the configuration data shown at the

beginning of this example, you will see that there are three MOF files generated based on

what is defined in the nested configurations.

This example illustrates that you can write individual parameterized configuration

documents and then reuse them in a larger configuration document.

Note With WMf 5.0 and above, you can use the DependsOn property within
nested resource configuration. this was not possible in dSC v1.

Nested configurations are good. However, the way you have seen them so far is either

packaging them in a PS1 file or just loading them into memory like any other PowerShell

function. At some point, these PS1 files become unmanageable. One way to address

this is to package these reusable configurations into DSC resource modules. In DSC,

this is achieved using composite resource modules. Don’t confuse them with composite

configurations. These are modules and not just configurations. You will learn more

about this after you understand how to write your own custom DSC resource modules in

Chapter 6.

 Summary
Through several examples in this chapter, you learned how to write advanced

configurations that are reusable. DSC configurations can be parameterized like any

PowerShell function and this brings in reusability. The configuration data construct

in DSC provides a way to separate the environment data from node data. This helps

you create configurations that use either unencrypted or encrypted credentials and

Chapter 5 Writing advanCed dSC ConfigurationS

153

also enables another way to create reusable configurations. You looked at wrapping

or using configurations inside other configurations. This approach results in nested

configurations (a.k.a composite resource configurations). In the next chapter, you

will extend this knowledge to build composite resource modules in which nested

configurations become a core concept and you’ll also write custom DSC resource

modules.

Chapter 5 Writing advanCed dSC ConfigurationS

155
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_6

CHAPTER 6

Writing Composite
and Custom DSC
Resource Modules
I ended the previous chapter with a discussion about nested configurations and how

they can be packaged as custom DSC resource modules, which are called composite

resource modules. Also, in the last few chapters, you looked at how to use in-box

and Microsoft- or community-developed custom DSC resource modules in your

configuration documents. This collection of custom DSC resource modules available

in the PowerShell gallery may or may not be sufficient for all your configuration

management needs in your enterprise or IT organization. If not, you have to invest time

and resources in writing your own custom DSC resource modules. There are many

ways to write custom DSC resource modules. So, in this chapter, you will first look at

the composite resource modules and then learn how to create your own custom DSC

resource modules.

 Lab Requirements
To try the examples and exercises in this chapter, you will need at minimum two or more

systems with Windows Server 2008 R2 or above with WMF 5.1 installed. I recommend a

system with Windows Server 2016.

156

 Composite Resource Modules
You know how to create nested configurations. Nested configurations let you use

parameterized configuration functions inside other configuration documents. With

the composite resource modules, you can package these nested configurations as

resource modules that can be discovered using the Get-DscResource cmdlet. This

requires a special folder structure and naming convention of the module file storing the

parameterized configuration.

Let’s start with the in-box composite resources and use them as an example to build

your own composite resource.

Get-DscResource -Module PSDesiredStateConfiguration | Where-Object {

$_.ImplementedAs -eq 'Composite' }

Figure 6-1 shows the composite resources available in the in-box

PSDesiredStateConfiguration module.

In WMF 4.0, if you had to install multiple Windows roles and features using a DSC

configuration document, you had to put multiple instances of the WindowsFeature

resource. Here is an example:

Configuration HyperVNode

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.0

 WindowsFeature Hyper-V

 {

 Name = 'Hyper-V'

 IncludeAllSubFeature = $true

 Ensure = 'Present'

 }

Figure 6-1. In-box composite resources

Chapter 6 Writing Composite and Custom dsC resourCe modules

157

 WindowsFeature FailoverCluster

 {

 Name = 'Failover-Clustering'

 IncludeAllSubFeature = $true

 Ensure = 'Present'

 }

 WindowsFeature DataCenterBridging

 {

 Name = 'Data-Center-Bridging'

 IncludeAllSubFeature = $true

 Ensure = 'Present'

 }

 WindowsFeature RSATHyper-V

 {

 Name = 'RSAT-Hyper-V-Tools'

 Ensure = 'Present'

 }

 WindowsFeature RSATClustering

 {

 Name = 'RSAT-Clustering'

 IncludeAllSubFeature = $true

 Ensure = 'Present'

 }

}

This configuration script installs the roles and features needed for a Hyper-V

cluster node. This can be really long and complex depending on the number of role

and features and any other resource instances that you need to add. You can, of course,

implement the role/feature names for a string array parameter in the configuration

and use a foreach loop inside the configuration. This will simplify the configuration

document to a few lines but this will work if you have similar resource instance such as

in the example. However, there are better ways. And then you can use that as a nested

configuration inside a large configuration document. However, this does not provide the

discoverability available with the Get-DscResource cmdlet.

Chapter 6 Writing Composite and Custom dsC resourCe modules

158

To enable scenarios like this where you need to install multiple roles and features

in a configuration, WMF 5.0 implemented the WindowsFeatureSet in-box composite

resource. Using this composite resource, the above configuration document can be

simplified to a few lines:

Configuration HyperVNode

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

 WindowsFeatureSet HyperVClusterNode

 {

 Name = @(

 'Hyper-V',

 'Failover-Clustering',

 'Data-Center-Bridging',

 'RSAT-Hyper-V-Tools',

 'RSAT-Clustering'

)

 IncludeAllSubFeature = $true

 Ensure = 'Present'

 }

}

If you are curious about how the WindowsFeatureSet resource is implemented,

take a look at the resource files at C:\Windows\system32\WindowsPowerShell\v1.0\

Modules\PSDesiredStateConfiguration\DSCResources\WindowsFeatureSet.

Figure 6- 2 shows the folder structure of this DSC resource.

tree /F /A (Get-DscResource -Module PSDesiredStateConfiguration -Name

WindowsFeatureSet).ParentPath

Figure 6-2. WindowsFeatureSet DSC resource

Chapter 6 Writing Composite and Custom dsC resourCe modules

159

As you can see in Figure 6-2, there are two files within that resource folder.

WindowsFeatureSet.Schema.psm1 contains the logic to generate a nested configuration

definition and WindowsFeatureSet.psd1 is a regular PowerShell module manifest.

Note open the WindowsFeatureSet.Schema.psm1 in your favorite editor and
examine the contents of the file. While the powershell team chose to implement
the logic to generate the nested configuration, it is not necessary for you to
implement composite resources the same way.

as you saw in Figure 6-1, there are other in-box composite resources in the
PSDesiredStateConfiguration module. i suggest that you try out those
resources as well.

From your learning so far, you understand that the composite resource modules

can simplify the configuration document authoring and enable discoverability for the

composite resources. And, you also understand that to be able to package a nested

configuration as a composite resource module, you need to package the nested

configuration in the form of a resourceName.Schema.Psm1 file and add a module

manifest file.

So, it’s time for you to start creating your own composite resource module. For

the purpose of this example, you will look at a very simple nested configuration. But I

encourage you to experiment with creating of a few more composite resource modules.

 Packaging a Composite Resource Module
Let’s start with a sample parameterized configuration:

Configuration DisableLoopbackCheck

{

 Param

 (

 [Parameter(Mandatory = $true)]

 [Boolean]

 $Enable

)

Chapter 6 Writing Composite and Custom dsC resourCe modules

160

 Import-DscResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

 if ($Enable)

 {

 $Ensure = 'Present'

 }

 else

 {

 $Ensure = 'Absent'

 }

 Registry DefaultDomainName

 {

 Key = 'HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa'

 ValueName = 'DisableLoopbackCheck'

 ValueData = 1

 ValueType = 'DWord'

 Ensure = $Ensure

 }

}

This configuration updates a registry key using the in-box Registry DSC resource.

This is something many SharePoint developers implement on their development

systems to allow access to the web server running on the same system using a fully-

qualified domain name. Let’s say you want to ensure that this configuration is available

to all SharePoint developers and they can use it as a part of the larger configuration

document that is used to build their development environment. Before you start

packaging this configuration document as a composite resource module, let’s create the

necessary folder structure for the module:

New-Item -Path SharePointConfiguration\DSCResources\DisableLoopbackCheck

-ItemType Directory -Force

Chapter 6 Writing Composite and Custom dsC resourCe modules

161

This creates the folder structure shown in Figure 6-3.

Since the configuration in your example is already parameterized, you can save this

configuration as DisableLoopbackCheck.Schema.psm1 in the DisableLoopbackCheck

folder you created just now. If you are using your own DSC configuration for this

exercise, if you have a Node block in the configuration document, make sure you remove it.

Composite resources can’t contain a Node block since the configuration document where

you want to use this composite resource will have the Node script block and the same

node name will be passed on to the composite resource as well.

Once this is done, you can generate a module manifest for this resource:

$manifestParams = @{

 Path = ' .\SharePointConfiguration\DSCResources\

DisableLoopbackCheck\DisableLoopbackCheck.psd1'

 Author = 'DSCFan'

 GUID = (New-GUID).Guid

 RootModule = 'DisableLoopbackCheck.Schema.psm1'

 ModuleVersion = '1.0.0.0'

 CompanyName = 'The Awesome DSC Inc.'

}

New-ModuleManifest @manifestParams -Verbose

To generate the module manifest for the composite resource, you need provide the

.Schema.psm1 file as the RootModule. Also, don’t forget the ModuleVersion property. This

will help you track the version of the composite resource being used in a configuration.

Figure 6-3. Folder structure for the composite resource

Chapter 6 Writing Composite and Custom dsC resourCe modules

162

To complete this resource module creation, you need a module manifest for the top-

level resource module itself; that is the SharePointConfigurationresource module.

$manifestParams = @{

 Path = ' .\SharePointConfiguration\SharePointConfiguration.

psd1'

 Author = 'DSCFan'

 Description = ' Composite DSC resources for SharePoint development

environment.'

 GUID = (New-GUID).Guid

 ModuleVersion = '1.0.0.0'

 CompanyName = 'The Awesome DSC Inc.'

}

New-ModuleManifest @manifestParams -Verbose

Unlike the resource manifest, you don’t need the RootModule specification here for

the composite module manifest. Both the top-level folder and the composite resources

have the module manifest to ensure that the composite resource can load the Schema.

psm1 file and the top-level module manifest ensures that the DSC composite resource in

the module is exported.

Once you’ve generated the manifest, the folder structure will look like Figure 6-4.

You’re ready! Copy the SharePointConfiguration folder to the C:\Program Files\

WindowsPowerShell\Modules folder.

Figure 6-4. Folder structure after manifest creation

Chapter 6 Writing Composite and Custom dsC resourCe modules

163

Note For the compile phase, the module can be in any folder represented by the
$env:PSModulePath.

Once the resource module is available in the desired modules path, you can use

the Get-DscResource cmdlet to see if you can discover the composite resource. This is

shown in Figure 6-5.

 Using a Composite Resource in a Configuration
You have already seen how to use a composite resource in a configuration document. It

is no different from how to add a regular resource instance to a configuration document.

So try it one more time with your new composite DSC resource module. Here is the

sample DSC configuration:

Configuration SharePointDev

{

 Import-DscResource -ModuleName SharePointConfiguration -Name

DisableLoopbackCheck

 Node localhost

 {

 DisableLoopbackCheck SPLPCheck

 {

 Enable = $true

Figure 6-5. New composite resource in the Get-DscResource output

Chapter 6 Writing Composite and Custom dsC resourCe modules

164

 }

 }

}

SharePointDev

This is really it. Since the DisableLoopbackCheck has only one property (Enable),

which is the mandatory property, you can compile and enact this. Figure 6-6 shows

partial output from the enact.

Note Check the compiled moF and see how the composite configuration results
into a registry resource specification. this indicates that the composite resources
are compile-time artifacts. once the compilation is complete, the resource
definition gets replaced by the “real” resource that the composite was built upon.

So far you have learned about creating a new composite resource module and using

it in the DSC configuration document.

Figure 6-6. Partial output from the configuration enact

Chapter 6 Writing Composite and Custom dsC resourCe modules

165

Composite resources support all common properties for a DSC resource.

This includes DependsOn and PSDscRunAsCredential properties. Once the nested

configurations are packaged into composite resource modules, they can be published

like a custom DSC resource module to either the PowerShell gallery or a local PowerShell

module repository. You will learn more about this after you learn how to write custom

DSC resource modules.

 Custom DSC Resource Modules
What you have seen so far, the composite resource modules, will help you package

long and complex configurations into reusable resource modules. However, composite

resource modules do not extend the scope of configuration because they do not

implement any additional actual resources. A composite resource is just an authoring

and compile time artifact. So what if you don’t have any existing DSC resource modules

for a certain scenario or configuration task? This is where your expertise in creating

custom DSC resource modules plays out. In this section, you will explore different types

of resource modules and learn how to author a few of them. Towards the end of this

chapter, you will learn about publishing these modules to a local PowerShell repository.

Let’s examine the different types of DSC resources by looking at the Get-

DscResource cmdlet output. This is shown in Figure 6-7.

Figure 6-7. Types of DSC resources

Chapter 6 Writing Composite and Custom dsC resourCe modules

166

Although there are only three types shown here, there are a few more sub-types.

Figure 6-8 shows this classification and Table 6-1 explains them.

Figure 6-8. DSC resource classification

Table 6-1. An Overview of the Module Types

Module Type Sub-Classification Description

Composite na Composite modules are nested configurations packaged

as discoverable and reusable resource modules.

PowerShell moF-based these resources in the powershell module are defined

using a moF schema that represents the resource

properties and the module implemented as a set of

Get, Set, and Test- TargetResource functions.

PowerShell Class-based these resources in the powershell modules are defined

as powershell classes. available only in powershell 5.0

and above.

Binary C# these resources in the C# modules are implemented as

a set of Get, Set, and Test methods in C#.

Binary management

infrastructure (mi)

the resources in this type of module are implemented

as mi providers written in the native language (C++).

You already know about composite resource modules. They are simply a package of

nested configurations.

Chapter 6 Writing Composite and Custom dsC resourCe modules

167

Desired State Configuration custom resource modules can be written as PowerShell

script modules or Binary PowerShell modules (written in C#) or as Management

Infrastructure providers.

Of all three, the MI providers are the most complex and, at this time of writing,

only providers written in C++ are supported. The built-in File and Log resource in

DSC is an MI provider. The decision to create an MI provider depends on the existing

functionality that can be leveraged as a part of the DSC resource. If you already have

the required functionality and an MI provider that is used to manage your application

settings, extending that functionality to an MI provider for DSC makes sense. Also, if

an application or software that you want to manage is written in native code, it may be

easier to program such an application configuration using an MI provider than to create

a module written either in C# or PowerShell.

The choice between the PowerShell script-based (MOF or Class) resources and

the binary resources written in C# depends mostly on your expertise. If you are already

proficient in writing PowerShell script modules, you are already equipped to write

DSC resources as scripts. However, if your area of expertise is C# and you think that the

resource configuration using .NET is more performant than PowerShell, a binary DSC

resource could be a better choice.

In this chapter, you will look at authoring MOF- and class-based DSC resources. The

WindowsPackageCab resource is an example of a class-based DSC resource and rest of

the in-box resources are examples of MOF-based DSC resources. To start with, you will

look at what a custom DSC resource module really is, its folder structure, and the must-

knows. In the later sections, you will look at creating High Quality Resource Modules

(HQRM) based on the coding and style guidelines Microsoft has in place.

Note the hQrm guidelines are evolving, so expect changes to this list.

Towards the end, you will see a Plaster template developed by PowerShell MVP and

DSC expert Ben Gelens to see how it makes creation of DSC resource module scaffold.

Let’s get started.

Before I go into the details of building custom DSC resources (either MOF- or

Class-based), it is important to understand the key elements in a DSC resources and

the execution flow of a DSC resource. This section introduces these concepts and the

subsequent sections build upon this and demonstrate building DSC resources.

Chapter 6 Writing Composite and Custom dsC resourCe modules

168

 Functions in a DSC Resource Script
The DSC MOF- or class-based resources that you need to author have special

requirements. These resource scripts must contain the three functions/methods

described in Table 6-2. The names of these functions/methods have to be same as shown

in the table and they are used in the resource configuration flow. I will discuss more

about the execution flow after a brief description of these functions in the resource script.

Table 6-2. Mandatory Functions in a DSC Resource Script

Function or
Method Name

Description Input Output

Get-

TargetResource

or Get()

this function is used to

retrieve the current state

of the configuration. For

example, by taking the key

resource properties as an

input, the function should

gather the state of the

resource on the target system

and return all its properties.

the resource properties

identified as required/

mandatory properties in

the schema moF.

a configuration hash

table containing the

values of all resource

instance properties in

the current state or

object instance of the

dsC resource class.

Set-

TargetResource

or Set()

this function or method

should contain the logic

required to perform the

configuration change. this

function is used to ensure

that the resource instance is

in the requested state.

the resource properties

identified as mandatory/

required properties

and any other optional

properties defined in the

schema moF and class

properties.

none.

Test-

TargetResource

or Test()

this function or method is

used to identify if the resource

instance is in desired state

or not. the output from this

function is used to decide if

the Set-TargetResource

function or Set() method

must be called or not.

this function must

have the same

parameters as the

Set-TargetResource

function or Set()

method.

a Boolean value

indicating if the

resource instance is in

desired state (True)

or not (False).

Chapter 6 Writing Composite and Custom dsC resourCe modules

169

Note *-TargetResource functions are used in the moF-based custom dsC
resource scripts. the Get, Set, and Test methods are used in the class-based
dsC resource scripts. For the purpose of creating an easy reading experience, i
will refer to both as Get, Set, and Test functions instead of using the full function
name or referring to the method names. Where needed, i will explicitly call out the
function names or method names.

Let’s take a look at how the functions shown in Table 6-2 are used the resource

execution flow. Understanding this execution flow is important to enable the right logic

in the resource script functions.

 DSC Resource Execution Flow

Test and Set are the functions used during the configuration enact process. As

described in Table 6-2, Set gets called if and only if Test returns false. Figure 6-9

provides an overview of this in the form of a flow chart.

Figure 6-9. Resource execution flow

Chapter 6 Writing Composite and Custom dsC resourCe modules

170

You saw in Table 6-2 that the Test function must return a Boolean value. This

function has the same parameters as the Set function. When this function is called, it

looks at the current state of the resource instance you are configuring and then returns

either true or false. For example, if you are creating a DSC resource to create a virtual

machine, you must first check if the VM already exists before you attempt to create one.

This is what the Test function in the resource script must check. If it exists and conforms

to the desired state, this function/method must return true. It should return false

otherwise. The Set function must be executed to create or update the VM configuration

if and only if the Test function returns false. So, in essence, how you write Test

function decides if your custom DSC resource works as expected or not.

The Set function performs the configuration change required. As this function gets

executed only if the resource instance is not in the desired state, the error handling and

prerequisite checks can be offloaded to the Test function.

The Get function, unlike the Set and Test, is not a part of the configuration enact

process. This is evident from the flow shown in Figure 6-9. However, the Get function is

used to retrieve the current state of the resource instance. The Get-DscConfiguration

cmdlet uses this function for all resources in a configuration document.

With the above understanding, you can start writing your first MOF-based DSC

resource.

 MOF-Based DSC Resources
MOF-based resources have existed since version 1 of DSC, which shipped as a part of

WMF 4.0. They are called MOF-based because the resource requires a schema MOF file

that describes the resource properties. The folder structure for a custom DSC resource

module is similar to that of a composite resource. Here is bare minimum setup:

$env:PSModulePath (folder)

 |- ResourceModuleName (folder)

 |- DSCResources (folder)

 |- ResourceName (folder)

 |- ResourceName.psm1 (file, required)

 |- ResourceName.schema.mof (file, required)

Chapter 6 Writing Composite and Custom dsC resourCe modules

171

Note although the module can be within any possible folder represented by
$env:PSModulePath during authoring phase, it must be available in the
C:\Program Files\WindowsPowerShell\Modules folder during the enact
phase.

You will build a custom MOF-based resource for configuring host file entries in

Windows OS. In this section, you are not concerned about how and what commands

are used in the module-related functions. This section will show how to structure a DSC

resource module and what should go into the module file.

The first step in writing a custom DSC resource is to write down the properties of a

resource you want to configure.

A hosts file in Windows OS is located at $env:SystemRoot\system32\drivers\etc.

This file is a simple text file that takes the host entries as space-separated values. For

example, the following string represents host entry: 10.10.10.10 TestHost10.

The DSC resource must be capable of managing these entries. In this example,

a hosts file entry is the resource instance you intend to configure. The mandatory

input parameters are IPAddress and HostName. So, both parameters can become key

properties in the resource schema.

Note pertaining to this example, you can implement both IPAddress and
HostName as key properties or either of them. this is a design choice. When you
implement both properties as key properties, it becomes necessary that each
resource instance has a different value for these properties. so, with this design
you can’t have same ip address mapped to multiple host names or vice versa.
i recommend that you play with these different implementations and understand
how this design choice changes the behavior of the resource instances.

You also need to use the Ensure property to either add or remove a host entry. The

possible values for this property are Present and Absent.

Let’s create the folder structure needed for this resource:

New-Item -Path ProDSC\DSCResources\HostsFile -Force -ItemType Directory

You can now create the schema MOF for the resource.

Chapter 6 Writing Composite and Custom dsC resourCe modules

172

 The Resource Schema File

The schema MOF of a DSC resource defines the properties of a resource. Each MOF file

written for a DSC resource must have at minimum one or more properties. Each custom

resource class must derive from the OMI_BaseResource class. Also, the ClassVersion and

FriendlyName attributes of the class are mandatory. See Table 6-3.

Table 6-3. Qualifiers in a DSC Schema MOF

Qualifier Description Example

Key the Key qualifier on a property indicates that the

property uniquely identifies the resource instance.

each dsC resource must have at least one Key

property.

[Key] string Keyname;

Write the Write qualifier indicates that a value can be

assigned to the property in a configuration script.

[Write] string description;

read the read qualifier indicates that the property value

cannot be assigned or changed in a configuration

script. these properties get included when the Get

function is invoked.

[read] string readonlyproperty;

description this qualifier is used to provide a description for

a property. this is used along with read, Write, or

Key qualifiers. the text specified as description

will appear as a tooltip when authoring resource

configurations in a script editor like ise.

[Key, description(“specifies a

description for the Keyname”)]

string Keyname;

required this qualifier specifies that the property value is

mandatory and cannot be null. make a note that

this is not same as a Key qualifier. the Key qualifier

uniquely identifies a resource instance.

[required] string requireproperty;

Valuemap

and Values

restricts the values that can be assigned to a

property to that defined in Valuemap.

[write,Valuemap{“present”,

“absent”},Values{“present”,

“absent”}] string ensure;

Chapter 6 Writing Composite and Custom dsC resourCe modules

173

Note since the moF-based resources use a schema file written in moF syntax,
there is a limitation on types of properties you can use. this limitation exists
because dsC uses Cim under the covers for data representation.

Table 6-3 shows the basic qualifiers required for creating a DSC resource schema

MOF. There are many other standard WMI qualifiers. You usually don’t need all that

when writing DSC resource schema files. For a complete list of standard qualifiers, refer

to http://msdn.microsoft.com/en-us/library/aa393650(v=vs.85).aspx. Make a

note of the syntax shown in the example column. The property qualifiers are enclosed

in square brackets. The ValueMap and Values qualifiers are used along with the Write

qualifier to define a set of valid values for a resource property. The Read property is used

to define properties of a resource that cannot be changed or assigned in a configuration

script. For example, the VMID is not something you can change or assign while creating

a VM. The hypervisor assigns a VMID during the creation of the VM. With the knowledge

of these qualifiers, let’s look at how to structure the MOF schema file for the HostsFile

resource you want to author:

[ClassVersion("1.0.0.0"), FriendlyName("HostsFile")]

class HostsFile : OMI_BaseResource

{

 [Key, Description("Specifies the name of the host.")] string HostName;

 [Key, Description("Specifies the IP address associated with the

hostname.")] string IPAddress;

 [Write, Description("Specifies if the host entry should be present or

absent."), ValueMap{"Present", "Absent"},Values{"Present", "Absent"}]

string Ensure;

};

In this MOF file, you use a few of the qualifiers shown in Table 6-3. You have also

specified the ClassVersion and FriendlyName attributes that define the version of the

DSC resource class you are creating and a friendly name that identifies the DSC resource.

The value of FriendlyName is what you see in the output of the Get-DscResource cmdlet

and this is what you use in the configuration documents as well. The value of the

ClassVersion can be used to uniquely identify the version of a DSC resource although

all resources in a module inherit the module version.

Chapter 6 Writing Composite and Custom dsC resourCe modules

http://msdn.microsoft.com/en-us/library/aa393650(v=vs.85).aspx

174

Once you have the resource schema file authored, you need to store it as .Schema.

mof. For instance in the MOF schema you authored in the preceding example, the file

name will be HostsFile.Schema.mof. Also, make a note that this file needs to be stored

with Unicode or ANSI encoding. Using other encoding schemes will result in errors. So,

how do you prevalidate a MOF file for errors? You can use mofcomp.exe for that.

Mofcomp.exe -check HostsFile.Schema.mof

Figure 6-10 shows the output from the validation.

From Figure 6-10, you can see that your schema MOF is valid. Ignore the warning

message in the output because it is not related to the syntax you are interested in. There

is a PowerShell team module called xDscResourceDesigner that can help you test if a

schema file is valid or not. You will see it in Chapter 7 briefly.

 The Resource Script File

Once you have identified what properties you need and you have created the schema

MOF file, you can create the module script that will contain the Get-TargetResource,

Set-TargetResource, and the Test-TargetResource functions.

Test-TargetResource

With resource execution flow in mind, let’s start with the Test-TargetResource function.

For your resource, you will have to test if the host entry exists or not in the hosts file and,

then, based on the value of the Ensure property, you return the necessary Boolean value.

This function enables the idempotent nature in DSC resources. This means that you can

Figure 6-10. MOF validation

Chapter 6 Writing Composite and Custom dsC resourCe modules

175

apply the same configuration any number of times. If the current state is same as the

desired state, no action will be taken. When writing custom DSC resources, adhering to

the idempotent principle is critical. In your example, as discussed, a resource instance

is the hosts file entry constructed using the given input parameters, HostName and

IPAddress. Once you know if the resource instance exists, you need to look at the value of

the Ensure property in the configuration script. Let’s look at all the cases arising from this.

Figure 6-11 illustrates this in a flow chart.

Figure 6-11. Test-TargetResource execution flow

Chapter 6 Writing Composite and Custom dsC resourCe modules

176

If the resource instance exists and the Ensure property is set to Present, you need

not do anything. In this case, the Test-TargetResource function exits by returning True.

This indicates that there is no need to execute the Set-TargetResource function.

If the resource instance exists and the Ensure property is set to Absent, you need

to the remove the instance. In this case, the Test-TargetResource function exists by

returning False and the Set-TargetResource function will be used to remove the

resource instance.

If the resource does not exist and Ensure is set to Absent, you need not do anything.

In this case, the Test-TargetResource function exits by returning True. This indicates

that there is no need to execute the Set-TargetResource function.

If the resource instance does not exist and the Ensure property is set to Present,

you need to create the instance. In this case, the Test-TargetResource function exists

by returning False and the Set-TargetResource function will be used to create the

resource instance.

Using what you have learned so far, let’s put together the logic for the Test-

TargetResource function in your DSC resource. Here is how it should look:

function Test-TargetResource

{

 [OutputType([Boolean])]

 param (

 [Parameter(Mandatory = $true)]

 [String]

 $HostName,

 [Parameter(Mandatory = $true)]

 [String]

 $IPAddress,

 [Parameter()]

 [ValidateSet('Present','Absent')]

 [String]

 $Ensure = 'Present'

)

 Write-Verbose -Message "Checking if the hosts file entry for $HostName

and $IPAddress exists or not."

Chapter 6 Writing Composite and Custom dsC resourCe modules

177

 $content = Get-Content "${env:windir}\system32\drivers\etc\hosts"

-ErrorAction SilentlyContinue

 $entryExist = ($content -match "^\s*$IPAddress\s+$HostName\s*$")

 if ($Ensure -eq 'Present')

 {

 if ($entryExist)

 {

 Write-Verbose -Message "Hosts file entry for $HostName and

$IPAddress exists for the given parameters; nothing to

configure."

 return $true

 }

 else

 {

 Write-Verbose -Message "Hosts file entry for $HostName and

$IPAddress does not exist while it should; it must be added."

 return $false

 }

 }

 else

 {

 if ($entryExist)

 {

 Write-Verbose -Message "Hosts file entry for $HostName and

$IPAddress exists while it should not; it must be removed."

 return $false

 }

 else

 {

 Write-Verbose -Message "Hosts file entry for $HostName and

$IPAddress does not exist; nothing to configure."

 return $true

 }

 }

}

Chapter 6 Writing Composite and Custom dsC resourCe modules

178

Take a few minutes to understand this code. First and foremost, note that the

Test-TargetResource must return a Boolean value and therefore, it is required

to mention the output type from this function. In this code, this is done using

[OutputType([Boolean])] at the beginning of the function script block.

The way the parameters are declared and so on should not be new. It is worth

noting that for all the resource properties marked with the Key qualifier in the schema,

you have created mandatory parameters in the PowerShell function. You are using

regular expressions to check if the hosts file entry exists for the given input parameters.

The $entryExist variable is used to hold a Boolean value from the regular expression

matching. Once you have this value, you use the value of the Ensure property to take the

right execution path. This was explained earlier in this section and I recommend that

you match what we discussed to the code shown above.

Set-TargetResource

As explained earlier, the Set-TargetResource function performs the configuration

change. Since this function gets executed only when the resource instance is not in the

desired state, you can safely assume that no error checking is needed in this function.

In this example, the Test-TargetResourcefunction checks if a hosts file entry exists and

relates it to the value of the Ensure property. So, all you need to write within the Set-

TargetResource function is to either remove or add the hosts file entry based on the

value of the Ensure property.

You can now look at the code required for implementing the Set-TargetResource

function. Notice that the parameters of this function are same as that of the Test-

TargetResource function.

function Set-TargetResource

{

 param

 (

 [Parameter(Mandatory = $true)]

 [String]

 $HostName,

 [Parameter(Mandatory = $true)]

 [String]

 $IPAddress,

Chapter 6 Writing Composite and Custom dsC resourCe modules

179

 [Parameter()]

 [ValidateSet('Present','Absent')]

 [String]

 $Ensure = 'Present'

)

 $hostEntry = "`n${ipAddress}`t${hostName}"

 if ($Ensure -eq 'Present')

 {

 Write-Verbose -Message "Creating hosts file entry for $HostName and

$IPAddress."

 Add-Content -Path "$env:windir\system32\drivers\etc\hosts" -Value

$hostEntry -Force -Encoding ASCII

 }

 else

 {

 Write-Verbose -Message "Removing hosts file entry for $HostName and

$IPAddress."

 $content = ((Get-Content "$env:windir\system32\drivers\etc\hosts")

-notmatch "^\s*$")

 $noMatchContent = ($content -notmatch "^\s*$IPAddress\

s+$HostName\s*$")

 $noMatchContent | Set-Content "$env:windir\system32\drivers\etc\

hosts"

 }

}

The logic here is simple. You check the value of the Ensure property and take the

appropriate action.

The final function that you need to write is the Get-TargetResource.

 Get-TargetResource

As you saw in Table 6-2, the Get-TargetResource must have all the resource properties

marked as Key or Required, in the schema MOF, as the input parameters. For this

example, they are the HostName and IPAddress properties of the resource. Also,

Chapter 6 Writing Composite and Custom dsC resourCe modules

180

I discussed that the output from this function should be a hashtable representing the

current state of the resource instance with a 1:1 mapping to the properties defined in the

schema MOF. As you can see in the following function script block, you are setting the

output type of the function to hashtable.

Let’s look at the function definition:

function Get-TargetResource

{

 [OutputType([Hashtable])]

 param

 (

 [parameter(Mandatory = $true)]

 [string]

 $HostName,

 [parameter(Mandatory = $true)]

 [string]

 $IPAddress

)

 $configuration = @{

 HostName = $hostName

 IPAddress = $IPAddress

 }

 Write-Verbose -Message "Checking if hosts file entry exists for

$HostName and $IPAddress or not."

 if ((Get-Content "$env:windir\system32\drivers\etc\hosts" -ErrorAction

SilentlyContinue) -match "^\s*$IPAddress\s+$HostName\s*$")

 {

 Write-Verbose -Message "Hosts file entry for $HostName and

$IPAddress exists."

 $configuration.Add('Ensure','Present')

 }

 else

Chapter 6 Writing Composite and Custom dsC resourCe modules

181

 {

 Write-Verbose "Hosts file entry for $HostName and $IPAddress does

not exist."

 $configuration.Add('Ensure','Absent')

 }

 return $configuration

}

This function code is self-explanatory. Note that you do not have the Ensure property

as a parameter of this function. The code in this function is almost similar to what you

are doing in the Test-TargetResource function. In this function, you set the Ensure

property depending on if the resource instance exists or not. So, the hashtable returned

from this function has the current state of the resource instance and not the desired state.

Note using the Write-Verbose cmdlet in each of these functions helps display
messages from the resource execution at console. these messages should be
written in a way that conveys the task that is being performed by the resource
script functions. if you use the Write-Debug cmdlet in the dsC resource script,
the debug messages will be logged to the debug channel of the dsC even logs.

So now you have seen all three functions and implemented the necessary logic to

manage the hosts file entries as a DSC resource. You can now package these functions as

a PowerShell script module. Remember that you need to add the Export-ModuleMember

command at the end of the script module file to export all three functions. Since you only

have three functions, you can use * as an argument to the -Function parameter.

Export-ModuleMember -Function *-TargetResource

The script module with all three functions and the above command can be saved as

HostsFile.psm1. For demonstration purposes, I saved both the schema MOF and the

script module in the folder structure shown earlier in this section.

Chapter 6 Writing Composite and Custom dsC resourCe modules

182

Let’s generate the module manifest for the top-level module that is ProDSC in this

example:

$manifestParams = @{

 Path = 'C:\Scripts\ProDSC\ProDSC.psd1'

 Guid = (New-Guid).Guid

 Author = 'DSCFan'

 Company = 'The Awesome DSC Inc.'

 ModuleVersion = "1.0.0.0"

 Description = 'DSC resources from the ProDSC resource module.'

 DscResourcesToExport = @('HostsFile')

}

New-ModuleManifest @manifestParams -Verbose

Note a resource manifest (HostsFile.psd1) is not required.

Notice the ModuleVersion and the DscResourcesToExport keys in the

$manifestParams hashtable. This module version is the resource module version and

not the individual resource version. The individual resource version is identified using

the ClassVersion in the resource schema MOF. The DSCResourcesToExport will tell

PowerShell that this module exports DSC resources and what resources it exports.

For MOF-based resources, this will help when publishing the resource modules to the

PowerShell gallery, which you will learn about towards the end of this chapter. Note that

this is not mandatory for the resource module to work but is recommended.

With this, you have all the ingredients for a custom DSC resource. You can now store

these files as a DSC resource module. Let’s use the script module method to store this

DSC resource within any folder represented by $env:PSModulePath. Once you do this,

you should be able to see this in the Get-DscResource cmdlet output. This is shown in

Figure 6-12.

Note For authoring and resource discovery, it is oK to have the module located at
any path represented by $env:PSModulePath. For the enact process, the module
must be available at C:\Program Files\WindowsPowerShell\Modules.

Chapter 6 Writing Composite and Custom dsC resourCe modules

183

Here is a sample configuration that uses your newly created DSC resource:

Configuration ProDscHosts

{
 param
 (
 [Parameter(Mandatory = $true)]
 [String]
 $HostName,

 [Parameter(Mandatory = $true)]
 [String]
 $IPAddress

)

 Import-DscResource -ModuleName ProDsc -Name HostsFile -ModuleVersion 1.0.0.0

 Node Localhost
 {
 HostsFile DemoHosts
 {
 HostName = $HostName
 IPAddress = $IPAddress
 Ensure = 'Present'
 }
 }
}

ProDscHosts -HostName 'testServer10' -IPAddress '10.10.10.10' -Verbose

Figure 6-12. Custom resource in Get-DscResource

Chapter 6 Writing Composite and Custom dsC resourCe modules

184

Writing a configuration document isn’t anything new to you anymore. You can

compile and enact this configuration and check if it is working as expected.

I will conclude this section on MOF-based DSC resources by mentioning that this

type of resource works in both WMF 4.0 and above. Therefore, MOF-based resources

are the most implemented or used at the time of writing. If you are targeting the

WMF 4.0 platform, ensure that you do not use any PowerShell 5.0 or above specifics

in the resource definitions. And, to date, the majority of the modules written by the

Microsoft teams or the community so far are MOF-based for backward compatibility

reasons.

Another limitation with MOF-based resources is the fact that each resource in the

module must have its own PSM1 and schema files. At some point, as the number of

resources in the module grows, this becomes a management overhead issue for the

resource module author. At least, this is what I have been facing with the large set of

MOF-based resources I have written over time.

 Class-Based DSC Resources
If you want to create custom DSC resources that work only on PowerShell 5.0 and

above, class-based resources offer another choice. PowerShell classes were introduced

in PowerShell 5.0 for the purpose of authoring DSC resources. Unlike the MOF-based

resources, the class-based resources do not require a schema MOF file. Although you

don’t need a schema MOF in the class-based resources, you are limited by the CIM

data types when it comes to what type of properties can be added to the resource.

Configurations with class-based resources get compiled to a CIM MOF representation

before the enact. Therefore, the limitation of CIM data types still exists.

For a class-based resource, the folder structure for the resource module is minimal:

$env:PSModulePath (folder)

 |- ResourceModuleName (folder)

 |- ResourceModuleName.psm1 (file, required)

 |- ResourceModuleName.psd1 (file, required)

As you can see in the above representation, all you need is just a simple folder for the

resource module; all resource definitions in a class-based module can be the same PSM1

Chapter 6 Writing Composite and Custom dsC resourCe modules

185

file. Let’s take a look at a skeleton of one such PSM1 file and then you will convert your

HostsFile MOF-based resource into a class-based resource:

enum Ensure

{

 Absent

 Present

}

[DscResource()]

class HostsFile

{

 [DscProperty(Key)]

 [String]

 $HostName

 [DscProperty(Mandatory = $true)]

 [String]

 $IPAddress

 [DscProperty()]

 [Ensure]

 $Ensure = 'Present'

 [Bool] Test()

 {

 }

 [Void] Set()

 {

 }

 [HostsFile] Get()

 {

 }

}

Chapter 6 Writing Composite and Custom dsC resourCe modules

186

This code snippet shows a skeleton of the DSC class-based resource definition. The

[DscResource()] decoration before the class definition indicates that what follows is

a DSC resource definition. This attribute and the Class keyword were introduced in

PowerShell 5.0. The resource name needs to be specified as the name of the class. Within

the class definition are the properties (same as the MOF-based resource) HostName,

IPAddress, and Ensure.

The resource properties in a class contain attributes that modify the behavior of the

properties. Table 6-4 provides an overview of these attributes.

For the Ensure property, instead of using the [ValidateSet()] attribute, let’s use

another PowerShell 5.0 language feature called enums. Using enums, you define a new type

called [Ensure] and then added the possible values ’Present’ and ’Absent’ within that.

What follows the resource property definition is a set of methods equivalent to the

Test-TargetResource, Set-TargetResource, and Get-TargetResource functions in

MOF-based resources. For the Test() method, the return type is [Bool] and the Get()

method should return an instance of the class. The Set() method does not return

anything and therefore it is set to [Void].

Table 6-4. DSC Class-Based Resource Property Attributes

Attribute Description

DscProperty(Key) specifies the Key property for the resource. this must be a unique

key across all instances of the resource in a dsC configuration.

HostName is the Key property in your example.

DscProperty(Mandatory) specifies the required property for the resource. this is not a key

property but mandatory. IPAddress is a required property in your

example.

DscProperty() specifies a property that can be specified in the resource

configuration but not a required property.

DscProperty(NotConfigur

able)

specifies a read-only property in the resource configuration. this

is not needed in a resource instance definition but the value for

this property will be returned by the Get() method.

Chapter 6 Writing Composite and Custom dsC resourCe modules

187

With this knowledge handy, let’s see the full definition of the HostsFile class

resource:

enum Ensure

{

 Absent

 Present

}

[DscResource()]

class HostsFile

{

 [DscProperty(Key)]

 [String]

 $HostName

 [DscProperty(Mandatory = $true)]

 [String]

 $IPAddress

 [DscProperty()]

 [ValidateSet('Present','Absent')]

 [String]

 $Ensure

 [Bool] Test()

 {

 Write-Verbose -Message "Checking if the hosts file entry for

$($this.HostName) and $($this.IPAddress) exists or not."

 $content = Get-Content "${env:windir}\system32\drivers\etc\hosts"

-ErrorAction SilentlyContinue

 $entryExist = ($content -match "^\s*$($this.IPAddress)\s+$($this.

HostName)\s*$")

 if ($this.Ensure -eq [Ensure]::Present)

 {

 if ($entryExist)

 {

Chapter 6 Writing Composite and Custom dsC resourCe modules

188

 Write-Verbose -Message "Hosts file entry exists for

$($this.HostName) and $($this.IPAddress). Nothing to

configure."

 return $true

 }

 else

 {

 Write-Verbose -Message "Hosts file entry for for $($this.

HostName) and $($this.IPAddress) does not exist while it

should; it must be added."

 return $false

 }

 }

 else

 {

 if ($entryExist)

 {

 Write-Verbose -Message "Hosts file entry for for $($this.

HostName) and $($this.IPAddress) exists while it should

not; it must be removed."

 return $false

 }

 else

 {

 Write-Verbose -Message "Hosts file entry for for $($this.

HostName) and $($this.IPAddress) does not exist; nothing to

configure."

 return $true

 }

 }

 }

Chapter 6 Writing Composite and Custom dsC resourCe modules

189

 [Void] Set()

 {

 $hostEntry = "`n$($this.IPAddress)`t$($this.HostName)"

 if ($this.Ensure -eq [Ensure]::Present)

 {

 Write-Verbose -Message "Creating hosts file entry for for

$($this.HostName) and $($this.IPAddress)"

 Add-Content -Path "${env:windir}\system32\drivers\etc\hosts"

-Value $hostEntry -Force -Encoding ASCII

 }

 else

 {

 Write-Verbose -Message "Removing hosts file entry for $($this.

HostName) and $($this.IPAddress)."

 $content = ((Get-Content "${env:windir}\system32\drivers\etc\

hosts") -notmatch "^\s*$")

 $noMatchContent = $content -notmatch "^\s*$($this.IPAddress)\

s+$($this.HostName)\s*$"

 $noMatchContent | Set-Content "${env:windir}\system32\drivers\

etc\hosts"

 }

 }

 [HostsFile] Get()

 {

 Write-Verbose -Message "Checking if hosts file entry for for

$($this.HostName) and $($this.IPAddress) exists or not"

 if ((Get-Content "${env:windir}\system32\drivers\etc\hosts"

-ErrorAction SilentlyContinue) -match "^\s*$($this.IPAddress)\

s+$($this.HostName)\s*$")

Chapter 6 Writing Composite and Custom dsC resourCe modules

190

 {

 Write-Verbose -Message "Hosts file entry for $this.HostName and

$this.IPAddress exists."

 $this.Ensure = [Ensure]::Present

 }

 else

 {

 Write-Verbose "Hosts file entry for for $($this.HostName) and

$($this.IPAddress) does not exist"

 $this.Ensure = [Ensure]::Absent

 }

 return $this

 }

}

As you can see in this code, the logic is same between MOF- and class-based

resource definitions. However, look at the way you are referring to the resource

properties. Since this is a class-based resource, you need to use the $this variable.

$this is the current instance of the class and in this context refers to the DSC

resource instance that is currently being configured. You can refer to the individual

properties of the resource using $this.<propertyName> notation. Since $Ensure is

of property [Ensure], which is a PowerShell enum, you can use the namespace alias

qualifier (in C# terminology) :: to access the enumerator values. Therefore, it will be

[Ensure]::Present and [Ensure]::Absent for your resource configuration.

In the Get() function, you just return $this because it contains the current instance

of the resource and also Get() should return an instance of the DSC resource class.

You can save the above class-based resource definition as the ProDSC.psm1 file. You

can now create the module manifest for this resource module:

$manifestParams = @{

 Path = 'C:\Scripts\ProDSC\ProDSC.psd1'

 RootModule = 'ProDsc.psm1'

 Guid = (New-Guid).Guid

 Author = 'DSCFan'

Chapter 6 Writing Composite and Custom dsC resourCe modules

191

 Company = 'The Awesome DSC Inc.'

 ModuleVersion = "1.0.0.0"

 Description = 'DSC resources from the ProDSC resource module.'

 DscResourcesToExport = @('HostsFile')

}

New-ModuleManifest @manifestParams -Verbose

The DscResourcesToExport key is must in class-based resources. You can copy

the folder ProDSC containing ProDsc.psm1 and ProDsc.psd1 to C:\Program Files\

WindowsPowerShell\Modules. You should now be able to discover the HostsFile

resource using the Get-DscResource cmdlet.

The configuration document that you created earlier should work as-is. Try

compiling that document again and enacting it.

Within this resource definition script, if you want to add one more DSC resource,

all you have to do is add another Class definition and the necessary properties and

methods. Here is a skeleton of a resource definition script that contains two class

resource definitions:

enum Ensure

{

 Absent

 Present

}

[DscResource()]

class HostsFile

{

 [DscProperty(Key)]

 [String]

 $HostName

 [DscProperty(Mandatory = $true)]

 [String]

 $IPAddress

Chapter 6 Writing Composite and Custom dsC resourCe modules

192

 [DscProperty()]

 [Ensure]

 $Ensure = 'Present'

 [Bool] Test()

 {

 }

 [Void] Set()

 {

 }

 [HostsFile] Get()

 {

 }

}

class NewResource

{

 [DscProperty(Key)]

 [String]

 $Property1

 [DscProperty(Mandatory = $true)]

 [String]

 $Property2

 [DscProperty()]

 [Ensure]

 $Ensure = 'Present'

 [Bool] Test()

 {

 }

 [Void] Set()

Chapter 6 Writing Composite and Custom dsC resourCe modules

193

 {

 }

 [HostsFile] Get()

 {

 }

}

If you want to separate out the class definitions for each resource into a separate

PSM1 file, you can do so by creating a folder DSCClassResources at the root of the

module and copy each PSM1 with associated PSD1 file into the resource folder under

DSCClassResources. Here is what the folder structure would look like:

$env:PSModulePath (folder)

 |- ResourceModuleName (folder)

 |- DSCClassResources

 |- Resource1Name

 |- Resource1Name.psm1 (file, required)

 |- Resource1Name.psd1 (file, required)

 |- Resource2Name

 |- Resource2Name.psm1 (file, required)

 |- Resource2Name.psd1 (file, required)

 |- ResourceModuleName.psd1 (file, required)

In the root module manifest, you must ensure that the nested resources

(Resource1Name and Resource2Name in the above example) mentioned in the

NestedModules and the DscResourcesToExport have all the resources in the module.

This concludes our discussion on class-based resources.

The choice between MOF-based and class-based resource modules must be clear

now. Class-based resources are for anything that you want to manage on platforms with

only PowerShell 5.0 and above. MOF-based resources should be your choice if your

module should be able to run on PowerShell 4.0 and above.

In fact, with WMF 5.1 onwards, you can combine MOF- and class-based

resources into a single module. This can be used as a way to transition all existing

DSC resources created for PowerShell 4.0 to support systems with only WMF 5.1 and

above. To make this happen, you need to add a folder called DSCClassResources at

Chapter 6 Writing Composite and Custom dsC resourCe modules

194

the root of the module folder and update the root module manifest to ensure that the

DscResourcesToExport key is added. If the module contains multiple resources, you

must add the NestedModules key as well. And, as a best practice, you should also define

the minimum PowerShell version required for the module in the root module manifest.

There is an example of this right in the in-box DSC resources. This is shown in

Figure 6-13.

Alright. What you have seen so far will help you quickly write a DSC resource,

either a MOF-based or a class-based module, but maybe not with the right quality

standards and best practices. In the next few sections, I will review a few DSC resource

design patterns and explain quality and coding requirements for building High Quality

Resource Modules.

 DSC Resource Design Patterns
You have seen that writing a custom DSC resource is as simple as writing a PowerShell

script module. In this section, you will explore a few design patterns and see some practical

examples. In some cases, you will modify the HostsFile resource created earlier in this

section to demonstrate how to implement these patterns, best practices, and guidelines.

Figure 6-13. Combining MOF- and class-based resources in a single module

Chapter 6 Writing Composite and Custom dsC resourCe modules

195

 Inducing a Reboot After a Configuration Change
When looking at the DSC meta configuration, you saw an LCM property called

RebootIfNeeded. This is set, by default, to False. In the default configuration, if

the resource configuration requires a reboot, it displays a verbose message that

the configuration requires a reboot. When this property is set to True, if a resource

configuration requires a reboot, the DSC engine will automatically trigger the reboot.

One such DSC resource example is the WindowsFeature resource discussed in Chapter 5.

But how does a DSC resource signal a reboot?

A custom DSC resource can signal the LCM to reboot the system by setting a global

variable called DSCMachineStatus to $true. This, of course, needs to be done in the

Set function. Within this function, after the resource configuration is complete, if you

determine that a reboot is needed to complete the configuration, you can signal the LCM

on target system by adding the following line:

$Global:DSCMachineStatus = $true

When the LCM receives this signal and the RebootIfNeeded property is set to True,

the target systems restarts to complete the configuration. If you are an administrator,

I recommend that you exercise extreme caution before setting the RebootIfNeeded

property to True in the LCM meta configuration.

Caution ensure that you have the Test function doing the right checks and
returning False only when needed. if the resource is inducing a reboot of the
target system and the Test function is not written according to the idempotent
principles, the target system will end up in an infinite reboot loop.

 Localizing Verbose and Debug Messages
In the three functions definitions you wrote for the HostsFile DSC resource, you used

the Write-Verbose cmdlet to log messages from the resource execution to the console.

This is a good and recommended way of writing custom DSC resources. If you use the

Start-DscConfiguration cmdlet with the -Verbose switch parameter, you can see the

verbose messages from the resource. This gives the user pushing the configuration an

Chapter 6 Writing Composite and Custom dsC resourCe modules

196

idea about what is happening on the target system. Similarly, you can use the Write-

Debug cmdlet in the Set function and other module functions to write log messages to

the debug channel of the DSC events.

If you plan on sharing your DSC resources, it is recommended that you localize these

messages written either using the verbose/error or debug streams or at least enable the

flexibility for someone to add localized messages to the resource. This can be done by

using the script internationalization techniques in PowerShell. This is not specific to

DSC resources but can be used with any PowerShell modules or scripts.

Tip i recommend that you read the “about_data_sections” and “about_script_
internationalization” help topics to know more about the string localization in
powershell.

To start, you first need to create a hashtable that contains all the log message strings.

The following is for the HostsFile resource:

ConvertFrom-StringData @'

 CheckingHostsFileEntry=Checking if the hosts file entry exists.

 HostsFileEntryFound=Found a hosts file entry for {0} and {1}.

 HostsFileEntryNotFound=Did not find a hosts file entry for {0} and {1}.

 HostsFileShouldNotExist=Hosts file entry exists while it should not.

 HostsFileEntryShouldExist=Hosts file entry does not exist while it should.

 HostsFileEntryDoesNotExist = Hosts file entry does not exist. No action

needed.

 CreatingHostsFileEntry=Creating a hosts file entry with {0} and {1}.

 RemovingHostsFileEntry=Removing a hosts file entry with {0} and {1}.

'@

The ConvertFrom-StringData takes the herestring content and converts it to a

hashtable. You now need to store this in a PowerShell data file. You can name this file

anything you want but let’s call it HostsFile.psd1 for this example. The {0} and {1} in

the herestring are used as placeholders for replacing with any values supplied, such as

the IPAddress and HostName values in the configuration script. You will see how they are

used later in this section. Since these messages are in English and the language culture

on my system is set to en-US, let’s create a folder named en-US under the resource folder.

Chapter 6 Writing Composite and Custom dsC resourCe modules

197

For example, if you are using the nested module structure for the DSC custom

resource, the folder structure should look similar to what is shown in Figure 6-14. The

HostsFile.psd1 file needs to be stored in the en-US folder. If you have localized for any

other cultures, create separate .psd1 files for each of the cultures and store them under

folders representing each of those cultures.

Note While i am using the class-based resource here as an example, the concepts
that you learn in this section will apply to both types of resources discussed.

You now need to make sure that the resource file (.PSM1) loads this localized data.

Here is what I generally add to all the resource definition scripts:

if (Test-Path "${PSScriptRoot}\${PSUICulture}")
{
 Import-LocalizedData -BindingVariable LocalizedData -filename

HostsFile.psd1 `
 -BaseDirectory "$PSScriptRoot\$PSUICulture"
}
else
{
 #fallback to en-US
 Import-LocalizedData -BindingVariable LocalizedData -filename

HostsFile.psd1 `
 -BaseDirectory "$PSScriptRoot\en-US"
}

Figure 6-14. Module folder structure after adding localized strings

Chapter 6 Writing Composite and Custom dsC resourCe modules

198

Using this few lines of code, you check if there is a folder named as the value

represented by $PSUICulture. If one exists in the module folder, you check if you can

load the localized strings from that folder. If not, you fall back to the en-US culture and

load the English strings.

This will only load the localized strings. You still have to modify the Write-Verbose

and/or Write-Debug commands to ensure that you use the loaded localized strings

instead of static message strings. Here is how I modified the class resource script:

if (Test-Path "${PSScriptRoot}\${PSUICulture}")

{

 Import-LocalizedData -BindingVariable LocalizedData -filename ProDsc.

psd1 `

 -BaseDirectory "${PSScriptRoot}\${PSUICulture}"

}

else

{

 #fallback to en-US

 Import-LocalizedData -BindingVariable LocalizedData -filename ProDsc.

psd1 `

 -BaseDirectory "${PSScriptRoot}\en-US"

}

enum Ensure

{

 Absent

 Present

}

[DscResource()]

class HostsFile

{

 [DscProperty(Key)]

 [String]

 $HostName

 [DscProperty(Mandatory = $true)]

 [String]

 $IPAddress

Chapter 6 Writing Composite and Custom dsC resourCe modules

199

 [DscProperty()]

 [ValidateSet('Present','Absent')]

 [String]

 $Ensure

 [Bool] Test()

 {

 Write-Verbose -Message $Script:localizedData.CheckingHostsFileEntry

 $content = Get-Content "${env:windir}\system32\drivers\etc\hosts"

-ErrorAction SilentlyContinue

 $entryExist = ($content -match "^\s*$($this.IPAddress)\s+$($this.

HostName)\s*$")

 if ($this.Ensure -eq [Ensure]::Present)

 {

 if ($entryExist)

 {

 Write-Verbose -Message ($Script:localizedData.

HostsFileEntryFound -f $this.HostName, $this.IPAddress)

 return $true

 }

 else

 {

 Write-Verbose -Message ($Script:localizedData.

HostsFileEntryNotFound -f $this.HostName, $this.IPAddress)

 return $false

 }

 }

 else

 {

 if ($entryExist)

 {

 Write-Verbose -Message ($Script:localizedData.

HostsFileShouldNotExist -f $this.HostName, $this.IPAddress)

 return $false

 }

 else

Chapter 6 Writing Composite and Custom dsC resourCe modules

200

 {

 Write-Verbose -Message $Script:localizedData.

HostsFileEntryDoesNotExist

 return $true

 }

 }

 }

 [Void] Set()

 {

 $hostEntry = "`n$($this.IPAddress)`t$($this.HostName)"

 if ($this.Ensure -eq [Ensure]::Present)

 {

 Write-Verbose -Message ($Script:localizedData.

CreatingHostsFileEntry -f $this.HostName, $this.IPAddress)

 Add-Content -Path "${env:windir}\system32\drivers\etc\hosts"

-Value $hostEntry -Force -Encoding ASCII

 }

 else

 {

 Write-Verbose -Message ($Script:localizedData.

RemovingHostsFileEntry -f $this.HostName, $this.IPAddress)

 $content = ((Get-Content "${env:windir}\system32\drivers\etc\

hosts") -notmatch "^\s*$")

 $noMatchContent = $content -notmatch "^\s*$($this.IPAddress)\

s+$($this.HostName)\s*$"

 $noMatchContent | Set-Content "${env:windir}\system32\drivers\

etc\hosts"

 }

 }

 [HostsFile] Get()

 {

 Write-Verbose -Message $Script:localizedData.CheckingHostsFileEntry

Chapter 6 Writing Composite and Custom dsC resourCe modules

201

 if ((Get-Content "${env:windir}\system32\drivers\etc\hosts"

-ErrorAction SilentlyContinue) -match "^\s*$($this.IPAddress)\

s+$($this.HostName)\s*$")

 {

 Write-Verbose -Message ($Script:localizedData.

HostsFileEntryFound -f $this.HostName, $this.IPAddress)

 $this.Ensure = [Ensure]::Present

 }

 else

 {

 Write-Verbose -Message ($Script:localizedData.

HostsFileEntryNotFound -f $this.HostName, $this.IPAddress)

 $this.Ensure = [Ensure]::Absent

 }

 return $this

 }

}

In this example, observe how the $LocalizedData variable is used along with the

-f formatting operator. The {0} or {1} used in the herestring gets replaced with the

values supplied after the -f operator. For class-based resources, it is important to use the

$script: scope for the $LocalizedData variable.

 Adding Help Content
When you author a PowerShell module, you can implement help for each of the

functions as comment-based help. This ensures that the end users can use the Get-Help

cmdlet to understand how your module’s functions or cmdlets are used. However, if you

look at the DSC resources, they all contain the same set of functions: Get, Set, and Test.

So, even if you write comment-based help for these functions in your resource, it won’t

be of much help. So, how can you include help content for the DSC resources that you

build?

For the DSC resources, the help content should describe how the resource can be

used, with examples describing each possible configuration scenario for the resource.

The ideal place to put this help content is in an About topic. You can author help content

for the DSC resource and store it as a text file with a relevant About topic name.

Chapter 6 Writing Composite and Custom dsC resourCe modules

202

For example, I put a few examples describing how the HostsFile resource can be

used into a text file and named it about_HostsFile.help.txt. Note that the file name

must end with .help.txt and should be stored in UTF-8 encoding. Once you create

this file, you can store it in a folder named for the language culture. If you are using the

nested module structure, this folder must be created at the root of the module. This

will enable localization for the About topics for the DSC resource. Figure 6-15 shows an

example of this.

Note localization of the resource message strings is different from localization
for the nested module. For each dsC resource in the nested module, you can
create an about topic text file and store in the language culture folder, as shown in
Figure 6-15.

After this help text file is copied to the resource folder, the help text can be accessed

using the Get-Help cmdlet.

Get-Help About_HostsFile

Figure 6-15. DSC resource help text file

Chapter 6 Writing Composite and Custom dsC resourCe modules

203

Figure 6-16 shows how the text file content is shown in the output.

 Granularity in DSC Resources
DSC is fairly new and it will be exciting to learn this technology and implement your own

resource and so on. However, when developing or authoring custom DSC resources,

ensure that you go to the most granular level of the resource. Let’s explore this idea with

an example.

A virtual machine as a resource will have many sub-components such as virtual hard

disks, virtual network adapters, and so on. So, if you are writing a DSC custom resource

for managing virtual machines, it is recommended that you create multiple DSC

resources for each manageable component. This simplifies the whole configuration and

makes it easy to configure the VM-attached resources in an independent way.

 Choosing the Right Key Property
You saw in your example of the HostsFile DSC resource that you chose both HostName

and IPAddress as the key properties. Now, let’s look at a poor choice of a key property:

[ClassVersion("1.0.0.0"), FriendlyName("VMNetworkAdapter")]

class VMNetworkAdapter : OMI_BaseResource

{

 [Key, Description("Specifies the name of the VM.")] string Name;

 [Required, Description("Specifies the name of the VM.")] string VMName;

Figure 6-16. Get-Help output

Chapter 6 Writing Composite and Custom dsC resourCe modules

204

 [Required, Description("Specifies the VHDX path for the VM.")] string

VMSwitch;

 [Write, Description("Specifies if the VM should be present or

absent."), ValueMap{"Present", "Absent"},Values{"Present", "Absent"}]

string Ensure;

};

This is a very simple example of a schema MOF for a resource that attaches a

network adapter to a VM. You have Name as the key property and a few other required

properties such as VMName and VMSwitch. If you add a network adapter with the same

name to two different VMs, you will end up having a duplicate resource instances

with the same key-value pair. You can work around this by making another property

a key property as well, for example, VMName. Another workaround is to add a dummy

key property that does not necessarily impact any resource configuration. Here is an

example of the second workaround:

[ClassVersion("1.0.0.0"), FriendlyName("VMNetworkAdapter")]

class VMNetworkAdapter : OMI_BaseResource

{

[Key, Description("Key property to identify a unique resource instance.")]

string Id;

[Require, Description("Specifies the name of the VM.")] string Name;

[Required, Description("Specifies the name of the VM.")] string VMName;

[Required, Description("Specifies the VHDX path for the VM.")] string

VMSwitch;

[Write, Description("Specifies if the VM should be present or absent."),

ValueMap{"Present", "Absent"},Values{"Present", "Absent"}] string Ensure;

};

 Single Instance Resources
A single instance resource is a resource that can only be configured once. For example,

there is no need to have multiple instances of a resource that configures the time zone,

since at compilation DSC only checks if the key-value pair across instances of a same

resource is to be unique. It will ignore if two instances of the resource have different

key-value pairs. However, when this configuration gets enacted, the second resource

Chapter 6 Writing Composite and Custom dsC resourCe modules

205

instance overwrites the configuration done by the first resource instance. In such

situations, you should restrict the resource to have only a single instance by using a

dummy key property. Taking a cue from the PowerShell team recommendations, name

this property as IsSingleInstance and attach a value map that allows only one value.

Here is an example from my FailoverClusterDSC module:

[ClassVersion("1.0.0.0"), FriendlyName("FailoverClusterQuorum")]

class FailoverClusterQuorum : OMI_BaseResource

{

 [Key, ValueMap{"Yes"}, Values{"Yes"}] String IsSingleInstance;

 [Required, ValueMap{"NodeMajority", "NodeAndDiskMajority",

"NodeAndFileShareMajority", "DiskOnly"}, Values{"NodeMajority",

"NodeAndDiskMajority", "NodeAndFileShareMajority", "DiskOnly"}] String

QuorumType;

 [Write] String Resource;

};

Apart from the module authoring or design recommendations you have seen so far,

Microsoft has style and coding guidelines for authoring resource modules that you want

to submit upstream to DSC resource kit. The style guidelines document for authoring

HQRM DSC resource modules is available at http://azrs.tk/dscStyle and the best

practices document to implement within these resource modules is available at

http://azrs.tk/psbestPractice. The best practices listed at the second link are

applicable not just to authoring DSC resource modules but in general for any PowerShell

scripts or modules.

 Developing HQRM Modules
To contribute DSC resource modules upstream to the PowerShell DSC resource kit or

contribute to an official Microsoft DSC resource module, you must author the modules

following certain style guidelines and best practices. In this section, I will look at a few of

the best practices. I recommend that you do a thorough review of the content at the links

provided above for a complete understanding of these HQRM requirements. There is

also a DSC resource authoring checklist available at http://azrs.tk/dscCheckList.

Chapter 6 Writing Composite and Custom dsC resourCe modules

http://azrs.tk/dscStyle
http://azrs.tk/psbestPractice
http://azrs.tk/dscCheckList

206

Note adhering to the style guidelines is mandatory if you submit a resource
upstream. Certain style guidelines such as choosing where to place the opening
curly bracket either for a function or conditional statement may take some getting
used to especially if you are K&r or otsB kind of person. i was one and i had
a tough time adapting allman to contribute new resources to the official dsC
resource kit.

 Adding Examples
Unlike a PowerShell function for which we can attach a multiline comment as inline

help, DSC resources do not come with a system that lets us access the help needed

for the DSC resources using Get-Help, not unless we add an about_* text file like you

saw earlier. To address this, the HQRM guidelines talk about adding examples of DSC

resource configurations. These examples should provide a user of the DSC resource

insight into how to use different properties of the DSC resource. And, this should be

available for each resource in the resource as a separate .PS1 file for easy identification.

All of these examples should go into a folder called Examples at the root of the resource

module folder.

 Adding Tests
One of the other requirements and also a very good practice is to add Pester tests to the

resource module. You have not seen this in the example HostsFile module yet. I will

discuss this in the next chapter on testing DSC resource modules. For now, understand

that it is always a good practice to ensure that the resource module has tests and that

these tests are available for both unit and integration testing. These tests should go into a

folder called Tests at the root of the resource module folder.

Chapter 6 Writing Composite and Custom dsC resourCe modules

207

 Adding Inline Help for Resource Functions
HQRM guidelines also require that we add inline multi-comment help for each of the

resource script functions. Here is an example from one of the resources I contributed to

the xNetworking resource module:

<#

.SYNOPSIS

 Sets the state of the network adapter RDMA.

.PARAMETER Name

 Specifies the name of network adapter for which RDMA needs

 to be configured.

.PARAMETER Enabled

 Specifies if the RDMA configuration should be enabled or disabled.

 Defaults to $true.

#>

function Set-TargetResource

{

 [CmdletBinding()]

 param

 (

 [Parameter(Mandatory = $true)]

 [System.String]

 $Name,

 [Parameter()]

 [System.Boolean]

 $Enabled = $true

)

 $configuration = @{

 Name = $Name

 }

 try

 {

 Write-Verbose -Message ($localizedData.GetNetAdapterRDMAMessage -f

$Name)

Chapter 6 Writing Composite and Custom dsC resourCe modules

208

 $netAdapterRdma = Get-NetAdapterRdma -Name $Name -ErrorAction Stop

 }

 catch

 {

 New-InvalidOperationException `

 -Message ($LocalizedData.NetAdapterNotFoundError -f $Name)

 }

 if ($netAdapterRdma)

 {

 Write-Verbose -Message ($localizedData.CheckNetAdapterRDMAMessage

-f $Name)

 if ($netAdapterRdma.Enabled -ne $Enabled)

 {

 Write-Verbose -Message ($localizedData.SetNetAdapterRDMAMessage

-f $Name, $Enabled)

 Set-NetAdapterRdma -Name $Name -Enabled $Enabled

 }

 }

}

At minimum, the HQRM guidelines require a synopsis of what the function does and

a description for each property in the resource schema or class definition.

 Adding Helper Modules
The example in this chapter is a trivial one. You just had to check if a hosts file entry

existed and based on the value of $Ensure, you had to take an action. There was,

however, some level of redundancy in each of the functions in the resource script. You

could have ideally moved them all into a set of functions and created a helper module

that gets loaded in the resource script. This becomes very critical in larger resource

modules with many more related resources. Each of these resources might require some

common functionality. For example, in my HyperVDsc resource module at

https://github.com/rchaganti/HyperVDsc, there are several resources that manage

the VM configuration. Within each of these resource definitions, I have to ensure that a

Chapter 6 Writing Composite and Custom dsC resourCe modules

https://github.com/rchaganti/HyperVDsc

209

VM that is attempting to configure exists and exists in the right state for performing the

configuration change. When such dependency on a piece of code exists across resources,

it is ideal to separate it into a different supporting script or module altogether. And

this module can be loaded as a dependency in each resource script. I prefer creating

a separate folder for all the helper modules called Modules at the root of the resource

module.

With so many additional things added to a resource module, Figure 6-17 shows the

folder structure for one of the HQRM modules (NetQoSDSC) I wrote.

This may be easy to build when you start working on a new HQRM module but there

are better ways to scaffold this. The Plaster project intends to generate the PowerShell

module scaffolds based on a template. Ben Gelens, PowerShell MVP and DSC expert,

created a Plaster template that generates the folder structure and other files within the

module.

Figure 6-17. Resource module folder structure (HQRM)

Chapter 6 Writing Composite and Custom dsC resourCe modules

210

Note there is a microsoft experimental module called xDscResourceDesigner
available at https://github.com/PowerShell/xDSCResourceDesigner.
this is not an active project and does not support hQrm or class-based resource
module scaffold. however, i still recommend taking a look at it for generating the
moF-based resource modules. You will use a few commands from this module in
Chapter 7 when you look at validating dsC resources.

 Using Plaster to Generate a HQRM Scaffold

You can download Plaster from the PowerShell gallery using the Install-Module cmdlet.

Install-Module -Name Plaster -Force

Once you have the Plaster module, download Ben’s plaster template from

http://azrs.tk/dscPlaster. This downloads a zip archive. You can extract the

NewDscHighQualityResourceModule folder in the zip archive to the local system where

the Plaster module is available.

Using Get-PlasterTemplate shows the information about the HQRM DSC resource

template.

Get-PlasterTemplate -Path C:\Scripts\NewDscHighQualityResourceModule

The output from this command is shown in Figure 6-18.

Figure 6-18. Output from Get-PlasterTemplate

Chapter 6 Writing Composite and Custom dsC resourCe modules

https://github.com/PowerShell/xDSCResourceDesigner
http://azrs.tk/dscPlaster

211

And a HQRM DSC scaffold can be generated by using the Invoke-Plaster

command.

Invoke-Plaster -TemplatePath C:\Scripts\NewDscHighQualityResourceModule

-DestinationPath C:\Scripts\NewHQRMModule -Force

This will invoke the Plaster template, which in turns prompts you for several things

like the resource module name, resource details, and so on. This process is interactive

and self-explanatory, so I will skip it but show you the result of this run in Figure 6-19.

Figure 6-19. Output from Invoke-Plaster

Chapter 6 Writing Composite and Custom dsC resourCe modules

212

Once the scaffold generation is complete, you can check the folder structure created

by the Plaster template. This is shown in Figure 6-20.

There are some additional files in the scaffold that you can see, such as appveyor.

yml. I will discuss this in Chapter 14 when I show you how to implement Continuous

Integration for DSC with AppVeyor.

What I have covered in this section is only a small part of the complete style and

coding guidelines for the HQRM modules. It is simply not possible to cover it all in a

single chapter and some of it doesn’t make sense if you don’t intend to submit your

modules upstream.

Figure 6-20. Folder structure of the new scaffold

Chapter 6 Writing Composite and Custom dsC resourCe modules

213

 Publishing DSC Resource Modules
In the earlier chapters, you used the Install-Module cmdlet to download and install the

DSC resource modules from the PowerShell gallery on to the authoring station or target

nodes when there was no pull server infrastructure. Let’s take a look at creating a file

share-based internal private PowerShell repository. This can be very useful in scenarios

where your target nodes do not have Internet access to download and install the

modules directly from the official gallery. I use this method extensively in my lab work

to ensure all my target nodes can easily get access to the updated modules as they go out

from my source control through a continuous integration pipeline. This is something you

will explore in Chapter 14.

Before you can publish to an internal PowerShell repository, you need to create one.

The PowerShellGet module provides the commands that you need to achieve this task.

 Creating a Private Repository
Creating a file-share based internal PowerShell repository is done using the Register-

PSRepository cmdlet in the PowerShellGet module.

$localRepository = @{

 Name = 'ProDscRepo'

 SourceLocation = '\\S16-JB\ProDSCRepo'

 PublishLocation = '\\S16-JB\ProDSCRepo'

 InstallationPolicy = 'Trusted'

}

Register-PSRepository @localRepository

Once the repository is set up, you can use the Get-PSRepository cmdlet to verify that

it exists. This is shown in Figure 6-21.

Figure 6-21. Registered PowerShell repositories

Chapter 6 Writing Composite and Custom dsC resourCe modules

214

Note the psgallery repository is registered by default on all WmF 5.0 and above
systems. the steps that you performed to register an internal repository must be
done all systems that need to publish or download modules.

 Publishing a Module to a Private Repository

In this chapter, you built your first DSC resource module. You can try publishing it to the

internal private repository you created just now. This is done using the Publish-Module

cmdlet. Before using this command, ensure that the module is available within one of

the folders represented by $env:PSModulePath.

Publish-Module -Name ProDSC -Repository ProDscRepo -Verbose

If you’re running the Publish-Module or Install-Module cmdlet for the first

time, you will receive a prompt to install NuGet.exe. If you click Yes, Nuget.exe will

be downloaded and installed on the local system. Once the NuGet install is complete,

the module gets packaged and published to the internal repository. Figure 6-22 shows

partial output from this process.

Figure 6-22. Publishing a module

Chapter 6 Writing Composite and Custom dsC resourCe modules

215

Figure 6-23 shows the repository contents after the module is published.

 Finding and Installing Modules from a Private Repository

At this point, you can use the Find-Module or Find-DscResource cmdlet to see if your

newly published module or DSC resource can be seen. Figure 6-24 shows the output

from the Find-DscResource cmdlet.

This DSC resource module can now be installed using the Install-Module cmdlet

to download and install. You can, optionally, use the Save-Module cmdlet to save it to a

local path.

Install-Module -Name ProDSC -Repository ProDSCRepo -Force

Save-Module -Name ProDSC -Repository ProDscRepo -Path C:\scripts\DSCModules

As you have seen so far, creating a file-based internal PowerShell repository is quite

simple. Any modules that you develop internally can be posted here if sharing with a

larger public community is not your goal. However, when you want to share the modules

with a larger community, you can publish them to the official PowerShell gallery. To be

Figure 6-23. Repository contents

Figure 6-24. DSC resource from the internal PowerShell repository

Chapter 6 Writing Composite and Custom dsC resourCe modules

216

able to publish to the official gallery, you must have a registered account. Once you have

registered and logged into the gallery, you can retrieve the NuGet API key required for

the publishing process from the “My Account” page, shown in Figure 6-25.

With the API key handy, you can try publishing a module to the gallery using the

Publish-Module cmdlet:

Publish-Module -Name ProDSC -NuGetApiKey <apiKey>

Figure 6-25. My account page on the PowerShell gallery

Chapter 6 Writing Composite and Custom dsC resourCe modules

217

This is it. However, any module that you publish to the official gallery should

follow some best practices. These are documented at http://azrs.tk/pubMod. These

guidelines include using PSScriptAnalyzer to ensure that the script code in the module

follows coding best practices. You will see this in Chapter 7; you’ll also see how to ensure

that you perform all these checks as a part of testing the module code.

 Summary
This chapter provided detailed content on authoring composite resource modules

and custom DSC resource modules. DSC supports developing resource modules as

binary modules as well. However, unless there is a specific need to access low-level

APIs or the application for which you are writing the DSC resources has the necessary

interfaces to configure the application in the form of low-level (accessible as MI APIs)

APIs or is written in C#, there is really no need to develop binary resource modules. DSC

supports the development of MOF-based and class-based resource modules, which

are simply PowerShell modules. MOF-based resource modules work on any system

with PowerShell 4.0 and above. The class-based modules work only on PowerShell 5.0

and above. Therefore, choosing between these two types of modules is simple enough.

Once you make a choice between MOF- or class-based resources, you can use a Plaster

template to help you with the module scaffold generation and start authoring the

resource definitions following some of the best practices and guidelines defined in the

HQRM guidelines or your own company coding standards. Finally, you learned how to

create a local PowerShell module repository and publish the module that you created to

that repository. You also learned how similar it is to publish the modules to the official

PowerShell gallery. What you did not see in this chapter is information about validating

DSC resources. This is available in Chapter 7. You have also not seen how to debug issues

with DSC resources, which is the subject of Chapter 12.

Chapter 6 Writing Composite and Custom dsC resourCe modules

http://azrs.tk/pubMod

219
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_7

CHAPTER 7

Validating DSC Resources
In Chapter 6, you learned how to author DSC resource modules. You also learned how to

write MOF-based and class-based DSC resources. To learn these concepts, you created

the HostsFile resource, used it in a configuration script, and enacted it. In this entire

scenario, you assumed that it worked. It worked, of course, because the code in the

examples was tested for basic functionality before putting it in the chapter.

There is a formal way to approach testing of DSC resources and modules. In this

chapter, you will learn exactly that. You will learn how to perform basic testing as you

start writing the DSC resource script and you will evolve that into a complete set of

tests that validate different code paths in the resource script. This will be done using

Pester, which is the framework for unit testing and beyond. At the end of this chapter,

you should have the necessary knowledge to implement both unit and integration

tests for the MOF-based DSC resources. Pester testing for class-based DSC resources is

still evolving and there is no standard or method that works across different resources.

Therefore, this chapter does not cover class-based resource testing.

 Lab Requirements
To try the examples and exercises in this chapter, you will need at minimum two or more

systems with Windows Server 2008 R2 or above with WMF 5.1 installed. I recommend a

system with Windows Server 2016. The examples and exercises in this chapter require

the use of the Pester module and you are expected to know some basics of Pester.

Before you start writing any tests, let’s look at some basic validation procedures

to ensure that the resources you have authored are syntactically correct and can load

as a module. There are multiple small tests that I perform before even writing any

configurations that use the newly authored resource module.

220

 Ensuring That the Resource Is Discoverable
via Get- DscResource
When the newly authored resource module is copied to the $env:PSModulePath, use

the Get-DscResource cmdlet to ensure that the new DSC resource(s) are shown in

the output. If the new resource is not available in the Get-DscResource output, it is an

indication that one of the module artifacts may not be correct. This includes schema

MOF files (for MOF-based resources), resource scripts, the resource manifest (for

class- based resources), and the module manifests.

When the new DSC resource is not listed in the Get-DscResource output, commands

in the xDscResourceDesigner module can help (for MOF-based resources) figure out

what may have gone wrong with the resource module artifacts.

Note You can try loading the resource script .psm1 files to ensure that they
load cleanly with no errors.

 Using xDscResourceDesigner for MOF-Based
Resources
In Chapter 6, I mentioned the xDscResourceDesigner module a few times but we never

really looked at any examples. This module supports generating a scaffold for the MOF-

based resources only. It does not implement the HQRM guidelines. So, you have not

used xDSCResourceDesigner in the context of scaffolding a new resource but you will

use the validation commands from this module to verify the MOF-based resource for the

correct syntax. To demonstrate the use of commands from the xDSCResourceDesigner

module, I modified the HostsFile MOF-based resource a bit to introduce a bug. This is

available as ProDsc-Bug.zip in this chapter’s source code. Download this zip archive

and extract it to any folder represented by $env:PSModulePath. Run the following

command to ensure you have the xDSCResourceDesigner module:

Install-Module -Name xDscResourceDesigner -Force

This command will install the module from the PowerShell gallery. The commands

in this module are shown in Figure 7-1.

Chapter 7 Validating dSC reSourCeS

221

Within the above set of commands, let’s look at the Test-xDscResource command:

Test-xDscResource -Name HostsFile

The Test-xDscResource command searches for the resource at a path represented

by the $env:PSModulePath variable and tests the schema and module files. Figure 7-2

shows what you’ll see when you try this with the buggy resource module in the

ProDsc- Bug.zip.

Figure 7-1. Commands in the xDSCResourceDesigner module

Figure 7-2. Test-xDscResource output

Chapter 7 Validating dSC reSourCeS

222

As shown in Figure 7-2, the schema MOF and the PSM1 do not have a consistent

definition of properties. If you open the HostsFile.Schema.mof file, you will see that I

defined a write qualifier on the IPAddress property and the resource script functions

have it defined as a mandatory parameter. Let’s update the IPAddress property in the

schema file to define it as a Key property and then run the Test-xDscResource again.

This will return True, indicating that the schema and DSC resource script are in good

shape.

When working with MOF-based DSC resources, I suggest you use the Test-

xDscResource command to ensure that the schema and resource scripts have consistent

property definitions.

Note if all you are interested in testing is the schema MoF, you can use the
Test-xDscSchema command from the xDscResourceDesigner module.

 Testing for PowerShell Code Guidelines
One of the other tests that I usually perform is to verify if the resource script module is as

per the PowerShell coding standards or not. The PSScriptAnalyzer module can be used

here and it covers a subset of the HQRM style guidelines as well.

To start, install the PSScriptAnalyzer module:

Install-Module -Name PSScriptAnalyzer -Force

Once you have the module installed, you can use the Invoke-PSScriptAnalyzer

command from this module to test the HostsFile resource script for adherence to

PowerShell coding standards:

Invoke-ScriptAnalyzer -Path (Get-DscResource -Name HostsFile).Path

Figure 7-3 shows the results of the script analyzer against the HostsFile.psm1 file.

Chapter 7 Validating dSC reSourCeS

223

As seen in Figure 7-3, the Set-TargetResource function in the HostsFile resource

script impacts the contents of the hosts file on the target node. The suggestion from

the script analyzer is to add support for a -WhatIf switch in the Set-TargetResource

function. You may choose to implement this support and there is no difference between

how you do that for a normal PowerShell function and the Set-TargetResource function

in a DSC resource script.

What you have seen so far helps to ensure that resource schema (in case of MOF-

based resources) and resource script can be loaded and that they are according to the

PowerShell coding guidelines.

When you run the Invoke-ScriptAnalyzer command against the ProDSC module

(which you authored in Chapter 6) that contains the class-based resource, you will see a

slightly different output. Figure 7-4 shows it.

Figure 7-3. Script Analyzer output

Figure 7-4. Suggestions for the class-based resource module

Chapter 7 Validating dSC reSourCeS

224

From Figure 7-4, you can see that your ProDSC resource module is missing examples

and tests, which are HQRM requirements and of course a general best practice. Towards

the end of Chapter 6 you saw how to add examples. This chapter will give you the

information on how to add tests. The other suggestions from Figure 7-4 tell you that the

module manifest is using wildcards (*) for FunctionsToExport, CmdletsToExport, and

AliasesToExport. This is not needed and therefore the script analyzer is suggesting

that the wildcards be replaced with an explicit list of related artifacts to export. In the

case of the class-based resource, you do not export any functions or aliases or cmdlets.

Therefore, you can simply comment these lines in the module manifest to adhere to the

script analyzer recommendations.

You can see a list of rules that the Invoke-ScriptAnalyzer command checks using

the Get-ScriptAnalyzerRule command. The rules for DSC are shown in Figure 7-5.

Figure 7-5. Script analyzer rules for DSC resource script and modules

Chapter 7 Validating dSC reSourCeS

225

What you have seen so far helps to ensure that the schema files (for MOF-based

resources) are valid and the resource scripts follow the PowerShell coding guidelines

and DSC module design guidelines (a subset of the HQRM guidelines). However, none

of this really validates the logic that went into the Get, Set, and Test functions. There are

a few different methods to do this.

• You can simply use the new module in a DSC configuration

document, and compile and enact to see if the configuration

completes successfully (hopefully!). This is what you did in Chapter 6.

• You can validate each individual function (Get, Set, and Test) using

the Invoke-DscResource cmdlet.

• You can write test scripts that use Pester to perform unit and

integration testing to validate different code paths in the DSC

resource scripts.

The first two methods act on the desired state of the resource. In the first method,

you enact a configuration that runs the Test function internally and then calls Set as

needed. In the second method, you call individual functions in the context of LCM to

ensure that each function works with a given set of resource properties. Let’s explore this

second method.

 Using Invoke-DscResource
WMF 5.0 added the Invoke-DscResource cmdlet within the

PSDesiredStateConfiguration module. This was primarily meant for third-party

integrations with DSC. For example, other configuration management tools such as

Puppet and Chef use this cmdlet to manage DSC configurations on the target nodes.

You can use this cmdlet in the context of testing your DSC resource scripts as well. This

cmdlet executes the Get, Set, and Test functions in the context of LCM and therefore

helps test the resource scripts as if they are being used in a configuration enact process

without actually creating a configuration document. This cmdlet can be of great help

when debugging resource scripts. When combined with Enable-DscDebug, it will give

you the confined scope of debugging through the debugger attachment when compared

to a full configuration.

Chapter 7 Validating dSC reSourCeS

226

Figure 7-6 shows the Invoke-DscResource syntax and Table 7-1 provides an overview

of the parameters.

Let’s look at a few examples.

 Invoking the Test Method
Invoking the Test method using the Invoke-DscResource cmdlet internally calls the

Test function in the resource script.

$properties = @{

 HostName = 'TestServer101'

 IPAddress = '172.16.101.101'

 Ensure = 'Present'

}

Invoke-DscResource -Name HostsFile `

 -Method Test `

Figure 7-6. Invoke-DscResource parameters

Table 7-1. Overview of Invoke-DscResource Parameters

Parameter
Name

Description

name Specifies the name of the dSC resource.

Method Specifies the name of the resource script method to invoke. the valid values are

Get, Set, and Test.

Modulename Specifies the name of the dSC resource module. this parameter can also take a

module specification hashtable as an argument. For example, @{ModuleName=

'ProDSC';ModuleVersion='1.0.0.0'}.

property Specifies a hashtable of key-values pairs for all mandatory and any other optional

properties for the resource instance.

Chapter 7 Validating dSC reSourCeS

227

 -ModuleName ProDsc `

 -Property $properties `

 -Verbose

Figure 7-7 shows the output from this call.

From Figure 7-7, it is clear that the resource is not in the desired state. The verbose

output also tells you that this is a direct resource access, indicating that you are invoking

the resource script method directly.

 Invoking the Set Method
Since the Test method returned false, you can invoke the Set method to ensure that the

resource gets into the desired state.

Invoke-DscResource -Name HostsFile `

 -Method Set `

 -ModuleName ProDsc `

 -Property $properties `

 -Verbose

Figure 7-7. Test method output

Chapter 7 Validating dSC reSourCeS

228

The Set method output in Figure 7-8 shows that the resource instance is set to the

desired state. In this example, the call to the Set method added the hosts file entry.

 Invoking the Get Method
You have the resource set to desired using the Set method. Now you can invoke the

resource Get method to see the current state of the resource instance.

$properties.Remove('Ensure')

Invoke-DscResource -Name HostsFile `

 -Method Get `

 -ModuleName ProDsc `

 -Property $properties

This output from the above command can be seen in Figure 7-9.

Figure 7-8. Set method output

Chapter 7 Validating dSC reSourCeS

229

What you saw in the preceding section and in the configuration enact method in

Chapter 6 help you ensure that the resource instance can be configured essentially

acting on the desired state of the resource. However, this type of testing may not always

be possible or might not test all possible code paths in a DSC resource script. To address

this, you write test scripts to perform unit testing of your DSC resource scripts. Within

the unit tests, you mock the functionality needed for the DSC resource script functions

so that you don’t change the state of the resource instance. This is done using Pester,

which is a test framework for PowerShell.

The other type of tests for DSC resource script validations are integration tests.

What you saw in Chapter 6, enacting a configuration with your new DSC resource, is an

example of an integration test. However, in the ideal test workflow, an integration test

must be run only after the unit tests are complete with no errors.

In the subsequent sections, you will see how to author unit and integration tests

using Pester.

 Authoring Pester Tests for DSC
Pester started as a unit testing framework for PowerShell. At present, it is used as both a

unit and operations validation framework. The Pester module (version 3.4.0) is available

in-box starting Windows Server 2016. You can install the most recent version of the

Pester module (version 4.3.1 at the time of writing) from the PowerShell gallery.

Install-Module -Name Pester -SkipPublisherCheck -Force

The -SkipPublisherCheck switch parameter is needed since the in-box version of

this module is signed by Microsoft but the version from PowerShell gallery is not.

Figure 7-9. Get method output

Chapter 7 Validating dSC reSourCeS

230

Note a complete overview of pester is outside the scope of this book. the pester
wiki on github has a complete and in-depth explanation of the capabilities and the
pester dSl syntax.

At 30,000 feet, here is what a Pester test script looks like:

Describe 'Tests that work on numbers' {

 Context 'Tests for adding numbers' {

 It "adds positive numbers" {

 $sum = Add-Numbers 2 3

 $sum | Should Be 5

 }

 It "adds negative numbers" {

 $sum = Add-Numbers (-2) (-3)

 $sum | Should Be (-5)

 }

 }

 Context 'Tests for subtracting numbers' {

 It "subtract positive numbers" {

 $sum = Subtract-Numbers 9 5

 $sum | Should Be 4

 }

 }

}

In this code snippet, you see three distinct script blocks:

• Describe is used to define a group of test cases. In the example

above, this group tests numerical operations. A test script should

contain at least one Describe block. Think of this as a test plan.

• Context is an optional sub-group of test cases. In the above example,

all addition tests are grouped into a separate Context within the

Describe block. This helps organize tests into logical sub-groups.

Chapter 7 Validating dSC reSourCeS

231

• It is used to define an individual test case. There can be many tests

cases inside a Context block or these tests can be directly inside a

Describe block.

Within each test case, you are performing an assertion. For example, after you call

the Add-Numbers function, you assert that the value returned by the function must be

equal to a specified value. These assertions are made possible by keywords such as

Should Be and so on. There are many such assertions available in the overall Pester test

framework.

With this understanding, let’s look at writing Pester tests for DSC resource scripts.

 DSC Resource Unit Tests
Unit testing refers to the testing of individual functions in the DSC resource scripts. In

this section, you will look at the Pester unit patterns for DSC resource script functions

and implement the tests for one of the patterns.

Note a set of testing guidelines for the dSC resources is available at
http://azrs.tk/dsctest.

In the first pattern of writing DSC unit tests, you describe the potential states of a

resource instance in the context of each function. Here, the state of a resource instance is

more than just absent or present. For example, when you look at the HostsFile resource,

the following are the potential states of the resource instance:

• Test-TargetResource

• Hosts entry does not exist and it should. Should return false.

• Hosts entry does not exist and it should not. Should return true.

• Hosts entry exists and it should not. Should return false.

• Hosts entry exists and it should. Should return true.

• Get-TargetResource

• Hosts entry does not exist and it should return Ensure as Absent.

• Hosts entry exists and it should return Ensure as Present.

Chapter 7 Validating dSC reSourCeS

http://azrs.tk/dsctest

232

• Set-TargetResource

• Hosts entry does not exist and it should. It should be added.

• Hosts entry exists and it should not. It should be removed.

This is just a subset of the possible states of a HostsFile resource instance in the

context of each function. The following code snippet shows the bare-bones Pester test

script for this pattern:

Describe 'Hosts file resource tests'

 Context 'Get-TargetResource' {

 It 'Hosts entry does not exist and it should return Ensure as

Absent' {

 #Write the test logic here

 }

 It 'Hosts entry exists and it should return Ensure as Present.' {

 #Write the test logic here

 }

 }

 Context 'Set-TargetResource' {

 It 'Hosts entry does not exist and it should. It should be added.' {

 #Write the test logic here

 }

 It 'Hosts entry exists and it should not. It should be removed.' {

 #Write the test logic here

 }

 }

 Context 'Test-TargetResource' {

 It 'Hosts entry does not exist and it should. Should return false.' {

 #Write the test logic here

 }

 It 'Hosts entry does not exist and it should not. Should return

true.' {

 #Write the test logic here

 }

Chapter 7 Validating dSC reSourCeS

233

 It 'Hosts entry exists and it should not. Should return false.' {

 #Write the test logic here

 }

 It '- Hosts entry exists and it should. Should return true.' {

 #Write the test logic here

 }

 }

}

In the second pattern of writing Pester unit tests for DSC resource scripts, you

define the potential state of a resource and then test each resource script function in

that potential state. This may sound similar to the first pattern but its implementation is

different.

The following list describes the potential states:

• A hosts file entry does not exist. It should.

• Get function should return Ensure as Absent.

• Test function should return false.

• Set function should add the hosts file entry.

• A hosts file entry exists as it should.

• Get function should return Ensure as Present.

• Test function should return true.

• A hosts file entry exists and it should not.

• Get function should return Ensure as Present.

• Test function should return false.

• Set function should call Set-Content only once.

• A hosts file entry does not exist and it should not.

• Get function should return Ensure as Absent.

• Test function should return true.

Chapter 7 Validating dSC reSourCeS

234

Do you see how the second pattern differs from the first one? The overall objective

does not change, just how you write and organize the tests changes. The bare bones

Pester script for this script is as follows:

Describe 'Hosts file resource tests' {

 Context 'A hosts file entry does not exist. It should.' {

 It 'Get function should return Ensure as absent.' {

 }

 It 'Test function should return false.' {

 }

 It 'Set function should add the hosts file entry.' {

 }

 }

 Context 'A hosts file entry exists as it should.' {

 It 'Get function should return Ensure as present.' {

 }

 It 'Test function should return true.' {

 }

 }

 Context 'A hosts file entry exists and it should not.' {

 It 'Get function should return Ensure as present.' {

 }

 It 'Test function should return false.' {

 }

 It 'Set function should call Set-Content only once.' {

 }

 }

Chapter 7 Validating dSC reSourCeS

235

 Context 'A hosts file entry does not exist and it should not.' {

 It 'Get function should return Ensure as absent.' {

 }

 It 'Test function should return true.' {

 }

 }

}

I personally prefer the second pattern because it gives me a clear idea of the resource

state I am testing.

Alright! This section, so far, has given you an overview of the two test script patterns

for DSC unit testing and provided quick look into the test script for each pattern.

However, this is not the end. In the earlier section, I mentioned that the unit tests don’t

change or act on the desired state of the resource in reality. In unit tests, you validate

only the code path and not a real enact of the resource instance configuration. In Pester,

this is done using mocking. Mocking in Pester makes it easy to fake dependencies. For

example, you used the Get-Content, Set-Content, and Add-Content cmdlets in the

HostsFile resource script. These commands help you read and update the hosts file

based on the resource instance state. Unlike a real enact, you don’t want to make any

updates the hosts file while performing unit tests. So, you need to fake these commands

using mocking in Pester.

Here is an example of a mock of the Get-Content cmdlet that you can use in the

Pester test script:

Mock -CommandName Get-Content -MockWith {

 return @(

 '# An example of a host file',

 '',

 '172.16.102.1 Router',

 '127.0.0.1 localhost',

 ''

)

}

Chapter 7 Validating dSC reSourCeS

236

In this mock, you are describing the Get-Content cmdlet and also mocking what

it returns when invoke. In the DSC resource script for the HostsFile resource, you

use Get-Content to read the hosts file on the target node. With -MockWith, when the

resource script functions call the Get-Content cmdlet, they receive a mocked object that

represents the contents of a hosts file.

This covers the basics that you need to know to start writing your DSC tests. Let’s

look at the complete test script template and start writing the tests.

 Test Template
In Chapter 6, you looked at the Plaster module that you used to scaffold the DSC HQRM

module. The scaffold that was generated has the Tests folder and a template test script

for the unit tests. This is shown in Figure 7-10.

Figure 7-10. Tests folder and test templates in the scaffold

Let’s take a look at HostsFile.Tests.ps1.

#region HEADER

Unit Test Template Version: 1.2.0

$script:moduleRoot = Split-Path -Parent (Split-Path -Parent $PSScriptRoot)

if ((-not (Test-Path -Path (Join-Path -Path $script:moduleRoot -ChildPath

'DSCResource.Tests'))) -or `

 (-not (Test-Path -Path (Join-Path -Path $script:moduleRoot -ChildPath

'DSCResource.Tests\TestHelper.psm1'))))

{

 & git @('clone','https://github.com/PowerShell/DscResource.Tests.

git',(Join-Path -Path $script:moduleRoot -ChildPath '\DSCResource.

Tests\'))

}

Chapter 7 Validating dSC reSourCeS

237

Import-Module -Name (Join-Path -Path $script:moduleRoot -ChildPath (Join-

Path -Path 'DSCResource.Tests' -ChildPath 'TestHelper.psm1')) -Force

$TestEnvironment = Initialize-TestEnvironment `

 -DSCModuleName 'ProDsc' `

 -DSCResourceName 'HostsFile' `

 -TestType Unit

#endregion HEADER

function Invoke-TestSetup {

 # TODO: Optional init code goes here...

}

function Invoke-TestCleanup {

 Restore-TestEnvironment -TestEnvironment $TestEnvironment

 # TODO: Other Optional Cleanup Code Goes Here...

}

Begin Testing

try

{

 Invoke-TestSetup

 InModuleScope 'HostsFile' {

 Describe '<Test-name>' {

 BeforeEach {

 # per-test-initialization

 }

 AfterEach {

 # per-test-cleanup

 }

 Context 'Context-description' {

 BeforeEach {

 # per-test-initialization

 }

Chapter 7 Validating dSC reSourCeS

238

 AfterEach {

 # per-test-cleanup

 }

 It 'Should...test-description' {

 # test-code

 }

 It 'Should...test-description' {

 # test-code

 }

 }

 Context 'Context-description' {

 It 'Shouldtest-description' {

 # test-code

 }

 }

 }

 Describe '<Test-name>' {

 Context '<Context-description>' {

 It 'Should ...test-description' {

 # test-code

 }

 }

 }

 # TODO: add more Describe blocks as needed

 }

}

finally

{

 Invoke-TestCleanup

}

Chapter 7 Validating dSC reSourCeS

239

Note i removed a few comments that were in the test template and left only
what is necessary.

The first few lines in the template above (in the HEADER region) download the

DSC resource test helpers from the official PowerShell GitHub repository. Therefore,

this requires git.exe on the system where you intend to invoke these Pester test

scripts. You can get this by installing the Git software from https://git-scm.com/. The

TestHelper.psm1 module contains the Initialize-TestEnvironment and Restore-

TestEnvironment among other functions.

The Initialize-TestEnvironment function loads the DSC resource scripts into the

global scope and makes the resource script functions available for the unit test cases.

The Invoke-TestSetup and the Invoke-TestCleanup functions defined in the

test script help prepare any prerequisites needed for the tests to run and clean up the

environment after the tests are complete. These are optional and need not be there in

the test script.

The try-finally block is where the tests are placed. The InModuleScope script block

allows you to run the units tests in the context of non-exported code of the DSC resource

script. In your case, this is the HostsFile module.

The test template script contains a couple of Describe blocks. If you look at the first

one, it has a few more helper commands such as the BeforeEach and AfterEach. These

commands can be used to define setup and teardown tasks that are performed at the

beginning and end of the It blocks. For example, in your test script for the HostsFile

resource, you can use the BeforeEach command to create the mocks for Add-Content

and Set-Content cmdlets. This way, these mocks need to be available for each It block

or test in the script. So, you can define this command within the Describe block instead

of defining it in each Context where it becomes available the Context block.

You don’t need any command to run after each It block and therefore you don’t

need to use the AfterEach command.

 HostsFile Unit Tests
With what you have learned so far, let’s start putting together this test script

incrementally.

Chapter 7 Validating dSC reSourCeS

https://git-scm.com/

240

Here is how the test script looks with just the initialization code and the BeforeEach

in the Describe block:

#region HEADER

Unit Test Template Version: 1.2.0

$script:moduleRoot = Split-Path -Parent (Split-Path -Parent $PSScriptRoot)

if ((-not (Test-Path -Path (Join-Path -Path $script:moduleRoot -ChildPath

'DSCResource.Tests'))) -or `

 (-not (Test-Path -Path (Join-Path -Path $script:moduleRoot -ChildPath

'DSCResource.Tests\TestHelper.psm1'))))

{

 & git @('clone','https://github.com/PowerShell/DscResource.Tests.

git',(Join-Path -Path $script:moduleRoot -ChildPath '\DSCResource.

Tests\'))

}

Import-Module -Name (Join-Path -Path $script:moduleRoot -ChildPath (Join-

Path -Path 'DSCResource.Tests' -ChildPath 'TestHelper.psm1')) -Force

$TestEnvironment = Initialize-TestEnvironment `

 -DSCModuleName 'ProDsc' `

 -DSCResourceName 'HostsFile' `

 -TestType Unit

#endregion HEADER

function Invoke-TestCleanup {

 Restore-TestEnvironment -TestEnvironment $TestEnvironment

}

Begin Testing

try

{

 InModuleScope 'HostsFile' {

 Describe 'Unit tests for the HostsFile resource' {

 BeforeEach {

 Mock -CommandName Add-Content

Chapter 7 Validating dSC reSourCeS

241

 Mock -CommandName Set-Content

 }

 }

 }

}

finally

{

 Invoke-TestCleanup

}

You don’t have any test-subgroups (Context) and test cases (It) yet in the test script.

You will start authoring these tests using the second test design pattern you saw earlier.

 Context: A Hosts File Entry Does Not Exist. It Should.

Here is what you had in the second pattern as the first state of the HostsFile resource

instance:

Context 'A hosts file entry does not exist. It should.' {

 It 'Get function should return Ensure as absent.' {

 }

 It 'Test function should return false.' {

 }

 It 'Set function should add the hosts file entry.' {

 }

}

Before you define each test case, you need the test parameters that you plan to use

with the Get, Set, and Test functions. There is no need to specify the Ensure property

since it has a default value set to Present.

$testParameters = @{

 HostName = 'TestServer102'

 IPAddress = '172.16.102.102'

 Verbose = $true

}

Chapter 7 Validating dSC reSourCeS

242

You also need a context-specific mock for the Get-Content cmdlet that returns a

mocked object representing hosts file content:

Mock -CommandName Get-Content -MockWith {

 return @(

 '# An example of a host file',

 '',

 '172.16.102.1 Router',

 '127.0.0.1 localhost',

 ''

)

}

With the test parameters and mock available, you can start writing the test cases

(It blocks):

Context 'A hosts file entry does not exist. It should.' {

 It 'Get function should return Ensure as absent.' {

 (Get-TargetResource @testParameters).Ensure | Should Be 'Absent'

 }

 It 'Test function should return false.' {

 Test-TargetResource @testParameters | Should Be $false

 }

 It 'Set function should add the hosts file entry.' {

 Set-TargetResource @testParameters

 Assert-MockCalled -CommandName Add-Content

 }

}

The first two assertions should self-explanatory. The HostName and IPAddress entry

that is specified using $testParameters is not there in the mock object returned by

the Get-Content mock function. Therefore, Get-TargetResource is expected to return

Ensure as Absent and Test-TargetResource is expected to return $false. In the third

test in this context, you use Assert-MockCalled to ensure that the Add-TargetResource

indeed attempted to update the content of the hosts file with a new entry.

Let’s put these bit and pieces together and see the complete test script.

Chapter 7 Validating dSC reSourCeS

243

Note in order to reduce the code snippet length, i have removed the header
region from the below example. in the test script that you will run, the commands
in the header region are very important.

Begin Testing

try

{

 InModuleScope 'HostsFile' {

 Describe 'Unit tests for the HostsFile resource' {

 BeforeEach {

 Mock -CommandName Add-Content

 Mock -CommandName Set-Content

 }

 Context 'A hosts file entry does not exist. It should.' {

 $testParameters = @{

 HostName = 'TestServer102'

 IPAddress = '172.16.102.102'

 Verbose = $true

 }

 Mock -CommandName Get-Content -MockWith {

 return @(

 '# An example of a host file',

 '',

 '172.16.102.1 Router',

 '127.0.0.1 localhost',

 ''

)

 }

 It 'Get function should return Ensure as absent.' {

 (Get-TargetResource @testParameters).Ensure | Should Be

'Absent'

 }

Chapter 7 Validating dSC reSourCeS

244

 It 'Test function should return false.' {

 Test-TargetResource @testParameters | Should Be $false

 }

 It 'Set function should add the hosts file entry.' {

 Set-TargetResource @testParameters

 Assert-MockCalled -CommandName Add-Content -Times 1

 }

 }

 }

 }

}

finally

{

 Invoke-TestCleanup

}

Before invoking this Pester test script, ensure that you have the right folder structure

with the MOF-based HostsFile resource. Figure 7-11 shows the required folder

structure.

Figure 7-11. Folder structure for the unit testing

It is important to ensure that the resource module folder (ProDSC in this example) is

available at the same level as the Tests folder. For the unit tests, you must have a folder

called Unit in the Tests folder.

Chapter 7 Validating dSC reSourCeS

245

Once this folder structure is ready, you can execute the test script using the Invoke-

Pester command. You can navigate to the folder containing the test script and run the

Invoke-Pester command without any arguments. When this script is executed for the

first time, using git.exe, the DSCResources.Tests repository gets cloned locally and the

tests in the context block(s) get executed. The output from this is as follows:

PS C:\scripts\ProDSC\Tests\Unit> Invoke-Pester

Cloning into 'C:\scripts\ProDSC\DSCResource.Tests'...

remote: Counting objects: 946, done.

remote: Compressing objects: 100% (4/4), done.

Rremote: Total 946 (delta 0), reused 1 (delta 0), pack-reused 942

Receiving objects: 100% (946/946), 340.51 KiB | 253.00 KiB/s, done.

Resolving deltas: 100% (550/550)

Resolving deltas: 100% (550/550), done.

Describing Unit tests for the HostsFile resource

 Context A hosts file entry does not exist. It should.

VERBOSE: Checking if hosts file entry exists for TestServer102 and

172.16.102.102 or not.

VERBOSE: Hosts file entry for TestServer102 and 172.16.102.102 does not

exist.

 [+] Get function should return Ensure as absent. 5s

VERBOSE: Checking if the hosts file entry for TestServer102 and

172.16.102.102 exists or not.

VERBOSE: Hosts file entry for TestServer102 and 172.16.102.102 does not

exist while it should; it must be added.

 [+] Test function should return false. 179ms

VERBOSE: Creating hosts file entry for TestServer102 and 172.16.102.102.

 [+] Set function should add the hosts file entry. 156ms

Tests completed in 5.34s

Passed: 3 Failed: 0 Skipped: 0 Pending: 0 Inconclusive: 0

This is good. Your first three tests in the first context passed, indicating that if a hosts

file entry does not exist and if it should, your resource script handles the expected way.

Let’s look at the other three contexts and write the tests for each scenario.

Chapter 7 Validating dSC reSourCeS

246

Note When running again, the DSCResource.Tests tests get in scope as well
so a lot more tests are actually run then.

 Context: A Hosts File Entry Exists As It Should.

Similar to the first context, you will need the test parameters and Get-Content mock

here. Since the resource instance state assumes that the hosts file entry exists, the Get-

Content should return a mocked object that indicates the same.

Context 'A hosts file entry exists as it should.' {

 $testParameters = @{

 HostName = 'TestServer102'

 IPAddress = '172.16.102.102'

 Verbose = $true

 }

 Mock -CommandName Get-Content -MockWith {

 return @(

 '# An example of a host file',

 '',

 '127.0.0.1 localhost',

 "$($testParameters.IPAddress) $($testParameters.

HostName)",

 ''

)

 }

 It 'Get function should return Ensure as present.' {

 (Get-TargetResource @testParameters).Ensure | Should Be 'Present'

 }

 It 'Test function should return true.' {

 Test-TargetResource @testParameters | Should Be $true

 }

}

Chapter 7 Validating dSC reSourCeS

247

In the test parameters, there is no need to specify the Ensure property since it has a

default value set to Present.

 Context: A Hosts File Entry Exists and It Should Not.

In this context, you test whether the resource script functions can handle the resource

state where the hosts file entry exists when it should not. In this case, the Get function

should return Ensure set to Present, Test should return $false, and the Set function

should remove this entry and should call the Set-Content mock only once.

The test parameters and the Get-Content mock can be same as the second context

but the Ensure should be set to Absent.

Context 'A hosts file entry exists and it should not.' {

 $testParameters = @{

 HostName = 'TestServer102'

 IPAddress = '172.16.102.102'

 Ensure = 'Absent'

 Verbose = $true

 }

 Mock -CommandName Get-Content -MockWith {

 return @(

 '# An example of a host file',

 '',

 '127.0.0.1 localhost',

 "$($testParameters.IPAddress) $($testParameters.

HostName)",

 ''

)

 }

 It 'Get function should return Ensure as present.' {

 (Get-TargetResource @testParameters).Ensure | Should Be 'Present'

 }

 It 'Test function should return false.' {

 Test-TargetResource @testParameters | Should Be $false

 }

Chapter 7 Validating dSC reSourCeS

248

 It 'Set function should call Set-Content only once.' {

 Set-TargetResource @testParameters

 Assert-MockCalled -CommandName Set-Content -Times 1

 }

}

 Context: A Hosts File Entry Does Not Exist and It Should Not.

In this context, you test the state of the HostsFile resource where the hosts file entry

does not exist and it should not. In this scenario, you need to test only the Get and Test

functions to ensure that Get returns Ensure set to Absent and Test returns $false.

The test parameters will be same as the third context and the Get-Content mock

should return the hosts file content that does not contain the entry for specified test

parameters.

Context 'A hosts file entry does not exist and it should not.' {

 $testParameters = @{

 HostName = 'TestServer102'

 IPAddress = '172.16.102.102'

 Ensure = 'Absent'

 Verbose = $true

 }

 Mock -CommandName Get-Content -MockWith {

 return @(

 '# An example of a host file',

 '',

 '127.0.0.1 localhost',

 ''

)

 }

 It 'Get function should return Ensure as absent.' {

 (Get-TargetResource @testParameters).Ensure | Should Be 'Absent'

 }

Chapter 7 Validating dSC reSourCeS

249

 It 'Test function should return true.' {

 Test-TargetResource @testParameters | Should Be $true

 }

}

Here is the final test script that contains test cases for all potential resource states:

#region HEADER

Unit Test Template Version: 1.2.0

$script:moduleRoot = Split-Path -Parent (Split-Path -Parent $PSScriptRoot)

if ((-not (Test-Path -Path (Join-Path -Path $script:moduleRoot -ChildPath

'DSCResource.Tests'))) -or `

 (-not (Test-Path -Path (Join-Path -Path $script:moduleRoot

-ChildPath 'DSCResource.Tests\TestHelper.psm1'))))

{

 & git @('clone','https://github.com/PowerShell/DscResource.Tests.git',

(Join-Path -Path $script:moduleRoot -ChildPath '\DSCResource.Tests\'))

}

Import-Module -Name (Join-Path -Path $script:moduleRoot -ChildPath (Join-

Path -Path 'DSCResource.Tests' -ChildPath 'TestHelper.psm1')) -Force

$TestEnvironment = Initialize-TestEnvironment `

 -DSCModuleName 'ProDsc' `

 -DSCResourceName 'HostsFile' `

 -TestType Unit

#endregion HEADER

function Invoke-TestCleanup {

 Restore-TestEnvironment -TestEnvironment $TestEnvironment

}

Begin Testing

try

{

Chapter 7 Validating dSC reSourCeS

250

 InModuleScope 'HostsFile' {

 Describe 'Unit tests for the HostsFile resource' {

 BeforeEach {

 Mock -CommandName Add-Content

 Mock -CommandName Set-Content

 }

 Context 'A hosts file entry does not exist. It should.' {

 $testParameters = @{

 HostName = 'TestServer102'

 IPAddress = '172.16.102.102'

 Verbose = $true

 }

 Mock -CommandName Get-Content -MockWith {

 return @(

 '# An example of a host file',

 '',

 '172.16.102.1 Router',

 '127.0.0.1 localhost',

 ''

)

 }

 It 'Get function should return Ensure as absent.' {

 (Get-TargetResource @testParameters).Ensure | Should Be

'Absent'

 }

 It 'Test function should return false.' {

 Test-TargetResource @testParameters | Should Be $false

 }

 It 'Set function should add the hosts file entry.' {

 Set-TargetResource @testParameters

 Assert-MockCalled -CommandName Add-Content -Times 1

 }

 }

Chapter 7 Validating dSC reSourCeS

251

 Context 'A hosts file entry exists as it should.' {

 $testParameters = @{

 HostName = 'TestServer102'

 IPAddress = '172.16.102.102'

 Verbose = $true

 }

 Mock -CommandName Get-Content -MockWith {

 return @(

 '# An example of a host file',

 '',

 '127.0.0.1 localhost',

 "$($testParameters.IPAddress)

 $($testParameters.HostName)",

 ''

)

 }

 It 'Get function should return Ensure as present.' {

 (Get-TargetResource @testParameters).Ensure | Should Be

'Present'

 }

 It 'Test function should return true.' {

 Test-TargetResource @testParameters | Should Be $true

 }

 }

 Context 'A hosts file entry exists and it should not.' {

 $testParameters = @{

 HostName = 'TestServer102'

 IPAddress = '172.16.102.102'

 Ensure = 'Absent'

 Verbose = $true

 }

Chapter 7 Validating dSC reSourCeS

252

 Mock -CommandName Get-Content -MockWith {

 return @(

 '# An example of a host file',

 '',

 '127.0.0.1 localhost',

 "$($testParameters.IPAddress)

 $($testParameters.HostName)",

 ''

)

 }

 It 'Get function should return Ensure as present.' {

 (Get-TargetResource @testParameters).Ensure | Should Be

'Present'

 }

 It 'Test function should return false.' {

 Test-TargetResource @testParameters | Should Be $false

 }

 It 'Set function should call Set-Content only once.' {

 Set-TargetResource @testParameters

 Assert-MockCalled -CommandName Set-Content -Times 1

 }

 }

 Context 'A hosts file entry does not exist and it should not.' {

 $testParameters = @{

 HostName = 'TestServer102'

 IPAddress = '172.16.102.102'

 Ensure = 'Absent'

 Verbose = $true

 }

 Mock -CommandName Get-Content -MockWith {

 return @(

 '# An example of a host file',

 '',

Chapter 7 Validating dSC reSourCeS

253

 '127.0.0.1 localhost',

 ''

)

 }

 It 'Get function should return Ensure as absent.' {

 (Get-TargetResource @testParameters).Ensure | Should Be

'Absent'

 }

 It 'Test function should return true.' {

 Test-TargetResource @testParameters | Should Be $true

 }

 }

 }

 }

}

finally

{

 Invoke-TestCleanup

}

Here is the output from the final test script:

PS C:\scripts\ProDSC\Tests\Unit> Invoke-Pester -CodeCoverage C:\scripts\

ProDSC\DSCResources\HostsFile\HostsFile.psm1

Describing Unit tests for the HostsFile resource

 Context A hosts file entry does not exist. It should.

VERBOSE: Checking if hosts file entry exists for TestServer102 and

172.16.102.102 or not.

VERBOSE: Hosts file entry for TestServer102 and 172.16.102.102 does not

exist.

 [+] Get function should return Ensure as absent. 707ms

VERBOSE: Checking if the hosts file entry for TestServer102 and

172.16.102.102 exists or not.

VERBOSE: Hosts file entry for TestServer102 and 172.16.102.102 does not

exist while it should; it must be added.

Chapter 7 Validating dSC reSourCeS

254

 [+] Test function should return false. 81ms

VERBOSE: Creating hosts file entry for TestServer102 and 172.16.102.102.

 [+] Set function should add the hosts file entry. 89ms

 Context A hosts file entry exists as it should.

VERBOSE: Checking if hosts file entry exists for TestServer102 and

172.16.102.102 or not.

VERBOSE: Hosts file entry for TestServer102 and 172.16.102.102 exists.

 [+] Get function should return Ensure as present. 130ms

VERBOSE: Checking if the hosts file entry for TestServer102 and

172.16.102.102 exists or not.

VERBOSE: Hosts file entry for TestServer102 and 172.16.102.102 exists for

the given parameters; nothing to configure.

 [+] Test function should return true. 75ms

 Context A hosts file entry exists and it should not.

VERBOSE: Checking if hosts file entry exists for TestServer102 and

172.16.102.102 or not.

VERBOSE: Hosts file entry for TestServer102 and 172.16.102.102 exists.

 [+] Get function should return Ensure as present. 269ms

VERBOSE: Checking if the hosts file entry for TestServer102 and

172.16.102.102 exists or not.

VERBOSE: Hosts file entry for TestServer102 and 172.16.102.102 exists while

it should not; it must be removed.

 [+] Test function should return false. 115ms

VERBOSE: Removing hosts file entry for TestServer102 and 172.16.102.102.

 [+] Set function should call Set-Content only once. 83ms

 Context A hosts file entry does not exist and it should not.

VERBOSE: Checking if hosts file entry exists for TestServer102 and

172.16.102.102 or not.

VERBOSE: Hosts file entry for TestServer102 and 172.16.102.102 does not

exist.

 [+] Get function should return Ensure as absent. 408ms

VERBOSE: Checking if the hosts file entry for TestServer102 and

172.16.102.102 exists or not.

VERBOSE: Hosts file entry for TestServer102 and 172.16.102.102 does not

exist; nothing to configure.

Chapter 7 Validating dSC reSourCeS

255

 [+] Test function should return true. 544ms

Tests completed in 2.51s

Passed: 10 Failed: 0 Skipped: 0 Pending: 0 Inconclusive: 0

What you have covered in this test script is a subset of what can be possible

within unit testing. Pester can also be used to retrieve the code coverage percentage

with regards to the tests in the Pester script. For any test script, you can add the

-CodeCoverage parameter with path(s) to the script files as an argument.

Here is how you can do so for the HostsFile resource.

Invoke-Pester -CodeCoverage C:\scripts\ProDSC\DSCResources\HostsFile\

HostsFile.psm1

The returned output (partial) is shown in Figure 7-12.

As shown in Figure 7-12, you have 100% code coverage, which is very good. In a

larger resource script, this may not always be possible.

 DSC Integration Tests
The unit tests you have seen so far help you test different code paths and the behavior

within the resource script without actually enacting any configuration. It is equally

important to perform integration tests that verify an actual enact and then validate if the

configuration enact brought the system to the desired state or not. The earlier methods

you saw where you enacted configuration were manual. You enacted the configuration

either as a configuration script or used the Invoke-DscResource cmdlet to invoke the

Set function in the resource script.

The integration test script helps you automate these validations. The Plaster

template that you generated in Chapter 6 has the template scripts for the integration

tests as well. You can see this in Figure 7-10.

Figure 7-12. Code coverage test

Chapter 7 Validating dSC reSourCeS

256

Here is the integration test script from the template that was generated in Chapter 6:

$script:DSCModuleName = 'ProDsc'

$script:DSCResourceName = 'HostsFile'

#region HEADER

Integration Test Template Version: 1.1.1

[String] $script:moduleRoot = Split-Path -Parent (Split-Path -Parent

$PSScriptRoot)

if ((-not (Test-Path -Path (Join-Path -Path $script:moduleRoot -ChildPath

'DSCResource.Tests'))) -or `

 (-not (Test-Path -Path (Join-Path -Path $script:moduleRoot -ChildPath

'DSCResource.Tests\TestHelper.psm1'))))

{

 & git @('clone','https://github.com/PowerShell/DscResource.Tests.

git',(Join-Path -Path $script:moduleRoot -ChildPath '\DSCResource.

Tests\'))

}

Import-Module -Name (Join-Path -Path $script:moduleRoot -ChildPath (Join-

Path -Path 'DSCResource.Tests' -ChildPath 'TestHelper.psm1')) -Force

$TestEnvironment = Initialize-TestEnvironment `

 -DSCModuleName $script:DSCModuleName `

 -DSCResourceName $script:DSCResourceName `

 -TestType Integration

#endregion

Using try/finally to always cleanup.

try

{

 #region Integration Tests

 $configFile = Join-Path -Path $PSScriptRoot -ChildPath

"$($script:DSCResourceName).config.ps1"

 . $configFile

 Describe "$($script:DSCResourceName)_Integration" {

 It 'Should compile and apply the MOF without throwing' {

Chapter 7 Validating dSC reSourCeS

257

 {

 & "$($script:DSCResourceName)_Config" -OutputPath $TestDrive

 Start-DscConfiguration -Path $TestDrive `

 -ComputerName localhost -Wait -Verbose -Force

 } | Should not throw

 }

 It 'Should be able to call Get-DscConfiguration without throwing' {

 { Get-DscConfiguration -Verbose -ErrorAction Stop } | Should

Not throw

 }

 It 'Should be in the desired state' {

 {Test-DscConfiguration} | Should be $true

 }

 }

 #endregion

}

finally

{

 Restore-TestEnvironment -TestEnvironment $TestEnvironment

}

Once again, I removed all the comments from the template and kept only what

is necessary. As you can see, this is mostly similar to the unit test template. In the

try-finally block, you are required to compile a configuration script, enact that

configuration, and then validate the result of that enact. The configurations to be tested

will be specified in a separate config.ps1 file, as seen in Figure 7-10.

Here is the configuration that contains the HostsFile resource instances:

Configuration HostsFile_Config

{

 param

 (

 [Parameter()]

 [System.String[]]

 $NodeName = 'localhost'

Chapter 7 Validating dSC reSourCeS

258

)

 Import-DSCResource -ModuleName ProDsc -ModuleVersion 1.0.0.0

 Node $NodeName

 {

 HostsFile HostEntry

 {

 HostName = 'TestServer10'

 IPAddress = '172.16.100.10'

 Ensure = 'Present'

 }

 }

}

Now, when you run the integration test shown above, it compiles the configuration

and enacts it. After the enact is complete, you check if the Get-DscConfiguration runs

successfully or not. Figure 7-13 shows partial output from the integration test run.

Figure 7-13. Integration test output

Chapter 7 Validating dSC reSourCeS

259

This brings us to the end of this chapter. What you saw at the end is just a simple

integration test. It does not have any operational validations after the resource is in the

desired state. For example, after a host entry is added, you may want to try out name

resolution to ensure that the entry added to the hosts file indeed is effective. This type of

test is called an operational validation test. You should create comprehensive integration

test scripts to ensure that you cover the operational aspects as well.

In fact, before you start development of any DSC resource scripts, ideally you

should have the tests written first. This is called test-driven development (TDD). With

the concepts you learned in this chapter and in Chapter 6, you may work backwards to

ensure that you have tests written first and then write the resource scripts that will make

the tests pass. TDD is not always easy, but it is certainly a recommended practice in the

world of DevOps and IaC.

 Summary
In this chapter, you learned how to perform validation of your custom DSC resource

modules to ensure that they are functional and are designed as per Microsoft’s coding

guidelines. Testing is an essential part of continuous integration and delivery, and it

helps you ensure that the code you write has no obvious bugs and works as expected. In

this chapter, you wrote both unit and integration tests. In Chapter 1, you looked at the

concept of a release pipeline to help you take the code from source control to production

in an automated manner. What you learned in Chapter 6 and in this chapter become the

foundation of building this release pipeline. You will implement this release pipeline that

uses the tests defined here in Chapters 14 and 15.

Chapter 7 Validating dSC reSourCeS

After learning the basics of DSC, you move on to learning more advanced features such

as configuration delivery methods, DSC monitoring, and reporting methods.

You look at some of the new features in DSC such as partial configurations and

cross-node synchronization. Partial configurations help us with delegated configuration

management, and cross-node synchronization lets us create an orchestration-like

configuration experience with DSC.

You extend your knowledge of writing custom DSC resources and testing them to

debugging DSC resource module issues in Chapter 12. Debugging is an essential skill

for troubleshooting any DSC resource script issues that arise due to buggy code or the

environment in which the DSC resource is being used.

Finally, you conclude this section by looking at how DSC secures MOF files at rest

on the target nodes, how to enable signing of DSC configurations and resource modules,

and how to delegate access to DSC operations using WMI namespace permissions and

Just Enough Administration (JEA) endpoints.

PART II

Advanced DSC Concepts

263
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_8

CHAPTER 8

Configuration Delivery
Methods
In Chapter 2, the DSC architecture and feature overview, you briefly looked at different

configuration delivery methods in DSC. With WMF 5.0 and above, DSC supports

push, pull, mixed, and disabled refresh modes. The RefreshMode property of the DSC

LCM configuration takes only Push, Pull, and Disabled as the valid values. The mixed

mode does not exist as a possible value and in reality can be used only with partial

configurations. In this chapter, I will discuss a few more concepts around the push model

and move towards the other configuration refresh modes.

 Lab Requirements
To try the examples and exercises in this chapter, you will need at minimum two or

more systems with Windows Server 2008 R2 or above with WMF 5.1 or above installed.

I recommend a system with Windows Server 2016. The HTTPS pull service and credential

encryption requires certificates and therefore these will require either a certificate

authority or self-signed certificates. You will need at least three nodes to try out the pull

mode configuration delivery.

 Push Mode
The first DSC configuration delivery model I discussed was the push model. This is the

default mode for the LCM. All of the examples in earlier chapters used the push mode. In

the push mode, the configuration MOF gets pushed to the target node and gets enacted.

264

The DSC LCM is in push refresh mode be default and hence requires no additional

meta-configuration if the goal is just basic configuration delivery. In one of the push

methods, this is done using the Start-DscConfiguration cmdlet, which stages the

pending configuration and enacts it immediately.

 Stage and Enact
Another way to push a configuration is to use Publish-DscConfiguration to stage the

pending configuration and then use the -UseExisting switch parameter with the Start-

DscConfiguration cmdlet to enact the pending configuration. Let’s take a look at this.

Here is the configuration file you will compile, stage, and enact:

Configuration WebServerConfiguration

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

 Node @('S16-01','S16-02','CNODE05')

 {

 WindowsFeature WebServer

 {

 Name = 'Web-Server'

 Ensure = 'Present'

 }

 }

}

WebServerConfiguration

When you compile this, you will see three MOF files generated, each with the name

of a node. See Figure 8-1.

Figure 8-1. Compiled MOF files for each node

Chapter 8 Configuration Delivery MethoDs

265

Now you can stage these MOFs as pending configurations on the target nodes using

the Publish-DscConfiguration cmdlet. See Figure 8-2.

The parameters for this command are more or less similar to what you saw with the

Start-DscConfiguration cmdlet. When you point this command to a path (using the

-Path parameter) containing all compiled MOF files, it will iterate over all files at the

path and try to connect to the target nodes with the same name as the MOF file and stage

the MOF as a pending configuration. While the NetBIOS name works, it may be a good

idea to use the FQDN of the target node. If you want to stage the configuration on only

one of the target nodes, you can use the -ComputerName parameter or the -CimSession

parameter. Let’s try this to stage a pending configuration on one of the nodes. See

Figure 8-3 also.

Publish-DscConfiguration -Path .\WebServerConfiguration -ComputerName

S16- 01 -Verbose

Note the argument to the -ComputerName parameter should match one of the
file names at the path specified.

Figure 8-2. Publish-DscConfiguration command parameters

Figure 8-3. Staging a configuration as pending.mof

Chapter 8 Configuration Delivery MethoDs

266

If the target node LCM is configured to use the pull refresh mode (which you

will see in the next section) or has a pending configuration already, you can use the

-Force switch with the Publish-DscConfiguration cmdlet. If the target node is in

pull refresh mode, it will be set to push mode after using -Force with the Publish-

DscConfiguration cmdlet.

Once the staging is complete, you can enact this configuration using the

-UseExisting switch parameter of the Start-DscConfiguration cmdlet.

Start-DscConfiguration -ComputerName S16-01 -UseExisting -Wait -Verbose

While you can use this method (stage and enact) with normal node configurations,

this is useful especially in managing partial configuration fragments. You will look at

partial configurations in Chapter 10.

The way you use -CimSession or -ComputerName and -Force is same across the

Start-DscConfiguration and Publish-DscConfiguration cmdlets. The -Wait and

-Verbose parameters are common too and I recommend using them when staging

or enacting a configuration. The verbose stream of messages from the DSC resources

modules can be useful in identifying what is happening behind the scenes and what

might be causing an enact failure.

 Background Enact
The Start-DscConfiguration cmdlet has additional parameters such as -JobName and

-ThrottleLimit. Let’s see where these parameters are useful. When dealing with a larger

number of target systems, it does not make a lot of sense to wait at the console for the

configuration change to complete or look at the verbose stream of messages from the

configuration resources. So, this is where the -JobName parameter plays a role.

Note you can simply remove the -Wait parameter to run the configuration as
a background job. it is not mandatory to use the -JobName parameter to start
the configuration enact process as a background job. however, the -JobName
parameter makes it easy to identify the configuration job and access the state of
the configuration job(s).

Chapter 8 Configuration Delivery MethoDs

267

When using the -JobName parameter, the Start-DscConfiguration cmdlet starts the

configuration enact process as a background job and returns a job object. This job object

can be used to monitor the job progress and receive the output from the configuration

change process. This job object is a PowerShell configuration job object and you can

examine it by listing out its members.

Let’s start with a configuration script that helps explain this:

Configuration ScriptDemo

{

 Node ('S16-1', 'S16-2')

 {

 Script ScriptDemo

 {

 GetScript = {

 @{

 GetScript = $GetScript

 SetScript = $SetScript

 TestScript = $TestScript

 Result = 'TestScript'

 }

 }

 SetScript = {

 Write-Verbose 'Sleeping for 50 seconds'

 Start-Sleep 50

 Write-Verbose 'Completed Script task'

 }

 TestScript = {

 $false

 }

 }

 }

}

ScriptDemo

Chapter 8 Configuration Delivery MethoDs

268

This configuration document uses the Script resource that just waits for some

time. Apart from that, what you are doing in the SetScript script block is writing

some verbose messages. The following code snippet shows how to use the -JobName

parameter:

$ConfigJob = Start-DscConfiguration -JobName scriptjob -Path .\ScriptDemo

-Verbose

That is simple. This starts the configuration enact process for all MOF files that exist

under the ScriptDemo folder. The $ConfigJob property becomes a container job for all

the configuration jobs started for every target system MOF in the ScriptDemo folder. This

is shown in Figure 8-4.

The ChildJobs property of the $ConfigJob object provides a list of jobs started for

each MOF in the ScriptDemo directory.

As you can see in the child job status from Figure 8-5, all jobs have failed. To find out

why, you need to look at the properties of the job object. Let’s examine this using the

Get-Member cmdlet. See Figure 8-6.

Figure 8-4. Starting an enact as a background job

Figure 8-5. Child jobs started for the configuration enact

Chapter 8 Configuration Delivery MethoDs

269

The Debug, Error, Output, Verbose, and Warning properties each correspond to an

output stream from the configuration. The following code snippet shows how to access

the values from these output streams:

Get-Job -Name Job70 | Select Debug, Error, Output, Verbose, Warning

Get-Job -Name Job71 | Select Debug, Error, Output, Verbose, Warning

Note you are using the child job names from figure 8-5 and not the job name
specified with the Start-DscConfiguration cmdlet.

Figure 8-6. Background job properties

Figure 8-7. Different output streams from the child jobs

Chapter 8 Configuration Delivery MethoDs

270

From Figure 8-7, you can see that that there was an error. However, it is in

hexadecimal format. You can infer the meaning of this hex code by using the winrm

helpmsg command. See Figure 8-8.

Ok, you now know what went wrong. You had the wrong node names: S16-1 and S16- 2

instead of S16-01 and S16-02! Fix that, compile, and run the enact again. See Figure 8-9.

Note you can see the error message from the job by using the Receive-Job
cmdlet or by retrieving the $ConfigJob.ChildJobs[0].Error.Exception
value. the goal of the above exercise is to show you the different streams of
messages available after an enact.

Once the jobs are complete, you can see the verbose output by receiving the jobs

using the Receive-Job cmdlet. See Figure 8-10.

Get-Job -Name scriptjob -IncludeChildJob | Receive-Job -Keep -Verbose

Figure 8-8. WinRM error message

Figure 8-9. Child jobs in the running state

Chapter 8 Configuration Delivery MethoDs

271

By default, the Receive-Job cmdlet clears the values of output streams associated

with each job object. If you want to retain those values in the job object for later use, you

need to use the -Keep switch parameter with the Receive-Job cmdlet.

 Throttling an Enact
The -ThrottleLimit parameter of Start-DscConfiguration and other DSC commands

governs how many concurrent operations are performed within the CIM session

established by the cmdlet. For example, in the preceding example, there were two

target systems where the configuration was being enacted. The two configuration jobs

you saw in Figure 8-9 executed concurrently. This is a much smaller set and you need

not worry about resource consumption or limitations on the system from where the

configuration is being pushed. However, if you are pushing a configuration to hundreds

if not thousands of target systems, you need to ensure that these configuration jobs

are throttled so that none of them fails for lack of resources on the system pushing the

configuration.

Figure 8-10. Verbose output stream from the background jobs

Chapter 8 Configuration Delivery MethoDs

272

Note you can use throttling without background jobs by specifying the -Wait
parameter. But this is counterintuitive and i don't recommend doing so.

The default value for the -ThrottleLimit parameter is 32. However, if 0 is provided

as an argument to this parameter, an optimum throttle limit is calculated based on the

number of CIM cmdlets running on the local computer. The following is an example of

this parameter in action.

To understand the difference, add a few more nodes to the earlier configuration

document and compile again. You will first enact the configuration on all four target

nodes using background jobs. See Figure 8-11.

Figure 8-11. Starting all jobs at once without throttling

Figure 8-12. Starting enact jobs with ThrottleLimit

Now, let’s set ThrottleLimit to 2 and try this again. See Figure 8-12.

As you can see from Figures 8-11 and 8-12, there is a difference in behavior around

how the jobs are started. In the first case, all jobs start simultaneously and it took only

few milliseconds to start all of them. However, with throttling in place, the Start-

DscConfiguration cmdlet waited for the first two nodes’ background jobs to complete

before starting the remaining two. So the total time taken to invoke the jobs was 50.809

seconds since there was a 50 seconds sleep in the SetScript of the configuration

document.

The CimSession parameter is useful in cases when the WinRM is not running on the

default HTTP port or is using HTTPS only. For a DSC enact to work, whether the target

node is local or remote, you must have the WinRM service running and the WinRM

Chapter 8 Configuration Delivery MethoDs

273

listeners configured. The default port numbers for WinRM listeners are 5895 (HTTP)

and 5896 (HTTPS). So if you changed the default HTTP port number, you need to use

-CimSession to specify a CIM Session with WinRM port set to a custom port number

using a CIM session option. If the target node has HTTPS listeners only, then you must

use the CimSession parameter while enacting.

Let’s conclude this discussion on the push mode of configuration delivery by listing

out the pros and cons of this model.

The push mode is simple and easy. It does not require any infrastructure services

such as a central shared location to host the configurations and so on. However, the push

model is not scalable. Pushing a configuration to hundreds if not thousands of systems

would take a long time and can be limited based on the resources available on the

system where the Start-DscConfiguration cmdlet is being run. Of course, this is where

I said the ThrottleLimit parameter would help, but it increases the overall time it takes

to complete configuration enact. Another drawback with the push mode is that enacting

configurations that use custom DSC resource modules is a two-step process. You need to

first ensure all target nodes have the custom DSC resource modules and then enact the

configuration. Of course, as you’ll see later in the chapter, starting with WMF 5.0 you can

configure the LCM to download the custom DSC resource modules from a pull server or

pull share in push mode as well.

Also, one of the important reasons why the pull mode is preferred is that for push

you need to be able to reach the target (routing and firewall configurations). The

Windows firewall blocks, by default, traffic originating from a different subnet. Pushing

to a node that is not in the same domain as the management station will require you to

authenticate to the target node.

This is where the pull mode of configuration delivery helps. Using the pull model,

you can solve the scalability, configuration, and resource module distribution problems

just discussed. And, the target node reachability and authentication issues do not arise;

the pull client is configured to retrieve the configurations in a secure manner.

In the following sections, you will look at the pull mode of configuration delivery,

different methods of configuring the pull model, and configuring target systems as pull

clients.

Chapter 8 Configuration Delivery MethoDs

274

 Pull Mode
In pull model, the LCM initiates the connection by looking for new or updated

configurations and/or resource modules. Figure 8-13 depicts an overview of this process.

It also depicts the components involved in the pull mode for configuration delivery.

Before I go into the details of the flow of a configuration in the pull model, let’s look

into the details of setting up a pull service and configuring a pull client. DSC supports

two types of pull servers:

• oData-based pull service

• SMB-based pull service

Each method has pros and cons. You will look at each of them in-depth and learn the

configuration steps involved.

Figure 8-13. Pull mode in DSC

Chapter 8 Configuration Delivery MethoDs

275

Note yet another way to use pull configuration delivery is to configure the DsC
lCM as a pull client of the azure automation DsC pull service or any other service
that implements the pull server protocol. you will look into this in Chapter 17.

 oData-based (HTTP/HTTPS) Pull Service
On Windows Server OS, Windows Management Framework 4.0 and above includes a

feature called Windows PowerShell Desired State Configuration Service. This is the official

name but you will find that many in the community simply refer to this as DSC pull service.

So, I too shall stick to this short form. Using this feature, you can configure either an HTTP

or HTTPS endpoint for the pull service. This feature implements the required support for

setting up an oData-based pull service. Installing this feature alone does not ensure that

you have a functional pull service but requires a bunch of additional steps be performed.

Note the Windows powershell Desired state Configuration service Windows
feature is available only on systems running Windows server 2012 and above.
although WMf 4.0 and 5.x are supported on Windows server 2008 r2, the pull
service feature is not available. this chapter assumes that you are setting up the
DsC pull service on either Windows server 2012 or Windows server 2012 r2.

The easiest method to configure the DSC pull service is to use the custom DSC

resource, xDSCWebService, written by the Windows PowerShell team at Microsoft. This is

a part of the xPSDesiredStateConfiguration module.

This resource module will take care of configuring the pull server by creating the

necessary IIS sites and configuring the right web application settings and so on. This

DSC resource also supports both HTTP and HTTPS endpoints for the pull service. Once

the pull service is installed and configured, you will see a folder named DSCService

at the path $env:ProgramFiles\WindowsPowerShell and another folder named

PullServer at the path $pshome\modules\PSDesiredStateConfiguration.

The pull service in WMF 5.0 and above can be configured to implement a registration

key-based authentication. In this method, a registration key is used during one-time

pull client registration. In the absence of the registration keys, the LCM uses the

configuration IDs to identify itself with a pull server, which used to be the only method in

the WMF 4.0 pull service. You will see both methods in this section.

Chapter 8 Configuration Delivery MethoDs

276

 Pull Server: HTTPS

Let’s first look at creating an HTTPS endpoint for a pull server with registration keys for

authentication. The following configuration document installs the DSC Service feature and

then configures the pull server. You will see a detailed explanation of this later in this section.

$certificateThumbPrint = (Get-ChildItem -Path Cert:\LocalMachine\My |

Where-Object { $_.Subject -eq 'CN=S16-Pull-02.psdsc.lab' }).Thumbprint

$registrationkey = ([guid]::NewGuid()).Guid

Configuration PullServerHTTPS

{

 param

 (

 [Parameter()]

 [String]

 $NodeName = 'localhost',

 [Parameter(Mandatory = $true)]

 [String]

 $certificateThumbPrint,

 [Parameter(Mandatory = $true)]

 [String]

 $RegistrationKey

)

 Import-DSCResource -ModuleName xPSDesiredStateConfiguration -Name x

DSCWebService -ModuleVersion 8.0.0.0

 Import-DscResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

 Node $NodeName

 {

 WindowsFeature DSCServiceFeature

 {

 Ensure = 'Present'

 Name = 'DSC-Service'

 }

Chapter 8 Configuration Delivery MethoDs

277

 xDscWebService PSDSCPullServer

 {

 Ensure = 'Present'

 EndpointName = 'PSDSCPullServer'

 Port = 8080

 PhysicalPath = " $env:SystemDrive\inetpub\

PSDSCPullServer"

 CertificateThumbPrint = $certificateThumbPrint

 ModulePath = " $env:PROGRAMFILES\WindowsPowerShell\

DscService\Modules"

 ConfigurationPath = " $env:PROGRAMFILES\WindowsPowerShell\

DscService\Configuration"

 State = 'Started'

 RegistrationKeyPath = " $env:PROGRAMFILES\WindowsPowerShell\

DscService"

 AcceptSelfSignedCertificates = $true

 UseSecurityBestPractices = $true

 DependsOn = '[WindowsFeature]DSCServiceFeature'

 }

 File RegistrationKeyFile

 {

 Ensure = 'Present'

 Type = 'File'

 DestinationPath = " $env:ProgramFiles\WindowsPowerShell\

DscService\RegistrationKeys.txt"

 Contents = $RegistrationKey

 }

 }

}

PullServerHTTPS -RegistrationKey $registrationkey -certificateThumbPrint

$certificateThumbPrint

In this code snippet, the xDSCWebservice resource instance is what configures the

pull server to be functional, so make sure you have downloaded the resource module to

the authoring station as well as the node that will be configured as a pull server.

Chapter 8 Configuration Delivery MethoDs

278

There are a few things you need to understand here. The EndpointName and

Port properties become a part of the URL that will be used to configure the LCM as a

pull client.

Configuration and Resource Module Path

The xDSCWebService properties ModulePath and ConfigurationPath define where the

compiled configuration MOF files should be staged and where the resource module

zip files should be stored so that the DSC LCM pull clients can retrieve them from the

pull server. This path should be accessible to the pull server. There is a specific naming

convention in which the configuration MOF and module zip files should be stored at this

path. You will look at this in later sections.

Registration Key

Starting with WMF 5.0, the LCM can register with an oData-based REST pull server

using a shared secret, which is the registration key. The RegistrationKeyPath in the

xDSCWebService specifies where the RegistrationKeys.txt is present. Once again, this

path needs to be accessible from the pull server. The RegistrationKeys.txt can contain

one or more GUIDs that act as the shared secret(s) between the pull service and the

client. The registration key is used only once. It allows the pull server to insert a row in

the database containing the AgentId. Once the pull server database is updated with the

AgentId, the LCM is free to communicate with the pull server and uses its AgentId as the

identifier, which serves as the key.

Pull Service Security

Creating an HTTPS endpoint requires a certificate bound to the IIS site. If you

already have an Active Directory CA or other means for generating a certificate, you

can retrieve the thumbprint of that certificate installed on the node and use it with

the above configuration document. If not, you can create a self-signed certificate

and install it on the node. It is possible to create an HTTP endpoint by specifying

AllowUnecryptedTraffic as the argument to the CertificateThumbprint property.

You will see this in the HTTP endpoint section. This certificate needs be a web server

certificate that is capable of server authentication and not the client authentication

certificate.

Chapter 8 Configuration Delivery MethoDs

279

New-SelfSignedCertificate -DnsName S16-Pull-02.psdsc.lab -Type

SSLServerAuthentication -CertStoreLocation Cert:\LocalMachine\My

The AcceptSelfSignedCertificates property in the xDSCWebService configures IIS

to accept self-signed certificates. If you are using a PKI for your certificate infrastructure,

you can safely set this property to $false.

The UseSecurityBestPractices property will enforce the security best practice

configuration on the pull server. This includes changing the Schannel protocol settings

to enable only TLS 1.1 and TLS 1.2 protocols. The rest of the protocols such as SSL 2.0,

SSL 3.0, TLS 1.0, PCT 1.0, and Multi-Protocol Unified Hello will be disabled. You need to

plan for this if you want to run pull services on a node that is shared among other web

applications. The security settings may break older or legacy applications that depend

on protocols such as SSL 2.0.

The DSC pull service available in WMF 5.0 and above does not support encryption at

rest. This means anyone who has access to the pull service configuration path can read

the MOF files. It is highly recommended that any secure strings and credentials used in

the configuration MOF be encrypted using certificates.

Now that you understand the basics of the above configuration document and the

meaning of some of those properties, let’s compile the configuration and enact it.

Figure 8-14. Enacting a pull service configuration

Figure 8-14 shows only partial output from the enact process. The verbose output

provides the endpoint URL that you must use in configuring the LCM as a pull client.

This is an oData endpoint. You can open it in a browser to ensure that it is functional.

Chapter 8 Configuration Delivery MethoDs

280

Figure 8-15 confirms that you have a functional pull service. Let’s now move on to

configuring the LCM as a pull client. This can be verified using the Invoke-RestMethod

cmdlet as well.

#Following type definition is required only when using self-signed

certificates

Add-Type @"

using System.Net;

using System.Security.Cryptography.X509Certificates;

public class TrustAllCertsPolicy : ICertificatePolicy {

 public bool CheckValidationResult(

 ServicePoint srvPoint, X509Certificate certificate,

 WebRequest request, int certificateProblem) {

 return true;

 }

}

"@

$AllProtocols = [System.Net.SecurityProtocolType]'Ssl3,Tls,Tls11,Tls12'

[System.Net.ServicePointManager]::SecurityProtocol = $AllProtocols

Figure 8-15. Response from a functional pull service endpoint

Chapter 8 Configuration Delivery MethoDs

281

[System.Net.ServicePointManager]::CertificatePolicy = New-Object

TrustAllCertsPolicy

(Invoke-RestMethod -Uri https://S16-Pull-02:8080/PSDSCPullServer.svc

-UseBasicParsing).service.workspace.collection

Pull Client Configuration with an HTTPS Pull Service and Registration Keys

Unlike the push mode, to be able to pull configurations and resource modules from a

central location like the pull service you just implemented, the DSC LCM must be made

aware of the pull service endpoint and what configurations to look for in that central

configuration repository. This is done by using the ConfigurationRepositoryWeb and

ResourceRepositoryWeb meta resources.

Here is an example of the LCM pull client configuration to fetch the configuration

MOF and resource modules from the oData pull service endpoint:

[DSCLocalConfigurationManager()]

configuration oDataHTTPSPullClient

{

 param

 (

 [Parameter()]

 [String]

 $NodeName = 'localhost',

 [Parameter(Mandatory = $true)]

 [String]

 $RegistrationKey,

 [Parameter(Mandatory = $true)]

 [String]

 $PullSvcEndpoint,

 [Parameter(Mandatory = $true)]

 [String[]]

 $ConfigNames

)

Chapter 8 Configuration Delivery MethoDs

282

 Node $NodeName

 {

 Settings

 {

 RefreshMode = 'Pull'

 }

 ConfigurationRepositoryWeb HTTPSPullSvc

 {

 ServerURL = $PullSvcEndpoint

 RegistrationKey = $RegistrationKey

 ConfigurationNames = $ConfigNames

 }

 ResourceRepositoryWeb HTTPSPullSvc

 {

 ServerURL = $PullSvcEndpoint

 RegistrationKey = $RegistrationKey

 }

 }

}

oDataHTTPSPullClient -RegistrationKey '5a81ccf0-ae70-4ddf-8c3b-

6e9fb54a3979' -PullSvcEndpoint 'https://s16-pull-02.psdsc.lab:8080/

PSDSCPullServer.svc/' -ConfigNames @('OSConfig')

Note When using self-signed certificates, for the registration to be complete
successfully, the server authentication certificate used for the pull service should
be trusted on the pull client. this trusted certificate should exist in Cert:\
Localhost\Root. you will see how to force an unsecure connection with an
http pull server endpoint later in this chapter.

In this code, the Settings meta resource has just one property configured and it

is RefreshMode set to Pull. Followed by that, the ConfigurationRepositoryWeb and

ResourceRepositoryWeb meta resources point to the pull service endpoint. In both

ConfigurationRepositoryWeb and ResourceRepositoryWeb, a ServerURL property

Chapter 8 Configuration Delivery MethoDs

283

points to the pull server REST endpoint and the RegistrationKey property points to

the value that was used in the configuration of pull server endpoint. The argument to

RegistrationKey must match one of the values used in configuring the pull service.

The ConfigurationNames property in the ConfigurationRepositoryWeb meta

resource tells the LCM on the pull client what configuration MOF to pull from the server.

Although this property accepts an array of configuration names, for a normal node

configuration, only one configuration name is allowed. Multiple configuration names are

used in the context of partial configurations, which is the subject of Chapter 10.

With this, let’s compile and enact this meta configuration.

As shown in Figure 8-16, you have a pull client registered with the oData-based pull

service. At this point in time, if you look at Cert:\Localmachine\My path, you will see

that there is a new self-signed certificate associated with the pull server URL in the meta

configuration. With an on-premises pull server, this certificate is not used. This is used

with the Azure Automation DSC pull service, which you will see in Chapter 17. However,

if you do not use the client authentication certificate, you can specify an already installed

client authentication certificate’s thumbprint as a value of the CertificateID property

of the ConfigurationRepositoryWeb. This requires server side configuration as well to

ensure that this certificate is trusted.

It is possible to configure a pull service in WMF 5.0 and above systems without using

the registration keys. You just remove the RegistrationKeyPath property from the

xDscWebService resource configuration in the above PullServerHTTPS configuration

and remove the File resource instance that creates the registration keys file. When doing

so, the target node LCM is allowed to use Configuration IDs only, which is the “old,

WMF4” way of doing a DSC pull, instead of named configurations.

Figure 8-16. The LCM registered as pull client

Chapter 8 Configuration Delivery MethoDs

284

Here is the modified configuration for creating the pull server without registration

keys:

$thumbprint = (Get-ChildItem -Path Cert:\LocalMachine\My | Where-Object {

$_.Subject -eq 'CN=S16-Pull-01.psdsc.lab' }).Thumbprint

Configuration PullServerHTTPS

{

 param

 (

 [Parameter()]

 [String]

 $NodeName = 'localhost',

 [Parameter(Mandatory = $true)]

 [String]

 $certificateThumbPrint

)

 Import-DSCResource -ModuleName xPSDesiredStateConfiguration -Name x

DSCWebService -ModuleVersion 8.0.0.0

 Import-DscResource -ModuleName PSDesiredStateConfiguration -Module

Version 1.1

 Node $NodeName

 {

 WindowsFeature DSCServiceFeature

 {

 Ensure = 'Present'

 Name = 'DSC-Service'

 }

 xDscWebService PSDSCPullServer

 {

 Ensure = 'Present'

 EndpointName = 'PSDSCPullServer'

 Port = 8080

Chapter 8 Configuration Delivery MethoDs

285

 PhysicalPath = " $env:SystemDrive\inetpub\

PSDSCPullServer"

 CertificateThumbPrint = $certificateThumbPrint

 ModulePath = " $env:PROGRAMFILES\WindowsPowerShell\

DscService\Modules"

 ConfigurationPath = " $env:PROGRAMFILES\WindowsPowerShell\

DscService\Configuration"

 State = 'Started'

 AcceptSelfSignedCertificates = $true

 UseSecurityBestPractices = $true

 DependsOn = '[WindowsFeature]DSCServiceFeature'

 }

 }

}

PullServerHTTPS -certificateThumbPrint $thumbprint

Note Do not compile and enact this configuration yet. Complete the next section
on using named configurations and then try converting them to configuration iDs.

Staging and Enacting Configurations with Configuration Names

Now that you have the pull server and client successfully set up, let’s create a simple

configuration and place it on the pull server so that the DSC LCM in pull mode can

download and enact it. Here is a simple configuration that you will compile and store.

In the pull client configuration above, you already configured the configuration

name as OSConfig. So, let’s create one with the same name.

configuration WebServerConfig

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

 node OSConfig

 {

Chapter 8 Configuration Delivery MethoDs

286

 WindowsFeature Web-Server

 {

 Name = 'Web-Server'

 Ensure = 'Present'

 }

 }

}

WebServerConfig -OutputPath .\OSConfig -Verbose

Note observe in this code listing that the name of the configuration function is
not osConfig. it is not necessary to call it with the same name as the configuration
name in the meta configuration. the Mof file name, however, should match.

Make sure the nodename in the above configuration document is same as the

configuration name mentioned in the meta configuration. Once verified, you need

to create a checksum of this MOF file and store both the MOF and checksum on the

pull server. This checksum file is needed for the LCM on the pull client to understand

if anything changed with the node configuration. So, every time you update the node

configuration and compile it, you must create the checksum as well so that the target

node can identify that something has changed and will re-download and enact the

updated configuration.

This is done using the New-DscChecksum command. Figure 8-17 shows how to use

this command.

Figure 8-17. Checksum for the node configuration MOF

Chapter 8 Configuration Delivery MethoDs

287

Note if the argument to -Path is a folder containing multiple Mof files, a
checksum will be generated for each Mof at the path.

The node configuration MOF and checksum files can now be moved to the pull

server. You need to store them at the path represented by the ConfigurationPath

property in the pull server example earlier.

Copy-Item .\OSConfig* -Destination 'C:\Program Files\WindowsPowerShell\

DscService\Configuration'

Once the files are placed on the pull server, you can either wait for the consistency

check to trigger or use the Update-DscConfiguration cmdlet to force a check on the pull

server. Trigger this command on the target node that is configured as a pull client.

Update-DscConfiguration -Wait -Verbose

Figure 8-18 shows that the pull client on the target node checks the pull server for

a configuration. Since this is the first time you are enacting this, there is no existing

checksum to compare against. So the configuration gets downloaded and enacted.

Figure 8-18. A configuration enact in pull mode

Chapter 8 Configuration Delivery MethoDs

288

As shown in Figure 8-19, the configuration store after the enact consists of the

current.mof and the current.mof.checksum files. So, every time a consistency check

gets triggered, the local checksum will be compared against what is available on the pull

server for downloading any updated configuration.

Pull Client Configuration with HTTPS Pull Service Configuration IDs

In the absence of the registration keys, the LCM uses the ConfigurationId meta

property to identify itself to the pull server and retrieve the right configuration files.

Note the following meta configuration document, although it uses
ConfigurationId, can be used to on-board the lCM to a pull server that uses
registration keys.

[DSCLocalConfigurationManager()]

configuration oDataHTTPSPullClient

{

 param

 (

Figure 8-19. The configuration store after the enact

Chapter 8 Configuration Delivery MethoDs

289

 [Parameter()]

 [String]

 $NodeName = 'localhost',

 [Parameter(Mandatory = $true)]

 [String]

 $ConfigurationID,

 [Parameter(Mandatory = $true)]

 [String]

 $PullSvcEndpoint

)

 Node $NodeName

 {

 Settings

 {

 RefreshMode = 'Pull'

 ConfigurationID = $ConfigurationID

 }

 ConfigurationRepositoryWeb HTTPSPullSvc

 {

 ServerURL = $PullSvcEndpoint

 }

 ResourceRepositoryWeb HTTPSPullSvc

 {

 ServerURL = $PullSvcEndpoint

 }

 }

}

oDataHTTPSPullClient -ConfigurationID 'af7250ef-83fb-4cfd-b09b-

0f43fe012a50' -PullSvcEndpoint 'https://s16-pull-01.psdsc.lab:8080/

PSDSCPullServer.svc'

In this meta configuration, you have set the ConfigurationID property in the

Settings meta resource. The pull client node gets identified using this configuration ID.

Now you can compile and enact this meta configuration.

Chapter 8 Configuration Delivery MethoDs

290

Observe the difference between what is shown in Figure 8-20 and Figure 8-16. In

Figure 8-16, you can see that the LCM pull client registers with the pull server whereas in

Figure 8-20 there is no such registration.

With this, let’s try the Update-DscConfiguration cmdlet to see if the node can

download the configuration MOF from the pull server.

As shown in the error in Figure 8-21, there is no configuration MOF associated with

the configuration ID specified in the node meta configuration. That’s right; you have not

staged any configuration MOF yet on the pull server. So, let’s do so. You will use the same

configuration document (OSConfig) example seen earlier. Compile the configuration

MOF. Once you have the compiled MOF, you need to rename the MOF file to a format

similar to configurationID.mof.

From the meta configuration example you just saw, the ConfigurationID is

‘af7250ef-83fb-4cfd-b09b-0f43fe012a50’ and therefore the MOF in this case will be

renamed to af7250ef-83fb-4cfd-b09b-0f43fe012a50.MOF. Once you have this MOF, you

can generate the checksum and copy both files to the pull server configuration path

specified in the configuration document.

Once the configuration staging on the pull server is complete, download and enact it

using the Update-DscConfiguration cmdlet.

Figure 8-20. LCM meta configuration with a pull server with no registration keys

Figure 8-21. Update-DscConfiguration failure

Chapter 8 Configuration Delivery MethoDs

291

Note if there is no existing pull server in the infrastructure and this is a
greenfield deployment, you should always prefer to implement the pull server with
registration keys.

As seen in Figure 8-22, the pull client downloads the configuration document from

the pull server and starts an enact.

 Pull Server: HTTP

The oData-based pull server endpoint can be configured to use the less-secure

HTTP protocol as well. To configure this, all you really need to do is set the

CertificateThumbprint property in the xDSCWebService to AllowUnencryptedTraffic

instead of assigning it a certificate thumbprint. Also, you need to set the

UseSecurityBestPractices property to $false since you won’t be using certificates.

Here is an example of a pull server configuration that deploys an HTTP endpoint:

$registrationkey = ([guid]::NewGuid()).Guid

Configuration PullServerHTTP

{

 param

 (

 [Parameter()]

 [String]

 $NodeName = 'localhost',

 [Parameter(Mandatory = $true)]

 [String]

 $certificateThumbPrint,

Figure 8-22. Configuration download and enact

Chapter 8 Configuration Delivery MethoDs

292

 [Parameter(Mandatory = $true)]

 [String]

 $RegistrationKey

)

 Import-DSCResource -ModuleName xPSDesiredStateConfiguration -Name

xDSCWebService -ModuleVersion 8.0.0.0

 Import-DscResource -ModuleName PSDesiredStateConfiguration -Module

Version 1.1

 Node $NodeName

 {

 WindowsFeature DSCServiceFeature

 {

 Ensure = 'Present'

 Name = 'DSC-Service'

 }

 xDscWebService PSDSCPullServer

 {

 Ensure = 'Present'

 EndpointName = 'PSDSCPullServer'

 Port = 8080

 PhysicalPath = " $env:SystemDrive\inetpub\

PSDSCPullServer"

 CertificateThumbPrint = $certificateThumbPrint

 ModulePath = " $env:PROGRAMFILES\WindowsPowerShell\

DscService\Modules"

 ConfigurationPath = " $env:PROGRAMFILES\WindowsPowerShell\

DscService\Configuration"

 State = 'Started'

 RegistrationKeyPath = " $env:PROGRAMFILES\WindowsPowerShell\

DscService"

 AcceptSelfSignedCertificates = $true

 UseSecurityBestPractices = $false

 DependsOn = '[WindowsFeature]DSCServiceFeature'

 }

Chapter 8 Configuration Delivery MethoDs

293

 File RegistrationKeyFile

 {

 Ensure = 'Present'

 Type = 'File'

 DestinationPath = " $env:ProgramFiles\WindowsPowerShell\

DscService\RegistrationKeys.txt"

 Contents = $RegistrationKey

 }

 }

}

PullServerHTTP -RegistrationKey $registrationkey -certificateThumbPrint

'AllowUnencryptedTraffic'

Compiling and enacting this configuration will configure the HTTP endpoint.

Pull Client Configuration with an HTTP Pull Service

To register the LCM pull client with the HTTP pull service endpoint, use the following

meta configuration document. This isn’t any different from the pull client registration

example you saw earlier. This will fail for a reason. Compile and enact the configuration

to see why.

[DSCLocalConfigurationManager()]

configuration oDataHTTPPullClient

{

 param

 (

 [Parameter()]

 [String]

 $NodeName = 'localhost',

 [Parameter(Mandatory = $true)]

 [String]

 $RegistrationKey,

 [Parameter(Mandatory = $true)]

 [String]

 $PullSvcEndpoint,

Chapter 8 Configuration Delivery MethoDs

294

 [Parameter(Mandatory = $true)]

 [String]

 $ConfigNames

)

 Node $NodeName

 {

 Settings

 {

 RefreshMode = 'Pull'

 }

 ConfigurationRepositoryWeb HTTPPullSvc

 {

 ServerURL = $PullSvcEndpoint

 RegistrationKey = $RegistrationKey

 ConfigurationNames = $ConfigNames

 }

 ResourceRepositoryWeb HTTPPullSvc

 {

 ServerURL = $PullSvcEndpoint

 RegistrationKey = $RegistrationKey

 }

 }

}

oDataHTTPPullClient -NodeName 'S16-01' -RegistrationKey '32549046-1f4f-

4787-93c0-84cb6387f756' -PullSvcEndpoint 'http://S16-PULL-01:8080/

PSDSCPullServer.svc' -ConfigNames 'OSConfig'

Let’s compile and enact this meta configuration.

Chapter 8 Configuration Delivery MethoDs

295

In Figure 8-23, you can see that the LCM enact failed because pull client registration

over HTTP is not allowed. As mentioned in the error message, to be able to force the

LCM to use pull protocol over HTTP, you need to add the AllowUnsecureConnection

property to the meta configuration. Here is the updated meta configuration:

[DSCLocalConfigurationManager()]

configuration oDataHTTPPullClient

{

 param

 (

 [Parameter()]

 [String]

 $NodeName = 'localhost',

 [Parameter(Mandatory = $true)]

 [String]

 $RegistrationKey,

 [Parameter(Mandatory = $true)]

 [String]

 $PullSvcEndpoint,

 [Parameter(Mandatory = $true)]

 [String]

 $ConfigNames

)

Figure 8-23. LCM configuration enact failure

Chapter 8 Configuration Delivery MethoDs

296

 Node $NodeName

 {

 Settings

 {

 RefreshMode = 'Pull'

 }

 ConfigurationRepositoryWeb HTTPPullSvc

 {

 ServerURL = $PullSvcEndpoint

 Registra/tionKey = $RegistrationKey

 ConfigurationNames = $ConfigNames

 AllowUnsecureConnection = $true

 }

 ResourceRepositoryWeb HTTPPullSvc

 {

 ServerURL = $PullSvcEndpoint

 RegistrationKey = $RegistrationKey

 AllowUnsecureConnection = $true

 }

 }

}

oDataHTTPPullClient -NodeName 'S16-01' -RegistrationKey '32549046-1f4f-

4787-93c0-84cb6387f756' -PullSvcEndpoint 'http://S16-PULL-01:8080/

PSDSCPullServer.svc' -ConfigNames 'OSConfig'

Compile and enact this configuration to force the LCM pull client to use the HTTP

protocol.

Try It With the knowledge gained in this section, try on-boarding the lCM as a
pull client using the WMf 4.0 method. try this with both https and http endpoints
of the pull server. hint: you need to use the LocalConfigurationManager meta
resource.

Chapter 8 Configuration Delivery MethoDs

297

Whether you use HTTP or HTTPS, the way you stage configuration MOF files and

download and enact using the Update-DscConfiguration cmdlet does not change.

So far you have looked at creating oDATA-based pull service endpoints that either

use HTTP or HTTPS. This approach has certain advantages but the configuration of

these endpoints is relatively complex and requires a separate service deployed for the

same. The pull service can also be deployed to support SMB file share. The next section

shows how to configure this.

 SMB-Based Pull Service
The process of configuring a SMB-based pull server is much simpler. In fact, you just

create a SMB share for storing the configuration MOF files and resource modules. All

you need to do is identify a system that will host the SMB file share, create the file share,

and assign appropriate permissions. Once you have a system identified for hosting the

file share, you can use the New-SmbShare cmdlet to create a file share for storing the

configuration and modules.

New-SmbShare -Name SMBpull -Path C:\SMBPull -ReadAccess Everyone

-Description "SMB Share for Pull Mode"

This is really it! You just configured the pull service over SMB! Okay, there is more.

What you created is really a staging area for the configuration and resource modules.

But, when using the SMB mode, you need not do anything on the server that is hosting

the file share but configure the target system to look at the SMB file share for any

configuration and required modules. Also, notice that in the above command you have

given read access to everyone. This gives all systems configured as pull clients access to

the SMB file share where the configuration and modules are stored. Is this really a best

practice? Not necessarily. You will see a better method a bit later.

 Pull Client Configuration

To use the DSC LCM as a pull client with an SMB pull server, you need to use the

ConfigurationRepositoryShare and ResourceRepositoryShare meta resources. Here is

an example of this meta configuration:

[DSCLocalConfigurationManager()]

configuration SMBPullClient

Chapter 8 Configuration Delivery MethoDs

298

{

 param

 (

 [Parameter()]

 [String]

 $NodeName = 'localhost',

 [Parameter(Mandatory = $true)]

 [String]

 $ConfigurationID,

 [Parameter(Mandatory = $true)]

 [String]

 $PullSvcSMBShare

)

 Node $NodeName

 {

 Settings

 {

 RefreshMode = 'Pull'

 ConfigurationID = $ConfigurationID

 }

 ConfigurationRepositoryShare SMBPullSvc

 {

 SourcePath = $PullSvcSMBShare

 }

 ResourceRepositoryShare SMBPullSvc

 {

 SourcePath = $PullSvcSMBShare

 }

 }

}

SMBPullClient -ConfigurationID '32549046-1f4f-4787-93c0-84cb6387f756'

-PullSvcSMBShare '\\s16-pull-01\SMBpull'

Chapter 8 Configuration Delivery MethoDs

299

As shown in this meta configuration document, you use the

ConfigurationRepositoryShare and ResourceRepositoryShare meta resources and set

the SourcePath property to the UNC path where you are staging the configuration MOF

files. And, also note that the ConfigurationID property in the Settings meta resource is

specified. There is no registration supported with an SMB pull server and therefore you

need to use the configuration ID.

Let’s compile and enact this meta configuration using the Set-

DscLocalConfigurationManager cmdlet. Once the LCM is configured, use the Update-

DscConfiguration cmdlet to download and enact the node configuration.

Note Before the enact, ensure you have named the configuration Mof files
appropriately in the ConfigurationiD.mof format and staged them on the sMB pull
share.

In the example you just tried, gave everyone read access to the SMB share

configured as the pull server. However, that is not a good practice. To support

a secure way of pulling configurations and resource modules from a SMB pull

share, ConfigurationRepositoryShare and ResourceRepositoryShare support

the Credential property. This can be used to supply the credentials needed for

authenticating to the SMB pull share from the DSC LCM. To use the Credential

property in these meta resources, you need to use certificates. You learned how to

use certificates to encrypt credentials in Chapter 5. So, here is the meta configuration

example that configures credentials for ConfigurationRepositoryShare and

ResourceRepositoryShare:

$cert = [System.Security.Cryptography.X509Certificates.

X509Certificate2]::new()

$certFile = 'C:\publicKeys\S16-01.cer'

$cert.Import($certFile)

$configData = @{

 AllNodes = @(

 @{

 NodeName = 'S16-01'

 CertificateFile = $certFile

 Thumbprint = $cert.Thumbprint

Chapter 8 Configuration Delivery MethoDs

300

 PsDscAllowDomainUser = $true

 }

)

}

[DSCLocalConfigurationManager()]

configuration SMBPullClient

{

 param

 (

 [Parameter()]

 [String]

 $NodeName = 'localhost',

 [Parameter(Mandatory = $true)]

 [String]

 $ConfigurationID,

 [Parameter(Mandatory = $true)]

 [String]

 $PullSvcSMBShare,

 [Parameter(Mandatory = $true)]

 [psCredential]

 $SmbCredential

)

 Node $AllNodes.NodeName

 {

 Settings

 {

 RefreshMode = 'Pull'

 ConfigurationID = $ConfigurationID

 CertificateID = $cert.Thumbprint

 }

 ConfigurationRepositoryShare SMBPullSvc

 {

Chapter 8 Configuration Delivery MethoDs

301

 SourcePath = $PullSvcSMBShare

 Credential = $SmbCredential

 }

 ResourceRepositoryShare SMBPullSvc

 {

 SourcePath = $PullSvcSMBShare

 Credential = $SmbCredential

 }

 }

}

SMBPullClient -ConfigurationID '32549046-1f4f-4787-93c0-84cb6387f756' `

 -PullSvcSMBShare '\\s16-pull-01\SMBpull' `

 - SmbCredential (Get-Credential -Message 'Enter credentials to

access SMB share ...') `

 -ConfigurationData $configData

After you enact this meta configuration on the pull client, the DSC LCM will be able

to use the credentials to authenticate to the SMB pull share.

Note the initial release of WMf 5.0 had a bug that prevented using credentials
for the sMB pull share. this was later fixed in a patch release.

This concludes the discussion on oData and SMB pull service configuration. You

learned how to create both HTTPS- and HTTP-based endpoints using the DSC pull

service feature in WMF 5.0 and above. With the oData endpoints, you can use either

pull client registration with configuration names or configuration IDs to stage and

download the configuration MOF files. The SMB pull server, due to its very nature of

implementation, won’t be accessible over the Internet.

Let’s now move on to learning about staging resource modules.

 Staging Resource Modules
In the code snippets for pull service (oData) configuration, you specified the

ModulePath property. The argument to this represents where on the pull server

(oData) the resource modules are staged. For the SMB pull server configuration,

Chapter 8 Configuration Delivery MethoDs

302

you simply point the SourcePath property of the ResourceRepositoryShare meta

resource to a UNC path where the resource modules are staged. You already saw a

few examples earlier of configuring the LCM to either use ResourceRepositoryWeb or

ResourceRepositoryShare.

Note Mixing of different types (oData and sMB) of configuration and resource
repositories is supported only with partial configurations. you will see this in
Chapter 10.

The format in which the modules are packaged is same irrespective of whether you

use the oData pull service (HTTPS or HTTP) or SMB pull server. Before you look at the

packaging the resource modules, here’s a configuration document that has a few custom

DSC resources:

Configuration HostsFile

{

 Import-DscResource -ModuleName xNetworking -Name xHostsFile

-ModuleVersion 5.3.0.0

 Import-DscResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

 xHostsFile HostFileEntry

 {

 HostName = 'Test10'

 IPAddress = '192.171.182.10'

 Ensure = 'Present'

 }

}

HostsFile

In this configuration document, you use the xHostsFile resource from the

xNetworking DSC resource module. I used the 5.3.0.0 version so I have the Import-

DscResource dynamic keyword in the document and I specified these parameters.

Now, you already know how to compile and stage the configuration MOF files for a

given pull server scenario. You are using ConfigurationID instead of registration keys so

you named the compiled MOF file as .mof and staged it along with the checksum file.

Chapter 8 Configuration Delivery MethoDs

303

Let’s enact the following meta configuration on the target node:

$cert = [System.Security.Cryptography.X509Certificates.

X509Certificate2]::new()

$certFile = 'C:\publicKeys\S16-01.cer'

$cert.Import($certFile)

$configData = @{

 AllNodes = @(

 @{

 NodeName = 'S16-01'

 CertificateFile = $certFile

 Thumbprint = $cert.Thumbprint

 PsDscAllowDomainUser = $true

 }

)

}

[DSCLocalConfigurationManager()]

configuration SMBPullClient

{

 param

 (

 [Parameter()]

 [String]

 $NodeName = 'localhost',

 [Parameter(Mandatory = $true)]

 [String]

 $ConfigurationID,

 [Parameter(Mandatory = $true)]

 [String]

 $PullSvcSMBShare,

 [Parameter(Mandatory = $true)]

 [psCredential]

 $SmbCredential

)

Chapter 8 Configuration Delivery MethoDs

304

 Node $AllNodes.NodeName

 {

 Settings

 {

 RefreshMode = 'Pull'

 ConfigurationID = $ConfigurationID

 CertificateID = $cert.Thumbprint

 }

 ConfigurationRepositoryShare SMBPullSvc

 {

 SourcePath = $PullSvcSMBShare

 Credential = $SmbCredential

 }

 ResourceRepositoryShare SMBPullSvc

 {

 SourcePath = $PullSvcSMBShare

 Credential = $SmbCredential

 }

 }

}

SMBPullClient -ConfigurationID '32549046-1f4f-4787-93c0-84cb6387f756' `

 -PullSvcSMBShare '\\s16-pull-01\SMBpull' `

 -SmbCredential (Get-Credential -Message 'Enter credentials to

access SMB share ...') `

 -ConfigurationData $configData

As discussed earlier, you have the ResourceRepositoryShare meta resource for the

custom DSC resource module download. However, you have not packaged and staged

the resource modules yet. Anyway, let’s go ahead and download/enact the configuration

and see what happens.

Chapter 8 Configuration Delivery MethoDs

305

Figure 8-24 shows an error that the custom DSC resource module could not be

found. As you saw in Chapter 3, the LCM knows the exact version of the module that it

needs from the compiled MOF file. For each resource that you use in the configuration

document, the compiled MOF includes the version of the module that was used on the

authoring station at the compile time.

Figure 8-24 shows the path \s16-pull-01\SMBPull\xNetworking_5.3.0.0.zip

as the file that was not found. This should ring some bells about what the LCM was

expecting. Yes, this is how the resource module needs to be packaged.

The format for packaging the resource module is modulename_moduleversion.

zip. Therefore, the package name for the module that you are importing in the node

configuration will be xNetworking_5.3.0.0.zip. This format for naming module

packages helps us have multiple versions of the same module available on the pull

server. Before you start packaging the module, let’s step back and see how the module is

stored on the authoring station.

Figure 8-24. Pull configuration failure

Chapter 8 Configuration Delivery MethoDs

306

As shown in Figure 8-25, when you download the custom DSC resource modules

from the PowerShell gallery, they are downloaded (by default) to the C:\Program Files\

WindowsPowerShell\Modules folder. Within the module folder, each version of the

module is contained in its own folder. On my authoring station, I have only version

5.3.0.0 of the xNetworking module. All module files are under this folder named 5.3.0.0.

Now, when it comes to packaging this module for distribution to pull clients, you should

package only the module files under the version folder. Figure 8-26 shows the folder

structure.

Figure 8-25. Module structure (partial output)

Chapter 8 Configuration Delivery MethoDs

307

Let’s package this folder as a zip file and name it as xNetworking_5.3.0.0.zip. You

also need a checksum of this package. See Figure 8-27.

Figure 8-26. Folder structure for pull server distribution

Figure 8-27. Module package and checksum

Chapter 8 Configuration Delivery MethoDs

308

Once both the module package and package checksum are available, you can stage

them on the pull server for download by the download manager that is a part of the

LCM. I used an SMB pull server for both configurations and resources, so I have the

configuration MOF and resources staged at the same location. See Figure 8-28.

Now that you have the MOF and module packaged staged on the server, enact the

configuration by using the Update-DscConfiguration cmdlet. It should work this time.

See Figure 8-29.

Figure 8-28. Staged configuration MOF and module packages

Figure 8-29. Resource module download from pull server

Chapter 8 Configuration Delivery MethoDs

309

What if you want to overwrite the resource module on the target node with what is

being downloaded from the pull server? You need to set the AllowModuleOverwrite to

$true in the DSC LCM Settings meta resource. This is needed when you want to update

the resource module without updating the module version number.

This concludes our discussion about the pull mode and various ways to implement

and use pull services in DSC. The final valid setting for the RefreshMode property in the

LCM Settings meta resource is Disabled. So, what about the disabled mode?

 Disabled Mode
Starting with WMF 5.0, DSC enabled a new refresh mode called Disabled. The following

meta configuration shows how to use this:

[DSCLocalConfigurationManager()]

configuration DisabledRefreshmode

{

 param

 (

 [Parameter()]

 [String]

 $NodeName = 'localhost'

)

 Node $NodeName

 {

 Settings

 {

 RefreshMode = 'Disabled'

 }

 }

}

DisabledRefreshmode -NodeName 'S16-01'

When you enact this meta configuration, the RefreshMode of the LCM gets set to

Disabled, as shown in Figure 8-30.

Chapter 8 Configuration Delivery MethoDs

310

When the DSC LCM is set to the disabled refresh mode, the LCM will not

run any consistency checks and you can run only DSC cmdlets such as Set-

DscLocalConfigurationManager, Get-DscConfiguration, Stop-DscConfiguration, and

Invoke-DscResource. You used Invoke-DscResource in Chapter 6 when learning how to

write new DSC resource modules.

So, what is the use of the disabled refresh mode when there are so many restrictions?

Remember, the DSC is not just a configuration management tool set. It is a configuration

management platform. The already popular configuration management tools such

as Chef, Puppet, and others are expected to leverage the DSC for configuration

management on Windows OS. When you have a third-party equivalent of the LCM

sitting on the same system managing a configuration based on its own policies, you

don’t want the LCM to get in its way and start doing consistency checks on a periodic

basis. That does not make sense. Disabling any document processing by setting the LCM

RefreshMode is the right way here.

Figure 8-30. Disabled refresh mode in the LCM

Chapter 8 Configuration Delivery MethoDs

311

Try It With the lCM set to the Disabled refresh mode, try enacting a
configuration Mof via push mode (Start-DscConfiguration). What do you see?

 Using Resource Repositories with Push Mode
Starting with WMF 5.0, it is now possible to use a central resource repository for

downloading custom resource modules for a configuration enact in push mode. Here is

a meta configuration example for the same:

[DSCLocalConfigurationManager()]

Configuration PushClient

{

 param

 (

 [Parameter()]

 [String]

 $NodeName = 'localhost',

 [Parameter(Mandatory = $true)]

 [String]

 $PullSvcEndpoint

)

 Node $NodeName

 {

 Settings

 {

 RefreshMode = 'Push'

 }

 ResourceRepositoryWeb oDATAPullSvc

 {

Chapter 8 Configuration Delivery MethoDs

312

 ServerURL = $PullSvcEndpoint

 AllowUnsecureConnection = $true

 }

 }

}

PushClient -PullSvcEndpoint 'http://S16-PULL-01:9090/PSDSCPullServer.svc'

Try It using the knowledge gained so far, try configuring a DsC lCM on the
target node in the push refresh mode with the above meta configuration to pull the
resource modules from a central repository.

 How Configuration and Resource Modules Are
Downloaded
This brings us to the end of this chapter. You learned how to configure and use a pull

client and how to download configuration MOF and resource module packages from the

central repositories. But what happens behind the scenes? You saw this at a very high

level in Figure 8-13.

In each of the pull models (HTTPS/HTTP and SMB), different

download managers get used. For the HTTPS/HTTP pull clients, the

WebDownloadManager gets used. This module is present at $PSHOME\Modules\

PSDesiredStateConfiguration\DownloadManager\WebDownloadManager. The SMB

pull clients use the FileDownloadManager module that is located at $PSHOME\Modules\

PSDesiredStateConfiguration\DownloadManager\DSCFileDownloadManager. Each of

these modules has cmdlets that have common names.

• Get-DscAction is used by the pull client to understand if the

configuration on the pull server is different from that on the target

system.

• Get-DscDocument is used by the pull client to retrieve the

configuration document from the pull server.

Chapter 8 Configuration Delivery MethoDs

313

• Get-DscModule is used by the pull client to retrieve the dependent

modules and unpack them on the target system to enact the

configuration specified in the configuration document.

Note it is not necessary to use the cmdlets in the download manager modules
manually anytime. they are meant for the pull client to function. and, it is good to
understand their purpose so if you experience debugging or troubleshooting issues
with pull client configurations, you know where to start from.

These are commands you saw in Figure 8-13 as the pull client workflow in both

HTTP/HTTPS and SMB modes.

 Summary
This has been one lengthy chapter! You learned about the different refresh modes

possible in DSC and looked at push and pull modes in-depth. You saw the different

types of pull service implementations that are supported within DSC and looked at

how to configure and use them. When using pull mode, the configuration MOF files

and resource modules need to be packaged in a certain format for staging. The naming

convention for the configuration MOF depends on the version of the pull server

protocol. You have, so far, used the pull service only as way to download configurations

and resource modules. However, the LCM pull client reports the configuration status

information back to the pull service when using oData-based pull servers. You will see

this in the next chapter about reporting DSC configurations.

Chapter 8 Configuration Delivery MethoDs

315
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_9

CHAPTER 9

Reporting, Monitoring,
and Correcting
a Configuration
In the configuration management processes, after the configuration is enacted, the most

important step is to monitor the target systems for configuration drift and enact status for

pull clients. IT and application administrators prefer quick fixes to the issues that arise in

day-to-day operations. Over time in the life cycle of target systems and the applications

running on those systems, there is a probability of a configuration drifting away from the

original configuration. In an ideal world, all changes on the target system must go through

the designated configuration management system. This helps prevent configuration drift.

However, this is certainly not the case in many IT organizations. And, when a disaster

strikes with a target system that has drifted away from the baseline configuration, it may

take more than few hours to restore services offered to the end users.

DSC provides interfaces to monitor and report on a configuration from the target

systems and also a method to auto-correct configuration drift. In this chapter, you

will take a look at the internals of configuration management using DSC, monitoring

and correcting the configuration on target systems, and finally, reporting on the

configuration from target systems using built-in methods.

In earlier chapters, you looked at how the configuration can be pushed to target

systems or how the pull clients on the target nodes can pull the configuration from a pull

server. In Chapter 3, you looked at what happens when a configuration is pushed or pulled

from a configuration life cycle point of view (Figure 3-8). Towards the end of Chapter 3,

you briefly looked at monitoring the configuration state in DSC. In this chapter, you’ll take

an in-depth look at monitoring and learn how to report and correct configuration drift. But

first let’s review how the LCM monitors DSC configurations after an enact.

316

 Lab Requirements
To try the examples and exercises in this chapter, you will need at minimum two or

more systems with Windows Server 2008 R2 or above with WMF 5.1 or above installed. I

recommend a system with Windows Server 2016. The HTTPS pull service and credential

encryption requires certificates, so you will need either a certificate authority or self-

signed certificates. You will also need at least three nodes to try out the examples in this

chapter.

Let’s start this chapter with an overview of how the DSC consistency checks happen

at regular intervals.

 DSC Consistency Check Workflow
In WMF 4.0, PowerShell DSC scheduled tasks to invoke consistency checks, which

were used to check if the node configuration was in the desired state or not. However,

in WMF 5.0 and above, a WMI provider implemented as the MSFT_DscTimer class

in the DSC CIM namespace is used to invoke the consistency checks based on

the configuration and refresh frequency intervals configured in the LCM. The

ConfigurationModeFrequencyMins specifies how often the LCM validates if the current

node configuration is in the desired state or not. This validation depends on the

configured value of the ConfigurationMode property. This property has three possible

values: ApplyOnly, ApplyAndMonitor, and ApplyAndAutoCorrect. ApplyAndMonitor is

the default value. The flow chart in Figure 9-1 depicts what is described above.

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

317

As shown in Figure 9-1, no consistency checks will be performed if the LCM is set

to the ApplyOnly configuration mode. Also, consistency checks will not be triggered if

there is no existing current configuration on the node. If the configuration mode is set

to ApplyAndMonitor or ApplyAndAutoCorrect, LCM will check the refresh mode setting

and then act upon the configuration drift, if any. If there is a drift and the configuration

Figure 9-1. Consistency run flow

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

318

mode is set to ApplyAndAutoCorrect, the current configuration on the node (current.

mof) gets re-enacted. If the ConfigurationMode is set to ApplyAndMonitor, then an entry

gets created in the DesiredStateConfiguration event log.

 DSC Event Logs
Desired State Configuration event logs can be found under Application and Services

Logs\Microsoft\Windows\Desired State Configuration. By default, only operational

and admin logs are enabled. The operational logs do not provide much information

about the resource execution. The analytic and debug logs provider deeper insights

into what happens when a configuration is enacted or when a consistency check is

performed. These logs are not enabled by default. To enable these logs, you can follow

the steps mentioned below.

Note You need to “show analytic and debug logs” in the view section of the event
viewer to make these logs visible.

wevtutil.exe set-log 'Microsoft-Windows-Dsc/Analytic' /q:true /e:true

wevtutil.exe set-log 'Microsoft-Windows-Dsc/Debug' /q:true /e:true

These commands enable the Debug and Analytic channels for DSC logs. The

event log messages from the three channels (Operational, Analytic, and Debug) can

be accessed using the Get-WinEvent cmdlet. As you can see in the following example,

Microsoft-Windows-Dsc is the primary log channel and you can retrieve the log

messages by appending the Operational, Analytic, or Debug channel to the primary log.

The Analytic channel contains messages that identify errors occurred and the verbose

and messages from the LCM. The Debug channel can be used for troubleshooting and

debugging purposes.

Get-WinEvent -LogName 'Microsoft-Windows-Dsc/Operational'

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

319

Each time a consistency check runs or a configuration is either pulled or pushed,

DSC generates these messages. Each of these activities can be grouped under a single

operation. Within these DSC logs, the Message property contains the information

relevant to identify or group messages pertaining to a specific operation. To be specific,

the Job ID, which is a GUID, as shown in Figure 9-2, uniquely identifies a DSC operation.

You can use this information to group the log messages pertaining to a single operation.

Since you are interested in log messages from all three channels, you can use the

Get-WinEvent cmdlet to construct an array containing all event log messages.

$AllDscLogs = Get-WinEvent -LogName 'Microsoft-windows-dsc/operational',

'Microsoft-Windows-Dsc/Analytic','Microsoft-Windows-Dsc/Debug' -Oldest

Note You may not see any analytic or debug logs if no enact or consistency
checks were performed after enabling these logs.

In the above command, you use the -Oldest switch parameter. This is because the

event logs store the newest messages at the top. By using the -Oldest parameter, you

can get the messages from oldest to newest. The Properties attribute of an event log

object contains the values of event properties published by the providers. In fact, the

Properties attribute returns an object array of type System.Diagnostics.Eventing.

Reader.EventProperty. In this array, the first element contains the GUID of the job. So,

the following code provides the JobID of all DSC activities:

$AllDscLogs.ForEach{$_.Properties[0].Value} | Select-Object -Unique

Figure 9-2. DSC event logs

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

320

Each set of the DSC operations shown in Figure 9-3 contains the log messages

from all three DSC event log channels. You can retrieve the messages in each group by

selecting the Message property of the event log record.

$DSCOperations[0].Group.Message

You already know that the JobID can be used to group a set of DSC operations. You

can use the Group-Object cmdlet for this purpose.

$AllDscLogs | Group-Object { $_.Properties[0].Value }

Figure 9-3. Logs grouped by job ID

Figure 9-4. Logs from a single DSC operation

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

321

Once you have the events grouped by a specific DSC operation, similar to what is

shown in Figure 9-4, it is easy to filter it for errors or any such criteria. This can be done

using the Where-Object cmdlet.

$AllDscLogs | Group-Object { $_.Properties[0].Value } | Where-Object {

$_.Group.LevelDisplayName -eq "Warning" }

What you have seen so far is a slightly difficult or maybe tedious way of retrieving

event logs and making sense of them. This is still not a clean approach. The PowerShell

team wrote an open source module called xDSCDiagnotics, which is available on the

PowerShell gallery, to investigate DSC event logs in an easy-to-understand manner. Let’s

take a look at it now:

Install-Module -Name xDSCDiagnostics -Force

Get-Command -Module xDscDiagnostics

Figure 9-5. xDSCDiagnostics module

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

322

The Get-xDSCOperation command in this module can be used to retrieve the newest

10 DSC operations from a target node; see Figure 9-5. If you would like to see more items

in the output, you can use the -Newest parameter and specify an integer argument, as

shown in Figure 9-6.

The Trace-xDSCOperation command can be used to dig into a specific job and

retrieve the details of the DSC operation; see Figure 9-7.

As you can see in the above output, I don’t have the Analytics and Debug logs

enabled on the target node. When you need to debug a DSC operational issue, you

should enable these logs. You already saw a way to do this using wevtutil.exe. The

xDSCDiagnostics module provides a method to do this as well.

Update-xDscEventLogStatus -ComputerName S16-01 -Channel Analytic -Status Enabled

Update-xDscEventLogStatus -ComputerName S16-01 -Channel Debug -Status Enabled

Figure 9-7. Trace DSC operations

Figure 9-6. Get DSC operations

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

323

When needed, you can package these logs into a zip file and share it with others who

may be looking to debug a certain DSC issue. The New-xDscDiagnosticsZip command can

be used for that purpose. For adding different types of log and other inventory information

in this zip file, you can use the -IncludedDatapoint parameter. A list of available data

points can be retrieved using the Get-xDscDiagnosticsZipDataPoint command.

 Configuration Reporting
The PSDesiredStateConfiguration module has cmdlets that can be used for

configuration reporting. Let’s look at these commands. The first one is something you

have been using all along. It is the Get-DscConfiguration cmdlet. This cmdlet gets the

current state of the node configuration as reported by the DSC resource’s Get method.

Here is a simple example of a File resource configuration that I use to create a file-

based flag to be used in the OS deployment process:

Configuration OSConfig

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 File ScriptFlag

 {

 DestinationPath = 'C:\OSDeployment.tag'

 Type = 'File'

 Contents = ''

 Ensure = 'Present'

 }

}

OSConfig

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

324

When you enact this configuration on any node, a 0-byte file named

OSDeployment.tag gets created at C:. Once the enact is complete, if you run the Get-

DSCConfiguration cmdlet, it returns the current state of the File resource on that node.

Figure 9-8. Current state if the file resource

As shown in Figure 9-8, Get-DscConfiguration retrieves the current state of the

node configuration. In this example, there is only one resource instance. However, if

there are multiple resources in the configuration document, this cmdlet will return the

current state of each of those resource instances. Understand that this is the current state

and not necessarily the desired state. For this example, the desired state is that the file

should exist with no contents (0 bytes in size). So, what if you open the file in Notepad

and add some random contents to it?

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

325

Observe the size of the file shown in Figure 9-9 and compare it what is shown in

Figure 9-8. This indicates a configuration drift and that Get-DscConfiguration only tells

you the current state of configuration. So, how do you know if the node configuration is

in the desired state or not? The Test-DscConfiguration cmdlet helps out here.

As shown in Figure 9-10, the Test-DscConfiguration cmdlet returns $false.

From Chapter 6, you know that the Test-TargetResource function in a resource

module returns false only when the resource is not in the desired state and the Test-

DscConfiguration cmdlet calls the Test-TargetResource function.

Figure 9-9. Current state of the file resource after modification

Figure 9-10. Desired state test

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

326

Let’s add one more resource instance to the example and enact again.

Configuration OSConfig

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

 File ScriptFlag

 {

 DestinationPath = 'C:\OSDeployment.tag'

 Type = 'File'

 Contents = ''

 Ensure = 'Present'

 }

 File ScriptsFolder

 {

 DestinationPath = 'C:\Scripts'

 Type = 'Directory'

 Ensure = 'Present'

 }

}

OSConfig

When you enact this updated configuration, it will set the file to 0 bytes and create

a folder (if it doesn’t already exist) called Scripts at C:. Let’s once again modify the

contents of the OSDeployment.tag file to create a configuration drift and then check the

Test-DscConfiguration command.

What do you see? It still returns only False as the output and does not tell you exactly

which resource out of all resource instances in the configuration is not in the desired

state. This is where the -Detailed switch parameter on this cmdlet helps.

Figure 9-11. Resources not in desired state

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

327

In Figure 9-11, using the -Detailed switch parameter tells you that one of the

instances of the File resource is not in the desired state. This was not possible before

WMF 5.0. This is a good enhancement, but it still does not tell you why the resource is

not in the desired state. A future release of DSC might include this enhancement.

 Testing for Desired State Against a Reference
Configuration
Another enhancement in WMF 5.0 is the ability to test a remote node against a reference

MOF. In the earlier two examples, you tested the current configuration (current.mof)

for the desired state. What if there is no current configuration at all on the node and

you only want to test if the resources on a node are in the desired state or not without

enacting any configuration? Or what if you want to check the potential outcome of

running a configuration on a node?

The Test-DscCconfiguration cmdlet provides two different methods to do this.

Note if the reference configuration includes any custom dSC resource modules,
those modules must be present on the target nodes before running the Test-
DscConfiguration cmdlet with either -Path or -ReferenceConfiguration
parameters. this won’t work even when you have the LCM configured as a pull
client and ResourceRepositoryWeb or ResourceRepositoryShare are
configured to download the missing resource modules.

 Using the Path Parameter

Using the Path parameter with this cmdlet is similar to how you use it with other DSC

cmdlets such as Start-DscConfiguration. You can store multiple compiled MOF files

each having the format ComputerName.mof within a folder and that folder path can be

specified as an argument to -Path.

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

328

The following example will iterate over this path and connect to each target node

and perform the desired state checks:

Configuration OSConfig

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 Node S16-01

 {

 File ScriptFlag

 {

 DestinationPath = 'C:\OSDeployment.tag'

 Type = 'File'

 Contents = ''

 Ensure = 'Present'

 }

 File ScriptsFolder

 {

 DestinationPath = 'C:\Scripts'

 Type = 'Directory'

 Ensure = 'Present'

 }

 File Script

 {

 DestinationPath = 'C:\Scripts\DeployApp.ps1'

 Type = 'File'

 Contents = 'Start-AppDeploy -Name MyApp'

 Ensure = 'Present'

 }

 }

 Node S16-02

 {

 File AppFlag

 {

 DestinationPath = 'C:\AppDeploy.tag'

 Type = 'File'

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

329

 Contents = ''

 Ensure = 'Present'

 }

 File AppFolder

 {

 DestinationPath = 'C:\MyApp'

 Type = 'Directory'

 Ensure = 'Present'

 }

 }

}

OSConfig

Compiling this configuration produces two MOF files, one for each node. Let’s now

try the Test-DscConfiguration cmdlet with the -Path parameter; see Figure 9-12.

Test-DscConfiguration -Path .\OSConfig

This method is useful when you have multiple target nodes each with a different

configuration. But if you want to test a single reference configuration across multiple

target nodes, the best approach is to use the -ReferenceConfiguration parameter.

 Using the ReferenceConfiguration Parameter

Using the -ReferenceConfiguration parameter, a single MOF file can be tested for the

desired state across multiple target nodes. Let’s take one of the MOF files from the above

example and use that MOF file path as the argument to the -ReferenceConfiguration

parameter:

Test-DscConfiguration -ReferenceConfiguration .\OSConfig\S16-02.mof

-ComputerName S16-01, S16-02

Figure 9-12. Using the Path parameter with Test-DscConfiguration

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

330

When using -ReferenceConfiguration, you can supply the target node names using

the -ComputerName parameter. In the absence of the –ComputerName parameter, the

reference configuration will be tested against the local system. See Figure 9-13.

So far, you’ve seen how to get the current state and verify the target node’s desired

state against a current configuration or a reference configuration. Let’s now check how to

review the configuration run history using the Get-DscConfigurationStatus command.

 Reviewing the Configuration Run History
Starting with WMF 5.0, DSC keeps a history of configuration runs. This status history

can be retrieved using the Get-DscConfigurationStatus cmdlet. This cmdlet returns

instances of the MSFT_DSCConfigurationStatus CIM class in the root/Microsoft/

Windows/DesiredStateConfiguration namespace.

Let’s use the GetCimClassProperty.ps1 script from Chapter 2 to inspect this class.

As seen in Figure 9-14, several properties are returned by the Get-

DscConfigurationStatus cmdlet. Table 9-1 provides high-level description of each

property.

Figure 9-13. Testing target nodes using the ReferenceConfiguration parameter

Figure 9-14. Properties of the MSFT_DSCConfigurationStatus class

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

331

Table 9-1. Properties from a Configuration Run Status

Property Name Description

DurationInSeconds Specifies how long the configuration run took to complete.

Error Specifies any error during the configuration run.

HostName Specifies the name of the host where the configuration ran.

IPV4Addresses Specifies the ipv4 address of the host where the configuration ran.

IPV6Addresses Specifies the ipv6 address of the host where the configuration ran.

JobID Specifies the unique id assigned to the configuration.

LCMVersion Version of the LCM used at the time of the configuration run.

Locale Locale information at the time of the configuration run.

MACAddresses MaC addresses on the host where the configuration ran.

MetaConfiguration Snapshot of the LCM configuration settings at the time of the

configuration run.

MetaData Meta data from the configuration document. includes details such

as author name, compilation date, and time.

Mode Specifies the refresh mode in which the configuration was run.

NumberOfResources number of resources in the configuration.

RebootRequested Specifies if a reboot was requested during or after the

configuration run.

ResourcesInDesiredState resources that are in the desired state.

ResourcesNotInDesiredState resources that are not in the desired state.

StartDate Start date and time of the configuration run.

Status Status of the configuration run.

Type type of the configuration run. this includes initial, Consistency,

reboot, readonly, and Local Configuration Manager.

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

332

By default, without any parameters, the Get-DscConfigurationStatus cmdlet

returns only the status of the last configuration run. See Figure 9-15.

Using the -All switch parameter, you can see a complete list of configuration runs

on the node. This list can be huge based on the values of StatusRetentionTimeInDays in

the LCM meta configuration. The default value is 10 days.

Try It from what you learned in Chapter 3 about updating the meta
configuration, try changing the retention time in days to 15.

You can see the status history get accumulated as DSCStatusHistory.mof in the C:\

Windows\System32\Configuration folder. In this MOF file, you will see a set of DSC_

ConfigurationStatusData class instances each representing a configuration run. Each

of these instances has a JobID and there will be associated status files in the C:\Windows\

System32\Configuration\ConfigurationStatus folder. Depending when the initial

configuration was applied on the target node and the number of consistency checks

run on the node (assuming that the LCM ConfigurationMode is not set to ApplyOnly),

there may be many MOF and JSON files each having the job ID in their file name. What

you see in the output of the Get-DscConfigurationStatus cmdlet is a collection of data

retrieved from these MOF and JSON files. When the LCM is busy,

Figure 9-15. Last configuration run status

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

333

the Get- DscConfigurationStatus cmdlet cannot be used but these JSON files can be

monitored. If you have large configurations, Get-Content -Wait can be your friend.

Using the Select-String cmdlet on these files is a very useful in debugging as well.

The status history from this command can be quite useful in understanding how the

configuration changes were happening on a given node. However, these status reports

are stored only for a few days, per the StatusRetentionTimeInDays meta property. After

the retention period is over, the older JSON and MOF files get deleted. But what if you

want to retain these status files for a long time for compliance purposes? This is where

the DSC reporting service is helpful.

 DSC Reporting Endpoint
In Chapter 8, you learned how to create a DSC pull service endpoint using the DSC

Service Windows feature. This section extends that to add a reporting endpoint. The

process is very similar except for a few settings that you need to configure and the files

you copy to the IIS endpoint directories. The report service endpoint requires DSC

Service and Windows Authentication features. Unlike WMF 4.0, where there was a

different configuration for a reporting service endpoint, WMF 5.0 offers a pull service

and a reporting service using the same endpoint.

So, if you have already deployed a pull service endpoint, you can use the following

LCM meta configuration document to configure a report server for a target node:

[DSCLocalConfigurationManager()]

Configuration oDataHTTPSPullClient

{

 param

 (

 [Parameter()]

 [String[]]

 $NodeName = 'localhost',

 [Parameter(Mandatory = $true)]

 [String]

 $RegistrationKey,

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

334

 [Parameter(Mandatory = $true)]

 [String]

 $PullSvcEndpoint,

 [Parameter(Mandatory = $true)]

 [String[]]

 $ConfigNames

)

 Node $NodeName

 {

 Settings

 {

 RefreshMode = 'Pull'

 }

 ConfigurationRepositoryWeb HTTPSPullSvc

 {

 ServerURL = $PullSvcEndpoint

 RegistrationKey = $RegistrationKey

 ConfigurationNames = $ConfigNames

 }

 ResourceRepositoryWeb HTTPSPullSvc

 {

 ServerURL = $PullSvcEndpoint

 RegistrationKey = $RegistrationKey

 }

 ReportServerWeb HTTPSReport

 {

 ServerURL = $PullSvcEndpoint

 RegistrationKey = $RegistrationKey

 }

 }

}

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

335

$nodes = @('S16-01','S16-02')

oDataHTTPSPullClient -NodeName $nodes -RegistrationKey '713c4332-f12c-

4008-9435-3329b97a27a8' -PullSvcEndpoint 'https://s16-pull-01:8080/

PSDSCPullServer.svc/' -ConfigNames @('OSConfig')

This meta configuration example uses the pull refresh mode on the target nodes.

Starting with WMF 5.0, you can even have the target nodes in push mode send their

configuration run status to a report server. The following meta configuration provides an

example:

[DSCLocalConfigurationManager()]

configuration oDataHTTPSReportClient

{

 param

 (

 [Parameter()]

 [String[]]

 $NodeName = 'localhost',

 [Parameter(Mandatory = $true)]

 [String]

 $RegistrationKey,

 [Parameter(Mandatory = $true)]

 [String]

 $PullSvcEndpoint

)

 Node $NodeName

 {

 Settings

 {

 RefreshMode = 'Push'

 }

 ReportServerWeb HTTPSReport

 {

 ServerURL = $PullSvcEndpoint

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

336

 RegistrationKey = $RegistrationKey

 }

 }

}

$nodes = @('S12R2-01','S12R2-02')

oDataHTTPSReportClient -NodeName $nodes -RegistrationKey '713c4332-

f12c- 4008-9435-3329b97a27a8' -PullSvcEndpoint 'https://s16-pull-01:8080/

PSDSCPullServer.svc/'

When you compile and enact the meta configuration document shown above, the

LCM on nodes S16-01, S16-02, S12R2-01, and S12R2-02 gets configured to send their

configuration run statuses to the report server endpoint.

Note there is no ReportServerShare, unlike ResourceRepositoryShare
and ConfigurationRepositoryShare. if you need centralized reporting, it is
mandatory that you deploy a dSC pull service and use it as ReportServerWeb.

When you browse to a pull service endpoint in a browser, it returns the possible

routes available in the endpoint as an XML document. You saw this in Chapter 8. One

such method is Reports.

You can use the Invoke-RestMethod cmdlet to query this report’s endpoint and

gather the status information for all configuration runs from a given target node. Here is

a helper function for that:

function Get-DscReport

{

 param

 (

 [Parameter(Mandatory = $true)]

 [String[]]

 $NodeName,

 [Parameter(Mandatory = $true)]

 [ValidateNotNullOrEmpty()]

 [String]

 $ReportEndpoint,

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

337

 [Parameter()]

 [Switch]

 $UseTLS12

)

 if ($UseTLS12)

 {

 [Net.ServicePointManager]::SecurityProtocol = [Net.

SecurityProtocolType]::Tls12

 }

 foreach ($node in $NodeName)

 {

 $agentId = (Get-DscLocalConfigurationManager -CimSession $node).

AgentId

 $requestUri = "$ReportEndpoint/Nodes(AgentId='$agentId')/Reports"

 $nodeReport = (Invoke-RestMethod -Uri $requestUri -UseBasicParsing

-Headers @{Accept = 'application/json';ProtocolVersion = '2.0'}).

Value

 return $nodeReport

 }

}

Note in this helper function that if you have deployed a pull service endpoint

with security best practices (refer to Chapter 8), the xDSCWebServiceDSC resource

will configure the pull service endpoint to use TLS1.2. However, Invoke-RestMethod

does not use TLS 1.2 by default. What is shown in this function is a workaround for

that. Therefore, if you have deployed a HTTPS pull service endpoint with security best

practices, supply the -UseTLS12 switch parameter with the Get-DscReport function. To

retrieve a node’s configuration run history, you need to know the AgentId of the node.

AgentId is a read-only property of the DSC LCM. This property contains a GUID and

it needs to be supplied to the Reports method to retrieve the node’s configuration run

status. The Get-DscReport function retrieves the AgentId for each target node in the

$NodeName array using the Get-DSCLocalConfigurationManager cmdlet.

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

338

Note at present, there is no way (out of the box) to retrieve a list of all nodes
registered with a dSC pull service endpoint or report service endpoint. You must
know the agent id before you can retrieve the node status reports. that said, you
can use Ben’s DscPullServerAdmin module to get a list of agent ids registered
with the pull server. this module is available at https://github.com/
bgelens/DSCPullServerAdmin.

Let’s see the Get-DscReport function in action.

$reports = Get-DscReport -NodeName S16-01, S16-02 -ReportEndpoint 'https://

s16-pull-01:8080/PSDSCPullServer.svc' -UseTLS2

The $reports variable contains an array of configuration run history objects from

each node. See Figure 9-16.

Figure 9-16. Partial output of one of the report objects

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

https://github.com/bgelens/DSCPullServerAdmin
https://github.com/bgelens/DSCPullServerAdmin

339

Accessing $report[0].StatusData and converting it from JSON to a PowerShell

object provides output similar to Get-DscConfigurationStatus; see Figure 9-17.

So, how does the LCM client send this information to the report service endpoint?

After every consistency check run, the DSC LCM, if a report server endpoint is

configured using the ReportServerWeb meta resource, calls the SendReport method.

For example, on my target node, it will invoke https://s16-pull-01:8080/

PSDSCPullServer.svc/Nodes(AgentId='DF0E94C9-E171-11E7-8A8A-00155D87B207')/

SendReport. As a part of this request, the LCM client also sends the snapshot of the

configuration run status object.

There is no graphical dashboard or way to visualize which of the nodes registered

with the report server are in the desired state. This is available in the Azure Automation

DSC service. You will review this service in Chapter 17.

Figure 9-17. Partial output from the status data property

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

340

 Summary
DSC provides detailed telemetry of configuration runs on a target node. This can be

retrieved using the commands available in the PSDesiredStateConfiguration module,

Desired State Configuration event logs, and by querying the report service endpoint

when the target node LCM is configured to send the status reports to a report server.

While these methods provide very rich information that can be used for troubleshooting

and debugging purposes, DSC does not provide a graphical dashboard to visualize the

node status. However, given the data that is available in the different methods you saw in

this chapter, it would not be too hard to build a graphical representation of that in tools

like Power BI or by some other means. There are third-party solutions available in this

space as well.

Chapter 9 reporting, Monitoring, and CorreCting a Configuration

341
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_10

CHAPTER 10

Partial Configurations
One of the features introduced in WMF 5.0 is partial configurations. Chapter 2 featured

a very brief overview of this feature. Partial configurations can help in an IT organization

where multiple individuals are responsible for the configuration of the infrastructure.

Partial configurations enable delegation of configuration management tasks and

separation of the common configuration from node-specific configurations. By saying

common configuration, I refer to the baseline configuration that applies to a subset of

the nodes in an infrastructure. Each administrator responsible for his/her configuration

can author and manage it independent of what other administrators author, thereby

eliminating any human errors involved in updating a single configuration document.

This chapter goes in-depth into partial configurations and provides a walk-through

of how partial configurations can be built and used. You will look at preparing the

necessary infrastructure to start enacting partial configurations. You will also see

an updated configuration life cycle that presents a complete view of configuration

management including partial configurations.

 Lab Requirements
To try the examples and exercises in this chapter, you will need at minimum a Windows

Server 2008 R2 or above system with WMF 5.1 installed. I recommend a system with

Windows Server 2016. You will need Windows Server 2016 and SQL Server 2014

installation media to try the partial configuration examples in this chapter. You must also

have certificates for encrypting credentials in the configuration documents. You can do

this using self-signed certificates as well. You can use Chapter 5 as a reference for this.

You will also need a domain controller since the examples use partial configurations to

join an existing domain.

342

 Introduction
You have seen an overview of partial configurations already. There are two reasons why

you might want to implement partial configurations: incremental configurations and

delegated configuration management.

 Incremental Configurations
Let’s look at deploying a SQL Server instance using DSC. Assume that you already have

the OS installed and you plan on using DSC to perform the post-OS deployment tasks

such domain join and SQL install and configuration.

What you see in Figure 10-1 represents the complete and incremental configuration of

the target system. You start by enacting the network configuration and domain join as soon

as the OS deployment is complete. This OS configuration can be a single configuration

script. Once this is done, you can start installing the SQL prerequisites and finally,

complete the SQL install and instance configuration. Optionally, once the SQL instance

configuration is complete, you can apply firewall rules as a part of OS and SQL hardening.

Figure 10-1. Incremental configuration of SQL Server

Chapter 10 partial Configurations

343

Now, if you build these configurations as individual documents and enact one

after another, DSC will have no knowledge of the previously enacted configurations

and therefore won’t be able to monitor any drift within those configurations. Prior to

WMF 5.0, the only way to ensure that each configuration was monitored for drift was to

combine all configurations into a single document and enact.

With the partial configurations feature, you can now let the DSC LCM know that you

are enacting partial configurations and enact one fragment at a time as long as there are

no dependencies defined between those partial fragments. You will look into this with an

example later in this chapter.

So, when using partial configurations in this approach, you can use an external

orchestrator script to configure the LCM and enact partial configurations one at a time.

This method may be useful when all fragments of the system configuration are not

ready yet but you still want to complete your part of the configuration and hand over the

system to the next person responsible. Since all configuration fragments are not available

during initial enact, you need to configure the LCM only with available configuration

fragments and enact. Whenever a new fragment is available, it can be updated in the

meta configuration and then enacted using the push or pull mode.

While the incremental approach of using partial configurations may sound

somewhat useful, the real use case for partial configurations is in delegated

configuration management.

 Delegated Configuration Management
In a real-world scenario, the SQL deployment discussed above will typically be handled

by multiple administrators from many different teams. With the earlier release, all of

these teams had to update the same configuration script. While collaboration is good,

it creates much room for errors. DSC partial configurations allow delegated control and

ownership in such a scenario. Figure 10-2 illustrates this.

Chapter 10 partial Configurations

344

In this approach, one of the administrators will configure the DSC LCM with what to

expect as a part of the partial configurations. And, as soon as any of the administrators

involved in the node configurations send their configuration fragment, it will be enacted

based on the dependency resolution. Every team owns its configuration and manages it

independent of others. In fact, with partial configurations, it is possible for these different

teams to have their own DSC pull server for delivering configurations to the target

systems or push the configuration when they are ready. Therefore, partial configurations

are supported in a mixed refresh mode.

 Getting Started
I mentioned that the DSC LCM needs to be aware of the partial configuration

fragments it must expect. This is the starting point before you can start enacting

partial configuration fragments. In Chapter 3, you saw how to configure a node meta

configuration using the DSC declarative syntax. Let’s look at the LCM settings that are

related to partial configurations.

Figure 10-2. Delegated ownership of configurations

Chapter 10 partial Configurations

345

Note a few examples or figures in this chapter use scripts from earlier chapters.

The DSC partial configuration settings in DSC meta configurations are instances of

the MSFT_PartialConfiguration class. Let’s verify this.

You saw this in Chapter 3. And, as you can see in Figure 10-3, the PartialConfiguration

meta resource is mapped as the MSFT_PartialConfiguration CIM class.

As seen in Figure 10-4, there are several properties, except ResourceId and

SourceInfo, available within this meta resource. Table 10-1 provides a brief overview of

these properties.

Figure 10-3. Partial configuration meta resource to CIM class mapping

Figure 10-4. Partial configuration CIM class properties

Chapter 10 partial Configurations

346

In the subsequent sections, you will use these properties in the meta configuration

documents to make the DSC LCM aware of partial configurations. Let’s start with the

push refresh mode for partial configurations:

[DscLocalConfigurationManager()]

Configuration LCMConfiguration

{

 Settings

 {

 CertificateID = '1DAEA5189FA2D927151C96C5F43F3DA13114573D'

 RebootNodeIfNeeded = $true

 ActionAfterReboot = 'ContinueConfiguration'

 }

Table 10-1. Properties in Partial Configuration Meta Resource

Property Name Description

RefreshMode partial configurations are supported in both pull and push modes.

or you can use a mix of both modes when implementing partial

configurations. Disabled refresh mode is not supported with partial

configurations.

ConfigurationSource this property is required when using partial configurations

in pull mode. using this, you can configure the source (pull

sMB share or rest server) from which the fragment can be

downloaded. When using the pull mode for partial configurations

in the meta configuration, it is important to specify the pull

source using the ConfigurationRepositoryWeb and/or

ConfigurationRepositoryShare meta resources.

Description Description of the partial configuration.

ResourceModuleSource specifies the source for resource module location. When using this,

the meta configuration must have ResourceRepositoryWeb and/or

ResourceRepositoryShare meta resources.

ExclusiveResources specifies the DsC resources that are explicitly locked for this partial

configuration fragment. no other partial configurations can use the

resources listed as ExclusiveResources.

Chapter 10 partial Configurations

347

 PartialConfiguration OSConfig

 {

 RefreshMode = 'Push'

 Description = 'OS configuration fragment for Windows feature,

host network, and domain join'

 }

 PartialConfiguration SQLConfig

 {

 RefreshMode = 'Push'

 Description = 'SQL configuration fragment for SQL instance install

and configuration.'

 }

 PartialConfiguration FirewallConfig

 {

 RefreshMode = 'Push'

 Description = 'Firewall configuration fragment for OS and SQL

instance hardnening.'

 }

}

LCMConfiguration

This example shows the common LCM settings along with three instances of the partial

configuration meta resource. This example uses certificate-based credential encryption

and therefore the CertificateID property of the Settings meta resource is used.

Note if you do not have certificates for credential encryption, you should change
the configuration data to use plain-text passwords. You learned about this in
Chapter 5. however, this is not recommended in production environments.

You can enact this meta configuration and verify that the LCM configuration reflects

these settings.

While this meta configuration document has three configuration fragments, it

is always possible to add one at a time. However, when you do that, ensure that you

don’t overwrite the existing LCM configuration. Instead, you should keep adding

Chapter 10 partial Configurations

348

new fragments to the existing meta configuration. However, I don’t recommend this

approach of changing the meta configuration for each fragment, mainly because it can

lead to LCM misconfiguration due to human error and can also create a dependency

on an administrator to configure the LCM before another administrator can enact their

configuration fragment. Instead, as shown in the above meta configuration, add all

instances of the partial configuration meta resources at once (at least the configuration

fragments that have no dependencies). As you will see in later examples, partial

configurations with no dependencies can be enacted without all fragments being in

place. This is what enables the first approach towards using partial configurations:

incremental configurations.

So, how do you achieve an incremental configuration enact? Before we go there, let’s

take a look at three configuration documents that you will enact in an incremental manner.

 OS Configuration
Here is the OS configuration fragment that you will enact on the target node:

$confgData = @{

 AllNodes = @(

 @{

 NodeName = 'localhost'

 PSDscAllowDomainUser = $true

 CertificateFile = 'C:\PublicKeys\sqldb.cer'

 Thumbprint = '1DAEA5189FA2D927151C96C5F43F3DA13114573D'

 }

)

}

configuration OSConfig

{

 Param

 (

 [Parameter(Mandatory)]

 [pscredential]

 $Credential,

Chapter 10 partial Configurations

349

 [Parameter(Mandatory)]

 [string]

 $OSImageDriveLetter

)

 Import-DscResource -ModuleName xComputerManagement -Name xComputer

-ModuleVersion 3.1.0.0

 Import-DscResource -ModuleName xNetworking -Name xIPAddress,

xDefaultGatewayAddress, xDnsServerAddress -ModuleVerison 5.3.0.0

 Import-DscResource –ModuleName 'PSDesiredStateConfiguration'

 Node $AllNodes.NodeName

 {

 WindowsFeature 'NetFramework35'

 {

 Name = 'NET-Framework-Core'

 Source = "${OSImageDriveLetter}\Sources\Sxs"

 Ensure = 'Present'

 }

 xIPAddress NodeIPAddress

 {

 InterfaceAlias = 'Ethernet'

 IPAddress = '172.16.102.39/24'

 AddressFamily = 'IPv4'

 }

 xDefaultGatewayAddress NodeDefaultGateway

 {

 Address = '172.16.102.1'

 InterfaceAlias = 'Ethernet'

 AddressFamily = 'IPv4'

 DependsOn = '[xIPAddress]NodeIPAddress'

 }

Chapter 10 partial Configurations

350

 xDnsServerAddress NodeDnsServerAddress

 {

 Address = '172.16.102.91'

 InterfaceAlias = 'Ethernet'

 AddressFamily = 'IPv4'

 DependsOn = '[xIPAddress]NodeIPAddress'

 }

 xComputer RenameAndDomainHJoin

 {

 Name = 'SQLDB'

 DomainName = 'psdsc.lab'

 Credential = $Credential

 DependsOn = '[xDnsServerAddress]NodeDnsServerAddress'

 }

 }

}

OSConfig -configurationData $confgData -Credential (Get-Credential)

-osImageDriveLetter 'D:'

There are several custom DSC resources being used in this configuration fragment. You

need to ensure that these custom DSC resource modules are available on the node where

you need to enact this configuration. You install the .NET 3.5 Framework core, configure

host IPv4 settings, and finally add the target node to the Active Directory domain. This

configuration assumes that the OS ISO image is mounted as a drive for installing the .NET

Framework feature from the media source. You use configuration data that specifies the

public key of the target node certificate to use for encryption of passwords.

Note ensure that you change the ipv4 settings in the above configuration
document to reflect your own lab environment.

the .net 3.5 framework core is not needed if you plan to deploy sQl server
2016 or sQl server 2017. for those versions of sQl, you can remove the
WindowsFeature resource instance from the above configuration. and, it also
means that there is no need to locally mount the os iso as a drive.

Chapter 10 partial Configurations

351

 SQL Configuration
The next fragment is the SQL install and instance configuration:

$confgData = @{

 AllNodes = @(

 @{

 NodeName = 'localhost'

 PSDscAllowDomainUser = $true

 CertificateFile = 'C:\PublicKeys\sqldb.cer'

 Thumbprint = '1DAEA5189FA2D927151C96C5F43F3DA13114573D'

 }

)

}

Configuration SQLConfig

{

 [CmdletBinding()]

 param

 (

 [Parameter(Mandatory)]

 [psCredential]

 $SqlInstallCredential,

 [Parameter()]

 [psCredential]

 $SqlAdministratorCredential = $SqlInstallCredential,

 [Parameter(Mandatory)]

 [psCredential]

 $SqlServiceCredential,

 [Parameter()]

 [psCredential]

 $SqlAgentServiceCredential = $SqlServiceCredential,

 [Parameter(Mandatory)]

 [String]

Chapter 10 partial Configurations

352

 $SqlInstallerDriverLetter

)

 Import-DscResource -ModuleName xSQLServer -ModuleVersion 9.0.0.0

 Node $AllNodes.NodeName

 {

 xSQLServerSetup 'InstallDefaultInstance'

 {

 InstanceName = 'MSSQLSERVER'

 Features = 'SQLENGINE'

 SQLCollation = 'SQL_Latin1_General_CP1_CI_AS'

 SQLSvcAccount = $SqlServiceCredential

 AgtSvcAccount = $SqlAgentServiceCredential

 SQLSysAdminAccounts = $SqlAdministratorCredential.UserName

 InstallSharedDir = 'C:\Program Files\Microsoft SQL Server'

 InstallSharedWOWDir = 'C:\Program Files (x86)\Microsoft

SQL Server'

 InstanceDir = 'C:\Program Files\Microsoft SQL Server'

 SourcePath = $SqlInstallerDriverLetter

 UpdateEnabled = 'False'

 ForceReboot = $false

 PsDscRunAsCredential = $SqlInstallCredential

 }

 }

}

$SqlInstallCredential = Get-Credential -Message 'Enter SQL Install account

credentials ...'

$SqlServiceCredential = Get-Credential -Message 'Enter SQL service account

credentials ...'

SQLConfig -SqlInstallCredential $SqlInstallCredential -SqlServiceCredential

$SqlServiceCredential -SqlInstallerDriverLetter 'E:' -ConfigurationData

$confgData -Verbose

Chapter 10 partial Configurations

353

Within this SQL configuration fragment, you install SQL Server and configure the

default instance. Since this configuration requires specifying credentials for SQL setup

account, administrator, and service accounts, you have configuration data that specifies

the public key of the target node certificate to use for the encryption of passwords.

 Firewall Configuration
Finally, the firewall configuration allows inbound communication on TCP port 1433 for

the SQL database engine. This is something very trivial; on a real production system, you

may have many more such rules hardening the SQL and OS configuration.

Configuration FirewallConfig

{

 Import-DSCResource -ModuleName xNetworking -Name xFirewall

-ModuleVersion 5.3.0.0

 Node Localhost

 {

 xFirewall Firewall

 {

 Name = 'SQLDBEngineFWRule'

 DisplayName = 'Firewall Rule SQL Database Engine

inbound'

 Group = 'SQL Firewall Rule Group'

 Ensure = 'Present'

 Enabled = 'True'

 Profile = ('Domain', 'Private')

 Direction = 'Inbound'

 LocalPort = '1433'

 Protocol = 'TCP'

 Description = 'Firewall Rule SQL Database Engine

inbound - TCP 1433'

 }

 }

}

FirewallConfig

Chapter 10 partial Configurations

354

In all of the above configuration fragments, notice the name of the configuration

function. It is the same as what you had in the LCM meta configuration for each

configuration fragment. This is necessary to ensure that the LCM meta resource

configuration for each partial configuration fragment matches the right configuration

function in the fragment.

On the authoring station, ensure that the custom DSC resource modules for these

configurations are available, compile the configurations, and keep the MOF ready (he

process that you are already familiar with). See Figure 10-5.

Before you can enact these configurations, the custom DSC resource modules

need to exist on the target node. So, copy them over to the $env:ProgramFiles\

WindowsPowerShell\Modules folder, or if you have a pull server configured, add the

ResourceModuleSource property in the partial configuration settings pointing to

instances of ResourceRepositoryWeb and/or ResourceRepositoryShare.

You can copy the compiled configuration fragments to the target node also so that

each of them can be enacted locally.

 Enacting a Partial Configuration: Push Mode
How do you generally enact a configuration in push mode? Or in another words, how do

you push a configuration to a target node? You use the Start-DscConfiguration cmdlet.

So, let’s start there.

Figure 10-5. Compiled configuration fragment MOF

Chapter 10 partial Configurations

355

As seen in Figure 10-6, for partial configurations in push mode, you first need to use

the Publish-DscConfiguration cmdlet to place the configuration fragment in the partial

configuration store. See Figure 10-7.

Publish-DscConfiguration -Path .\OSConfig -Verbose

These published configuration fragments can be seen in the C:\Windows\System32\

Configuration\PartialConfigurations folder. Once the fragment is available in the

partial configuration store, it can be enacted using the Start-DscConfiguration cmdlet.

You need to use the -UseExisting switch parameter instead of -Path.

Start-DscConfiguration -UseExisting -Wait -Verbose

Figure 10-6. Using Start-DscConfiguration to push the configuration fragment

Figure 10-7. Publishing a configuration to a partial configuration store

Chapter 10 partial Configurations

356

Since you configured the LCM to reboot the node if needed, once you enact this

configuration, the target node will reboot after the domain join configuration.

Note You can also wait for the consistency check to get triggered to get the
configuration enacted.

You may now repeat the publish and enact steps you just tried for the rest of the

configuration fragments, SQLConfig and FirewallConfig, and this will complete the

SQL DB instance configuration and system hardening.

 Partial Configuration Dependencies
Similar to resource instance dependencies in a node configuration, you can define

dependencies between different fragments of a node configuration. This is done using

the DependsOn property of the PartialConfiguration meta resource.

[DscLocalConfigurationManager()]

Configuration LCMConfiguration

{

 Settings

 {

 CertificateID = '1DAEA5189FA2D927151C96C5F43F3DA13114573D'

 RebootNodeIfNeeded = $true

 ActionAfterReboot = 'ContinueConfiguration'

 }

 PartialConfiguration OSConfig

 {

 RefreshMode = 'Push'

 Description = 'OS configuration fragment for Windows feature,

host network, and domain join'

 }

 PartialConfiguration SQLConfig

 {

 RefreshMode = 'Push'

Chapter 10 partial Configurations

357

 Description = 'SQL configuration fragment for SQL instance install

and configuration.'

 DependsOn = '[PartialConfiguration]OSConfig'

 }

 PartialConfiguration FirewallConfig

 {

 RefreshMode = 'Push'

 Description = 'Firewall configuration fragment for OS and SQL

instance hardnening.'

 DependsOn = '[PartialConfiguration]SQLConfig'

 }

}

LCMConfiguration

When there are dependencies between different fragments, all dependent fragments

must exist in the partial configuration store before the dependent fragments can be

enacted. So, looking at the above meta configuration example, SQLConfig depends on

OSConfig and FirewallConfig depends on SQLConfig.

In this scenario, only the OSConfig fragment can be enacted independently. What

happens if you try to publish and enact the SQLConfig fragment? See Figure 10-8.

This can be resolved by publishing the OSConfig fragment and then retrying the

enact with Start-DscConfiguration cmdlet.

If you publish all fragments at once and enact, all partial configurations get converged

into a single pending configuration and get enacted. Since you configured the node to

continue configuration after reboot, the SQL install will start after the domain join.

Figure 10-8. Failure in enacting a dependent fragment

Chapter 10 partial Configurations

358

The push mode for configuration is good for smaller deployments but does not scale

well. Also, when using delegated configuration management, it may not be prudent to

give every application or configuration owner local administrator permissions on the

target node for them to be able to push configurations.

You learned this earlier and have seen the pull mode for configuration delivery in

Chapter 8. Partial configurations can be used in pull mode as well.

 Enacting a Partial Configuration: Pull Mode
There are certain LCM configuration requirements and configuration naming

requirements when delivering partial configurations in pull mode.

Note this section assumes that you already have a rest-based or sMB
share- based pull server endpoint configured. the example in this section uses
a rest- based pull configuration.

[DscLocalConfigurationManager()]

Configuration LCMConfiguration

{

 Settings

 {

 CertificateID = '1DAEA5189FA2D927151C96C5F43F3DA13114573D'

 RebootNodeIfNeeded = $true

 ActionAfterReboot = 'ContinueConfiguration'

 }

 ConfigurationRepositoryWeb S16Pull01

 {

 ServerURL = 'http://S16-PULL-01:8080/PSDSCPullServer.svc'

 RegistrationKey = '4867cdea-9dde-48a0-8416-2daa89471991'

 AllowUnsecureConnection = $true

 ConfigurationNames = @('OSConfig','SQLConfig','FirewallConfig')

 }

Chapter 10 partial Configurations

359

 ResourceRepositoryWeb S16Pull01

 {

 ServerURL = 'http://S16-PULL-01:8080/PSDSCPullServer.svc'

 RegistrationKey = '4867cdea-9dde-48a0-8416-2daa89471991'

 AllowUnsecureConnection = $true

 }

 PartialConfiguration OSConfig

 {

 RefreshMode = 'Pull'

 Description = 'OS configuration fragment for Windows feature, host

network, and domain join'

 ConfigurationSource = '[ConfigurationRepositoryWeb]S16Pull01'

 }

 PartialConfiguration SQLConfig

 {

 RefreshMode = 'Pull'

 Description = 'SQL configuration fragment for SQL instance install

and configuration.'

 ConfigurationSource = '[ConfigurationRepositoryWeb]S16Pull01'

 DependsOn = '[PartialConfiguration]OSConfig'

 }

 PartialConfiguration FirewallConfig

 {

 RefreshMode = 'Pull'

 Description = 'Firewall configuration fragment for OS and SQL

instance hardnening.'

 ConfigurationSource = '[ConfigurationRepositoryWeb]S16Pull01'

 DependsOn = '[PartialConfiguration]OSConfig'

 }

}

LCMConfiguration

Chapter 10 partial Configurations

360

In this meta configuration, the three partial configurations are configured to pull

the fragments from a REST-based pull server. Unlike the push example, you pull the

required resource modules as well from the same pull server. This is configured using the

ResourceRepositoryWeb meta resource.

If you keenly observe the partial configuration instances in the meta configuration and

compare the properties used to Table 10-1, you will see that the ResourceModuleSource

is not used although you are using a pull server for this purpose too. This property is

not mandatory, unlike the ConfigurationSource property of the partial configuration

resource. The LCM will look up the configured ResourceRepositoryWeb or

ResourceRepositoryShare for the required resource modules.

Once you have this meta configuration enacted, you can compile and copy over the

MOF and resource module files to the DSC pull service path. This process is no different

from what you practiced in Chapter 8. For partial configurations, you just need to name

the fragments as <configuration-fragment-name>.mof and place it on the pull server

with its associated checksum.

Once you have the necessary files (configuration fragments and resource modules)

placed on the pull server, you can use the Update-DscConfiguration cmdlet to force

the target node check with the pull server for updated configurations. This triggers the

module and configuration fragment download to the target node and the enact process.

 Enacting a Partial Configuration: Mixed Mode
Like any other node configuration, partial configurations can also be enacted in mixed

refresh mode.

[DscLocalConfigurationManager()]

Configuration LCMConfiguration

{

 Settings

 {

 CertificateID = '1DAEA5189FA2D927151C96C5F43F3DA13114573D'

 RebootNodeIfNeeded = $true

 ActionAfterReboot = 'ContinueConfiguration'

 }

Chapter 10 partial Configurations

361

 ConfigurationRepositoryWeb S16Pull01

 {

 ServerURL = 'http://S16-PULL-01:8080/PSDSCPullServer.svc'

 RegistrationKey = '4867cdea-9dde-48a0-8416-2daa89471991'

 AllowUnsecureConnection = $true

 ConfigurationNames = @('SQLConfig','FirewallConfig')

 }

 ResourceRepositoryWeb S16Pull01

 {

 ServerURL = 'http://S16-PULL-01:8080/PSDSCPullServer.svc'

 RegistrationKey = '4867cdea-9dde-48a0-8416-2daa89471991'

 AllowUnsecureConnection = $true

 }

 PartialConfiguration OSConfig

 {

 RefreshMode = 'Push'

 Description = 'OS configuration fragment for Windows feature, host

network, and domain join'

 }

 PartialConfiguration SQLConfig

 {

 RefreshMode = 'Pull'

 Description = 'SQL configuration fragment for SQL instance install

and configuration.'

 ConfigurationSource = '[ConfigurationRepositoryWeb]S16Pull01'

 DependsOn = '[PartialConfiguration]OSConfig'

 }

 PartialConfiguration FirewallConfig

 {

 RefreshMode = 'Pull'

 Description = 'Firewall configuration fragment for OS and SQL

instance hardnening.'

Chapter 10 partial Configurations

362

 ConfigurationSource = '[ConfigurationRepositoryWeb]S16Pull01'

 DependsOn = '[PartialConfiguration]OSConfig'

 }

}

LCMConfiguration

This meta configuration is more or less similar to the pull mode example. However,

for the OSConfig fragment, you change the refresh mode to push. This configuration

has no dependencies and hence can be enacted independently. You have already seen

the process of enacting in both cases, push and pull. So, for the OSConfig, you use the

Publish-DscConfiguration cmdlet followed by the Start-DscConfiguration cmdlet.

For the pull mode, you simply call the Update-DscConfiguration cmdlet once the

required files are placed on the pull server and all dependent configurations in push

mode are already enacted.

 Exclusive Resource Reservation
One of the features associated with partial configurations is resource reservations

in each fragment. Consider the example in this chapter. As a part of the delegated

configuration control, you want to restrict who can use the WindowsFeature DSC

resource to install features and roles. This may be to prevent any other administrator

from installing whatever roles and features they want and ensure that it will be done

exclusively using the OS configurations.

This is what the ExclusiveResources property of the PartialConfiguration meta

resource is used for. To be able to use it, you need to set the meta configuration. Here is

how it looks:

[DscLocalConfigurationManager()]

Configuration LCMConfiguration

{

 Settings

 {

 CertificateID = '1DAEA5189FA2D927151C96C5F43F3DA13114573D'

 RebootNodeIfNeeded = $true

 ActionAfterReboot = 'ContinueConfiguration'

 }

Chapter 10 partial Configurations

363

 ConfigurationRepositoryWeb S16Pull01

 {

 ServerURL = 'http://S16-PULL-01:8080/PSDSCPullServer.svc'

 RegistrationKey = '4867cdea-9dde-48a0-8416-2daa89471991'

 AllowUnsecureConnection = $true

 ConfigurationNames = @('OSConfig','SQLConfig','FirewallConfig')

 }

 ResourceRepositoryWeb S16Pull01

 {

 ServerURL = 'http://S16-PULL-01:8080/PSDSCPullServer.svc'

 RegistrationKey = '4867cdea-9dde-48a0-8416-2daa89471991'

 AllowUnsecureConnection = $true

 }

 PartialConfiguration OSConfig

 {

 RefreshMode = 'Pull'

 Description = 'OS configuration fragment for Windows feature, host

network, and domain join'

 ExclusiveResources = 'WindowsFeature'

 ConfigurationSource = '[ConfigurationRepositoryWeb]S16Pull01'

 }

 PartialConfiguration SQLConfig

 {

 RefreshMode = 'Pull'

 Description = 'SQL configuration fragment for SQL instance install

and configuration.'

 ConfigurationSource = '[ConfigurationRepositoryWeb]S16Pull01'

 DependsOn = '[PartialConfiguration]OSConfig'

 }

 PartialConfiguration FirewallConfig

 {

 RefreshMode = 'Pull'

 Description = 'Firewall configuration fragment for OS and SQL

instance hardnening.'

Chapter 10 partial Configurations

364

 ConfigurationSource = '[ConfigurationRepositoryWeb]S16Pull01'

 DependsOn = '[PartialConfiguration]OSConfig'

 }

}

LCMConfiguration

In this updated meta configuration, you reserve the WindowsFeature resource only

to the OSConfig fragment. Now, if any other configuration fragment tries to configure an

instance of that reserved resource, it will result in an error. Let’s see that in action.

Here is the modified SQLConfig fragment that tries to install a web server role:

$confgData = @{

 AllNodes = @(

 @{

 NodeName = 'localhost' PSDscAllowDomainUser = $true

 CertificateFile = 'C:\PublicKeys\sqldb.cer'

 Thumbprint = '1DAEA5189FA2D927151C96C5F43F3DA13114573D'

 }

)

}

Configuration SQLConfig

{

 [CmdletBinding()]

 param

 (

 [Parameter(Mandatory)]

 [psCredential]

 $SqlInstallCredential,

 [Parameter()]

 [psCredential]

 $SqlAdministratorCredential = $SqlInstallCredential,

 [Parameter(Mandatory)]

 [psCredential]

 $SqlServiceCredential,

Chapter 10 partial Configurations

365

 [Parameter()]

 [psCredential]

 $SqlAgentServiceCredential = $SqlServiceCredential,

 [Parameter(Mandatory)]

 [ValidateNotNullorEmpty()]

 [String]

 $SqlInstallerDriverLetter

)

 Import-DscResource -ModuleName xSQLServer

 Node $AllNodes.NodeName

 {

 WindowsFeature WebServer

 {

 Name = 'Web-Server'

 Ensure = 'Present'

 }

 xSQLServerSetup 'InstallDefaultInstance'

 {

 InstanceName = 'MSSQLSERVER'

 Features = 'SQLENGINE'

 SQLCollation = 'SQL_Latin1_General_CP1_CI_AS'

 SQLSvcAccount = $SqlServiceCredential

 AgtSvcAccount = $SqlAgentServiceCredential

 SQLSysAdminAccounts = $SqlAdministratorCredential.UserName

 InstallSharedDir = 'C:\Program Files\Microsoft SQL Server'

 InstallSharedWOWDir = 'C:\Program Files (x86)\Microsoft

SQL Server'

 InstanceDir = 'C:\Program Files\Microsoft SQL Server'

 SourcePath = $SqlInstallerDriverLetter

 UpdateEnabled = 'False'

 ForceReboot = $false

 PsDscRunAsCredential = $SqlInstallCredential

 }

 }

}

Chapter 10 partial Configurations

366

$SqlInstallCredential = Get-Credential -Message 'Enter SQL Install account

credentials ...'

$SqlServiceCredential = Get-Credential -Message 'Enter SQL service account

credentials ...'

SQLConfig -SqlInstallCredential $SqlInstallCredential -SqlServiceCredential

$SqlServiceCredential -SqlInstallerDriverLetter 'E:' -ConfigurationData

$confgData -Verbose

When you compile this MOF, publish it to the partial configuration store, and enact

it, the LCM will throw an error that one of the partial configuration fragments is invalid

and the failing fragment will be discarded from the configuration enact process. This is

shown in Figure 10-9.

 Partial Configuration Life Cycle
In Chapter 3, you saw the life cycle of a node configuration document. You can represent

partial configurations as well in the same manner. Figure 10-10 illustrates this.

Figure 10-9. Error with exclusive resources

Chapter 10 partial Configurations

367

Figure 10-10 is very much self-explanatory. All configuration fragments first land in

the partial configuration store represented by $env:SystemDrive\Windows\System32\

Configuration\PartialConfigurations. This is the location where all fragments get

stored irrespective of the refresh mode.

When either the consistency check gets triggered or an administrator runs a

command to explicitly start the enact process, the partial configuration fragments are

validated and converged into a pending configuration (pending.mof) for the enact.

The rest of the life cycle stays as is and does not change. Unlike the pending, current,

and previous documents, there is no command to remove the partial configuration

fragments. If you delete one manually, if the fragment is configured to pull, it will be

pulled during the next consistency check and enacted.

What if you delete all of the fragments that were received in the push refresh mode

and then use Start-DscConfiguration with the -UseExisting switch? What do you

expect to happen?

Figure 10-10. Partial configuration life cycle

Chapter 10 partial Configurations

368

Try it before you read the next line!

The current.mof gets enacted in this case. If you delete the current.mof too, the

LCM will complain that the partial fragments are not available.

 Limitations
Partial configurations come with a lot of baggage. You need to understand this before

planning to implement partial configurations.

 Exclusive Resource Reservations
The exclusive resource reservation may be an interesting feature to restrict who can

configure what resource instances, but it can be a huge road-block in certain scenarios.

Consider this example from former PowerShell MVP Steven Murawski. In this example,

consider the xWebAdministration resource as exclusively reserved for only the web

team and that xSQLServer is locked only to the DBA team. All is well until the DBA

team needs to configure reporting services, but they can’t since they are barred from

using xWebAdminstration. The DBA team may work around this by creating their own

custom resource and continue to modify the web configuration. For the web team, these

reporting services configurations never existed in their inventory and audit. So, this

becomes a compliance issue.

 Resource Naming Conflicts
If you have read the life cycle section carefully, I mentioned that the partial fragments

are validated and enacted. So, consider a scenario where two different fragments

carry the same resource configuration with same instance name. In a single node

configuration document, this conflict will be seen at compile time. However, with partial

configurations, this is not the case. The validation only happens only at the enact time.

Figure 10-11 shows an example of one such error.

Chapter 10 partial Configurations

369

 Summary
Partial configurations promote collaboration and enable delegated control over the node

configurations. You can use partial configurations in either push or pull mode or mixed

refresh mode. All or most of the knowledge that you gained through the earlier chapters

around node configurations is applicable to partial configurations as well. However,

remember the limitations or drawbacks of using partial configuration without proper

planning. If reusability is the goal, using composite resources or configurations can be a

better option.

Figure 10-11. Resource conflicts during an enact

Chapter 10 partial Configurations

371
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_11

CHAPTER 11

Cross-Node
Synchronization
In the previous chapter on partial configurations, you looked at the incremental

approach to applying configuration fragments. With partial configurations, all fragments

are limited to a single target node. But, what if you need to orchestrate dependencies

between multiple resources across different nodes? For example, if you are building a

failover cluster, you will have to wait for all participating nodes to first get the failover

cluster feature installed and then proceed to creating the cluster and joining other

nodes into the newly created cluster. With or without partial configurations, you can

do this in an orchestrated manner using an orchestration script. The whole purpose of

this orchestration script is to ensure that the target nodes come into a desired state with

respect to all dependencies and then ensure that the cluster gets created. With partial

configuration fragments, you can configure some resource instances that don’t have any

internal or external dependencies independently and simultaneously while all other

dependent configuration happens at the end in a serial manner. Once again, you can use

an orchestration script that stitches all this together.

However, this approach requires some heavy lifting within the orchestration script. You

need to know how to make sense of dependencies in the configuration document and how

to monitor the target nodes’ resources for the desired state. You need to build error handling

into the orchestration script so that it can recover and resume from the point of failure.

372

If you have ever used Microsoft-developed DSC resource modules such as

xActiveDirectory and xFailoverCluster, you might have seen resources such

as xWaitForADDomain and xWaitForCluster. These resources helped wait for any

dependent resources to be in a desired state before proceeding to the final configuration

on a given node. Take a look at this example:

$certFile = 'C:\PublicKeys\AD.cer'

$thumbprint = $(

 $cert = [System.Security.Cryptography.X509Certificates.

X509Certificate2]::new()

 $cert.Import($certFile)

 $cert.Thumbprint

)

$configData = @{

 AllNodes = @(

 @{

 NodeName = 'localhost'

 CertificateFile = $certFile

 Thumbprint = $thumbprint

 PSDscAllowDomainUser = $true

 }

)

}

Configuration CreateADDomain

{

 param

 (

 [Parameter(Mandatory = $true)]

 [String]

 $DomainName,

 [Parameter(Mandatory = $true)]

 [pscredential]

 $DomainCredential,

Chapter 11 Cross-Node syNChroNizatioN

373

 [Parameter(Mandatory = $true)]

 [pscredential]

 $SafemodeAdministratorCredential,

 [Parameter(Mandatory = $true)]

 [pscredential]

 $FirstUserCredential

)

 Import-DscResource -ModuleName xActiveDirectory -ModuleVersion 2.16.0.0

 Import-DscResource –ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

 Node $AllNodes.NodeName

 {

 WindowsFeature ADDS

 {

 Ensure = 'Present'

 Name = 'AD-Domain-Services'

 }

 WindowsFeature ADDSMgmt

 {

 Ensure = 'Present'

 Name = 'RSAT-ADDS'

 DependsOn = '[WindowsFeature]ADDS'

 }

 xADDomain FirstDS

 {

 DomainName = $DomainName

 DomainAdministratorCredential = $DomainCredential

 SafemodeAdministratorPassword = $SafemodeAdministratorCredential

 DependsOn = '[WindowsFeature]ADDSMgmt'

 }

 xWaitForADDomain FirstDSWait

 {

 DomainName = $DomainName

Chapter 11 Cross-Node syNChroNizatioN

374

 DomainUserCredential = $DomainCredential

 DependsOn = '[xADDomain]FirstDS'

 }

 xADUser FirstUser

 {

 DomainName = $DomainName

 DomainAdministratorCredential = $DomainCredential

 UserName = $FirstUserCredential.Username

 Password = $FirstUserCredential

 Ensure = 'Present'

 DependsOn = '[xWaitForADDomain]FirstDSWait'

 }

 }

}

CreateADDomain -configurationData $confgData `

 -DomainCredential (Get-Credential -Message 'Enter new

domain administrator credentials ...') `

 -SafemodeAdministratorCredential (Get-Credential -Message

'Enter safe mode administrator credentials ...') `

 -FirstUserCredential (Get-Credential -Message 'Enter first

user credentials ...')

Note this example requires a reboot to complete the ds configuration. you must
set the LCM configuration propertyRebootNodeIfNeeded in the settings meta
resource to $true.

This example installs the necessary Windows features for creating an Active

Directory domain and then proceeds to create the first domain controller itself. Before

creating the first user in that domain, you need to wait for the domain to be available.

This is where you use the xWaitforADDomain resource. You are waiting here for the

domain to become functionally available, which in this case will be installed on the

same node by the xADDomain resource, before the FirstUser resource configuration

can proceed. The DependsOn automatic property in the resource instance is only a way

to specify dependencies between resource instances on the same node but not across

Chapter 11 Cross-Node syNChroNizatioN

375

different nodes. In this scenario, this would work for multiple nodes as well, as the

xWaitForADDomain resource checks on a functional level. But what if such a resource

does not exist? How do you achieve cross-node configuration dependency in DSC?

With WMF 5.0, Microsoft introduced a new feature called cross-node

synchronization in DSC. At the surface, you see three DSC resources that help you

wait for dependencies to be in a desired state before proceeding to finalizing the

configuration. But, behind the scenes, there is something more interesting. You will go

there but let’s first see what these three resources are and how to use them.

 Lab Requirements
To try the examples and exercises in this chapter, you will need at minimum Windows Server

2008 R2 or above system with WMF 5.1 installed. I recommend a system with Windows

Server 2016. Since cross-node synchronization involves more than one system, depending

on the type of resource example, you will need three or four systems to try out the examples.

 Getting Started
As mentioned, there are three inbox DSC resources in the PSDesiredStateConfiguration

module that make cross-node dependency and synchronization possible.

As shown in Figure 11-1, WaitForAll, WaitForAny, and WaitForSome are the three

resources that help in cross-node synchronization. Table 11-1 provides a brief overview

of these resources.

Figure 11-1. The WaitForX resources in the PSDesiredStateConfiguration
module

In Table 11-1, pay attention to the highlighted phrases in the descriptions. Each

resource is designed for a specific purpose. If you only need to check one target node for

resource state dependency, you can use any of these three resources for that purpose.

However, beyond that, you need to specifically choose between them based on the

scenario that you plan to implement.

Chapter 11 Cross-Node syNChroNizatioN

376

These resources share common properties. Table 11-2 provides a list of these properties.

Table 11-1. Overview of the WaitForX Resources

Resource Name Description

WaitForAll Wait for one or more resources on all specified target nodes to appear in the

desired state.

WaitForAny Wait for one or more resources on any one of the specified target nodes to

appear in the desired state.

WaitForSome Wait for one or more resources on some of the specified number of target
nodes to appear in the desired state. the count of nodes to be in the desired

state is specified using the NodeCount property.

Table 11-2. WaitForX DSC Resource Properties

Property Name Description Applies to

NodeName specifies an array of one or more nodes to monitor

for the resource’s desired state.

all resources

ResourceName specifies a resource id on target nodes to monitor

for the desired state.

all resources

RetryIntervalSec specifies the interval (in seconds) between retries

while waiting for the resource(s) to be in the desired

state. default value is 1.

all resources

RetryCount specifies the number of retries while waiting for the

resource(s) to be in the desired state. default value

is 0. the default value means that the WaitForX

resource will wait only for the value defined in the

RetryIntervalSec property and will not retry

after that.

all resources

NodeCount specifies the minimum number of target nodes to be

in the desired state.

WaitForSome only

ThrottleLimit Number of machines to connect simultaneously. all

Chapter 11 Cross-Node syNChroNizatioN

377

 Prerequisites for Using Cross-Node Synchronization
Before you proceed to the examples, understand that the target nodes must have a

configuration enact in progress or an enacted configuration that contains the resource

instance configuration with the same names as mentioned in the ResourceName property.

Note if there is no current or pending configuration on the target node, the
WaitForX enact results in an access denied error.

Here is an example of what happens when the target node does not meet this first

prerequisite with a resource instance that you want to monitor:

Configuration WaitErrorDemo

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 Node localhost

 {

 WaitForAny AudioService

 {

 NodeName = 'CNODE01'

 ResourceName = '[Service]AudioService'

 }

 }

}

WaitErrorDemo

When you enact this configuration, assuming that the pending or enacted

configuration exists for the Service resource, you’ll see the results shown in Figure 11-2.

Chapter 11 Cross-Node syNChroNizatioN

378

Try This Create and enact a configuration document that contains the
AudioService resource instance on the target node and then try the above
example again. What do you see in the verbose output?

 The WaitForAll Resource
Going back to the earlier example of failover clustering, you would need to wait for

all participating nodes in a cluster to get the failover clustering feature installed. The

WaitForAll resource is a perfect fit here. See Figure 11-3.

Figure 11-2. Error during the enact of the configuration

Chapter 11 Cross-Node syNChroNizatioN

379

Note For the following example, you must use four domain-joined systems that
will become a part of a failover cluster when the configuration enact completes.

Within the failover cluster example you are going to see now, you need two different

configuration documents: one for the node where you create the cluster and another for

rest of the nodes.

 Cluster Nodes Configuration
The following configuration shows what you need on the target nodes to become a part

of the failover cluster:

Configuration ClusterFeature

{

 param

 (

 [Parameter(Mandatory)]

 [String[]]

 $Nodes

)

 Import-DscResource -Module PSDesiredStateConfiguration

 Node $Nodes

 {

 WindowsFeature FailoverCluster

 {

Figure 11-3. WaitForAll resource syntax

Chapter 11 Cross-Node syNChroNizatioN

380

 Name = 'Failover-Clustering'

 IncludeAllSubFeature = $true

 Ensure = 'Present'

 }

 }

}

ClusterFeature -Node 'CNODE02','CNODE03','CNODE04'

This is a simple example. You have one resource instance and it is the

WindowsFeature resource to install the failover-clustering feature.

 Creating a Cluster Configuration
On one of the nodes, you will have to wait for the rest of the nodes to have the failover-

clustering Windows feature installed before you can create the failover cluster. The

configuration document for this purpose should have the WaitForAll resource.

$certFile = 'C:\PublicKeys\CNODE01.cer'

$thumbprint = $(

 $cert = [System.Security.Cryptography.X509Certificates.

X509Certificate2]::new()

 $cert.Import($certFile)

 $cert.Thumbprint

)

$configData = @{

 AllNodes = @(

 @{

 NodeName = 'CNODE01'

 CertificateFile = $certFile

 Thumbprint = $thumbprint

 PSDscAllowDomainUser = $true

 }

)

}

Configuration CreateCluster

{

Chapter 11 Cross-Node syNChroNizatioN

381

 param

 (

 [Parameter(Mandatory)]

 [pscredential]

 $Credential,

 [Parameter(Mandatory)]

 [String]

 $ClusterName,

 [Parameter(Mandatory)]

 [String]

 $ClusterIPAddress,

 [Parameter(Mandatory)]

 [String[]]

 $ClusterNodes

)

 Import-DscResource -ModuleName FailoverClusterDsc -Name

FailoverCluster, FailoverClusterNode, FailoverClusterResourceParameter

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 Node $AllNodes.NodeName

 {

 WindowsFeature FailoverCluster

 {

 Name = 'Failover-Clustering'

 IncludeAllSubFeature = $true

 Ensure = 'Present'

 }

 WindowsFeature FailoverClusterMgmt

 {

 Name = 'RSAT-Clustering'

 IncludeAllSubFeature = $true

 Ensure = 'Present'

 DependsOn = '[WindowsFeature]FailoverCluster'

 }

Chapter 11 Cross-Node syNChroNizatioN

382

 WaitForAll FCFeature

 {

 NodeName = $ClusterNodes

 ResourceName = '[WindowsFeature]FailoverCluster'

 RetryIntervalSec = 30

 RetryCount = 10

 }

 FailoverCluster CreateCluster

 {

 ClusterName = $ClusterName

 StaticAddress = $ClusterIPAddress

 NoStorage = $true

 Ensure = 'Present'

 PsDscRunAsCredential = $Credential

 DependsOn = '[WaitForAll]FCFeature'

 }

 foreach ($clusterNode in $clusterNodes)

 {

 FailoverClusterNode $clusterNode

 {

 NodeName = $clusterNode

 ClusterName = 'S2D4NCluster'

 PsDscRunAsCredential = $Credential

 Ensure = 'Present'

 DependsOn = '[FailoverCluster]CreateCluster'

 }

 }

 }

}

CreateCluster -Credential (Get-Credential) -ConfigurationData $configData

-ClusterName 'S2D4NCluster' -ClusterIPAddress '172.16.102.45' -ClusterNodes

'CNODE02','CNODE03','CNODE04'

Chapter 11 Cross-Node syNChroNizatioN

383

Look at how you are using the WaitForAll resource in this configuration document.

You have the ResourceName property to set to the WindowsFeature resource instance

from the cluster node configuration. Notice how the value of ResourceName matches the

resource instance name used in the cluster node configuration. This is very important.

If there is a mismatch, the WaitForAll resource will always exit with a resource not ready

error. The NodeName property is set to a list of participating nodes except the node where

the cluster will be created.

Note Make sure you have the FailoverClusterDSC resource module
downloaded from the powershell gallery and that it is available on both the
authoring station and the node where the cluster creation configuration needs to
be enacted.

Let’s compile these configurations. See Figure 11-4.

Figure 11-4. Compiled node configurations

You first enact the node configuration (containing the FailoverCluster resource)

with the -Verbose and -Wait switch parameters. Wait for a few seconds and in a second

PowerShell console window, or whatever other place you prefer, start the configuration

enact on rest of the nodes.

Chapter 11 Cross-Node syNChroNizatioN

384

Note this order is important if you want to really see the WaitForAll resource
in action.

As seen in Figure 11-5 (partial output only), the WaitForAll resource starts checking

the [WindowsFeature]FailoverCluster resource instance on all of the nodes specified

using NodeName. It will wait until all nodes come to the desired state for this specific

resource instance or wait until a timeout is reached.

Figure 11-5. WaitForAll in action: Resource not ready

Figure 11-6. WaitForAll in action: resource is ready

Figure 11-6 shows that the WaitForAll resource waits until the failover clustering

feature is installed on all monitored target nodes before starting the cluster creation.

It is hard to have a good example for the WaitForX resources that applies to a generic

scenario for a book like this. As with everything else, there is more than one way to

achieve things with DSC, and one way might work better than the other depending on

your specific situation and scenario. An alternate method is where the cluster nodes join

the cluster on their own by using a functional resource validating the presence of the

cluster instead of depending on WaitForX resources.

This concludes the example and discussion around the WaitForAll resource. For

the next two resources, you won’t see such a detailed example but you’ll see how they

can be used.

Chapter 11 Cross-Node syNChroNizatioN

385

 The WaitForAny Resource
The WaitForAny resource, shown in Table 11-1, can be used in a similar way as the

WaitForAll resource except that the configuration will proceed even when one of the nodes

being monitored achieves the desired state. Consider the example illustrated in Figure 11-7.

As shown in Figure 11-7, a typical mulit-tier web application deployment has a

front- end tier, an application tier, and the database tier. Each tier has one or more

instances based on the need for high availability and redundancy. In this example, there

are two application servers in the app tier behind a load balancer represented by virtual

application instance called vAPPSvc.

Figure 11-7. Multi-tier application architecture

Chapter 11 Cross-Node syNChroNizatioN

386

If you were to configure this web application deployment using DSC, you would

have to wait for the virtual application service instance to come up before the web server

configuration could be modified. However, you just need to wait for one of the application

servers to get deployed because the load balancer may already be configured to include

the deployed application servers. This is where the WaitForAny resource comes handy.

Here is a hypothetical example of what this resource configuration might look like:

WaitForAny ApplicationVApp

{

 NodeName = @('APPSvc01','APPSvc02')

 ResourceName = '[cAppService]AppServerInstall'

 RetryIntervalSec = 30

 RetryCount = 10

}

Note as mentioned, this is just a hypothetical example and does not include a
complete configuration document or any custom dsC resource modules created
for the purpose of this example.

The above snippet is similar to what you saw with the WaitForAll example. By

design, it will wait for any of the nodes to achieve the desired state and then proceed to

the dependent configuration.

 The WaitForSome Resource
With the WaitForSome resource, you can specify the number of nodes where the resource

should achieve the desired state before the dependent configuration on the local node

can be processed. This is done by adding the NodeCount property to the WaitForSome

resource instance.

Here is another hypothetical example of how to use this resource:

WaitForSome ApplicationVApp

{

 NodeName = @('APPSrv01','APPSrv02')

 NodeCount = 1

 ResourceName = '[cAppService]AppServerInstall'

Chapter 11 Cross-Node syNChroNizatioN

387

 RetryIntervalSec = 30

 RetryCount = 10

}

This example is similar to what you saw with the WaitForAny example except for

the NodeCount property. By specifying the NodeCount as 1, you are specifying that the

any dependent configuration on the local node should wait for one node to achieve the

desired state before proceeding further.

 What Happens Behind the Scenes?
You just saw examples for each of the resources that enable you to perform cross-node

synchronization. However, how exactly do they work? What goes on behind the scenes?

The answer is in the resource module script (PSM1) files. If you follow the

code in these scripts, you will see that these resources internally invoke the

GetResourceState method in the MSFT_DSCProxy class in the root/Microsoft/Windows/

DesiredStateConfigurationProxy namespace. See Figure 11-8.

Get-CimClass -Namespace root/Microsoft/Windows/DesiredStateConfigurationProxy

-ClassName MSFT_DscProxy |

 Select-Object -ExpandProperty CimClassMethods

Figure 11-9 shows the parameters available on this method.

Figure 11-8. GetResourceState method

Figure 11-9. GetResourceState method parameters

Chapter 11 Cross-Node syNChroNizatioN

388

This method has only one input parameter: ConfigurationData. This is an Octet

string or, in other words, a Base64-encoded string. You need to encode the resource ID

that you specify as a value to the ResourceName property of any of the WaitForX resources

and invoke theGetResourceState method.

Here is the excerpt from the resource module code that invokes this method. I modified

it a bit to add some variables to try.

$resourceId = '[WindowsFeature]FailoverCluster'

$buf = [Text.Encoding]::Unicode.GetBytes($resourceId)

$data = [System.Convert]::ToBase64String($buf)

$computerName = 'S16-JB'

$result = Invoke-WSManAction -ResourceURI http://schemas.microsoft.com/

wbem/wsman/1/wmi/root/microsoft/windows/DesiredStateConfigurationProxy/

MSFT_DscProxy `

 -action GetResourceState -ComputerName $computerName

-valueset @{ConfigurationData = "$data" } `

 -Authentication None

$result.State

Note the broadcast resolving stops at the router so if you have a multi-tier app
that spans multiple subnets, you probably need to specify your nodenames in the
FQdN format.

In the first three lines of this snippet, you convert the resource ID [WindowsFeature]

FailoverCluster to a Base64-encoded string. When the GetResourceState method is

invoked with this encoded string, it returns either true or false based on the state of the

resource on the target node.

This method uses a cache for retrieving the resource state and therefore it may not

always be the current state of the resource. Here’s an example to explain this:

Configuration AudioService

{

 Node S16-JB

 {

 Service AudioService

Chapter 11 Cross-Node syNChroNizatioN

389

 {

 Name = 'AudioSrv'

 State = 'Running'

 Ensure = 'Present'

 }

 }

}

AudioService

Compile this configuration and enact it. This will set the Windows Audio service

into a running state. Now, from a remote system, execute theGetResourceState method

again, targeting the resource Id [Service]AudioService and have the computer name

set to where the above configuration was enacted. See Figure 11-10.

Now, stop the Windows Audio service on the node and then try GetResourceState

again. It will still return true, indicating that the resource is in desired state, but it

is not. This is because the GetResourceState method is using the LCM cache to

retrieve the resource state instead of using Test-DscConfiguration. You can update

the resource cache to include the current state of the resource by running the Test-

DscConfiguration or wait for a consistency check to trigger.

This is by design and there is an open user voice item that I created. Read http://

azrs.tk/dscissue for more information.

If you examine the code snippet that invokes the GetResourceState method,

you will see that the –Authentication parameter is set to None. By doing so, the

local WinRM client makes an anonymous request to the target node when invoking

this method. The WinRM service, starting WMF 5.0, has been modified to allow a

limited number of anonymous requests to a specific namespace and in this case the

DesiredStateConfigurationProxy namespace.

Figure 11-10. GetResourceState right after an enact

Chapter 11 Cross-Node syNChroNizatioN

http://azrs.tk/dscissue#_blank
http://azrs.tk/dscissue#_blank

390

 Limitations
While cross-node synchronization looks like an attractive feature, the lack of community

examples indicate that this feature is not widely used. The following are some reasons

why. The WaitForX resources do not check the functional state of the resource. They

only check if the resource is in the desired state or not. This was evident when you

learned about the GetResourceState method. From the cluster example, WaitForAll

will only wait until each node returns true for the WindowFeature resource. If the

resource is buggy, it may return true even when the resource is not in the desired

state and therefore may cause the node waiting on these configurations to proceed

with the dependent configuration. However, in the very first example, you saw the

xWaitForADDomain resource, which will indeed check if the domain is available or not.

As this is a functional test, this could present a more reliable means for controlled and

orchestrated configurations.

Personally, I have never had a reason to use the WaitForAny or WaitForSome

resources, which is why I didn’t present a full example for either. They could, however,

be precisely what you need, which is why I attempted to describe them in as detailed a

manner as I possibly could.

 Summary
Cross-node synchronization lets you perform multi-node configurations in a cross-

node dependent manner. The three resources meant for this purpose are WaitForAll,

WaitForAny, and WaitForSome. The resource for a scenario depends on how many

nodes should achieve the desired state. The underlying interface, GetResourceState,

is implemented in the MSFT_DSCProxy class in the root/Microsoft/Windows/

DesiredStateConfigurationProxy namespace. By using cross-node synchronization it

is possible to orchestrate a multi-tier application deployment.

Chapter 11 Cross-Node syNChroNizatioN

391
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_12

CHAPTER 12

Debugging DSC
Resources
In Chapter 7, you learned how to perform unit and integration tests of your custom DSC

resources. Testing is a great way to ensure that the functionality you intend to build is

indeed available and not broken. You saw in Chapter 9 how DSC debug and analytics

logs can help you retrieve more information about DSC operations. However, there

may be bugs that get introduced because of an environmental configuration where the

resource module is being used or could just be a test miss. In this case, you need to use

the available debugging techniques to root-cause the bug and fix it. DSC as a platform

offers a way to debug resource modules while the enact is in progress. In this chapter, you

will learn how to debug DSC resource module issues. This is going to be a quick one but I

really suggest that you practice the debugging technique that you will learn with not just

the simple example in this chapter but with a module of your own too. Let’s get started.

 Lab Requirements
To try the examples and exercises in this chapter, you will need at minimum two or more

systems with Windows Server 2008 R2 or above with WMF 5.1 installed. I recommend a

system with Windows Server 2016.

 LCM DebugMode
All resource instance configuration enacting happens in the context of the LCM. By

default, the LCM does not let you debug a resource enact process unless you configure

it do so. Figure 12-1 shows the default value of the DebugMode setting in the LCM

configuration.

392

As shown in Figure 12-1, by default the DebugMode setting in the meta configuration

is set to None. There are four possible values for this setting. This can be examined by

using the GetCimClassProperty.ps1 script shown in earlier chapters.

.\GetCimClassProperty.ps1 -ClassName MSFT_DSCMetaConfiguration -Namespace

root/microsoft/windows/desiredstateconfiguration |

 Select Name, CimType, AllowedValues

The allowed values for the DebugMode setting are shown in Figure 12-2 and explained

in Table 12-1.

Figure 12-1. DebugMode in the LCM settings

Figure 12-2. Allowed values of DebugMode settings

Chapter 12 Debugging DSC reSourCeS

393

On a production system, the DebugMode setting should always be the default value,

which is None since production systems should always run validated code and resources

only. ForceModuleImport, All, and ResourceScriptBreakAll are useful when authoring

resource modules and/or debugging issues related to the configuration enact process on

target nodes.

Note although Figure 12-2 lists ResourceScriptBreakAll as a valid allowed
value for DebugMode, setting this using a meta configuration script is not allowed.

Since ResourceScriptBreakAll cannot be set using a meta configuration document,

only forced module import can be configured using a meta MOF. This can be done either

by setting the DebugMode value to All or ForceModuleImport.

The DebugMode can be set manually using a meta configuration document. Here is a

sample meta configuration document that shows setting DebugMode to All:

[DSCLocalConfigurationManager()]

Configuration DebugSetting

{

 Settings

 {

 DebugMode = 'All'

 }

}

Table 12-1. DebugMode Settings

DebugMode Setting Description

None Default value and does not allow breaking into a running DSC

resource script.

ForceModuleImport Specifies that the resource module should be reloaded before enact.

ResourceScriptBreakAll Specifies that the LCM should enable breaking into a resource script

during enact.

All Same as ForceModuleimport. in the preview releases of WMF 5.0,

this was used to enable both debugging and forced module import.

Chapter 12 Debugging DSC reSourCeS

394

DebugSetting

Set-DscLocalConfigurationManager -Path DebugSetting

To set the DebugMode value to ResourceScriptBreakAll or, in other words, to

configure the LCM to break into the resource scripts while enacting, you should use the

Enable-DscDebug cmdlet:

Enable-DscDebug -BreakAll -Verbose

The Enable-DscDebug cmdlet does an incremental change of the DebugMode

setting. So, if you have the DebugMode already set to All, it will only add

ResourceScriptBrealAll.

The LCM configuration after this cmdlet execution is shown in Figure 12-3.

Before you get to the debugging of DSC resource modules/scripts, let’s first look into

the need for the ForceModuleImport and All values of the DebugMode setting.

 Forcing Module Import
For performance reasons, the LCM caches the resource modules loaded during the

configuration enact process. So, any enact that uses the same resource module will not

have to reload the resource module from disk. This is a useful feature since the module

import can be an expensive operation. However, when you are authoring DSC resource

modules and testing the functionality, there is a chance that the changes you make to the

resource modules may not get loaded as you would expect because the resource still in

the cache is used instead of the modified version. To address this need, the DebugMode

setting can be configured to force resource module import always.

Figure 12-3. Meta configuration after Enable-DscDebug

Chapter 12 Debugging DSC reSourCeS

395

Note When using WMF 4.0, you need to restart the WMi host process where the
DSC LCM provider is loaded to ensure that the LCM loads the updated resource
module.

This seems like a useful feature but how do you test this behavior?

Ok! Let’s start with LCM DebugMode in its default setting:

[DSCLocalConfigurationManager()]

Configuration DebugSetting

{

 Settings

 {

 DebugMode = 'None'

 }

}

DebugSetting

Set-DscLocalConfigurationManager -Path DebugSetting

Download and extract the ForceModuleImportDemo.zip from this chapter’s

source code to the C:\ProgramFiles\WindowsPowerShell\Modules folder as

ForceModuleImportDemo.

Note You may want to review the resource module script before you proceed to the
configuration. i have deliberately created a buggy Test-TargetResource function.

Now, compile the following configuration and try an enact:

Configuration ForceModuleImportDemo

{

 Import-DscResource -Module ForceModuleImportDemo

 Node localhost

 {

 ForceModuleImport Demo

 {

Chapter 12 Debugging DSC reSourCeS

396

 DummyKey = "DSC is fun!"

 }

 }

}

ForceModuleImportDemo

When you enact this, you will see an error, as shown in Figure 12-4.

Now that you know what the error is, just open up ForceModuleImport.psm1 from

the Module folder and update the Test-TargetResource function with the working

definition:

function Test-TargetResource

{

 param

 (

 [Parameter(Mandatory = $true)]

 [String]

 $DummyKey

)

 return $false

}

Figure 12-4. Test-TargetResource bug

Chapter 12 Debugging DSC reSourCeS

397

With this updated module script, try the enact again. What do you see? The same

error that Test-TargetResource returned results in an invalid format?

To force the module import, let’s configure DebugMode to the ForceModuleImport

setting:

[DSCLocalConfigurationManager()]

Configuration DebugSetting

{

 Settings

 {

 DebugMode = 'ForceModuleImport'

 }

}

DebugSetting

Set-DscLocalConfigurationManager -Path DebugSetting

Note if your intention is not to debug the DSC resource scripts, don’t use
Enable-DscDebug. it will break into the resource script and leave the LCM in
debug mode.

Try an enact of the configuration again and see if the enact completes with no error

messages. Once you are done with this example, don’t forget to set the DebugMode back

to None.

 Debugging the DSC Resource Script
To demonstrate the method to debug DSC resources, you will use a buggy resource

module. I have introduced one bug. You can copy BuggyResource.zip from the source

code of this chapter and extract it to C:\Program Files\WindowsPowerShell\Modules

folder as BuggyResource. This contains a BuggyHostsFile resource.

Chapter 12 Debugging DSC reSourCeS

398

First, try to compile and enact the following configuration:

Configuration DebugDemo

{

 Import-DscResource -ModuleName BuggyResource -Name BuggyHostsFile

 BuggyHostsFile BugDebug

 {

 HostName = 'TestServer11'

 IPAddress = '10.10.10.11'

 Ensure = 'Present'

 }

}

DebugDemo

A result of this enact is shown in Figure 12-5.

Once this enact is complete, try the same one more time. You will see that the

resource tries to add the resource again. You will see the same output as in Figure 12-5,

but it should have skipped the Set method completely. So, let’s debug this.

Figure 12-5. Enact of a buggy resource

Chapter 12 Debugging DSC reSourCeS

399

Note this example is meant to show you how to initiate a debugging session; it’s
not a demonstration of complex issue debugging.

As you have learned already, enabling the LCM to break into the resource script can

be done using the Enable-DscDebug cmdlet. If the target node where you are seeing the

resource configuration issue is a remote node, you can use the -CimSession parameter

of the Enable-DscDebug cmdlet to remotely enable DSC resource script debugging on

target nodes.

Enable-DscDebug -CimSession S16-01, S16-02 -BreakAll -Verbose

Using Get-DscLocalConfigurationManager against these nodes shows the new

value set on DebugMode in the meta configuration.

Get-DscLocalConfigurationManager -CimSession S16-01, S16-02 | Select-Object

-Property DebugMode

Figure 12-6 shows the output of this command.

Note For class-based resource debugging, the system where you want to enact/
debug the class resource must be running WMF 5.1 or above. Class resource
debugging in WMF 5.0 is not very clean and requires multiple step-ins before it hits
the method.

The DSC resource script debugging leverages the PowerShell remote script

debugging feature. Therefore, it is important that remote nodes have PowerShell

remoting enabled for this to work. If the remote systems do not have PowerShell remoting

enabled, you can enable the same using the Enable-PSRemoting cmdlet. If you are trying

the DSC resource debugging on a remote node, this chapter assumes that you have

PowerShell remoting enabled on the remote node and all systems are domain- joined.

Figure 12-6. DebugMode on target nodes after Enable-DscDebug

Chapter 12 Debugging DSC reSourCeS

400

Note if you are using a remote system for working on the exercises in this
section, ensure that the custom DSC resource module in BuggyResource.zip is
extracted to the remote systems as well.

Once the debug is enabled in the LCM, try the enact of the above configuration

again. You will see what is shown in Figure 12-7.

You can see that the LCM suspends the enact process and provides instructions to

attach the debugger to the host process where the enact is running. At this point in time,

open PowerShell ISE as administrator and start executing the following commands:

Note opening iSe as administrator is important. if you don’t do so, you will see
an access denied error.

Enter-PSSession -ComputerName S16-JB

Enter-PSHostProcess -Id 2404 -AppDomainName DscPsPluginWkr_AppDomain

Debug-Runspace -Id 4

Note the last two commands on your system will be different from what you see
here. ensure that you have the right arguments as shown in the output of the enact.

Once you complete the running of the last command, Debug-RunSpace, the remote

resource script will open in the ISE editor, ready for you start stepping into the script.

Figure 12-7. Partial output from the enact after Debug is enabled

Chapter 12 Debugging DSC reSourCeS

401

At this point, step into the script by pressing F11 or s at the command line. Step

into until the $entryExist variable is assigned a value (line 39). At this point, check

if there is a match found by examining the value of $entryExist. This variable won’t

have any value, essentially indicating that no match is found for "$($this.IPAddress)\

s+$($this.HostName)" which would translate to ‘10.10.10.11 TestServer11’ with at least

one space between the IP address and hostname. Figure 12-8 shows that $entryExist

has an empty value during the debug session.

This leads us to what the Set method might be doing since that is where the hosts file

entry is getting added. This is done on line 70. While adding the entry, you must inject

the space between the IP address and host name. Closely examining this line tells you

that the tab that you intend to inject between these values isn’t really being added since

there is a ‘`’ missing to escape the tab.

Therefore, fixing this line will resolve the Set issue. At this point, stop debugging by

pressing Ctrl+C and typing exit at the command prompt.

Figure 12-8. No match found in the hosts file

Chapter 12 Debugging DSC reSourCeS

402

In the BuggyResource.psm1, update line 69 to the following:

$hostEntry = "`n$($this.IPAddress)`t$($this.HostName)"

Once this update is complete, clean up the hosts file to ensure old and buggy entries

are removed. Also, ensure that you disable DSC debug using the Disable-DscDebug

command and retry the enact twice. The first time, Set gets called and does the hosts

file update. The second, or re-enact, will now point that the entry exists and skip the Set

method. This is shown in Figure 12-9.

This method of debugging resource modules applies to both MOF and class-based

resources. What you have seen here is only the foundation of debugging DSC resources.

In fact, you need to try the method that you just learned in a live debugging session to

gain full experience. I encourage you to try this with a few more DSC resource modules.

However, remember that you cannot ask or configure the LCM to break only for a

certain DSC resource module. So, if you have a configuration resource, you will see that

the debugger gets triggered every time a resource needs to get enacted. This can be

avoided by using the Invoke-DscResource cmdlet to debug only the specific resource

you are interested in. This saves a lot of time when debugging configurations that involve

multiple resources.

Figure 12-9. The enact after the module is fixed

Chapter 12 Debugging DSC reSourCeS

403

 Summary
In this chapter, you learned how to configure the LCM to force a module import and

break into a DSC resource module when debugging a resource script issue. When

developing DSC resource modules, you always need a near-perfect test plan for both

unit and integration. You saw this implemented as a set of Pester test scripts along with

a few other testing techniques in Chapter 7. However, a perfectly tested DSC resource

module does not necessarily mean that there are no bugs. There may be hidden bugs

that will surface only in a certain environment. This is where the debugging technique

you learned in this chapter will help you.

Chapter 12 Debugging DSC reSourCeS

405
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_13

CHAPTER 13

Security in DSC
In Chapter 5, you learned how to secure credentials or other sensitive data such as API

keys in a DSC configuration document. This ensures that passwords and other sensitive

strings are encrypted in the compiled configuration MOF to anyone reading it. You also

saw, as a part of the configuration life cycle in Chapter 3, that once the enact completes

successfully, the enacted configuration gets stored as current.mof in the C:\Windows\

System32\Configuration folder. In this chapter, you will learn how DSC secures the

MOF documents at rest in the local configuration store and how you can ensure that the

LCM enacts only trusted configurations and uses only trusted resource modules.

 Lab Requirements
To try the examples and exercises in this chapter, you will need at minimum two or more

systems with Windows Server 2008 R2 or above with WMF 5.1 installed. I recommend

a system with Windows Server 2016. The configuration and module signing requires a

code signing certificate, so you will need a certificate authority or a self-signed certificate

in order to try the examples in the signature validation section.

 Configuration Encryption
Securing configuration documents is not just about encrypting the credentials and

other sensitive strings in it. The configuration documents describe a blueprint of the

configuration on the system where they are enacted. Therefore, we must consider

the contents of the entire MOF as sensitive information. Prior to WMF 5.0, there was

no way to encrypt the MOFs present in the local configuration store of a node. Even

if you could encrypt it yourself, the LCM had no way to decrypt the contents for the

purposes of a consistency check and the no-demand current state check using the Get-

DscConfiguration cmdlet. Without any encryption for these configuration MOF files,

406

anyone with access to the local configuration store could open it on the same node or

transfer it to another node to read the contents of the MOF and maybe enact the same

MOF elsewhere.

To address these security concerns, WMF 5.0 and above encrypt the MOFs at rest in

the local configuration store. This behavior is neither configurable nor is it something

that we can enable or disable. There are no certificates needed for this encryption since

it uses the Windows Data Protection API (DPAPI). This encryption of the MOFs in the

local configuration store can be considered security through obscurity; you will learn

more about this later in the chapter. Remember that the configuration MOF generated by

compiling a configuration document is not encrypted. It gets encrypted only when this

MOF gets published as a pending configuration or gets enacted and stored in the local

configuration store. Figure 13-1 illustrates this.

The DSC pull service available in WMF 4.0 and above does not encrypt the MOF files at

rest. This is one of the reasons why you should avoid using PSDscAllowPlainTextPassword

in the DSC configuration data to force the use of plain- text passwords. The Azure

Automation DSC service discussed in Chapter 17 encrypts MOF files at rest.

To experiment with this, compile the following configuration and publish to a target

node using the Publish-DscConfiguration cmdlet:

Configuration DemoWebServer

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

 Node S16-01

Figure 13-1. MOF encryption in the local configuration store

Chapter 13 SeCurity in DSC

407

 {

 WindowsFeature DemoWebServer

 {

 Name = 'Web-Server'

 IncludeAllSubFeature = $true

 Ensure = 'Present'

 }

 }

}

DemoWebServer -OutputPath .\DemoWebServer

Publish-DscConfiguration -Path .\DemoWebServer -Verbose

After the configuration is published, try to read the contents of the pending.mof on

the target node.

Get-Content -Path '\\S16-01\C$\Windows\System32\configuration\pending.mof'

As shown in Figure 13-2, all you will see when reading a MOF file from the target

node configuration store is encrypted text. This pending.mof can only be enacted on

the target node where it was received by the LCM and encrypted. You can copy this

to a different or local system and try the Start-DscConfiguration cmdlet with the

-UseExisting switch, like so:

Copy-Item -Path '\\S16-01\C$\Windows\System32\configuration\pending.mof'

-Destination C:\Windows\System32\Configuration\Pending.mof

Start-DscConfiguration -UseExisting -Force -Verbose -Wait

Chapter 13 SeCurity in DSC

408

Figure 13-3 shows that a local enact of an encrypted pending MOF from a different

node fails because the LCM cannot decrypt it.

From Figure 13-3, it may not be really obvious that the LCM failed to decrypt the

MOF but the error during enact is essentially due to that. This is because the MOF was

encrypted using a key on the target node that is not available on the local node for

decryption.

Figure 13-2. Contents of the encrypted pending.mof

Figure 13-3. The LCM fails to decrypt

Chapter 13 SeCurity in DSC

409

Try the following: compile any configuration to a MOF file, rename the MOF to

Pending.mof, and copy it to the local node configuration store. Do you see it encrypted?

No, it won’t get encrypted. This action is performed outside the LCM scope and so the

LCM will not encrypt. Also, once this manually copied configuration is enacted, the

current.mof in the configuration store will not be in an encrypted form as well. This

is why you need to use the Publish-DscConfiguration cmdlet to publish the pending

configuration or use Start-DscConfiguration with the -Path parameter to send the

pending configuration, which gets encrypted and then enacted right after that.

What you have seen secures the MOF at rest in the local configuration store of a

node. If a user has access to a node’s configuration store to copy the encrypted MOF file,

that user can also decrypt the MOF contents since the keys used to encrypt that MOF are

locally available and can be accessed using the DPAPI.

So, how can you prevent the LCM from even receiving and enacting a configuration

that is not trusted? Also, imagine another scenario where you have a pull server that is

used to stage compiled configuration MOF files and resource modules. Let’s say that

this server is compromised. In such a scenario, an attacker can modify the configuration

MOF files and resource modules stored on the pull server and therefore compromise all

target nodes that receive either configuration MOFs and/or resource modules from this

pull server.

With WMF 5.1 and above, the LCM can be configured to receive and enact only

signed configuration documents. Let’s see how this is done.

 Signature Validation
It should be nothing new that PowerShell supports an execution policy that can be used

to ensure that only signed PowerShell scripts can be executed. For example, when you

set the execution policy to AllSigned, PowerShell expects that the script you are running

is signed using a trusted code signing certificate with the objective of ensuring the

integrity of the script content. With WMF 5.1 and above, this known method of signing

scripts is extended to configuration documents and resource modules as well. In this

section, you will learn the process of signing configurations and resource modules and

then you will configure the LCM to perform signature validation so that the untrusted

configurations are not enacted and untrusted resource modules are not used during the

enact process.

Chapter 13 SeCurity in DSC

410

 Signing a Certificate
Before you can sign configuration documents or resource modules, you will need a code

signing certificate. I recommend that you use a trusted certificate authority or the PKI in

your organization obtain these certificates or a PKI that you set up for demo purpose or

you can use self-signed certificates, as shown below:

$certPath = 'C:\Certificates\ProDscSignature.cer'

if (-Not (Test-Path -Path (Split-Path -Path $certPath -Parent)))

{

 $null = New-Item -Path C:\Certificates -ItemType Directory -Force

}

$cert = New-SelfSignedCertificate -Subject 'ProDscSignature' -Type

CodeSigning -CertStoreLocation Cert:\CurrentUser\My

$cert | Export-Certificate -FilePath $certPath

Import-Certificate -FilePath $certPath -CertStoreLocation Cert:\

CurrentUser\Root\

This code snippet helps create a self-signed code signing certificate. Once you have a

code signing certificate, export the public key and save it a local folder on the authoring

station where you will be signing configurations and resource modules. The last

command, Import-Certificate, prompts you if you really want to install the certificate.

You need to click Yes.

The exported public key file should be imported on the target nodes before the LCM

can be configured to use that for signature validation. Here is how to do so:

foreach ($node in 'S16-01','S16-02')

{

 $session = New-PSSession -ComputerName $node

 $certPath = 'C:\Certificates\ProDscSignature.cer'

 $certStore = 'Cert:\LocalMachine\DSCStore'

 Invoke-Command -Session $session -ScriptBlock {

 #Create Certifcates folder

 $certFolder = 'C:\Certificates'

 if (-not (Test-Path -Path $certFolder))

 {

Chapter 13 SeCurity in DSC

411

 $null = New-Item -Path $certFolder -ItemType Directory

 }

 #Create DSC Store

 if (-not ($using:certStore))

 {

 $null = New-Item -Path $using:certStore -ItemType Directory

 }

 }

 #Copy the public key to target node

 Copy-Item -Path $certPath -ToSession $session -Destination $certPath

-Force

 #Import the certificate

 Invoke-Command -Session $session -ScriptBlock {

 Import-Certificate -FilePath $using:certPath -CertStoreLocation

Cert:\LocalMachine\Root\

 Import-Certificate -FilePath $using:certPath -CertStoreLocation

$using:certStore

 }

}

This code snippet assumes that you have remoting enabled on the target nodes to be

able to copy the public key and invoke the Import-Certificatecmdlet. Also, note that in

this example you are creating a custom certificate store called DSCStore to store the code

signing certificate. A custom store is not mandatory but helps organize the certificates

used with DSC into a separate store.

Once this is complete, you can move on to configuring the LCM for signature validation.

Note Since you are using self-signed certificates, you need to import the
certificate into both the trusted root and the custom store. the LCM, by default,
checks the Windows trusted publisher store for the code signing certificate. if you
are using the code signing certificate from a trusted publisher and not a self-signed
certificate, then importing the certificate to the custom store is good enough.

Chapter 13 SeCurity in DSC

412

 The LCM Configuration for Signature Validation
You have seen several examples of performing the meta configuration already

in this book. In Chapter 3, you looked at the different properties of the MSFT_

DSCMetaConfiguration class, and the SignatureValidations property of this class is

represented by the MSFT_SignatureValidation CIM class in the DSC namespace. You can

examine the MSFT_SignatureValidation class further to see what properties are needed.

.\getCimClassProperty.ps1 -ClassName MSFT_SignatureValidation -Namespace

root/Microsoft/Windows/DesiredStateConfiguration | ft

The output from the above command is shown in Figure 13-4.

The ResourceId and SourceInfo properties are internal and need not be specified

as a part of the meta configuration. The TrustedStorePath property is used to specify

where the code signing certificate exists and the SignedItemType specifies if the LCM

should validate signatures of configurations or modules or both.

With this knowledge, here is the meta configuration document for the target nodes:

[DSCLocalConfigurationManager()]

Configuration LCMSignatureValidation

{

 param

 (

 [Parameter(Mandatory = $true)]

 [String]

 $CertificateStore,

 [Parameter(Mandatory = $true)]

 [String[]]

 $Nodes

)

Figure 13-4. MSFT_SignatureValidation CIM class

Chapter 13 SeCurity in DSC

413

 foreach ($node in $Nodes)

 {

 Node $node

 {

 SignatureValidation LCMSignatureValidation

 {

 TrustedStorePath = $CertificateStore

 SignedItemType = 'Configuration', 'Module'

 }

 }

 }

}

LCMSignatureValidation -Nodes @('S16-01','S16-02') -CertificateStore

'Cert:\LocalMachine\DSCStore'

You can compile and enact this meta configuration. Once the enact is complete, you

can verify the LCM meta configuration using the Get-DscLocalConfigurationManager

cmdlet, like so:

(Get-DscLocalConfigurationManager -CimSession 'S16-01','S16-02').

SignatureValidations

The output of this command is shown in Figure 13-5.

Figure 13-5. Signature validation meta configuration

Chapter 13 SeCurity in DSC

414

Signature validation for a configuration is performed only during a completely new

enact. It is not performed when executing commands like Test-DscConfiguration

cmdlet or Get-DscConfiguration or Start-DscConfiguration with -UseExisting.

You can verify this by executing any of these cmdlets on a system that is configured for

signature validation and with an existing current configuration. In these scenarios, it

is assumed that the MOFs in the local configuration store are already trusted. With the

MOF encryption method that you just learned about, there is no way one can tamper

with the MOF and enact it again.

Note as mentioned, this method does not prevent an administrator from copying
an unencrypted pending MOF into the local configuration store and enacting it. the
configuration signing is used to ensure the integrity of the compiled configuration.
remember that an administrator can reconfigure the LCM to not perform signature
validation at all. Overall, administrative privileges, when not used with good
intentions, are evil. you will learn later in this chapter to apply the least privilege
principals using Just enough administration (Jea).

Therefore, verifying the configuration signatures only on a new enact completely

makes sense.

To verify if this signature validation is working or not, let’s use the MOF you compiled

at the beginning of this chapter and try to enact it again:

Start-DscConfiguration -Path C:\scripts\DemoWebServer -Verbose -Wait

This will result in an error, as shown in Figure 13-6.

Figure 13-6. Signature validation failure upon re-enact

Chapter 13 SeCurity in DSC

415

So, to be able to enact this configuration, you must sign it. This can be done by the

Set-AuthenticodeSignature cmdlet. This is the same cmdlet that you use to sign your

PowerShell scripts.

$certificate = Get-ChildItem Cert:\CurrentUser\My -CodeSigningCert

Set-AuthenticodeSignature -Certificate $certificate -FilePath C:\Scripts\

DemoWebServer\S16-01.mof -IncludeChain all -Force

When you execute the above commands, you should see that the signing is complete,

with status shown as Valid. The signature validation won’t work if the signing status is

shown as UnknownError. Once the configuration is signed, you can try an enact again.

It should work this time since the LCM will be able to validate the signature using the

certificate in the trusted certificate store configured in the LCM settings. Figure 13-7

shows successful signature validation in action.

If you are using a pull server for configuration MOF staging and distribution, ensure

that the signing is complete before creating the checksum file. Configuration signing

adds the signature at the end of the MOF file and this changes the checksum associated

with the MOF file.

With the configuration signing and validation complete, let’s look at the resource

module signing.

 Signing DSC Resource Modules
You already have the infrastructure in place for the code signing certificates and have the

certificate already imported on a couple of target nodes. And, you have configured the

LCM to perform signature validation on both configurations and modules. You can now

get started with DSC resource module signing.

Figure 13-7. Successful Signature validation

Chapter 13 SeCurity in DSC

416

This is a two-step process:

• Create a module catalog file.

• Sign the module catalog file.

For this example, you will use the HostsFile resource module you built in Chapter 6.

 Creating a Module Catalog File

Before packaging the custom DSC resource module and placing it on either a pull server

for distribution or copying it to target nodes directly, you need to create a catalog file for

the module. A catalog file contains hashes of all files at the specified path. This is done

using the New-FileCatalog cmdlet.

$moduleFolder = 'C:\Scripts\ProDSC'

$moduleName = 'ProDSC'

New-FileCatalog -Path $moduleFolder -CatalogFilePath

"$moduleFolder\$moduleName.cat" -CatalogVersion 1.0

Once the catalog file is created, you need to sign it so that the LCM target node can

verify the authenticity of the module that is present. Similar to the configuration signing,

you need to use the Set-AuthenticodeSignature cmdlet to sign the module catalog file

as well.

$certificate = Get-ChildItem Cert:\CurrentUser\My -CodeSigningCert

Set-AuthenticodeSignature -Certificate $certificate -IncludeChain all

-FilePath "$moduleFolder\$moduleName.cat"

At this point, package the module as a zip file; you learned this in Chapter 8. Next,

place it on the pull server for distribution to the target nodes. Like the configuration file

checksum, ensure that you have signed the catalog and packaged the module as a zip file

before creating a checksum.

Note Manual copy of the module files to the target node circumvents the
signature validation by the LCM. the LCM will validate the signature only when it
downloads the module and installs it before an enact.

Chapter 13 SeCurity in DSC

417

You can compile the following configuration and sign it using the same code signing

certificate that you used earlier for the other examples:

Configuration ProDscHosts

{

 param

 (

 [Parameter(Mandatory = $true)]

 [String]

 $HostName,

 [Parameter(Mandatory = $true)]

 [String]

 $IPAddress

)

 Import-DscResource -ModuleName ProDsc -Name HostsFile -ModuleVersion

1.0.0.0

 Node S16-01

 {

 HostsFile DemoHosts

 {

 HostName = $HostName

 IPAddress = $IPAddress

 Ensure = 'Present'

 }

 }

}

ProDscHosts -HostName 'testServer10' -IPAddress '10.10.10.10' -Verbose

$certificate = Get-ChildItem Cert:\CurrentUser\My -CodeSigningCert

Set-AuthenticodeSignature -Certificate $certificate -FilePath C:\Scripts\

ProDscHosts\S16-01.mof -IncludeChain all -Force

Chapter 13 SeCurity in DSC

418

Once you have compiled the configuration, you can either wait for the consistency

check to occur or use the Update-DscConfiguration cmdlet to download both modules

and configuration from a pull server share.

Note Similar to the configuration signature validation, module catalog signature
validation is performed only when the resource module is downloaded and
installed from a pull server. the subsequent enacts using the same version of the
module will not trigger module signature validation.

At any point in time, if you want to ensure that the module files have not been

tampered with, you can validate that using the Test-FileCatalog cmdlet. See Figure 13- 8.

This concludes our discussion on configuration and module signing and enforcing

signature validation using the LCM meta configuration. You will see how module and

configuration signing can become part of the continuous integration processes in

Chapters 14 and 15.

 Enabling DSC Access Delegation
DSC, by default, enables only members of the local administrators group to invoke

DSC related actions. This behavior can be changed to allow non-administrator users to

perform DSC operations. You saw in Chapter 2 that DSC is implemented as a set of WMI

providers. And you saw in Chapter 3 that most of the DSC operations are implemented

in the DesiredStateConfiguration namespace in root/Microsoft/Windows. You can

provide a non-administrator user access to this namespace to enable the user to execute

DSC operations.

Figure 13-8. Validation of module file catalog

Chapter 13 SeCurity in DSC

419

 Enabling Non-Administrator User Permissions
There are a few ways to enable non-administrators to access WMI namespaces. In the

first method, you can use the WMI Control configuration in the computer management

console. Figure 13-9 shows this configuration option.

In the MMC, right-click WMI Control and select Properties to navigate to the Security

tab. Expand the root and select Microsoft > Windows > DesiredStateConfiguration.

See Figure 13-10.

Figure 13-9. WMI control (services and applications) in the Computer
Management console

Chapter 13 SeCurity in DSC

420

Click Security and then click Add to select the user. See Figure 13-11.

Figure 13-10. WMI Control namespaces

Chapter 13 SeCurity in DSC

421

In the “Permissions for” box, select Execute Methods, Enable Account, and Remote

Enable under Allow; this is also shown in Figure 13-11.

Note Without the remote enable privilege, the non-administrator can locally log
on to the target node and perform DSC operations. remote enable is must if the
user needs to perform the DSC operations remotely from another node.

Once these permissions are updated, log in to any of the remote nodes as the non-

administrator user and try Get-DscLocalConfigurationManager against the node where

the WMI permissions are updated.

Figure 13-11. WMI namespace permissions

Chapter 13 SeCurity in DSC

422

As shown in Figure 13-12, when a non-administrator user tries to perform a DSC

action remotely, it results in an access denied error although the user has been granted

Remote Enable permission on the WMI namespace. The DSC cmdlets use WinRM as the

underlying transport. Therefore, it is important that the user is a member of the Remote

Management Users group on the target node on which the user needs permission to

perform DSC operations. Once this is done, the non-administrator user will be able to

perform DSC operations remotely. See Figure 13-13.

Whatever configuration you have seen so far can be done using DSC as well. The

WMI namespace permissions can be modified using the WMINamespaceSecurity DSC

resource and the group membership can be done using the Group in-box DSC resource.

Here is an example of this configuration document:

Configuration DSCNonAdminOperation

{

 param

 (

 [Parameter(Mandatory = $true)]

 [String]

Figure 13-12. Access denied when trying remotely as a non-administrator user

Figure 13-13. Non-administrator access to remote DSC operations

Chapter 13 SeCurity in DSC

423

 $User

)

 Import-DSCResource -ModuleName WmiNamespaceSecurity -ModuleVersion 0.2.0

 Import-DSCResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

 WMINamespaceSecurity DesiredStateConfiguration

 {

 Path = 'root/Microsoft/Windows/DesiredStateConfiguration'

 AppliesTo = 'Self'

 Principal = $User

 Permission = 'Enable', 'MethodExecute', 'RemoteAccess'

 AccessType = 'Allow'

 Ensure = 'Present'

 }

 Group RemoteManagement

 {

 GroupName = 'Remote Management Users'

 MembersToInclude = $User

 Ensure = 'Present'

 }

}

DSCNonAdminOperation -User 'psdsc\ravi'

Note ensure that you install the WMINamespaceSecurity DSC resource
module (on the authoring station as well as the target node) from the powerShell
gallery before compiling and enacting this configuration.

Once you compile and enact this configuration, the node will be configured to allow

non-administrator user access to the DSC operations either locally or remotely.

These configuration steps can be completed by implementing a group policy

to update the WMI namespace permissions and the group membership, which is a

well- known management method within enterprise IT.

Chapter 13 SeCurity in DSC

424

The method of adding a non-administrator user to the Remote Management

Users group gives the user not just DSC operations access but access to several other

remote management tasks. Also, the WMI namespace permissions mean that the non-

administrator user can perform any action that is available in the namespace. With the

WMI namespace permissions, the non-administrators can use cmdlets such as Invoke-

DscResource either locally or remotely (with Remote Enable permission). Using this

method, a non-administrator user with bad intent can invoke the Set method of the

Script resource and run any arbitrary code as SYSTEM. This can be very dangerous.

So, what if you want to give only Get-* cmdlet access to the non-administrator

user so that they can just monitor the node and LCM configurations and not provide

any WMI namespace permissions to the non-administrator user. This can be achieved

using Just Enough Administration. Using JEA, you can restrict what commands a

remote user can execute on the target node. This is done by registering a new session

configuration with a role capability definition that is limited only to the cmdlets within

the PSDesiredStateConfiguration.

The complete overview of JEA is outside the scope of this book and I recommend

that you take a look at the documentation at http://azrs.tk/JEA. This will give

you a very clear head-start into JEA and you will be able to create restricted session

configurations.

Note Jea requires powerShell remoting to enable constrained management
of systems remotely. remember that enabling powerShell remoting is not a
requirement for DSC unless there is a need to debug DSC resource scripts and/or
use Jea to enable delegated access to DSC operations on target nodes.

 Creating a JEA Endpoint for DSC
Before you proceed, if you have already made the non-administrator domain user a

member of the Remote Management Users group, undo that. Also, remove any WMI

namespace permissions given to the non-administrator user.

You will learn how to use JEA to give this user only the cmdlets that this

non- administrator needs and nothing more.

Chapter 13 SeCurity in DSC

http://azrs.tk/JEA

425

As mentioned, enabling JEA endpoints is a two-step process. You need to first create

a role capability that defines what the user or group of users can perform on the target

nodes and then create a remoting session configuration and attach the role capability.

Let’s get started.

 DSC Role Capability

As example, you will create a role capability that restricts the non-administrator user

only to the Get cmdlets in the PSDesiredStateConfiguration. The role capability must

exist as a module at the $env:PSModulePath.

Create the folder structure for the module

$null = New-Item -Path .\ProDSCJEA\RoleCapabilities -ItemType Directory

-Force

Create the role capability file

$guid = (New-Guid).Guid

$roleCapability = @"

@{

 GUID = `'$guid`'

 Author = 'DSCFan'

 CompanyName = 'The Awesome DSC Inc.'

 Copyright = '(c) 2018 DSCFan. All rights reserved.'

 VisibleCmdlets = 'PSDesiredStateConfiguration\Get-*'

}

"@

$roleCapability | Out-File -FilePath .\ProDSCJEA\RoleCapabilities\

ProDscGet.psrc

In this code snippet, the hash table wrapped in a here string will be used as the

content of the role capability file. The VisibleCmdlets key in the role capability

definition constrains what the user can perform to only the Get-* cmdlets in

the PSDesiredStateConfiguration module. You store this as a ProDscGet.psrc

file in the RoleCapabilities folder at the module root. You can use the New-

PSRoleCapabilityFile cmdlet to create this file as well. Since what you need is just the

above keys in the PSRC file, I chose to do it using a here-string and hash literal.

Chapter 13 SeCurity in DSC

426

Like every other PowerShell module, you need to create a module manifest as well:

#Module manifest

$manifestGuid = (New-Guid).Guid

$manifestSplat = @{

 Guid = $manifestGuid

 ModuleVersion = '1.0.0.0'

 Author = 'DSCFan'

 Company = 'The Awesome DSC Inc.'

 Description = 'Pro DSC JEA endpoint'

 Path = 'C:\Scripts\ProDscJEA\ProDscJEA.psd1'

}

New-ModuleManifest @manifestSplat

The JEA role capabilities are now defined. Figure 13-14 shows the folder structure

you just created.

You need to copy this to a folder represented by $env:PSModulePath. I chose to copy

it to the C:\Program Files\WindowsPowerShell\Modules folder.

 Session Configuration

Once the role capability definition is complete, you need to create a session

configuration and attach the role capability. Within the session configuration, you will

also define which user or group of users will be able to connect to the target node using

this session configuration.

Figure 13-14. JEA role capabilities

Chapter 13 SeCurity in DSC

427

#User or group for which the JEA endpoint is being created

$principal = 'psdsc\ravi'

$sessionSplat = @{

 RunAsVirtualAccount = $true

 RoleDefinitions = @{$principal = @{RoleCapabilities = 'ProDscGet'}}

 SessionType = 'RestrictedRemoteServer'

 Path = 'C:\scripts\ProDscJEA.pssc'

}

New-PSSessionConfigurationFile @sessionSplat

In this code snippet, you set $principal to a domain user who will be performing a

few DSC operations on a target node remotely. You then define a hash table containing

a few more parameters needed for session configuration. The RunAsVirtualAccount

when set to $true ensures that a virtual identity is used to perform the action under local

administrator context and that will be available only while the session is alive. You use

the RoleDefinitions to specify the role capabilities or the commands available through

this session configuration to the user or group principal.

Once the session configuration file is created, you can validate the same using the

Test-PSSessionConfigurationFile cmdlet. This should return True.

 Session Registration

You have the session configuration created with a role capability file associated to it.

You can now register the session configuration so that the non-administrator user can

remotely connect to this.

$registrationSplat = @{

 Name = 'ProDSCJEA'

 Path = $sessionSplat.Path

 Force = $true

}

Register-PSSessionConfiguration @registrationSplat

Note the Register-PSSessionConfiguration cmdlet restarts the WinrM
service.

Chapter 13 SeCurity in DSC

428

Once the session configuration registration is complete, it can be seen in the output

of the Get-PSSessionConfiguration cmdlet. See Figure 13-15.

You are all set. It is now time to hit this new session configuration and see if it

really works. This can be done by running the Enter-PSSession cmdlet with the non-

administrator credentials.

Once you are in the remote session, run the Get-Command cmdlet to see what

capabilities are available. The output from my system is shown in Figure 13-16.

At this point, the non-administrator can run any of the Get commands from the

PSDesiredStateConfiguration module on the target node.

Using JEA, you have created a constrained endpoint on one of the target nodes

and allowed a non-administrator domain user to access this and perform the DSC

operations. This is so far one to one. However, you can deploy this role capability

module on multiple systems and then register the session configuration that allows

Figure 13-16. Available commands in the session

Figure 13-15. Session configuration

Chapter 13 SeCurity in DSC

429

the non-administrator user to perform DSC operations across multiple target nodes

remotely. This can be achieved using the DSC resources available to deploy JEA

endpoints. I recommend that you read the article on multi-machine configuration

with DSC at http://azrs.tk/jeaDSC for information on how to use resources in the

JustEnoughAdministration DSC resource module.

Note you need to download this module from the Github repository at http://
azrs.tk/jeaDSCresource.

Here is how you can enable DSC-delegated access using the JEA DSC resources:

Configuration DSCNonAdminOperation

{

 param

 (

 [Parameter(Mandatory = $true)]

 [String]

 $Principal,

 [Parameter(Mandatory = $true)]

 [String]

 $JEAModuleShare

)

 Import-DSCResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

 Import-DscResource -ModuleName JustEnoughAdministration

-ModuleVersion 1.0

 Node @('S16-01','S16-02')

 {

 File RoleCapability

 {

 SourcePath = $JEAModuleShare

 DestinationPath = 'C:\Program Files\WindowsPowerShell\Modules\

ProDSCJEA'

 Checksum = 'SHA-256'

Chapter 13 SeCurity in DSC

http://azrs.tk/jeaDSC
http://azrs.tk/jeaDSCresource
http://azrs.tk/jeaDSCresource

430

 Ensure = 'Present'

 Type = 'Directory'

 Recurse = $true

 }

 JeaEndpoint ProDSCJEAEndpoint

 {

 EndpointName = 'ProDscJEA'

 RoleDefinitions = "@{ `'$Principal`' = @{ RoleCapabilities =

'ProDscGet' } }"

 TranscriptDirectory = 'C:\ProgramData\JEAConfiguration\

Transcripts'

 DependsOn = '[File]RoleCapability'

 }

 }

}

DSCNonAdminOperation -Principal 'psdsc\ravi' -JEAModuleShare '\\S16-JB\

ProDSCJEA'

Note Before you enact this configuration, ensure that the target nodes are either
configured to download the required JustEnoughAdministration module from
a pull server or manually copy it over to the target nodes.

When you compile and enact the above configuration, you may see an error

message in the enact output that says that the WS-Management service cannot process

the operation. This is because the WinRM service gets restarted during the session

registration. You can safely ignore this.

$nodes = 'S16-01', 'S16-02'

$cred = Get-Credential 'psdsc\ravi'

$config = 'ProDscJEA'

$result = Invoke-Command -ComputerName $nodes -ScriptBlock { Get-

DscLocalConfigurationManager} -ConfigurationName $config -Credential $cred

$result | Select-Object RefreshMode, ConfigurationMode, PSComputerName

Chapter 13 SeCurity in DSC

431

This should show output similar to what is shown in Figure 13-17.

Note When using Jea endpoints for DSC operations, the non-administrator user will
be constrained by the language mode and language features available in a session.
For example, when using interactive remoting through the Enter- PSSession
cmdlet, the tab completion feature won't be available. Similarly, when using the
Invoke-Command cmdlet, the script block cannot contain language features such as
the Where({}) method or do while/until loops. as described at http://azrs.
tk/useJEA, it is recommended to use implicit remoting with Jea endpoints.

 Summary
This chapter certainly ran longer than I thought it would! After all, security is an

important aspect of IaC and configuration management. In this chapter, you learned

about the security features available in DSC, such as the MOF encryption at rest in

the local configuration store and signature validation of configurations and resource

modules. You also looked at the delegated access control to provide non-administrator

users access (either local or remote) to DSC operations on target nodes. You looked at

the different ways to achieve this using the WMI namespace security combined with the

remote management users group membership. You looked at how JEA can be used to

further limit what a non-administrator can perform remotely. Security must be a part

of your configuration management or IaC thought process and what you learned in this

chapter will help you implement these best practices in your organization.

Figure 13-17. LCM configuration settings from remote nodes

Chapter 13 SeCurity in DSC

http://azrs.tk/useJEA
http://azrs.tk/useJEA

PART III

DSC and the Release
Pipeline
By now, you know how to author custom DSC resources and test them using Pester. You

looked at different methods of publishing DSC resource modules such as the PowerShell

gallery and an SMB share-based private PowerShell repository. It is important that

you automate these processes to eliminate any human errors and ensure that you are

continuously validating the resources that you author.

This part of the book looks at automating the DSC resource module release

processes from source control to a repository. You first look at creating a release pipeline

for your modules using a few community-developed modules such as PSake, Pester, and

PSDeploy. You conclude this section by implementing a similar pipeline using AppVeyor

and GitHub.

435
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_14

CHAPTER 14

DSC and the Release
Pipeline
You started your learning in Chapter 1 by looking at Infrastructure as Code and how it

enables continuous integration and delivery for any DSC resource modules you author

and the node configurations you prepare for compiling and enacting. However, you

have not seen a practical implementation of this yet. In Chapter 6, you learned how

to author your own DSC resource modules and looked at validating these resource

scripts in Chapter 7. You learned how to publish the module to a private PowerShell

repository hosted on an SMB share as well. It was all manual. But, with the help of a

release pipeline implementation, this entire process can be automated from source

control to a private repository. In this chapter, you will explore one such implementation

using a few community PowerShell modules that enable a build-to-release pipeline

implementation. Let’s get started.

 Lab Requirements
To try the examples and exercises in this chapter, you will need at minimum two or more

systems with Windows Server 2008 R2 or above with WMF 5.1 installed. I recommend a

system with Windows Server 2016. To build the complete release pipeline, you will use

modules such as PSake, Pester, PSScriptAnalyzer, and PSDeploy. You will need these

modules on the system where you want to perform the end-to-end testing and release.

You will also be using Git as the source control system.

If you are new to release pipeline concepts, I strongly recommend that you read the

whitepaper by Michael Greene and Steven Murawski on this subject; go to http://aka.

ms/thereleasepipelinemodelpdf. Our implementation of a release pipeline is heavily

influenced by this whitepaper.

http://aka.ms/thereleasepipelinemodelpdf
http://aka.ms/thereleasepipelinemodelpdf

436

At a high level, Figure 14-1 shows the release pipeline that you will implement.

In this implementation of the release pipeline for the DSC resource modules, you

will be using all community-developed PowerShell modules.

• Source: For source control, you will use Git. You will have the module

files version controlled locally and kick-start the build process from

the same Git repository.

• Build: For this stage of the pipeline, you will use the PSake module

that enables execution of individual tasks within the Test and Release

stages.

• Test: For testing the DSC resource scripts, you will use Pester and

PSScriptAnalyzer modules.

• Release: Finally, once the tests are complete with no errors, you

will release this module to a private PowerShell repository using

PSDeploy. You will also see how these modules can be published to

a pull server in the infrastructure for distribution to target nodes that

are pull clients.

Note This chapter is not a deep dive into the individual modules used to build the
release pipeline. Instead, this chapter provides examples of using each of these
modules in a release pipeline. If you want to get familiar with the core functionality
of these modules, I recommend that you read the module documentation.

Let’s get started by looking at each of these stages and then you’ll build the release

pipeline in an incremental manner.

Figure 14-1. Release pipeline stages

ChapTer 14 DSC anD The releaSe pIpelIne

437

 Source Control
As mentioned, you will use Git as the source control system for this release pipeline.

If you don’t already have Git installed on your system, you can download and install it

from https://git-scm.com.

Once you have Git installed, create a folder called Source and a folder called ProDsc

under that.

$null = New-Item -Path C:\Source\ProDsc -ItemType Directory -Force

Now, copy the ProDSC MOF-based module that you built in Chapter 6 into the ProDsc

folder. Figure 14-2 shows the folder structure on my build system.

Once this is done, open the PowerShell console or command prompt and navigate

to the C:\Source\ProDsc folder and execute the git init command. This initializes the

module folder as a git repository.

From this point onwards any changes to the files in the module folder will be version

tracked and will have to be committed into the repository.

 Build
To orchestrate various tasks in the release pipeline, you need a build script. This build

script will be used to ensure that the required modules are present on the build system.

Once you verify that the dependent modules are available, you invoke the build script

that contains the tasks for the release pipeline.

Figure 14-2. Folder structure inside the source folder

ChapTer 14 DSC anD The releaSe pIpelIne

https://git-scm.com/

438

[CmdletBinding()]

param

(

 [Parameter()]

 [string[]]

 $Task = 'default'

)

$dependentModules = @('Pester','PSScriptAnalyzer','Psake','PSDeploy')

try

{

 #Ensure all dependent modules are present

 foreach ($module in $dependentModules)

 {

 if (!(Get-Module -Name $module -ListAvailable))

 {

 Install-Module -Name $module -Force

 }

 }

 Invoke-Psake -BuildFile "$PSScriptRoot\moduleBuild.ps1" -TaskList

$Task -Verbose

}

catch

{

 Write-Error $_

}

Save this script as build.ps1 at the root of the module folder.

You now need the actual build script that executes the release pipeline tasks.

properties {

 $resourceName = 'HostsFile'

 $moduleScript = "$PSScriptRoot\DSCResources\$resourceName\

$resourceName.psm1"

 $testFolder = "$PSScriptRoot\Tests"

 $unitTestsFolder = "$testFolder\Unit"

ChapTer 14 DSC anD The releaSe pIpelIne

439

 $integrationTestsFolder = "$testFolder\Integration"

 $deployFile = '.\deployment.yml'

}

task default -depends StyleCheck, UnitTest, IntegrationTest, DeployModule

task StyleCheck {

 $sCheck = Invoke-ScriptAnalyzer -Path $moduleScript -Severity 'Error'

-Recurse -Verbose:$false

 if ($sCheck) {

 $sCheck

 throw 'PS Script Analyzer returned one or more errors. Release

pipeline execution will halt.'

 }

}

task UnitTest {

 $unitTestResults = Invoke-Pester -Path $unitTestsFolder -PassThru

 if ($unitTestResults.FailedCount -gt 0) {

 $unitTestResults | Format-List

 throw 'Module Unit tests returned one or more errors. Release

pipeline execution will halt.'

 }

}

task IntegrationTest {

 $intTestResults = Invoke-Pester -Path $integrationTestsFolder -PassThru

 if ($intTestResults.FailedCount -gt 0) {

 $intTestResults | Format-List

 throw 'Module integration tests returned one or more errors.

Release pipeline execution will halt.'

 }

}

task DeployModule -depends StyleCheck, UnitTest, IntegrationTest {

 Invoke-PSDeployment -Path $deployFile -Force -Verbose

}

ChapTer 14 DSC anD The releaSe pIpelIne

440

Save this file as moduleBuild.ps1 at the module root.

What you see above is a PSake build script. It has multiple tasks related to the test

and release stages of the pipeline. The properties block at the beginning defines the

values that are needed for the subsequent tasks. This includes the path to the tests

folders and the deployment YAML file that contains where the module needs to be

published to if everything gets tested without errors.

The StyleCheck task will use PSScriptAnalyzer module to verify that there are no

errors reported from the static code analysis.

The UnitTest and IntegrationTest tasks help you perform automated testing of

the resource module. These tasks use the Pester module. You wrote the test scripts in

Chapter 7 so simply copy the same test scripts to the Tests folder.

Finally, the DeployModule task will use the PSDeploy module to deploy the module

to a private local repository. This task invokes PSDeploy deployment with the

deployment.yml file, which defines that source and targets for the module deployment.

You have not authored this yet.

As you can see in this build script, you have defined dependencies, and when a task

fails, it throws an error message so that the pipeline halts there. This is important since

you don’t want the pipeline to continue to subsequent tasks if a dependent task fails.

 Test
In the test stage of this release pipeline, you check for style guidelines and perform unit

and integration tests. You copy the unit and integration tests for the HostsFile, written

in Chapter 7, into a folder called Tests at the module root. At the end of this step, the

module folder structure will look like what is shown in Figure 14-3.

ChapTer 14 DSC anD The releaSe pIpelIne

441

Since the test scripts clone the DSCResource.Tests repository from GitHub, the

system where you plan to run the build process should have connectivity to the Internet.

Also, you need to add a .gitignore file in the repository to ensure that the DSCResource.

Tests folder does not get committed to your local repository when you use git commit.

@'

ProDsc/DscResource.Tests

ProDsc/DscResource.Tests/*

'@ | Out-File -Path C:\Source\ProDsc.gitignore -force

This command will create a .gitignore file in the local git repository.

 Deploy
Once all tests are complete without any errors, you can publish the module to the

internal PowerShell repository. In Chapter 6, you saw how to configure an internal

PowerShell repository in a local file share and publish modules to it using the

Publish- Module cmdlet.

Figure 14-3. Module structure after adding Tests

ChapTer 14 DSC anD The releaSe pIpelIne

442

If you don’t have this private repository created, create it now using the following

code snippet:

$localRepository = @{

 Name = 'ProDscRepo'

 SourceLocation = '\\S16-JB\ProDSCRepo'

 PublishLocation = '\\S16-JB\ProDSCRepo'

 InstallationPolicy = 'Trusted'

}

Register-PSRepository @localRepository

For PSDeploy in the deploy task to know where the source and target for the module

are, you need to define a deployment.yml file. Here is what you need to put in the

deployment.yml file:

ProDscModuleDeployment:

 Source:

 - '.\'

 Destination:

 - 'ProDscRepo'

 DeploymentType: PSGalleryModule

Save this as deployment.yml at the root of the module. Figure 14-4 shows the module

structure after adding this YAML file.

ChapTer 14 DSC anD The releaSe pIpelIne

443

 Executing the Build Script
Before you execute the build script, commit all changes in the git repository using the

git commit command.

git add *

git commit -m 'Initial release of ProDsc 1.0.0.0'

Once the files are committed, you can check the status of the repository like so:

git status

Once you have all these artifacts in place, you can execute the build.ps1 script.

.\build.ps1

The output will be rather long when everything works. Figure 14-5 shows the partial

output from the release pipeline tasks.

Figure 14-4. Module structure including deployment.yml

ChapTer 14 DSC anD The releaSe pIpelIne

444

As you can see from Figure 14-5, at the end of the release pipeline tasks, the ProDsc

module is published to the private PowerShell repository.

This is all good but it’s still a manual process. How do you automate this?

 Automating the Release Pipeline with Git Hooks
Since you are using a local git repository, you can use the git hooks feature to run the

build script on every commit. Git offers several hooks for different purposes. One of them

is post-commit hook. Using it, you can run a shell script after a git commit is complete.

You can use this as a trigger for starting an automated build process. The pre- commit

hooks can be used to perform linting and style checks and disallow a commit at all.

 Git Hooks
Each git repository contains a hidden folder named .git. This folder contains the git

database for the repository and additional git-related artifacts. One such artifact is the

hooks folder which contains several shell scripts. Figure 14-6 shows the contents of this

folder.

Figure 14-5. Output from the build script

ChapTer 14 DSC anD The releaSe pIpelIne

445

Each shell script here is associated with a specific git action such as pre-commit,

pre-push, and so on. For example, the pre-commit script (when present without the

.sample extension) gets triggered before starting a commit. What you don’t see in that

list is a post-commit hook; using it, you can trigger an action after the commit complete.

So, this is your choice for performing an automated build within your release pipeline.

Unfortunately, Git does not support running a PowerShell script as a git hook. So, you

will use the post-commit shell script to launch a PowerShell script that invokes the build.

Here is what I have in my post-commit shell script:

#!/bin/bash

message=$(git log -1 --format=%s)

exec powershell.exe -NoProfile -ExecutionPolicy Bypass -File "$PWD/.git/

hooks/post-commit.ps1" -CommitMessage "\'$message\'"

Put the above shell script contents to a file and name it post-commit (without any

extension) and copy the file to the .git\hooks folder in the ProDsc repository folder.

Once this is complete, open Git bash and set the execute permissions on this file.

chmod +x post-commit

Figure 14-6. Contents of the .git/hooks folder

ChapTer 14 DSC anD The releaSe pIpelIne

446

This is important for Git to be able to trigger the script post commit. Let’s take a

quick look at this shell script before we move forward.

In the line after #!/bin/bash, you are retrieving the last commit message and then

invoking the post-commit.ps1 script with the message string as an argument. The

commit message acts as a filter for you to understand when to invoke the build script.

Let’s look at the post-commit.ps1 script:

[CmdletBinding()]

param

(

 [Parameter()]

 [String]

 $CommitMessage

)

$buildScriptPath = Split-Path -Path (Split-Path -Path $PSScriptRoot

-Parent) -Parent

$buildScript = "$buildScriptPath\build.ps1"

if ($CommitMessage -and (-not ($CommitMessage -like "*Skip CI*")))

{

 . $buildScript

}

Save this as post-commit.ps1 in the same folder as the post-commit shell script. In

this script, you check if the commit message contains anything like Skip CI to see if you

need to run the build script or not. For example, if on a specific commit you want to skip

the build process, you can simply add 'skip CI' to the commit message. This is why I

said that the commit message is important in this case.

With the shell script and the PowerShell script in place, you can test the end-to-end

automated build process. Simply make a small change to any of the resource module

files and do a commit again.

git add *

git commit -m 'This is a minor change!'

After the commit is complete, you will see that the build.ps1 gets triggered, which in

turn kick-starts the release pipeline.

ChapTer 14 DSC anD The releaSe pIpelIne

447

Now, make another minor change like adding a comment to the resource script file

and commit again but with the commit message containing the text Skip CI.

git add *

git commit -m 'Skip CI - This is a minor change!'

This will not trigger the build script, as shown in Figure 14-7.

 Deploying Modules to a Pull Server
The release pipeline that you just built deployed the module to a private PowerShell

repository. You used the PSDeploy module to achieve that and the deployment definition

itself was put into a file called deployment.yml. Now, what if you want to publish the

module to a pull server as well? Whether it is an oData endpoint-based pull server or an

SMB pull server, you need to package the module as a zip archive and then just copy it

to the pull server. This can be achieved by adding a PSake task and a little bit of custom

scripting. Let’s dive into that.

 The Script to Package a Module Folder

Let’s once again take a look at the folder structure that you have within the Git repository

you created earlier. See Figure 14-8.

Figure 14-7. Skipping the build process

ChapTer 14 DSC anD The releaSe pIpelIne

448

From Figure 14-8, it is clear that the entire DSC resource module is contained

within C:\Source\ProDsc\ProDsc. So, you can package this folder as a zip archive. But,

if you remember that discussion from Chapter 8, you need to add the version number

of the module in the zip file name. Essentially, the zip name has to be moduleName_

moduleVersion.zip. You can get the module version from the module manifest file.

Here is a simple script to help with this process:

[CmdletBinding()]

param

(

 [Parameter(Mandatory)]

 [String]

 $ModuleFolder

)

if (-not(Test-Path -Path $ModuleFolder))

{

 throw "$ModuleFolder not found"

}

Figure 14-8. Module repository folder structure

ChapTer 14 DSC anD The releaSe pIpelIne

449

$moduleName = (Get-Item -Path $ModuleFolder).BaseName

#Get the module version from manifest

$manifest = Import-PowerShellDataFile -Path "$ModuleFolder\$moduleName.psd1"

$moduleVersion = $manifest.ModuleVersion

#Package the folder

$parentPath = Split-Path -Path $ModuleFolder -Parent

$archivePath = "$parentPath\$($moduleName)_$($moduleVersion).zip"

if (Get-ChildItem -Path "$ModuleFolder\DscResource.Tests")

{

 #Copy module folder files to temp location to eliminate DSCResources.

Tests folder

 $null = New-Item -Path "$($env:Temp)\$($moduleName)" -ItemType

Directory -Force

 Get-ChildItem -Path .\ProDsc | % {

 Copy-Item $_.fullname "$($env:Temp)\$($moduleName)" -Recurse -Force

-Exclude 'DSCResource.Tests'

 }

}

Compress-Archive -Path "$($env:Temp)\$($moduleName)*" -DestinationPath

$archivePath -Force

$checksumPath = "$parentPath\$($moduleName)_$($moduleVersion).zip.checksum"

New-DscChecksum -Path $archivePath -OutPath $parentPath -Force

#Clean up temp folder

Remove-Item -Path "$($env:Temp)\$($moduleName)" -Recurse -Force

return @($archivePath, $checksumPath)

Save this file as packageModule.ps1 and store at the same level as the build.ps1 file.

Once this is done, update moduleBuild.ps1 to add a new deployment step for publishing

the packaged module to the pull server.

ChapTer 14 DSC anD The releaSe pIpelIne

450

properties {

 $resourceName = 'HostsFile'

 $moduleName = 'ProDsc'

 $moduleFolder = "$PSScriptRoot\$moduleName"

 $moduleScript = "$PSScriptRoot\ProDsc\DSCResources\

$resourceName\$resourceName.psm1"

 $testFolder = "$PSScriptRoot\ProDsc\Tests"

 $unitTestsFolder = "$testFolder\Unit"

 $integrationTestsFolder = "$testFolder\Integration"

 $deployFile = '.\deployment.yml'

 $pullServerPath = '\\S16-JB\PullServer'

}

task default -depends StyleCheck, UnitTest, IntegrationTest,

DeployModuleToPrivateRepo, DeployModuleToPullServer

task StyleCheck {

 $sCheck = Invoke-ScriptAnalyzer -Path $moduleScript -Severity 'Error'

-Recurse -Verbose:$false

 if ($sCheck) {

 $sCheck

 throw 'PS Script Analyzer returned one or more errors. Release

pipeline execution will halt.'

 }

}

task UnitTest {

 $unitTestResults = Invoke-Pester -Path $unitTestsFolder -PassThru

 if ($unitTestResults.FailedCount -gt 0) {

 $unitTestResults | Format-List

 throw 'Module Unit tests returned one or more errors. Release

pipeline execution will halt.'

 }

}

ChapTer 14 DSC anD The releaSe pIpelIne

451

task IntegrationTest {

 $intTestResults = Invoke-Pester -Path $integrationTestsFolder -PassThru

 if ($intTestResults.FailedCount -gt 0) {

 $intTestResults | Format-List

 throw 'Module integration tests returned one or more errors.

Release pipeline execution will halt.'

 }

}

task DeployModuleToPrivateRepo -depends StyleCheck, UnitTest,

IntegrationTest {

 Invoke-PSDeployment -Path $deployFile -Force -Verbose

}

task DeployModuleToPullServer -depends StyleCheck, UnitTest,

IntegrationTest {

 $filesToCopy = .\packageModule.ps1 -ModuleFolder $moduleFolder

 foreach ($file in $filesToCopy)

 {

 Copy-Item -Path $file -Destination $pullServerPath -Force

 }

 #Clean up local files after copy

 Remove-Item -Path $filesToCopy -Force

}

In this updated moduleBuild.ps1, you have added a few more properties for

the sake of identifying the module name and the path where you have published the

packaged module folder. Towards the end of moduleBuild.ps1 is a new PSake task

to package the module for pull server publish and eventually to publish them to the

pull server path. The earlier method of publishing the module to a private PowerShell

repository used the deployment.yml file and Invoke-PSDeployment from the PSDeploy

module and the pull server deployment used PSake task instead.

ChapTer 14 DSC anD The releaSe pIpelIne

452

The deployment.yml method you saw earlier to publish the module to the private

PowerShell repository can be used to publish modules to the official PowerShell gallery.

Here is a sample deployment.yml that publishes to the official PowerShell gallery:

ProDscModuleDeploymentToGallery:

 Source:

 - '.\ProDsc'

 Destination:

 - 'PSGallery'

 DeploymentType: PSGalleryModule

 Options:

 ApiKey = 'your-Api_key'

Try this method!

Using what you have learned so far, can you build another pipeline that compiles the

MOF files and publishes them to a pull server along with checksum files? You may want

to add integration tests to ensure that the compiled configuration can be enacted.

 Summary
Release pipelines help implement an automated build-and-release process for the DSC

resource modules and configurations. This chapter showed one such implementation

of the release pipeline that leverages a few community-developed modules. While this

is great, you had to be concerned about the dependencies, and implementing git hooks

made this whole thing work automagically end to end. There are products specifically

meant for continuous integration and delivery/deployment, such as Jenkins, AppVeyor,

and VSTS. They are the subject of the next chapter.

ChapTer 14 DSC anD The releaSe pIpelIne

453
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_15

CHAPTER 15

DSC with AppVeyor CI
In Chapter 14, you implemented a release pipeline for DSC resource modules using

open source tooling and libraries. However, as you saw towards the end, building a

complete automated pipeline involves tinkering with Git hooks. Also, there was no

reporting around the build success or failure, or any historical reporting for the builds.

This is where more evolved tools such as AppVeyor, among many others, can help. In this

chapter, you will implement a release pipeline, similar to what you saw in Chapter 14,

with AppVeyor.

 Lab Requirements
To try the examples and exercises in this chapter, you will need at minimum two or more

systems with Windows Server 2008 R2 or above with WMF 5.1 installed. I recommend a

system with Windows Server 2016. For building the complete release pipeline, you will

use AppVeyor and modules such as Pester and PSScriptAnalyzer for style and unit/

integration testing. You will use Git as the source control system. For the release pipeline

implementation with AppVeyor, you need GitHub and AppVeyor accounts.

 AppVeyor CI
AppVeyor is one of the most popular commercial CI/CD platforms. It is available in

hosted and on-premises versions. Using hosted AppVeyor with open source software

(OSS) projects is free. For the custom DSC resource module testing, you can host your

module repository on GitHub and integrate with AppVeyor to perform automated builds

on a commit. In this section, you will look at the different steps needed to implement the

release pipeline with GitHub and AppVeyor.

454

 Publishing a Repository on GitHub
First and foremost, you need a GitHub repository containing your DSC resource module.

You will use the ProDsc resource module you built in Chapter 6.

This chapter does not provide step-by-step instructions on setting up GitHub

repositories. If you are totally new to GitHub, I recommend looking at the “Hello World”

guide at https://guides.github.com/activities/hello-world/.

Once you have a repository, clone it locally using the git clone command.

git clone https://github.com/prodsc/ProDsc.git

This brings a copy of the remote repository to the local system where you can work

on completing the resource module authoring. Once this local clone is ready, copy and

paste the ProDsc module contents to the repository folder. Figure 15-1 shows the folder

structure on my system.

 Connecting to AppVeyor
Once you have the repository, you can connect it to AppVeyor. This can be done once

you log into AppVeyor using your GitHub account. To add a new project and connect

your GitHub repository, take a look at www.appveyor.com/docs/.

Figure 15-1. GitHub repository folder on a local system

Chapter 15 DSC with appVeyor Ci

https://guides.github.com/activities/hello-world/
http://www.appveyor.com/docs/

455

For all of the public repositories that you add, AppVeyor will automatically add

the webhooks to trigger a build every time you commit something to the repository.

Figure 15-2 shows this from the repository I created.

 Build Configuration
Before you can commit and start a build process, you need to have the build configuration

in place. A build configuration file called appveyor.yml, located at the root of the

repository, defines the steps in a project build. For you, it can be used to install necessary

PowerShell modules, perform unit and integration tests, and publish the module on the

PowerShell gallery. This is essentially what your release pipeline did in Chapter 14.

Here is the build configuration file for the DSC resource module testing. It is same as

the one generated using the Plaster template to generate the HQRM scaffold.

#---------------------------------#

environment configuration

#---------------------------------#

version: 1.0.{build}.0

install:

 - git clone https://github.com/PowerShell/DscResource.Tests

 - ps: |

Figure 15-2. AppVeyor webhook in the GitHub repository

Chapter 15 DSC with appVeyor Ci

456

 Import-Module -Name "$env:APPVEYOR_BUILD_FOLDER\DscResource.Tests\

AppVeyor.psm1"

 Invoke-AppveyorInstallTask

#---------------------------------#

build configuration

#---------------------------------#

build: false

#---------------------------------#

test configuration

#---------------------------------#

test_script:

 - ps: |

 Invoke-AppveyorTestScriptTask -CodeCoverage -CodeCovIo -ExcludeTag @()

#---------------------------------#

deployment configuration

#---------------------------------#

scripts to run before deployment

deploy_script:

 - ps: |

 Invoke-AppveyorAfterTestTask

Save this as appveyor.yml at the root of the repository.

In this AppVeyor build configuration, you are skipping the build task since you

are testing DSC resource modules and there is no build, as such, that is needed. The

test script will be invoked by the Invoke-AppveyorTestScriptTask function from the

Appveyor.psm1 module contained in the DSCResources.Tests repository that gets

cloned at the beginning of the AppVeyor task.

Within the command that uses Invoke-AppveyorTestScriptTask, you also specify

the -CodeCoverage and -CodeCovIO switch parameters. In Chapter 7, when you ran the

Pester tests, you saw 100% code coverage reported at the end of tests. The codecov.io

provides similar metrics. This integration can be done in a way similar to how you

integrated with AppVeyor. All you need to do is log into codecov.io with your GitHub

Chapter 15 DSC with appVeyor Ci

457

credentials and add a project. Once this is complete, you need to add a configuration file

at the root of the repository similar to appveyor.yml. Once again, the Plaster template that

was used for generating the HQRM module generates the codecov.yml file too. Here it is:

codecov:

 notify:

 require_ci_to_pass: no

comment:

 layout: "reach, diff"

 behavior: default

coverage:

 range: 50..80

 round: down

 precision: 0

 status:

 project:

 default:

 # Set the overall project code coverage requirement to 70%

 target: 70

 patch:

 default:

 # Set the pull request requirement to not regress overall coverage

by more than 5%

 # and let codecov.io set the goal for the code changed in the patch.

 target: auto

 threshold: 5

Save this file as .codecov.yml at the root of the repository. This configuration file

defines the code coverage requirements for this repository.

At this point, you are all set to commit your changes to the GitHub repository to see if

the AppVeyor build starts or not. This can be done using the following commands:

git add *

git commit -m 'Initial commit'

git push origin

Chapter 15 DSC with appVeyor Ci

458

The git push command will prompt for GitHub credentials.

The last command here triggers the AppVeyor task, and you can see the results at

https://ci.appveyor.com/projects. Partial output from this is Figure 15-3.

Since you are using the same set of tests as the official PowerShell repository for DSC

resources validates, you may see a few errors that you didn’t see in Chapter 7 or 14. For

example, the build of this resource module may fail because there are no newlines at the

end of each file in the module. The error messages, if any, will be easy to understand and

you must fix these issues before the build task can succeed fully.

At this point, you have the continuous integration for the tests working on AppVeyor.

Every commit to the repository triggers the CI process, which in turn ensures that all unit

and integration tests complete. But there may be instances where you don't want to run

the CI process. For example, when you add a README to the repository, there is no need

to run the tests again since you aren’t checking anything specific to the README in your

tests. You can tell AppVeyor to skip a specific commit by defining the same in the build

configuration YAML, like so:

#---------------------------------#

environment configuration

#---------------------------------#

Figure 15-3. Build status from AppVeyor

Chapter 15 DSC with appVeyor Ci

https://ci.appveyor.com/projects

459

version: 1.0.{build}.0

skip_commits:

 files:

 - README.md

 message: /updated readme.*|update readme.*s|update docs.*|update

version.*|update appveyor.*/

install:

 - git clone https://github.com/PowerShell/DscResource.Tests

 - ps: |

 Import-Module -Name "$env:APPVEYOR_BUILD_FOLDER\DscResource.Tests\

AppVeyor.psm1"

 Invoke-AppveyorInstallTask

#---------------------------------#

build configuration

#---------------------------------#

build: false

#---------------------------------#

test configuration

#---------------------------------#

test_script:

 - ps: |

 Invoke-AppveyorTestScriptTask -CodeCoverage -CodeCovIo -ExcludeTag @

()

#---------------------------------#

deployment configuration

#---------------------------------#

scripts to run before deployment

deploy_script:

 - ps: |

 Invoke-AppveyorAfterTestTask

Chapter 15 DSC with appVeyor Ci

460

The skip_commits section in appveyor.yml is what tells AppVeyor when to ignore

the commit and not run the CI.

To test this, add a README.md file to this project. Here is the content I have in a

README.md file:

ProDSC - HostsFile resource

This is a sample repository that is used to explain the concepts around

using AppVeyor for DSC continuous integration.

[![Build status](https://ci.appveyor.com/api/projects/

status/8snlacyyow8ate7o/branch/master?svg=true)](https://ci.appveyor.com/

project/prodsc/prodsc/branch/master)

[![codecov](https://codecov.io/gh/prodsc/ProDsc/branch/master/graph/badge.

svg)](https://codecov.io/gh/prodsc/ProDsc)

Save the above content as README.md at the root of the repository. This README

contains a couple of badges that show the last build status and the code coverage

through the tests in the repository. The code for these badges can be obtained from

project settings in both AppVeyor and CodeCov.IO.

Once this file is added to the repository, you can commit the changes and push the

commits to origin:

git add *

git commit -m 'Adding README.md'

git push origin

This should not trigger a CI build on AppVeyor. You should also see the README.md

updated on GitHub with AppVeyor and CodeCov.IO badges. This is shown in Figure 15- 4.

Chapter 15 DSC with appVeyor Ci

461

In Chapter 14, you created a release of the module to a local PowerShell repository

and a pull server. In this chapter, you will publish a release of the module back to the

GitHub repository as a zip archive after all of the tests complete successfully.

You need to update the appveyor.yml to achieve this:

#---------------------------------#

environment configuration

#---------------------------------#

version: 1.0.{build}.0

environment:

 auth_token:

 secure: 3lekYfC1aw4vvKr9EZ+0WrCdWrN/00te/NtKC3FUNDQeH8gjWT/i4B1FBxltbhC4

skip_commits:

 files:

 - README.md

 message: /updated readme.*|update readme.*s|update docs.*|update

version.*|update appveyor.*/

install:

 - git clone https://github.com/PowerShell/DscResource.Tests

Figure 15-4. Updated README.md

Chapter 15 DSC with appVeyor Ci

462

 - ps: |

 Import-Module -Name "$env:APPVEYOR_BUILD_FOLDER\DscResource.Tests\

AppVeyor.psm1"

 Install-Module -Name posh-git -Force

 Invoke-AppveyorInstallTask

#---------------------------------#

build configuration

#---------------------------------#

build: false

#---------------------------------#

test configuration

#---------------------------------#

test_script:

 - ps: |

 Invoke-AppveyorTestScriptTask -CodeCoverage -CodeCovIo -ExcludeTag

@()

#---------------------------------#

deployment configuration

#---------------------------------#

scripts to run before deployment

deploy_script:

 - ps: |

 Invoke-AppveyorAfterTestTask

deploy:

 - git config --global credential.helper store

 - ps: Add-Content "$env:USERPROFILE\.git-credentials" "https://$($env:

GitHubKey):x-oauth-basic@github.com`n"

 - git config --global user.email "Administrator@PSDSC.Lab"

 - git config --global user.name "Administrator"

 provider: GitHub

 auth_token:

 secure: 3lekYfC1aw4vvKr9EZ+0WrCdWrN/00te/NtKC3FUNDQeH8gjWT/i4B1FBxltbhC4

Chapter 15 DSC with appVeyor Ci

463

 artifact: /.*\.zip/

 draft: false

 prerelease: false

 on:

 branch: master

In this updated build configuration, you added the GitHub access token as a secure

string in the environment. This can be generated by taking the personal access token

from GitHub to AppVeyor and encrypting it using the Encrypt Data option under

Account settings.

You also added the deploy section in the appveyor.yml towards the end. This section

ensures that the release zip created by the Invoke-AppveyorAfterTestTask is published

to GitHub releases.

Once you commit this new build configuration, it triggers the build and uses the

build version that is auto-incremented to generate the zip archive. This zip archive gets

published to GitHub releases. See Figure 15-5.

If you plan to publish the tested module to the PowerShell gallery instead, this can

be done by integrating the PSDeploy deploy task with the AppVeyor CI. PowerShell MVP

Warren Frame, author of the PSDeploy module, has an excellent article about this at

http://azrs.tk/psdeploy.

Figure 15-5. GitHub releases

Chapter 15 DSC with appVeyor Ci

http://azrs.tk/psdeploy

464

 Summary
This chapter provided insights into how to use AppVeyor CI to perform continuous

integration of your DSC resource modules in a way similar to what you saw in Chapter 14.

CI/CD tooling such as AppVeyor, Jenkins, Travis CI, and VSTS provide automated and

more controlled means of continuously testing and releasing PowerShell modules.

While you only used AppVeyor as an example in this chapter, the concepts of CI/CD

are common across most of the tooling available. It is important to adapt the CI/CD

practices when developing resource modules and within IaC practices. This helps ensure

that the code and configurations are continuously validated for all scenarios that the

resource is designed to configure.

Chapter 15 DSC with appVeyor Ci

PART IV

DSC Platform, Cloud, and
Containers
PowerShell DSC is a configuration management platform and can be used across on-

premises and cloud environments alike. This final part of the book provides an overview

of using DSC CIM interfaces directly in PowerShell and provides examples that can be

leveraged in other programming or scripting languages.

You then look at using DSC with different public cloud providers such as Microsoft

Azure, Google Cloud Platform, and Amazon Web Services. These cloud providers

implement their IaaS in different ways and therefore there are different methods to use

DSC with each of these providers. Chapters 17, 18, and 19 provide insights into using

these different methods to configure IaaS instances using DSC.

The book concludes by taking a quick look at using DSC with Windows Server 2016

containers. Chapter 20 provides an overview of what you need to know when using DSC

with Windows containers and provides examples of building DSC-configured container

images.

467
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_16

CHAPTER 16

DSC as a Platform
Windows PowerShell DSC is a platform rather than just a set of tools to perform

configuration management. In Chapter 3, you saw how DSC is implemented as a set

of WMI providers. You know that DSC uses the CIM standard data representation

for node configurations and uses WS-MAN as a standard transport for sending the

configurations to the target nodes. This architecture is what makes DSC a platform.

The cmdlets in the PSDesiredStateConfiguration module are a way to use the

interfaces provided in the DSC platform. The declarative syntax that is enabled using

the Configuration command and keywords such as Node is available to make it easy

to author a configuration document and compile the MOF file that the WMI providers

understand. In this chapter, you will explore the platform aspect of Windows PowerShell

DSC and see how to perform the DSC operations without the need for any cmdlets in the

PSDesiredStateConfiguration module.

 Lab Requirements
To try the examples and exercises in this chapter, you will need at minimum two or more

systems with Windows Server 2008 R2 or above with WMF 5.1 installed. I recommend a

system with Windows Server 2016.

 The DSC Configuration Management API
You know that Windows PowerShell DSC provides an API that can be used as a part of

an existing configuration management processes. It is not necessary that you use the

PowerShell cmdlets provided as a part of the DSC feature to manage configurations on the

target systems. In Chapter 3, you looked at the Local Configuration Manager (LCM) and you

saw a list of CIM methods in the MSFT_DscLocalConfigurationManager class and how they

map into the cmdlets in PSDesiredStateConfiguration module. Figure 16-1 is a recap.

468

Table 16-1 provides a mapping between the CIM methods and the cmdlets in the

PSDesiredStateConfiguration module.

Figure 16-1. CIM methods in the MSFT_DscLocalConfigurationManager class

Table 16-1. Mapping Between CIM Methods and PowerShell Commands

CIM Method PowerShell Command

SendConfiguration Publish-DscConfiguration

SendConfigurationApply Start-DscConfiguration

GetConfiguration Get-DscConfiguration

TestConfiguration Test-DscConfiguration

ApplyConfiguration Start-DscConfiguration with -UseExisting

SendMetaConfigurationApply Set-DscLocalConfigurationManager

GetMetaConfiguration Get-DscLocalConfigurationManager

RollBack Restore-DscConfiguration

StopConfiguration Stop-DscConfiguration

GetConfigurationStatus Get-DscConfigurationStatus

SendMetaConfigurationApplyAsync Start-DscConfiguration without -Wait

RemoveConfiguration Remove-DscConfigurationDocument

ResourceGet Invoke-DscResource with -Method Get

(continued)

Chapter 16 DSC aS a platform

469

In this section, you will see a few examples of how these CIM methods can

be used and some tricks that you can build along. I suggest that you look at the

MSDN documentation for these CIM methods before you go further. You can see

this documentation at http://azrs.tk/dscapi. As you can see in the CIM method

documentation, most of the methods take ConfigurationData as a parameter. When

calling such CIM methods, you need to pass the contents of configuration MOF file as

a byte array. So, before you look at how to call these CIM methods directly, let’s look at

how to convert the configuration MOF into a byte array representation.

 Configuration MOF to Byte Array
Most of the CIM methods in the MSFT_DscLocalConfigurationManager take the

configuration MOF contents as a byte array. Since DSC PowerShell cmdlets use CIM

and CIM uses WSMAN, the way you construct this byte array depends on whether you

are calling the method locally or sending the configuration data to a remote system.

Depending on where the target is, you need to pad a few more bytes in the configuration

data byte array. The following function explains how to do this:

function Get-ByteArry

{

 param

 (

 [Parameter(Mandatory = $true)]

 [string]

 $ConfigurationMof,

CIM Method PowerShell Command

ResourceSet Invoke-DscResource with -Method Set

ResourceTest Invoke-DscResource with -Method Test

EnableDebugConfiguration Enable-DscDebug

DisableDebugConfiguration Disable-DscDebug

Table 16-1. (continued)

Chapter 16 DSC aS a platform

http://azrs.tk/dscapi

470

 [Parameter()]

 [switch]

 $Local

)

 $configurationData = [Byte[]][System.IO.File]::ReadAllBytes

((Resolve- Path $ConfigurationMof))

 if (-not $local)

 {

 $totalSize = [System.BitConverter]::GetBytes($configurationData.

Length + 4)

 $configurationData = $totalSize + $configurationData

 }

 return $configurationData

}

In this function, you use a -Local switch parameter to indicate if the target for

the configuration is the local system. In a local system, you don’t need the additional

bytes in the WS-MAN payload. This function returns a byte array representation of the

configuration MOF file provided as an input. In the subsequent sections, you will see

how this byte array representation can be used with some of the CIM methods in the

MSFT_DscLocalConfigurationManager class.

 GetConfiguration
You have seen the Get-DscConfiguration cmdlet and its functionality. You know that

this cmdlet returns the current state of the resource from the target systems. Remember,

the current state need not be the desired state. This cmdlet calls the GetConfiguration

CIM method and by default, if no configuration data byte array is provided as an input,

the contents of the current.mof are used to get the current state of the resources. And

this is the reason why you see an error message that says no current configuration exists

when you use the Get-DscConfiguration cmdlet on a target system that never received

any configuration using DSC. So, here is a trick. What if you want to find out the current

state of a specific resource before you enact any configuration on to the target system?

Chapter 16 DSC aS a platform

471

For example, say you want to check if a specific file exists on a remote system but you

don’t really want to create it. Here is how to do so:

Configuration DemoConfig

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

 File FileDemo

 {

 DestinationPath = 'C:\Windows\System32\Drivers\Etc\Hosts.backup'

 Contents = ''

 Ensure = 'Present'

 }

}

$mof = DemoConfig

In this configuration script, you have specified the path to a hosts.backup file.

And you generate the MOF file and store that file object in a variable called $mof. Now,

let’s see how to use the GetConfiguration CIM method to see the current state of this

resource. Remember, you are not enacting it; you are simply querying for the current

state of the resource.

$configurationData = Get-ByteArry $mof.FullName

$result = Invoke-CimMethod -ComputerName S16-Pull-01 `

 –Namespace root/Microsoft/Windows/DesiredState

Configuration `

 -ClassName MSFT_DSCLocalConfigurationManager `

 -MethodName GetConfiguration `

 -Arguments @{ConfigurationData = $configuration

Data}

In this example, you use the Get-ByteArray function you created at the beginning

of this section. It is used to create the byte array representation of the MOF file you

just generated. The $result variable is used to store the objects returned by the

GetConfiguration CIM method. This method returns an array of the current state for

all resources present in the MOF file. Since you have only one resource in the MOF

Chapter 16 DSC aS a platform

472

file, $result[0] should give you the current state of the file resource. The ItemValue

property of each object in this array contains the current state of the resource. This is

shown in Figure 16-2.

Figure 16-2. Result from the GetConfiguration CIM method

As you can see in Figure 16-2, the current state of the resource tells you that the

Hosts.backup file does not exist at the requested path. This method can be quite

useful when all you want to do it just verify the current state of a resource without

enacting the configuration. This method is also a potentially better method than Test-

DscConfiguration with the -ReferenceConfiguration parameter since this method

provides the complete view into the schema-defined properties.

 SendConfiguration
In previous chapters, you saw the Publish-DscConfiguration cmdlet publish a

configuration MOF as pending.mof on the target node. The SendConfiguration CIM

method is internally called by this cmdlet and this method can be used to send the

configuration MOF to the target system. For this example, you will use the configuration

data stored in the $configurationData variable in the previous exercise.

Chapter 16 DSC aS a platform

473

Invoke-CimMethod -ComputerName S16-Pull-01 `

 -Namespace root/Microsoft/Windows/DesiredState

Configuration `

 -ClassName MSFT_DSCLocalConfigurationManager `

 -MethodName SendConfiguration `

 -Arguments @{ConfigurationData = $configurationData;

Force = $true}

This example stores the byte array representation of the configuration MOF as

pending.mof. You can’t use this method when the target system already has a pending

configuration. This can be worked around by using the Force parameter. Also, the Force

parameter comes handy when you want to push configuration to a target system that is

configured as a pull client. But, remember that using Force here changes the target node

refresh mode to push.

 ApplyConfiguration
In the preceding section, using the SendConfiguration method, you created a pending.

mof file on the target system. You can use the ApplyConfiguration method to enact that

configuration on the target system. This method does not have a ConfigurationData

parameter and always looks for a pending.mof that can be applied. When you use

the -UseExisting switch parameter with the Start-DscConfiguration cmdlet, the

ApplyConfiguration CIM method gets invoked.

Invoke-CimMethod -ComputerName S16-Pull-01 `

 –Namespace root/Microsoft/Windows/DesiredState

Configuration `

 -ClassName MSFT_DSCLocalConfigurationManager `

 -MethodName ApplyConfiguration

If you have been following the examples so far, you can run the GetConfiguration

CIM method to display the current state of the resource on the target system. Remember,

by applying the configuration in the preceding example, you created current.mof on the

target system. Therefore, there is no need to send the configuration MOF as a byte array.

Chapter 16 DSC aS a platform

474

$result = Invoke-CimMethod -ComputerName S16-Pull-01 `

 –Namespace root/Microsoft/Windows/DesiredState

Configuration `

 -ClassName MSFT_DSCLocalConfigurationManager `

 -MethodName GetConfiguration

The current state of the File resource after ApplyConfiguration is shown in

Figure 16-3.

Figure 16-3. GetConfiguration result after the enact

 TestConfiguration
While the GetConfiguration method provides the current state of each resource in the

configuration MOF, the TestConfiguration method tells you if the target system is in the

desired state or not. This method is called by the Test-DscConfiguration cmdlet. When

called with no input parameters, this method takes the current.mof and checks if each

resource in that MOF is in the desired state or not. If there is no current.mof but there is

a pending.mof, the pending.mof file will be used.

Chapter 16 DSC aS a platform

475

Invoke-CimMethod -ComputerName S16-Pull-01,S16-JB `

 –Namespace root/Microsoft/Windows/DesiredState

Configuration `

 -ClassName MSFT_DSCLocalConfigurationManager `

 -MethodName TestConfiguration

Figure 16-4 shows this command in action.

Figure 16-4. TestConfiguration output

 RollBack
Once you enact the configuration, you’ll understand from our earlier discussion that the

applied configuration gets stored as current.mof and any existing configuration gets

stored as previous.mof. When this method is called, the previous.mof gets enacted

on the target system, overwriting the current configuration. You can use the Restore-

DscConfiguration cmdlet to perform the same function as the RollBack method.

The Rollback method, per the MSDN documentation, has a ConfigurationNumber

parameter. However, in the current implementation, this parameter is not implemented.

The following example shows how this method can be invoked:

Invoke-CimMethod -ComputerName S16-Pull-01 `

 -Namespace root/Microsoft/Windows/DesiredState

Configuration `

 -ClassName MSFT_DSCLocalConfigurationManager `

 -MethodName Rollback

Try It With the few examples you have seen so far, try invoking other CIm
methods in the MSFT_DscLocalConfigurationManager class.

Chapter 16 DSC aS a platform

476

 Summary
This chapter is a short overview of DSC configuration management. You looked at

invoking the DSC configuration management CIM methods directly using the Invoke-

CimMethod cmdlet. Understanding these CIM methods and how to invoke them with the

right parameters certainly helps in building custom tooling. In Chapter 9, you looked

at how the DSC pull service REST endpoints can be queried using PowerShell. The

same can be done in other programming languages such as Python or Ruby or Go. This

enables you to build custom reports and dashboards that are not available out of the box

with Windows PowerShell DSC. There are also ISV products that leverage these APIs to

build an ecosystem of tools around PowerShell DSC. For example, UpGuard has DSC

integration to design and compile DSC configuration MOF files, enact them remotely,

and monitor the target nodes configuration status in a single console. You can read more

about it at http://azrs.tk/dscupguard.

Chapter 16 DSC aS a platform

http://azrs.tk/dscupguard

477
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_17

CHAPTER 17

Microsoft Azure and DSC
Microsoft Azure offers different cloud service models such as Infrastructure as a Service

(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) among many

others. With the release of Microsoft Azure Stack (MAS), many of these services can now

be extended into the on-premises infrastructure in a hybrid cloud deployment model

as well. As a part of the IaaS offerings, the virtual machines created in the Azure cloud

can be configured using PowerShell DSC in a few different ways. For the IaaS VMs on

Azure, you can use the Azure VM DSC extension handler to enact configurations in the

VM. Another approach that internally uses the DSC extension handler is provided by an

Azure service called the Azure Automation DSC (AA DSC) service. In this chapter, you

will explore how Azure IaaS virtual machines can be configured using the DSC extension

handler and how the AA DSC service can be used to manage both Azure IaaS VMs and

the systems on-premises.

 Lab Requirements
To try the examples and exercises in this chapter, you will need at minimum one or more

Azure IaaS Windows instances with Windows Server 2008 R2 or above with WMF 5.1

or above installed. I recommend Windows Server 2016 instances. If you do not have an

Azure subscription, you can create one for free, and a trial subscription gives up to $200

worth of credits. Your credit card won’t be charged unless you choose to enroll at the

end of the trial period. This chapter does not include any instructions about creating

Azure IaaS virtual machines. It is assumed that you have this expertise and this chapter

builds on it to show how PowerShell DSC can be used with these IaaS VMs. You will

also need the Azure PowerShell module and Azure CLI 2.0 to perform the configuration

management tasks on Azure IaaS virtual machines. At the time of writing, the Azure CLI

2.0 version is 2.0.25 and the Azure RM PowerShell module version is 5.1.1. All examples

have been validated only with these versions of tooling.

478

The Azure IaaS virtual machines can be configured using the PowerShell DSC in

more than one way:

• Setting up a pull server (what you saw in Chapter 8) in one of the IaaS

virtual machines and then on-boarding the rest of the Azure VMs to

this pull server in the cloud. This is no different from how you set up

a DSC pull service in Chapter 8. Therefore, there is no need for any

additional discussion about this method.

• Remotely push the DSC configurations to the Azure IaaS virtual

machines.

• Enact a DSC configuration in an Azure VM during VM creation

either using the portal or Azure CLI 2.0 or Azure PowerShell cmdlets

or using Azure Resource Manager (RM) templates and the AA DSC

extension handler.

• Using the AA DSC service as a pull server and on-boarding Azure

IaaS and on-premises systems for DSC configurations. The AA DSC

pull service addresses many limitations.

Let’s explore the second, third, and fourth methods in detail.

 Pushing DSC Configurations Remotely
To be able to push DSC configurations remotely, you must have the Azure VM

configured with a public IP address and with inbound access to WinRM HTTP or HTTPS

ports (5895/5896). By default, if you create a VM using the portal with default network

settings, inbound traffic to these ports won’t be enabled and therefore you need to

ensure that these ports are open. You also need the firewall exceptions in the Azure VM

(guest OS) to allow inbound WinRM traffic. This can be done using the commands in the

NetSecurity module.

Set-NetFirewallRule -Name WINRM-HTTP-In-TCP-PUBLIC -RemoteAddress Any

One way to test if you can access port 5895, which is needed for pushing DSC

configurations, is to use the Test-WSMan cmdlet. This is shown in Figure 17-1.

Chapter 17 MiCrosoft azure and dsC

479

Once you have an Azure VM with an open WinRM HTTP port, you can attempt to

push a DSC configuration using the Start-DscConfiguration cmdlet. Here is a simple

configuration document that you will try to enact remotely:

Configuration WebServer

{

 param

 (

 [Parameter(Mandatory = $true)]

 [string]

 $NodeName

)

 Import-DscResource -Module PSDesiredStateConfiguration

-ModuleVersion 1.1

 Node $NodeName

 {

 WindowsFeature WebServer

 {

 Name = 'Web-Server'

 Ensure = 'Present'

 }

 }

}

You can compile this configuration. Ensure that you provide the DNS name of the

Azure virtual machine as the argument to the -NodeName parameter of the configuration.

See Figure 17-2.

Figure 17-1. Testing if the WinRM HTTP port 5895 is accessible

Chapter 17 MiCrosoft azure and dsC

480

Now attempt to enact this configuration. Note that you need to supply the credentials

using the -Credential parameter.

Start-DscConfiguration -Path .\WebServer -Credential (Get-Credential) -Wait

-Verbose

What happens? Did that work or do you see any error? This can be mitigated by

configuring WinRM trusted hosts. See Figure 17-3.

Set-Item -Path WSMAN:\localhost\Client\TrustedHosts -Value *.cloudapp.

azure.com -Force

Figure 17-2. Compiling the configuration

Figure 17-3. Successful enact of configuration

Note this method uses WinrM http (port 5895) by default. to use WinrM https
(port 5896), you must first configure the WinrM listener to listen on port 5896. this
requires certificates. You learned about creating WinrM https listeners in Chapter 1.

While pushing configurations remotely using the Start-DscConfiguration cmdlet

works, it is not the most efficient or scalable method. This method requires you to have

either a virtual network connection (using either a site-to-site VPN or point-to-site VPN)

Chapter 17 MiCrosoft azure and dsC

481

or a public IP address and DNS name assigned to the virtual machine. There are, of

course, better ways than this. Let’s try the second method of enacting a configuration in

an Azure VM.

 A DSC Configuration in an Azure VM Using the VM
Extension Handler
You can enact a DSC configuration in an Azure VM using the DSC extension handler.

This VM extension handler can be invoked after the VM creation (or at any time

during the VM life cycle) and the associated DSC configuration gets enacted inside the

VM. This extension handler can be added using the portal UI or ARM templates or Azure

PowerShell or CLI.

I will not show the portal way of achieving this. Instead, I will focus on using Azure

PowerShell, ARM templates, and CLI 2.0 to bootstrap the DSC extension handler in an

Azure VM.

 Using Azure PowerShell Cmdlets
The Azure PowerShell cmdlets provide an imperative method to deploy Azure VMs. Here

is the DSC configuration that you will package enact. Copy the contents and save it as

webserver.ps1.

Configuration WebServer

{

 Import-DscResource -Module PSDesiredStateConfiguration -ModuleVersion 1.1

 Node localhost

 {

 WindowsFeature WebServer

 {

 Name = 'Web-Server'

 Ensure = 'Present'

 }

 }

}

Chapter 17 MiCrosoft azure and dsC

482

The following example is quite verbose and mostly self-explanatory if you already

have experience in creating Azure VMs using this method.

$location = 'eastus2'

$resourceGroupName = 'ProDscAzure'

$vmName = 'avm-s16-03'

$storageAccountName = 'prodscstore'

$cred = Get-Credential

Create a resource group

$null = New-AzureRmResourceGroup -Name $resourceGroupName -Location

$location

Create Storage Account

$null = New-AzureRmStorageAccount -ResourceGroupName $resourceGroupName `

 -Name $storageAccountName -Type

'Standard_LRS' `

 -Location $location

Create a subnet configuration

$subnetConfig = New-AzureRmVirtualNetworkSubnetConfig -Name mySubnet `

 -AddressPrefix 192.168.1.0/24

Create a virtual network

$vnet = New-AzureRmVirtualNetwork -ResourceGroupName $resourceGroupName `

 -Location $location `

 -Name MYvNET `

 -AddressPrefix 192.168.0.0/16 `

 -Subnet $subnetConfig

Create a public IP address and specify a DNS name

$pip = New-AzureRmPublicIpAddress -ResourceGroupName $resourceGroupName `

 -Location $location `

 -AllocationMethod Static `

 -IdleTimeoutInMinutes 4 `

 -Name "$vmName_pip" `

 -DomainNameLabel $vmName

Chapter 17 MiCrosoft azure and dsC

483

Create an inbound network security group rule for port 80

$nsgRuleWeb = New-AzureRmNetworkSecurityRuleConfig -Name

 myNetworkSecurityGroupRuleWWW

 -Protocol Tcp `

 -Direction Inbound `

 -Priority 1001 `

 -SourceAddressPrefix * `

 -SourcePortRange * `

 DestinationAddressPrefix * `

 -DestinationPortRange 80

-Access Allow

Create a network security group

$nsg = New-AzureRmNetworkSecurityGroup -ResourceGroupName

$resourceGroupName `

 -Location $location `

 -Name myNetworkSecurityGroup `

 -SecurityRules $nsgRuleWeb

Create a virtual network card and associate with public IP address and NSG

$nic = New-AzureRmNetworkInterface -Name myNic `

 -ResourceGroupName $resourceGroupName `

 -Location $location `

 -SubnetId $vnet.Subnets[0].Id `

 -PublicIpAddressId $pip.Id `

 -NetworkSecurityGroupId $nsg.Id

Create a virtual machine configuration

$vmConfig = New-AzureRmVMConfig -VMName $vmName -VMSize Standard_A1 |

 Set-AzureRmVMOperatingSystem -Windows -ComputerName $vmName -Credential

$cred |

 Set-AzureRmVMSourceImage -PublisherName MicrosoftWindowsServer -Offer

WindowsServer

 -Skus 2016-Datacenter -Version latest | Add-AzureRmVMNetworkInterface

-Id $nic.Id

Chapter 17 MiCrosoft azure and dsC

484

Create the virtual machine

New-AzureRmVM -ResourceGroupName $resourceGroupName -Location $location -VM

$vmConfig

Set Azure DSC extension

Publish-AzureRmVMDscConfiguration -ConfigurationPath .\webserver.ps1

-ResourceGroupName $resourceGroupName `

 -StorageAccountName $storageAccountName

-force

Set-AzureRmVMDscExtension -ResourceGroupName $resourceGroupName -VMName

$vmName `

 -ArchiveStorageAccountName $storageAccountName

-ArchiveBlobName webserver.ps1.zip `

 -AutoUpdate -ConfigurationName 'WebServer'

-Version 2.72

Note Make sure you change the value of $storageAccountName in the script.
it needs to be unique, and someone reading this chapter might have just used the
same! :)

The last two commands in this example are the most interesting in the context of

this section. First, you use the Publish-AzureRmVMDscConfiguration cmdlet to package

the configuration file that is locally stored and any dependent modules that it needs for

an enact as a single zip archive. If your configuration requires any custom DSC resource

modules, ensure that those modules are locally available on the system where you are

running this cmdlet. This cmdlet also publishes this zip archive in a storage account as a

blob. In the last command, you use the Set-AzureRmVMDscExtension cmdlet to enact the

configuration upload to Azure Storage account.

This method of bootstrapping DSC configuration after VM creation will take a

few minutes to complete. As the VM extension gets installed and the configuration is

enacted, you can see the status of the deployment in the Azure Portal. See Figure 17-4.

Chapter 17 MiCrosoft azure and dsC

485

Once the Azure VM creation and DSC configuration enact are complete, you can

browse to the public IP or DNS name associated with the VM to check if the web server is

installed or not. Remember, the above script enabled inbound access to port 80 using an

NSG rule.

 Using the Azure Resource Manager Template
While the Azure PowerShell module provides a way to imperatively create the VM and

then enact the DSC configuration, ARM templates provide a declarative way of doing the

same. My preferred choice of Azure deployments is certainly the ARM templates. The

following example provides a sample ARM template:

{

 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/

deploymentTemplate.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "assetLocation": {

 "type": "string",

 "defaultValue": "https://raw.githubusercontent.com/rchaganti/

ARMTemplates/master/",

Figure 17-4. Azure VM DSC extension handler in the portal

Chapter 17 MiCrosoft azure and dsC

486

 "metadata": {

 "description": "The location of resources such as templates

and DSC modules that the script is dependent on."

 }

 },

 "vmName": {

 "type": "string",

 "defaultValue": "avm-s16-04",

 "metadata": {

 "description": "Name of the virtual machine."

 }

 },

 "adminUserName": {

 "type": "string",

 "defaultValue": "admin",

 "metadata": {

 "description": "administrator user name for the VMs."

 }

 },

 "adminPassword": {

 "type": "securestring",

 "metadata": {

 "description": "administrator user password for the VMs."

 }

 }

 },

 "variables": {

 "vNetPrefix": "172.22.176.0/20",

 "vNetName": "prodscnet",

 "vNetSubnetName": "prodscsubnet",

 "vnetSubnetPrefix": "172.22.176.",

 "vNetSubnetCIDR": "172.22.176.0/20",

 "vNetSubnetID": "[concat(resourceId('Microsoft.Network/virtual

Networks',variables('vNetName')),'/subnets/',variables('vNetSubnet

Name'))]"

 },

Chapter 17 MiCrosoft azure and dsC

487

 "resources": [

 {

 "name": "prodscnsg",

 "type": "Microsoft.Network/networkSecurityGroups",

 "apiVersion": "2016-09-01",

 "location": "[resourceGroup().location]",

 "properties": {

 "securityRules": [

 {

 "name": "allow-http-80",

 "properties": {

 "priority": 1001,

 "sourceAddressPrefix": "*",

 "protocol": "Tcp",

 "destinationPortRange": "80",

 "access": "Allow",

 "direction": "Inbound",

 "sourcePortRange": "*",

 "destinationAddressPrefix": "*"

 }

 }

]

 }

 },

 {

 "name": "[variables('vNetName')]",

 "type": "Microsoft.Network/virtualNetworks",

 "location": "[ResourceGroup().Location]",

 "apiVersion": "2015-05-01-preview",

 "dependsOn": [

 "[concat('Microsoft.Network/networkSecurityGroups/',

'prodscnsg')]"

],

 "properties": {

 "addressSpace": {

 "addressPrefixes": [

Chapter 17 MiCrosoft azure and dsC

488

 "[variables('vNetPrefix')]"

]

 },

 "subnets": [

 {

 "name": "[variables('vNetSubnetName')]",

 "properties": {

 "addressPrefix": "[variables('vNetSubnetCIDR')]",

 "networkSecurityGroup": {

 "id": "[resourceId(resourceGroup().name,

'Microsoft.Network/networkSecurityGroups',

'prodscnsg')]"

 }

 }

 }

]

 }

 },

 {

 "name": "[concat(parameters('vmName'),'-pip')]",

 "type": "Microsoft.Network/publicIpAddresses",

 "apiVersion": "2016-09-01",

 "location": "[resourceGroup().location]",

 "properties": {

 "publicIpAllocationMethod": "Dynamic",

 "dnsSettings": {

 "domainNameLabel": "[parameters('vmName')]"

 }

 }

 },

 {

 "apiVersion": "2015-05-01-preview",

 "type": "Microsoft.Network/networkInterfaces",

 "name": "[concat(parameters('vmName'), '-nif')]",

 "location": "[resourceGroup().location]",

Chapter 17 MiCrosoft azure and dsC

489

 "dependsOn": [

 "[concat('Microsoft.Network/virtualNetworks/',

variables('vNetName'))]",

 "[concat('Microsoft.Network/publicIpAddresses/',

concat(parameters('vmName'),'-pip'))]"

],

 "properties": {

 "ipConfigurations": [

 {

 "name": "[concat(parameters('vmName'),'-

ipconfig')]",

 "properties": {

 "subnet": {

 "id": "[variables('vNetSubnetID')]"

 },

 "publicIpAddress": {

 "id": "[resourceId(resourceGroup().name

,'Microsoft.Network/publicIpAddresses',

concat(parameters('vmName'),'-pip'))]"

 }

 }

 }

]

 }

 },

 {

 "name": "[parameters('vmName')]",

 "type": "Microsoft.Compute/virtualMachines",

 "apiVersion": "2016-04-30-preview",

 "location": "[resourceGroup().location]",

 "dependsOn": [

 "[concat('Microsoft.Network/networkInterfaces/',

concat(parameters('vmName'), '-nif'))]"

],

Chapter 17 MiCrosoft azure and dsC

490

 "properties": {

 "osProfile": {

 "computerName": "[parameters('vmName')]",

 "adminUsername": "[parameters('adminUsername')]",

 "adminPassword": "[parameters('adminPassword')]",

 "windowsConfiguration": {

 "provisionVmAgent": "true"

 }

 },

 "hardwareProfile": {

 "vmSize": "Standard_A1"

 },

 "storageProfile": {

 "imageReference": {

 "publisher": "MicrosoftWindowsServer",

 "offer": "WindowsServer",

 "sku": "2016-Datacenter",

 "version": "latest"

 },

 "osDisk": {

 "name": "[parameters('vmName')]",

 "createOption": "FromImage",

 "managedDisk": {

 "storageAccountType": "Standard_LRS"

 },

 "caching": "ReadWrite"

 },

 "dataDisks": []

 },

 "networkProfile": {

 "networkInterfaces": [

 {

 "id": "[resourceId('Microsoft.

Network/networkInterfaces',

concat(parameters('vmName'),'-nif'))]"

Chapter 17 MiCrosoft azure and dsC

491

 }

]

 }

 }

 },

 {

 "type": "Microsoft.Compute/virtualMachines/extensions",

 "name": "[concat(parameters('vmName'),'/webserver')]",

 "apiVersion": "2015-05-01-preview",

 "location": "[resourceGroup().location]",

 "dependsOn": [

 "[concat('Microsoft.Compute/virtualMachines/',

parameters('vmName'))]"

],

 "properties": {

 "publisher": "Microsoft.Powershell",

 "type": "DSC",

 "typeHandlerVersion": "2.72",

 "settings": {

 "ModulesUrl": "[concat(parameters('assetLocation'),'/

webserver.zip')]",

 "ConfigurationFunction": "webserver.ps1\\webserver"

 }

 }

 }

],

 "outputs": {

 "PublicIP":{

 "type": "string",

 "value": "[reference([concat('Microsoft.Network/publicIp

Addresses/',parameters('vmName'),'-pip')]).properties.

ipAddress]"

 },

 "PublicDNSFQDN": {

 "type": "string",

Chapter 17 MiCrosoft azure and dsC

492

 "value": "[reference([concat('Microsoft.Network/publicIp

Addresses/',parameters('vmName'),'-pip')]).properties.

dnsSettings.fqdn]"

 }

 }

}

This template contains the assetLocation parameter, which points to the base

location where the configuration script archive is available. I took the webserver.ps1

script from the above example and packaged it into a zip archive and uploaded it to

public GitHub repository. You can, however, choose to upload this to a different public

location and then provide that base location (without webserver.zip) as an argument to

the assetLocation parameter.

Note if you do not prefer a pubic location, you can upload the zip archive to an
azure storage account and specify the sas token along with the storage account uri.

There are multiple ways to deploy this. You will use the Azure PowerShell cmdlets

to deploy this. Before you can deploy this ARM template, you should have the Azure

resource group created. You can do that using the New-AzureRmResourceGroup cmdlet.

$resourceGroupName = 'prodscazure'

$location = 'East US 2'

$null = New-AzureRmResourceGroup -Name $resourceGroupName -Location

$location

The ARM templates can be deployed using the New- AzureRmResourceGroupDeployment.

But, before that, let’s ensure that the ARM template is valid. This can be done using the

Test-AzureRmResourceGroupDeployment cmdlet.

Note this cmdlet will only tell you if the template is valid from a syntax point of
view. it won’t guarantee that a deployment using this template will be successful.

Chapter 17 MiCrosoft azure and dsC

493

$adminPassword = Read-Host -AsSecureString

$parameters = @{

 ResourceGroupName = $resourceGroupName

 TemplateFile = 'C:\Scripts\prodscAzureVM.json'

 AssetLocation = 'https://raw.githubusercontent.com/rchaganti/

ARMTemplates/master/'

 AdminUserName = 'Ravikanth'

 AdminPassword = $adminPassword

}

Test-AzureRmResourceGroupDeployment @parameters -Verbose

If the template is valid, you will see a simple message indicating the same. This is

shown in Figure 17-5.

Figure 17-5. Validating an ARM template

You can now perform the ARM template deployment.

New-AzureRmResourceGroupDeployment -Name ProDSCAzureVM @parameters -Verbose

The verbose message stream from this cmdlet tells you the status of the deployment.

This will take a few minutes and at the end, you can verify that the VM is created and the

web server configuration is enacted by accessing the VM public DNS name or IP address

in a browser.

The last method you will explore is the Azure CLI 2.0-based one.

Chapter 17 MiCrosoft azure and dsC

494

 Using Azure CLI 2.0
Azure CLI 2.0 is a command line tool that uses the Azure Resource Manager APIs behind

the scenes. If you are command-line junkie, you will love the way Azure CLI 2.0 is

written. The following example shows how to create an Azure VM and bootstrap a DSC

configuration inside it using CLI 2.0:

Update for your admin password

$adminUserName = 'ravikanth'

$adminPassword = Read-Host -AsSecureString

$resourceGroupName = 'ProDscAzure'

$vmName = 'avm-s16-05'

$vNetName = 'prodscvnet'

$vNetSubNet = 'prodscsubnet'

#login to Azure

az login

Create a resource group.

az group create --name $resourceGroupName --location eastus2

Create a vNet and subnet

az network vnet create `

 --resource-group $resourceGroupName `

 --name $vNetName `

 --address-prefix 10.0.0.0/16 `

 --subnet-name $vNetSubnet `

 --subnet-prefix 10.0.1.0/24

Create NSG

az network nsg create `

 --resource-group $resourceGroupName `

 --name prodscnsg

Create NSG rule to allow traffic on port 80.

az network nsg rule create `

 --resource-group $resourceGroupName `

 --nsg-name prodscnsg `

Chapter 17 MiCrosoft azure and dsC

495

 --name http `

 --access allow `

 --protocol Tcp `

 --direction Inbound `

 --priority 100 `

 --source-address-prefix "*" `

 --source-port-range "*" `

 --destination-address-prefix "*" `

 --destination-port-range 80

Create NSG rule to allow traffic on port 3389.

az network nsg rule create `

 --resource-group $resourceGroupName `

 --nsg-name prodscnsg `

 --name rdp `

 --access allow `

 --protocol Tcp `

 --direction Inbound `

 --priority 101 `

 --source-address-prefix "*" `

 --source-port-range "*" `

 --destination-address-prefix "*" `

 --destination-port-range 3389

Create public IP

az network public-ip create `

 --resource-group $resourceGroupName `

 --name prodscpip `

 --dns-name $vmName `

 --allocation-method Static

Create a NIC for the VM and attach the NSG and PIP

az network nic create `

 --resource-group $resourceGroupName `

 --name nic1 `

 --vnet-name $vNetName `

 --subnet $vNetSubnet `

Chapter 17 MiCrosoft azure and dsC

496

 --network-security-group prodscnsg `

 --public-ip-address prodscpip

Create a VM

az vm create `

 --resource-group $resourceGroupName `

 --name $vmName `

 --size Standard_A1 `

 --image Win2016Datacenter `

 --admin-username $adminUserName `

 --admin-password $adminPassword `

 --nics nic1

Start DSC extension handler to use a simple bash script to update,

download scripts and install webserver

az vm extension set `

 --name DSC `

 --publisher Microsoft.Powershell `

 --version 2.72 `

 --vm-name $vmName `

 --resource-group $resourceGroupName `

 --settings "{'ModulesURL':'https://raw.githubusercontent.com/rchaganti/

ARMTemplates/master/webserver.zip', 'configurationFunction': 'webserver.

ps1\\webserver'}"

This script, although just a bunch of Azure CLI 2.0 commands, can be used to

perform the same action as in the earlier two examples. You should save this as a .PS1

script (you have PowerShell variable substitution for some parameters) and then execute

all the commands sequentially. Similar to the ARM template example, the path to the

DSC configuration zip file is provided as an argument to the DSC extension’s ModulesURL

property.

All three methods you have seen so far are mostly one-to-one except the ARM

template, which can be used to perform the DSC configuration on multiple VMs at

the same time. Of course, you can script the Azure PowerShell cmdlets or the CLI 2.0

to perform a simultaneous configuration enact on multiple VMs. These methods are

not scalable. Also, there is no centralized way to maintain configurations and resource

Chapter 17 MiCrosoft azure and dsC

497

modules, as in the case of a DSC pull service. One of the other benefits the DSC pull

service offers is a way to monitor the configuration state on the target nodes. You can set

up a DSC pull service instance in Azure and then on-board the Azure IaaS VM instances

to that pull service. However, there are the same limitations to that approach as what you

experience with the on-premises pull server.

The on-premises DSC pull server does not offer encryption at rest for the DSC

configuration documents; does not offer any visualization of the node configuration

status; and does not offer the ability to manage systems or VMs outside the on-premises

organization unless the on-premises DSC pull service is Internet-facing.

To address some of these needs, Microsoft Azure provides a pull service in the cloud

as a part of the Azure Automation service.

 Azure Automation DSC
In this section, you will look at how to set up Azure Automation (standalone) and use

the Azure Automation (AA) DSC pull service to on-board both on-premises and Azure

IaaS virtual machines to the AA DSC pull service. Azure Automation is available as both

a standalone service and as a part of the Operations Management Suite of services. This

chapter will only show the deployment of a standalone AA service and use the same for

all examples.

Azure Automation DSC can be used to

• Manage Azure virtual machines (both classic and v2)

• Manage physical/virtual Windows/Linux machines on-premises or

in a cloud other than Azure

• Provide rich reporting capabilities for both on-premises and cloud

machines

In this chapter, I will focus only on Windows VMs in the Azure cloud and on-

premises. You can see on-boarding Google Compute Engine Windows VMs to the AA

DSC pull service in Chapter 18 and using the AA DSC pull service with Amazon

Web Services (AWS) EC2 instances in Chapter 19.

Chapter 17 MiCrosoft azure and dsC

498

 Setting Up Azure Automation
Using the Azure management portal, you just need to click a few blades to set up the

Azure Automation account. However, that is no fun. You will see Azure PowerShell and

Azure CLI 2.0 methods of creating an Azure Automation account.

$resourceGroupName = 'ProDscAzure'

$location = 'East US 2'

$null = Add-AzureRmAccount

$null = New-AzureRmResourceGroup -Name $resourceGroupName -Location

$location

$null = New-AzureRmAutomationAccount -Name 'ProDscAA' -Location 'East US 2'

-ResourceGroupName 'ProDscAzure'

Once the Automation account is created, you can see it in the Azure management

portal or use the Get-AzureRmAutomationAccount cmdlet to retrieve the information

about the newly created automation account. See Figure 17-6.

Figure 17-6. Azure Automation account in the portal

Chapter 17 MiCrosoft azure and dsC

499

As you can see in Figure 17-6, the Azure Automation account contains blades that

can be used manage DSC nodes, configurations, and node configurations.

• DSC Nodes: Used to on-board Azure VMs and see on-boarded non-

Azure VMs

• DSC Configurations: Used to add DSC configuration scripts and

compile configuration scripts

• DSC Node Configurations: Used to add/view compiled DSC

configuration MOF files that can be assigned to nodes

 Adding DSC Configurations

You can on-board either Azure VMs or non-Azure machines that are running in other

clouds or on-premises without any existing node configurations in AA DSC. However,

for the purpose of understanding the flow, you will first add configurations and compile

them. Let’s see how this can be done using Azure PowerShell cmdlets.

Import-AzureRmAutomationDscConfiguration -AutomationAccountName 'ProDscAA'

-ResourceGroupName $resourceGroupName -SourcePath C:\Scripts\webserver.ps1

-Published

The Import-AzureRmAutomationDscConfiguration cmdlet takes the Automation

account name, resource group name, and the path to the configuration script (.ps1) as

arguments. The -Published switch parameter specifies that the configuration script will

be in published state. This published configuration can be compiled using the Start-

AzureRmAutomationDscCompilationJob cmdlet.

Start-AzureRmAutomationDscCompilationJob -ConfigurationName 'webserver'

-ResourceGroupName $resourceGroupName -AutomationAccountName 'ProDscAA'

Once the compile job is complete, the node configuration appears in the DSC Node

Configurations blade shown in Figure 17-7.

Chapter 17 MiCrosoft azure and dsC

500

Adding DSC configurations using this approach and compiling them using the DSC

pull service allows you to specify separate configuration data for each compilation job.

Note i recommend taking a look at azure automation in general and
understanding how to use variables, credentials, and other aa assets. it is possible
to use these assets when importing the dsC configuration into aa.

Try It Your sample configuration (webserver.ps1) does not require any
parameters or configuration data. however, this may not be a real use case. so, try
publishing a configuration document that has mandatory parameters and pass the
parameter arguments to the Start-AzureRmAutomationDscCompilationJob
cmdlet. hint: You need to use the -Parameters parameter of this cmdlet.

Figure 17-7. Compiled node configuration

Chapter 17 MiCrosoft azure and dsC

501

However, if the configuration is static or something that you may never reuse, you

can compile the configuration locally and upload the node configuration as a MOF file

directly.

 Adding DSC Node Configurations

While the above process of generating node configurations (compiled) is a two-step

process, you can upload compiled MOF files as node configurations directly to an

automation account. This is done using the Import- AzureRmAutomationDscNode

Configuration cmdlet.

Import-AzureRmAutomationDscNodeConfiguration -AutomationAccountName

'ProDscAA' -ResourceGroupName $resourceGroupName -ConfigurationName

FailoverCluster -Path C:\Scripts\FailoverCluster\localhost.mof -Force

Once this is uploaded, it appears as ConfigurationName.MOFFileBaseName. So, in

this example, it will appear as FailoverCluster.Localhost in the DSC node configurations

blade.

Since the nodename has no relevance in the AA DSC node configurations, you can

specify an environment such as Dev, Test, and Prod instead of localhost to identify which

environment the configuration is used in. When you add that node configuration to AA

DSC, you can see those configurations as FailoverCluster.Dev, FailoverCluster.Prod, and

so on. See Figure 17-8.

Chapter 17 MiCrosoft azure and dsC

502

Note if you import a new compiled configuration that contains the same
configuration name and host name in the Mof file as an existing node
configuration, the existing node configuration will get overwritten.

 Registering Azure and On-Premises Machines in AA DSC
Once you have the node configurations ready, you can register any Azure VM or on-

premises physical and/or virtual machines to receive configuration from the AA DSC

pull service. Let’s first see how to register Azure VMs.

Figure 17-8. Published node configurations

Chapter 17 MiCrosoft azure and dsC

503

 Registering Azure VMs

To register Azure IaaS VMs, you can use the Register-AzureRmAutomationDscNode

cmdlet.

Register-AzureRmAutomationDscNode -AutomationAccountName 'ProDscAA'

-AzureVMName avm-s16-05 -ResourceGroupName $resourceGroupName

-NodeConfigurationName 'webserver.localhost'

Note using the Register-AzureRmAutomationDscNode cmdlet, it is
possible to register an azure VM without assigning any node configuration. this
will simply onboard the VM and does not associate any configuration to it.

This command installs the DSC extension handler in the VM and configures the

VM to receive a configuration from the DSC pull service. At the end of this command

execution, the Azure VM appears under DSC nodes in the Automation service and the

state of configuration compliance can be seen there.

Note Managing the configuration of azure VMs with the dsC extension handler
version 2.70 and above is free. the method seen above installs the latest version
of the dsC extension handler in the azure VM and therefore is free of any cost
associated with aa dsC.

To retrieve the node configuration report sent to the DSC pull service, you can use

the Get-AzureRmAutomationDscNodeReport cmdlet.

$Node = Get-AzureRmAutomationDscNode -ResourceGroupName $resourceGroupName

-AutomationAccountName 'ProDscAA' -Name avm-s16-05

Get-AzureRmAutomationDscNodeReport -ResourceGroupName $resourceGroupName

-AutomationAccountName 'ProDscAA' -NodeId $Node.Id

Chapter 17 MiCrosoft azure and dsC

504

Figure 17-9 shows the initial report for an Azure VM. Every compliance check on the

VM sends the report back to the DSC pull service. The command shown above retrieves

all available reports for the node. If you are interested in seeing only the latest report, add

the -Latest switch parameter to the Get-AzureRmAutomationDscNodeReport cmdlet.

Let’s step back a bit and understand exactly what happened when you registered the

Azure VM. You learned in Chapter 8 that the LCM needs to be configured as a pull client

to be able to receive configurations from a pull server. In case of on-boarding Azure

VMS to AA DSC pull service using the Register-AzureRmAutomationDscNode cmdlet,

the meta is done behind the scenes. If you log into the Azure VM and run the Get-

DscLocalConfigurationManager cmdlet, you will see the updated meta configuration

that points to the AA DSC pull service.

If you have the necessary NSG rules and OS firewall ports enabled (you saw this

earlier), you can run the Get-DscLocalConfigurationManager remotely as well.

Figure 17-10 shows this.

$cimSession = New-CimSession -ComputerName 'avm-s16-05.eastus2.cloudapp.

azure.com' -Credential (Get-Credential)

Get-DscLocalConfigurationManager -CimSession $cimSession

Figure 17-9. Initial report for an Azure VM

Chapter 17 MiCrosoft azure and dsC

505

You can access individual properties in the meta configuration to see how the node

is configured. For example, Figure 17-11 shows the ConfigurationDownloadManagers

setting in the meta configuration.

Figure 17-10. LCM meta configuration from the Azure VM

Figure 17-11. Configuration Download Manager configuration in Azure VM

Chapter 17 MiCrosoft azure and dsC

506

As you can see in Figure 17-11, the ServerURL property is set to the Azure

Automation DSC endpoint.

Try It similar to the above, can you try retrieving the report server and resource
module manager settings?

 Registering On-Premises Machines

What you have seen so far with registering Azure VMs is fairly straightforward. The AA

DSC service takes care of registering the target nodes behind the scenes and you don’t

need to worry about details such as the pull service URL, registration keys, and other

related settings. You saw in Chapter 8 that this information is necessary for on-boarding

a target node as a pull client. However, in the case of AA DSC, you are neither creating

any registration keys nor aware of the pull service endpoint URL. So, how do you retrieve

this information necessary for on-boarding non-Azure machines?

Note the process shown in this section can be used not just with on-premises
physical or virtual machines but also machines running in a cloud other than azure.

on-boarding non-azure machines to aa dsC incurs cost. refer to the pricing for
using aa dsC with on-premises or non-azure cloud machines.

Generating a Meta Configuration

To configure the LCM as a pull client, what you really need is a meta configuration

document that can be used with the Set-DscLocalConfigurationManager cmdlet.

Within the Azure PowerShell cmdlets module for Azure Automation, this can be done

using the Get-AzureRmAutomationDscOnboardingMetaconfig cmdlet.

Get-AzureRmAutomationDscOnboardingMetaconfig -ResourceGroupName

$resourceGroupName -AutomationAccountName 'ProDscAA' -ComputerName S16-01,

S16-02 -OutputFolder C:\Scripts -Verbose

Chapter 17 MiCrosoft azure and dsC

507

This cmdlet downloads the meta.mof files for the nodes S16-01 and S16-02 to a local

path. You can open the MOF files in your favorite text editor to see the registration keys

and endpoint URLs.

Note While this method of downloading a meta Mof is easy, it requires you
to manually edit the compiled Mof in case of any customizations. i recommend
manually creating a meta configuration script and compiling it into a Mof. this is
shown later in this section.

These machines are the no-premises virtual machines that I have in my DSC lab and

I can perform the meta configuration using the Set-DscLocalConfigurationManager

cmdlet. Once the configuration is complete, you can verify that these nodes are on-

boarded to the AA DSC pull service by using the Get-AzureRmAutomationDscNode

cmdlet. This is shown in Figure 17-12.

Get-AzureRmAutomationDscNode -ResourceGroupName $resourceGroupName

-AutomationAccountName 'ProDSCAA' | Select-Object Name,

NodeConfigurationName, Status

Figure 17-12. Node in Azure Automation DSC

As you can see in Figure 17-12, there are no configurations associated with the

newly on-boarded nodes. You can assign a node configuration by using the Set-

AzureRmAutomationDscNode cmdlet.

$Node1 = Get-AzureRmAutomationDscNode -ResourceGroupName $resourceGroupName

-AutomationAccountName 'ProDscAA' -Name 'S16-01'

Set-AzureRmAutomationDscNode -AutomationAccountName 'ProDscAA'

-NodeConfigurationName 'FailoverCluster.Localhost' -ResourceGroupName

$resourceGroupName -Id $Node1.Id

$Node2 = Get-AzureRmAutomationDscNode -ResourceGroupName $resourceGroupName

-AutomationAccountName 'ProDscAA' -Name 'S16-02'

Chapter 17 MiCrosoft azure and dsC

508

Set-AzureRmAutomationDscNode -AutomationAccountName 'ProDscAA'

-NodeConfigurationName 'FailoverCluster.Localhost' -ResourceGroupName

$resourceGroupName -Id $Node2.Id

Once the nodes are assigned a node configuration, running Get-

AzureRmAutomationDscNode again tells you that there is pending configuration on these

nodes. This is shown in Figure 17-13.

Figure 17-13. Pending node configurations in AA DSC

Figure 17-14. All nodes in compliant state in AA DSC

As the consistency check gets triggered on the on-premises VMs, the new

configuration assigned to the node gets enacted. Once the enact is complete, you can

check the node status using the Get-AzureRmAutomationDscNode cmdlet again. This is

shown in Figure 17-14.

As noted, you can use the AA DSC for just reporting purposes. However, if you look

at the DSC meta configuration that was downloaded using the Get- AzureRmAutomati

onDscOnboardingMetaconfig cmdlet, it will have settings for configuration download

managers, resource module mangers, and report servers. If you want to configure the

target node only for reporting to the AA DSC pull service, you need the registration key

and the endpoint URL. These values can be retrieved in the Azure Management portal.

This can be done by navigating to the Keys blade of the Azure Automation account in the

management portal, as shown in Figure 17-15.

Chapter 17 MiCrosoft azure and dsC

509

This can also be done using the Get-AzureRmAutomationRegistrationInfo cmdlet.

$registrationInfo = Get-AzureRmAutomationRegistrationInfo

-ResourceGroupName $resourceGroupName -AutomationAccountName 'ProDSCAA'

With this information handy, you can create a meta configuration document that

on- boards the target node only for reporting in AA DSC. The following is an example:

[DscLocalConfigurationManager()]

Configuration AADscMetaConfiguration

{

 param

 (

 [Parameter(Mandatory = $true)]

 [String]

 $RegistrationKey,

 [Parameter(Mandatory = $true)]

 [String]

 $EndPointURL,

Figure 17-15. Azure Automation Account keys and endpoint URL

Chapter 17 MiCrosoft azure and dsC

510

 [Parameter()]

 [String]

 $NodeName

)

 Node $NodeName

 {

 Settings

 {

 ConfigurationMode = 'ApplyAndMonitor'

 ActionAfterReboot = 'ContinueConfiguration'

 }

 ReportServerWeb AADSCReport

 {

 ServerURL = $EndPointURL

 RegistrationKey = $RegistrationKey

 }

 }

}

$registrationInfo = Get-AzureRmAutomationRegistrationInfo

-ResourceGroupName $resourceGroupName -AutomationAccountName 'ProDSCAA'

AADscMetaConfiguration -NodeName 'S12R2-01' -RegistrationKey

$registrationInfo.PrimaryKey -EndPointURL $registrationInfo.Endpoint

-Verbose

Once this meta configuration compiled and the enact is complete, the target node

can be seen in the Azure Portal as a DSC node without any configuration associated with

it. This is shown in Figure 17-16.

Chapter 17 MiCrosoft azure and dsC

511

This brings us to the end of this session. One aspect that you did not see is how to

upload custom DSC resource modules to the AA DSC pull service.

 Adding DSC Resource Modules to the AA DSC
This can be done directly from the PowerShell gallery by clicking the

Deploy To Azure Automation button on the module page or you can use the

New- AzureRmAutomationModule cmdlet.

New-AzureRmAutomationModule -ContentLinkUri 'https://raw.githubusercontent.

com/rchaganti/ARMTemplates/master/NetworkingDsc.zip' -Name NetworkingDsc

-ResourceGroupName $resourceGroupName -AutomationAccountName 'ProDscAA'

-Verbose

Once this module import is complete, it can be seen in the Modules blade of the

Azure Automation service in management portal.

Figure 17-16. Azure automation DSC nodes

Chapter 17 MiCrosoft azure and dsC

512

 Summary
This chapter provided details about using DSC with Azure IaaS VMs and different ways to

on-board Azure IaaS VMs to perform DSC configurations. Some of the methods seen in

the initial part of the chapter can be used irrespective of where the machine is located (in

a cloud or on-premises). You saw an overview of what the Azure Automation DSC service

is and the benefits it provides over the on-premises pull server shown in Chapter 8. You

can use the AA DSC pull service not just with Azure VMs but non-Azure VMs or physical

machines running either on-premises and/or in a cloud other than Azure. This service,

when integrated with Operations Management Suite (OMS) solutions, provides the

capability to see rich graphical reporting of the node configuration status. While you have

not seen any in-depth content on integrating the standalone AA DSC service with OMS,

let me tell you that it is not rocket science. I recommend that you look at this integration

and understand the capabilities it can provide. In the next two chapters, you will see

how the AA DSC service can be used with VMs running in Google Cloud Platform and

Amazon Web Services.

Ben Gelens, my good friend and the technical reviewer of this book, published an

excellent video series on the Azure Automation DSC. You can watch it on Channel 9 at

http://azrs.tk/CH9Dsc. If you are looking for more details on this AA DSC service,

I strongly recommend taking a look at his video series.

Chapter 17 MiCrosoft azure and dsC

http://azrs.tk/CH9Dsc

513
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_18

CHAPTER 18

DSC and Google Cloud
Platform
Google Cloud Platform (GCP) is yet another but very important player in the

Infrastructure as a Service (IaaS) public cloud space. As a part of Google Compute

Engine (GCE), GCP offers a wide range of IaaS VM instances and operating systems.

Windows Server 2008 R2, Windows Server 2012 R2, Windows Server 2016, and Windows

Server 2016 version 1709 are a part these GCE offerings. In this chapter, you will learn

how to use DSC to configure the GCE Windows instances.

 Lab Requirements
To try the examples and exercises in this chapter, you will need at minimum one or more

GCE IaaS Windows instances with Windows Server 2008 R2 or above with WMF 5.1 or

above installed. I recommend Windows Server 2016 instances. If you do not have a GCP

subscription, you can create one for free and a trial subscription includes up to $300 worth

of credits. Your credit card won’t be charged unless you choose to enroll at the end of

the trial period. This chapter does not provide any in-depth overview of GCP or GCE VM

instances. You will also need the Google Cloud SDK for the gcloud CLI and PowerShell

cmdlets. You will also need an active Azure subscription for on-boarding a GCE instance

to the AA DSC pull service.

Before using the gcloud CLI or GoogleCloud PowerShell module, you must ensure

that you authenticate with Google Cloud. Upon installing the Google Cloud SDK, you get

a configuration option to log into GCP. You must complete this and create a project.

gcloud init

514

This command will initialize the authentication process and walk you through the

on-boarding steps. You must set the default region and zone in the project settings.

gcloud config set compute/region asia-east1

gcloud config set compute/zone asia-east1-a

You can override these settings using the -Region and -Zone parameters when

available.

For the GCP project that you created during the initialization, you should enable

the relevant APIs. At minimum, you should enable the Google Compute Engine, Cloud

Storage, and Cloud Storage JSON APIs. To do this, navigate to the project in the Google

cloud console and go to API & Services.

For the GCP project, you should also have a billing account associated. Your card

won’t be charged.

 Using DSC with GCE Windows Instances
The GCE Windows instances can be configured using PowerShell DSC in more than

one way.

• Setting up a pull server (what you saw in Chapter 8) in one of the IaaS

virtual machines and then on-boarding the rest of the GCE Windows

instances to this pull server in the cloud. This is no different than

how you set up a DSC pull service in Chapter 8. Therefore, there is no

need for any additional discussion about this method.

• Another method is to remotely push the DSC configurations to the

GCE Windows instances.

• Enact the DSC configuration in a GCE Windows instance during the

start up of the instance.

• You can use the AA DSC service as a pull server and on-board GCE

Windows instances so that the GCE instance configurations can be

managed and monitored from AA DSC.

Let’s explore the last three methods in the above list.

Chapter 18 DSC anD GooGle ClouD platform

515

 Pushing DSC Configurations Remotely
To be able to push DSC configurations remotely, you must have the GCE Windows

instance configured with a public IP address and with inbound access to WinRM HTTP

or HTTPS ports (5895/5896).

To allow WinRM HTTP or HTTPS traffic into a GCE Windows instance, you must first

create the firewall rules at the VPC network level. The following code snippet will add

both WinRM HTTP and HTTP firewall rules for the 'default' network:

$projectID = 'prodsc-gce-01'

$allowedHTTP = New-GceFirewallProtocol "tcp" -Port 5985

$winrmhttpTag = 'winrmhttp'

$winrmhttpsTag = 'winrmhttps'

$allowedHTTPS = New-GceFirewallProtocol "tcp" -Port 5986

#Create the HTTP firewall rule

Add-GceFirewall -Name 'allow-winrm-http' `

 -AllowedProtocol $allowedHTTP `

 -Project $projectID `

 -Network "default" `

 -SourceRange '0.0.0.0/0' `

 -TargetTag $winrmhttpTag

#Create the HTTPS firewall rule

Add-GceFirewall -Name 'allow-winrm-https' `

 -AllowedProtocol $allowedHTTPS `

 -Project $projectID `

 -Network "default" `

 -SourceRange '0.0.0.0/0' `

 -TargetTag $winrmhttpsTag

Note ensure you update the value of $projectID.

Once this is complete, you will be able to see the new firewall rule in VPC Network ➤

Firewall Rules, as shown in Figure 18-1 or in the Get-GceFirewall cmdlet output.

Chapter 18 DSC anD GooGle ClouD platform

516

For Windows instances within GCE, a WinRM HTTPS listener gets created with

a self-signed certificate and the WinRM HTTPS firewall rules in the OS are enabled.

Therefore, if you plan to use only the WinRM HTTPS listener to connect and push

configurations remotely, no further configuration is required. However, if you plan to use

the WinRM HTTP (not recommended) for pushing DSC configurations, you will need to

enable the firewall rule in the OS.

Before you create the GCE Windows instance and enable the WinRM HTTP

firewall rule in the OS, save the following command to a PowerShell script named

firewallconfig.ps1 and upload it to a public location that can be accessed from Google

Compute instance:

Set-NetFirewallRule -Name WINRM-HTTP-In-TCP-PUBLIC -RemoteAddress Any

I chose to upload this as a public gist on GitHub. This script will be used as a startup

script to configure the WinRM HTTP firewall rule in the OS.

With the script uploaded a public location, you can create a new Windows instance

and attach the above script as a startup script and add the firewall tags -- $winrmhttpTag

and $winrmhttpsTag. This ensures that the GCE instance is allowed both inbound

WinRM HTTP and HTTPS traffic.

You can create a GCE Windows instance using the following snippet:

$disk = Get-GceImage -Project 'windows-cloud' -Family 'windows-2016'

$config = New-GceInstanceConfig 'prodscgce1' `

 -MachineType 'n1-standard-1' `

 -BootDiskImage $disk `

Figure 18-1. WinRM HTTP rule in VPC Network

Chapter 18 DSC anD GooGle ClouD platform

517

 -Metadata @{ "windows-startup-script-url" = "https://gist.

githubusercontent.com/rchaganti/e635e5f90847780763fd61b6f6198863/raw/98

3e42f7205efb309969b6f759515decd7b8e147/firewallconfig.ps1" } `

 -Tag $winrmhttpTag, $winrmhttpsTag

$gceInstance = $config | Add-GceInstance -Project $projectID

Note Since you are adding firewallconfig.ps1 as a startup script, it will run
after every reboot.

It is possible to use a Google Cloud Storage bucket for the startup script. It requires
you to specify the GCS bucket url with the access token.

This creates the instance but the default Windows user password won’t be available

until you reset it. There is no PowerShell cmdlet to do this. Instead, you use the gcloud

CLI. Run the following command and follow the on-screen instructions. At the end of the

action, you will see the public IP address and the username and password to use:

gcloud compute reset-windows-password prodscgce1

Note the username/password and proceed to the next section. This command shows

the public IP address of the GCE instance as well.

Note You may have to wait for a few minutes before trying to reset the password.
Don’t forget to replace the instance name prodscgce1 with name of the instance
you chose to deploy.

 Pushing a Configuration Over WinRM HTTPS

Since the firewall rules at both the VPC level and the OS level are in place, you can start

by creating a CIM session to the GCE instance.

$cimSessionOptions = New-CimSessionOption -SkipCACheck -SkipCNCheck -UseSsl

-Verbose

$cimsession = New-CimSession -ComputerName 35.229.193.26 -Credential

(Get- Credential) -SessionOption $cimSessionOptions

Chapter 18 DSC anD GooGle ClouD platform

518

Note When specifying credentials, ensure that you prefix the GCe instance host
name with the user name.

This creates a CIM session. Since the WinRM HTTPS listener gets created using

a self-signed certificate, you can work around any certificate checks by using the

-SkipCACheck and -SkipCNCheck parameters with the New-CimSessionOption cmdlet

and use this CIM session option object with the New-CimSession cmdlet.

At this point, if you run the Get-DscConfiguration cmdlet, you should see a message

saying that there is no existing current configuration. This is shown in Figure 18-2.

Figure 18-2. Get-DscConfiguration error

Let’s now compile and enact the following configuration using the CIM session that

you created for the WinRM HTTPS endpoint:

Configuration GCEDemo

{

 param

 (

 [Parameter(Mandatory = $true)]

 [String]

 $NodeName

)

 Import-DscResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

 Node $NodeName

 {

 WindowsFeature WebServer

Chapter 18 DSC anD GooGle ClouD platform

519

 {

 Name = 'Web-Server'

 Ensure = 'Present'

 }

 }

}

GCEDemo -NodeName '35.229.193.26' -OutputPath C:\Scripts\GCE\GCEDemo

Start-DscConfiguration -CimSession $cimsession -Wait -Verbose -Path .\

GCEDemo

When you enact this, the GCE instance receives the configuration MOF and the

web server feature gets configured.

 Pushing a Configuration Over WinRM HTTP

With the WinRM HTTP endpoint, pushing a DSC configuration using Start-

DscConfiguration is just about providing the credentials. For this example, you set the

Ensure property in the above configuration to Absent.

Note Before trying this example, set the TrustedHosts value at wsman:\
localhost\Client to either ‘*’ or the Ip address of the GCe instance.

Configuration GCEDemo

{

 param

 (

 [Parameter(Mandatory = $true)]

 [String]

 $NodeName

)

 Import-DscResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

Chapter 18 DSC anD GooGle ClouD platform

520

 Node $NodeName

 {

 WindowsFeature WebServer

 {

 Name = 'Web-Server'

 Ensure = 'Absent'

 }

 }

}

GCEDemo -NodeName '35.229.193.26' -OutputPath C:\Scripts\GCE\GCEDemo

Start-DscConfiguration -Wait -Verbose -Path .\GCEDemo -Credential

(Get- Credential)

This is it really.

 Enact During a GCE Instance Startup
You saw how to use the startup scripts in the previous example. Let’s use the same

mechanism to directly enact a DSC configuration. Here is the configuration document

that you will enact as a startup script:

Configuration GCEDemo

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

 Node 'localhost'

 {

 WindowsFeature WebServer

 {

 Name = 'Web-Server'

 Ensure = 'Present'

 }

 }

}

Chapter 18 DSC anD GooGle ClouD platform

521

GCEDemo -OutputPath "$env:Temp\GCEDemo"

Start-DscConfiguration -Wait -Verbose -Path "$env:Temp\GCEDemo"

Save this as startupConfig.ps1 and upload it to a public location accessible from

your GCE instance. Once again, I chose to do this as a gist on GitHub.

$projectID = 'prodsc-gcp-01'

$disk = Get-GceImage -Project 'windows-cloud' -Family 'windows-2016'

$config = New-GceInstanceConfig 'prodscgce2' `

 -MachineType 'n1-standard-1' `

 -BootDiskImage $disk `

 -Metadata @{ "windows-startup-script-url" = "https://gist.

githubusercontent.com/rchaganti/feaf23ade96269925c6ddf97ee757f28/raw/55

99e91f15cf76d9c1bb6ad3aaa036fe67f89928/startupConfig.ps1" } `

 -Tag $winrmhttpsTag

$gceInstance = $config | Add-GceInstance -Project $projectID

This command will create a new GCE instance and attach the winrmhttps network

tag for enabling inbound WinRM HTTPS traffic to the instance. At the end of the instance

creation, startupConfig.ps1 gets executed and completes the web server feature install.

The output from this can be seen in the serial port 1 (console) log in the Google Cloud

console. Figure 18-3 shows this.

Note this may take a while since the oS activation has to complete.

Chapter 18 DSC anD GooGle ClouD platform

522

Since you enabled inbound WinRM HTTPS traffic, you should be able to retrieve the

current configuration on the GCE instance.

$cimSessionOptions = New-CimSessionOption -SkipCACheck -SkipCNCheck -UseSsl

-Verbose

$cimsession = New-CimSession -ComputerName 35.194.248.7 -Credential

(Get- Credential) -SessionOption $cimSessionOptions

Get-DscConfiguration -CimSession $cimsession

Note You will have to reset and retrieve the GCe instance credentials using the
gcloud ClI, as you saw earlier.

The current configuration of the GCE instance is shown in Figure 18-4.

Figure 18-3. Serial console log showing the startupConfig.ps1 enact

Chapter 18 DSC anD GooGle ClouD platform

523

If your configuration requires custom DSC resource modules, you should add the

Install-Module cmdlet or other means of downloading and installing the modules on

the GCE instance to the startup script.

Since you have the configuration document as a startup script, the script gets run

every time the instance reboots. You can remove the startup script from the metadata

using the following code snippet:

$projectID = 'prodsc-gcp-01'

$gceInstance = Get-GceInstance -Name prodscgce2 -Project $projectID

Set-GceInstance -Object $gceInstance -RemoveMetadata 'windows-startup-

script-url'

 On-Boarding a GCE Instance to AA DSC Pull Service
The final method to explore here is to on-board the GCE instances to the AA DSC pull

service. This can be done using the startup script as well.

Note on-boarding a GCe instance to the aa DSC pull service is not free. there
is a per-node cost associated with this service. See the azure automation pricing
information in your region.

You can follow the instructions in the “Setting Up Azure Automation” section

in Chapter 17 to create a new Azure Automation account. Once you have an Azure

Automation account, you can publish the node configuration to AA DSC.

Figure 18-4. Current configuration on the GCE instance

Chapter 18 DSC anD GooGle ClouD platform

524

You will use one of the earlier configuration scripts you created. Save the following

configuration script as webserver.ps1:

Configuration WebServer

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

 Node 'localhost'

 {

 WindowsFeature WebServer

 {

 Name = 'Web-Server'

 Ensure = 'Present'

 }

 }

}

Once the script is saved locally, run the Import- AzureRmAutomationDscConfiguration

cmdlet to publish this script as a node configuration:

Import-AzureRmAutomationDscConfiguration -AutomationAccountName 'ProDscAA'

-ResourceGroupName $resourceGroupName -SourcePath C:\Scripts\GCE\webserver.

ps1 -Published

This published configuration can be compiled using the Start- AzureRmAutomation

DscCompilationJob cmdlet as shown below:

Start-AzureRmAutomationDscCompilationJob -ConfigurationName 'webserver'

-ResourceGroupName $resourceGroupName -AutomationAccountName 'ProDscAA'

Now that you have a compiled configuration in the AA DSC service, you can on- board

the GCE instance using a startup script. Before you can do that, you need the AA DSC pull

service endpoint URL and the registration key. You can gather these details using the

Get-AzureRmAutomationRegistrationInfo cmdlet:

$registrationInfo = Get-AzureRmAutomationRegistrationInfo

-ResourceGroupName $resourceGroupName -AutomationAccountName 'ProDSCAA'

Chapter 18 DSC anD GooGle ClouD platform

525

The Endpoint and PrimaryKey properties of $registrationInfo will be used in the

meta configuration document. Here is the meta configuration document. You will use it

as the startup script. Therefore, save this locally as GceMetaConfig.ps1.

[DscLocalConfigurationManager()]

Configuration GCEDscMetaConfig

{

 param

 (

 [Parameter(Mandatory = $true)]

 [String]

 $RegistrationUrl,

 [Parameter(Mandatory = $True)]

 [String]

 $RegistrationKey,

 [Parameter(Mandatory = $true)]

 [String[]]

 $ConfigurationNames

)

 Node localhost

 {

 Settings

 {

 RefreshMode = 'Pull'

 }

 ConfigurationRepositoryWeb AzureAutomationDSC

 {

 ServerUrl = $RegistrationUrl

 RegistrationKey = $RegistrationKey

 ConfigurationNames = $ConfigurationNames

 }

Chapter 18 DSC anD GooGle ClouD platform

526

 ResourceRepositoryWeb AzureAutomationDSC

 {

 ServerUrl = $RegistrationUrl

 RegistrationKey = $RegistrationKey

 }

 ReportServerWeb AzureAutomationDSC

 {

 ServerUrl = $RegistrationUrl

 RegistrationKey = $RegistrationKey

 }

 }

}

$Params = @{

 RegistrationUrl = 'Endpoint-URL-Here'

 RegistrationKey = 'Registration-Key-Here'

 ConfigurationNames = 'webserver.localhost'

 OutputPath = "$env:TEMP\MetaConfig"

}

GCEDscMetaConfig @Params

Set-DscLocalConfigurationManager -Path "$env:TEMP\MetaConfig" -Verbose

Note In this script, replace the values of RegistrationURL and
RegistrationKey to match your azure automation account details.

Since this startup script contains sensitive information such as the endpoint URL

and registration key, you don’t want to upload this to a public location. Instead, put it in

a Google storage bucket and assign the appropriate permissions to the compute default

service account so that you can use this script in the GCS bucket to perform the node

meta configuration.

Chapter 18 DSC anD GooGle ClouD platform

527

 Configuring Service Account Permissions

For the demo purpose here, you can grant the default compute service account in the

project storage object admin permissions so that the GCE instance can download the

script from a storage bucket and execute it. This can be done using the cmdlets in the

Google Cloud PowerShell module.

#Grant service account storage viewer role

$projectID = 'prodsc-gcp-01'

$project = (Get-GcpProject -Name $projectID).Where({$_.LifecycleState -eq

'ACTIVE'})

$defaultSvcAccount = "$($project.ProjectNumber)-compute@developer.

gserviceaccount.com"

$null = Add-GcIamPolicyBinding -Project $projectID -ServiceAccount

$defaultSvcAccount -Role roles/storage.objectAdmin

$svcAccount = New-GceServiceAccountConfig -Email $defaultSvcAccount

Once these permissions are in place, you can create the instance.

 Creating a GCS Bucket and Uploading the Meta Configuration
Script

The next step is to create the GCS bucket for uploading the meta configuration script and

assigning the right permissions.

#Create a GCS bucket

$bucketName = 'prodscscripts'

$objectName = 'gcemetaconfig.ps1'

New-GcsBucket -Name $bucketName -Project $projectID -DefaultBucketAcl

ProjectPrivate -DefaultObjectAcl BucketOwnerFullControl

$startupScript = New-GcsObject -Bucket $bucketName -ObjectName $objectName

-File C:\scripts\GCE\GCeMetaConfig.ps1 -Force

This will create the GCS bucket and upload the meta configuration document at

C:\Scripts\GCE to the GCS bucket as gcemetaconfig.ps1.

Chapter 18 DSC anD GooGle ClouD platform

528

 Creating a GCE Instance and Enacting the Meta Configuration

As in the previous sections, you will use the Google Cloud PowerShell cmdlets to create

an instance that uses a script located in the GCS bucket as the startup script.

$config = New-GceInstanceConfig 'prodscgce3' `

 -MachineType 'n1-standard-1' `

 -BootDiskImage $disk `

 -Metadata @{ "windows-startup-script-url" =

"gs://$bucketName/$objectName" } `

 -Tag $winrmhttpsTag `

 -ServiceAccount $svcAccount -Verbose

$gceInstance = $config | Add-GceInstance -Project $projectID

In this code snippet, you use the default compute service account to which you

have given the storage object administrator permission and use gs://prodscscripts/

gcemetaconfig.ps1 as the Windows startup script URL. This method can be used with

node configurations that contain sensitive strings as well.

Once the GCE instance is created, the meta configuration in gcemetaconfig.ps1 gets

enacted. This is shown in Figure 18-5.

Figure 18-5. Partial output from GCE instance serial console logs

Chapter 18 DSC anD GooGle ClouD platform

529

Figure 18-6 shows that the GCE instance is registered as the AA DSC pull service.

Figure 18-6. GCE instance in the AA DSC pull service

Note once again, the startup script will execute every time the instance reboots.
therefore, once the initial run is successful, you can remove the startup script
using the -RemoveMetadata parameter of the Set-GceInstance cmdlet.

The instance eventually pulls the webserver.localhost configuration and enacts it.

The node configuration status can be seen on the Azure Portal or can be verified using

the Azure Automation PowerShell cmdlets.

 Summary
In this chapter, you learned how to create and configure GCE instances. For the most

part, you used the Google Cloud PowerShell cmdlets but you also saw a few examples of

using the gcloud CLI too. This chapter is not an in-depth guide to GCE or Google Cloud;

you only looked at three different methods for using DSC with GCE instances. Google

Cloud supports deployment of GCE instances using Google Cloud deployment manager

templates written in Python or Jinja2; this is outside the scope of this chapter and this

book. What you learned in this chapter with regards to using the startup scripts will still

be applicable in templates as well.

Chapter 18 DSC anD GooGle ClouD platform

531
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_19

CHAPTER 19

Amazon Web Services
and DSC
In the two pervious chapters, you learned how to use PowerShell Desired State

Configuration with Windows instances running on Azure and Google Cloud services.

You learned how the Azure Automation DSC service can help with both cloud and on-

premises instances of Windows systems. In this chapter, you will learn how to use DSC

with AWS Elastic Compute 2 (EC2) instances.

 Lab Requirements
To try the examples and exercises in this chapter, you will need at minimum two or

more EC2 Windows instances with Windows Server 2008 R2 or above with WMF 5.1

or above installed. I recommend Windows Server 2016 instances. If you do not have

an AWS account, you can create one for free and subscribe to the free tier. Your credit

card won’t be charged as long as you stay within the free tier limits. The examples and

exercises in this chapter do not need anything more than what is available in the AWS

free tier. This chapter does not include any instructions for creating EC2 instances. If you

are completely new to AWS, I recommend first looking at the AWS EC2 documentation

to understand how to provision EC2 virtual machines. You will also need the

AWSPowerShell module to deploy the CloudFormation (CFN) templates and invoke EC2

Systems Manager Run commands.

There are multiple methods through which you can use DSC in the AWS cloud. You

can deploy the pull server infrastructure within AWS EC2 and on-board all other EC2

instances to this pull server infrastructure. This is no different from how you do it on-

premises. Whatever you learned in Chapter 8 should be sufficient to set up a pull server

infrastructure in AWS. You can simply push a configuration to an EC2 instance with an

532

assumption that you have public IP attached to the instance and you have the necessary

security groups and firewall rules enabled. You will see this as the first method in this

chapter.

You can also on-board AWS EC2 instances Azure Automation DSC (AA DSC) like the

on-premises virtual machines or physical servers. You will see an example of this and

what other tooling is available to perform this.

You can also use the CloudFormation templates to provision an EC2 instance and

bootstrap it with the necessary configuration. You will see this as well in this chapter.

You can also use EC2 Systems Manager capabilities such as the Run command to push

a configuration into an EC2 Windows instance. I will discuss this in detail in this chapter.

Let’s start!

 Push a Configuration to an EC2 Instance
To be able to remotely push configurations to an EC2 instance, you must have the

following prerequisites configured.

• The EC2 instance should be configured to allow inbound WinRM

HTTP or HTTPS traffic. This can be done by adding new security

group rules on the EC2 instance. See Figure 19-1

Figure 19-1. EC2 instance security groups

• There should be a firewall rule to allow remote WSMAN traffic. This

can be achieved by running the following command in the EC2

instance guest OS:

Set-NetFirewallRule -Name WINRM-HTTP-In-TCP-PUBLIC -RemoteAddress Any

Chapter 19 amazon Web ServiCeS and dSC

533

If these prerequisites are already met, you can compile and enact a configuration

remotely using the Start-DscConfiguration cmdlet. Here is the sample configuration

that you will enact on an EC2 instance:

Note Using a Winrm httpS endpoint is the most recommended method for
pushing dSC configurations remotely. however, this requires setting up an httpS
listener with certificates. this is not in the scope of this chapter.

$ec2Name = 'ec2-18-218-88-255.us-east-2.compute.amazonaws.com'

Configuration WebServer

{

 param

 (

 [Parameter(Mandatory = $true)]

 [String]

 $NodeName

)

 Node $NodeName

 {

 WindowsFeature WebServer

 {

 Name = 'Web-Server'

 Ensure = 'Present'

 }

 }

}

WebServer -NodeName $ec2Name

This configuration can be compiled and enacted using:

Start-DscConfiguration -Path .\WebServer -Credential (Get-Credential) -Wait

-Verbose

Chapter 19 amazon Web ServiCeS and dSC

534

It is important that you pass the credentials to authenticate to the EC2 instance to

start the enact. You may have to configure the TrustedHosts property of the WinRM

client to ensure that you can successfully enact the configuration remotely. This can be

done by using the Set-Item cmdlet on the WSMAN:\Localhost\Client\TrustedHosts

property and set it to either a specific EC2 instance DNS name or * (less secure).

Note the password needed to authenticate with the eC2 instance can be
retrieved using the key-pair created during the instance creation.

 On-Board EC2 Instances to AA DSC
In Chapter 17, you looked at the AA DSC service in depth. You used it to on-board

both VMs running in the Azure cloud and an on-premises data center infrastructure.

It is possible to on-board EC2 Windows instances on Amazon Web Services to Azure

Automation DSC. These EC2 instances can be treated like on-premises systems and can

simply perform the meta configuration changes to on-board them to AA DSC. Let’s look

at an example of this meta configuration:

Note Keep in mind that aa dSC service is not free for non-azure machines.
refer to the pricing information before you decide to use aa dSC for configuration
management of aWS eC2 instances.

[DscLocalConfigurationManager()]

Configuration AWSEC2MetaConfig

{

 param

 (

 [Parameter(Mandatory = $true)]

 [String]

 $RegistrationUrl,

 [Parameter(Mandatory = $true)]

 [String]

 $RegistrationKey,

Chapter 19 amazon Web ServiCeS and dSC

535

 [Parameter(Mandatory = $true)]

 [String[]]

 $ConfigurationNames,

 [Parameter(Mandatory = $true)]

 [String[]]

 $NodeName

)

 Node $NodeName

 {

 Settings

 {

 RefreshMode = 'PULL'

 }

 ConfigurationRepositoryWeb AADSCConfigWeb

 {

 ServerUrl = $RegistrationUrl

 RegistrationKey = $RegistrationKey

 ConfigurationNames = $ConfigurationNames

 }

 }

}

This meta configuration document has three parameters to provide the AA DSC

registration URL, registration keys, and the configuration names that will be pulled from

the AA DSC service. From Chapter 17, you already know how to gather the registration

URL and key from the AA DSC service. To use the Set-DscLocalConfigurationManager

cmdlet remotely to push the meta configuration, the same prerequisites as in the

previous section must be met.

Once these prerequisites are met, you can compile and remotely enact the meta

configuration using the Set-DscLocalConfigurationManager cmdlet. See Figure 19-2.

AWSEC2MetaConfig -RegistrationUrl 'https://cid-agentservice-prod-1.azure-

automation.net/accounts/78373be3-84aa-432b-8be6-5dcbeae5eff2' `

 -RegistrationKey 'keEiP98x6pNKaGwi1pJITEgzNgcneDQZwBxR+J5I

jKZqPf6t19KGgVRI2beAvVPFtypVQNEb0mKJtRq9pSX+2w==' `

Chapter 19 amazon Web ServiCeS and dSC

536

 -ConfigurationNames 'WebServer.localhost' `

 -NodeName 'ec2-13-59-154-158.us-east-2.compute.amazonaws.com'

Set-DscLocalConfigurationManager -Path .\AWSEC2MetaConfig -Verbose

-Credential (Get-Credential) -Force

Note the configuration names specified as an argument to the
-ConfgurationNames parameter should exist as compiled configurations in aa dSC.

Figure 19-2. Meta configuration enact

Once this meta configuration is complete, you can see the node listed in the AA DSC

service. See Figure 19-3.

Figure 19-3. The on-boarded AWS EC2 node

Chapter 19 amazon Web ServiCeS and dSC

537

This node will eventually complete the pending configuration, and the state of

the configuration can be seen in the Azure portal. The PowerShell team at Microsoft

started developing a module to help on-board EC2 instances to the AA DSC pull service.

It is available in the PowerShell gallery as AwsDscToolkit and it is open sourced on

GitHub (https://github.com/PowerShell/AwsDscToolkit). There is no significant

development on this module. As an exercise, you can try this module to on-board EC2

instances to the AA DSC pull service. This module uses the EC2 Systems Manager Run

commands. You will learn about EC2 Run commands towards the end of this chapter.

 DSC Configuration Using CloudFormation
AWS CloudFormation provides a template-based method to describe and provision

AWS resources. These templates can be in a JSON or YAML format. The following code

snippet provides the basic syntax of an AWS CloudFormation JSON template:

{

 "AWSTemplateFormatVersion": "version date",

 "Description": "JSON string",

 "Metadata": {

 templatemetadata

 },

 "Parameters": {

 setofparameters

 },

 "Mappings": {

 setofmappings

 },

 "Conditions": {

 setofconditions

 },

 "Resources": {

 setofresources

 },

Chapter 19 amazon Web ServiCeS and dSC

https://github.com/PowerShell/AwsDscToolkit

538

 "Outputs": {

 setofoutputs

 }

}

Within the CFN templates, you can use the cfn-init script to enact the DSC

configuration. But, before that, you need to package the configuration scripts in a ZIP file

and ensure that it is available at a location that can be accessed using CloudFormation

for deploying the stack. Here is the basic configuration for the Web-Server Windows

feature:

Configuration WebServerDemo

{

 WindowsFeature WebServer

 {

 Name = 'Web-Server'

 IncludeAllSubFeature = $true

 Ensure = 'Present'

 }

}

if (-not (test-path C:\Temp))

{

 $null = New-Item -Path C:\temp -ItemType Directory

}

WebServerDemo -OutputPath C:\Temp\WebServerDemo

Start-DscConfiguration -Path C:\Temp\WebServerDemo -Force -Wait -Verbose

This configuration document is used for setting the web server after an EC2 instance

is created. You also need a tear-down script to remove the configuration when the stack

is deleted. For the tear-down action, you simply set Ensure to Absent in the configuration

script:

Configuration WebServerDemoTearDown

{

 WindowsFeature WebServer

Chapter 19 amazon Web ServiCeS and dSC

539

 {

 Name = 'Web-Server'

 IncludeAllSubFeature = $true

 Ensure = 'Absent'

 }

}

WebServerDemo -OutputPath C:\Temp

Start-DscConfiguration -Path C:\Temp\WebServerDemoTearDown -Force -Wait

-Verbose

Finally, you also need a script to set up the firewall rules to allow inbound WinRM

HTTP ports:

Set-NetFirewallRule -Name WINRM-HTTP-In-TCP-PUBLIC -RemoteAddress Any

Save these scripts as .PS1 files and package them into a zip archive and upload it to

an Internet location that is accessible to the CloudFormation deployment engine. I chose

to upload this to a public GitHub repository. Since this is not a book on CloudFormation

templates, let’s jump directly to the template that deploys the EC2 instance and enacts a

DSC configuration. I will discuss a few components within this template.

{

 "AWSTemplateFormatVersion": "2010-09-09",

 "Description": "A template to deploy a web server using DSC bootstrap

from a Github repository.",

 "Parameters": {

 "BootstrapperScript": {

 "Description": "The URL to a ZIP file containing the PowerShell

script package to bootstrap EC2 instance in this CloudFormation

template.",

 "Type": "String",

 "Default": "https://github.com/rchaganti/cfnDSC/raw/master/

WebServerDSCBootstrap.zip"

 },

 "KeyPairName": {

 "Description": "The EC2 key pair used to launch web instance",

 "Type": "AWS::EC2::KeyPair::KeyName",

Chapter 19 amazon Web ServiCeS and dSC

540

 "Default": "DSCInstance"

 },

 "WebserverImageId": {

 "Description": "The EC2 AmiId to use for web",

 "Type": "String",

 "Default": "ami-89cce7ec"

 },

 "WebserverInstanceType": {

 "Description": "The EC2 instance type to use for web",

 "Type": "String",

 "Default": "t2.micro"

 }

 },

 "Resources": {

 "WebSecurityGroup": {

 "Type": "AWS::EC2::SecurityGroup",

 "Properties": {

 "GroupDescription": "Allow inbound HTTP, RDP, and WinRM HTTP",

 "SecurityGroupIngress": [

 {

 "IpProtocol": "tcp",

 "FromPort": "80",

 "ToPort": "80",

 "CidrIp": "0.0.0.0/0"

 },

 {

 "IpProtocol": "tcp",

 "FromPort": "3389",

 "ToPort": "3389",

 "CidrIp": "0.0.0.0/0"

 },

 {

 "IpProtocol": "tcp",

 "FromPort": "5985",

 "ToPort": "5985",

 "CidrIp": "0.0.0.0/0"

Chapter 19 amazon Web ServiCeS and dSC

541

 }

]

 }

 },

 "DSCWebServer": {

 "Type": "AWS::EC2::Instance",

 "Metadata": {

 "AWS::CloudFormation::Init": {

 "config": {

 "sources": {

 "c:\\cfn\\Zephyr\\Scripts": {

 "Ref": "BootstrapperScript"

 }

 },

 "files": {

 "c:\\cfn\\cfn-hup.conf": {

 "content": {

 "Fn::Join": [

 "",

 [

 "[main]\n",

 "stack=",

 {

 "Ref": "AWS::StackId"

 },

 "\n",

 "region=",

 {

 "Ref": "AWS::Region"

 },

 "\n"

]

]

 }

 },

Chapter 19 amazon Web ServiCeS and dSC

542

 "c:\\cfn\\hooks.d\\cfn-auto-reloader.conf": {

 "content": {

 "Fn::Join": [

 "",

 [

 "[cfn-auto-reloader-hook]\n",

 "triggers=post.update\n",

 "path=Resources.DSCWebServer.Metadata.

AWS::CloudFormation::Init\n",

 "action=cfn-init.exe -v -s ",

 {

 "Ref": "AWS::StackId"

 },

 " -r DSCWebServer",

 " --region ",

 {

 "Ref": "AWS::Region"

 },

 "\n"

]

]

 }

 },

 "c:\\cfn\\hooks.d\\cfn-teardown.conf": {

 "content": {

 "Fn::Join": [

 "",

 [

 "[cfn-teardown-hook]\n",

 "triggers=post.remove\n",

 "path=Resources.DSCWebServer.Metadata.

AWS::CloudFormation::Init\n",

 "action=powershell.exe -Command C:\\cfn\\Zephyr\\

Scripts\\Teardown.ps1\n"

]

Chapter 19 amazon Web ServiCeS and dSC

543

]

 }

 }

 },

 "commands": {

 "00-set-execution-policy": {

 "command": "powershell.exe -Command Set-ExecutionPolicy

Unrestricted -Force",

 "waitAfterCompletion": "0"

 },

 "01-set-firewall-rule": {

 "command": "powershell.exe -Command C:\\cfn\\Zephyr\\

Scripts\\ConfigureFirewall.ps1",

 "waitAfterCompletion": "0"

 },

 "02-configure-webserver": {

 "command": "powershell.exe -Command C:\\cfn\\Zephyr\\

Scripts\\WebServerDSCBootstrap.ps1",

 "waitAfterCompletion": "0"

 }

 },

 "services": {

 "windows": {

 "cfn-hup": {

 "enabled": "true",

 "ensureRunning": "true",

 "files": [

 "c:\\cfn\\cfn-hup.conf",

 "c:\\cfn\\hooks.d\\cfn-auto-reloader.conf"

]

 }

 }

 }

 }

 }

 },

Chapter 19 amazon Web ServiCeS and dSC

544

 "Properties": {

 "ImageId": {

 "Ref": "WebserverImageId"

 },

 "InstanceType": {

 "Ref": "WebserverInstanceType"

 },

 "SecurityGroups": [

 {

 "Ref": "WebSecurityGroup"

 }

],

 "KeyName": {

 "Ref": "KeyPairName"

 },

 "UserData": {

 "Fn::Base64": {

 "Fn::Join": [

 "",

 [

 "<script>\n",

 "cfn-init.exe -v -s ",

 {

 "Ref": "AWS::StackId"

 },

 " -r DSCWebServer",

 " --region ",

 {

 "Ref": "AWS::Region"

 },

 "\n",

 "</script>"

]

]

 }

Chapter 19 amazon Web ServiCeS and dSC

545

 }

 }

 }

 }

}

In this template are four parameters with default values already set.

• BootStrapperScript takes the argument to the location where the

configuration zip archive is available.

• KeyPairName is the key pair that will be used to encrypt and decrypt

login information. This needs to be pre-provisioned in the region

where you want to deploy the EC2 instance.

• WebServerImageId is the AMI image identifier within the region

where you plan to deploy the CFN template.

• WebserverInstanceType is the instance type of an AWS instance that

needs to be deployed.

Within this template is a resource named DSCWebServer. Within this resource’s

metadata is the CloudFormation configuration that defines what commands need to be

run at the of EC2 instance creation. Within this are the scripts for configuring the firewall

and compiling and enacting the web server configuration. Save this template as a JSON file.

To deploy this CFN template, you use the commands in the AWSPowerShell module.

Note if you do not have the aWS PowerShell module, you can use Install-
Module -Name AWSPowerShell to install it from the powerShell gallery.

the aWS credentials such as access Key and Secret Key can be retrieved from the
aWS console by going to Users in the navigation pane.

#Set AWS Credentials

Set-AWSCredential -AccessKey 'accessKey' -SecretKey 'secretKey'

#Set Default AWS region

Set-DefaultAwsRegion -Region us-east-2

Chapter 19 amazon Web ServiCeS and dSC

546

#Validate a CFN template

$templateBody = Get-Content -Path .\cfnTemplate.json -raw

Test-CFNTemplate -TemplateBody $templateBody

#Deploy a CFN template

$parameters = @(

 @{

 ParameterKey = "KeyPairName"

 ParameterValue = "DSCInstance"

 },

 @{

 ParameterKey = "WebserverInstanceType"

 ParameterValue = "t2.micro"

 },

 @{

 ParameterKey = "BootstrapperScript"

 ParameterValue = "https://github.com/rchaganti/cfnDSC/raw/master/

WebServerDSCBootstrap.zip"

 },

 @{

 ParameterKey = "WebserverImageId"

 ParameterValue = "ami-89cce7ec"

 }

)

New-CfnStack -StackName DscCfnStack -TemplateBody $templateBody -Parameter

$parameters -Verbose

Note the ami identifier may be different between different aWS regions. verify
that the ami identifier is for the region you are deploying.

In this snippet, the first command sets the AWS credentials to access the AWS

resources and deploy the CFN template. The $parameters variable specifies the

arguments needed for the template parameters. You will have to update these

parameters as needed before trying out this example. When the New-CFNStack cmdlet is

executed, a new stack deployment gets initiated and completes in a few minutes.

Chapter 19 amazon Web ServiCeS and dSC

547

Once the deployment is complete, you can use the Get-DscConfiguration cmdlet

to check if the node configuration completed successfully or not. The CFN command

execution might take a few minutes before you see the enacted configuration in the

Get- DscConfiguration output, shown in Figure 19-4.

$ec2Name = 'amazonInstanceDnsName'

$cimSessionOption = New-CimSessionOption -Protocol Wsman

$cimSession = New-CimSession -SessionOption $cimSessionOption -ComputerName

$ec2Name -Port 5985 -Credential (Get-Credential)

Get-DscConfiguration -CimSession $cimSession

Note in this code snippet, replace the value of $ec2Name with the public dnS
name of the eC2 instance you created.

Figure 19-4. Output from Get-DscConfiguration

In this code snippet, the creation of a CIM session is mandatory since you need to

authenticate to the EC2 instance, and when using the –CimSession parameter with the

Start-DscConfiguration cmdlet, there is no option to pass the credentials.

Chapter 19 amazon Web ServiCeS and dSC

548

 Using the EC2 Systems Manager Run Command
One more way to enact DSC configurations is to use the EC2 Systems Manager Run

command. The EC2 Systems Manager provides interfaces to view the operational data

from across different AWS services and provides methods to automate operational

tasks. The Systems Manager service allows management of services running in the AWS

cloud as well as systems running on-premises. The Systems Manager supports secure

execution of remote tasks using the Run command interfaces. The Run command uses

artifacts called documents to execute the remote tasks, and there are many predefined

public documents already present in AWS. In this section, you will use the AWS-

RunPowerShellScript document. You can gather more information about this document

using the Get-SSMDocumentDescription cmdlet in the AWSPowerShell module.

Note a list of available SSm documents can be seen by running the Get-
SSMDocumentList cmdlet.

Figure 19-5. AWS-RunPowerShellScript document description

As seen in Figure 19-5, there are three parameters available in this document and

commands is the only required parameter. The Send-SSMCommand cmdlet is used to invoke

a remote task.

Chapter 19 amazon Web ServiCeS and dSC

549

Note before running an SSm command, ensure that the eC2 has an associated
iam role.

Let’s look at an example:

$commandBlock = @'

$scripts = 'https://github.com/rchaganti/cfnDSC/raw/master/

WebServerDSCBootstrap.zip'

if (-not (Test-Path -Path C:\Temp))

{

 $null = New-Item -Path C:\Temp -ItemType Directory -Force -Verbose

}

#Download the scripts archive

$archivePath = 'C:\temp\WebServerDSCBootstrap.zip'

Invoke-WebRequest -Uri $scripts -OutFile $archivePath -Verbose

#Expand the achive

Add-Type -assembly "system.io.compression.filesystem"

[io.compression.zipfile]::ExtractToDirectory($archivePath, 'C:\Temp')

Set-Location -Path C:\Temp

.\ConfigureFirewall.ps1

.\WebServerDSCBootstrap.ps1

Start-DscConfiguration -Path C:\Temp\WebServerDemo -wait -Verbose

'@

$instanceID = 'i-0cd0a54070119de93'

$configCommand = Send-SSMCommand -instanceId $instanceID `

 -DocumentName AWS-RunPowerShellScript `

 -Comment 'DSC configuration onboarding

using SSM Command' `

 -Parameter @{'commands'=@($commandBlock)}

-Verbose

Chapter 19 amazon Web ServiCeS and dSC

550

Note the instance id of the eC2 instance can be retrieved using the
Get- EC2Instance cmdlet.

This code snippet is a script block that you run on the EC2 instance using the SSM

command. This command takes a few minutes to complete and the status can be

monitored using the Get-SSMCommand cmdlet. See Figure 19-6.

Figure 19-6. SSM command progress

Since you are using the same scripts as in the CFN template, once this SSM command

is complete, you should be able to use the Get-DscConfiguration command remotely to

gather the current configuration status from the EC2 instance. You saw how to do this in

the earlier section.

 Summary
In this chapter, you learned how to push a configuration to an EC2 instance remotely,

on-board EC2 instances to the Azure Automation DSC service, use CloudFormation

templates to bootstrap DSC configurations, and use the EC2 Systems Manager Run

command to execute PowerShell scripts that contain DSC configurations as remote

tasks. Depending on what level of security group and OS firewall rules can be changed,

you have a choice of different methods here. I personally prefer the CloudFormation

Chapter 19 amazon Web ServiCeS and dSC

551

templates because they allow us to define the entire infrastructure needed along with

EC2 instances in a single version-controlled document that is idempotent and reusable.

The EC2 Systems Manager Parameter store can be used to supply parameters to the

DSC configuration documents or any scripts in general whether you are using the Run

command or CFN templates. I will leave this to you as an exercise to try a few CFN

templates that use values from the parameter store. Mind you, the parameter store only

supports three type values. So, there is not much choice there.

Chapter 19 amazon Web ServiCeS and dSC

553
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9_20

CHAPTER 20

DSC with Containers
Containers have existed for a while in the Linux world; now with Windows 10 and

Windows Server 2016 containers have entered the Microsoft Windows world too.

Containers accelerate application development, testing, and deployment and are

useful in the dynamic data center and cloud environments where DevOps practices are

implemented. You can get an application from a development environment to production

in a completely automated way by building the container images in the development

stage and then shipping the same image through validation and finally to production. The

configuration needed for the application to work can be packaged into the image itself. In

this chapter, you will explore how to use DSC with Windows containers using Server Core.

 Lab Requirements
To try the examples and exercises in this chapter, you will need at minimum two or

more systems with Windows Server 2016 or above or Windows 10 Fall Creators Update

(FCU) and above. Container images require that the container host is running the most

recent Windows updates. Therefore, ensure that you have a system with the most recent

Windows updates installed.

 Getting Started with Windows Containers
Starting in Windows Server 2016, containers are a built-in OS feature. This feature

can be installed using the Install-WindowsFeature cmdlet. However, the next step,

which requires you to install the Microsoft Docker Provider, installs this feature for you

automatically.

Install-Module -Name DockerMsftProvider -Repository PSGallery -Force

Install-Package -Name docker -ProviderName DockerMsftProvider

554

Restart the system after the Docker package has been installed. At this point, this

system acts as the container host on which container images can be deployed.

After the restart, verify that the docker service is running by executing the following

command and you should see that the service is in the running state, as shown in

Figure 20-1.

Get-Service -name Docker

Figure 20-1. Docker service on the container host

Running the following command shows the version of the docker server and client

on the container host. This is shown in Figure 20-2.

docker version

Figure 20-2. Docker client and server versions

At this point, you are ready to download and run container images. By default,

there won’t be container images on the host. This can be verified by running the docker

images command.

Chapter 20 DSC with ContainerS

555

 Pulling Container Images
The docker pull command can be used to download the supported Windows Container

images. Since I am using Windows Server 2016 as the container host, I can pull both

Server Core and Nano Server container images from the docker hub registry.

docker pull microsoft/windowsservercore

The above command downloads the Windows Server Core container image from the

Docker hub; it will take a while to download the 10GB image. The result of this is shown

in Figure 20-3.

Figure 20-3. Pulling a Windows Server Core image

Once the image is pulled, you can use it to start a container from this image. You

will start the container to run in the background. However, given the Docker container

execution model, the container will be stopped if there is no synchronous process inside

the container. You can work around this by using a simple PowerShell sleep command.

docker container run -d --name winservercore microsoft/windowsservercore

powershell.exe -command {while(1) {sleep 1000}}

This starts the container named winservercore. This is shown in Figure 20-4.

Figure 20-4. Running Windows Server Core Container

Chapter 20 DSC with ContainerS

556

Before you proceed, let’s gather some container configuration settings. This can be

done using the docker inspect command.

$containerID = (docker ps -aqf "name=winservercore")

$container = (docker inspect $containerID) | ConvertFrom-Json

The docker inspect command takes the Container ID as the argument. You already

know this from the output in Figure 20-4. This command gives you a JSON string. Using

the ConvertFrom-Json cmdlet you convert it to a PS object.

Figure 20-5 shows the host name retrieved as a part of the $container.Config

object.

Figure 20-5. Container host name and other configuration

Note By default, the host name of the container will be the same as the container
iD. But make it a practice to always retrieve it using docker inspect. this will
be helpful when you have configurations that change the host name.

At this point, you know that your container is running and you know the host name.

You can try the Test-WsMan cmdlet to ensure that the WinRM service is running. The

result of this is shown in Figure 20-6.

Test-WSMan -ComputerName $container.Config.Hostname

Chapter 20 DSC with ContainerS

557

 DSC Configurations in a Container
To be able to push configurations into a container, you need to use the Start-

DscConfiguration. However, the container you created just now is neither domain-

joined nor do you have the administrator user credentials for the container login. For

example, compile the following configuration and try an enact:

$containerID = (docker ps -aqf "name=winservercore")

$container = (docker inspect $containerID) | ConvertFrom-Json

$hostName = $container.Config.Hostname

Configuration ContainerDemo

{

 param

 (

 [Parameter(Mandatory = $true)]

 [String]

 $NodeName

)

 Import-DscResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

 Node $NodeName

 {

 WindowsFeature NET-Framework-45-Core

 {

 Name = 'NET-Framework-45-Core'

 Ensure = 'Present'

 }

 }

}

Figure 20-6. Test-WsMan output

Chapter 20 DSC with ContainerS

558

ContainerDemo -OutputPath C:\scripts\ContainerDemo -NodeName $hostName

Start-DscConfiguration -Path C:\scripts\ContainerDemo -Wait -Verbose

The result of this attempt is shown in Figure 20-7.

Figure 20-7. Error in enact

In fact, you will see a similar error when you try any of the DSC commands against

the container’s host name as the -CimSession argument. In the earlier chapters, for a

normal VM or bare-metal system, you saw that this can be worked around by creating

the CIM session with credentials. However, in this case of containers, you do not have

the administrator credentials handy. So, what are your options here? There are many but

let’s look at the following two options:

• Copy the configuration script into the container and invoke it inside

the container.

• Automate the above method using dockerfiles.

Let’s explore these methods.

 Copy the Configuration and Enact

In this method, you will copy the compiled configuration document into the container

and execute that script remotely from the container host. Here is the configuration

document you will compile and copy into the container:

Configuration ContainerCopyDemo

{

 param

 (

Chapter 20 DSC with ContainerS

559

 [Parameter(Mandatory = $true)]

 [String]

 $NodeName

)

 Import-DscResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

 Node $NodeName

 {

 WindowsFeature NET-Framework-45-Core

 {

 Name = 'NET-Framework-45-Core'

 Ensure = 'Present'

 }

 }

}

ContainerCopyDemo -NodeName 'localhost' -outputPath C:\scripts\

ContainerCopyDemo

Once you have the compiled MOF, you can copy it into the container using a couple

of methods. The first method uses the docker cp command.

docker cp C:\scripts\ContainerCopyDemo\localhost.mof winservercore:/

windows/temp/localhost.mof

Note this command will not work if you are using containers in hyper-V isolation
mode.

The other method is to use a PowerShell remoting session to copy the file.

$containerID = (docker ps -aqf "name=winservercore")

$container = (docker inspect $containerID) | ConvertFrom-Json

$containerSession = New-PSSession -ContainerId $container.Id

-RunAsAdministrator

Chapter 20 DSC with ContainerS

560

Copy-Item -Path C:\scripts\ContainerCopyDemo\localhost.mof -ToSession

$containerSession -Destination C:\Windows\Temp -Force

You can verify if this copied or not using the following command. See the results in

Figure 20-8.

Invoke-Command -ContainerId $container.Id -ScriptBlock { Get-ChildItem

-Path C:\Windows\Temp } -RunAsAdministrator

Figure 20-8. Compiled MOF in the container

The -RunAsAdministrator switch parameter is important since C:\Windows\Temp

can only be accessed by members of the local administrators group. Once you verify this,

you can start an enact docker exec:

docker container exec winservercore powershell -command { Strat-

DscConfiguration -Path C:\Windows\Temp -Wait -Verbose }

Note You need to input the name of the container you used to create the
container.

Or the enact can be started using Invoke-Command:

Invoke-Command -ContainerId $container.Id -ScriptBlock { Start-

DscConfiguration -Path C:\Windows\Temp -Verbose -Wait } -RunAsAdministrator

The result of this enact is shown in Figure 20-9.

Chapter 20 DSC with ContainerS

561

You can now save this container as an image and run it or create new docker

containers from it at a later point. This is done using docker commit. However, unlike

Linux containers, Windows containers cannot be committed to an image unless they are

stopped. So, here are the commands you need to execute in a sequence:

Note to avoid consistency checks within the docker container, you can use the
Remove-DscConfigurationDocument cmdlet with -Stage Current as the
parameter with docker exec, as seen earlier.

docker stop $container.Id

docker commit $container.Id myimages/servercoredsc

 Using a Dockerfile

The above process is rather manual and involves several steps. However, when building

or configuring an infrastructure using release pipelines, it is important to have a rather

automated process. This is where docker build with dockerfiles will be helpful.

Figure 20-9. Enact in the container

Chapter 20 DSC with ContainerS

562

Docker can build images automatically from instructions in a file called a dockerfile.

Think of a dockerfile as an orchestration template that has a bunch of commands that

need to be executed to accomplish a task. Here is the dockerfile for the image and the

configuration you created earlier:

if (-not (Test-Path -Path C:\scripts\dockerbuild))

{

 $null = New-Item -Path C:\scripts\dockerbuild -ItemType Directory

-force

}

@'

FROM microsoft/windowsservercore

ADD containerdsc.ps1 /windows/temp/containerdsc.ps1

RUN powershell.exe -executionpolicy bypass c:\windows\temp\containerdsc.ps1

'@ | Out-File C:\scripts\dockerbuild\Dockerfile -Encoding utf8 -Force

Once the dockerfile is ready, save the following configuration script as

containerdsc.ps1 in the C:\scripts\dockerbuild folder:

Configuration ContainerCopyDemo

{

 param

 (

 [Parameter(Mandatory = $true)]

 [String]

 $NodeName

)

 Import-DscResource -ModuleName PSDesiredStateConfiguration

-ModuleVersion 1.1

 Node $NodeName

 {

 WindowsFeature NET-Framework-45-Core

 {

Chapter 20 DSC with ContainerS

563

 Name = 'NET-Framework-45-Core'

 Ensure = 'Present'

 }

 }

}

ContainerCopyDemo -NodeName 'localhost' -outputPath C:\Windows\Temp

Start-DscConfiguration -Path C:\Windows\Temp -Wait -Verbose -Force

Open a command prompt or PowerShell console and navigate to C:\scripts\

dockerbuild and execute the following command:

docker build.

This will create a docker image from the dockerfile and save it locally. Here is the

output from that process on my system:

PS C:\scripts\dockerbuild> docker build.

Sending build context to Docker daemon 6.144kB

Step 1/3: FROM microsoft/windowsservercore

 ---> 1a599239a62c

Step 2/3: ADD containerdsc.ps1 /windows/temp/containerdsc.ps1

 ---> 036f64eb0f12

Removing intermediate container 0b8e40f872d9

Step 3/3: RUN powershell.exe -executionpolicy bypass c:\windows\temp\

containerdsc.ps1

 ---> Running in b2c0090ddf47

 Directory: C:\Windows\Temp

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 2/24/2018 10:54 PM 2074 localhost.mof

VERBOSE: Perform operation 'Invoke CimMethod' with following parameters,

''methodName' = SendConfigurationApply,'className' =

MSFT_DSCLocalConfigurationManager,'namespaceName' =

root/Microsoft/Windows/DesiredStateConfiguration'.

VERBOSE: An LCM method call arrived from computer B2C0090DDF47 with user sid

S-1-5-93-2-1.

Chapter 20 DSC with ContainerS

564

VERBOSE: [B2C0090DDF47]: LCM: [Start Set]

VERBOSE: [B2C0090DDF47]: LCM: [Start Resource]

[[WindowsFeature]NET-Framework-45-Core]

VERBOSE: [B2C0090DDF47]: LCM: [Start Test]

[[WindowsFeature]NET-Framework-45-Core]

VERBOSE: [B2C0090DDF47]:

[[WindowsFeature]NET-Framework-45-Core] The operation 'Get-WindowsFeature'

started: NET-Framework-45-Core

VERBOSE: [B2C0090DDF47]:

[[WindowsFeature]NET-Framework-45-Core] The operation 'Get-WindowsFeature'

succeeded: NET-Framework-45-Core

VERBOSE: [B2C0090DDF47]: LCM: [End Test]

[[WindowsFeature]NET-Framework-45-Core] in 2.1920 seconds.

VERBOSE: [B2C0090DDF47]: LCM: [Skip Set]

[[WindowsFeature]NET-Framework-45-Core]

VERBOSE: [B2C0090DDF47]: LCM: [End Resource]

[[WindowsFeature]NET-Framework-45-Core]

VERBOSE: [B2C0090DDF47]: LCM: [End Set]

VERBOSE: [B2C0090DDF47]: LCM: [End Set] in 8.6760 seconds.

VERBOSE: Operation 'Invoke CimMethod' complete.

VERBOSE: Time taken for configuration job to complete is 9.849 seconds

 ---> 58a66aa850d5

Removing intermediate container b2c0090ddf47

Successfully built 58a66aa850d5

Once the image is created, it can be seen in the docker images command output.

The image ID for this new docker image is shown at the bottom of the above output as

well. You can now create a new docker container from this image and ensure that the

configuration was enacted by using the Get-DscConfiguration command.

docker container run -it 58a66aa850d5 powershell -command {start-sleep 60;

Get-dscConfiguration}

ConfigurationName : ContainerCopyDemo

DependsOn :

ModuleName : PSDesiredStateConfiguration

ModuleVersion : 1.1

Chapter 20 DSC with ContainerS

565

PsDscRunAsCredential :

ResourceId : [WindowsFeature]NET-Framework-45-Core

SourceInfo :

Credential :

DisplayName : .NET Framework 4.6

Ensure : Present

IncludeAllSubFeature : False

LogPath :

Name : NET-Framework-45-Core

Source :

PSComputerName :

CimClassName : MSFT_RoleResource

In this command, the start-sleep is required since the LCM starts a consistency

check as soon as the containers starts, and without the sleep, you will see an error that

the Get-DscConfiguration cannot be performed.

This method of using a dockerfile can be very useful in a release pipeline or a

deployment pipeline. As mentioned, there are other ways to get DSC configurations

into Windows docker containers. But the methods you saw in this section, especially the

dockerfile method, are widely used.

 Summary
This brings you to the end of the chapter on how to manage configurations inside

containers using DSC. You learned how to use docker client and PowerShell remoting

together to enact configuration inside Windows Server core containers and looked at

how a dockerfile can be used to simplify that process. Using a dockerfile can be very

helpful in a release and/or deployment pipeline.

This chapter completes this book as well. What a journey it has been! You started

with the very basics of IaC, learned about DSC basics and advanced concepts, looked at

how DSC can be used in a release pipeline, and used that knowledge to build your own

pipeline using PowerShell modules and AppVeyor. You also looked at how to use DSC

with multiple public cloud providers and containers. I learned a lot while writing this

book and I hope you found it useful as well. Thank you for reading!

Chapter 20 DSC with ContainerS

567
© Ravikanth Chaganti 2018
R. Chaganti, Pro PowerShell Desired State Configuration, https://doi.org/10.1007/978-1-4842-3483-9

Index

A, B
Amazon Web Services (AWS)

CloudFormation
AWSPowerShell module, 545
components, template, 539–544
DSCWebServer, 545
Get-DscConfiguration, 547
GitHub repository, 539
JSON template, 537–538
parameters, default values, 545
tear-down script, 538
Web-Server Windows, 538

EC2 instances
AA DSC, 534–537
Manager Run command, 548–550
push configurations, 532–534
requirements, 531–532

Application programming
interface (API), 13

AppVeyor CI
build configuration file, 457, 458,

460–461
connect to, 454–455
GitHub repositories, 454
resource module, 455–456

Archive resource configuration, 149
ARM template, see Azure Resource

Manager (ARM) template
Author property, 78

Azure Automation DSC (AA DSC), 477
Azure IaaS virtual machines, 497
on-board EC2 instances, 534–537
registering Azure VMs

ConfigurationDownload
Managers setting, 505

Get- AzureRmAutomationDscNode
Report cmdlet, 503

Get- DscLocalConfiguration
Manager, 504

initial report, 504
LCM meta configuration, 505
Register- AzureRmAutomation

DscNode cmdlet, 503–504
registering on-premises machines

Azure automation account keys and
endpoint URL, 509

Azure portal, DSC nodes, 510–511
create, meta configuration, 509–510
Get-AzureRmAutomationDscNode,

507–508
Get- AzureRmAutomationDscOnbo

ardingMetaconfig, 508
pending node configurations, 508
Set-AzureRmAutomationDsc

Node, 507
Set- DscLocalConfiguration

Manager, 506–507
resource modules, 511

https://doi.org/10.1007/978-1-4842-3483-9

568

setting up
Azure Automation account, 498
Azure management portal, 498
DSC configurations, 499–501
DSC node configurations, 501–502

Azure CLI 2.0, 494–497
Azure PowerShell cmdlets, 481–485
Azure Resource Manager (ARM) template,

485–489, 491–493

C
Catalog file, 416–418
Certificate authority (CA), 132
CertificateID property, 135–136
Class-based DSC resources

class resource
definitions, 191–192

configurations, 184
definition, 186
DSCClassResources, 193
DscResourcesToExport, 191
folder structure, 184
Get() function, 190
HostsFile class resource, 187–190
in-box, 194
and MOF-based, 193–194
PowerShell classes, 184
ProDSC.psm1 file, 190
property attributes, 186
PSM1 file, 185
Test() method, 186
$this variable, 190

Cluster configuration
create, 380, 383–384
nodes, 379–380

Common information model (CIM), 12

Composite resource modules
configuration, 163–165
Hyper-V cluster node, 157
in-box, 156
nested configurations, 156
packaging

DisableLoopbackCheck folder, 161
folder structure, 161–162
Get-DscResource, 163
parameterized configuration, 159
RootModule, 161–162
SharePointConfigurationresource

module, 162
SharePoint developers, 160

resourceName.Schema.Psm1 file, 159
WindowsFeature resource, 156
WindowsFeatureSet.psd1, 159
WindowsFeatureSet resource, 158
WindowsFeatureSet.Schema.psm1, 159

Configuration as Code (CaC), 4
Configuration authoring and staging

phase
defined, 22–23
exported commands, 24–25
FileCopyConfiguration

commands, 25–26
Get-CimKeyword function, 26
in-box in WMF 5.1, 30
MOF file, 32, 34
Node and Import-DscResource, 24
PSDesiredStateConfiguration

module, 28–29
resource types in, 31

Configuration data
AllNodes key, 117–119
DestinationFile key, 119, 121
hashtable, 117
MOF, 122

Azure Automation DSC (AA DSC) (cont.)

569

nested configuration, 147–148
PSDscAllowPlainTextPassword to

$true, 121
separating environmental data

from, 140
Configuration delivery methods

disabled mode, 309–310
Get-DscAction, 312
Get-DscDocument, 312
Get-DscModule, 313
pull mode

oData-based (see oData- based pull
service)

SMB-based (see Server Message
Block (SMB)-based pull service)

push mode
background enact, 266–271
compile, stage, and enact, 264–266
resource repositories, 311–312
-ThrottleLimit parameter, 271–273

Configuration enacting and reporting
phase

defined, 23
MOF, 36
overview of cmdlets, 35
PSDesiredStateConfiguration

module, 34
Start-DscConfiguration

command, 35–36
Test-DscConfiguration cmdlet, 37

Configuration management API
ApplyConfiguration, 473–474
GetConfiguration, 470–472
MOF to byte array, 469–470
MSFT_DscLocalConfigurationManager

class, 467–468
and PowerShell commands, 468–469
RollBack, 475

SendConfiguration, 472–473
TestConfiguration, 474–475

Configuration management database
(CMDB), 6

Configuration reporting
desired state test

checks, 328
-Detailed switch parameter, 326–327
Path parameter, 327, 329
-ReferenceConfiguration

parameter, 329–330
Test-DscConfiguration

cmdlet, 325–326
file resource, 324–325
MSFT_DSCConfigurationStatus

class, 330
OS deployment process, 323–324
PSDesiredStateConfiguration

module, 323
run status, 331–332
StatusRetentionTimeInDays meta

property, 333
Consistency check workflow

ApplyAndAutoCorrect, 318
ApplyAndMonitor, 316
ConfigurationMode property, 316
event logs

analytic and debug, 318
Get-xDSCOperation

command, 322
JobID, 319
Message property, 319–320
operational, 318
single operation, 319–321
Trace-xDSCOperation

command, 322
xDSCDiagnostics module, 321, 322

run flow, 317

570

Containers
copy file, 558–560
docker server and client, 554
docker service, 554
enactment in, 560–561
feature, 553
images, 555–557
Start-DscConfiguration, 557–558
using dockerfile, 561

Credential property
encryption

configuration data, 138–139
MOF file, 140
self-signed certificate, 132–135

File resource, 115
Cross-machine synchronization, 48–49
Cross-node synchronization

cluster
create, 380, 383–384
nodes, 379–380

GetResourceState method, 387–389
limitations, 390
prerequisites for, 377–378
WaitForAll resource, 378–379
WaitForAny resource, 385–386
WaitForSome resource, 386
WaitForX resources, 376
xWaitForADDomain, 372

Custom DSC resource modules
classification, 166
composite resource, 165
MI providers, 167
module types, 166
PowerShell script-based

(MOF/Class), 167
resource execution flow, 169–170
resource script, functions, 168

types of DSC resources, 165
WindowsPackageCab resource, 167

D
Debug resource modules

LCM DebugMode
BuggyHostsFile resource, 397–398
Enable-DscDebug cmdlet, 399
$entryExist, 401
force resource module import, 394,

396–397
ISE editor, 400
Set method, 401–402
settings, 392–393

Delegated configuration
management, 343

Dependent resource
configurations, 105–108

Design patterns
choosing, right key property, 203
granularity, 203
help content, 201–203
reboot, configuration change, 195
single instance resources, 204–205
verbose and debug messages, 195–201

Desired state test
-Detailed switch parameter, 326–327
Path parameter, 327, 329
-ReferenceConfiguration

parameter, 329–330
Test-DscConfiguration cmdlet,

325–326
Development and operations (DevOps)

challenge
automatic trading system, 8
IaC, 10–12

571

Knight Capital, 8
technical part, 9
web-scale infrastructures, 9

Disabled mode, 309–310

E
EC2 Systems Manager Run

command, 548–550
Environmental data, 140
Event logs

analytic and debug, 318
Get-xDSCOperation command, 322
JobID, 319
Message property, 319–320
operational, 318
single operation, 319–321
Trace-xDSCOperation

command, 322
xDSCDiagnostics module, 321, 322

Exclusive resource
reservation, 362, 368

F
File resource, 111–112
Firewall configuration, 353–354
Force resource module

import, 394, 396–397

G
Get-DscResource cmdlet, 220
Git hooks

build script, 447
content of, 445
post-commit.ps1 script, 446

shell script, 445
Skip CI, 446

Git software, 437
Google Cloud Platform (GCP)

GCE Windows instances (see Google
Compute Engine (GCE)
instances)

requirements, 513–514
Google Compute Engine (GCE)

instances
AA DSC pull service

compiled configuration, 524
configuration scripts, 524
endpoint URL and registration

key, 524–525
GCS bucket and meta

configuration script, 527
meta configuration, 528–529
meta configuration

document, 525–526
node configuration, 524
service account

permissions, 527
startup script, 523
webserver.localhost

configuration, 529
configurations, PowerShell DSC, 514
DSC configurations

HTTP firewall rules, 515–516
pushing, WinRM HTTPS, 517–520
startup scripts, 520–523
username and password, 517
VPC network, WinRM HTTP

rule, 515–516
--$winrmhttpTag and

$winrmhttpsTag, 516
Granularity, 203

572

H
High Quality Resource Modules (HQRM)

modules
add examples, 206
checklist, 205
folder structure, 209
functions, 208
helper modules, 208
inline help, resource

functions, 207–208
Plaster template, 210–212
tests, 206

HTTP, 45–46

I
Import-DscResource keyword, 85–93
Incremental configurations, 342–343
Infrastructure as Code (IaC), 3
Integration tests, 255–259
Invoke-DscResource

Get method, 228, 229
Get, Set, and Test functions, 225
parameters, 226
Puppet and Chef, 225
Set method, 227, 228
syntax, 226
Test method, 226, 227

J
Just Enough Administration (JEA)

role capability, 425–426
session configuration, 426–427
session registration, 427

K
Key property, 96–97, 203–204

L
Local Configuration Manager (LCM)

CIM classes, 54–56
CIM methods, node and meta

configuration, 62
configuration drift

CIM method, consistency
checks, 71

ConfigurationModeFrequency
Mins, 69–70, 72

consistency checks, 69
DSC_Timer CIM class, 72
flag values, 71
RefreshFrequencyMins, 69–70

configuration settings, 39, 41
configure target node, 135–137
DebugMode

BuggyHostsFile resource, 397–398
Enable-DscDebug cmdlet, 399
$entryExist, 401
force resource module

import, 394, 396–397
ISE editor, 400
Set method, 401–402
settings, 392–393

DPAPI, 49
DSC resources, 64
fails to decrypt, 408
mapping, CIM methods and

PowerShell commands, 62–63
meta configuration, 41–42, 64–66
meta configuration resources,

WMF 5.0, 65
MSFT_DscLocalConfiguration

Manager CIM class, 39
node configuration

error message, 67

573

Get-DscConfiguration
command, 69

pending.mof, 68
previous.mof, 69
pull configuration delivery

mode, 68
push configuration delivery

mode, 68
Remove- DscConfiguration

Document command, 69
states, 67

OS agent, 53
properties

configuration settings, 60–61
data types, 59
MSFT_DSCMetaConfiguration CIM

class, 56–59
Set-DscLocalConfigurationManager

cmdlet, 43
for signature validation, 412–415
updated configuration, 44
to use certificates for decryption,

135–137
WMF 5.0, meta configuration

resources, 64
Local configuration store, 405–406

M
Managed object format (MOF), 23

folder structure, 170–171
hosts file, 171
parameters, 171
properties, 171
schema file

HostsFile, 173
mofcomp.exe, 174
qualifiers, 172–173

validation, 174
script file

Get-TargetResource, 179, 181–184
Set-TargetResource, 178–179
Test-TargetResource, 174–178

Meta configuration/meta MOF, 41–42
Microsoft Azure

AA DSC (see Azure Automation DSC
(AA DSC))

Azure IaaS virtual machines, 478
cloud service models, 477
DSC configurations

compiling, 480
enactment of, 480
-NodeName parameter, 479
Start-DscConfiguration cmdlet,

479–480
WinRM HTTP port 5895, 478–479

requirements, 477
VM extension handler

ARM template, 485–489, 491–493
Azure CLI 2.0, 494–497
Azure PowerShell cmdlets, 481–485

Microsoft Azure Stack (MAS), 477
Mixed refresh mode, 360–362
Mulit-tier web application, 385
Multi-node configurations

common configuration, 97
compiling, 98
enacting process, 99
Node blocks, 100–101
target nodes, 99

N
Nested configurations

archive resource, 149
configuration data, 147–148

574

PS1 files, 150, 152
service check, 149
web server, 148

Non-administrator user permissions
access denied error, 422
configuration document, 422–423
JEA, 424
WMI

computer management
console, 419

Control namespaces, 420
namespace permissions, 421

O
oData-based pull service

endpoint, 45–46
HTTP

client configuration, 293–296
endpoint, 291–293

HTTPS
client configuration, 281–283, 285
configuration and resource module

path, 278
endpoint, 276
IDs, 288–290
registration key, 278
security, 278–280
staging and enacting

configurations, 285–287
resource module, 275

Operating system (OS)
configuration, 348
deployment process, 323

Operational logs, 318
Operations challenge

configuration management life
cycle, 5–6

Microsoft Windows NT 4.0 Server, 4
phases of configuration

management, 7–8
Operations Management

Suite (OMS), 512

P, Q
Parameterized configurations, 102–103
Partial configurations, 47–48

CIM class, 345
delegated configuration

management, 343
dependencies, 356–357
enact time, 368
exclusive resource reservations, 368
firewall, 353–354
fragments, 348
incremental, 342–343
life cycle, 366–367
mixed mode, 360, 362
OS, 348
properties in, 346
pull mode, 358, 360
push mode, 354–355
push refresh mode for, 346–347
SQL, 351, 353

Path parameter, 327, 329
Pester tests, 219

Add-Numbers function, 231
HostsFile unit tests

Describe block, 240
entry does not exist and it should

not, 248–250, 252–255
entry does not exist, it should,

241–245
entry exist as it should, 246–247
entry exists and it should not, 247

script blocks, 230

Nested configurations (cont.)

575

-SkipPublisherCheck switch
parameter, 229

test template, 236–239
unit tests, 234

Get-Content cmdlet, 235–236
HostsFile resource, 231–232
potential states, 233
script patterns, 235

The Phoenix Project (book), 4
PowerShell code guidelines

class-based resource module, 223–224
Get, Set, and Test functions, 225
Invoke-PSScriptAnalyzer

command, 222
Invoke-ScriptAnalyzer command, 223
PSScriptAnalyzer module, 222
script analyzer, 223, 224
Set-TargetResource function, 223

PowerShell DSC
API, 13
CIM, 12
enabling

WinRM HTTPS listeners, 18–19
WMF 4.0, 17
WMF 5.1, 17

imperative vs. declarative
syntax, 13–16

infrastructure automation, 13
language extensions

Configuration function, 24–25
declarative syntax, 24
FileCopyConfiguration, 25–26
Get-CimKeyword function, 26–28

tools for job, 19
WS-Man, 12

Private PowerShell repository
contents, 215
creating, 213

Find-DscResource cmdlet, 215
Install-Module cmdlet, 215
Internet access, 213
my account page, 216
official gallery, 217
publishing module, 214
Publish-Module cmdlet, 216
registered, 213

PSDscRunAsCredential property
Get-DscResourceProperty function, 124
resource instances, 129–131
Script resource, 125–126, 128
Windows Server 2016 version 1709, 129

Pull server
OData/HTTP, 45–46
REST-based DSC, 46
SMB, 45
specification, 51

Puppet, 23

R
Registration keys, 278, 281–283, 285
Release pipeline

build script, 437–438, 440, 443–444
deploy stage, 441, 443
Git hooks (see Git hooks)
.gitignore file, 441
install Git, 437
ProDsc folder, 437
PSake task, 447
stages, 436
test stage, 440–441

Remote node, 113
Reporting endpoint

Get-DscReport function, 337
meta configuration, 333, 335–336
pull service endpoint, 336–337

576

report objects, 338
status data property, 339

Required property, 96–97
Reusable configurations, see Nested

configurations

S
Script resource, 113–114, 125–128
Securing credentials, 132
Self-signed certificate, 133–135
Server Message Block (SMB)-based

pull service
client configuration, 297, 299, 301
file share, 297

Service check configuration, 149
Signature validation, 50

create module catalog file, 416, 418
LCM configuration for, 412–415
signing certificate, 410–411
sign module catalog file, 416

Signing certificate, 410–411
Single instance resources, 204–205
SQL configuration, 351, 353
Staging resource modules

configuration failure, 304
custom resources, 302
folder structure for pull server, 306–307
MOF, 308
package and checksum, 308
pull server, 309
structure, 305–306
target node, 303

T, U
Target nodes, 99
Thumbprints certificate, 136–137

V
Validation procedures

Get-DscResource, 220
integration tests, 255–259
Invoke-DscResource

(see Invoke-DscResource)
Pester tests (see Pester tests)
xDscResourceDesigner, 220–222

W
Web server configuration, 148
Windows containers

copy file, 558–560
docker server and client, 554
docker service, 554
enactment in, 560–561
feature, 553
images, 555–557
Start-DscConfiguration, 557–558
using dockerfile, 561

Windows Data Protection API
(DPAPI), 49

Windows Management Framework
(WMF) 4.0, 17

Windows PowerShell Desired State
Configuration Service, 275

Windows Server version 1709, 129
Writing configurations

anatomy of configuration
document, 74–76

commands in PowerShellGet
module, 77

dependent resource, 105–108
finding resources

AdditionalMetaData
property, 79

author property, 78

Reporting endpoint (cont.)

577

Find-DscResource, 80–81
Find-Module cmdlet, 78

Import-DscResource keyword, 85–93
Install-Module cmdlet, 81–83
key property, 96–97
lab requirements, 73
multi-node (see Multi-node

configurations)
parameterized configurations, 102–103
PSDscResources, 83–85
required property, 96–97

resource property, 93–95
WS-Management (WS-Man), 12

X, Y, Z
xDscResourceDesigner module

commands, 220–221
IPAddress property, 222
ProDsc-Bug.zip, 220
scaffolding, 220
Test-xDscResource command, 221

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Getting Started with Windows PowerShell DSC
	Chapter 1: Introduction to Infrastructure as Code and PowerShell DSC
	Lab Requirements
	The Operations Challenge
	The DevOps Challenge
	Infrastructure as Code

	Understanding Desired State Configuration
	Imperative vs. Declarative Syntax
	Enabling Desired State Configuration
	Configuring a WinRM HTTPS Listener

	Tools for the Job

	Summary

	Chapter 2: Getting Started with DSC
	Lab Requirements
	PowerShell DSC: A 10,000-Foot View
	Configuration Authoring and Staging
	PowerShell DSC Language Extensions
	PowerShell DSC Resource Modules

	Configuration Enacting and Reporting
	Local Configuration Manager
	PowerShell DSC Features
	DSC Pull Server
	Pull Mode Over SMB
	Pull Mode Over OData or HTTP

	Partial Configurations
	Cross-Machine Synchronization
	Configuration Encryption at Rest
	Configuration and Module Signature Validation

	The PowerShell DSC Platform
	Summary

	Chapter 3: The Local Configuration Manager
	Lab Requirements
	LCM CIM Classes
	LCM Properties

	Configuration Store
	Meta Configurations
	Node Configuration

	Monitoring Configuration Drift
	Summary

	Chapter 4: Writing Configurations
	Lab Requirements
	What’s Not Covered in This Chapter
	Back to Basics
	Anatomy of a Configuration Document
	Finding and Installing DSC Resource Modules
	Finding DSC Resources
	Installing DSC Resource Modules
	Updating In-Box DSC Resource Modules

	Your First Configuration
	Using the Import-DscResource Keyword
	Exploring DSC Resources

	Multi-Node Configurations
	Parameterized Configurations
	Dependent Resource Configurations
	Summary

	Chapter 5: Writing Advanced DSC Configurations
	Lab Requirements
	Using Credentials in a Configuration
	Configuration Data
	Using PSDscRunAsCredential
	Using Certificates to Encrypt Credentials
	Generating Encryption Certificates
	Configuring the Target Node LCM to Use Certificates for Decryption
	Authoring a Configuration Document to Use Certificates

	Separating Configuration Data from Environment Data
	Creating Reusable Configurations
	Nested Configurations

	Summary

	Chapter 6: Writing Composite and Custom DSC Resource Modules
	Lab Requirements
	Composite Resource Modules
	Packaging a Composite Resource Module
	Using a Composite Resource in a Configuration

	Custom DSC Resource Modules
	Functions in a DSC Resource Script
	DSC Resource Execution Flow

	MOF-Based DSC Resources
	The Resource Schema File
	The Resource Script File
	Test-TargetResource
	Set-TargetResource

	Get-TargetResource

	Class-Based DSC Resources

	DSC Resource Design Patterns
	Inducing a Reboot After a Configuration Change
	Localizing Verbose and Debug Messages
	Adding Help Content
	Granularity in DSC Resources
	Choosing the Right Key Property
	Single Instance Resources

	Developing HQRM Modules
	Adding Examples
	Adding Tests
	Adding Inline Help for Resource Functions
	Adding Helper Modules
	Using Plaster to Generate a HQRM Scaffold

	Publishing DSC Resource Modules
	Creating a Private Repository
	Publishing a Module to a Private Repository
	Finding and Installing Modules from a Private Repository

	Summary

	Chapter 7: Validating DSC Resources
	Lab Requirements
	Ensuring That the Resource Is Discoverable via Get-DscResource
	Using xDscResourceDesigner for MOF-Based Resources
	Testing for PowerShell Code Guidelines
	Using Invoke-DscResource
	Invoking the Test Method
	Invoking the Set Method
	Invoking the Get Method

	Authoring Pester Tests for DSC
	DSC Resource Unit Tests
	Test Template
	HostsFile Unit Tests
	Context: A Hosts File Entry Does Not Exist. It Should.
	Context: A Hosts File Entry Exists As It Should.
	Context: A Hosts File Entry Exists and It Should Not.
	Context: A Hosts File Entry Does Not Exist and It Should Not.

	DSC Integration Tests
	Summary

	Part II: Advanced DSC Concepts
	Chapter 8: Configuration Delivery Methods
	Lab Requirements
	Push Mode
	Stage and Enact
	Background Enact
	Throttling an Enact

	Pull Mode
	oData-based (HTTP/HTTPS) Pull Service
	Pull Server: HTTPS
	Configuration and Resource Module Path
	Registration Key
	Pull Service Security
	Pull Client Configuration with an HTTPS Pull Service and Registration Keys
	Staging and Enacting Configurations with Configuration Names
	Pull Client Configuration with HTTPS Pull Service Configuration IDs

	Pull Server: HTTP
	Pull Client Configuration with an HTTP Pull Service

	SMB-Based Pull Service
	Pull Client Configuration

	Staging Resource Modules
	Disabled Mode

	Using Resource Repositories with Push Mode
	How Configuration and Resource Modules Are Downloaded
	Summary

	Chapter 9: Reporting, Monitoring, and Correcting a Configuration
	Lab Requirements
	DSC Consistency Check Workflow
	DSC Event Logs

	Configuration Reporting
	Testing for Desired State Against a Reference Configuration
	Using the Path Parameter
	Using the ReferenceConfiguration Parameter

	Reviewing the Configuration Run History

	DSC Reporting Endpoint
	Summary

	Chapter 10: Partial Configurations
	Lab Requirements
	Introduction
	Incremental Configurations
	Delegated Configuration Management

	Getting Started
	OS Configuration
	SQL Configuration
	Firewall Configuration

	Enacting a Partial Configuration: Push Mode
	Partial Configuration Dependencies

	Enacting a Partial Configuration: Pull Mode
	Enacting a Partial Configuration: Mixed Mode
	Exclusive Resource Reservation
	Partial Configuration Life Cycle
	Limitations
	Exclusive Resource Reservations
	Resource Naming Conflicts

	Summary

	Chapter 11: Cross-Node Synchronization
	Lab Requirements
	Getting Started
	Prerequisites for Using Cross-Node Synchronization

	The WaitForAll Resource
	Cluster Nodes Configuration
	Creating a Cluster Configuration

	The WaitForAny Resource
	The WaitForSome Resource
	What Happens Behind the Scenes?
	Limitations
	Summary

	Chapter 12: Debugging DSC Resources
	Lab Requirements
	LCM DebugMode
	Forcing Module Import
	Debugging the DSC Resource Script

	Summary

	Chapter 13: Security in DSC
	Lab Requirements
	Configuration Encryption
	Signature Validation
	Signing a Certificate
	The LCM Configuration for Signature Validation
	Signing DSC Resource Modules
	Creating a Module Catalog File

	Enabling DSC Access Delegation
	Enabling Non-Administrator User Permissions
	Creating a JEA Endpoint for DSC
	DSC Role Capability
	Session Configuration
	Session Registration

	Summary

	Part III: DSC and the Release Pipeline
	Chapter 14: DSC and the Release Pipeline
	Lab Requirements
	Source Control
	Build
	Test
	Deploy
	Executing the Build Script
	Automating the Release Pipeline with Git Hooks
	Git Hooks
	Deploying Modules to a Pull Server
	The Script to Package a Module Folder

	Summary

	Chapter 15: DSC with AppVeyor CI
	Lab Requirements
	AppVeyor CI
	Publishing a Repository on GitHub
	Connecting to AppVeyor
	Build Configuration

	Summary

	Part IV: DSC Platform, Cloud, and Containers
	Chapter 16: DSC as a Platform
	Lab Requirements
	The DSC Configuration Management API
	Configuration MOF to Byte Array
	GetConfiguration
	SendConfiguration
	ApplyConfiguration
	TestConfiguration
	RollBack

	Summary

	Chapter 17: Microsoft Azure and DSC
	Lab Requirements
	Pushing DSC Configurations Remotely
	A DSC Configuration in an Azure VM Using the VM Extension Handler
	Using Azure PowerShell Cmdlets
	Using the Azure Resource Manager Template
	Using Azure CLI 2.0

	Azure Automation DSC
	Setting Up Azure Automation
	Adding DSC Configurations
	Adding DSC Node Configurations

	Registering Azure and On-Premises Machines in AA DSC
	Registering Azure VMs
	Registering On-Premises Machines
	Generating a Meta Configuration

	Adding DSC Resource Modules to the AA DSC

	Summary

	Chapter 18: DSC and Google Cloud Platform
	Lab Requirements
	Using DSC with GCE Windows Instances
	Pushing DSC Configurations Remotely
	Pushing a Configuration Over WinRM HTTPS
	Pushing a Configuration Over WinRM HTTP

	Enact During a GCE Instance Startup
	On-Boarding a GCE Instance to AA DSC Pull Service
	Configuring Service Account Permissions
	Creating a GCS Bucket and Uploading the Meta Configuration Script
	Creating a GCE Instance and Enacting the Meta Configuration

	Summary

	Chapter 19: Amazon Web Services and DSC
	Lab Requirements
	Push a Configuration to an EC2 Instance
	On-Board EC2 Instances to AA DSC
	DSC Configuration Using CloudFormation
	Using the EC2 Systems Manager Run Command
	Summary

	Chapter 20: DSC with Containers
	Lab Requirements
	Getting Started with Windows Containers
	Pulling Container Images
	DSC Configurations in a Container
	Copy the Configuration and Enact
	Using a Dockerfile

	Summary

	Index

