
Pro SQL Server
on Linux

Including Container-Based Deployment
with Docker and Kubernetes
—
Bob Ward
Foreword by Slava Oks

Pro SQL Server on Linux
Including Container-Based
Deployment with Docker

and Kubernetes

Bob Ward
Foreword by Slava Oks

Pro SQL Server on Linux: Including Container-Based Deployment with Docker
and Kubernetes

ISBN-13 (pbk): 978-1-4842-4127-1 ISBN-13 (electronic): 978-1-4842-4128-8
https://doi.org/10.1007/978-1-4842-4128-8

Library of Congress Control Number: 2018962264

Copyright © 2018 by Bob Ward

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484241271. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Bob Ward
North Richland Hills, TX, USA

https://doi.org/10.1007/978-1-4842-4128-8

This book is dedicated to all the people who have worked at
Microsoft over the last 25 years to build, ship, support,

and market the SQL Server product.

v

About the Author ���xv

About the Technical Reviewer ���xvii

Acknowledgments ��xix

Foreword ��xxi

Introduction ���xxv

Table of Contents

Chapter 1: Why SQL Server on Linux? �� 1

Platform of Choice �� 2

How We Built It �� 3

Drawbridge �� 4

SQLOS, SQLPAL, and Helsinki �� 6

The SQL Server on Linux Architecture ��� 8

SQL Server on Windows vs� Linux� Is it the Same? ��� 14

SQL Server on Linux Capabilities��� 14

What Features Are Not Available ��� 17

Should I Use Windows or Linux? ��� 18

Containers Are the New Virtual Machine ��� 19

Database Containers ��� 20

Platform Independence, Portability, and Consistency �� 20

Continuous Integration/Continuous Deployment ��� 21

Kubernetes �� 21

Summary��� 22

vi

Chapter 2: Install and Configuration ��� 23

Preparing for Install �� 23

Linux Distributions ��� 24

System Requirements ��� 26

Testing for SQL Server ��� 27

Linux Tips �� 28

Just Install It! �� 34

Deploy in 60 Seconds �� 35

Download a Repository Config File �� 36

Do the Install of the SQL Server Engine ��� 37

Complete the Setup of SQL Server �� 39

The Complete Installation Experience ��� 42

Installing Other Versions �� 42

Verifying Install �� 44

Unattended Install ��� 52

Offline Install ��� 53

Installing Other Packages �� 55

Installing in Azure �� 56

Troubleshooting Install �� 58

Exploring SQL Server on Linux �� 61

What Is Installed �� 61

Using Log Files �� 63

Post-Install Configuration ��� 64

Using mssql-conf��� 64

SQL Server Instance Configuration �� 69

Windows Configuration Options on Linux �� 70

Updates and Uninstall ��� 71

Updating SQL Server ��� 71

Rolling Back to a Previous Update ��� 73

Removing SQL Server �� 74

Summary��� 75

Table of ConTenTs

vii

Chapter 3: Building a Database and T-SQL Fundamentals �������������������������������������� 77

Setting Up Your Environment �� 77

Creating a Database �� 79

System Databases ��� 80

Creating a Login and User ��� 82

Creating a User Database �� 84

Creating Tables�� 89

Creating Schemas ��� 90

Creating Sequences �� 91

Finally Creating the Tables��� 92

Creating the Complete Database �� 100

Building and Running Queries ��� 102

Inserting and Reading Data ��� 102

Updating and Deleting data ��� 105

Building Views and Stored Procedures �� 106

Summary��� 109

Chapter 4: Building an Application and Advanced T-SQL ������������������������������������� 111

Setting Up Your Environment �� 112

Building and Running a Data Application for SQL Server �� 113

Using node�js with SQL Server �� 114

Connecting to SQL Server with node�js ��� 115

Inserting and Reading Data ��� 118

Executing Stored Procedures �� 123

Enhancing Your Application ��� 125

Go Big on T-SQL �� 126

Creating and Using Temporary Objects ��� 126

Triggers �� 132

Analytic Queries��� 132

Complex Datatypes �� 133

String Functions �� 135

Other T-SQL Commands �� 135

Table of ConTenTs

viii

Exploring New SQL Server Capabilities �� 135

JSON �� 136

Temporal Tables ��� 136

Graph Database ��� 139

Native Scoring ��� 142

Summary��� 144

Chapter 5: SQL Server Tools ��� 145

Command Line Tools ��� 146

sqlcmd ��� 147

bcp ��� 151

mssql-cli �� 153

mssql-scripter ��� 156

sqlservr Command Line Options �� 158

SQL Operations Studio �� 159

Installation ��� 160

Configuration ��� 163

Object Explorer �� 167

Dashboards, Insights, and Extensions ��� 169

T-SQL Query Editor �� 173

Other Features ��� 174

SQL Server Management Studio ��� 175

Object Explorer �� 176

T-SQL Query Editor �� 179

Reports �� 180

Tools Built into the Engine��� 181

System Tables and Catalog Views ��� 182

System Stored Procedures �� 184

Dynamic Management Views �� 184

Extended Events �� 196

T-SQL Performance Features��� 204

Query Store �� 211

Table of ConTenTs

ix

DBCC Commands ��� 214

Trace Flags �� 216

SSIS for ETL �� 218

Creating a Package ��� 219

Executing a Package ��� 226

Go Further with SSIS ��� 227

Summary��� 228

Chapter 6: Performance Capabilities �� 229

Performance Built In ��� 230

SQL Server Built-in Scalability �� 231

Dynamic Memory and Cache Management ��� 235

Efficient I/O Processing ��� 240

Parallel Processing �� 247

Configuration for Maximum Performance ��� 249

SQL Server Instance Configuration �� 250

Database Options �� 255

Linux Kernel Configuration �� 258

Tuning for Success �� 259

Files and File Groups ��� 260

Indexes �� 270

Statistics �� 280

Tips for Developers �� 284

Accelerating Performance �� 288

Partitioned Tables and Indexes �� 288

Columnstore Indexes ��� 294

In-Memory OLTP �� 302

The Intelligent SQL Server Engine �� 311

Adaptive Query Processing �� 311

Automatic Tuning ��� 313

Summary��� 316

Table of ConTenTs

x

Chapter 7: Security in SQL Server �� 317

Logins and Users �� 318

Active Directory Authentication ��� 323

How it Works ��� 324

Setting it Up ��� 326

Using AD Authentication �� 328

Permissions and Access ��� 328

Grant and Revoking Access ��� 328

Roles and Permissions �� 329

Row Level Security �� 336

Dynamic Data Masking �� 340

SQL Server and Encryption ��� 345

SQL Server Keys and Certificates �� 346

Transparent Data Encryption ��� 347

Encrypting Database Backups ��� 348

Encrypting Connections ��� 349

Always Encrypted �� 352

Encryption Summary ��� 355

Data Classification and Auditing ��� 355

Data Classification ��� 356

Vulnerability Assessment��� 360

SQL Server Audit�� 362

Summary��� 367

Chapter 8: High Availability and Disaster Recovery for SQL Server ��������������������� 369

Backup and Restore �� 370

Database Backup ��� 370

Database Restore and Recovery�� 381

Always On Failover Cluster Instance ��� 397

How It Works ��� 398

Setup and Configuration �� 401

sp_server_diagnostics and failover �� 403

Table of ConTenTs

xi

Always On Availability Groups ��� 405

How it Works ��� 406

Setup and Configuration �� 411

Let’s Test it �� 427

Database Health Detection �� 431

Performance Considerations ��� 431

Readable Secondaries ��� 433

Automatic Page Repair �� 434

Clusterless Availability Groups �� 434

Summary��� 436

Chapter 9: Managing and Monitoring SQL Server �� 437

Managing the SQL Server Instance ��� 438

Changing Server Configuration Options �� 439

Creating an SQL Server Agent Job �� 440

Using Resource Governor �� 442

Using the Dedicated Admin Connection �� 445

sqlservr Command Line Options �� 449

Managing Databases �� 452

Moving Databases ��� 452

Managing Files �� 453

Detaching and Attaching Databases �� 455

ALTER DATABASE Usage Scenarios ��� 457

Repairing Databases ��� 458

Managing Objects ��� 467

Managing Tables �� 467

Managing Indexes ��� 469

Managing Server-Side Code �� 475

Monitoring SQL Server �� 475

Monitoring SQL Server Performance ��� 476

Using the System Health Session �� 483

Table of ConTenTs

xii

Smart Log Backups ��� 485

Linux Tools for Monitoring ��� 485

SQL Server Troubleshooting �� 489

Dump Files ��� 489

Core Dump Files �� 491

PSSDiag ��� 492

Summary��� 493

Chapter 10: Migrating to SQL Server on Linux ��� 495

Migrating from SQL Server ��� 496

Preparing for the Migration ��� 497

Executing the Migration��� 504

Migrating from Oracle ��� 509

Preparing for the Migration ��� 510

Executing the Migration��� 511

Migrating from PostgreSQL ��� 514

How Does PostgreSQL Compare with SQL Server? ��� 515

Executing the Migration��� 532

Post Migration Considerations �� 534

Optimizing Performance Post Migration �� 534

Design Your Security and HADR Strategy �� 537

Using Database Compatibility �� 537

Migrate SQL Server Instance Objects �� 541

Using New Features �� 541

Using an Existing Application Against SQL Server on Linux �� 542

Summary��� 543

Chapter 11: SQL Server and Containers ��� 545

Introduction to Containers��� 545

How to use SQL Server with Containers ��� 548

Deploy and Run the SQL Server Image �� 549

Table of ConTenTs

xiii

Build Your Own Container with a Dockerfile �� 559

Compose a Multicontainer Application �� 563

The SQL Mac Challenge �� 571

SQL Server and Kubernetes �� 577

The Basics ��� 578

SQL Server HADR and Kubernetes �� 580

Summary��� 585

Chapter 12: Epilogue �� 587

 Index ��� 589

Table of ConTenTs

xv

About the Author

Bob Ward is a Principal Architect for the Microsoft SQL

Server Data Services Group, which owns the development

for all SQL Server versions. Bob has worked for Microsoft for

25 years on every version of SQL Server shipped from OS/2

1.1 to SQL Server 2017 including Linux. He has worked in

customer support as a principal escalation engineer and

Chief Technology Officer (CTO), interacting with some of

the largest SQL Server deployments in the world. Bob is a

well-known speaker on SQL Server, often presenting talks

on new releases, internals, and performance at events such

as SQL PASS Summit, SQLBits, SQLIntersection, Red Hat Summit, Microsoft Inspire,

and Microsoft Ignite. You can find him on twitter at @bobwardms, read his blog posts at

http://aka.ms/bobsql or http://aka.ms/sqlblog, or see his demos on http://aka.ms/

sqlchannel.

http://aka.ms/bobsql
http://aka.ms/sqlblog
http://aka.ms/sqlchannel
http://aka.ms/sqlchannel

xvii

About the Technical Reviewer

Anthony Nocentino is the Founder and President of Centino

Systems as well as a Pluralsight Author, a Microsoft Data

Platform MVP, and SQL Server and Linux Expert. In his

consulting practice, Anthony designs solutions, deploys the

technology, and provides expertise on system performance,

architecture, and security. Anthony has a Bachelors and

Masters in Computer Science, with research publications in

machine virtualization, high performance/low latency data

access algorithms, and spatial database systems. You can

find Anthony on Twitter at @nocentino and his blog at

 www.centinosystems.com/blog/.

http://www.centinosystems.com/blog/

xix

Acknowledgments

There are so many I want to thank as part of my journey authoring this book. I would

like to first give thanks and glory to my Lord and Savior Jesus Christ. My faith is the

foundation of my life and I strongly believe God gives all of us our abilities. Next, I must

call out my incredible wife, Ginger Ward, who has been so patient and encouraging

throughout my authoring experience. She has listened to all of my complaints, fears,

joys, and put up with all of my late nights authoring this book. She made many long

drives in the car on trips we made together, letting me work on pieces of the book in

the passenger seat of her Land Rover. I also want to thank my two sons, Troy and Ryan

Ward, who give me inspiration every day to be a husband, father, and man of conviction,

responsibility, and integrity.

There is no way I would have ever produced this book without Jonathan Gennick

from Apress. Jonathan, thank you for taking a chance on this book and me when no

other publisher would accept it. Speaking of people who made this book possible. I have

to call out the incredible job of Anthony Nocentino, my technical reviewer. Anthony

brought to the table a vast knowledge of Linux and SQL Server, and without that I’m not

sure the book would be anything like the final version. Anthony also did an amazing

job of turning around reviews quickly, even as we were meeting tight deadlines. What

I loved the most about Anthony’s style as a reviewer is that he was just as transparent

calling out what he loved about the book as he did with pointed, truthful statements

on what changes he thought needed to be made. Anthony, thanks for encouraging me

throughout the entire journey. I also want to personally think Jill Balzano from Apress

who kept me sane and organized during writing of the book, coordinating my writing

with Anthony and Jonathan’s reviews. Jill is not only nice but an amazing professional!

I also want to thank several people at Microsoft who helped review parts of the book

and were so kind and professional to answer my questions, including Slava Oks, Robert

Dorr, Scott Konersmann, Pradeep M M, Jason Roth, Travis Wright, Prasad Tammana,

Mihaela Blendea, Vin Yu, Rathijit Sen, Brian Gianforcaro, Jamie Reding, Patrick Kilfoyle,

Mitchell Sternke, Dylan Gray, Suresh Kandoth, Parikshit Savjani, Pedro Lopes, Sourabh

Agarwal, Sunil Agarwal, Brooks Remy, Arnav Singh, Denzil Ribero, Tejas Shah, Michal

Primke, and Harini Gupta.

xx

I also want to thank my leaders at Microsoft, Rohan Kumar and Asad Khan, who have

given me the blessed opportunity to evangelize and promote the technical aspects of

SQL Server including Linux to the world. I also want to thank members of the Microsoft

Marketing team who have worked with me along the way on building the right strategy

to get the message out on SQL Server. Thank you John 'JG' Chirapurath, Ramnik Gulati,

Debbi Lyons, Anshul Rampal, Marko Hotti, Matthew Burrows, Frederico Pravatta

Rezende, Jane Gao, and Joe Malesich.

I also want to thank some of the folks from Microsoft partner companies whom

I’ve worked with over the last year to talk about SQL Server on Linux, including Wendy

Harms and Urs Renggli from HPE and Nicholas Gerasimatos from Red Hat.

Finally, I want to thank the Project Helsinki team. Without their dedication and

innovation, SQL Server on Linux would still be on a whiteboard somewhere. Instead it is

one of the truly amazing software products I’ve seen built at Microsoft in my career.

aCknowledgmenTs

xxi

Foreword

Bringing SQL Server to Linux has been an adventurous endeavor. It took us less than two

years to ship the final product. However, during the first year many things had to go right

for the project to succeed. In the past the SQL Server team had attempted to do the work

a few times, but every time the team had hit the wall and backed off. Sometime in 2010,

Hal Berenson even published a blog outlining why bringing SQL Server to Linux is not a

good idea after all.

Nevertheless, in the late 2014 the team decided to look into porting SQL Server to

Linux one more time. The initial team consisting of two program managers, Joe Idziorek

and Tobias Ternstrom, focused on business opportunity. Very soon they were convinced

that not only one, but multiple business opportunities existed. However, convincing

others within the company turned out to be problematic. To be taken seriously, they

had to figure out an engineering approach. The engineering estimate from the past was

overwhelming. It estimated a team of 10 to 20 engineers dedicated to the project over

a five-year span. The team knew they had neither these many engineers nor time. The

needed a new engineering plan.

Right around that time I was considering new opportunities. My friends from the

SQL Server team connected me to Joe and Tobias and we started the conversation. I

agreed with the team that doing a direct port wasn’t a good idea. I asked the team to give

me few days to ponder over the approach. Incidentally, I was familiar with Drawbridge

research and happened to leverage it as a platform abstraction layer, aka PAL, to run a

Windows application inside of a different operating system in my previous project. So

it wasn’t long before I connected the dots and figured we could potentially leverage the

Drawbridge technology to bring SQL Server to Linux. So I bit the bullet and joined the

project.

The Drawbridge technology was the first thing that had to go right for us to succeed.

Many, including researches and engineers that had been involved with Drawbridge, had

been skeptical about the approach. They worried about impedance mismatch between

Linux and Windows runtimes. Moreover, pretty much everyone had been skeptical about

performance. Personally, I worried more about the former than the later. I didn’t know if

we could make Windows exception handling work fully and if we could make the stack

xxii

growth semantics work. However I hadn’t worried much about the performance.

I knew how both SQL and Drawbridge work internally, so I had a pretty good idea how to

squeeze the performance out of the two.

After having Drawbridge at our disposal, we had SQL Server running on Linux in less

than a month. It turned out Andrew Baumann, an engineer from Microsoft research, had

an early prototype of Drawbridge running on Linux already. He had made the port work

for his research. Having Drawbridge running on Linux, even in a prototype fashion, was

the next thing that had to go right for us. I joined the team on the second of February

2015 and with help from Andrew’s prototype had SQL Server running on Linux at the

end of the month. At the end of February 2015 we not only had both business case and

engineering plan in place, but we also had SQL Server actually running on Linux.

Having SQL Server running on Linux made the project real. Joe, Tobias, and I

launched what we called a “dog and pony show” campaign. We would go around the

company and talk to influential execs to gather their feedback about the business case

and other details. The fun part was that many execs wouldn’t take the entire project

seriously till the very end of our conversation when, after presenting and discussing

the business, we would show SQL Server running on Linux. Jaws would drop then. One

of the funniest stories was us talking to our fellow data execs: when we launched SQL

Server on Linux, one of the Technical Fellows fell of his chair. Seeing SQL Server running

on Linux, he and everyone else in the room were very much blown away.

To our surprise, hiring the team into the project hadn’t been easy. What we found

out is that many engineers happened to be purist by nature. Many folks that we tried to

convince to join the project would have preferred a pure port approach to ours. It had

taken a nontrivial amount of effort to convince the key engineers that the approach was

sound. It had taken us about six months to assemble the core team consisting of six

engineers: Eugene Birukov, George Reynya, Michael Nelson, Scott Konersmann, Brian

Gianforcaro, and Robert Dorr. Hiring these engineers into the project had proved to be

the crucial moment in the history of the project. If any of these core folks wouldn’t have

joined or left the team, we had almost zero chance of succeeding. Even now I still believe

we had gotten lucky, very lucky, because all of these engineers joined at just the right

time for the project.

Next, much of our luck came from engineers, execs, program managers, and others

who had been implicitly or explicitly related to the project. In many cases people even

hadn’t realized the support they provided. Sometime at the end 2015 we had a new

Corporate Vice President who had become a huge proponent of the project and helped

foreword

xxiii

us to expediate the approval process so that we could make a public announcement

rather early at a Data Driven event in March of 2016. We had folks trying out the solution

and becoming our evangelists within the company. Running the project openly had

helped significantly. By the time of public announcement, we had about three hundred

people throughout the company subscribed to our engineering distribution list. As one

can guess, the project was under strict NDA. Needless to say we had zero leaks.

They say it is the way of traveling not the destination that counts. I think I agree.

It has been a fun journey. Personally, I am a bit sad that it is over. At the same time,

whenever I look back I get scared about how many things could have gone wrong. We

had gotten really lucky during the journey. We also had fun on way to our destination.

Now SQL Server DBAs, developers, and enthusiasts are the lucky ones. We have

expanded your world. You have gotten real SQL Server on Linux that you all love. We, the

engineering team, believe you will love and enjoy it as much as we have.

In this book, Bob Ward gives you an inside look into how we built SQL Server on

Linux and the core features of setup, T-SQL, development, performance, security, and

high availability. Bob has done something very unique. He has authored a book that will

appeal to both the SQL Server user and the Linux developer looking for a new database

platform. And you will also love the behind-the-scenes stories as Bob tells them that

span the 25 year history of this product. This book also talks about some of the great

tools we have built inside and outside SQL Server over the years and many that I have

personally worked on. And I love that Bob was able to cover how to migrate to SQL

Server, even from PostgreSQL, and also cover the very important topic of containers in

the book. I’ve known Bob for almost 20 years now since I first started In SQL engineering

and he was in technical support. We have spent many customer debugging sessions

together, so I’ve seen his knowledge of SQL Server up close. I’ve also loved how he can

take very technical topics and talk to all of us in a way anyone can understand, and you

will see that in this book. I think you will find this book covers almost everything you

need to know about SQL Server on Linux and Containers.

Slava Oks

Microsoft

foreword

xxv

Introduction

Have you ever seen the movie Planes, Trains, and Automobiles? It is a classic comedy and

pretty much sums up the journey of authoring this book. Pieces of this book have been

written on airplane trips across the world, subways in London, and car trips back and

forth between Edmond, Oklahoma and Texas as my wife and I drove this spring to watch

my son play his final year of college baseball. These pages in the book have traveled

all over the United States and Europe, including Seattle, Washington D.C., Orlando,

Sunnyvale, London, St. Andrews Scotland, Las Vegas, Waco, Texas, Edmond, Oklahoma,

San Francisco, my office in Irving, Texas, and the confines of my home in North Richland

Hills, Texas. Authoring the book while travelling made it a more enjoyable experience

and added value to the book. For example, I learned a few specifics for Red Hat

Enterprise Linux while attending the Red Hat Summit in May 2018 in San Francisco.

This book is intended for developers, DBAs, and IT Professionals who have an

interest in learning about SQL Server on Linux. I made a big decision when drafting

the outline and proposal to Apress for the book: I decided to author this book not only

for the SQL Server professional who knows SQL Server on Windows, but also for the

developer or IT Pro who knows Linux but does not know SQL Server. It was not an easy

choice, because how does one author a single book about SQL Server when there have

been other books that only write about one aspect of SQL Server? I decided to focus on

the most important aspects of using, developing, and managing SQL Server based on

my experiences of 25 years working with the product, while including the key differences

between SQL Server on Windows and Linux.

This book also provides an opportunity for me to share some interesting stories

along my own journey supporting and working on SQL Server over a 25-year period,

including references to past and current Microsoft colleagues. It is ironic that I would

finally choose to author a book during the 25th anniversary year of SQL Server on

Windows NT but write it on SQL Server on Linux. My background before Microsoft was

as a UNIX developer, so it was special for me to come around and get to know the Linux

kernel and shell again.

xxvi

No matter how you decide to read this book, I do recommend you start with

Chapter 1. In that chapter, I write about the history of bringing SQL Server to Linux and

why we made this choice at Microsoft. In Chapter 1, I also provide you some interesting

insights into the architecture, which is one of the most innovative projects I’ve seen

in my career at Microsoft. You may decide to then pick and choose what chapters

you want to focus on. I will say that I did author the book with the intention that you

would read each chapter in order, as I make references in some chapters to topics in

previous chapters. However, it is very possible to read each chapter as its own topic.

Some chapters are longer than others, as I felt some topics deserved more details

(or I just couldn’t help myself). While there are eleven chapters in the book, the book

can be broken down into three sections:

 1) Architecture, Deployment, and Fundamentals in Chapters 1 to 4

 2) The heart of SQL Server with Tools (I introduced tools first, as then

you would be familiar with the tools in the following chapters),

Performance, Security, HADR, and Managing/Monitoring in

Chapters 5-9

 3) Final topics including Migration and Containers conclude the

book with Chapters 10 and 11. And since our team was working

on the next release of SQL Server as I authored this book, I’ve

included a short Epilogue about the future.

I’m also a big believer in providing examples, especially scripts and screen shots.

I want you to see what I saw as I executed the example scripts. All of the scripts and

examples in this book can be found in a GitHub repo set up by Apress on the book’s main

page, which can be found at www.apress.com/9781484241271. Please post any issues

with the examples on the site. I also encourage you to keep up with my GitHub repo at

https://github.com/Microsoft/bobsql. I’m always posting examples including demos

I use at events, and I’ll also post the examples in the book there. Another GitHub repo

to use is a set of self-pace labs Vin Yu and I built at https://github.com/Microsoft/

sqllinuxlabs. My goal is to get others at Microsoft and the community to contribute to

these. Other good resources to follow are the blog that Bob Dorr and I author at http://

aka.ms/bobsql. We try to pick topics that no one else writes about for SQL Server.

Finally, you might want to bookmark the new SQL Server YouTube channel at https://

www.youtube.com/c/microsoftsqlserver. You will also see a lot of URLs and references

in the book. As I researched a topic or used a specific set of documentation pages, I

InTroduCTIon

http://www.apress.com/9781484241271
https://github.com/Microsoft/bobsql
https://github.com/Microsoft/sqllinuxlabs
https://github.com/Microsoft/sqllinuxlabs
http://aka.ms/bobsql
http://aka.ms/bobsql
https://www.youtube.com/c/microsoftsqlserver
https://www.youtube.com/c/microsoftsqlserver

xxvii

added that reference so you could dive into more details than what is possible to cover in

the book.

This book has been a labor of love and not only represents my knowledge about SQL

Server on Linux, but includes interesting insights into areas of SQL Server even those in

the SQL Server community may not know about. It is my intention and hope that you

will walk away after reading this book feeling empowered to use SQL Server on Linux in

new and interesting ways.

Bob Ward

North Richland Hills, Texas

August 2018

InTroduCTIon

1
© Bob Ward 2018
B. Ward, Pro SQL Server on Linux, https://doi.org/10.1007/978-1-4842-4128-8_1

CHAPTER 1

Why SQL Server
on Linux?
Microsoft SQL Server 2017 became generally available on October 2nd, 2017. It marked

the 12th major release of SQL Server in its history. SQL Server is now a leading data

platform for the industry. It powers websites, industries, and business applications all

over the world from laptops to small businesses to large enterprise servers. It is used as

a data platform in private and public clouds. The database engine is the power behind

Microsoft Azure SQL Database. SQL Server has for many years had a great reputation for

ease of use, ease of administration, and as a leader in price/performance. But SQL Server

has now become a major force in technology through breakthrough performance and

scalability, trusted security, and new intelligence capabilities. Features like Columnstore

indexes, Query Store, Always Encrypted, Graph Database, Always On Availability

Groups, and Machine Learning Services demonstrate that SQL Server is not just a great

relational database engine but truly a data platform for applications. Our proud history

of running side by side with Windows Server over the years is an incredible story. Then

why would we build SQL Server to also run on Linux?

I joined Microsoft in 1993 after spending seven years out of college working

on UNIX development projects using C++ and databases such as Ingres and

ORACLE. When I joined Microsoft, I thought my UNIX days were behind me. Sure

enough, for 20+ years I became an expert on SQL Server running on Windows Server,

thinking I would never see SQL Server run on anything else.

Then one day in 2015, my colleague Bob Dorr and I receive an email from Slava Oks,

the lead development engineer for SQL Server, asking what we thought if we built SQL

Server to run on Linux. Of course I had to read the email a few times before it sunk in

what he was proposing. I didn’t think about it much for a few months until I attended

an internal Microsoft event in late 2015. At this event, to my amazement, Tobias

2

Ternstrom, one of the original program managers on the project, showed the audience

an SQL Server deploying with apt-get on Ubuntu and connecting to run queries in a

manner of minutes.

After getting back in my chair, I had all kinds of questions. How did we do this so

quickly? What was the architecture behind taking one of the leading database engines

and getting it up and running on Linux in such a quick timeframe. But also, I wanted to

know why. The SQL Server product had been enjoying immense success in the industry

with customers running on Windows Server.

And this is how we will start this book. I’ll explain our motivations behind bringing

SQL Server to the Linux platform, the fundamentals of how we made it happen, and

its core capabilities. I’ve got a reputation with the existing SQL Server community for

presenting on internals of SQL Server, so I won’t be able to help myself in this chapter

and throughout the book. You will see at times a peek “behind the scenes” of how this

technology works on the Linux Platform.

 Platform of Choice
In May of 2016, we released Microsoft SQL Server 2016, which was the 11th major release

of SQL Server since we introduced 4.2 for Windows NT in 1993. This release was packed

with major functionality and was positively received by the SQL Server community.

While the great work was happening to launch this release, the engineering team was

already working on SQL Server 2017, for which the key headlining feature would be SQL

Server finally being supported on Linux and containers. The industry and the world

already knew we were going to make this a reality, as earlier in the year Scott Guthrie,

Executive Vice President of the Cloud and Enterprise Group at Microsoft, had made the

announcement at a customer event and on our official Microsoft blog (see https://

blogs.microsoft.com/blog/2016/03/07/announcing-sql-server-on-linux). In

this blog, Scott calls out the true reason to bring SQL Server on Linux “…Bringing SQL

Server to Linux is another way we are making our products and new innovations more

accessible to a broader set of users and meeting them where they are.” Our decision to

bring SQL Server on Linux was not about moving away from Windows Server. It was

about building a great data platform on both Windows and Linux. It was about providing

a choice of platforms for our customers. And we didn’t just come to this conclusion

without data and customer evidence.

Chapter 1 Why SQL Server on Linux?

https://blogs.microsoft.com/blog/2016/03/07/announcing-sql-server-on-linux
https://blogs.microsoft.com/blog/2016/03/07/announcing-sql-server-on-linux

3

First, we knew that in the industry a trend was emerging for several years that Linux

was becoming very popular. Research today shows approximately 30% of enterprise

servers are now using some Linux distribution. Research by independent firms such as

Gartner shows that Linux Server is the fastest growing OS segment (www.gartner.com/

doc/3731017/market-share-analysis-server-operating).

Second, at Microsoft we saw the evidence ourselves. For Microsoft Azure Virtual

Machine, the fastest growing guest operating system of choice had become Linux. We

had customers who hosted “mixed” environments (Linux and Windows Server) come to

us asking whether we would ever consider making SQL Server on Linux available. It was

not that they were giving up on Windows Server, but rather they wanted to standardize

on SQL Server in their companies but needed options for both Linux and Windows

Server.

Finally, Linux partners started asking us whether we would consider moving

to Linux. Companies like Red Hat and SUSE were seeing immense growth in their

enterprise business and felt that offering a choice of data platforms would help customer

adoption.

All these factors were on the minds of our SQL Server Engineering leadership in

late 2014 and early 2015: Shawn Bice, Rohan Kumar, and Lindsey Allen. They were

instrumental in convincing our executive leadership at Microsoft to allow us to build

SQL Server for Linux. And they hired back none other than Slava Oks to build it and shift

Tobias Ternstrom to lead the program management of the project. They would build an

amazing team of people to start the project known as Helsinki.

We now had the motivation, the approval, and the resources to move forward. Now

the question was how do we build it? And how do we deliver it quickly to the market?

 How We Built It
Project Helsinki, SQL Server on Linux, is one of the most amazing software

accomplishments I’ve encountered in my 25 years at Microsoft. In this section, I’ll show

you the amazing background and history of how we built SQL Server on Linux and

were able to bring it to market with quality and performance. In this section, I’ll talk

about an important software component that allows SQL Server to run on Linux, called

the SQL Platform Abstraction Layer (SQLPAL) based on a Microsoft Research project

called Drawbridge. In addition, I’ll discuss the process architecture and how the various

components interact to make SQL Server run on Linux.

Chapter 1 Why SQL Server on Linux?

https://www.gartner.com/doc/3731017/market-share-analysis-server-operating
https://www.gartner.com/doc/3731017/market-share-analysis-server-operating

4

 Drawbridge
In March of 2011, a team at Microsoft Research published a paper called Rethinking the
Library OS from the Top Down (www.microsoft.com/en-us/research/wp-content/

uploads/2016/02/asplos2011-drawbridge.pdf). The paper was based on a project

prototype called Drawbridge and a concept called library OS. If you think about the year

2011, virtualization was a very hot topic and had become very popular. Virtual machines

were a common mechanism to perform consolidation projects and abstract applications

for the underlying hardware. They provide isolation, compatibility, and the ability to

free you from relying on a specific host computer. Therefore, they are still popular and

are still used today in public cloud environments such as Azure Virtual Machine and

Amazon EC2. The only issue is that virtual machines are resource heavy. That is, you

need the entire operating system to run in the guest to support your application, even if

you don’t need all the services that come with the guest operating system.

The Drawbridge team sought a way to create something lighter but retain the

advantages of virtualization. Furthermore, they discovered through their research that

many services and Application Programming Interface (API) calls required by Windows

applications did not really need to be run within the Windows kernel. Rather, it is

possible to run the code that powers many Windows APIs in user mode, thus reducing

context switches to the kernel. Reducing context switches improves performance and

results in a more efficient application and use of computer resources.

The result of this project was a concept called a picoprocess running on a library OS,

effectively creating a Platform Abstraction Layer (PAL). Figure 1-1 shows the resulting

architecture.

Chapter 1 Why SQL Server on Linux?

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/asplos2011-drawbridge.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/asplos2011-drawbridge.pdf

5

In Figure 1-1, the picoprocess represents a binary that combines the application and

the library OS components into a single process. The beauty of this approach is that the

application and its DLLs are unchanged. No recompile or modifications are necessary.

The magic that allowed Slava and the team to enable this concept and apply it to another

operating system like Linux is an Application Binary Interface (ABI). Many Windows

APIs (in this diagram they are represented by Win32 and NT calls) are implemented by

the library OS in the process, while approximately 45 are exposed through the PAL and

are mapped to the ABIs and eventually to the underlying OS.

Figure 1-1. The Drawbridge picoprocess

Chapter 1 Why SQL Server on Linux?

6

At this time, Slava was working on a project inside Microsoft called Midori, which

was another operating system project, and saw this work from the Drawbridge team. He

was able to, in a short timeframe, get a Windows application running on Midori using

the Drawbridge team’s work. So, when Slava was asked to come back to the SQL Server

Engineering Team and work on a project to make SQL Server run on Linux, his learnings

from Drawbridge were of huge benefit.

If you think about the choices Slava and the team had to bring SQL Server on Linux,

the most logical one was to port the SQL Server code base to compile and run natively

on Linux. But as he tells it, the entire SQL Server codebase is comprised of millions of

lines of code. And while taking the path of converting and compiling SQL Server to run

on Linux might be the “purest” approach, there is no way we could get to market within

our goal of 2017 going down this path. In fact, as far back as late 2014, one of our lead

engineers, Peter Byrne, evaluated this path and concluded “Porting and productization

of just the SQL NT Engine code base to Linux would be a multi-year effort requiring a

large team of dev/test/PM.” The Drawbridge concept, therefore, seemed like an idea to

strongly consider.

 SQLOS, SQLPAL, and Helsinki
Slava was part of the team that built a component of SQL Server called SQLOS (some

call it SOS), which shipped as part of SQL Server 2005. The concept was to abstract the

SQL Server core engine as much as possible from the underlying operating system for

requests such as I/O, memory, and threads. And much of the engine was changed to

use SQLOS API services (via sqldk.dll) in SQL Server 2005. SQLOS also provided built-in

support for things like NUMA, resource governance, resource monitoring, and a

scheduling system, much like an OS kernel. The team took this approach because the

Windows operating system was not completely optimized for services like database

engines. I remember asking Slava years ago why he felt the need to build SQLOS. He said

“The key observation here is that DBMS and OS schedulers must cooperate. As such, OS

must have built-in support for DBMS or DBMS must have a special scheduling layer.”

As you read the description of SQLOS and its ability to abstract the SQL Engine

developer from the underlying operating system APIs, you might be thinking, why not

just take SQLOS and modify and recompile that code to use Linux Kernel APIs? There

were a few problems with that approach:

Chapter 1 Why SQL Server on Linux?

7

• Not all of the SQL Engine uses SQLOS to use Windows APIs. For

example, the engine directly makes calls to WriteFileGather() to flush

data pages to disk. The evidence for this exists in the form of SQL

Server wait types. There are about 88 PREEMPTIVE_OS* wait types in

SQL Server, which shows how many components do not use SQLOS

to use Windows APIs.

• We would still have to recompile all the SQL code with Linux

compilers. This would require us to maintain two code bases.

• There are other components that can run in or outside the engine

that don’t use SQLOS: for example, our components that support

XML in the engine and services like SQL Server Agent.

As I looked over goals for this release, it become clear to me it could be summarized as

We want to be able to run much of our executable code we built for Windows
untouched on Linux. Fast and reliable, requiring no application changes.

Having SQLOS is still a great advantage. It provides a foundation for an abstraction

layer that we can build on. As Slava and team tried to land on a design, they found out

the Drawbridge team had built a prototype of their project to work with Linux. Now the

pieces were in place. Take the work of the Drawbridge prototype, make the necessary

changes to productize it, and couple that with the work and concept of SQLOS. Born

from this was the SQLPAL.

Note i make this all sound very simple, when indeed it is one of the most
amazing and innovative software projects i’ve seen in my career at Microsoft.

As Slava tells it, within one month of landing on this design, they had a simple

working version of SQL Server booting up on Linux and running queries.

Slava was smart enough to capture a photo of that first boot, as seen here in Figure 1-2.

Chapter 1 Why SQL Server on Linux?

8

It was not long after this that he, Tobias Ternstrom, and the rest of the team had a

project plan and a name for SQL Server on Linux. They called it Project Helsinki (named

after the birthplace of the founder of Linux, Linus Torvalds, and where he designed and

proposed the original Linux project). With an architecture in mind, the project now

swung into full gear marching down a path to deliver SQL Server on Linux in 2017.

 The SQL Server on Linux Architecture
As the team was blazing along making all the changes necessary to the original

Drawbridge project and building out all the components for deployment, configuration,

and tools, many in the industry and SQL Server community were curious how we were

building this. Some demos had been done publicly about the easy deployment and

basic query capabilities of SQL Server on Linux, but no one knew behind the scenes the

architecture, SQLPAL, or the use of Drawbridge as a concept.

Figure 1-2. First boot of SQL Server on Linux on Slava Oks’s computer

Chapter 1 Why SQL Server on Linux?

9

The team decided in late 2016 to go public with the architecture. The result was an

excellent blog from one of the development leads on the project, Scott Konersmann,

which you can read at https://cloudblogs.microsoft.com/sqlserver/2016/12/16/

sql-server-on-linux-how-introduction/. In his blog, Scott outlined the history of

Drawbridge, the main goals of the project, and the challenges of just using what the

Drawbridge project provided. The key to the success of the project was SQLPAL, and he

summarized what they would build:

As a result of the investigation, we decided on a hybrid strategy. We would
merge SOS and Library OS from Drawbridge to create the SQL PAL (SQL
Platform Abstraction Layer). For areas of Library OS that SQL Server does
not need, we would remove them. To merge these architectures, changes
were needed in all layers of the stack.

The new architecture consists of a set of SOS direct APIs which don’t go
through any Win32 or NT syscalls. For code without SOS direct APIs they
will either go through a hosted Windows API (like MSXML) or NTUM (NT
User Mode API—this is the 1500+ Win32 and NT syscalls). All the subsys-
tems like storage, network, or resource management will be based on SOS
and will be shared between SOS direct and NTUM APIs.

To summarize this, the final design and approach was to merge our existing SQLOS

code with Library OS from Drawbridge to create the final SQLPAL concept.

Scott uses the diagram in Figure 1-3 to show the interactions with SQLPAL, SQLOS,

Library OS, and something called the Host Extension.

Chapter 1 Why SQL Server on Linux?

https://cloudblogs.microsoft.com/sqlserver/2016/12/16/sql-server-on-linux-how-introduction/
https://cloudblogs.microsoft.com/sqlserver/2016/12/16/sql-server-on-linux-how-introduction/

10

Figure 1-3. Scott Konersmann’s SQL Server on Linux architecture

I’m a very visual person, so as I started to learn the architecture myself, I decided to

revise this view to something more like the diagram in Figure 1-4. (Note: I based this on a

more detailed architecture diagram built by the Helsinki team.)

Chapter 1 Why SQL Server on Linux?

11

As I begin to describe the architecture, let me provide one more important comment.

This is the architecture as of SQL Server 2017 at general availability. As with any internals

and architecture, we reserve the right to change this and tune it. Our goal is for no user to

worry about these internals, but it is interesting to understand and provides credibility to

the success of our product on Linux.

I should tell you, the preceding diagram and my description don’t really do justice to

the amazing technology the team has built. It could take perhaps an entire book just to

dive into the architecture. I see us evolving this architecture in the future to streamline

and improve it, so focusing even an entire chapter on this is not practical. And our goal is

that the user of SQL Server on Linux should not care about it. But so many people were

interested in how we built SQL Server on Linux, I thought I should treat at least a section

of a chapter to the topic.

Let’s break down each component and how these interact to make up the

architecture. Notice in this diagram, just like in Drawbridge, a single Linux process

includes the application (SQLSERVR.EXE), Library OS (LibOS), and the PAL (in our

case we call it SQLPAL). The name of this process on Linux is called sqlservr. In the

gray box, SQLSERVR represents the same binary SQLSERVR.EXE from Windows and its

component DLLs including sqlmin.dll, sqllang.dll, and others. LibOS in the light blue

box are the DLLs and Windows services that support the Windows API. This includes

DLLs such as kernel32.dll, advapi32.dll and services such as RPCSS.EXE.

Figure 1-4. The SQL Server on Linux architecture

Chapter 1 Why SQL Server on Linux?

12

SQLPAL in the light blue box has two components:

• SQLOS: as shipped on Windows in the form of SQLDK.DLL

• SQLPAL.DLL: This is the key component that will implement any

Windows functionality required by LibOS or redirect any calls

that require Linux kernel services to a component called the Host
Extension. An example of Windows functionality that is implemented

in SQLPAL is Windows Registry calls. An example of something that

requires the Linux kernel is memory allocation.

Note Future versions of SQLpaL may include SQLoS functionality completely,
so we can streamline these areas of code even further. For example, SQLpaL.DLL
would encapsulate all functionality currently in SQLDK.DLL today.

The Host Extension in the black box is a set of code that is natively compiled for

Linux and understands all the necessary Linux API calls for things like memory (mmap),

threads (pthread), and I/O (aio).

The bridge for these two worlds is an Application Binary Interface (ABI). What

this means is that SQLPAL.DLL cannot directly call Host Extension code for memory,

threads, I/O, and other services like you would code for any API on Windows. This is

because Windows and Linux have different mechanisms for calling functions in code

(this is known as a calling convention). Since SQLPAL.DLL is compiled for Windows and

the Host Extension code is compiled for Linux, they must talk through a mechanism that

allows SQLPAL to translate its calling convention to Linux. This is done through a clever

series of assembly instructions and it’s why it is called an Application Binary Interface. It

is very lightweight and does not require any significant overhead to make this transition.

If you have ever studied program execution on operating systems like Windows

or Linux, you know about something called the binary format of a program on these

systems. For Windows, it is called the Portable Execution (PE) format and for Linux it is

called the Executable and Linkable Format (ELF) format. Any program compiled and

linked for Windows uses the PE format (SQLSERVR.EXE for example) and can only be

run on Windows; likewise for an ELF binary on Linux. So, our Host Extension code is

part of the SQLSERVR Linux process compiled as an ELF binary. It has special logic to

know how to load SQLPAL.DLL directly, since it is a PE-formatted binary, and provide

it the necessary links to use the ABI interfaces in the Host Extension (in other words the

Chapter 1 Why SQL Server on Linux?

13

Host Extensions instructs SQLPAL how to “talk back to it on the fly”). The Host Extension

also knows how to map the binaries for SQLSERVR.EXE and LibOS from specially

packaged files on disk (we will discuss these more in Chapter 2) into the process address

space. SQLPAL.DLL then knows how to load SQLSERVR.EXE and then let normal

Windows process and DLL loading happen from there. One key point here: All of this

code is compiled for Intel compatible processors and therefore, in the words of Robert

Dorr, “It’s all just assembly code.” This is one reason our SQLSERVR.EXE code runs

unchanged on Linux.

So, to summarize, SQLSERVR.EXE and its dependent DLLs are loaded and run just

like they do on Windows. The same thing is true for the LibOS components. SQLPAL.

DLL is compiled for Windows but has logic built in to implement Windows kernel

services or, when necessary, call other functions using ABI interfaces to implement

certain kernel services. But SQLPAL.DLL doesn’t know these interfaces are implemented

in a piece of code compiled for Linux. The Host Extension takes care of all of that.

There are two other components in the architecture diagram I haven’t talked about yet:

• Notice SQLAGENT is also listed in this diagram. This is because

when you install SQL Server on Linux, you load the SQLAGENT.EXE

in the SQLSERVR Linux Process along with SQLSERVR.EXE. Strange

I know, but it works just fine. SQLPAL enables process isolation, and

these processes don’t realize they are in the same Linux process.

• Notice in the bottom right-hand corner something called the Parent

Watchdog process. You will hear more about this later in this book,

but effectively this is a process called SQLSERVR natively compiled

for Linux and is the program first started when SQL Server starts.

We then use the Linux fork() API call to create another SQLSERVR

process, which is really the SQL Server engine and all its components

as you see in the diagram. It provides a handy purpose by monitoring

the child SQLSERVR process via signals to perform dumps and using

systemd services for restarts as necessary. You can read more about

how this works in this blog post: https://blogs.msdn.microsoft.

com/bobsql/2018/07/18/sql-server-on-linux-why-do-i-have-

two-sql-server-processes/. This relationship will become more

apparent in Chapter 2 as I talk about exploring what is installed for

SQL Server on Linux.

Chapter 1 Why SQL Server on Linux?

https://blogs.msdn.microsoft.com/bobsql/2018/07/18/sql-server-on-linux-why-do-i-have-two-sql-server-processes/
https://blogs.msdn.microsoft.com/bobsql/2018/07/18/sql-server-on-linux-why-do-i-have-two-sql-server-processes/
https://blogs.msdn.microsoft.com/bobsql/2018/07/18/sql-server-on-linux-why-do-i-have-two-sql-server-processes/

14

I realize this looks very complicated, and it is, but it is also simple and elegant. And

this is the architecture that has allowed us to move so quickly yet with great quality and

performance to bring SQL Server on Linux to the market.

I included the details in this chapter not because you must know them to use SQL

Server on Linux, but to clear up any confusion about how it works and to lend credibility

to the design and architecture.

And here is the most important point. As you will learn in the next section, the core

SQL Server database engine is the same proven, scalable SQL Server engine as we have

run on thousands of customer servers over the history of the product.

 SQL Server on Windows vs. Linux. Is it the Same?
I remember one conversation I had on this topic with Slava Oks, who said to me, “Bob,

The Query Processor is still the same Query Processor.” This quote explains why we were

able to achieve comparable performance for SQL Server on Linux. It also explains why

databases can be restored on different platforms and why applications can connect to

SQL Server on Linux virtually unchanged if they were built to run against SQL Server on

Windows Server.

 SQL Server on Linux Capabilities
SQL Server 2017 has many capabilities and features focusing on performance, security,

and high availability. Consider these capabilities and features that are available for SQL

Server on Linux:

• A core SQLOS system for scheduling, memory management, and

resource governance and management that provides built-in

scalability and recognizes important server architectures

such as NUMA

• The core engine components for buffer management, query

processing, query execution, storage engine, and access methods

• Core management operations such as BACKUP/RESTORE, index

management, and DBCC commands

• Our famous T-SQL language works unchanged except for any features

or capabilities not supported in the release.

Chapter 1 Why SQL Server on Linux?

15

• In-Memory workload features such Columnstore Indexes and

In-Memory OLTP

• New database intelligent features such as adaptive query processing

(AQP) and Automatic Tuning (you will hear more about these

features in Chapter 4) based on the telemetry of Query Store.

• Always On Availability Groups (I use the term Availability Groups or

AGs for future references to this capability in the book) are supported

with full functionality. As you will see in Chapter 8, Availability

Groups are supported with major failover capabilities (with a

few exceptions) using a clustering technology called Pacemaker.

In addition, a new feature in SQL Server 2017 provides support

for clusterless availability groups where no clustering software is

required.

• Always On Failover Cluster Instance on Linux is supported using

Pacemaker.

• Security features such as always encrypted, dynamic data masking,

row-level security, auditing, and Transparent Data Encryption (TDE)

• SQL Server and Active Directory authentication for logins

• Encrypted connections are supported using Transport Layer

Security (TLS).

• Rich programming features such as SQLCLR (SAFE assemblies only),

JSON T-SQL capabilities, and the Graph database

• The SQL Server Agent scheduling service supports the T-SQL

command subsystem.

• SQL Server Integration Services (SSIS) is supported for fundamental

extract, transform, and load (ETL) operations.

• Tools work “as-is” against SQL Server on Linux, including SQL Server

Management Studio (runs on Windows), SQL Server Data Tools (runs

on Windows), and our mssql extension in Visual Studio Code (cross-

platform tool).

Chapter 1 Why SQL Server on Linux?

16

• We support native command line tools on Linux, including sqlcmd

and bcp.

• We have built new open-source, cross-platform tools that run on

Windows, Linux, or MacOS and work against SQL Server on Linux or

Windows: SQL Server Operations Studio and mssql-cli.

• SQL Server diagnostics such as extended events, dynamic

management views, catalog views, and query plan diagnostic

capabilities.

I may have missed your favorite feature, but this list makes SQL Server on Linux a

very compelling story. For a complete list of features for SQL Server on Linux, check out

our documentation at https://docs.microsoft.com/sql/linux/sql-server-linux-

editions-and-components-2017.

For those reading this book who are not familiar with SQL Server editions, it

is important to know that some capabilities exist only in certain editions. To get a

complete list of what features are available for specific editions, see this documentation

page: https://docs.microsoft.com/sql/linux/sql-server-linux-editions-and-

components-2017?view=sql-server-linux-2017#includessnoversionincludesssnove

rsion- mdmd- editions.

SQL Server 2017 on Linux offers these editions:

• Enterprise: This is the most full-featured edition. It is designed to

be used as its name denotes for Enterprise database applications.

From a licensing point of view, there are two variations of Enterprise:

Enterprise and Enterprise Core. Enterprise Core has full capabilities,

while Enterprise has some restrictions on using a certain number of

compute cores. Enterprise is only available for certain customers who

have contract agreements with Microsoft.

• Standard: This edition is designed to provide the basic functionality

of SQL Server for applications targeted for smaller departments or

midsized workloads. One major change we made starting with SQL

Server 2016 SP1 was to open some features to the Standard edition

that were only previously available with the Enterprise edition. The

rationale was to ensure that developers could build applications and

not worry as much about what edition of SQL Server their application

was targeting. There are restrictions on sizes of how these features

Chapter 1 Why SQL Server on Linux?

https://docs.microsoft.com/sql/linux/sql-server-linux-editions-and-components-2017
https://docs.microsoft.com/sql/linux/sql-server-linux-editions-and-components-2017
https://docs.microsoft.com/sql/linux/sql-server-linux-editions-and-components-2017?view=sql-server-linux-2017#includessnoversionincludesssnoversion-mdmd-editions
https://docs.microsoft.com/sql/linux/sql-server-linux-editions-and-components-2017?view=sql-server-linux-2017#includessnoversionincludesssnoversion-mdmd-editions
https://docs.microsoft.com/sql/linux/sql-server-linux-editions-and-components-2017?view=sql-server-linux-2017#includessnoversionincludesssnoversion-mdmd-editions

17

work for the Standard edition, but they are now available. You can

read more about this change in this blog post: https://blogs.msdn.

microsoft.com/sqlreleaseservices/sql-server-2016-service-

pack- 1-sp1-released/

• Developer: This is a free edition that includes all features available in

the Enterprise edition. However, the license for this edition restricts it

from being used for production purposes. You can use this edition to

build and test your application.

• Web: This edition is like Standard with lower limits and is specifically

priced to target Web hosters.

• Express: This is the most basic edition but is free and could be used

in production. It is limited though, enough that it shouldn’t be used

for any type of scalable application. But if you are just getting started

with SQL Server as a developer, SQL Server Express can be useful.

There is an easy upgrade path for this to the Standard and Enterprise

editions. For Linux, SQL Server Express can serve a very useful

purpose as a configuration-only replica server. This will be discussed

in more detail in Chapter 8.

I should also mention that SQL Server offers an Evaluation edition. It contains all

the features of the Enterprise edition but is not licensed for production and has a time-

based expiration license. But it is a great way to test out SQL Server capabilities on an

Enterprise server. In Chapter 2 I’ll described how you choose which edition you want to

use with SQL Server.

 What Features Are Not Available
With this great lineup of features come some areas that are not available in SQL Server

2017 on Linux (as of general availability). Some features included with the SQL Server

product have dependencies or require external programs that are not so straightforward

to work on SQL Server on Linux.

Note We are actively investigating many of these features to include in future
versions or updates of SQL Server on Linux.

Chapter 1 Why SQL Server on Linux?

https://blogs.msdn.microsoft.com/sqlreleaseservices/sql-server-2016-service-pack-1-sp1-released/
https://blogs.msdn.microsoft.com/sqlreleaseservices/sql-server-2016-service-pack-1-sp1-released/
https://blogs.msdn.microsoft.com/sqlreleaseservices/sql-server-2016-service-pack-1-sp1-released/

18

As with any release, we make tough decisions to include or not include features or

enhancements that we would love to do if time were not a factor. Therefore, the following

features did not make it into SQL Server 2017 on Linux for general availability:

• Transaction and Merge Replication

• Distributed Transactions (linked server queries or application

distributed transactions via MSDTC)

• Stretch Database

• Polybase

• Machine Learning Services (but Native Scoring is supported)

• System extended procedures such as xp_cmdshell

I’ve only listed the major features that did not make it into SQL Server 2017 general

availability. There are a few others, and you can read the complete list in our Release

Notes at https://docs.microsoft.com/sql/linux/sql-server-linux-release-

notes#Unsupported.

I’ll add one other comment on features. The SQL Server product on Windows

Server today comes with other services such as SQL Server Analysis Services (SSAS)

and SQL Server Reporting Services (SSRS). These are commonly known as our Business

Intelligence (BI) Services (this also includes Master Data Services (MDS) and Data

Quality Services [DQS]). These services were not implemented for SQL Server on Linux.

Note that these services have the capability to connect and query SQL Server on Linux.

 Should I Use Windows or Linux?
I’ll conclude this section with an answer to a common question I get: “Should I run

SQL Server on Linux or Windows Server?” The answer is Yes (hoping for some bit of

laughter at this point from my readers). The point is that we built SQL Server on Linux

to give a choice, not necessarily because SQL Server runs faster or better on Windows

Server vs. Linux. If the features that are not supported today for SQL Server on Linux

don’t affect you, make your decision on which operating system platform is best for you,

your application, or your company. Some customers I talk to are creating a standard

for Linux within their organization, so they will make the choice for consistency and

now SQL Server gives them that opportunity. For others, they are comfortable with

Chapter 1 Why SQL Server on Linux?

https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes#Unsupported
https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes#Unsupported

19

Windows Server and like that platform so will stay with SQL Server on that operating

system. For some, Linux is a very popular operating system for new developers, so they

will enjoy building applications against SQL Server on Linux in development phases and

production can then be used for SQL Server against Linux or Windows.

My great friend of many years in Microsoft Support Robert Dorr (you can find us

both on our joint blog http://aka.ms/bobsql) joined the Helsinki development team

in early 2016. When I was talking to him about this book he had this recollection, which

sums up the experience of the team and reason behind the project.

“What I found is that I stepped onto a rocket ship. Lots of new things and lots of

things to be done across the eco-system. It was best described by Scott Konersmann as

we are changing out the engine of a jet plane in midflight and some days it really feels

like that. We are bringing decades of tried and tuned technology and experience on

Windows to the Linux platform and we don’t want to remove features. Simply give the

customer the choice of which ‘engine’ they want to run.”

 Containers Are the New Virtual Machine
One other major motivation for us to build SQL Server on Linux was to provide support

for an emerging technology called containers. A later chapter in the book will cover

technical details of how to use SQL Server with containers. Here I will explain a summary

of SQL Server with containers and its relationship to Linux.

The emerging force in the industry for container technology is by far Docker. Rather

than create a definition of containers in my own words, I absolutely love how Docker

explains it (https://www.docker.com/what-container):

“A container image is a lightweight, stand-alone, executable package of a
piece of software that includes everything needed to run it: code, runtime,
system tools, system libraries, settings. Available for both Linux and
Windows based apps, containerized software will always run the same,
regardless of the environment. Containers isolate software from its sur-
roundings, for example differences between development and staging envi-
ronments, and help reduce conflicts between teams running different
software on the same infrastructure.”

After reading this, perhaps you are wondering why didn’t we just use containers

instead of our architecture with SQLPAL?

Chapter 1 Why SQL Server on Linux?

http://aka.ms/bobsql
https://www.docker.com/what-container

20

There are a few major reasons for this:

• The Docker Engine on Linux only supports images that contain a

Linux operating system because remember: a container interacts

with the host operating system. Therefore, if we just went with

containers, we would be back to square one to port all our

code to Linux.

• We wanted to provide native capability directly with the Linux

operating system for maximum performance.

• Even though we want to completely support SQL Server with Docker

containers and the new scenarios it provides, we didn’t want to

rely on this to support Linux, especially if any limitations exist for

containers that would not exist running natively on Linux.

I’m excited about the future of Docker containers and how SQL Server plays an

important role in making containers a viable technology for new scenarios, including

portability, consistency, and DevOps scenarios.

 Database Containers
I remember not long ago asking my colleague Travis Wright, one of the key program

managers who brought SQL Server Linux to release, about SQL Server Support for

Windows Containers. His initial answer surprised me. He said: “Bob, why do you

care?” His message was that wouldn’t it be nice to get to a world where the focus is a

database container including SQL Server, the database, and any dependent pieces of an

application vs. worrying about the operating system in the container image. I had never

thought about it that way and we may not be ready for that yet, but his idea is spot on.

That is one of the promises of containers.

 Platform Independence, Portability, and Consistency
“Platform” in this context is the host where containers run. Docker provides this

independence because I can compose (you will learn what this means in the chapter on

containers) a Docker image with SQL Server and run that image as a container

on Windows, Linux, MacOS, or other container cloud environments such as

Chapter 1 Why SQL Server on Linux?

21

Azure Container Service (AKS), Amazon Elastic Container Service (ECS), Google

Cloud Platform, Red Hat OpenShift, and SUSE CaaS. And since this is a container, it is

the same image running in all these environments. Now that is portability! It provides

for a reliable, consistent package of a known SQL Server version along with your

database, scripts, or whatever dependencies you put into the image.

 Continuous Integration/Continuous Deployment
Perhaps you have heard of the term DevOps? This concept, which has been around

for several years, is all about combining roles and tasks for software development and

operations. It has become popular because it provides a mechanism to shorten the

development lifecycle and allow for more frequent application deployment.

Continuous integration and continuous deployment (CI/CD) are methods to enable

a more efficient DevOps ecosystem. Using containers, developers can continuously

integrate their application changes and deploy them into test and production

environments. Developers have been using these techniques for some time, but

database platforms like SQL Server were typically not part of the lifecycle. A typical SQL

Server would be hosted on a server, and developers would struggle to maintain their

containers with their applications to a decoupled SQL Server and databases (and objects

like SQL Agent jobs and scripts). Now that SQL Server embraces the container world, it

can now be part of a container that is included in the CI/CD pipeline.

 Kubernetes
The promise of containers has a great potential for portability, consistency, and

efficiency. But how do you coordinate the execution of many database containers in

a CI/CD pipeline or in a large-scale production environment? A technology called

Kubernetes was created to solve this problem. Kubernetes is an open-source system to

help manage, deploy, and orchestrate many containers in a complete ecosystem. One

of its advantages is to provide a natural high-availability solution for containers, which

couples nicely with the need of many SQL Server users to provide a high-availability

solution with production databases. Kubernetes has emerged as the leading solution for

container management and deployment at scale, and has been adopted by almost every

public cloud vendor that supports container execution and deployment.

Chapter 1 Why SQL Server on Linux?

22

Later in this book we will devote an entire chapter to the technical details of

deploying SQL Server with Docker containers, including examples of using this in a CI/

CD pipeline and implementing High Availability using Kubernetes.

 Summary
Deployment is an important term to get started. This is all about installing and

configuring SQL Server on Linux. And that is where our journey will begin for getting up

and running with SQL Server on Linux in the next chapter.

Chapter 1 Why SQL Server on Linux?

23
© Bob Ward 2018
B. Ward, Pro SQL Server on Linux, https://doi.org/10.1007/978-1-4842-4128-8_2

CHAPTER 2

Install and Configuration
From the very beginning, our team wanted to make sure the installation experience for

SQL Server on Linux fits well within the already well-established methods, practices,

and ecosystem for Linux users. Furthermore, rather than just say that SQL Server is

supported on any Linux distribution (there are hundreds out there), we wanted to

ensure we provided a quality, well-tested release on popular distributions and a superior

support experience for our customers.

We designed the installation experience to be fast and light. You might be surprised

by seeing the number of pages devoted to the subject in this chapter. That is because

installing a product is the first experience you encounter and can set the tone for your

opinion of a product. If you just want to dive in and see how easy it is to install SQL

Server on Linux, go straight to the “Just Install It!” section.

I wanted this chapter to cover all aspects of the installation experience, so you can

know what to expect, understand how it works behind the scenes, and provide you all

the options for installation and updates.

The chapter will also cover a discussion of requirements, how to verify your

installation was successful, unattended install, offline install, installing other packages,

installing in an Azure environment, troubleshooting installation problems, exploring

what is installed, and topics on configuration. It is all based on my experiences installing

the product, talking to customers, our support, and our engineering teams about our

intentions to make the installation and configuration experience simple but complete.

 Preparing for Install
If you want a superior experience with a product as complex as SQL Server for an

enterprise-grade application, careful preparation is a key success criterion. In this

section, I’m going to talk about what Linux distributions we officially support, system

requirements to ensure a smooth and optimal SQL Server experience, and some

24

suggestions on how to test SQL Server capabilities as you make decisions on your target

SQL Server environment. The last part of this section is only for those new to Linux, so

you may want to skip the last part if you are a Linux guru. I thought it would be helpful

for those making a transition from Windows to learn from some of the tips I’ve picked up

as I made my own transition to get comfortable again with navigating Linux.

 Linux Distributions
SQL Server 2017 on Linux is officially supported on the following Linux Distributions

(these are minimum versions):

• Red Hat Enterprise Linux (RHEL) 7.3 and 7.4

• SUSE Linux Enterprise Server (SLES) v12SP2

• Ubuntu 16.04LTS

For future context, RHEL and SLES are considered RPM-based distributions although

each has differences in functionality and Ubuntu is a Debian-based distribution (I find

this resource to be very valuable when looking at various Linux distributions and their

history: https://en.wikipedia.org/wiki/Linux_distribution). This distinction is

significant mostly because it affects the package format we use for each distribution.

We are always looking to check on what new versions of these distributions we

should support, so bookmark this page for the “latest news” on SQL Server for Linux:

https://docs.microsoft.com/sql/linux/sql-server-linux-setup.

Your choice of these distributions may be based on your preference or perhaps a

standard within your company. You should know we have done basic testing on other

Linux distributions such as CentOS or ORACLE Enterprise Linux (OEL) and SQL Server

can run on these. However, we are not prepared to say we officially support SQL Server

on Linux for distributions other than the ones I’ve listed here in this section.

Note We fully support SQL Server on Docker containers, and I’ll cover that topic
completely in Chapter 11.

For the sake of consistency, I’m going to do all the demos and examples in this book

using Red Hat Enterprise Linux. SQL Server runs very well on all three distributions and

integrates the familiar experience of each. Our documentation has clear examples of

how to install SQL Server on RHEL, SLES, and Ubuntu.

Chapter 2 InStaLL anD ConfIguratIon

https://en.wikipedia.org/wiki/Linux_distribution
https://docs.microsoft.com/sql/linux/sql-server-linux-setup

25

I recommend you consult with the documentation and installation guidance of your

Linux distribution before installing SQL Server, to ensure an optimal experience. For

example, since SQL Server can be an intensive I/O application, you may want to consult

with your Linux guide on how to configure your disk for performance and durability.

Having said that, in Chapter 6, I’ll review with you the Microsoft guidance on how to

configure Linux and SQL Server for maximum performance with both SQL Server and

Linux Kernel tuning recommendations based on our experiences at Microsoft.

I do have a few tips on how I install and interact with Linux to use SQL Server:

• I never install the GUI. Ubuntu desktop users may prefer the

GUI shell and SQL Server for developers runs just fine in that

environment. I always find myself just using the command line bash

shell or running GUI programs on my Windows laptop connected to

my Linux Server or VM.

• If I’m going to get serious about performance, I always mount a

separate drive for my database and transaction log files. To make

it easier, I usually mount /var/opt on this separate drive and just

use this for the default database directory (you will find out you

can change this). For serious production scenarios, you likely will

spread SQL Server database and log files on separate drives and

even create multiple SQL Server files across drives. There is some

very easy to follow documentation on how to configure Linux to

use a separate disk you have added (to your VM for example), in the

Azure documentation. Read the section on “Prepare Data Disks” at

https://docs.microsoft.com/azure/virtual-machines/linux/

tutorial-manage-disks.

• If you plan to connect to your Linux Server or VM on a laptop not

running Linux natively, get yourself a good secured shell (ssh)

program. For MacOS users, it comes built-in with a command line

ssh client, but you can install other utilities as well. For Windows

10 users, you can install a Linux subsystem that comes with an ssh

command line interface. See https://docs.microsoft.com/windows/

wsl/install-win10 for more information. For me (and I’ll use this

for demonstrations in the book), I use a program called MobaXterm,

which you can download from https://mobaxterm.mobatek.net/.

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-manage-disks
https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-manage-disks
https://docs.microsoft.com/windows/wsl/install-win10
https://docs.microsoft.com/windows/wsl/install-win10
https://mobaxterm.mobatek.net/

26

Figure 2-1 shows an example of a MobaXterm ssh session for a Linux server.

Figure 2-1. A MobaXterm ssh session to a Linux server

 System Requirements
SQL Server runs on many different types of computer systems and virtual machine

footprints. The core minimum requirements are:

• 2GB of memory (The minimum was reduced to 2GB starting with

SQL Server 2017 Cumulative Update 2).

• 6GB of free disk space

• Processor speed of 2GHz

• Processor type is x64 compatible

• Two physical processor cores

While those are the minimum requirements, SQL Server can scale to the largest

systems available. SQL Server can address the maximum memory possible on Linux.

Currently, that is a theoretical limit of 64TB, but practically the tested limit is around

12TB. There is no limit on the number of cores SQL Server can support on Linux and the

maximum database size is a whopping 524 Petabytes (PB).

SQL Server is supported on the popular native filesystems of Linux XFS and EXT4.

The default filesystem type varies by distribution. It is now XFS for RHEL 7.3 and 7.4,

but EXT4 for Ubuntu and SLES. In our testing at Microsoft, we have not seen a

Chapter 2 InStaLL anD ConfIguratIon

27

significant performance difference with one filesystem type vs. the other. However,

XFS provides larger size capabilities for volume, maximum file size, and number of

files than EXT4. For all my work on RHEL, I just use the default of XFS. Our testing

with Ubuntu and SLES indicates the EXT4 works best with those distributions (but

XFS is completely supported). There is a new filesystem type called BTRFS, which is

not supported for SQL Server. You should also know that the popular remote storage

system Network File System (NFS) is supported with a few restrictions, which are

documented in our page on system requirements at https://docs.microsoft.com/

sql/linux/sql-server-linux- setup#system.

Tip for maximum performance of SQL Server, you may need to adjust certain
BIoS settings for your computer. See Chapter 6 for more details on BIoS settings
for your Linux system.

 Testing for SQL Server
As you plan to install and explore the capabilities of SQL Server, there are some resources

that can be helpful for you.

 The WideWorldImporters Sample

In SQL Server 2016, we built a new sample database called WideWorldImporters

along with a series of scripts and demos. I will use this sample throughout the book

(along with the companion WideWorldImportersDW database). You can access a

backup of this database and all the samples by starting with this documentation

page: https://docs.microsoft.com/sql/sample/world-wide-importers/wide-

world-importers- documentation. It is a very simple way for anyone to test features

and basic capabilities of SQL Server without creating your own database. The

sample includes a backup file of two databases (one for basic capabilities and one

specifically designed for data warehouse workloads) and the original schema and

data generation scripts. The backups are compatible to restore to SQL Server 2017 on

both Windows and Linux.

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/linux/sql-server-linux-setup#system
https://docs.microsoft.com/sql/linux/sql-server-linux-setup#system
https://docs.microsoft.com/sql/sample/world-wide-importers/wide-world-importers-documentation
https://docs.microsoft.com/sql/sample/world-wide-importers/wide-world-importers-documentation

28

 Putting the Hammer on SQL Server

If you are looking to stress the capabilities of SQL Server on Linux for OLTP or Data

Warehouse workloads, consider the popular open-source tool called HammerDB. You

can download the tool from http://www.hammerdb.com. HammerDB supports running

a derivation of the TPC benchmarks TPC-C (OLTP) and TPC-H (Data Warehouse). You

should know that HammerDB requires a GUI but has some automation features. The

basic interface is shown in Figure 2-2.

Figure 2-2. The HammerDB 2.23 interface

 Linux Tips
If you are a Windows user and even a strong Powershell user, you may need a few tips

on navigating the Linux shell and system. This section includes a few commands,

scripts, and navigation tips I’ve learned as I’ve spent time installing, demonstrating, and

presenting SQL Server on Linux.

Chapter 2 InStaLL anD ConfIguratIon

http://www.hammerdb.com

29

 Common Commands

Here is a list of the most commonly used commands I use on a regular basis from the

bash shell:

ls and ll: List out files in a directory. ls has all type of options to list

out files. I like ll because it provides a detailed list of a directory or

a file(s) including size, permission, and date/time.

grep: Search for a given text string from an input stream,

individual file, or set of files.

man: Short for “manual pages.” Use this to find the syntax and

details of any command. For example, run

man sqlservr

to see a short description of SQL Server including a list of support

environment variables, where files are installed, and a pointer to

the entire documentation on the Internet.

chmod: Change attributes of a file or directory. This can be read/

write/execute. For example, when you create a file to execute as a

script in the shell, you must change the mode to execute like the

following:

chmod u+x myscript.sh

chown: Change ownership of a file or a directory for a group and/

or user. I use this command to change the ownership of an SQL

Server backup file I’m restoring to the mssql group and mssql

user, so SQL Server can read the file:

chown mssql:mssql mybackup.bak

pwd: This stands for “print working directory” and allows you to

see the current working directory.

ps: This stands for process status and is a simple way to get a list of

processes running on the Linux server and details about them.

Chapter 2 InStaLL anD ConfIguratIon

30

systemctl: This command is used to report on the status and

control the execution of a systemd unit called a service on Linux.

As you will see in this book, the service for SQL Server is called

mssql-server. Here is a reference on how to use this command

with the mssql-server service (Don’t worry about sudo for now.

I’ll explain that in the next section):

Show if SQL Server is running

sudo systemctl status mssql-server

Stop SQL Server (SQL Server does a normal shutdown). It does

nothing if SQL Server is already stopped.

sudo systemctl stop mssql-server

Start SQL Server. It does nothing if SQL Server is started.

sudo systemctl start mssql-server

Restart SQL Server. If SQL Server is running, this command will

shut it down and start it again. If SQL Server is stopped, this

command will start it.

sudo systemctl restart mssql-server

Tip systemctl submits a “job” to control the service. only the status option
displays anything. When you try to start, stop, or restart the service, use the status
option to see the result.

scp: This stands for secure file copy and can be used to copy files

from one Linux server to the other.

Tip there is a very nice free tool called winscp, which I use often to copy files
from Windows to Linux. the Windows ssh program, MobaXterm, also includes
some basic drag and drop copy capabilities.

Chapter 2 InStaLL anD ConfIguratIon

31

df: Shows file system disk space usage for folders mounted on

drives. Use the -h option to show a readable format of what

directories are mounted on specific disk and their sizes. I find this

helpful to see how much space the /var/opt/mssql directory has

for default databases.

du: Stands for disk usage. A very handy command to show you the

disk space usage by directory.

tree: You must install a package to get this one (yum install tree).

This displays a directory and all its files and directories in a hierarchy.

In a later chapter in the book, I’ll discuss the various Linux commands I use to

monitor performance and system information.

 sudo

When you install Linux you typically will provide a login and password to use for normal

interaction with the shell and the root user password.

For security reasons, it is best not to login and run directly as the root (often called

superuser). Therefore, there is a method to execute commands as the context of root (or

another user) while logged in as another user.

This method is implemented by a command called sudo (this stands for “substitute

user do” but used to be called “superuser do” because for older versions it was only for

superuser commands).

For example, your default account will not have access to installation directories for

SQL Server, so you would need to run this command to list out one of the directories:

sudo ls /var/opt/mssql

Note notice the directory navigation notation of the “/” vs. the Windows
convention of “\”.

Typically, in an ssh session, when you first use sudo, you are prompted for your

password. By default, that authentication is cached for a period of five minutes (you can

configure this value). That means, effectively, once you enter in your password, for the

next five minutes all other executions of sudo will not require the password again.

Chapter 2 InStaLL anD ConfIguratIon

32

As with all Linux commands, there are tons of options. Two that you might find

useful are the -i and -u options. -i allows you to change context in your shell session to

now run everything as superuser. For example, when you run

sudo -i

you will get prompted for your password and your shell prompt will change to indicate

you are now running as root:

[root@bwsql2017rhel ~]#

The -u option allows you to run commands in the context of another user other

than root.

 Viewing and Editing Files and Scripts

Common tasks in any operating system for many users are viewing and editing files

and building scripts. The sudo command in these examples is only required if the file

requires superuser access.

The most common command to view any text file is the cat command. So, this

command

sudo cat /var/opt/mssql/log/errorlog

dumps out the text of the SQL Server ERRORLOG (I’ll explain later in this chapter the

importance of this file).

The more command can be used to page any file.

sudo more /var/opt/mssql/log/errorlog

Tip there is “more” to this command. When the file is displayed with more, hit
the “h” key to get a list of options, which includes search capabilities.

And one of my favorite commands is the tail command to view the end of a file. It is

very handy to see the latest entries in a file like the SQL Server ERRORLOG:

sudo tail /var/opt/mssql/log/errorlog

Chapter 2 InStaLL anD ConfIguratIon

33

And if you have a file that is frequently appended to, you can “monitor” new entries

to a file using tail like this:

sudo tail -f /var/opt/mssql/log/errorlog

Editing files is also another common task including writing shell scripts. I remember from

my older UNIX days the famous vi editor. A friend of mine told me to learn vi because it is

installed by default on every UNIX system in the world. And it is still there today for your use.

But now I prefer the popular nano editor (as suggested by Robert Dorr). nano may

not be installed on your Linux server, so on RHEL I installed it with

sudo yum install nano

nano is a full screen editor and even supports cut/copy/paste. Figure 2-3 is an example

nano screen of creating a shell script to install SQL Server.

Figure 2-3. The nano editing experience on Linux

Just remember that when you create a shell script, you must change the “mode” to

execute to run it:

chmod u+x installsql.sh

 System Logging

Later in this chapter, I’ll talk about a log file called ERRORLOG that SQL Server uses to

provide important information about startup, errors, warnings, and other execution

details. You may have the need to look at logging for other aspects of the Linux kernel

or other programs. A common file from older RPM-based distributions and in current

Debian systems is /var/log/syslog. In current versions of RPM-based systems like RHEL,

there is a very nice program to view most system logging called journalctl. And SQL

Server will write information from its ERRORLOG into this same logging facility.

Chapter 2 InStaLL anD ConfIguratIon

34

By default, journalctl will only keep messages since the last boot of your Linux Server

(this is configurable to make the log persisted across boots) and the default execution of

journalctl is to show you all logged messages starting with the oldest since boot:

journalctl

Following is some typical output from journalctl on Linux:

--Logs begin at Sat 2018-02-17 09:29:49 CST, end at Tue 2018-02-20 06:43:04 CST. –

Feb 17 09:29:49 bwsql2017rhel system-journal[106]: Runtime journal is using

8.0M (max allowed 390.2M, trying to leave 545.4M f

Feb 17 09:29:49 bwsql2017rhel kernel: Initializing cgroup subsys cpuset

Feb17 09:29:49 bwsql2017rhel kernel: Initializing cgroup subsys cpu

...

Tip the Linux version shown in journalctl is the version of the Linux kernel
release. to find out the specific details of your distribution’s release and version
number, use this command:

cat /etc/os-release

By default, journalctl pages the output, but you can control that with an option. To

see all the SQL Server entries, you can use a command like this:

journalctl | grep sqlservr

This only shows you logged output for sqlservr, but you may want to see the output

interleaved with other kernel messages. In this case, dump out the entire journal, as each

entry is marked with a timestamp. by just running journalctl.

 Just Install It!
By this point in the chapter, you have seen SQL Server system requirements, discovered a

few basics of testing your Linux environment and SQL Server, and if you are new to Linux

received a few tips on how to work your way around the operating system and shell.

Or perhaps you just skipped here and want to dive in and install SQL Server. In this

section, I will walk you through the install process and give you some behind the scenes

information about it.

Chapter 2 InStaLL anD ConfIguratIon

35

 Deploy in 60 Seconds
Before I show you the steps to install on RHEL, here are quick pointers to install on

Ubuntu (using apt-get) and SLES (using zypper). The steps are very similar but slightly

different, to account for package managers on those distributions.

Ubuntu: https://docs.microsoft.com/sql/linux/quickstart-

install-connect-ubuntu

SLES: https://docs.microsoft.com/sql/linux/quickstart-

install-connect-suse

Installation for RHEL requires these three easy steps:

Note these steps require your Linux server to have an Internet connection. I will
discuss how to do an offline installation later in this chapter.

 1. Download a text file called a repository (repo) configuration file to

a known directory.

sudo curl -o /etc/yum.repos.d/mssql-server.repo https://

packages.microsoft.com/config/rhel/7/mssql-server-2017.repo

 2. Run a command to do the install.

sudo yum install -y mssql-server

Tip this step installs the latest update of SQL Server 2017 based on a concept
called Cumulative updates (Cus). I will talk later in this chapter about how to
apply specific versions. I recommend you use the latest update, as we continually
improve SQL Server on Linux including fixes and minor enhancements. I also
recommend that once you install SQL Server on Linux, you keep up to date
monthly because this is the typical update frequency.

 3. Run a bash shell script to complete the installation of SQL Server

(answer a few prompts):

sudo /opt/mssql/bin/mssql-conf setup

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/linux/quickstart-install-connect-ubuntu
https://docs.microsoft.com/sql/linux/quickstart-install-connect-ubuntu
https://docs.microsoft.com/sql/linux/quickstart-install-connect-suse
https://docs.microsoft.com/sql/linux/quickstart-install-connect-suse

36

That’s it. And if you have a decent Internet connection, it is possible that these steps

can be done in about 60 seconds. I’ve seen and done it many times.

At this point, if you are like me, you just want to move rapidly—build database,

applications, and queries. I get that, and in fact we built SQL Server on Linux so you

could do that. But this is a book to cover the subject thoroughly which is why the rest of

the chapter has detailed information about the complete install experience. If you plan

to just start using SQL Server, I recommend you stop and scan over these resources to

avoid any gotchas when you use the product:

https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes and

https://docs.microsoft.com/sql/linux/sql-server-linux-faq.

If you are interested in more details behind each step, read on. Otherwise, go to the

next section in the chapter.

 Download a Repository Config File
You only must download a repository config file once on your Linux server (unless you

want to change the repository to use), even if you decide to install and uninstall several

times.

sudo curl -o /etc/yum.repos.d/mssql-server.repo https://packages.microsoft.

com/config/rhel/7/mssql-server-2017.repo

curl, also known as cURL (which stands for Client URL Request Library), is a

command to get or send files using a URL syntax. The default is to write to stdout so

the -o parameter is followed by a filename. In this case, SQL Server follows the yum

repository convention by placing the file in the /etc/yum/repos.d directory.

The repo file is a simple text file that looks like this (based on mssql-server-2017.repo

from the our packages.microsoft.com server):

[packages-microsoft-com-mssql-server-2017]

name=packages-microsoft-com-mssql-server-2017

baseurl=https://packages.microsoft.com/rhel/7/mssql-server-2017/

enabled=1

gpgcheck=1

gpgkey=https://packages.microsoft.com/keys/microsoft.asc

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes
https://docs.microsoft.com/sql/linux/sql-server-linux-faq

37

The mssql-server-2017.repo is the configuration file for the SQL Server 2017 CU

repository. You may want to use a different repository (such as one for preview builds

or General Distribution Release [GDR]). Refer to the section in this chapter called

 “Installing Other Versions” for more details. This repo file will control what package

managers use to download and install packages for install and update.

The concept is to download a repo file from a location provided by the application

vendor so that when you run install, the yum package manager will use the contents

of the file to install the packages (as well as a key). So this URL (https://packages.

microsoft.com/rhel/7/mssql-server-2017/) is the actual location of the RPM

packages for SQL Server for RHEL. Following is an example showing how I execute the

curl command on my system:

[thewandog@bwsql2017rhel ~]$ sudo curl – o /etc/yum.repos.d/mssql-server.

repo https://packages.microsoft.com/config/rhel/7/mssql-server-2017.repo

Then Figure 2-4 shows what the output looks like.

Figure 2-4. Example output of downloading the repository configuration file for RHEL

 Do the Install of the SQL Server Engine
Now that the repo file is copied, it is time to perform the installation of SQL Server on

Linux on RHEL.

sudo yum install -y mssql-server

One thing I’ve enjoyed about getting back into Linux is the history of how various

part of the operating system made its way into the distributions. Yum stands for

(YellowDog Updater Modifier). Its origins trace back to a free distribution called Yellow

Dog Linux and is the primary RPM-based package manager for RHEL, Fedora, and

CentOS.

Chapter 2 InStaLL anD ConfIguratIon

https://packages.microsoft.com/rhel/7/mssql-server-2017/
https://packages.microsoft.com/rhel/7/mssql-server-2017/

38

The installation process for the SQL Server RPM package does the following:

 1. Downloads the binary RPM package file

 2. Creates a Linux user and group called mssql (this will be the non-

interactive login and group assigned to SQL Server non-binary

files). You cannot change this.

 3. Extracts out SQL Server binaries and installation files (We will

explore all these files in a later section of this chapter.)

 4. Registers SQL Server as a systemd service called mssql-server

The -y parameter used for yum in the example syntax stands for “assume yes” which

means you are automatically asking yum to respond “yes” to any prompts. For our

installation, the only prompt is whether you want to proceed with the download.

Figure 2-5 is a snapshot of the SQL Server installation process in progress when using

yum on RHEL.

Figure 2-5. A yum install of SQL Server on RHEL in progress

Chapter 2 InStaLL anD ConfIguratIon

39

And Figure 2-6 is an example of what a successful installation looks like.

Figure 2-6. A completed yum install of SQL Server on RHEL

 Complete the Setup of SQL Server
If you look carefully at this screenshot, the installation provides instructions on how to

complete the setup of SQL Server:

Please run ‘sudo /opt/mssql/bin/mssql-conf setup’ to complete the setup of
Microsoft SQL Server.

Therefore, the command to run is

sudo /opt/mssql/bin/mssql-conf setup

This step is necessary so that we can extract out the system databases from the

downloaded installation files and run sqlservr to do a few post install steps. mssql-conf

is a bash shell script copied as part of the installation and executes other supporting

python scripts to perform various configuration tasks. This script takes several options

and one of these is called setup. You will only use this option once after installing SQL

Server, but mssql-conf supports other options, which we will cover later in this chapter.

Chapter 2 InStaLL anD ConfIguratIon

40

The setup option of mssql-conf does the following:

 1. Prompts you for the Edition of SQL Server

 2. Asks you to accept the end user licensing agreement (EULA). You

can read the agreement from /usr/share/doc/mssql-server.

 3. Prompts for the password of the SQL Server system administrator

account called sa

Tip the SQL Server account sa is the default system administrator account. In a
later chapter in the book, I will talk about how to add other login accounts to SQL
Server. It is very important that you remember the password for the sa account.
mssql-conf does provide an option to reset the sa password. also note the sa
password must be a “complex” password (as do all passwords for logins for SQL
Server on Linux). the requirements are: at least eight characters long and contain
characters from three of the following four sets: uppercase letters, lowercase
letters, numbers, and symbols.

Evaluation, Developer, and Express are free editions of SQL Server. If you choose

Web, Standard, Enterprise, or Enterprise Core, these are paid licenses, but choose these

options if you have a paid license via a contract with Microsoft. You will not be required

to enter in a product key. If you have purchased a license individually, choose option 8

and enter in your product key.

Following is an example of responding to what edition to install and accepting the

License agreement:

[thewandog@bwsql2017rhel ~]$ sudo /opt/mssql/bin/mssql-conf setup

Choose an edition of SQL Server:

 1) Evaluation (free, no production use rights, 180-day limit)

 2) Developer (free, no production use rights)

 3) Express (free)

 4) Web (PAID)

 5) Standard (PAID)

Chapter 2 InStaLL anD ConfIguratIon

41

 6) Enterprise (PAID)

 7) Enterprise Core (PAID)

 8) I bought a license through a retail sales channel and have a product

key to enter.

Details about editions can be found at

https://go.microsoft.com/fwlink/$LinkId=852748&clcid=0x409

Use of PAID editions of this software requires separate licensing through a

Microsoft Volume Licensing program.

By choosing a PAID edition, you are verifying that you have the appropriate

Number of licenses in place to install and run this software

Enter your edition(1-8): 2

The license terms for this product can be found in

/usr/share/doc/mssql-server or downloaded from:

http://go.microsoft.com/fwlink/?LinkId=855862&clcid=0x409

The privacy statement can be viewed at:

https://go.microsoft.com/fwlink/?LinkId=853010&clcid=0x409

Do you accept the license terms [Yes/No]: Yes

Enter the SQL Server system administrator password:

Confirm the SQL Server system administrator password:

Configuring SQL Server

Setup has completed successfully. SQL Server is now starting.

[thewandog&bwsql2017rhel ~]$

In addition, mssql-conf with the setup option changes the ownership of the /var/opt/

mssql directory (and subdirectories) to user mssql and group mssql. This is the default

location and ownership of this directory, and in SQL Server 2017 on Linux you cannot

change this.

In the section “Unattended Install” I will show you how to use environment variables

to automate these steps to avoid having to supply user input.

Chapter 2 InStaLL anD ConfIguratIon

42

 The Complete Installation Experience
I told you the install was easy for SQL Server. This section covers installation-related

topics I believe you will find useful to provide the complete installation experience.

Learn how to install other builds of SQL Server, verify your install, perform unattended

and offline installations, install in the cloud, and learn troubleshooting tips.

 Installing Other Versions
SQL Server 2017 has two major repositories from which to install from:

• mssql-server-2017: Latest released builds based on CUs for

SQL Server 2017. Choose this to use the latest updates for

SQL Server 2017. The steps previously shown in this chapter and

in our tutorials in the official Microsoft documentation use this

repository.

• mssql-server-2017-gdr: General Distribution Release (GDR)

for SQL Server 2017. Choose this if you only want security and

critical updates to SQL Server 2017. There are typically very few

updates to this repository over the lifetime of a major release of

SQL Server.

Future versions of SQL Server could have different repository names.

Note there is also a preview repository called mssql-server. If you have used
this repository, be sure to remove SQL Server and change to one of the released
repositories before installing SQL Server.

On a regular basis, typically monthly, Microsoft releases an update to SQL Server

2017 called a Cumulative Update (CU). This is a collection of fixes and enhancements to

the product, and they are numbered consecutively starting with CU1. By the nature of its

name, each CU contains changes from the previous build. Refer to our release notes for

a complete list of these builds: https://docs.microsoft.com/sql/linux/sql-server-

linux-release-notes.

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes
https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes

43

Whenever a security problem or critical issue needs to be addressed, Microsoft will

publish a GDR build. This way if you want to run SQL Server based on the release to

manufacturing (RTM) build AND security updates/critical fixes, you can choose the

GDR repository to get the latest build.

Note prior to SQL Server 2017, Microsoft would publish gDr, Cu, and Service
pack releases. Starting with SQL Server 2017, Microsoft will no longer publish
Service pack releases.

The instructions to copy a repository file earlier in this section use the CU repository.

Once you copy a repo file, any future install or update commands with your package

manager will use that repository. If you want to change what repository to use, you must

delete the previous repo file and copy down the new one.

For example, if you had previously used the mssql-server-2017.repo file and wanted

to uninstall and install from the GDR repository, you would need to:

 1. Delete the previous repo file like this

sudo rm etc/yum.repos.d/mssql-server.repo

 2. Uninstall SQL Server

 3. Copy down the new repo like this (assumes RHEL, but look at our

install docs for how to do this for Ubuntu and SLES)

sudo curl -o /etc/yum.repos.d/mssql-server.repo https://

packages.microsoft.com/config/rhel/7/mssql-server-2017-

gdr.repo

 4. Install SQL Server

In addition, by default, install and update will use the latest build from these

repositories. To install a specific package version, you can perform an offline install of a

version of the package or use the following syntax with yum:

sudo yum install -y mssql-server:<package version>

To find all the package versions for SQL Server, run the following command from the

bash shell:

sudo yum list mssql-server --showduplicates

Chapter 2 InStaLL anD ConfIguratIon

44

At minimum, I recommend you use the latest builds from the GDR repository for

any security and critical updates. Most customers use the CU repository and do not

experience any major issues.

The Microsoft release notes page has a list of each update, including a reference to a

Microsoft support article that describes what changes are in each update. You can read

more at https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes.

 Verifying Install
Once you have completed the installation of SQL Server, I have recommendations to do

some basic verification steps and others you can do to ensure a smoother experience

after installing SQL Server. Plus, you will learn a few things about SQL Server along the

way. I highly recommend you go through at least the basic recommendations to avoid

problems later.

 Check the mssql-server Service Is Running

Run the following command to check the mssql-server service status at any time:

sudo systemctl status mssql-server

The output of this command should look something like Figure 2-7 if SQL Server is

running.

Figure 2-7. A running mssql-server service

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes

45

If you look at this output, you see a Main PID (stands for process ID) and then two

process IDs listed below it.

If you recall, in Chapter 1, I mentioned that a parent “watchdog” process exists when

SQL Server is started. In the output you see from systemctl, the top process, 2548, is

the “watchdog” process and the second process, 2573, is the actual SQLSERVR process

running all the SQL Server engine code. You will always see two SQLSERVR processes on

Linux, so a command like

ps axjf | grep sqlservr

yields output that looks like Figure 2-8.

Figure 2-8. Finding the processes of sqlservr

Since I used grep, the column names of the output are not shown. The second

column is the process PID and the first column is the parent PID. So, process 2548 is

the “parent” watchdog SQLSERVR and 2573 is its “child” process but is the “main”

SQLSERVR.

If SQL Server is not running correctly or something failed during the installation,

consult the “Troubleshooting Install” section in this chapter. The most common mistake

I see is skipping the step to run the mssql-conf script with the setup option.

 Connect Locally and Run a Query

Follow these instructions to use the basic command line tool sqlcmd on your Linux

server to demonstrate you can connect and run a query. sqlcmd is a tool that allows you

to execute T-SQL commands against any installed SQL Server.

 1. Install the packages for tools and ODBC for RHEL.

Note for the full set of instructions in our documentation to install our command
line tools on all distributions, visit https://docs.microsoft.com/sql/
linux/sql-server-linux-setup-tools.

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/linux/sql-server-linux-setup-tools
https://docs.microsoft.com/sql/linux/sql-server-linux-setup-tools

46

sudo curl -o /etc/yum.repos.d/msprod.repo https://packages.microsoft.com/

config/rhel/7/prod.repo

The output looks very similar to downloading the repo file for mssql-server

sudo yum install -y mssql-tools unixODBC-devel

There are two packages to install: (1) The command line tools and (2) The Linux ODBC

package (sqlcmd on Linux uses ODBC). This is where yum really comes in handy, as it will

automatically detect the dependency upon the msodbcsql package. For example:

Loaded plugins: product-id, search-disabled-repos, subscription-manager

Resolving Dependencies

--> Running transaction check

---> Package mssql-tools.x86_64 0:14.0.6.0.1 will be installed

--> Processing Dependency: msodbcsql < 13.2.0.0 for package: mssql-

tools- 14.0.6.0-1.x86_64

--> Processing Dependency: msodbcsql >= 13.1.0.0 for package: mssql- tools-

14.0.6.0.1-x86_64

---> Package unixODBC-devel.x86_64 0:2.3.1-11.el7 will be installed

--> Running transaction check

---> Package msodbcsql.x86_64 0:13.1.9.2-1 will be installed

--> Finished Dependency Resolution

You will fill out a few prompts for the EULA license and the install should be very quick.

 2. Put the tools in your PATH to make execution easier.

Your PATH defines directories to search for programs, so you don’t have to explicitly

put in the path of a program or run it from its installed directory. These commands will

update the PATH for the command line tools and write them into files that will specify

the PATH for any future login session.

echo 'export PATH="$PATH:/opt/mssql-tools/bin"' >> ~/.bash_profile

echo 'export PATH="$PATH:/opt/mssql-tools/bin"' >> ~/.bashrc

source ~/.bashrc

 3. Connect using sqlcmd and run a query

sqlcmd -Usa

Chapter 2 InStaLL anD ConfIguratIon

47

You will be prompted for the sa password you specified during installation. If you

connect successfully, you will get a sqlcmd prompt that looks as follows:

[thewandog@bwsql2017rhel ~]$ sqlcmd -Usa

Password:

1>

If SQL Server was not running, and you tried to connect with sqlcmd, you would get

an error the following

Sqlcmd: Error: Microsoft ODBC Driver 17 for SQL Server : Login timeout expired.

Sqlcmd: Error: Microsoft ODBC Driver 17 for SQL Server : TCP Provider: Error

code 0x2749.

Sqlcmd: Error: Microsoft ODBC Driver 17 for SQL Server : A network-related

or instance-specific error has occurred while establishing a connection to

SQL Server. Server is not found or not accessible. Check if instance name

is correct and if SQL Server is configured to allow remote connections. For

more information see SQL Server Books Online..

One mistake I’ve seen made by customers is to forget to run mssql-conf with the

setup option after executing a yum install. The error in Figure 2-14 is the same error you

will see in this scenario.

Now that you have connected, run these two “sanity check” queries:

1> select @@version

2> go

The results will depend on what version of SQL Server you install and what Linux

distribution you use. The following show the results of SQL Server 2017 Cumulative

Update 7 on RHEL 7.5.

Microsoft SQL Server 2017 (RTM-CU7) (KB4229789) - 14.0.3026.27 (X64)

 May 10 2018 12:38:11

 Copyright (C) 2017 Microsoft Corporation

 Enterprise Edition: Core-based Licensing (64-bit) on Linux (Red Hat

Enterprise Linux)

Chapter 2 InStaLL anD ConfIguratIon

48

(1 rows affected)

Now run this query to list out the databases installed on SQL Server:

1> select name, state_desc from sys.databases

2> go

Your results should look like the following:

name state_desc

----------- --

Master ONLINE

Tempdb ONLINE

Model ONLINE

Msdb ONLINE

Type in “exit” to quit sqlcmd.

 Connect Remotely

One last basic check is to remotely connect to SQL Server outside of the local Linux

server. This involves these steps:

 1. Open the firewall for SQL Server.

SQL Server by default listens on TCP port 1433 and it is unlikely that network traffic

would be allowed to that port from other clients. Therefore, run the following commands

to open this port from the firewall of the Linux server. These commands open the firewall

on a RHEL server.

sudo firewall-cmd --zone=public --add-port=1433/tcp --permanent

sudo firewall-cmd –-reload

 2. Connect to SQL Server.

You can use any valid tool that allows a connection to SQL Server. You can get a

complete list of tools of your choice from https://docs.microsoft.com/sql/tools/

overview-sql-tools. Figure 2-9 shows a successful connection to SQL Server on Linux

using the Windows version of sqlcmd based on its IP address. Notice the syntax includes

port 1433, since I’m using the IP address directly.

sqlcmd –Usa -S10.0.0.0,1433

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/tools/overview-sql-tools
https://docs.microsoft.com/sql/tools/overview-sql-tools

49

 More Ways to Verify SQL Server Functionality

There are three other tests I recommend you go through to ensure the best SQL Server

experience:

• Restart the SQL Server service.

Restart the SQL Server service using the systemctl command

sudo systemctl restart mssql-server

When this completes, there is no information provided, even

when it is successful. I recommend you go through the basic

verification steps earlier in this section after this restart.

• Restart the Linux Server.

Another verification step I recommend is to restart your Linux

server and perform the basic verification steps I’ve outlined in

the previous section. This ensures all filesystems are mounted

properly and SQL Server can successfully start when the Linux

server starts. I’ve seen examples where a customer added a disk

and mounted the /var/opt filesystem on that disk but did not put

the entry in the /etc/fstab file. On restart, the filesystem was not

mounted and therefore SQL Server did not start.

• Restore a database.

The other step I recommend you test out is your ability to restore

a database and query it. As I’ve mentioned earlier in this chapter,

Microsoft has a sample database so you can test a restore, called

WideWorldImporters.

Figure 2-9. A remote connection to SQL Server on Linux

Chapter 2 InStaLL anD ConfIguratIon

50

To complete the restore, follow these steps:

 1. Download the WideWorldImporters sample backup.

You can download the sample database from https://docs.microsoft.com/sql/

sample/world-wide-importers/wide-world- importers-documentation. You can

download this directly to your Linux Server if it is connected to the Internet, using the

following command from the bash shell:

wget https://github.com/Microsoft/sql-server-samples/releases/download/

wide-world-importers-v1.0/WideWorldImporters-Full.bak

 2. If you did not download this directly to your Linux server, copy

the file to your Linux server using a program like scp or a built-

in feature of your ssh client (MobaXterm provides “drag and

drop” capabilities). You then need to copy the file into the /var/

opt/mssql directory and change the ownership to mssql, so SQL

Server can access the backup file.

chown mssql:mssql WideWorldImporters-Full.bak

 3. Restore the database by executing this query using sqlcmd.

I recommend you create a file called restorewwi_linux.sql and put these T-SQL

commands into the file:

restore database WideWorldImporters from disk = '/var/opt/mssql/

WideWorldImporters-

Full.bak' with

move 'WWI_Primary' to '/var/opt/mssql/data/WideWorldImporters.mdf',

move 'WWI_UserData' to '/var/opt/mssql/data/WideWorldImporters_UserData.ndf',

move 'WWI_Log' to '/var/opt/mssql/data/WideWorldImporters.ldf',

move 'WWI_InMemory_Data_1' to '/var/opt/mssql/data/WideWorldImporters_

InMemory_Data_1'

go

Now execute the SQL script using sqlcmd (a nice tip on how to run a script with

sqlcmd):

sqlcmd -Usa -irestorewwi_linux.sql

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/sample/world-wide-importers/wide-world-importers-documentation
https://docs.microsoft.com/sql/sample/world-wide-importers/wide-world-importers-documentation

51

Figure 2-10. A restore of the WideWorldImorters sample backup

Since the WideWorldImporters backup was created with SQL Server 2016, your

output will look like Figure 2-10. The restore will automatically upgrade the database

to 2017).

Now connect with sqlcmd running a query directly against the database (notice the

use of the -Q option to run a query from the command line):

sqlcmd -Usa -Q"select count(*) from Sales.Orders" -dWideWorldImporters

Figure 2-11 shows the expected results of the number of rows from the Orders table

in the WideWorldImporters sample database immediately after a restore.

Figure 2-11. Getting the row count of the Orders table in WideWorldImporters

Now that you have seen techniques to install SQL Server and verify the installation,

the next sections cover other installation topics.

Chapter 2 InStaLL anD ConfIguratIon

52

 Unattended Install
All the package managers (e.g., yum, apt-get, zypper) offer a -y option to allow for the

basic installation to complete without any user interaction. The mssql-conf setup option

that I described to complete the installation also offers a method to not require user

interaction.

If you execute mssql-conf like the following:

sudo /opt/mssql/bin/mssql-conf setup -n

the mssql-conf script will rely on the environment variables in Table 2-1 to

automatically respond to the edition of SQL Server, accepting the EULA agreement

and the sa password.

Table 2-1. Environment Variables for the Install

Environment Variable Description Possible Values

MSSQL_pID Set the SQL Server

edition or product key

evaluation

Developer

express

Web

Standard

enterprise

<a product key>

If specifying a product key, it must be in the

form of #####-#####-#####-#####-#####,

where '#' is a number or a letter

aCCept_euLa accept euLa agreement Y

MSSQL_Sa_paSSWorD sa password in single

quotes

the requirements are at least 8 characters

long and contain characters from three of

the following four sets: uppercase letters,

lowercase letters, numbers, and symbols.

You can actually specify more options during mssql-conf setup with other

environment variables, as documented at https://docs.microsoft.com/sql/linux/

sql- server- linux-configure-environment-variables. For example, you could set the

TCP port SQL Server will listen on other than 1433.

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/linux/sql-server-linux-configure-environment-variables
https://docs.microsoft.com/sql/linux/sql-server-linux-configure-environment-variables

53

Note You can also use environment variables to configure SQL Server in a
Docker container when first starting the container. See Chapter 11 for more details.

You can set these environment variables from the shell or include them all in one

execution of mssql-conf like the following:

sudo MSSQL_PID=Developer ACCEPT_EULA=Y MSSQL_SA_PASSWORD='<YourStrong!Passw0rd>'

/opt/mssql/bin/mssql-conf -n setup

Figure 2-12 shows the output of an unattended execution of mssql-conf.

Figure 2-12. Using mssql-conf for an unattended setup

You can configure other setup tasks to be part of an entire script that installs SQL

Server, installs command line tools, other packages, performs other configuration

tasks, and opens the firewall for remote connectivity. For an example of a more robust

unattended script, see the example for RHEL at

https://docs.microsoft.com/sql/linux/sample-unattended-install-redhat.

Our Customer Advisory Team at Microsoft have also created a GitHub repo to show a

possible complete unattended installation based on their customer experiences, which

you can find at https://github.com/denzilribeiro/sqlunattended. (Credits to Denzil

Ribero from Microsoft for creating this great set of scripts).

 Offline Install
There may be situations where your Linux server is not connected or often disconnected

from the Internet. Therefore, you need a process to be able to install the mssql-server

package when your Linux server is offline.

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/linux/sample-unattended-install-redhat
https://github.com/denzilribeiro/sqlunattended

54

Tip If you are doing demonstrations of the SQL Server install experience, I highly
recommend you download a package to your Linux server as a backup should you
be in a place where there is poor Internet connectivity.

The various package management systems all support this technique, provided you

can download the appropriate package in a manner that you can copy to your Linux

server.

Our packages for mssql-server can be found by navigating our release notes

documentation page at https://docs.microsoft.com/sql/linux/sql-server-linux-

release-notes.

Copy down the package from the desired build, copy it into your Linux server in your

home directory, and use your package manager program with an option that supports a

local install. For RHEL, it looks like the following:

sudo yum localinstall mssql-server_versionnumber.x86_64.rpm

The only issue with this approach is that the package manager will look for

dependent packages to install but if you are not connected to the Internet, it cannot

download them.

An alternate approach for RHEL and SLES (RPM-based systems) is to use the rpm

command like the following:

rpm -ivh mssql-server_versionnumber.x86_64.rpm

This command will not look for dependent packages and will not try to connect to

the Internet. If you get errors, because a dependent package is not available, you can use

this command to find these dependencies:

rpm -qpR mssql-server_versionnumber.x86_64.rpm

Tip the rpm package contains all the metadata to detect dependencies, so you
do not need to be connected to the Internet to run this command. this command
also only requires you have permission to read the .rpm file.

You could then locate the dependent packages, download, copy, and install them

locally to meet the needs of the mssql-server package.

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes
https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes

55

Once you complete the local installation, you would then execute

sudo /opt/mssql/bin/mssql-conf setup

just as you did for an online installation.

 Installing Other Packages
One of the ways we have been able to keep the mssql-server installation light and fast is

to separate other functionality into packages. The packages in Table 2-2, therefore, can

be installed after mssql-server to use other features.

Table 2-2. Optional Packages

Package Description Comments

mssql- tools Command line tools such as

sqlcmd and bcp

I recommend you install these on any SQL

Server Linux installation to provide basic

query and data load capabilities on the Linux

Server.

mssql- server- fts full-text Search capabilities only install this if you want to use SQL

Server full-text Search features. this book

will not cover full-text Search. for more

information, see the Microsoft documentation

at https://docs.microsoft.com/sql/

relational-databases/search/full-

text-search.

mssql- server- is Integration Services (also

known as SSIS)

this is a separate Linux process used for

etL operations. Install this for more complex

data extract and load capabilities. this book

will cover the basics of SSIS capabilities in

Chapter 5.

mssql- server- ha SQL Server resource agent You are required to install this to use high

availability features with pacemaker.

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/relational-databases/search/full-text-search
https://docs.microsoft.com/sql/relational-databases/search/full-text-search
https://docs.microsoft.com/sql/relational-databases/search/full-text-search

56

Note prior to SQL Server 2017 Cu4, SQL Server agent was a separate package
called mssql-server-agent. We made a decision that starting with SQL Server
2017 Cu4, SQL Server agent would be installed with the mssql-server package
and enabled through mssql-conf. See https://docs.microsoft.com/sql/
linux/sql-server-linux-setup-sql-agent for more information. We will
cover the basics of using SQL Server agent in Chapter 9.

The release notes contain the location for the above packages (except for mssql- tools)

if you need to perform an offline installation of these: https://docs.microsoft.com/

sql/linux/sql-server-linux-release-notes.

The mssql-tools packages for offline installation can be found at: https://docs.

microsoft.com/sql/linux/sql-server-linux-setup-tools#offline-installation.

 Installing in Azure
Azure Virtual Machine is a cloud Infrastructure as a Service (IAAS) platform for hosting

Virtual Machines to run all type of applications and workloads. SQL Server is well

embraced and a very popular workload in this environment.

Note SQL Server on Linux can be run in other environments such as VMWare,
VirtualBox, and other Cloud providers. for more information, see this documentation
page: https://docs.microsoft.com/sql/linux/quickstart-install-
connect-clouds.

You have two fundamental choices to install SQL Server on Linux in Azure Virtual

Machine:

• Choose your favorite Linux Distribution (RHEL, SLES, or Ubuntu)

from the Azure Marketplace. Then perform an installation of SQL

Server like the instructions I have provided in this chapter.

• Choose a preconfigured SQL Server on Linux option from the Azure

Marketplace. As part of the provisioning of the virtual machine, SQL

Server will be installed and configured automatically.

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/linux/sql-server-linux-setup-sql-agent
https://docs.microsoft.com/sql/linux/sql-server-linux-setup-sql-agent
https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes
https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes
https://docs.microsoft.com/sql/linux/sql-server-linux-setup-tools#offline-installation
https://docs.microsoft.com/sql/linux/sql-server-linux-setup-tools#offline-installation
https://docs.microsoft.com/sql/linux/quickstart-install-connect-clouds
https://docs.microsoft.com/sql/linux/quickstart-install-connect-clouds

57

Note When you use a preconfigured SQL Server Linux VM, you will have to
complete the installation once you first connect to the Linux VM with sudo /opt/
mssql/bin/mssql-conf set-sa-password to establish the sa password.

You also have two methods to provision one of these choices with Azure Virtual

 Machine:

• Use the Azure Portal through a user interface

(http://portal.azure.com).

• Use the command line Azure cli to provision a virtual machine.

Read more at https://docs.microsoft.com/cli/azure/

vm?view=azure- cli- latest.

No matter what method or choice you pick to install SQL Server on Linux in Azure

Virtual Machine, there are a few unique aspects to setting up connectivity and providing

access via ssh. For a walkthrough of this experience using the Azure Portal, see this

documentation: https://docs.microsoft.com/azure/virtual-machines/linux/sql/

provision-sql-server-linux-virtual-machine.

To achieve maximum performance for SQL Server on Azure Virtual Machine, consult our

best practice guide at https://docs.microsoft.com/azure/virtual-machines/windows/

sql/virtual-machines-windows-sql-performance. Some of the recommendations here

are for Windows, but several of these apply to SQL Server on Linux.

In addition, our very talented documentation lead, Jason Roth, has written up this

excellent FAQ on running SQL Server on Linux in Azure Virtual Machine: https://docs.

microsoft.com/azure/virtual-machines/linux/sql/sql-server-linux-faq. Read

this over carefully for a discussion about licensing and a few restrictions.

Azure Virtual Machine provides many different sizes and options for capacity

including CPU, memory, and storage. The virtual machine size will be a choice you

make when provisioning a virtual machine in Azure. For a complete list of current

sizes, see this documentation: https://docs.microsoft.com/azure/virtual-

machines/linux/sizes.

One of the benefits of using Azure Virtual Machine is a flexible subscription model

and a “pay as you go” model. For pricing options for Linux Azure Virtual Machines,

see this documentation: https://azure.microsoft.com/pricing/details/virtual-

machines/linux.

Chapter 2 InStaLL anD ConfIguratIon

http://portal.azure.com
https://docs.microsoft.com/cli/azure/vm?view=azure-cli-latest
https://docs.microsoft.com/cli/azure/vm?view=azure-cli-latest
https://docs.microsoft.com/azure/virtual-machines/linux/sql/provision-sql-server-linux-virtual-machine
https://docs.microsoft.com/azure/virtual-machines/linux/sql/provision-sql-server-linux-virtual-machine
https://docs.microsoft.com/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-performance
https://docs.microsoft.com/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-performance
https://docs.microsoft.com/azure/virtual-machines/linux/sql/sql-server-linux-faq
https://docs.microsoft.com/azure/virtual-machines/linux/sql/sql-server-linux-faq
https://docs.microsoft.com/azure/virtual-machines/linux/sizes
https://docs.microsoft.com/azure/virtual-machines/linux/sizes
https://azure.microsoft.com/pricing/details/virtual-machines/linux
https://azure.microsoft.com/pricing/details/virtual-machines/linux

58

For additional topics on Linux-based Virtual Machines in Azure, see this

documentation: https://docs.microsoft.com/azure/virtual-machines/linux.

There are other topics that may interest you as you consider Azure Virtual Machine

for SQL Server:

Security Considerations

https://docs.microsoft.com/azure/virtual-machines/windows/sql/virtual-

machines- windows-sql-security.

Migration

https://docs.microsoft.com/azure/virtual-machines/windows/sql/virtual-

machines- windows-migrate-sql.

High Availability and Disaster Recovery

https://docs.microsoft.com/azure/virtual-machines/windows/sql/virtual-

machines- windows-sql-high-availability-dr.

 Troubleshooting Install
To complete this section, I consulted with our expert at Microsoft in Technical Support,

Pradeep M.M., on the most common issues he has seen for installation failures and

how to remedy them. What I found was interesting. It turns out that because of the way

we have made our installation lightweight and built into the native Linux distribution

package management systems, Microsoft has seen very few problems for customers

trying to install SQL Server on Linux to this point.

Having said that, the following are a few possible scenarios and how you can address

them.

 Poor or No Internet Connectivity

I’ve seen the problem of poor or no Internet connectivity myself while installing

SQL Server on Linux using standard installation techniques, which requires Internet

connectivity to pull down the packages.

Figure 2-13 shows an example of a failure when trying to install SQL Server on RHEL

when the Linux server does not have Internet connectivity.

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/azure/virtual-machines/linux
https://docs.microsoft.com/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-security
https://docs.microsoft.com/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-security
https://docs.microsoft.com/azure/virtual-machines/windows/sql/virtual-machines-windows-migrate-sql
https://docs.microsoft.com/azure/virtual-machines/windows/sql/virtual-machines-windows-migrate-sql
https://docs.microsoft.com/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-high-availability-dr
https://docs.microsoft.com/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-high-availability-dr

59

It is possible to have problems like this even when your Linux server has

connectivity, but the connection is so poor a consistent package cannot be downloaded.

 Install Not Completed with mssql-conf

This is perhaps the most common problem support has seen, and I’ve seen this myself

with some customers I talk to. We might have made the installation with package

managers look so easy; it could be that many people don’t see the message that they

must run mssql-conf to complete the installation.

If you use a package manger like yum to install mssql-server but don’t complete the

installation with the command:

sudo /opt/mssql/bin/mssql-conf setup

and then try to connect to SQL Server with a tool like sqlcmd, you will get a failure like in

Figure 2-14.

Figure 2-14. A failed connection due to SQL Server installation not complete

Figure 2-13. A failed SQL Server installation due to no Internet connectivity

Chapter 2 InStaLL anD ConfIguratIon

60

One of the clues to this problem can be seen by looking at the status of the mssql-

server service with the command

sudo systemctl status mssql-server.

Figure 2-15 shows the service is enabled but not running.

Figure 2-15. The mssql-service before a completed mssql-conf setup

Figure 2-16. A failed SQL Server installation when another install is in progress

 The Yum Lock

Another problem you may see can happen with other package managers. Basically, we

have seen an installation failure occur when more than one installation of mssql-server

was attempted at the same time. We call this a “yum lock” problem. Figure 2-16 shows an

example of what you will see when this occurs.

Chapter 2 InStaLL anD ConfIguratIon

61

 Changing Permissions or Ownership of SQL Server Directories

The SQL Server directories for /opt/mssql and /var/opt/mssql have specific permissions

and ownership assigned. Do not change these or you may have issues with installation,

starting SQL Server, using the product, or properly creating databases.

 Debugging Installation

The various package management systems have log files and methods to provide more

insights about the installation.

The following commands on RHEL can provide more information about a history of

installs:

sudo yum history list

sudo yum history info

The yum package manager also provides options to dump out more details of

the installation process. Here is an example command to dump out details of the

mssql-server installation. Some of the details from these options may give you enough

information to debug an install problem.

sudo yum install mssql-server --errorlevel 10 --debuglevel 10

--rpmverbosity debug --verbose

 Exploring SQL Server on Linux
As you develop applications, use, and manage SQL Server, I think it could be useful to

understand what and where everything is installed. In addition, SQL Server has several

files that can aid in troubleshooting and monitoring in the LOG directory, so I will cover

more details about this directory and what is contained in it.

 What Is Installed
Per normal Linux guidelines as an application, SQL Server installs its binary files in the /

opt directory and its “application” files including database files in the /var/opt directory.

In SQL Server 2017, you cannot change the location of these directories (but you can

change the default location of databases, “log” files, and backups).

Chapter 2 InStaLL anD ConfIguratIon

62

 /opt/mssql

The bin directory contains the main sqlservr binary, the mssql-conf bash script, and a

series of shell scripts to support diagnostics for dump files.

The lib directory contains these types of files:

• lib*.so files, which are shared libraries used by sqlservr

• A directory called mssql-conf that contains python scripts called by

the main mssql-conf bash shell script

• A series of files that end in a .sfp extension. These files are part of the

magic of the architecture of SQL Server on Linux. These files are in a

binary format and contain binary files loaded by the SQLPAL to run

SQLSERVR.EXE, various DLLs, libOS, and other binaries. The sfp files

also contain the system databases such as master, model, and msdb.

We will discuss system databases in Chapter 3.

 /var/opt/mssql

By default, this directory should have the following files and directories:

• The data directory contains system database files, user database files,

and transaction log files (unless you specify a directory when creating

a database or use mssql-conf to change the default directory).

• The log directory contains “log files” that include the ERRORLOG

files and other files used for diagnostic or troubleshooting purposes.

• The mssql.conf file is a text file that stores the latest options when

using the mssql-conf script. The mssql-conf script writes options

into this file. When SQL Server starts, it reads this file to change

configuration options, which is why you often must restart SQL

Server for a change with mssql-conf to take effect.

 Other Files

Other files installed by SQL Server include the following:

• Our EULA files (all languages) are stored in /usr/share/doc/mssql-server.

• Man pages for sqlservr and mssql-conf are stored in /usr/share/man/

man1 directory.

Chapter 2 InStaLL anD ConfIguratIon

63

 Using Log Files
Immediately after installation, the following types of files will be available in the LOG

directory (which by default is /var/opt/mssql/log):

• errorlog*: This is a text file that has been around as long as SQL

Server has been a product. It is called an “errorlog” file but has been

expanded to include more than just errors. When SQL Server is

started, there is rich information about the configuration and startup

progress of SQL Server stored in this file. After that, while the file

will contain mostly errors and warnings, it can contain other types

of important information. This is one of the fundamental files to

collect and analyze when you have issues with SQL Server. By default,

when SQL Server is started, it copies the previous ERRORLOG file

to ERRORLOG.<n> and creates a new one called ERRORLOG. SQL

Server will keep six previous versions of the ERRORLOG before

wrapping. I’ll be talking about the ERRORLOG file from time to time

in this book, but it is important up front that you know what a key

file this is for SQL Server. Figure 2-17 shows a typical top of the SQL

ERRORLOG file.

Figure 2-17. The SQL Server errorlog file

Chapter 2 InStaLL anD ConfIguratIon

64

• log*.trc: SQL Server Trace is a legacy tracing system, and by default

a trace file is collected that contains certain events such as when

objects are created or deleted. I don’t recommend you rely on these

files, as this functionality may be completely removed in future

versions of SQL Server. In fact, many users turn off the feature that

generates these files. You can read more about this at https://

docs.microsoft.com//sql/database-engine/configure-windows/

default-trace-enabled-server-configuration-option.

• system_health*.xel: These files are called the System Health Event

Session files and contain important information about the health

of SQL Server. Think of this as a “black box recorder” of the state of

SQL Server. These files are generated by a capability called Extended

Events, which will be discussed in more length in Chapter 5. You can

read more about the System Health Event Session at https://docs.

microsoft.com/sql/relational-databases/extended-events/

use-the-system-health-session.

 Post-Install Configuration
Once you have installed SQL Server, there are several choices for configuration for the SQL

Server instance. Many of these are related to optimize and provide maximum database

performance. I will cover those topics in Chapter 6 in more detail. You will also see in that

chapter that some configuration choices are at the database or even query level.

This section is intended to get your familiar with your options and methods to

make configuration choices that affect the overall SQL Server instance across all

databases. Some of these methods require external tools and some are built into the

SQL Server engine through the T-SQL language. If you are installing SQL Server for a

production enterprise-grade workload, then please review Chapter 6 to understand our

recommendations to maximize performance.

 Using mssql-conf
For Windows users, SQL Server provides a graphical application called the SQL Server

Configuration Manager. The intent was to provide a method to make configuration

choices that could not be implemented or did not make sense to implement through the

T-SQL language.

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com//sql/database-engine/configure-windows/default-trace-enabled-server-configuration-option
https://docs.microsoft.com//sql/database-engine/configure-windows/default-trace-enabled-server-configuration-option
https://docs.microsoft.com//sql/database-engine/configure-windows/default-trace-enabled-server-configuration-option
https://docs.microsoft.com/sql/relational-databases/extended-events/use-the-system-health-session
https://docs.microsoft.com/sql/relational-databases/extended-events/use-the-system-health-session
https://docs.microsoft.com/sql/relational-databases/extended-events/use-the-system-health-session

65

For SQL Server on Linux, we provide comparable capabilities through the mssql-

conf bash shell script. You have seen the use of this script to complete the setup process.

The script supports other options to configure SQL Server after the initial setup.

If you look at the help for mssql-conf you can see all the arguments it supports for

configuration choices.

sudo /opt/mssql/bin/mssql-conf --help

Figure 2-18 shows these options.

Figure 2-18. mssql-conf options

The main arguments you will use to make configuration changes are set, unset, and

traceflag.

set: Allows you to set the value of a configuration setting. The list

of possible settings and their values can be found by using the list

argument, or look them up in our documentation at https://

docs.microsoft.com/sql/linux/sql-server-linux-configure-

mssql- conf. Many of these settings require a restart of the mssql-

service. In most cases, when you set an option, you should be

prompted to perform a restart for the setting to take effect if that is

required.

For example, here is the method to enable the SQL Server Agent starting with SQL

Server 2017 CU4.

sudo /opt/mssql/bin/mssql-conf set sqlagent.enabled true

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf
https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf
https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf

66

Here are a few settings you may want to consider looking at:

filelocation.defaultdatadir: This is the default directory where

database files will be stored when you create a database. The standard

default is /var/opt/mssql/data. If you change the default directory,

you must change the ownership to the mssql group and user.

filelocation.defaultlogdir: This is the default directory where

transaction log files will be stored when you create a database. The

standard default is /var/opt/mssql/data. If you change the default

directory, you must change the ownership to the mssql group and

user.

filelocation.errorlogfile: This is the default directory where the

ERRORLOG and other “log” files will be stored. The standard

default is /var/opt/mssql/log. If you change the default directory,

you must change the ownership to the mssql group and user.

network.tcpport: This will become the new TCP port number

for SQL Server to listen on. Port 1433 is the default and no other

applications generally use this but there could be a conflict, so

this gives you an option to change the default. If you change

the default TCP port, you will need to specify the port when

connecting to SQL Server. For example, if you change the TCP port

to 1401, you would need to connect to SQL Server on the local

Linux server with a tool like sqlcmd as follows:

sqlcmd -Usa -S localhost,1401

Note as with port 1433, be sure to configure firewalld to open up the new port
used for SQL Server.

filelocation.defaultbackupdir: This is the default directory

where SQL Server backups will be stored when you use the T-SQL

BACKUP command. The standard default is /var/opt/mssql. If

you change the default directory for backups, you must change the

ownership to the mssql group and user.

Chapter 2 InStaLL anD ConfIguratIon

67

telemetry.customerfeedback: By default, SQL Server collects

information about the configuration and performance of SQL

Server. This helps Microsoft improve the development of current

and future releases of SQL Server. No customer data is collected

as part of this feedback. On paid editions of SQL Server, you can

disable this information collection using this mssql-conf setting.

For a complete and transparent discussion of customer feedback,

please look at this documentation: https://docs.microsoft.

com/sql/linux/sql-server-linux-customer-feedback.

I recommend you take time to review all the possible configuration settings to see if

others make sense for your use of SQL Server.

unset: Allows you to revert a change you made with the set

option to the default value of the setting. You could also use the

set argument to set a value back to its default, but you may not

remember those default settings.

For example, based on the previous example to enable the SQL Server Agent, you

could use the set argument to set the sqlagent.enabled value to false or you could execute

sudo /opt/mssql/bin/mssql-conf unset sqlagent.enabled.

Note Many of the unset options require an mssql-server service restart to take
effect, but you are not prompted to do this as of SQL Server 2017 Cu4. the rule of
thumb is to restart SQL Server if the equivalent set option requires a restart.

traceflag: Trace flags are “knobs” that affect the behavior of

SQL Server at many different levels. You will learn throughout

this book various trace flags that can be used in all types of

scenarios. Some trace flags need to be enabled during SQL Server

startup or enabled so they will be applied globally across all

SQL Server sessions. Use the mssql-conf traceflag argument for

these scenarios. For example, if you want to enable diagnostic

information about deadlocks to be captured in the SQL Server

ERRORLOG, you could turn on traceflag 1222 like this:

sudo /opt/mssql/bin/mssql-conf traceflag 1222 on

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/linux/sql-server-linux-customer-feedback
https://docs.microsoft.com/sql/linux/sql-server-linux-customer-feedback

68

For a complete list of possible SQL Server trace flags, see this documentation:

https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-

traceon- trace-flags-transact-sql.

Here is a brief description of the other arguments:

list: Dump out the possible options that are valid to use with the

set or unset arguments.

set-sa-password: Use this to reset the sa password.

set-collation: Use this to change the default collation of

databases in SQL Server. See the full set of instructions on how

to use this option in our documentation at https://docs.

microsoft.com/sql/linux/sql-server-linux-configure-mssql-

conf#collation.

set-edition: Use this option to change the edition of SQL Server

you specified during installation. You will be prompted just as you

were to pick the edition when using the setup option of mssql- conf.

validate: Whenever you make configuration changes with

mssql-conf using any of these options, the values are stored in a

file called /var/opt/mssql/mssql.conf. This is a text file read by

SQL Server at startup to use various options other than defaults.

The full format of this file is described in our documentation at

https://docs.microsoft.com/sql/linux/sql-server-linux-

configure-mssql-conf?#mssql-conf-format. You can manually

change this file instead of using the mssql-conf script, although

we recommend you use the script to avoid any mistakes. The

validate argument of mssql-conf can be used to ensure the file has

the correct format and entries.

Note one possible use of the mssql.conf file is with Docker containers, provided
you store this on a persisted volume.

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-traceon-trace-flags-transact-sql
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-traceon-trace-flags-transact-sql
https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf#collation
https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf#collation
https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf#collation
https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf?#mssql-conf-format
https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf?#mssql-conf-format

69

 SQL Server Instance Configuration
Let’s spend a few moments to see what other options there are for SQL Server

Instance configuration supported by the SQL Server engine. This includes the

T-SQL system procedure sp_configure and the T-SQL statement ALTER SERVER

CONFIGURATION. These statements are used to control configuration options that

apply to the entire SQL Server instance.

 sp_configure

sp_configure is a T-SQL system command called a system stored procedure that can

be used to configure various options within the SQL Server engine. These options are

persisted within the system database called master. By default, there are only about 20 or

so configuration options to choose from. There are some advanced options that can only

be visible if you first set the option “show advanced options” to 1.

Any user can run this to see possible values, but by default only system

administrators such as the sa login in SQL Server can change options, given their

possible impact to the entire server. I will discuss various configuration options for you

to consider throughout the remaining chapters of this book.

All configuration changes require an execution of the T-SQL RECONFIGURE

command to confirm the changes. Some of them require a restart of the SQL Server

service even after executing RECONFIGURE.

To see the complete list and syntax to run this T-SQL command, see this page in our

documentation https://docs.microsoft.com/sql/relational-databases/system-

stored- procedures/sp-configure-transact-sql.

 ALTER SERVER CONFIGURATION

The sp_configure procedure is good for single-value configuration options that require a

simple number. Some server-wide configuration options may need more complex values

or options. Therefore, the ALTER SERVER CONFIGURATION T-SQL command was

created for this purpose.

An example is PROCESS AFFINITY, which can be used to control what CPUs or

NUMA nodes SQL Server will schedule its threads to execute on.

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/relational-databases/system-stored-procedures/sp-configure-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-stored-procedures/sp-configure-transact-sql

70

For example, to schedule SQL Server threads only on NUMA node 0 on a multinode

system, you would run this T-SQL command:

ALTER SERVER CONFIGURATION SET PROCESS AFFINITY NUMANODE=0

As with sp_configure options, I will discuss several of these throughout the

remaining chapters of the book. Like sp_configure, most of these settings require a

system administrator to make changes. For a complete list of the options, syntax, and

permissions, see our documentation page https://docs.microsoft.com/sql/t-sql/

statements/alter-server-configuration-transact-sql.

 Windows Configuration Options on Linux
When you install SQL Server on Windows, there are a few configuration options and

choices that are typically used. Following is a summary of these options and how they

apply to SQL Server on Linux.

 Locked Pages

Windows supports a concept where applications can avoid a working set trim of

memory if they use the Address Windowing Extensions (AWE) APIs. This is enabled on

SQL Server by default if you use the Enterprise or Standard edition and the SQL Server

Service account has the Lock Pages in Memory privilege.

Linux does not have the concept of AWE or locked pages, so this option doesn’t

apply to SQL Server on Linux. Rather, Linux has concepts to page its processes or even

terminate the process based on its memory consumption. SQL Server on Linux has

options to prevent these types of scenarios. I will address this topic in Chapter 6.

 Instant File Initialization

To speed up the initialization of a file for large sizes, Windows provides an API called

SetFileValidData(). SQL Server uses this API to create or alter database files if the

Perform Volume Maintenance Tasks privilege is assigned to the SQL Server service

account.

Linux performs this type of initialization by default, since SQL Server in the Host

Extension layer uses the fallocate() Linux API. Therefore, there is no need to configure

this option for SQL Server on Linux.

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/t-sql/statements/alter-server-configuration-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/alter-server-configuration-transact-sql

71

 Large Pages

SQL Server on Windows can use a concept called Large Pages when you enable trace

flag 834. SQL Server on Linux relies on a concept called Transparent Huge Pages (THP)

for memory allocation. While trace flag 834 still exists on SQL Server on Linux, we only

recommend using this on high-end systems in specific scenarios. This is a trace flag

whose guidance falls under the Microsoft Support article: https://support.microsoft.

com/help/920093/tuning-options-for-sql-server-when-running-in-high-

performance-workloa.

 Windows Server Failover Clustering

SQL Server on Windows relies on Windows Server Failover Clustering (WSFC) for Always

On Failover Cluster Instance and Always On Availability Groups for High Availability.

WSFC of course does not exist on Linux and therefore SQL Server uses other software,

Pacemaker, to partner together to provide high-availability options. I will discuss this

further in Chapter 8. If you want to jump right into the details of how this works, start

with this documentation page: https://docs.microsoft.com/sql/linux/sql-server-

linux-shared-disk-cluster-concepts.

 Updates and Uninstall
SQL Server on Linux provides simple methods to update to later versions of SQL Server,

based on CUs or new GDR versions. In addition, a simple method exists to uninstall and

remove SQL Server.

 Updating SQL Server
Based on your configured repository for SQL Server as described previously in this

chapter, using the built-in update functionality of the package manager of your

distribution pulls down the latest version in that repository and applies the update to the

SQL Server binaries. All database files are unaffected.

If you run the following command:

sudo yum update mssql-server

Chapter 2 InStaLL anD ConfIguratIon

https://support.microsoft.com/help/920093/tuning-options-for-sql-server-when-running-in-high-performance-workloa
https://support.microsoft.com/help/920093/tuning-options-for-sql-server-when-running-in-high-performance-workloa
https://support.microsoft.com/help/920093/tuning-options-for-sql-server-when-running-in-high-performance-workloa
https://docs.microsoft.com/sql/linux/sql-server-linux-shared-disk-cluster-concepts
https://docs.microsoft.com/sql/linux/sql-server-linux-shared-disk-cluster-concepts

72

the latest updated build based on your configured repository will be downloaded and

installed. If you have already installed the latest update, you will get a message that says,

“No packages marked for update.”

I recommend you keep up to date with Microsoft builds from the CU repository. The

frequency of these updates is typically monthly (although this will become less frequent

as a major release ages). Microsoft is continually improving SQL Server on Linux through

fixes and updates in CUs.

Let’s look at a few scenarios of how to use an update and what behavior you can

expect.

If you have installed the original GA version of SQL Server 2017 at the time we

released the product and then used the update process when SQL Server 2017 2017 CU4

was available, Figure 2-19 shows what you can expect.

Figure 2-19. Updating SQL Server

When the update completes, you will be prompted to restart SQL Server using this

command to complete the update:

sudo systemctl restart mssql-server

Chapter 2 InStaLL anD ConfIguratIon

73

What if you would like to update SQL Server to a specific version? While Microsoft

believes you should apply the latest updates, it is possible to update to a specific version

if that version is later than the version you are currently running. This technique also

is a method for you to update offline, as using the package manager update option will

require an Internet connection.

So, if you were running the SQL Server 2017 GA version and wanted to update to SQL

Server 2017 CU3 when CU4 is the latest update, you would follow this process:

• Download the SQL Server 2017 CU3 package (See this

documentation page for a location of packages: https://docs.

microsoft.com/sql/linux/sql-server-linux-release-notes.)

• Copy this package to your Linux server.

• Use the offline install method to install the SQL Server 2017 CU3

package.

What you cannot do is use this method to update SQL Server to a lower version than

the version you are currently running. See the next section to learn how to update to a

lower version of SQL Server.

 Rolling Back to a Previous Update
While we believe you should not have issues using the latest updates for SQL Server,

there may be a situation that comes up where you need to revert to a previous update of

SQL Server. The process to roll back to a previous update is:

 1. Find the package of the version you want to rollback in the SQL

Server on Linux Release Notes at https://docs.microsoft.com/

sql/linux/sql-server-linux- release-notes.

 2. Copy the package to your Linux Server.

 3. Use the following command to rollback:

sudo yum downgrade mssql-server-<version_number>.x86_64

The problem with this process of using the downgrade command is that it requires

an Internet connection as it downloads the package you specify.

Chapter 2 InStaLL anD ConfIguratIon

https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes
https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes
https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes
https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes

74

So, if you need to do a rollback to a previous version offline, you would need to:

• Uninstall the current version using a command like sudo yum

remove (Do not remove the /var/opt/mssql directory to retain all

databases).

• Copy the package of the version you want to install.

• Perform an offline install of that new package.

 Removing SQL Server
While we never want you to feel the need to uninstall SQL Server, you will likely find

yourself removing SQL Server especially if you perform a lot of demonstrations, are

performing special tests, or need to roll back to a previous version offline.

The basic syntax to remove SQL Server on RHEL is:

sudo yum remove -y mssql-server

Figure 2-20 shows the expected behavior when you uninstall SQL Server.

Figure 2-20. Removing SQL Server

Chapter 2 InStaLL anD ConfIguratIon

75

At this point you have two choices:

 1. You can completely remove SQL Server by removing the /var/

opt/mssql directory, which will delete all system databases and

any user databases stored in that directory. Run the following

command to do this:

sudo rm -rf /var/opt/mssql

 2. Leave /var/opt/mssql intact. Any future installation would then

just install the SQL Server binaries, not require mssql-conf, and

leave all system databases intact.

The second option could be useful should you feel a need to cleanly install the SQL

Server binaries because of some unexpected problem but keep all your data intact.

 Summary
At this point, you should have SQL Server installed, understand where to find all the files

that were installed, understand the methods and options to configure SQL Server, and

know how to update SQL Server to the latest builds.

Let’s go build a database and application that uses SQL Server on Linux!

Chapter 2 InStaLL anD ConfIguratIon

77
© Bob Ward 2018
B. Ward, Pro SQL Server on Linux, https://doi.org/10.1007/978-1-4842-4128-8_3

CHAPTER 3

Building a Database
and T-SQL Fundamentals
Now that you have installed SQL Server, the next step in your journey with SQL Server

on Linux is to create a database. Then you will want to create tables, insert some data,

and learn the fundamentals of the T-SQL language. Although this chapter covers basic

T-SQL functionality, I’ve written the chapter from the perspective of a developer. For

those of you who are experts with SQL Server and T-SQL, this chapter may seem like

a review. But for those new to SQL Server, this chapter is essential, so you can build a

foundation of knowledge about the T-SQL language and basic capabilities of SQL Server.

To demonstrate SQL Server features in this chapter, I’ve chosen Visual Studio Code as

the development tool to execute queries. Armed with this knowledge, you will be able

to move to the next chapter to build an application, and learn more advanced T-SQL

capabilities and new features of SQL Server 2017.

The T-SQL examples in this chapter can be found in the sample scripts provided with

the book and are intended to be run in the sequence as you follow the chapter. I will use

the sample scripts provided in this chapter in the next chapter to show you how to build

an application and learn more advanced T-SQL language capabilities.

 Setting Up Your Environment
In Chapter 2, I introduced you to the WideWorldImporters sample database created

by Microsoft to help you explore the features of SQL Server. This sample database is

provided in the form of a backup you can restore (which I showed you in Chapter 2 as

a method to help verify your SQL Server installation). It is also available as a project, so

you can execute all the commands to build the database from scratch. You can find the

78

documentation for this sample database at https://docs.microsoft.com/sql/sample/

world-wide-importers/wide-world-importers-documentation. The source code for this

sample database can be found on this GitHub repo: https://github.com/Microsoft/

sql-server-samples/tree/master/samples/databases/wide-world- importers.

For the next two chapters, instead of restoring the backup, I will use a subset of

the WideWorldImporters database and objects to create a database and tables from

scratch. I have provided all the example scripts you need to use this subset of the

WideWorldImporters database. Using this sample as a foundation allows me to show

you the fundamentals of the T-SQL language, but also later in the book to expand your

knowledge of other SQL Server features and the T-SQL language.

For all the examples in this chapter, I’ve chosen to use the Visual Studio Code

development tool because it works on Windows, macOS, and Linux. Your first step

in preparing for this chapter is to install Visual Studio Code from https://code.

visualstudio.com. The examples in this chapter will use the Windows version of Visual

Studio Code. However, all the examples will work on your preferred development

platform, since Visual Studio code also runs no macOS and Linux.

After installing Visual Studio Code for Windows, I installed the mssql extension for

Visual Studio Code. This extension provides rich features to assist when developing and

executing T-SQL scripts in Visual Studio Code.

Tip You might find it helpful after this chapter to go through the tutorial of using
the mssql extension for Visual Studio code as documented at https://docs.
microsoft.com/sql/linux/sql-server-linux-develop-use-vscode.

Figure 3-1 shows a search for the mssql extension to install it on Visual Studio Code.

Notice the highlighted icon in the left-hand bar (the fifth icon down from the top), which

is used to find and install extensions.

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

https://docs.microsoft.com/sql/sample/world-wide-importers/wide-world-importers-documentation
https://docs.microsoft.com/sql/sample/world-wide-importers/wide-world-importers-documentation
https://github.com/Microsoft/sql-server-samples/tree/master/samples/databases/wide-world-importers
https://github.com/Microsoft/sql-server-samples/tree/master/samples/databases/wide-world-importers
https://code.visualstudio.com
https://code.visualstudio.com
https://docs.microsoft.com/sql/linux/sql-server-linux-develop-use-vscode
https://docs.microsoft.com/sql/linux/sql-server-linux-develop-use-vscode

79

When you first install Visual Studio Code, you have the choice of opening an existing

folder for scripts you have created. So, create a new folder on you machine. On my

Windows laptop I called this c:\wwi. Then copy all the example scripts for Chapter 3

into this folder. Now in Visual Studio Code, click on Open Folder. If you have been using

Visual Studio Code, you already may have a workspace or other open folders. You can

open this new local folder you created into your workspace, or just use the File Menu

to open the folder directly to replace in the explorer area existing folders you may have

opened. You should now be ready to create a database, create tables, and test out some

fundamental T-SQL queries.

 Creating a Database
SQL Server can host many databases for a single SQL Server installation (called an

instance). SQL Server on Windows allows multiple instances per computer For SQL

Server on Linux, there is only one instance allowed on a single Linux server (if you

want to install more than one SQL Server instance on Linux, you need to use Docker

containers. I will discuss in Chapter 11).

Figure 3-1. Installing the mssql extension in Visual Studio Code

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

80

For this chapter I will create only one database, but as you move through the book

more databases may be created to show other features. You can choose to keep all of

these on the same SQL Server on Linux instance or put them on different ones.

 System Databases
Before I show you how to create a database, I think it is important for you to know

the details around what databases come with an SQL Server installation called

system databases. The following list shows databases that come out of the box with

a fresh install:

master: By its name, this system database is the “root” of

all databases and must exist for SQL Server to start. Master

contains all types of SQL Server instance data that apply across

all databases. One of the most important sets of data stored in

master is information about all the other databases created for the

instance, including the other system databases and user databases

you create.

At any point in time, to see a list of all databases on an SQL Server instance, run this

T-SQL query. You can find this query in the sample script databases.sql:

SELECT * FROM sys.databases

GO

Note the keyword GO here is not a t-SQl statement. it is a special keyword
recognized by tools to delimit a batch. a batch is a sequence of t-SQl statements
that are sent to the server together from a client, but the server will execute each
statement one at a time. many users just execute one t-SQl statement in a batch.

You can run this statement from any database context because it uses the sys schema

and a view called databases. I’ll explain database context, schemas, and views as you

move through the next two chapters. I’ll talk more about system supplied views (also

known as catalog views) and tables in Chapter 5.

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

81

model: The model system database is a template. When a user

database is created, the contents of the model database are used

to build the new user database. In many cases users leave this

empty, as it was installed so your new user database would only

contain system tables and objects. An example of this is a situation

where you would like to create a standard set of user objects

across any new user database that is created; you could place

them into the model database.

tempdb: This system database is a shared database for all users of

the SQL Server instance. It is shared because temporary objects

that are created with a special syntax are stored here no matter what

database context is used. In addition, other internal objects are

placed in tempdb based on various conditions of query execution.

In the next chapter, I’ll talk about creating temporary objects (and

mention what types of internal objects may appear in the tempdb

database). In addition, the subject of the tempdb database will

be discussed in later chapters, as it can be a significant factor in

performance and managing the SQL Server instance. You can

theoretically create user objects in this system database, but it is not

recommended. That is because tempdb is recreated each time SQL

Server starts (using the model database as a template).

msdb: This system database is used by SQL Server Agent for

scheduling alerts and jobs and by other features such as SQL

Server Management Studio, Service Broker, and Database Mail.

Think of this as an application database used by SQL Server

features. I do not recommend you put any user tables into this

system database.

Resource: This is not the actual name of the database, but it is

called the Resource database. This is a hidden system database

that is read-only. SQL Server stores system objects (not data) in

this database, such as system stored procedures, views, etc. When

you query sys.databases, SQL Server understands how to get the

databases view definition for the sys schema from the Resource

database.

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

82

For a more detailed look at system databases, check out our documentation at:

https://docs.microsoft.com/sql/relational-databases/databases/system- databases.

 Creating a Login and User
The sa login is provided with SQL Server as the “root” account for complete control. Just

like the root account in Linux, it is typically not a good practice to use the sa login for all

your interaction with SQL Server.

So, I will create a new login called sqllinux, which I will use as the login to create the

database and all objects for the rest of the chapter. But I first must connect to SQL Server

as the sa login to create the sqllinux login. To do this with Visual Studio Code, I need to

create a connection profile for the sa login.

If I hit the F1 key (or use the View/Command Palette from the menu in Visual Studio

Code), I am presented with choices from the mssql extension for various tasks. If I choose

the option called MS SQL: Connect, I’m presented with choices to Add a Connection

Profile. In my scenario, I picked the name of my SQL Server on Linux (it could be an <IP

address>,1433), used the system administrator login sa, put in the password for sa, but left

the database name blank so when I connect I’ll be put in the database context of master.

I saved the name of the profile, so I can reuse it another time. If you go through these

steps, Visual Studio code will also connect to the specified SQL Server. You can see the

connection information in the bottom right-hand corner of the tool. Figure 3-2 shows the

example on my SQL Server. The MSSQL means the editor is in MSSQL mode, which means

the editor will assist me with various T-SQL commands and tasks.

Figure 3-2. Visual Studio code editor in MSSQL mode and connected to SQL
Server on Linux

Use the sa login to create a login by using the following T-SQL statements as found in

the example script createlogin.sql. I also add the sqllinux login to the dbcreator role so

the sqllinux login has permissions to create databases. Feel free to change the password

to one of your choice.

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

https://docs.microsoft.com/sql/relational-databases/databases/system-databases

83

Tip unlike other SQl Server tools, Visual Studio Code requires you to create a file
to run t-SQl statements.

USE master

GO

IF EXISTS (select * from sys.server_principals where name = 'sqllinux')

 DROP LOGIN [sqllinux]

GO

CREATE LOGIN [sqllinux] WITH PASSWORD=N'Sql2017isfast', DEFAULT_

DATABASE=[master]

GO

EXEC sys.sp_addsrvrolemember 'sqllinux', 'dbcreator'

GO

When I use the sqllinux login to create the database, it will automatically be mapped

to a user in the database known as dbo (database owner).

To execute the remaining examples in this chapter, I need to create a new connection

profile in Visual Studio code with the sqllinux login I just created. And now when I

execute any example script, I use the connection profile for the sqllinux login.

Tip i should stop at this point and give you a tip on connecting to your SQl
Server on linux. my SQl Server on linux is running rhel in a virtual machine on
my laptop using hyper-V for Windows 10. using hyper-V, i configured an internal
network adapter, so i could bind a static ip address to that adapter in rhel. then
on Windows 10, i edited the /windows/system32/drivers/etc/hosts file to put in
the static ip address and the name bwsql2017rhel. now from outside of the Vm
on my laptop, i can use bwsql2017rhel as a server name instead of having to put
in an ip address and port 1433 to connect to my SQl Server on linux. You may be
using dnS or other methods to expose a logical name to your linux Server. this
technique allows me to connect to my linux Server on my laptop regardless of the
state of my wifi or ethernet adapter.

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

84

 Creating a User Database
Creating your own database can be as easy as running the T-SQL statements as found in

the sample script ilovethedallascowboys.sql:

USE master

GO

CREATE DATABASE ilovethedallascowboys

GO

(Yes, I’m a huge sports fan, and being from the Dallas/Ft. Worth area of Texas I’m

a big Dallas Cowboys fan. Hopefully, other NFL fans will keep reading the rest of the

book<g>).

The T-SQL syntax reference for CREATE DATABASE has so many options it will

make your head spin. The most important choices when creating a database are file

locations, number of files, and size.

As I stated in the previous section, the model database is a template, so when you

run CREATE DATABASE without any options, SQL Server will use the definition and size

of model to create the database. The only exceptions to this rule are the default locations

of database and transaction log files, which I discussed in Chapter 2, can be set via the

mssql-conf script. For SQL Server on Linux, the default location of these files will be

stored in the /var/opt/mssql/data directory.

If you want to make a change to the definition of a database, SQL Server also

provides an ALTER DATABASE T-SQL command (this is often used after creating a

database to set various database options, which will be used in other parts of this book).

Let’s look at how to use the mssql extension in Visual Studio Code to create

the database for the WideWorldImporters sample. You may have restored the

WideWorldImporters full backup in a previous chapter. If you have done this already,

execute the cleanup.sql sample script using the sa login.

Note Chapter 5 covers the tools for SQl Server, which include other options to
create databases and manage SQl Server. i’m using Visual Studio Code in this
chapter to show you as a developer how to use this tool to create databases,
objects, and queries, and eventually an application in the next chapter.

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

85

I could just click on the highlighted icon to create a new file and call it createdb.sql.

Figure 3-3 shows my editor for createdb.sql ready for me to now use the mssql extension

to connect to SQL Server on Linux. (The samples don’t include createdb.sql, since you

will be typing in the statements).

Figure 3-3. Creating a new T-SQL script with the mssql extension in Visual
Studio code

I can now use the Visual Studio Code tool as a T-SQL editor to execute statements

against SQL Server. In the next chapter, I’ll switch the editor to a different language when

I create the application.

Since I’m using the mssql extension in Visual Studio Code, I get a feature called

Intellisense. The editor in Visual Studio Code will help guide me on the syntax of T-SQL

statements and objects. Figure 3-4 shows an example of intellisense helping complete

the syntax for CREATE DATABASE:

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

86

Finish in the editor by typing in these T-SQL statements:

CREATE DATABASE [WideWorldImporters]

GO

Note in this t-SQl statement, WideWorldimporters is known as an identifier.
identifiers are names that are not t-SQl statements. t-SQl allows regular and
delimited identifiers. putting [] around the identifier is known as a delimited
identifier. You will find many different opinions about using regular vs. delimited
identifiers in the SQl Server community. many of the examples with the
WideWorldimporters sample database use delimited identifiers, so i will use those
in my sample scripts.

To execute this T-SQL batch, I can use the mssql extension by hitting F1 and selecting

the MS SQL: Execute Query or use the shortcut keys <Ctrl>+<Shift>+<E>. Be sure to

select the connection profile for sqllinux when executing the sample scripts in this

chapter unless noted otherwise.

When I execute any query, Visual Studio Code will bring up another vertical pane

in the editor to show the results. If any errors occur, they will also show in this pane.

The message “Commands completed successfully” means the database was created.

Figure 3-5 shows an example after creating the database.

Figure 3-4. Intellisense with the mssql extension

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

87

A better method to create this database is to use a set of T-SQL statements that looks

like the following from the sample script createdbifexists.sql:

USE master

GO

IF NOT EXISTS (

 SELECT name

 FROM sys.databases

 WHERE name = N'WideWorldImporters'

)

CREATE DATABASE [WideWorldImporters]

GO

Tip there is no requirement that t-SQl reserved words for the language be in
upper case. however, it is a good practice to do this because it allows you and
other readers of your scripts to quickly recognize what is t-SQl keyword and what
is an identifier.

Figure 3-5. Results of successful creation of a database using Visual Studio Code

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

88

This batch will only create the database if it does not already exist, thereby avoiding

an error if it does exist.

Notice also in the preceding code there is another batch with the statement USE
master. I mentioned earlier the concept of database context, which means what

database you are currently running T-SQL statements against. The USE T-SQL keyword

is a method to switch the database context. When you create an SQL Server login, you

can define the default database context for the login, and then use the USE keyword to

change to another context (provided the login has permission in that database). In this

example, changing to the master context is not actually required, but it is good practice

to be in the context of master when you are creating or dropping databases.

Another option for creating a database if you plan to “get a clean slate” is to first

drop the database and recreate it. Execute the following T-SQL statements as seen in the

sample script dropandcreatedb.sql:

DROP DATABASE IF EXISTS [WideWorldImporters]

GO

CREATE DATABASE [WideWorldImporters]

GO

What do you get when you create a database in SQL Server on Linux? As I

mentioned, SQL Server uses the model database as a template to create any new

database. And since no options, file locations, or sizes were specified, the above

command will create the WideWorldImporters database on SQL Server on Linux with

two files in the /var/opt/mssql/data directory, each 8Mb in size:

WideWorldImporters.mdf: This is the database file. A common

convention, although not required, is to name the primary

database file with a .mdf file extension. This file contains all the

system tables used to store metadata about the database. The file

is a collection of 8kb pages that will be used to store data about

system tables, pages of data for user tables and indexes, and a

series of pages for internal use by SQL Server to track file and

allocation metadata. You will find out in later chapters in the book

how to create multiple database files for a database.

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

89

WideWorldImporters_log.ldf: This is called the transaction log

file (commonly used with a .ldf file extension). The transaction

log is used to record changes to user and system data. In other

database systems this is called a journal. Stored in a series of

log blocks, the transaction log is used to ensure consistency and

recovery of the database.

Tip linux is case sensitive for filenames. SQl Server will create file names, if you
don’t specify the file name, using the database name exactly specified by case. in
linux, navigating and finding these filenames is case sensitive.

Another thing you will love about SQL Server databases is that they are contained

and portable. You will be able to back up a database and restore it to another SQL Server

of the same major release or higher. And you can do this across Linux and Windows

computers, since SQL Server is the same core database engine on both platforms. I’ll

cover more aspects to moving databases in Chapter 9.

If you want to first spend time understanding all the options when you create

a database, visit the T-SQL reference documentation for the CREATE DATABASE

command:

https://docs.microsoft.com/sql/t-sql/statements/create-database-sql- server-

transact-sql.

You can read more details about the ALTER DATABASE command and how to make

changes to database options or metadata from this documentation page:

https://docs.microsoft.com/sql/t-sql/statements/alter-database-transact- sql.

 Creating Tables
Creating a database provides the “shell” to contain your data. Within this shell are tables

to store user data and indexes to help speed up access to the data or enforce integrity

checks. Both tables and indexes require storage in the database in the form of pages,

which are 8KB in size. These 8KB pages are comprised of rows and internal structures to

physically describe the rows (and a page header on each page).

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

https://docs.microsoft.com/sql/t-sql/statements/create-database-sql-server-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/create-database-sql-server-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/alter-database-transact-sql

90

The logical format of rows in the pages for tables is defined by the definition of the

table in terms of columns and types. This is also known as the schema of a table. That

term can get somewhat confusing because there is also an object called a schema in SQL

Server. A schema object is a namespace to uniquely define a collection of objects in a

database, which can be tables and other objects such as indexes and stored procedures.

Schemas provide a convenient method to decouple the ownership of objects by allowing

permissions to be set on a schema that applies to all objects in the schema.

The options to create a table in SQL Server have grown over the years to include

rich capabilities. I will start simple in this chapter. I will use two tables in the

WideWorldImporters database sample in this chapter. I will show you how to create

schemas, objects called sequences, and tables with objects called constraints. Later in

the chapter, I’ll show you to create other objects such as stored procedures and views.

Then in the next chapter, I will take these sample definitions and show you how to use

more advanced T-SQL capabilities.

 Creating Schemas
In the WideWorldImporters database there are several schemas and several tables within

each schema. Two tables that can be used to show fundamental capabilities of SQL

Server are the [Application].[People] and the [Sales].[Customers] tables. The Application

schema is used to store reference data. This is data that is typically infrequently modified

but referenced by other tables that are more frequently modified. This is in line with

normalized table designs. In this case, the People table is used to store information about

a person, while other tables will reference these people in several ways. The Customers

table contains information in columns that reference people who are customers for the

WideWorldImporters company, and is part of the Sales schema.

In addition, in the next section I will show you how to build an object called a

sequence, so I will create a schema for those objects as well.

The syntax to create schemas can be found in the sample script createschemas.sql.
Execute this script or the following T-SQL statements to create all schemas:

USE [WideWorldImporters]

GO

IF EXISTS (select * from sys.schemas where name = 'Application')

 DROP SCHEMA [Application]

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

91

GO

CREATE SCHEMA [Application]

GO

IF EXISTS (select * from sys.schemas where name = 'Sales')

 DROP SCHEMA [Sales]

GO

CREATE SCHEMA [Sales]

GO

IF EXISTS (select * from sys.schemas where name = 'Sequences')

 DROP SCHEMA [Sequences]

GO

CREATE SCHEMA [Sequences]

GO

 Creating Sequences
Sequence objects provide a capability to generate unique key values each time they are

needed for data in a table. Another similar capability is called an identity column in SQL

Server. Sequence objects are created independent of the table and have some desirable

caching properties for performance. Sequence objects also are used in other database

engines and make them a nice portable feature.

While Sequence objects can be shared across tables, I’ll dedicate one sequence

object for the two tables I’ll be creating in this database (one for the People table and

one for the Customers table). Execute the createsequences.sql sample script or the

following T-SQL code to create the sequence objects:

USE [WideWorldImporters]

GO

DROP SEQUENCE IF EXISTS [Sequences].[PersonID]

GO

CREATE SEQUENCE [Sequences].[PersonID]

 AS [int]

 START WITH 1

 INCREMENT BY 1

 MINVALUE 0

 MAXVALUE 2147483647

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

92

 CACHE

GO

DROP SEQUENCE IF EXISTS [Sequences].[CustomerID]

GO

CREATE SEQUENCE [Sequences].[CustomerID]

 AS [int]

 START WITH 0

 INCREMENT BY 1

 MINVALUE 0

 MAXVALUE 2147483647

 CACHE

GO

The definition of the SEQUENCE object for [PersonID] says to start with a value

of 1 and allow a maximum value to be the maximum number for an int datatype. The

CACHE keyword helps improve performance of SEQUENCE values. You can read more

about SEQUENCE objects in our documentation at https://docs.microsoft.com/

sql/t-sql/statements/create-sequence-transact-sql. Notice the min value is 0 but

the sequence starts with 1. This allows me to use a value of 0 for the PersonID column

without using the SEQUENCE object. The definition of the [CustomerID] starts with a

value of 0.

I’ll show you in the statements to create the tables how the sequence objects are

used to supply unique key values anytime a row is inserted into either of the two tables.

 Finally Creating the Tables
Now that I have created the schemas and sequences, I’m ready to create my two tables.

Execute the following T-SQL statement or the sample script createpeople.sql to create

the People table:

USE [WideWorldImporters]

GO

-- The table definition for the [Application].[People] table

--

DROP TABLE IF EXISTS [Application].[People]

GO

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

https://docs.microsoft.com/sql/t-sql/statements/create-sequence-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/create-sequence-transact-sql

93

CREATE TABLE [Application].[People](

 [PersonID] [int] NOT NULL,

 [FullName] [nvarchar](50) NOT NULL,

 [PreferredName] [nvarchar](50) NOT NULL,

-- [SearchName] AS (concat([PreferredName],N' ',[FullName])) PERSISTED

NOT NULL,

 [IsPermittedToLogon] [bit] NOT NULL,

 [LogonName] [nvarchar](50) NULL,

 [IsExternalLogonProvider] [bit] NOT NULL,

 [HashedPassword] [varbinary](max) NULL,

 [IsSystemUser] [bit] NOT NULL,

 [IsEmployee] [bit] NOT NULL,

 [IsSalesperson] [bit] NOT NULL,

 [UserPreferences] [nvarchar](max) NULL,

 [PhoneNumber] [nvarchar](20) NULL,

 [FaxNumber] [nvarchar](20) NULL,

 [EmailAddress] [nvarchar](256) NULL,

 [Photo] [varbinary](max) NULL,

 [CustomFields] [nvarchar](max) NULL,

-- [OtherLanguages] AS (json_query([CustomFields],N'$.OtherLanguages')),

 [LastEditedBy] [int] NOT NULL,

-- [ValidFrom] [datetime2](7) GENERATED ALWAYS AS ROW START NOT NULL,

-- [ValidTo] [datetime2](7) GENERATED ALWAYS AS ROW END NOT NULL

 CONSTRAINT [PK_Application_People] PRIMARY KEY CLUSTERED

(

 [PersonID] ASC

)

)

GO

-- Foreign key for a column within the People table referenced to the

primary key

--

ALTER TABLE [Application].[People] WITH CHECK ADD CONSTRAINT

[FK_Application_People_Application_People] FOREIGN KEY([LastEditedBy])

REFERENCES [Application].[People] ([PersonID])

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

94

GO

-- The default value for PersonID is a SEQUENCE value

--

ALTER TABLE [Application].[People] ADD CONSTRAINT [DF_Application_People_

PersonID] DEFAULT (NEXT VALUE FOR [Sequences].[PersonID]) FOR [PersonID]

GO

I realize this is a lot to consume, so let’s unpack this. Look at the first column

definition to understand how to read each column definition.

[PersonID] [int] NOT NULL

PersonID is the name of the column followed by the data type (integer) and then

NULLability of the column (determines if the column can accept a NULL value or an

explicit value required). The rest of the columns follow the same pattern with other data

types and NULL designations.

For a complete (beware: there are so many options this is a long read) reference

to the CREATE TABLE T-SQL command, see the documentation at https://docs.

microsoft.com/sql/t-sql/statements/create-table-transact-sql. Some of these

datatypes are interesting, including bit and the nvarchar and varbinary (max) column

definitions. For a complete read on SQL Server data types, see our documentation at

https://docs.microsoft.com/sql/t-sql/data-types/data-types-transact-sql.

There are four column definitions that do not appear very simple and are prefaced

by the characters --. These characters are used for comments in any T-SQL code (You

can also use /* <T-SQL code> */). I put comments here because in the next chapter I

will uncomment these column definitions to show you other features and capabilities.

One of the great features of tools like the mssql extension in Visual Studio Code (or

other tools to be discussed in Chapter 5) is to use color coding to distinguish keywords vs

identifiers and comments. Figure 3-6 shows an example of the T-SQL command to create

the People table in Visual Studio Code using the mssql extension.

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

https://docs.microsoft.com/sql/t-sql/statements/create-table-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/create-table-transact-sql
https://docs.microsoft.com/sql/t-sql/data-types/data-types-transact-sql

95

Another aspect to this table definition is a concept called constraints. SQL Server

provides the capability to declare various integrity checks when the table is defined (or

altered) through a constraint.

For the People table, I can add a primary key to enforce unique values for each row

for a specific column(s) through a constraint. A primary key constraint is implemented

via an index, which by default is a clustered index. A clustered index is implemented

by storing the pages for the data for the table at the base level of the index sorted by

Figure 3-6. T-SQL syntax color coding with the mssql extension in Visual Studio
Code

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

96

the columns in the clustered index. In this example, each row must contain a unique

PersonID value. We will use the sequence object created earlier to ensure each PersonID

value is unique.

In this example, the keyword ASC next to the [PersonID] column in the constraint

definition indicates the clustered index will be sorted on the PersonID values in

ascending key order.

There is another method to define a primary key in line with the table definition. For

the above example, you could have declared the PersonID column as:

[PersonID] [int] NOT NULL PRIMARY KEY CLUSTERED

Another type of constraint is a foreign key constraint to ensure referential

integrity for relationships between tables or between columns within the same table. In

the preceding example, the LastEditedBy column is the PersonID value of another row

in the table. To ensure that any data in the LastEditedBy column is a valid PersonID, you

can declare a foreign key constraint by altering the table after it is created (you can also

do this when the table is being created). Look at the following statement in the table

definition set of statements. (Do not execute this. I’m showing you this, so you can see

the details of the constraint.)

ALTER TABLE [Application].[People] WITH CHECK ADD CONSTRAINT [FK_

Application_People_Application_People] FOREIGN KEY([LastEditedBy])

REFERENCES [Application].[People] ([PersonID])

Unpacking this statement, the constraint ensures values in the LastEditedBy column

always reference a row in the People table from the PersonID column. The WITH CHECK

option at the beginning causes the statement to validate any existing data in the table for

the constraint.

Another type of constraint can be a default value for a column if no value is specified

when inserting a new row. A default value can be any value declared so that when you

insert a row, if a value is not specified, the default one is used. Remember PersonID is

a primary key column, which means every value must be unique. The intention of the

PersonID is to be a key value that has no logical meaning but references each row for a

person. The PersonID will be the way to physically identify each person in the People

table without having to use a combination of columns (like FullName+….).

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

97

I can now use the sequence object I created in the previous section to create a

constraint that will increment to the next SEQUENCE value for each row inserted into

the People table for the PersonID column. Using the DEFAULT keyword allows me to

insert rows into the People table, and each new PersonID will be populated by default

from the SEQUENCE object. The ALTER TABLE statement in the preceding script to

create the constraint for the default value looks like this:

ALTER TABLE [Application].[People] ADD CONSTRAINT [DF_Application_People_

PersonID] DEFAULT (NEXT VALUE FOR [Sequences].[PersonID]) FOR [PersonID]

The NEXT VALUE FOR keyword is standard T-SQL syntax to indicate that the

default value for any PersonID column for a new row will use the next value from the

SEQUENCE object (e.g., 1,2,3…).

Here is the definition for the Customers table from the Sales schema. Execute this set

of T-SQL statements or use the sample script createcustomers.sql:

USE [WideWorldImporters]

GO

-- The table definition for the [Sales].[Customer] table

--

DROP TABLE IF EXISTS [Sales].[Customers]

GO

CREATE TABLE [Sales].[Customers](

 [CustomerID] [int] NOT NULL,

 [CustomerName] [nvarchar](100) NOT NULL,

 [BillToCustomerID] [int] NOT NULL,

 [CustomerCategoryID] [int] NOT NULL,

 [BuyingGroupID] [int] NULL,

 [PrimaryContactPersonID] [int] NOT NULL,

 [AlternateContactPersonID] [int] NULL,

 [DeliveryMethodID] [int] NOT NULL,

 [DeliveryCityID] [int] NOT NULL,

 [PostalCityID] [int] NOT NULL,

 [CreditLimit] [decimal](18, 2) NULL,

 [AccountOpenedDate] [date] NOT NULL,

 [StandardDiscountPercentage] [decimal](18, 3) NOT NULL,

 [IsStatementSent] [bit] NOT NULL,

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

98

 [IsOnCreditHold] [bit] NOT NULL,

 [PaymentDays] [int] NOT NULL,

 [PhoneNumber] [nvarchar](20) NOT NULL,

 [FaxNumber] [nvarchar](20) NOT NULL,

 [DeliveryRun] [nvarchar](5) NULL,

 [RunPosition] [nvarchar](5) NULL,

 [WebsiteURL] [nvarchar](256) NOT NULL,

 [DeliveryAddressLine1] [nvarchar](60) NOT NULL,

 [DeliveryAddressLine2] [nvarchar](60) NULL,

 [DeliveryPostalCode] [nvarchar](10) NOT NULL,

 [DeliveryLocation] [geography] NULL,

 [PostalAddressLine1] [nvarchar](60) NOT NULL,

 [PostalAddressLine2] [nvarchar](60) NULL,

 [PostalPostalCode] [nvarchar](10) NOT NULL,

 [LastEditedBy] [int] NOT NULL,

-- [ValidFrom] [datetime2](7) GENERATED ALWAYS AS ROW START NOT NULL,

-- [ValidTo] [datetime2](7) GENERATED ALWAYS AS ROW END NOT NULL

 CONSTRAINT [PK_Sales_Customers] PRIMARY KEY CLUSTERED

(

 [CustomerID] ASC

),

 CONSTRAINT [UQ_Sales_Customers_CustomerName] UNIQUE NONCLUSTERED

(

 [CustomerName] ASC)

)

GO

-- Foreign Key Constraints

--

ALTER TABLE [Sales].[Customers] WITH CHECK ADD CONSTRAINT [FK_Sales_

Customers_AlternateContactPersonID_Application_People] FOREIGN KEY([Alterna

teContactPersonID])

REFERENCES [Application].[People] ([PersonID])

GO

ALTER TABLE [Sales].[Customers] WITH CHECK ADD CONSTRAINT [FK_Sales_

Customers_Application_People] FOREIGN KEY([LastEditedBy])

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

99

REFERENCES [Application].[People] ([PersonID])

GO

ALTER TABLE [Sales].[Customers] WITH CHECK ADD CONSTRAINT [FK_Sales_

Customers_BillToCustomerID_Sales_Customers] FOREIGN KEY([BillToCustomerID])

REFERENCES [Sales].[Customers] ([CustomerID])

GO

ALTER TABLE [Sales].[Customers] WITH CHECK ADD CONSTRAINT [FK_

Sales_Customers_PrimaryContactPersonID_Application_People] FOREIGN

KEY([PrimaryContactPersonID])

REFERENCES [Application].[People] ([PersonID])

GO

-- Default Value Constraint

--

ALTER TABLE [Sales].[Customers] ADD CONSTRAINT [DF_Sales_Customers_

CustomerID] DEFAULT (NEXT VALUE FOR [Sequences].[CustomerID]) FOR

[CustomerID]

GO

This is like the People table, with some comments for columns that I will

uncomment and showcase in the next chapter.

For the Customer table there are similar constraints to add, but with a few

differences:

• I added a UNIQUE constraint for the [CustomerName] column to

ensure each customer name is unique. But I’ll still use the CustomerID

column, associated with a SEQUENCE, as the PRIMARY KEY.

Note indexes are created for the primarY KeY and uniQue constraints.
indexes help ensure the constraint definition is maintained but also can help with
performance to look up values depending on how much data is loaded into these
tables. i will cover more about using indexes for performance in Chapter 6.

• There are several FOREIGN KEY constraints that reference the

[Application].[People].[PersonID] column.

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

100

Note in the full WideWorldimporters sample, the Customers table has FOreign
KeY references to other tables in the database, but i’ve left these out in this
chapter to keep this example contained and simple.

 Creating the Complete Database
Let’s review the entire sequence of creating the schemas, sequence objects, tables, and

constraints in this database.

When I usually build out a complete database definition with objects, I create a script

to drive the entire execution of all T-SQL scripts. I’ve provided two example scripts you

can use to create everything at once:

• createwwi.sh for macOS and Linux users

• createwwi.cmd for Windows users.

These scripts assume you have installed the sqlcmd utilities, sqlcmd is in your path,

and require two command line parameters: server name and sa password. The sqllinux

login is used and created in the createlogin.sql script. The password for that login is in

that T-SQL script, so if you change it from what I have provided you will need to also

change the shell or cmd script. If you are executing the createwwi.sh script on Linux,

don’t forget to execute chmod u+x createwwi.sh so you can execute the script.

Note these scripts assume sqlcmd is in the path. For Windows, it should already
be in the path after installation. For linux, be sure to add this to your path using the
following commands from the bash shell if you have not already:

 echo 'export PATH="$PATH:/opt/mssql-tools/bin"' >>
~/.bash_profile

echo 'export PATH="$PATH:/opt/mssql-tools/bin"' >> ~/.bashrc

source ~/.bashrc

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

101

On Windows at a Powershell command prompt, the execution of createwwi.cmd

looks like this in my environment.

.\createwwi bwsql2017rhel Sql2017isfast

From my Linux shell, here is an example execution of createwwi.sh run on my Linux

server:

./createwwi.sh localhost Sql2017isfast

These shell and command scripts execute the following T-SQL scripts to create a

login, database, and objects in the database:

 1. cleanup.sql: I added this script, so you could run these scripts

over and over. cleanup.sql is required to drop all databases from

any previous executions. Even though the WideWorldImporters is

dropped in step 3, if you have already created it in the context of

the sqllinux login, you will not be allowed to drop and create the

login again without dropping the database first.

 2. createlogin.sql: Create the sqllinux login (while connected as the

sa login).

 3. dropandcreatedb.sql: Create the database. This will now

make the sqllinux login the user dbo (database owner) in the

WideWorldImporters databases when the context is changed to

WideWorldImporters.

 4. createschemas.sql: Create the schemas for all objects in the

database.

 5. createsequences.sql: Create the sequence objects to be used by

the two tables.

 6. createpeople.sql: Create the People table with constraints.

 7. createcustomers.sql: Create the Customers table with

constraints.

Now everything is ready for you to test out some T-SQL queries to insert data, query

data, update and delete rows.

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

102

 Building and Running Queries
I recommend creating and testing T-SQL queries you want to use for an application

through a separate tool, so you can ensure there are no syntax errors and run as expected.

It is far easier to debug your T-SQL commands outside of your application then weaved

throughout the code. So, in this section of the chapter, I’ll show you how to insert, update,

delete, and view data using basic T-SQL statements. The example statements and scripts

in this section assume you have run all the preceding scripts to create the database and

objects. As with the scripts to create the database and objects in this chapter, I executed all

the following T-SQL statements and scripts with the sqllinux login.

 Inserting and Reading Data
For purposes of this chapter, I will talk about simple insert of data of single rows. You

have several options to insert data in bulk, and I’ll talk about those in other chapters of

the book.

The basic T-SQL statement to insert data is INSERT. When you insert data into a

table with foreign keys, you need to first insert rows into the base table. This means you

should first insert any rows in the People table that are needed as foreign keys in the

Customers table.

In the Customers table these columns are referenced back to the People table:

AlternateContactPersonID

LastEditedBy

PrimaryContactPersonID

When you insert a single row for a customer, you need to provide PersonID values for

these columns. It could be all the same “person” but more likely it will be at least two or

three different people. And if you remember in the People table, there is a LastEditedBy

column that references another row in the People table. My strategy then is to create

three rows in the People table, one is the “editor” of any rows in both tables, and then a

primary and alternate contact ID for the customer.

Execute the following T-SQL statements or use the sample script insertpeople.sql to

insert all three rows in the People table:

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

103

USE [WideWorldImporters]

GO

INSERT INTO [Application].[People]

([PersonID], [FullName], [PreferredName], [IsPermittedToLogon],

[LogonName], [IsExternalLogonProvider], [IsSystemUser],

[IsEmployee], [IsSalesPerson], [LastEditedBy])

VALUES (0, 'Robert Dorr', 'TheKraken', 1, 'rdorr', 0, 1, 1, 0, 0)

GO

INSERT INTO [Application].[People]

([FullName], [PreferredName], [IsPermittedToLogon],

[LogonName], [IsExternalLogonProvider], [IsSystemUser],

[IsEmployee], [IsSalesPerson], [LastEditedBy])

VALUES ('Slava Oks', 'thegodfather', 1, 'slavao', 0, 1, 1, 0, 0)

GO

INSERT INTO [Application].[People]

([FullName], [PreferredName], [IsPermittedToLogon],

[LogonName], [IsExternalLogonProvider], [IsSystemUser],

[IsEmployee], [IsSalesPerson], [LastEditedBy])

VALUES ('Tobias Ternstrom', 'theswede', 1, 'tobiast', 0, 1, 1, 0, 0)

GO

If you look at the syntax I used for the INSERT, I listed out specific columns and did

not supply values for many of the columns defined to accept NULL values (i.e., optional

columns).

To insert a single customer, I must know what the PersonID values are for my

primary and alternate contacts for the customer. You can do this by reading rows from

the People table using the T-SQL SELECT statement as seen in the script findpeople.sql:

USE [WideWorldImporters]

GO

SELECT [PersonID], [FullName] FROM [Application].[People]

GO

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

104

The result pane on the right side of Visual Studio will show the following result:

PersonID FullName

-------- --------

0 Robert Dorr

1 Slava Oks

2 Tobias Ternstrom

Slava Oks will be the Primary Customer Contact, while Tobias Ternstrom is the

Alternate Customer Contact, and Robert Dorr (aka “TheKraken”) will continue to be

my “editor.”

Now I have the foundation to insert a new customer. Because the column

[BillToCustomerID] references a valid [CustomerID], I use a feature called a variable to

grab a SEQUENCE value, and then use it for both columns. Execute the following T-SQL

statements or use the sample script insertcustomer.sql:

USE [WideWorldImporters]

GO

DECLARE @CustomerID INT

SET @CustomerID = NEXT VALUE for [Sequences].[CustomerID]

INSERT INTO [Sales].[Customers]

([CustomerID], [CustomerName], [BillToCustomerID], [CustomerCategoryID],

[PrimaryContactPersonID],

[AlternateContactPersonID], [DeliveryMethodID], [DeliveryCityID],

[PostalCityID],

[AccountOpenedDate], [StandardDiscountPercentage], [IsStatementSent],

[IsOnCreditHold],

[PaymentDays], [PhoneNumber], [FaxNumber], [WebsiteURL],

[DeliveryAddressLine1],

[DeliveryPostalCode], [PostalAddressLine1], [PostalPostalCode],

[LastEditedBy])

VALUES (@CustomerID, 'WeLoveSQLOnLinux', @CustomerID, 1, 1, 2, 1, 1, 1,

getdate(), 0.10, 0, 0, 30,

'817-111-1111', '817-222-2222', 'www.welovesqlonlinux.com', 'Texas',

'76182', 'Texas', '76182', 0)

GO

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

105

Notice for the [AccountOpenedDate]column I used getdate() to supply a value

for datetime (getdate() provides the local datetime based on the computer where SQL

Server is installed). This is an example of a built-in function that can be used with T-SQL

queries. For more information about SQL Server functions, see our documentation at

https://docs.microsoft.com/sql/t-sql/functions/functions.

Now I can read from the Customer table and join with the People table to get the

name of a customer and their primary contact name from the T-SQL statements as seen

in the sample script findcustomer.sql:

USE [WideWorldImporters]

GO

SELECT c.[CustomerName], c.[WebsiteURL], p.[FullName] AS PrimaryContact

FROM [Sales].[Customers] AS c

JOIN [Application].[People] AS p

ON p.[PersonID] = c.[PrimaryContactPersonID]

GO

The result of this query is as the following row:

CustomerName WebsiteURL PrimaryContact

------------ ---------- --------------

WeLoveSQLOnt... www.welovesql... Slava Oks

 Updating and Deleting data
Now that you have learned examples of how to insert and retrieve rows from these tables,

two other key operations of any application with SQL Server are the ability to update and

delete rows. The syntax to perform this is amazingly simple.

Let’s say you wanted to update the “WeLoveSQLOnLinux” company and change

their website because they moved their site. Execute the following T-SQL statements or

use the example script updatecustomer.sql:

USE [WideWorldImporters]

GO

UPDATE [Sales].[Customers]

SET WebsiteURL = 'www.sqlonlinux.com'

WHERE CustomerName = 'WeLoveSQLOnLinux'

GO

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

https://docs.microsoft.com/sql/t-sql/functions/functions

106

You may also want to delete a customer row with a T-SQL query like this from the

sample script deletecustomer.sql:

USE [WideWorldImporters]

GO

BEGIN TRANSACTION

DELETE FROM [Sales].[Customers]

WHERE CustomerName = 'WeLoveSQLOnLinux'

ROLLBACK TRANSACTION

GO

I threw in another wrinkle for you. Notice the T-SQL commands BEGIN TRANACTION

and ROLLBACK TRANSACTION. Effectively, all the T-SQL commands I have shown

you have an implicit commit of a transaction. Using the BEGIN TRANSACTION syntax

allows me to explicitly decide to commit or rollback (undo) my T-SQL command. In this

case, the DELETE is executed, but the ROLLBACK TRANACTION undoes the change.

For a thorough discussion of SQL Server transactions, see our documentation page

at https://docs.microsoft.com/sql/t-sql/language-elements/transactions-

transact- sql.

 Building Views and Stored Procedures
SQL Server has built-in capabilities for other types of objects that help provide

abstraction and containment of query logic. One of these objects is called a view, a

common feature in many database systems. Views allow you to create an object based

on a T-SQL SELECT statement from one or more tables.

For example, I could create a view based on the join I showed earlier between the

Customer and People tables through the following T-SQL statements, as seen in the

sample script createview.sql:

USE [WideWorldImporters]

GO

DROP VIEW IF EXISTS [Sales].[CustomerContacts]

GO

CREATE VIEW [Sales].[CustomerContacts]

AS

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

https://docs.microsoft.com/sql/t-sql/language-elements/transactions-transact-sql
https://docs.microsoft.com/sql/t-sql/language-elements/transactions-transact-sql

107

SELECT c.[CustomerName], c.[WebsiteURL], p.[FullName] AS PrimaryContact

FROM [Sales].[Customers] AS c

JOIN [Application].[People] AS p

ON p.[PersonID] = c.[PrimaryContactPersonID]

GO

Now I can execute a T-SQL statement for all columns in the view, as seen in the

sample script findcustomercontacts.sql:

USE [WideWorldImporters]

GO

SELECT * FROM [Sales].[CustomerContacts]

GO

I get the same results as executing the join, but I’ve abstracted the logic to “find

customer contacts” from users or applications. Views are very common when you want

to shield some columns from a base table from users and allow them access to only

certain columns.

Another type of object that is very common with SQL Server is a stored procedure.

Using a stored procedure in SQL Server is often called server-side programming.

Stored procedures can contain multiple T-SQL statements (and often can be lengthy and

complex). This frees the application from having to include all the T-SQL statements in

the code. Stored procedures also reduce network traffic from the client application and

are efficiently cached in memory.

I can take the INSERT statement to insert a customer row and build a stored

procedure like the following T-SQL statements, as seen in the sample script

insertcustomerproc.sql:

USE [WideWorldImporters]

GO

DROP PROCEDURE IF EXISTS [Sales].[InsertCustomer]

GO

CREATE PROCEDURE [Sales].[InsertCustomer]

@PrimaryContactID INT, @AlternateContactID INT

AS

-- Find the normal editor with a known PersonID = 0

--

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

108

DECLARE @EditedBy INT

SELECT @EditedBy = PersonID FROM [Application].[People]

WHERE PersonID = 0

-- INSERT into Customers

-- Primary and Alternate Contacs are passed in as parameters

DECLARE @CustomerID INT

SET @CustomerID = NEXT VALUE for [Sequences].[CustomerID]

INSERT INTO [Sales].[Customers]

([CustomerID], [CustomerName], [BillToCustomerID], [CustomerCategoryID],

[PrimaryContactPersonID],

[AlternateContactPersonID], [DeliveryMethodID], [DeliveryCityID],

[PostalCityID],

[AccountOpenedDate], [StandardDiscountPercentage], [IsStatementSent],

[IsOnCreditHold],

[PaymentDays], [PhoneNumber], [FaxNumber], [WebsiteURL],

[DeliveryAddressLine1],

[DeliveryPostalCode], [PostalAddressLine1], [PostalPostalCode],

[LastEditedBy])

VALUES (@CustomerID, 'WeAllLoveSQLOnLinux', @CustomerID, 1, @PrimaryContactID,

@AlternateContactID, 1, 1, 1, getdate(), 0.10, 0, 0, 30,

'817-111-1111', '817-222-2222', 'www.welovesqlonlinux.com', 'Texas', '76182',

'Texas', '76182', @EditedBy)

GO

This procedure has built-in logic to find the LastEditedBy column and takes two

parameters for the primary and alternate contacts.

To execute this procedure, you would run a T-SQL statement like the one found in

the sample script execinsertcustomer.sql:

USE [WideWorldImporters]

GO

EXEC [Sales].[InsertCustomer] 1, 2

GO

To learn more about the power of stored procedures, see our documentation at

https://docs.microsoft.com/sql/t-sql/statements/create-procedure-transact- sql.

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

https://docs.microsoft.com/sql/t-sql/statements/create-procedure-transact-sql

109

 Summary
In this chapter, I have shown the basics of creating a database and objects to go in the

database. I’ve used the popular open-source, cross-platform tool Visual Studio Code

for all the examples to show the fundamentals of T-SQL using the mssql extension.

With this foundation of knowledge, I’ll show you in the next chapter, using the same

WideWorldImporters database example, how to build an application, learn more

advanced T-SQL concepts, and explore new features that come with SQL Server 2017 on

Linux.

Chapter 3 Building a dataBaSe and t-SQl FundamentalS

111
© Bob Ward 2018
B. Ward, Pro SQL Server on Linux, https://doi.org/10.1007/978-1-4842-4128-8_4

CHAPTER 4

Building an Application
and Advanced T-SQL
Now that you have learned how to create a database, tables, and execute basic T-SQL

queries, it’s time to write some code and build an application that connects to SQL

Server on Linux. As in Chapter 3, I’ll use Visual Studio Code as the development

environment to build a node.js application.

The node.js application uses basic T-SQL queries based on the knowledge I

showed you in Chapter 3. So, in the second part of this chapter, I’ll show you more

advanced T-SQL capabilities as well as new features that were shipped in SQL Server

2016 and 2017.

There are three resources I used as I wrote this chapter that I think you will also

find useful:

• http://aka.ms/sqldev: Resources and tutorials on how to build

applications for SQL Server in almost any language on multiple

platforms

• https://code.visualstudio.com/docs/nodejs/nodejs-

tutorial: Tutorials on how to build node.js applications using

Visual Studio Code

• https://docs.microsoft.com/sql/linux/sql-server-linux-

develop-use-vscode: A tutorial on how to use the mssql extension

for Visual Studio Code

http://aka.ms/sqldev
https://code.visualstudio.com/docs/nodejs/nodejs-tutorial
https://code.visualstudio.com/docs/nodejs/nodejs-tutorial
https://docs.microsoft.com/sql/linux/sql-server-linux-develop-use-vscode
https://docs.microsoft.com/sql/linux/sql-server-linux-develop-use-vscode

112

 Setting Up Your Environment
In Chapter 3, I described how to setup an environment to run T-SQL queries using Visual

Studio Code and the mssql extension. If you skipped Chapter 3 to come to this chapter,

you will want to perform the following steps to install and configure what you need for

this chapter’s examples:

• Install the Visual Studio Code from https://code.

visualstudio.com/.

• Install the mssql extension to Visual Studio Code by following the

instructions found at https://docs.microsoft.com/sql/linux/

sql-server-linux-develop-use-vscode?view=sql-server-linux-

2017#install-the-mssql-extension.

• If you have not already installed the SQL command line utilities,

including sqlcmd, download them for Windows from

www.microsoft.com/download/details.aspx?id=53591 or for

Linux/macOS from https://docs.microsoft.com/en-us/sql/

linux/sql-server-linux-setup-tools. Be sure that sqlcmd is in

your path to run example scripts.

• Copy the sample scripts and code for Chapter 3 and Chapter 4 into

a local directory you will open in Visual Studio Code. I called my

local directory on Windows c:\wwi. If you have left your Chapter 3

environment available, then just copy all the Chapter 4 code and

scripts into c:\wwi or whatever folder you created.

• Set up a connection profile for the sqllinux user. See the section

titled “Creating a Login and User” in Chapter 3 for steps on how to

do this.

• All the code and T-SQL scripts were intended to run in a sequence

in this chapter as you follow along. To start clean, run the createwwi.

sh (macOS or Linux) or createwwi.cmd (Windows) scripts that

were provided in Chapter 3. These scripts use sqlcmd and have two

arguments: server and sa password.

Chapter 4 Building an appliCation and advanCed t-SQl

https://code.visualstudio.com/
https://code.visualstudio.com/
https://docs.microsoft.com/sql/linux/sql-server-linux-develop-use-vscode?view=sql-server-linux-2017#install-the-mssql-extension
https://docs.microsoft.com/sql/linux/sql-server-linux-develop-use-vscode?view=sql-server-linux-2017#install-the-mssql-extension
https://docs.microsoft.com/sql/linux/sql-server-linux-develop-use-vscode?view=sql-server-linux-2017#install-the-mssql-extension
http://www.microsoft.com/download/details.aspx?id=53591
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-tools
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-tools

113

• Execute the T-SQL script insertpeople.sql and insertcustomer.
sql from Chapter 3 to populate the People and Customers table.

Also, execute the T-SQL script insertcustomerproc.sql to create a

stored procedure that will be used in a node.js example later in the

chapter.

The examples in this chapter will use the Windows version of Visual Studio Code

both for SQL Server T-SQL commands as well as the Windows version of node.js.

However, all the examples will work on your preferred development platform, since

Visual Studio code and node.js exist on MacOS and Linux.

Because I’m building a node.js application, the other task I need to do is to install

the necessary components to run node.js on my Windows laptop. I used the Windows

installer package found at https://nodejs.org/en/download (I used all the defaults for

the installation).

 Building and Running a Data Application
for SQL Server
There was a time years ago that the applications being built for SQL Server were written

only in Visual Basic, C, or C++ using drivers that supported programming interfaces

such as ODBC or OLE-DB. A few years ago, Microsoft made a conscious effort to expand

programming interfaces to support a much wider variety of languages, interfaces, and

platforms.

Today, it is possible to write a program to access SQL Server in almost every

language you can think of. Whether you want to develop a program in Java, C#, PHP,

or Python, SQL Server has the support you need. I don’t try to remember all the

programming language support anymore because of this nifty website called http://

aka.ms/sqldev.

Figure 4-1 shows the options as presented by the http://aka.ms/sqldev site.

Chapter 4 Building an appliCation and advanCed t-SQl

https://nodejs.org/en/download
http://aka.ms/sqldev
http://aka.ms/sqldev
http://aka.ms/sqldev

114

As part of supporting these programming languages, SQL Server also supports

several Object Relational Mapping (ORM) frameworks including Entity Framework,

Hibernate ORM, Sequelize ORM, and Django. For a complete list of drivers and ORM

framework support, see our documentation at https://docs.microsoft.com/sql/

connect/sql-connection-libraries.

 Using node.js with SQL Server
One of the more popular programming languages to build applications, especially on

Linux, is node.js based on Javascript. Node.js supports connecting to any SQL Server

through the Tabular Data Stream (TDS) protocol, the “data” language for SQL Server,

from a component called Tedious (Microsoft is a major contributor to Tedious. You

can find the open source at https://github.com/tediousjs/tedious), which is the

node.js driver for SQL Server. The TDS protocol is supported by SQL Server and Azure

SQL Server Database. The entire protocol is open and published at https://msdn.

microsoft.com/library/dd304523.aspx.

Node.js supports programs to run on Windows, Linux, and MacOS. You can

download the node.js platform of your choice at https://nodejs.org.

Figure 4-1. SQL Server programming language options

Chapter 4 Building an appliCation and advanCed t-SQl

https://docs.microsoft.com/sql/connect/sql-connection-libraries
https://docs.microsoft.com/sql/connect/sql-connection-libraries
https://github.com/tediousjs/tedious
https://msdn.microsoft.com/library/dd304523.aspx
https://msdn.microsoft.com/library/dd304523.aspx
https://nodejs.org

115

I will show you an example application using node.js (this is a simple example that

displays output to the console. It doesn’t display a web page) based on the samples

provided by Microsoft at www.microsoft.com/sql-server/developer-get-started/

node/windows.

Per the instructions in our documentation at www.microsoft.com/sql-server/

developer-get-started/node/windows/step/2.html, I ran these programs to install

the Tedious driver and prepare my environment to use node.js with SQL Server (you can

execute these in the Integrated Terminal in Visual Studio Code) in the folder where I will

save my program:

npm init -y

npm install tedious

npm install async

For a set of documentation references for using the Tedious driver to write programs

for node.js with SQL Server, see the API documentation at http://tediousjs.github.

io/tedious/index.html. Another source of examples can be found at https://github.

com/tediousjs/tedious/tree/master/examples.

 Connecting to SQL Server with node.js
Connecting to SQL Server with node.js relies on the Connection object from the Tedious

driver. Get the full details of the object at http://tediousjs.github.io/tedious/

api-connection.html. Following is the code I built to connect to SQL Server on Linux

with the default database of WideWorldImporters, using the sqllinux login I created

earlier in this chapter. Using the Visual Studio Code Editor, you can open the sample file

customerappconnect.js to see this code. Using this file extension switches the editor to

recognize JavaScript code:

var Connection = require('tedious').Connection;

var Request = require('tedious').Request;

var TYPES = require('tedious').TYPES;

// Create connection to database

var config = {

 userName: 'sqllinux',

 password: 'Sql2017isfast',

Chapter 4 Building an appliCation and advanCed t-SQl

http://www.microsoft.com/sql-server/developer-get-started/node/windows
http://www.microsoft.com/sql-server/developer-get-started/node/windows
http://www.microsoft.com/sql-server/developer-get-started/node/windows/step/2.html
http://www.microsoft.com/sql-server/developer-get-started/node/windows/step/2.html
http://tediousjs.github.io/tedious/index.html
http://tediousjs.github.io/tedious/index.html
https://github.com/tediousjs/tedious/tree/master/examples
https://github.com/tediousjs/tedious/tree/master/examples
http://tediousjs.github.io/tedious/api-connection.html
http://tediousjs.github.io/tedious/api-connection.html

116

 server: 'bwsql2017rhel',

 options: {

 database: 'WideWorldImporters'

 }

}

console.log("Connecting to SQL Server");

var connection = new Connection(config);

// Attempt to connect to the SQL Server on Linux

connection.on('connect', function(err) {

 if (err) {

 console.log(err);

 } else {

 console.log('Connected to SQL Server successfully');

 connection.close();

 }

});

I can run this code in the Integrated Terminal (you can open the Integrated Terminal

using the View Menu in Visual Studio Code) using the command:

node .\customerappconnect.js

Figure 4-2 shows the overall shape of things in Visual Studio.

Chapter 4 Building an appliCation and advanCed t-SQl

117

The results of running the code are shown in the bottom pane in Figure 4-2, and are

as follows:

PS C:\wwi> node .\customerappconnect.js

Connecting to SQL Server

Connected to SQL Server successfully

In future examples, I’ll often just show the results as text, without also showing the

Visual Studio screenshot.

Figure 4-2. Connecting to SQL Server on Linux with a node.js program in Visual
Studio Code

Chapter 4 Building an appliCation and advanCed t-SQl

118

 Inserting and Reading Data
Now that you have learned to connect to SQL Server using node.js, let’s add in code

to insert a row to the [Application].[People] table (a new row other than the ones used

in the examples from Chapter 3) and another piece of code to get contacts from the

Customer table.

Executing queries in node.js with Tedious requires the Request object. You can find

the full details of the Request object at http://tediousjs.github.io/tedious/api-

request.html.

This is a long piece of code to read, so I’ll explain a few details at the end of the code

fragment. This set of node.js code can be found in the sample file customerappinssel.js,

and it appears as follows:

var Connection = require('tedious').Connection;

var Request = require('tedious').Request;

var TYPES = require('tedious').TYPES;

var async = require('async');

// Create connection to database

var config = {

 userName: 'sqllinux',

 password: 'Sql2017isfast',

 server: 'bwsql2017rhel',

 options: {

 database: 'WideWorldImporters'

 }

}

console.log("Connecting to SQL Server");

var connection = new Connection(config);

function Start(callback) {

 console.log('Starting...');

 callback(null, 'Travis Wright', 'radtravis', 'twright');

}

Chapter 4 Building an appliCation and advanCed t-SQl

http://tediousjs.github.io/tedious/api-request.html
http://tediousjs.github.io/tedious/api-request.html

119

function Insert(FullName, PreferredName, Logon, callback) {

 console.log("Inserting '" + FullName + "' into Table...");

 request = new Request(

 'INSERT INTO [Application].[People] ([FullName], [PreferredName],

[IsPermittedToLogon], [LogonName], [IsExternalLogonProvider],

[IsSystemUser], [IsEmployee], [IsSalesPerson], [LastEditedBy]) VALUES

(@FullName, @PreferredName, 1, @Logon, 0, 1, 1, 0, 0);',

 function(err, rowCount, rows) {

 if (err) {

 console.log(err);

 callback(err);

 } else {

 console.log(rowCount + ' row(s) inserted');

 callback(null);

 }

 });

 request.addParameter('FullName', TYPES.NVarChar, FullName);

 request.addParameter('PreferredName', TYPES.NVarChar, PreferredName);

 request.addParameter('Logon', TYPES.NVarChar, Logon);

 // Execute SQL statement

 connection.execSql(request);

}

function Read(callback) {

 console.log('Reading Customer Contacts...');

 // Read all rows from table

 request = new Request(

 'SELECT c.[CustomerName], c.[WebsiteURL], p.[FullName] AS PrimaryContact

FROM [Sales].[Customers] AS c JOIN [Application].[People] AS p ON

p.[PersonID] = c.[PrimaryContactPersonID];',

 function(err, rowCount, rows) {

 if (err) {

 console.log(err);

 callback(err);

Chapter 4 Building an appliCation and advanCed t-SQl

120

 } else {

 console.log(rowCount + ' row(s) returned');

 callback(null);

 }

 });

 // Print the rows read

 var result = "";

 request.on('row', function(columns) {

 columns.forEach(function(column) {

 if (column.value === null) {

 console.log('NULL');

 } else {

 result += column.value + " ";

 }

 });

 console.log(result);

 result = "";

 });

 // Execute SQL statement

 connection.execSql(request);

}

function Complete(err, result) {

 if (err) {

 console.log(err);

 } else {

 console.log("Done!");

 connection.close();

 }

}

// Attempt to connect to the SQL Server on Linux

connection.on('connect', function(err) {

 if (err) {

 console.log(err);

 process.exit(1);

Chapter 4 Building an appliCation and advanCed t-SQl

121

 } else {

 console.log('Connected to SQL Server successfully');

 // Execute all functions in the array serially

 async.waterfall([

 Start,

 Insert,

 Read

], Complete)

 }

});

If you are not familiar with node.js, the code flow can be hard to follow. The key piece

of code that “fires off” the rest of the functions is found after the logic to connect with the

async object:

async.waterfall([

 Start,

 Insert,

 Read

], Complete)

This code executes each function, starting with the Start function, serially allowing

each function to pass on information to each other. The Complete function is the main

function to run after the other functions have executed (or if an error occurs).

The syntax of the INSERT statement is also unique in that you can specify variables

you bind from the program into the T-SQL statement:

'INSERT INTO [Application].[People] ([FullName], [PreferredName],

[IsPermittedToLogon], [LogonName], [IsExternalLogonProvider],

[IsSystemUser], [IsEmployee], [IsSalesPerson], [LastEditedBy]) VALUES

(@FullName, @PreferredName, 1, @Logon, 0, 1, 1, 0, 0);'

The parameters to the function Insert are used as the following bind variables to the

INSERT statement @FullName, @PreferredName, and @Logon and defined using these

statements:

request.addParameter('FullName', TYPES.NVarChar, FullName);

request.addParameter('PreferredName', TYPES.NVarChar, PreferredName);

request.addParameter('Logon', TYPES.NVarChar, Logon);

Chapter 4 Building an appliCation and advanCed t-SQl

122

Here is the technique in the code to execute a T-SQL batch:

connection.execSql(request);

And the following code allows you to iterate through each column of each row of a

result set from a T-SQL SELECT statement and bind to a variable, or in this case dump

out the results to the console:

// Print the rows read

 var result = "";

 request.on('row', function(columns) {

 columns.forEach(function(column) {

 if (column.value === null) {

 console.log('NULL');

 } else {

 result += column.value + " ";

 }

 });

 console.log(result);

 result = "";

 });

You can also see in the Connection object, after a successful execution of these

functions, the connection to SQL Server is closed:

function Complete(err, result) {

 if (err) {

 console.log(err);

 } else {

 console.log("Done!");

 connection.close();

 }

}

I executed this code from the command prompt like this:

node .\customerappinssel.js

Chapter 4 Building an appliCation and advanCed t-SQl

123

The results are as follows:

PS C:\wwi> node .\customerappinssel.js

Connecting to SQL Server

Connected to SQL Server successfully

Starting...

Inserting 'Travis Wright' into Table...

1 row(s) inserted

Reading Customer Contacts...

WeLoveSQLOnLinux www.welovesqlonlinux.com Slava Oks

1 row(s) returned

Done!

Executing UPDATE and DELETE commands in node.js operates very similar

to executing an INSERT. You can see these examples in our documentation at www.

microsoft.com/sql-server/developer-get-started/node/windows/step/2.html.

 Executing Stored Procedures
You can execute stored procedures using the same execSql() method by setting up a

request with the full T-SQL “EXEC <procedure name>” syntax. However, a more efficient

way to call stored procedures is via a remote procedure call (RPC) method as defined by

the TDS protocol. The Tedious driver supports this via a method called callProcedure().

Using the example T-SQL procedure InsertCustomer from the previous

chapter (remember at the beginning of this chapter I instructed you to execute the

insertcustomerproc.sql script), here is the node.js code to execute this procedure as an

RPC. You can find this code in the sample file execinsertcustomer.js, and it appears as

follows:

var Connection = require('tedious').Connection;

var Request = require('tedious').Request;

var TYPES = require('tedious').TYPES;

// Create connection to database

var config = {

 userName: 'sqllinux',

 password: 'Sql2017isfast',

Chapter 4 Building an appliCation and advanCed t-SQl

http://www.microsoft.com/sql-server/developer-get-started/node/windows/step/2.html
http://www.microsoft.com/sql-server/developer-get-started/node/windows/step/2.html

124

 server: 'bwsql2017rhel',

 options: {

 database: 'WideWorldImporters'

 }

}

console.log("Connecting to SQL Server");

var connection = new Connection(config);

connection.on('connect', function(err) {

 // If no error, then good to proceed.

 console.log("Connected to SQL Server Successfully");

 InsertCustomer();

});

function InsertCustomer() {

 request = new Request("[Sales].[InsertCustomer]", function(err) {

 if (err) {

 console.log(err);}

 else

 console.log('Inserted new Customer');

 }

);

 request.addParameter('PrimaryContactID', TYPES.Int, 1);

 request.addParameter('AlternateContactID', TYPES.Int, 1);

 request.on('requestCompleted', ()=>{connection.close();});

 connection.callProcedure(request);

}

To run this code, I ran this command:

node .\execinsertcustomer.js

The results should look like this from the Integrated Terminal in VS Code or your

command shell:

PS C:\wwi> node .\execinsertcustomer.js

Connecting to SQL Server

Connected to SQL Server Successfully

Inserted new Customer

Chapter 4 Building an appliCation and advanCed t-SQl

125

The method to close the connection uses the event programming model common

to node.js applications. This line of code will close the connection when a request is

completed (i.e., a query is completed).

request.on('requestCompleted', ()=>{connection.close();});

 Enhancing Your Application
I covered just some of the fundamental methods to use node.js with Tedious to connect

and run queries against SQL Server, including stored procedures. As you build up a

production application, you will want to enhance it to take advantage of other methods

with node.js.

Here are my recommendations to consider:

• A more efficient way to handle connections to open and close them

frequently is a concept called connection pooling. Connection

pooling is very common for SQL Server applications, and Tedious

supports this through another object: https://github.com/

tediousjs/tedious-connection-pool.

• You may want the ability to control timeouts for logins and/or queries

(the length of time to wait for a login or query). The Connection

object provides options in the configuration to control these timeouts.

The default is 15 seconds for both. You also may want the ability to

cancel a query you have submitted to SQL Server manually, and the

Connection object supports this through connection.cancel().

• There are a variety of other options you may want to use associated

with the Connection object, such as encryption, IP addresses and

port numbers, read intent for Availability Groups (which I will discuss

later in Chapter 8), and more. They are all documented with the

Connection object at http://tediousjs.github.io/tedious/api-

connection.html#function_newConnection.

• Your application should be prepared to handle certain events

based on execution of a query and/or stored procedure. See the

documentation for handling doneProc and doneInProc events from

the Request object at http://tediousjs.github.io/tedious/api-

request.html.

Chapter 4 Building an appliCation and advanCed t-SQl

https://github.com/tediousjs/tedious-connection-pool
https://github.com/tediousjs/tedious-connection-pool
http://tediousjs.github.io/tedious/api-connection.html#function_newConnection
http://tediousjs.github.io/tedious/api-connection.html#function_newConnection
http://tediousjs.github.io/tedious/api-request.html
http://tediousjs.github.io/tedious/api-request.html

126

• In addition, SQL Server may return both error and informational

messages for any query execution. Be sure to handle these using

the Connection object infoMessage and errorMessage events. See

the Connection object details at http://tediousjs.github.io/

tedious/api-connection.html.

• While you can use the T-SQL BEGIN TRANSACTION command

as part of a batch within your application, the Tedious driver also

provides interfaces for transactions. See the documentation for more

details at http://tediousjs.github.io/tedious/api-connection.

html#function_beginTransaction.

 Go Big on T-SQL
In the previous chapter and with the node.js application, I showed you fundamental

queries to create databases, tables, keys, constraints, and execute CRUD (create, read,

update, and delete) operations against SQL Server on Linux.

Note if you haven’t heard this enough from me at this point, this entire set of
t-SQl examples and scripts can run unchanged against SQl Server on Windows
and linux because the core SQl Server engine is the same on both platforms.

I decided when I outlined this book that it could not be a complete guide to SQL

Server and T-SQL. That alone could take several books (and there are several out there

on this topic). Rather, I wanted to include enough information for users new to SQL

Server to get up and running on Linux, build up some capabilities, and understand what

other options exist to go further.

In this section, I want to briefly talk about other features in the T-SQL language and the

core database engine that can enhance your application and experience with SQL Server.

 Creating and Using Temporary Objects
There could be situations where you want to create a temporary space for data that is

unique per user without storing the data in your database and creating a design that

must track data per user.

Chapter 4 Building an appliCation and advanCed t-SQl

http://tediousjs.github.io/tedious/api-connection.html
http://tediousjs.github.io/tedious/api-connection.html
http://tediousjs.github.io/tedious/api-connection.html#function_beginTransaction
http://tediousjs.github.io/tedious/api-connection.html#function_beginTransaction

127

SQL Server provides this capability through a concept called a temporary table (also

through table variables). All temporary objects are stored in a special system database

called tempdb. The key word here is temporary. Tempdb is recreated each time SQL

Server is started. So, even though you can store user tables in this database, I don’t

recommend this.

 Temporary Tables and Table Variables

Temporary tables and table variables have the unique property of scope. When you

create these objects, they are automatically destroyed when the stored procedure

completes, or the user login session is disconnected.

Examples are the best way to show you how to do this. Let’s use the

InsertCustomers stored procedure created earlier in this chapter as an example to

show you both temporary tables and table variables. Let’s say you want to pull in

sets of data to calculate the StandardDiscountPercentage or PaymentDays columns

for a new customer. Depending on the data, there are several ways to do this. You

could query data from the source table where these values exist and insert them into

a temporary table. And then use the temporary table within the stored procedure to

populate these values.

Here is a possible example. This assumes a source table called CustomerRates,

which has columns called StandardDiscountPercentage, PaymentDays, and

CustomerRegion. In addition, a region is passed into the procedure to look up the right

data for the new customer. You can find example T-SQL statements in the sample script

insertcustomerproctemptable.sql:

USE [WideWorldImporters]

GO

DROP TABLE IF EXISTS CustomerRates

GO

CREATE TABLE CustomerRates

(CustomerRegion NVARCHAR(30),

StandardDiscountPercentage [decimal](18,3),

PaymentDays INT

)

INSERT INTO CustomerRates VALUES ('Texas', 10.0, 30)

GO

DROP PROCEDURE IF EXISTS [Sales].[InsertCustomer]

Chapter 4 Building an appliCation and advanCed t-SQl

128

GO

CREATE PROCEDURE [Sales].[InsertCustomer]

@PrimaryContactID INT, @AlternateContactID INT, @CustomerRegion

NVARCHAR(30)

AS

-- Declare local variables

--

DECLARE @StandardDiscountPercentage DECIMAL(18,3)

DECLARE @PaymentDays INT

-- Find the normal editor with a known PersonID = 0

--

DECLARE @EditedBy INT

SELECT @EditedBy = PersonID FROM [Application].[People]

WHERE PersonID = 0

-- Create a temporary table to store results for customer payment

information

--

CREATE TABLE #CustomerPayment

(StandardDiscountPercentage [DECIMAL](18, 3) NOT NULL,

PaymentDays INT NOT NULL

)

INSERT INTO #CustomerPayment SELECT StandardDiscountPercentage, PaymentDays

FROM CustomerRates

WHERE CustomerRegion = @CustomerRegion

SELECT @StandardDiscountPercentage = StandardDiscountPercentage,

@PaymentDays = PaymentDays FROM #CustomerPayment

-- INSERT into Customers

-- Primary and Alternate Contacs are passed in as parameters

DECLARE @CustomerID INT

SET @CustomerID = NEXT VALUE for [Sequences].[CustomerID]

INSERT INTO [Sales].[Customers]

([CustomerID], [CustomerName], [BillToCustomerID], [CustomerCategoryID],

[PrimaryContactPersonID],

Chapter 4 Building an appliCation and advanCed t-SQl

129

[AlternateContactPersonID], [DeliveryMethodID], [DeliveryCityID],

[PostalCityID],

[AccountOpenedDate], [StandardDiscountPercentage], [IsStatementSent],

[IsOnCreditHold],

[PaymentDays], [PhoneNumber], [FaxNumber], [WebsiteURL],

[DeliveryAddressLine1],

[DeliveryPostalCode], [PostalAddressLine1], [PostalPostalCode],

[LastEditedBy])

VALUES (@CustomerID, 'WeLoveSQLOnLinuxToo', @CustomerID, 1,

@PrimaryContactID, @AlternateContactID, 1, 1, 1, getdate(),

@StandardDiscountPercentage, 0, 0, @PaymentDays,

'817-111-1111', '817-222-2222', 'www.welovesqlonlinux.com', 'Texas',

'76182', 'Texas', '76182', @EditedBy)

GO

I created this procedure to insert a new customer, so this example should work even

with the execution of scripts from previous examples in this chapter.

I can now execute this procedure using the following T-SQL statements, which are

also in the sample script execinsertcustomertemp.sql:

USE [WideWorldImporters]

GO

EXEC [Sales].InsertCustomer 1, 2, 'Texas'

GO

There could be more efficient methods to demonstrate the business logic for this

example, but it is a convenient way to show you how to create and use a temporary table.

In this example, when the procedure completes, the temporary table #CustomerPayment

is destroyed.

Note For performance optimization, SQl Server uses a technique called
temporary table caching by default with some restrictions. See this excellent
blog post on the topic: https://sqlperformance.com/2017/05/sql-
performance/sql-server-temporary-object-caching.

Chapter 4 Building an appliCation and advanCed t-SQl

https://sqlperformance.com/2017/05/sql-performance/sql-server-temporary-object-caching
https://sqlperformance.com/2017/05/sql-performance/sql-server-temporary-object-caching

130

Notice the use of the INSERT..SELECT syntax in the previous example to insert

multiple rows in a single statement. Another method to populate the temporary table

(which can also be used for user tables) is the SELECT..INTO syntax. In the example, you

could have used the following syntax instead. SELECT..INTO will create the target table

based on the definition of the columns from the source table, so there would be no need

for CREATE TABLE.

SELECT StandardDiscountPercentage, PaymentDays INTO #CustomerRates

FROM CustomerRates

WHERE CustomerRegion = @CustomerRegion

For this same example, you could also use a table variable. The stored procedure

fragment with a table variable looks like this:

DECLARE @CustomerRates table(

 StandardDiscountPercentage [DECIMAL] (18,3) NOT NULL,

 PaymentDays INT NOT NULL

);

INSERT INTO @CustomerRates SELECT StandardDiscountPercentage, PaymentDays

FROM CustomerRates

WHERE CustomerRegion = @CustomerRegion

Table variables and temporary tables both have their advantages and disadvantages.

You must use table variables to enable a feature called table valued parameters. In

general, table variables work fine with small sets of data, but you should use temporary

tables when working with larger sets of data.

Remember that you may not even need temporary tables for the logic you are trying

to build in a stored procedure or batch. There are performance considerations for many

users concurrently using temporary objects, which I will discuss further in Chapter 6.

 Other Temporary Objects

SQL Server provides capabilities to create temporary stored procedures, which have

a scope and lifetime only for the duration of a SQL Server session. The syntax is the

same for creating a stored procedure but with a twist of using the # symbol in front of

Chapter 4 Building an appliCation and advanCed t-SQl

131

the procedure name, as in this T-SQL example, which I provided in the sample script

tempproc.sql:

CREATE PROCEDURE #tempproc

AS

SELECT @@VERSION

GO

Executing the procedure would be like any stored procedure using the #tempproc

name. Like temporary tables, a temporary stored procedure of the same name can be

created by multiple users concurrently, since each user would have a private version of

the procedure per their session. And like temporary tables, the definition of a temporary

stored procedure is kept in the tempdb database. There are a few reasons to use

temporary stored procedures, such as testing out a new procedure without storing it in a

user database or using it in a long T-SQL script to perform a task.

The other type of temporary object is a global temporary table or stored procedure.

Global temporary tables are defined by using the same syntax as temporary tables except

with an extra # character in front of the name, as in the following example:

CREATE TABLE ##globaltemp

(col1 INT, col2 INT)

GO

Because they are global, only one global temporary table of a given name can exist

at a time and their scope is across all active user sessions. A global temporary table is

stored in tempdb but is automatically destroyed when all users who have referenced the

global temporary table have disconnected.

It is also possible to create global temporary stored procedures. The have the same

characteristics in scope, visibility, and lifetime as global temporary tables.

 Internal Usage of tempdb

When I’ve presented on the topic of tempdb, I’ve often called it the “garbage dump”

of SQL Server. I know the term has a negative meaning, but it is the reality for how

tempdb is used by SQL Server. What I’ve presented so far in this section are user objects

in tempdb. In other words, users decide now many objects and how much space they

consume.

Chapter 4 Building an appliCation and advanCed t-SQl

132

SQL Server has other capabilities that require it to store pages of data in tempdb

outside normal user tables. These include storage for versioning, spills for hash

and sorts, and worktables. You normally don’t worry about these because they are

implemented within the SQL Server engine. The reality is that they can affect your

application, especially when it comes to sizing tempdb correctly (or more importantly

the performance of a query).

SQL Server provides mechanisms to examine the usage of tempdb between user

and internal space at the file, session, and even task (query) level through Dynamic

Management Views, which will be discussed in Chapter 5. If you are up for a detailed

study on the topic of tempdb, you can listen into an in-depth talk I did at a major SQL

Server user conference a few years back on YouTube at https://youtu.be/SvseGMobe2w.

 Triggers
A trigger is a special kind of stored procedure that automatically executes when an

event occurs in the database server. DML triggers execute when a user tries to modify

data through a data manipulation language (DML) event such as INSERT, UPDATE, or

DELETE statements.

Many years ago, before SQL Server supported declarative foreign key constraints,

triggers were the recommended method to enforce referential integrity. Think of using

a trigger in situations where you want some type of action to take place when data in a

table is modified but you may not have complete control of what other queries could

be modifying the table. You may build stored procedures to wrap all CRUD operations

against your tables, but if you want to make sure some action takes place for other users

not using your procedure, triggers could be a great solution.

There are other types of triggers as well. You can read more about them in our

documentation at https://docs.microsoft.com/sql/t-sql/statements/create-

trigger- transact-sql.

 Analytic Queries
The examples I provided for SELECT statements were very simple, including joining

tables and using a WHERE clause to filter results.

In many analytic type workloads, it is necessary to aggregate results or order them.

Like other popular database engines, SQL Server provides T-SQL syntax to group rows

with GROUP BY and ensure the results are specifically ordered with ORDER BY.

Chapter 4 Building an appliCation and advanCed t-SQl

https://youtu.be/SvseGMobe2w
https://docs.microsoft.com/sql/t-sql/statements/create-trigger-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/create-trigger-transact-sql

133

SQL Server also provides rich functions to perform on aggregations including

aggregate functions (Ex. SUM) and analytic functions. You can read more about these

at https://docs.microsoft.com/sql/t-sql/functions/aggregate-functions-

transact-sql and https://docs.microsoft.com/sql/t-sql/functions/analytic-

functions- transact-sql.

You can get more advanced and achieve great performance on complex aggregation

queries by using a concept called window functions. Take a look at the documentation

and examples at https://docs.microsoft.com/sql/t-sql/queries/select-over-

clause-transact-sql.

I will show you some examples of analytic queries when I describe features like

columnstore indexes in Chapter 6.

 Complex Datatypes
In the example tables I’ve shown you in the previous chapter, I only used some of the

most common datatypes including integers, characters, bit, and datetime values. Here

is the People table definition for our reference as you read through this section and the

rest of the chapter (this is meant as a reference and not to execute). If you have run the

example scripts, the People table should exist in your database:

CREATE TABLE [Application].[People](

 [PersonID] [int] NOT NULL,

 [FullName] [nvarchar](50) NOT NULL,

 [PreferredName] [nvarchar](50) NOT NULL,

-- [SearchName] AS (concat([PreferredName],N' ',[FullName]))

PERSISTED NOT NULL,

 [IsPermittedToLogon] [bit] NOT NULL,

 [LogonName] [nvarchar](50) NULL,

 [IsExternalLogonProvider] [bit] NOT NULL,

 [HashedPassword] [varbinary](max) NULL,

 [IsSystemUser] [bit] NOT NULL,

 [IsEmployee] [bit] NOT NULL,

 [IsSalesperson] [bit] NOT NULL,

 [UserPreferences] [nvarchar](max) NULL,

 [PhoneNumber] [nvarchar](20) NULL,

 [FaxNumber] [nvarchar](20) NULL,

Chapter 4 Building an appliCation and advanCed t-SQl

https://docs.microsoft.com/sql/t-sql/functions/aggregate-functions-transact-sql
https://docs.microsoft.com/sql/t-sql/functions/aggregate-functions-transact-sql
https://docs.microsoft.com/sql/t-sql/functions/analytic-functions-transact-sql
https://docs.microsoft.com/sql/t-sql/functions/analytic-functions-transact-sql
https://docs.microsoft.com/sql/t-sql/queries/select-over-clause-transact-sql
https://docs.microsoft.com/sql/t-sql/queries/select-over-clause-transact-sql

134

 [EmailAddress] [nvarchar](256) NULL,

 [Photo] [varbinary](max) NULL,

 [CustomFields] [nvarchar](max) NULL,

-- [OtherLanguages] AS (json_query([CustomFields],

N'$.OtherLanguages')),

 [LastEditedBy] [int] NOT NULL,

-- [ValidFrom] [datetime2](7) GENERATED ALWAYS AS ROW START NOT NULL,

-- [ValidTo] [datetime2](7) GENERATED ALWAYS AS ROW END NOT NULL

 CONSTRAINT [PK_Application_People] PRIMARY KEY CLUSTERED

(

 [PersonID] ASC

)

)

SQL Server provides a rich set of datatypes beyond this including numeric, bigint,

unicode, money, binary, special. variant, XML, and table (a special case that you can

use with table-valued parameters. See https://docs.microsoft.com/sql/relational-

databases/tables/use-table-valued-parameters-database-engine in our

documentation for more information).

One special syntax on binary datatypes is in the table examples in this chapter:

[Photo] [varbinary](max) NULL,

Note the (max) syntax after the varbinary datatype where you would normally

see a length. The normal maximum size of a row (or a column) in SQL Server is

8000 bytes, but a capability exists to store a value greater than this (the max is

actually 2^31-1 bytes). This is called TEXT/IMAGE data and has a different storage

mechanism than normal rows (a separate set of database pages than the pages where

rows are stored). The legacy datatype names for these are text, image, and ntext. But

you should use the modern syntax of the (max) specification with varchar, nvarchar,

and varbinary.

In Chapter 3 in the section Creating Tables, I had comments on a few column

definitions in the example tables, and one of them was this column:

[SearchName] AS (concat([PreferredName],N' ',[FullName])) PERSISTED NOT

NULL,

Chapter 4 Building an appliCation and advanCed t-SQl

https://docs.microsoft.com/sql/relational-databases/tables/use-table-valued-parameters-database-engine
https://docs.microsoft.com/sql/relational-databases/tables/use-table-valued-parameters-database-engine

135

This is an example of a computed column. A computed column has an expression

based on other columns in the table and can be recognized by the AS syntax after the

column name. Normally, computed columns are calculated any time you query the

column with a SELECT statement. But if you use the PERSISTED keyword, SQL Server

will store the computed expression as rows are inserted or updated from the referenced

columns. Computed columns are in a way a form of server-side programming because

you are creating data based on other data stored in the table. Computed columns make

it easier to provide this type of programming in a declarative manner without writing

separate procedures or trigger code.

 String Functions
Application developers often need to perform operations against character data as

strings. SQL Server provides a rich set of T-SQL functions to find and manipulate

string data, which can be useful to enhance your stored procedure code. The CONCAT

operation in the computed column example of the People table is an example of a T-SQL

string function. Other functions exist to split (STRING_SPLIT), aggregate (STRING_
AGG), find substring (SUBSTRING), format (FORMAT), and trim (LTRIM and RTRIM).

 Other T-SQL Commands
The T-SQL language has become so powerful over the years, with rich capabilities

beyond standard CRUD operations. While I will review some of the exciting recent

new features in the next section, I encourage you to explore the entire T-SQL reference

documentation. As a developer there may be other commands or features that will help

your journey into building a rich data-driven application. For the complete reference,

see our documentation at https://docs.microsoft.com/sql/t-sql/language-

reference.

 Exploring New SQL Server Capabilities
While SQL Server over the years has become a dominant relational database engine in

the industry, today at Microsoft we think of SQL Server as a modern data platform. That

is because we have extended the capabilities beyond the standard features of a typical

relational database engine.

Chapter 4 Building an appliCation and advanCed t-SQl

https://docs.microsoft.com/sql/t-sql/language-reference
https://docs.microsoft.com/sql/t-sql/language-reference

136

In this final section of the chapter, I will show you some of these new capabilities that

have been introduced into the product in SQL Server 2016 and 2017.

 JSON
In SQL Server 2008, we introduced a new XML datatype to store native XML data into a

table column and provided operators to work against unstructured or semistructured

data.

In SQL Server 2016, we recognized the popularity of JSON as a text format widely

used in web applications and in NoSQL database systems.

Instead of creating a separate type like XML, SQL Server 2016 and 2017 provide

T-SQL language commands to operate against JSON-formatted data stored in a character

SQL Server column.

For an example, look at the People table and one of the columns I commented out:

[OtherLanguages] AS (json_query([CustomFields],N'$.OtherLanguages'))

JSON_QUERY() is an example of a T-SQL function that allows you to extract an object or

array from a JSON string. In this case, the object is OtherLanguages from the CustomFields

column, which is defined as nvarchar(max) but the format of the data is JSON.

SQL Server support for JSON includes an OPENJSON() T-SQL function to convert

JSON formatted data into rows and columns. Additionally, we have provided a new

extension to the T-SQL SELECT statement called FOR JSON, which will take a standard

column and row set of data and return the results as JSON-formatted data. The other

JSON T-SQL functions are described in our documentation at https://docs.microsoft.

com//sql/t-sql/functions/json-functions-transact-sql.

For a complete list of all SQL Server capabilities for working with JSON data, see our

documentation at https://docs.microsoft.com/sql/relational-databases/json/

json-data-sql-server.

 Temporal Tables
A common scenario for some developers and data professionals is to store a history of

changes or versions of rows in a table (which is another possible use for triggers).

Starting in SQL Server 2016, a new feature was introduced called temporal tables to

solve the problem of storing a history of changes in the table but provide built-in, easy-

to- use methods to retrieve a version of a row at point in time in the past.

Chapter 4 Building an appliCation and advanCed t-SQl

https://docs.microsoft.com//sql/t-sql/functions/json-functions-transact-sql
https://docs.microsoft.com//sql/t-sql/functions/json-functions-transact-sql
https://docs.microsoft.com/sql/relational-databases/json/json-data-sql-server
https://docs.microsoft.com/sql/relational-databases/json/json-data-sql-server

137

A way to see this feature in action is through an example. Remember these two

columns I commented out in the People and Customer tables.

[ValidFrom] [datetime2](7) GENERATED ALWAYS AS ROW START NOT NULL,

[ValidTo] [datetime2](7) GENERATED ALWAYS AS ROW END NOT NULL

When you combine these columns’ definitions and add on other syntax to the table

definition, you have defined a temporal table. I’m going to create a new People table

definition to show the feature so as not to disrupt the existing table definitions from the

examples in the previous and this chapter.

Here is the new People table definition with the full temporal syntax including the

corresponding table, which is known as the history table. You can find these T-SQL

commands in the sample script createtemporaltable.sql:

USE [WideWorldImporters]

GO

-- If you have already created the table we need to turn off system

versioning first

--

IF EXISTS (SELECT * FROM sys.objects where name = 'NewPeople')

 ALTER TABLE [Application].[NewPeople] SET (SYSTEM_VERSIONING = OFF)

GO

-- Drop the archive table if it exists

--

DROP TABLE IF EXISTS [Application].[NewPeople_Archive]

GO

DROP TABLE IF EXISTS [Application].[NewPeople]

GO

CREATE TABLE [Application].[NewPeople](

 [PersonID] [int] PRIMARY KEY NOT NULL,

 [FullName] [nvarchar](50) NOT NULL,

 [PreferredName] [nvarchar](50) NOT NULL,

 [SearchName] AS (concat([PreferredName],N' ',[FullName]))

PERSISTED NOT NULL,

 [IsPermittedToLogon] [bit] NOT NULL,

 [LogonName] [nvarchar](50) NULL,

 [IsExternalLogonProvider] [bit] NOT NULL,

Chapter 4 Building an appliCation and advanCed t-SQl

138

 [HashedPassword] [varbinary](max) NULL,

 [IsSystemUser] [bit] NOT NULL,

 [IsEmployee] [bit] NOT NULL,

 [IsSalesperson] [bit] NOT NULL,

 [UserPreferences] [nvarchar](max) NULL,

 [PhoneNumber] [nvarchar](20) NULL,

 [FaxNumber] [nvarchar](20) NULL,

 [EmailAddress] [nvarchar](256) NULL,

 [Photo] [varbinary](max) NULL,

 [CustomFields] [nvarchar](max) NULL,

 [OtherLanguages] AS (json_query([CustomFields],N'$.

OtherLanguages')),

 [LastEditedBy] [int] NOT NULL,

 [ValidFrom] [datetime2](7) GENERATED ALWAYS AS ROW START NOT NULL,

 [ValidTo] [datetime2](7) GENERATED ALWAYS AS ROW END NOT NULL,

PERIOD FOR SYSTEM_TIME ([ValidFrom], [ValidTo])

)

WITH (SYSTEM_VERSIONING = ON (HISTORY_TABLE = [Application].[NewPeople_

Archive]))

GO

With this defined, two tables exist in the database, the [Application].[NewPeople]

table and the [Application].[NewPeople_Archive] table.

When a new row is inserted into the [Application].[NewPeople] table, the ValidFrom

column will be assigned the current datetime for the transaction that inserted the row

and the ValidTo column will be assigned the maximum value of a datetime2 type, which

is 9999-12-31 (format of YYYY-MM-DD).

When this row is updated, the values of the row before the update are inserted into

the [Application].[NewPeople_Archive] table but now with ValidTo set to the transaction

time of the update. The updated row in [Application].[NewPeople] in the ValidFrom

column will be assigned the transaction time of the update and ValidTo set to 9999- 12- 31.

This now represents a history of the changes to this row based on the datetime2 columns.

Chapter 4 Building an appliCation and advanCed t-SQl

139

The T-SQL SELECT statement has been extended to include a new FOR SYSTEM_
TIME clause to allow you to search for versions of the row based on a variety of options.

SQL Server will automatically retrieve rows from the history table or current table based

on the query. You don’t have to know where your data exists. Just query the NewPeople

table and use the FOR SYSTEM_TIME syntax to find a row for a given period. SQL Server

will automatically retrieve the correct row from either the NewPeople or the NewPeople_

Archive table.

Any DELETE for a row in the table will cause the row to be inserted into the history

table with the ValidTo set to the transaction time of the delete. The row in the current

table will be deleted, but searches using the FOR SYSTEM_TIME will find historical

rows.

A complete set of documentation on this feature can be found at https://

docs.microsoft.com/sql/relational-databases/tables/temporal-tables#why-

temporal. There are also some very nice usage scenarios and examples at https://

docs.microsoft.com/sql/relational-databases/tables/temporal-table-usage-

scenarios.

 Graph Database
Some data models do not fit the traditional relationships, as seen by the example I’ve

provided in this chapter. These scenarios include hierarchical data, complex many-to-

many relationships, or complex interconnected data and relationships.

It is always possible to store and query data for these types of scenarios in SQL

Server, but SQL Server 2017 introduces a new feature that makes it far easier to navigate

these types of data relationships, called graph database.

Another example may help make it easier to understand this capability. Consider the

diagram in Figure 4-3.

Chapter 4 Building an appliCation and advanCed t-SQl

https://docs.microsoft.com/sql/relational-databases/tables/temporal-tables#why-temporal
https://docs.microsoft.com/sql/relational-databases/tables/temporal-tables#why-temporal
https://docs.microsoft.com/sql/relational-databases/tables/temporal-tables#why-temporal
https://docs.microsoft.com/sql/relational-databases/tables/temporal-table-usage-scenarios
https://docs.microsoft.com/sql/relational-databases/tables/temporal-table-usage-scenarios
https://docs.microsoft.com/sql/relational-databases/tables/temporal-table-usage-scenarios

140

Designing out SQL Server tables to insert data and query on this model is possible

but not natural for the T-SQL language.

SQL Server now provides extensions to the T-SQL language to make it possible to

map models to tables and naturally find matches of information from the data.

Taking this model, I can build new tables that define nodes and edges. In the preceding

diagram, the circles represent nodes and the relationships between them are edges.

Here is example T-SQL syntax to create these tables as seen in the sample script

graphtables.sql:

-- Create a graph demo database

DROP DATABASE IF EXISTS graphdemo

GO

CREATE DATABASE graphdemo;

GO

USE graphdemo;

GO

Figure 4-3. A graph data model

Chapter 4 Building an appliCation and advanCed t-SQl

141

-- Create NODE tables

CREATE TABLE Person (

 ID INTEGER PRIMARY KEY,

 name VARCHAR(100)

) AS NODE;

CREATE TABLE Restaurant (

 ID INTEGER NOT NULL,

 name VARCHAR(100),

 city VARCHAR(100)

) AS NODE;

CREATE TABLE City (

 ID INTEGER PRIMARY KEY,

 name VARCHAR(100),

 stateName VARCHAR(100)

) AS NODE;

-- Create EDGE tables.

CREATE TABLE likes (rating INTEGER) AS EDGE;

CREATE TABLE friendOf AS EDGE;

CREATE TABLE livesIn AS EDGE;

CREATE TABLE locatedIn AS EDGE;

GO

Now I can insert some data using special T-SQL syntax to reference nodes when I

insert data into the edge tables. See the sample script graphinsert.sql for an example to

use this syntax:

USE graphdemo

GO

INSERT INTO Person VALUES (1,'John');

GO

INSERT INTO Restaurant VALUES (1, 'WeServeBigSteaks', 'Fort Worth')

GO

INSERT INTO likes VALUES ((SELECT $node_id FROM Person WHERE id = 1),

 (SELECT $node_id FROM Restaurant WHERE id = 1),9);

GO

Chapter 4 Building an appliCation and advanCed t-SQl

142

Once I’ve inserted all the data, I can use a T-SQL query syntax like the following

to find out what restaurants John likes or what his friends like. I’ve provided these

statements in the sample script graphquery.sql:

USE graphdemo

GO

-- Find Restaurants that John likes

SELECT Restaurant.name

FROM Person, likes, Restaurant

WHERE MATCH (Person-(likes)->Restaurant)

AND Person.name = 'John';

GO

-- Find Restaurants that John's friends like

--

SELECT Restaurant.name

FROM Person person1, Person person2, likes, friendOf, Restaurant

WHERE MATCH(person1-(friendOf)->person2-(likes)->Restaurant)

AND person1.name='John';

GO

The second query will not find data until you go through the complete sample demo,

which can be found at https://docs.microsoft.com/sql/relational-databases/

graphs/sql-graph-sample.

 Native Scoring
In SQL Server 2016, Microsoft did something unthinkable in the database community

and industry. Instead of just creating a strategy to integrate data science and machine

learning with SQL Server, we brought machine learning to SQL Server.

In SQL Server 2016, we built an architecture that allows for R scripts to be run

co- located on the same SQL Server as the data, but the script was isolated from the

SQL Server process. Furthermore, the R scripts were executed via a T-SQL stored

procedure called sp_execute_external_script. No longer would data scientists

have to pull huge amounts of data to a workstation that could be stale or unsecured.

The data science model lives inside SQL Server. The performance ramifications in

Chapter 4 Building an appliCation and advanCed t-SQl

https://docs.microsoft.com/sql/relational-databases/graphs/sql-graph-sample
https://docs.microsoft.com/sql/relational-databases/graphs/sql-graph-sample

143

production were amazing. A great example of what is possible is the work Microsoft

did to deliver 1 million predictions per second, https://blogs.technet.microsoft.

com/dataplatforminsider/2016/10/11/1000000-predictions-per-second. In

SQL Server 2017, we brought in the same type of support for machine learning with

support for Python.

The problem is that SQL Server on Linux does not support this model in SQL Server

2017 (as of the CU4 release). Fortunately, another related feature was released in SQL

Server 2017 that works on both Windows and Linux releases because it is built into the

core database engine (and remember, the core database engine is the same on Windows

and Linux). This feature is called native scoring. Native scoring is exposed through

another T-SQL function called PREDICT.

Here is an example of the PREDICT syntax (This will not execute without going

through the following sample tutorial):

DECLARE @model VARBINARY(MAX) = (SELECT TOP(1) native_model FROM dbo.

rental_models WHERE model_name = 'linear_model' AND lang = 'Python');

SELECT d.*, p.* FROM PREDICT(MODEL = @model, DATA = dbo.rental_data AS d)

WITH(RentalCount_Pred float) AS p;

GO

In order to completely understand this syntax, you will either need to go through the

complete Python prediction model on SQL Server on Windows at https://microsoft.

github.io/sql-ml-tutorials/python/rentalprediction or look at the sample in our

documentation using a known set of data called iris at https://docs.microsoft.com/

sql/advanced-analytics/r/how-to-do-realtime-scoring.

The concept is that many data scientists perform a process called building a

trained model on their workstations with test data. The T-SQL PREDICT function can

take a trained model as input and execute machine learning code built inside the

database engine to run the trained model. Native scoring has a huge performance

boost advantage over running the models with R or Python with sp_execute_

external_script.

Chapter 4 Building an appliCation and advanCed t-SQl

https://blogs.technet.microsoft.com/dataplatforminsider/2016/10/11/1000000-predictions-per-second
https://blogs.technet.microsoft.com/dataplatforminsider/2016/10/11/1000000-predictions-per-second
https://microsoft.github.io/sql-ml-tutorials/python/rentalprediction
https://microsoft.github.io/sql-ml-tutorials/python/rentalprediction
https://docs.microsoft.com/sql/advanced-analytics/r/how-to-do-realtime-scoring
https://docs.microsoft.com/sql/advanced-analytics/r/how-to-do-realtime-scoring

144

 Summary
You have learned in this chapter how to build a sample node.js application to access

the database. In addition, you have learned other T-SQL capabilities to enhance your

database or application. Finally, you have learned about new SQL Server capabilities

introduced in SQL Server 2016 and 2017 to further enhance your database and

application. In the next chapter, I’ll show you a complete list of tools that will allow you

to further explore the capabilities of SQL Server and manage your SQL Server database

and installation. Having this knowledge of tools is important, as these tools will be used

throughout the remaining chapters of the book.

Chapter 4 Building an appliCation and advanCed t-SQl

145
© Bob Ward 2018
B. Ward, Pro SQL Server on Linux, https://doi.org/10.1007/978-1-4842-4128-8_5

CHAPTER 5

SQL Server Tools
SQL Server has a rich tradition of providing the tools any data professional needs. Tools

give anyone the power to develop, interact, tune, manage, and troubleshoot applications

and queries with SQL Server. Tools for SQL Server encompass far more than programs or

utilities. SQL Server comes built-in with a rich set of capabilities that I will discuss in this

chapter as part of the topic of tools.

All tools for SQL Server have a common bond. They use or provide interfaces

through the T-SQL language. Tools that are separate programs all know how to connect

and execute T-SQL queries through a driver or provider that uses the TDS protocol. In

Chapters 2, 3, and 4, I introduced you to two tools to interact with SQL Server, sqlcmd

and the mssql extension with Visual Studio Code.

In this chapter, I will show you graphical and command line tools to connect, run

queries, and manage aspects of SQL Server. I’ll also show you the built-in features of

the SQL Server engine that provide insight into metadata, execution, performance,

resources, and tracing. I’ll show you other features that allow you to make configuration

changes to SQL Server and databases and queries to affect behavior or provide more

insight.

One crucial point as you explore this chapter is that existing tools that run on

Windows computers work virtually unchanged to connect and interact with SQL Server

on Linux. If you are a Windows user, you can continue to use tools like SQL Server

Management Studio (SSMS). But if you are a macOS or Linux user, you will love our

new strategy of providing cross-platform, open-source tools. I’ll cover all of these in this

chapter. I’ll conclude the chapter by talking about tools to develop, build, and execute

ETL packages with SSIS.

SQL Server provides other tools that are specific to features like security or high

availability, and I’ll discuss those in more detail in Chapters 7 and 8.

146

The intention of this chapter is to introduce you to the capabilities of these tools

along with some examples. By showing you these tools now, you will be prepared to

use them to explore other features and capabilities as you read the rest of the book.

I will highlight in this chapter the names of sample script files I’ve provided that are

companions to this book.

 Command Line Tools
Tools that are run from the command line are simple but essential. I recommend you

understand the command line tools that are available with SQL Server, because they

provide the simplest, lightest method to interact with SQL Server.

Tip Tools with graphical user interfaces such as SSMS provide powerful
capabilities. But SSMS has more moving parts than a tool like sqlcmd. If someone
said they were having problems connecting with SSMS on a Windows computer to
SQL Server on Linux, I would ask whether they could connect with sqlcmd on the
Linux server locally. This narrows down any problems with the graphical tool and
networking issues.

The Microsoft strategy for command line tools is to ensure they are available on

common client platforms including Windows, Linux, and macOS and in some cases

make them an open-source project on GitHub.

In this section I’ll talk about the following tools:

• sqlcmd (I showed you how to install and use some basics for this tool

in Chapter 2.)

• bcp

• mssql-cli

• mssql-scripter

• sqlservr command line options

ChapTer 5 SQL Server TooLS

147

One tool not listed in this section is called DBFS, which will be covered in a later

section on tools built inside the engine. A nice blog post written by SQL Server Linux

expert Anthony Nocentino on DBFS can be found at www.centinosystems.com/

blog/sql/dbfs-command-line-access-to-sql-server-dmvs. To keep track of all

future advances in command line tools, refer to our documentation at https://docs.

microsoft.com/en-us/sql/tools/overview-sql-tools.

 sqlcmd
SQL Server has always provided a simple command line tool to submit T-SQL queries

against the database engine. The evolution of these tools started with isql.exe and osql.

exe for Windows, but in recent years we released a tool called sqlcmd.exe. This tool is

compiled natively for Windows, Linux, and macOS and can be used as a client against

any SQL Server for Windows or Linux (for example, you could connect with sqlcmd on

a Linux client to a SQL Server on Windows). On all platforms, sqlcmd uses the Microsoft

ODBC driver for SQL Server native to that operating system.

sqlcmd is installed by default when you install SQL Server on Windows. For

SQL Server on Linux, you must install a separate package called mssql-tools (with a

dependency on ODBC for Linux) as documented at https://docs.microsoft.com/sql/

linux/sql-server-linux-setup-tools. For macOS, we use HomeBrew (https://brew.sh)

to install the tools and ODBC drivers, as documented at https://docs.microsoft.com/

sql/linux/sql-server-linux-setup-tools#macos.

sqlcmd offers two modes of execution: interactive or script execution. Either mode

allows you to connect and run T-SQL query batches against any SQL Server, including

SQL Server on Linux.

Like any good command line tool, there are many command line switches or options.

If you execute T-SQL SELECT statements in sqlcmd, the results can be displayed in your

console (stdout) or redirected to a file (using a command line option or redirecting the

results of stdout).

Here is an example of a basic sqlcmd execution on the local Linux Server (hence

I don’t have to use the -S parameter for ServerName).

sqlcmd -Usqllinux

Figure 5-1 shows the results. Note the prompts that are provided within the sqlcmd

tool. This is called the sqlcmd editor.

ChapTer 5 SQL Server TooLS

http://www.centinosystems.com/blog/sql/dbfs-command-line-access-to-sql-server-dmvs
http://www.centinosystems.com/blog/sql/dbfs-command-line-access-to-sql-server-dmvs
https://docs.microsoft.com/en-us/sql/tools/overview-sql-tools
https://docs.microsoft.com/en-us/sql/tools/overview-sql-tools
https://docs.microsoft.com/sql/linux/sql-server-linux-setup-tools
https://docs.microsoft.com/sql/linux/sql-server-linux-setup-tools
https://brew.sh
https://docs.microsoft.com/sql/linux/sql-server-linux-setup-tools#macos
https://docs.microsoft.com/sql/linux/sql-server-linux-setup-tools#macos

148

Note I mentioned in Chapter 3 that the command Go is not a T-SQL command.
rather it is a special command recognized by a tool like sqlcmd to execute the
batch of previously SQL command entered in the editor. The text Go is not sent to
SQL Server.

At any sqlcmd line editor prompt, you can enter any valid T-SQL batch or a

command (for example GO) recognized by the editor. A full list of sqlcmd editor

commands is listed in our documentation at https://docs.microsoft.com/sql/tools/

sqlcmd-utility#sqlcmd-commands or type in :HELP at the sqlcmd editor prompt.

For example, type in EXIT or QUIT to leave the editor. EXIT has a handy purpose

where you can pass a query to EXIT(<query>) and the results of the query will be

returned to the client, which is typically a script from the operating system shell.

The GO command has an optional parameter of GO (<n>), which indicates to run

the T-SQL batch <n> times, one after the other.

In the last chapter, I created several scripts with a file extension of .sql (you are not

required to use any file extension, but when you use .sql almost everyone understands

what that means) and executed them within the Visual Studio Code Editor. I could have

executed any of these with sqlcmd using the -i command line option. Any valid T-SQL or

sqlcmd editor command can be put into the script.

I’ve provided the following T-SQL command in the sample script getsqlversion.sql
with these statements:

SELECT @@version

GO

Figure 5-1. Executing a query in sqlcmd on Linux using the sqlcmd editor

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/tools/sqlcmd-utility#sqlcmd-commands
https://docs.microsoft.com/sql/tools/sqlcmd-utility#sqlcmd-commands

149

Tip @@version is a system-supplied variable that prints the version of SQL
Server, edition, and operating system details. I consider this the most basic
query to run against SQL Server, to ensure you can connect and run queries. You
can see a complete list of system variables powered by the SQL Server engine
in our documentation at https://docs.microsoft.com/en-us/sql/
integration-services/system-variables.

You can execute this script with sqlcmd from the bash shell with the following

command:

sqlcmd -Usqllinux -igetsqlversion.sql

Figure 5-2 shows the result of executing this script with sqlcmd on Linux.

One other option to execute a batch with sqlcmd is to use the -Q command line

option to execute a batch you specify on the command line instead of in a file. Here is an

example I created in the sample shell script called sqlcmdquery.sh (Note: Be sure to run

chmod u+x sqlcmdquery.sh before executing this in a Linux shell):

sqlcmd -Usa -Q"SELECT @@version"

Note The -q option does the same thing as -Q but doesn’t exit sqlcmd.

Figure 5-2. Using a script with sqlcmd

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/en-us/sql/integration-services/system-variables
https://docs.microsoft.com/en-us/sql/integration-services/system-variables

150

Figure 5-3 shows an example of using -Q with sqlcmd.

As with a script using -i, any valid T-SQL batch and sqlcmd editor command is valid

to use with -Q or -q.

If you run sqlcmd with -i with a script, all results for any command are directed

to stdout. This allows you to run a script with sqlcmd and pipe the results into other

programs such as grep. Here is an example to find out the edition of SQL Server using

sqlcmd and grep (you can use the sample script getsqledition.sh to execute this or

modify this to your needs):

sqlcmd -Usa -igetsqlversion.sql -PSql2017isfast | grep Edition

Figure 5-4 shows the results of executing a script with sqlcmd and grep to find the

edition of SQL Server.

sqlcmd also provides a -o command line option to write all results and errors to a

specific file.

Figure 5-3. Using the -Q option to execute a query with sqlcmd

Figure 5-4. Using sqlcmd with grep

ChapTer 5 SQL Server TooLS

151

Tip one nice option (thank you rathijit Sen for this tip) is the -p option, which
prints out performance statistics from queries executed with sqlcmd. This includes
the total time for SQL Server to execute queries and for the client to process them.
Combined with SeT STaTISTICS TIMe, which I will discuss later in this chapter, this
can provide a nice option to determine how fast SQL Server can execute queries
and how fast a client can process results over a network.

The full documentation for sqlcmd including all command line options can be found

at https://docs.microsoft.com/sql/tools/sqlcmd-utility.

 bcp
I demonstrated in Chapter 3 of this book how to insert data into SQL Server using the

T-SQL INSERT statement. I showed you how to insert one row or use INSERT..SELECT or

SELECT..INTO to insert multiple rows.

You might want to insert or import a very large number of rows based on data in a

file stored outside of SQL Server. Or you may want to export data from SQL Server into a

file. The bulk copy program (bcp) was designed for these types of tasks. Like sqlcmd, bcp

has been built to run natively on Windows, Linux, and macOS and is installed when you

install the tools that include sqlcmd using the mssql-tools package.

bcp relies on SQL Server ODBC driver extensions to bulk copy data in and out of

SQL Server (see our documentation at https://docs.microsoft.com/sql/relational-

databases/native-client-odbc-extensions-bulk-copy-functions/sql-server-

driver-extensions-bulk-copy-functions). Therefore, you could also write an

application that provides your own bulk copy functionality.

For import, the bcp tool will read a file you specify and transmit streams of data to

SQL Server to be applied to a target table. For export, bcp will copy out streams of data

from a table and write the data into a file.

The basic method to use bcp is to run this from a computer that can connect to

SQL Server, either a remote computer or on the server itself. You specify command line

options on how to connect to SQL Server, what database and tables you want to import

into or export from, and an input or output file for the import or export. Input and output

files can be all types of formats including the ability to be prescriptive on the datatypes

within the file.

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/tools/sqlcmd-utility
https://docs.microsoft.com/sql/relational-databases/native-client-odbc-extensions-bulk-copy-functions/sql-server-driver-extensions-bulk-copy-functions
https://docs.microsoft.com/sql/relational-databases/native-client-odbc-extensions-bulk-copy-functions/sql-server-driver-extensions-bulk-copy-functions
https://docs.microsoft.com/sql/relational-databases/native-client-odbc-extensions-bulk-copy-functions/sql-server-driver-extensions-bulk-copy-functions

152

Let’s use a simple example for a text formatted data in a file using the [Application].

[People] table example from Chapter 3. These examples assume you have created the

WideWorldImporters database and People table using scripts from Chapter 3 and

inserted data using commands from the insertpeople.sql script from Chapter 3. Since

you already have data in the People table, let’s use bcp to export the data into a file using

a native format. (A native format will write out the data in binary form based on the

datatypes in the table. There are also command line options to write the data into a text

format). Here is the basic syntax to export a table as seen in the sample script bcpout.sh

(don’t forget to run chmod u+x bcpout.sh to execute the script):

bcp [WideWorldImporters].[Application].[People] out people.dat -Usa -S

localhost -n

Figure 5-5 shows the results of running this bcp command on the Linux Server.

You could delete the data from the People table and import the native formatted file

into SQL Server. But you first need to disable all the constraints on these tables before

executing the DELETE statement. Here is an example set of T-SQL commands I executed

from the sample script called deletepeoplebeforeimport.sql. This script will work

against the WideWorldImporters sample scripts from Chapter 3. You cannot use this

against the full WideWorldImporters sample backup.

Note I disabled constraints including foreign key constraints from the Customers
table. If data existed in this table, disabling foreign key constraints is not
recommended, since you could violate logical referential integrity when inserting
new data. In addition, the bcp program itself will ignore constraints unless a
specific command line option is used. I disabled constraints in this example so I
could delete the existing rows.

Figure 5-5. Exporting data with bcp on a Linux Server

ChapTer 5 SQL Server TooLS

153

USE [WideWorldImporters]

GO

ALTER TABLE [Sales].[Customers] NOCHECK CONSTRAINT ALL

GO

ALTER TABLE [Application].[People] NOCHECK CONSTRAINT ALL

GO

DELETE FROM [Application].[People]

GO

Now you can use bcp to import the data from the people.dat file created from the

preceding export example (I’ve provided a sample bash shell script called bcpin.sh):

bcp [WideWorldImporters].[Application].[People] in people.dat -Usa -S

localhost -n

bcp has a rich set of command line options for both import and export scenarios.

These include, but are not limited to, format files, import/export to text files, column and

row delimiters, and performance options for hints and row batch sizes. For a complete

list of command line options and examples, see the documentation at https://docs.

microsoft.com/sql/tools/bcp-utility.

If you have the storage and are willing to copy your import files on the same

computer as SQL Server (or an accessible file share for SQL Server on your network),

you can use the T-SQL BULK INSERT to perform high speed imports. This command

can significantly increase performance for an import, since the SQL Server engine will

directly read the file and import the data into the target table. For more information

about BULK INSERT, see the documentation at https://docs.microsoft.com/sql/t-

sql/statements/bulk-insert-transact-sql. Note: at the time of the writing of this

book, the BULK INSERT command on SQL Server on Linux requires sysadmin privileges.

 mssql-cli
With the release of SQL Server on Linux, Microsoft launched a new strategy for tools

used with SQL Server that is cross-platform (operating system) and produced through

an open-source project. An example of one of these tools is mssql-cli. mssql-cli is a

command line tool, like sqlcmd, to execute queries against SQL Server. mssql-cli is built

using Python and is available on computers running Windows, Linux (including many

distributions), and macOS operating systems.

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/tools/bcp-utility
https://docs.microsoft.com/sql/tools/bcp-utility
https://docs.microsoft.com/sql/t-sql/statements/bulk-insert-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/bulk-insert-transact-sql

154

To install mssql-cli, see the installation guide https://github.com/dbcli/

mssql-cli/blob/master/README.rst#get-mssql-cli. When we built mssql-cli,

we created a GitHub project to allow open-source contributions (https://github.

com/dbcli/mssql-cli/) and registered it as part of the dbcli initiative, which

is a community of open-source projects towards better command line tools for

databases.

While sqlcmd is a great simple command line tool for SQL Server, mssql-cli offers

some advantages over sqlcmd, including:

• T-SQL intellisense

• Syntax highlighting

• Vertical format for query results

• Multi-line editor

• Configuration file to customize mssql-cli

• Environment variable support

One of the differences with mssql-cli from other SQL Server tools is that the GO

keyword is not used to delimit a T-SQL batch. The mssql-cli editor allows you to

execute one T-SQL command at a time by default. However, you use the multiline

editor to create a multistatement T-SQL batch and then use the “;” character to end

the batch.

You can launch mssql-cli with the following command:

mssql-cli -Usqllinux

Figure 5-6 shows an example of using mssql-cli on Linux to run a multi-statement

T-SQL batch against the WideWorldImporters sample table I created in Chapter 3. (Note:

results from this query assume you have populated data into these tables from previous

chapters.)

ChapTer 5 SQL Server TooLS

https://github.com/dbcli/mssql-cli/blob/master/README.rst#get-mssql-cli
https://github.com/dbcli/mssql-cli/blob/master/README.rst#get-mssql-cli
https://github.com/dbcli/mssql-cli/
https://github.com/dbcli/mssql-cli/

155

While the options for the configuration file have not been completely documented

at the time of the writing of this book, you can see the default configuration file (called

config), which has comments inside it. The default configuration file is installed in

the ~/.config/mssqlcli directory (~ means the home directory of the user logged in)

on Linux and macOS and the c:\users\<username>\AppData\Local\dbcli\mssqlcli
directory on Windows.

One of the strategies for new tools is to provide consistency in functionality and

look and feel. Therefore, mssql-cli, the mssql Visual Studio Code extension, and SQL

Operations Studio all use a common component called the SQL Tools Service for

connection management, language support, query execution and result set processing.

The SQL Tools Service is an open-source project. You can find out more information

about the SQL Tools Service at https://github.com/Microsoft/sqltoolsservice.

mssql-cli was released in preview in December of 2017. There is some work to

be done to fill in feature gaps compared with sqlcmd and other improvements. For

example, there is no method today to pass in an input file or query for scripting or to pipe

the results to stdout or a file. To view the roadmap for mssql-cli, see this documentation

at https://github.com/dbcli/mssql-cli/blob/master/doc/roadmap.md.

Figure 5-6. Using mssql-cli on Linux

ChapTer 5 SQL Server TooLS

https://github.com/Microsoft/sqltoolsservice
https://github.com/dbcli/mssql-cli/blob/master/doc/roadmap.md

156

 mssql-scripter
After you start working with databases, a common task you may want to do is script out a

database. What I mean by this term is that you may want to take an existing database and

generate output to create the T-SQL commands to create the database and all the objects

in the database without executing a backup and restore. Typically, this output is written to

a file that is now a T-SQL script, to be used to create the database and all objects. The very

popular tool, SSMS, has an option to create a script of objects from an existing database.

Since SSMS only runs on Windows, we built a cross-platform, open-source tool for

scripting called mssql-scripter. Like mssql-cli, mssql-scripter is built with Python. You can

find the installation instructions for your operating system (Windows, Linux, or macOS) at

https://github.com/Microsoft/mssql-scripter/blob/dev/doc/installation_guide.

md. mssql-scripter has a rich set of command line options to create scripts in many ways.

Here is an example of an execution of mssql-scripter against the

WideWorldImporters database from Chapter 3:

mssql-scripter -S localhost -d WideWorldImporters -U sqllinux -P

Sql2017isfast -f ./wwi.sql –-logins –-check-for-existence –-display-progress

Figure 5-7 shows an example of the output from mssql-scripter to create a T-SQL

script of the WideWorldImporters database and all its objects that I created in Chapter 3.

Note some of the options I used to create logins, only create if the object does not exist,

and to display progress during execution.

Figure 5-7. Using mssql-scripter to create a T-SQL script for all objects in the
WideWorldImporters database

ChapTer 5 SQL Server TooLS

https://github.com/Microsoft/mssql-scripter/blob/dev/doc/installation_guide.md
https://github.com/Microsoft/mssql-scripter/blob/dev/doc/installation_guide.md

157

Note Using this method will not allow you to first create a login called sqllinux
and then create the database and objects using the sqllinux login. You would need
to create two different scripts: (1) one to create the sqllinux login that you would
execute as sa and (2) one to create the database and objects that you would
execute logged in as the sqllinux account.

You can now take the wwi.sql file and execute this as a script with a tool like sqlcmd

using the -i option.

By default, mssql-scripter writes its output to stdout. Therefore, you can pipe the

results of mssql-scripter to other tools. The sed program on Linux provides the ability to

do “search and replace.” Figure 5-8 shows an example of using mssql-scripter and sed

to create a script of the WideWorldImporters database but change the database name to

NewWideWorldImporters.

Execute this command to see the results:

mssql-scripter -S localhost -d WideWorldImporters -U sqllinux -P

Sql2017isfast --check-for-existence --display-progress | sed -e

"s/WideWorldImporters/NewWideWorldImporters/g" > new_wwi.sql

Figure 5-8. Using sed with mssql-scripter to create a script with a new database name

ChapTer 5 SQL Server TooLS

158

For a complete list of mssql-scripter command line options, use the --help option or

consult the documentation (which also includes some notable examples) at https://

github.com/Microsoft/mssql-scripter/tree/dev/doc.

 sqlservr Command Line Options
In Chapter 2 I showed you how to start and stop SQL Server using the systemctl program

on Linux. It is also possible to start SQL Sever directly from the command line by

executing the sqlservr program. Under normal circumstances you should not have to run

sqlservr from the command line directly, but here are some possible reasons:

• SQL Server will not start with systemctl (Note: it is very likely that

if SQL Server cannot be started with systemctl, starting it from

the command line will not work either, but there could be some

circumstances where this could help).

• You need to start SQL Server with a feature that is not available with

configuration via the mssql-conf script. I will show you some of these

options in Chapter 9.

To start SQL Server from the command line, you need to use the sudo command to

run sqlservr in the context of the mssql Linux account (You must first stop SQL Server to

run this):

sudo -u mssql /opt/mssql/bin/sqlservr

SQL Server will start and dump out the output of the ERRORLOG to stdout, which

by default writes to the console. At this point, if you need to shut down SQL Server, you

cannot use the systemctl program (systemctl stop mssql-server completes with no error).

You will need to use one of two methods to shut down SQL Server:

 1) Connect to SQL Server and execute the T-SQL SHUTDOWN

command.

 2) From the console when you execute sqlservr, type <ctrl>+<c>.

Figure 5-9 shows an example of the console after shutting down SQL Server with

<ctrl>+<c>.

ChapTer 5 SQL Server TooLS

https://github.com/Microsoft/mssql-scripter/tree/dev/doc
https://github.com/Microsoft/mssql-scripter/tree/dev/doc

159

 SQL Operations Studio
While SSMS is an extremely popular tool, it only works on Windows, so Linux and

macOS users would have to install it with a virtualization program. As I mentioned

earlier in this chapter when describing mssql-cli, when possible, we build new tools to

run on multiple operating systems and be part of an open-source project.

For tools that require a graphical interface, the Visual Studio Code project provided

a nice platform to build a cross-platform system. Coupled with the work we did for the

SQL Tools Service, a new tool called SQL Operations Studio was born, forked from the

Visual Studio Code open-source project.

Released as a preview tool in November 2017, SQL Operations Studio continues

to receive monthly updates both from Microsoft and the community through a GitHub

repo at https://github.com/Microsoft/sqlopsstudio. In true GitHub fashion,

private builds are available on a more frequent basis, the entire source code is

available for anyone to see or fork on their own, and all issues are filed through GitHub

at https://github.com/Microsoft/sqlopsstudio/issues.

Figure 5-9. Shutting down sqlservr from the console

ChapTer 5 SQL Server TooLS

https://github.com/Microsoft/sqlopsstudio
https://github.com/Microsoft/sqlopsstudio/issues

160

 Installation
We have embraced the natural installation experience of each operating system.

Windows comes with a .zip file or complete Windows installer experience. macOS users

are provided a zip file, which works within the macOS Downloads experience, and Linux

users can download a Debian or RPM package or a tar.gz file.

Figure 5-10 shows SQL Operations Studio after installing it on macOS.

Figure 5-10. SQL Operations Studio on macOS

SQL Operations Studio provides these unique features:

• A T-SQL code editor built with Intellisense to execute queries

• Smart T-SQL code “snippets”

• Customizable dashboards through widgets

• Extensions to add on to the built-in base functionality

• Integrated Terminal (run shell commands without leaving the tool)

ChapTer 5 SQL Server TooLS

161

On my Windows laptop I’ve installed SQL Operations Studio. There are two things

I want to do to get started with the tool: (1) Add a connection to SQL Server on Linux and

(2) change settings for the background color and default font for the editor.

Figure 5-11 shows SQL Ops Studio on Windows before I add a connection to SQL

Server.

Now I’ll select the blue button that says Add Connection. I get a new window to

put in my server name, login, and password. Figure 5-12 shows the Connection profile

window.

Figure 5-11. SQL Operations Studio on Windows

ChapTer 5 SQL Server TooLS

162

I used the SQL Server Linux server name, bwsql2017rhel, and sqllinux login I created

in the examples in Chapter 3. There a few options on this window I won’t use for this

example, but you might find them useful:

• You can specify a default database to connect into (for example I

could have put in WideWorldImporters).

• You can create the concept of a Server Group, so you can manage and

organize multiple SQL Servers into a unit.

• The Remember password option can be used so you do not have to

specify the password each time you connect.

• The Advanced button provides additional options including login

timeout (default is 15 seconds), Application Intent for read replicas in

Availability Groups, and encryption settings.

Figure 5-12. Adding a connection with SQL Operations Studio

ChapTer 5 SQL Server TooLS

163

After connecting to the SQL on Linux server, I’m presented with a pane on the left to

explore and in the main window a Server dashboard with extensions. Figure 5-13 shows

the default view after connecting to my SQL Server on Linux.

 Configuration
The next thing I want to do is set some preferences to customize the tool. I do this by

selecting the File/Preferences/Settings menu option. Preferences are customized by a

file called settings.json. Figure 5-14 shows the interface in SQL Operations Studio to

configure my preferences.

Figure 5-13. The default view in SQL Operations Studio after connecting to SQL
Server on Linux

ChapTer 5 SQL Server TooLS

164

The pane on the left shows all the default settings. The pane on the right shows

settings I will include that override the defaults. The two settings I want to change are

the default background color to black and the default font to display for the T-SQL code

editor to a larger size. You can edit the user settings directly, but SQL Operations Studio

includes a visual icon to help you copy the default settings into user settings and make

changes. Figure 5-15 shows on the left pane how I clicked on the pencil icon and selected

Edit to copy the settings for the editor fontsize, so I can make changes.

Figure 5-14. SQL Operations Studio user settings

ChapTer 5 SQL Server TooLS

165

When I click Edit and Copy Settings, the setting will show up in the right pane and

I can change the font size value. I then will save these settings by selecting Save from the

File Menu. When I Save the font size, it automatically changes in the current window

(because the font size applies to any editing in SQL Operations Studio).

The editor font size was easy to find on the default left pane, but what about the

background color? At the top of the settings window is a Search edit box. I typed in the

word Color in the Search edit box and it shows me the option to change the colorTheme

of the Workbench. Figure 5-16 shows this example.

Figure 5-15. Copying the default settings to make changes in SQL Operations Studio

ChapTer 5 SQL Server TooLS

166

Now I can click the pencil icon near the workbench.colorTheme field and I’m

presented with choices to change the theme. I selected Default Dark SQL Operations

Studio. The color is instantly changed. Figure 5-17 shows the changes I made appear in

the right pane for User Settings.

Figure 5-16. Searching for a setting in SQL Operations Studio

ChapTer 5 SQL Server TooLS

167

I saved my settings with the Save option from the File Menu and closed out the User

Settings window.

Now that I have my settings saved to my preferences, let me show you a few basic

features of SQL Operations Studio. For a complete walkthrough of the tool, I highly

recommend this excellent community blog post: https://www.mssqltips.com/

sqlservertip/5339/new-sql-operations-studio-installation-and-overview.

 Object Explorer
Users of SSMS are familiar with a concept called Object Explorer. Object Explorer is a

visual folder view of objects associated with SQL Server. You can traverse this view like

typical folders by expanding or collapsing a tree view of objects including databases.

Figure 5-18 shows an example on my installation where I’ve expanded various

objects from the Explorer tree.

Figure 5-17. SQL Operations Studio with the new colorTheme

ChapTer 5 SQL Server TooLS

https://www.mssqltips.com/sqlservertip/5339/new-sql-operations-studio-installation-and-overview
https://www.mssqltips.com/sqlservertip/5339/new-sql-operations-studio-installation-and-overview

168

SQL Operations Studio by default does not have the complete Object Explorer

functionality as Windows users can see with SSMS, but I expect the functionality for this

feature to grow over time.

Besides being able to navigate what objects are created with your SQL Server

instance or database, you can right-click some objects for added functionality. For

example, you can right-click a Server or a Database to edit a new T-SQL query or select

Manage to see a dashboard. You can right-click a Table and view or edit data in a grid

view. Figure 5-19 shows a grid where you can edit data directly for the [Application].

[People] table created from the example in Chapter 3.

Figure 5-18. Object Explorer in SQL Operations Studio

ChapTer 5 SQL Server TooLS

169

 Dashboards, Insights, and Extensions
By default, SQL Operations Studio has two dashboards: Server and Database. These

dashboards are populated by objects called widgets. When you connect to SQL Server, by

default, the Server dashboard is displayed with information about SQL Server, a widget

for common tasks, a widget to find databases, and a widget on database backups. In

Figure 5-20, you can see for my SQL Server I’m running Enterprise Edition (Core-based

Licensing) for SQL Server on Red Hat Enterprise Linux. The widgets shown in Figure 5-20

are for tasks, a list of databases, and information about database backups.

Figure 5-19. Editing table data in a grid view in SQL Operations Studio

ChapTer 5 SQL Server TooLS

170

You can view the Server dashboard at any time by right-clicking the server name and

selecting Manage.

You can view a similar dashboard about any database by right-clicking a database in

the Object Explorer tree or on the list of databases on the Server dashboard and select

Manage.

Figure 5-21 shows a dashboard for the example database WideWorldImporters I

created in Chapter 3.

Figure 5-20. The Server dashboard and widgets in SQL Operations Studio

ChapTer 5 SQL Server TooLS

171

I’ve highlighted in red the context of the dashboards. When you select a database

dashboard, it is stacked so that you can select the server name and go back to the Server

dashboard. The database dashboard displays basic information about the database

and displays a task and table list widget. I’ll describe more about using SQL Operations

Studio to back up and restore databases in a later chapter in this book.

One of the powerful aspects to SQL Operations Studio is the ability to customize

its functionality. You can create other widgets to be displayed on a server or database

dashboard. You can learn more about how to customize new widgets in our

documentation at https://docs.microsoft.com/sql/sql-operations-studio/

tutorial-build-custom-insight-sql-server. We have provided two built-in widgets

you can add to a database dashboard for performance and table usage information.

Figure 5-22 shows the database dashboard for the WideWorldImporters example

database after enabling these widgets.

Figure 5-21. The database dashboard for the WideWorldImporters sample database

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/sql-operations-studio/tutorial-build-custom-insight-sql-server
https://docs.microsoft.com/sql/sql-operations-studio/tutorial-build-custom-insight-sql-server

172

You can learn how to enable these built-in widgets in our documentation at

https://docs.microsoft.com/sql/sql-operations-studio/insight-widgets.

Another way to customize SQL Operations Studio is through the concept of

Extensions. Think of extensions as methods to add your own dashboards outside of

customizing the server and database dashboard. Extensions are add-ons like the concept

of extensions in Visual Studio Code.

Extensions are built by the community or Microsoft and can be installed (or view

what is installed) by selecting the Extensions icon in the far-left pane in SQL Operations

Studio. Over time, I expect the list of extensions to become as robust as the marketplace

found in Visual Studio Code.

Depending on what release of SQL Operations Studio, you may have some

extensions already installed with the tool. For my installation, I have extensions for SQL

Agent, Server Reports, and sp_whoisactive (an extremely popular T-SQL procedure

used in the SQL Server Community). You can find these extensions next to the Home

option, which is used to display the Server dashboard. You can find more information

about extensions and how to create your own in our documentation at https://docs.

microsoft.com/sql/sql-operations-studio/extensions.

Figure 5-22. Performance and table space usage widgets in a database dashboard
in SQL Operations Studio

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/sql-operations-studio/insight-widgets
https://docs.microsoft.com/sql/sql-operations-studio/extensions
https://docs.microsoft.com/sql/sql-operations-studio/extensions

173

 T-SQL Query Editor
Perhaps the most common task you will use SQL Operations Studio for is to execute

T-SQL queries. SQL Operations Studio provides a rich T-SQL query editor with similar

functionality to the mssql extension for Visual Studio Code. And the quickest way to

create and execute a query is to right-click the server or a database name and select the

option for New Query.

Since SQL Operations Studio uses the SQL Tools Service, like the mssql extension

for Visual Studio Code, it provides intellisense and features to aid in executing T-SQL

queries. One feature I did not talk about in Chapter 3 with Visual Studio code is a

concept called T-SQL snippets. T-SQL snippets provide templates for common tasks

using T-SQL to aid in help completing T-SQL syntax.

To use T-SQL snippets, bring up the Query Editor using the New Query option or the

keyboard shortcut <Ctrl>+<N>. Then type in the word sql and you will be presented a list

of common T-SQL tasks such as creating a table. Figure 5-23 shows the T-SQL snippet to

create a new table after picking sqlCreateTable.

Figure 5-23. Using a T-SQL snippet in SQL Operations Studio

ChapTer 5 SQL Server TooLS

174

Another excellent feature in the T-SQL editor is a concept called Peek Definition.

Consider this scenario. You are using the T-SQL editor to execute an INSERT statement

to insert a row into the [Application].[People] table from the WideWorldImporters

database. The problem is you don’t remember all the columns so are not sure of what

columns names to list or how many values are required. Peek Definition allows you to

see the table definition while completing the INSERT statement.

To use Peek Definition, highlight the table name in the T-SQL Query Editor and right-

click to select Peek Definition. Figure 5-24 shows the interface of using Peek Definition to

complete the INSERT statement.

 Other Features
SQL Operations Studio provides other functionality for data professionals. This includes

an Integrated Terminal like Visual Studio Code, Source Code Control functionality, and a

Task History for history of operations like Backup and Restore.

Like any useful tool, SQL Operations Studio has keyboard shortcuts for almost every

interaction and allows you to customize the keyboard shortcuts. To learn more about

keyboard shortcuts for SQL Operations Studio, see the documentation at https://docs.

microsoft.com/sql/sql-operations-studio/keyboard-shortcuts.

Figure 5-24. Using Peek Definition with the T-SQL editor in SQL Operations Studio

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/sql-operations-studio/keyboard-shortcuts
https://docs.microsoft.com/sql/sql-operations-studio/keyboard-shortcuts

175

At the time I wrote the chapter in this book, SQL Operations Studio was still in

preview. Given the ability to extend this tool and the open-source capabilities for the

community to contribute to the tool, I expect it will continue to grow in functionality and

capability very rapidly as new major builds come out each month.

 SQL Server Management Studio
Since 2005, the most popular tool in the world to interact with SQL Server is SQL Server

Management Studio (SSMS). Prior to 2005, SQL Server provided a graphical interface

tool called SQL Enterprise Manager. SSMS was an exciting new tool with rich capabilities

based on a shell from Visual Studio. Since 2005, with each release of SQL Server, SSMS

was enhanced to include a wide range of features and capabilities.

Historically, one of the issues with SSMS was that it was always bundled with the

installation and release of a major version of SQL Server. This approach hampered our

ability to make major enhancements to the tool on a frequent basis. Starting with SQL

Server 2016, we made the decision to decouple SSMS from SQL Server. We also made

a conscious effort to clean up a backlog of bugs, issues, and suggestions. We began this

journey with a separate SSMS download in June of 2016, and now SSMS 17 is updated

and enhanced monthly. You can always find the latest release of SSMS to download at

https://docs.microsoft.com/sql/ssms/download-sql-server-management-studio-

ssms. The biggest downside to SSMS as a tool for SQL Server on Linux users is that it

can only be installed on computers with the Windows operating system. But for users

of Windows, it is a powerful tool with rich capabilities. The great upside to SSMS is that

connecting to SQL Server on Linux uses the same providers and libraries as is used for

Windows, so connecting to SQL Server on Linux will feel the same as on Windows. It is a

great compatibility story.

SSMS includes an Object Explorer, rich T-SQL editor, a T-SQL debugger, wizards to

complete specific tasks, and reports for a range of SQL Server and database capabilities.

There has been a great deal of documentation, training, and information about SSMS

that has been written over the years. A section in this chapter will never do it justice. I

will cover some of the major features that you can use to interact with SQL Server on

Linux with SSMS, and then provide other resources that cover the topic in more detail.

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/sql/ssms/download-sql-server-management-studio-ssms

176

Figure 5-25 shows the default interface for SSMS with Object Explorer and a New

Query editor window.

 Object Explorer
Like SQL Operations Studio, SSMS provides a visual interface to navigate objects for SQL

Server. SSMS provides more options than SQL Operations Studio in Object Explorer,

to include not just objects but features of SQL Server including Always On Availability

Groups and Management Features. In addition, there are more options than in SQL

Operations Studio when you right-click Object Explorer objects and features.

Figure 5-25. The default SSMS interface

ChapTer 5 SQL Server TooLS

177

For example, Figure 5-26 shows options to create a T-SQL script to drop and create

the WideWorldImporters example database.

Another feature in SSMS through Object Explorer is the ability to create new objects

like databases, tables, indexes, and other objects. If you right-click the Databases folder

in Object Explorer, you have options to create or restore a new database. Figure 5-27

shows a new window that will appear when you right-click the Databases folder and

select New Database.

Figure 5-26. Using SSMS to create a script to drop and create an existing database

ChapTer 5 SQL Server TooLS

178

There are other features that are accessible by right-clicking other folders, objects, or

features in SSMS.

One of the most powerful options when using right-click is Tasks for a database.

Figure 5-28 shows all the types of tasks you can perform against a database with

SSMS. Picking any of these options will present a new window or a wizard to lead

you through performing one of these tasks. I’ll describe some of these tasks as part of

Chapter 9, either by using SSMS or the set of T-SQL commands to execute equivalent

functionality.

Figure 5-27. Creating a new database in SSMS

ChapTer 5 SQL Server TooLS

179

 T-SQL Query Editor
Like SQL Operations Studio, SSMS provides a rich editor to create and design T-SQL

queries. Features include color coding for identifiers, intellisense, and T-SQL snippets to

aid in common T-SQL tasks. SSMS also allows you to open script files to execute T-SQL

batches and save results to a grid view, text format, or a file. You also take results of a

T-SQL SELECT statement and save them to a text file or a CSV (comma delimited) file.

Figure 5-28. Tasks available for databases in SSMS

ChapTer 5 SQL Server TooLS

180

Figure 5-29 shows the default results of a SELECT statement for the [Application].

[People] table in the default Grid View results.

Notice the yellow status bar at the bottom of the SSMS screen shows context such

as the server name, login of user connected, database context, total duration and total

number of rows from the last executed query.

 Reports
SSMS comes installed with a series of reports to view performance, disk usage, activity,

and configuration of the SQL Server instance. Additionally, reports are available for

databases to see space usage by object, indexes, and various statistics and performance

specific to a database.

To execute a report, right-click the Server or a database, and select the Reports/

Standard Reports option.

Figure 5-29. Results of a query in the T-SQL editor in SSMS in grid view

ChapTer 5 SQL Server TooLS

181

Figure 5-30 shows the built-in report for Performance for all batches run on SQL

Server on Linux instance since the server was started.

Reports can be an immensely powerful capability to gain insight into SQL Server and

databases. While SSMS provides built-in reports, you can build our own custom report

and integrate it into SSMS. You can read more about how to build custom reports in our

documentation at https://docs.microsoft.com/sql/ssms/object/custom-reports-

in-management-studio.

 Tools Built into the Engine
One of the amazing stories of SQL Server is the number of tools that have been built into

the core database engine. I call these “tools” because they are general-purpose features

that are helpful for many various aspects to manage, monitor, and troubleshoot various

scenarios for SQL Server. And since the core database engine is the same for SQL Server

on Linux as Windows, most of these rich features work on Linux.

Keeping with the theme of consistency, most of the tools I will cover in this section

are available through the T-SQL language. The open nature of T-SQL provides a natural

method to expose rich tool functionality from the SQL Server engine.

Figure 5-30. The standard Performance Batch report in SSMS

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/ssms/object/custom-reports-in-management-studio
https://docs.microsoft.com/sql/ssms/object/custom-reports-in-management-studio

182

 System Tables and Catalog Views
Within each database are a series of system tables that store metadata about the

database and other objects such as tables, columns, indexes, and users, among others.

Starting with SQL Server 2005, we decided to change direct access to system tables

from users (even system administrators) to avoid any problems with users modifying

these tables, and because we could change the structure and design of these tables in

any release.

Since every user database is based on the model databases, each user database has

the same set of system tables. The master database has additional system tables to store

information about the SQL Server instance.

Since users still need to access the metadata contained in system tables, we built

a series of views called catalog views, which abstract users from the details of system

tables. Catalog views are available from any database context using the sys schema. The

definition of catalog views is stored in the hidden “Resource” database.

Note I’ll provide some tips in Chapter 9 for some advanced techniques to access
system tables, but it should never be needed under normal circumstances.

There are many features of SQL Server that require metadata to be stored in system

tables. As of SQL Server 2017, there are approximately 300 catalog views spanning 30+

categories. You can see a complete list of catalog views by category in our documentation

at https://docs.microsoft.com/sql/relational-databases/system-catalog-views/

catalog-views-transact-sql. Our documentation also includes a very nice FAQ for

common catalog view scenarios: https://docs.microsoft.com/sql/relational-

databases/system-catalog-views/querying-the-sql-server-system-catalog-faq.

The most common categories I believe you will want to dive into are:

Object Catalog Views: Views about tables, columns, indexes, and

other objects stored in the database

Databases and Files Catalog Views: Views about databases and

files (I’ve used the sys.databases catalog view already in several

examples.)

Security Catalog Views: Views about logins, roles, and users

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/relational-databases/system-catalog-views/catalog-views-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-catalog-views/catalog-views-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-catalog-views/querying-the-sql-server-system-catalog-faq
https://docs.microsoft.com/sql/relational-databases/system-catalog-views/querying-the-sql-server-system-catalog-faq

183

There is even a catalog view to find a list of all catalog views! Execute the following

T-SQL command from any database context from your favorite tool to get a list of all

system objects:

SELECT name, type_desc FROM sys.system_objects

ORDER BY name

GO

Tip avoid building production applications or scripts that rely on SeLeCT * (all
columns) from catalog views, because we may add columns to catalog view
definitions in future releases of SQL Server.

Most of the results from this query that are type_desc = ‘VIEW” are Catalog Views. I’ll

discuss shortly another type of special view called a Dynamic Management View.

Even though catalog views are stored in the hidden Resource database, you can see

the T-SQL code for these views using the catalog view sys.system_sql_modules. The

following T-SQL command can be used to find out the T-SQL view definition for the

catalog view sys.databases:

SELECT * FROM sys.system_sql_modules

WHERE object_id = object_id('sys.databases')

GO

To comply with ISO standards, SQL Server also provides a series of catalog views

known as System Information Schema Views. These views can easily be discovered

because they belong to a special schema called INFORMATION_SCHEMA. You can

get a complete list of these views in our documentation at https://docs.microsoft.

com/sql/relational-databases/system-information-schema-views/system-

information-schema-views-transact-sql.

Not all users can see everything in system catalog views. Policies for permissions

for catalog views are a bit complex. You can read more about these permissions in

our documentation at https://docs.microsoft.com/sql/relational-databases/

security/metadata-visibility-configuration.

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/relational-databases/system-information-schema-views/system-information-schema-views-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-information-schema-views/system-information-schema-views-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-information-schema-views/system-information-schema-views-transact-sql
https://docs.microsoft.com/sql/relational-databases/security/metadata-visibility-configuration
https://docs.microsoft.com/sql/relational-databases/security/metadata-visibility-configuration

184

 System Stored Procedures
SQL Server comes installed with a wide range of stored procedures called system stored

procedures. Like catalog views, the definition and text of these procedures are stored in

the hidden Resource database.

Many of the system stored procedures are used to manage and configure features

and aspects of SQL Server. I introduced you to one of these system procedures in

Chapter 2, called sp_configure, to configure SQL Server instance settings.

While most of the system stored procedures make changes, there is a series of

general system stored procedures that provide information (in some cases using catalog

views). These procedures have a known name format starting with the word sp_help. For

example, this T-SQL command returns information like the catalog view sys.objects:

EXEC sp_help

GO

A full list of system stored procedures organized by category can be found in our

documentation at https://docs.microsoft.com/sql/relational-databases/system-

stored-procedures/system-stored-procedures-transact-sql.

Permissions or system stored procedures vary by the procedure. Consult the

documentation of each procedure to see what permissions are required.

 Dynamic Management Views
From the time I started working with SQL Server in 1993, there have been two virtual

tables that provide information about the internal execution of SQL Server based

on internal data structures in the engine: sysprocesses and syslocks (and stored

procedures sp_who and sp_lock that reference them). These views take internal data

structures for connections, queries, and locks and expose them in the form of rows and

columns.

For many years these were the only views based on memory structures that could

provide insight into the execution of the SQL Server engine. As I spent these years

working in technical support, if I wanted insight into other memory structures within the

engine, I would have to capture a user dump of the SQLSERVR.EXE process and use the

Windows Debugger to manually inspect lists of structures. While it forced me to learn a

great deal about the SQL Server engine, this was not an efficient way to troubleshoot SQL

Server.

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/relational-databases/system-stored-procedures/system-stored-procedures-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-stored-procedures/system-stored-procedures-transact-sql

185

Then came along to the SQL Server team a guy named Slava Oks (can you see a trend

here). Slava worked with a team of engineers to build the SQLOS platform, which is still

part of the core engine architecture. Slava is an expert in debugging but had a goal to see

how far he could solve problems with SQLOS without using a debugger. With the ideas

from Slava, if you could connect to SQL Server, you could use T-SQL to “live debug”

details of the SQL Server Engine.

 The Views

Slava and team took the concept of virtual tables and expanded this into a series of views

that exposed information from SQLOS structures such as tasks, threads, workers, and

memory. This work led to other groups within the engine team exposing information

about other structures.

In SQL Server 2005 we collected all these views into a new feature called Dynamic

Management Views (DMV) and Dynamic Management Functions (DMF). You can query

DMVs like any user or catalog view and you use DMFs as you would with any T-SQL

function. (Note: DMFs, like functions, require parameters)

Tip Intellisense is your friend when it comes to DMvs and DMFs. Typing in sys.
dm_ will bring up a complete list of DMvs and DMFs supported in SQL Server.

These views from SQL Server 2005 still provide the core functionality of DMVs such

as sys.dm_exec_requests, sys.dm_os_tasks, and sys.dm_wait_stats. In SQL Server 2017

on Linux and Windows, there are now approximately 240 DMVs and DMFs covering all

aspects of the SQL Server engine.

DMVs and DMFs prove the open nature of T-SQL and the concept of exposing data

as a table as a powerful tool to gain insight into any data, whether it be data from a user

table, system table, or a list of structures that support the database engine.

A complete list of DMVs and DMFs can be found listed by category in our

documentation at https://docs.microsoft.com/sql/relational-databases/system-

dynamic-management-views/system-dynamic-management-views. DMVs and DMFs

require the VIEW SERVER state permission, which can be assigned by sysadmin logins.

Many of these DMVs and DMFs are related and can be joined together. The SQL

Server community over the years has published examples for different scenarios in

various blogs and trainings. One of the most popular uses of DMVs comes from the

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views

186

community-developed stored procedure, sp_whoisactive, written by SQL Community

Leader Adam Machanic (and is now extended into SQL Operations Studio). You can find

details and downloads for sp_whoisactive from http://whoisactive.com.

Here is a list of my top ten DMVs and DMFs and example queries for each DMV/DMF:

dm_exec_requests: A list of active queries and background

requests. It is probably the most common DMV used today by SQL

Server users.

The following query, found in the sample dm_exec_requests.sql file, shows a list of

active user queries and details about the query including session_id (uniquely identifies

a connection to SQL Server), status (is it running or waiting), command (what query is

running), wait_type (if the query is waiting, what kind of resource), and wait_time (how

long has it been waiting on a resource). You will also notice I join this DMV with sys.dm_
exec_sessions so I only show the active “user” requests.

-- Get the session_id, status (RUNNING or SUSPENDED), command (what query),

wait_type (if waiting what resource?), and wait_time (how long waiting) for

active user requests

--

SELECT er.[session_id], er.[status], er.[command], er.[wait_type],

er.[wait_time]

FROM sys.dm_exec_requests er

INNER JOIN sys.dm_exec_sessions es

ON es.[session_id] = er.[session_id]

AND es.[is_user_process] = 1

GO

There are more columns in this DMV. Check out the complete options in our

documentation at https://docs.microsoft.com/sql/relational-databases/system-

dynamic-management-views/sys-dm-exec-requests-transact-sql. You can find a

complete set of options for sys.dm_exec_sessions at https://docs.microsoft.com/sql/

relational-databases/system-dynamic-management-views/sys-dm-exec-sessions-

transact-sql. Wait types describe different scenarios where SQL Server requests can

wait on a resource such as a lock, I/O, latch, and many others. The most comprehensive

description of wait types and what they mean for your application can be found in this

community blog run by my friend and SQL Server Community Leader Paul Randal

https://www.sqlskills.com/help/waits/.

ChapTer 5 SQL Server TooLS

http://whoisactive.com
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-requests-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-requests-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-sessions-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-sessions-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-sessions-transact-sql
https://www.sqlskills.com/help/waits/

187

dm_exec_query_stats: A list of performance statistics based

on queries currently cached. This is an extremely popular

DMV for query performance. I like the example we have in our

documentation, which I have provided in the sample script, dm_
exec_query_stats.sql. This query is designed to show the Top <N>

queries that account for the most CPU resource usage:

-- Get the top 5 queries by CPU usage. Show the query_hash, avg CPU time,

and T-SQL text

-- query_hash is a way to uniquely identify a query that could be executed

in more than one way but has as similar "pattern"

SELECT TOP 5 query_stats.query_hash AS "Query Hash",

 SUM(query_stats.total_worker_time) / SUM(query_stats.execution_count)

AS "Avg CPU Time",

 MIN(query_stats.statement_text) AS "Statement Text"

FROM

 (SELECT QS.*,

 SUBSTRING(ST.text, (QS.statement_start_offset/2) + 1,

 ((CASE statement_end_offset

 WHEN -1 THEN DATALENGTH(ST.text)

 ELSE QS.statement_end_offset END

 - QS.statement_start_offset)/2) + 1) AS statement_text

 FROM sys.dm_exec_query_stats AS QS

 CROSS APPLY sys.dm_exec_sql_text(QS.sql_handle) as ST) as query_stats

GROUP BY query_stats.query_hash

ORDER BY "Avg CPU Time" DESC

GO

This DMV stores query information in the form of hashes (uniquely identifies a

query that is the same “pattern”) and handles. Notice the use of the DMF dm_exec_sql_
text to get the text of the SQL query.

You can find the complete documentation of dm_exec_query_stats at https://docs.

microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-

dm-exec-query-stats-transact-sql. The documentation for dm_exec_sql_text can be

found at https://docs.microsoft.com/sql/relational-databases/system-dynamic-

management-views/sys-dm-exec-sql-text-transact-sql.

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-stats-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-stats-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-stats-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-sql-text-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-sql-text-transact-sql

188

dm_os_waiting_tasks: A list of tasks (queries and background

tasks) that are waiting on a resource. The DMV only shows

requests that are waiting on a resource. Here is an example from

the sample script dm_os_waiting_tasks.sql to show all user

requests that are waiting on a resource (Note: If there are no user

tasks waiting on a resource, this query will return 0 rows.):

-- Show all user requests that are waiting on a resource

--

SELECT wt.session_id, wt.wait_type, wt.wait_duration_ms

FROM sys.dm_os_waiting_tasks wt

INNER JOIN sys.dm_exec_sessions es

ON es.session_id = wt.session_id

AND es.is_user_process = 1

GO

You can find the documentation for this DMV at https://docs.microsoft.com/

sql/relational-databases/system-dynamic-management-views/sys-dm-os-waiting-

tasks-transact-sql.

dm_os_wait_stats: Another one of the most commonly used

DMVs. This DMV records statistics about resource waits by type

since SQL Server has started (or since the DMV stats have been

cleared). Here is an example from the sample script dm_os_wait_
stats.sql to show the average wait duration by wait_type for only

wait types that have had any waits.

-- Show the number of waits by type and the avg wait time of that type

sorted by the highest avg wait types

-- Note that some waits are "normal" because they are part of background

tasks that naturally waits as part of its execution

SELECT wait_type, waiting_tasks_count, (wait_time_ms/waiting_tasks_count)

as avg_wait_time_ms

FROM sys.dm_os_wait_stats

WHERE waiting_tasks_count > 0

ORDER BY avg_wait_time_ms DESC

GO

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-waiting-tasks-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-waiting-tasks-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-waiting-tasks-transact-sql

189

You can find the documentation for sys.dm_os_wait_stats at https://docs.

microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-

dm-os-wait-stats-transact-sql.

dm_io_virtual_file_stats: This DMF is extremely helpful to gain

insight into which database and files are seeing the most I/O and

what type of average disk latency is occurring for a database and

files associated with the database. Using a DMF in SQL Operations

Studio shows the power of T-SQL Intellisense to help you provide

the proper parameters for the function. Figure 5-31 shows an

example of filling out the parameters for this DMF.

Here is an example query as found in the sample script dm_io_virtual_file_stats.sql
to see the database files by the highest average disk latency for reads:

-- Find the files and associated database that have the highest avg disk

latency for read operations

-- Use the DB_NAME() system function to find the database name from the id

in the DMF

-- Join with the sys.master_files catalog view to find the physical file

name from the file_id in the DMF

Figure 5-31. T-SQL Intellisense in SQL Operations Studio to execute a DMF

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql

190

SELECT DB_NAME(ivfs.database_id), mf.physical_name, (ivfs.io_stall_read_ms/

ivfs.num_of_reads) as avg_io_read_latency_ms, ivfs.num_of_reads

FROM sys.dm_io_virtual_file_stats(null,null) ivfs

INNER JOIN sys.master_files mf

ON ivfs.database_id = mf.database_id

AND ivfs.file_id = mf.file_id

WHERE num_of_reads > 0

ORDER by avg_io_read_latency_ms DESC

GO

This DMF only provides the database_id and the file_id instead of names. I use the

DB_NAME() system function to get the database name and the join with the catalog view

sys.master_files to get the physical file name.

Figure 5-32 shows the results from the preceding query in SQL Operations Studio on

my SQL Server on Linux server.

You can find the documentation for this DMF at https://docs.microsoft.com/

sql/relational-databases/system-dynamic-management-views/sys-dm-io-virtual-

file-stats-transact-sql.

Figure 5-32. Database files with highest average disk read latency on SQL Server
on Linux

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-io-virtual-file-stats-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-io-virtual-file-stats-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-io-virtual-file-stats-transact-sql

191

dm_os_memory_clerks: Memory is a valuable resource for

SQL Server. SQL Server has a complex and powerful memory

management system built into the engine. Various components

within SQL Server consume memory and record memory

usage through the concept of a memory clerk. This DMV will

show memory usage by clerk across the SQL Server engine. The

following example based on the sample script dm_os_memory_
clerks.sql shows which memory clerks use the most memory at

any point in time:

-- Find out which components in SQL Server are using the most memory

--

SELECT type, name, (pages_kb+virtual_memory_committed_kb+awe_allocated_kb)

total_memory_kb

FROM sys.dm_os_memory_clerks

ORDER BY total_memory_kb DESC

GO

Figure 5-33 shows the results of this query on my SQL Server on Linux immediately

after startup.

Figure 5-33. SQL Server memory clerks immediately after startup

ChapTer 5 SQL Server TooLS

192

There is no detailed documentation on mapping different memory clerk types and

what component of the SQL Server engine they belong to. Here are the most common

ones I believe you will see consume the most memory on a typical SQL Server:

MEMORYCLERK_SQLBUFFERPOOL: Buffer pool database pages.

This is typically the largest consumer of memory.

CACHESTORE_SQLCP: Plan cache for ad-hoc SQL Server queries

CACHESTORE_OBJCP: Plan cache for SQL Server objects such as

stored procedures

CACHESTORE_COLUMNSTOREOBJECTPOOL: Memory

consumed by columnstore indexes

MEMORYCLERK_XTP: Memory for In-Memory OLTP memory

optimized tables

You can find the complete documentation for this DMV at https://docs.

microsoft.com/sql/relational-databases/system-dynamic-management-views/

sys-dm-os-memory-clerks-transact-sql

dm_tran_locks: A list of current locks held by active requests. This

DMV could be helpful when you experience a blocking problem

in SQL Server, to discover what locks are being held by a specific

session, request, and query. Here is an example query as found in

the sample script dm_tran_locks.sql:

-- Show locks are that requested or granted by active sessions and queries

--

SELECT resource_type, request_mode, request_request_id, resource_database_

id, resource_associated_entity_id, resource_type, resource_description

FROM sys.dm_tran_locks

GO

See the documentation for this DMV, including a good example about how to

use this for a blocking scenario, at https://docs.microsoft.com/sql/relational-

databases/system-dynamic-management-views/sys-dm-tran-locks-transact-sql.

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-memory-clerks-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-memory-clerks-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-memory-clerks-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-tran-locks-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-tran-locks-transact-sql

193

dm_db_missing_index_details: I showed you in Chapter 3 how

to create constraints for building keys, which are implemented via

indexes. Indexes can also help boost query performance. As you

run SQL Server queries, the engine can recognize scenarios where

an index is not available and could help with performance. These

recommendations are available via this DMV. I will cover the

usage of this DMV and other performance tools in Chapter 6. Here

is an example query found in the sample script dm_db_missing_
index_details.sql to find all recommended missing indexes in

SQL Server.

-- Find the current recommended missing indexes for all databases and

objects

--

SELECT index_handle, database_id, object_id, equality_columns, statement

FROM sys.dm_db_missing_index_details

GO

This DMV is cleared after SQL Server is restarted. The complete documentation

for this DMV can be found at https://docs.microsoft.com/sql/relational-

databases/system-dynamic-management-views/sys-dm-db-missing-index-

details-transact-sql.

dm_os_sys_info: This DMV is a notable example of using T-SQL

interfaces to expose data in the format of a table from information

about the system, which is either the operating system, computer,

or SQL Server. This DMV will always return only one row.

There is so much cool information in this DMV. I’ve provided an example query to

list out a few columns, including a calculation to see how long SQL Server has been up

and running. You can find this example query in the sample script dm_os_sys_info.sql.

-- Retrieve information about the computer, the OS, and SQL Server

--

SELECT cpu_count, hyperthread_ratio, physical_memory_kb, committed_kb,

committed_target_kb, max_workers_count, datediff(hour, sqlserver_start_

time, getdate()) as sql_up_time_hours, affinity_type_desc, virtual_machine_

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-db-missing-index-details-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-db-missing-index-details-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-db-missing-index-details-transact-sql

194

type_desc, softnuma_configuration_desc, socket_count, cores_per_socket,

numa_node_count, container_type_desc

FROM sys.dm_os_sys_info

GO

Some of the values from this DMV will be topics that will be discussed later in this

book. For a complete description of the columns from this example query and all columns

in the DMV, see our documentation at https://docs.microsoft.com/sql/relational-

databases/system-dynamic-management-views/sys-dm-os-sys-info-transact-sql.

dm_os_ring_buffers: There are a few DMVs that are not documented

because they are not DMVs that are normally needed for typical

management and monitoring of SQL Server. But one DMV that is not

documented that I find to be helpful in some advanced scenarios is

dm_os_ring_buffers. This DMV stores a memory bound set of lists

(“ring” meaning when the list is full it wraps to the front) of detailed

information for certain internal components of the SQL Server

Engine. Each component (a ring buffer type) that builds a list exposed

by this DMV has its own ring buffer.

This example query as found in the sample script ring_buffer_types.sql shows the

possible ring buffer types (which could change with each release of SQL Server):

-- Find the distinct ring buffer types

--

SELECT DISTINCT(ring_buffer_type)

FROM sys.dm_os_ring_buffers

GO

One of the interesting ring buffer types is RING_BUFFER_EXCEPTION. Each ring

buffer for a type is stored in a series of rows with a record field. Record fields are XML

types. This example query found in the same script dm_os_ring_buffers_exception.
sql is quite complex. Look at the comments in the T-SQL script to see how each field is

either extracted from the XML record or found by joining with other data in the system:

-- Find all current error messages recorded by SQL Server in the ring

buffer

-- [record_timestamp] is calculated by taking the current timestamp in the

record (which is in clock ticks by milliseconds)

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-sys-info-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-sys-info-transact-sql

195

-- and subtracting this from ms_ticks in sys.dm_os_sys_info which is the

number of clock ticks in ms when SQL Server was started

-- and then adding this to the current datetime. This gives you the actual

datetime of the record

-- errorno, severity, and state are "shredded" from the XML record

-- errorno from the XML record is joined with sys.sysmessages to get the

error message string

-- Not all error messages are "errors". Anything less than severity 16 is

"informational"

DECLARE @current_ms_ticks INT

SELECT @current_ms_ticks=ms_ticks FROM sys.dm_os_sys_info

SELECT DATEADD(ms, (orb.timestamp-@current_ms_ticks), GETDATE()) as

[record_timestamp],

CAST(orb.record AS XML).value('(//Exception//Error)[1]', 'varchar(10)') as

[errorno],

CAST(orb.record AS XML).value('(//Exception/Severity)[1]', 'varchar(10)')

as [severity],

CAST(orb.record AS XML).value('(//Exception/State)[1]', 'varchar(10)') as

[state],

msg.description

FROM sys.dm_os_ring_buffers orb

INNER JOIN sys.sysmessages msg

ON msg.error = cast(record as xml).value('(//Exception//Error)[1]',

'varchar(255)')

AND msg.msglangid = 1033 -- This is for US English. Change this to your

language as needed

WHERE orb.ring_buffer_type = 'RING_BUFFER_EXCEPTION'

ORDER BY record_timestamp

GO

 DBFS Tool

Many Linux users are more comfortable with the shell than a user interface and are also

familiar with navigating the proc directory (virtual) filesystem (You can read more about

procfs at https://en.wikipedia.org/wiki/Procfs). As part of Project Helsinki, we built

an open-source tool that works like procfs for SQL Server catalog view and DMV data,

called dbfs.

ChapTer 5 SQL Server TooLS

https://en.wikipedia.org/wiki/Procfs

196

DBFS will query SQL Server on Linux for DMV data and produce the information

into a directory structure with files. Each file will represent a snapshot of a specific

catalog view or DMV. The tool will produce a text and JSON file for each catalog view and

DMV. By default, dbfs runs in the background monitoring access to the files represented

by catalog views and DMVs. When a user tries to access the content of the files, dbfs

queries SQL Server to obtain the data to populate the file. This technique is like how

procfs works for the Linux operating system.

To install dbfs, read the instructions on the GitHub project site at https://github.

com/Microsoft/dbfs. I installed this on my RHEL VM and then followed the Quick Start

instructions on the GitHub site to create a directory and configuration file.

The text files are formatted so Linux tools like awk, grep, and join can be used to

query catalog view and DMV data very easily. Here is an example command using awk:

awk '{print $1, $2, $3, $4, $5}' dm_os_sys_info | column -t

Figure 5-34 shows an example of using awk to extract columns from the dm_os_sys_

info dbfs file.

 Extended Events
Prior to SQL Server 2008, the primary tool to trace events and the code execution of the SQL

Server Engine was SQL Server Trace and the corresponding tool called SQL Profiler. While

SQL Server Trace and SQL Server Profiler still exist today, this feature and tool are technically

marked as deprecated (which means they may be removed at any point for a new release). It

also means we are no longer making any enhancements to this feature and tool.

Note Deprecation of features is something we do across releases for features
that we do not plan to enhance. In recent releases, even though we have
marked features deprecated, we rarely remove them. read more on this topic at
https://docs.microsoft.com/sql/database-engine/deprecated-
database-engine-features-in-sql-server-2017.

Figure 5-34. Using awk with DBFS

ChapTer 5 SQL Server TooLS

https://github.com/Microsoft/dbfs
https://github.com/Microsoft/dbfs
https://docs.microsoft.com/sql/database-engine/deprecated-database-engine-features-in-sql-server-2017
https://docs.microsoft.com/sql/database-engine/deprecated-database-engine-features-in-sql-server-2017

197

In SQL Server 2008, we embarked on a project called XEvent. Once again, I found

myself after we shipped SQL Server 2005 in a conversation with Slava Oks about

supportability and diagnostics. While SQL Server Trace and Profiler were popular, he

knew the architecture of “server-side trace” had limitations, especially around scalability.

Slava and the team that built SQLOS designed XEvent from the ground up and named

the feature in SQL Server 2008, Extended Events. Extended Events is both a tracing

library for developers of the SQL Server engine and a user feature for tracing. Developers

of the SQL Server Engine can use the XEvent library to define instrumentation points,

events, in their code. Users of SQL Server can then define ways to enable these events

and consume information about them.

SQL Server 2008 was released with a base level of events, but not all the

instrumentation points of SQL Server trace were available. In SQL Server 2012, we tried

to ensure Extended Events included all the events from SQL Server trace and more. As

of SQL Server 2017, there are 1,500+ events for users to consume to gain insight into

the execution of queries, connections, various features, or internals of the SQL Server

engine.

While DMVs provide insight into many aspects of the SQL Server engine, most of the

DMVs provide a snapshot of data when you query them. Extended events allow you to trace

details (including more than you can find in DMVs) and collect event data over time.

You can find all the documentation about Extended Events at https://docs.

microsoft.com/sql/relational-databases/extended-events/extended-events.

 Extended Event Objects

The fundamental objects for Extended Events are events, targets, and actions. Let me

describe each of these in more detail:

Event: Events are the instrumentation points in the SQL

Server engine, as defined by developers of Microsoft. Think of

events as important places in the code to trace execution. The

documentation of events and their descriptions can be found by

querying a DMV called sys.dm_xe_objects (object type = ‘event’).

Events have properties or columns. These are found by querying

sys.dm_xe_object_columns. The following example query as

found in the sample script xe_events.sql shows all the events and

their columns sorted by event name:

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/relational-databases/extended-events/extended-events
https://docs.microsoft.com/sql/relational-databases/extended-events/extended-events

198

-- List the XEvent events, description, and columns for each event and

description

--

SELECT xeo.name, xeo.description, xeoc.name, xeoc.description

FROM sys.dm_xe_objects xeo

INNER JOIN sys.dm_xe_object_columns xeoc

ON xeo.name = xeoc.object_name

WHERE xeo.object_type = 'event'

AND (xeo.capabilities IS NULL OR xeo.capabilities & 1 = 0) -- Filter out

private events

ORDER BY xeo.name, xeoc.name

GO

Notice in the preceding query I use a column from the DMV called capabilities.

Some XEvent events, actions, and targets are considered private. Private XEvent objects

cannot be used in user sessions because they support a feature of SQL Server, like SQL

Server Auditing.

Target: A target is a destination where events can be published

and stored for consumption. Two fundamental target types

are event_file (saving events to a file) and ring_buffer (saving

events to a memory buffer that is not persisted after a server

restart). There are other targets that have built-in “intelligence”

such as a histogram target. A complete list of targets can be

found in our documentation at https://docs.microsoft.com/

sql/relational-databases/extended-events/targets-for-

extended-events-in-sql-server.

Action: When an event is fired and published to a target, all the

columns in the event are available (there are some columns that

require a setting to have their data published because collecting

the column could consume additional resources). Actions are

data orthogonal to the columns for an event that can be captured

as part of an event session. An example of an action is sql_text,

which is the text of a T-SQL query. sql_text is not a column for

every event, so this means in many cases you can capture the

T-SQL query associated with an event, where without this action it

would not be possible.

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/relational-databases/extended-events/targets-for-extended-events-in-sql-server
https://docs.microsoft.com/sql/relational-databases/extended-events/targets-for-extended-events-in-sql-server
https://docs.microsoft.com/sql/relational-databases/extended-events/targets-for-extended-events-in-sql-server

199

An excellent description of the sequence of how events, targets, and actions work

together can be found in our documentation at https://docs.microsoft.com/sql/

relational-databases/extended-events/sql-server-extended-events-engine.

 Usage and Scenarios

To use Extended Events, you must create a session. Sessions are persisted in system

tables stored in the master database and exposed through catalog views. Once you

create a session, you must start the session for the instrumentation points defined for

the events to be fired and published to the defined target(s). At any point in time, you

can stop the session and all events will no longer be fired, but the event definition is

persisted in the master database. You can find all Extended Event definitions in the

catalog view sys.server_event_sessions. You can find a list of all started Extended Event

sessions from the sys.dm_xe_sessions DMV.

The following example query as found in the sample script quicksessionstandard.
sql shows how to create an Extended Event session to collect basic information about

SQL Server connections and queries (this event definition is based on the XEProfiler SQL

Server Management Tool feature):

-- Create a XEvent session based on the XEProfiler feature in SSMS to

collect connections and queries

--

CREATE EVENT SESSION [QuickSessionStandardToFile] ON SERVER

ADD EVENT sqlserver.attention(

 ACTION(package0.event_sequence,sqlserver.client_app_name,sqlserver.

client_pid,sqlserver.database_id,sqlserver.database_name,sqlserver.

nt_username,sqlserver.query_hash,sqlserver.server_principal_

name,sqlserver.session_id)

 WHERE ([package0].[equal_boolean]([sqlserver].[is_system],(0)))),

ADD EVENT sqlserver.existing_connection(SET collect_options_text=(1)

 ACTION(package0.event_sequence,sqlserver.client_app_name,sqlserver.

client_hostname,sqlserver.client_pid,sqlserver.nt_username,sqlserver.

server_principal_name,sqlserver.session_id)),

ADD EVENT sqlserver.login(SET collect_options_text=(1)

 ACTION(package0.event_sequence,sqlserver.client_app_name,sqlserver.

client_hostname,sqlserver.client_pid,sqlserver.nt_username,sqlserver.

server_principal_name,sqlserver.session_id)),

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/relational-databases/extended-events/sql-server-extended-events-engine
https://docs.microsoft.com/sql/relational-databases/extended-events/sql-server-extended-events-engine

200

ADD EVENT sqlserver.logout(

 ACTION(package0.event_sequence,sqlserver.client_app_name,sqlserver.

client_pid,sqlserver.nt_username,sqlserver.server_principal_

name,sqlserver.session_id)),

ADD EVENT sqlserver.rpc_completed(

 ACTION(package0.event_sequence,sqlserver.client_app_name,sqlserver.

client_pid,sqlserver.database_id,sqlserver.database_name,sqlserver.

nt_username,sqlserver.query_hash,sqlserver.server_principal_

name,sqlserver.session_id)

 WHERE ([package0].[equal_boolean]([sqlserver].[is_system],(0)))),

ADD EVENT sqlserver.sql_batch_completed(

 ACTION(package0.event_sequence,sqlserver.client_app_name,sqlserver.

client_pid,sqlserver.database_id,sqlserver.database_name,sqlserver.

nt_username,sqlserver.query_hash,sqlserver.server_principal_

name,sqlserver.session_id)

 WHERE ([package0].[equal_boolean]([sqlserver].[is_system],(0)))),

ADD EVENT sqlserver.sql_batch_starting(

 ACTION(package0.event_sequence,sqlserver.client_app_name,sqlserver.

client_pid,sqlserver.database_id,sqlserver.database_name,sqlserver.

nt_username,sqlserver.query_hash,sqlserver.server_principal_

name,sqlserver.session_id)

 WHERE ([package0].[equal_boolean]([sqlserver].[is_system],(0))))

ADD TARGET package0.event_file(SET filename=N'QuickSessionStandard.

xel',max_file_size=(5),max_rollover_files=(4))

WITH (MAX_MEMORY=8192 KB,EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_LOSS,MAX_

DISPATCH_LATENCY=5 SECONDS,MAX_EVENT_SIZE=0 KB,MEMORY_PARTITION_MODE=PER_

CPU,TRACK_CAUSALITY=ON,STARTUP_STATE=OFF)

GO

This example query as found in the sample start_xevent_session.sql shows how to

start the session created:

-- Start the XEvent session

--

ALTER EVENT SESSION [QuickSessionStandardToFile] ON SERVER STATE = start

GO

ChapTer 5 SQL Server TooLS

201

By default, a file target for an extended events session is stored in the /var/opt/

mssql/log directory.

There are several options when you create an Extended Event session, such as

controlling memory and scalability. You can find the complete list of options in our

documentation at https://docs.microsoft.com/sql/t-sql/statements/create-

event-session-transact-sql. SQL Server also provides the capability of starting a

session you create when SQL Server is first started, using the STARTUP_STATE option

when you create the event definition (An example might be to trace database recovery at

startup).

Once you create an Extended Event session, you can add events or alter the

definition. You can find how to do this in our documentation at https://docs.

microsoft.com/sql/relational-databases/extended-events/alter-an-extended-

events-session.

One of the amazing built-in extended event sessions is the system_health session.

I’ll discuss how to use this session in Chapter 9.

 Tools

Extended Events can be controlled and consumed using the T-SQL language. To view

data from Extended Events targets that are memory-based, you can query the dm_xe_
session_targets DMV. An example of how to view the XML data in a ring_buffer target

can be found in our documentation at https://docs.microsoft.com/sql/relational-

databases/extended-events/targets-for-extended-events-in-sql-server#h2_

target_ring_buffer. File targets can be read with T-SQL, using the system function sys.
fn_xe_file_target_read_file, which is documented at https://docs.microsoft.com/

sql/relational-databases/system-functions/sys-fn-xe-file-target-read-file-

transact-sql.

Application developers have the ability to read XEvent targets, including a “live”

event stream target via the following object models: https://msdn.microsoft.com/

library/microsoft.sqlserver.management.xevent.aspx and https://msdn.

microsoft.com/library/microsoft.sqlserver.xevent.linq.aspx.

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/t-sql/statements/create-event-session-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/create-event-session-transact-sql
https://docs.microsoft.com/sql/relational-databases/extended-events/alter-an-extended-events-session
https://docs.microsoft.com/sql/relational-databases/extended-events/alter-an-extended-events-session
https://docs.microsoft.com/sql/relational-databases/extended-events/alter-an-extended-events-session
https://docs.microsoft.com/sql/relational-databases/extended-events/targets-for-extended-events-in-sql-server#h2_target_ring_buffer
https://docs.microsoft.com/sql/relational-databases/extended-events/targets-for-extended-events-in-sql-server#h2_target_ring_buffer
https://docs.microsoft.com/sql/relational-databases/extended-events/targets-for-extended-events-in-sql-server#h2_target_ring_buffer
https://docs.microsoft.com/sql/relational-databases/system-functions/sys-fn-xe-file-target-read-file-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-functions/sys-fn-xe-file-target-read-file-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-functions/sys-fn-xe-file-target-read-file-transact-sql
https://msdn.microsoft.com/library/microsoft.sqlserver.management.xevent.aspx
https://msdn.microsoft.com/library/microsoft.sqlserver.management.xevent.aspx
https://msdn.microsoft.com/library/microsoft.sqlserver.xevent.linq.aspx
https://msdn.microsoft.com/library/microsoft.sqlserver.xevent.linq.aspx

202

SSMS has user interface capability to create and managed Extended Events via

Object Explorer. Figure 5-35 shows the Object Explorer tree for Extended Events in

SSMS.

SSMS allows you to create extended events, start event sessions, alter event sessions,

and view extended event session target data via a grid view.

Recent builds of SSMS include the ability to view Extended Events data in a live

stream like what you can do with SQL Server Profiler. This feature is called XEProfiler.

To use XEProfiler, expand the icon from the Object Explorer tree in SSMS, right-click

one of the two choices such as Standard, and select Launch Session. Figure 5-36 shows

the result of using this feature to see connections and queries run against SQL Server on

Linux.

Figure 5-35. The Extended Events Object Explorer tree view in SSMS

ChapTer 5 SQL Server TooLS

203

Whether you build your own T-SQL event or use XEProfiler, you will find tracing SQL

Server queries extremely useful to debug how applications and tools work. For example,

I used XEProfiler to debug how DBFS works to query SQL Server without having to look

at the project source code.

There is an excellent demo and tutorial of how to use SSMS with Extended Events

in our documentation at https://docs.microsoft.com/sql/relational-databases/

extended-events/quick-start-extended-events-in-sql-server.

There a several example scenarios in our documentation to use Extended Events,

including:

Queries Holding Locks: https://docs.microsoft.com/sql/

relational-databases/extended-events/determine-which-

queries-are-holding-locks

Objects and Locks Held: https://docs.microsoft.com/sql/

relational-databases/extended-events/find-the-objects-

that-have-the-most-locks-taken-on-them

Monitor System Activity: https://docs.microsoft.com/sql/

relational-databases/extended-events/monitor-system-

activity-using-extended-events

Figure 5-36. Using XEProfiler with SSMS

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/relational-databases/extended-events/quick-start-extended-events-in-sql-server
https://docs.microsoft.com/sql/relational-databases/extended-events/quick-start-extended-events-in-sql-server
https://docs.microsoft.com/sql/relational-databases/extended-events/determine-which-queries-are-holding-locks
https://docs.microsoft.com/sql/relational-databases/extended-events/determine-which-queries-are-holding-locks
https://docs.microsoft.com/sql/relational-databases/extended-events/determine-which-queries-are-holding-locks
https://docs.microsoft.com/sql/relational-databases/extended-events/find-the-objects-that-have-the-most-locks-taken-on-them
https://docs.microsoft.com/sql/relational-databases/extended-events/find-the-objects-that-have-the-most-locks-taken-on-them
https://docs.microsoft.com/sql/relational-databases/extended-events/find-the-objects-that-have-the-most-locks-taken-on-them
https://docs.microsoft.com/sql/relational-databases/extended-events/monitor-system-activity-using-extended-events
https://docs.microsoft.com/sql/relational-databases/extended-events/monitor-system-activity-using-extended-events
https://docs.microsoft.com/sql/relational-databases/extended-events/monitor-system-activity-using-extended-events

204

 T-SQL Performance Features
SQL Server comes with built-in performance statistics through the T-SQL language. This

includes the ability to view the estimated and executed query plan for queries, timing

and I/O statistics via messages returned as part of executing and query, and live query

statistics and lightweight query profiling for individual query operators.

 SHOWPLAN

Every T-SQL command is compiled by the query processor of SQL Server, so it can then

be executed. When the query is compiled, SQL Server will build an estimated query plan.

The estimated query plan is saved for queries that are stored in plan cache. An estimated

query plan includes all the details of query operators that are used to execute the query.

You can view the estimated query plan for any query by first executing the T-SQL

commands:

SET SHOWPLAN_ALL ON: Return all the operators in the

estimated query plan in the form of a table result set but do not

execute the query.

SET SHOWPLAN_TEXT ON: Return all the operators in the

estimated query plan in the form of a text result but do not execute

the query.

SET SHOWPLAN_XML ON: Return all the operators in the

estimated query plan in the form of an XML document. The

format of the XML schema for SHOWPLAN is documented

at http://schemas.microsoft.com/sqlserver/2004/07/

showplan/.

Note T-SQL SeT commands are used to turn oN and oFF a setting. If you use
SeT to turn oN a setting, that setting will be enabled for the lifetime of the session
until you execute the same SeT command to turn it oFF. Multiple settings can
be enabled for a single SQL Server session. For a complete list of all T-SQL SeT
commands, see our documentation at https://docs.microsoft.com/sql/t-
sql/statements/set-statements-transact-sql.

ChapTer 5 SQL Server TooLS

http://schemas.microsoft.com/sqlserver/2004/07/showplan/
http://schemas.microsoft.com/sqlserver/2004/07/showplan/
https://docs.microsoft.com/sql/t-sql/statements/set-statements-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/set-statements-transact-sql

205

Figure 5-37 shows the example output when I use SET SHOWPLAN_XML ON with

the query SELECT * FROM sys.databases:

SET SHOWPLAN_XML ON

GO

SELECT * FROM sys.databases

GO

Figure 5-37. SET SHOWPLAN_XML in SQL Operations Studio

If you click the XML results, SQL Operations Studio will open the XML document.

SQL Operations Studio automatically recognizes when you run SET SHOWPLAN_

XML and will generate a graphical version of the estimated plan in the QUERY PLAN tab

next to RESULTS. Figure 5-38 shows the graphical query plan for SELECT * FROM sys.

databases.

ChapTer 5 SQL Server TooLS

206

When you use a SET SHOWPLAN* command, it remains in effect for that session

until you turn it off by using SET SHOWPLAN* OFF. SQL Operations Studio has another

method to show the estimated query plan without using a SET command called Explain.

If I execute SET SHOWPLAN_XML OFF and then type in SELECT * FROM sys.databases

in the Query Editor, I can click Explain at the top of the Query Editor to get SHOWPLAN_

XML details.

In addition, if I hover my cursor over any operator I can get further query operator

details. Figure 5-39 shows the details of a query plan operator from the previous

example.

Figure 5-38. Graphical Query Plan in SQL Operations Studio

ChapTer 5 SQL Server TooLS

207

Next to the QUERY PLAN tab in SQL Operations Studio is another option called TOP

OPERATORS. TOP OPERATORS shows a table of query plan operators and statistics with

each operator sorted by estimated cost of each operator.

While using the SET SHOWPLAN* T-SQL statements show the estimated query plan,

you can use T-SQL to show the actual execution plan while executing the query. The

actual execution plan is produced after the query is executed and includes important

performance statistics about the execution of the query and each query plan operator.

You can see the actual execution plan for a query first executing the T-SQL command

SET STATISTICS XML before the query. The schema for the resulting XML document is

also available at http://schemas.microsoft.com/sqlserver/2004/07/showplan. Using

this T-SQL command with SQL Operations Studio provides similar functionality as with

the estimated plan, including a graphical view of the plan and top operator statistics. So,

for example, while the estimated plan will show statistics like estimated rows for each

query operator, the actual execution plan will show estimated and actual rows per query

operator (estimates are produced when compiling the plan based on available statistics.

Those statistics could be missing or out of date, which could result in scenarios where

the actual values are different than estimates. This is a common performance problem

when debugging query plans).

Figure 5-39. Query Plan operator details in SQL Operations Studio

ChapTer 5 SQL Server TooLS

http://schemas.microsoft.com/sqlserver/2004/07/showplan

208

Tip If query plan information is generated with a SeT statement, it is returned to
the application in the form of messages. application developers who execute a SeT
statement to generate query plan details must be prepared to handle and process
these messages.

SSMS provides similar functionality to SQL Operations Studio through buttons in the

user interface called Display Estimated Execution Plan (estimated) and Include Actual

Execution Plan (actual).

 SET STATISTICS

You can also use T-SQL to gain insight into performance statistics including CPU, duration,

and I/O performance for each statement in a batch. These T-SQL commands are:

SET STATISTICS TIME: SQL Server will produce CPU and

elapsed parse/compile and execution timings for each statement

in batches after executing this command. Information is produced

in the form of messages.

Figure 5-40 shows the message output in SQL Operations Studio from the following

example query found in the sample setstatstime.sql (Note: Be sure to run SET

SHOWPLAN_XML OFF before running the following command.):

SET STATISTICS TIME ON

GO

SELECT * FROM sys.databases

GO

ChapTer 5 SQL Server TooLS

209

SET STATISTICS IO: SQL Server will produce information about

logical (number of database pages read from cache) and physical

reads (number of database pages read from disk) for objects

referenced in each statement in batches after executing this

command. Information is produced in the form of messages.

Figure 5-41 shows the message output in SQL Operations Studio from the following

example query found in the sample setstatsio.sql (Note: For the following output, I had

first run SET STATISTICS TIME OFF to clear that setting.):

SET STATISTICS IO ON

GO

SELECT * FROM sys.databases

GO

Figure 5-40. SET STATISTICS TIME output in SQL Operations Studio

ChapTer 5 SQL Server TooLS

210

Note read-ahead reads are also physical reads of database pages from disk.

 Lightweight Query Profiling

It is possible to trace showplan information for each query by using Extend Events. The

events query_post_compilation_showplan (estimated) and query_post_execution_
showplan (actual) can be used to trace plans for queries in SQL Server. There are

several columns available for these events as properties to the plan, including the XML

document representation of the query plan.

While this information can be useful when investigating query performance

problem, there can be substantial overhead to use these events on a production SQL

Server.

Fortunately, we have a team at Microsoft called the Tiger Team (follow their work

at https://twitter.com/mssqltiger). They built a new infrastructure and capability

called lightweight query profiling, enabled with the global trace flag 7412 (remember

with SQL Server on Linux, you can use the mssql-conf script to enable a trace flag).

An example of how to set this trace flag on Linux would be the following command:

sudo /opt/mssql/bin/mssql-conf traceflag 7412 on

Figure 5-41. SET STATISTIC IO output in SQL Operations Studio

ChapTer 5 SQL Server TooLS

https://twitter.com/mssqltiger

211

See the documentation on how to set trace flags at https://docs.microsoft.com/

sql/linux/sql-server-linux-configure-mssql-conf#traceflags.

After you enable this trace flag, you can now view actual execution plan information

for any active query via the sys.dm_exec_query_profiles DMV (view operators and

statistics in a table format) and the sys.dm_exec_query_statistics_xml DMF (view

the plan as an XML document). We have done testing to show that lightweight query

profiling has minimal impact on overall query performance, so it can be used in

production environments. If you would like to trace query plan information using

Extended Events with lightweight profiling, you can enable the query_thread_profile

event, which also enables lightweight query profiling for all sessions. The query_thread_

profile event includes columns about operators (nodes) but does not include the plan in

the form of an XML document.

Lightweight profiling has another appealing feature in that the DMV and DMF can

be used against queries currently in progress (live query profiling) so you don’t have to

wait for a query to complete.

Note dm_exec_query_profiles, dm_exec_query_statistics_xml, and query_
thread_profile are also available for queries that have already completed when you
enable the query_post_execution_showplan event. however, using query_post_
execution_showplan overrides trace flag 7412 and will not use lightweight query
profiling.

SSMS allows you to view the information from lightweight query profiling via a

feature called Activity Monitor.

Note SSMS also includes a button to view query plan statistics for “live queries”
called Include Live Statistics. This feature does not use lightweight query profiling.

 Query Store
After we had shipped SQL Server 2008 (codename Katmai), I was approached by one

of our chief architects for SQL Server, Conor Cunningham, about our techniques for

performance troubleshooting in Technical Support and how we could improve them.

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf#traceflags
https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf#traceflags

212

DMVs had become extremely popular by SQL Server 2008, and we continued to add

more based on customer feedback and features we added to SQL Server. The biggest

drawback to DMVs is that to capture a history of changes, you must poll DMV data by

querying the DMV and save the results on a frequent basis (you also usually added a

timestamp with each query against the DMV to note the history of rows over time). For

example, to capture performance information about queries in cache, you could query sys.

dm_exec_query_stats and save off the data every <n> seconds or minutes. This technique

works but it is not elegant. We used this technique in technical support, along with tools

like SQLTrace and Extended Events for performance troubleshooting with customers.

Conor came along with a new idea called Query Disk Store. His idea was to build

into the SQL Server engine the ability to store performance information about queries,

including changes over time directly into the database. This idea led to a new feature in

SQL Server 2016 called Query Store.

Query Store is a database option that, when enabled, turns on code in the SQL Server

engine to store information any time a new query is compiled, including the estimated

query plan. In addition, when a query is executed, aggregate performance information

is accumulated for the query. All this data is stored in a series of system tables in the

database where Query Store is enabled. You can see query store data by querying a series

of catalog views built on top of any data stored in memory or in the system tables.

Since the performance data is stored in the user database, this data is available after

backing up and restoring the database.

Tip Use the T-SQL command DBCC CLONEDATABASE to make a copy of the
schema of a database without user data. This command captures all system table
data, so it includes Query Store. This allows you to evaluate query store data offline
without having to back up the entire user database. See more details about DBCC
CLoNeDaTaBaSe at https://support.microsoft.com/help/3177838/
how-to-use-dbcc-clonedatabase-to-generate-a-schema-and-
statistics-only.

Enabling query store for a database is as simple as running a T-SQL statement like

the following:

ALTER DATABASE WideWorldImporters SET QUERY_STORE = ON

GO

ChapTer 5 SQL Server TooLS

https://support.microsoft.com/help/3177838/how-to-use-dbcc-clonedatabase-to-generate-a-schema-and-statistics-only
https://support.microsoft.com/help/3177838/how-to-use-dbcc-clonedatabase-to-generate-a-schema-and-statistics-only
https://support.microsoft.com/help/3177838/how-to-use-dbcc-clonedatabase-to-generate-a-schema-and-statistics-only

213

Once you enable Query Store, the SQL Server engine will start collecting data in

memory and system tables. By default, data is kept for 30 days and has a maximum

size of 100MB. Both these, as well as other options, are configurable. You can find the

available configuration options for Query Store in our documentation at https://docs.

microsoft.com/sql/relational-databases/performance/monitoring-performance-

by-using-the-query-store#Options.

You can find a list of query store catalog views in our documentation at https://

docs.microsoft.com/sql/relational-databases/system-catalog-views/query-

store-catalog-views-transact-sql. The views are very normalized, so I recommend

you look at different Query Store key usage scenarios to see how to join these query

store catalog views in our documentation at https://docs.microsoft.com/sql/

relational-databases/performance/monitoring-performance-by-using-the-query-

store#Scenarios.

You can enable a widget in SQL Operations Studio to view Query Store data, as found

in our documentation at https://docs.microsoft.com/sql/sql-operations-studio/

tutorial-qds-sql-server?view=ssdt-18vs2017.

SSMS comes built-in with Reports to view Query Store data. Figure 5-42 show the use

of Query Store reports to find queries that consume the top resources.

Figure 5-42. Using Query Store Reports in SSMS

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store#Options
https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store#Options
https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store#Options
https://docs.microsoft.com/sql/relational-databases/system-catalog-views/query-store-catalog-views-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-catalog-views/query-store-catalog-views-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-catalog-views/query-store-catalog-views-transact-sql
https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store#Scenarios
https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store#Scenarios
https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store#Scenarios
https://docs.microsoft.com/sql/sql-operations-studio/tutorial-qds-sql-server?view=ssdt-18vs2017
https://docs.microsoft.com/sql/sql-operations-studio/tutorial-qds-sql-server?view=ssdt-18vs2017

214

Query store is a rich set of performance telemetry, and in many cases does not

present a significant performance impact on a production server. Query store opens

a range of possible performance tuning and investigation scenarios that were not

previously possible without a large amount of extra work and code. Our documentation

includes a discussion of Query Store usage scenarios such as performance regressions

and A/B Testing at https://docs.microsoft.com/sql/relational-databases/

performance/query-store-usage-scenarios.

I’ll discuss another unique value to Query Store in Chapter 6 where we have

added a feature to use the telemetry in Query Store to provide intelligent performance

diagnostics and automation.

 DBCC Commands
When I joined Microsoft in 1993, I already knew the SQL language well, based on the

ANSI SQL Standard. I learned quickly that T-SQL was based on the ANSI standard but

like other database engines had extended the command set for various purposes. One of

the first unique T-SQL commands I learned was DBCC (Database Console Commands).

The basic syntax of DBCC is:

DBCC <command>(command parameters)

You can find the complete list of documented DBCC commands (there are still

many undocumented ones, but you should not rely on their behavior or existence) in

our documentation at https://docs.microsoft.com/sql/t-sql/database-console-

commands/dbcc-transact-sql.

By the time I was working on SQL Server 7.0, the command set for DBCC had

exploded. Since that time, we have made a conscious effort to reduce the need for DBCC

commands other than CHECKDB. But there are plenty of commands that remain. Here

are the top five DBCC commands I use on a regular basis:

DBCC CHECKDB: Use this command to check the logical and

physical consistency of the database. It is the most often used

DBCC command. Our documentation covers syntax, options, best

practices, and details of how CHECKDB works at https://docs.

microsoft.com/sql/t-sql/database-console-commands/dbcc-

checkdb-transact-sql. You can also find a lot of information

about CHECKDB and opinions about how often it needs to be run

from the SQL Server community.

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/relational-databases/performance/query-store-usage-scenarios
https://docs.microsoft.com/sql/relational-databases/performance/query-store-usage-scenarios
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-transact-sql
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-transact-sql
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-checkdb-transact-sql
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-checkdb-transact-sql
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-checkdb-transact-sql

215

DBCC DROPCLEANBUFFERS: This command is extremely useful

for testing disk I/O with SQL Server. This DBCC command will

free up any database pages in memory so that any future SELECT

statements must force pages to be read from disk. I use this

command in demos and testing all the time to see how fast I can

read database pages in from disk for a table or set of objects.

DBCC SHRINKDATABASE: Let’s say you created a database of

100GB but you are only using 50GB of space within the files. Now

you want to reduce the size of the database files on disk to 60GB

without creating a new database and copying over data. DBCC

SHRINKDATABASE can provide that functionality. You can find

the syntax and options of this command in our documentation at

https://docs.microsoft.com/sql/t-sql/database-console-

commands/dbcc-shrinkdatabase-transact-sql.

DBCC TRACEON: The next section in this chapter is about trace

flags, although I’ve mentioned trace flags a few times already

in this book. I’ll discuss the details of how to use this DBCC

command to turn on and off trace flags in the next section. You

can find the documentation of DBCC TRACEON at https://

docs.microsoft.com/sql/t-sql/database-console-commands/

dbcc-traceon-transact-sql.

DBCC HELP: While you can look up the syntax of DBCC

commands in the documentation, SQL Server provides online

help for DBCC with the DBCC HELP command. Run this

command to see a list of all officially supported DBCC commands:

DBCC HELP('?')

GO

Run this command to see the syntax and options for DBCC CHECKDB:

DBCC HELP ('CHECKDB')

GO

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-shrinkdatabase-transact-sql
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-shrinkdatabase-transact-sql
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-traceon-transact-sql
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-traceon-transact-sql
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-traceon-transact-sql

216

Caution This is undocumented and could easily change in the future. If you
enable trace flag 2588, it will enable DBCC heLp to show all DBCC commands in
the code, even ones that are not supported. again, you should use extreme caution
with any undocumented DBCC command. They are not intended for production use
and you could even cause problems for your SQL Server when using them unless
you are guided by Microsoft.

 Trace Flags
Trace flags can be used to enable a specific feature in SQL Server or gain insight into

technical details that could be used for debugging or diagnostics.

Think of trace flags as dynamic decision points in the code of the SQL Server engine

that can be used to turn on or off a capability or behavior.

Trace flags have a long history in SQL Server and were originally intended as

debugging aids for the developers of the SQL Server engine. Developers wanted ways to

turn certain behaviors on and off without rebuilding the code. Today, in the SQL Server

source code there are hundreds of possible trace flags. However, the only official trace

flags that are supported are either listed on this documentation page, https://docs.

microsoft.com/sql/t-sql/database-console-commands/dbcc-traceon-trace-flags-

transact-sql or in an official Microsoft Knowledge Base article.

Trace flags are enabled for a session or globally for all sessions. Some trace flags

can only be enabled globally and must be turned on at the startup of SQL Server to be

recognized by the code.

To enable a trace flag for a session, you use the T-SQL command DBCC TRACEON.

To turn off a trace flag, you use the command DBCC TRACEOFF. If you use the special

parameter -1 when turning on or off trace flags with DBCC TRACEON, the trace flags

will be enabled globally for all sessions from that point forward. Trace flags can be

turned on at SQL Server startup, to be enabled globally by using the mssql-conf script

as documented at https://docs.microsoft.com/sql/linux/sql-server-linux-

configure-mssql-conf#traceflags.

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-traceon-trace-flags-transact-sql
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-traceon-trace-flags-transact-sql
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-traceon-trace-flags-transact-sql
https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf#traceflags
https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf#traceflags

217

Note Like SQL Server for Windows, SQL Server for Linux supports startup trace
flags with the sqlservr command line parameter -T. For SQL Server on Linux, I
recommend you always use the mssql-conf script to set or unset startup trace
flags.

You can view the status of all enabled trace flags by using the command DBCC
TRACESTATUS.

Many documented trace flags end up in the product to enable a specific performance

optimization or fix for a problem encountered by users. These changes often require

trace flags to avoid causing problems for customers who do not need the behavior. In

some cases, we have tried to use other methods to enable these types of enhancements

such as ALTER DATABASE options or through commands like sp_configure.

Here are a few of common trace flags I often use that you can find in the

documentation:

1222: Displays details of deadlock information in the SQL Server

ERRORLOG in an XML format. You can find a discussion of

locking and deadlocking topics, including details of the XML

deadlock information from this traceflag, in our documentation

at https://docs.microsoft.com/sql/relational-databases/

sql-server-transaction-locking-and-row-versioning-

guide#Lock_Engine.

3226: By default, SQL Server writes out every successful backup

operation to the ERRORLOG. For some customers, this is too

much noise in the ERRORLOG. This trace flag will disable writing

successful backup information to the ERRORLOG.

3608: This trace flag can only be used at startup. If trace flag is

turned on, SQL Server will only recover the master database. It

will not create tempdb unless you attempt to access a feature

that requires tempdb (such as creating a temporary table). This

command could be useful for advanced recovery scenarios and

SQL Server startup troubleshooting.

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide#Lock_Engine
https://docs.microsoft.com/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide#Lock_Engine
https://docs.microsoft.com/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide#Lock_Engine

218

4199: This trace flag is used to enable Query Optimizer fixes in

cumulative updates. You can read more about how to use this

trace flag in this Microsoft Knowledge Base article: https://

support.microsoft.com/help/974006/sql-server-query-

optimizer-hotfix-trace-flag-4199-servicing-model.

7752: Enables asynchronous loading of the Query Store.

I recommend you turn this on when using Query Store in

production to avoid any issues for users getting blocked when

Query Store data is loaded into memory at the startup of a

database.

3604: This one is not documented. It enables the output of some

DBCC commands to be displayed as messages back to the client

application. You should not need this for documented DBCC

commands, but some that are undocumented require it to work

(The prime example is DBCC PAGE).

Note another trace flag feature exists at the query level called
QUerYTraCeoN. This option only applies to a specific list of trace flags. You can
read more about this trace flag option at https://support.microsoft.
com/help/2801413/enable-plan-affecting-sql-server-query-
optimizer-behavior-that-can-be.

 SSIS for ETL
While bcp provides fundamental import/export capabilities, there are scenarios where

you may need more complex functionality to extract, transform, and load (ETL) data.

SQL Server comes with a feature to provide rich ETL capabilities in the form of SQL

Server Integration Services (SSIS).

The first step to using SSIS is to install the SSIS package for Linux on either RHEL

or Ubuntu (SQL Server 2017 does not provide an SSIS package for SUSE at the time of

writing of this book). The installation process is like SQL Server and integrates with the

ChapTer 5 SQL Server TooLS

https://support.microsoft.com/help/974006/sql-server-query-optimizer-hotfix-trace-flag-4199-servicing-model
https://support.microsoft.com/help/974006/sql-server-query-optimizer-hotfix-trace-flag-4199-servicing-model
https://support.microsoft.com/help/974006/sql-server-query-optimizer-hotfix-trace-flag-4199-servicing-model
https://support.microsoft.com/help/2801413/enable-plan-affecting-sql-server-query-optimizer-behavior-that-can-be
https://support.microsoft.com/help/2801413/enable-plan-affecting-sql-server-query-optimizer-behavior-that-can-be
https://support.microsoft.com/help/2801413/enable-plan-affecting-sql-server-query-optimizer-behavior-that-can-be

219

package managers for RHEL (yum) and Ubuntu (apt-get). The SSIS installation process

also requires a script called ssis-conf to complete the setup process.

You can follow the installation process and other aspects to deployment such as

update and unattended install with our documentation at https://docs.microsoft.

com/sql/linux/sql-server-linux-setup-ssis.

When you install SSIS on Linux, we do not create a systemd service. Rather, a Linux

program called dtexec is installed in the /opt/ssis directory. dtexec is the program used

to execute SSIS packages on a Linux server. Like SQL Server, dtexec uses the SQLPAL

architecture to allow the same code that runs SSIS on Windows to run on Linux.

 Creating a Package
SSIS on Linux requires a package to execute an ETL scenario. Packages are created and

saved into a file format that is based on XML, called the Data Transformation Services

Package (DTSX) file format. The complete format is documented at https://msdn.

microsoft.com/library/gg587140.aspx.

Creating a package by editing a DTSX formatted file directly is complex. Therefore,

there are methods to create SSIS packages with a tool using SQL Server Data Tools

(SSDT) on Windows or developing a program using the .Net package Microsoft.

SqlServer.Dts.Runtime. For more information about building programs to create and run

packages, see our documentation at https://docs.microsoft.com/sql/integration-

services/integration-services-programming-overview.

 SQL Server Data Tools

SSDT works within the Visual Studio IDE development experience. SSDT installs within

an existing Visual Studio installation. If you don’t have Visual Studio, when you install

SSDT a minimal version of the Visual Studio environment is installed. Therefore, SSDT is

completely free to use to create SSIS packages on a Windows computer. You can find the

complete instructions to download and install SSDT in our documentation at https://

docs.microsoft.com/sql/ssdt/download-sql-server-data-tools-ssdt.

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/linux/sql-server-linux-setup-ssis
https://docs.microsoft.com/sql/linux/sql-server-linux-setup-ssis
https://msdn.microsoft.com/library/gg587140.aspx
https://msdn.microsoft.com/library/gg587140.aspx
https://docs.microsoft.com/sql/integration-services/integration-services-programming-overview
https://docs.microsoft.com/sql/integration-services/integration-services-programming-overview
https://docs.microsoft.com/sql/ssdt/download-sql-server-data-tools-ssdt
https://docs.microsoft.com/sql/ssdt/download-sql-server-data-tools-ssdt

220

 Building the Package

SSDT comes with a project type called an Integration Services project. When you create

a new Integration Services project, you are presented with a visual designer to build a

package. Figure 5-43 shows an example of the Package Designer in a new Integration

Services Project.

SSIS Packages have many options and features to connect to data sources to extract

and load data. In addition, packages can contain a wide variety of data flow tasks that

allow for rich transformations.

I’ll create a simple example to show how to build a package and execute it on the

Linux Server using dtexec. In this example, I’m going to build a package that will extract

all data from the People table from the WideWorldImporters example I showed you in

Chapter 3 and write out the data to a text file on the Linux Server.

Figure 5-43. The Package Designer with an Integrated Services project in SSDT

ChapTer 5 SQL Server TooLS

221

Using SSDT, I created a new Project called an Integration Services project (I selected

Project from the New Menu of the tool and found this project type under Installed/

Business Intelligence). Figure 5-44 shows the interface to start a new Integration Services

project.

After selecting this project type, I’m presented with the Package Designer screen as

shown in Figure 5-43. To perform the simple example of extracting data and writing this

data to a file, the first step on the main Package Designer screen is to create a new Data

Flow task. I can do this by selecting the Data Flow Task in the SSIS toolbar on the left-

hand side of the Designer and dragging and dropping the icon into the main designer

window, which by default is called the Control Flow designer.

Figure 5-44. A new Integration Services project in SSDT

ChapTer 5 SQL Server TooLS

222

Figure 5-45 shows my screen after adding a Data Flow Task to my Control Flow for

this package.

In the tab next to the Control Flow Designer is the Data Flow Designer. I can see

the design for this Data Flow Task by double-clicking the rectangle shape called Data

Flow Task.

For the Data Flow Task, I need to add in a source of the data, which will be my SQL

Server on Linux, and a destination, which will be a flat file. For the source of the data, I

will need an ODBC source, since I’m going to run the package on the Linux Server. First,

I found the ODBC Source from the Other Sources category in the SSIS Toolbar and drag/

dropped this into my designer window. Figure 5-46 shows my screen after adding an

ODBC Source to the Data Flow Task.

Figure 5-45. A Data Flow Task added to the Control Flow of the SSIS Package

ChapTer 5 SQL Server TooLS

223

Now I need to configure the ODBC source to point to my SQL Server on Linux server

and my example WideWorldImporters database. I’ll do this by right-clicking the ODBC

Source and selecting Edit. I selected New on the next window for the ODBC Connection

Manager. This brings up another window, where I will pick the New button again to

build a new connection.

On this screen, I will use an ODBC connection string. Connection strings are a

method to provide all the necessary information to connect to SQL Server on Linux

(or any other ODBC based data source). For this example, my connection string

looks like this:

Driver={ODBC Driver 17 for SQL Server};server=bwsql2017rhel;database=WideWo

rldImporters;uid=sa

Connection strings are common ways for programmers to supply connection

information for SQL Server. You can learn more about all the connection strings options

for ODBC in our documentation at https://docs.microsoft.com/sql/connect/odbc/

dsn-connection-string-attribute.

Figure 5-46. Adding an ODBC Source to the Data Flow Task

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/connect/odbc/dsn-connection-string-attribute
https://docs.microsoft.com/sql/connect/odbc/dsn-connection-string-attribute

224

On this screen I’ll also supply the login of sa and the sa password. Figure 5-47 shows

my screen before I hit OK to create this new connection.

Note To use this connection string on your windows computer within your
package, you must install the oDBC Driver 17 for SQL Server on your Windows
computer. You can download this package from https://docs.microsoft.
com/sql/connect/odbc/download-odbc-driver-for-sql-server

Figure 5-47. Creating a new connection with a connection string for the SSIS
package

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/connect/odbc/download-odbc-driver-for-sql-server
https://docs.microsoft.com/sql/connect/odbc/download-odbc-driver-for-sql-server

225

Once you hit OK, you can select the Table Name in the Name of the table of the

view field on the ODBC Source screen. I selected the “Application”.“People” table for

this example. To simply this example, I need to exclude columns from this table that

are varbinary(max) or varchar(max), which are the HashedPassword, UserPreferences,

Photo, and CustomFields columns. There are methods to include these columns for

extraction to a file using Data Conversion tasks. To exclude these columns, I need to pick

the Columns option on the left-hand side of the ODBC Source Window and uncheck

these column names, then hit the OK button.

Now I’m ready to set up the Flat File Destination. From the SSIS Toolbar, drag the

Flat File Destination icon on the canvas where the ODBC Source exists.

You can now take the blue arrow from the ODBC Source shape and connect it to

the Flat File Destination. Right-click and select Edit to provide the File information.

Select the New button, keep the default of Delimited for format, and hit OK. You will

be presented with a window to put in a File Name (this will be the name of the new file

created on the Linux Server, which by default will be the directory where you execute

dtexec).

I put in a File Name of people.txt and selected the Unicode checkbox.

Now select the Mappings option on the Flat File Destination Editor page. The Editor

will automatically map column names to field names for the file. Hit OK on this screen.

When you have completed this, the screen looks like Figure 5-48.

Figure 5-48. A Data Flow Task with source and destination

ChapTer 5 SQL Server TooLS

226

I have one last step before I copy the package to my Linux server. By default, the

package is encrypted for sensitive information in the package like passwords and

usernames. For purposes of this example, I’m going to change the properties of the

Package to protect it via a password.

When you click in the canvas of the designer, there should be a pane at the

lower right-hand corner of the tool for Properties. It may be currently on a Data

Flow Task. If so, I clicked on the down arrow button next to that task and selected

Package. I scrolled down the list of properties and changed the ProtectionLevel to

EncryptSensitiveWithPassword, and supplied a password in the PackagePassword field.

I will need this password any time I want to open the package or execute it, including

when I execute it on Linux.

 Executing a Package
To execute this package, I need to copy it from my Windows computer to the Linux

Server. I can conveniently use MobaXterm to do this or a program like scp or winscp.

Package files from SSDT are stored by default in the <user>\Projects directory, so I used

the tool to save the package (.dtsx file) to a location like c:\temp on my computer.

I then copied the file (Package.dtsx) to my home directory on my Linux Server.

Now I’m ready to execute the package using the dtexec program that is installed

when you install the mssql-server-is package on Linux.

Note You must first install the Microsoft oDBC Driver 17 for SQL Server on Linux
to execute this package. If you followed the steps to install the SQL Server tools
(sqlcmd, …), this will already be installed.

Here is the command to run dtexec to execute the package file called Package.dtsx:

dtexec /F Package.dtsx /DE <package password>

ChapTer 5 SQL Server TooLS

227

Figure 5-49 shows the results of executing dtexec on Linux.

The file people.txt was created in my home directory. You can also examine the XML

details of the Package.dtsx file created for this package.

 Go Further with SSIS
To learn more about SSIS on Linux, including capabilities and limitations, see our

documentation at https://docs.microsoft.com/sql/linux/sql-server-linux-

migrate-ssis.

To learn more about SSIS overall, see our main documentation page at https://

docs.microsoft.com/sql/integration-services/sql-server-integration-

services.

To learn about typical usage scenarios for SSIS, see our documentation page at

https://msdn.microsoft.com/en-us/library/ms137795(v=sql.105).aspx.

Figure 5-49. Executing dtexec on Linux

ChapTer 5 SQL Server TooLS

https://docs.microsoft.com/sql/linux/sql-server-linux-migrate-ssis
https://docs.microsoft.com/sql/linux/sql-server-linux-migrate-ssis
https://docs.microsoft.com/sql/integration-services/sql-server-integration-services
https://docs.microsoft.com/sql/integration-services/sql-server-integration-services
https://docs.microsoft.com/sql/integration-services/sql-server-integration-services
https://msdn.microsoft.com/en-us/library/ms137795(v=sql.105).aspx

228

 Summary
I have shown you in this chapter the incredible family of tools, programs, and features

built into the SQL Server Engine. You are now empowered to use other features of

SQL Server, whether that be enabling the capabilities of SQL Server for maximum

performance, ensuring you have secured your SQL Server, or setting up a High

Availability Solution. The next several chapters will cover these key topics that harness

the complete power of the SQL Server Modern Data Platform on Linux.

ChapTer 5 SQL Server TooLS

229
© Bob Ward 2018
B. Ward, Pro SQL Server on Linux, https://doi.org/10.1007/978-1-4842-4128-8_6

CHAPTER 6

Performance Capabilities
If you are going to provide a data platform that is competitive in the industry and can

handle the largest enterprise workloads on the planet, the database engine must be

fast. The engine must be fast, built-in. It must provide capabilities for configuration, and

tuning for users and developers to use computing resources to their maximum. It must

provide features that allow users to accelerate performance beyond expectation with

little or no application changes. And finally, a world-class data platform should come

with built-in capabilities to adapt and autotune common query performance problems.

SQL Server on Linux has all of this and more. If you have read all the chapters of the

book to this point, I’ve shown the basics of deployment and how to create a database

and application. I’ve also shown the vast set of tools and features for maximizing the

investment of SQL Server. In this chapter, I want to describe the major performance

capabilities of the SQL Server data platform. My goal for this chapter is that anyone

reading this will understand how to achieve the best performance possible for a

database application using SQL Server on Linux.

I’ll first describe the built-in capabilities of the SQL Server database engine that are

the foundation required to achieve maximum performance. Then I’ll discuss the various

configuration choices to achieve the best performance possible including configuration

of the SQL Server instance, database, and Linux Operating System. I’ll provide a section

in this chapter on performance tuning, so you can ensure you are using resources for

SQL Server most efficiently and at maximum capacity. I’ll then discuss features in SQL

Server that allow an application to accelerate performance beyond traditional database

application functionality. And finally, I’ll conclude the chapter by discussing new features

in SQL Server that provide automation to adapt and autotune query performance.

In 2017 at the Microsoft Ignite Conference, I gave a presentation on SQL Server

Performance capabilities called Experience Microsoft SQL Server 2017: The fast and
the furious. I encourage you to watch this presentation as a supplement to this chapter.

You can find this video at https://channel9.msdn.com/Events/Ignite/Microsoft-

Ignite-Orlando-2017/BRK3109.

https://channel9.msdn.com/Events/Ignite/Microsoft-Ignite-Orlando-2017/BRK3109
https://channel9.msdn.com/Events/Ignite/Microsoft-Ignite-Orlando-2017/BRK3109

230

For examples in this chapter, we will use the full WideWorldImporters database. So,

before you proceed, you need to copy the WideWorldImporters backup to your Linux

Server. You will restore it in the chapter and then use it for various examples. To copy in

this example, use the following command on your Linux Server if it is connected to the

Internet:

wget https://github.com/Microsoft/sql-server-samples/releases/download/

wide-world-importers-v1.0/WideWorldImporters-Full.bak

I have provided the following scripts to help you restore this sample on your

Linux server:

cpwwi.sh: Copies the WideWorldImporters-Full.bak file into /var/

opt/mssql

restorewwi_linux.sql: Restores the WideWorldImporters

database

restorewwi.sh: Executes the restorewwi_linux.sql script with

sqlcmd

Remember that the scripts are available by clicking the Download source code

button on the Apress.com catalog page for this book. The URL for that page is

www.apress.com/us/book/9781484241271.

Note I often refer in this chapter to some of the objects in this database, so it
is helpful to see the complete set of T-SQL scripts that make up the database. I
have provided a script called wwi.sql in the examples that provides the database
definition and all objects.

 Performance Built In
We built the SQL Server database engine to be fast and scale to the needs of the largest

database workloads on the planet. I wrote this section of the chapter, not to require any

action, but to give the reader the understanding of what is possible with SQL Server. The

SQL Server on Linux database engine is built to understand how to dynamically scale

and maximize CPU, I/O, and memory resources of a computer, virtual machine, or

ChapTer 6 performanCe CapabILITIeS

http://www.apress.com/us/book/9781484241271

231

container. Users may be reading this book to learn about SQL Server and decide whether

it’s a data platform they can rely on to run their business or be the data source for a

new application. This section is intended to help provide the information necessary to

answer those questions.

You don’t have to go any further to understand what is possible with SQL Server then

to just look at our TPC benchmark performance. SQL Server on Linux currently has the

two best performance results for a 1TB TPC-H benchmark, which measures analytic

query performance. (You can read more about TPC benchmarks at http://www.tpc.org

and you can see the specific benchmarks results I mention for TPC-H at http://www.

tpc.org/3331 and http://www.tpc.org/3327.)

SQL Server 2017 on Linux is based on some amazing work our engineering team

did in SQL Server 2016. As a supplement to this section of the chapter, I encourage you

to read the blog series called SQL Server 2016 It Just Runs Faster at https://blogs.

msdn.microsoft.com/bobsql/tag/it-just-runs-faster and the 2016 Microsoft Ignite

presentation I gave on the same subject at https://channel9.msdn.com/Events/

Ignite/2016/BRK3043-TS.

 SQL Server Built-in Scalability
I described in Chapter 1 as part of the architecture of SQL Server the SQLOS component.

SQLOS is built to provide scheduling and memory services to the SQL Server engine.

All SQL Server engine components use SQLOS to create and execute tasks executed by

a pool for worker threads. SQL Server engine components are required to use SQLOS

services for scheduling using a non-preemptive system. Using this type of scheduling

system allows SQLOS to minimize kernel context switches and maximize CPU resource

usage and efficiency.

To provide these services, SQLOS creates a list of schedulers based on the number of

detected logical CPUs and assigns a group of worker threads from an overall pool to each

scheduler. As new tasks are created to execute a unit of work (for example, a login or a

query), they are assigned to run on a worker thread on a specific scheduler. Furthermore,

the scheduling system is designed to detect and take advantage of NUMA computer

architectures through nodes. Nodes and CPUs provide a natural scaling unit for SQLOS

and SQL Server. SQLOS can allow worker threads to run on any CPU within a NUMA

node but avoid cross-node boundaries to reduce foreign memory access. Recognition

of NUMA nodes and CPUs allows SQL Server to spread worker threads across CPUs

ChapTer 6 performanCe CapabILITIeS

http://www.tpc.org
http://www.tpc.org/3331
http://www.tpc.org/3331
http://www.tpc.org/3327
https://blogs.msdn.microsoft.com/bobsql/tag/it-just-runs-faster
https://blogs.msdn.microsoft.com/bobsql/tag/it-just-runs-faster
https://channel9.msdn.com/Events/Ignite/2016/BRK3043-TS
https://channel9.msdn.com/Events/Ignite/2016/BRK3043-TS

232

to provide maximum scalability. Furthermore, SQL Server can partition internal

data structures and lists by node and/or CPU to ensure the code does not encounter

bottlenecks for high, concurrent user workloads.

SQLOS exposes scheduler, node, and CPU information through these DMVs:

dm_os_schedulers: This DMV lists out the schedulers used by

SQL Server for worker thread scheduling, including statistics of

how many workers are running or how many tasks are waiting for

a worker thread from the pool. Figure 6-1 shows example output

from this DMV on my SQL Server on Linux on a virtual machine

with four logical CPUs: (Note: you can use the example script dm_
os_schedulers.sql to see this output for your SQL Server).

Figure 6-1. dm_os_schedulers on a four CPU virtual machine running SQL Server
on Linux

The four schedulers with a status of VISIBLE ONLINE are normal schedulers used

to run SQL Server tasks and workers. HIDDEN schedulers are used to schedule work

for some background and other tasks such as backups. You can find the complete

documentation of this DMV at https://docs.microsoft.com/sql/relational-

databases/system-dynamic-management-views/sys-dm-os-schedulers-transact-sql.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-schedulers-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-schedulers-transact-sql

233

dm_os_nodes: This DMV lists out all detected NUMA nodes

on the server running SQL Server. Even servers that don’t have

NUMA nodes will have a node_id=0. Node_id=64 is for a special

node reserved for the Dedicated Administrator Connection

(DAC). I’ll talk more about DAC in a later chapter in this book.

SQLOS exposes tasks, workers, and threads through these DMVs:

dm_os_workers: This DMV lists out all worker threads that are

either executing or can execute a task for SQL Server. Worker

threads for SQL Server are created in a pool grouped by scheduler.

SQL Server will assign worker threads from the pool to execute an

incoming task (instead of dedicating a thread for every request).

By default, the configuration of max worker threads = 0

(which means dynamic). The value of 0 means SQL Server

creates a maximum pool of worker threads based on formulas as

documented at https://docs.microsoft.com/sql/database-

engine/configure-windows/configure-the-max-worker-

threads-server-configuration-option. The sys.dm_os_sys_info

DMV lists the current max worker threads calculated value. For

most scenarios, you should be able to leave the max worker

threads configuration value to 0 and let SQL Server calculate the

value. However, in some cases, you may want to override the

default by using the system procedure sp_configure to change

max worker threads to a fixed value. I’ll discuss this choice later in

the chapter.

dm_os_tasks: Any unit of work in SQL Server is a task. Any login,

query, or background task is a task. Think of a task as a function

in the SQL Server to execute code in the SQL Server engine. Tasks

are run by worker threads. It is possible in some situations that a

task will need to wait for a worker thread. In these situations, the

task will be listed in this DMV and the wait_type for the task in

dm_os_waiting_tasks will be THREADPOOL. A larger list of tasks

waiting on THREADPOOL could present a problem in SQL Server.

I documented some information on THREADPOOL waits many

years ago in this blog post: https://blogs.msdn.microsoft.com/

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/database-engine/configure-windows/configure-the-max-worker-threads-server-configuration-option
https://docs.microsoft.com/sql/database-engine/configure-windows/configure-the-max-worker-threads-server-configuration-option
https://docs.microsoft.com/sql/database-engine/configure-windows/configure-the-max-worker-threads-server-configuration-option
https://blogs.msdn.microsoft.com/psssql/2009/11/24/doctor-this-sql-server-appears-to-be-sick/

234

psssql/2009/11/24/doctor-this-sql-server-appears-to-

be-sick/. My friend Paul Randal has another great description

of how to address THREADPOOL waits in his blog post https://

www.sqlskills.com/help/waits/threadpool/. When a task is

bound to a worker thread, it becomes a request and will appear in

sys.dm_exec_requests.

Because modern NUMA and CPU architectures can support more than eight

physical cores per CPU, we introduced a feature called Auto Soft NUMA in SQL Server

2016, so SQL Server can logically partition nodes and CPUs within its code to provide

better scalability.

To understand how SQL Server detects CPU and NUMA nodes (and uses Auto Soft

NUMA), let’s look at an example. I have a machine in the labs of Microsoft with four

NUMA nodes, one CPU socket per node, and 24 cores per socket (hyperthreading is not

enabled, so a total of 96 CPUs).

When I install SQL Server on this computer, the ERRORLOG file detects the CPU and

cores with the following entries, as shown in Figure 6-2.

Figure 6-2. The SQL Server ERRORLOG entries detecting available CPUs

Auto Soft NUMA will be enabled if SQL Server detects more than eight physical cores

per CPU. SQL Server will then attempt to partition NUMA nodes (logical within SQL

Server) to get as close as possible to eight CPUs per node. Figure 6-3 shows how Auto

Soft NUMA has partitioned the 96 CPUs across four NUMA nodes on this computer

logically within SQL Server.

ChapTer 6 performanCe CapabILITIeS

https://blogs.msdn.microsoft.com/psssql/2009/11/24/doctor-this-sql-server-appears-to-be-sick/
https://blogs.msdn.microsoft.com/psssql/2009/11/24/doctor-this-sql-server-appears-to-be-sick/
https://www.sqlskills.com/help/waits/threadpool/
https://www.sqlskills.com/help/waits/threadpool/

235

Auto Soft NUMA is enabled by default, but you can disable this for any reason

(perhaps you suspect it is causing a performance problem) through ALTER SERVER

CONFIGURATION. You can read more about Auto Soft NUMA in our documentation at

https://docs.microsoft.com/sql/t-sql/statements/alter-server-configuration-

transact-sql. To understand how to read the mappings in the ERRORLOG for the “CPU

Mask” to see which CPUs are mapped to specific NUMA nodes, see this blog post where

I talk more about Auto Soft NUMA and how to interpret CPU mappings: https://blogs.

msdn.microsoft.com/bobsql/2016/11/29/how-it-works-it-just-runs-faster-auto-

soft-numa.

Since SQLOS controls scheduler and thread execution, it is possible to assign SQL

Server worker threads to specific NUMA nodes and/or CPUs. This process is called

affinity. I’ll discuss more about affinity in later sections of this book.

 Dynamic Memory and Cache Management
SQL Server is built to adapt but also maximize computing resources. Memory can be one

of the most important resources for database performance. SQL Server provides a robust

memory management system for important resources such as database pages (buffers)

and cached T-SQL queries and plans. SQL Server also manages memory for other

internal needs and is tracked through a system of memory clerks. (One of the Dynamic

Management Views I called out in Chapter 5 was dm_os_memory_clerks.)

Figure 6-3. ERRORLOG entries for NUMA and CPU mapping

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/t-sql/statements/alter-server-configuration-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/alter-server-configuration-transact-sql
https://blogs.msdn.microsoft.com/bobsql/2016/11/29/how-it-works-it-just-runs-faster-auto-soft-numa
https://blogs.msdn.microsoft.com/bobsql/2016/11/29/how-it-works-it-just-runs-faster-auto-soft-numa
https://blogs.msdn.microsoft.com/bobsql/2016/11/29/how-it-works-it-just-runs-faster-auto-soft-numa

236

Another amazing aspect of SQL Server’s memory management is dynamic memory.

SQL Server has built-in capabilities to grow and shrink its memory footprint based on

demand for memory. You will find that after installing SQL Server without creating any

new database, the engine will consume approximately 600MB of memory on Linux.

Then as you create databases, load data, and execute queries, SQL Server will grow its

memory consumption until it reaches designed limits. For many years when I was in

technical support for SQL Server on Windows, I would often hear complaints from my

Windows colleagues that SQL Server is “leaking” memory. What they were observing

was the natural dynamic growth of SQL Server’s memory consumption. SQL Server will

not grow its memory consumption forever, causing possible memory problems on Linux.

SQL Server is gated by two memory limits that are configurable. I’ll discuss these settings

in a later section in this chapter.

One of the methods in which SQL Server can shrink its memory footprint is that

the largest memory consumers within the SQL Server engine are caches. These cache

consumers are the Buffer Pool and Plan Cache.

The Buffer Pool is a cache of database pages including data, index, and system pages.

Since all database pages are backed by database files, it is possible at any point in time to

either free up a database page that is clean (not modified) or write a dirty database page

to disk to free it up for another page.

The Plan Cache is a separate set of memory cache for queries including their query

plans. SQL Server will cache query plans for ad hoc queries and objects like stored

procedures so that they will not have to be compiled for each execution. Not all query

execution plans are cached. For more details on this topic, read our documentation

at https://docs.microsoft.com/sql/relational-databases/query-processing-

architecture-guide#execution-plan-caching-and-reuse.

Here is an easy test to see how SQL Server will grow its memory usage dynamically

through the buffer pool. Note: If you have already restored the WideWorldImporters

backup or created it from previous chapters, the following steps will drop the database

and restore the full sample backup.

 1. If you have not done so already, drop the WideWorldImporters

sample with these T-SQL commands from any SQL tool:

USE [master]

GO

DROP DATABASE IF EXISTS [WideWorldImporters]

GO

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/query-processing-architecture-guide#execution-plan-caching-and-reuse
https://docs.microsoft.com/sql/relational-databases/query-processing-architecture-guide#execution-plan-caching-and-reuse

237

 2. Restart SQL Server on Linux with this command from the Linux

shell:

sudo systemctl restart mssql-server

 3. Let’s observe the amount of memory consumed by the sqlservr

process and the memory used within the SQL Server Engine.

Run the top command from the Linux shell.

top

Look for memory consumed by the sqlservr process under the RES column. Figure 6- 4

shows that on my Linux VM the sqlservr process consumes approximately 570MB.

Figure 6-4. Memory consumed by sqlservr after initial startup

Now run the following T-SQL command to see how much total memory the SQL

Server engine consumes within its own memory management. This T-SQL batch is

provided in the example script sqlmem.sql:

-- Find the total memory used within the SQL Server Engine, the total

amount of buffer pool usage,

-- and the target that SQL Server believes it can grow to

--

ChapTer 6 performanCe CapabILITIeS

238

SELECT counter_name, cntr_value FROM sys.dm_os_performance_counters

WHERE object_name = 'SQLServer:Memory Manager'

AND counter_name IN ('Database Cache Memory (KB)', 'Total Server Memory

(KB)', 'Target Server Memory (KB)')

GO

sys.dm_os_performance_counters is a Dynamic Management View (DMV) used to

query certain performance statistics across the SQL Server Engine. On Windows, these

values are also exposed by a tool called Performance Monitor. For Linux, I can just query

the data directly with T-SQL.

Tip To find out the complete list of SQL Server performance counter objects and
their descriptions, you can use this reference in our documentation: https://
docs.microsoft.com/sql/relational-databases/performance-
monitor/use-sql-server-objects.

Let me show the results on my Linux Server so you can observe this on your own

system. Figure 6-5 shows the results of running this T-SQL batch.

Figure 6-5. Examining SQL Server memory statistics

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/performance-monitor/use-sql-server-objects
https://docs.microsoft.com/sql/relational-databases/performance-monitor/use-sql-server-objects
https://docs.microsoft.com/sql/relational-databases/performance-monitor/use-sql-server-objects

239

Database Cache Memory (KB) is the amount of memory used by

the buffer pool. At startup on this server, it is only approximately

18MB.

Target Server Memory (KB) is the potential amount of memory

SQL Server can grow to. Think of this as the ceiling of memory

used within the SQL Server engine. In this example, it is

approximately 6.2GB.

Total Server Memory (KB) is the amount of memory used within

the SQL Server engine, which is approximately 174MB.

Why then did top show the sqlservr process consuming 500+MB? This is because the

difference between Total Server Memory (KB) and what top is showing is a fairly fixed

amount of memory allocated by the sqlservr process on Linux, not related to SQL Server’s

engine memory consumers like the buffer pool (including SQLPAL). As the amount of

memory SQL Server allocates grows, this difference should remain fairly constant.

Now let’s continue by showing a quick example of how SQL Server can dynamically

grow its memory usage through the buffer pool:

• Restore the full WideWorldImporters sample database using the

sample script restorewwi.sh.

• Run the following T-SQL command, which will force SQL Server to

read in all database pages from the WideWorldImporters database

into the buffer pool:

USE master

GO

DBCC CHECKDB(WideWorldImporters) WITH TABLOCK

GO

• Run the same top command you did previously and the preceding

T-SQL query to look at dm_os_performance_counters.

On my Linux server, the top command shows SQL Server’s memory increased

to approximately 1.3GB (looking at the RES column). The Database Cache Memory

(KB) increased to approximately 430MB, The Total Server Memory (KB) increased to

approximately 720MB, and the Target Server Memory (KB) increased slightly. These

increases line up with the fact that the WideWorldImporters database has about

approximately 400MB of database pages.

ChapTer 6 performanCe CapabILITIeS

240

 Efficient I/O Processing
SQL Server uses efficient methods to read and write database pages and transaction log

records to maximize performance and ensure durability and consistency. This includes

read-ahead reading, write-ahead logging, checkpoint processing, and data compression.

In addition, since SQL Server has its own caching mechanisms, the engine uses

Direct I/O by enabling the O_DIRECT flag when opening database and transaction

log files on Linux to bypass file system caches. You can read more about O_DIRECT at

http://man7.org/linux/man-pages/man2/open.2.html.

 Read-Ahead

Each database page is 8KB in size. It would be inefficient if SQL Server tried to only read

a single database page from a database file each time it needed to read data from disk.

Instead, SQL Server uses a mechanism called read-ahead to pull in database pages to the

buffer pool. The thinking is that these pages will likely be needed by the query currently

executing, so it would be more efficient to pull them into cache because a larger read

size is more efficient than a larger number of smaller reads. Scenarios where read-ahead

is used in SQL Server are situations where several rows spanning multiple pages are

scanned from a table or index. How can you tell if SQL Server is using read-ahead to read

database pages? There are several methods:

• Use the SET STATISTICS IO T-SQL statement in the session where the

query reading pages is executed.

• Use Extended Events to track the event file_read_completed.

You can also see the overall use of read-ahead in SQL Server using the DMV dm_
os_performance_counters, using the object_name = 'SQLServer:Buffer Manager' and

counter_name = 'Readahead pages/sec'.

SQL Server can only read multiple pages from a database file that are contiguous,

so the size of a read-ahead may vary depending on how pages are organized in a table

or index. Therefore, if a table or clustered index is fragmented where many of the pages

containing the data are not contiguous in the database file, read-ahead reads are not as

effective. I’ll discuss index fragmentation and how to manage it in Chapter 9. There are

some limits to read-ahead reads. The maximum size of a read-ahead in SQL Server 2017

Enterprise edition is 1MB. This number will be lower in other editions of SQL Server.

ChapTer 6 performanCe CapabILITIeS

http://man7.org/linux/man-pages/man2/open.2.html

241

There is also a limit to how many pages SQL Server will attempt to read asynchronously

as it performs read-ahead for pages that have been ready yet in buffer pool. This

maximum is larger in the Enterprise edition (5,000) than other editions (128).

Here is an example to see how SQL Server will use read-ahead for a typical scan of

table data. This assumes you restored the full WideWorldImporters database:

 1. Create and start an extended event session using the following

T-SQL set of statements. These statements can be found in the

sample script tracesqlreads.sql:

CREATE EVENT SESSION [tracesqlreads] ON SERVER

ADD EVENT sqlserver.file_read_completed(SET collect_path=(1)

 ACTION(sqlserver.database_name,sqlserver.sql_text)

 WHERE ([sqlserver].[database_name]=N'WideWorldImporters'))

ADD TARGET package0.event_file(SET filename=N'tracesqlreads')

WITH (MAX_MEMORY=4096 KB,EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_

LOSS,MAX_DISPATCH_LATENCY=30 SECONDS,MAX_EVENT_SIZE=0 KB,MEMORY_

PARTITION_MODE=NONE,TRACK_CAUSALITY=OFF,STARTUP_STATE=OFF)

GO

ALTER EVENT SESSION [tracesqlreads] ON SERVER STATE=START

GO

For this extended event session, I use a file target to write out

the extended events data.

 2. Execute the following T-SQL batches from your favorite SQL

Server tool. I’ll use SQL Operations Studio. These statements can

be found in the sample script sqlreadahead.sql:

USE [WideWorldImporters]

GO

DBCC DROPCLEANBUFFERS

GO

SET STATISTICS IO ON

GO

SELECT COUNT(*) FROM Sales.Invoices WITH (INDEX=1)

GO

ChapTer 6 performanCe CapabILITIeS

242

In this example, I use the DBCC DROPCLEANBUFFERS statement to force SQL

Server to read all pages needed for the query from disk. I then use SET STATISTICS IO

so that SQL Server will return messages with I/O statistics for the SELECT statement.

For the T-SQL SELECT statement to read data, I use a query hint for force SQL Server to

scan all pages from the clustered index of the Sales.Invoices table. You can read more

about query hints in our documentation at https://docs.microsoft.com/sql/t-sql/

queries/hints-transact-sql-query. Figure 6-6 shows the I/O statistics from the

SELECT statement on my Linux server.

Figure 6-6. I/O statistics for SQL Server read-ahead reads

Physical reads are single-page reads. Read-ahead reads are the number of times SQL

Server attempted to read more than one page when reading from the database file.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/t-sql/queries/hints-transact-sql-query
https://docs.microsoft.com/sql/t-sql/queries/hints-transact-sql-query

243

 3. Now I can use the results of the extended events session to see

what sizes were used for read-ahead reads. First, I need to stop the

extended events session with the following T-SQL statement:

ALTER EVENT SESSION [tracesqlreads] ON SERVER STATE=STOP

GO

 4. Now I use the following T-SQL statement to read the results from

the extended events session using the fn_xe_file_target_read_file

system stored procedure. You can find this T-SQL batch in the

sample script readxefile.sql:

SELECT [database_name] = xe_file.xml_data.value('(/event/action[@

name="database_name"]/value)[1]','[nvarchar](128)'),

[read_size] = CAST(xe_file.xml_data.value('(/event/data[@

name="size"]/value)[1]', '[nvarchar](128)') AS INT),

[file_path] = xe_file.xml_data.value('(/event/data[@name="path"]/

value)[1]', '[nvarchar](128)')

--xe_file.xml_data

FROM

(

SELECT [xml_data] = CAST(event_data AS XML)

FROM sys.fn_xe_file_target_read_file('/var/opt/mssql/log/

tracesqlreads*.xel', null, null, null)

) AS xe_file

GO

This system procedure returns the extended events data in the form of XML. The

preceding query shows an example of how to shred XML data into columns and rows.

Some of the results of this session on my Linux Server can be seen in Figure 6-7.

ChapTer 6 performanCe CapabILITIeS

244

The read_size column is measured in bytes. You can see that several reads are 64KB,

while some are larger including 246KB and 128KB.

 Write-Ahead Logging

When SQL Server needs to modify data on pages in the buffer pool, performance would

not be optimal if SQL Server had to wait for all changes for each database page to be written

to disk for the T-SQL statement that required the change (such as an INSERT statement).

Since each database includes a transaction log, if SQL Server ensures all changes are

written to the transaction log file, it does not have to write database pages immediately.

This concept is called write-ahead logging (this concept is also known as the WAL

protocol). Provided SQL Server ensures all modifications for a committed transaction

are written to the transaction log on disk, all transactions will be consistent even if the

changes to the database page are not written to disk should SQL Server or the Linux

server terminate unexpectedly.

This architecture allows for T-SQL statements that modify data to operate as fast as

changes can be hardened to the transaction log. This means for applications that rely on

performance of database modifications (such as OLTP heavy applications), placing the

transaction log file on an extremely fast storage system is important.

Figure 6-7. Extended events for read sizes from SQL Server read-ahead reads

ChapTer 6 performanCe CapabILITIeS

245

SQL Server does offer a feature called delayed durability, which allows transactions

to complete without waiting for the transaction log changes to be written to disk.

However, the tradeoff for performance is possible data loss. You can read more about

SQL Server transaction durability options in our documentation at https://docs.

microsoft.com/sql/relational-databases/logs/control-transaction-durability.

Transaction log writes are performed by a background task called LOG WRITER (you

can see this background task looking for the row in dm_exec_requests where command

= LOG WRITER). For scalability purposes, we enhanced SQL Server 2016 to use multiple

LOG WRITER tasks per NUMA node. You can read more about this concept in this blog

post: https://blogs.msdn.microsoft.com/bobsql/2016/06/03/sql-2016-it-just-

runs-faster-multiple-log-writer-workers/.

 Checkpoint, LazyWrites, and Eager Writes

If SQL Server never wrote modified database pages (also called dirty pages) to the

database data file on disk, the transaction log would grow endlessly and require a

large amount of disk space. Furthermore, recovering an SQL Server database if it were

restarted could take an exceptionally long time because all changes must be replayed

from the transaction log.

SQL Server uses several techniques to write database pages to disk. All these

techniques are based on a similar principal to read-ahead so that databases pages that

are contiguous are written together, resulting in efficient, larger writes.

By default, SQL Server 2017 uses a method of writing database pages called indirect
checkpoint. Indirect checkpoint uses a target recovery time to make decisions on when

to collect dirty database pages and write them to the corresponding database data file.

This concept is to reliably ensure that if the database must be restarted, the database can

be recovered (transactions rolled forward and rolled back) in a known interval of time.

The target recovery time is configured using the ALTER DATABASE T-SQL statement

using the TARGET_RECOVERY_TIME option. The default is one minute. SQL Server

also offers an option for automatic checkpoints, which was the default behavior prior

to SQL Server 2016. Automatic checkpoints use the sp_configure option recovery
interval and can result in I/O write behaviors that are not smooth but can have spikes.

Indirect checkpoints are designed to result in a smoother I/O pattern for writes but could

have an impact on heavy OLTP type applications. Indirect checkpoints are performed

by a background task called RECOVERY WRITER (you can see this background task

by looking for the row in dm_exec_requests where command = RECOVERY WRITER).

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/logs/control-transaction-durability
https://docs.microsoft.com/sql/relational-databases/logs/control-transaction-durability
https://blogs.msdn.microsoft.com/bobsql/2016/06/03/sql-2016-it-just-runs-faster-multiple-log-writer-workers/
https://blogs.msdn.microsoft.com/bobsql/2016/06/03/sql-2016-it-just-runs-faster-multiple-log-writer-workers/

246

Automatic checkpoints are performed by a background task called CHECKPOINT

(you can see this background task by looking for the row in dm_exec_requests where

command = CHECKPOINT).

SQL Server can also generate checkpoints for other types of internal operations

and events. For a complete read on the topic of database checkpoints, see our

documentation at https://docs.microsoft.com/sql/relational-databases/logs/

database-checkpoints-sql-server. You can track indirect checkpoints by looking for

the value in dm_os_performance_counters where object_name = SQLServer:Buffer

Manager and counter_name = Background writer pages/sec. You can track automatic

checkpoints by looking for the value in dm_os_performance_counters where object_

name = SQLServer:Buffer Manager and counter_name = Checkpoint pages/sec.

When SQL Server needs to free up memory for new database pages to be read into

the buffer pool because all existing memory is being used, some database pages that

need to be freed could be dirty. All dirty pages that need to be freed must be written to

disk. SQL Server uses the WAL protocol for these writes to ensure database consistency.

It is possible some of these dirty pages are part of uncommitted transactions, so

transaction log records must be first written so these uncommitted transactions can

be properly rolled back if necessary during recovery. Any activity to write out dirty

pages during buffer pool management operation is called a lazywrite. Lazywrites

will be performed by either a background task called LAZY WRITER (you can see

this background task by looking for the row in dm_exec_requests where command

= LAZY WRITER) or in line with SQL Server worker threads that are attempting to

allocate memory. You can track lazywrite activity by looking for the value in dm_os_

performance_counters where object_name = SQLServer:Buffer Manager and counter_

name = Lazy writes/sec.

Some scenarios with SQL Server involve a larger number of database page

modifications such as bulk insert, SELECT..INTO, or INSERT..SELECT. Rather than

flooding checkpoint processes, SQL Server will use a technique called Eager Writes to

trigger writes for dirty pages vs. waiting for a checkpoint. There is no special background

process for eager writes because they occur as a part of the bulk operation.

 Data Compression

To support maximizing your memory footprint, SQL Server supports data compression

for database pages and rows. Compression by its nature allows you to fit more data from

database pages into the buffer pool cache, offset with the cost of uncompressing data

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/logs/database-checkpoints-sql-server
https://docs.microsoft.com/sql/relational-databases/logs/database-checkpoints-sql-server

247

when you need to read data. Another more interesting form of compression is used

when you create columnstore indexes, which I will discuss later in this chapter. For more

information about data and row compression, see our documentation at https://docs.

microsoft.com/sql/relational-databases/data-compression/data-compression.

 Parallel Processing
Why use one thread when two can do it faster? That is the philosophy of parallel

processing in SQL Server. SQL Server has parallel processing capabilities across the

engine and for many different purposes and scenarios.

The most common scenario is parallel query processing. When compiling a query

to build a query plan, SQL Server can decide that a specific type of operation (e.g.,

Index Scan) could be run faster if run by multiple tasks (worker threads). Parallel query

processing traditionally gets a “bum rap” by many in the SQL Server community because

queries that use parallel processing can consume more CPU resources. While it is true

that any time SQL Server chooses to use operators for parallel query processing, there is

likely a tuning opportunity, there are several scenarios where using parallel queries is a

preferable option. Most of these scenarios are related to data warehouse applications.

I will discuss configuration options for controlling the number of tasks involved in

parallel query processing and other parallel operations later in this chapter.

Let’s look at an example of how to observe parallel query processing using a T-SQL

SELECT statement that has to scan a clustered index to retrieve a larger number of rows.

This example assumes you have already restored the full WideWorldImporters sample as

mentioned at the start of this chapter.

Use SQL Operations Studio with the following T-SQL batch, which can be found in

the sample script sqlqpparallel.sql:

USE [WideWorldImporters]

GO

SET STATISTICS XML ON

GO

SELECT COUNT(*) FROM Sales.Invoices WITH (INDEX=1)

GO

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/data-compression/data-compression
https://docs.microsoft.com/sql/relational-databases/data-compression/data-compression

248

Figure 6-8 shows the results, including a visual representation of the query plan.

Figure 6-8. A parallel query plan on SQL Server on Linux

In this figure, notice two indicators of a parallel query plan:

• The Parallelism operator

• The Number of Executions for the Clustered Index Scan is 4. Since

the Clustered Index Scan is the first execution in the query, a Number

of Executions = 4 indicates 4 worker threads are used to scan the

clustered index.

Parallel execution is used in other areas of SQL Server, including but not limited to:

• Creating Databases: SQL Server will create one worker thread for

each unique disk volume for creating database and transaction log

files.

• Backup/Restore: SQL Server will create multiple worker threads to

read or write to database files, and multiple worker threads to read or

write to the database backup.

ChapTer 6 performanCe CapabILITIeS

249

• DBCC CHECKDB: By default, DBCC CHECKDB will use multiple

worker threads to check the consistency of the database. Trace flag

2528 can be used to disable the use of parallel worker threads to

execute CHECKDB.

• Building Indexes: Creating or rebuilding indexes uses multiple

worker threads.

• SELECT..INTO/INSERT..SELECT: These “bulk” T-SQL statements

can use multiple worker threads to read source tables and populate

target tables.

• Recovery: SQL Server can use multiple worker threads to roll forward

transactions as part of database recovery.

• Statistics: Statistics can now be updated in parallel. See the following

blog post for more details: https://blogs.msdn.microsoft.com/

sql_server_team/boosting-update-statistics-performance-

with- sql-2014-sp1cu6/.

 Configuration for Maximum Performance
While SQL Server “out of the box” can meet the performance needs of many

applications, configuration options exist for the SQL Server instance, a database, and the

Linux kernel that can help you maximize performance.

These include options to configure the SQL Server instance through mssql-conf, the

T-SQL system procedure sp_configure, and the T-SQL ALTER SERVER CONFIGURATION

T-SQL statement.

Note as with any change in configuration, I highly recommend you test your
application and workload before making any changes to the configuration options I
talk about in this section.

ChapTer 6 performanCe CapabILITIeS

https://blogs.msdn.microsoft.com/sql_server_team/boosting-update-statistics-performance-with-sql-2014-sp1cu6/
https://blogs.msdn.microsoft.com/sql_server_team/boosting-update-statistics-performance-with-sql-2014-sp1cu6/
https://blogs.msdn.microsoft.com/sql_server_team/boosting-update-statistics-performance-with-sql-2014-sp1cu6/

250

 SQL Server Instance Configuration
Some configuration settings for SQL Server can impact maximum performance of your

application. These include settings for memory, parallel execution, processor affinity,

tracing, threads, plan cache, and tempdb files.

Note Configuration setting changes with sp_configure and aLTer SerVer
ConfIGUraTIon may require a restart of SQL Server to take effect. Check the SQL
Server documentation on sp_configure at https://docs.microsoft.com/
sql/database-engine/configure-windows/server-configuration-
options- sql-server or aLTer SerVer ConfIGUraTIon at https://
docs.microsoft.com/sql/t-sql/statements/alter-server-
configuration-transact-sql for more details.

• Memory: SQL Server on Linux by default will only allocate 80% of the

physical memory on the Linux Server it is installed on, to help avoid

swapping of the sqlservr process. On systems with larger amounts

of RAM, leaving 20% of memory could be considered a waste.

Therefore, the mssql-conf script can be used to change this setting

with the memorylimitmb option. You should be careful setting this

value too high, or you may encounter problems on Linux with the

oom killer. You can read more about how the oom killer works on

Linux at https://unix.stackexchange.com/questions/153585/

how-does-the-oom-killer-decide-which-process-to-kill-first.

The SQL Server engine also has its own memory limit configuration settings by

using the sp_configure system stored procedure. The ceiling for the SQL Server Engine

is set by the max server memory. By default the value is 0, which is equivalent to the

80% memorylimitmb number. SQL Server will grow its memory usage to this ceiling, as

discussed previous in this chapter. While it is common on SQL Server on Windows to set

the max server memory setting to a number other than 0, since the memorylimitmb

configuration exists on Linux, it is very possible to leave max server memory to 0. SQL

Server also has a floor, under which SQL Server will not shrink its memory footprint.

You can configure this setting with the min server memory setting with sp_configure. I

typically only use the min server memory setting on servers where I have other programs

running so I can “lock in” SQL Server from shrinking its memory too low.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/database-engine/configure-windows/server-configuration-options-sql-server
https://docs.microsoft.com/sql/database-engine/configure-windows/server-configuration-options-sql-server
https://docs.microsoft.com/sql/database-engine/configure-windows/server-configuration-options-sql-server
https://docs.microsoft.com/sql/t-sql/statements/alter-server-configuration-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/alter-server-configuration-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/alter-server-configuration-transact-sql
https://unix.stackexchange.com/questions/153585/how-does-the-oom-killer-decide-which-process-to-kill-first
https://unix.stackexchange.com/questions/153585/how-does-the-oom-killer-decide-which-process-to-kill-first

251

Note The memorylimitmb value does not account for memory needed by
components outside the SQL Server engine, such SQL Server agent, the SQLpaL,
and host extension. SQL paL and host extension should not require that much
memory outside the SQL Server engine. for SQL Server agent, you should perform
testing to see how much memory agent jobs require.

For complete details on these server memory configuration options, see our

documentation at https://docs.microsoft.com/sql/database-engine/configure-

windows/server-memory-server-configuration-options.

• Parallel Execution

I discussed in the previous section of this chapter the various scenarios where

SQL Server will execute tasks in parallel. Two instance configuration settings that are

available through the sp_configure system procedure are: max degree of parallelism

and cost threshold for parallelism.

max degree of parallelism is used to control the maximum number of parallel

tasks that will be used for operators in a query plan, index build operations, DBCC

CHECKDB, parallel inserts, online column modifications, and statistics updates. The

default value is 0, which means SQL Server determines the best number of concurrent

parallel tasks to use for a specific operation based on available CPUs to SQL Server.

The ideal setting for this configuration value has been a long debate in the SQL Server

community. One of the problems with finding an ideal value is that different workloads

may work better with higher values of max degree of parallelism. For example, data

warehouse workloads using columnstore indexes may achieve maximum performance

with a higher number of parallel tasks. For SQL Server applications with a high

number of concurrent users, especially ones that include OLTP workloads, it may

be necessary to change the default of max degree of parallelism. My experience and

testing shows this is only necessary when SQL Server is configured to run on servers

with greater than eight CPUs. When I was in technical support at Microsoft, we created

the following Knowledge Base Article to give more guidance on setting max degree

of parallelism: https://support.microsoft.com/help/2806535/recommendations-

and-guidelines-for-the-max-degree-of-parallelism-confi. If you struggle with

setting this value, take heart that there are database options and query level hints

available to override this SQL Server instance setting. For more details on the max

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/database-engine/configure-windows/server-memory-server-configuration-options
https://docs.microsoft.com/sql/database-engine/configure-windows/server-memory-server-configuration-options
https://support.microsoft.com/help/2806535/recommendations-and-guidelines-for-the-max-degree-of-parallelism-confi
https://support.microsoft.com/help/2806535/recommendations-and-guidelines-for-the-max-degree-of-parallelism-confi

252

degree of parallelism option, see our documentation at https://docs.microsoft.

com/sql/database-engine/configure- windows/configure-the-max-degree-of-

parallelism-server-configuration-option.

The “cost threshold for parallelism” setting is used to control when the SQL Server

optimizer chooses whether to use parallel tasks in a query plan based on cost. The

default value of 5 can work for many workloads. However, this default was established

based on testing by the SQL Server engineering team back in the days of SQL Server 7.0.

Therefore, almost all SQL Server experts agree this default value should be much higher.

In fact, the SQL Server documentation at https://docs.microsoft.com/sql/database-

engine/configure-windows/configure-the-cost-threshold-for-parallelism-

server-configuration-option states: “While the default value of 5 is retained for

backwards compatibility, it is likely that a higher value is appropriate for current

systems. Many SQL Server professionals suggest a value of 25 or 30 as a starting point,

and to perform application testing with higher and lower values to optimize application

performance.”

• Process Affinity

As described earlier in this chapter, SQL Server automatically takes advantage

of multicore and NUMA architectures. There could be some scenarios where you

want to only allow the SQL Server core engine and its worker threads to run on

specific NUMA nodes and/or CPUs. You can achieve this by using the ALTER SERVER

CONFIGURATION T-SQL command. One scenario could be that other processes are

running on the Linux Server that you want to ensure get enough CPU resources, so you

will restrict SQL Server to only certain NUMA nodes and/or CPUs.

For example, assume you had Linux Server with eight CPUs. The following T-SQL

command will only allow SQL Server to scheduler worker threads on CPUs 4-7 (CPUs

start with 0):

ALTER SERVER CONFIGURATION SET PROCESS AFFINITY CPU = 4 TO 7

GO

The effect of this command is dynamic and immediate, and does not require a restart

of SQL Server. At this point, to switch back to allow SQL Server to run on all available

CPUs, execute the following T-SQL statement:

ALTER SERVER CONFIGURATION SET PROCESS AFFINITY CPU = AUTO

GO

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/database-engine/configure-windows/configure-the-max-degree-of-parallelism-server-configuration-option
https://docs.microsoft.com/sql/database-engine/configure-windows/configure-the-max-degree-of-parallelism-server-configuration-option
https://docs.microsoft.com/sql/database-engine/configure-windows/configure-the-max-degree-of-parallelism-server-configuration-option
https://docs.microsoft.com/sql/database-engine/configure-windows/configure-the-cost-threshold-for-parallelism-server-configuration-option
https://docs.microsoft.com/sql/database-engine/configure-windows/configure-the-cost-threshold-for-parallelism-server-configuration-option
https://docs.microsoft.com/sql/database-engine/configure-windows/configure-the-cost-threshold-for-parallelism-server-configuration-option

253

For maximum performance, we have found during testing that if you plan to allow

SQL Server to run on all available CPUs, you should set the affinity to all nodes or CPUs

on your system. For example, if you had a 4 NUMA node system, then you would set

affinity to all nodes like the following T-SQL statement:

ALTER SERVER CONFIGURATION SET PROCESS AFFINITY NUMANODE = 0 TO 3

GO

Note Some threads execute in the context of the SQLpaL or the host extension
that are not scheduled worker threads. They will not adhere to using aLTer
SerVer ConfIGUraTIon, but their execution should not consume as much CpU as
SQL Server worker threads.

For more examples of setting process affinity, see our documentation at https://

docs.microsoft.com/sql/t-sql/statements/alter-server-configuration-

transact-sql.

• Tracing

I mentioned earlier in the book the legacy tracing feature SQL Server Trace. Several

releases ago we put in a default trace that captures some basic information when

configuration options are changed in SQL Server and tracing of object modifications.

While some of this information may be useful to you, I recommend you turn off this

configuration option, called default trace enabled, through sp_configure. Every small

amount of performance can help, and this functionality is deprecated, so could be

removed in a future release. See our documentation on how to do this at https://docs.

microsoft.com/sql/database-engine/configure-windows/default-trace-enabled-

server-configuration-option.

• Threads

I have touched on the concept of worker threads and the fact that SQL Server has a

pool of these threads to service the needs of tasks such as logins and queries. SQL Server

primes this pool at startup and grows and shrinks the number of threads as needed.

In order to avoid consuming too many resources, SQL Server has a maximum on the

number of threads in the pool. By default, SQL Server calculates this maximum based on

the number of detected CPUs on the Linux Server. You can see this calculated value in

the sys.dm_os_sys_info.max_workers_count column. The formula for this value can be

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/t-sql/statements/alter-server-configuration-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/alter-server-configuration-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/alter-server-configuration-transact-sql
https://docs.microsoft.com/sql/database-engine/configure-windows/default-trace-enabled-server-configuration-option
https://docs.microsoft.com/sql/database-engine/configure-windows/default-trace-enabled-server-configuration-option
https://docs.microsoft.com/sql/database-engine/configure-windows/default-trace-enabled-server-configuration-option

254

found in our documentation at https://docs.microsoft.com/sql/database-engine/

configure-windows/configure-the-max-worker-threads-server-configuration-

option.

In most circumstances where this worker pool calculation is not enough to

service the workload of the application, the problem is a concurrency issue such

as many threads blocking on a resource. However, there are some situations where

increasing the default value could boost a high-volume, multiuser workload. Use the

sp_configure system procedure to change the max worker threads configuration value

for these situations. You will need to restart SQL Server for this to take effect. Use the

documentation resource in this section for the complete syntax.

• Plan Cache

The plan cache can be a precious resource to ensure a maximum number of

queries and objects are cached to avoid frequent query compilations. Some application

workloads unavoidably use many single-user ad hoc queries. These are T-SQL statements

that are not in the form of procedure objects, are not parameterized, and typically are

only executed one time. In order to minimize the amount of memory for these type of

queries, you can enable the optimize for ad hoc workloads configuration option with

sp_configure. This will minimize the memory impact of these types of ad hoc queries.

You can determine whether your application workload matches the need for this option

and how to configure it in our documentation at https://docs.microsoft.com/sql/

database-engine/configure-windows/optimize-for-ad-hoc-workloads-server-

configuration-option.

• Tempdb Files

I discussed the use of tempdb in Chapter 4 as part of a discussion on the use of

temporary tables. Because the unique usage of tempdb involves a frequent allocation

and deallocation of database pages, using a single tempdb database file can cause

concurrency issues with system database pages used to track allocation information with

any reasonable multiuser workload.

In order to make these concurrency scenarios more scalable, you can improve

access to these system database pages by creating multiple database files for the tempdb

database. SQL Server on Linux only provides a single tempdb database file by default

when you install SQL Server. Therefore, on any Linux Server with greater than one CPU,

you should plan to create additional tempdb database files.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/database-engine/configure-windows/configure-the-max-worker-threads-server-configuration-option
https://docs.microsoft.com/sql/database-engine/configure-windows/configure-the-max-worker-threads-server-configuration-option
https://docs.microsoft.com/sql/database-engine/configure-windows/configure-the-max-worker-threads-server-configuration-option
https://docs.microsoft.com/sql/database-engine/configure-windows/optimize-for-ad-hoc-workloads-server-configuration-option
https://docs.microsoft.com/sql/database-engine/configure-windows/optimize-for-ad-hoc-workloads-server-configuration-option
https://docs.microsoft.com/sql/database-engine/configure-windows/optimize-for-ad-hoc-workloads-server-configuration-option

255

My friend Denzil Ribero from the SQL Server Customer Advisor Team created a nice

T-SQL script you can use to add multiple tempdb files for our Linux Server installation.

This script can be found at https://github.com/denzilribeiro/sqlunattended/blob/

master/AddTempdb.sql. You can read more about how to decide the size and number of

tempdb files in our documentation at https://docs.microsoft.com/sql/relational-

databases/databases/tempdb-database and this Knowledge Base article at https://

support.microsoft.com/help/2154845/recommendations-to-reduce-allocation-

contention- in-sql-server-tempdb-d.

 Database Options
While the previous section covered some of the more interesting performance

configuration choices that affect the SQL Server instance, you can also make changes at

the database level to help the performance of your application. All of these options are

configured using the T-SQL ALTER DATABASE statement.

• PARAMETERIZATION: I discussed in the previous section how

to minimize the plan cache footprint for ad hoc queries. One

reason why ad hoc queries can bloat the plan cache is that they

are not parameterized. Parameterization involves caching a single

query plan for queries that are almost exactly the same except for

parameters in the WHERE clause of a T-SQL statement.

SQL Server by default contains logic to perform simple

parameterization on ad hoc queries. Simple parameterization

does not cover a wide range of queries. Therefore, it is possible

to use the ALTER DATABASE option SET PARAMETERIZATION

FORCED. Using this database option will cause SQL Server to

cast a wider net on possible queries to parameterize. So, how

would you know whether this database option is one to consider?

Consider these important points:

• Applications that submit queries that are not parameterized

are characterized typically by a high query compile rate. You

can examine the dm_os_performance_counters DMV where

object_name = SQLServer:SQL Statistics and counter_name =

SQL Compilations/sec.

ChapTer 6 performanCe CapabILITIeS

https://github.com/denzilribeiro/sqlunattended/blob/master/AddTempdb.sql
https://github.com/denzilribeiro/sqlunattended/blob/master/AddTempdb.sql
https://docs.microsoft.com/sql/relational-databases/databases/tempdb-database
https://docs.microsoft.com/sql/relational-databases/databases/tempdb-database
https://support.microsoft.com/help/2154845/recommendations-to-reduce-allocation-contention-in-sql-server-tempdb-d
https://support.microsoft.com/help/2154845/recommendations-to-reduce-allocation-contention-in-sql-server-tempdb-d
https://support.microsoft.com/help/2154845/recommendations-to-reduce-allocation-contention-in-sql-server-tempdb-d

256

• What is “high”? Well, the second symptom of a possible lack of

query parameterization is a high CPU utilization for SQL Server.

This is because a high compilation rate for queries results in a

higher rate of SQL CPU utilization.

• You can use the DMV dm_exec_query_stats to find which

queries are in plan cache that are the same except for literal

values using a concept called query hash. You can run a query

like the following (which can be found in the example script

queryhash.sql) T-SQL batch:

-- Find out what queries hash to the same value but are

different in cache

--

SELECT dest.text, deqs.query_hash, count (*) query_count

FROM sys.dm_exec_query_stats deqs

CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest

GROUP BY (query_hash), dest.text

ORDER BY query_count DESC

GO

If you run this query and only find the highest counts to be 2 or 3, then you probably

don’t have any issues. But if the counters for these queries are much higher, then you

could boost your performance by investigating parameterization of queries.

• The preceding query is very quick to use but only finds queries

whose plans are in cache. What if, due to memory pressure, there

are plans that could be candidates for parameterization but are

not in cache. This is where Query Store can be valuable. Check

out this example in our documentation on how to use Query

Store to identify ad hoc workloads: https://docs.microsoft.

com/sql/relational- databases/performance/query-store-

usage-scenarios.

One comment about this database option: even if you find the need for query

parameterization, the best method to resolve the problem is to fix the application.

However, if you cannot change the application, using this option could prove beneficial.

As with any option that is not the default, be careful arbitrarily changing this. While

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/performance/query-store-usage-scenarios
https://docs.microsoft.com/sql/relational-databases/performance/query-store-usage-scenarios
https://docs.microsoft.com/sql/relational-databases/performance/query-store-usage-scenarios

257

using this option can reduce query compilations, using this option will force many

queries to now have the same compiled plan. That may not be the best option for some

applications.

• READ_COMMITTED_SNAPSHOT

A common performance problem for SQL Server application is blocking. While I

always recommend anyone encountering a blocking problem attempt to investigate

the cause and resolve the issue, there is a database option that can provide relief

and possibly even be a solution. First, I recommend you read this section in our

documentation to understand the fundamentals of locking and row versioning, https://

docs.microsoft.com/sql/relational-databases/sql-server-transaction-locking-

and- row-versioning-guide.

One of the common blocking scenarios involves readers and writers blocking each

other for common data, especially when these readers and writers are involved in long

running transactions. One option to avoid these scenarios is to use ALTER DATABASE

and SET READ_COMMITTED_SNAPSHOT ON. When you use this database option,

readers in the context of this database will see a snapshot or version of the data as of the

start of the T-SQL SELECT statement, as opposed to using locks. There is some overhead

required to use this database option within the database page and in tempdb. This

specific documentation link discusses more the requirements to use row versioning:

https://docs.microsoft.com/sql/relational-databases/sql-server-transaction-

locking-and-row-versioning-guide#Row_versioning.

Applications can also use snapshots, and you can read more on snapshots and row

versions in our documentation at https://docs.microsoft.com/dotnet/framework/

data/adonet/sql/snapshot-isolation-in-sql-server#understanding-snapshot-

isolation-and-row-versioning.

• SCOPED CONFIGURATION

One of the nice feature additions starting in SQL Server 2016 is to set configuration

options at the database level, which previous were only available at the instance level or

through a trace flag.

For example, the server configuration option max degree of parallelism can be

overridden at the database level using ALTER DATABASE SCOPED CONFIGURATION

SET MAXDOP = <value>. (Note: max degree of parallelism is also an option that can be

configured at the query level through query hints.)

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide
https://docs.microsoft.com/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide
https://docs.microsoft.com/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide
https://docs.microsoft.com/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide#Row_versioning
https://docs.microsoft.com/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide#Row_versioning
https://docs.microsoft.com/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server#understanding-snapshot-isolation-and-row-versioning
https://docs.microsoft.com/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server#understanding-snapshot-isolation-and-row-versioning
https://docs.microsoft.com/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server#understanding-snapshot-isolation-and-row-versioning

258

Another option to consider using is QUERY_OPTIMIZER_HOTFIXES. This is

equivalent to using trace flag 4199 to enable query optimizer hotfixes, which I discussed

in Chapter 5 in the section “Trace Flags.” The different here is that you can enable

optimizer hotfixes for only queries that run in the database where you set this option ON.

The full set of options that can be set with ALTER DATABASE SCOPED

CONFIGURATION can be found in our documentation at https://docs.microsoft.

com/sql/t-sql/statements/alter-database-scoped-configuration-transact-sql.

 Linux Kernel Configuration
I have shown you SQL Server instance and database configuration options. These

options apply to SQL Server on Windows and Linux. Is there any special tuning for the

Linux kernel that I would recommend you use for SQL Server? The answer is yes, but it is

not as complicated as you might think.

SQL Server is an application that will maximize CPU, memory, and I/O resources.

Therefore there are several Linux kernel options we found to be helpful as we built SQL

Server and worked with customers during Community Technology Preview (CTP) builds.

The full list of these options is included in this section of our documentation,

Performance best practices and configuration guidelines for SQL Server 2017 on Linux,

https://docs.microsoft.com/sql/linux/sql-server-linux-performance-

best-practices.

You may look at these configuration options and decide to change them based on

your workload. We found these options to help SQL Server maximize performance on

Linux across most application workloads.

As you look through these options, consult the documentation for your Linux

distribution and the proper method to make changes. It is possible on some Linux

distributions that these options are already set to recommended settings. For example,

I’ve found that on Red Hat Enterprise Linux, the throughput-performance profile

via the tuned-adm feature is the default, which contains many of our recommended

settings (Note: run man tuned-adm on your RHEL system to learn more about RHEL

profiles).

A few other important points about Linux and machine configuration:

• Pay close attention to BIOS settings related to energy and power

consumption. For maximum performance, be sure your BIOS

settings use the maximum power possible.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/t-sql/statements/alter-database-scoped-configuration-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/alter-database-scoped-configuration-transact-sql
https://docs.microsoft.com/sql/linux/sql-server-linux-performance-best-practices
https://docs.microsoft.com/sql/linux/sql-server-linux-performance-best-practices

259

• For SQL Server on Linux running in a virtual machine, consult your

virtual machine provider on the proper settings for virtual CPUs,

NUMA, and other machine related settings. The only setting you

cannot use with SQL Server on Linux is any configuration for a virtual

machine that supports dynamic memory.

One last comment about OS configuration: on Windows, there are two configuration

settings that affect SQL Server performance: locked pages in memory (you can read

more at https://docs.microsoft.com/sql/database-engine/configure-windows/

enable-the-lock-pages-in-memory-option-windows) and instant file initialization

(you can read more at https://docs.microsoft.com/sql/relational-databases/

databases/database-instant-file-initialization). For SQL Server on Linux,

neither of these options is required. There is no concept of locked pages in memory as

it exists on Windows for Linux (i.e., there is no AWE API equivalent in Linux). Using the

memorylimitmb option can avoid memory issues and paging of the sqlservr process.

In addition, SQL Server uses Linux API calls when creating files where the behavior

of instant file initialization is the default behavior. Note: SQL Server still is required to

zero the transaction log file as it does on Windows, to properly recognize the end of the

transaction log during recovery. For more information, see Anthony Nocentino’s blog

post http://www.centinosystems.com/blog/sql/instant-file-initialization-in-

sql- server-on-linux.

 Tuning for Success
You have seen the built-in performance capabilities of SQL Server. I’ve shown you

some of the important SQL Server, database, and Linux configuration options. Armed

with this knowledge, there are a few other important topics to tune your SQL Server

database, objects, and applications I believe everyone using SQL Server should know.

This includes physical placement of database and transaction log files, creating the right

indexes, keeping statistics accurate and up to date, and techniques for developers to

ensure their application is using SQL Server to its best potential.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/database-engine/configure-windows/enable-the-lock-pages-in-memory-option-windows
https://docs.microsoft.com/sql/database-engine/configure-windows/enable-the-lock-pages-in-memory-option-windows
https://docs.microsoft.com/sql/relational-databases/databases/database-instant-file-initialization
https://docs.microsoft.com/sql/relational-databases/databases/database-instant-file-initialization
http://www.centinosystems.com/blog/sql/instant-file-initialization-in-sql-server-on-linux
http://www.centinosystems.com/blog/sql/instant-file-initialization-in-sql-server-on-linux

260

 Files and File Groups
I showed you in Chapter 3 how to create a database and gave a brief description of

the default files that come with a database, a database file (usually ending with a file

extension of .mdf), and a transaction log file (usually ending with a file extension of .ldf).

In many situations, using a single database file and a single transaction log file

adequately serves the needs of an SQL Server database. However, this chapter is about

tuning, so I’ve provided in this section guidance on how to maximize I/O performance

using file placement, filegroups, and planning for file growth.

I should also comment that if you decide to host multiple databases on an SQL

Server instance, you should consider spreading out the files from each database across

multiple disks or using a hosted disk storage system that is configured to strip I/O across

a series of drives. I typically place system databases on the default database file location

and am not as concerned about disk performance except for the tempdb database.

It is common practice to place tempdb database files on a separate disk from other

system databases. Our documentation has a good example of how to move tempdb

files to a different path at https://docs.microsoft.com/sql/relational-databases/

databases/move-system-databases#Examples.

 Separate Data and Transaction Log Files

I almost always recommend a single transaction log file. There is no performance

benefit in having more than one transaction log file. If you decide to stay with just one

database file, I do recommend you place the database file and transaction log file on

different disks. That has been a traditional recommendation for SQL Server databases

for many years. One of the primary reasons for this recommendation is the nature of I/O

usage patterns between the database file and transaction log file. Writes to the database

file are characterized as random I/O. While SQL Server writes in contiguous pages to

the database file, it could write to pages anywhere in the file. Writes to the transaction

log are always sequential. SQL Server always appends log blocks when writing to the

transaction log file. Furthermore, it is very possible for SQL Server to concurrently

write to database files through checkpoint tasks (such as RECOVERY WRITER) and

the transaction log through the LOG WRITER task. Therefore, you will almost always

achieve better I/O performance by separating database file writes from transaction log

writes on different disks.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/databases/move-system-databases#Examples
https://docs.microsoft.com/sql/relational-databases/databases/move-system-databases#Examples

261

Another important benefit in separating database and transaction log files is

recoverability. It is possible to perform advanced recovery if the database file is lost

but the current transaction log is available (assuming you are using a full recovery

model; find more about the full recovery model at https://docs.microsoft.com/sql/

relational-databases/backup-restore/recovery-models-sql-server#RMov) and

vice versa.

The syntax I used in earlier chapters to create the database did not specify file names

or file paths. If you generate the script for the full WideWorldImporters sample database,

you will see this syntax:

CREATE DATABASE [WideWorldImporters]

 CONTAINMENT = NONE

 ON PRIMARY

(NAME = N'WWI_Primary', FILENAME = N'/var/opt/mssql/data/

WideWorldImporters.mdf' , SIZE = 1048576KB , MAXSIZE = UNLIMITED,

FILEGROWTH = 65536KB),

 FILEGROUP [USERDATA] DEFAULT

(NAME = N'WWI_UserData', FILENAME = N'/var/opt/mssql/data/

WideWorldImporters_UserData.ndf' , SIZE = 2097152KB , MAXSIZE = UNLIMITED,

FILEGROWTH = 65536KB),

 FILEGROUP [WWI_InMemory_Data] CONTAINS MEMORY_OPTIMIZED_DATA DEFAULT

(NAME = N'WWI_InMemory_Data_1', FILENAME = N'/var/opt/mssql/data/

WideWorldImporters_InMemory_Data_1' , MAXSIZE = UNLIMITED)

 LOG ON

(NAME = N'WWI_Log', FILENAME = N'/var/opt/mssql/data/WideWorldImporters.

ldf' , SIZE = 102400KB , MAXSIZE = 2048GB , FILEGROWTH = 65536KB)

GO

Note the FILENAME parameter is used to specific the path and physical name of the

file. To separate the transaction log, you would mount a directory from a separate disk

and specify a path to the transaction log on that disk. I’ll show you an example of how to

do this using filegroups in the next section.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/backup-restore/recovery-models-sql-server#RMov
https://docs.microsoft.com/sql/relational-databases/backup-restore/recovery-models-sql-server#RMov

262

 Using Multiple Database Files and Filegroups

For a single database, I have described several processes and scenarios where

concurrent tasks write to the database such as checkpoints, lazy writes, and eager writes.

However, it is more common to see multiple concurrent readers for database pages.

These read scenarios could be multiple users executing queries that require database

pages to be read from disk or a single query executed with parallel operators.

If you store database files on a storage system that is striped and optimized for

concurrent I/O, you may just be able to use one database file. However, many production

databases for SQL Server use multiple database files and a concept called filegroups.

A filegroup is a logical grouping of database files. After you create a database with a

filegroup with multiple database files, SQL Server will allocate pages in these files using

a round-robin, proportional fill algorithm. Round-robin means SQL Server will allocate

groups of pages from a database file and then to other files in the filegroup. Proportional

fill means SQL Server attempts to perform these allocations so that the spaces used

across the database files are fairly evenly spread.

Once you create a filegroup, you can then designate one or more tables or indexes to

the named filegroup. By default, each database has a built-in filegroup called PRIMARY. All

system tables are stored in the files associated with the PRIMARY filegroup.

The most common configuration for production databases is to create one database

file of smaller size for the PRIMARY filegroup and one or more named filegroups

for a collection of tables and/or indexes. Filegroups provide other advantages from

a management point of view. You can backup, restore, run consistency checks, and

manage the filegroup as a unit.

Let’s look at an example of how to create a database with a separate filegroup for data

across multiple files on multiple disks, along with a transaction log on a separate disk.

First, I need to add disks to my Linux Server. I’ve mentioned before that I’m using

a Linux Virtual Machine with Hyper-V for Windows. For Hyper-V on Windows, you

can follow the instructions on how to add hardware such as controllers and disks to

our virtual machine in our documentation at https://docs.microsoft.com/azure/

virtual-machines/linux/attach-disk-portal.

Once I’ve added my hardware, I need to configure my new disks in the Linux

Operating System and mount directories on these disks. My virtual machine already

had two disks: one for the standard files for Linux and one specifically mounted for the

/var/opt directory where the standard SQL Server database files exist. For this example

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/azure/virtual-machines/linux/attach-disk-portal
https://docs.microsoft.com/azure/virtual-machines/linux/attach-disk-portal

263

I’ve added four new disks: one to hold three new database files, which will be in their

own filegroup, and one for the transaction log. If you have not configured disks within

Linux before, I found this documentation on how to do this in an Azure Virtual Machine

invaluable: https://docs.microsoft.com/azure/virtual-machines/linux/add-disk.

For my virtual machine, when I was finished configuring disks and mounting the

directories to them, the final configuration looked like Figure 6-9.

Figure 6-9. Using multiple disks in Linux for SQL Server

Table 6-1. Disks and Their Mounted Directories

Disk Mounted Directory Purpose

/dev/sdc1 /data1 Database file

/dev/sdd1 /data2 Database file

/dev/sde1 /data3 Database file

/dev/sdf1 /log Transaction Log

In my example, the /dev/sdb disk is the second disk I created for my virtual machine

where I mounted the /var/opt directory. When I installed SQL Server, the system

databases were copied to /var/opt/mssql/data. This is also where I’ll put my PRIMARY

filegroup database file.

Table 6-1 provides a list of the other disks and their mounted directories. I created

each of these virtual disks to be 30GB in size for purposes of this example.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/azure/virtual-machines/linux/add-disk

264

Tip as described in the preceding documentation on adding disks to Linux, it
is important to update the /etc/fstab file with these disks, so they are mounted
after any reboot. In addition, be sure to change the permissions for these
directories to the mssql group and user by executing sudo chown mssql:mssql
<directory>.

With these disks created and directories mounted, I can now create my database like

the following T-SQL statement found in the example bigdb.sql:

USE [master]

GO

CREATE DATABASE [big dB]

 ON PRIMARY

(NAME = N'bigdb_Primary', FILENAME = N'/var/opt/mssql/data/bigdb.mdf' ,

SIZE = 5GB , MAXSIZE = 100GB, FILEGROWTH = 65536KB),

 FILEGROUP [USERDATA] DEFAULT

(NAME = N'bigdb_UserData_1', FILENAME = N'/data1/bigdb_UserData_1.ndf' ,

SIZE = 10GB , MAXSIZE = 30GB, FILEGROWTH = 65536KB),

(NAME = N'bigdb_UserData_2', FILENAME = N'/data2/bigdb_UserData_2.ndf' ,

SIZE = 10GB , MAXSIZE = 30GB, FILEGROWTH = 65536KB),

(NAME = N'bigdb_UserData_3', FILENAME = N'/data3/bigdb_UserData_3.ndf' ,

SIZE = 10GB , MAXSIZE = 30GB, FILEGROWTH = 65536KB)

 LOG ON

(NAME = N'big_Log', FILENAME = N'/log/bigdb_log.ldf' , SIZE = 10GB ,

MAXSIZE = 30GB , FILEGROWTH = 65536KB)

GO

Looking at this CREATE DATABASE statement, you can see I have placed the

PRIMARY filegroup on the default location /var/opt/mssql/data; three database files

in the USERDATA filegroup on the /data1, /data2, and /data3 directories; and the

transaction log file on the /log directory. I’ve chosen arbitrary sizes for these files,

but when you create a database for production you will want to spend time carefully

determining the initial best size for these files. I will discuss the MAXSIZE and

FILEGROWTH parameters in the next section, but planning for the initial sizes of your

files is important to overall performance. See the guide at https://docs.microsoft.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/databases/estimate-the-size-of-a-database

265

com/sql/relational-databases/databases/estimate-the-size-of-a-database

in our documentation for best practices on estimating size of data and database and

transaction log file size.

Also note the syntax for the USERDATA filegroup

FILEGROUP [USERDATA] DEFAULT

The keyword DEFAULT means that this filegroup is the default location for all user

objects created in the database (system objects must go in the PRIMARY filegroup).

Note If you don’t specify a user fILeGroUp as DefaULT, all tables and indexes
by default will be placed in the prImarY fILeGroUp. however, T-SQL provides
syntax to explicitly place tables and indexes on a specific user fILeGroUp using
the on keyword. See this section of our documentation for examples and more
information on filegroups: https://docs.microsoft.com/sql/relational-
databases/databases/database-files-and- filegroups#filegroups.

Let’s add in a table and populate data to see how SQL Server will spread the database

pages across the files in the USERDATA filegroup. Execute the following T-SQL batches

from the example bigtab.sql:

USE [bigdb]

GO

DROP TABLE IF EXISTS [bigtab]

GO

CREATE TABLE [bigtab] (col1 INT, col2 CHAR (7000) NOT NULL)

GO

SET NOCOUNT ON

GO

DECLARE @x INT

SET @x = 0

WHILE (@x < 100000)

BEGIN

 INSERT INTO [bigtab] VALUES (@x , 'x')

 SET @x = @x + 1

END

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/databases/estimate-the-size-of-a-database
https://docs.microsoft.com/sql/relational-databases/databases/database-files-and-filegroups#filegroups
https://docs.microsoft.com/sql/relational-databases/databases/database-files-and-filegroups#filegroups

266

GO

SET NOCOUNT OFF

GO

This script creates a table that holds one row per page. The col2 column is padded to

7,000 characters no matter what value is inserted into the column. The script performs a

loop inserting 100,000 rows (which should also be 100,000 pages) into the table.

I can now use the following script from the DMV dm_db_file_space_usage (use

the example script dm_db_file_space_usage.sql) to see how SQL Server spreads the

allocation of pages across the three files in the USERDATA filegroup:

USE [bigdb]

GO

SELECT file_id, FILEGROUP_NAME(filegroup_id) filegroup, total_page_count,

allocated_extent_page_count

FROM sys.dm_db_file_space_usage

GO

Figure 6-10 shows the spread of pages across the files for the database when I

executed this script with SQL Operations Studio.

Figure 6-10. Using dm_db_file_space_usage to see allocation of pages across files
in a filegroup

ChapTer 6 performanCe CapabILITIeS

267

The total_page_count is the total possible pages in each file. If you multiply these

numbers by 8192 (the size of a database page) you will see file_id = 1 is 5GB, while the

other files are 10GB. The allocated_extent_page_count is the number of pages allocated

in each file. The 368 pages for the PRIMARY file group are pages for allocation structures

and system table pages. The approximately 33,000 pages in each file of the USERDATA

filegroup are for the 100,000 pages allocated for the bigtab table plus allocation pages

and pages for the clustered index b-tree that are not data.

Tip Use the icons to the right in the results pane of SQL operations Studio to turn
this result into a chart. Click the icon and pick the chart type of bar. figure 6-11
shows the bar chart of the preceding results.

Figure 6-11. Using SQL Operations Studio to show a bar chart of page allocations
across files in the database

ChapTer 6 performanCe CapabILITIeS

268

Another way to view page allocations across files by objects is with the

undocumented DMF dm_db_database_page_allocations. Use the following T-SQL

batch found in the example script pages_by_object.sql to see the allocation of pages

across files in the database, organized by object:

USE [master]

GO

SELECT OBJECT_NAME(object_id), count(*) total_pages_allocated

FROM sys.dm_db_database_page_allocations(DB_ID('bigdb'), NULL, NULL, NULL,

'DETAILED')

GROUP BY object_id

ORDER BY total_pages_allocated DESC

GO

Note dm_db_database_page_allocation can be expensive, as it pulls in many
pages into the buffer pool and can take a long time to execute.

If you want to learn more about the architecture of pages and extents for SQL Server,

check out our documentation at https://docs.microsoft.com/sql/relational-

databases/pages-and-extents-architecture-guide.

 Planning for File Growth

When I worked in Technical Support in a galaxy far, far away, one of the most common

emergency calls I received from customers was running out of space in the database.

Thankfully, the SQL Server Engineering team introduced the concept of autogrow for

SQL Server database and transaction log files. By default, when you create a database,

if SQL Server runs out of space in either the database or transaction log file, it will

automatically grow the size of the file.

While this can avoid emergency out of space problems (it doesn’t of course avoid

out of disk space problems) within the database and transaction log files, there can be a

performance penalty. This is because any “autogrow” typically occurs within the context

of a user transaction executing a query that requires page allocations (and a file growth is

required to create more space for a new page).

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/pages-and-extents-architecture-guide
https://docs.microsoft.com/sql/relational-databases/pages-and-extents-architecture-guide

269

As I’ve mentioned previously in this chapter, SQL Server on Linux can allocate

file space very quickly for database files so an autogrow for a database file can be fast.

However, even a fast autogrow can add seconds or longer to a user transaction, and that

user transaction could be holding on to resources that can lead to a blocking problem.

Furthermore, the transaction log must be written with a stamp of data so SQL Server

can understand the “tail of the log,” so growing the transaction log file may take some

time. Again, growing the transaction log may need to take place in the context of a

user transaction, which may be holding resources that can lead to a blocking problem.

One other factor of frequent growth of the transaction log is that it can lead to an issue

with virtual log file (VLF) fragmentation, which you can read more about at https://

docs.microsoft.com/sql/relational-databases/sql-server-transaction-log-

architecture- and-management-guide#physical_arch.

My recommendation is that you absolutely configure your database and

transaction log files to allow an autogrow value. The last thing you want is for the

database to run out of space because of an unexpected event and cause a production

outage when plenty of disk space exists. However, you should do careful planning

first to choose a size of database and transaction log files to account for possible

usage and required growth of the database. The FILEGROWTH parameter when

specifying a file path and size is used to determine how autogrow will work for a

database or transaction log. You must choose a value that balances the need for a

fairly fast autogrow operation but avoids a large number of autogrow operations. The

default FILEGROWTH sizes are 64MB for database and transaction log files, and that

value could be a particularly good one for many databases. I have found through my

experience that managing the size of growth for the transaction log is usually most

important. See this documentation page for more detailed guidance on the topic:

https://docs.microsoft.com/sql/relational-databases/logs/manage-the-size-

of-the-transaction-log-file.

I also recommend you monitor when an autogrow occurs on your system, to decide

if you need to resize the actual database or transaction log size. I’ll address how to

monitor the size of the transaction log as part of your backup strategy in Chapter 9.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/sql-server-transaction-log-architecture-and-management-guide#physical_arch
https://docs.microsoft.com/sql/relational-databases/sql-server-transaction-log-architecture-and-management-guide#physical_arch
https://docs.microsoft.com/sql/relational-databases/sql-server-transaction-log-architecture-and-management-guide#physical_arch
https://docs.microsoft.com/sql/relational-databases/logs/manage-the-size-of-the-transaction-log-file
https://docs.microsoft.com/sql/relational-databases/logs/manage-the-size-of-the-transaction-log-file

270

 Indexes
I showed you in Chapter 3 how to create indexes to enforce uniqueness for primary keys

and other columns (e.g., a UNIQUE constraint) in a table design. Indexes serve another

important purpose in SQL Server: query performance. Using indexes to speed up query

performance is a common technique with any database platform. Having said that, the

simplest way to build indexes when first creating your database is to create indexes to:

• Enforce primary key constraints

• Enforce other unique constraints (you can read more about unique

constraints at https://docs.microsoft.com/sql/relational-

databases/tables/create-unique-constraints).

• Ensure proper performance for any foreign key constraint lookups.

These will almost always be nonclustered indexes, so I’ll discuss

them later in the section.

So, the base set of indexes you will build is all based on your key design. After that,

the process is about deciding what other indexes might help boost query performance,

balanced with the cost to maintain them.

I could spend an entire chapter on index selection and recommendations, but I’m

also a believer in making these decisions simple. We do have a fairly thorough guide in

our documentation on index design, which you can use as a reference at https://docs.

microsoft.com/sql/relational-databases/sql-server-index-design-guide.

In this section of the chapter, I will provide practical guidance to creating indexes,

both clustered and nonclustered. I’ll also show you examples, tools to help in selection,

and discuss a few other index types that are interesting to use. I’ll discuss one special

type of index called a columnstore index later in this chapter. I also discuss managing

indexes to keep them healthy and performing well over time (in Chapter 9).

In this chapter, as I talk about indexes it is difficult not to discuss some concepts

about query processing and query plan operators. Here are some excellent resources to

guide you to understand more about these concepts:

• The Query Processing Architecture Guide at https://docs.

microsoft.com/sql/relational-databases/query-processing-

architecture-guide.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/tables/create-unique-constraints
https://docs.microsoft.com/sql/relational-databases/tables/create-unique-constraints
https://docs.microsoft.com/sql/relational-databases/sql-server-index-design-guide
https://docs.microsoft.com/sql/relational-databases/sql-server-index-design-guide
https://docs.microsoft.com/sql/relational-databases/query-processing-architecture-guide
https://docs.microsoft.com/sql/relational-databases/query-processing-architecture-guide
https://docs.microsoft.com/sql/relational-databases/query-processing-architecture-guide

271

• Showplan Operators Reference at https://docs.microsoft.com/

sql/relational-databases/showplan-logical-and-physical-

operators- reference.

 Clustered Indexes

When you create tables, you typically are going to have a primary key on every table.

Therefore, the only decision to make about how to implement the primary key with an

index is whether it should be clustered or nonclustered. Both index types are organized

using a b-tree of pages. The primary difference is that a clustered index has the actual

data pages as its leaf-level of the b-tree, while the leaf level of a nonclustered index points

to the data pages. A table can only have one clustered index and the data is sorted on the

columns of the clustered index.

I personally recommend you create a clustered index for each table. But your

primary key does not have to be implemented with a clustered index. The vast majority

of primary keys are enforced with clustered indexes, but I’ll list a few reasons why you

may not want to do that.

Kimberly Tripp is one of the most popular MVPs in the SQL Server community and

specializes in query performance and index design. I’ve heard here say many times

before that choosing the right clustered index is the most important step in index design.

I also believe though in making this decision simple. Here is my practical advice on

clustered index choices.

• Create a clustered index for every table in your database. The two

exceptions to this rule are tables with a small number of rows (it

could be faster to scan a heap than traverse a clustered index) and

memory optimized tables (memory optimized tables do not support

a clustered index).

Tip There are some scenarios for bulk import where you may want to ensure
the table is empty with a clustered index to boost performance. read our
documentation guidance on the topic when performing large bulk inserts into
tables: https://docs.microsoft.com/sql/relational-databases/
import- export/prerequisites-for-minimal-logging-in-bulk-
import.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/showplan-logical-and-physical-operators-reference
https://docs.microsoft.com/sql/relational-databases/showplan-logical-and-physical-operators-reference
https://docs.microsoft.com/sql/relational-databases/showplan-logical-and-physical-operators-reference
https://docs.microsoft.com/sql/relational-databases/import-export/prerequisites-for-minimal-logging-in-bulk-import
https://docs.microsoft.com/sql/relational-databases/import-export/prerequisites-for-minimal-logging-in-bulk-import
https://docs.microsoft.com/sql/relational-databases/import-export/prerequisites-for-minimal-logging-in-bulk-import

272

• If you use a generated column for a primary key (such as a

SEQUENCE object or identity property), build a clustered index on

that column unless you have a heavy concurrent OLTP application.

In this scenario you might encounter a problem called PAGELATCH

waits because all users will be trying to insert rows at the “end of the

table,” since the clustered index is sorted on a key value that increases

with each insert. Find a column or set of columns to build the

clustered index that logically represents the primary key that allows

inserts and updates to be more spread out across the index.

• Build a clustered index on the primary key for a set of columns that

is narrow. Narrow means to avoid building clustered indexes on

columns that are hundreds of bytes. A name column that is 200 bytes

is not a good choice for a clustered index. One major reason for this

is that any nonclustered index has to carry around the keys of the

clustered index in its b-tree.

• Use a clustered index on columns you often will join with other

tables. This is why a clustered index on the primary key is a good

choice especially with tables that have foreign key that reference back

to your primary key. In these normalized table designs, it is common

to join primary and foreign key columns for production queries.

• While it is possible to create a nonunique clustered index, I believe

these situations are fairly rare. Which is also way I don’t recommend

creating clustered indexes on columns that can accept NULL values.

• If you choose multiple columns to support a clustered index, add

them in order based on their distinct values and how queries

typically query them. As an example, a clustered index for a last and

first name should be created with last name followed by first name,

since last name is often more selective than first name.

• You can specify a sorting (ASC, which is default, or DESC) with each

column in the clustered index. I would choose DESC if you think it

will help to avoid PAGELATCH contention and also is a natural order

for sorting data with ORDER BY clauses in SELECT statements.

ChapTer 6 performanCe CapabILITIeS

273

 Nonclustered Indexes

So, let’s say you have created a clustered index for almost all tables to support a primary

key. In the exceptions where you might create hotspots for a clustered index key, you

have used a nonclustered index to support some primary keys. In these cases, unless

the table is small, I recommend you find another column or combination of columns to

create a clustered index.

As I mentioned in the previous section, any foreign key is a natural choice for a

nonclustered index. This is because it is common for applications to query data between

two tables with a primary and foreign key using a JOIN on the foreign key column.

Now that you have built all of our indexes based on key design, you have choices to

build nonclustered indexes for other columns for your tables. See the next section for

tools to help guide you in these decisions.

The following are considerations for you as you tune and make decisions on other

nonclustered indexes:

• Indexes can require updates as you modify data. If you have a clustered

index, any modifications to the clustered key columns require updates

to all nonclustered indexes (since the leaf level of the nonclustered

index uses clustered index key values to “point” to the data). In

addition, any modification to a column that is part of a nonclustered

index would require updates to pages in the nonclustered index.

The same concept applies for any deletes of rows of data in the base

table as this represents a modification to columns that could affect

nonclustered indexes. The net result is a balancing act of creating

nonclustered indexes to improve performance when searching for data

vs. the need to maintain nonclustered index with modifications.

• Examine your most commonly executed queries that have the most

impact on application performance and tune for these. Consider

these query patterns that are candidates to use nonclustered indexes:

• Look for columns in WHERE clauses, especially ones where you

are looking for a specific unique value with =

• Look for columns in ORDER BY clauses. If SQL Server can’t

use an index to find data that is sorted, it will have to use a

SORT operator. Sorts aren’t necessarily a bad thing but can be

expensive if there is a great deal of data to sort.

ChapTer 6 performanCe CapabILITIeS

274

• Look for opportunities for covering indexes. A covering index

includes all the columns in the index that make up a SELECT

statement. If you have a particularly important query that only

requires columns a, b, and c and you build an index on these

three columns, there is no need to query data pages to retrieve

these column values. One technique to create a covered index is

to create an index with included columns, which you can read

more about at https://docs.microsoft.com/sql/relational-

databases/indexes/create- indexes-with-included-columns.

• Nonclustered indexes that are not used for a primary key or unique

constraint are often not defined as unique. For example, columns

used in a foreign key by their nature are not unique for each row in a

table, so therefore will not be unique.

 Looking at WideWorldImporters

Let’s look at how Microsoft built the WideWorldImporters database to see an example

of index design. Use the following T-SQL script to see what indexes are included in the

WideWorldImporters design for the Orders table (this script is found in the example

wwi_indexes.sql):

USE [WideWorldImporters]

GO

SELECT o.name as table_name, i.name as index_name, i.type_desc, i.is_

primary_key, i.is_unique, c.name as column_name

FROM sys.objects o

INNER JOIN sys.indexes i

ON o.object_id = i.object_id

AND o.type = 'U'

AND o.name = 'Orders'

INNER JOIN sys.index_columns ic

ON ic.index_id = i.index_id

AND ic.object_id = i.object_id

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/indexes/create-indexes-with-included-columns
https://docs.microsoft.com/sql/relational-databases/indexes/create-indexes-with-included-columns

275

INNER JOIN sys.columns c

ON ic.column_id = c.column_id

AND c.object_id = i.object_id

ORDER BY table_name, index_name

GO

This script uses SQL Server catalog views to determine what indexes, the type, and

columns in the index for the Orders table. Figure 6-12 shows the results of this query.

Figure 6-12. Finding indexes for a table in SQL Server

In this output, you can see that the clustered index is the primary key on OrderID,

which is a column generated by a SEQUENCE. You can see from the index name that the

other nonclustered indexes are on columns that are foreign keys to other tables.

I’ll show you in the next section how to use tools to determine if another

nonclustered index would help query performance based on a specific SQL Server

T-SQL statement.

ChapTer 6 performanCe CapabILITIeS

276

 Use the Tools

SQL Server provides several tools to assist in determining whether an index will be

helpful to boost query performance:

• Missing index DMVs such as dm_db_missing_index_details (which

you can read more about at https://docs.microsoft.com/sql/

relational-databases/system-dynamic-management-views/

sys-dm-db-missing-index-details-transact-sql): I mentioned

this DMV in an earlier chapter. While I don’t recommend blindly

implementing all suggestions found in this DMV, it is absolutely

worth looking into any results found to see if these indexes could

help performance.

• Missing index information located in the XML SHOWPLAN (the

XML schema can be found at http://schemas.microsoft.com/

sqlserver/2004/07/showplan): I’ll show you an example below of

how to use this information on a query by query basis.

• The Database Tuning Advisor tool: This tool seems forgotten in the SQL

Server world but has the capability of recommending indexes based

on an individual query or a workload based on a trace of SQL Server

queries, data from the Query Store, or queries currently found in plan

cache. The only downside of this tool for Linux users is that the tool is

only available today to run on a computer running Windows. You can

read more about the Database Tuning Advisor tool at https://docs.

microsoft.com/sql/relational-databases/performance/start-

and-use-the-database-engine-tuning-advisor.

Let me show you an example of how to spot a missing index in a XML SHOWPLAN

after executing a query using the [Sales].[Orders] table from the full WideWorldImporters

sample. Execute the following T-SQL statement in SQL Operations Studio (this query can

be found in the example script orders_missing_index.sql):

USE [WideWorldImporters]

GO

SELECT CustomerID, COUNT(*)

FROM [Sales].[Orders]

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-db-missing-index-details-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-db-missing-index-details-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-db-missing-index-details-transact-sql
http://schemas.microsoft.com/sqlserver/2004/07/showplan
http://schemas.microsoft.com/sqlserver/2004/07/showplan
https://docs.microsoft.com/sql/relational-databases/performance/start-and-use-the-database-engine-tuning-advisor
https://docs.microsoft.com/sql/relational-databases/performance/start-and-use-the-database-engine-tuning-advisor
https://docs.microsoft.com/sql/relational-databases/performance/start-and-use-the-database-engine-tuning-advisor

277

WHERE [OrderDate] = '2013-01-01'

GROUP BY CustomerID

GO

My goal for this query was to get a count of customer orders by customer on a given

order date. The problem is there is no index on OrderDate to find a specific set of orders

for a given date value. Therefore, SQL Server must scan the entire clustered index to filter

out the rows for a specific date. Furthermore, SQL Server has to perform a sort to satisfy

the aggregation for a GROUP BY.

Figure 6-13 shows the results of SET STATISTICS IO, because SQL Server must scan

the entire clustered index.

Figure 6-13. IO statistics to scan the clustered index of the Orders table

If you click the results of the XML Showplan, you will see a section on Missing

Indexes. Figure 6-14 shows the Missing Indexes section of this plan.

ChapTer 6 performanCe CapabILITIeS

278

The query optimizer in SQL Server when compiling the plan can detect a possible

index that would help query performance (the query optimizer also is responsible for

adding rows to the missing index DMVs). In this case, the recommendation is to create

an index on the OrderDate columns but also including the Customer ID column.

Therefore, you can now execute this T-SQL statement to create the nonclustered

index (also found in the example ncl_orders_date.sql):

USE [WideWorldImporters]

GO

DROP INDEX IF EXISTS Sales.Orders.NCL_Orders_Date

GO

CREATE NONCLUSTERED INDEX NCL_Orders_Date ON Sales.Orders (OrderDate)

INCLUDE (CustomerID)

GO

If I now run the query from orders_missing_index.sql again, Figure 6-15 shows the

improvement in IO statistics with fewer physical reads.

Figure 6-14. The Missing Indexes section of an SQL Server XML SHOWPLAN

ChapTer 6 performanCe CapabILITIeS

279

Figure 6-16 shows the new query plan if you select the QUERY PLAN option next to

RESULTS.

Figure 6-15. Improved IO statistics after adding an index

Figure 6-16. An Index Seek used in the query plan after adding an index

ChapTer 6 performanCe CapabILITIeS

280

An Index Seek is far more efficient in this case to find only the rows with the exact

OrderDate requested vs. scanning the entire clustered index.

 Index Types and Other Considerations

There are a few other index types that can be helpful for performance and consideration

about parameters when creating indexes:

• Filtered indexes allow you to create a nonclustered index using a

WHERE clause to build the index with only a specific set of data. This

can be extremely helpful to reduce the size of an index and fits well

for sets of queries with specific criteria that don’t change. You can

read more about this feature at https://docs.microsoft.com/sql/

relational-databases/indexes/create-filtered-indexes.

• Indexed Views are indexes on an SQL Server view but are unique

because a clustered index on a view will be stored just like a table.

Think of this like a stored result set based on a T-SQL view. You can

read more about indexed views at https://docs.microsoft.com/

sql/relational-databases/views/create-indexed-views.

• SQL Server uses a concept called fill factor to decide how full to build

rows on pages when creating an index. While the default fill factor

may be fine for many workloads, it is possible that you may want to

adjust the default or change the fill factor for a specific index to avoid

a lot of page splits. You can read more about choosing a fill factor for

an index for SQL Server and why page splits may cause performance

problems at https://docs.microsoft.com/sql/relational-

databases/indexes/specify-fill-factor-for-an-index.

 Statistics
The query processor in SQL Server is all about statistics. What I mean by that is the query

processor often makes decisions on compiling a query plan based on available statistics

about values of rows (uniqueness of rows) in a table, column(s), and indexes.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/indexes/create-filtered-indexes
https://docs.microsoft.com/sql/relational-databases/indexes/create-filtered-indexes
https://docs.microsoft.com/sql/relational-databases/views/create-indexed-views
https://docs.microsoft.com/sql/relational-databases/views/create-indexed-views
https://docs.microsoft.com/sql/relational-databases/indexes/specify-fill-factor-for-an-index
https://docs.microsoft.com/sql/relational-databases/indexes/specify-fill-factor-for-an-index

281

 Statistics on Indexes and Columns

Any time an index is created or rebuilt, SQL Server builds a set of statistics on the key

columns of the index. A histogram is built on the leading column of an index. There

are other statistics called density that are calculated based on the combination of all

columns in the index. The decisions of the query processor to build an optimal query

plan are only as good as available statistics.

By default, statistics are calculated through sampling, which means SQL Server will

not examine every row in an index to build statistics but rather build statistics based

on sampling of data. And for most workloads, this default sample algorithm works fine.

But there are situation where I’ve seen better query plans built when using an option

called FULLSCAN (which means to completely scan all rows in the index or table when

building statistics).

It is also possible to create statistics on one or more columns without an index. In

fact, SQL Server will automatically create statistics on single columns for certain types

of queries (assuming a database option is enabled which I’ll discuss later in this section

of the chapter). There are some interesting scenarios where manually creating statistics

can benefit query plan selection without incurring the overhead of an index. The

complete guide to statistics including details of what a histogram looks like can be found

in our documentation at https://docs.microsoft.com/sql/relational-databases/

statistics/statistics.

I’ve not found anyone who is an SQL Server expert debate that you don’t need

statistics, ones that come from an index, automatically created by SQL Server, or

scenarios where you would create your own manually. The largest debate is: (1) Is

sampling good enough? (2) When and how should I update them?

For the first question, SQL Server automatically decides what the right sample

rate is, depending on how many rows are in the table or index. You can change the

sampling rate or specify FULLSCAN after statistics are created by using the UPDATE

STATISTICS T-SQL statement. How would you know whether you need to change the

sampling rate or even use FULLSCAN? One scenario where the default sampling of

statistics by SQL Server may not give you the best performance is documented by our

CSS team at Microsoft at https://blogs.msdn.microsoft.com/psssql/2010/07/09/

sampling-can-produce-less-accurate-statistics-if-the-data-is-not-evenly-

distributed. In this scenario, the histogram that is mentioned was produced using the

DBCC SHOW_STATISTICS (see https://docs.microsoft.com/sql/t-sql/database-

console-commands/dbcc-show-statistics-transact-sql for more information) T-SQL

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/statistics/statistics
https://docs.microsoft.com/sql/relational-databases/statistics/statistics
https://blogs.msdn.microsoft.com/psssql/2010/07/09/sampling-can-produce-less-accurate-statistics-if-the-data-is-not-evenly-distributed
https://blogs.msdn.microsoft.com/psssql/2010/07/09/sampling-can-produce-less-accurate-statistics-if-the-data-is-not-evenly-distributed
https://blogs.msdn.microsoft.com/psssql/2010/07/09/sampling-can-produce-less-accurate-statistics-if-the-data-is-not-evenly-distributed
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-show-statistics-transact-sql
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-show-statistics-transact-sql

282

statement (there is a new DMV called dm_db_stats_histogram you can also use for this

purpose). If digging into histograms is not your thing, then the time to consider making

this change is when you believe a query could be performed better and you encounter

a cardinality estimation problem. I’ll discuss cardinality estimation in one of the next

sections of this chapter. In my experience, the default sampling by the query optimizer

works for many workloads.

I’ll discuss strategies for updating of statistics in the next section of this chapter and

in Chapter 9.

 Automation and Statistics

As you modify data in your tables, statistics may not accurately reflect your changes.

There is a nice solution for you though. By default, every database created in SQL Server

has a database option called AUTO_UPDATE_STATISTICS. When this database option

is enabled (which is the default), SQL Server will maintain statistics (using the default

sampling algorithm) automatically. The automation is based on a formula that has

evolved over the years but is fundamentally based on the amount of changes made to a

table and/or index.

The threshold for kicking in the automation to update statistics was updated in

recent releases of SQL Server to more accurately reflect large table sizes. You can read

more about this threshold in this Knowledge Base Article: https://support.microsoft.

com/help/2754171/controlling-autostat-auto-update-statistics-behavior-in-

sql-server. In addition, a new DMV called dm_db_stats_properties can be used to

track when and how statistics are updated (automatically or manually) for a specific

statistic. Even when this database option is set, you can disable automatic updating of

a specific statistic using the system procedure sp_autostats. Automatic statistics are

typically done inline, which means statistics are updated as part of a T-SQL statement

“behind the scenes” in the engine (like a SELECT). You also have the option to have

statistics updated asynchronously by setting the AUTO_UPDATE_STATISTICS_ASYNC

database option. The default for this option is OFF. I recommend you leave this off

unless you specifically have situations where synchronous update statistics are causing

performance problems for a given set of queries. In my experience it is better to pay the

penalty of a specific query having to wait while stats are updated (because that query will

benefit) than having statistics updated asynchronously.

ChapTer 6 performanCe CapabILITIeS

https://support.microsoft.com/help/2754171/controlling-autostat-auto-update-statistics-behavior-in-sql-server
https://support.microsoft.com/help/2754171/controlling-autostat-auto-update-statistics-behavior-in-sql-server
https://support.microsoft.com/help/2754171/controlling-autostat-auto-update-statistics-behavior-in-sql-server

283

Some customers have found that even with this database option set to automatically

update statistics, it is not frequent enough for their workload (and you cannot change the

frequency threshold). Therefore, you always have the option to use the T-SQL statement

UPDATE STATISTICS, or the system procedure sp_updatestats. I’ve seen some

customers schedule jobs to run these commands on a frequent basis to ensure statistics

are frequently up to date. Here is the tradeoff. If statistics are modified, SQL Server may

choose to recompile a query plan the next time a query is executed after the statistics are

updated. Therefore, frequent updates to statistics could cause a large number of query

recompilations, which overall may be a performance problem for your application.

Tip If you have a maintenance window (say weekly) where you can afford to
update statistics WITh fULLSCan on all statistics, then go for it! You will get
some recompiles afterward but probably will have the best possible query plans
produced. most customers can’t afford to do this, so there is a balance between
where you let SQL Server update statistics using automation and picking some
statistics critical to your application to update manually.

You can read more about updating statistics manually in our documentation at

https://docs.microsoft.com/sql/t-sql/statements/update-statistics-transact- sql.

As I’ve mentioned already, it is possible to create statistics outside of indexes. And

fortunately, SQL Server has a database option, called AUTO_CREATE_STATISTICS,

which is on by default for all databases you create. With this option enabled, the query

optimizer in SQL Server will create statistics on columns that are not already part of

a statistic in an index or another statistic. I highly recommend you leave this option

enabled. You can tell which statistics were automatically created by SQL Server using

a query against system catalog views, as described in our documentation at https://

docs.microsoft.com/sql/relational-databases/statistics/statistics (we name

these statistics with a _WA prefix).

Tip When running benchmark tests, use the sp_createstats stored procedure to
create statistics on columns not already in a statistic vs. waiting for the optimizer
to automatically create statistics.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/t-sql/statements/update-statistics-transact-sql
https://docs.microsoft.com/sql/relational-databases/statistics/statistics
https://docs.microsoft.com/sql/relational-databases/statistics/statistics

284

 Cardinality Estimation

One of the key reasons for keeping statistics up to date and accurate is the concept of

cardinality estimation. Cardinality in terms of SQL Server query processing is the unique

number of values for a given set of rows. SQL Server estimates the cardinality when

compiling a query plan to make decisions on how to build the plan. This could be a

decision to use an index or not, join order, and other decisions.

The most visible view of cardinality estimation comes from looking at the XML

SHOWPLAN for a query and looking at EstimateRows in the XML plan. In some cases,

SQL Server may compile a query plan that is not optimal if the EstimateRows are

different than the ActualRows. Although inaccurate statistics can be a cause for these

numbers to be off, there are some query patterns where SQL Server may need to make

a guess on cardinality estimation (guess means use a fixed number from the code).

These include missing statistics, use of table variables, local variables, and other query

predicates.

For a complete read on the importance of cardinality estimation, see our

documentation at https://docs.microsoft.com/sql/relational-databases/

performance/cardinality-estimation-sql-server.

In addition, SQL Server Management Studio has some very cool tools to analyze

cardinality estimation problems. See this blog post by the very capable Pedro Lopes from

the SQL Server Tiger Team at https://blogs.msdn.microsoft.com/sql_server_team/

new-in-ssms-query-performance-troubleshooting-made-easier.

 Tips for Developers
I couldn’t leave the topic of Tuning for Success without providing some advice to

developers based on my experience over the years on important tips on using SQL

Server for maximum performance.

 Use the Power of T-SQL

Based on my experience both in technical support and the SQL Server Engineering

team, I’ve seen many developers not maximize the power of the T-SQL language.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/performance/cardinality-estimation-sql-server
https://docs.microsoft.com/sql/relational-databases/performance/cardinality-estimation-sql-server
https://blogs.msdn.microsoft.com/sql_server_team/new-in-ssms-query-performance-troubleshooting-made-easier
https://blogs.msdn.microsoft.com/sql_server_team/new-in-ssms-query-performance-troubleshooting-made-easier

285

Some examples include:

• Executing multiple SELECT statements to retrieve multiple rows

when executing a single SELECT statement to retrieve all the rows

in one statement. But be careful on the flip side of this problem. In

almost every case, your T-SQL SELECT statements should have a

WHERE clause defining criteria for a subset of rows you need from a

table. There are definitely exceptions when the table is exceedingly

small, but in almost every case your application wants to avoid the

dreaded SELECT * FROM <table> without a WHERE clause because it

will retrieve more data than intended.

• The same concept applies for UPDATE or DELETE statements. If you

need to update 100 rows, you don’t want to execute 100 UPDATE

statements for each row but rather execute one UPDATE statement

with the right WHERE clause to cover the 100 rows.

• If you need to aggregate or sort results in your application, don’t

pull all the rows into your client application and then aggregate or

sort. Use the T-SQL GROUP BY or ORDER BY clauses for SELECT

statements to let SQL Server do the aggregation or sort (and

remember indexes can be important to ensure these operations are

executed at optimal performance).

• If your application needs to execute a series of T-SQL statements as

part of a logical function, transaction, or business operation, consider

creating a stored procedure. Executing many T-SQL statements

against an SQL Server vs. executing a single stored procedure is an

example of what I call a chatty application. Using a stored procedure

is also called server-side programming in SQL Server. Server-side

programming reduces network traffic and allows SQL Server to more

effectively compile plans for the stored procedure.

ChapTer 6 performanCe CapabILITIeS

286

 Connections, Transactions, and Deadlocks

• I mentioned in Chapter 3 when discussing a node.js application that

you should consider using connection pooling for your application.

You can read more about connection pooling in our documentation

at https://docs.microsoft.com/dotnet/framework/data/adonet/

sql-server-connection-pooling. While connection pooling

can enhance the performance of your application, you should

still consider whether you need to open and close connections

in the application often. I’ve seen developers use the pattern of

open/<execute query>/close often in applications. Connection

pooling greatly reduces the overhead of such patterns, but there

is some logic in SQL Server to “reset” a connection. This doesn’t

mean you have to keep a connection open for the lifetime of your

application, but it also means that frequently opening and closing

connections is not a best practice.

• Transactions are common to ensure a logical group of T-SQL

statements are committed together. However, one of the most

common mistakes I’ve seen by developers is to begin a transaction

and then execute code where a delay in committing the transactions

is out of the control of the developer. For example, you may begin

a transaction, start executing T-SQL statements, but then provide

a graphical user interface input to the user while the transaction

is active. The life of the transaction is now in the hands of the user,

which could be the length of a coffee break! The result is most likely a

major performance problem in the form of a blocking problem. There

is an older article we built in Technical Support that can still be a

good resource to identify the cause of blocking problems at https://

support.microsoft.com/help/224453/inf-understanding-and-

resolving-sql-server-blocking-problems.

Tip I’ve also seen the opposite problems with transactions, where applications
never group statements in a transaction but execute each statement as a
transaction. Grouping modifications in a transaction can improve performance
because each commit of a transaction requires a flush to the transaction log.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/dotnet/framework/data/adonet/sql-server-connection-pooling
https://docs.microsoft.com/dotnet/framework/data/adonet/sql-server-connection-pooling
https://support.microsoft.com/help/224453/inf-understanding-and-resolving-sql-server-blocking-problems
https://support.microsoft.com/help/224453/inf-understanding-and-resolving-sql-server-blocking-problems
https://support.microsoft.com/help/224453/inf-understanding-and-resolving-sql-server-blocking-problems

287

• Deadlocks are problems that are almost always caused by the

application. I say this from pure experience. And the most common

deadlock cause is acquiring locks in an inconsistent manner based

on the order of how you query and modify data in concurrent

connections. Read our documentation on locking to gain more

insight on the cause of deadlocks and how to diagnose them at

https://docs.microsoft.com/sql/relational-databases/sql-

server-transaction-locking-and-row-versioning-guide#Lock_

Engine.

 Process Your Results!

Another application pattern I’ve seen from experience that can cause performance

problem is result set processing. When you execute a T-SQL SELECT statement to extract

rows from SQL Server, your application should be processing the rows immediately.

Processing means executing the necessary steps in your code to iterate through the

rows returned from SQL Server. There should not be any delay in between processing

rows. Why? Because SQL Server can potentially hold resources (locks) while it is waiting

for the client application to process the entire result set, which can lead to unexpected

blocking problems. One of the key indicators in SQL Server of this behavior is a wait type

called ASYNC_NETWORK_IO. See a great description of this problem from Paul Randal

on this blog post: https://www.sqlskills.com/help/waits/async_network_io/.

 Set Your Application Name

The DMV dm_exec_sessions has a column called program_name. The value of this

column for user connections is filled in based on the Application Name specified by the

application connecting to SQL Server. Since dm_exec_session is easily joined with dm_

exec_requests, and dm_exec_requests is often a central DMV to analyze performance

problems, having the program_name unique identify your application can help

pinpoint issues specific to your application vs. other connections with SQL Server such

as tools. To learn more about how to set the Application Name, see the example in our

documentation https://docs.microsoft.com/dotnet/api/system.data.sqlclient.

sqlconnectionstringbuilder.applicationname.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide#Lock_Engine
https://docs.microsoft.com/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide#Lock_Engine
https://docs.microsoft.com/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide#Lock_Engine
https://www.sqlskills.com/help/waits/async_network_io/
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlconnectionstringbuilder.applicationname
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlconnectionstringbuilder.applicationname

288

 Accelerating Performance
SQL Server has features that require some configuration or T-SQL statements to adopt

but have some incredible possible returns on investment to accelerate performance of

your queries and application. These include Partition Tables and Indexes, Columnstore

Indexes, and In-Memory OLTP. Each of these can be used for various scenarios but they

all have one thing in common: boosting performance for mission critical applications.

 Partitioned Tables and Indexes
Some data naturally can be sliced via a set of criteria for a column. In other words, it is

possible to naturally partition a table horizontally to a set of rows. Having this capability

can provide some very compelling performance and management capabilities.

SQL Server allows you to specifically create partitions on tables and indexes using

the following concepts:

• Partition function: An object you create that allows you to specify a

range of values that define the number of partitions and their range

(boundaries)

• Partition scheme: A T-SQL statement to define what FILEGROUPs

are defined to be used by the partition function. It is common to map

partitions to one or more user FILEGROUPs. Since you can backup

and manage FILEGROUPs individually, mapping a partition to

multiple FILEGROUPs allows you to manage partitions individually.

• Partition column: The column in the table used to define values for

the partition and used by the partition function. A common type of

column used in partitions is a datetime, because many customers use

partitions to divide up a table based on a set of rows over a period of

time.

So, why use partitions? Do they really provide any performance benefit? The number

one factor to use partitions for performance reasons is a concept called partition

elimination. The best way to see this is to use look at an example.

ChapTer 6 performanCe CapabILITIeS

289

The WideWorldImporters sample database contains two tables that are partitioned.

How do I know? Run the following T-SQL statement found in the example script

partitioned_tables.sql:

USE [WideWorldImporters]

GO

SELECT *

FROM sys.tables AS t

JOIN sys.indexes AS i

 ON t.[object_id] = i.[object_id]

 AND i.[type] IN (0,1)

JOIN sys.partition_schemes ps

 ON i.data_space_id = ps.data_space_id

GO

This query will return results for two tables: CustomerTransactions and

SupplierTransactions. If you generate the script for all objects in the WideWorldImporters

database as I’ve described in the book, you won’t see the details of partition functions and

schemes by default. For SQL Server Management Studio, you need to enable an option

first under the Tools/Options menu to have script generation pick up partition details (as

of the time of this writing, mssql-scripter does not support partition details but there is a

GitHub issue filed to include this).

Note The wwi.sql sample I’ve provided includes all the objects including
partition details.

Using this method, you will see the details of partitions for the [Sales].

[CustomerTransactions] table first through this partition function and scheme:

CREATE PARTITION FUNCTION [PF_TransactionDate](date) AS RANGE RIGHT FOR

VALUES (N'2014-01-01T00:00:00.000', N'2015-01-01T00:00:00.000', N'2016-01-

01T00:00:00.000', N'2017-01-01T00:00:00.000')

GO

CREATE PARTITION SCHEME [PS_TransactionDate] AS PARTITION [PF_

TransactionDate] TO ([USERDATA], [USERDATA], [USERDATA], [USERDATA],

[USERDATA], [USERDATA])

GO

ChapTer 6 performanCe CapabILITIeS

290

The partition function defines a partition based on a date type column with five

partitions, each one a calendar year in size. The RANGE RIGHT syntax means the

fifth partition is any value >= 2017-01-01. The partition scheme in this case maps all

partitions based on the partition function to the USERGROUP filegroup. It is very

possible to create multiple filegroups and map the partition across them. That could be a

valuable technique to span partitions across multiple disks or to allow for management

possibilities such as “backup a partition” because it is possible to back up a filegroup

separately.

So, the partition function defines how to partition the data values. The partition

scheme defines how to take those values and place them in specific filegorups.

Now let’s look at the definition of the [Sales].[CustomerTransactions] table to see how

the partition is used and how indexes and the table are placed on the partition scheme:

CREATE TABLE [Sales].[CustomerTransactions](

 [CustomerTransactionID] [int] NOT NULL,

 [CustomerID] [int] NOT NULL,

 [TransactionTypeID] [int] NOT NULL,

 [InvoiceID] [int] NULL,

 [PaymentMethodID] [int] NULL,

 [TransactionDate] [date] NOT NULL,

 [AmountExcludingTax] [decimal](18, 2) NOT NULL,

 [TaxAmount] [decimal](18, 2) NOT NULL,

 [TransactionAmount] [decimal](18, 2) NOT NULL,

 [OutstandingBalance] [decimal](18, 2) NOT NULL,

 [FinalizationDate] [date] NULL,

 [IsFinalized] AS (case when [FinalizationDate] IS NULL then

CONVERT([bit],(0)) else CONVERT([bit],(1)) end) PERSISTED,

 [LastEditedBy] [int] NOT NULL,

 [LastEditedWhen] [datetime2](7) NOT NULL,

 CONSTRAINT [PK_Sales_CustomerTransactions] PRIMARY KEY NONCLUSTERED

(

 [CustomerTransactionID] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [USERDATA]

) ON [PS_TransactionDate]([TransactionDate])

ChapTer 6 performanCe CapabILITIeS

291

GO

CREATE CLUSTERED INDEX [CX_Sales_CustomerTransactions] ON [Sales].

[CustomerTransactions]

(

 [TransactionDate] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,

DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS =

ON) ON [PS_TransactionDate]([TransactionDate])

GO

The nonclustered index for this table is based on the CustomerTransactionID

but is aligned on the partition that is based on the TransactionDate column. The

clustered index is also aligned on the TransactionDate column. This means the data

in the CustomerTransactions table is partitioned by SQL Server in its metadata, based

on the date ranges defined in the partition function. Partition schemes and functions

are independent objects and can be reused. In fact, if you look at the [Purchasing].

[SupplierTransactions] table, it uses the same partition functions and schemes.

Now let’s see a query example where partitions help with performance. SQL Server

has the ability to recognize the column involved in a query is part of a partition function

and can therefore target specific partitions and eliminate others. This allows SQL Server

to reduce the number of pages required to satisfy a query.

Execute the following T-SQL statement found in the example query

customertransactions_partition.sql:

USE [WideWorldImporters]

GO

SET STATISTICS IO ON

GO

SET STATISTICS XML ON

GO

SELECT COUNT(*) FROM Sales.CustomerTransactions

WHERE TransactionDate between '2013-01-01' and '2014-01-01'

GO

ChapTer 6 performanCe CapabILITIeS

292

The results for SET STATISTICS IO ON should look like the following:

Table 'CustomerTransactions'. Scancount 2, logical reads 123, physical reads 0,

read- ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

If you were to scan the entire table, you would see the number of logical reads

required is twice the amount required here. Yet when you look at the execution plan, you

can see from Figure 6-17 that an Index Scan is required.

Figure 6-17. The Query Plan used for a query with partitions

If you drill into the details of the XML SHOWPLAN from these results, you will find

this unique section called RunTimePartitionSummary, as seen in Figure 6-18.

ChapTer 6 performanCe CapabILITIeS

293

The RunTimePartitionSummary XML node shows that two partitions out of the five

possible were accessed to satisfy this query, including partitions 1 and 2. This explains

why even though the query plan showed an Index Scan, the entire index was not needed

to satisfy the requirements of the query. That is an example of partition elimination and

explains one of the performance benefits of using partitions.

I made partitions sound simple, and they can be. However, they may be more

complex to use to fit the needs of your application. Use the following resources to learn

more about partitions:

• Our documentation on partitions at https://docs.microsoft.com/

sql/relational-databases/partitions/partitioned-tables-

and-indexes.

• A very nice blog post on partition elimination by MVP Kendra Little:

https://littlekendra.com/2015/11/17/did-my-query-eliminate-

table- partitions-sql-server.

Figure 6-18. Partition statistics in an XML SHOWPLAN

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/partitions/partitioned-tables-and-indexes
https://docs.microsoft.com/sql/relational-databases/partitions/partitioned-tables-and-indexes
https://docs.microsoft.com/sql/relational-databases/partitions/partitioned-tables-and-indexes
https://littlekendra.com/2015/11/17/did-my-query-eliminate-table-partitions-sql-server
https://littlekendra.com/2015/11/17/did-my-query-eliminate-table-partitions-sql-server

294

• An excellent blog post by a close friend and top MVP who is both

knowledgeable and passionate about partitions, Kimberly Tripp:

https://www.sqlskills.com/blogs/kimberly/sqlskills-sql101-

partitioning/ (Note: Kim says outright that partitions are not

about performance but more about manageability. I think her point,

if you read this closely, is that partitions are not the answer to all

performance problems, but they can provide performance benefits.

She also mentions the concept of partitioned views, which I didn’t

cover in this section of the book.)

 Columnstore Indexes
Perhaps one of the coolest, but also practical, features to be introduced into SQL Server

to accelerate performance is columnstore indexes. A Columnstore is data that is

logically organized as a table with rows and columns, and physically stored in a column-

wise data format. A Rowstore is both logically and physical organized and stored in a

row-wise format. Row-wise is the standard format for SQL Server tables and indexes.

Columnstore indexes help accelerate performance through column-wise structure,

efficient compression, data elimination, and batch mode execution.

The concept of columnstore has been around a bit, but it did not make its way

into SQL Server until SQL Server 2012 (the compression algorithms are common

to the Vertipaq engine used for products like PowerPivot and SQL Server Analysis

Services). One common misnomer I’ve heard about columnstore indexes is that it is

an “in-memory technology.” A columnstore index is stored on disk and is compressed

in-memory and on disk. If the columnstore index can all fit in memory, then of course

performance will be optimal, but it is not required that the entire columnstore index fit

on disk. It is the compression of columnstore indexes that allows more of the data to fit

into memory that makes it an efficient feature of SQL Server.

 How it Works

To better understand how columnstore works, let me introduce you to a few

additional terms:

rowgroup: A group of rows that are compressed together into a

columnstore format at the same time

segment: A slice of a column of data within the rowgroup

ChapTer 6 performanCe CapabILITIeS

https://www.sqlskills.com/blogs/kimberly/sqlskills-sql101-partitioning/
https://www.sqlskills.com/blogs/kimberly/sqlskills-sql101-partitioning/

295

Each rowgroup contains one segment for each column that makes

up the columnstore index. SQL Server first slices the data into

rowgroups, and then compresses each segment within that group.

clustered columnstore index: The entire table is stored as a

columnstore index. In this scenario, you cannot create a normal

clustered index, but you can create normal nonclustered indexes

to support UNIQUE constraints.

nonclustered columnstore index: A set of columns that make

up the index is stored as a columnstore index over the base table

(which could have a normal clustered index).

delta rowgroup: A clustered index internally used to store data

for a columnstore index until enough data is populated in the

index to allow it to be compressed. Turns out that magic number

is 102,400 rows. You don’t create a delta rowgroup; SQL Server

does this automatically. Therefore, it is not going to make much

sense to use columnstore indexes on tables that have less than

102,400 rows. Once a delta rowgroup reaches this magic size, it is

compressed into a columnstore rowgroup.

My colleague at Microsoft, Sunil Agarwal, is the “godfather” of

columnstore indexes ever since it first appeared in SQL Server

2012. We chatted about the fundamentals of columnstore indexes

and he showed me this basic visualization of how columnstore is

structured, as seen in Figure 6-19.

Figure 6-19. The basic structure of columnstore indexes

ChapTer 6 performanCe CapabILITIeS

296

In this diagram, if you build a clustered columnstore index on a table with columns

C1...C5, this would be the structure of the clustered columnstore index.

Even though a columnstore index requires a copy of the data for columns it contains,

SQL Server uses efficient compression techniques, so the overhead is less than you

might expect. The performance benefits can be enormous. Sunil summarized for me

three fundamental benefits of columnstore:

• Compression: Clustered columnstore indexes are the primary

storage for the table. We have seen some customers achieve up to

10× compression ratios on their base table data. These compression

ratios help you fit more of your data in physical memory. And SQL

Server will only uncompress the data you need when you need it.

Furthermore, compression algorithms can be more efficient when

compressing data in a column-wise fashion.

• Data elimination: Since data is stored in a column-wise format,

SQL Server can skip columns you are not accessing through your

query. Furthermore, SQL Server has the ability to understand which

rowgroups of columns segments are required for your query and only

access the required rowgroups. This is a concept called rowgroup

elimination.

• Batch Mode execution: Batch mode execution is a technique used

by the query processor to process rows together with query processor

operators vs. one row at a time. This style of execution can provide a

boost to query performance. In addition, you will see a new feature

in SQL Server 2017 called adaptive query processing that can take

advantage of this functionality to provide intelligent query execution.

 When and Which Should I Choose?

The first natural question that comes up when I talk to customers about columnstore

indexes is: when should I use a columnstore index vs. a traditional clustered or

nonclustered b-tree index (also called a rowstore index)? The advice is a bit simpler than

you might think.

ChapTer 6 performanCe CapabILITIeS

297

First, you need to consider whether a clustered columnstore index is right for your

workload. Clustered columnstore indexes are best used for data warehouse scenarios

where the workload is mostly read based. Most data warehouses have a large number of

rows (> 100,000 rows) so clustered columnstore indexes fit very well for fact tables and

dimension tables with a minimum of 102,400 rows (there is a good description of fact and

dimension tables at this resource https://en.wikipedia.org/wiki/Data_warehouse).

Want some proof of clustered columnstore index performance? All the TPC-H

benchmarks produced by Microsoft use them. You can also see this demo, where I show

you the performance differences of using clustered columnstore indexes using the

popular tool PowerBi on YouTube: https://youtu.be/Y270nS42yL8?list=

PL-_k_UrAvrYvJh21uc8xebV18YW8sfpHE. You can try this demo yourself by using my

scripts from GitHub at https://github.com/Microsoft/bobsql/tree/master/demos/

rhelsummit2018/columnstore.

Let’s say you don’t have a data warehouse so you will not use a clustered

columnstore index. What about a nonclustered columnstore index? A nonclustered

columnstore index fits nicely into scenarios that involve operational or OLTP workloads

but some columns may be involved in queries that are range queries. A range query is

one that typically you know will involve finding a fairly large number of rows (typically

100 or more) vs. a seek query, which is typically targeting one or a few rows. If you know

you have queries on operational workloads that will require requesting a large number

of rows for specific columns, consider creating nonclustered columnstore indexes. Using

nonclustered columnstore indexes in this scenario is often called Hybrid Transactional

Analytical Processing (HTAP). I’ve also seen it called real-time operational analytics.

There is an excellent table in the documentation that summarizes your choice on

whether a columnstore index may be right for your workload, and which type of index

may be best for your workload, at https://docs.microsoft.com/sql/relational-

databases/indexes/columnstore-indexes-design-guidance#choose-the-best-

 columnstore-index-for-your-needs. Nothing beats experimentation and testing, and I

always recommend you do this with columnstore indexes.

ChapTer 6 performanCe CapabILITIeS

https://en.wikipedia.org/wiki/Data_warehouse
https://youtu.be/Y270nS42yL8?list=PL-_k_UrAvrYvJh21uc8xebV18YW8sfpHE
https://youtu.be/Y270nS42yL8?list=PL-_k_UrAvrYvJh21uc8xebV18YW8sfpHE
https://github.com/Microsoft/bobsql/tree/master/demos/rhelsummit2018/columnstore
https://github.com/Microsoft/bobsql/tree/master/demos/rhelsummit2018/columnstore
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-design-guidance#choose-the-best-columnstore-index-for-your-needs
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-design-guidance#choose-the-best-columnstore-index-for-your-needs
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-design-guidance#choose-the-best-columnstore-index-for-your-needs

298

 Columnstore in Action

To see a clustered columnstore index in action, let’s look at the WideWorldImportersDW

example database.

Note This demo requires the WideWorldImportersDW sample database as found
at https://github.com/Microsoft/sql-server-samples/releases/
download/wide-world-importers-v1.0/WideWorldImportersDW-Full.
bak. So you can copy the backup from another machine or run the following
command to download the backup directly in your Linux server: wget https://
github.com/Microsoft/sql-server-samples/releases/download/
wide-world-importers-v1.0/WideWorldImportersDW-Full.bak. I’ve
also provided the cpwwidw.sh, restore_wwidw_linux.sql, and restorewwidw.sh
scripts to help you copy and restore this example.

Use the following T-SQL statement as found in the example script wwidw_
cci.sql to find out which tables have clustered columnstore indexes in the

WideWorldImportersDW database:

USE [wideworldimportersdw]

GO

SELECT OBJECT_NAME(object_id) as table_name, name, type_desc

FROM sys.indexes

-- type = 5 means clustered columnstore index

WHERE type = 5

GO

Figure 6-20 shows the results using SQL Operations Studio.

ChapTer 6 performanCe CapabILITIeS

https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.bak

299

Now let’s run some queries against the Sales table (which is the Fact schema) to see

how column and rowgroup elimination works. First, let’s find out how many rows exist

in the entire Fact.Sales table using the following T-SQL statement (found in the example

script fact_sales_count.sql):

USE [wideworldimportersdw]

GO

SELECT COUNT(*) FROM Fact.Sale

GO

You should get a result of 228,265 rows. Many tables in data warehouse databases

that are fact tables use datetime columns because it is common to store warehouse

data over time. For the Fact.Sales table, there are two datetime columns, but the data is

sorted by the column, [Delivery Date Key]. Here lies the magic of rowgroup elimination

for clustered columnstore indexes. SQL Server has metadata for the range of values for

Figure 6-20. Clustered columnstore indexes in the WideWorldImportersDW
database

ChapTer 6 performanCe CapabILITIeS

300

each segment in the rowgroup. If the data is sorted on a specific column, SQL Server can

then skip certain rowgroups based on the criteria of the query. Try running the following

T-SQL statement as found in the example script fact_sales_all.sql:

USE [wideworldimportersdw]

GO

SET STATISTICS IO ON

GO

SET STATISTICS XML ON

GO

SELECT * FROM Fact.Sale

WHERE [Delivery Date Key] >= '2016-01-01'

GO

If you look at the results of SET STATISTICS IO, you should see something like this:

Table 'Sale'. Scan count 1, logical reads 0, physical reads 0, read-ahead

reads 0, lob logical reads 240, lob physical reads 0, lob read-ahead reads 0.

Table 'Sale'. Segment reads 2, segment skipped 5.

The value of lob logical reads is the amount of data in cache SQL Server needs

to read from the clustered columnstore index to satisfy this query (Note: if you didn’t

specify a WHERE clause, the lob logical reads in this case would be approximately 805).

SQL Server stores columnstore indexes as LOB data, which is why this counter is used

to measure reads. The second set of output that shows segment reads and segments

skipped is misleading. This should really read “rowgroups read” and “rowgroups

skipped.” This means there are seven total rowgroups for this clustered columnstore

index, but because of rowgroup elimination SQL Server was able to skip five of them.

Now execute this T-SQL statement as found in the example script fact_sales_query.sql:

USE [wideworldimportersdw]

GO

SET STATISTICS IO ON

GO

SET STATISTICS XML ON

GO

ChapTer 6 performanCe CapabILITIeS

301

SELECT [Customer Key], Quantity

FROM Fact.Sale

WHERE [Delivery Date Key] >= '2016-01-01'

GO

In this example, I only request two columns (or segments) and use the same WHERE

clause. The SET STIATISTICS IO results now look like the following:

Table 'Sale'. Scan count 1, logical reads 0, physical reads 0, read-ahead

reads 0, lob logical reads 36, lob physical reads 0, lob read-ahead reads 0.

Table 'Sale'. Segment reads 2, segment skipped 5.

The same number of rowgroups is skipped but because I only used two columns, I

need fewer segments, hence the significant lower number of reads required. This is the

power of columnstore. SQL Server can greatly speed up queries for large scans of data in

a data warehouse scenario because of both column and rowgroup elimination.

Sunil has an excellent blog post describing rowgroup elimination and how to

interpret the SET STATISTICS IO output at https://blogs.msdn.microsoft.com/sql_

server_team/columnstore-index-performance-rowgroup-elimination.

 Tips

To effectively use columnstore indexes, there a few topics you need to review,

understand, and implement.

• Data loading: Review and plan for data loading properly by reading

this section of our documentation: https://docs.microsoft.com/

sql/relational-databases/indexes/columnstore-indexes-data-

loading-guidance.

• Fragmentation: Follow this guidance in our documentation for

defragmentation: https://docs.microsoft.com/sql/relational-

databases/indexes/columnstore-indexes-defragmentation.

• Partitions: You can combine partitions with columnstore indexes

specially to help with manageability. See our documentation

guidance at https://docs.microsoft.com/sql/relational-

databases/indexes/columnstore-indexes-design-guidance#use-

table-partitions-for-data-management-and-query-performance.

ChapTer 6 performanCe CapabILITIeS

https://blogs.msdn.microsoft.com/sql_server_team/columnstore-index-performance-rowgroup-elimination
https://blogs.msdn.microsoft.com/sql_server_team/columnstore-index-performance-rowgroup-elimination
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-data-loading-guidance
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-data-loading-guidance
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-data-loading-guidance
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-defragmentation
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-defragmentation
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-design-guidance#use-table-partitions-for-data-management-and-query-performance
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-design-guidance#use-table-partitions-for-data-management-and-query-performance
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-design-guidance#use-table-partitions-for-data-management-and-query-performance

302

• Improving performance: To ensure maximum performance, read

through these recommendations in our documentation: https://

docs.microsoft.com/en-us/sql/relational-databases/

indexes/columnstore-indexes-design-guidance#use-table-

partitions-for-data-management-and-query-performance and

https://docs.microsoft.com/en-us/sql/relational-databases/

indexes/columnstore-indexes-query-performance#columnstore-

performance-explained.

 Customer Stories and Resources

Columnstore really makes a difference. Check out these customer case studies and other

resources:

• Sunil Agarwal Presentation on Customer Stories: https://channel9.

msdn.com/Events/Ignite/2016/BRK2083, https://channel9.msdn.com/

Events/Ignite/Australia-2017/DA343, and https://groupby.org/

conference-session-abstracts/successful-production-

deployments-with-columnstore-index-in-sql-server-2016/

• One of the most comprehensive studies of columnstore by Niko

Neugebauer on this blog through various posts at http://www.

nikoport.com/columnstore/

• Blog posts (mostly by Sunil) on columnstore on the SQL

Server Engine blog at https://blogs.msdn.microsoft.com/

sqlserverstorageengine/tag/columnstore-index

Columnstore indexes are such a powerful feature to accelerate performance in SQL

Server. And the amazing story is that it does not require any application changes.

Columnstore is not for every workload, but it may be right for you. I always recommend

that customers investigate to see how columnstore indexes can help boost SQL Server

query performance.

 In-Memory OLTP
As far back as 2007, the SQL Server engineering team embarked on a journey to build

high-speed, low-latency, Online Transaction Processing (OLTP) into SQL Server. Things

kicked into full gear around 2010 with a project called Hekaton. Hekaton in Greek

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-design-guidance#use-table-partitions-for-data-management-and-query-performance
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-design-guidance#use-table-partitions-for-data-management-and-query-performance
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-design-guidance#use-table-partitions-for-data-management-and-query-performance
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-design-guidance#use-table-partitions-for-data-management-and-query-performance
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-query-performance#columnstore-performance-explained
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-query-performance#columnstore-performance-explained
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-query-performance#columnstore-performance-explained
https://channel9.msdn.com/Events/Ignite/2016/BRK2083
https://channel9.msdn.com/Events/Ignite/2016/BRK2083
https://channel9.msdn.com/Events/Ignite/Australia-2017/DA343
https://channel9.msdn.com/Events/Ignite/Australia-2017/DA343
https://groupby.org/conference-session-abstracts/successful-production-deployments-with-columnstore-index-in-sql-server-2016/
https://groupby.org/conference-session-abstracts/successful-production-deployments-with-columnstore-index-in-sql-server-2016/
https://groupby.org/conference-session-abstracts/successful-production-deployments-with-columnstore-index-in-sql-server-2016/
http://www.nikoport.com/columnstore/
http://www.nikoport.com/columnstore/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/tag/columnstore-index
https://blogs.msdn.microsoft.com/sqlserverstorageengine/tag/columnstore-index

303

means 100, and the goal from the onset was to achieve a 100× performance boost in

OLTP transactions vs. traditional SQL Server techniques. As of SQL Server 2017, the

reality is that we have seen amazing performance with this feature but to a maximum

of about 30× performance from a traditional OLTP application. But we have seen some

great stories including one customer who was able to achieve 1.2 million batch requests/

second for a highly scalable OLTP application. You can see their story and what is

possible at https://blogs.msdn.microsoft.com/sqlcat/2016/10/26/how-bwin-is-

using-sql-server-2016-in-memory-oltp-to-achieve-unprecedented-performance-

and-scale/.

 Fundamentals

First and foremost, read this page in the documentation for the basic requirements to

use the In-Memory OLTP feature: https://docs.microsoft.com/sql/relational-

databases/in-memory-oltp/requirements-for-using-memory-optimized-tables.

In-Memory OLTP is a feature of SQL Server and is available in both Standard and

Enterprise editions (Standard edition does have some limitations). In-Memory OLTP has

seen major advances in functionality and fewer restrictions since it first was introduced

as a feature in SQL Server 2014. This feature is made up of these components:

• The Hekaton engine

• A Memory Optimized FILEGROUP

• Memory Optimized Tables

• Indexes for Memory Optimized Tables—Hash or Nonclustered

• Natively Compiled Stored Procedures

 The Hekaton Engine

Built inside of the SQL Server database engine is “an engine with an engine” for In-

Memory OLTP. It is comprised of a series of Dynamic Linked Libraries that implement

the logic for In-Memory OLTP transactions. There is a component for compilation,

runtime, and an engine. These components interoperate with the rest of the SQL Server

engine such as query processing and transaction logging. However, there are other

components that are independent of the SQL Server engine for things like checkpoint

and garbage collection. All of the Hekaton components still rely on the SQLOS subsystem

and on Linux into the Host Extension for any native Linux kernel services (e.g., I/O).

ChapTer 6 performanCe CapabILITIeS

https://blogs.msdn.microsoft.com/sqlcat/2016/10/26/how-bwin-is-using-sql-server-2016-in-memory-oltp-to-achieve-unprecedented-performance-and-scale/
https://blogs.msdn.microsoft.com/sqlcat/2016/10/26/how-bwin-is-using-sql-server-2016-in-memory-oltp-to-achieve-unprecedented-performance-and-scale/
https://blogs.msdn.microsoft.com/sqlcat/2016/10/26/how-bwin-is-using-sql-server-2016-in-memory-oltp-to-achieve-unprecedented-performance-and-scale/
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/requirements-for-using-memory-optimized-tables
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/requirements-for-using-memory-optimized-tables

304

You normally don’t see any of these components of the Hekaton engine because the

concept is that it is all built-in. However, when you start examining some of the details

of DMVs like dm_exec_requests, you will start to see new tasks when you use T-SQL to

create a memory optimized FILEGROUP and memory optimized tables.

For example, the WideWorldImporters database has a memory optimized

FILEGROUP and memory optimized tables. So when you restore that example database,

you will see tasks in sys.dm_exec_requests where the command column = XTP_CKPT_

AGENT’ or ‘XTP_THREAD_POOL’ and others.

Note XTp stands for eXtreme Transaction processing and is another internal
name for In-memory oLTp. You may see several diagnostic objects and messages
that start with hK (hekaton) or XTp. These are all related to the In-memory oLTp
components.

Two of the key design principles of In-Memory OLTP are:

• All data is stored in memory (but has a durable option through the

transaction log and checkpoint files) and has to fit into memory.

• Access to data is optimized using a “lock and latch free” set of

algorithms and row versioning. In-Memory OLTP uses an optimistic

concurrency methodology to prevent locking problems and

internally uses techniques to avoid internal thread concurrency

issues. Modifications to memory optimized tables use a row

versioning scheme to avoid additional transaction conflicts (this

row versioning scheme is the not the same as SQL Server snapshot

isolation and does not use tempdb).

I’ve briefly mentioned locks in previous sections of this chapter as this is the primary

mechanism to ensure transaction consistency for SQL Server applications. I’ve not

mentioned the concept of latches, which is an internal mechanism of SQL Server to

protect the physical integrity of database pages between multiple threads and is also

used for other thread concurrency protection schemes in the engine. One of the key

design principles for In-Memory OLTP to achieve low latency and high speed is to avoid

the use of any locks or latches in the “Hekaton Engine”. (Hekaton also avoids the use of

spinlocks in its code, which is another internal thread concurrency mechanism).

ChapTer 6 performanCe CapabILITIeS

305

In-Memory OLTP is not a feature you enable with a specific option. You use this

feature by:

 1. Creating a Memory Optimized FILEGROUP

 2. Creating and using one or more memory optimized tables in your

database (including the choice of indexes)

 3. Optionally creating one or more natively compiled stored

procedures

Let’s take a look at each of these in more detail.

 Memory Optimized FILEGROUP

The first step to use In-Memory OLTP in a database is to create a special

FILEGROUP for memory optimized tables. Let’s look at an example of this using the

WideWorldImporters example. If you generate the script to create the database based on

the backup/restore (see the following documentation on how to do this: https://docs.

microsoft.com/sql/ssms/tutorials/scripting-ssms#script-databases) you will see

this T-SQL statement:

Note If you don’t have SQL Server management Studio, remember the mssql-
scripter tool (you can get this tool at https://github.com/Microsoft/
mssql-scripter) on Linux can be used to generate scripts for SQL Server. I’ve
also provided the complete script for the WideWorldImporters database in the
example script wwi.sql.

CREATE DATABASE [WideWorldImporters]

 CONTAINMENT = NONE

 ON PRIMARY

(NAME = N'WWI_Primary', FILENAME = N'/var/opt/mssql/data/

WideWorldImporters.mdf' , SIZE = 1048576KB , MAXSIZE = UNLIMITED,

FILEGROWTH = 65536KB),

 FILEGROUP [USERDATA] DEFAULT

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/ssms/tutorials/scripting-ssms#script-databases
https://docs.microsoft.com/sql/ssms/tutorials/scripting-ssms#script-databases
https://github.com/Microsoft/mssql-scripter
https://github.com/Microsoft/mssql-scripter

306

(NAME = N'WWI_UserData', FILENAME = N'/var/opt/mssql/data/

WideWorldImporters_UserData.ndf' , SIZE = 2097152KB , MAXSIZE = UNLIMITED,

FILEGROWTH = 65536KB),

 FILEGROUP [WWI_InMemory_Data] CONTAINS MEMORY_OPTIMIZED_DATA DEFAULT

(NAME = N'WWI_InMemory_Data_1', FILENAME = N'/var/opt/mssql/data/

WideWorldImporters_InMemory_Data_1' , MAXSIZE = UNLIMITED)

 LOG ON

(NAME = N'WWI_Log', FILENAME = N'/var/opt/mssql/data/WideWorldImporters.

ldf' , SIZE = 102400KB , MAXSIZE = 2048GB , FILEGROWTH = 65536KB)

GO

Notice this part of the CREATE DATABASE statement:

FILEGROUP [WWI_InMemory_Data] CONTAINS MEMORY_OPTIMIZED_DATA DEFAULT

(NAME = N'WWI_InMemory_Data_1', FILENAME = N'/var/opt/mssql/data/

WideWorldImporters_InMemory_Data_1' , MAXSIZE = UNLIMITED)

The special syntax here is CONTAINS MEMORY_OPTIMIZED DATA. Notice the

FILENAME is not the name of a file but rather the path to a directory. This syntax tells

SQL Server that this database will be enabled to store memory optimized tables. SQL

Server uses the path for this special FILEGROUP to create directories to store checkpoint

files. Checkpoint files are files that store durable memory optimized table data that is not

active in the transactions log. In fact, the durability of memory optimized tables is the

combination of what is stored in checkpoint files and the part of the transaction log since

the last database checkpoint.

You can read more about the memory optimized FILEGROUP in our documentation

at https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/

the-memory-optimized-filegroup and checkpoint files for memory optimized tables

at https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/

durability-for-memory-optimized-tables.

 Memory Optimized Tables

Once you have created a memory optimized FILEGROUP for a database, you can create

memory optimized tables in the database. Memory optimized tables look and feel like

normal (often called disk based) in a database except you use an extension to the T-SQL

syntax with the CREATE TABLE statement.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/the-memory-optimized-filegroup
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/the-memory-optimized-filegroup
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/durability-for-memory-optimized-tables
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/durability-for-memory-optimized-tables

307

Let’s use the WideWorldImporters sample database again to see an example. Using

the feature in SQL Server Management Studio to script a table (see the documentation at

https://docs.microsoft.com/sql/ssms/tutorials/scripting-ssms#script-tables),

generate the script for the [Warehouse].[VehicleTemperatures] table:

CREATE TABLE [Warehouse].[VehicleTemperatures]

(

 [VehicleTemperatureID] [bigint] IDENTITY(1,1) NOT NULL,

 [VehicleRegistration] [nvarchar](20) COLLATE Latin1_General_CI_AS

NOT NULL,

 [ChillerSensorNumber] [int] NOT NULL,

 [RecordedWhen] [datetime2](7) NOT NULL,

 [Temperature] [decimal](10, 2) NOT NULL,

 [FullSensorData] [nvarchar](1000) COLLATE Latin1_General_CI_AS NULL,

 [IsCompressed] [bit] NOT NULL,

 [CompressedSensorData] [varbinary](max) NULL,

 CONSTRAINT [PK_Warehouse_VehicleTemperatures] PRIMARY KEY NONCLUSTERED

(

 [VehicleTemperatureID] ASC

)

)WITH (MEMORY_OPTIMIZED = ON , DURABILITY = SCHEMA_AND_DATA)

GO

Notice the extended syntax for the WITH option. MEMORY_OPTIMIZED = ON tells

SQL Server this will be a memory optimized table.

Memory optimized tables have two types, and you use the DURABILITY option to

specify which type:

SCHEMA_AND_DATA: This option ensures the durability of both

the schema (table definition) and the data through checkpoint

files and the transaction log.

SCHEMA_ONLY: This option ensures the durability of only the

schema not user data. This means that if SQL Server is shut

down for any reasons after inserting data, all data will be lost.

This may sound like an awfully bad thing, but there could be

scenarios where you need to cache data and don’t care if the data

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/ssms/tutorials/scripting-ssms#script-tables

308

is persisted. This type of memory optimized table offers the fastest

possible performance, since changes are not recorded in the

transaction log.

Memory optimized tables have one particularly important characteristic. All of the

data in these types of tables must fit into memory. SQL Server will use memory resources

outside the normal buffer pool for memory optimized data. This means that if you use

memory optimized tables in SQL Server, there will be competing resources for memory

between disk-based tables using the buffer pool and memory optimized tables. There

are limits to how much memory SQL Server will allow for memory optimized tables

but there are also ways to restrict memory usage through resource governor. See our

documentation for more details at https://docs.microsoft.com/sql/relational-

databases/in-memory-oltp/bind-a-database-with-memory-optimized-tables-to-a-

resource-pool.

It is important to know that memory optimized tables can co-exist with disk-based

tables in a database. Disk-based tables will be stored with the standard SQL Server

buffer pool and database files. Memory optimized tables are stored in memory in a

separate memory area managed by SQL Server and durable through checkpoint files

and the transaction log (Note: all transactions in a database for disk-based and memory

optimized tables are stored in the same transaction log).

The fact that memory optimized tables must fit memory is not really the

performance benefit. Even disk-based tables are pulled into the buffer pool from disk.

The key performance benefit is optimized access to data in memory, hence the name.

And the optimization benefit is truly seen with concurrent access to memory optimized

tables. I don’t recommend you measure the true benefit of memory optimized tables

with a single user example. It’s all about concurrent, optimized access to data.

 Indexes

Memory optimized tables are internally structured differently than disk-based tables.

They do not use the same 8KB database page and row structure concept. Those internals

are not meant to be something you should concern yourself with as you use this feature,

but it is useful to know especially when it comes to understanding indexes.

Memory optimized tables do not have a clustered index. Instead, indexes are used

only for access to data. Two types of indexes are available for memory optimized tables:

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/bind-a-database-with-memory-optimized-tables-to-a-resource-pool
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/bind-a-database-with-memory-optimized-tables-to-a-resource-pool
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/bind-a-database-with-memory-optimized-tables-to-a-resource-pool

309

Hash: A index of hashed values on the key columns. This can be

very efficient when you are almost always executing queries for

single row lookups. Hash indexes can be efficient but also can be

difficult to decide how to configure and maintain.

Nonclustered: A b-tree structure like disk-based table

nonclustered indexes. I recommend you use a nonclustered index

as the default index type and then do tuning to see if a hash index

is better for your workload.

You can use many indexes across columns of a memory optimized table, but you

must always have one index (hash or nonclustered) that is defined as the primary key.

As you explore how memory optimized tables work, I think these two resources can

be valuable:

• A white paper on Internals of In-Memory OLTP written by Kalen

Delaney at https://docs.microsoft.com/sql/relational-

databases/in-memory-oltp/sql-server-in-memory-oltp-

internals-for-sql-server-2016

• An Inside In-Memory OLTP presentation I did that can be found on

YouTube at https://www.youtube.com/watch?v=P9DnjQqE0Gc

 Natively Compiled Stored Procedures

Standard T-SQL statements are allowed with memory optimized tables with some

restrictions (See this documentation for restrictions: https://docs.microsoft.com/

sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-

supported-by-in-memory-oltp). This concept is called interpreted T-SQL.

To accelerate performance even further, we created a concept called a natively

compiled stored procedure. The concept is that you can create a stored procedure using

a special T-SQL syntax so that SQL Server will compile and build a Dynamic Link Library

(DLL) to represent all the T-SQL queries in the stored procedure.

All the code to execute the query normally compiled into query plans is baked into

the DLL. This allows for incredibly fast speed when executing a natively compiled stored

procedure.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/sql-server-in-memory-oltp-internals-for-sql-server-2016
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/sql-server-in-memory-oltp-internals-for-sql-server-2016
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/sql-server-in-memory-oltp-internals-for-sql-server-2016
https://www.youtube.com/watch?v=P9DnjQqE0Gc
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-by-in-memory-oltp
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-by-in-memory-oltp
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-by-in-memory-oltp

310

If you use the techniques I’ve described previously in this chapter to generate the

script of an object, you can see from this fragment of the stored procedure [Website].

[RecordColdRoomTemperatures] the syntax of a natively compiled stored procedure:

CREATE PROCEDURE [Website].[RecordColdRoomTemperatures]

@SensorReadings Website.SensorDataList READONLY

WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER

AS

BEGIN ATOMIC WITH

(

 TRANSACTION ISOLATION LEVEL = SNAPSHOT,

 LANGUAGE = N'English'

)

 BEGIN TRY

.

.

.

The WITH NATIVE_COMPILATION extension is the key to creating a natively

compiled stored procedure.

The combination of a memory optimized table with natively compiled stored

procedures provides the maximum possible performance capabilities of In-Memory

OLTP. Natively compiled procedures are not for every scenario and have some limits

on T-SQL statements. See this documentation for any limits to using certain aspects

of T-SQL with natively compiled procedures: https://docs.microsoft.com/sql/

relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-

by-in-memory-oltp.

 Usage Scenarios

If you have enough memory to fit the data and need a high-speed, scalable, OLTP

solution, memory optimized tables may be a good fit for you. Use this place in our

documentation to estimate the memory needs of your memory optimized tables:

https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/

estimate-memory-requirements-for-memory-optimized-tables.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-by-in-memory-oltp
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-by-in-memory-oltp
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-by-in-memory-oltp
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/estimate-memory-requirements-for-memory-optimized-tables
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/estimate-memory-requirements-for-memory-optimized-tables

311

In-Memory OLTP has more uses than your traditional INSERT, UPDATE, DELETE

type of SQL application. Consider these other examples:

• Data ingestion applications, especially internet of things (IoT)

scenarios

• Caching and session state data

• Replacing tempdb usage

• Extract Transform Load (ETL) scenarios

Check out our documentation for more guidance on these scenarios and some

customer case study examples: https://docs.microsoft.com/sql/relational-

databases/in-memory-oltp/overview-and-usage-scenarios.

 The Intelligent SQL Server Engine
I’ve presented in this chapter all the amazing performance capabilities either built into

the SQL Server Engine or available through configuration settings or additional features

like Columnstore indexes. In SQL Server 2017, we made decisions to start investing

in features that provide more intelligence into the SQL Server engine, to help boost

performance for applications and reduce the time to resolve performance problems.

One of these features is built into the Query Processing Engine and another is built into

the engine when the Query Store feature is enabled.

 Adaptive Query Processing
While the query processor in SQL Server is an amazing component of the engine and is

designed to build the best possible query plans balanced with keeping compile times

quick, patterns exist where the query processor is limited in decisions it can make. And

many of these scenarios involve limitations based on cardinality estimation.

So, in SQL Server 2017, instead of always “chasing our tails” and trying to fix these

cardinality issues, we built functionality to have the query processor adapt to query

execution issues and correct them “on the fly.”

This family of features is called adaptive query processing (which is actually part of

a wider set of functionalities planned for SQL Server called intelligent query processing).

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/overview-and-usage-scenarios
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/overview-and-usage-scenarios

312

In SQL Server 2017, we have enabled three different scenarios for adaptive query

processing:

• Batch mode memory grant feedback

• Batch mode adaptive join

• Interleaved execution

If you remember in the earlier section on columnstore indexes, I touched on the

topic of batch mode processing. This means that for the first two scenarios, adaptive

query processing will only work when the query processor uses batch mode. In SQL

Server 2017, this means only for scenarios for columnstore indexes.

The concept for the first scenario, batch mode memory grant feedback, is that SQL

Server will adapt its memory allocation for memory grants if it detects a query has

executed and used an incorrect memory grant. Subsequent executions of the query will

adapt to a new grant, thereby avoiding a performance problem. This detection is built

into the query processor and does not require a recompilation of the query.

The second scenario is an example of SQL Server adapting by creating a new query plan

operator that is intelligent to adapt. The new operator is called an Adaptive Join operator.

The concept is that SQL Server can defer deciding a particular type of join method to use

when joining tables until after it has read data to decide which join method is best.

The third scenario involves the SQL Server query optimizer adapting itself during

the compilation of a query plan for a multistatement table valued function, which has

challenges for cardinality estimation. The optimizer will pause optimization, gather more

accurate cardinality information, and resume optimization to adapt to a better query plan.

To see adaptive query processing in action, download the examples files for this

chapter from the aqp directory and follow the instructions in the readme.md file.

Note This demo requires the WideWorldImportersDW sample database as found
at https://github.com/Microsoft/sql-server-samples/releases/
download/wide-world-importers-v1.0/WideWorldImportersDW-Full.
bak. So you can copy the backup from another machine or run the following
command to download the backup directly in your Linux server: wget
https://github.com/Microsoft/sql-server-samples/releases/
download/wide-world-importers-v1.0/WideWorldImportersDW-
Full.bak. I’ve also provided the cpwwidw.sh, restore_wwidw_linux.sql, and
restorewwidw.sh scripts to help you copy and restore this example.

ChapTer 6 performanCe CapabILITIeS

https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.bak

313

When you go through the demo for adaptive joins, as found in the aqp_adaptivejoin.
sql example script, display the actual execution plan for the final query of the demo.

Your query plan should look something similar to Figure 6-21.

Note the Adaptive Join operator has an Actual Join Type, which in this case is Nested

Loops based on the values of data at the time of the query execution. In the demo script,

the previous query had a join type of Hash Join.

Adaptive query processing is enabled in the SQL Server query processor if you are

using database compatibility 140. This is the default compatibility level if you create a

new database with SQL Server 2017. I’ll talk about database compatibility for upgrade

and migration scenarios in a later chapter in the book on migration.

The lead Program Manager for this area of the product, Joe Sack, has a really nice

video on YouTube you can watch to see the complete demo and hear from him on the

aspects of this feature: https://www.youtube.com/watch?v=szTmo6rTUjM.

 Automatic Tuning
When I first saw early builds of SQL Server 2017, one of the features that caught my eye

immediately was Automatic Tuning with an option called Automatic Plan Correction.

Figure 6-21. An adaptive join as part of adaptive query processing

ChapTer 6 performanCe CapabILITIeS

https://www.youtube.com/watch?v=szTmo6rTUjM

314

SQL Server 2017 was released in October of 2017 right on the heels of one of my favorite

releases, SQL Server 2016. In SQL Server 2016, we brought to the product a new feature

called Query Store. When Query Store is enabled for a database via ALTER DATABASE,

the SQL Server engine will start collecting query performance telemetry in memory and

system tables in the database. No longer do you need to poll DMVs and store them into

your own tables. This performance telemetry is collected by the SQL Server engine itself

when queries are compiled and executed.

Like many features we build into SQL Server, you can use T-SQL queries to find out the

details of performance data through a series of catalog views (you can find these at https://

docs.microsoft.com/sql/relational-databases/system-catalog-views/query-store-

catalog-views-transact-sql). Query store opens up all types of cool performance insights,

and we have documented some of the key usage scenarios you can read at https://docs.

microsoft.com/sql/relational-databases/performance/monitoring-performance-by-

using-the-query-store#Scenarios. One of these scenarios is called a query plan regression

(also known as plan choice regressions, which you can read more about at https://

docs.microsoft.com/sql/relational-databases/performance/query-store-usage-

scenarios#pinpoint-and-fix-queries-with-plan-choice-regressions).

Imagine this scenario. You have a stored procedure that takes a single integer

parameter. This integer parameter is used in the WHERE clause of a SELECT statement

in the stored procedure. The first time the stored procedure is compiled, the plan for

this procedure is inserted into cache based on the value of the parameter from the first

execution of the procedure. And this plan may be a good plan for most users. Now for

unexpected reasons, perhaps memory pressure, the plan is evicted from cache. Let’s say

a user then executes the procedure through an application but this time with a different

integer parameter value. This could result in a different query plan that leads to poor

performance (for example, the new plan could involve an index scan that is not optimal for

all executions). Compiling a plan for a stored procedure based on the parameter value is

called parameter sniffing. This concept is discussed in our Query Processing Architecture
Guide in the documentation (which in itself is a cool read at https://docs.microsoft.

com/sql/relational-databases/query-processing-architecture- guide). Parameter

sniffing is designed to be a good thing, but in some situations where the data in the table

associated with the parameter is skewed, a performance problem could occur.

So, in SQL Server 2016, you can use our reports in SQL Server Management Studio

or run queries against Query Store catalog views to see whether a query plan regression

has caused a performance problem. Now SQL Server 2017 comes along with some

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/system-catalog-views/query-store-catalog-views-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-catalog-views/query-store-catalog-views-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-catalog-views/query-store-catalog-views-transact-sql
https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store#Scenarios
https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store#Scenarios
https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store#Scenarios
https://docs.microsoft.com/sql/relational-databases/performance/query-store-usage-scenarios#pinpoint-and-fix-queries-with-plan-choice-regressions
https://docs.microsoft.com/sql/relational-databases/performance/query-store-usage-scenarios#pinpoint-and-fix-queries-with-plan-choice-regressions
https://docs.microsoft.com/sql/relational-databases/performance/query-store-usage-scenarios#pinpoint-and-fix-queries-with-plan-choice-regressions
https://docs.microsoft.com/sql/relational-databases/query-processing-architecture-guide
https://docs.microsoft.com/sql/relational-databases/query-processing-architecture-guide

315

automation. Why not bake into the engine some automation behind the rich telemetry of

Query Store? Turns out the folks in our engineering team that own the Query Store feature

were already working on these kinds of features in the cloud for Azure SQL Database.

Using our cloud-first approach for engineering, we started working on these features in

Azure, tested and verified their functionality, and then brought them to SQL Server 2017.

I have a demo you can try yourself (surprise! It uses the WideWorldImporters

database) for SQL Server on Linux using SQL Operations Studio. I encourage you to

go through the entire example, which can be found in the autotune directory for the

examples for this chapter or on my GitHub site at https://github.com/Microsoft/

bobsql/tree/master/demos/sqlserver/sqllinux/autotune. Just follow the

instructions in the readme.md file. When you run this demo you will notice I used the

charting feature for SQL Operations Studio I showed you earlier in this chapter in a

new way. Figure 6-22 shows an example of the chart from SQL Operations Studio after

Automatic Tuning corrected a query plan regression problem from the demo.

Figure 6-22. Automatic Tuning demonstrated with SQL Operations Studio

The chart shown in Figure 6-22 measures batch requests/sec, which is a standard

method to measure SQL Server query throughput. Note how performance goes down

on the right-hand side of the chart but automatically picks back up to expected levels

quickly.

ChapTer 6 performanCe CapabILITIeS

https://github.com/Microsoft/bobsql/tree/master/demos/sqlserver/sqllinux/autotune
https://github.com/Microsoft/bobsql/tree/master/demos/sqlserver/sqllinux/autotune

316

Almost everyone I’ve shown this demo to has been amazed. My recommendation to

use this feature is the following:

• Enable Query Store and configure it to your needs. See our

documentation on best practices at https://docs.microsoft.com/

sql/relational-databases/performance/best-practice-with-

the-query-store.

• Monitor any recommendations we have for you by examining the

DMV, dm_db_tuning_recommendations.

• If you are comfortable with our recommendations, experiment with

turning on Automatic Plan Correction using this T-SQL syntax:

ALTER DATABASE current

SET AUTOMATIC_TUNING (FORCE_LAST_GOOD_PLAN = ON);

• Whether you just look at recommendations or use automation, I

always recommend you find the cause of the query plan regression

problem and take a more long-term corrective action.

If you want to follow along and watch me demonstrate Automatic Tuning with SQL

Server on Linux, catch this demo video I posted on the SQL Server YouTube Channel,

https://youtu.be/Sh8W7IFX390.

 Summary
My intent in this chapter was to make sure you understand what is possible for

performance for SQL Server on Linux. I’ve covered the built-in capabilities of

performance that you can trust from SQL Server, from scalability on your laptop to

the largest enterprise servers in the industry. I’ve shown you important configuration

choices both for SQL Server and Linux. And I’ve talked about how tuning can be

achieved using the right balance of indexes, maintaining statistics, and taking advantage

of the right T-SQL usage in your application. You have also seen how to take advantage

of new technology to accelerate performance from columnstore indexes to intelligent

performance capabilities such as Automatic Tuning. Armed with this knowledge, it’s

time to ensure you understand how to secure your SQL Server and learn important

security features and options when running on Linux.

ChapTer 6 performanCe CapabILITIeS

https://docs.microsoft.com/sql/relational-databases/performance/best-practice-with-the-query-store
https://docs.microsoft.com/sql/relational-databases/performance/best-practice-with-the-query-store
https://docs.microsoft.com/sql/relational-databases/performance/best-practice-with-the-query-store
https://youtu.be/Sh8W7IFX390

317
© Bob Ward 2018
B. Ward, Pro SQL Server on Linux, https://doi.org/10.1007/978-1-4842-4128-8_7

CHAPTER 7

Security in SQL Server
The second major pillar of the SQL Server data platform and engine is security. SQL

Server 2017 not only comes with a rich set of features to meet your security needs but

has been recognized for being the least vulnerable database platform over almost the

last decade. Figure 7-1 is the one of the standard visuals I use to show an overview of the

SQL Security feature suite (many in the industry call this defense in depth) and a chart

showing the rating of SQL Server vs. the competition on vulnerabilities.

Figure 7-1. SQL Server Defense in depth

The bar chart on the right isn’t something Microsoft made up. It comes from the

National Institute of Standards and Technology Comprehensive Vulnerability Database

(https://www.nist.gov/programs-projects/national-vulnerability-database-

nvd) and it explains how seriously we take security.

In this chapter I will show you the various security features that make up the defense

in depth story. Security can be more than just a software feature, so I recommend

you also read this section in our documentation about how to secure your SQL

Server including physical security: https://docs.microsoft.com/sql/relational-

databases/security/securing-sql-server.

https://www.nist.gov/programs-projects/national-vulnerability-database-nvd
https://www.nist.gov/programs-projects/national-vulnerability-database-nvd
https://docs.microsoft.com/sql/relational-databases/security/securing-sql-server
https://docs.microsoft.com/sql/relational-databases/security/securing-sql-server

318

 Logins and Users
So far in this book I’ve shown you two examples of SQL Server logins (sa and a login

called sqllinux I created), which are identifications used to connect to SQL Server and

execute queries. Both of these logins are examples of connecting to SQL Server using

SQL Server Authentication. SQL Server authentication requires a name and a password.

Applications use the name and password to connect to SQL Server. It is the simplest and

most compatible method to connect to an SQL Server, whether it be on Windows, Linux,

or even Azure. The biggest downside is that you must maintain a separate authentication

set of objects from ones you might be using for other authentication purposes (such as

Active Directory). I’ll show you in the next section of this chapter how to set up and use

Active Directory Authentication on Linux.

While logins are objects at the SQL Server instance level, databases also have users.

There is a connection between a login and users in a database. Every login created with

SQL Server is mapped to at least one user in the master database. The sa login is mapped

to a user called dbo (database owner). All other created logins are mapped to the user

guest. All databases when created have the dbo and guest users based on the definition

out of the model database. Aside from the sa login, most logins will be granted access to

a user database by mapping that login to a user you create in the database. If you desire

a login to have rights as the database owner, you would map that user to the dbo user.

Otherwise, you would create a new user in the database and map the login to that user.

Logins can be mapped to different users in different databases on the same SQL Server

instance.

In previous examples in this book, I showed you how to create a new user called

sqllinux. Instead of mapping sqllinux to a specific user, I used this login to create

a database called WideWorldImporters. Using a login (if you place the login in the

dbcreator role) to create a database automatically maps that login to the dbo user of

the database that was created. By default, as a security best practice, the guest user

is revoked access to connect for a user database (it must be enabled for the system

database msdb). What this means is that if you create a new login and try to access a

database where your login has not been mapped to a user, then your access will fail with

an error like the following:

Msg 916, Level 14, State 1, Line 1

The server principal “sqllinux” is not able to access the database

“WideWorldImporters” under the current security context.

Chapter 7 SeCurity in SQL Server

319

So let’s follow the steps you would use to create logins and users for any database

you create:

• First, I highly recommend you not use the sa login to create new

databases for production. If you are just developing or experimenting

with SQL Server, then using sa is fine.

• So, to create your first database, create a new login using the T-SQL

CREATE LOGIN statement. I showed you an example of how to do

this and give proper permissions to this login to create a database in

Chapter 3 of the book like this (this script is found in the examples

with Chapter 3 called createlogin.sql). Execute this script connected

as the sa login.

Tip For any production system you should consider password expiration and
complexity. read our documentation for guidance on these topics at https://
docs.microsoft.com/sql/relational-databases/security/
password-policy.

USE master

GO

IF EXISTS (select * from sys.server_principals where name = 'sqllinux')

 DROP LOGIN [sqllinux]

GO

CREATE LOGIN [sqllinux] WITH PASSWORD=N'Sql2017isfast', DEFAULT_

DATABASE=[master]

GO

ALTER SERVER ROLE dbcreator ADD MEMBER sqllinux

GO

In this example, I added this login to a server role to allow it to create databases. I’ll

discuss more details about roles later in this chapter. This login will now be mapped to

the user dbo and will have all the privileges given to the dbo user in that database.

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/relational-databases/security/password-policy
https://docs.microsoft.com/sql/relational-databases/security/password-policy
https://docs.microsoft.com/sql/relational-databases/security/password-policy

320

Note in Chapter 3 i used the legacy system procedure sp_addsrvrolemember.
this is perfectly fine to use but technically it is deprecated. here i use the new
aLter Server rOLe syntax.

• Create a new database connected as the sqllinux login using the

following T-SQL statement as found in the example createdb.sql:

USE [master]

GO

DROP DATABASE IF EXISTS [SecureMyDatabase]

GO

CREATE DATABASE [SecureMyDatabase]

GO

• Run this T-SQL statement as found in the example whichuserami.sql
to find out what database user the sqllinux login is mapped to:

USE [SecureMyDatabase]

GO

SELECT SUSER_NAME() as current_login, USER_NAME() as

current_database_user

GO

Figure 7-2 shows the results with SQL Operations Studio.

Chapter 7 SeCurity in SQL Server

321

For this example I used two built-in SQL Server functions to find out the current

connected login and database user. Since the sqllinux login created the database, it is

automatically mapped to the dbo user.

• Now let’s create a user in the database that will not be the database

owner. The first step is to create a new login that will have a default

database of [SecureMyDatabase]. Use the following T-SQL batch as

found in the example script createnewuserlogin.sql connected as

the sa login (Note: it is possible to grant permissions to the sqllinux

login to create new logins):

USE [MASTER]

GO

USE master

GO

IF EXISTS (select * from sys.server_principals where

name = 'newuser')

 DROP LOGIN [newuser]

GO

Figure 7-2. Login and user for sqllinux after creating the database

Chapter 7 SeCurity in SQL Server

322

CREATE LOGIN [newuser] WITH PASSWORD=N'Sql2017isfast',

DEFAULT_DATABASE=[SecureMyDatabase]

GO

At this point if you tried to log in as the newuser login, you would get an error like this:

Cannot open user default database. Login failed. Login failed for user

'newuser'.

This is because the newuser login is not mapped to any user in the

[SecureMyDatabase] database.

• So, the next step is to create a user in the database connected as the

dbo user, which is the sqllinux login. Connected as sqllinux executes

the following T-SQL batch, which can be found in the example script

createuser.sql:

USE [SecureMyDatabase]

GO

CREATE USER newuser FOR LOGIN newuser

GO

Note you don’t have to map users to the same name as a login, but it does make
it easier to manage and understand.

• Now let’s connect as the newuser login and run the whichuserami.sql
script again using SQL Operations Studio. Figure 7-3 shows what the

results should look like.

Chapter 7 SeCurity in SQL Server

323

If the user called newuser is not a database owner, what can this user do? What

permission and access do this login and user have now? I’ll cover that in a later section.

First, I want to show you a different method for login authentication called Active

Directory Authentication.

 Active Directory Authentication
SQL Server authentication is simple and easy to use. However, most users in an

organization of any size have login accounts that are part of a company infrastructure

such as an Active Directory domain. Using a single sign-on is not only efficient but more

secure, as you don’t have to manage different accounts to use corporate resources and

SQL Server. SQL Server on Windows has provided this method for many years called

Windows Authentication.

Active Directory is an extremely popular identity-based management system

even for organizations that use Linux Servers. Linux provides the necessary packages

and software to join an Active Directory domain. SQL Server can take advantage of

this functionality using Kerberos to authenticate an Active Directory user, much like

Windows Authentication. Users can now login to the Linux Server or any computer that

can join the domain and log in to SQL Server without using a separate SQL login.

Figure 7-3. The newuser login and user

Chapter 7 SeCurity in SQL Server

324

 How it Works
Active Directory Authentication involves the following commands and objects:

realm: A command on Linux that allows you to join a Linux

server to an Active Directory domain. realm requires you to install

the realmd package. The term realm comes from the Kerberos

concept, Kerberos realm.

Ticket Granting Ticket (TGT): an encrypted file that is a ticket

sent to a Ticket Granting Server (TGS) to request access to services

in the domain (such as SQL Server). The TGS functionality is

implemented by a Windows Domain Controller.

kinit: a Linux command used to obtain and cache a TGT for a

domain user

Service Principal Name (SPN): a unique identifier for a service

(such as SQL Server) in the Active Directory

keytab: A file on Linux used to store encrypted keys used to

validate incoming Kerberos authentication requests

Domain Controller: A Windows Server that provides Active

Directory Domain Services for an Active Directory Domain

My colleague Vin Yu, one of the key program managers for SQL Server on Linux and

containers, has an excellent diagram, as seen in Figure 7-4, which shows the flow how

Kerberos works to support Active Directory Authentication with SQL Server.

Chapter 7 SeCurity in SQL Server

325

Let me explain this flow to understand how Kerberos authentication works with SQL

Server on Linux:

 1. The user logs into the domain on a Linux client executing kinit

with the domain user account and password. kinit will send the

user and password to the Domain Controller (DC).

 2. The DC will issue a TGT after it verifies this is a valid domain user

with correct password. This same process would happen if you

logged into your Windows computer with your domain account.

 3. Now you need to connect to SQL Server with a tool like sqlcmd.

exe. The -E parameter says to use Windows authentication. The

client will use the TGT along with the SPN for the SQL Server

service to send to the DC when trying to connect to a SQL Server

on Linux using AD authentication with a tool like sqlcmd.exe.

 4. The DC then sends back a ticket which the client can now use for

authentication to SQL Server.

 5. The sqlcmd program can now use the ticket provided by the DC

to attempt to authenticate a connection to SQL Server. SQL Server

will use the keys (listed in the table) to verify the ticket is valid to

connect to SQL Server, along with ensuring the domain account

has a created login in SQL Server.

 6. SQL Server will grant the request to connect to SQL Server.

Figure 7-4. SQL Server Active Directory Authentication flow on Linux

Chapter 7 SeCurity in SQL Server

326

 Setting it Up
I will admit to you up front that setting up Active Directory Authentication for SQL Server

on Linux is not simple. It is not a matter of difficulty. The problem is that there are several

steps involved, and you just need to follow them carefully to avoid problems.

The complete guide to setting up Active Directory Authentication for SQL Server on

Linux can be found in a tutorial in our documentation at https://docs.microsoft.com/

sql/linux/sql-server-linux-active-directory-authentication.

I won’t go through the entire tutorial steps in this book. Rather, I’ll give you some

pointers on issues I encountered that may not be obvious in the documentation.

In the Prerequisites section of the documentation, it says “Setup an AD Domain

Controller (Windows) on your network.” You might be in an organization that already

had an Active Directory system. If so, you will need to show this section of the

documentation to your network administrators to have the Active Directory configured

for SQL Server Active Directory Authentication: https://docs.microsoft.com/sql/

linux/sql-server-linux-active-directory-authentication?#createuser.

You may be like me, where you want to demonstrate this capability; I set up my

own Windows Server in a Virtual Machine as a domain controller with my own Active

Directory. Setting my own AD and Domain Controller was simpler than I thought but

I had help. This blog post is excellent to show you how: https://blogs.technet.

microsoft.com/canitpro/2017/02/22/step-by-step-setting-up-active-directory-

in- windows-server-2016/.

Here are some other issues I ran into that may help you as you set up AD

Authentication for SQL Server on Linux.

When I tried to join the SQL Server to the domain like this command in the

documentation

sudo realm join contoso.com -U 'user@CONTOSO.COM' -v

I ran into three issues:

 1. I had to change the hostname of my Linux Server from its default

using a command like this:

hostnamectl -set-hostname bobsqllinux

I should have done this already when I installed RHEL on my VM (and in fact Azure

does this automatically). It turns out that when I install RHEL, putting in a hostname

other than the default is optional.

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/linux/sql-server-linux-active-directory-authentication
https://docs.microsoft.com/sql/linux/sql-server-linux-active-directory-authentication
https://docs.microsoft.com/sql/linux/sql-server-linux-active-directory-authentication?#createuser
https://docs.microsoft.com/sql/linux/sql-server-linux-active-directory-authentication?#createuser
https://blogs.technet.microsoft.com/canitpro/2017/02/22/step-by-step-setting-up-active-directory-in-windows-server-2016/
https://blogs.technet.microsoft.com/canitpro/2017/02/22/step-by-step-setting-up-active-directory-in-windows-server-2016/
https://blogs.technet.microsoft.com/canitpro/2017/02/22/step-by-step-setting-up-active-directory-in-windows-server-2016/

327

 2. I had to install missing packages (the documentation says you

might have to do this) like this:

sudo yum -y install oddjob oddjob-mkhomedir sssd samba-common-

tools

 3. When the command to join the domain worked, I received some

error messages that I found out can be ignored. A successful join

of the domain looked like Figure 7-5.

Figure 7-5. A successful join to the domain of Linux Server

In addition, while I can use kinit on the Linux server to “login to the domain” as

described in the documentation, I wanted to login through ssh to my Linux Server using

my AD domain account. I encountered an Access Denied error until I ran this command:

realm permit –all

Note you can use realm permit to only allow logins to specific aD users instead
of all users.

Chapter 7 SeCurity in SQL Server

328

 Using AD Authentication
Once I went through the steps in the documentation and maneuvered around the

preceding issues, I was able to successfully use a command like this:

sqlcmd -E

and was able to successfully start executing queries logged in as an AD user to

SQL Server.

If you want to use a tool like SQL Server Management Studio, you would log in as

your AD Domain user and use Windows Authentication to connect to your Linux Server.

SQL Operations Studio supports the same type of authentication (read more details at

https://docs.microsoft.com/sql/sql-operations-studio/enable-kerberos).

 Permissions and Access
I’ve shown you how to create logins and users to access the SQL Server instance and

database with both SQL Server Authentication and Active Directory Authentication. This

represents the basic functionality to log in to SQL Server and connect to a database. But

what about access to everything inside the database, like tables? What about access to

run all the various T-SQL commands that apply to SQL Server, databases, and objects

(called securables)? SQL Server provides a system to grant and revoke access for access to

securables directly to logins, users, and a concept called roles.

Like many systems, SQL Server has a hierarchy of permissions starting with the sa

account (remember you specified the sa account during install). The sa account (like

root in Linux) is supreme when it comes to permissions. I’ll discuss a technique where

you can disable the sa account to make your SQL Server more secure once you have

installed SQL Server (see the section on Roles and Permissions).

If you want a deep dive into all the securable options for SQL Server, take a look at

this pdf poster at https://aka.ms/sql-permissions-poster.

 Grant and Revoking Access
T-SQL provides two statements to grant and revoke access to securables: respectively,

GRANT and REVOKE. A complete list of possible securables can be found in the

documentation of the T-SQL GRANT statement at https://docs.microsoft.com/sql/

t-sql/statements/grant-transact-sql.

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/sql-operations-studio/enable-kerberos
https://aka.ms/sql-permissions-poster
https://docs.microsoft.com/sql/t-sql/statements/grant-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/grant-transact-sql

329

By default, logins and users will have some form of basic access to a certain set of

securables. The process of securing SQL Server and all of your securables will be:

• Decide what securables and access a specific login and/or user needs

and use the GRANT command to grant these logins and users access.

• Decide if you want to revoke access to some securables for some

logins and/or users.

While you can use the GRANT command to grant access to securables to specific

logins and/or users, it may be more effective to grant access to a concept called roles and

then revoke access to specific logins and/or users based on your security needs.

In addition, instead of granting access to roles to specific objects, it can be more

efficient to group objects into schemas and grant access to the schema. I’ve discussed the

concept of schemas in previous chapters of the book while describing the fundamentals

of creating objects like tables and views.

 Roles and Permissions
Roles provide a convenient method to grant (or revoke) access to a group of logins or

users. SQL Server comes with a series of built-in roles that have already been granted

certain permissions.

Permissions define what operations are allowed for a given login, user, or role at

the SQL Server instance level or database level. A complete list of possible permissions

can be found in our documentation at https://docs.microsoft.com/en-us/sql/

relational-databases/security/permissions-database-engine. I’ll show you

examples of permissions that are defined by default for built-in roles and then talk about

how you can make changes for permission per your security needs. Permissions also

are organized into a hierarchy. Our documentation has a very good visual diagram to

view this at https://docs.microsoft.com/sql/relational-databases/security/

permissions-hierarchy-database-engine.

 Server Roles

SQL Server provides a set of roles that have permission for operations that apply across

the SQL Server instance for logins. You can see a list of these roles in our documentation

at https://docs.microsoft.com/sql/relational-databases/security/

authentication-access/server-level-roles.

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/en-us/sql/relational-databases/security/permissions-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/security/permissions-database-engine
https://docs.microsoft.com/sql/relational-databases/security/permissions-hierarchy-database-engine
https://docs.microsoft.com/sql/relational-databases/security/permissions-hierarchy-database-engine
https://docs.microsoft.com/sql/relational-databases/security/authentication-access/server-level-roles
https://docs.microsoft.com/sql/relational-databases/security/authentication-access/server-level-roles

330

Let me call out a few of these server roles worth noting:

sysadmin: Logins that are members of this role can perform any

operation for SQL Server. Therefore, it is critical to minimize

which logins are members of this role. By default, the sa login is

a member of this role. However, as the sa login, you can create

a new login, add it to the sysadmin role, and then disable the

sa login. This could provide an extra layer of security to avoid

unwanted users from trying to guess the sa password. You can

use the ALTER SERVER ROLE T-SQL command as documented at

https://docs.microsoft.com/sql/t-sql/statements/alter-

server- role-transact-sql to add logins to server roles.

dbcreator: Members of this role have permissions to create, alter,

and drop databases. While it is possible to assign login rights to

create their own database (and they would now automatically

become the database owner), the problem with this role is that

members have permissions to alter or drop any database, not just

ones they own. Another technique to allow a login to own their own

database is to create the database as a member of the sysadmin

role, and then assign a new login the rights as database owner. I’ll

show you how to do this in the next section, “Database Roles.”

Sysadmin and dbcreator are examples of fixed server roles.

This means the permissions for these roles cannot be changed.

The documentation at https://docs.microsoft.com/sql/

relational-databases/security/authentication-access/

server-level-roles#permissions-of-fixed-server-roles has a

diagram that shows the permissions for fixed server roles.

public: This is the default role for any new login created for SQL

Server. The public server role is not fixed, so the permissions

for the role can be changed. By default, the public role has

permissions for CONNECT, which means any login has the right

to connect to SQL Server and VIEW ANY DATABASE, which

means any login has the right to see what databases exist on the

SQL Server instance. You would use the T-SQL command GRANT

to add new permissions for the public server role or REVOKE to

take any default permissions away.

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/t-sql/statements/alter-server-role-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/alter-server-role-transact-sql
https://docs.microsoft.com/sql/relational-databases/security/authentication-access/server-level-roles#permissions-of-fixed-server-roles
https://docs.microsoft.com/sql/relational-databases/security/authentication-access/server-level-roles#permissions-of-fixed-server-roles
https://docs.microsoft.com/sql/relational-databases/security/authentication-access/server-level-roles#permissions-of-fixed-server-roles

331

Your strategy can vary, but effectively the process from a server perspective to create

logins and users can look like the following:

 1. Create the necessary logins for your SQL Server with CREATE

LOGIN.

 2. Assign specific logins to server roles based on your decision on

what type of server access and operations they should be able to

perform. I recommend that one of these logins become added to

the sysadmin role, so you do not rely on the sa login to perform all

sysadmin options.

 3. Leave all other users with the default permission for the public

server role.

 4. Create your database from the sysadmin role member.

Note My examples show using the sqllinux login as part of the dbcreator role,
because the login that creates the database becomes the database owner by
default. however, as i’ve indicated, anyone with the dbcreator role has authority to
affect other databases. if you want one login to create and own all databases, then
using this technique is fine. if you have separate database owners, you will not
want to use this technique.

 5. Use the ALTER AUTHORIZATION T-SQL command to make your

designated login become the database owner. I’ll talk more about

this in the next section, ”Database Roles.”

ALTER AUTHORIZATION is a method to change the ownership of a securable in SQL

Server. You can read more about how to use this statement at https://docs.microsoft.

com/sql/t-sql/statements/alter-authorization-transact-sql.

 6. The database owner now has permissions to add other logins to

the database, assign them to specific roles, and give them specific

permissions based on their needs.

It is also possible to create your own server roles and assign members and

permissions to them. You can use the T-SQL CREATE SERVER ROLE command to create

your own server roles.

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/t-sql/statements/alter-authorization-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/alter-authorization-transact-sql

332

 Database Roles

Just like server roles, each database has built-in roles that define certain permissions to

perform necessary operations in a database.

As I mentioned in the previous section, one of the most important roles in

each database is called db_owner, and the user dbo is assigned membership

to that role. A list of fixed database roles and their permissions are listed in our

documentation at https://docs.microsoft.com/sql/relational-databases/

security/authentication-access/database-level-roles. These roles exist for your

convenience, to manage a database. For example, the database role db_datareader

gives any member the permission to read data from all user tables in the database. Many

customers will choose to assign specific permissions to schemas to specific users.

Or another method is to create your own database role for a specific set of security

needs, assign users to that new database role, and then assign specific permissions

to certain schemas to that database role. You will see in the next section that another

advantage of creating your own database roles is to apply them to row level security and

dynamic data masks.

Like the server role, public, each database has a public role. Every user created in

the database is automatically a member of the public database role. And by default,

permissions for default users are to view most system catalog views in the database but

that is just about it.

Let’s go through an example using the WideWorldImporters database (I recommend

you restore the WideWorldImporters full database “from scratch” per instructions I’ve

provided in previous chapters first).

 1. Let’s add the login sqllinux, and this time make it the owner of the

database using the ALTER AUTHORIZATION T-SQL command.

Use the example script createdbownerlogin.sql connected as sa,

like the following T-SQL statements:

USE master

GO

IF EXISTS (select * from sys.server_principals where name =

'sqllinux')

 DROP LOGIN [sqllinux]

GO

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/relational-databases/security/authentication-access/database-level-roles
https://docs.microsoft.com/sql/relational-databases/security/authentication-access/database-level-roles

333

CREATE LOGIN [sqllinux] WITH PASSWORD=N'Sql2017isfast',

DEFAULT_DATABASE=[master]

GO

ALTER AUTHORIZATION ON DATABASE::WideWorldImporters to sqllinux

GO

 2. Create the other server login for the appuser login using

createappuserlogin.sql connected as sa, like the following T-SQL

statements:

USE [MASTER]

GO

USE master

GO

IF EXISTS (select * from sys.server_principals where name =

'appuser')

 DROP LOGIN [appuser]

GO

CREATE LOGIN [appuser] WITH PASSWORD=N'Sql2017isfast',

DEFAULT_DATABASE=[WideWorldImporters]

GO

 3. Create the appuser user, which will be bound to the appuser

server login, using createappuser.sql connected as the sqllinux

login, like the following T-SQL statements:

USE [WideWorldImporters]

GO

DROP USER IF EXISTS appuser

GO

CREATE USER appuser FOR LOGIN appuser

GO

Chapter 7 SeCurity in SQL Server

334

 4. Create the db role, add the appuser database user to it, and

assign it CONTROL privileges to the Application Schema using

createdbrole.sql connected as the sqllinux login, like the

following T-SQL statements:

USE [WideWorldImporters]

GO

IF (SELECT IS_ROLEMEMBER('Application_Users', 'appuser')) IS NOT

NULL

 ALTER ROLE Application_Users DROP MEMBER appuser

GO

DROP ROLE IF EXISTS Application_Users

GO

CREATE ROLE Application_Users

GO

ALTER ROLE Application_Users ADD MEMBER appuser

GO

GRANT CONTROL ON SCHEMA::Application TO Application_Users

GO

Notice how I used the GRANT T-SQL statement here with the option

CONTROL. GRANT allows you to grant permissions to objects including schemas.

In this case, GRANT CONTROL gives ownership of the Application schema in the

WideWorldImporters database to any member of the Application_Users role. You can

read more about GRANT CONTROL in the documentation at https://docs.microsoft.

com/sql/t-sql/statements/grant-database-principal-permissions-transact-sql.

 5. To see how these permissions work, execute the queries in

appuserquery.sql connected as the appuser login, like the

following T-SQL statements:

use [WideWorldImporters]

go

SELECT * from [Application].People

GO

SELECT * from [Sales].[Customers]

GO

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/t-sql/statements/grant-database-principal-permissions-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/grant-database-principal-permissions-transact-sql

335

Figure 7-6 shows the results using SQL Operations Studio.

Figure 7-6. Schemas and objects the appuser login has access to

You can see that the appuser has access to a table in the Application Schema but gets

an error when trying to access a table in a schema it is not granted to.

Besides the basic permissions for a schema and/or user to an object like a table,

you can also assign permissions to a specific set of columns in a table and/or view. See

the syntax for the GRANT T-SQL statement in the documentation for more information:

https://docs.microsoft.com/sql/t-sql/statements/grant-transact-sql.

 Application Roles

One interesting security feature that may appeal to developers is application roles.

Application roles allow applications to use a password only known to the application

and set permissions specific to the application independent of the login used to connect

from the application.

You can read more about application roles at https://docs.microsoft.com/sql/

relational-databases/security/authentication-access/application-roles.

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/t-sql/statements/grant-transact-sql
https://docs.microsoft.com/sql/relational-databases/security/authentication-access/application-roles
https://docs.microsoft.com/sql/relational-databases/security/authentication-access/application-roles

336

 Other Permissions

I’ve only shown you the basics of granting and revoking permissions on tables. SQL

Server allows you to assign permissions on a wide range of objects and specific T-SQL

statements. In some cases, these permissions only apply if you are using a specific

feature of SQL Server. For example, you can assign permissions for aspects of Availability

Groups only if you have enabled that feature. For a complete list of possible permission

examples, see our documentation at https://docs.microsoft.com/sql/t-sql/

statements/grant-transact-sql#examples.

Tip Want to test out permissions for a user you have created without actually
logging in as the user? Check out the eXeCute aS t-SQL statement in our
documentation at https://docs.microsoft.com/sql/t-sql/statements/
execute-as-clause-transact-sql.

 Row Level Security
One highly requested feature landed in SQL Server 2016, Row Level Security (RLS).

Instead of just being able to assign permissions on objects or statements that apply

across all rows of a table, you can now assign permissions for certain rows of data.

You actually had a way to achieve this before using a view, but now you can assign

permissions to a set of rows directly to tables. Furthermore, RLS provides additional

functionality to block operations before or after they execute.

The best way to understand RLS is to see it in action. I found a great example on

GitHub from our team on RLS, using the WideWorldImporters database at https://

github.com/Microsoft/sql-server-samples/tree/master/samples/databases/wide-

world- importers/sample-scripts/row-level-security. I made a few modifications,

which you can find in rls.sql. This example will set up row level security for users based

on sales territory data for customers. The concept is that only application users who are

part of a given sales territory should be able to see sales for their territory and not sales

data for other territories. The database owner should see all data.

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/t-sql/statements/grant-transact-sql#examples
https://docs.microsoft.com/sql/t-sql/statements/grant-transact-sql#examples
https://docs.microsoft.com/sql/t-sql/statements/execute-as-clause-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/execute-as-clause-transact-sql
https://github.com/Microsoft/sql-server-samples/tree/master/samples/databases/wide-world-importers/sample-scripts/row-level-security
https://github.com/Microsoft/sql-server-samples/tree/master/samples/databases/wide-world-importers/sample-scripts/row-level-security
https://github.com/Microsoft/sql-server-samples/tree/master/samples/databases/wide-world-importers/sample-scripts/row-level-security

337

Let me walk through the T-SQL statements in this script and explain how it works

(Connect as sa when running this script to make it simple):

 1. Create the login for this RLS example:

USE master

GO

IF NOT EXISTS (SELECT 1 FROM sys.server_principals WHERE

name = N'GreatLakesUser')

BEGIN

 CREATE LOGIN GreatLakesUser

 WITH PASSWORD = N'SQLRocks!00',

 CHECK_POLICY = OFF,

 CHECK_EXPIRATION = OFF,

 DEFAULT_DATABASE = WideWorldImporters;

END

GO

 2. Create the user to map to the login you just created and add this

user to a role already defined in WideWorldImporters:

USE WideWorldImporters;

GO

DROP USER IF EXISTS GreatLakesUser

GO

CREATE USER GreatLakesUser FOR LOGIN GreatLakesUser

GO

ALTER ROLE [Great Lakes Sales] ADD MEMBER GreatLakesUser

GO

WideWorldImporters comes built-in with database roles that will map to sales

territories, as found in the Customer sales data found in the [Sales].[Customers] table

based on cities for customer sales.

Chapter 7 SeCurity in SQL Server

338

 3. In order to apply RLS, you need to create an SQL Server function,

which will be used to apply to any query to determine what rows

the user can access. Then you have to create a security policy that

maps to the function you have created.

-- Drop the security policy and function if they exist

--

DROP SECURITY POLICY IF EXISTS [Application].

FilterCustomersBySalesTerritoryRole

GO

DROP FUNCTION IF EXISTS [Application].DetermineCustomerAccess

GO

-- Create the function to apply for RLS

--

CREATE FUNCTION [Application].DetermineCustomerAccess(@CityID int)

RETURNS TABLE

WITH SCHEMABINDING

AS

RETURN (SELECT 1 AS AccessResult

 WHERE IS_ROLEMEMBER(N'db_owner') <> 0

 OR IS_ROLEMEMBER((SELECT sp.SalesTerritory

 FROM [Application].Cities AS c

 INNER JOIN [Application].

StateProvinces AS sp

 ON c.StateProvinceID =

sp.StateProvinceID

 WHERE c.CityID = @CityID) + N' Sales')

<> 0

)

GO

-- The security policy that has been applied is as follows:

--

CREATE SECURITY POLICY [Application].

FilterCustomersBySalesTerritoryRole

Chapter 7 SeCurity in SQL Server

339

ADD FILTER PREDICATE [Application].DetermineCustomerAccess

(DeliveryCityID)

ON Sales.Customers

GO

Let me explain how the function works. The function takes in a CityID value and

finds the SalesTerritory name of the city from the Cities and StateProvinces table. The

function concatenates the word ‘Sales’ to the end of the name. So any CityID that falls

in the GreatLakes territory would return GreatLakesSales. The security policy takes the

DeliveryCityID values from the [Sales].[Customers] when a user tries to query the [Sales].

[Customers] table. This means if I’m logged in as the GreatLakesUser, which is a member

of the GreatLakesSales role, only rows with the DeliveryCityID from the Customers table

that map to the GreatLakes region will be returned to the user.

 4. Connected still as sa (which is a database owner), find out how

many rows are in the [Sales].[Customers] table and note the count:

SELECT COUNT(*) FROM Sales.Customers; -- and note count

GO

When I run this, I get 663 rows.

 5. Now grant permissions to the GreatLakesSales role to query the

[Sales].[Customers] table, impersonate the GreatLakesUser, and

see how many rows are in the table:

GRANT SELECT, UPDATE ON Sales.Customers TO [Great Lakes Sales];

GO

-- impersonate the user GreatLakesUser

EXECUTE AS USER = 'GreatLakesUser'

GO

-- Now note the count and which rows are returned

-- even though we have not changed the command

SELECT COUNT(*) FROM Sales.Customers;

GO

When I run the query this time, I only see 77 rows. The other rows are part of other

sales territories, which is why the GreatLakesSales role member cannot even see they exist.

Chapter 7 SeCurity in SQL Server

340

 6. To revert the impersonation, use the following T-SQL statement in

the rls.sql script:

-- Revert back to logged in user

--

REVERT

GO

Row Level Security is a great feature in the suite of security capabilities for SQL

Server and is fully managed by T-SQL statements independent of the application. Find

out more of the details of RLS and how it works in our documentation at https://docs.

microsoft.com/sql/relational-databases/security/row-level-security.

 Dynamic Data Masking
Dynamic data masking is another great security feature that landed starting in SQL

Server 2016 and works the same for SQL Server on both Windows and Linux. It is

another great security feature that doesn’t require any application changes or logic.

The concept behind dynamic data masking is to provide T-SQL commands that allow

you to supply masking rules to sensitive data and control the ability to see sensitive data

unmasked to specific users. The feature is dynamic because you can make changes via

T-SQL, and application queries will see different results with no changes required.

Another example is a great way to see how this works. And again, there is an example

I can borrow and modify from the Microsoft WideWorldImporters sample scripts

as found at https://github.com/Microsoft/sql-server-samples/tree/master/

samples/databases/wide-world-importers/sample-scripts/dynamic-data-masking.

Note this example works fine if you have run the preceding example for
row- level security or if you have not done those examples. it does assume you
have restored the WideWorldimporters full sample database, as i’ve shown you in
other examples in this book.

I’ve taken the above GitHub example, modified this, and pulled this into the example

script ddm.sql. The concept is that privileged users (like dbo) can see sensitive data

in the [Purchasing].[Suppliers] such as bank account information but a nonprivileged

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/relational-databases/security/row-level-security
https://docs.microsoft.com/sql/relational-databases/security/row-level-security
https://github.com/Microsoft/sql-server-samples/tree/master/samples/databases/wide-world-importers/sample-scripts/dynamic-data-masking
https://github.com/Microsoft/sql-server-samples/tree/master/samples/databases/wide-world-importers/sample-scripts/dynamic-data-masking

341

user will not be able to see that sensitive data. A privileged user is one who usually has

permissions to access almost anything in the database (or server) vs. a nonprivileged

user who usually has only specific permissions needed for their job or tasks.

Using the generated wwi.sql script I’ve provided in samples, you can see the

definition of the [Purchasing].[Suppliers] and how masking is defined:

CREATE TABLE [Purchasing].[Suppliers](

 [SupplierID] [int] NOT NULL,

 [SupplierName] [nvarchar](100) NOT NULL,

 [SupplierCategoryID] [int] NOT NULL,

 [PrimaryContactPersonID] [int] NOT NULL,

 [AlternateContactPersonID] [int] NOT NULL,

 [DeliveryMethodID] [int] NULL,

 [DeliveryCityID] [int] NOT NULL,

 [PostalCityID] [int] NOT NULL,

 [SupplierReference] [nvarchar](20) NULL,

 [BankAccountName] [nvarchar](50) MASKED WITH (FUNCTION = 'default()')

NULL,

 [BankAccountBranch] [nvarchar](50) MASKED WITH (FUNCTION =

'default()') NULL,

 [BankAccountCode] [nvarchar](20) MASKED WITH (FUNCTION = 'default()')

NULL,

 [BankAccountNumber] [nvarchar](20) MASKED WITH (FUNCTION =

'default()') NULL,

 [BankInternationalCode] [nvarchar](20) MASKED WITH (FUNCTION =

'default()') NULL,

 [PaymentDays] [int] NOT NULL,

 [InternalComments] [nvarchar](max) NULL,

 [PhoneNumber] [nvarchar](20) NOT NULL,

 [FaxNumber] [nvarchar](20) NOT NULL,

 [WebsiteURL] [nvarchar](256) NOT NULL,

 [DeliveryAddressLine1] [nvarchar](60) NOT NULL,

 [DeliveryAddressLine2] [nvarchar](60) NULL,

 [DeliveryPostalCode] [nvarchar](10) NOT NULL,

 [DeliveryLocation] [geography] NULL,

 [PostalAddressLine1] [nvarchar](60) NOT NULL,

Chapter 7 SeCurity in SQL Server

342

 [PostalAddressLine2] [nvarchar](60) NULL,

 [PostalPostalCode] [nvarchar](10) NOT NULL,

 [LastEditedBy] [int] NOT NULL,

 [ValidFrom] [datetime2](7) GENERATED ALWAYS AS ROW START NOT NULL,

 [ValidTo] [datetime2](7) GENERATED ALWAYS AS ROW END NOT NULL,

 CONSTRAINT [PK_Purchasing_Suppliers] PRIMARY KEY CLUSTERED

(

 [SupplierID] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [USERDATA],

 CONSTRAINT [UQ_Purchasing_Suppliers_SupplierName] UNIQUE NONCLUSTERED

(

 [SupplierName] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [USERDATA],

 PERIOD FOR SYSTEM_TIME ([ValidFrom], [ValidTo])

) ON [USERDATA] TEXTIMAGE_ON [USERDATA]

WITH

(

SYSTEM_VERSIONING = ON (HISTORY_TABLE = [Purchasing].[Suppliers_Archive])

)

GO

Note the use of this syntax on some of the columns involved with banking data:

[BankAccountName] [nvarchar](50) MASKED WITH (FUNCTION = 'default()') NULL,

The MASKED WITH syntax is the T-SQL extension to define data masks. What can

be defined in the (FUNCTION =) after the WITH clause defines the mask including the

type of mask. The syntax after FUNCTION defines the type of mask. The default mask

has rules of how to mask certain characters depending on the column type. For example,

character column gets masked with the character ‘X’ and integers get masked with a 0.

You can see the list of mask types in our documentation at https://docs.microsoft.

com/sql/relational-databases/security/dynamic-data-masking#defining-a-

dynamic-data-mask (which includes the ability to define your own custom mask).

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/relational-databases/security/dynamic-data-masking#defining-a-dynamic-data-mask
https://docs.microsoft.com/sql/relational-databases/security/dynamic-data-masking#defining-a-dynamic-data-mask
https://docs.microsoft.com/sql/relational-databases/security/dynamic-data-masking#defining-a-dynamic-data-mask

343

Let’s go through an example to see this in action using some of the statements in the

ddm.sql script (connect as sa for all of these steps):

 1. Connect as sa and create a new login.

-- Demonstrate Dynamic Data Masking

--

-- Make sure to connect using a privileged user such as the

database owner or sysadmin

IF NOT EXISTS (SELECT 1 FROM sys.server_principals WHERE name

= N'GreatLakesUser')

BEGIN

 CREATE LOGIN GreatLakesUser

 WITH PASSWORD = N'SQLRocks!00',

 CHECK_POLICY = OFF,

 CHECK_EXPIRATION = OFF,

 DEFAULT_DATABASE = WideWorldImporters;

END

GO

 2. Create a user to map to the login, add them to one of the defined

roles in the database, and grant read permissions to the role.

USE WideWorldImporters

GO

DROP USER IF EXISTS GreatLakesUser

GO

CREATE USER GreatLakesUser FOR LOGIN GreatLakesUser

GO

ALTER ROLE [Great Lakes Sales] ADD MEMBER GreatLakesUser

GO

-- grant SELECT rights to role

GRANT SELECT ON Purchasing.Suppliers TO [Great Lakes Sales];

GO

Chapter 7 SeCurity in SQL Server

344

 3. Try to read data from the [Purchasing].[Suppliers] table.

-- select with current UNMASK rights (NOTE row count and data

values), assuming you are connected using a privileged user

SELECT SupplierID, SupplierName, BankAccountName,

BankAccountBranch, BankAccountCode, BankAccountNumber FROM

Purchasing.Suppliers

You will see all the data for all the columns.

 4. Impersonate the GreakLakesUser user and run the query again.

-- impersonate the user GreatLakesUser

EXECUTE AS USER = 'GreatLakesUser'

GO

-- select with impersonated MASKED rights (NOTE row count and

data values)

SELECT SupplierID, SupplierName, BankAccountName,

BankAccountBranch, BankAccountCode, BankAccountNumber FROM

Purchasing.Suppliers

GO

The results now are masked for certain columns even though you can see all rows.

Figure 7-7 shows the results from SQL Operations Studio.

Figure 7-7. Dynamic data masking with SQL Server on Linux

Chapter 7 SeCurity in SQL Server

345

Learn more about dynamic data masking in our documentation at https://docs.

microsoft.com/sql/relational-databases/security/dynamic-data-masking.

 SQL Server and Encryption
Encryption of data can be important to any security scheme. However, not all

applications using SQL Server need to use encryption. Using any of the features for

encryption with SQL Server will require some overhead (such as additional CPU usage),

so that has to be considered in your overall security plan.

SQL Server supports several features that enable customers to secure data at

rest, data in transit, and connections. Data at rest is SQL Server data stored in files

and backups. You want to ensure data is encrypted so that attackers cannot read data

outside of the SQL Server process (for example, if someone stole the hard drive with

SQL Server database files on it). In addition, some applications would like the ability to

ensure all data, end-to-end, is encrypted from an SQL Server client application to SQL

Server and back.

SQL Server on Windows relies on Crypto API to encrypt and decrypt data with

routines like BCryptEncrypt (see https://docs.microsoft.com/windows/desktop/

api/bcrypt/nf-bcrypt-bcryptencrypt for more info). If you remember in the details

of the SQLPAL architecture in Chapter 1, API calls that need Linux Kernel support will

go through the Host Extension. I spoke with Mitchell Sternke, our engineering lead on

security for SQL Server on Linux, to understand how we are able to support encryption

on Linux. In order to support cryptography APIs, we use the OpenSSL set of libraries

on Linux (see https://www.openssl.org for more information). One slight twist to the

architecture, as described by Mitchell, is that we deploy a special DLL in SQL Server 2017

for SQL Server on Windows (called secforwarder.dll), which when running on Windows

simply calls the Windows Crypto API support. But with SQLPAL on Linux, Crypto API

calls are forwarded to the Host Extension to call any necessary OpenSSL routines. We

use OpenSSL for all types of security needs, including support for TLS (and even for

Kerberos support).

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/relational-databases/security/dynamic-data-masking
https://docs.microsoft.com/sql/relational-databases/security/dynamic-data-masking
https://docs.microsoft.com/windows/desktop/api/bcrypt/nf-bcrypt-bcryptencrypt
https://docs.microsoft.com/windows/desktop/api/bcrypt/nf-bcrypt-bcryptencrypt
https://www.openssl.org

346

 SQL Server Keys and Certificates
When using techniques with SQL Server to encrypt data on SQL Server, you need to

become familiar with the following objects, which are all created using T-SQL:

Service master key: SQL encryption has a hierarchy, and it

all starts with the service master key. The service master key is

automatically generated by SQL Server at installation. All other

keys and encryption of data will rely on the existence of this key.

Therefore, if you are going to use SQL Server encryption, one of

the very first things you absolutely need to do is back up this key to

a secured location. Why? Because this is the top of the hierarchy of

encryption; if this key were lost (e.g., the hard drive was damaged

where SQL Server is installed), you would not be able to decrypt

any data you encrypted. Ouch! Furthermore, when you back this

up you use a password. You need to secure that password because

you will need it to restore a backup of the key. You can read more

about how to do this and the service master key at https://

docs.microsoft.com/sql/relational-databases/security/

encryption/service-master-key. The service master key will be

used to encrypt other keys such as the database master keys and

linked server passwords.

Note encrypted connections and a feature called always encrypted do not rely
on this hierarchy.

Database master key: This is a key protected by the service

master key that is used to protect certificates and other objects in

a database. To use functionality like Transparent Data Encryption

(TDE) and encrypted backups, you will create a database master

key in the master database. To encrypt column data (not Always

Encrypted columns), you will create a database master key in a

user database. You can read more about database master keys

at https://docs.microsoft.com/sql/t-sql/statements/

create-master-key-transact-sql. Just like the server master

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/relational-databases/security/encryption/service-master-key
https://docs.microsoft.com/sql/relational-databases/security/encryption/service-master-key
https://docs.microsoft.com/sql/relational-databases/security/encryption/service-master-key
https://docs.microsoft.com/sql/t-sql/statements/create-master-key-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/create-master-key-transact-sql

347

key, once you create a database master key you should back it

up immediately. See our documentation on how to do this at

https://docs.microsoft.com/sql/relational-databases/

security/encryption/back-up-a-database-master-key.

SQL Server certificate: The third layer in the encryption hierarchy

is a certificate. A certificate will be protected by the database

master key and is used to encrypt other objects such as database

encryption keys (used for TDE), backups, and other keys used to

encrypt columns. You can use SQL Server to create a self-signed

certificate or load a certificate from a trusted authority. And like

the other objects I’ve discussed, you should back up any created

certificates because you will need to perform operations like

restoring an encrypted backup. You can read more about SQL

Server certificates at https://docs.microsoft.com/sql/t-sql/

statements/create-certificate-transact-sql.

Note extensible Key Management (eKM) is not currently supported on SQL
Server on Linux. Be sure to stay up to date with the release notes for any updates
to unsupported features at https://docs.microsoft.com/sql/linux/sql-
server-linux-release-notes#Unsupported.

Armed with this fundamental knowledge, let’s look at some of the encryption

features available for SQL Server on Linux.

 Transparent Data Encryption
TDE is a feature for SQL Server where data and transaction log files are encrypted as

they are written to disk. The encryption key (a database encryption key) to encrypt and

decrypt these files is maintained with the master database. This allows the database

engine to completely access the encrypted data on disk, but any program or user outside

the engine would not be able to get access to unencrypted data.

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/relational-databases/security/encryption/back-up-a-database-master-key
https://docs.microsoft.com/sql/relational-databases/security/encryption/back-up-a-database-master-key
https://docs.microsoft.com/sql/t-sql/statements/create-certificate-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/create-certificate-transact-sql
https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes#Unsupported
https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes#Unsupported

348

What is really nice about this feature is all the functionality for certificates and

encryption is built into SQL Server. Here are the basic steps for using TDE:

 1. Create a database master key in the master database using T-SQL.

 2. Create a certificate protected by the database master key using

T-SQL.

 3. Create a database encryption key for the database you are using

TDE for, protected by the certificate using T-SQL. A database

encryption key is a special key used only for TDE. You can read

more about the use of database encryption keys at https://docs.

microsoft.com/sql/t-sql/statements/create-database-

encryption-key-transact- sql.

 4. Use ALTER DATABASE to enable TDE for the database.

SQL Server will then start encrypting data in the background to disk. Subsequent

new writes to disk are encrypted as they are written. One key aspect to using this feature

is that you should back up the certificate and keys. You will need these if you need to

attach this database on another server or restore a backup. Any backup of the database is

also encrypted for a database that has TDE enabled.

You can read more about setting up TDE on SQL Server on Linux at https://docs.

microsoft.com/sql/linux/sql-server-linux-security-get-started#enable-

transparent- data-encryption. You can also read more about TDE in general at

https://docs.microsoft.com/sql/relational-databases/security/encryption/

transparent-data-encryption.

 Encrypting Database Backups
If you don’t use TDE for a database, you also have the ability to encrypt your database

backups. The process to do this is pretty much the same as TDE. You create a database

master key (or use one you have already created), create a certificate, and then use the T-SQL

BACKUP command specifying the certificate you created. Like TDE, we recommend you

backup the database master key and certificate, as you will need them to restore the backup.

The example and steps to encrypt a database backup for SQL Server on Linux can

be found at https://docs.microsoft.com/sql/linux/sql-server-linux-security-

get- started#configure-backup-encryption. And you can find the complete

documentation about backup encryption at https://docs.microsoft.com/sql/

relational-databases/backup-restore/backup-encryption.

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/t-sql/statements/create-database-encryption-key-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/create-database-encryption-key-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/create-database-encryption-key-transact-sql
https://docs.microsoft.com/sql/linux/sql-server-linux-security-get-started#enable-transparent-data-encryption
https://docs.microsoft.com/sql/linux/sql-server-linux-security-get-started#enable-transparent-data-encryption
https://docs.microsoft.com/sql/linux/sql-server-linux-security-get-started#enable-transparent-data-encryption
https://docs.microsoft.com/sql/relational-databases/security/encryption/transparent-data-encryption
https://docs.microsoft.com/sql/relational-databases/security/encryption/transparent-data-encryption
https://docs.microsoft.com/sql/linux/sql-server-linux-security-get-started#configure-backup-encryption
https://docs.microsoft.com/sql/linux/sql-server-linux-security-get-started#configure-backup-encryption
https://docs.microsoft.com/sql/relational-databases/backup-restore/backup-encryption
https://docs.microsoft.com/sql/relational-databases/backup-restore/backup-encryption

349

 Encrypting Connections
SQL Server also supports encrypting data transferred between clients and the SQL

Server engine across a network connection. SQL Server on Linux uses Transport Layer

Security (TLS) to encrypt any data transmitted from a SQL Server client application or

from the server. SQL Server on Linux currently supports TLS 1.2. You have options to

force all connections to be encrypted by SQL Server (server initiated) or specific clients

to request encryption from their application (client initiated).

The certificates and objects for encrypting connections are independent of the

keys and certificates used inside SQL Server to encrypt data (i.e., the service master

key, …). As with other encryption and certificate functionality I’ve described to this

point, encryption and certificate services used by SQL Server are provided by the Linux

Operating System.

In order to configure SQL Server for encrypted connections, you will use a

combination of the openssl program (which should be installed on your Linux server)

and the mssql-conf configuration script that comes when you install SQL Server.

If you choose a client-initiated encrypted connection, each of the tools provided by

Microsoft has an option to choose an encrypted connection. In addition, applications

can add “Encrypt=True” to their connection string.

Sometimes the option to choose an encrypted connection with our tools is a bit

hidden. Figure 7-8 shows the connection options for SQL Operations Studio.

Figure 7-8. Connection options for SQL Operations Studio

Chapter 7 SeCurity in SQL Server

350

If you click the Advanced button, you are presented with a new screen where you can

pick the option to Encrypt the connection, as seen in Figure 7-9.

Figure 7-9. Selecting option to encrypt a SQL Server connection

SQL Server provides steps in the documentation on how to configure SQL Server

with openssl and mssql-conf as well as instructions on how to configure client

machines needing encryption. You can read further about how to set up client- or server-

initiated encryption at https://docs.microsoft.com/sql/linux/sql-server-linux-

encrypted-connections.

Furthermore, there are specific requirements for certificates to be used

with this feature. See our documentation for certificate requirements at

 https://docs.microsoft.com/sql/linux/sql-server-linux-encrypted-

connections#requirements-for-certificates.

Read through the instruction carefully for server-initiated encryption (force all

connections) at https://docs.microsoft.com/sql/linux/sql-server-linux-

encrypted-connections#server-initiated-encryption and client-initiated

encryption at https://docs.microsoft.com/sql/linux/sql-server-linux-

encrypted-connections#client-initiated-encryption.

If you read through these instructions you will notice that the steps are absolutely

identical except for this one step:

sudo /opt/mssql/bin/mssql-conf set network.forceencryption 1

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/linux/sql-server-linux-encrypted-connections
https://docs.microsoft.com/sql/linux/sql-server-linux-encrypted-connections
https://docs.microsoft.com/sql/linux/sql-server-linux-encrypted-connections#requirements-for-certificates
https://docs.microsoft.com/sql/linux/sql-server-linux-encrypted-connections#requirements-for-certificates
https://docs.microsoft.com/sql/linux/sql-server-linux-encrypted-connections#server-initiated-encryption
https://docs.microsoft.com/sql/linux/sql-server-linux-encrypted-connections#server-initiated-encryption
https://docs.microsoft.com/sql/linux/sql-server-linux-encrypted-connections#client-initiated-encryption
https://docs.microsoft.com/sql/linux/sql-server-linux-encrypted-connections#client-initiated-encryption

351

A value of 1 is used to force all connections to be encrypted, while a value of 0 is for

client-initiated encryption scenarios.

Our documentation includes a few errors you might encounter using encrypted

connections at https://docs.microsoft.com/sql/linux/sql-server-linux-

encrypted-connections#common-connection-errors. Figure 7-10 shows an example of

the error you will get when you try to use an encrypted connection but you have not set

up encryption on SQL Server.

Figure 7-10. An error connecting to SQL Server when encryption is not configured

One note of guidance in our documentation is that your client machine has to

support TLS 1.2. I honestly have never even concerned myself with whether my client

computers support TLS 1.2, so I did a bit of research and found this very handy website

to test my version of TLS, https://www.ssllabs.com/ssltest/viewMyClient.html.

Figure 7-11 shows the results on my Windows laptop.

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/linux/sql-server-linux-encrypted-connections#common-connection-errors
https://docs.microsoft.com/sql/linux/sql-server-linux-encrypted-connections#common-connection-errors
https://www.ssllabs.com/ssltest/viewMyClient.html

352

 Always Encrypted
If you combine SQL Server connection encryption with TDE, your data is encrypted from

the client to the server and also for data stored on disk. However, there are two issues

with just these solutions:

• Data is not encrypted in memory in database pages.

• There is no separation of control over the keys for encryption, since

the SQL Server Administrators control the encryption keys and

certificates.

SQL Server has a feature to fill some of these gaps and provide an end-to-end

encryption solution called Always Encrypted. The best way to describe Always

Encrypted is with a diagram. Figure 7-12 shows the overall architecture of Always

Encrypted.

Figure 7-11. Using the ssllabs.com website to check TLS support on client

Chapter 7 SeCurity in SQL Server

353

On the Server side of this diagram is your database, with columns in tables you deem

necessary to encrypt.

The process to set up Always Encrypted is to create a column master key where

you supply the location of the key from a key store provider (hence separate of key

administration). Then you create a column encryption key for column(s) you want to

encrypt, specifying the column master key. While SQL Server administrators will create

the column encryption key, the column master key is provided by someone else who

manages a key store separate from SQL Server. So the only way to read encrypted data

with this method is to use an application that has an SQL Server library that supports

Always Encrypted and the location of the column master key. This means that even SQL

Server administrators would not be able to decrypt the columns you choose. SQL Server

administrators are needed to set up the database to encrypt certain columns, but they

don’t have full control to decrypt the data.

The application and the owners of the column master key have complete control

over decryption. Furthermore, the data in the columns that are encrypted are encrypted

in the application, across the connection to SQL Server, and in the data columns,

whether they are in memory or written to disk. SQL Server will store metadata such

as the encrypted column encrypted keys and only the location of the key store for the

column master key.

Examples of SQL Server libraries that support Always Encrypted are https://docs.

microsoft.com/sql/connect/odbc/using-always-encrypted-with-the-odbc-driver

and https://docs.microsoft.com/sql/connect/php/using-always-encrypted-php-

drivers.

Figure 7-12. Always encrypted in SQL Server on Linux

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/connect/odbc/using-always-encrypted-with-the-odbc-driver
https://docs.microsoft.com/sql/connect/odbc/using-always-encrypted-with-the-odbc-driver
https://docs.microsoft.com/sql/connect/php/using-always-encrypted-php-drivers
https://docs.microsoft.com/sql/connect/php/using-always-encrypted-php-drivers

354

To go through the process of configuring Always Encrypted, follow the steps in

the documentation with the SQL Server Managed Studio Wizard at https://docs.

microsoft.com/en-us/azure/sql-database/sql-database-always-encrypted.

Even though this is a very elegant solution to provide a transparent, end-to-end

solution to encrypt column data, there are some considerations for using this feature for

SQL Server on Linux:

• The only method today to create column encryption keys and specify

column master keys uses tools that run on Windows, including SQL

Server Management Studio and Powershell (Note: Powershell is

supported now on Linux but there are no other methods supported

currently native to Linux). SSMS comes with a cool wizard to walk

you through the process at https://docs.microsoft.com//sql/

relational-databases/security/encryption/configure-always-

encrypted-using-sql-server-management-studio.

• Depending on how you configure Always Encrypted, there could

be some limitations on how you are able to execute queries on

columns that are encrypted (especially when you are searching for

a value or range of values). See these types of restrictions in our

documentation at https://docs.microsoft.com/sql/relational-

databases/security/encryption/always-encrypted-database-

engine#feature-details.

• There are some features that do not work with Always Encrypted,

such as temporal tables and In-Memory OLTP.

• There could be some penalty in performance and extra storage

required for columns that are encrypted.

Even with these limitations and potential performance penalty, you could have some

data in your database (social security numbers, credit card data, ..) that is too sensitive

to risk a breach or even risk users with SQL Server administrator access having access to

this data. In these situations, Always Encrypted provides a complete end-to-end solution

along with a clear separation of roles on encrypting and decrypting the data.

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-always-encrypted
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-always-encrypted
https://docs.microsoft.com//sql/relational-databases/security/encryption/configure-always-encrypted-using-sql-server-management-studio
https://docs.microsoft.com//sql/relational-databases/security/encryption/configure-always-encrypted-using-sql-server-management-studio
https://docs.microsoft.com//sql/relational-databases/security/encryption/configure-always-encrypted-using-sql-server-management-studio
https://docs.microsoft.com/sql/relational-databases/security/encryption/always-encrypted-database-engine#feature-details
https://docs.microsoft.com/sql/relational-databases/security/encryption/always-encrypted-database-engine#feature-details
https://docs.microsoft.com/sql/relational-databases/security/encryption/always-encrypted-database-engine#feature-details

355

 Encryption Summary
Figuring out how to use encryption with SQL Server can be a bit overwhelming. Let me

summarize my recommendations on how to traverse our encryption features:

• No matter what type of encryption feature you decide to choose,

always back up the service master key and all of your keys associated

with encryption.

• You have to decide whether you actually really need encryption for

your application. Many customers I’ve talked with decide not to

use encrypted connections or Always Encrypted but almost always

encrypt their backups.

• If you use SQL Server to create any keys or certificates, back them

all up and store them in a separate location from your data backups.

Consider any key or certificate as valuable as your data.

• TDE has some overhead on performance for I/O operations.

However, if you have any concerns about anyone being able to access

your data files outside of SQL Server, you should strongly consider

using it. SQL Server databases on a laptop could be a good example

(could be a second line of defense from Windows BitLocker).

• Always Encrypted is a great feature but it is not for all applications

and databases. If you need a complete end-to-end encryption

scheme and want to separate management of keys from the database,

then Always Encrypted could be the right fit for you. Take advantage

of the cloud by using Azure Key Vault as your key store provider.

Check out how to do this at https://docs.microsoft.com/azure/

sql-database/sql-database-always-encrypted-azure-key-vault.

 Data Classification and Auditing
The introduction in May of 2018 of new rules for General Data Protection and Regulation

(GDPR) in the European Union (see the official website at https://ec.europa.eu/

commission/priorities/justice-and-fundamental-rights/data-protection/2018-

reform- eu-data-protection-rules_en) has brought new attention to the topics of data

classification, vulnerability, and data auditing.

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/azure/sql-database/sql-database-always-encrypted-azure-key-vault
https://docs.microsoft.com/azure/sql-database/sql-database-always-encrypted-azure-key-vault
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en

356

The Microsoft SQL Server Engineering team recognizes these needs and has

provided general guidance for organizations to prepare and handle GDPR regulations

through the following document: http://aka.ms/gdprsqlwhitepaper.

In addition to guidance, SQL Server provides tools and features to assist in these

areas, including SQL Server Management Studio and T-SQL commands to help with

tagging and auditing.

 Data Classification
An important aspect to understanding what data is stored in SQL Server is to be able

to classify data according to an information type and sensitivity level. Examples of

information types include Banking, Credentials, Health, and SSN. Examples of sensitivity

levels are Public, Confidential, and Confidential GDPR. These types and sensitivity

levels are fixed within the SQL Server Management Studio tool using the Classify
Data functionality. This is also known as the SQL Data Discovery and Classification

feature, as documented at https://docs.microsoft.com/sql/relational-databases/

security/sql-data-discovery-and-classification.

You can access this feature in SSMS through the Tasks option when you right-click a

database in Object Explorer in SSMS. Here is an example of this, as seen in Figure 7-13.

Figure 7-13. SQL data dictionary and classification for SQL Server on Linux

Chapter 7 SeCurity in SQL Server

http://aka.ms/gdprsqlwhitepaper
https://docs.microsoft.com/sql/relational-databases/security/sql-data-discovery-and-classification
https://docs.microsoft.com/sql/relational-databases/security/sql-data-discovery-and-classification

357

This feature has a fixed set of T-SQL statements that implement a dictionary of

column names that might match information types and sensitivity levels. This dictionary

is then matched against the current database. Figure 7-14 shows the results on SSMS for

the WideWorldImporters Sample database.

Figure 7-14. Classification results for the WideWorldImporters database

At the top of the report on the right-hand side, it shows 92 columns were found that

match the dictionary for possible classification. Let’s drill into the results and see why. If

you click that gray bar at the top to see recommendations, your results should look like

Figure 7-15.

Chapter 7 SeCurity in SQL Server

358

The dropdown choices for Information Type and Sensitivity Label are part of the

dictionary. You can now select any of the checkboxes on the left and click Accept
selected recommendations. The tool will save your changes once you click the Save

icon. Now you can select the View Report option at the top of this screen to view a report

of your classification choices and Sensitivity Labels.

Figure 7-16 shows a report from my WideWorldImporters database when I checked

all columns and accepted the default recommendations.

Figure 7-15. Results of data classification recommendations for the
WideWorldImporters database

Chapter 7 SeCurity in SQL Server

359

Currently, this tool only works in SQL Server Management Studio. And the types,

labels, and rules are fixed. However, all the logic behind this tool uses features of SQL

Server as described in the documentation at https://docs.microsoft.com/sql/

relational-databases/security/sql-data-discovery-and-classification.

The dictionary rules are a series of T-SQL statements you can capture using

XEProfiler (as I described in Chapter 5). The classification types and labels are

saved using a system stored procedure called sp_addextendedproperty (read more

at https://docs.microsoft.com/sql/relational-databases/system-stored-

procedures/sp-addextendedproperty-transact-sql). Using this procedure will save

the data in system tables so you can retrieve them later. The point is, you can create

our own classification scheme using this system stored procedure and the Extended

Properties feature of SQL Server.

Figure 7-16. Default classification report for WideWorldImporters

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/relational-databases/security/sql-data-discovery-and-classification
https://docs.microsoft.com/sql/relational-databases/security/sql-data-discovery-and-classification
https://docs.microsoft.com/sql/relational-databases/system-stored-procedures/sp-addextendedproperty-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-stored-procedures/sp-addextendedproperty-transact-sql

360

 Vulnerability Assessment
This chapter has presented many different concepts regarding security. You want to

make sure to configure SQL Server and your database to be as secure as possible while

meeting the needs of your application. Therefore, it is important to ensure any possible

surface attack vectors are minimized and best practices followed. But what are the best

practices? I pointed you to a reference to some of these at the beginning of this chapter at

 https://docs.microsoft.com/sql/relational-databases/security/securing-sql-

server.

Wouldn’t it be nice though to run a tool that can check your system for these

best practices? A feature just like this exists inside SQL Server Management Studio,

called SQL Vulnerability Assessment. You can find the documentation at https://

docs.microsoft.com/sql/relational-databases/security/sql-vulnerability-

assessment.

I ran this tool against the WideWorldImporters sample database on SQL Server on

Linux. Figure 7-17 shows the results from SQL Server Management Studio.

Figure 7-17. SQL Server vulnerability assessment on the WideWorldImporters
database

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/relational-databases/security/securing-sql-server
https://docs.microsoft.com/sql/relational-databases/security/securing-sql-server
https://docs.microsoft.com/sql/relational-databases/security/sql-vulnerability-assessment
https://docs.microsoft.com/sql/relational-databases/security/sql-vulnerability-assessment
https://docs.microsoft.com/sql/relational-databases/security/sql-vulnerability-assessment

361

As you can see from the rules that Failed, built into the Assessment tool, reviews

metadata in the database involving areas such as classifying columns, enabling TDE, and

ensuring authorization to objects and using roles follow best practices.

Even though this tool exists today only in SQL Server Management Studio, the tool

displays for each rule the T-SQL statement used to check the security practice both for

rules that pass and ones that fail.

Figure 7-18 shows an example of how to see the T-SQL query behind one of the rules

that is flagged as a Low Risk for the WideWorldImporters database.

Figure 7-18. Vulnerability assessment T-SQL query details

Since the Vulnerability Assessment tool uses a series of T-SQL queries, I used the

XEProfiler in SQL Server Management Studio and saved all queries in the vulnassess.csv

example file for you to review and use in your own system.

In order to see assessments that apply to the SQL Server instance, use the tool

against a system database like master.

Chapter 7 SeCurity in SQL Server

362

 SQL Server Audit
The final piece in the puzzle to secure your SQL Server is the ability to audit access to

SQL Server and your data. SQL Server provides built-in capabilities to audit all aspects

of access to the server instance and your database. The SQL Server Audit feature is

implemented using Extended Events, which was described in Chapter 5. SQL Server

Audit is made up of the following components:

Audit: A monitored result of server or database level audit actions.

You can have multiple audits per SQL Server instance.

Server audit specification: Definition of server-level audit actions

to monitor for a specified audit. Each audit can have one server

level specification. Server-level specification includes a list of

server-level audit action groups to monitor.

Database audit specification: Definition of database-level audit

actions to monitor for a specified audit. Each audit can contain

one database level specification. Database audit specifications

include either database-level audit action groups or specific audit

actions to monitor.

Audit action group: A server or database-level group of actions

that are grouped together in a category. There is also a group of

actions to monitor for audits themselves.

Audit action: A specific action to audit, such as the execution of a

SELECT statement on a table

Target: The location where results of the audit are saved. For SQL

Server on Linux, the only supported target is a file.

The process to use SQL Server Audit is the following:

 1. Create the audit and define the target like the following T-SQL

statement, as found in the example script createsqlaudit.sql
connected as sa:

USE MASTER

GO

IF EXISTS (SELECT * FROM sys.server_audits WHERE name =

'AuditSQLServer')

Chapter 7 SeCurity in SQL Server

363

BEGIN

 ALTER SERVER AUDIT AuditSQLServer WITH (STATE = OFF)

 DROP SERVER AUDIT AuditSQLServer

END

GO

CREATE SERVER AUDIT AuditSQLServer

 TO FILE (FILEPATH ='/var/opt/mssql')

GO

Tip When you drop an audit, the previous target files are not automatically
deleted. if you plan to run these demos more than once, you should delete the
previous audit files in the target path.

 2. Add in a server audit specification for successful logins with

the following T-SQL statement, as found in the example script

addserveraudit.sql (connect as sa when running this):

USE MASTER

GO

IF EXISTS (SELECT * FROM sys.server_audit_specifications WHERE

name = 'AuditSQLServerSpec')

BEGIN

 ALTER SERVER AUDIT SPECIFICATION AuditSQLServerSpec WITH

(STATE = OFF)

 DROP SERVER AUDIT SPECIFICATION AuditSQLServerSpec

END

GO

CREATE SERVER AUDIT SPECIFICATION AuditSQLServerSpec

FOR SERVER AUDIT AuditSQLServer

 ADD (SUCCESSFUL_LOGIN_GROUP)

WITH (STATE = ON)

GO

Chapter 7 SeCurity in SQL Server

364

The SUCCESSFUL_LOGIN_GROUP is an example of a server-level audit action

group. You can find more examples in our documentation at https://docs.microsoft.

com/sql/relational-databases/security/auditing/sql-server-audit- action-

groups-and-actions.

 3. Let’s now add in a database audit specification to track who

is trying to read from any table in the Sales schema in the

WideWorldImporters database, using the following T-SQL

statement as found in the example script adddbaudit.sql
(connect as sa when running this):

USE [WideWorldImporters]

GO

IF EXISTS (SELECT * FROM sys.database_audit_specifications

WHERE name = 'AuditWWISpec')

BEGIN

 ALTER DATABASE AUDIT SPECIFICATION AuditWWISpec WITH

(STATE = OFF)

 DROP DATABASE AUDIT SPECIFICATION AuditWWISpec

END

GO

CREATE DATABASE AUDIT SPECIFICATION AuditWWISpec

FOR SERVER AUDIT AuditSQLServer

ADD (SELECT ON SCHEMA::[Sales] BY public)

WITH (STATE = ON)

GO

You can read about other database audit actions in our documentation at https://

docs.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-

server-audit- action-groups-and-actions#database-level-audit-actions.

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions
https://docs.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions
https://docs.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions
https://docs.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions#database-level-audit-actions
https://docs.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions#database-level-audit-actions
https://docs.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions#database-level-audit-actions

365

 4. Now turn on the audit using the following T-SQL statement, as

found in the example script startsqlaudit.sql (connected as sa):

USE MASTER

GO

ALTER SERVER AUDIT AuditSQLServer WITH (STATE = ON)

GO

 5. Let’s test the audit. Connect to your Linux server as sa and run

the following T-SQL statement, as found in the example script

readsalescustomers.sql:

USE [WideWorldImporters]

GO

SELECT * FROM [Sales].[Customers]

GO

 6. Now we can use the system procedure sys.fn_get_audit_file to

read the audit trace by executing the following T-SQL statement,

as found in the script readauditlogs.sql (connected as sa):

USE [WideWorldImporters]

GO

SELECT event_time, action_id, session_id, object_name, server_

principal_name, database_principal_name, statement, client_ip,

application_name

FROM sys.fn_get_audit_file ('/var/opt/mssql/auditsqlserver*.*',

default,default)

GO

The results should look similar to Figure 7-19.

Chapter 7 SeCurity in SQL Server

366

The action_id column comes from values as found in the DMV sys.dm_audit_actions.

In this case, AUSC = AUDIT SESSION CHANGED, which is the audit to start the audit

trace. LGIS = LOGIN SUCCEEDED, which is for the new connection by sa to run the query

against WideWorldImporters (there is another login because of the nature of how SQL

Operation Studio connects. You can see that from the application_name. It’s another great

reason to Application Name your application!). The action_id SL = SELECT, which shows

the trace of dbo running a SELECT statement to access the Customers table. Notice the

audit also includes data like the IP address of the client. The complete set of columns for

sys.fn_get_audit_file is documented at https://docs.microsoft.com/sql/relational-

databases/system-functions/sys-fn-get-audit-file- transact-sql.

Note SQL Server Management Studio provides user interface options to create
and manage audits and view audit logs. read more at the following resources:

https://docs.microsoft.com/sql/relational-databases/security/
auditing/create-a-server-audit-and-server-audit-specification
#SSMSProcedure

https://docs.microsoft.com/sql/relational-databases/security/
auditing/view-a-sql-server-audit-log#SSMSProcedure.

Figure 7-19. SQL Server Audit example

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/relational-databases/system-functions/sys-fn-get-audit-file-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-functions/sys-fn-get-audit-file-transact-sql
https://docs.microsoft.com/sql/relational-databases/security/auditing/create-a-server-audit-and-server-audit-specification#SSMSProcedure
https://docs.microsoft.com/sql/relational-databases/security/auditing/create-a-server-audit-and-server-audit-specification#SSMSProcedure
https://docs.microsoft.com/sql/relational-databases/security/auditing/create-a-server-audit-and-server-audit-specification#SSMSProcedure
https://docs.microsoft.com/sql/relational-databases/security/auditing/view-a-sql-server-audit-log#SSMSProcedure
https://docs.microsoft.com/sql/relational-databases/security/auditing/view-a-sql-server-audit-log#SSMSProcedure

367

The complete list of T-SQL statements, DMVs, and catalog views related to audit can

be found in our documentation at https://docs.microsoft.com/sql/relational-

databases/security/auditing/sql-server-audit-database-engine#creating-and-

managing-audits-with-transact-sql.

Given how important auditing can be, there are options with SQL Server Audit to

ensure SQL Server will shut down or not start if auditing fails for any reasons. Read more

about this and other considerations for SQL Server Audit at https://docs.microsoft.

com/sql/relational-databases/security/auditing/sql-server-audit-database-

engine#creating-and-managing-audits-with-transact-sql.

 Summary
You have now been through an extensive study of performance and security for SQL

Server on Linux. In this chapter I covered the fundamentals of logins and users,

discussed using Active Directory Authentication, showed you how to set up Permissions

and Access, described the different options for encryptions of data and network

connections, and concluded the chapter by showing you features for data classification

and auditing. The next important topic to build out a production SQL Server story is high

availability and disaster recovery (HADR).

Chapter 7 SeCurity in SQL Server

https://docs.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-database-engine#creating-and-managing-audits-with-transact-sql
https://docs.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-database-engine#creating-and-managing-audits-with-transact-sql
https://docs.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-database-engine#creating-and-managing-audits-with-transact-sql
https://docs.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-database-engine#creating-and-managing-audits-with-transact-sql
https://docs.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-database-engine#creating-and-managing-audits-with-transact-sql
https://docs.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-database-engine#creating-and-managing-audits-with-transact-sql

369
© Bob Ward 2018
B. Ward, Pro SQL Server on Linux, https://doi.org/10.1007/978-1-4842-4128-8_8

CHAPTER 8

High Availability and
Disaster Recovery for
SQL Server
While performance and security are critical features that any world-class database

engine and platform must provide, production workloads and databases need high

availability and features that support a robust disaster recovery plan. SQL Server is a

database platform that includes rich features and options for both high availability and

disaster recovery needs.

In this chapter, I will cover the three most important functional areas for both high

availability and disaster recovery included with SQL Server on Linux:

• Backup and Restore

• Always On Failover Cluster Instance

• Always On Availability Groups

One other solution I will not cover in this book is called Log Shipping, which you can

read more about at https://docs.microsoft.com/sql/linux/sql-server-linux-use-

log-shipping. Another great resource related to this topic is called Business Continuity,

which you can read at https://docs.microsoft.com/sql/linux/sql-server-linux-

business-continuity-dr.

https://docs.microsoft.com/sql/linux/sql-server-linux-use-log-shipping
https://docs.microsoft.com/sql/linux/sql-server-linux-use-log-shipping
https://docs.microsoft.com/sql/linux/sql-server-linux-business-continuity-dr
https://docs.microsoft.com/sql/linux/sql-server-linux-business-continuity-dr

370

 Backup and Restore
I love this quote from our documentation: “The SQL Server availability features do

not replace the requirement to have a robust, well tested backup and restore strategy,

the most fundamental building block of any availability solution” (you can read this at

https://docs.microsoft.com/sql/linux/sql-server-linux-business-continuity-

dr#sql-server-2017-scenarios-using-the-availability-features).

That pretty much sums up the importance of backups. Here is a quote I’ve

always used: “Your data is only as good as your backups.” In 25 years of experience

working with SQL Server, I’ve never seen anything else taken more for granted then

having a solid backup strategy. I’ve worked with customers who have run their entire

production business with SQL Server for months without a good backup. And of

course, it just takes the first time you have a failure where you need a backup to realize

how important it truly is.

Let’s explore then the fundamentals and details of backing up and restoring databases

in SQL Server on Linux, including an important related topic, database recovery.

 Database Backup
I’ve not shown you an example of a backup yet, but we have used the T-SQL RESTORE

statement to restore the WideWorldImporters database backup (you may be tired of

doing that at this point in the book). Furthermore, I did talk about encrypting backups

in Chapter 7. The fundamentals of backing up your database are quite simple. It is the

mechanics of developing a good backup strategy to meet the needs of our application

and business that is more complex.

 Full Database Backup

Let’s start the discussion of backups with an easy example using the

WideWorldImporters database. Let’s say you just want to take a backup of the current

state of the database. You could do that with this T-SQL statement connected as sa (or

a database owner or a member of the db_backupoperator role) with your favorite SQL

Server tool (or whatever database owner you may be using from examples in the book).

This statement is found in the example backupwwi.sql:

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/linux/sql-server-linux-business-continuity-dr#sql-server-2017-scenarios-using-the-availability-features
https://docs.microsoft.com/sql/linux/sql-server-linux-business-continuity-dr#sql-server-2017-scenarios-using-the-availability-features

371

BACKUP DATABASE WideWorldImporters

TO DISK = '/var/opt/mssql/data/wwi.bak'

WITH INIT, STATS=5, CHECKSUM

GO

The results of running this in SQL Operations Studio look like Figure 8-1.

Figure 8-1. A full database backup of the WideWorldImporters database

The result of this statement is a full database backup of the WideWorldImporters

database written to a file called /var/opt/mssql/data/wwi.bak (there is no requirement

on the file extension. I use .bak as a method to help me know the type of file). By default,

SQL Server will write backup files to the /var/opt/mssql/data directory, but you can

change this with mssql-conf (see our documentation at https://docs.microsoft.com/

sql/linux/sql-server-linux-configure-mssql-conf#backupdir). A full database

backup contains all the allocated pages from database files, the active transaction log,

and metadata about the backup. The internal format of an SQL Server backup is defined

by the Microsoft Tape Format (MTF) protocol. This is not an open source protocol, and

you really don’t need to know the internals of what is in the backup format (but if you are

really, really interested, this website has the original protocol documented at http://

laytongraphics.com/mtf/MTF_100a.PDF).

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf#backupdir
https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf#backupdir
http://laytongraphics.com/mtf/MTF_100a.PDF
http://laytongraphics.com/mtf/MTF_100a.PDF

372

Tip Want to see some of the details of Mtf? enable trace flags 3216 and
3605 and you can see these details in the errorlog file. trace flag 3216 is
not documented or supported, so i do not recommend using this in production.
remember mssql-conf can be used to set trace flags, as discussed in our
documentation at https://docs.microsoft.com/sql/linux/sql-server-
linux-configure-mssql-conf#traceflags.

I used a few options with this BACKUP DATABASE command that are fairly

common:

TO DISK: DISK is a type of backup device and is the most

common one used. We technically support TAPE (unfortunately,

I spent a great deal of my career dealing with SQL Server tape

backup problems for customers. I know, showing my age) and

a type called URL. URL is a nice feature that allows you to back

up a database directly to Azure Blob Storage. See https://docs.

microsoft.com/sql/relational-databases/tutorial-sql-

server-backup-and-restore-to-azure-blob-storage-service

in our documentation for more information. The path for a disk

backup can be any valid Linux path, including mounted drives

from networks or local disks. The only requirement is that the

mssql user must have permissions to write to the target directory.

WITH INIT: SQL Server by default allows you to save multiple

backups into a single file. Using INIT basically overwrites

anything in the current file if it already exists. If you didn’t

specify INIT, the default would be to append the current backup

to the end of the file.

Tip you may also want to consider using forMat as well with init to
completely start a new formatted backup file. i’ve seen situations where i wanted
to back up over an existing file on disk, but the backup file was damaged. i
needed to use forMat and init to completely start a new file (or remove the
existing file on disk first).

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf#traceflags
https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf#traceflags
https://docs.microsoft.com/sql/relational-databases/tutorial-sql-server-backup-and-restore-to-azure-blob-storage-service?view=sql-server-2017
https://docs.microsoft.com/sql/relational-databases/tutorial-sql-server-backup-and-restore-to-azure-blob-storage-service?view=sql-server-2017
https://docs.microsoft.com/sql/relational-databases/tutorial-sql-server-backup-and-restore-to-azure-blob-storage-service?view=sql-server-2017

373

STATS=5: STATS is a “progress indicator” option by percent

compete. I included this to demonstrate backups are executed

by parallel workers. I’ll discuss what I mean by this when talking

more about the results just following this. STATS can also be

handy if you have an exceptionally long backup to run on-demand

to see its progress.

CHECKSUM: By default, SQL Server uses a checksum algorithm

to ensure database pages are physically consistent after being

written to disk. I’ll talk more about this later in the book. Based on

this same concept, backup files can also have a checksum.

Using this option does two things:

 1. If the database is enabled for a checksum with the PAGE_VERIFY

option, the backup operation will verify database page checksums

as it reads each page. If the checksum fails, the backup will fail

(unless the CONTINUE_AFTER_ERROR option is used).

 2. A checksum is computed for the entire backup file and stored

with the backup MTF formatted file. I’ll talk about how this can be

effectively used to verify backup files using RESTORE later in the

chapter.

You can enable checksum for all backups by default by using the backup checksum
default server configuration option, as documented at https://docs.microsoft.com/

sql/database-engine/configure-windows/backup-checksum-default.

Besides the “stats” messages in the result of the BACKUP command, the other

messages indicate how many database pages were backed up for each filegroup and

transaction log of the database. This can give you a feel for the size of the backup.

Remember only allocated pages are backed up, so backups are generally not as large as

the database files themselves. In addition, the last message indicates how many total

pages were backed up in the database, the total duration for the backup to execute, and a

rate of backup speed.

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/database-engine/configure-windows/backup-checksum-default
https://docs.microsoft.com/sql/database-engine/configure-windows/backup-checksum-default

374

Other metadata and information about the backup are recorded in the ERRORLOG

with a message like this:

Database backed up. Database: WideWorldImporters, creation date(time):

2018/06/29(01:36:22), pages dumped: 60981, first LSN: 626:25064:2, last

LSN: 627:18664:1, number of dump devices: 1, device information: (FILE=1,

TYPE=DISK: {'/var/opt/mssql/data/wwi.bak'}). This is an informational

message only. No user action is required.

Tip some users find having these messages with every backup command makes
for a noisy errorlog. therefore, you can use trace flag 3226 to suppress backup
(and restore) messages in the errorlog.

In addition to the ERRORLOG, backup information is also recorded in the msdb

database in tables like backupfile, backupfilegroup, and backupmediaset, among

others.

I said that backups are done with parallel worker threads and the results from

Figure 8-1 prove it. I say this because the main backup worker thread is the one

displaying the stats information, while other workers read from database files and write

to the target device. The interleaved results demonstrate this behavior. Typically, SQL

Server will create one worker thread for reading for each unique disk across all files for

the database and one worker thread for writing for each unique disk for target database

backup files (you can partition out the backup by specifying multiple files even across

multiple disks).

There are several options for the BACKUP DATABASE command. You can see all of

them in our documentation at https://docs.microsoft.com/sql/t-sql/statements/

backup-transact-sql. One option that may be interesting to use is COMPRESSION. SQL

Server will compress the backup file to help reduce space requirements. There are some

considerations when using COMPRESSION with TDE, and the preceding documentation

reference contains the details.

Database backups are completely online, which means that you can actively use the

database during a backup.

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/t-sql/statements/backup-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/backup-transact-sql

375

Note technically there are some operations that can block a backup and vice
versa. these include alter database and other operations that need an exclusive
database lock.

The BACKUP DATABASE T-SQL statement also allows you to only back up specific

files or filegroups. There could be scenarios for large databases where creating a full

database backup takes too long for your business needs. Therefore, if you have multiple

files or use secondary filegroups, you can create your backups in stages. The preceding

documentation reference for the BACKUP DATABASE command describes how to back

up files or filegroups. Carefully read through the process for backing up specific files or

filegroups before using this as a backup strategy.

 Recovery Models

I’ve described in the book that the transaction log is a record of changes to the database

(much like a journal). Before I describe the concept of backing up the transaction log, I

should first describe a concept called a recovery model. A recovery model dictates how

transaction log space is managed and what kind of media recovery is possible. Media

recovery determines what options exist to recover a database from backup media should

the database and/or transaction log files become damaged or unusable. This translates

into what kind of exposure you are willing to accept for data loss. SQL Server supports

the following recovery models:

Simple: Space in the transaction log is reclaimed automatically

after a period of time based on transactions that are complete

(also called log truncation). You cannot back up the transaction

log with this model. Your data loss exposure is that you might

lose changes since your last database backup because not all

transactions in the transaction log are saved. This would of

course only occur if the database and transaction log files became

damaged or unusable (for example, the disk holding these files

becomes damaged). Use this recovery model for scenarios where

you only plan to back up the full database, typically for smaller

databases where data loss for changes in between backups are

acceptable.

Chapter 8 high availability and disaster reCovery for sQl server

376

Full: This is the default recovery model. With this model, all

media recovery options are possible because the transaction log

is never automatically reclaimed. All transactions are saved in

the transaction log until a transaction log backup is taken. In fact,

one of the most common issues I’ve seen with customers who say

their transaction log file keeps growing unexpectedly is that they

are using full recovery but have never backed up the transaction

log. With full recovery, you can recover to any point in time based

on your sequence of database and transaction log backups.

Full recovery also allows you to use features such as Always On

Availability Groups, which are not allowed for databases using the

simple recovery model. Use this model for production databases

where you want to minimize data loss exposure.

Bulk logged: This recovery model is a good fit for databases where

you often bulk insert. This model works just like a Full recovery

model except it allows bulk copy operations to be minimally

logged reducing the amount of space in the transaction log.

Minimally logged operations allow for fast and efficient bulk

operations. You can read more about minimally logged operations

at https://docs.microsoft.com/sql/relational-databases/

import-export/prerequisites-for-minimal-logging-in-

bulk-import. This recovery model though does have a data loss

exposure for bulk operations, since the most recent transaction

log backup. This model also does not allow options like point-

in-time restore, nor can it be used with Always On Availability

Groups.

For a complete read on SQL Server recovery models, see our documentation

at https://docs.microsoft.com/sql/relational-databases/backup-restore/

recovery-models-sql-server.

 Transaction Log Backup

If you plan to use the Full recovery model, then you don’t want to always have to

back up the full database as the only way to recover from situations like disk failures.

Furthermore, as I described, you don’t want the transaction log file to keep growing until

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/relational-databases/import-export/prerequisites-for-minimal-logging-in-bulk-import
https://docs.microsoft.com/sql/relational-databases/import-export/prerequisites-for-minimal-logging-in-bulk-import
https://docs.microsoft.com/sql/relational-databases/import-export/prerequisites-for-minimal-logging-in-bulk-import
https://docs.microsoft.com/sql/relational-databases/backup-restore/recovery-models-sql-server
https://docs.microsoft.com/sql/relational-databases/backup-restore/recovery-models-sql-server

377

you run out of disk space. Therefore, SQL Server provides an option with the BACKUP

LOG T-SQL statement to back up the transaction log. In order to back up the transaction

log, you first must have executed one BACKUP DATABASE statement.

Most of the options exist for BACKUP LOG just like BACKUP DATABASE. You have

the option to not use the WITH INIT option here to keep all of your log backups in a

single file, or use WITH INIT to keep them in separate files.

While a full database backup contains all the current allocated pages and the

current active transaction log, a transaction log backup contains all the changes in the

transaction log since the last transaction log backup (or the last database backup if it is

the first log backup). Therefore, transaction log backups are typically collected in a log

chain. Consider the example in Figure 8-2 for a log chain.

Figure 8-2. A log chain example

The transaction log backup on Monday at 12:00pm contains all changes in the

transaction log since the Database Backup at 8:00AM. The Monday 8:00pm transaction

log backup contains all changes in the log backup at 12:00pm. The Tuesday 12:00pm

transaction log backup contains all the changes since the Monday 8:00pm transaction log

backup.

I’ll talk more about understanding how to apply the sequence of a log chain of

backups in the next section on Restore. Your data loss exposure when using transaction

log backups are any changes made in between log backups. Therefore, you must make

a business decision on how often to back up the transaction log based on your data

loss exposure requirements (Note: Later in this chapter we will talk about using other

technologies like Always On Availability Groups to minimize this exposure even further).

Chapter 8 high availability and disaster reCovery for sQl server

378

The common terms in the industry related to these decisions are called Recovery Time

Objective (RTO) and Recovery Point Objective (RPO). RTO is a targeted duration of

time to restore an application after a disruptive event. RPO is the maximum amount of

changes lost for a time interval the application can accept after a disruptive event. So,

for example if your RTO is four hours and RPO is 15 minutes, you will need to ensure

you create log backups every 15 minutes and devise a scheme where you can restore a

database backup and a series of log backups in 4 hours.

One interesting scenario I’ll discuss during the next section on restore is a Tail-

Log Backup. You can read more information about Transaction Log Backups in our

documentation at https://docs.microsoft.com/sql/relational-databases/backup-

restore/transaction-log-backups-sql-server.

 Differential and Copy-Only Backup

To help reduce the amount of full database or transaction log backups, SQL Server

supports a differential backup. A differential backup is like a database backup, since it

contains database pages, but it only contains pages that have changed since the last full

database backup. This can greatly speed up the restore process, since you can restore

a full backup, the last differential backup, and then any transaction log backups to

completely restore a database. Differential backups are based on the most recent full

backup, which is called the base of the differential backup.

Differential backups are supported for all recovery models. I’ll discuss more about

how to restore differential backups in the next major section of the chapter. You can read

more about differential backups in our documentation at https://docs.microsoft.

com/sql/relational-databases/backup-restore/transaction-log-backups-sql-

server.

A copy-only backup is a database or log backup that does not affect the sequence of

backups, the log chain, or differential base. There could be situations where you want to

create a database or log backup independent of a backup strategy already in place. Use

the WITH COPY_ONLY option of the T-SQL BACKUP statement to create a copy-only

backup. Read more about copy-only backups in our documentation at https://docs.

microsoft.com/sql/relational-databases/backup-restore/copy-only-backups-

sql-server.

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/relational-databases/backup-restore/transaction-log-backups-sql-server
https://docs.microsoft.com/sql/relational-databases/backup-restore/transaction-log-backups-sql-server
https://docs.microsoft.com/sql/relational-databases/backup-restore/transaction-log-backups-sql-server
https://docs.microsoft.com/sql/relational-databases/backup-restore/transaction-log-backups-sql-server
https://docs.microsoft.com/sql/relational-databases/backup-restore/transaction-log-backups-sql-server
https://docs.microsoft.com/sql/relational-databases/backup-restore/copy-only-backups-sql-server
https://docs.microsoft.com/sql/relational-databases/backup-restore/copy-only-backups-sql-server
https://docs.microsoft.com/sql/relational-databases/backup-restore/copy-only-backups-sql-server

379

 Database Snapshots

I had no great place in this book to add in the concept of a database snapshot, but adding

it here with backups seems logical because it can be part of a high-availability solution.

Database snapshots also can be used during RESTORE, so I’ll introduce the topic first here.

Database Snapshots are a read-only, static view of a database at a point in time. They

provide a great method to have a view of your data or revert from a mistake based on a

specific point in time, rather than having to restore a sequence of backups using point-

in-time restore.

Database snapshots are stored as a file on disk using a concept called sparse files.

This means that when you first create a snapshot, it is small in size. As you make changes

to the database, the original version of database pages is copied to the snapshot. This

means the more changes that occur over time, the larger the snapshot. You use database

snapshots just like databases. SQL Server will attempt to obtain database pages from

the snapshot first. If they don’t exist in the snapshot, it means the pages were not

changed from the original database and the page is retrieved from the database itself.

Snapshots are not a substitute for your backup strategy but are very convenient for

interesting situations. For example, if you are going to make major changes to a database

for a project, create a database snapshot. If you make a major mistake, you can quickly

revert the database with the snapshot. If you don’t need it, you can easily just drop the

snapshot.

Pages written to the snapshot file can add an I/O performance cost to SQL Server

database operations, so I recommend you keep snapshot files on separate disks from

SQL Server database and transaction log files.

You can read more about creating snapshots, further benefits, and limitations of

snapshots in our documentation at https://docs.microsoft.com/sql/relational-

databases/databases/database-snapshots-sql-server.

 VDI and Snapshot Backup

SQL Server supports a special device not listed in the standard documentation, called

a virtual device. The Virtual Device Interface (VDI) is a specification for developers

to build applications that can accept a backup as a stream of data from SQL Server to

a program. The program can then process the stream of data in any number of ways.

You can find an example of how to build a VDI application at https://github.com/

Microsoft/sql-server-samples/tree/master/samples/features/sqlvdi-linux.

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/relational-databases/databases/database-snapshots-sql-server
https://docs.microsoft.com/sql/relational-databases/databases/database-snapshots-sql-server
https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/sqlvdi-linux
https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/sqlvdi-linux

380

The BACKUP T-SQL statement supports VDI backups using a TO VIRTUAL_DEVICE

option. In addition, VDI backups support a concept called snapshot backups. Snapshot

backups allow a VDI program to copy the SQL Server database and log files directly to

another storage device instead of relying on a stream of data from the backup from SQL

Server. SQL Server recognizes the WITH SNAPSHOT option for BACKUP and will freeze

I/O on all files until the VDI application acknowledges the snapshot (like a file copy) is

complete.

An older blog post but a good one explaining how VDI works can be found at

https://blogs.msdn.microsoft.com/sqlserverfaq/2009/04/28/informational-

shedding-light-on-vss-vdi-backups-in-sql-server/.

There are a few specifics to using VDI backups on SQL Server on Linux. Read about

these details in our documentation at https://docs.microsoft.com/sql/linux/sql-

server-linux-backup-vdi-specification.

The complete VDI specification for developers can be found at https://www.

microsoft.com/download/details.aspx?id=17282. (Don’t be shocked when you open

this file after unzipping it. It is called vbackup.chm, which is an old Microsoft Help

format, and the file says SQL Server 2005 specification. It is still valid for SQL Server

2017!)

 System Database Backup

System databases, except for tempdb, can be backed up like any other user database. The

question is should you backup system databases? The answer is yes, but I recommend

you really only need a full database backup of system databases and you may not need to

do them often. For example, unless you change the model database, just back it up after

installation and you may never need to back it up again.

I will discuss in the next section a method to rebuild system databases as they were

after installation, but it is far simpler to restore a system database backup, and it provides

a method to restore any changes made within them. You can read more about backup

and restore of system databases in our documentation at https://docs.microsoft.

com/sql/relational-databases/backup-restore/back-up-and-restore-of-system-

databases-sql-server.

Chapter 8 high availability and disaster reCovery for sQl server

https://blogs.msdn.microsoft.com/sqlserverfaq/2009/04/28/informational-shedding-light-on-vss-vdi-backups-in-sql-server/
https://blogs.msdn.microsoft.com/sqlserverfaq/2009/04/28/informational-shedding-light-on-vss-vdi-backups-in-sql-server/
https://docs.microsoft.com/sql/linux/sql-server-linux-backup-vdi-specification
https://docs.microsoft.com/sql/linux/sql-server-linux-backup-vdi-specification
https://www.microsoft.com/download/details.aspx?id=17282
https://www.microsoft.com/download/details.aspx?id=17282
https://docs.microsoft.com/sql/relational-databases/backup-restore/back-up-and-restore-of-system-databases-sql-server
https://docs.microsoft.com/sql/relational-databases/backup-restore/back-up-and-restore-of-system-databases-sql-server
https://docs.microsoft.com/sql/relational-databases/backup-restore/back-up-and-restore-of-system-databases-sql-server

381

 Database Restore and Recovery
SQL Server provides several options to restore database backups, sequence of database

differential, and log backups, and other methods to restore portions of a database

such as piecemeal and page restore. In this section, I’ll review all of these options plus

information about restoring and recover of system databases. Part of restore is running

recovery of the database, and since I’ve not addressed that topic in the book, this is a

good time to review how database recovery works and how it affects both restore and

database startup. As a reference point, a great overview of all the restore options is in our

documentation at https://docs.microsoft.com/sql/relational-databases/backup-

restore/restore-and-recovery-overview-sql-server.

 Database Recovery

In order to ensure transactions are consistent between what is recorded in the

transaction log and database pages on disk, SQL Server will run recovery against a

database in certain situations. I discussed before in the book the concept of Write Ahead

Logging (WAL). Because of this method of durability, at any point in time there could

be transactions that are in the transaction log that are not reflected on database pages

on disk. Furthermore, there could be transactions in the transaction log that are not

committed but are reflected on database pages on disk (because of, e.g., a Lazy Write).

When SQL Server has to restore a backup or bring a database online, it will examine

the transaction log to see whether it should reconcile these possible inconsistencies

between the log and database pages. The transaction log is the source of truth in this

process. This process of recovery is done in the following phases, as described in

Figure 8-3.

Figure 8-3. Phases of database recovery

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/relational-databases/backup-restore/restore-and-recovery-overview-sql-server
https://docs.microsoft.com/sql/relational-databases/backup-restore/restore-and-recovery-overview-sql-server

382

Analysis: SQL Server will find which pages may have been

dirty since the last checkpoint and the state of uncommitted

transactions. SQL Server uses this analysis to properly execute

the other phases of recovery, redo and undo.

Redo: Start at the oldest active transaction and redo any

committed transactions in the transaction log that are not

reflected on databases pages listed in the transactions (this is also

called rolling forward transactions). SQL Server can perform this

operation in parallel with multiple worker threads, which is an

optimization we made in SQL Server 2016 to accelerate recovery

performance.

Undo: Start with the oldest active transactions in the log and make

sure that any transactions that are not committed are not reflected

in database pages listed in the transactions (this is also called

rolling back).

SQL Server understands how to compare a transaction in the transaction log and

whether it is reflected on a database page by looking at something called a log sequence

number (LSN). Each transaction is stamped with an LSN, and any database page that is

modified has the LSN of the transaction that modified it. LSN values are incremented

sequentially. Therefore, it is easy to compare an LSN in the log and a database page and

know whether that change was applied or not.

In some situations for Enterprise Edition, SQL Server can use fast recovery, where

it can allow the database to become online after the redo phase as locks are obtained

for undo operations. That situation does not apply to restore but for situations where

the database is brought online, like crash recovery of SQL Server (after an unexpected

shutdown).

Understanding the concept of recovery is important for restore sequences to

 know when recovery is applied to transactions that are contained in database or

log backups.

Chapter 8 high availability and disaster reCovery for sQl server

383

 Restoring a Database

Let’s start looking at restore with some basics of restoring a full database backup. Using

the backup you created earlier in the chapter (wwi.bak), execute the following T-SQL

statement as found in the example script restorewwiheaderonly.sql:

RESTORE HEADERONLY FROM DISK = '/var/opt/mssql/data/wwi.bak'

GO

This option for restore will examine the backup file (the MTF format) and return

information that is contained in the metadata header of the backup file. This is helpful to

find out information about what is contained in a backup (especially if you are not sure

what is in the backup).

Figure 8-4 shows the results of this command.

Figure 8-4. RESTORE HEADERONLY in SQL Server

In these results, BackupType = 1 is a full database backup. There are many other

fields in this result set that describe the backup, including when the backup was taken

and what options where used (like WITH CHECKSUM).

Chapter 8 high availability and disaster reCovery for sQl server

384

One of the pieces of metadata in a database backup is the original file path of all

the database and log files. When you restore a backup, SQL Server will attempt to

create these files to build the database in the exact file path location when the database

was backed up. This might create a problem for you if you are attempting to restore

a backup where the original file paths don’t exist (and you cannot create them).

Therefore, you will have to use syntax supported by the RESTORE T-SQL statement to

move the database and/or log files. But how do you know what the files and original

paths are to move? This is where the following very handy option for RESTORE exists,

called FILELISTONLY. Execute the following T-SQL statement as found in the example

restorewwifilelistonly.sql:

RESTORE FILELISTONLY FROM DISK = '/var/opt/mssql/data/wwi.bak'

GO

You results should look something like Figure 8-5.

Figure 8-5. RESTORE FILELISTONLY in SQL Server

You can see from the results the logical names of the files and the physical file paths.

So, let’s say you wanted to restore this backup, but instead of putting the database in

their original file paths you needed them to be created in a different directory.

Chapter 8 high availability and disaster reCovery for sQl server

385

Here is an example of how to do this with the following T-SQL statement, found in

the example restorewwimove.sql:

RESTORE DATABASE WideWorldImporters

FROM DISK = '/var/opt/mssql/data/wwi.bak'

WITH MOVE 'WWI_Primary' to '/var/opt/mssql/WideWorldImporters.mdf',

MOVE 'WWI_UserData' to '/var/opt/mssql/WideWorldImporters_UserData.ndf',

MOVE 'WWI_Log' to '/var/opt/mssql/WideWordImporters.ldf',

MOVE 'WWI_InMemory_Data_1' to '/var/opt/mssql/WideWordImporters_InMemory_

Data_1',

REPLACE

GO

The results of this T-SQL statement should look like Figure 8-6.

Figure 8-6. Moving files while restoring a database

In this example I’ve restored the database, so the files are created in the /var/opt/

mssql directory instead of /var/opt/mssql/data. Also note the use of the REPLACE

keyword since the database already exists. Using this keyword will cause SQL Server to

delete the existing database and files and restore the new one.

Chapter 8 high availability and disaster reCovery for sQl server

386

Tip if you are restoring a database for disaster recovery purposes, i do not
recommend using replaCe. instead, restore the database backup to a new name,
keeping the original database. this is my own personal recommendation, because
i’ve seen customer situations where the original database had some damage but
the backup was invalid. Using replaCe causes sQl server to delete the original
database before it restores the backup. if the backup fails, now you have no way to
try to recover what was in the original database.

Earlier in this chapter I mentioned the use of the CHECKSUM option for backups.

One nice advantage of using this feature is that you can verify the checksum of the

backup media without restoring the entire database using the RESTORE VERIFYONLY

option. If RESTORE VERIFYONLY comes back without an error, it is not a guarantee

the restore will be work successfully including recovery (the only way to know for sure

a backup will restore is to restore it, even on another server), but it does guarantee the

backup media was not damaged after the backup was created.

 Complete Database Restore

Let’s use an example to look at a possible complete restore sequence based on backup

options we have discussed in this chapter. Consider the following sequence of events in

Figure 8-7.

Figure 8-7. Database backup sequence before a crash

Chapter 8 high availability and disaster reCovery for sQl server

387

At Tuesday at 1:00pm an event occurs where the database files are damaged, but

in this example the current transaction log file is intact. How can you recover from this

event and will you lose data? Provided the transaction log is really valid, you could end

up with no data loss. Here is how and why.

Because we have a database backup and a series of log backups, we can do the

following:

 1. Back up the current “tail of the log.” You can do this with the

BACKUP T-SQL statement using the NO_RECOVERY option.

 2. Restore the full database backup from the backup file wwi.bak.

The difference here from the RESTORE examples I’ve shown you

is that you will use the WITH NO_RECOVERY. SQL Server will

actually apply redo logic after restoring the backup but not undo.

When the restore is finished, the database is not available yet

to use.

 3. Restore the differential backup from the backup file wwi_diff1.bak.

As with step #2, you will need the WITH NO_RECOVERY option.

The database is still not available yet for use.

 4. Restore the transaction log backup from the backup file wwi_log3.

bak. This time use the RESTORE LOG statement, using WITH NO_

RECOVERY. The database is still not available yet for use.

 5. Restore the tail of the log backup you created in Step #1. Again,

use RESTORE LOG WITH NO_RECOVERY. The database is still

not available for use.

 6. Execute the RESTORE DATABASE command but only with the

WITH RECOVERY option to fully recover the database and bring

it to a consistent state. The database should now be available with

no data loss.

And because I created transaction log backups, even if the differential backup were

not valid, I could restore all the log backups in sequence.

Chapter 8 high availability and disaster reCovery for sQl server

388

Let’s see this in action by simulating a series of changes in the WideWorldImporters

database with log and differential backups. For these examples, connect as sa or another

sysadmin login you have created. To ensure these commands run correctly, run all of

them from a tool like sqlcmd one at a time or use the same connection in a tool like SQL

Operation Studio.

 1. First, restore the WideWorldImporters full sample, as I’ve

described in previous chapters, to its original state. I’ve included

the restorewwi.sh and restorewwi_linux.sql scripts used in

previous chapters.

 2. It turns out the WideWorldImporters database is set for the

SIMPLE recovery model, but we want to use the FULL recovery

model for our examples. Execute the following T-SQL statement to

change the recovery model to FULL for WideWorldImporters, as

found in the example script wwisetfull.sql:

USE master

GO

ALTER DATABASE WideWorldImporters SET RECOVERY FULL

GO

Note databases using the simple recovery model have all types of recovery
options except using transaction log backups, since you cannot create a
transaction log backup using the simple recovery model. see our documentation
for more information about complete database restores for a simple recovery
model database at https://docs.microsoft.com/sql/relational-
databases/backup-restore/complete-database-restores-simple-
recovery-model.

 3. Create a full database backup for the WideWorldImporters by

executing the backupwwi.sql script as found earlier in this chapter:

USE master

GO

BACKUP DATABASE WideWorldImporters

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/relational-databases/backup-restore/complete-database-restores-simple-recovery-model
https://docs.microsoft.com/sql/relational-databases/backup-restore/complete-database-restores-simple-recovery-model
https://docs.microsoft.com/sql/relational-databases/backup-restore/complete-database-restores-simple-recovery-model

389

TO DISK = '/var/opt/mssql/data/wwi.bak'

WITH INIT, STATS=5, CHECKSUM

GO

 4. Execute the following T-SQL statements to create a new table in

the WideWorldImporters database as found in the example script

letsgomavs.sql:

USE WideWorldImporters

GO

DROP TABLE IF EXISTS letsgomavs

GO

CREATE TABLE letsgomavs (player char(50), number int)

GO

 5. Now back up the transaction log to simulate the backup for

Monday at 12:00pm by executing the following T-SQL statement

found in the example script backupwwilog1.sql:

USE master

GO

BACKUP LOG WideWorldImporters TO DISK = '/var/opt/mssql/data/wwi_

log1.bak'

WITH INIT, CHECKSUM

GO

 6. Now insert a row into the table I created using the following T-SQL

statements found in the example script insertdirk.sql:

USE WideWorldImporters

GO

INSERT INTO letsgomavs VALUES ('Dirk Nowitski', 41)

GO

Chapter 8 high availability and disaster reCovery for sQl server

390

 7. Now let’s do another backup simulating the log backup for

Monday at 8:00pm by executing the following T-SQL statement

found in the example script backupwwilog2.sql:

USE master

GO

BACKUP LOG WideWorldImporters TO DISK = '/var/opt/mssql/data/wwi_

log2.bak'

WITH INIT, CHECKSUM

GO

 8. Another insert into the table using the following T-SQL statements

found in the example script insertdennis.sql

USE WideWorldImporters

GO

INSERT INTO letsgomavs VALUES ('Dennis Smith Jr.', 1)

GO

 9. Now create a differential database backup using the following

T-SQL statement found in the example script backupwwidiff.sql:

USE master

GO

BACKUP DATABASE WideWorldImporters

TO DISK = '/var/opt/mssql/data/wwi_diff1.bak'

WITH INIT, DIFFERENTIAL, CHECKSUM

GO

 10. One more insert into the letsgomavs table (I’m building up my

roster!) using the following T-SQL statement found in the example

script insertdeandre.sql:

USE WideWorldImporters

GO

INSERT INTO letsgomavs VALUES ('DeAndre Jordan', 6)

GO

Chapter 8 high availability and disaster reCovery for sQl server

391

 11. One last log backup simulating the backup on Tuesday at 12:00pm

using the following T-SQL statement found in the example script

backupwwilog3.sql

USE master

GO

BACKUP LOG WideWorldImporters TO DISK = '/var/opt/mssql/data/wwi_

log3.bak'

WITH INIT, CHECKSUM

GO

 12. Now let’s do one last insert, which according to our timeline is

before Tuesday at 1:00pm, using the following T-SQL statement

found in the example script insertluka.sql:

USE WideWorldImporters

GO

INSERT INTO letsgomavs VALUES ('Luka Doncic', 77)

GO

 13. Now let’s say at the simulated Tuesday 1:00pm time the database

becomes unavailable, but you believe the disk holding the

transaction log is intact. We definitely need these transactions to

ensure the Dallas Mavericks NBA roster looks good (especially

Luka, our #1 pick). The first step is to back up the current tail of the

log using the following T-SQL statement, as found in the example

script backupwwitailoflog.sql:

USE master

GO

BACKUP LOG WideWorldImporters TO DISK = '/var/opt/mssql/data/wwi_

tailoflog.bak'

WITH INIT, NO_TRUNCATE, CHECKSUM

GO

Chapter 8 high availability and disaster reCovery for sQl server

392

 14. You have several recovery paths at this point. We could recover

our data from the initial backup to any point in time in the

sequence of backups and transactions. I don’t want any data

loss and I want to be up and running as fast as possible. Execute

the following T-SQL statements as found in the example script

restorewwiall.sql:

USE master

GO

RESTORE DATABASE WideWorldImporters FROM DISK = '/var/opt/mssql/

data/wwi.bak'

WITH REPLACE, NORECOVERY

GO

RESTORE DATABASE WideWorldImporters FROM DISK = '/var/opt/mssql/

data/wwi_diff1.bak'

WITH NORECOVERY

GO

RESTORE LOG WideWorldImporters FROM DISK = '/var/opt/mssql/data/

wwi_log3.bak'

WITH NORECOVERY

GO

RESTORE LOG WideWorldImporters FROM DISK = '/var/opt/mssql/data/

wwi_tailoflog.bak'

WITH NORECOVERY

GO

RESTORE DATABASE WideWorldImporters WITH RECOVERY

GO

 15. If all is successful, I expect my four players still to be in my

database. Verify this by executing the following T-SQL statement

mavstothenbafinals.sql:

USE WideWorldImporters

GO

SELECT * FROM letsgomavs

GO

Chapter 8 high availability and disaster reCovery for sQl server

393

The results should look like Figure 8-8.

Figure 8-8. Recovering data using a series of backups in SQL Server

That was a long sequence to go through, but it demonstrates how to use a series

of backups to meet your RTO and RPO requirements. The one issue with the scheme I

showed you is that the database is offline during the entire RESTORE sequence until the

very last step (fast recovery doesn’t work with restore). There are other methods for you

to restore in a more online fashion, as described in the next section.

Another option for a restore sequence is a point-in-time restore. Point-in-time

restores are available when using the RESTORE LOG T-SQL syntax. When you use a

point-in-time restore, you specify with options WITH STOPAT=<time>, RECOVERY

(since you will be recovering the database with this statement). You can restore an entire

database and log backup sequence and then use a point-in-time restore as the final

RESTORE LOG statement. Check out our documentation and examples for point-in-time

restores at https://docs.microsoft.com/sql/relational-databases/backup-restore/

restore-a-sql-server-database-to-a-point-in-time-full-recovery-model.

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/relational-databases/backup-restore/restore-a-sql-server-database-to-a-point-in-time-full-recovery-model
https://docs.microsoft.com/sql/relational-databases/backup-restore/restore-a-sql-server-database-to-a-point-in-time-full-recovery-model

394

 File, Piecemeal, and Page Restore

There could be scenarios for databases with multiple files or filegroups where you need

to only restore a specific file or filegroup without having to restore the entire database,

provided you have a file or filegroup backup you have created. You can restore files

or filegroups offline or online (online is available for Enterprise Edition only). To see

examples and scenarios to restore files or filegroups see the documentation at https://

docs.microsoft.com/sql/relational-databases/backup-restore/file-restores-

full-recovery-model.

If you have full database backups like the sequence I showed you in the previous

section, it is possible to restore a database in phases called a piecemeal restore. A

piecemeal restore allows you to bring filegroups online in phases vs. the entire database.

This could be an interesting part of your RTO strategy because it is possible you can

define RTO now at the filegroup level.

For example, for the sequence in the previous section for restoring the

WideWorldImporters database, we could have changed up the restore sequence to

something different. We could restore the primary filegroup first and then the secondary

filegroup WWI_UserData later.

Note a memory optimized data filegroup must be backed up and restored with
the primary filegroup. therefore, you need to create a database backup including
the primary and memory optimized data filegroup and another backup including
your secondary filegroups.

Using this technique allows users to access the data that’s stored in primary filegroup

faster, while the WWI_UserData filegroup can come online at a later time. Online

piecemeal restores are only supported on the Enterprise edition. You can read more

about piecemeal restores for a full recovery model database in our documentation at

https://docs.microsoft.com/sql/relational-databases/backup-restore/example-

piecemeal-restore-of-database-full-recovery-model.

The final example of a more granular restore option is a page level restore. This option

allows you to restore specific pages in the database, should they become damaged.

And the great part of this feature is that it can be done online (Enterprise edition only).

Consider a scenario where a specific page or set of pages is reported to be damaged (either

through an Msg 824 error, which I’ll explain more in Chapter 9, or from DBCC CHECKDB).

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/relational-databases/backup-restore/file-restores-full-recovery-model
https://docs.microsoft.com/sql/relational-databases/backup-restore/file-restores-full-recovery-model
https://docs.microsoft.com/sql/relational-databases/backup-restore/file-restores-full-recovery-model
https://docs.microsoft.com/sql/relational-databases/backup-restore/example-piecemeal-restore-of-database-full-recovery-model
https://docs.microsoft.com/sql/relational-databases/backup-restore/example-piecemeal-restore-of-database-full-recovery-model

395

You could use the methods I’ve described so far in this chapter to restore from a

database, differential, file, filegroup, and/or log backups. Or you could use these backups

to restore only the pages you need from them. You still need a valid log backup sequence

to apply any changes to the pages after they are restored from a database backup. This is

an extremely attractive feature to speed up your RTO if you can identify the problem to

only a set of database pages.

It turns out SQL Server has some tools to help guide you. First, in the msdb database

a table exists called suspect_pages that contains only pages that were found by SQL

Server to be damaged. Second, SQL Server Management Studio has a tool called the

Database Recovery Advisor, which provides recommendations based on the backup

history found in msdb to guide you through point-in-time restores and database page

restores. You can read more about this tool in our documentation at https://docs.

microsoft.com/sql/relational-databases/backup-restore/restore-and-recovery-

overview-sql-server#DRA.

You can read the complete guide to restoring pages in our documentation at

https://docs.microsoft.com/sql/relational-databases/backup-restore/restore-

pages-sql-server.

 System Database Restore

I mentioned in the section on Backups in this chapter that you can backup master,

model, and msdb like user databases. Let’s take each system database and talk about the

process to restore them from backups.

msdb: This is the easiest of the three to restore, since SQL Server

can start up even if this database is not accessible or is damaged.

So, the process to restore msdb is just like any user database while

SQL Server is running.

Tip how do i know this? it is easy to test. first, shut down sQl server. then
simply rename the msdbdata.mdf file and restart sQl server. you can use this
method to test out how sQl server behaves if any system database is not
available.

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/relational-databases/backup-restore/restore-and-recovery-overview-sql-server#DRA
https://docs.microsoft.com/sql/relational-databases/backup-restore/restore-and-recovery-overview-sql-server#DRA
https://docs.microsoft.com/sql/relational-databases/backup-restore/restore-and-recovery-overview-sql-server#DRA
https://docs.microsoft.com/sql/relational-databases/backup-restore/restore-pages-sql-server
https://docs.microsoft.com/sql/relational-databases/backup-restore/restore-pages-sql-server

396

model: If a problem exists with the model database where it is

still accessible, then you should be able to restore the database

while SQL Server is online. However, if the model database cannot

be started, SQL Server will attempt to start but immediately

shutdown. Fortunately, there is a nice trick here to restore msdb

in this situation. Enable trace flag 3608 (which says don’t open any

databases except for master) with mssql-conf and then start SQL

Server. You should be able to go in and restore an msdb backup.

After you do this, shut down SQL Server, disable the trace flag, and

restart the service.

master: Like model, if the master database is available, you can

restore a backup of master but only after starting SQL Server

in “single user mode” (our documentation tells you how to do

this at https://docs.microsoft.com/sql/linux/sql-server-

linux-troubleshooting-guide#start-sql-server-in-minimal-

configuration-or-in-single-user-mode). SQL Server will shut

down by default after a restore of master. If the master database is

not available, SQL Server fails to start immediately. In some cases,

you can still restore a backup of master if you start SQL Server in

“single user mode” and enable trace flag 3607 (this trace flag tells

SQL Server to not recover master).

What if a backup is not available for any of these databases and you need them to

function properly? There is an option to rebuild system databases from their original

state at installation. The system databases are stored in one of the .sfp files I mentioned

in Chapter 2. The method to rebuild these is documented at https://docs.microsoft.

com/sql/linux/sql-server-linux-troubleshooting-guide#rebuild-system-

databases. The process effectively uses a command line option for sqlservr called

-- force setup. The problem with rebuilding system databases is that all of them are

rebuilt together. If you have backups of some system databases, you could always rebuild

a system database and then restore the backups you have. It is easy to forget that system

databases like msdb do hold important information such as backup history and SQL

Server agent job definitions.

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/linux/sql-server-linux-troubleshooting-guide#start-sql-server-in-minimal-configuration-or-in-single-user-mode
https://docs.microsoft.com/sql/linux/sql-server-linux-troubleshooting-guide#start-sql-server-in-minimal-configuration-or-in-single-user-mode
https://docs.microsoft.com/sql/linux/sql-server-linux-troubleshooting-guide#start-sql-server-in-minimal-configuration-or-in-single-user-mode
https://docs.microsoft.com/sql/linux/sql-server-linux-troubleshooting-guide#rebuild-system-databases
https://docs.microsoft.com/sql/linux/sql-server-linux-troubleshooting-guide#rebuild-system-databases
https://docs.microsoft.com/sql/linux/sql-server-linux-troubleshooting-guide#rebuild-system-databases

397

Model is typically not a problem unless you have made changes to it (which is a good

reminder to back up any T-SQL scripts you have used to modify model), but master is

an issue. Losing the master database means you have lost logins, linked servers, and

information about databases. But again, any object like a login you have created should

be saved in a T-SQL script and backed up separately. And all user databases can be

recognizable again by attaching them. You can read about how to attach a database in

our documentation at https://docs.microsoft.com/sql/relational-databases/

databases/attach-a-database.

 Always On Failover Cluster Instance
Having backups to restore is essential for any high availability and disaster recovery

strategy, there are other options that compliment backups but also provide better high

availability. SQL Server provides features in a suite called Always On (I’m going to try

and use the right terms for this chapter. Allan Hirt, a prominent MVP and HADR expert,

always keeps me honest on these terms). One solution provides high availability for

SQL Server instance failures across a cluster using a shared storage for data. Protection

of the data must be done through a non-Microsoft hardware solution for the shared

storage and SQL Server backups. High availability using this solution is called Always On

Failover Cluster Instance. Always On Failover Cluster Instance and Always On Availability

Groups (described in the next section) have one theme in common. The functionality

of these features on Linux is pretty much the same as SQL Server on Windows, but the

configuration is different. This is due to the differences in software components required

to make these technologies work in Linux vs. Windows. Having said this, the way Always

on Failover Clustering and Always On Availability Groups work under the covers with

Linux is perhaps one of the areas that is more different than I’ve encountered in my

journey with SQL Server on Linux. SQL Server engine functionality is exactly the same,

but the manner in which Linux handles concepts like failover is in some cases quite

different than Windows.

Many thanks for this and the next section of the chapter from my colleagues at

Microsoft who specialize in HADR, including Sourabh Agarwal, Mihaela Blendea,

Pradeep M, Brooks Remy, and Arnav Singh. Without them, I could not have navigated

the complexity and functionality of Always On for SQL Server on Linux.

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/relational-databases/databases/attach-a-database
https://docs.microsoft.com/sql/relational-databases/databases/attach-a-database

398

 How It Works
For many years SQL Server has provided a failover cluster solution in conjunction with

Windows Server Failover Clustering (WSFC). Always On Failover Cluster Instance (I’m

going to call this FCI or SQL FCI for the rest of this chapter) for SQL Server on Linux

relies on a similar solution that is open source, called Pacemaker (you can read more

about the origins and details of Pacemaker at http://clusterlabs.org/pacemaker/

doc). Pacemaker and its components such as Corosync are implemented by the various

Linux distributions in various add-ons. For example, RHEL supports a component called

HA Add-On (the details of the HA Add-On can be found at https://access.redhat.

com/documentation/en-us/red_hat_enterprise_linux/7/pdf/high_availability_

add-on_overview/Red_Hat_Enterprise_Linux-7-High_Availability_Add-On_

Overview-en-US.pdf).

Note one learning for me as part of working with customers is that the rhel ha
add-on can require a separate purchase from the standard rhel license. sles
has the same concept for their ha extension. you can read more about sles at
https://www.suse.com/products/highavailability.

An SQL FCI is a set of SQL Server instances across a number of computers (nodes)

that can participate in a failover high-availability solution called a cluster. However,

with FCI, only one SQL Server instance is actively using the databases on shared storage

among the nodes.

This diagram from the documentation at https://docs.microsoft.com/sql/linux/

sql-server-linux-shared-disk-cluster-concepts#the-clustering-layer, as seen in

Figure 8-9, describes the layers of software interacting with hardware to support an FCI

for SQL Server on Linux.

Chapter 8 high availability and disaster reCovery for sQl server

http://clusterlabs.org/pacemaker/doc
http://clusterlabs.org/pacemaker/doc
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/pdf/high_availability_add-on_overview/Red_Hat_Enterprise_Linux-7-High_Availability_Add-On_Overview-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/pdf/high_availability_add-on_overview/Red_Hat_Enterprise_Linux-7-High_Availability_Add-On_Overview-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/pdf/high_availability_add-on_overview/Red_Hat_Enterprise_Linux-7-High_Availability_Add-On_Overview-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/pdf/high_availability_add-on_overview/Red_Hat_Enterprise_Linux-7-High_Availability_Add-On_Overview-en-US.pdf
https://www.suse.com/products/highavailability
https://docs.microsoft.com/sql/linux/sql-server-linux-shared-disk-cluster-concepts#the-clustering-layer
https://docs.microsoft.com/sql/linux/sql-server-linux-shared-disk-cluster-concepts#the-clustering-layer

399

Looking more at Figure 8-9, Corosync is a framework for communications between

Linux Servers or nodes that Pacemaker uses. In order for Pacemaker components to

make decisions to failover resources across nodes based on a failover condition, a

resource agent is required. A resource agent is similar to a resource DLL used in WSFC,

which is used for health checks for failover, to handle the coordination of SQL Server FCI

on Windows. The SQL Server resource agent for Linux is installed with the mssql-server-

ha package.

Note the sQl server resource agent is now available on github as an open-
source project at https://github.com/Microsoft/mssql-server-ha.
since our resource agent is open-source, other vendors can build hadr solutions
that work with sQl server on linux to provide high-availability functionality as an
alternative to pacemaker. one such example is hpe serviceguard. you can read
more about hpe serviceguard at https://www.hpe.com/us/en/product-
catalog/detail/pip.hpe-serviceguard-for-linux.376220.html#.

A great documentation reference for Always On FCI can be found at https://docs.

microsoft.com/sql/linux/sql-server-linux-ha-basics#pacemaker-for-always-on-

availability-groups-and-failover-cluster-instances-on-linux.

Figure 8-9. FCI software and hardware components for SQL Server on Linux

Chapter 8 high availability and disaster reCovery for sQl server

https://github.com/Microsoft/mssql-server-ha
https://www.hpe.com/us/en/product-catalog/detail/pip.hpe-serviceguard-for-linux.376220.html
https://www.hpe.com/us/en/product-catalog/detail/pip.hpe-serviceguard-for-linux.376220.html
https://docs.microsoft.com/sql/linux/sql-server-linux-ha-basics#pacemaker-for-always-on-availability-groups-and-failover-cluster-instances-on-linux
https://docs.microsoft.com/sql/linux/sql-server-linux-ha-basics#pacemaker-for-always-on-availability-groups-and-failover-cluster-instances-on-linux
https://docs.microsoft.com/sql/linux/sql-server-linux-ha-basics#pacemaker-for-always-on-availability-groups-and-failover-cluster-instances-on-linux

400

There are a few differences for SQL FCI on Linux from Windows you need to know:

• Since SQL Server on Windows supports multiple instances on the

same server (node), a common configuration for customers is to

have multiple SQL FCIs across a series of nodes in a cluster (often

more than two nodes). SQL Server on Linux only supports a single

instance on a server. And Pacemaker only supports 16 nodes in a

cluster. Therefore, you are limited to 16 SQL Server instances in an

FCI across nodes.

• Virtual IP addresses work a bit differently, and DMVs such dm_

os_cluster_nodes and dm_os_cluster_properties do not work on

SQL Server on Linux. You will assign an IP address and name to

the FCI, but it works slightly different than on Windows and our

documentation as I referenced earlier describes how to set this up.

• You need to copy the service master encryption key manually from

the primary node to all nodes, as SQL Server runs on each node as a

local user called mssql.

• SQL Server FCI on Windows supports the tempdb database on a local

disk (such as a fast SSD disk). This is not supported on SQL Server

on Linux. All system databases must be in the /var/opt/mssql/data

directory, which will be on the shared storage for the FCI.

• Pacemaker clusters have a concept called fencing or STONITH (Shoot

the Other Node in the Head). You have to love Linux! This concept is

required for Pacemaker clusters in production and is how the cluster

manages poorly behaved nodes to not affect the entire cluster (hence

the term fencing to fence off a node). Window Failover Clusters do

not have this concept. I’ll mention STONITH again in the section on

Always On Availability Groups.

Note at the time of writing of this book, stonith is not supported with hyper-v
or azure virtual Machine. you can disable this, but pacemaker is not officially
supported without it. Microsoft expects to resolve this issue in the future so stay
tuned to the documentation for updates.

Chapter 8 high availability and disaster reCovery for sQl server

401

 Setup and Configuration
While the setup of SQL Server on Linux simply just beats the experience on Windows,

setting up an FCI with SQL Server on Linux is quite frankly challenging. Windows Clustering

provides graphical wizards and validation tools and processes. The experience on Linux is

all command line driven, involves several different steps, and can be error prone.

The overall outline of the setup process for SQL Server FCI on Linux is as follows:

• Set up and configure your Linux server on at least two servers

(nodes). Designate which ones will be primary and secondaries.

• Install SQL Server on Linux on each node and specific “add-ons” for

HA depending on the Linux distribution.

• Create your user database(s) on the primary node.

• Prepare SQL Server on each node:

• Stop and disable SQL Server on secondary nodes (systemctl has a

disable option).

• Create a new SQL Server login on the primary node and grant

permissions to execute the system procedure sp_server_

diagnostics by placing this login in the sysadmin role.

• Stop and disable SQL Server on the primary node.

• Make sure each node has a unique computer name and add all nodes

with IP addresses and names to the /etc/hosts file on all nodes.

• Configure shared storage to be used across all nodes and then move

the databases from the primary node, including system databases, to

shared storage. Shared storage for production scenarios is typically

on a separate Linux server or external storage device. SQL Server

supports the following shared storage protocols:

• iSCSI: https://docs.microsoft.com/sql/linux/sql-server-

linux-shared-disk-cluster-configure-iscsi.

• NFS: https://docs.microsoft.com/sql/linux/sql-server-

linux-shared-disk-cluster-configure-nfs.

• SMB: https://docs.microsoft.com/sql/linux/sql-server-

linux-shared-disk-cluster-configure-smb.

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/linux/sql-server-linux-shared-disk-cluster-configure-iscsi
https://docs.microsoft.com/sql/linux/sql-server-linux-shared-disk-cluster-configure-iscsi
https://docs.microsoft.com/sql/linux/sql-server-linux-shared-disk-cluster-configure-nfs
https://docs.microsoft.com/sql/linux/sql-server-linux-shared-disk-cluster-configure-nfs
https://docs.microsoft.com/sql/linux/sql-server-linux-shared-disk-cluster-configure-smb
https://docs.microsoft.com/sql/linux/sql-server-linux-shared-disk-cluster-configure-smb

402

• Install and configure Pacemaker on all nodes. This will include

providing Pacemaker with information about the SQL Server login

you created earlier.

• Install the SQL Server resource agent on all nodes. The SQL Server

resource agent utilizes the system procedure sp_server_diagnostics

for failover decisions. I’ll discus sp_server_diagnostics in the next

section.

• Create FCI resources in a resource group for storage (your shared

storage) and networking. As part of this, you will be creating an FCI IP

address that can be used to connect to SQL Server as part of the FCI

instead of the node IP address.

• Create the FCI resource using the resource group.

• Bring the FCI online.

• You should now be able to connect to the FCI IP address for SQL

Server. You can manually failover SQL Server to ensure connectivity

works. Pacemaker provides the functionality to manually failover, as

seen in our documentation at https://docs.microsoft.com/sql/

linux/sql-server-linux-shared-disk-cluster-operate.

Not much of an outline; more like a book, right? Each step is carefully documented at

https://docs.microsoft.com/sql/linux/sql-server-linux-shared-disk-cluster-

configure. SQL Server on Windows Failover Clustering has almost as many steps, but

there are tools to make this faster and help validate the details.

The bottom line is back to the theme I mentioned at the top of this section. SQL

Server FCI on Linux is robust and provides a great instance high-availability solution on

Linux just as it does on Windows. It just takes a bit more careful preparation and time to

set up and configure.

Note it is possible to add or remove a node from the sQl server fCi after you
have installed and configured. see our documentation on the steps for rhel at
https://docs.microsoft.com/sql/linux/sql-server-linux-shared-
disk-cluster-red-hat-7-operate#add-a-node-to-a-cluster.

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/linux/sql-server-linux-shared-disk-cluster-operate
https://docs.microsoft.com/sql/linux/sql-server-linux-shared-disk-cluster-operate
https://docs.microsoft.com/sql/linux/sql-server-linux-shared-disk-cluster-configure
https://docs.microsoft.com/sql/linux/sql-server-linux-shared-disk-cluster-configure
https://docs.microsoft.com/sql/linux/sql-server-linux-shared-disk-cluster-red-hat-7-operate#add-a-node-to-a-cluster
https://docs.microsoft.com/sql/linux/sql-server-linux-shared-disk-cluster-red-hat-7-operate#add-a-node-to-a-cluster

403

 sp_server_diagnostics and failover
One of the main purposes for an SQL FCI is to keep the SQL Server instance as highly

available as possible should a problem occur with the SQL Server instance or node

hosting the instance. So how does Pacemaker (or WSFC for that matter) understand

when a failover should occur, specific to SQL Server? The concept of a resource agent as I

described earlier in this chapter defines that protocol.

And the SQL Server resource agent (much like the resource DLL in Windows) uses

the system stored procedure sp_server_diagnostics to make this happen. This system

procedure is another example of a special system stored procedure, because the source

code for this stored procedure is not T-SQL but C++ code baked into the engine. The

beauty of using this system stored procedure is that the SQL Server engine can include

health checks about the engine itself (not just whether the instance is running) to help

make decisions for a failover. sp_server_diagnostics is one of the coolest features we

have produced for the engine. For example, sp_server_diagnostics produces health state

information that is available to users even if Always On technologies are not used. I’ll

discuss how in Chapter 9.

The architecture for how sp_server_diagnostics works in conjunction with a failover

is called the flexible failover policy. The concept is that there are levels of failover

decision from the highest (Level 1 = SQL Server is “down”) to the lowest (Level 5 = “query

processing” is not healthy but SQL may be running). A complete list of the failover

policies and how to configure them can be found at https://docs.microsoft.com/sql/

sql-server/failover-clusters/windows/failover-policy-for-failover-cluster-

instances. sp_server_diagnostics produces information about the health of SQL Server

that line up with these policies. The details of health information provided by sp_

server_diagnostics are documented at https://docs.microsoft.com/sql/relational-

databases/system-stored-procedures/sp-server-diagnostics-transact-sql.

Since SQL Server on Linux is not as tightly coupled with Pacemaker as it is on

Windows with WSFC; not all policies apply and the method in which you configure them

is different.

Let me explain each of these policies (these policies will also apply to Always On

Availability Groups). The lower the policy number, the less granular the check is to

decide to failover the cluster. Each policy as you go to higher numbers is inclusive of all

the policies before it.

1 – SERVER_UNRESPONSIVE_OR_DOWN: Fail if the SQL Server instance is

unresponsive (unable to establish a connection) or down (the process is not running)

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/sql-server/failover-clusters/windows/failover-policy-for-failover-cluster-instances
https://docs.microsoft.com/sql/sql-server/failover-clusters/windows/failover-policy-for-failover-cluster-instances
https://docs.microsoft.com/sql/sql-server/failover-clusters/windows/failover-policy-for-failover-cluster-instances
https://docs.microsoft.com/sql/relational-databases/system-stored-procedures/sp-server-diagnostics-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-stored-procedures/sp-server-diagnostics-transact-sql

404

3 - Policy 1 + SERVER_CRITICAL_ERROR: Fail if sp_server_diagnostics detects

a critical system error. This is the default policy. A critical system error includes

conditions like long-running spinlock contention problems and non-yielding scheduler

issues.

4 – Policy 1, 3, + SERVER_MODERATE_ERROR: Fail if sp_server_diagnostics detects

a resource error. Resource errors are conditions like extremely low available SQL Server

memory (memory managed by the engine).

5 – Policy 1,3,4 + SERVER_ANY_QUALIFIED_ERROR: Fail if sp_server_diagnostics

detects a query_processing error. A query_processing error is a condition that prevents

basic query processing like an exhaustion of worker threads.

Again each policy builds on the other, so policy 5 includes all the sp_server_

diagnostics errors. Notice, there is no policy 2 listed. Policy 2 only exists in the Windows

architecture as it relates to how a resource DLL works. For many users, the default

policy=3 is fine. I don’t see many reasons to use policy 1 unless for some scenario where

policy 3 is causing an undesirable failover occurrence. Using policy 4 or 5 is worth

investigating because there are situations where SQL Server is running and will not

failover with the default policy but there is a pretty serious problem with running the

application (such as worker thread exhaustion), so the appearance that SQL Server is

“down” occurs. In these situations, a failover might free up the problem and make SQL

Server more highly available.

Tip sp_server_diagnostics maintains a log (an extended events file) of health
information that can be useful to investigate the cause of a failover (or lack of a
failover). this file is kept in the “log” directory with the errorlog files (default is /
var/opt/mssql/log).

The flexible failover policies with Pacemaker are called monitoring policies and are

configured with a program called pcs (pcs is used in the steps I outlined to set up and

configure an SQL FCI). As I stated, the default policy is 3. Here is an example command

to configure the policy to 1:

pcs resource update <fci_resource_name> meta monitor_policy=1

When a decision to failover is decided by Pacemaker, it uses a concept called quorum

to decide if the cluster is healthy and which node to failover to (unless you manually fail

it over to a specific node). The idea is that more than half of the nodes must be healthy

Chapter 8 high availability and disaster reCovery for sQl server

405

to keep the cluster alive (although there is a way to keep a cluster alive with only two

nodes). You can read more about Pacemaker and quorum at https://access.redhat.

com/documentation/en-us/red_hat_enterprise_linux/7/html/high_availability_

add-on_overview/ch-operation-haao. (You may need a Red Hat subscription to read

this documentation).

As part of the concept of quorum, Pacemaker (using Corosync) has a method to

ensure that nodes don’t access the same shared resource, to avoid data corruption

(although this would never be a problem with SQL Server database and log files, since

SQL Server uses advisory locking in the Host Extension so two SQL Server processes

cannot open the same database and/or log files at the same time. You can read more

about advisory locking at https://www.quora.com/Linux-What-is-the-difference-

between-advisory-lock-and-mandatory-lock). As I mentioned earlier in this chapter,

the method to keep the cluster healthy is called fencing. And the component to

implement fencing is called STONITH. STONITH can remove a node from the cluster

to ensure two nodes don’t access the same shared resource, or stop the entire cluster

if that cannot be guaranteed. It is possible to configure STONITH with power supplies

to literally shut down a computer. If you are used to WSFC, you should read up on how

quorum and fencing work with Pacemaker on Linux.

The following are other good resources I found to understand Pacemaker and

Corosync further:

• http://www.juliosblog.com/pacemaker-101-2/

• https://access.redhat.com/documentation/en-us/red_hat_

enterprise_linux/7/html/high_availability_add-on_overview/

s1-pacemakeroverview-haao

 Always On Availability Groups
While Always On FCI is a great technology to protect the high availability of the SQL

Server instance, there are two shortcomings to this approach:

• Storage becomes a central point of failover, so you need to have another

solution (perhaps hardware) to protect from data storage outages.

• Other SQL Server instances in the cluster cannot actively be used,

since only one SQL Server can access databases on the shared

storage at one time.

Chapter 8 high availability and disaster reCovery for sQl server

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/high_availability_add-on_overview/ch-operation-haao
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/high_availability_add-on_overview/ch-operation-haao
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/high_availability_add-on_overview/ch-operation-haao
https://www.quora.com/Linux-What-is-the-difference-between-advisory-lock-and-mandatory-lock
https://www.quora.com/Linux-What-is-the-difference-between-advisory-lock-and-mandatory-lock
http://www.juliosblog.com/pacemaker-101-2/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/high_availability_add-on_overview/s1-pacemakeroverview-haao
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/high_availability_add-on_overview/s1-pacemakeroverview-haao
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/high_availability_add-on_overview/s1-pacemakeroverview-haao

406

SQL Server offers another feature as an alternative called Always On Availability

Groups. I’ll often use the term AG(s) for Always On Availability Groups for the rest of the

chapter. An AG provides fault tolerance and high availability at the database level and

provides for greater access to data. In this section of the chapter, I’ll discuss how the

technology works and provide you a detailed walkthrough on how to setup, configure,

and test an AG.

I’ll also discuss other aspects to AGs, which include database health detection,

performance considerations, how data can be read on other nodes, automatic repair

capabilities, and new functionality that does not require cluster software. For those of

you who have used SQL Server AGs on Windows, the core functionality is the same, but

the configuration and setup and a few behavior differences exist on Linux. I’ll do my best

to distinguish those during the rest of the chapter.

 How it Works
The journey for AGs started back in SQL Server 2005 with a feature called Database

Mirroring. In SQL Server 2012 we made some fairly major revisions to that original

architecture and launched the Always On family, including FCI and Availability Groups

(we had FCI before but did not call it Always On).

Like Database Mirroring, an AG does not require a shared storage architecture and

instead tracks changes in the transaction log and transmit these changes to other SQL

Server instances.

An AG consists of one or more databases that are replicated to one more of SQL

Servers and is a unit of failover. The original SQL Server where transactions begin is

called a primary replica. A SQL Server receiving changes is called a secondary replica.

You will see that for SQL Server on Linux, a third type of replica is required when

clustering is introduced with the AG, called a configuration replica.

As it turns out all the software components to support an AG are in SQL Server itself.

In order to support the concept of an automatic failover with an AG, clustering software

comes into play. For Windows, that software is WSFC. For SQL Server on Linux, similar

to an FCI as described in the previous section, the Pacemaker software stack is used.

Our documentation has a very good visualization to show you how the various

pieces of SQL Server support the fundamentals of replicas in an AG. Consider the

diagram in Figure 8-10.

Chapter 8 high availability and disaster reCovery for sQl server

407

As you can see in this diagram, SQL Server will capture transaction log changes on a

Primary and transmit them over a separate communication channel (called a database

mirroring endpoint) to the Secondary replica. On the Secondary replica, the changes

are first hardened to the local transaction log and then separately any necessary redo

recovery operations are applied. And one of the great advantages of an AG because

this is not a shared storage solution, is that connections can be made to the secondary

replica and data can be read after redo recovery is applied to the changes. You can read

more about this architecture and detailed data flow in our documentation at https://

docs.microsoft.com/sql/database-engine/availability-groups/windows/monitor-

performance-for-always-on-availability-groups#BKMK_DATA_SYNC_PROCESS.

 Synchronization Options

AGs offer two synchronization options, also called availability modes, for secondary

replicas:

Synchronous (sync): (AVAILABILITY_MODE = SYNCHRONOUS_

COMMIT) a transaction on the primary replica wait for the

transaction to commit on the primary and for log records

associated with the transaction to be hardened on the secondary

replica

Figure 8-10. The architecture and data synchronization flow of an Always On
Availability Group

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/database-engine/availability-groups/windows/monitor-performance-for-always-on-availability-groups#BKMK_DATA_SYNC_PROCESS
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/monitor-performance-for-always-on-availability-groups#BKMK_DATA_SYNC_PROCESS
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/monitor-performance-for-always-on-availability-groups#BKMK_DATA_SYNC_PROCESS

408

Asynchronous (async): (AVAILABILITY_MODE =

ASYNCHRONOUS_COMMIT) transaction commits on the

primary replica wait for the transaction to commit on the primary

but do not wait for transactions to be hardened on the secondary

replica

When you create the AG, you choose the specific availability mode for a specific

secondary. This means an AG can have multiple replicas and multiple combinations of

replicas, both sync and async. Your choice of an availability mode all depends on your

RPO needs. With a sync replica, you are aiming for almost no data loss, since a replica

will be synchronized with changes made in the transaction log of the primary replica.

The cost of using sync replication is the time it takes to transmit log records changes

and harden them on the transaction log of the secondary. Async replicas are best for

applications that don’t require the most up to the minute changes but still want to read

data on a secondary replica that is close to the primary. Another use for async replicas is

for disaster recovery scenarios where the replica is on a network with latencies that won’t

make it a candidate for a sync replica.

Closely associated with the availability mode of an AG is the failover mode. I’ll

discuss this in the next section of the chapter.

 Clustering and Availability Groups

AGs by themselves provide the mechanism to keep replicas up to date with changes

from the primary. However, to make the AG highly available, intelligence is needed to

decide if the primary is not available to switch to a secondary replica. This intelligence

is provided by clustering software much like with an FCI. And like a FCI, for SQL Server

on Linux, the Pacemaker software stack is used to provide clustering failover capabilities.

When you create an AG and specify a sync replica, you can also choose the option

FAILOVER_MODE=AUTOMATIC. When you choose this option, SQL Server together

with Pacemaker can decide to failover to a secondary replica, provided that replica

is completely synchronized with all changes currently made on the primary replica

transaction log. In this case, synchronized means that all committed transactions on the

primary are hardened on the transaction log of the secondary. Then, if a failover needs

to occur, recovery is run on the secondary to allow all transactions to be consistent, so

the secondary can now server as a primary. When clustering software combined with

the SQL Server Resource Agent decides to failover to the secondary replica, this replica

becomes the new primary.

Chapter 8 high availability and disaster reCovery for sQl server

409

Prior to SQL Server 2017, if a secondary sync replica went offline or it was not

synchronized with the primary, SQL Server would allow transactions to continue on

the primary, but SQL Server would not allow an automatic failover to occur because the

secondary replica may not be in sync. The DMV sys.dm_hadr_database_replica_states

can be used to determine the current synchronization status of the AG, as documented

at https://docs.microsoft.com/sql/relational-databases/system-dynamic-

management-views/sys-dm-hadr-database-replica-states-transact-sql.

SQL Server on Linux does not possess the same integration as it does with Windows

Failover Clustering, so the policies and logic to ensure automatic failover can be a bit

different. Starting with SQL Server 2017 CU1, SQL Server introduces a new replica type

called a configuration replica, which is used to help make decisions to provide high

availability and data protection when only a primary and only one secondary sync

replica are configured. It is important to know that the configuration replica can be an

SQL Server Express edition, which is a free license of SQL Server. In addition, SQL Server

2017 introduced a new AG option called REQUIRED_SYNCHRONIZED_SECONDARIES_

TO_COMMIT. For SQL Server on Linux, this option is established when you configure

the Pacemaker cluster for the AG. It determines how many replicas are required to

ensure for proper data protection and high availability. For SQL Server on Linux, this

setting is automatically configured when the cluster is set up for the AG but can be

overridden using Pacemaker commands.

Note this same option exists for sQl server 2017 on Windows for ags, but the
default is 0, which is the behavior prior to sQl server 2017 as i described earlier.
this behavior means that transactions on the primary replica will continue even
if configured secondary replicas are not available, but automatic failover is not
allowed. you can set this to a value > 0 to force transactions on the primary to wait
until one or more secondary replicas are available and synchronized.

You can read more about how to configure this option or the various configuration

combinations required for high availability and data protection at https://docs.

microsoft.com/sql/linux/sql-server-linux-availability-group-ha. A very

common setup for many users will be a primary replica, a single sync replica, and

a configuration replica (and possibly several async replicas that do not factor into

the equation for requirements for high availability and data protection). This can

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-hadr-database-replica-states-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-hadr-database-replica-states-transact-sql
https://docs.microsoft.com/sql/linux/sql-server-linux-availability-group-ha
https://docs.microsoft.com/sql/linux/sql-server-linux-availability-group-ha

410

provide a good cost-effective option for high availability and data protection. However,

the behavior by default is much like prior to SQL Server 2017 if the secondary goes

offline: the primary continues but automatic failover is not possible. If you change the

REQUIRED_SYNCHRONIZED_SECONDARIES_TO_COMMIT to 1 in this configuration,

it provides the best data protection option but not maximum high availability. In this

scenario, transactions on the primary will wait until the secondary is synchronized.

Furthermore, in a case where an automatic failover occurs to the secondary, the new

primary must wait until the new secondary is online and synchronized. A more highly

available data protection scheme would be a single primary replica and two sync

secondary replicas.

Cluster decisions are done similar to FCI using sp_server_diagnostics and the

flexible failover policies I described in an earlier section of the chapter. I’ll discuss one

additional failover logic option called database health detection later in this chapter.

My colleague in the engineering team, Sourabh Agarwal, gave me a few other tips on

AGs for SQL Server on Linux that are different than SQL Server on Windows:

• You cannot set up an AG on a SQL Server instance with FCI installed

as you can on Windows. This is an option we may look to support in

the future, but it is not supported for SQL Server 2017.

• Due to the method in which STONITH and fencing work, you should

not include an async replica in the Pacemaker cluster. I will show you

later in this chapter how to add your AG replicas into the cluster. Do

not add an async replica into the cluster, as the cluster will face issues

when STONITH is enabled. This will not affect cluster operations,

since you cannot automatically failover to an async replica.

• Most operations for the cluster cannot be done via T-SQL, such as

a manual failover operation. You must use Pacemaker commands,

and I will show you how later in this chapter. The one exception

to this statement is a forced failover. You will use T-SQL for this

situation, which is described in our documentation at https://docs.

microsoft.com/sql/linux/sql-server-linux-availability-

group-failover-ha.

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/linux/sql-server-linux-availability-group-failover-ha
https://docs.microsoft.com/sql/linux/sql-server-linux-availability-group-failover-ha
https://docs.microsoft.com/sql/linux/sql-server-linux-availability-group-failover-ha

411

 Distributed Availability Groups

A unique concept provided by SQL Server AGs is a distributed availability group. A

distributed availability group is a special type of availability group that spans two

availability groups. Consider the diagram in Figure 8-11, which can be found in the

Microsoft documentation at https://docs.microsoft.com/sql/database-engine/

availability-groups/windows/distributed-availability-groups#understand-

distributed-availability-groups.

Figure 8-11. A distributed availability group for SQL Server on Linux

The concept is that both the secondary replica for availability group AG1 and

the primary replica for availability group AG2 receive updates from the AG1 primary

replica. Distributed availability groups provide AG functionality for multisite remote

configurations such as organizations with data centers in remote locations. Check

out various scenarios to use distributed availability groups in our documentation at

https://docs.microsoft.com/sql/database-engine/availability-groups/windows/

distributed-availability-groups#distributed-availability-group-usage-

scenarios.

 Setup and Configuration
The steps to set up an availability group for high availability and data protection are

at a high level the following (follow along in the documentation at https://docs.

microsoft.com/sql/linux/sql-server-linux-availability-group-configure-ha).

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/database-engine/availability-groups/windows/distributed-availability-groups#understand-distributed-availability-groups
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/distributed-availability-groups#understand-distributed-availability-groups
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/distributed-availability-groups#understand-distributed-availability-groups
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/distributed-availability-groups#distributed-availability-group-usage-scenarios
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/distributed-availability-groups#distributed-availability-group-usage-scenarios
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/distributed-availability-groups#distributed-availability-group-usage-scenarios
https://docs.microsoft.com/sql/linux/sql-server-linux-availability-group-configure-ha
https://docs.microsoft.com/sql/linux/sql-server-linux-availability-group-configure-ha

412

 1. Install Linux and SQL Server on Linux on each node that

participates in the AG set of replicas (a node that participates

in the AG). The minimum number on Linux replicas to ensure

data protection and high availability is three: a primary replica, a

secondary replica, and a configuration replica.

 2. Create and Configure the AG across these SQL Servers replicas.

 3. Create the cluster using Pacemaker.

 4. Add the AG as a resource to the cluster.

There are several choices based on the architecture of replicas for your environment.

The minimum number of replicas to ensure high availability is three, but again one of

these can be a configuration replica.

Let’s look in more detail at how this works and looks using an example. I should be

honest up front that there are many steps to follow to complete this example.

Note to make these steps simple, run all t-sQl statements in this example
connected as sa or another sysadmin login. you can use your favorite sQl server
tool to run the statements. i used sqlcmd on the linux server.

 Install Linux and SQL Server

 1. I installed three VMs on Azure with RHEL 7.5: bwsqllinuxag1,

bwsqllinuxag2, and sqllinuxcfgag (I made this VM only a two

CPU to save costs). I put all of these VMs in the Azure Resource

Group bwsqllinuxags, so they are automatically part of the same

virtual network (vnet). I’ll call each of these servers nodes and

replicas. bwsqllinuxag1 is the primary replica, bwsqllinuxag2 is the

secondary replica, and sqllinuxcfgag is the configuration replica.

• I opened up port 22 on all of these so I could use ssh clients from

my laptop.

• Run sudo yum -y update to get all packages up to date.

Chapter 8 high availability and disaster reCovery for sQl server

413

• Configure the hosts file on each server (Note: be sure the Linux

Server has a valid hostname in /etc/hostname other than

localhost) to contain all the IP addresses and hostnames of each

server. For my Azure Virtual Machines, this is the Private IP of

each VM, since they are all on the same virtual network in Azure.

My /etc/hosts file looks like this on each server, as in Figure 8-12.

Figure 8-12. Example /etc/hosts file

 2. Install SQL Server. Since I’ve used RHEL for my servers, I’ve

followed the instructions as I documented in Chapter 2. You

can also find these in the documentation at https://docs.

microsoft.com/sql/linux/quickstart-install-connect-red-

hat. Be sure to install SQL Server, open up firewall ports, and

install the command line tools for Linux. Both bwsqllinuxag1

and bwsqllinuxag2 are running the Enterprise edition, while

sqllinuxcfgag is using SQL Express Edition.

 Create and Configure the AG across these SQL Servers Replicas

Note it is possible to perform some of steps in this section using sQl server
Management studio (ssMs). learn more at https://docs.microsoft.com/
sql/linux/sql-server-linux-create-availability-group#create-
the-availability-group. i’m going to show you the complete set of steps
using all bash shell scripts and t-sQl

 1. Enable the AG for SQL Server on Linux on each node with the

following command run from the bash shell, as found in the

example script enableag.sh (remember, you must execute chmod

u+x to execute an .sh script):

sudo /opt/mssql/bin/mssql-conf set hadr.hadrenabled 1

sudo systemctl restart mssql-server

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/linux/quickstart-install-connect-red-hat
https://docs.microsoft.com/sql/linux/quickstart-install-connect-red-hat
https://docs.microsoft.com/sql/linux/quickstart-install-connect-red-hat
https://docs.microsoft.com/sql/linux/sql-server-linux-create-availability-group#create-the-availability-group
https://docs.microsoft.com/sql/linux/sql-server-linux-create-availability-group#create-the-availability-group
https://docs.microsoft.com/sql/linux/sql-server-linux-create-availability-group#create-the-availability-group

414

 2. An extended events session exists to track AG states. Start this

session on each node using the following T-SQL statement, as

found in the example script enableagxe.sql:

ALTER EVENT SESSION AlwaysOn_health ON SERVER WITH (STARTUP_

STATE=ON);

GO

 3. Create login and users for the database mirroring endpoint on
each replica using the following T-SQL statements as found in

dbmloginuser.sql:

CREATE LOGIN dbm_login WITH PASSWORD = 'Sql2017isfast'

GO

CREATE USER dbm_user FOR LOGIN dbm_login

GO

 4. In Chapter 7 you learned about master keys and certificates in

SQL Server and that knowledge is about to pay off. As I said at the

top of this section, AGs communicate over database mirroring

endpoints. Authentication over these endpoints is achieved using

certificates in SQL Server. So the first step is to create a certificate

on the primary replica (in my scenario that is sqllinuxag1) using

the following T-SQL statement, as found in the example script

primaryagcert.sql (substitute in your own password):

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Sql2017isfast'

GO

CREATE CERTIFICATE dbm_certificate WITH SUBJECT = 'dbm'

GO

BACKUP CERTIFICATE dbm_certificate

 TO FILE = '/var/opt/mssql/data/dbm_certificate.cer'

 WITH PRIVATE KEY (

 FILE = '/var/opt/mssql/data/dbm_certificate.pvk',

 ENCRYPTION BY PASSWORD = 'Sql2017isfast'

)

GO

Chapter 8 high availability and disaster reCovery for sQl server

415

 5. When this is successful, it will not return any results. Now you

have a certificate (dbm_certificate.cer) file and a private key

(dbm_certificate.pvk) file created on the primary node replica.

You will need to copy these files into the same locations (/var/

opt/mssql/data) on all nodes. Using the same certificate protected

by the same key allows all nodes to authenticate with each other

over the communication endpoint. First, you will copy the files

into the home directory of the Linux user created for the Azure

VM like the following commands, as found in the example script

copycertkeys.sh:

sudo scp /var/opt/mssql/data/dbm_certificate.cer thewandog@

bwsqllinuxag2:

sudo scp /var/opt/mssql/data/dbm_certificate.pvk thewandog@

bwsqllinuxag2:

You will be prompted for passwords to copy these files. This example copies the files

from the primary replica to the secondary replica. Do the same thing but replace the
target server with the name of the host for the configuration replica. Now these files

should exist on the other replica nodes in the home directory.

 6. These files need to now be moved to the /var/opt/mssql/data

directory on each replica node and have permissions changed

to mssql:mssql like the following shell script, as found in the

example movecertkeys.sh. This script should be run from the
bash shell on the secondary and configuration replica nodes.

sudo mv dbm_certificate.cer /var/opt/mssql/data

sudo chown mssql:mssql /var/opt/mssql/data/dbm_certificate.cer

sudo mv dbm_certificate.pvk /var/opt/mssql/data

sudo chown mssql:mssql /var/opt/mssql/data/dbm_certificate.pvk

Chapter 8 high availability and disaster reCovery for sQl server

416

 7. Now you will use the following T-SQL statements as found in

secondaryagcert.sql to create the keys and certificates on the

secondary and configuration nodes referencing these files

copied to each node. Notice, for these statements I create the

certificate from the files copied from the primary replica but use

the DECRYPTION keyword to decrypt the certificate to be used by

SQL Server.

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Sql2017isfast'

GO

CREATE CERTIFICATE dbm_certificate

 AUTHORIZATION dbm_user

 FROM FILE = '/var/opt/mssql/data/dbm_certificate.cer'

 WITH PRIVATE KEY (

 FILE = '/var/opt/mssql/data/dbm_certificate.pvk',

 DECRYPTION BY PASSWORD = 'Sql2017isfast'

)

GO

 8. Now you need to create an endpoint for communication. AGs

communicate on a different port than the standard SQL Server

port for logins and T-SQL queries. As I said in an earlier step,

this endpoint is called a database mirroring endpoint. Use the

following T-SQL statements as found in endpoint.sql on the

primary and secondary replicas. Because we are using SQL Server

Express for the configuration replica, we will need a slightly

different version, which I’ll show you in the next step. You don’t

have to use port 5022, but it is a common port to use for database

mirroring endpoints.

CREATE ENDPOINT [Hadr_endpoint]

 AS TCP (LISTENER_IP = (0.0.0.0), LISTENER_PORT = 5022)

 FOR DATA_MIRRORING (

 ROLE = ALL,

 AUTHENTICATION = CERTIFICATE dbm_certificate,

 ENCRYPTION = REQUIRED ALGORITHM AES

)

Chapter 8 high availability and disaster reCovery for sQl server

417

GO

ALTER ENDPOINT [Hadr_endpoint] STATE = STARTED

GO

GRANT CONNECT ON ENDPOINT::[Hadr_endpoint] TO [dbm_login]

GO

 9. If the configuration replica is using the SQL Server Express

edition, then the ROLE value can only be a WITNESS. Use

the following T-SQL statement as found in the example script

cfgendpoint.sql:

CREATE ENDPOINT [Hadr_endpoint]

 AS TCP (LISTENER_IP = (0.0.0.0), LISTENER_PORT = 5022)

 FOR DATA_MIRRORING (

 ROLE = WITNESS,

 AUTHENTICATION = CERTIFICATE dbm_certificate,

 ENCRYPTION = REQUIRED ALGORITHM AES

)

GO

ALTER ENDPOINT [Hadr_endpoint] STATE = STARTED

GO

GRANT CONNECT ON ENDPOINT::[Hadr_endpoint] TO [dbm_login]

GO

 10. A subtle comment in our documentation states the port specified

for the database mirroring connection needs to be open in the

firewall on Linux. I ran the following command to see what ports

were open with the firewall on each of my nodes:

sudo firewall-cmd --list-ports

The only port listed was 1433, which is the main port for SQL Server connections and

queries. So I ran the following commands from the bash shell as found in the example

script dbmirrorfirewall.sh (make sure the shell script is marked for execute with chmod

u+x dbmirrorfirewall.sh):

sudo firewall-cmd --zone=public --add-port=5022/tcp --permanent

sudo firewall-cmd --reload

Chapter 8 high availability and disaster reCovery for sQl server

418

 11. Now it’s time to create the availability group using the following

T-SQL statements found in the example script createag.sql. This

T-SQL script should be run on the primary replica (which in my

example is bwsqllinuxag1):

CREATE AVAILABILITY GROUP [footballag]

 WITH (CLUSTER_TYPE = EXTERNAL)

 FOR REPLICA ON

 N'bwsqllinuxag1' WITH (

 ENDPOINT_URL = N'tcp://bwsqllinuxag1:5022',

 AVAILABILITY_MODE = SYNCHRONOUS_COMMIT,

 FAILOVER_MODE = EXTERNAL,

 SEEDING_MODE = AUTOMATIC,

 SECONDARY_ROLE (ALLOW_CONNECTIONS = ALL)

),

 N'bwsqllinuxag2' WITH (

 ENDPOINT_URL = N'tcp://bwsqllinuxag2:5022',

 AVAILABILITY_MODE = SYNCHRONOUS_COMMIT,

 FAILOVER_MODE = EXTERNAL,

 SEEDING_MODE = AUTOMATIC,

 SECONDARY_ROLE (ALLOW_CONNECTIONS = ALL)

),

 N'sqllinuxcfgag' WITH (

 ENDPOINT_URL = N'tcp://sqllinuxcfgag:5022',

 AVAILABILITY_MODE = CONFIGURATION_ONLY

)

GO

ALTER AVAILABILITY GROUP [footballag] GRANT CREATE ANY DATABASE

GO

Once you run this command, the availability group should appear in the sys.
availability_groups and sys.availability_replicas catalog views on the primary replica.

One problem you may notice is that the primary replica immediately starts connecting

to the secondary replicas even when they are not ready to accept these connections.

Therefore, you might see messages like the following in the ERRORLOG on the primary

replica:

Chapter 8 high availability and disaster reCovery for sQl server

419

A connection timeout has occurred while attempting to establish a

connection to availability replica 'bwsqllinuxag2' with id [D36B7503-2EFB-

467C-AD8A-4CE2B9E63958]. Either a networking or firewall issue exists, or

the endpoint address provided for the replica is not the database mirroring

endpoint of the host server instance.

A connection timeout has occurred while attempting to establish a

connection to availability replica 'sqllinuxcfgag' with id [AC5F02C0-A481-

4760-BA44-BF7E9FF83F9D]. Either a networking or firewall issue exists, or

the endpoint address provided for the replica is not the database mirroring

endpoint of the host server instance.

This does not mean the CREATE AVAILABILITY GROUP failed. It just means the

secondaries are not set up yet. Follow the next step and you will see how.

 12. Setup the availability groups on the secondary and configuration

replica by running the following T-SQL statements, as found in

joinag.sql on both the secondary and configuration replicas:

Note the grant statement is not allowed on the configuration replica, so only
run the alter availability groUp statement on a configuration replica.

ALTER AVAILABILITY GROUP [footballag] JOIN WITH (CLUSTER_TYPE = EXTERNAL)

GO

-- Do not run this statement on the configuration replica

ALTER AVAILABILITY GROUP [footballag] GRANT CREATE ANY DATABASE

GO

When these statements are executed, the primary, secondary, and configuration

replica are “connected.” You will see these statements in the ERRORLOG on the primary

replica:

A connection for availability group 'footballag' from availability replica

'bwsqllinuxag1' with id [B8438077-BA82-4AD1-A5B6-6601ECA82C9E] to

'bwsqllinuxag2' with id [D36B7503-2EFB-467C-AD8A-4CE2B9E63958] has been

successfully established. This is an informational message only. No user

action is required.

Chapter 8 high availability and disaster reCovery for sQl server

420

A connection for availability group 'footballag' from availability

replica 'bwsqllinuxag1' with id [B8438077-BA82-4AD1-A5B6-6601ECA82C9E]

to 'sqllinuxcfgag' with id [AC5F02C0-A481-4760-BA44-BF7E9FF83F9D] has been

successfully established. This is an informational message only. No user

action is required.

 13. You are almost there! Remember the definition of an availability

group is one or more databases that are replicated to another

node and a unit of failover. So far, all that has been created is three

SQL Server instances that know how to communicate with each

other. So the first step is to choose a database(s) for the AG and

create a full database backup. Run the following T-SQL statements

connected to the primary replica, as found in the example dbag.sql:

CREATE DATABASE [cowboysrule]

GO

ALTER DATABASE [cowboysrule] SET RECOVERY FULL

GO

BACKUP DATABASE [cowboysrule] TO DISK = N'/var/opt/mssql/data/

cowboysrule.bak'

GO

 14. Now add the database to the availability group by running the

following T-SQL statement on the primary replica , as found in

the example script dbjoinag.sql:

ALTER AVAILABILITY GROUP [footballag] ADD DATABASE [cowboysrule]

GO

 15. Because we created the availability group with an option called

SEEDING_MODE = AUTOMATIC, SQL Server will automatically

create the new database and copy over any data to secondary

replicas. You can see this by running the following T-SQL

statement on the secondary replica, as found in the example script

listdbs.sql:

SELECT name FROM sys.databases

GO

Chapter 8 high availability and disaster reCovery for sQl server

421

If all works well, cowboysrule will show up in this list. And because we used the

option SECONDARY_ROLE previously when creating the availability group, we can even

read from the cowboysrule database on the secondary replica.

Congratulations! You have just created and set up an Always On Availability Group

for SQL Server on Linux. There is only one thing left to show you. How does a failover

work in this situation? If you dare, go to the next sections to set up a Pacemaker cluster

and add the AG to the cluster.

 Create the Cluster Using Pacemaker

Note to go further with this example you must have a subscription with red hat,
because the high availability add-on is required to allow pacemaker to work in
production.

Follow along with the steps I’ll show to create a Pacemaker cluster for RHEL in our

documentation at https://docs.microsoft.com/sql/linux/sql-server-linux-

availability-group-cluster-rhel.

Note as stated in our documentation, production pacemaker clusters requires
stonith, but in these examples i will disable stonith. that is because it is not
currently supported in azure virtual Machine (but the work to make this supported
is happening as i write this chapter!)

 1. On each node, run the following command from the bash shell and

put in your subscription user name and password (it is possible that

for your own Linux Server you have already done this):

sudo subscription-manager register

 2. Your subscription that includes the High Availability Add-On has

a poolid associated with it. You can use the following command

from the bash shell to find that poolid. The name of the feature is

“Red Hat Enterprise Linux High Availability (for RHEL Server)”:

sudo subscription-manager list --available

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/linux/sql-server-linux-availability-group-cluster-rhel
https://docs.microsoft.com/sql/linux/sql-server-linux-availability-group-cluster-rhel

422

 3. Using the poolid, run the following command from the bash

shell on each node to attach the right subscription. For privacy

reasons, I have not listed my poolid, but the command looks like

sudo subscription-manager attach --pool=<pool id>

 4. Now enable the repository so you can install Pacemaker by

running the following command from the bash shell on all nodes:

sudo subscription-manager repos --enable=rhel-ha-for-rhel-7-

server-rpms

 5. Pacemaker requires communication between nodes, so open up

firewall ports with the following command from the bash shell on

all nodes:

sudo firewall-cmd --permanent --add-service=high-availability

sudo firewall-cmd --reload

 6. Now it’s time to install Pacemaker on all nodes using the following

from the bash shell:

sudo yum install pacemaker pcs fence-agents-all resource-agents

 7. Pacemaker installs a user on Linux that requires a password.

Run this command from the bash shell on all nodes to create the

password. Be sure to provide the same password on all nodes:

sudo passwd hacluster

 8. Run the following commands from the bash shell on all nodes to

enable and start Pacemaker services:

sudo systemctl enable pcsd

sudo systemctl start pcsd

sudo systemctl enable pacemaker

Chapter 8 high availability and disaster reCovery for sQl server

423

 9. Now it’s time to create the cluster. Run commands from the bash

shell like the following but put in your nodes you set up earlier in

the example and the password you established for Pacemaker in

Step 7 (your password goes after the -p parameter in the script).

I’ve provided an example script called createcluster.sh you can

use as a template. In this example, footballcluster is the name of

the cluster but you can put in your own name. You only need to

run this on the primary node:

sudo pcs cluster auth bwsqllinuxag1 bwsqllinuxag2 sqllinuxcfgag

-u hacluster -p Sql2017isfast

sudo pcs cluster setup --name footballcluster bwsqllinuxag1

bwsqllinuxag2 sqllinuxcfgag

sudo pcs cluster start –all

The output of running this command should look similar to Figure 8-13.

Figure 8-13. Creating a Pacemaker cluster on Linux

Chapter 8 high availability and disaster reCovery for sQl server

424

Note pcs (pacemaker configuration system) is a command line interface to
interact with the pacemaker cluster. get used to using it, as it will be helpful in
many scenarios and is used in some cases where t-sQl would be used with ags
on sQl server on Windows.

 10. You might remember I told you in earlier chapters that we have

separated the installation process for SQL Server into packages.

Well now it’s time to install another one. This package is the

SQL Server HA Resource Agent, which has been developed to

interact with Pacemaker and something I mentioned earlier in

this chapter. Install this agent on all nodes using the following

command from the bash shell:

sudo yum install mssql-server-ha

 11. As I mentioned earlier, STONITH is not supported today on Azure

Virtual Machine so I’m going to disable this using the following

command from the bash shell on the primary node:

Note the pcs program exists on all clusters, but command execution can be
done on any cluster in the node because pcs commands apply to the entire cluster.

sudo pcs property set stonith-enabled=false

 12. The documentation recommends setting a few pacemaker

properties-related failover timeouts and refresh check intervals.

I recommend you adhere to these recommendations, running

the following commands from the bash shell as found in the

example script clusterproperties.sh on the primary node. These

recommendations and details behind them can be found at

https://docs.microsoft.com/sql/linux/sql-server-linux-

availability-group-cluster-rhel.

sudo pcs property set cluster-recheck-interval=2min

sudo pcs property set start-failure-is-fatal=true

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/linux/sql-server-linux-availability-group-cluster-rhel
https://docs.microsoft.com/sql/linux/sql-server-linux-availability-group-cluster-rhel

425

 Add the AG as a Resource in the Cluster

We have the AG created in SQL Server and the Pacemaker cluster created on all nodes.

To tie the systems together, we need to create a resource in the cluster associated with

the AG.

 1. We need an SQL Server login for the SQL Server resource agent.

Execute the following T-SQL statements on all nodes, found in the

example script pacemakerlogin.sql. This script also grants the

minimum permissions for the agent to execute and access proper

SQL Server resources:

USE [master]

GO

CREATE LOGIN [pacemakerLogin] with PASSWORD= N'Sql2017isfast'

GO

GRANT ALTER, CONTROL, VIEW DEFINITION ON AVAILABILITY

GROUP::footballag TO pacemakerLogin

GO

GRANT VIEW SERVER STATE TO pacemakerLogin

GO

 2. The resource agent needs to know what login and password to use.

Therefore, you need to execute the following commands from the

bash shell on all nodes, as found in the example sqlrgagentlogin.sh:

echo 'pacemakerLogin' >> ~/pacemaker-passwd

echo 'Sql2017isfast' >> ~/pacemaker-passwd

sudo mv ~/pacemaker-passwd /var/opt/mssql/secrets/passwd

sudo chown root:root /var/opt/mssql/secrets/passwd

sudo chmod 400 /var/opt/mssql/secrets/passwd # Only readable

by root

Chapter 8 high availability and disaster reCovery for sQl server

426

 3. Create the AG resource with the cluster using the same name as

the AG in SQL Server by executing the following commands from

the bash shell on any node:

sudo pcs resource create ag_cluster ocf:mssql:ag ag_

name=footballag meta failure-timeout=60s master notify=true

Note the version of the documentation at the time of the writing of this book
uses a failure-timeout of 30s but then earlier in the documentation it says to use
60s, so i made the change here when creating the resource.

 4. SQL Server Availability Groups on Linux have a concept called

a listener, so you can connect to a virtual IP address vs. the IP

address of each node. This concept is integrated with SQL Server

and Windows Server Failover Cluster. We will use a similar

concept on Linux, but the virtual IP is part of the Pacemaker

design. Therefore, choose an IP address similar to your Azure VMs

but not a physical IP address. Then execute a command from the

bash shell like the following:

sudo pcs resource create virtualip ocf:heartbeat:IPaddr2

ip=172.17.0.100

Note sQl server ags support the concept of a listener. a listener abstracts a
client application from knowing the physical name or ip address of the primary
replica. this is very powerful, especially in a failover scenario when a secondary
replica becomes the new primary. you can read more about ag listeners at
https://docs.microsoft.com/sql/database-engine/availability-
groups/windows/listeners-client-connectivity-application-
failover#AGlisteners. furthermore, you can read more about ag listeners
on sQl server on linux at https://docs.microsoft.com/sql/linux/sql-
server-linux-availability-group-overview#the-listener-under-
linux.

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/database-engine/availability-groups/windows/listeners-client-connectivity-application-failover#AGlisteners
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/listeners-client-connectivity-application-failover#AGlisteners
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/listeners-client-connectivity-application-failover#AGlisteners
https://docs.microsoft.com/sql/linux/sql-server-linux-availability-group-overview#the-listener-under-linux
https://docs.microsoft.com/sql/linux/sql-server-linux-availability-group-overview#the-listener-under-linux
https://docs.microsoft.com/sql/linux/sql-server-linux-availability-group-overview#the-listener-under-linux

427

 5. Now add a colocation constraint and ordering constraint to ensure

the primary replica and virtual ip run on the same node by running

the following commands from the bash shell on any node:

sudo pcs constraint colocation add virtualip ag_cluster-master

INFINITY with-rsc-role=Master

sudo pcs constraint order promote ag_cluster-master then start

virtualip

You have now completed the exercise to create a highly available Always On

Availability Group on SQL Server on Linux. No sweat, right? Is there a better way to do

this? The answer is yes. It is called an Ansible Playbook. It reminds me of my senior year

in college when we worked all semester in a course to build a Fortran program for a

statistical simulation model. After we turned in all of our assignments, the very last week

of the semester the professor showed us how to build the same program in one day using

a language called GPSS. We of course all asked him why? The answer was simple. He

wanted us to understand the internals of creating statistic simulation models but also to

understand to look for efficient methods to do the same task. Hard lesson. Ansible is all

about that. We have produced an open source Ansible Playbook to install SQL Server,

a Pacemaker cluster, and an AG at https://github.com/Microsoft/sql-server-

samples/tree/master/samples/features/high%20availability/Linux/Ansible%20

Playbook.

 Let’s Test it
In this section, let’s connect to SQL Server and test our new setup we just completed for

an AG with a cluster. There are two tests I would like to run on this new setup: (1) Add

some data to the primary replica database and see it show up on the secondary replica

and (2) test how failover works to the secondary and back to the primary.

Chapter 8 high availability and disaster reCovery for sQl server

https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/high availability/Linux/Ansible Playbook
https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/high availability/Linux/Ansible Playbook
https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/high availability/Linux/Ansible Playbook

428

 Testing Data Replication

 1. Run the following T-SQL statements as found in the example

createandinsert.sql connected to the <virtual IP address>,1433 to

create a table on the primary replica and insert data:

USE [cowboysrule]

GO

DROP TABLE IF EXISTS wewillwintheeast

GO

CREATE TABLE wewillwintheeast (col1 int)

GO

INSERT INTO wewillwintheeast VALUES (1)

GO

Note Just like the other nodes, you can add an entry into /etc/hosts with a string
name associated with the virtual ip address and use that to connect without having
to specify the port number.

 2. Connect directly to the secondary replica and run the

following T-SQL statements as found in the example script

querysecondary.sql, to prove you are connected to the secondary

server and the preceding changes were replicated from the

primary:

SELECT @@SERVERNAME

GO

USE [cowboysrule]

GO

SELECT * FROM wewillwintheeast

GO

The results should be you secondary replica (mine is bwsqllinuxag2) and a result of

one row.

Chapter 8 high availability and disaster reCovery for sQl server

429

 Testing Failover

The simplest method to ensure that failover will work between the primary and

secondary replica is to execute a manual failover.

In SQL Server on Windows, you can use T-SQL commands to manually failover a

replica with AGs. However, for Linux, you must use the pcs program with Pacemaker.

You can read all about operating the cluster on Linux in our documentation at

https://docs.microsoft.com/sql/linux/sql-server-linux-availability-group-

failover-ha. Let’s give it a try.

 1. First, we need a way to see the current state of replicas from a

failover perspective. Execute the following T-SQL statement, as

found in the example script checkreplicas.sql:

SELECT ar.replica_server_name, hars.role_desc,

hars.operational_state_desc

FROM sys.dm_hadr_availability_replica_states hars

JOIN sys.availability_replicas ar

ON hars.replica_id = ar.replica_id

GO

In my environment, the results look like Figure 8-14.

Figure 8-14. Replica states for AGs on SQL Server on Linux

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/linux/sql-server-linux-availability-group-failover-ha
https://docs.microsoft.com/sql/linux/sql-server-linux-availability-group-failover-ha

430

 2. Now it’s time to try a failover using the pcs program. Run the

following command from the bash shell on any node, putting in

the name of your secondary node (mine is bwsqllinuxag2):

sudo pcs resource move ag_cluster-master bwsqllinuxag2 --master

 3. The documentation calls out that the nature of Pacemaker is to

add a colocation constraint after performing a manual failover

that can cause issues, so execute the following command from the

bash shell on any node:

sudo pcs constraint remove cli-prefer-ag_cluster-master

 4. To make sure the failover worked properly, execute the same

checkreplicas.sql script but this time on the secondary node. The

results in my environment look like Figure 8-15.

Figure 8-15. Replica states after a failover

You can see now the secondary has become the primary and the primary the

secondary. You can repeat the steps 2 and 3 above now to fail back to the primary replica.

Use the same pcs command as above in step 2 to move the resource but this time put in

the name of the primary like the following code example (be sure to also run the same

command to remove the colocation constraint):

sudo pcs resource move ag_cluster-master bwsqllinuxag1 --master

Chapter 8 high availability and disaster reCovery for sQl server

431

Note i’ve noticed on my setup it seems to take a bit longer to fail back to the
primary then failing over the secondary, so when you fail back give it a longer time
to check on states.

Congratulations! If you have made it this far you successfully have set up a

Highly Available Always On Availability Group for SQL Server on Linux and tested its

functionality. Why do I call it Highly Available? You will find out in a section towards the

end of this chapter. Let’s look at other aspects of AGs to conclude this chapter.

 Database Health Detection
I mentioned in the section on FCI as well as an earlier section on AGs the concept of how

failover is detected using sp_server_diagnostics and flexible failover policies. You may

have noticed that those policies are at an SQL Server instance level. The problem with

using instance level logic for AGs is that AGs are a database level of failover.

Therefore, SQL Server has a concept called Database Health Detection. By using

an option for CREATE AVAILABILITY GROUP (or ALTER) called DB_FAILOVER, SQL

Server will monitor if a database goes offline and start a failover. The default is OFF, but I

recommend using this option to ensure a failover occurs if the database is not accessible.

All databases in the AG are monitored as part of this feature.

There are a few nuances and limits to the feature, which you can read about at

https://docs.microsoft.com/sql/database-engine/availability-groups/windows/

sql-server-always-on-database-health-detection-failover-option.

 Performance Considerations
One common question I hear from customers about the use of a synchronous replica

with AGs is whether performance of the application running transactions against

the primary will be affected. And the answer is yes. The more important question is

whether the performance impact can be negligible and still achieve the benefit of high

availability. That answer is definitely yes.

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/database-engine/availability-groups/windows/sql-server-always-on-database-health-detection-failover-option
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/sql-server-always-on-database-health-detection-failover-option

432

The three biggest factors in performance for AGs are:

• The rate of transactions run against the primary replica

• The speed in which transactions can be hardened on the primary and

secondary replica transaction log files (disk I/O is usually the biggest

factor)

• The speed of connectivity between the primary and secondary

replicas

You have complete control over using the fastest hardware for disks on both the

primary and secondary for transaction log and the speed of network devices between

replicas.

Therefore, the biggest concern may be transaction rates to the primary. The two

scenarios where I’ve seen some bottleneck issues are:

• A high rate of exceedingly small single statement transactions by a

large number of concurrent users

• Large index builds and rebuilds

The first issue can be mitigated by grouping statements together into logical

transactions (this is a good practice for transaction performance independent of AGs).

The second issue is trickier and may require you to carefully schedule index builds and

rebuilds, use partitioning to build indexes in smaller chunks, and also evaluate whether

you need to build or rebuild an index.

Take a look through this part of our documentation to see common methods to

monitor the performance of availability groups to look for possible bottlenecks in the

synchronization process: https://docs.microsoft.com/sql/database-engine/

availability-groups/windows/monitor-performance-for-always-on-availability-

groups#BKMK_SCENARIOS.

One thing you can count on is that Microsoft has worked to streamline the

code that handles AGs. You can read more about the performance optimization

work we did starting in SQL Server 2016 at https://blogs.msdn.microsoft.com/

sqlserverstorageengine/2016/09/26/sql-server-2016-it-just-runs-faster-

always-on-availability-groups-turbocharged/.

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/database-engine/availability-groups/windows/monitor-performance-for-always-on-availability-groups#BKMK_SCENARIOS
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/monitor-performance-for-always-on-availability-groups#BKMK_SCENARIOS
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/monitor-performance-for-always-on-availability-groups#BKMK_SCENARIOS
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2016/09/26/sql-server-2016-it-just-runs-faster-always-on-availability-groups-turbocharged/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2016/09/26/sql-server-2016-it-just-runs-faster-always-on-availability-groups-turbocharged/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2016/09/26/sql-server-2016-it-just-runs-faster-always-on-availability-groups-turbocharged/

433

 Readable Secondaries
One of the biggest advantages of Always On Availability Groups over an FCI, besides

the fact that you don’t need shared storage, is that the secondary replicas for the

AG can be actively used. You can read from secondary replica data, run backups on

the databases on a secondary replica, and even perform integrity checks like DBCC

CHECKDB. Furthermore, you can configure client applications to be routed automatically

to a readable secondary replica, thereby offloading workloads from the primary.

Note readable secondaries are only available with sQl server enterprise edition.
the standard edition provides for basic availability groups but does not allow you
to read from the secondary replica. you can read more about basic availability
groups at https://docs.microsoft.com/sql/database-engine/
availability-groups/windows/basic-availability-groups-always-
on-availability-groups.

The data available to read on the secondary replica is only based on committed

transactions that have been hardened and redone in the secondary transaction log. Any

data based on active transactions is not available. Furthermore, if there is latency in moving

transactions to a secondary (which you may see more with asynchronous replicas), there

could be a difference in data you are trying to read from the secondary replica.

There are other considerations when using readable secondary replicas, including

how statistics are handled, possible blocking situations, and overall consuming of

resources on the SQL Server, which can affect secondary replication redo performance.

I encourage you to read through these details at https://docs.microsoft.com/sql/

database-engine/availability-groups/windows/active-secondaries-readable-

secondary-replicas-always-on-availability-groups#bkmk_Performance.

Last, since we have shipped SQL Server 2017 we have been able to pinpoint a few

performance optimizations that can help with conflicts between parallel redo worker

threads and readable secondary queries. Read more about this at https://blogs.

msdn.microsoft.com/sql_server_team/sql-server-20162017-availability-group-

secondary-replica-redo-model-and-performance/ and be sure to keep up to date on

the latest cumulative updates for further enhancements.

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/database-engine/availability-groups/windows/basic-availability-groups-always-on-availability-groups
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/basic-availability-groups-always-on-availability-groups
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/basic-availability-groups-always-on-availability-groups
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/active-secondaries-readable-secondary-replicas-always-on-availability-groups#bkmk_Performance
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/active-secondaries-readable-secondary-replicas-always-on-availability-groups#bkmk_Performance
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/active-secondaries-readable-secondary-replicas-always-on-availability-groups#bkmk_Performance
https://blogs.msdn.microsoft.com/sql_server_team/sql-server-20162017-availability-group-secondary-replica-redo-model-and-performance/
https://blogs.msdn.microsoft.com/sql_server_team/sql-server-20162017-availability-group-secondary-replica-redo-model-and-performance/
https://blogs.msdn.microsoft.com/sql_server_team/sql-server-20162017-availability-group-secondary-replica-redo-model-and-performance/

434

 Automatic Page Repair
Another slick feature and great advantage with AGs is the fact that the secondary replica

can hold valid database pages even when a page becomes damaged on the primary.

Given this fact, if a database page becomes damaged on the primary, why not take

advantage of the good page on the secondary? That is exactly what SQL Server provides

with a feature called Automatic Page Repair.

Here is how it works. If the primary replica detects that a database page from a

database in the AG is damaged (for example a checksum error on a page), it will request

to all secondaries for a valid copy of the page. When the transaction log records associated

with the page are redone on the secondary, the secondary will send the valid page back

to the primary, which will restore it online. Furthermore, there is no need to enable the

feature. It works by default with AGs. OK, you have to admit that is incredibly cool!

Furthermore, if a secondary replica encounters a damaged page during redo, it can

request a valid copy of the page from the primary. This is another great feature to help

with your RTO and RPO needs of SQL Server and it is all built into the SQL Server engine

(however, this feature is only available with SQL Server Enterprise edition).

Read more about Automatic Page Repair at https://docs.microsoft.com/sql/

sql-server/failover-clusters/automatic-page-repair-availability-groups-

database-mirroring.

 Clusterless Availability Groups
As we built SQL Server 2017 and enabled AG capabilities for SQL Server on Linux (with

the new CLUSTER_TYPE=EXTERNAL), we realized we could introduce the capabilities

of using AGs without a cluster component, either with WSFC or Pacemaker.

We call this new concept a Clusterless Availability Group. Consider the architecture

diagram I introduced earlier in this chapter. All the software components exist to ship

log changes to replicas without any clustering software required. The difference is that

without clustering software, the AG is not highly available, because there is no automatic

failover capability.

However, you may have a scenario where you would like to set up an AG because you

want to allow workloads for readers (say reporting users) to access a series of secondary

replicas but you don’t need the AG to be highly available. We call this concept in SQL

Server 2017 read-scale routing.

Chapter 8 high availability and disaster reCovery for sQl server

https://docs.microsoft.com/sql/sql-server/failover-clusters/automatic-page-repair-availability-groups-database-mirroring
https://docs.microsoft.com/sql/sql-server/failover-clusters/automatic-page-repair-availability-groups-database-mirroring
https://docs.microsoft.com/sql/sql-server/failover-clusters/automatic-page-repair-availability-groups-database-mirroring

435

Furthermore, because the core database engine is the same code on Windows and

Linux, and the core software components for AGs are in the engine, you can set up a

primary and set of replicas across Windows and Linux, hence a cross-platform AG.

Think of it this way. When you went through the example in the previous section

to set up an AG, once you created the AG and joined the secondaries, SQL Server was

ready to ship log blocks to replicas. If you changed the CREATE AVAILABILITY GROUP

statement to use CLUSTER_TYPE = NONE like this

CREATE AVAILABILITY GROUP [footballag]

 WITH (CLUSTER_TYPE = NONE)

 FOR REPLICA ON

 N'bwsqllinuxag1' WITH (

 ENDPOINT_URL = N'tcp://bwsqllinuxag1:5022',

 AVAILABILITY_MODE = SYNCHRONOUS_COMMIT,

 FAILOVER_MODE = EXTERNAL,

 SEEDING_MODE = AUTOMATIC,

 SECONDARY_ROLE (ALLOW_CONNECTIONS = ALL)

),

 N'bwsqllinuxag2' WITH (

 ENDPOINT_URL = N'tcp://bwsqllinuxag2:5022',

 AVAILABILITY_MODE = SYNCHRONOUS_COMMIT,

 FAILOVER_MODE = EXTERNAL,

 SEEDING_MODE = AUTOMATIC,

 SECONDARY_ROLE (ALLOW_CONNECTIONS = ALL)

),

 N'sqllinuxcfgag' WITH (

 ENDPOINT_URL = N'tcp://sqllinuxcfgag:5022',

 AVAILABILITY_MODE = CONFIGURATION_ONLY

)

GO

ALTER AVAILABILITY GROUP [footballag] GRANT CREATE ANY DATABASE

GO

you would be creating a clusterless availability group. It is that simple.

Chapter 8 high availability and disaster reCovery for sQl server

436

 Summary
In this chapter, I have talked about the fundamentals of high availability and recovery

through backup and restore, but also discussed the more advanced yet powerful features

to meet the needs of your RTO and RPO requirements through Always On Failover

Cluster Instance and Always On Availability Groups. One interesting angle for high

availability is using Docker containers with Kubernetes. I discuss this new capability in

the last chapter of the book.

Move on to the next chapter to talk about the important concepts of Monitoring and

Managing your SQL Server on Linux.

Chapter 8 high availability and disaster reCovery for sQl server

437
© Bob Ward 2018
B. Ward, Pro SQL Server on Linux, https://doi.org/10.1007/978-1-4842-4128-8_9

CHAPTER 9

Managing and Monitoring
SQL Server
After reading through the first eight chapters of this book you have learned the necessary

fundamentals to install SQL Server on Linux, deploy a database and application, and set

yourself up for success by understanding the fundamentals of our tools, performance,

security, and high availability.

It is one thing to get an application deployed that uses SQL Server, but what are the

key aspects to managing, maintaining, and monitoring SQL Server? That is what this

chapter is about.

In fairness, I’ve covered some of the aspects of managing and monitoring throughout

the book, including chapters on tools, performance, and high availability (certainly

learning how to back up and restore a database is a key aspect to managing SQL Server).

This chapter extends that knowledge by covering topics that I have not discussed

before on how to manage the SQL Server instance, your database, and objects within the

database.

In the second part of the chapter, I’ll talk about monitoring SQL Server including

these topics:

• Monitoring SQL performance

• Using an amazing but little known feature called the System Health

Session to monitor SQL Server health

• Learning a new and creative way to monitor transaction log backups

• A review of Linux tools I like to use to monitor performance

• Unique aspects to troubleshooting SQL Server problems

438

As you start reading through the sections on Management of the SQL Server

instance, database, and objects, be sure to keep in mind an important lesson I’ve learned

from my experience with SQL Server: test your management strategy. Most developers

will focus on testing the application, which is vital to a successful deployment, but

typically I see management tasks, like rebuilding an index, never get tested. How long

will an index rebuild take on your largest table? You won’t know unless you test it. In

addition to testing, be sure to have a well-defined change control and auditing process

for any changes made to the SQL Server instance configuration, database, objects,

or the Linux operating system. Understanding what and who makes changes to a

production SQL Server environment is important in my experience, especially when it

comes to troubleshooting a problem and trying to answer the inevitable question “What

changed?”

I have to admit I had fun writing this chapter because it contains some interesting

history of my journey at Microsoft with SQL Server and my interactions with some of the

smartest people I’ve ever known to build rich features for managing and monitoring SQL

Server.

 Managing the SQL Server Instance
SQL Server provides rich capabilities to manage the SQL Server instance after

deployment, using tools like mssql-conf, the T-SQL statement ALTER SERVER

CONFIGURATION, and the system stored procedure sp_configure. We honestly built

SQL Server so that you should not have to spend a great deal of time configuring the

instance after installation, but most production environments have some configuration

changes that makes sense for their application. I’ve discussed these capabilities and

options in previous chapters of the book. I’ve briefly listed these capabilities again in this

section of the chapter for completeness.

In addition, in this section I’ll spend time talking about SQL Server instance

configuration options I have not mentioned at this point in the book, including:

• Creating SQL Server Agent jobs

• Using Resource Governor to control resource usage for users

• Using the Dedicated Admin Connection for emergency situations

• Using the sqlservr command line for special scenarios

Chapter 9 Managing and Monitoring SQL Server

439

 Changing Server Configuration Options
I’ve discussed in previous chapters three methods to change the default configuration

of the SQL Server instance. I’ve included this list purely as a review to ensure you know

what options exist for SQL Server instance configuration:

mssql-conf: A bash shell script used for configuration options

that cannot be done through a T-SQL connection. I’ve shown you

several examples in the book, but the full list of options can be

found at https://docs.microsoft.com/sql/linux/sql-server-

linux-configure-mssql-conf. I recommend anytime you use

this feature, you create a script and track all executions for change

control.

ALTER SERVER CONFIGURATION: This is a T-SQL statement

used to make instance level configuration changes. I’ve shown

you in past chapters two examples for this statement: PROCESS

AFFINITY and SOFTNUMA. A complete list of options for this

statement can be found at https://docs.microsoft.com/sql/t-

sql/statements/alter-server-configuration-transact-sql.

sp_configure: This is a system stored procedure used to modify

various types of instance level configuration options. I showed you

in previous chapters some of the more important options related

to performance, security, and high availability. There are other

options, but the ones I’ve covered so far in the book I consider

the most important. The complete list of options for sp_configure

can be found at https://docs.microsoft.com/sql/database-

engine/configure-windows/server-configuration-options-sql-

server. The documentation talks about how some configuration

options require a restart of SQL Server. All options require the

T-SQL statement RECONFIGURE to take effect.

Note i also covered in previous chapters the aLter dataBaSe SCoped
ConFigUration t-SQL statement that allows you to configure options at the
database level that are normally reserved for an instance level modification.

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf
https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf
https://docs.microsoft.com/sql/t-sql/statements/alter-server-configuration-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/alter-server-configuration-transact-sql
https://docs.microsoft.com/sql/database-engine/configure-windows/server-configuration-options-sql-server
https://docs.microsoft.com/sql/database-engine/configure-windows/server-configuration-options-sql-server
https://docs.microsoft.com/sql/database-engine/configure-windows/server-configuration-options-sql-server

440

 Creating an SQL Server Agent Job
SQL Server Agent is a scheduling service that is installed when you deploy SQL Server on

Linux. SQL Server Agent provides the capabilities to create jobs and then schedule the

execution of jobs with various frequency options. Jobs execute via a series of job steps. A

job step defines a specific set of T-SQL statements to execute in the job.

Note SQL Server agent before SQL Server 2017 CU4 required a separate
package. Starting with 2017 CU4, SQL Server agent is bundled with the mssql-
server package. in addition, SQL Server on Linux only offers a job step that
includes a set of t-SQL statements. SQL Server on Windows includes several
subsystems that support other types of job steps.

The first step to be able to use SQL Server Agent is to enable this as a feature, using

mssql-conf by running the following commands from the bash shell:

sudo /opt/mssql/bin/mssql-conf set sqlagent.enabled true

sudo systemctl restart mssql-server

At this point, you can now create SQL Server Agent jobs via T-SQL system stored

procedures (e.g., sp_add_job), with an extension to SQL Operations Studio, or with SQL

Server Management Studio (SSMS).

Our documentation has a very nice example of creating a job via the T-SQL system

stored procedures to back up a database on a daily basis, at https://docs.microsoft.

com/sql/linux/sql-server-linux-run-sql-server-agent-job#create-a-job-with-

transact-sql.

An example of using SSMS to create a job can be seen at https://docs.microsoft.

com/sql/linux/sql-server-linux-run-sql-server-agent-job#create-a-job-with-

ssms.

Figure 9-1 shows an example of using the SQL Agent extension in SQL Operations

Studio to create a new job.

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/linux/sql-server-linux-run-sql-server-agent-job#create-a-job-with-transact-sql
https://docs.microsoft.com/sql/linux/sql-server-linux-run-sql-server-agent-job#create-a-job-with-transact-sql
https://docs.microsoft.com/sql/linux/sql-server-linux-run-sql-server-agent-job#create-a-job-with-transact-sql
https://docs.microsoft.com/sql/linux/sql-server-linux-run-sql-server-agent-job#create-a-job-with-ssms
https://docs.microsoft.com/sql/linux/sql-server-linux-run-sql-server-agent-job#create-a-job-with-ssms
https://docs.microsoft.com/sql/linux/sql-server-linux-run-sql-server-agent-job#create-a-job-with-ssms

441

Since SQL Server Agent supports jobs that can execute any T-SQL statement or set

of statements in a series of steps, you can use SQL Server Agent to perform any task you

want to run on a schedule or ad hoc basis.

Linux users may just prefer to use the cron system (https://en.wikipedia.org/

wiki/Cron) to schedule commands that can execute T-SQL commands using a program

like sqlcmd to execute T-SQL scripts. My recommendation is that if you just need to run

T-SQL statements for any application need or task, use SQL Server Agent. If you need to

run other Linux commands or shell scripts with T-SQL scripts together as a unit, I would

use cron.

Figure 9-1. Using SQL Operations Studio to create an SQL Agent job

Chapter 9 Managing and Monitoring SQL Server

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron

442

 Using Resource Governor
There could be scenarios where you want to control the resources of users and queries

for applications for SQL Server related to CPU, memory, and I/O. SQL Server provides a

feature to control these resources called Resource Governor. Resource Governor consists

of the following objects:

Resource Pool: A resource pool defines the constraint specified

on physical resources such as CPU, memory, and I/O. Two pools

come with SQL Server installed: (1) internal, which is used for

background and system tasks and worker threads for SQL Server;

and (2) default, which is a predefined pool for user tasks that is

the “default” if no user-defined pools are created. You can create

your own user-defined resources pools through T-SQL. You can

read more about resource pools at https://docs.microsoft.

com/sql/relational-databases/resource-governor/resource-

governor-resource-pool.

Note You can change the settings for the default pool, but you cannot change the
settings for the internal pool.

Here are some of the properties for a resource pool you can configure:

• CAP_CPU_PERCENT: Workload group users (described later)

associated with this pool will be capped for CPU utilization for any

SQL Server worker thread usage.

• MAX_MEMORY_PERCENT: Workload group users associated with

this pool will be capped on memory grants (hashes, sorts, …) related

to query execution. This setting does not affect memory allocated for

buffer pool or any other cache.

• AFFINITY: This is an interesting setting. Using this setting for NUMA

node(s) and CPU(s) will direct any workload group user associated

with this pool to only run on the designed node(s) or CPU(s). This

is an excellent technique to direct specific applications to only run

on specific NUMA node(s) or CPU(s). This is also a more granular

method to “affinitize” SQL Server than server configuration options

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/relational-databases/resource-governor/resource-governor-resource-pool
https://docs.microsoft.com/sql/relational-databases/resource-governor/resource-governor-resource-pool
https://docs.microsoft.com/sql/relational-databases/resource-governor/resource-governor-resource-pool

443

(resource group affinity runs within the constraints of the affinity of

the SQL Server instance).

• MAX_IOPS_PER_VOLUME: This setting controls the maximum

physical IO operations per second (IOPS) for workload group users

associated with this pool per unique disk volume. Unique disk

volume means unique physical disk based on files for the database.

The big “gotcha” for this setting is that it only applies to any I/O

operation executed under the context of a user task. That means any

I/O under the context of a background task (Log Writer, Recovery

Writer, Checkpoint, …) will not honor this setting (and you cannot

change the internal pool setting to which they belong).

Pools also support “min” settings for CPU, memory, and I/O. Things can get

a bit interesting if you start to play with minimum and maximum settings. Our

documentation has a nice table that describes the effective settings, should you decide

to do this. Read more at https://docs.microsoft.com/sql/relational-databases/

resource-governor/resource-governor-resource-pool.

Workload groups: A workload group is a container of user

tasks that are assigned to a resource pool. A workload group is

the method to group a set of users together to restrict resource

usage. Two workload groups are installed by default, internal

and default, which are mapped to the corresponding resource

pools by the same name. You can create your own workload

group through T-SQL. If you don’t create a user-defined workload

group, all logins will be mapped to the default workload group

(which is mapped to the default resource pool). You can read

more about workload groups at https://docs.microsoft.com/

sql/relational-databases/resource-governor/resource-

governor-workload-group.

Workload groups allow you to specify settings at a more granular level than the pool

they are associated with. For example, you can configure REQUEST_MAX_MEMORY_

GRANT_PERCENT to specify the maximum memory grant for workload group users.

This is applied within the maximum already established for the pool.

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/relational-databases/resource-governor/resource-governor-resource-pool
https://docs.microsoft.com/sql/relational-databases/resource-governor/resource-governor-resource-pool
https://docs.microsoft.com/sql/relational-databases/resource-governor/resource-governor-workload-group
https://docs.microsoft.com/sql/relational-databases/resource-governor/resource-governor-workload-group
https://docs.microsoft.com/sql/relational-databases/resource-governor/resource-governor-workload-group

444

Note there is a good description of memory grants by one of our top
developers, Jay Choe, at https://blogs.msdn.microsoft.com/
sqlqueryprocessing/2010/02/16/understanding-sql-server-
memory-grant.

One unique setting for a workload group is MAXDOP. I’ve discussed parallel query

execution in a previous chapter and how you can configure the maximum workers

applied to a query plan operator through sp_configure, ALTER DATABASE, and even a

query hint. Workload groups allow you to specify a MAXDOP setting for all users in the

group. Using a combination of these MAXDOP settings can perhaps get confusing. Here

is guidance on how the order of precedence is applied for MAXDOP:

• MAX_DOP as a query hint is honored as long as it does not exceed

workload group MAX_DOP.

• MAX_DOP as a query hint always overrides sp_configure ‘max degree

of parallelism’.

• The MAXDOP at the database scope overrides (unless it is set to 0)

the max degree of parallelism set at the server level by sp_configure.

Query hints can still override the database scoped MAXDOP in order

to tune specific queries that need different setting. All these settings

are limited by the MAXDOP set for the Workload Group.

• Workload group MAX_DOP overrides sp_configure ‘max degree of

parallelism’.

• If the query is marked as serial (MAX_DOP = 1) at compile time,

it cannot be changed back to parallel at run time regardless of the

workload group or sp_configure setting.

The documentation has a complete list of workload group settings at https://

docs.microsoft.com/sql/t-sql/statements/alter-workload-group-transact-

sql#arguments.

Classification functions: A classifier function is a T-SQL function

that binds a login to a user-defined workload group. You build

a T-SQL function (with a known template) and assign a specific

login (or group of logins) to a workload group. This allows SQL

Chapter 9 Managing and Monitoring SQL Server

https://blogs.msdn.microsoft.com/sqlqueryprocessing/2010/02/16/understanding-sql-server-memory-grant
https://blogs.msdn.microsoft.com/sqlqueryprocessing/2010/02/16/understanding-sql-server-memory-grant
https://blogs.msdn.microsoft.com/sqlqueryprocessing/2010/02/16/understanding-sql-server-memory-grant
https://docs.microsoft.com/sql/t-sql/statements/alter-workload-group-transact-sql#arguments
https://docs.microsoft.com/sql/t-sql/statements/alter-workload-group-transact-sql#arguments
https://docs.microsoft.com/sql/t-sql/statements/alter-workload-group-transact-sql#arguments

445

Server to know how to map resource restrictions to a login for a

specific workload group and resource pool. You can read more

about classifier functions at https://docs.microsoft.com/

sql/relational-databases/resource-governor/resource-

governor-classifier-function.

I found this simple but easy to use demo built by my colleague Travis Wright on

GitHub at https://github.com/twright-msft/mssql-test-scripts/blob/master/

Administration/resource-governor.sql to show the basics of how to use Resource

Governor for I/O.

Note Linux has an operating system concept similar to resource governor for
control of resources for processes called Linux control groups (cgroups). cgroups
are independent of SQL Server but since SQL Server is a Linux process, SQL
Server should be able to run when cgroups are being used to control SQL Server
resources such as CpU or i/o. You can read more about cgroups at
http://man7.org/linux/man-pages/man7/cgroups.7.html.

Resource Governor is technically enabled for default and internal pools without

any user intervention. However, if you want to have modifications to the default pool

take effect or create your own pool and workload groups, you must enable Resource

Governor for these new configurations using the following T-SQL statement:

ALTER RESOURCE GOVERNOR RECONFIGURE;

GO

 Using the Dedicated Admin Connection
When I worked for Microsoft technical support years ago before SQL Server 2005, I

would occasionally have to help a customer on a critical problem where SQL Server

appeared to be hung (no connection or query is allowed to SQL Server). It was around

this timeframe that often my colleagues in support, Robert Dorr and Keith Elmore,

would produce some amazing innovative ideas on how to troubleshoot complex

problems. In fact, some of the best ideas we produced were done when the three of us

would take a walk after lunch around the Microsoft Texas Campus in Irving, Texas.

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/relational-databases/resource-governor/resource-governor-classifier-function
https://docs.microsoft.com/sql/relational-databases/resource-governor/resource-governor-classifier-function
https://docs.microsoft.com/sql/relational-databases/resource-governor/resource-governor-classifier-function
https://github.com/twright-msft/mssql-test-scripts/blob/master/Administration/resource-governor.sql
https://github.com/twright-msft/mssql-test-scripts/blob/master/Administration/resource-governor.sql
http://man7.org/linux/man-pages/man7/cgroups.7.html

446

(Note: We carried on this tradition for many years dating from the mid-1990s all the way

to the present day. As the three of us are on different teams, this now happens far less

often.)

One of those days, Robert Dorr was talking to us about another customer incident

where SQL Server appeared to be hung. He said, “there has to be a better way to figure

these out.” And indeed this discussion led to supportability improvements for errors in

the ERRORLOG when these conditions can occur (see this older blog post by Robert

at https://blogs.msdn.microsoft.com/psssql/2008/03/28/how-it-works-non-

yielding-resource-monitor/).

As part of this conversation, we all three agreed that if the SQL Server engine cannot

accept new logins or queries, why can’t we have a special dedicated connection to

SQL Server that has limited capabilities but can be used to connect to SQL Server to

investigate and possibly even fix a SQL Server hang. Thus was born a feature in SQL

Server 2005 called Dedicated Admin Connection (DAC).

DAC is supported by a separate TCP port (1434) for SQL Server and operates on a

different SQLOS scheduler. Therefore, if SQL Server cannot respond to new requests due

to a scheduler or standard port issue, it may be possible to connect with DAC, and at

minimum run queries against DMVs to find out a possible cause of the problem before

you need to restart SQL Server. In addition, it may even be possible to find the cause and

free up the problem without having to restart. I’ll talk about an example shortly.

First, let’s see how to connect with DAC. Run the following command with sqlcmd

from the bash shell on the Linux Server:

sqlcmd -Usa -Sadmin:localhost

Notice the syntax for the Servername uses the prefix admin.

Note sqlcmd on Windows supports the -a option, which forces the use of daC
but that is not supported on Linux. however, you can use the admin: prefix on any
SQL Server tool, including sqlcmd, SQL operations Studio, and SSMS.

You are now presented with the sqlcmd editor, but how do you know if this worked

and you connected with DAC?

Chapter 9 Managing and Monitoring SQL Server

https://blogs.msdn.microsoft.com/psssql/2008/03/28/how-it-works-non-yielding-resource-monitor/
https://blogs.msdn.microsoft.com/psssql/2008/03/28/how-it-works-non-yielding-resource-monitor/

447

Run the following T-SQL statements as found in the example script amidac.sql:

-- What is my session id?

SELECT @@spid

go

-- List out the current connections, their endpoint, and port

SELECT dec.session_id, e.name, dec.local_tcp_port

FROM sys.dm_exec_connections dec

JOIN sys.endpoints e

ON e.endpoint_id = dec.endpoint_id

GO

I ran this script with the following command from the bash shell:

sqlcmd -Usa -Sadmin:localhost -iamidac.sql

The results should look similar to the following:

 51

(1 rows affected)

session_id name local_tcp_port

----------- ---------------------------- --------------

 51 Dedicated Admin Connection 1434

(1 rows affected)

Notice the nifty server variable @@SPID to find out your current session id. Then you

can find your session in the list of connections (in this example it is the only connection).

I introduced you to the concept of an endpoint with Always On Availability Groups. DAC

has its own endpoint automatically created, typically hosted off port 1434. You can see

this session is using that port.

There is only one active DAC connection allowed at a time (hence the term

Dedicated). And you can connect with DAC remotely. I personally believe if you feel the

need to use DAC you should use it locally with an ssh session. I say this because if there

are remote connectivity issues to your Linux Server, you won’t know if the SQL Server

connectivity problem is a result of a connectivity issue over the network or with the

server itself (and if you can’t get an ssh session, there is likely a larger problem than SQL

Server).

Chapter 9 Managing and Monitoring SQL Server

448

Here is another rarely known secret about DAC. I mentioned in a previous chapter

that while you can see a list of system tables as a user, you cannot by default read directly

from these tables. You should be using system catalog views.

Try the following T-SQL statements using DAC and with a connection without DAC:

USE master

GO

SELECT * FROM sys.sysschobjs

GO

sys.sysschobjs is one of the system tables that powers catalog views like sys.objects.

When you run this query when not using DAC, you get this error

Msg 208, Level 16, State 1, Server bwsql2017rhel, Line 1

Invalid object name 'sys.sysschobjs'.

However, if you use DAC, you will be able to read any system table directly. It is a

neat trick, but to be honest I don’t see much of a need for you to do this in production. It

can be interesting to use to learn more about SQL Server internals, but we don’t publish

the schema definition for system tables.

Tip You can examine the text of system catalog views through sys.system_sql_
modules to figure out how system tables work.

You can’t run anything you want over DAC. We built DAC to only have a certain

set of resources that should reliably allow you to connect to SQL Server in emergency

situations and perform critical, but minimal operations. When should you use DAC? I

recommend only using DAC when you cannot connect to SQL Server even with a local

sqlcmd connection on the Linux Server. Once you connect, query DMVs like dm_exec_

requests to get a basic sense of the connections and queries are running.

One scenario where you may be able to resolve a problem with DAC is the following:

 1. The maximum number of worker threads is being used.

 2. All worker threads are blocked on a lead blocker.

Chapter 9 Managing and Monitoring SQL Server

449

 3. The lead blocker is not giving up its resources. For example, you

could have a session that starts a transaction, runs queries that

obtain locks, but never commits. All workers may be blocked

waiting for this transaction and session to complete.

 4. Since all worker threads are busy, SQL Server cannot service any new

connections or queries because there are no worker threads available.

 5. However, you could connect with DAC and terminate the leader

blocker using the T-SQL KILL statement, thus freeing up all the

blocked workers. The T-SQL KILL statement requires higher than

usual privileges, and rightly so. You can read more about the

T-SQL KILL statement and scenarios it may make sense to use

for your server at https://docs.microsoft.com/sql/t-sql/

language-elements/kill-transact-sql.

You can read about more about DAC, including limits and how to connect remotely,

at https://docs.microsoft.com/sql/database-engine/configure-windows/

diagnostic-connection-for-database-administrators.

 sqlservr Command Line Options
In Chapter 8 I briefly talked about a technique to rebuild system databases that use

a command line option for the sqlservr program. You typically start SQL Server with

systemctl, but sqlservr is a program that can be launched from the shell directly. And

there are a range of command line options, mostly undocumented, that can be used with

sqlservr. You can see the list by running this command from the bash shell (be sure to

stop SQL Server first if it is already running):

sudo -u mssql /opt/mssql/bin/sqlservr --help

Your results should look like the following:

usage: sqlservr [OPTIONS...]

Configuration options:

 -T<#> Enable a traceflag

 -y<#> Enable dump when server encounters specified error

 -k<#> Checkpoint speed (in MB/sec)

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/t-sql/language-elements/kill-transact-sql
https://docs.microsoft.com/sql/t-sql/language-elements/kill-transact-sql
https://docs.microsoft.com/sql/database-engine/configure-windows/diagnostic-connection-for-database-administrators
https://docs.microsoft.com/sql/database-engine/configure-windows/diagnostic-connection-for-database-administrators

450

Administrative options:

 --accept-eula Accept the SQL Server EULA

 --pid <pid> Set server product key

 --reset-sa-password Reset system administrator password. Password

should

 be specified in the SQLSERVR_SA_PASSWORD

environment variable.

 -f Minimal configuration mode

 -m Single user administration mode

 -K Force regeneration of Service Master Key

 --setup Set basic configuration settings and then

shutdown.

 --force-setup Same as --setup, but also reinitialize master and

model databases.

General options:

 -v Show program version

 --help Display this help information

The functionality for many of these options can be done with another documented

method. For example, -T for setting a trace flag can be achieved using mssql-conf.

There are two options worth calling out that can be useful for troubleshooting and

emergency situations:

-m: Start SQL Server in single user mode. When you start SQL

Server with this option, only one user can connect to SQL Server.

One common use for -m is a scenario where you need to restore

the master database. You must first start SQL Server with -m in

order to restore master. A more interesting, advanced, and quite

frankly dangerous scenario is to modify system tables or access

the mssqlsystemresource database. If you start SQL Server with

-m and use DAC to connect to SQL Server, you will be given

access to directly modify a system table. Before we shipped SQL

Server 2005, the plan was to completely lock down any access to

system tables. Working in technical support, I just knew some

Chapter 9 Managing and Monitoring SQL Server

451

scenario would come up where we would need this capability.

The compromise was to provide read access to system tables using

DAC and modify access with -m and DAC. And sure enough,

there have been a few times over the years where in an emergency

situation I needed this capability.

But beware! Once you modify a system table, SQL Server marks a bit in the database

structure so that any time you open the database, a warning is put in the ERRORLOG

stating database system tables have been directly modified. You are completely in

an unsupported state at that point. However, Microsoft may have you do this to work

around some critical problem and they can help you get back into a supported state.

An example of starting SQL Server in single user mode is the following command

from the bash shell:

sudo -u mssql /opt/mssql/bin/sqlservr -m

One issue with single user mode is what I call a race to connect. When you start SQL

Server in single user mode, the first sysadmin to connect wins. Therefore you can restrict

who can connect by application name using an option after the -m parameter. Here is an

example to restrict only sysadmin users using the program sqlcmd can connect:

sudo -u mssql /opt/mssql/bin/sqlservr -m"SQLCMD"

See our documentation for more information on starting SQL Server in single user

mode at https://docs.microsoft.com/sql/database-engine/configure-windows/

start-sql-server-in-single-user-mode.

-f: This option indicates to start SQL Server in minimal

configuration mode. Minimal configuration mode includes single

user mode plus it restricts other SQL Server functionality or

configures SQL Server in a minimal method. For example, SQL

Server will use default server configuration information to start

the server in case you have made a server configuration change

that prevents SQL Server from running or starting. The best

example I can think of for this option is the server configuration

option ‘max server memory’. If you set this value too low, in some

cases, SQL Server does not have enough memory to allow a

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/database-engine/configure-windows/start-sql-server-in-single-user-mode
https://docs.microsoft.com/sql/database-engine/configure-windows/start-sql-server-in-single-user-mode

452

connection or startup properly. Starting SQL Server in minimal

configuration mode will set ‘max server memory’ to its default,

allowing you to connect and change it to a correct value. You can

read more about starting SQL Server in minimal configuration

mode at https://docs.microsoft.com/sql/database-engine/

configure-windows/start-sql-server-with-minimal-

configuration.

Note SQL Server containers run SQL Server by using the sqlservr program
directly.

 Managing Databases
After deploying your database you will at some point have to perform some management

of the database, whether it is making changes at the database level or file level. In this

section, I’ll review those key topics including Moving Databases, Managing Files, Detach

and Attaching Databases, important ALTER DATBASE scenarios, and a very interesting

discussion on repairing databases (I think you will like this section with some internals

on database states and checksum).

 Moving Databases
One common operation you may need to perform after you create a database and have

it running in production is to move the database and transaction log files to a new

directory or new disks. There may be several reasons you need to move the files, such as

disk maintenance or disk upgrade scenarios. One common method to move one or more

files is the following:

 1. Change the database to an offline state by executing the following

T-SQL statement

ALTER DATABASE <dbname> SET OFFLINE

This shows the ability to control database state without shutting down SQL Server.

 2. Move the intended files on the Linux Server to your intended

target directory or disk.

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/database-engine/configure-windows/start-sql-server-with-minimal-configuration
https://docs.microsoft.com/sql/database-engine/configure-windows/start-sql-server-with-minimal-configuration
https://docs.microsoft.com/sql/database-engine/configure-windows/start-sql-server-with-minimal-configuration

453

 3. Indicate to SQL Server the new location of the file. For each file

you move, run the following T-SQL statement:

ALTER DATABASE <dbname> MODIFY FILE (NAME = logical_name,

FILENAME = 'new_path\os_file_name')

 4. Change the database state back to ONLINE using the following

T-SQL statement:

ALTER DATABASE <dbname> SET ONLINE

SQL Server will bring the database online and run recovery (as it always does when a

database is brought online).

You also may have a need to move the system databases. You can read more about

the procedure to do this in our documentation at https://docs.microsoft.com/sql/

relational-databases/databases/move-system-databases. The only exception to

this documentation for SQL Server on Linux is to move the master database. In order

to move the master database on SQL Server on Linux, you need to use the mssql-conf

script as documented at https://docs.microsoft.com/sql/linux/sql-server-linux-

configure-mssql-conf#masterdatabasedir.

 Managing Files
There could be other scenarios to manage database and/or transaction log files,

including adding new files, removing existing files, or adding more space to existing files.

Before I review the process for these operations, one of the most fundamental tasks

you may need regarding files is to understand the space used by files. To see space

usage for the database, use the system procedure sp_spaceused. To view the size of

the transaction log and space used within the transaction log, you can use the legacy

method with the T-SQL statement DBCC SQLPERF(LOGSPACE) or query the new DMV

for SQL Server 2017 sys.dm_db_log_stats.
Another alternative is to use the new SERVER REPORTS extension in SQL Operations

Studio to view space usage across databases split by data and transaction log usage.

Figure 9-2 shows an example.

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/relational-databases/databases/move-system-databases
https://docs.microsoft.com/sql/relational-databases/databases/move-system-databases
https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf#masterdatabasedir
https://docs.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf#masterdatabasedir

454

Adding a database file to a database is pretty simple via the T-SQL ALTER
DATABASE statement using the ADD FILE option. You can read more about this at

https://docs.microsoft.com/sql/relational-databases/databases/add-data-

or-log-files-to-a-database. Even though adding transaction log files is possible for

a database, there is almost no benefit to adding a second transaction log file, so I don’t

recommend it.

Note You shouldn’t have much of a need to add a database file to a system
database, except for tempdb. When you need to add a file for tempdb, you should
ensure you (1) add the file with exact same size and autogrow options as all other
files and (2) enable the aUtogroW_aLL_FiLeS for tempdb using aLter dataBaSe
if is not enabled already.

Figure 9-2. Database space usage in SQL Operations Studio

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/relational-databases/databases/add-data-or-log-files-to-a-database
https://docs.microsoft.com/sql/relational-databases/databases/add-data-or-log-files-to-a-database

455

There could be situations where you need to remove a file from a database, but that

file must be empty before it can be removed via ALTER DATABASE using the REMOVE
FILE option. You can learn more about removing files at https://docs.microsoft.com/

sql/relational-databases/databases/delete-data-or-log-files-from-a-database

and how to empty a file at https://docs.microsoft.com/sql/relational-databases/

databases/shrink-a-file.

You can also use ALTER DATABASE with the MODIFY FILE option to increase

the size of a file for a database. Learn more in our documentation at https://docs.

microsoft.com/sql/relational-databases/databases/increase-the-size-of-a-

database.

Note one common issue you may encounter with any execution of aLter
dataBaSe that affects files is that it will block BaCKUp statements or be blocked
by any active BaCKUp.

 Detaching and Attaching Databases
I’ve talked about how to move a database by moving the database and transaction log

files. I’ve also talked about how to recover a database using backup and restore in earlier

chapters. However, backup and restore can also be used to transport a database to

another server and is the preferred method to do that.

SQL Server also offers an alternative to transport a database by detaching and

attaching the database. Detaching a database will shut down the database and remove

the metadata about the database in the master system database but does NOT remove

the files (which a DROP DATABASE would do).

Note For security purposes, never attach a database you do not trust or know the
source.

You can detach a database using the following T-SQL statement:

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/relational-databases/databases/delete-data-or-log-files-from-a-database
https://docs.microsoft.com/sql/relational-databases/databases/delete-data-or-log-files-from-a-database
https://docs.microsoft.com/sql/relational-databases/databases/shrink-a-file
https://docs.microsoft.com/sql/relational-databases/databases/shrink-a-file
https://docs.microsoft.com/sql/relational-databases/databases/increase-the-size-of-a-database
https://docs.microsoft.com/sql/relational-databases/databases/increase-the-size-of-a-database
https://docs.microsoft.com/sql/relational-databases/databases/increase-the-size-of-a-database

456

Note the following examples assume you have restored the full
WideWorldimporters database, as i’ve described in previous chapters using wget
https://github.com/Microsoft/sql-server-samples/releases/
download/wide-world-importers-v1.0/WideWorldImporters-Full.bak.

EXEC sp_detach_db 'WideWorldImporters', 'true'

GO

At this point the database and log files for the WideWorldImporters database remain

in their current location on disk. You could then copy these files to another Linux Server

running SQL Server and attach them. Run the following T-SQL statement, which is found

in the example script attachwwi.sql:

CREATE DATABASE WideWorldImporters

 ON (FILENAME = '/var/opt/mssql/data/WideWorldImporters.mdf'),

 (FILENAME = '/var/opt/mssql/data/WideWorldImporters_UserData.ndf'),

 (FILENAME = '/var/opt/mssql/data/WideWorldImporters.ldf'),

 (FILENAME = '/var/opt/mssql/data/WideWorldImporters_InMemory_Data_1')

 FOR ATTACH

GO

Note in this example I provided all the files for the WideWorldImporters database

and the folder for the Memory Optimized checkpoint files. In this example, you could

have changed the name of the database when you attach. You could have also placed the

files in different paths and attach from the new paths.

Note SQL Server has a legacy system procedure called sp_attach_db but it is
marked deprecated, so use the Create dataBaSe using the For attaCh option.

While you normally need all of the original files to attach the database, there a few

hidden tricks

 1. If the database was cleanly shut down by doing a detach when no

active transactions exist and there is only one transaction log file,

it is possible to leave out the transaction log file when you attach

the database and SQL Server will build a new one automatically.

Chapter 9 Managing and Monitoring SQL Server

457

 2. If the database was cleanly shut down by doing a detach when

no active transactions exist and there are multiple transaction

log files, SQL Server offers the CREATE DATABASE option FOR

ATTACH_REBUILD_LOG.

You should only detach a database that is ONLINE and healthy. A database that

is in a state called SUSPECT (because recovery failed for someone reason) cannot be

detached. However, if you take a database offline that is SUSPECT and then drop this

database, the files remain. Then if you try to attach this database, it will fail. If you ever

find yourself in this situation, you can use what I call the Paul Randal attach method,

named after my good friend Paul Randal, who is one of the top experts when it comes to

tips and tricks for salvaging and repairing databases. You can read Paul’s technique for

this situation at https://www.sqlskills.com/blogs/paul/creating-detaching-re-

attaching-and-fixing-a-suspect-database.

Note i’ll add in the hidden secret of the attach option attaCh_ForCe_reBUiLd_
Log. it is undocumented and completely unsupported but still works. it could also
be used in a desperate situation to attach a database when the transaction log files
are missing or damaged.

 ALTER DATABASE Usage Scenarios
To this point I’ve described in this book many different purposes and scenarios to use

ALTER DATABASE. The following are a few more SET options you might find useful:

• EMERGENCY: I’ll discuss this option in the next section on Repairing

Databases. This comes in handy if the database cannot come online.

• [READ_ONLY | READ_WRITE]: If you would like to prevent any

changes to a database, you can set it to READ_ONLY. This might

come in handy if you want to provide a copy of a database to another

user or developer so can they read the data, but you want to make

sure they don’t make any changes to ensure a consistent copy of the

data. Using READ_WRITE marks the database available for changes.

Chapter 9 Managing and Monitoring SQL Server

https://www.sqlskills.com/blogs/paul/creating-detaching-re-attaching-and-fixing-a-suspect-database
https://www.sqlskills.com/blogs/paul/creating-detaching-re-attaching-and-fixing-a-suspect-database

458

• PAGE_VERIFY: In Chapter 8, I discussed the concept of a database

checksum. I’ll talk more about it in the next section on Repairing

Databases. This is the option to change the default, which is

CHECKSUM (which I recommend you use). The other options are

TORN_PAGE_DETECTION (a form of page verification that is not as

robust as CHECKSUM) and NONE (turn off all page verification).

• WITH [ROLLBACK AFTER | ROLLBACK IMMEDIATE | NO_WAIT]:
Some ALTER DATABASE scenarios require an exclusive lock on the

database. This option is called a termination clause. If that exclusive

lock is blocked by other users, this SET option gives you choices

on what behavior should occur for those active users. ROLLBACK_

AFTER <time> will terminate and rollback any active transactions

after a period of time. ROLLBACK IMMEDIATE takes this action

immediately. NO_WAIT means that the ALTER DATABASE will fail

if it must wait on active users. For a list of what options can use this

clause see our documentation at https://docs.microsoft.com/

sql/t-sql/statements/alter-database-transact-sql-set-

options?view=sql-server-2017&tabs=sqlserver#SettingOptions.

• [SINGLE_USER | RESTRICTED_USER |MULTI_USER]: By default,

SQL Server allows multiple users to interact with a database.

However, you can restrict access to only a single user or restricted

users. It is common to use the termination clause when using

SINGLE_USER or RESTRICTED_USER. RESTRICTED_USER only

allows future access to the database to members of the db_owner or

sysadmin roles.

All ALTER DATABASE SET options can be found in our documentation at https://

docs.microsoft.com/sql/t-sql/statements/alter-database-transact-sql-set-

options?view=sql-server-2017&tabs=sqlserver#arguments.

 Repairing Databases
Over my career at Microsoft I’ve seen scenarios where a database or pages in a database

become damaged or unavailable to access. I call the technique to get the database or

portions of it back online and available repairing a database. As I mentioned earlier in

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/t-sql/statements/alter-database-transact-sql-set-options?view=sql-server-2017&tabs=sqlserver#SettingOptions
https://docs.microsoft.com/sql/t-sql/statements/alter-database-transact-sql-set-options?view=sql-server-2017&tabs=sqlserver#SettingOptions
https://docs.microsoft.com/sql/t-sql/statements/alter-database-transact-sql-set-options?view=sql-server-2017&tabs=sqlserver#SettingOptions
https://docs.microsoft.com/sql/t-sql/statements/alter-database-transact-sql-set-options?view=sql-server-2017&tabs=sqlserver#arguments
https://docs.microsoft.com/sql/t-sql/statements/alter-database-transact-sql-set-options?view=sql-server-2017&tabs=sqlserver#arguments
https://docs.microsoft.com/sql/t-sql/statements/alter-database-transact-sql-set-options?view=sql-server-2017&tabs=sqlserver#arguments

459

the documentation on attaching, there is probably no one outside of Microsoft (and

perhaps inside) that knows the “ins and outs” of repairing databases like Paul Randal.

There is a reason behind this.

Around the timeframe of the development of SQL Server 2000, I was visiting the

Microsoft campus and the SQL Server Engineering team. I had gained a reputation with

the engineering team for expertise and skills on DBCC CHECKDB, database corruption,

and repairing databases. On this visit I was introduced to a new developer named Paul

Randal. This would not only begin a journey for Paul and me to work together on various

features of the SQL Server product (many of these which landed in SQL Server 2005)

but also a great friendship. Paul became a major champion for ensuring SQL Server had

the supportability features needed by Microsoft Support and our customers. Paul and I

have remained great friends along with his wife Kimberly Tripp (and with many of the

folks that work for their company SQLskills). If fact, one of my favorite events at which to

speak about SQL Server is called SQLIntersection, which occurs twice a year run by Paul

and Kim.

The following section has Paul’s imprint all over it from his work in the SQL

Engineering team. Furthermore, he has an incredible series of blog posts on the topics

of repairing databases and recovering databases (among the other topics on just about

everything about the SQL Server Engine). One of the things that make Paul’s blog

so unique is that he shows examples for you to try yourself. His blog can be found at

https://www.sqlskills.com/blogs/paul. With the encouragement of others like Paul, I

started to blog myself (along with Robert Dorr) when I worked in technical support. And

many of the older blog posts Robert and I both wrote about recovery and repair still exist

today at https://blogs.msdn.microsoft.com/psssql. I don’t blog as much on these

topics as I did before, but Robert and I maintain our own blog now at http://aka.ms/

bobsql.

Enough with the walk down memory lane and shameless advertising of blogs. In this

section, I’ll talk about how to repair and recover databases in situations where a restore

of a backup is not possible.

 Database States

I’ve referenced a few times in the book the fact that a database can be OFFLINE or

ONLINE and even a state called SUSPECT.

The difference between the state of SUSPECT and one called RECOVERY_PENDING

is important when evaluating why a database cannot be accessed. The state of a

Chapter 9 Managing and Monitoring SQL Server

https://www.sqlskills.com/blogs/paul
https://blogs.msdn.microsoft.com/psssql
http://aka.ms/bobsql
http://aka.ms/bobsql

460

database can be found at any time by querying the sys.databases.state_desc column in

the master database. A list of all possible states can be found in our documentation at

https://docs.microsoft.com/sql/relational-databases/system-catalog-views/

sys-databases-transact-sql.

When a database is first started, either through SQL Server startup, a RESTORE,

attach, or bringing it online via ALTER DATABASE, the state of the database is set to

ONLINE if no issues occur. However, there can be some intermediate states to get

ONLINE. Furthermore, some issues can cause the state of the database to go a different

direction, not go ONLINE, and cause it to become inaccessible.

Figure 9-3 shows a state diagram of these various states and actions that can cause a

state to occur.

Let me explain some of the states and flow to gain a better understanding of how you

can act in scenarios where the state of the database does not go to ONLINE.

• Anytime the database is started, it always starts at the RECOVERING

phase.

Figure 9-3. States of a database in SQL Server

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/relational-databases/system-catalog-views/sys-databases-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-catalog-views/sys-databases-transact-sql

461

• If the files for the database cannot be opened (e.g., a permission

problem or a file is missing), the state goes to RECOVERY_

PENDING. You may be able to easily fix the problem by finding the right

file or setting the correct permission. Using ALTER DATABASE to set the

state to ONLINE will cause it to go back to RECOVERING. If recovery is

successful, the state will go to ONLINE. Check the ERRORLOG for error

messages that pinpoint the cause of the RECOVERY_PENDING state

(which file and what operating system error).

• If recovery is not successful (for several different reasons), the state of

the database will be set to SUSPECT. You can use a technique called

emergency mode repair to potentially repair the database. I’ll describe

that technique later in this section.

Note SQL Server has a really cool technique that can avoid a SUSpeCt state
should it find it encounter an error on a page during recovery (like a checksum
failure, which i’ll describe more next). this is called deferred transactions,
which you can read more about at https://docs.microsoft.com/sql/
relational-databases/backup-restore/deferred-transactions-
sql-server.

• Note that during a RESTORE DATABASE, the state of the database is

RESTORING and then the state moves to RECOVERING during the

recovery phase of the database restore.

 More About Checksum

I’ve mentioned the concept of a database checksum several times in the book.

Checksum is an important concept added in SQL Server 2005 to indicate a database

page has been altered after it has been written to disk. If SQL Server finds a database

page has been altered and fails a checksum, the following error will be written to the

ERRORLOG:

Msg 824, SQL Server detected a logical consistency-based I/O error:

incorrect checksum (expected: 0xdec71ff7; actual: 0xb0499fcf). It occurred

during a read of page (<pageid>)...

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/relational-databases/backup-restore/deferred-transactions-sql-server
https://docs.microsoft.com/sql/relational-databases/backup-restore/deferred-transactions-sql-server
https://docs.microsoft.com/sql/relational-databases/backup-restore/deferred-transactions-sql-server

462

In addition, an entry is written into the suspect_pages found in the msdb database.

Remember, this is a condition that can trigger an automatic page repair for Always On

Availability Groups. Over the years, I’ve had questions about how a checksum really

works, so I’ll describe it here. Figure 9-4 shows a diagram I’ve created to give a sense for

the basics of a checksum.

Let me explain the flow. If the PAGE_VERIFY=CHECKSUM is set for a database

(the default for SQL Server), when a page is written to disk, SQL Server will compute a

checksum value (based on a mathematical calculation of the bits on the page) and store

this in the header of the page. When SQL Server reads the page from disk, it recalculates

the checksum. If the calculated checksum does not match what is in the page header, a

checksum failure has been encountered.

Notice though in the diagram that it says, “After read retry failed 4 times.” This is

because if a checksum failure is encountered, SQL Server will attempt to retry the read

up to four times before it signals a true checksum failure. Our SQL Engineering team

found that in some cases transient hardware issues can arise where a retry of the read

would work (but 4 was typically the threshold where it would always fail). If a retry of the

read is successful, the query that was trying to read the page succeeds, but you will see

Msg 825 in the ERRORLOG.

Figure 9-4. How a checksum works in SQL Server

Chapter 9 Managing and Monitoring SQL Server

463

Note an Msg 824 is a logical failure when reading or writing a database page.
there are a few other logical checks besides a checksum calculation. For example,
SQL Server always compares the pageid value in the page header to the actual
page SQL Server believes it is reading. Msg 823 is raised should SQL Server
encounter a physical error when reading or writing a page. For example, if an
operating system error occurred when reading a page, Msg 823 would occur and
not Msg 824.

There is one flaw with the checksum algorithm worth noting. The checksum is

calculated based on what is stored in the database page at the time it is written. If the

database page was damaged in memory, the checksum will be based on the already

damaged page and will never raise an error. SQL Server does have an algorithm to

occasionally verify a checksum even when it is memory by background processes. When

this process detects a checksum failure on a page in memory, it will raise Msg 832 to the

ERRORLOG. You can read more about this verification on how to resolve it from this

Microsoft Knowledge Base article https://support.microsoft.com/help/2015759/

how-to-troubleshoot-msg-832-constant-page-has-changed-in-sql-server.

Fixing a page that fails with a checksum error can be done by restoring a backup,

restoring the page from a backup, or repairing it with DBCC CHECKDB (which will result

in losing the data on the page).

 DBCC CHECKDB Repair

I’ve discussed in Chapter 8 the DBCC CHECKDB command to check the consistency of a

database. CHECKDB does include reading pages from disk, so checksum verification on

every page is part of that execution.

If DBCC CHECKDB encounters any failure when checking the consistency of the

database, it is possible to repair the database using this T-SQL statement. There are two

options for repairing a database with CHECKDB:

REPAIR_REBUILD: If it’s possible to repair the database by only

rebuilding or repairing an index, REPAIR_REBUILD can correct

errors found when executing CHECKDB.

REPAIR_ALLOW_DATA_LOSS: If SQL Server detects errors in

CHECKB that can only be repaired by deallocating a page(s),

Chapter 9 Managing and Monitoring SQL Server

https://support.microsoft.com/help/2015759/how-to-troubleshoot-msg-832-constant-page-has-changed-in-sql-server
https://support.microsoft.com/help/2015759/how-to-troubleshoot-msg-832-constant-page-has-changed-in-sql-server

464

which could result in data loss, this option can be used. By

its name, when you use this option you are doing so with the

knowledge that you may lose data. CHECKDB is very good about

reporting out details on which pages are being deallocated and

how many. Restoring from a good backup is always the best mode

of recovery (or failing over to a valid secondary replica), but in

some cases repairing a database with CHECKDB is your only

choice, even though you may encounter some data loss.

The documentation is fairly good about going through some of these scenarios,

which you can read at https://docs.microsoft.com/sql/t-sql/database-console-

commands/dbcc-checkdb-transact-sql. In addition, the output of running CHECKDB

indicates which repair option is the minimal required to resolve all errors found at the

completion of CHECKDB. I can tell you from years of experience a few observations

about using repair for CHECKDB:

• There are some errors that cannot be repaired.

• I rarely run into customer situations where REPAIR_REBUILD was

a valid solution. If you have database damage (commonly known as

corruption. An example of corruption is a checksum failure I have

described earlier in this chapter), it is typically going to result in some

data loss. Not always, but typically.

• I’ve seen some cases where I had to run several iterations of

CHECKDB with repair options to resolve all errors.

• CHECKDB can be run in a transaction with repair options so you can

run repair and then rollback if necessary.

• If you are deciding whether you should restore a backup or run

repair, consider what is known vs. unknown. If you have a valid

backup to restore but you lose a day of work, that may be far better

and a faster method to resolve the situation because it is known.

Trying to repair a damaged database and trying to figure out what

pages you lost related to known business value and data can take a

very long time. I’ve been in situations where I’ve given guidance to a

customer to do both. Restore the backup to a different database while

trying repair options.

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-checkdb-transact-sql
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-checkdb-transact-sql

465

Consider reviewing Paul Randal’s blog post tag he calls “CHECKDB from every

angle” at https://www.sqlskills.com/blogs/paul/category/checkdb-from-every-

angle for some really great information about DBCC CHECKDB.

Note i still get a question from customers and users of SQL Server whether
Microsoft has some magical set of tools no one knows about that allows us to
patch databases. the transparent truth is we used to. in a galaxy, far, far away,
i used to use some programs that allowed me to “fix bits” on database pages.
it was still very time consuming and costly, and i rarely used it. the tool doesn’t
exist anymore and there is no benefit in recreating it. You can read paul’s blog
posts about an undocumented dBCC command that allows for “bit fixing.”
however, don’t rely on this. We don’t really test this (it could crash the server or
cause irreparable damage), it requires tons of time to use, requires an extensive
knowledge of the internal page structures of SQL Server (which we don’t
document and have changed over time and will continue to change), and we may
remove it at any time.

 Emergency Mode Repair

Consider the database state in the preceding diagram (Figure 9-3) called SUSPECT. SQL

Server has attempted to run recovery, but a failure has occurred that is not recoverable

(e.g., the transaction log file is damaged). Prior to Paul coming to Microsoft, this was one

of the uglier scenarios for me to help customers with. Paul invented in SQL Server 2005

a concept called emergency mode repair. The concept is to change the database state to

EMEGENCY using ALTER DATABASE <dbname> SET EMERGENCY.

This will give you access to the database to then run DBCC CHECKDB using the

REPAIR_ALLOW_DATA_LOSS option. SQL Server will recognize the transaction log is

not accessible and will rebuild the transaction log and run recovery. Paul describes the

process in this blog post at https://www.sqlskills.com/blogs/paul/checkdb-from-

every-angle-emergency-mode-repair-the-very-very-last-resort.

It sounds pretty easy and simple, which it is. Here is the problem. Since the

transaction log must be rebuilt, you have no idea what transactions were in the log that

needed to be rolled forward or undone. So even though DBCC CHECKDB is clean, you

Chapter 9 Managing and Monitoring SQL Server

https://www.sqlskills.com/blogs/paul/category/checkdb-from-every-angle
https://www.sqlskills.com/blogs/paul/category/checkdb-from-every-angle
https://www.sqlskills.com/blogs/paul/checkdb-from-every-angle-emergency-mode-repair-the-very-very-last-resort
https://www.sqlskills.com/blogs/paul/checkdb-from-every-angle-emergency-mode-repair-the-very-very-last-resort

466

could easily have logical inconsistency in your database (e.g., imagine the accidental

credit of 1 million dollars into a bank account, which may be there but you don’t

know it!).

This is why it is a last resort and definitely not a replacement for a restore of a good

backup. Despite these warnings, I would find myself in Microsoft support using this

technique frequently because these customers did not have a valid backup to restore.

I have one other comment about the use of the EMERGENCY state of a database.

While you can use the emergency mode repair option, I’ve seen other situations where

setting the state of a database to EMERGENCY allowed me to access the database and

copy out (for example with bcp) critical tables to a business. Keep this in mind as part of

your toolkit for database salvage operations.

 RESTORE with CONTINUE_AFTER_ERROR

I mentioned Chapter 8 that a backup would fail to restore if it was created using the

WITH CHECKSUM option and a checksum failure occurred on the backup media itself.

In that magical supportability release of SQL Server 2005, we added an option to

RESTORE called CONTINUE_AFTER_ERROR. In most cases, this option will allow

the RESTORE to complete even if an error (like a checksum) occurs. At this point, it is

completely a “toss of the coin” whether the database can be used or salvaged. However,

it is possible only a small portion of the backup (even a single bit) media has a problem,

so this option could help you recover much of your database.

 Finding the Cause of Corruption

Through the years as I worked on customer cases in Microsoft support involving

database corruption, I would always (and rightly so) be asked “What caused this?” I can

tell you from 25 years of experience that the number one cause of database corruption is

a system problem, most of the time from the I/O system.

Here is an interesting technique you can use to help prove it. If you run DBCC

CHECKDB or encounter a checksum failure and have a sequence of database and

transaction log backups that span the timeframe of the problem, restore them on a

separate server. If the database and transaction log backups are valid, and you restore

them in a sequence that spans the error but the restore sequence does not show the

error, then the problem must be on the original database in the form of a damaged page,

either in memory or on disk.

Chapter 9 Managing and Monitoring SQL Server

467

I actually did have a customer follow this sequence many years back on a case, and

a restore sequence showed the same error. This turned out to be a bug in SQL Server,

which we found and fixed immediately.

What was more common is that the restore sequence did not show the problem. And

after a period of time, the customer would tell us an update to the drivers and firmware

of the hardware made the problem go away (or a replacement of hardware components).

 Managing Objects
Like databases, once you create tables, indexes, and server-side code like stored

procedures, you will inevitably have to manage these objects. This section covers

some examples of management tasks you may have to perform, such as altering tables,

truncating tables, dealing with index fragmentation, and altering server-side code.

 Managing Tables
In this section I’ll discuss two aspects of managing tables: altering tables by altering

columns and properties; and truncating tables, which can be a very efficient method to

clear a table.

 Altering Tables

After you create tables for your database, there could be scenarios where you want to

modify the definition or properties of a table. You always have the option to copy out the

data of a table, drop the current table, create a new table definition, and import back in

your data.

However, SQL Server provides an ALTER TABLE statement to modify the definition

or properties about the table. One of the most common usages to alter a table is to make

changes to columns. With ALTER TABLE you can add, drop, or change the definition

of columns within some limits. Making modifications to columns though has some

implications. The following are options to use with ALTER TABLE to make changes to

column definitions and those implications:

ADD <column>: You can add column(s) to a table that will be

defined in order at the end of the table. Any column you add

must either allow NULL values or you must specify a DEFAULT

Chapter 9 Managing and Monitoring SQL Server

468

CONSTRAINT as part of adding the column, to provide default

values for each row for the new column. Adding a column with a

default value on a table with a large number of rows can take some

time to complete (because it is like executing an INSERT on each

row) and generate a large number of log records.

ALTER COLUMN <column>: You can change the type of a

column and it size. Changing the type must follow the rules of

possible data type conversion for SQL Server, which can be found

at https://docs.microsoft.com//sql/t-sql/data-types/

data-type-conversion-database-engine. Changing the size of a

column is possible provided the new size is larger than the current

size definition (e.g., you can change a varchar(100) to varchar(200)

but not to varchar(10)).

DROP COLUMN <column>: You are allowed to drop a column in

the table except for columns that are part of constraints such as

primary keys. You must drop these constraints first, which is also

possible with ALTER TABLE. Note that dropping a column is fully

logged (like a DELETE), so this operation on a table with large

number of rows may take some time and generate a large number

of log records.

There is a range of other properties for the table you can adjust with ALTER TABLE,

such as partitioning, constraints, lock escalation, and triggers. You can see the complete

list of options to use with ALTER TABLE at https://docs.microsoft.com/sql/t-sql/

statements/alter-table-transact-sql#arguments.

By default, an ALTER TABLE execution blocks just about every other query (or is

blocked by other queries). This is because an ALTER TABLE by default obtains a Schema

Modification lock (Sch-M). The problem is that even the simplest SELECT statement

requires a Schema Stability Lock (Sch-S), which is not compatible with a Sch-M lock.

Fortunately, SQL Server allows some scenarios with ALTER TABLE to avoid a Sch-M

lock and allow operations to execute online with an option called WITH (ONLINE=ON)

as part of the ALTER TABLE syntax. You can read more about which operations are

allowed to run online with ALTER TABLE as part of the documentation of the WITH

(ONLINE=ON) option at https://docs.microsoft.com/sql/t-sql/statements/alter-

table-transact-sql#arguments.

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com//sql/t-sql/data-types/data-type-conversion-database-engine
https://docs.microsoft.com//sql/t-sql/data-types/data-type-conversion-database-engine
https://docs.microsoft.com/sql/t-sql/statements/alter-table-transact-sql#arguments
https://docs.microsoft.com/sql/t-sql/statements/alter-table-transact-sql#arguments
https://docs.microsoft.com/sql/t-sql/statements/alter-table-transact-sql#arguments
https://docs.microsoft.com/sql/t-sql/statements/alter-table-transact-sql#arguments

469

You can read all the details of the ALTER TABLE statement in our documentation at

https://docs.microsoft.com/sql/t-sql/statements/alter-table-transact-sql.

 Truncating Tables

Consider a situation where you need to delete all the rows in an existing table. Perhaps

you are using a table as part of an Extract, Transform, and Load (ETL) process. Part of

this process requires you to clear the table in SQL Server and refresh it with new data.

You could use the T-SQL DELETE statement, but this can be expensive because SQL

Server has to log the change of the delete of every row. SQL Server does use a process

called ghosted records to speed up deletes, but using a DELETE to remove 1 million rows

from a table when that is all the rows in the table is not efficient.

Therefore, SQL Server provides the TRUNCATE TABLE statement to remove all

the rows in a table in a much more efficient manner. When you execute a TRUNCATE

TABLE statement, SQL Server will deallocate extents (a collection of eight consecutive

pages) and only log these deallocations. Therefore a TRUNCATE TABLE statement is

very fast and uses a minimal amount of log space (but can still be run in the context

of a transaction and therefore be rolled back). In addition, deallocation of pages for

operations like TRUNCATE TABLE are faster because SQL Server uses a concept called

deferred drop. You can read more about deferred drop and logging of TRUNCATE TABLE

from a blog post by Paul Randal at https://www.sqlskills.com/blogs/paul/a-sql-

server-dba-myth-a-day-1930-truncate-table-is-non-logged.

You can read more details about how TRUNCATE TABLE works, including limits

and restrictions, in our documentation at https://docs.microsoft.com/sql/t-sql/

statements/truncate-table-transact-sql.

 Managing Indexes
Once you have created indexes for your tables, you may decide to create other indexes,

as I discussed in Chapter 6. In some situations, you may decide a specific index choice

you originally made doesn’t make sense anymore. In these cases, you can use the DROP
INDEX statement to drop a specific index. Just keep in mind that I did recommend

in Chapter 6 that in most cases you want a clustered index for a table, so if you decide

to drop a clustered index you will want to replace it with a new clustered index with

a different set of columns. This blog post is an older but still very appropriate one by

Kimberly Tripp on looking at usages of indexes and whether it makes sense to keep ones

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/t-sql/statements/alter-table-transact-sql
https://www.sqlskills.com/blogs/paul/a-sql-server-dba-myth-a-day-1930-truncate-table-is-non-logged
https://www.sqlskills.com/blogs/paul/a-sql-server-dba-myth-a-day-1930-truncate-table-is-non-logged
https://docs.microsoft.com/sql/t-sql/statements/truncate-table-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/truncate-table-transact-sql

470

you have already created, at https://www.sqlskills.com/blogs/kimberly/spring-

cleaning-your-indexes-part-i.

It would be incredible if you simply built the indexes you needed for a table and

never had to worry about them again for the life of your database and application. And

for a database that is mostly read-only, that could be partially true. However, almost

every application modifies data and indexes must be updated and changed along

with the data in most cases. SQL Server handles that type of modification for indexes

automatically. However, because of some data changes over time, you may need to

maintain your indexes either by rebuilding or reorganizing them. In this section, I’ll talk

about the process to rebuild and reorganize an index, along with a small section about

the ability to modify some properties of an index. In any of these situations, SQL Server

provides the ALTER INDEX T-SQL statement to maintain existing indexes. However, first

I need to discuss in more details the concept of index fragmentation.

Note one really cool solution from one of the best experts in the SQL Server
community, ola hallengren, includes scripts to help automate index maintenance
at https://ola.hallengren.com/sql-server-index-and-statistics-
maintenance.html.

 Index Fragmentation

As you modify data, especially inserting and delete new rows, the indexes you have

created may become fragmented. I briefly mentioned the concept of fragmentation

in a previous chapter on performance capabilities on indexes. There are two types of

fragmentation:

Logical or Extent Fragmentation: Logical fragmentation is the

percentage of pages that are logically linked together but out of

physical order. For example, a clustered index has at the leaf level

a linked list of database pages representing the data. Ideally, all

these pages would be ordered in the list by pageid so that they

are physically in order and contiguous in the database file. If

you remember from Chapter 6, I talked about how SQL Server

can only read multiple pages at one time if they are physically

contiguous in the file. If you run an SQL Server query that needs

Chapter 9 Managing and Monitoring SQL Server

https://www.sqlskills.com/blogs/kimberly/spring-cleaning-your-indexes-part-i
https://www.sqlskills.com/blogs/kimberly/spring-cleaning-your-indexes-part-i
https://ola.hallengren.com/sql-server-index-and-statistics-maintenance.html
https://ola.hallengren.com/sql-server-index-and-statistics-maintenance.html

471

to scan several pages in the clustered index, SQL Server is limited

on its ability to efficiently read multiple pages unless they are in

physical order. Extent fragmentation is the same concept except it

applies to tables without clustered indexes (heaps) and how pages

are ordered within IAM pages.

Page Compactness: Page compactness is a term I created for the

book, and you may not see this term be represented as part of the

concept of fragmentation. I call this part of fragmentation because

the more pages of an index (or data for a clustered index) are

sparsely filled with rows, or less compact, the more pages it can

take to service the need of a query. This can lead to higher than

desired level of pages required across all queries taking up space

in the buffer pool and requiring more I/O. However, there is a

balance here. If pages were 100% full (compacted), inserting new

rows could require page splits, which could lead to more logical

fragmentation. Therefore, ideally, leaving some space available

on pages is desirable but not to the level where most pages are

empty. When you create, rebuild, or reorganize an index, you can

make smart choices about how to leave space in index pages with

an option called fillfactor. I like this blog post by Kimberly Tripp

to learn more about fillfactor, at https://www.sqlskills.com/

blogs/kimberly/database-maintenance-best-practices-part-

ii-setting-fillfactor.

Note Fragmentation in an index may not affect application performance,
especially Logical Fragmentation. Logical fragmentation mostly affects t-SQL
queries involving scans of pages vs. a seek to a specific page. therefore, just
because you detect fragmentation in an index does not mean you have to always
rebuild or reorganize the index. having said that, in my experience almost every
production SQL Server environment deploys a plan to keep indexes from staying
fragmented, to ensure the maximum possible performance of all types of t-SQL
queries.

Chapter 9 Managing and Monitoring SQL Server

https://www.sqlskills.com/blogs/kimberly/database-maintenance-best-practices-part-ii-setting-fillfactor
https://www.sqlskills.com/blogs/kimberly/database-maintenance-best-practices-part-ii-setting-fillfactor
https://www.sqlskills.com/blogs/kimberly/database-maintenance-best-practices-part-ii-setting-fillfactor

472

SQL Server provides a method to look at both aspects of fragmentation through a

DMV called sys.dm_db_index_physical_stats. The column avg_fragmentation_in_
percent tracks Logical or Extent fragmentation and avg_page_space_used_in_percent

tracks how full pages are across the index.

So the question comes up, how to resolve issues related to fragmentation? I

recommend you look at two options provided by SQL Server to maintain an existing

index: Rebuild an index or Reorganize an index.

 Rebuilding an Index

Rebuilding an index through ALTER INDEX using the REBUILD option involves

dropping the existing index and creating a new index based on the existing index

definition, so it will require extra space in the database to rebuild the index (Note: ALTER

INDEX and CREATE INDEX have an option called SORT_IN_TEMPDB to store sort

results as part of the index rebuild in tempdb vs. the user database). Rebuilding the index

will reorder pages in physical order to remove fragmentation and compact pages based

on the specified fillfactor. In addition, rebuilding the index will create a new set of fresh

statistics for the index.

By default, an index rebuild is an offline operation that will block existing queries.

However, like ALTER TABLE, ALTER INDEX using REBUILD provides an option to

rebuild an index online using the WITH ONLINE=ON option. This allows queries to

execute at the same time the index is being rebuilt. In addition, SQL Server provides

an option called a resumable online index rebuild option with the RESUMABLE=ON

option. Using this option allows you to pause an index rebuild and resume it where it left

off. Some possible scenarios this can helpful to you are:

• Pause an index rebuild that is consuming many resources for SQL

Server affecting overall performance. This allows you to resume the

index rebuild at a later point in time as opposed to having to cancel

the index rebuild and run the entire process.

• Execute the index rebuild in chunks. For example, you could

rebuild the index in 25% increments over time. The catalog view

index_resumable_operations can be used to track the progress

of resumable online index rebuilds. You can read more about this

catalog view at https://docs.microsoft.com/sql/relational-

databases/system-catalog-views/sys-index-resumable-

operations.

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/relational-databases/system-catalog-views/sys-index-resumable-operations
https://docs.microsoft.com/sql/relational-databases/system-catalog-views/sys-index-resumable-operations
https://docs.microsoft.com/sql/relational-databases/system-catalog-views/sys-index-resumable-operations

473

Here is a simple example of a resumable online index rebuild using the full

WideWorldImporters sample database. Execute the following T-SQL statement as found

in the example resumablerebuild.sql to see an example of rebuilding an index online

with the resumable option:

USE WideWorldImporters

GO

ALTER INDEX PK_Purchasing_PurchaseOrders

ON [Purchasing].[PurchaseOrders]

REBUILD

WITH (ONLINE = ON, RESUMABLE = ON);

GO

ALTER INDEX using REBUILD can take advantage of parallelism, and follows

the rules as with queries to decide MAXDOP. The ALTER INDEX statement offers a

MAXDOP hint. In addition, ALTER INDEX offers an option called ALL to rebuild all

indexes for the specified table in a single transaction.

 Reorganizing an Index

An alternative to rebuilding the index is reorganizing the index. An index reorganization

is an online operation and uses existing index pages to compact pages and shuffle pages

to move them into physical order. You use the ALTER INDEX with the REORGANIZE

option to reorganize an index.

Reorganizing an index provides a great option to help with index fragmentation but

does not update statistics for the index. In addition, ALTER INDEX with REORGANIZE

has options to use ALL to reorganize all indexes for the table and also allows you to

specify a fillfactor. Paul Randal has a great blog post to describe the difference between

rebuilding and reorganizing an index at https://www.sqlskills.com/blogs/paul/

sqlskills-sql101-rebuild-vs-reorganize.

 Adaptive Index Defragmentation

You can use the guidance from the documentation to decide to rebuild or reorganize

an index, as described at https://docs.microsoft.com/sql/relational-databases/

indexes/reorganize-and-rebuild-indexes. However, thanks to the smart folks in SQL

Engineering known as the Tiger Team, you can use a script to create a stored procedure

Chapter 9 Managing and Monitoring SQL Server

https://www.sqlskills.com/blogs/paul/sqlskills-sql101-rebuild-vs-reorganize
https://www.sqlskills.com/blogs/paul/sqlskills-sql101-rebuild-vs-reorganize
https://docs.microsoft.com/sql/relational-databases/indexes/reorganize-and-rebuild-indexes
https://docs.microsoft.com/sql/relational-databases/indexes/reorganize-and-rebuild-indexes

474

that is intelligent to decide whether to rebuild or reorganize your indexes. This script and

its concept are called Adaptive Index Defragmentation. You can read more about this

script, its features, and download it at https://github.com/Microsoft/tigertoolbox/

tree/master/AdaptiveIndexDefrag.

 Modifying an Index

It is possible to change some of the properties of an index without requiring the index

to be rebuilt. This includes options like locking behavior (e.g., ALLOW_PAGE_LOCKS)

and statistics options (e.g., STATISTICS_NORECOMPUTE). Most options for ALTER

INDEX do require changes to the index structure as seen previously in the examples for

rebuilding and reorganizing an index. For a full list of options for ALTER INDEX, see

our documentation at https://docs.microsoft.com/sql/t-sql/statements/alter-

index-transact-sql#arguments.

 Maintaining Columnstore Indexes

I discussed the amazing performance feature called Columnstore indexes in Chapter 6.

Even though Columnstore indexes are organized differently than rowstore indexes, they

still can require maintenance. Here are some resources to use when deciding how to

maintain Columnstore indexes:

• Check out the documentation on defragmentation of Columnstore

indexes at https://docs.microsoft.com/sql/relational-

databases/indexes/columnstore-indexes-defragmentation.

• Here is a discussion on how to defragment a Columnstore index

using ALTER INDEX REORGNIZE at https://docs.microsoft.

com/sql/relational-databases/indexes/columnstore-indexes-

defragmentation#use-alter-index-reorganize-to-defragment-

a-columnstore-index-online.

• Here are more details on how to rebuild a Columnstore index at

https://docs.microsoft.com//sql/relational-databases/

indexes/columnstore-indexes-defragmentation#rebuild.

• Look at the T-SQL examples on rebuilding and reorganizing Columnstore

indexes at https://docs.microsoft.com/sql/t-sql/statements/

alter-index-transact-sql#examples-columnstore-indexes.

Chapter 9 Managing and Monitoring SQL Server

https://github.com/Microsoft/tigertoolbox/tree/master/AdaptiveIndexDefrag
https://github.com/Microsoft/tigertoolbox/tree/master/AdaptiveIndexDefrag
https://docs.microsoft.com/sql/t-sql/statements/alter-index-transact-sql#arguments
https://docs.microsoft.com/sql/t-sql/statements/alter-index-transact-sql#arguments
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-defragmentation
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-defragmentation
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-defragmentation#use-alter-index-reorganize-to-defragment-a-columnstore-index-online
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-defragmentation#use-alter-index-reorganize-to-defragment-a-columnstore-index-online
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-defragmentation#use-alter-index-reorganize-to-defragment-a-columnstore-index-online
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-defragmentation#use-alter-index-reorganize-to-defragment-a-columnstore-index-online
https://docs.microsoft.com//sql/relational-databases/indexes/columnstore-indexes-defragmentation#rebuild
https://docs.microsoft.com//sql/relational-databases/indexes/columnstore-indexes-defragmentation#rebuild
https://docs.microsoft.com/sql/t-sql/statements/alter-index-transact-sql#examples-columnstore-indexes
https://docs.microsoft.com/sql/t-sql/statements/alter-index-transact-sql#examples-columnstore-indexes

475

 Managing Server-Side Code
I’ve shown examples in this book so far to create T-SQL server-side code including

procedures, views, functions, and triggers. Once you have created these objects you may

need to modify or even drop them. Each type of object supports a corresponding ALTER

and DROP T-SQL version of the CREATE syntax.

Anytime you ALTER a server-side programming object such as a stored procedure,

that object will be recompiled the next time it is executed and stored in cache.

New to SQL Server 2016 SP1 and SQL Server 2017 is a new syntax you should

consider using for your scripts to create these types of objects. It is called CREATE or

ALTER. With this new syntax, you can create a single script to create or modify your

object instead of having one script to create and another to modify, or having to drop

and create each time you want to make a change.

For example, the following T-SQL statement creates a stored procedure called

howboutthemcowboys if it does not exist, or modifies it if already exists. No

need to use a DROP statement. You can find this statement in the example script

howboutthemcowboys.sql:

USE WideWorldImporters

GO

CREATE or ALTER PROCEDURE howboutthemcowboys

AS

BEGIN

SELECT 'Back to the Super Bowl in 2019'

END

GO

You can read more about how to use CREATE or ALTER object in our documentation

at https://docs.microsoft.com/sql/t-sql/statements/create-procedure-

transact-sql.

 Monitoring SQL Server
Managing the SQL Server instance, database, and objects is important to keep your

SQL Server healthy and running at peak performance. But how do you know in some

situations whether some management decisions are needed? You need to be able to

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/t-sql/statements/create-procedure-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/create-procedure-transact-sql

476

monitor key performance information and aspects of SQL Server to be proactive and

make smart management decisions.

In this section of the chapter, I’ll talk about various methods to monitor SQL Server

performance using SQL Server features, how to use an incredibly cool feature called the

System Health session, how to monitor Transaction Log Backups, and my take on Linux

tools to monitor the health of the operating system and server.

I’ll pause here to make an important statement that may seem obvious to you but

is quite frankly neglected by many. It is critical to establish a performance baseline
for your SQL Server. You can monitor SQL Server daily, but you won’t know if you are

seeing a possible problem, especially with performance, unless you establish and save

baselines for your workload, so you can compare. How do you know you are having a

performance problem if you don’t know what good performance looks like?

 Monitoring SQL Server Performance
While the SQL Server database platform comes built-in with many great features

that empower performance monitoring, there is no better substitute for an overall

monitoring solution than from our partners who specialize in monitoring. You can find

a complete list of these partners at https://docs.microsoft.com/sql/sql-server/

partner-monitor-sql-server.

Many of the features and capabilities used by these partners are built on a vast array

of tools I covered in Chapter 5 including features built in the database engine. In this

section, I will review some of these tools and features and the fundamental methods to

use them to monitor the performance of SQL Server.

 Running or Waiting

I mentioned earlier in this chapter one of my longtime colleagues and friend, Keith

Elmore. Like Robert Dorr, I worked side by side with Keith at Microsoft technical support

for many years and Keith remains a great friend today. I always looked to Keith when it

came to understanding how to tackle performance problems with SQL Server (and I still

do today).

Keith built some training for technical support several years ago and the philosophy

he used for this training was simple but brilliant. Keith coined the term that SQL Server

performance problems can be categorized as Running or Waiting.

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/sql-server/partner-monitor-sql-server
https://docs.microsoft.com/sql/sql-server/partner-monitor-sql-server

477

Running equates to CPU utilization. Monitoring the CPU utilization of all processes

on the server was important, to know whether any performance problems are related

to the SQL Server process or some other process. If the CPU utilization for SQL Server

appears to be high such that it might affect performance, then you need to drill into

what T-SQL queries are executing that are consuming the most CPU. If no queries are

consuming the most CPU, then a problem could exist with a background process or

with a spinlock contention problem (I briefly mentioned spinlocks when I discussed

In-Memory OLTP in Chapter 6). Tracing the queries that might account for a high CPU

scenario could be done with DMVs such as dm_exec_query_stats or Query Store.

Waiting as it relates to SQL Server is a scenario where a SQL Server user task may

be waiting on a specific wait type, which equates to waiting for a specific resource. Since

multiple users could all be competing for similar resources, a waiting scenario could

involve multiple users waiting on another user who is waiting on a resource (in terms

of a wait type known as a lock, this is often called a blocking chain). I mentioned the

concept of a wait type in Chapter 5 when I discussed the DMVs dm_exec_requests, dm_

os_waiting_tasks, and dm_os_wait_stats.

Armed with this knowledge you could not only tackle almost any SQL Server

performance problem but would know how to proactively monitor SQL Server

performance by monitoring CPU utilization and wait types across users and for the SQL

Server instance.

 Using DMVs to Monitor Performance

Following Keith’s lead on looking at CPU utilization or waiting scenarios, you first need

to be able to monitor CPU utilization of all processes on the Linux Server including

sqlservr. Look in a section later in this chapter for tools and package for Linux to monitor

CPU of all processes.

Assuming you are focusing on the CPU utilization of SQL Server, you can use the

DMV dm_exec_query_stats to find out which queries based on cached plans have

used the highest CPU utilization. In addition, you can use the DMVs dm_exec_requests

and dm_os_waiting_tasks to find out which tasks are waiting on other tasks or specific

resources. The DMV dm_os_wait_stats gives a picture of what are the highest wait

resources across the SQL Server instance. I provided examples on how to use each of

these DMVs in Chapter 5. In addition, don’t forget about monitoring queries live using

Lightweight Query Profiling including the DMV dm_exec_query_profiles. I mentioned

this feature in Chapter 5, but here is a link as a reminder for you to read more about

Chapter 9 Managing and Monitoring SQL Server

478

monitoring queries live, at https://docs.microsoft.com/sql/relational-databases/

system-dynamic-management-views/sys-dm-exec-query-profiles-transact-sql. I

look towards a future where we can just turn this on by default, so you can always see live

query information all the time!

You also will want to monitor the overall performance of SQL Server from a workload

and throughput perspective. I’ve mentioned in previous chapters the DMV dm_os_
performance_counters that can be used for this purpose. This DMV is initialized at

SQL Server startup and then kept up to date by the SQL Server engine as it is running.

Remember this DMV has a very normalized structure where the row values describe the

specific counters to measure instead of column names.

The following T-SQL statement, as found in the example dm_os_performance_
counters.sql, returns all counters for the object called SQLServer:SQL Statistics at any

point in time for the SQL Server instance:

SELECT * FROM sys.dm_os_performance_counters

WHERE object_name = 'SQLServer:SQL Statistics'

ORDER BY counter_name

GO

We built performance counters for SQL Server to integrate with the Windows

Performance Counters System (see more information at https://docs.microsoft.com/

windows/desktop/perfctrs/performance-counters-reference). A common method

to view these counters is with the Windows Performance Monitor Tool (commonly

known as perfmon). Since the Windows Performance Counter system does not work on

Linux Operating Systems, you can query the SQL Server performance counters through

the dm_os_performance_counters DMV. A description of all the possible SQL Server

performance counters is described in our documentation at https://docs.microsoft.

com/sql/relational-databases/performance-monitor/use-sql-server-objects.

When you view SQL Server performance counters with the perfmon tool on

Windows, the rates of counter values are automatically displayed. For example, the

counter_name Batch Requests/sec is a rate of workload throughput for SQL Server. But

the rate is presented as a cumulative value. In order to find out the true rate, you must

perform a calculation using T-SQL. Look at the following excellent blog post to see how

to use information in the DMV to understand how to perform the correct calculations:

https://blogs.msdn.microsoft.com/psssql/2013/09/23/interpreting-the-

counter-values-from-sys-dm_os_performance_counters. In addition, you can look at

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-profiles-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-profiles-transact-sql
https://docs.microsoft.com/windows/desktop/perfctrs/performance-counters-reference
https://docs.microsoft.com/windows/desktop/perfctrs/performance-counters-reference
https://docs.microsoft.com/sql/relational-databases/performance-monitor/use-sql-server-objects
https://docs.microsoft.com/sql/relational-databases/performance-monitor/use-sql-server-objects
https://blogs.msdn.microsoft.com/psssql/2013/09/23/interpreting-the-counter-values-from-sys-dm_os_performance_counters
https://blogs.msdn.microsoft.com/psssql/2013/09/23/interpreting-the-counter-values-from-sys-dm_os_performance_counters

479

the example scripts from the Automatic Tuning example from Chapter 6 (found in the

auto_tune directory) on how to generate a correct rate for Batch Requests/sec.

There are 1600+ SQL Server performance counters to choose from. The following in

Table 9-1 are the top five counter areas I recommend you always monitor (and then add

from there other ones that suit your needs).

So how will you know what you are monitoring is good or bad? There could be

some obvious signs. For example, if SQL Server is consuming 100% CPU constantly,

that is usually not a good sign but maximizing your CPU resource is a goal. The only

way to know for sure is to set a baseline based on DMV information by saving the DMV

collection (even during testing) and then monitoring any major changes over time. Don’t

forget to keep multiple baselines as you make changes to your database, application, or

even updates to SQL Server.

 Using the Query Store to Monitor Performance

As I mentioned in Chapter 5, if you enable Query Store you now have historical

performance information for queries compiled and executed stored in your database.

This will include information about total execution time, CPU time, and information

about wait statistics.

Table 9-1. My top 5 SQL Server Performance Counters to Monitor

object_name counter_name description

SQLServer:SQL

Statistics

Batch requests/Sec rate of t-SQL batches executed on SQL Server

SQLServer:Memory

Manager

total Server

Memory (KB)

the total amount of memory allocated by the SQL

Server engine

SQLServer:Wait

Statistics

all counters this allows you to track the major categories from

dm_os_wait_stats

SQLServer:general

Statistics

User Connections the current number of active users connected to SQL

Server

SQLServer:SQL

errors

all counters i had to choose only 5, so why not monitor the total

number of errors. a huge spike may indicate a severe

SQL Server or application problem.

Chapter 9 Managing and Monitoring SQL Server

480

The largest benefit to Query Store is that you don’t have to poll DMVs and save their

output, as Query Store information is persisted to your database (in fact the default is

to keep 30 days of performance information). The drawback to Query Store is that the

information is stored per database. If you have multiple databases on your SQL Server

instance, you would have to consolidate this information to get an instance-wide view of

performance of SQL Server.

As I mentioned in Chapter 5, our documentation has some excellent examples of

how to execute queries against the Query Store. You can find these at https://docs.

microsoft.com/sql/relational-databases/performance/monitoring-performance-

by-using-the-query-store#Scenarios. Included here are queries you can edit to your

needs that run against the Query Store to look at a baseline and monitor for changes.

But remember the advantage of Query Store: your history is built-in! Let’s say you started

your production workload on Monday, August 1, 2018 and enabled Query Store. By

default, you now get 30 days of historical information (you can configure the history

timeline). At any point in time, you can run queries against the Query Store and compare

them to historical dates including your baseline date. This is because everything has a

timestamp in the Query Store (remember it is UTC datetime).

 Using Extended Events for Performance

Having the Query Store for automatic history of performance is a great asset to your

monitoring toolkit. Once you start monitoring with DMVs or the Query Store, it could

be possible that you need to track the exact execution of specific queries and other

information like the execution plan of the query. Remember, the DMVs and the Query

Store will not track the actual execution plan of a query. And Query Store aggregates

execution information about queries and plans rather than tracking each execution.

Lightweight Query Profiling could really be a benefit for these situations to get the

actual execution plan of specific running queries. However, there may be situations

where you need to trace query execution and possibly other key events related to

performance as you monitor SQL Server. There is where Extended Events comes into

play as a great technology for detailed tracing. I discussed many aspects of Extended

Events in Chapter 5, including examples of how to find all the possible events to trace.

Want a way to get started quickly with Extended Events? Use the XEProfiler that

comes built into SSMS. You can read more about using XEProfiler at https://docs.

microsoft.com/sql/relational-databases/extended-events/use-the-ssms-xe-

profiler.

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store#Scenarios
https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store#Scenarios
https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store#Scenarios
https://docs.microsoft.com/sql/relational-databases/extended-events/use-the-ssms-xe-profiler
https://docs.microsoft.com/sql/relational-databases/extended-events/use-the-ssms-xe-profiler
https://docs.microsoft.com/sql/relational-databases/extended-events/use-the-ssms-xe-profiler

481

XE Profiler creates Extended Event sessions called QuickSessionStandard and

QuickSessionTSQL. Use these as a base to create your own sessions that have other

events you want to trace. You can use SSMS to right-click one of these sessions and script

out the definition of it to create your own. Figure 9-5 shows an example of how to do this.

Notice in this figure a session called Profiler. That session is similar to the

functionality of XEProfiler and comes from a new extension to SQL Operations Studio

called SQL Server Profiler (not to be confused with the actual tool called SQL Server

Profiler). You can read more about this extension at https://docs.microsoft.com/

sql/sql-operations-studio/sql-server-profiler-extension. Figure 9-6 shows an

example of this extension in action against an SQL Server instance on Linux.

Figure 9-5. Scripting the QuickSessionTSQL Extended Events session

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/sql/sql-operations-studio/sql-server-profiler-extension
https://docs.microsoft.com/sql/sql-operations-studio/sql-server-profiler-extension

482

I like to think of tools like XEProfiler and SQL Server Profiler for SQL Operations

Studio as a quick live look at SQL Server at any point in time. These sessions will not be

expensive and could give you a quick look at SQL Server. For example, let’s say you hear

the application that uses SQL Server is down and everyone is pointing the finger at SQL

Server. These tools could quickly tell you whether the application is sending queries

to SQL Server and are they executing within a reasonable timeframe. If no queries are

coming to SQL Server, then the problem could be networking or an application issue.

But Extended Events can also be used as a detailed tracing mechanism to

supplement your monitoring needs, especially if you detect a possible problem. Let me

give you a quick example. Let’s say you suspect fragmentation is occurring due to a large

number of page splits. So you monitor the DMV dm_os_performance_counters for the

counter called Page Splits/sec and confirm your suspicion. Wouldn’t it be nice to track

what queries are executing when a page split occurs?

The following T-SQL statement will create an Extended Events session to do just that

(this session definition can be found in the example script tracepagesplits.sql).

CREATE EVENT SESSION [tracespagesplits] ON SERVER

ADD EVENT sqlserver.page_split(

ACTION (sqlserver.session_id, sqlserver.sql_text, sqlserver.client_app_name,

sqlserver.database_id))

Figure 9-6. The SQL Server Profiler extension of SQL Operations Studio

Chapter 9 Managing and Monitoring SQL Server

483

ADD TARGET package0.event_file(SET filename=N'pagesplits.xel')

WITH (MAX_DISPATCH_LATENCY=5 SECONDS,STARTUP_STATE=OFF)

GO

You can now see what sessions, queries, application name, and databases are

involved in the page split. The page_split events include the pageid that was split.

 Using the System Health Session
Extended Events was launched as part of the SQL Server 2008 release. At that time, I

worked in Microsoft technical support and thought we could leverage Extended Events

by creating a default session that would capture important health information about SQL

Server. Thus was born the system_health Extended Events session. You can read about

the original version of this in this blog post: https://blogs.msdn.microsoft.com/

psssql/2008/07/15/supporting-sql-server-2008-the-system_health-session. One

of the limitations with this early version is that the session wrote data to a ring_buffer

target so when SQL Server was restarted, the information collected was lost.

With the launch of SQL Server 2012, we revised the method in which failure

detection worked with clustering via the sp_server_diagnostics system procedure,

which I described in Chapter 8. My colleague in support, Robert Dorr, was a huge part

of defining how sp_server_diagnostics worked. In addition, Bob took the time to revamp

the system_health session to include sp_server_diagnostics information and to have a

file target added to the session.

This is really a major advancement, as now by default any SQL Server has a set of

Extended Event files that includes health information about SQL Server, including but

not limited to:

• sp_server_diagnostics output

• Memory diagnostics

• Deadlocks

• Non-yielding problems

• Latch waits over 15 seconds

• Certain preemptive waits over five seconds

• Critical errors

Chapter 9 Managing and Monitoring SQL Server

https://blogs.msdn.microsoft.com/psssql/2008/07/15/supporting-sql-server-2008-the-system_health-session
https://blogs.msdn.microsoft.com/psssql/2008/07/15/supporting-sql-server-2008-the-system_health-session

484

Robert Dorr has a good blog post discussing this new system_health session at

https://blogs.msdn.microsoft.com/psssql/2012/03/08/sql-server-2012-true-

black-box-recorder.

These files are by default stored in the /var/opt/mssql/log directory. Look for the set

of files that match the pattern system_health*.xel. Use the following T-SQL statement as

found in the example readsystemhealth.sql to read all the events in the current system

health session. I included a conversion to your local time but also left in the original UTC

time in the query.

SELECT DATEADD(minute, DATEDIFF(minute,getutcdate(),getdate()), timestamp_utc)

as local_datetime, *

FROM sys.fn_xe_file_target_read_file('/var/opt/mssql/log/system_health*.xel',

NULL, NULL, NULL)

ORDER BY local_datetime DESC

GO

On my Linux Server, the results looked like Figure 9-7 from SQL Operations Studio.

Figure 9-7. Results from reading the system_health Extended Events session

Chapter 9 Managing and Monitoring SQL Server

https://blogs.msdn.microsoft.com/psssql/2012/03/08/sql-server-2012-true-black-box-recorder
https://blogs.msdn.microsoft.com/psssql/2012/03/08/sql-server-2012-true-black-box-recorder

485

 Smart Log Backups
In some cases, monitoring activities like backups can be linked to performance. In

Chapter 8 I talked about how to back up the transaction log. The examples I talked

about in this chapter showed a schedule of log backups based on a time frequency. This

technique has been used for many years and works for many production workloads.

One problem with this technique is that applications can generate unexpected spikes

of transaction log activity resulting in possible autogrowth of the transaction log. I’ve

described earlier in the book how autogrowth of the transaction log can possibly lead to

blocking and performance problems.

Fortunately, SQL Server has a technique to perform a smarter log backup, One of

my colleagues in SQL Server Engineering (who still works for Microsoft but with a bit

broader scope now), Parikshit Savjani, wrote an excellent blog post on how to perform

a smart log backup based on the DMF dm_db_log_stats. You can read the details at

https://blogs.msdn.microsoft.com/sql_server_team/smart-transaction-log-

backup-monitoring-and-diagnostics-with-sql-server-2017.

 Linux Tools for Monitoring
While SQL Server provides a rich set of tools for monitoring, it is important to also

monitor the operating system hosting SQL Server. If you have experience using Linux,

you probably have a set of tools and programs you use all the time to monitor Linux.

Below is a list of tools and commands I’ve discovered to be useful from both my

experience using Linux and from others in the SQL Server Engineering team.

top: top is a core Linux program to display a real-time view of

processes and overall CPU and memory of the Linux Server,

and I’ve used it in previous chapters. top should be installed by

default on almost all Linux distributions. top is interactive in the

sense that it refreshes constantly. You have to type ‘q’ to exit the

program. Here is a glimpse of part of the output of top on my

Linux RHEL Server as seen in Figure 9-8.

Chapter 9 Managing and Monitoring SQL Server

https://blogs.msdn.microsoft.com/sql_server_team/smart-transaction-log-backup-monitoring-and-diagnostics-with-sql-server-2017
https://blogs.msdn.microsoft.com/sql_server_team/smart-transaction-log-backup-monitoring-and-diagnostics-with-sql-server-2017

486

iotop: iotop is a program similar to top but focused only on

I/O. iotop may not be installed by default, so first execute this

command from the bash shell:

sudo yum install -y iotop

Running iotop requires sudo, and I recommend using the -o parameter, which

shows only the active I/O from the system. Run the following command from

the bash shell:

sudo iotop -o

Figure 9-9 shows the output of iotop on my Linux Server.

htop: htop is a program similar to top with a bit more flair. One

of the programs I use on Windows Server is Task Manager. I

can get quick visual view of CPU utilization by processor. htop

provides that type of look and feel plus details of process resource

usage. I’ve found that htop is not likely installed on most Linux

systems by default. Therefore, to install this on RHEL, run these

commands from the bash shellL

sudo wget dl.fedoraproject.org/pub/epel/7/x86_64/Packages/e/epel-

release-7-11.noarch.rpm

sudo rpm -ihv epel-release-7-11.noarch.rpm

sudo yum install -y htop

Figure 9-9. The output of the iotop program on Linux

Figure 9-8. The output of the top program on Linux

Chapter 9 Managing and Monitoring SQL Server

487

To execute htop, just run the following command:

htop

Figure 9-10 shows a part of the htop output on my Linux Server,

which has four CPUs.

sar: sar (System Activity Report) has been around for a long time

on UNIX and Linux systems. It uses the /proc filesystem to gather

information into a report. Therefore, sar is a good program to see

operating system resources such as CPU, memory, and I/O over

time even across server restarts. There are many options with sar

and you can see all of them by executing the following command:

man sar

Figure 9-11 shows a part of the default sar output on my Linux server.

Figure 9-10. htop on Linux

Figure 9-11. default sar output on Linux

Chapter 9 Managing and Monitoring SQL Server

488

dstat: dstat is a program that combines the functionality of several

programs such as vmstat, iostat, and ifstat. dstat may not be

installed on your Linux Server, so you can install it by running this

command:

sudo yum install -y dstat

When you execute dstat it immediately starts producing output scrolling

across the screen from your ssh session. Figure 9-12 shows part of the output

from dstat on my Linux server.

Figure 9-12. dstat output on Linux

LinuxKI: Patrick Kilfoyle joined our SQL Engineering team

during Project Helsinki and brought to us a wealth of experience

on Linux. One of Patrick’s skills is Linux kernel performance

tuning. I asked him what interesting “low-level” tools he used for

performance tuning. He quickly pointed me to LinuxKI. According

to the GitHub project site, LinuxKI is “an opensourced advanced

mission critical performance troubleshooting tool for Linux.” I

consider it “low-level” because it uses Linux kernel trace data to

help drill into complex performance workload situations. Patrick

uses it at Microsoft to dig into complex SQL Server performance

tuning problems at the Linux kernel level. You can download and

learn more about LinuxKI on the GitHub project site at https://

github.com/HewlettPackard/LinuxKI.

Chapter 9 Managing and Monitoring SQL Server

https://github.com/HewlettPackard/LinuxKI
https://github.com/HewlettPackard/LinuxKI

489

 SQL Server Troubleshooting
Throughout the book so far, I have introduced you to tools, techniques, and features that

could be used for the purposes of troubleshooting problems with SQL Server on Linux.

Having said that, there are a few troubleshooting topics worth covering in this

chapter that I have not discussed at this point in the book. This includes dump files, core

dump files, and PSSDiag. I want to personally thank two of the top experts currently

in Microsoft support on SQL Server on Linux, Pradeep M and Suresh Kandoth, for the

content in this section.

 Dump Files
When some error conditions occur with SQL Server such as an Access Violation, the

database engine will produce a dump file and entry in the ERRORLOG. The dump file is

useful for Microsoft technical support to investigate the cause of the problem. In most

cases, when a dump file is generated, SQL Server has handled the error or exception,

produced the dump file, and properly terminated the worker thread (which is like a

severe error causing possibly a connection to be terminated and transactions rolled

back).

The dump files are saved in the same directory where the ERRORLOG files reside,

which is by default /var/opt/mssql/log. You will recognize dump files (often called

minidump files) by the file pattern SQLDump<n>.mdmp. These files are formatted to

be read by the Windows Debugger, as any dump file generated by SQL Server uses the

minidump format for Windows.

There is also a technique sometimes used by Microsoft support to manually generate

a dump file to gain more insight into the SQL Server process. You can do this yourself by

executing the following T-SQL statement:

Note do not run this on a production server unless instructed by Microsoft. this
command is not officially supported and is only to be run for advanced diagnostic
purposes.

DBCC STACKDUMP

GO

Chapter 9 Managing and Monitoring SQL Server

490

When you run this command, the ERRORLOG file will have a “stack dump header”

that looks similar to the following text

spid51 **Dump thread - spid = 0, EC = 0x000000067EDA1290

spid51 *

spid51 * User initiated stack dump. This is not a server exception dump.

spid51 *

spid51 ***Stack Dump being sent to /var/opt/mssql/log/SQLDump0001.txt

spid51 * ***

spid51 *

spid51 * BEGIN STACK DUMP:

spid51 * 07/30/18 22:05:25 spid 1

spid51 *

spid51 * StackDump (all)

In the /var/opt/mssql/log directory will be three files:

SQLDump0001.txt: Text file with information about the reason

for the dump and important data structures

SQLDump0001.log: A portion of the ERRORLOG near when the

dump was created

SQLDump0001.mdmp: The minidump file of the SQL Server

process. Remember, this file is generated by SQL Server running

within the SQLPAL architecture, so it’s a representation of a

minidump for SQLSERVR.EXE Windows process.

At this point, you can load the SQLDump0001.dmp file with the Windows Debugger

(windbg). You can learn more about the Windows Debugger at https://docs.

microsoft.com/windows-hardware/drivers/debugger/getting-started-with-

windows-debugging. Reading dump files with the Windows Debugger definitely requires

advanced skills. Again, these files are generated for diagnostics purposes to be used by

Microsoft technical support and SQL Server Engineering. However, it is possible to use

the Windows Debugger along with the Microsoft public symbol server to look at call

stacks associated with the reason for the dump (e.g., Access Violation) and possibly

determine if the problem may be fixed already by Microsoft or a general idea of where in

the code the problem is occurring and avoid it.

Chapter 9 Managing and Monitoring SQL Server

https://docs.microsoft.com/windows-hardware/drivers/debugger/getting-started-with-windows-debugging
https://docs.microsoft.com/windows-hardware/drivers/debugger/getting-started-with-windows-debugging
https://docs.microsoft.com/windows-hardware/drivers/debugger/getting-started-with-windows-debugging

491

 Core Dump Files
In some rare situations, SQL Server cannot handle an exception or critical error. On

Linux, when a process crashes and cannot handle the exception, a core dump is typically

generated. A core dump represents a dump of the entire process memory of a Linux

process. (I always wanted to know why it is called core dump and found out that the term

comes from older UNIX systems that used magnetic core memory.)

For SQL Server, we wanted to provide rich diagnostics and control how a core dump

is generated, should the sqlservr Linux process encounter what normally would result in

a Linux core dump.

If you remember, in Chapter 1 I talked about how SQL Server on Linux has two

processes. One of the processes is the watchdog process that forks the child process,

the actual SQL Server database platform. In addition, I talked about some of the files

installed with SQL Server in the /opt/mssql/bin directory. This directory contains the

sqlservr binary but also some other files including a shell script called handle-crash.sh

and a program called paldumper.

The flow of a core dump for SQL Server then looks like the following:

• The watchdog sqlservr process listens on a signal if the child process

crashes.

• When signaled, the watchdog process will invoke the handle-crash.sh

script.

• handle-crash.sh invokes the paldumper program to generate the core

dump.

Other information is collected in addition to the core dump and compressed into a

.tbz2 file.

Let’s see this in action using the following example:

Note do not try this in production, as it will terminate the sqlservr process
unexpectedly.

 1. Make sure SQL Server is running.

 2. Find the process ID of the child process. Use the following

command from the bash shell:

ps -auxf | grep sqlservr

Chapter 9 Managing and Monitoring SQL Server

492

 3. The second process listed for sqlservr is the actual sqlservr engine

or child process.

 4. Run the following command to kill the process:

sudo kill -s SIGSEGV <pid>

This command sends a signal to the sqlservr process that it is not prepared to handle

and therefore it will terminate unexpectedly. The watchdog process is signaled and the

aforementioned process kicks in. You can observe the core dump being generated if you

run the following command within a few seconds of executing the kill command:

sudo systemctl status mssql-server

Figure 9-13 shows an example on my Linux Server.

Three files are created in the /var/opt/mssql/log directory:

core.sqlservr.<datetime>.<pid>.txt – Contains information about

the reason for the creash

core.sqlservr.<datetime>.<pid>.json – JSON version of the .txt file

core.sqlservr.<datetime>.<pid>.tbz2 – Compressed file containing

the core dump and other diagnostic data for Microsoft Technical

Support and SQL Engineering.

 PSSDiag
Soon after SQL 2000 released, one of the pillars of the SQL Server community, Ken

Henderson, joined the Technical Support team at Microsoft. Ken loved innovation and

along with another super smart colleague of mine in support, Bart Duncan, they built a

Figure 9-13. A core dump being generated for SQL Server on Linux

Chapter 9 Managing and Monitoring SQL Server

493

tool called PSSDiag to automate the collection of diagnostic information for SQL Server

support cases. This includes performance monitor data, log files, SQL Server DMV data,

and other files commonly needed for customer support cases.

Note Ken passed away several years ago, but his influence is felt today. it is
ironic that i’m mentioning him in this book. i actually had the privilege of co-
authoring a book with him called SQL Server 2005 Practical Troubleshooting.
i thought of my experience working with Ken, who authored many books, when i
thought about authoring this book. Ken also was a huge influence on me getting
started to speak at customer events such as the paSS Summit. and of course, we
were also friends because he was a huge dallas Cowboys fan! Bart still works for
Microsoft in engineering and i see him from time to time when both of us happen
to be visiting redmond.

PSSDiag has become one of the most widely used tools by Microsoft Technical

Support for SQL Server in history. Therefore, as the support team was preparing for

the release of SQL Server on Linux, they built a version of PSSDiag that could work on

Linux. Working in conjunction with the SQL Customer Advisory Team (CAT), PSSDiag

was built to collect information about the Linux operating system along with SQL Server

diagnostic data. You can read more about how to download this tool yourself to see

how it works and the details the tool collects, at this blog post: https://blogs.msdn.

microsoft.com/sqlcat/2017/08/11/collecting-performance-data-with-pssdiag-

for-sql-server-on-linux.

 Summary
This chapter concludes the main heart of the book, as it provides to you important

information to prepare yourself to manage and monitor an SQL Server once you have

built your database and deployed your application. For those of you looking to migrate

an older version of SQL Server or another database product such as ORACLE or

PostgreSQL, you will want to read Chapter 10 to gain insight and guidance for migration.

Or you could move ahead to the final chapter of the book where I’ll describe and discuss

how SQL Server works with Docker Containers.

Chapter 9 Managing and Monitoring SQL Server

https://blogs.msdn.microsoft.com/sqlcat/2017/08/11/collecting-performance-data-with-pssdiag-for-sql-server-on-linux
https://blogs.msdn.microsoft.com/sqlcat/2017/08/11/collecting-performance-data-with-pssdiag-for-sql-server-on-linux
https://blogs.msdn.microsoft.com/sqlcat/2017/08/11/collecting-performance-data-with-pssdiag-for-sql-server-on-linux

495
© Bob Ward 2018
B. Ward, Pro SQL Server on Linux, https://doi.org/10.1007/978-1-4842-4128-8_10

CHAPTER 10

Migrating to SQL Server
on Linux
Some of you reading this book are building a new database and will use the previous

chapters in this book to create a new database(s) and application. However, some of you

have existing databases either on SQL Server or other database products and are looking

to migrate to SQL Server on Linux. This chapter is intended for you. However, even if you

are not performing a migration, I think you’ll be interested in looking over this chapter,

which is broken down into these sections:

• Migrating from SQL Server: In this section I’ll talk about tools and

considerations for migrating from a previous version of SQL Server to

SQL Server on Linux.

• Migrating from Oracle: In this section, I’ll discuss the mechanics of

migrating from Oracle on Linux to SQL Server on Linux.

• Migrating from PostgreSQL: In this section, I’ll give you my opinions

on a comparison of features between SQL Server and PostgreSQL. I’ll

also give some tips and resources on how to migrate your database

from PostgreSQL to SQL Server on Linux.

• Post Migration Considerations: Once you have migrated from

SQL Server or another database product, you should take into

consideration several post migration steps and actions to ensure a

great experience with SQL Server on Linux.

Tip Keep up to date with the team that owns the migration strategy for SQL
Server and Azure Data Services on their blog at https://blogs.msdn.
microsoft.com/datamigration.

https://blogs.msdn.microsoft.com/datamigration
https://blogs.msdn.microsoft.com/datamigration

496

 Migrating from SQL Server
Since we have launched SQL Server on Linux, I’ve encountered some customers who are

currently using a previous version of SQL Server on Windows but are now considering a

move to SQL Server on Linux. This chapter is for you. I’ll discuss the overall process for

migration, tools to use to prepare the migration, and tools and techniques to execute the

migration.

Figure 10-1 represents a picture of the overall migration process from a previous

release of SQL server to SQL Server on Linux.

Figure 10-1. The migration process from a previous release of SQL Server to SQL
Server on Linux

ChApter 10 MigrAting to SQL Server on Linux

497

In this section, I will talk about the components that can assist you to migrate from

older releases of SQL Server to SQL Server on Linux. Microsoft provides tools to prepare

you to migrate to SQL Server on Linux, called Data Migration Assistant and Database
Experimentation Assistant. I’ll also discuss how to execute a migration of your

database(s) using a database backup, export and import data with bulk import or SSIS

packages, or a Data-Tier application file (called a BACPAC file).

When you have completed reading these sections for preparation and execution

of your migration, be sure to not miss the section of this chapter on Post Migration

Considerations to learn about next steps once the migration is completed.

 Preparing for the Migration
Based on Figure 10-1, preparation to migrate one or more databases to SQL Server on

Linux centers on the use of two tools:

Data Migration Assistant: The Data Migration Assistant

(DMA) tool is free to download and can be used to assess the

configuration of the SQL Server instance and your databases, to

point out potential problems that could occur after the migration

and also point out new features that might help you when you

start using SQL Server on Linux. In addition, this tool will look to

see possible features being used on SQL Server on Windows that

are not supported on SQL Server on Linux.

Note the DMA can be used to migrate your data and also has capabilities to
migrate to Azure SQL Database and SQL Server in Azure virtual Machine. You can
read the full list of DMA functionality and features, including links to download the
tool, at https://docs.microsoft.com/sql/dma/dma-overview.

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/dma/dma-overview

498

Database Experimentation Assistant: Assessing static

configuration details of your instance or databases is very helpful

to make your migration smoother. However, most users are also

concerned about performance of queries when migrating to a

new version of SQL Server, such as SQL Server 2017 on Linux.

The Database Experimentation Assistant (DEA) tool can help

you trace, execute, and compare query workloads between two

versions of SQL Server.

Let’s take a look at the capabilities of each of these tools to prepare you for migrating

your databases to SQL Server on Linux.

 Data Migration Assistant

The DMA tool includes capabilities to check for the compatibility of your configuration

of SQL Server, your database, and T-SQL objects such as stored procedures in your

database matched to the target version of SQL Server for your migration.

Note For checks on the use of incompatible t-SQL, DMA can only check objects
in your database like stored procedures. it does not check t-SQL compatibility of
the code in your application.

In addition, DMA can look for possible new features in your target SQL Server

version that you could improve your use of SQL Server such as columnstore indexes.

Finally, if the target version of SQL Server is Linux, DMA can check to see if you are using

a feature that is not supported for SQL Server on Linux, like SQL Server Replication.

Currently, the rules that support compatibility, new features, and feature parity are

not publicly documented. However, I talked to Venkata Raj Pochiraju and Sreraman

Narasimhan from the team that built DMA and they gave me insight into the type of

coverage that is supported by DMA.

Tip You can gain some insight into how DMA checks for compatibility, new
features, and feature parity by using a tool like xeprofiler to trace the queries used
by DMA. i often use xeprofiler and extended events to “debug” what tools do.

ChApter 10 MigrAting to SQL Server on Linux

499

Compatibility Issues include rules like:

• Using legacy T-SQL statements like COMPUTE instead of

replacement functionality like T-SQL ROLLUP

• The use of older DBCC commands like DBCC DBREINDEX instead of

ALTER INDEX.

• Warnings for the use of older data types like TEXT or IMAGE instead

of using the new varchar(max) or varbinary(max) types.

New Features recommendations include suggestions for use of features like:

• Using columnstore indexes to accelerate analytic performance

• Using security features like Always Encrypted, TDE, and dynamic

data masking

Feature parity rules include a check for any use of the following features, which as

of the writing of this book are not supported for SQL Server on Linux (see https://docs.

microsoft.com/sql/linux/sql-server-linux-release-notes#Unsupported).

Showing you an example for this tool is more difficult, since I would need to show

you how to build an SQL Server instance on Windows and database that causes several

of these rules to fire. It turns out the WideWorldImporters database, which was built for

SQL Server 2016, doesn’t really hit any problems worth calling out. I even went back to

use the older example database we published for SQL Server 2008, AdventureWorks, and

it didn’t really uncover any issues either.

However, I’ve talked to customers who have found the tool very helpful to assess

a legacy SQL Server and point out possible issues to migrate to SQL Server on both

Windows and Linux.

Figure 10-2 shows an example screen you are presented when you build a new

Database Migration Assistant project and choose SQL Server 2017 on Linux as your

target.

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes#Unsupported
https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes#Unsupported

500

I highly encourage anyone migrating from older versions of SQL Server to SQL Server

on Linux to use DMA and study the results carefully before executing the migration. Be

sure to read through these resources related to DMA:

• Best Practices for running Data Migration Assistant, at https://

docs.microsoft.com/sql/dma/dma-bestpractices

• Read more about analyzing DMA results using PowerShell

at https://docs.microsoft.com/sql/dma/dma-

consolidatereports#import-assessment-results-into-a-sql-

server-database.

• Use the PowerBI sample reports at https://docs.microsoft.com/

sql/dma/dma-powerbiassesreport to gain analysis for assessments

of a large number of databases.

Figure 10-2. Assessment choices for migration to SQL Server on Linux

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/dma/dma-bestpractices
https://docs.microsoft.com/sql/dma/dma-bestpractices
https://docs.microsoft.com/sql/dma/dma-consolidatereports#import-assessment-results-into-a-sql-server-database
https://docs.microsoft.com/sql/dma/dma-consolidatereports#import-assessment-results-into-a-sql-server-database
https://docs.microsoft.com/sql/dma/dma-consolidatereports#import-assessment-results-into-a-sql-server-database
https://docs.microsoft.com/sql/dma/dma-powerbiassesreport
https://docs.microsoft.com/sql/dma/dma-powerbiassesreport

501

Tip Assess databases at scale in an unattended mode using the dmacmd.
exe utility. For details on how to use dmacmd.exe, look at https://blogs.
msdn.microsoft.com/datamigration/2016/11/08/data-migration-
assistant-how-to-run-from-command-line/.

 Database Experimentation Assistant

Doing as much testing as possible for performance of your SQL Server application is one of

the most critical aspects to a successful migration. DEA can be a very powerful tool to help

you achieve that goal. The goal is to use DEA to tell you what queries from your application

will run better, worse, or the same on the target new version of SQL Server. In addition,

DEA can tell you if any queries might fail, for example due to a compatibility issue.

All of the DEA documentation is currently on the Data Migration blog in these posts:

https://blogs.msdn.microsoft.com/datamigration/tag/dea/.

To use DEA correctly, it is possible you will need up to four SQL Server instances:

• The source SQL Server to capture your workload

• Two target SQL Servers to replay the captured workload traces

• One SQL Server to store analysis and run reports (you need a

database to store the results, so it could actually exist on one of the

target SQL Server instances)

The basic flow to use DEA is as follows:

 1. Back up the database on the source SQL Server.

 2. Capture a trace of your workload using the DEA tool, which can use

SQL Server Trace or Extended Events. SQL Server Trace is required

if you are capturing a workload on a SQL Server version earlier

than SQL Server 2012, because Extended Events does not have the

required events in SQL Server 2008. DEA does support SQL Server

2005 as a source SQL Server version, and Extended Events did not

exist in that release, so you must use SQL Server Trace.

In order to make the best use of the DEA tool, you need to capture a

trace of your workload that is representative of the application. The

DEA tool allows for captures of five minutes to up to three hours.

You may have a test server where you can capture a trace for your

application or you may need to do it on the production SQL Server.

ChApter 10 MigrAting to SQL Server on Linux

https://blogs.msdn.microsoft.com/datamigration/2016/11/08/data-migration-assistant-how-to-run-from-command-line/
https://blogs.msdn.microsoft.com/datamigration/2016/11/08/data-migration-assistant-how-to-run-from-command-line/
https://blogs.msdn.microsoft.com/datamigration/2016/11/08/data-migration-assistant-how-to-run-from-command-line/
https://blogs.msdn.microsoft.com/datamigration/tag/dea/

502

 3. Prepare replying traces by restoring the backup in step #1 to two

target SQL Server instances:

Target Server #1 is a version of SQL Server that is the same as the source

from the captured trace in Step #2. You generally do not want to use your

production SQL Server.

Target Server #2 is the new version of SQL Server you are migrating towards,

which can be SQL Server on Linux.

You should set up these SQL Server instances with very identical environments

in terms of CPU, memory, disk speeds, and SQL Server configurations.

 4. Use the DEA tool to replay the captured trace from Step #2 on

both target SQL Servers. The DEA tool will ask for a location to

save a trace of the replay.

 5. Use the DEA tool to analyze the two captured replay traces so you can

compare performance or possible errors from queries in the trace.

The DEA tool will prompt you for an SQL Server database to store the

analysis results and the location of the replayed traces from Step #4.

Figure 10-3 shows the DEA tool initial screen to perform all of these steps.

Figure 10-3. The Database Experimentation Assistant tool

ChApter 10 MigrAting to SQL Server on Linux

503

Earlier versions of DEA required you to use a feature in SQL Server called Distributed

Replay. You can still use that method but as of DEA version 2.6, you can use the InBuilt

replay method. The InBuilt replay method internally uses a tool called ostress.exe. Perhaps

you remember in the last chapter I mentioned a colleague of mine at Microsoft named

Keith Elmore? Many years ago, when Keith first joined Microsoft in Technical Support,

he quickly saw the need to stress SQL Server with multiple concurrent threads executing

queries or a T-SQL script. Keith has always been a brilliant programmer, so he built a

tool called ostress.exe, which uses ODBC. Keith and Robert Dorr collaborated further to

expand ostress.exe to be able to replay captured traces of SQL Server workloads. Keith

and Robert bundled these tools together into a toolkit called RML Utilities. RML Utilities

is free to download at https://www.microsoft.com/download/details.aspx?id=4511.

Unfortunately, ostress.exe and RML Utilities do not run natively on Linux (we have an

internal version of ostress.exe running using SQLPAL but it is not something ready to

release at this time) but if you still have Windows clients that can connect to SQL Server on

Linux, you may find the use of ostress.exe and RML Utilities to be a very nice set of tools.

Using DEA with SQL Server on Linux requires some special configuration. Mollee

Jain, a developer for the DEA tool, gave me these instructions that are required to make

DEA work for Linux (Mollee’s intention is to get this into the Data Migration blog).

You have to set up folder permissions to allow for replay to create files on the Linux

Server. The user can set this up in many different ways, but mounting a shared folder

may be the easiest way to progress because it doesn’t require firewall reconfiguration.

• To mount a shared folder in the Linux system with uid + gid specified,

you can use a command like the following using CIFS:

sudo mount.cifs //DEA/LinuxShare /var/opt/mssql/

LinuxShare -o user=sqladmin,vers=2.0,dir_mode=0777,

file_mode=0777,uid=996,gid=994

Note there are several methods to set up your Linux Server to write files to your
Windows Server. one method is to use Samba, which you can learn more about at
https://app.pluralsight.com/library/courses/advanced-network-
system-administration-lfce/table-of-contents.

• Within the DEA replay step, they will need to provide the Linux path

if they are replaying to Linux (i.e., /var/opt/mssql/LinuxShare).

ChApter 10 MigrAting to SQL Server on Linux

https://www.microsoft.com/download/details.aspx?id=4511
https://app.pluralsight.com/library/courses/advanced-network-system-administration-lfce/table-of-contents
https://app.pluralsight.com/library/courses/advanced-network-system-administration-lfce/table-of-contents

504

There are several aspects of DEA to consider when capturing and replaying traces

and using reports for assessments. The DEA set of blogs have good examples and tips as

you go through the exercise of using this tool to assess the performance and execution

of your workload and application with SQL Server on Linux. I would recommend these

specific blog posts:

• Overview of using DEA: https://blogs.msdn.microsoft.com/

datamigration/2017/03/24/dea-2-0-how-to-use-database-

experimentation-assistant/

• The latest features of DEA 2.6: https://blogs.msdn.microsoft.com/

datamigration/2018/08/06/release-database-experimentation-

assistant-dea-v2-6/

• FAQ for Capture: https://blogs.msdn.microsoft.com/

datamigration/2017/03/24/dea-2-0-capture-trace-faq/

• FAQ for Replay: https://blogs.msdn.microsoft.com/

datamigration/2017/03/24/dea-2-0-replay-faq/

• FAQ for Analysis: https://blogs.msdn.microsoft.com/

datamigration/2017/03/24/dea-2-0-analysis-faq

 Executing the Migration
Now that you have done preparation work for the migration, it is time to migrate your

database(s) to SQL Server on Linux. You have the following options to perform a

migration:

• Restore a database backup.

• Copy data with bulk copy or SSIS package.

• Export and Import with BACPAC.

Note SQL Server Management Studio comes with a feature called Copy
Database, which is not supported to copy from SQL Server on Windows to SQL
Server on Linux.

Let’s look at each option in more detail with examples.

ChApter 10 MigrAting to SQL Server on Linux

https://blogs.msdn.microsoft.com/datamigration/2017/03/24/dea-2-0-how-to-use-database-experimentation-assistant/
https://blogs.msdn.microsoft.com/datamigration/2017/03/24/dea-2-0-how-to-use-database-experimentation-assistant/
https://blogs.msdn.microsoft.com/datamigration/2017/03/24/dea-2-0-how-to-use-database-experimentation-assistant/
https://blogs.msdn.microsoft.com/datamigration/2018/08/06/release-database-experimentation-assistant-dea-v2-6/
https://blogs.msdn.microsoft.com/datamigration/2018/08/06/release-database-experimentation-assistant-dea-v2-6/
https://blogs.msdn.microsoft.com/datamigration/2018/08/06/release-database-experimentation-assistant-dea-v2-6/
https://blogs.msdn.microsoft.com/datamigration/2017/03/24/dea-2-0-capture-trace-faq/
https://blogs.msdn.microsoft.com/datamigration/2017/03/24/dea-2-0-capture-trace-faq/
https://blogs.msdn.microsoft.com/datamigration/2017/03/24/dea-2-0-replay-faq/
https://blogs.msdn.microsoft.com/datamigration/2017/03/24/dea-2-0-replay-faq/
https://blogs.msdn.microsoft.com/datamigration/2017/03/24/dea-2-0-analysis-faq
https://blogs.msdn.microsoft.com/datamigration/2017/03/24/dea-2-0-analysis-faq

505

 Restore a Database Backup

Restoring a backup from SQL Server on Windows is one of the beautiful stories of

compatibility on SQL Server on Linux. You are allowed to restore a backup of SQL Server,

all the way back to SQL Server 2005, to SQL Server 2017 on Linux. You can actually attach

a database as well, following the process for attaching database as far back as

SQL Server 2005.

Note the “pain-free” upgrade path to restore a backup or attach a database can
go as far back as SQL Server 2008. however, technically you can restore or attach
an SQL Server 2005 backup or database file but there are some limitations and
possible issues you should consider. You can read more about this at https://
docs.microsoft.com/sql/database-engine/install-windows/
supported-version-and-edition-upgrades-2017#SupportFor2005.

I’ve shown you examples of how to restore a backup throughout the book, and you

have seen the process is very simple.

 1. Copy the backup file to the SQL Server on Linux sever or place on

a mounted directory that can be accessed by the Linux Server.

 2. Ensure the ownership of the file has the mssql group and mssql

owner permissions.

 3. Use the T-SQL RESTORE command from any valid tool that can

connect to SQL Server on Linux.

Note the database backup has the paths of the files stored in the metadata of
the backup. therefore, you must always use the With Move options of the t-SQL
reStore statement to move the database and transaction log files into their new
location. And the new location must be set up to be accessed by the mssql user
account on Linux.

Even though I’ve shown you this example in previous chapters, let’s review one more

time the process to restore the WideWorldImporters sample database to SQL Server on

Linux.

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/database-engine/install-windows/supported-version-and-edition-upgrades-2017#SupportFor2005
https://docs.microsoft.com/sql/database-engine/install-windows/supported-version-and-edition-upgrades-2017#SupportFor2005
https://docs.microsoft.com/sql/database-engine/install-windows/supported-version-and-edition-upgrades-2017#SupportFor2005

506

 1. Copy the WideWorldImporters sample database on the Linux

server with the following command from the bash shell:

wget https://github.com/Microsoft/sql-server-samples/releases/

download/wide-world-importers-v1.0/WideWorldImporters-Full.bak

 2. Run the following commands from the bash shell as found in the

example script cpwwi.sh to copy the backup into the /var/opt/

mssql directory:

sudo cp WideWorldImporters-Full.bak /var/opt/mssql

sudo chown mssql:mssql /var/opt/mssql/WideWorldImporters-Full.bak

 3. Run the following command to restore the database from any

valid SQL Server tool as found in restorewwi_linux.sql (Note: I’ve

provided a bash shell script restorewwi.sh to run this SQL script

using sqlcmd on the Linux server):

restore database WideWorldImporters from disk = '/var/opt/mssql/

WideWorldImporters-Full.bak' with

move 'WWI_Primary' to '/var/opt/mssql/data/WideWorldImporters.

mdf',

move 'WWI_UserData' to '/var/opt/mssql/data/WideWorldImporters_

UserData.ndf',

move 'WWI_Log' to '/var/opt/mssql/data/WideWorldImporters.ldf',

move 'WWI_InMemory_Data_1' to '/var/opt/mssql/data/

WideWorldImporters_InMemory_Data_1'

go

The restore will execute and run a series of upgrade steps, typically changes to system

tables required for the new version of SQL Server, to finish the restore the database since

the WideWorldImporters example was backed up with SQL Server 2016 on Windows.

The output of the RESTORE execution should look like the following:

Processed 1464 pages for database 'WideWorldImporters', file 'WWI_Primary'

on file 1.

Processed 53096 pages for database 'WideWorldImporters', file 'WWI_

UserData' on file 1.

ChApter 10 MigrAting to SQL Server on Linux

507

Processed 33 pages for database 'WideWorldImporters', file 'WWI_Log' on

file 1.

Processed 3862 pages for database 'WideWorldImporters', file 'WWI_InMemory_

Data_1' on file 1.

Converting database 'WideWorldImporters' from version 852 to the current

version 869.

Database 'WideWorldImporters' running the upgrade step from version 852 to

version 853.

Database 'WideWorldImporters' running the upgrade step from version 853 to

version 854.

Database 'WideWorldImporters' running the upgrade step from version 854 to

version 855.

Database 'WideWorldImporters' running the upgrade step from version 855 to

version 856.

Database 'WideWorldImporters' running the upgrade step from version 856 to

version 857.

Database 'WideWorldImporters' running the upgrade step from version 857 to

version 858.

Database 'WideWorldImporters' running the upgrade step from version 858 to

version 859.

Database 'WideWorldImporters' running the upgrade step from version 859 to

version 860.

Database 'WideWorldImporters' running the upgrade step from version 860 to

version 861.

Database 'WideWorldImporters' running the upgrade step from version 861 to

version 862.

Database 'WideWorldImporters' running the upgrade step from version 862 to

version 863.

Database 'WideWorldImporters' running the upgrade step from version 863 to

version 864.

Database 'WideWorldImporters' running the upgrade step from version 864 to

version 865.

Database 'WideWorldImporters' running the upgrade step from version 865 to

version 866.

ChApter 10 MigrAting to SQL Server on Linux

508

Database 'WideWorldImporters' running the upgrade step from version 866 to

version 867.

Database 'WideWorldImporters' running the upgrade step from version 867 to

version 868.

Database 'WideWorldImporters' running the upgrade step from version 868 to

version 869.

RESTORE DATABASE successfully processed 58455 pages in 1.351 seconds

(338.027 MB/sec).

Any backup from a previous version of SQL Server restored to a newer version

will retain the database compatibility of the previous version. See the section on Post

Migration Considerations for a discussion on database compatibility.

For very large databases (100GB or more, which is my definition of very large for the

purposes of migration), restoring a backup is the fastest method to migrate to SQL Server

on Linux.

 Copy Data with Bulk Copy or SSIS Package

There could be some reasons why you do not want to restore the database backup to

migrate to SQL Server on Linux. Perhaps for the migration process you want to make

changes to existing object definitions in the database. You could do this after you restore

a backup. Or you could create a new database perhaps with new file definitions, create

new objects, and then use SQL Server tools to export data out of the existing SQL Server

database and import the data into the new database structures.

For SQL Server on Windows, you can use the bcp program to export the data, copy

the files to the Linux Server, and use bcp on Linux to import the data into your new

databases. I introduced the bcp program in a previous chapter on tools, but you can also

read more about bcp at https://docs.microsoft.com/sql/linux/sql-server-linux-

migrate-bcp.

You might have a more complex Extract, Transform, and Load (ETL) process to

migrate to a new SQL Server database on Linux. In this case, consider creating an SQL

Server Integration Services (SSIS) package. While you must use tools on a Windows

client to create an SSIS package, SQL Server on Linux supports executing SSIS packages

on the Linux server. You can read more about SSIS on Linux at https://docs.

microsoft.com/sql/linux/sql-server-linux-migrate-ssis.

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/linux/sql-server-linux-migrate-bcp
https://docs.microsoft.com/sql/linux/sql-server-linux-migrate-bcp
https://docs.microsoft.com/sql/linux/sql-server-linux-migrate-ssis
https://docs.microsoft.com/sql/linux/sql-server-linux-migrate-ssis

509

 Export and Import with BACPAC

A third option to migrate an existing SQL Server database to SQL Server on Linux is a Data-

Tier package file called an BACPAC file. BACPAC files are very portable and can be used

to migrate to other platforms such as Azure. A BACPAC file is a package and contains the

definition or schema of the database, files, and the objects (such as tables and indexes). In

addition, the package contains exported versions of the data contains in user tables.

BACPAC files are created using either SQL Server Management Studio via a visual

interface wizard or the program sqlpackage. You can now use sqlpackage on Windows,

macOS, or Linux from https://docs.microsoft.com/sql/tools/sqlpackage. BACPAC

files are created by using options via these tools to export the package. You can read

more about exporting a BACPAC file at https://docs.microsoft.com/sql/relational-

databases/data-tier-applications/export-a-data-tier-application. The same

set of tools can be used to import the package. Importing the package will execute the

package, which includes creating the database, creating files, all objects, and importing

all data. You can read more about the import process at https://docs.microsoft.com/

sql/relational-databases/data-tier-applications/import-a-bacpac-file-to-

create-a-new-user-database.

The following is an example command to run sqlpackage on SQL Server on Windows

from Powershell to export a BACPAC file for a database:

.\sqlpackage /A:Export /ssn:<sql server> /sdn:<database> /tf:c:\temp\wwi.

bacpac

Here is an example of executing sqlpackage on the same Windows client to import

the package into the SQL Server on Linux target:

.\sqlpackage /A:Import /tsn:<Linux SQL instance> /tdn:<target db name>

/sf:c:\temp\wwi.bacpac /tu:sa /tp:<sa password>

You don’t need to create the database on the SQL Server on Linux instance.

sqlpackage will do that when executing everything in the bacpac file.

 Migrating from Oracle
You may be reading this book looking to migrate from another database platform, like

Oracle, to SQL Server on Linux. In this section of the book, I will not cover a comparison

of features between Oracle and SQL Server. I’ve done my best up until this point in the

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/tools/sqlpackage
https://docs.microsoft.com/sql/relational-databases/data-tier-applications/export-a-data-tier-application
https://docs.microsoft.com/sql/relational-databases/data-tier-applications/export-a-data-tier-application
https://docs.microsoft.com/sql/relational-databases/data-tier-applications/import-a-bacpac-file-to-create-a-new-user-database
https://docs.microsoft.com/sql/relational-databases/data-tier-applications/import-a-bacpac-file-to-create-a-new-user-database
https://docs.microsoft.com/sql/relational-databases/data-tier-applications/import-a-bacpac-file-to-create-a-new-user-database

510

book to describe all the features and functionality of SQL Server on Linux to educate you

and prepare you for its capabilities, should you be looking to migrate from Oracle.

In this section, I’m going to assume you have made this decision to migrate or are

looking to test a migration, so you can evaluate how your application will behave and

perform with SQL Server on Linux. While there could be several methods to export

data from Oracle allowing you to create your own database on SQL Server on Linux and

import your data, SQL Server provides a free tool to assist in migrating from Oracle. This

tool is called the SQL Server Migration Assistant (SSMA).

SSMA supports many different data platform sources, including Oracle, DB2,

MySQL, and SAP ASE, to migrate to several different target Microsoft database platforms

including SQL Server on Linux. To get a complete list of sources and targets for SSMS,

see our documentation at https://docs.microsoft.com/sql/ssma/sql-server-

migration-assistant#supported-sources-and-target-versions and https://docs.

microsoft.com/sql/linux/sql-server-linux-migrate-ssma. I will use SSMA for the

rest of this chapter describing the preparation and execution of migration from Oracle.

For a complete reference on SSMA, see our documentation at https://docs.

microsoft.com/sql/ssma/sql-server-migration-assistant. When you have

completed reading these sections for preparation and execution of your migration from

Oracle, be sure to see the section of this chapter on Post Migration Considerations.

 Preparing for the Migration
Because the SSMA tool only runs on Windows, you will need three computing

environments capable of being connected together to migrate from Oracle to SQL Server

on Linux:

• Your Linux server running Oracle

• A new Linux server running SQL Server on Linux

• A Windows client to run the SSMA tool

The Windows client running SSMA must be capable of connecting to each server

over TCP/IP, so you need to be sure to open up any firewall ports to allow remote

connectivity. To use SSMA, the Oracle server and the SQL Server do not have to be able

to connect to each other.

To prepare for the migration using SSMA, you will need to install the SSMA tool on

your preferred Windows client. Follow the instructions carefully in our documentation,

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/ssma/sql-server-migration-assistant#supported-sources-and-target-versions
https://docs.microsoft.com/sql/ssma/sql-server-migration-assistant#supported-sources-and-target-versions
https://docs.microsoft.com/sql/linux/sql-server-linux-migrate-ssma
https://docs.microsoft.com/sql/linux/sql-server-linux-migrate-ssma
https://docs.microsoft.com/sql/ssma/sql-server-migration-assistant
https://docs.microsoft.com/sql/ssma/sql-server-migration-assistant

511

as there are dependencies from other components (such as Oracle client software)

to allow SSMA to work. You can read these details in our documentation at https://

docs.microsoft.com/sql/ssma/oracle/installing-ssma-for-oracle-client-

oracletosql.

In addition, since you are migrating to SQL Server, you will want to create the

database and files ahead of time following the best practices and performance

recommendations I’ve outlined in the book.

One last important comment: you need to measure the performance of your Oracle

workload carefully with existing tools used with Oracle and document these. You will

want to compare this baseline to your application with SQL Server after doing the

migration.

 Executing the Migration
The SSMA tool works on a concept called a project. The migration process using a

project looks like the following:

 1. Create a SSMA project and configure settings.

 2. Connect to an Oracle server.

 3. Connect to SQL Server on Linux.

 4. Map schemas between Oracle and SQL Server (or use the default.)

 5. Convert the Oracle schemas, including your ability to choose

which objects. This documentation has an excellent description

of what can and cannot be converted from Oracle: https://docs.

microsoft.com/sql/ssma/oracle/converting-oracle-schemas-

oracletosql. At this point, SSMA saves the project information

in the form that can be converted into T-SQL statements to SQL

Server to migrate the select Oracle schema and objects.

 6. Load the converted objects into SQL Server. You can let SSMA do

this or save the information to a T-SQL script and then run the

script (including modifying it to your needs) against SQL Server

with any valid SQL Server tool.

 7. Migrate the data, using SSMA to SQL Server on Linux.

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/ssma/oracle/installing-ssma-for-oracle-client-oracletosql
https://docs.microsoft.com/sql/ssma/oracle/installing-ssma-for-oracle-client-oracletosql
https://docs.microsoft.com/sql/ssma/oracle/installing-ssma-for-oracle-client-oracletosql
https://docs.microsoft.com/sql/ssma/oracle/converting-oracle-schemas-oracletosql
https://docs.microsoft.com/sql/ssma/oracle/converting-oracle-schemas-oracletosql
https://docs.microsoft.com/sql/ssma/oracle/converting-oracle-schemas-oracletosql

512

This complete process is documented at https://docs.microsoft.com/sql/ssma/

oracle/migrating-oracle-databases-to-sql-server-oracletosql.

You will love the fact that our engineering team who owns SSMA has built a

step by step tutorial on how to use SSMA to migrate from Oracle to SQL Server on

Linux. Therefore, you can set up your own environment and follow each step in our

documentation at https://docs.microsoft.com/sql/ssma/oracle/sql-server-

linux-convert-from-oracle. This tutorial uses objects from the HR example schema,

which comes with every Oracle installation.

I went through the tutorial myself using three virtual machines in Azure (one for

Oracle, one for SQL Server on Linux, and one for the Windows machine running SSMA).

It worked as advertised, with a few important points to note:

• The tutorial does not make it clear in the prerequisites that you need

a third computing environment running Windows for SSMA if your

Oracle server to migrate is running Linux.

• If SQL Server Agent is not running on SQL Server on Linux, you will

get a warning that server-side migration is not possible. Server-side

migrations are not supported on SQL Server on Linux, so this can be

ignored.

• The tutorial uses Oracle 12c, but I’ve done this with Oracle 11 XE (free

version) as well. When I connect to the Oracle instance with SSMA,

since I was using the XE edition, the name of the Oracle instance is

XE and the login is SYSTEM.

• The tutorial says to pick a target of SQL Server 2017 (Linux) – Preview,

but the latest version of SSMA just has SQL Server 2017 as a choice (it

is no longer in Preview for Linux).

• Since SSMA using SQL Server on Linux as a target does not support

server-side migration, the Oracle server and the SQL Server on Linux

don’t have to be able to communicate with each other. The SSMA

Windows client connects with each server to transmit data.

Figure 10-4 shows the final result of my migration of the HR schema from Oracle 11

XE to SQL Server on Linux using SSMA.

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/ssma/oracle/migrating-oracle-databases-to-sql-server-oracletosql
https://docs.microsoft.com/sql/ssma/oracle/migrating-oracle-databases-to-sql-server-oracletosql
https://docs.microsoft.com/sql/ssma/oracle/sql-server-linux-convert-from-oracle
https://docs.microsoft.com/sql/ssma/oracle/sql-server-linux-convert-from-oracle

513

Figure 10-4. A successful migration from Oracle to SQL Server on Linux using
SSMA

ChApter 10 MigrAting to SQL Server on Linux

514

Your migration project may be more complex than the HR schema example

from Oracle. However, SSMA is fairly robust in its ability to convert Oracle objects to

SQL Server. Shamik Ghosh, the lead Program Manager for SSMA, has told me in his

experience that SSMA should be able to convert 90+% or better of Oracle objects and

data to SQL Server, even for more complex Oracle schemas.

SSMA supports executing a migration from the command line, which you can

read more about at https://docs.microsoft.com/sql/ssma/oracle/command-line-

options-in-ssma-console-oracletosql. The full syntax of command line options can

be seen at https://docs.microsoft.com/sql/ssma/oracle/appendix-1-oracletosql.

For a full production migration from Oracle, I recommend you read over all of the

major sections of the documentation for SSMA at https://docs.microsoft.com/sql/

ssma/oracle/sql-server-migration-assistant-for-oracle-oracletosql.

 Migrating from PostgreSQL
PostgreSQL has become a very popular open-source database engine to use for

applications. However, some users have found PostgreSQL may not meet the needs of

their application due to a lack of a specific feature or high-scale performance needs.

In this section, I will give you my opinions for a comparison of SQL Server with

PostgreSQL from a feature perspective. The SSMA tool does not currently support a

migration from PostgreSQL to SQL Server. I will give you my thoughts on how you can

migrate your database schema and data from PostgreSQL to SQL Server on Linux. Be

sure to read the section of this chapter on Post Migration Considerations to round out

the migration experience.

Note if you are postgreSQL user and are looking to migrate to SQL Server on
Linux, my hope is that this book will arm you with the knowledge on how to do this
and create a successful deployment. however, if there are databases you want
to keep with postgreSQL, i highly encourage you to look at the managed service
for postgreSQL in Azure at https://docs.microsoft.com/en-us/azure/
postgresql/.

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/ssma/oracle/command-line-options-in-ssma-console-oracletosql
https://docs.microsoft.com/sql/ssma/oracle/command-line-options-in-ssma-console-oracletosql
https://docs.microsoft.com/sql/ssma/oracle/appendix-1-oracletosql
https://docs.microsoft.com/sql/ssma/oracle/sql-server-migration-assistant-for-oracle-oracletosql
https://docs.microsoft.com/sql/ssma/oracle/sql-server-migration-assistant-for-oracle-oracletosql
https://docs.microsoft.com/en-us/azure/postgresql/
https://docs.microsoft.com/en-us/azure/postgresql/

515

 How Does PostgreSQL Compare with SQL Server?
I call this section “the case for SQL Server.” I’ve not used PostgreSQL in the past, so I

will not claim to be an expert on using it. To write this chapter, I installed PostgreSQL

on RHEL and performed some basic testing of its functionality. In addition, I did some

research on features and functionality of SQL Server I’ve talked about in this book and

looked to see if the same capabilities exist with PostgreSQL. To be transparent, I used the

following resources for this research:

• The main PostgreSQL site that includes an overview at https://www.

postgresql.org/about/

• The PostgreSQL version 10 documentation at https://www.

postgresql.org/files/documentation/pdf/10/postgresql-10-A4.

pdf (Note: I did not choose to use version 11, which is currently in beta.)

• The following PostgreSQL tutorials: http://www.

postgresqltutorial.com/ and http://www.tutorialspoint.com/

postgresql

• A beginner primer to PostgreSQL at https://zaiste.net/

postgresql_primer_for_busy_people/

• The Wikipedia site for PostgreSQL at https://en.wikipedia.org/

wiki/PostgreSQL

• An excellent slide deck talking about the PostgreSQL architecture

at http://people.inf.elte.hu/kiss/14kor/korszeru-ea-01-

postgre.pdf

Note My evaluation of postgreSQL is based on the core open-source version
that is documented in the aforementioned resources. Since postgreSQL is open
source, there are distributions of postgreSQL modified by other organizations
such as enterpriseDB (https://www.enterprisedb.com/) and Crunchy Data
(https://www.crunchydata.com/). there is even a huge list of postgreSQL
derived distributions and forks at https://wiki.postgresql.org/wiki/
PostgreSQL_derived_databases. i have not used these resources to compare
SQL Server on Linux.

ChApter 10 MigrAting to SQL Server on Linux

https://www.postgresql.org/about/
https://www.postgresql.org/about/
https://www.postgresql.org/files/documentation/pdf/10/postgresql-10-A4.pdf
https://www.postgresql.org/files/documentation/pdf/10/postgresql-10-A4.pdf
https://www.postgresql.org/files/documentation/pdf/10/postgresql-10-A4.pdf
http://www.postgresqltutorial.com/
http://www.postgresqltutorial.com/
http://www.tutorialspoint.com/postgresql
http://www.tutorialspoint.com/postgresql
https://zaiste.net/postgresql_primer_for_busy_people/
https://zaiste.net/postgresql_primer_for_busy_people/
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/PostgreSQL
http://people.inf.elte.hu/kiss/14kor/korszeru-ea-01-postgre.pdf
http://people.inf.elte.hu/kiss/14kor/korszeru-ea-01-postgre.pdf
https://www.enterprisedb.com/
https://www.crunchydata.com/
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases

516

In addition to this research, I reviewed my comparison with two engineers at

Microsoft, Michal Primke and Harini Gupta, who work on our Azure for PostgreSQL

service, and they agreed with all the points in the following comparison.

Rather than try to do an exhaustive comparison, I researched what features and

functionality SQL Server has that is not in PostgreSQL or is better than PostgreSQL in my

opinion. In this section I’ll list this comparison by the following areas: Core Database

Engine, The SQL Language, Tools, Performance, Security, HADR, and Management and

Monitoring. If you don’t see an SQL Server feature I’ve discussed in this book listed in

this section, it is because pgsql has equivalent functionality or I could not find enough

of a difference between the two systems to highlight it. I’ve provided this to give you my

perspective on the unique value SQL Server on Linux can bring to your application vs.

using PostgreSQL.

Note From this point forward in the chapter, i’ll refer to postgreSQL as pgsql (you
would too if you had to type in postgreSQL each time).

 Core Database Engine

There are several aspects built into the core database engine that are different than

pgsql, distinguishable enough to call them out:

• Threads vs. processes

The pgsql documentation states the architecture for the server is based on a set

of processes and not threads. All pgsql work is done via separate processes. All the

background tasks (such as the checkpointer process) are processes. Each connection to

pgsql results in the fork of a new process. In my testing on RHEL, each forked process

to support a new connection requires around 5MB (this could mean that even 300

concurrent idle connections would require ~1.5GB of memory). I’ve read that the

overhead to fork a new process is not heavy and requiring 5MB per connection in a

process is not expensive. SQL Server is one single Linux process called sqlservr and

uses threads to support all background tasks and a worker pool of threads to support

connections and queries.

I was surprised to see the forked process architecture but then I remembered my

early career out of college using Ingres, which had this same design. Pgsql was derived

from the original Ingres database engine. So which architecture is better? On Windows,

ChApter 10 MigrAting to SQL Server on Linux

517

using threads is a proven better method than using multiple processes. I personally feel

our TPC benchmark performance speaks for itself on the performance and scalability of

SQL Server on Linux vs. pgsql. You can see the latest TPC-H #1 benchmark result for SQL

Server on Linux at http://www.tpc.org/3331.

• CPU and NUMA assignment

SQL Server provides built-in functionality to control what CPUs and/or NUMA nodes

SQL Server threads will use for execution. In addition, SQL Server uses a capability

called Auto Soft NUMA to promote scalability on dense core socket systems. Pgsql does

not offer any of these capabilities in the database engine.

• Multiple files and write ahead logging file placement

Pgsql has a concept called a tablespace. This is similar to the SQL Server filegroup

object, as it allows you to place objects in a different location on disk than the default

database directory. However, you cannot specify multiple files to spread out the I/O

load for a tablespace as you can with SQL Server. Pgsql has its own method of creating

files that support the database, which you do not have control over. There is only one

directory for a specific tablespace and therefore objects related to a tablespace are

limited to a single directory on disk.

Furthermore, there is no method to separate the location for transaction log (called

write ahead logging or wal) data per database in pgsql. SQL Server allows you to specify

the exact location for the transaction log for each database. Pgsql states in their best

practices documentation to move the location of the wal directory by moving the

directory pg_wal. However, all wal data for all databases goes to this directory.

• Database size control

Databases created with pgsql are not created with a fixed size and can grow until you

run out of disk space or hit a limit based on any Linux space restrictions. As you have

seen from reading this book, SQL Server allows you granular control over the size of files

for the database and transaction log including initial size, maximum size, and autogrow

parameters.

• Checksum

Pgsql does support the concept of checksum for database pages. However, you

must specify whether you want this option when you first initialize pgsql with initdb.

Furthermore, the documentation at https://www.postgresql.org/docs/current/

static/app-initdb.html states “...Enabling checksums may incur a noticeable

ChApter 10 MigrAting to SQL Server on Linux

http://www.tpc.org/3331
https://www.postgresql.org/docs/current/static/app-initdb.html
https://www.postgresql.org/docs/current/static/app-initdb.html

518

performance penalty.” Checksum in pgsql cannot be controlled per database. SQL Server

enables checksum on a database by default, and we do this because it will not incur a

significant performance penalty. Furthermore, we allow you to turn this on or off at any

time at a database scope.

• Buffer Pool cache

Both SQL Server and pgsql have a buffer pool cache concept. However, pgsql also

does not open database files using the O_DIRECT option (i.e., direct I/O). Therefore, the

Linux kernel buffers all file I/O in file system cache for pgsql, thereby almost doubling

the amount of memory needed for database pages (Note: this does depend on how you

configure pgsql for shared buffer cache using the shared_buffers setting).

• Plan cache

SQL Server can cache ad hoc T-SQL statements and even auto-parameterize them.

Pgsql only caches prepared statements and PL/pgSQL code.

• Temporal tables

Temporal tables are a built-in feature of SQL Server. The base pgsql distribution does

not support this. After doing some research, I found that pgsql can support temporal

tables with a custom extension, which is found at https://pgxn.org/dist/temporal_

tables/. The problem is that this extension is not one of the standard extensions

documented with the core pgsql documentation at https://www.postgresql.org/

docs/current/static/contrib.html. Therefore, I’m not sure about the reliability or

the support of this extension. You can read more about temporal tables for SQL Server at

https://docs.microsoft.com/sql/relational-databases/tables/temporal-tables.

• Graph database

There is no equivalent in pgsql to the SQL Server graph database functionality

with T-SQL support for node and edge table types and the new MATCH syntax. Most

examples I’ve seen with pgsql talk about using recursive common table expression (CTE)

queries to achieve this functionality. However, that is the actual reason we built the new

graph database feature: to make it simpler to design natural graph data models using

tables vs. writing complex queries. You can read more about graph database with SQL

Server at https://docs.microsoft.com/sql/relational-databases/graphs/sql-

graph-overview.

ChApter 10 MigrAting to SQL Server on Linux

https://pgxn.org/dist/temporal_tables/
https://pgxn.org/dist/temporal_tables/
https://www.postgresql.org/docs/current/static/contrib.html
https://www.postgresql.org/docs/current/static/contrib.html
https://docs.microsoft.com/sql/relational-databases/tables/temporal-tables
https://docs.microsoft.com/sql/relational-databases/graphs/sql-graph-overview
https://docs.microsoft.com/sql/relational-databases/graphs/sql-graph-overview

519

• Native scoring

pgsql supports the ability to write server-side code using Python as language (using

CREATE FUNCTION). As I’ve mentioned in the book, SQL Server 2017 on Windows

supports built-in R and Python code with SQL Server, but it’s not supported by SQL

Server on Linux today (believe me, it’s coming!). One nice feature built into the SQL

Server engine I have mentioned in a previous chapter is called native scoring. Native

scoring allows you to take as input a persisted machine learning model and use the new

T-SQL PREDICT statement to execute high-speed scalable predictions applications.

pgsql does not offer a native scoring capability. You can read more about native scoring

with SQL Server at https://docs.microsoft.com/sql/advanced-analytics/sql-

native-scoring.

 The SQL Language

After studying the pgsql SQL language there are many similarities to T-SQL (which

could make the migration process to SQL Server easier than I first thought), but a few

differences stood out to me worth calling out:

• T-SQL batches

One method to avoid a chatty application is to use T-SQL batches. T-SQL batches

allow you to send multiple T-SQL statements in one trip to SQL Server, and the database

engine processes each T-SQL statement. pgsql does not offer this concept. Each

SQL statement is sent separately even if an application attempts to execute multiple

statements. In the psql tool, each SQL statement must be separated by a semicolon.

• Stored procedures

Server-side programming in pgsql is done using a language called PL/pgSQL, which

uses SQL statements (Note: in SQL Server, all statements are called T-SQL whether they

are part of ANSI SQL or statements specific to SQL Server). In version 10 of pgsql, the

only PL/pgSQL to write a server-side program is a function using CREATE FUNCTION

(which doesn’t allow for transactions). In transparency, I’ve read that version 11 of pgsql,

now in beta, plans to support CREATE PROCEDURE PL/pgSQL statement. In version

10, I’ve seen several examples of functions in pgsql return a VOID type to simulate a

procedure.

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/advanced-analytics/sql-native-scoring
https://docs.microsoft.com/sql/advanced-analytics/sql-native-scoring

520

• IDENTITY column property

Pgsql supports a SEQUENCE object, just like I’ve shown you in the book using T-SQL

Sequences are a SQL standard (so this will make a SEQUENCE object very portable

to migrate to SQL Server). However, SEQUENCE objects are created separately from

columns and then bound to one or more columns. SQL Server offers a simpler approach

to the same concept using the identity property for a specific column.

 Tools

I think you now remember the very long chapter on tools (Chapter 5). That chapter was

long for a reason. I believe SQL Server has an amazing tools story: both features built into

the engine and programs outside the engine. Here are a few specific areas for tools where

I think SQL Server on Linux shines compared with pgsql:

• Dynamic Management Views (DMVs)

DMVs are one of the most powerful features of SQL Server to gain live, dynamic

insight into the execution of the SQL Server database engine. pgsql has similar

capabilities, but I’ve observed through my research several significant differences in

favor of DMVs.

• Our DMVs have memory information in detail. Pgsql only

supports looking at buffer cache information from a pg_

buffercache view.

• pg_stat_statements, which is an equivalent feature to the DMV

dm_exec_requests, is not on by default. The docs for pgsql say

that enabling this feature can cause performance overhead,

can be saved across restarts, but doesn’t contain execution plan

information where dm_exec_query_stats provides the estimated

query plan (as does Query Store).

• pg_stat_activity is equivalent to the DMV dm_exec_requests

except that it is not “live” because it is refreshed based on

information from each process (default refresh rate is 500ms but

that can be configured). SQL Server DMVs are “on-demand.” You

can query the state of the system anytime and you get the real-

time view of the system at that time.

ChApter 10 MigrAting to SQL Server on Linux

521

• Pgsql provides blocking information about processes and locks in

the view pg_locks. The pid of the process waiting on a lock can be

seen in this view. However, this information is not found in pg_

stat_activity. The SQL Server DMV dm_exec_requests provides

blocking information (including the blocking task) and you can

also see all detailed locks in the DMV dm_tran_locks.

• SQL Server provides DMVs for all core engine functionality

and for just about every feature included in SQL Server (in fact,

SQL Server includes ~243 DVMs in SQL Server on Linux). Pgsql

provides mostly dynamic system activity through the statistics

collector and covers only the core database engine.

• SQL Server provides a DMV to recommend missing indexes with

dm_db_missing_index_details. Pgsql does not offer an index

recommendation feature built into the database engine.

You can read more about DMVs for SQL Server at https://docs.microsoft.com/

sql/relational-databases/system-dynamic-management-views/system-dynamic-

management-views.

• ERRORLOG

pgsql does have a logging facility to a file and is very configurable. However, by

default the SQL Server ERRORLOG contains a rich set of information (especially at

startup) about the configuration of SQL Server, the OS, and databases. When I was

in technical support, I could tell a customer a lot about their system just by reading

ERRORLOG files. The default pgsql log contains only errors.

• Query Store

I simply love the power of the Query Store, one of my favorite features launched

with SQL Server 2016. While pgsql has a similar feature to view query performance

information via a view called pg_stat_statements, I believe Query Store is superior for

several reasons.

• The Query Store is saved with a backup of the database, since the

Query Store is tied to a database. Pgsql statistics are server wide

and can be persisted, but I found no way to export or back them

up for separate analysis.

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views

522

• pg_stat_statements contains query execution statistics and is

available via a supported extension but requires a server restart

to enable. Query Store can be enabled online for your needs at

any time via ALTER DATABASE. Query Store also supports richer

configuration parameters to control the collection of queries,

including CAPTURE_MODE=AUTO (only store the queries that

matter) and history (number of days to keep data).

• Query Store includes wait statistics per query but pgsql statistics

for waits are tied to the overall process in pg_stat_activity.

• Pg_stat_statements can be saved across server restarts but there

is no date/time stamp for queries. So you cannot run a historical

analysis of queries over time to find out the differences and

perform analysis like query plan regressions. Furthermore, the

estimated plan is saved with Query Store for each plan for a

specific query over time. Pg_stat_statements does not contain any

query plan information.

• Query Store captures query information even when a query fails.

There is no mention in pgsql documentation whether pg_stat_

statements save query information if a query fails.

• Query Store captures information about compilation and

execution time. Pg_stat_statements does not breakdown

information on compilation vs. execution.

You can read all the details about Query Store in SQL Server at https://docs.

microsoft.com/sql/relational-databases/performance/monitoring-performance-

by-using-the-query-store.

• Live query statistics

There is no method to see the current query level information about a query while it

is in progress in pgsql through pg_stat_statements. SQL Server provides the ability to see

per query plan operator execution statistics as a query is executing in progress. You can

read more about live query statistics for SQL Server at https://docs.microsoft.com/

sql/relational-databases/performance/live-query-statistics.

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/sql/relational-databases/performance/live-query-statistics
https://docs.microsoft.com/sql/relational-databases/performance/live-query-statistics

523

• DBCC commands

The most unique DBCC command that does not have an equivalent feature in pgsql

is CHECKDB. I’ve read discussions in my research that pgsql doesn’t need a consistency

checker, since page checksum is now supported (as of pgsql 9.3). However, as I’ve said

in this book, if pages become damaged in memory, a page checksum will not detect it

(although SQL Server even has some minimal detection for this scenario). Remember

DBCC CHECKDB is online because SQL Server supports the concept of database

snapshots. You can read more about DBCC CHECKDB for SQL Server at https://docs.

microsoft.com/sql/t-sql/database-console-commands/dbcc-checkdb-transact-sql.

• SSIS

SQL Server offers as part of the license for SQL Server an ETL system called SQL

Server Integration Services (SSIS), which I’ve outlined in the book. pgsql does not come

with any rich, built-in ETL system like SSIS. You can read more about SSIS on Linux at

https://docs.microsoft.com/sql/linux/sql-server-linux-migrate-ssis.

• DBCC CLONEDATABASE

While pgsql offers methods to create a new database based on a source database

(i.e., clone), there is no method to create a new database based on a source database

and include statistics and performance information. SQL Server offers this capability

with DBCC CLONEDATABASE. You can read more about DBCC CLONEDATABASE

at https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-

clonedatabase-transact-sql.

• Intellisense and mssql extension for query editing

Pgsql has a free GUI tool to perform administration tasks and execute SQL queries

called pgAdmin. There are several differences between SSMS and SQL Operations Studio

and pgAdmin, but pgAdmin is a reasonably good tool. One difference that stood out to

me was SSMS and SQL Operations Studio support for intellisense for T-SQL query design

vs. the autocomplete feature for pgAdmin. I believe the Microsoft Intellisense feature

is far richer to aid with the syntax and object selection for T-SQL vs. autocomplete for

pgAdmin. SQL Operations Studio and mssql-cli both support intellisense functionality

via the mssql extension that also is provided with the Visual Studio Code editor.

You can read more about intellisense in SSMS at https://docs.microsoft.com/

sql/relational-databases/scripting/intellisense-sql-server-management-

studio and the mssql extension at https://docs.microsoft.com/sql/linux/sql-

server-linux-develop-use-vscode#install-the-mssql-extension.

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-checkdb-transact-sql
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-checkdb-transact-sql
https://docs.microsoft.com/sql/linux/sql-server-linux-migrate-ssis
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-clonedatabase-transact-sql
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-clonedatabase-transact-sql
https://docs.microsoft.com/sql/relational-databases/scripting/intellisense-sql-server-management-studio
https://docs.microsoft.com/sql/relational-databases/scripting/intellisense-sql-server-management-studio
https://docs.microsoft.com/sql/relational-databases/scripting/intellisense-sql-server-management-studio
https://docs.microsoft.com/sql/linux/sql-server-linux-develop-use-vscode#install-the-mssql-extension
https://docs.microsoft.com/sql/linux/sql-server-linux-develop-use-vscode#install-the-mssql-extension

524

 Performance

Chapter 6 of this book discusses in detail the performance capabilities of SQL Server. I

believe SQL Server has a long, proven track record of performance both with customer

testimonials and TPC benchmarks. In fact, one of our first SQL Server on Linux

production customers has a testimonial that performance of SQL Server compared

with pgsql is what convinced them to migrate. You can read their story at https://

customers.microsoft.com/doclink/dv01. I’ve listed out in this section my perspective

on the unique capabilities of SQL Server for performance as compared with pgsql.

• Scalability and TPC benchmarks

I’ve demonstrated and talked extensively about scalability for performance for SQL

Server. Performance for SQL Server and scalability are best demonstrated with TPC

benchmarks. SQL Server dominates TPC benchmarks. In fact, SQL Server on Linux

has the top 1TB (http://www.tpc.org/3331) TPC-H benchmark official results. As I’ve

discussed in the book these benchmarks matter for two reasons:

 1. The benchmarks measure the potential capability of a

database to process an application workload.

 2. Microsoft is not allowed to post their own benchmarks, based

on the rules of the TPC council. Our partners such as HPE

and Lenovo are the ones posting the benchmarks to show the

performance capabilities of our database platform combined

with their hardware. To this date, no hardware vendor has

chosen to post a TPC benchmark for pgsql.

• Read-ahead

SQL Server has many built-in capabilities in the engine to boost query performance.

I’ve described how read ahead accelerates query scan performance. Pgsql does not

support read ahead capabilities. There is an older blog written on SQL Server read ahead

(some details may be a bit out of date but it paints the picture) at https://blogs.msdn.

microsoft.com/craigfr/2008/09/23/sequential-read-ahead/.

ChApter 10 MigrAting to SQL Server on Linux

https://customers.microsoft.com/doclink/dv01
https://customers.microsoft.com/doclink/dv01
http://www.tpc.org/3331
https://blogs.msdn.microsoft.com/craigfr/2008/09/23/sequential-read-ahead/
https://blogs.msdn.microsoft.com/craigfr/2008/09/23/sequential-read-ahead/

525

• Parallel queries

The pgsql documentation makes this statement: “Many queries cannot benefit from

parallel query, either due to limitations of the current implementation or because there

is no imaginable query plan which is any faster than the serial query plan” (https://

www.postgresql.org/docs/10/static/parallel-query.html). Remember, these are

run by processes so inter process communication is required vs. SQL Server, which

shares information in a process across threads.

SQL Server supports parallel queries and many queries can benefit from this

capability (especially analytic queries using technologies like clustered columnstore

indexes). Furthermore, SQL Server supports parallel queries for operations like SELECT

INTO and INSERT SELECT.

• Query hints and options

pgsql does not support query level hints and options but SQL Server has this

capability. You can read more about query hints for SQL Server at https://docs.

microsoft.com/sql/t-sql/queries/hints-transact-sql-query.

• Columnstore indexes

I’ve described the amazing performance power of columnstore indexes in this book

for analytic workloads. Pgsql does not have columnstore index capabilities. I did find this

custom extension for pgsql at https://pgxn.org/dist/cstore_fdw/ but I cannot tell if it

is widely used or supported.

• In-Memory OLTP

I’ve also described the performance capabilities of memory optimized tables for OLTP

workloads with SQL Server. pgsql does not contain In-Memory OLTP capabilities. You can

read more about In-Memory OLTP for SQL Server at https://docs.microsoft.com/sql/

relational-databases/in-memory-oltp/in-memory-oltp-in-memory-optimization.

• Adaptive Query Processing and Automatic Tuning

I described the new performance capabilities of SQL Server called Adaptive Query

Processing (AQP) and Automatic Tuning. Pgsql does not have these capabilities,

as far as I have seen from my research. You can read more about AQP at https://

docs.microsoft.com/sql/relational-databases/performance/adaptive-query-

processing. You can read more about Automatic Ytuning in a blog post I wrote at

https://cloudblogs.microsoft.com/sqlserver/2018/06/11/sql-server-automatic-

tuning-around-the-world/.

ChApter 10 MigrAting to SQL Server on Linux

https://www.postgresql.org/docs/10/static/parallel-query.html
https://www.postgresql.org/docs/10/static/parallel-query.html
https://docs.microsoft.com/sql/t-sql/queries/hints-transact-sql-query
https://docs.microsoft.com/sql/t-sql/queries/hints-transact-sql-query
https://pgxn.org/dist/cstore_fdw/
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/in-memory-oltp-in-memory-optimization
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/in-memory-oltp-in-memory-optimization
https://docs.microsoft.com/sql/relational-databases/performance/adaptive-query-processing
https://docs.microsoft.com/sql/relational-databases/performance/adaptive-query-processing
https://docs.microsoft.com/sql/relational-databases/performance/adaptive-query-processing
https://cloudblogs.microsoft.com/sqlserver/2018/06/11/sql-server-automatic-tuning-around-the-world/
https://cloudblogs.microsoft.com/sqlserver/2018/06/11/sql-server-automatic-tuning-around-the-world/

526

 Security

Security is so important for a data platform product, and I made a case for you in this

book about how SQL Server has all the capabilities you need to secure your data. In

this section, I’ll point out the unique aspects that make SQL Server a superior database

product in my opinion in the area of security vs pgsql.

• Least vulnerable database product

According to the National Institute of Standard and Technology (NIST), SQL Server

has the least number of security vulnerabilities in the industry. The chart as seen in

Figure 10-5 shows the trends over the last eight years.

We didn’t make up these statistics. You can read more about this data at https://

nvd.nist.gov/.

• Active Directory authentication

While pgsql does support GSSAPI-based authentication, there is no specific mention

in the pgsql documentation that it supports GSSAPI authentication for an Active

Directory system. Active Directory is one of the most popular identity systems in the

Figure 10-5. SQL Server is the least vulnerable database over the last eight
years.

ChApter 10 MigrAting to SQL Server on Linux

https://nvd.nist.gov/
https://nvd.nist.gov/

527

industry and SQL Server on Linux supports. You can read more about Active Directory

authentication for SQL Server on Linux at https://docs.microsoft.com/sql/linux/

sql-server-linux-active-directory-authentication.

• Transparent Data Encryption (TDE)

SQL Server provides encryption of data at rest using TDE. Pgsql does not provide

any built-in encryption for database and wal log files at rest. You can read more about

TDE for SQL Server at https://docs.microsoft.com/sql/relational-databases/

security/encryption/transparent-data-encryption.

• Always Encrypted

I described in Chapter 7 the new end-to-end security feature called Always Encrypted,

which integrates SQL Server providers with the database engine to encrypt data end-to-

end but place the control of keys in the hands of application developers and users. pgsql

does not have a built-in end-to-end encryption feature like Always Encrypted.

• Dynamic data masking (DDM)

DDM for SQL Server allows a SQL Server administrator to define masking rules using

T-SQL vs. encoding the rules in an application. The feature is called dynamic because

applications can pick up new masks on data after the T-SQL statements are applied to

SQL Server. pgsql does not currently support a dynamic data masking feature.

• Auditing

SQL Server provides built-in security auditing uses the foundation of extended

events. pgsql does not provide any built-in security audit capabilities. In my research,

I did find this custom extension for auditing for pgsql on GitHub at https://github.com/

pgaudit/pgaudit but I cannot tell how widely this is used or supported.

• Data classification and vulnerability assessment

The recent GDPR regulations have many users looking closer at both data

classification and possible vulnerabilities in their data platform. SQL Server provides

built in capabilities and tools for both data classification (read more at https://

docs.microsoft.com/sql/relational-databases/security/sql-data-discovery-

and-classification) and vulnerability assessments (read more at https://docs.

microsoft.com/sql/relational-databases/security/sql-vulnerability-

assessment). Pgsql does not provide any built-in capabilities for either data classification

or vulnerability assessments.

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/linux/sql-server-linux-active-directory-authentication
https://docs.microsoft.com/sql/linux/sql-server-linux-active-directory-authentication
https://docs.microsoft.com/sql/relational-databases/security/encryption/transparent-data-encryption
https://docs.microsoft.com/sql/relational-databases/security/encryption/transparent-data-encryption
https://github.com/pgaudit/pgaudit
https://github.com/pgaudit/pgaudit
https://docs.microsoft.com/sql/relational-databases/security/sql-data-discovery-and-classification
https://docs.microsoft.com/sql/relational-databases/security/sql-data-discovery-and-classification
https://docs.microsoft.com/sql/relational-databases/security/sql-data-discovery-and-classification
https://docs.microsoft.com/sql/relational-databases/security/sql-vulnerability-assessment
https://docs.microsoft.com/sql/relational-databases/security/sql-vulnerability-assessment
https://docs.microsoft.com/sql/relational-databases/security/sql-vulnerability-assessment

528

 HADR

I described in this book how important high availability and disaster recovery features

and processes are for a production database platform. In this section, I’ll highlight some

of the unique differences between SQL Server and pgsql regarding HADR.

• Backup and Restore

• SQL Server backups support checksums but that is not

supported with pgsql. SQL BACKUP WITH CHECKSUM verifies

the checksum during the backup. SQL Server has RESTORE

VERIFYONLY to verify the checksums.

• There is no encryption option for backups for pgsql where SQL

Server supports encrypted backups.

• SQL Server supports the Virtual Device Interface (VDI) for

backup streaming to external programs, including the support for

snapshot backups. The pg_dump program for pgsql does support

streaming the output using a “pipe” with Linux to another

program, but VDI is a complete protocol interface allowing for

rich third-party backup solutions.

• SQL Server supports differential backups but pgsql does not have

this concept. You can read more about differential backups in

SQL Server at https://docs.microsoft.com/sql/relational-

databases/backup-restore/differential-backups-sql-

server.

• SQL Server supports restores of filegroups, partial restores, and

page restores online, which are not supported in pgsql.

• Startup and parallel recovery

• I’ve described in the book the process for SQL Server recovery

of a database at startup including the analysis, redo, and undo

phases. SQL Server supports the concept of fast recovery to allow

database users to access the database after the redo phase while

maintain locks on the necessary resources as undo executes.

Pgsql does not offer this functionality.

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/relational-databases/backup-restore/differential-backups-sql-server
https://docs.microsoft.com/sql/relational-databases/backup-restore/differential-backups-sql-server
https://docs.microsoft.com/sql/relational-databases/backup-restore/differential-backups-sql-server

529

• SQL Server also uses parallel works for the redo phase of

recovery, thereby speeding up the overall recovery process. Pgsql

does not offer parallel redo recovery of databases.

• Disaster recovery

If you lose a database tablespace in pgsql (for example you put it on a separate

disk that fails) the entire pgsql cluster may not start. This is according to the pgsql

documentation at https://www.postgresql.org/docs/10/static/manage-ag-

tablespaces.html. Any SQL Server user database failure to start for any reason

will not result in an instance startup failure.

• Database snapshots

pgsql does not offer any functionality like the SQL Server database snapshot, which

is a sparse version of the original database and only grows as changes are made to the

original database. You can read more about SQL Server database snapshots at https://

docs.microsoft.com/sql/relational-databases/databases/database-snapshots-

sql-server.

• Failover clustering and Availability Groups

Pgsql offers both shared disk and transaction log based HADR solutions and

integrates with clustering system software such as Pacemaker. The resource agent to

use with Pacemaker must be installed from a different location at https://github.

com/ClusterLabs/resource-agents/blob/master/heartbeat/pgsql. All resources

on how to install the resource agent and integrate with Pacemaker can be found at

https://wiki.postgresql.org/wiki/Ecosystem:Pacemaker. After looking through this

functionality of pgsql, two differences stood out for me

 1. The granularity of failover detection for SQL Server uses

flexible failover policies and the sp_server_diagnostics system

procedure. In addition, SQL Server supports database health

as a component to detect the need for a failover. I did not see

pgsql offer this level of failure detection to trigger a failover

built inside the database engine. You can read more about

flexible failover for SQL Server at https://docs.microsoft.

com/sql/database-engine/availability-groups/windows/

flexible-automatic-failover-policy-availability-

group.

ChApter 10 MigrAting to SQL Server on Linux

https://www.postgresql.org/docs/10/static/manage-ag-tablespaces.html
https://www.postgresql.org/docs/10/static/manage-ag-tablespaces.html
https://docs.microsoft.com/sql/relational-databases/databases/database-snapshots-sql-server
https://docs.microsoft.com/sql/relational-databases/databases/database-snapshots-sql-server
https://docs.microsoft.com/sql/relational-databases/databases/database-snapshots-sql-server
https://github.com/ClusterLabs/resource-agents/blob/master/heartbeat/pgsql
https://github.com/ClusterLabs/resource-agents/blob/master/heartbeat/pgsql
https://wiki.postgresql.org/wiki/Ecosystem:Pacemaker
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/flexible-automatic-failover-policy-availability-group
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/flexible-automatic-failover-policy-availability-group
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/flexible-automatic-failover-policy-availability-group
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/flexible-automatic-failover-policy-availability-group

530

 2. SQL Server provides a capability for automatic page repair

with Availability Groups, where pgsql does not offer this

feature with their streaming replication technology.

 Management and Monitoring

The final area where I’ve compared SQL Server with pgsql is various management and

monitoring features. The following are areas I feel SQL Server shines and provides more

robust functionality than pgsql.

• SQL Server Agent

SQL Server provides a built-in job scheduling engine, which can be especially handy

to schedule database maintenance tasks. pgsql does not offer a built-in job scheduler

system. You can read more about how to use SQL Server Agent on Linux at https://

docs.microsoft.com/sql/linux/sql-server-linux-run-sql-server-agent-job.

• Resource Governor

SQL Server provides a built-in feature to control resources for users and applications

including CPU, I/O, and memory. In addition, Resource Governor allows you to control

the max degree of parallelism at an application level and affinitize applications to CPUs

or NUMA nodes. Pgsql does not have built-in features that compare with Resource

Governor. Most uses of pgsql use Linux cgroups to control the pgsql cluster resources

but you cannot tie this assignment to applications. You can read more about SQL Server

Resource Governor at https://docs.microsoft.com/sql/relational-databases/

resource-governor/resource-governor.

• Dedicated Admin Connection (DAC)

As I’ve described in the book, should SQL Server become inaccessible for any

reason, but the SQL Server instance is still running, you may be able to connect with

DAC, collect diagnostics, and in some cases resolve the problem. Should pgsql become

hung for any reason, there is no method to access the engine without stopping and

restarting pgsql. You can read more about DAC for SQL Server at https://docs.

microsoft.com/sql/database-engine/configure-windows/diagnostic-connection-

for-database-administrators.

• Attaching and detaching a database

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/linux/sql-server-linux-run-sql-server-agent-job
https://docs.microsoft.com/sql/linux/sql-server-linux-run-sql-server-agent-job
https://docs.microsoft.com/sql/relational-databases/resource-governor/resource-governor
https://docs.microsoft.com/sql/relational-databases/resource-governor/resource-governor
https://docs.microsoft.com/sql/database-engine/configure-windows/diagnostic-connection-for-database-administrators
https://docs.microsoft.com/sql/database-engine/configure-windows/diagnostic-connection-for-database-administrators
https://docs.microsoft.com/sql/database-engine/configure-windows/diagnostic-connection-for-database-administrators

531

Since SQL Server allows you to control and establish specific files for your database

and transaction log, you have the capability to detach a database, copy or move your files

to another SQL Server, and attach these files for a new database. Pgsql does not offer any

capabilities like detach and attach for SQL Server.

• Recovery and repair

For page checksum failures, pgsql does offer the ability to clean up damaged pages

by initializing them from a query or the background vacuum process. SQL Server offers

richer repair capabilities such as DBCC CHECKDB REPAIR and emergency mode repair

to rebuild the transaction log. In addition, if SQL Server recovery encounters a checksum

error, recovery will continue, skipping the damaged page using deferred transactions.

• Online maintenance

SQL Server supports the concept of an online index build so that users are not

blocked while the index is being built (or rebuilt). pgsql does not offer this functionality.

In addition, SQL Server supports the concept of a resumable index rebuild, so you

can pause and continue a large index rebuild task. You can read more about online

index operations for SQL Server at https://docs.microsoft.com/sql/relational-

databases/indexes/perform-index-operations-online.

• Index reorganization

Indexes in SQL Server and pgsql can become fragmented. Both SQL Server and

pgsql offer a method to defragment an index by rebuilding the index (only SQL Server

can do this online). However, only SQL Server offers a different, less intrusive method

to defragment an index by reorganizing the index. You can read more about index

reorganization with SQL Server at https://docs.microsoft.com/sql/relational-

databases/indexes/reorganize-and-rebuild-indexes.

• System health session

While SQL Server (Extended Events) and pgsql (dtrace) offer rich tracing capabilities,

only SQL Server automatically uses tracing to save information about key events

regarding the health of SQL Server, called the system health session. Included in the

system health session is output of the sp_server_diagnostics stored procedure, which is

used to make health decisions for failover. You can read more about the system health

session in SQL Server at https://docs.microsoft.com/sql/relational-databases/

extended-events/use-the-system-health-session.

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/relational-databases/indexes/perform-index-operations-online
https://docs.microsoft.com/sql/relational-databases/indexes/perform-index-operations-online
https://docs.microsoft.com/sql/relational-databases/indexes/reorganize-and-rebuild-indexes
https://docs.microsoft.com/sql/relational-databases/indexes/reorganize-and-rebuild-indexes
https://docs.microsoft.com/sql/relational-databases/extended-events/use-the-system-health-session
https://docs.microsoft.com/sql/relational-databases/extended-events/use-the-system-health-session

532

 Executing the Migration
Just like a migration from Oracle, to migrate from PostgreSQL I recommend you first

perform the following steps:

 1. Assess and capture a baseline of performance for your current

application using PostgreSQL.

 2. Decide if you want to make any changes to the definition of tables,

indexes, or server-side code as part of your migration.

 3. Install SQL Server on Linux.

 4. Create a new database with the appropriate sizes of the database

and transaction log to accommodate the current size of the

PostgreSQL database and to account for transactions to insert

data into tables.

A migration from PostgreSQL will typically involve three areas:

• Migrating the schema or definition of all objects such as table,

indexes, views, and server-side code

• Migrating data

• Migrating any maintenance scripts or jobs

Through my research I found a few tools written by software vendors you can

purchase to help you with migrating the schema and object definitions, but nothing I

could find is free to download.

So instead, I found these two resources that talk about migrating from SQL Server to

pgsql. By studying these examples, you should be able identify possible issues you will

encounter when migrating from pgsql to SQL Server:

 1. This blog post at https://www.devbridge.com/articles/

migrating-from-mssql-to-postgresql/ talks about a user

experience migrating from SQL Server to pgsql.

ChApter 10 MigrAting to SQL Server on Linux

https://www.devbridge.com/articles/migrating-from-mssql-to-postgresql/
https://www.devbridge.com/articles/migrating-from-mssql-to-postgresql/

533

This is very useful to read because it shows many of the SQL language

differences between the two systems. You can use this knowledge as you

migrate to SQL Server.

 2. The GitHub project https://github.com/lorint/

AdventureWorks-for-Postgres for AdventureWorks is an

excellent resource.

The user took the SQL Server sample database AdventureWorks from SQL Server

2014 as found at https://github.com/Microsoft/sql-server-samples/releases/tag/

adventureworks to migrate it to pgsql. I have a few remarks after looking through this

project.

• The project uses the following zip file, https://github.

com/Microsoft/sql-server-samples/releases/download/

adventureworks/AdventureWorks-oltp-install-script.

zip, which has the T-SQL script to create the AdventureWorks

database and a series of .csv files to load the data for SQL Server.

• Compare the T-SQL script with the install.sql found in the pgsql

GitHub project so you see fundamental differences on how to

create tables, indexes, schemas, and datatypes.

• The user was forced to create functions returning VOID for T-SQL

stored procedures, since pgsql does not have a stored procedure

concept. You should be able to take functions from pgsql that

return void and change them to SQL Server stored procedures.

• The project has a program written in Ruby to convert the CSV

files to be able to load the data in pgsql. While you could look

at this code to do the reverse with CSV files generated from a

program like pgdump, consider that SSIS supports a pgsql ODBC

driver. Therefore, you would build an SSIS package to export data

from pgsql into your SQL Server on Linux. Pgsql supports ODBC

drivers (see https://www.postgresql.org/ftp/odbc/versions/

msi/ for downloads). Then see this documentation for how to

use SSIS with ODBC data sources: https://docs.microsoft.

com/sql/integration-services/data-flow/extract-data-by-

using-the-odbc-source.

ChApter 10 MigrAting to SQL Server on Linux

https://github.com/lorint/AdventureWorks-for-Postgres
https://github.com/lorint/AdventureWorks-for-Postgres
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/download/adventureworks/AdventureWorks-oltp-install-script.zip
https://github.com/Microsoft/sql-server-samples/releases/download/adventureworks/AdventureWorks-oltp-install-script.zip
https://github.com/Microsoft/sql-server-samples/releases/download/adventureworks/AdventureWorks-oltp-install-script.zip
https://github.com/Microsoft/sql-server-samples/releases/download/adventureworks/AdventureWorks-oltp-install-script.zip
https://www.postgresql.org/ftp/odbc/versions/msi/
https://www.postgresql.org/ftp/odbc/versions/msi/
https://docs.microsoft.com/sql/integration-services/data-flow/extract-data-by-using-the-odbc-source
https://docs.microsoft.com/sql/integration-services/data-flow/extract-data-by-using-the-odbc-source
https://docs.microsoft.com/sql/integration-services/data-flow/extract-data-by-using-the-odbc-source

534

 Post Migration Considerations
Once you have migrated to SQL Server, you will want to consider several changes for

the SQL Server instance and databases you have migrated. There could be many tasks

you need to work on post migration, but in this section I’ve narrowed it to ones I feel

most important that can affect the success of your experience on SQL Server on Linux.

In this section, I’ll discuss performance, HADR, database compatibility, and application

compatibility. Database compatibility only applies if you have migrated from an earlier

version of SQL Server. All other topics are very applicable to your migration from any

database platform to SQL Server on Linux.

 Optimizing Performance Post Migration
This book contains a very lengthy chapter on performance (Chapter 6) for a good reason.

Performance is one of the most critical aspects to a successful application using a data

platform like SQL Server. Therefore, after you have migrated to SQL Server on Linux, you

want to be sure to optimize performance. Everything I discussed in Chapter 6 applies to

your use of SQL Server on Linux. In this section, I’ll call out some specific areas you want

to look at after you have migrated.

First, our documentation contains an excellent set of performance-related post

migration topics at https://docs.microsoft.com/sql/relational-databases/

post-migration-validation-and-optimization-guide. Let me start by making some

comments on these recommendations:

• Change in CE version: CE stands for cardinality estimation, and

I mentioned this topic in Chapter 6 on performance. I’ll defer

commenting on this topic until the section later in this chapter on

database compatibility.

• Change in cardinality estimation: You’ll want to address changes in

cardinality estimation. See “Using Database Compatibility” later in

this chapter for specific advice.

• Parameter sniffing: This is another topic I talked about in Chapter

6 on performance. This guidance is more for awareness and how to

deal with situations for parameter sensitive plans. If you remember, in

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/relational-databases/post-migration-validation-and-optimization-guide
https://docs.microsoft.com/sql/relational-databases/post-migration-validation-and-optimization-guide

535

Chapter 6 I talked about the new feature called Automatic Tuning to

detect and even fix query plan regression problems that can occur in

some situations because of parameter sniffing.

• Missing indexes: I discussed this topic in Chapter 6 on performance.

Always take a look at recommended missing indexes but always

investigate each recommendation to make sure it makes sense for

your database.

• Predicates and filter of data: This section talks about various query

patterns that would prevent SQL Server from generating an optimal

query plan to search based on filters. A filter is just another word for

using a WHERE clause in a T-SQL statement. An example of a filter

that could prevent the ability of SQL Server to seek for rows using

an index (vs. scanning the entire index or table) is a WHERE clause

comparing a column with a variable or value that is not the same data

type and requires an implicit data conversion.

• Table valued functions: This is a topic I did not cover in the book

to this point. Table valued functions (TVFs) give you the ability to

create a T-SQL function that returns a table type. The documentation

discusses how this concept could be an alternative to a view, since a

TVF can have multiple statements but a view only allows one T-SQL

statement. Be careful using a Multi-Statement TVF (MSTVF), since

statistics used for query plan choices use a fixed value. Having said

this, the new AQP feature I discussed in Chapter 6 can help with

estimating the correct statistics for a MSTVF.

There are other considerations for performance I think you should keep in mind

after a migration to SQL Server on Linux, including indexes, baselines and monitoring,

and using new features.

 Rebuild Existing Indexes and Build New Indexes

I don’t necessarily have the evidence to back up this statement, but I’ll say it anyway. Any

time you upgrade or migrate to a newer version of SQL Server, always rebuild all of your

indexes. It just gives you a clean slate on index organization and statistics.

ChApter 10 MigrAting to SQL Server on Linux

536

After you migrate, it is also a good opportunity to investigate whether you should

consider changing your current indexes, removing unneeded indexes, or adding new

indexes. Use the guidance from Chapter 6 on possible missing indexes. If you are

migrating from another database platform, you definitely want to take a look at the right

index strategy for your new tables. While tools like SSMA can convert indexes from a

platform like Oracle to SQL Server, you should ensure these indexes are still the right

ones for your workload, including clustered indexes and nonclustered indexes.

 Establish New Baselines and Performance Monitoring Strategy

In Chapter 6, I talked about the important of performance baselines and monitoring. I

also discussed in that chapter the importance of capturing performance baseline data on

your previous system before the migration. A tool like DEA allows you to do this for SQL

Server and compare future performance before the migration.

After the migration is a good time to check on the performance of your application

compared with previous baselines, whether it is SQL Server or another database

platform. In addition, as I mentioned at the top of the chapter, compare your overall

system utilization on SQL Server on Linux with your previous system. It is very possible

the overall system utilization may be different on SQL Server on Linux, but you should be

on the lookout for radically different observations. If you migrate to SQL Server on Linux

and your application results in a 100% CPU utilization of the Linux server (and sqlservr

consumes all of this), you need to carefully study whether you have enough CPUs for

your workload or whether T-SQL queries may not be optimally tuned.

Once you are satisfied with the new performance of SQL Server after the migration,

it is a great time to establish new baselines. This is where a feature like Query Store can

become extremely useful, since it automatically captures historical information about

query performance.

You also need to ensure you have the right monitoring strategy in place for

performance. If you are migrating from SQL Server on Windows, many of the great

SQL Server features exist to monitor query performance, but you will need to establish

new methods to observe performance of the Linux operating system compared with

Windows.

If you are coming from a different database platform, you will need to set up your

system for using built-in SQL Server features to monitor query performance such as

DMVs, Extended Events, and Query Store.

ChApter 10 MigrAting to SQL Server on Linux

537

 Enable New Features for Performance

Once you have migrated to SQL Server on Linux, are comfortable with performance, and

have new baselines established, before you “turn on” production you may consider also

looking at using new features for performance, including but not limited to:

• Columnstore indexes

• In-Memory OLTP

• Partitions (this is not necessarily a new feature if you are migrating

from SQL Server, but you may not have been using this. Users from

other data platforms will definitely want to consider partitions).

• Automatic Tuning

Review back to Chapter 6 for more details on these features and how and when to

best use them.

 Design Your Security and HADR Strategy
Ensuring performance meets your needs after the migration is critical to success.

But as I’ve described in other chapters in the book, security and HADR can be just as

important. Review these chapters to see what security features you should use and how

you should set up logins and users. Perhaps you can take this opportunity to use Active

Directory authentication.

For HADR, having a backup strategy is fundamentally required. But you also may use

the migration as an opportunity to set up Always On Availability Groups as a new HADR

strategy.

 Using Database Compatibility
Each SQL Server database can operate at a database compatibility level on each

version of SQL Server. When a database is created on a specific version of SQL Server,

that database takes on the default database compatibility level for that SQL Server

version. I have to admit, it can get a bit confusing on the numbering system for database

compatibility levels compared with the name of the SQL Server version. For example,

the default database compatibility level for SQL Server 2017 is 140. The reason for 140

ChApter 10 MigrAting to SQL Server on Linux

538

is to match the version number of SQL Server. For example, the version number of SQL

Server 2017 starts with 14, so the compatibility levels match the engine version major

number.

Note You can find the full engine version using the t-SQL statement SELECT
@@VERSION or using one of the options for the t-SQL @@ServerpropertY
system function like productversion. the full product version is made up of a major.
minor.build.revision number. in most cases, we do not use the minor number
(exception SQL Server 2008r2). the build equates to a major build release of
SQL Server like rtM, Cumulative update, or gDr. the revision is an internal
mechanism to update builds once we are close to releasing a build as part of a
rtM, Cumulative update, or gDr release.

The full table of the default database compatibility level that matches the SQL

Server release and version are documented at https://docs.microsoft.com/sql/t-

sql/statements/alter-database-transact-sql-compatibility-level#arguments.

As each new major release of SQL Server comes to market, a new default database

compatibility is established. Any database restored from a previous release will retain

the default database compatibility level of that previous release. You didn’t realize it, but

every time you restored the WideWorldImporters sample in previous chapters of this

book, this database retained the database compatibility level of 130. You can see this by

running the following T-SQL statement after restoring WideWorldImporters:

SELECT name, compatibility_level FROM sys.databases WHERE name =

'WideWorldImporters'

GO

The results should look like

Name compatibility_level

----------------------------- -------------------

WideWorldImporters 130

You can use the ALTER DATABASE T-SQL statement to change the compatibility

level of any database, as documented at https://docs.microsoft.com/sql/t-sql/

statements/alter-database-transact-sql-compatibility-level.

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/t-sql/statements/alter-database-transact-sql-compatibility-level#arguments
https://docs.microsoft.com/sql/t-sql/statements/alter-database-transact-sql-compatibility-level#arguments
https://docs.microsoft.com/sql/t-sql/statements/alter-database-transact-sql-compatibility-level
https://docs.microsoft.com/sql/t-sql/statements/alter-database-transact-sql-compatibility-level

539

I’ve given you the mechanics of a database compatibility level, but I haven’t

explained its purpose. Database compatibility level is used for two reasons:

 1. Enable new functionality

 2. Backward compatibility

 Enabling New Functionality with Database Compatibility

Some enhancements, typically around query processing, are introduced when using

a database compatibility level. For example, starting with database compatibility level

140, new functionality for query processing is enabled when a database is set to this

compatibility level. I described this new functionality, called Adaptive Query Processing,

in Chapter 6. You can expect Microsoft in the future to enable new query processing

functionality using database compatibility.

Here are other examples of query processing enhancements introduced with

database compatibility:

Cardinality estimation: A new cardinality estimation (CE) model

is enabled when the database is using compatibility level 120 or

later (introduced in SQL Server 2014). I discussed the impact of

the new CE model in Chapter 6. I’ve also mentioned previously

in this book that you can revert to the older CE model with a

database compatibility level of 120 or later if you use the ALTER

DATABASE option called LEGACY_CARDINALITY_ESTIMATION.

Query processing fixes: Database compatibility level 130 includes

query processing hotfixes that were previously only enabled

with trace flag 4199. Database compatibility 140 level includes

query processing hotfixes introduced in the timeframe between

SQL Server 2016 (compatibility level 130) and SQL Server 2017

(compatibility level 140). I discussed this concept previously in the

book, but for review you can read more about enabling these fixes

at https://docs.microsoft.com/sql/t-sql/database-console-

commands/dbcc-traceon-trace-flags-transact-sql#4199.

Parallel bulk operations: SELECT INTO queries for databases

under compatibility level 120 or higher can run in parallel.

INSERT SELECT queries for databases under compatibility level

130 or higher can run in parallel.

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-traceon-trace-flags-transact-sql#4199
https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-traceon-trace-flags-transact-sql#4199

540

There are other examples, and you can read through them starting at this place

in the documentation: https://docs.microsoft.com/sql/t-sql/statements/

alter-database-transact-sql-compatibility-level#differences-between-

compatibility-level-130-and-level-140. This starts a series of tables that describes

the differences in behavior between compatibility levels.

 Using Database Compatibility for Backward Compatibility

Database compatibility can be used to perform some level of protection of backward

compatibility for queries and functionality of your application. All of the backward

compatibility differences are listed in the documentation for each compatibility level

(see the last documentation link I provided previously). Let me give you can example.

If you are using database compatibility level 110 or lower, a T-SQL query using

a concept called common table expression (CTE) allows duplicate column names.

However, starting with database compatibility level 120, duplicate column names would

result in an error and the query would fail.

There are two areas where database compatibility has no effect on possible breaking

changes:

• Discounted features or functionality

• Changes outside the scope of a database at the SQL Server instance

level

One of the areas that database compatibility can be of great help is performance.

Starting with database compatibility level 130, any changes or features that could result

in a change to a query plan should only happen with the new compatibility level. This

provides a safer approach for applications that upgrade to a newer release of SQL Server

but retain the previous database compatibility level.

I recommend you read through all of our documentation on using compatibility level

for backward compatibly at https://docs.microsoft.com/sql/t-sql/statements/

alter-database-transact-sql-compatibility-level#using-compatibility-level-

for-backward-compatibility.

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/t-sql/statements/alter-database-transact-sql-compatibility-level#differences-between-compatibility-level-130-and-level-140
https://docs.microsoft.com/sql/t-sql/statements/alter-database-transact-sql-compatibility-level#differences-between-compatibility-level-130-and-level-140
https://docs.microsoft.com/sql/t-sql/statements/alter-database-transact-sql-compatibility-level#differences-between-compatibility-level-130-and-level-140
https://docs.microsoft.com/sql/t-sql/statements/alter-database-transact-sql-compatibility-level#using-compatibility-level-for-backward-compatibility
https://docs.microsoft.com/sql/t-sql/statements/alter-database-transact-sql-compatibility-level#using-compatibility-level-for-backward-compatibility
https://docs.microsoft.com/sql/t-sql/statements/alter-database-transact-sql-compatibility-level#using-compatibility-level-for-backward-compatibility

541

 Migrate SQL Server Instance Objects
If you are migrating a database from a previous version of SQL Server to SQL Server on

Linux, you may have to migrate objects outside the scope of the database, including:

Logins: Remember, only SQL Standard security and Active

Directory authentication is supported. If you have Windows

domain logins, you will need to configure Active Directory

authentication to allow them access to SQL Server on Linux.

SQL Server Agent jobs: Remember, the only type of jobs that work

with SQL Server on Linux are general jobs that have T-SQL job

steps. You will have to find alternate solutions for other jobs with

job steps that are outside the scope of T-SQL.

Linked servers: Only SQL Server to SQL Server linked servers

are supported, but you can define those using T-SQL system

procedures to add linked servers. You can read more about this

in the documentation at https://docs.microsoft.com/sql/

relational-databases/linked-servers/linked-servers-

database-engine. Unfortunately, with SQL Server 2017 on Linux,

you cannot use distributed transactions over linked servers and

only SQL Standard security is supported.

 Using New Features
I’ve worked with customers who have migrated from one version of SQL Server to the

next who are doing this just to keep up to date with the latest SQL Server version or

because the version they are currently using is out of support. In these situations, what

can get lost after the migration is to take advantage of new features. SQL Server 2016 and

2017 come with new features you might easily miss, including:

• Columnstore indexes (introduced in SQL Server 2012 but in SQL

2017 I consider this feature at its peak)

• In-Memory OLTP (introduced in SQL Server 2014 but many

restrictions are removed by SQL Server 2017)

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/relational-databases/linked-servers/linked-servers-database-engine
https://docs.microsoft.com/sql/relational-databases/linked-servers/linked-servers-database-engine
https://docs.microsoft.com/sql/relational-databases/linked-servers/linked-servers-database-engine

542

• Graph database

• JSON support

• Temporal tables

• Native scoring

I’ve covered these in previous chapters of the book, so I encourage you to go back

and review these to see if they make sense for your application needs after the migration

(or you may choose to use some of these as part of the migration).

 Using an Existing Application Against SQL Server
on Linux
It is one thing to migrate your objects and data, but what about your application

developed to use SQL Server. The good news is that whether you are migrating from

SQL Server or another database platform, our server-side programs such as stored

procedures are typically part of the migration process I’ve described in this chapter.

However, if you have queries embedded in your application, such as ad hoc queries,

or use a programming interface such as Object Relational Mapping (ORM), which

typically generates queries, migration of the application may be more difficult.

The great news is that SQL Server supports just about every popular programming

language interface on the market today, including C#, Java, Node.js, PHP, Python,

Ruby, and C++. You can see a complete list of programming interfaces supported for

SQL Server on Windows, macOS, and Linux at https://docs.microsoft.com/sql/

linux/sql-server-linux-develop-connectivity-libraries. And if you are using

an application against a previous version of SQL Server, there is a high chance your

application will work with SQL Server on Linux with very few changes.

Note the type of breaking changes that may affect your SQL Server application
will be more related to database compatibility and any differences in features not
supported by SQL Server on Linux. Keep up to date with feature differences for
SQL Server on Linux in our release notes at https://docs.microsoft.com/
sql/linux/sql-server-linux-release-notes.

ChApter 10 MigrAting to SQL Server on Linux

https://docs.microsoft.com/sql/linux/sql-server-linux-develop-connectivity-libraries
https://docs.microsoft.com/sql/linux/sql-server-linux-develop-connectivity-libraries
https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes
https://docs.microsoft.com/sql/linux/sql-server-linux-release-notes

543

The challenge if you are migrating an application that connected to a database

platform other than SQL Server is to make the necessary changes to use the

programming interface native to that platform. For example, in Chapter 4 I showed you

how to use node.js and the tedious driver to connect to SQL Server. The tedious driver

does not work with Oracle. So you may have a program written in node.js that uses

something like the node-oracleb driver (see more about this driver at https://github.

com/oracle/node-oracledb). The classes and methods may be similar between tedious

and node-oracleb, but likely there are enough differences that this will require code

changes, testing, and design. Don’t forget to check out differences in how the drivers

work even in the same programming language for concepts like connection pooling,

results processing, concepts like cursors, and error conditions (e.g., deadlocks may be

handled differently across database platforms).

 Summary
I hope this chapter gave you the right information to make the necessary decisions to

migrate to SQL Server on Linux. It is only appropriate to complete this book by talking

about a technology that is currently gaining steam as a popular environment to deploy

applications and databases, called containers.

ChApter 10 MigrAting to SQL Server on Linux

https://github.com/oracle/node-oracledb
https://github.com/oracle/node-oracledb

545
© Bob Ward 2018
B. Ward, Pro SQL Server on Linux, https://doi.org/10.1007/978-1-4842-4128-8_11

CHAPTER 11

SQL Server
and Containers
The concept of virtual machines has been around for some time, but at Microsoft I really

didn’t see customers start to use SQL Server as a database platform on virtual machines

until around the 2006 to 2007 timeframe. Even when virtual machine environments such

as Hyper-V and VMWare started to become popular, I was skeptical SQL Server would

run well in a guest virtual machine. Today, SQL Server is probably deployed in virtual

machines far greater than on a bare metal computer.

I see containers as the new virtual machine. But the excitement and adoption of

containers with application and database platforms like SQL Server are growing faster

than I ever saw with virtual machines.

In this chapter, I’m going to provide you with an introduction to containers, and then

a fairly deep discussion and set of examples of how to use containers with SQL Server.

Then I’ll conclude the chapter with a fun example of using SQL Server on macOS (Mac

users probably thought I had ignored them in this book) and a discussion of how to

use SQL Server in the container platform called Kubernetes. I think you will enjoy this

chapter. It was one of my favorite chapters to write in the book.

 Introduction to Containers
While virtual machines are best defined as hardware virtualization, containers (or

containerization) are defined as operating system virtualization. A virtual machine

consists of a complete operating system (guest) running on a host machine (bare metal

hardware). Therefore, it is common for a host machine to host several virtual machines.

Each virtual machine could be running a different guest operating system.

546

Containers rely on a single host operating system (which could be a virtual machine)

sharing kernel resources. This makes containers more lightweight than virtual machines.

Even though containers share a single operating system kernel, containers are isolated

from each other. I love the following visual diagram as seen in Figure 11-1, which I found

at https://i.stack.imgur.com/exIhw.png to show the difference between containers

and virtual machines.

In addition, this stackoverflow.com post is a great description of the differences

between virtual machines and containers: https://stackoverflow.com/

questions/16047306/how-is-docker-different-from-a-virtual-machine. One

comment about this posting: the posting describes the use of a Union File System

(UnionFS) called AuFS. UnionFS is an important concept for Docker containers because

it supports a layered file system. Current releases of Docker still use a UnionFS, but now

use a system called OverlayFS. You can read more about OverlayFS at https://docs.

docker.com/storage/storagedriver/overlayfs-driver.

Docker containers are created using images, which specify the contents of the

filesystem and what runs in the container. A container then is an instance of an image.

You can run multiple containers based on the same image. A Dockerfile specifies the

contents of the Docker image. Docker provides functionality to build a Docker image

from a Dockerfile specification. In addition, Docker supports functionality to build

multicontainer applications using a tool called compose. I’ll show you more about

Docker images, files, and compose in the next section, using SQL Server as an example.

Figure 11-1. Containers vs. virtual machines

Chapter 11 SQL Server and ContainerS

https://i.stack.imgur.com/exIhw.png
http://stackoverflow.com
https://stackoverflow.com/questions/16047306/how-is-docker-different-from-a-virtual-machine
https://stackoverflow.com/questions/16047306/how-is-docker-different-from-a-virtual-machine
https://docs.docker.com/storage/storagedriver/overlayfs-driver/
https://docs.docker.com/storage/storagedriver/overlayfs-driver/

547

Docker containers have the following characteristics:

• Portable: Any Docker image you build can be run anywhere Docker

containers are supported, including multiple operating systems and

public and private clouds. I’ve run Docker containers on Windows,

Linux, macOS, and Azure.

• Lightweight: As I’ve stated, Docker containers don’t include an

entire operating system like a virtual machine. Docker containers

share kernel resources and therefore are more lightweight than

virtual machines.

• Consistent: Container images allow you to deploy a consistent

version of your application or database system like SQL Server. I’ll

talk more about how this benefits SQL Server later in the chapter.

• Efficient: Docker containers provide a mechanism for faster

deployment, less downtime, and easier updates. I’ll explain how this

benefits SQL Server in the next section.

Docker uses two main components to help you manage Docker containers:

• Docker client: This is a program called docker, which you will use

with several options to build images and pull, run, start, stop, and

manage containers. You will learn more about these Docker concepts

through the examples in the chapter.

• Docker daemon: The Docker client communicates with the daemon

program, which does all the work as instructed by the client to build

images and manage and run containers.

Docker containers use a concept called namespaces to isolate one container from

each other (you can read more about the use of namespaces at https://docs.docker.

com/engine/docker-overview/#the-underlying-technology). Even though containers

are isolated, they can still communicate with each other (over TCP/IP example). Use

the Docker documentation as your complete reference for containers at https://docs.

docker.com. For your reference, please consider reading these other excellent resources

I found on containers: http://theearlybirdtechnology.com/2017/08/12/docker-

cheatsheet/ and https://www.quora.com/What-exactly-is-a-base-image-in-Docker.

Let’s dive right in to explain how you can use containers with SQL Server and

database applications.

Chapter 11 SQL Server and ContainerS

https://docs.docker.com/engine/docker-overview/#the-underlying-technology
https://docs.docker.com/engine/docker-overview/#the-underlying-technology
https://docs.docker.com
https://docs.docker.com
http://theearlybirdtechnology.com/2017/08/12/docker-cheatsheet/
http://theearlybirdtechnology.com/2017/08/12/docker-cheatsheet/
https://www.quora.com/What-exactly-is-a-base-image-in-Docker

548

 How to use SQL Server with Containers
In this section of the book, I’m going to show you practical examples of the fundamental

concepts of containers I’ve introduced you to in the opening section. I will show you how

to deploy a simple container with SQL Server, use containers to show how to minimize

downtime for updates, build and deploy an image using a Dockerfile, and finally

implement a multicontainer deployment with SQL Server and an application.

One thing to remember as you read this section: SQL Server on Linux does not

support multiple instances (this is called named instances on Windows) on the same

server, so containers is the method to use should you want to run multiple SQL Server

instances on the same Linux server.

During the time I was writing this book, my colleague Vin Yu and I built a series of

free, self-paced labs for SQL Server on Linux and Docker containers at https://github.

com/Microsoft/sqllinuxlabs. Vin built the labs to explorer Docker containers (found

at https://github.com/Microsoft/sqllinuxlabs/tree/master/containers). I will

use pieces of this lab in this section to show you how to use SQL Server with containers.

(I’ve added a few scripts as examples with the book that you can use with these labs.) I

may not go in the exact order of Vin’s labs every time, and I’ll explain a few more details

behind the commands you will run to see SQL Server containers in action.

To show you these examples, I created a new Azure Virtual Machine running RHEL

7.5. (My VM size is a Standard D16s v3 [16 vcpus, 64 GB memory] but you can do this

with a smaller sized VM. Just make sure to have at least 4 vpus and 16GB RAM). I then

ran the following commands from the bash shell to update the VM, install the git

package, and then clone the Github repo to get scripts and instructions:

sudo yum -y update

sudo yum install git

git clone https://github.com/Microsoft/sqllinuxlabs.git

Now let’s install the Docker engine so we can go through other examples in the rest

of the chapter by running the following commands from the bash shell:

sudo yum install -y yum-utils device-mapper-persistent-data lvm2

sudo yum-config-manager --add-repo https://download.docker.com/linux/

centos/docker-ce.repo

sudo yum install http://mirror.centos.org/centos/7/extras/x86_64/Packages/

pigz-2.3.3-1.el7.centos.x86_64.rpm

sudo yum install docker-ce

Chapter 11 SQL Server and ContainerS

https://github.com/Microsoft/sqllinuxlabs
https://github.com/Microsoft/sqllinuxlabs
https://github.com/Microsoft/sqllinuxlabs/tree/master/containers

549

Note the standard docker package for rheL is a paid version called docker
enterprise edition (you can read more at https://docs.docker.com/
install/linux/docker-ee/rhel). For the purposes of this lab and the
examples in the book, i am going use the free docker Community edition, which is
built for CentoS but is compatible to work on rheL. You can read more about the
docker Community edition at https://docs.docker.com/install/.

Now start the Docker engine with the following command from the bash shell:

sudo systemctl start docker

You can use the following command as well to have Docker start on a reboot:

sudo systemctl enable docker

Now I am ready to show you how to deploy SQL Server with a container.

 Deploy and Run the SQL Server Image
In this section, I’ll show you the basics of deploying containers with SQL Server and how

to update SQL Server using containers.

 Docker Container SQL Server Basics

Let’s learn first the basics of deploying a container with SQL Server and interacting with

it. Containers are instances of an image. Microsoft has published a series of images on

the Docker Hub at https://hub.docker.com/r/microsoft/mssql-server-linux/.

Docker images can be stored in a private registry or in a public domain like Docker Hub.

You can even use the cloud for a private container registry such as the Azure Container

Registry, which you can read more about at https://azure.microsoft.com/services/

container-registry.

The Microsoft-published images for SQL Server on Docker Hub include images for

SQL Server 2017 from RTM all the way to the latest CU and GDR updates. These images

are based on a base image of Linux Ubuntu 16.04 with SQL Server Developer edition.

This does not mean you have to deploy these images only on an Ubuntu Linux server.

The Docker image we have built using Ubuntu can run on any platform Docker supports,

because the base Linux kernel is the same across Linux distributions. In fairness, if you

Chapter 11 SQL Server and ContainerS

https://docs.docker.com/install/linux/docker-ee/rhel
https://docs.docker.com/install/linux/docker-ee/rhel
https://docs.docker.com/install/
https://hub.docker.com/r/microsoft/mssql-server-linux/
https://azure.microsoft.com/services/container-registry
https://azure.microsoft.com/services/container-registry

550

need to rely on a Linux-specific distribution functionality, our image based on Ubuntu

may not work for you. In this case, you may need to build an image with a Dockerfile.

Furthermore, if you want to use a Docker image with another edition of SQL Server, look

through our documentation at https://docs.microsoft.com/sql/linux/sql-server-

linux-configure-docker#production.

Note You can build your own docker container image for SQL Server with rheL
as the base image, using a dockerfile. See our example at https://github.
com/Microsoft/mssql-docker/blob/master/linux/preview/RHEL/
Dockerfile. Microsoft is working on publishing docker images that include Linux
distributions like rheL in the future.

In this chapter, I run all Docker commands as root using sudo. You may

configure Docker so that you can use Docker commands as a non-root user.

See this documentation (https://docs.docker.com/install/linux/linux-

postinstall/#manage-docker-as-a-non-root-user) for more information.

The method to deploy the SQL Server Docker Hub container image is with one of

two methods:

• Use the Docker client program with the pull option like the following

command from the bash shell:

sudo docker pull microsoft/mssql-server-linux:2017-latest

• Run a Docker container specifying one of the SQL Server images,

which if it does not already exist will first pull the image and then run

the container.

sudo docker run -e 'ACCEPT_EULA=Y' -e \ 'SA_

PASSWORD=YourStrong!Passw0rd' \

-p 1500:1433 --name sql1 \

-d microsoft/mssql-server-linux:2017-latest

If you first pull the image, the second option to run the container will run the

container image you have pulled down. Both of these methods require an Internet

connection from your Linux server.

Chapter 11 SQL Server and ContainerS

https://docs.microsoft.com/sql/linux/sql-server-linux-configure-docker#production
https://docs.microsoft.com/sql/linux/sql-server-linux-configure-docker#production
https://github.com/Microsoft/mssql-docker/blob/master/linux/preview/RHEL/Dockerfile
https://github.com/Microsoft/mssql-docker/blob/master/linux/preview/RHEL/Dockerfile
https://github.com/Microsoft/mssql-docker/blob/master/linux/preview/RHEL/Dockerfile
https://docs.docker.com/install/linux/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.docker.com/install/linux/linux-postinstall/#manage-docker-as-a-non-root-user

551

Tip the following stackexchange.com post at https://serverfault.com/
questions/701248/downloading-docker-image-for-transfer-to-
non-internet-connected-machine has a great description on the offline
experience for deploying containers. docker provides the ability to pull an image
to an internet-connected machine, save the image to a tar file, copy the tar file to
your Linux server, and then use docker load to import the tar file into an image you
can use to run a container.

Let’s use the second method to run the container, which will automatically pull

the Docker image for SQL Server with the latest CU update. I wanted to put in my sa

password, so I took the preceding command in the nano editor, changed the string

for my sa password, and then pasted the result into the bash shell like the following

command:

sudo docker run -e 'ACCEPT_EULA=Y' -e 'SA_PASSWORD=Sql2017isfast' \

 -p 1500:1433 --name sql1 \

 -d microsoft/mssql-server-linux:2017-latest

If the command is successful, you will see results like the following (if this is the first

time you have attempted to run an SQL Server container image). You can see that the

Docker image cannot be found locally, so it will be pulled first from the Docker Hub so a

docker pull is run implicitly.

Unable to find image 'microsoft/mssql-server-linux:2017-latest' locally

2017-latest: Pulling from microsoft/mssql-server-linux

f6fa9a861b90: Pull complete

da7318603015: Pull complete

6a8bd10c9278: Pull complete

d5a40291440f: Pull complete

bbdd8a83c0f1: Pull complete

3a52205d40a6: Pull complete

6192691706e8: Pull complete

1a658a9035fb: Pull complete

344203922c4b: Pull complete

5975df51ff07: Pull complete

Chapter 11 SQL Server and ContainerS

http://stackexchange.com
https://serverfault.com/questions/701248/downloading-docker-image-for-transfer-to-non-internet-connected-machine
https://serverfault.com/questions/701248/downloading-docker-image-for-transfer-to-non-internet-connected-machine
https://serverfault.com/questions/701248/downloading-docker-image-for-transfer-to-non-internet-connected-machine

552

Digest: sha256:97d2a9cd87ecfab641f24be254e03a45b8d551355e21516c0460da7daf8b

526e

Status: Downloaded newer image for microsoft/mssql-server-linux:2017-latest

66e7e043e41683af4e1f419df41417e7fb3c19f8013b2d9d3e5c69a5d03ec3f8

The best way to know if your container is running successfully is to run the following

command from the bash shell:

sudo docker ps

On my Linux server, the results look like the following:

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS NAMES

a01c1c991cec microsoft/mssql-server-linux:2017-latest

"/opt/mssql/bin/sqls..." About a minute ago Up About a minute

 0.0.0.0:1500->1433/tcp sql1

Let’s break down the docker run command parameters I just used.

The parameters for -e are used for environment variables that are required to run

SQL Server (similar to what you specify when you run the mssql-conf script as part

of deploying SQL Server on Linux), including accepting the EULA and specifying a sa

password. (Note: These variables are passed to the sqlservr program.)

The -p parameter is used for port mapping. SQL Server listens on port 1433, but

using that port for the container could conflict with port 1433 on the host Linux server

or other Docker containers for SQL Server So, this parameter maps port 1500 to port

1433 in the container. I’ll show you how to use the mapped port when connecting to SQL

Server in the container.

The –name parameter allows you to specify a user-friendly name to interact with the

container with other Docker commands.

The -d parameter says to run the container in the background (i.e., detached) so the

docker run command will come back to the bash shell prompt but start the container in

the background.

Chapter 11 SQL Server and ContainerS

553

The final parameter is the name of the Docker image, which in this case is

microsoft/mssql-server-linux:2017-latest. Docker will try to find this image locally on

the Linux server. If it does not exist, it will attempt to first pull that image from the Docker

Hub as you saw in the results of the docker run command previously.

You can run the following command from the bash shell to see the Docker image for

SQL Server is now stored locally:

sudo docker images

The results on my Linux server look like the following:

REPOSITORY TAG IMAGE ID

CREATED SIZE

microsoft/mssql-server-linux 2017-latest c90c3ab55158

13 days ago 1.44GB

Now that the Docker container is running, you will want to connect to SQL Server.

Let’s use the following two methods:

 1. Interact with the container using a Docker command to run a

bash shell with the following command:

sudo docker exec -it sql1 bash

You should now have a shell prompt that looks something like this:

root@66e7e043e416:/#

In this example, 66e7e043e416 is the container ID and becomes the server name as

found in the T-SQL statement @@SERVERNAME.

This is a bash shell that allows you to run commands within the container (pretty

cool, right?). Run the following command to use sqlcmd (The SQL Server images

include the sqlcmd tool) within the container to connect to SQL Server (put in your sa

password):

/opt/mssql-tools/bin/sqlcmd -U SA -P 'Sql2017isfast'

Chapter 11 SQL Server and ContainerS

554

Note While it is interesting to interact directly with the container using the bash
shell, most of the interactions you will have with a container will be using programs
outside the container. Be careful making any changes inside the container itself
unless you are making changes to data or files on a persisted volume (which i
will describe later in this chapter). any changes to the container not on persisted
storage will be lost should you remove the container. You will see in the following
examples i show you how to run sqlcmd both inside the container and outside the
container. But in these examples i’m making changes to an SQL Server database
that is on a persisted storage volume.

Type exit in sqlcmd and type in exit to leave this shell.

 2. The second method is to use an SQL Server tool outside the

container to connect with the SQL Server in the container. On

this Azure VM, I installed the SQL Server tools per the following

documentation (https://docs.microsoft.com/sql/linux/

quickstart-install-connect-red-hat#tools) so I can use

sqlcmd to connect to SQL Server in the container. Since the

container is mapped to port 1500 and I’m connecting on the local

Linux server, I can run a command from the bash shell like the

following:

sqlcmd -S localhost,1500 -Usa -PSql2017isfast

Note You can connect to SQL Server in the container on another computer that
can access the Linux host server by using the ip address of the Linux host server
with port 1500 for the -S parameter. this port must be open from the firewall.

Now from the sqlcmd prompt, run the following T-SQL statement:

SELECT @@version

GO

Chapter 11 SQL Server and ContainerS

https://docs.microsoft.com/sql/linux/quickstart-install-connect-red-hat#tools
https://docs.microsoft.com/sql/linux/quickstart-install-connect-red-hat#tools

555

Your results should look like the following, which shows SQL Server thinks it is

running on Ubuntu but the host is really RHEL:

Microsoft SQL Server 2017 (RTM-CU9-GDR) (KB4293805) - 14.0.3035.2 (X64)

 Jul 6 2018 18:24:36

 Copyright (C) 2017 Microsoft Corporation

 Developer Edition (64-bit) on Linux (Ubuntu 16.04.5 LTS)

Type exit to leave sqlcmd.

You can stop the container with the following command from the bash shell:

sudo docker stop sql1

To see all containers, even ones that are not running, you can use the following

command from the bash shell:

sudo docker ps -a

You results should look something like the following:

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS NAMES

66e7e043e416 microsoft/mssql-server-linux:2017-latest

"/opt/mssql/bin/sqls..." About an hour ago Exited (0) 2 minutes ago

sql1

Docker containers include any files or data you have created or modified while

running the container. You can start and stop the container and the data you have

created will be persisted for the lifetime of the container. However, if you remove the

container, all data in the container will be lost. But there is a method to persist any data

in the container in a way, so the data is saved even if the container is removed. Let’s look

at an example that could prove useful to update SQL Server to minimize downtime.

Before you proceed, remove the previous container and image using the following

commands from the bash shell:

sudo docker rm sql1

sudo docker rmi microsoft/mssql-server-linux:2017-latest

Chapter 11 SQL Server and ContainerS

556

 Updating SQL Server Using Containers

To update SQL Server on Linux to a new cumulative update on RHEL, you would

normally run a command like sudo yum update mssql-server. This command will

pull down the latest cumulative update, shut down SQL Server, apply the new binaries,

and then start SQL Server. If the update runs smoothly, it should not take a considerable

amount of time, but containers offer a different method. Let me show you how with an

example. For this section, I’ll be using the WideWorldImporters sample database, so

with my new Azure VM, I first ran this command from the bash shell to pull down this

sample backup:

wget https://github.com/Microsoft/sql-server-samples/releases/download/

wide-world-importers-v1.0/WideWorldImporters-Full.bak

The first step is to run a container (which will pull down the image) based on SQL

Server 2017 for Linux CU8 with the following command from the bash shell (as found in

the example script dockerruncu8.sh), with a slight twist from the previous section:

sudo docker run -e 'ACCEPT_EULA=Y' -e 'MSSQL_SA_PASSWORD=Sql2017isfast'

-p 1401:1433 -v sqlvolume:/var/opt/mssql --name sql1 -d microsoft/mssql-

server-linux:2017-CU8

There are three differences in how I ran this Docker container from the previous

section:

 1. I used the -v parameter to map a volume on the Linux host to the /

var/opt/mssql directory inside the container. This means that any

data stored in /var/opt/mssql in the container will be persisted on

the Linux Server.

Tip run the following command to find out the actual directory on the Linux host
server where this data is stored:

sudo docker inspect volume sqlvolume

Chapter 11 SQL Server and ContainerS

557

 2. I used a different image for SQL Server: in this case, SQL Server

2017 CU8 (which at the time I wrote this chapter is not the latest

update of SQL Server).

 3. I used port 1401 instead of 1500 to connect to this SQL Server.

Now let’s restore the WideWorldImporters backup in the new container. The first

step is to copy the backup from my home directory on the Linux server host into the

container. I will do this by running the following command from the bash shell (which is

also found in the example script dockercopy.sh):

sudo docker cp WideWorldImporters-Full.bak sql1:/var/opt/mssql

To restore the database, I will use the docker exec command to run sqlcmd inside the

container with a T-SQL statement. Run the following command from the bash shell, as

found in the example script docker_restorewwi.sh:

sudo docker exec -it sql1 /opt/mssql-tools/bin/sqlcmd -S localhost -U SA

-P 'Sql2017isfast' -Q 'RESTORE DATABASE WideWorldImporters FROM DISK = "/

var/opt/mssql/WideWorldImporters-Full.bak" WITH MOVE "WWI_Primary" TO "/

var/opt/mssql/data/WideWorldImporters.mdf", MOVE "WWI_UserData" TO "/var/

opt/mssql/data/WideWorldImporters_userdata.ndf", MOVE "WWI_Log" TO "/var/

opt/mssql/data/WideWorldImporters.ldf", MOVE "WWI_InMemory_Data_1" TO "/

var/opt/mssql/data/WideWorldImporters_InMemory_Data_1"'

Now let’s run a query to make sure we can access data in this database. This time I’ll

use sqlcmd from the Linux host (I’m showing you both ways of accessing SQL Server in

the container). Use the following command from the bash shell as found in the example

script dockerquery.sh:

sqlcmd -Usa -Slocalhost,1401 -Q'USE WideWorldImporters;SELECT * FROM

[Application].[People];'

If all goes well, your screen should scroll across rows from the People table.

Now let’s say you want to update SQL Server to the latest cumulative update. In the

case of the container, you don’t use tools like apt-get, but that is OK because as I’ve said

earlier in this chapter, there is a better way to update SQL Server.

Let’s run a new Docker container called sql2 but this time with the latest cumulative

update. I also want to point this container to the same sqlvolume to access all the

databases that were saved with the sql1 container. In order to minimize downtime, I’m

Chapter 11 SQL Server and ContainerS

558

going to pull down the latest SQL Server image manually instead of it being pulled when

using docker run. Run the following command from the bash shell:

sudo docker pull microsoft/mssql-server-linux:2017-latest

Now let’s stop the sql1 container with the following command from the bash shell

sudo docker stop sql1

This will execute a clean shutdown of SQL Server. Now let’s start a new container

called sql2 with the exact same parameters as before, including the same port mapping

and volume name. Run the following command from the bash shell as found in the

example script dockerrunlatest.sh:

sudo docker run -e 'ACCEPT_EULA=Y' -e 'MSSQL_SA_PASSWORD=Sql2017isfast'

-p 1401:1433 -v sqlvolume:/var/opt/mssql --name sql2 -d microsoft/mssql-

server-linux:2017-latest

Since I used the same port number as the sql1 container, I can run the exact same

command as earlier to run a query against the WideWorldImporters database, as found

in dockerquery.sh:

sqlcmd -Usa -Slocalhost,1401 -Q'USE WideWorldImporters;SELECT * FROM

[Application].[People];'

Now that is pretty cool. I was able to switch to a container running the latest

cumulative update, minimizing downtime instead of patching the existing SQL Server.

Now here is what you are going to really love. Since I did not remove the sql1 container, if I

run into some issue with the latest CU build and my application, I can simply stop the sql2

container and start the sql1 container. Boom! I’m now running against the previous CU.

This is a great scenario to show updates to SQL Server and database persistence even

if the container is removed. In the next section, I’m going to show you how to build your

own Docker image to include SQL Server and a predefined database. To prove I can run

two containers with SQL Server at once (not against the same volume), let’s stop the sql1

container if you had sql1 running but leave the sql2 container running with the following

commands:

sudo docker stop sql1

Chapter 11 SQL Server and ContainerS

559

 Build Your Own Container with a Dockerfile
What I’ve shown you so far is how to interact with and add data to a Docker container

from the SQL Server image on the Docker Hub site. Docker containers with SQL

Server could also help you with another interesting scenario. Let’s say you have

several developers working on an application with SQL Server. You typically set up

a development server and let the developers access the server. One issue with this

configuration is setting up an environment so developers have a consistent database

with a consistent version of SQL Server for all of the developers.

Containers bring a new strategy to this scenario. You could build a Docker image

based on the SQL Server image and include in the image a backup of the standard

database you want all developers to use. Then any developer can pull the Docker image

and run a container (like having their own sandbox). In addition, one of the great

features of Docker images is reusability. You can layer images by creating images based

on other images.

Let’s use the exact steps from the self-paced labs at https://github.com/

Microsoft/sqllinuxlabs/tree/master/containers to show an example of this. (I

assume you have run the commands previous in the chapter to clone the GitHub repo

for the labs.)

 1. Change directory to the mssql-custom-image-example folder

on your Linux server by running the following command from the

bash shell:

cd sqllinuxlabs/containers/mssql-custom-image-example

 2. Create a Dockerfile that has the following contents (I have

provided in the examples for the book the file Dockerfile for

you to compare) by typing in the following commands from the

bash shell (Note: when you run the cat command you will get a >

prompt to type in the rest):

cat <<EOF>> Dockerfile

> FROM microsoft/mssql-server-linux:latest

> COPY ./SampleDB.bak /var/opt/mssql/data/SampleDB.bak

> CMD ["/opt/mssql/bin/sqlservr"]

> EOF

Chapter 11 SQL Server and ContainerS

https://github.com/Microsoft/sqllinuxlabs/tree/master/containers
https://github.com/Microsoft/sqllinuxlabs/tree/master/containers

560

When you build the Docker image using the docker build command, Docker will by

default look for a file called Dockerfile. Let’s unpack what these commands say in the file:

FROM microsoft/mssql-server-linux:latest: This command says to

pull down the latest SQL Server Docker image as a base image (which is

based on the Ubuntu base image) for our new image to be created. It is

possible you want all developers testing and developing on a known

build, so you could pick a specific CU, which I’ve shown you how to pull

in the previous section. Note that for SQL Server 2017, microsoft/

mssql-server-linux:latest and Microsoft/mssql-server-linux:2017-latest

are the same but we produce two different images for each name.

COPY ./SampleDB.bak /var/opt/mssql/data/SampleDB.bak:
This command says to copy the SampleDB.bak file in the current

directory into the Docker container image.

CMD [“/opt/mssql/bin/sqlservr”]: This command says to run

the sqlservr program from the /opt/mssql/bin directory. This is

how SQL Server runs in a container.

 3. Now run the following command from the bash shell to build the

new Docker image:

sudo docker build . -t mssql-with-backup-example

The “.” is the PATH for the docker build command, which in this case

is all the files in the current directory. The -t parameter is used to tag

the new image with the name mssql-with-backup-example. This tag

name can be referenced when you run a container from this image.

On my Linux server, the results looked like the following:

Sending build context to Docker daemon 3.263MB

Step 1/3 : FROM microsoft/mssql-server-linux:latest

latest: Pulling from microsoft/mssql-server-linux

f6fa9a861b90: Already exists

da7318603015: Already exists

6a8bd10c9278: Already exists

d5a40291440f: Already exists

bbdd8a83c0f1: Already exists

3a52205d40a6: Already exists

Chapter 11 SQL Server and ContainerS

561

6192691706e8: Already exists

1a658a9035fb: Already exists

344203922c4b: Already exists

5975df51ff07: Already exists

Digest: sha256:4f769a0b6603f9de2496e3ee455ce6b8b44db642714b5

0ed89b033e03e6e1e91

Status: Downloaded newer image for microsoft/mssql-server-

linux:latest

 ---> 812f44c37fc8

Step 2/3 : COPY ./SampleDB.bak /var/opt/mssql/data/SampleDB.bak

 ---> a85e222cc553

Step 3/3 : CMD ["/opt/mssql/bin/sqlservr"]

 ---> Running in 91b10bc07736

Removing intermediate container 91b10bc07736

 ---> 973ca0ed39a0

Successfully built 973ca0ed39a0

Successfully tagged mssql-with-backup-example:latest

 4. Let’s confirm our image was created, by running the following

command from the bash shell:

sudo docker images

Your image should appear in the results like the following:

REPOSITORY TAG IMAGE ID

CREATED SIZE

mssql-with-backup-example latest 973ca0ed39a0

2 minutes ago 1.44GB

microsoft/mssql-server-linux 2017-latest c90c3ab55158

2 weeks ago 1.44GB

microsoft/mssql-server-linux latest 812f44c37fc8

2 weeks ago 1.44GB

microsoft/mssql-server-linux 2017-CU8 229d30f7b467

2 months ago 1.43GB

Chapter 11 SQL Server and ContainerS

562

 5. Now let’s run a container using the new image we built by running

the following command from a bash shell (to put in your sa

password: copy this into an editor, change the password, and

then paste it back into the shell). Note: I used sql3 in this example

because I already have a container running called sql2.

sudo docker run -e 'ACCEPT_EULA=Y' -e 'SA_PASSWORD=Sql2017isfast' \

 -p 1500:1433 --name sql3 \

 -d mssql-with-backup-example

 6. Now see what containers are running by executing the following

command from the bash shell:

sudo docker ps

You results should look like the following:

CONTAINER ID IMAGE

COMMAND CREATED STATUS

PORTS NAMES

c4740bfdafa9 mssql-with-backup-example

"/opt/mssql/bin/sqls…" 3 seconds ago Up 2 seconds

0.0.0.0:1500->1433/tcp sql3

38850dc61aa6 microsoft/mssql-server-linux:2017-latest

"/opt/mssql/bin/sqls…" 6 hours ago Up 6 hours

0.0.0.0:1401->1433/tcp sql2

This is a good example of two SQL Server instances running on the

same Linux host server by using containers (since SQL Server on Linux

does not support named instances).

 7. Now let’s restore the database in the container image by running

the following command from the bash shell (put in your sa

password). This one is long, so I included an example script called

dockerrunmyimage.sh.

sudo docker exec -it sql3 /opt/mssql-tools/bin/sqlcmd \

 -S localhost -U SA -P Sql2017isfast \

 -Q 'RESTORE DATABASE ProductCatalog FROM DISK = "/var/opt/

mssql/data/SampleDB.bak" WITH MOVE "ProductCatalog" TO "/var/opt/

mssql/data/ProductCatalog.mdf", MOVE "ProductCatalog_log" TO "/

var/opt/mssql/data/ProductCatalog.ldf"'

Chapter 11 SQL Server and ContainerS

563

 8. Now I’ll use sqlcmd on the Linux host server to connect to the new

container and run a query against the database included in the

image. Run the following command from the bash shell:

sqlcmd -Slocalhost,1500 -Usa

 9. Now from the sqlcmd prompt, run the following T-SQL statement:

SELECT COUNT(*) FROM ProductCatalog.dbo.Product

GO

You should get a count of 14 rows.

Let’s stop both the sql2 and sql3 containers by running the following command from

the bash shell (yes, you can control more than one container at a time) and changing

back to your home directory:

sudo docker stop sql2 sql3

cd ~

In the next section, I’ll show you how to build a multicontainer application that

includes SQL Server, using a concept called compose.

 Compose a Multicontainer Application
Building a Docker container image using a Dockerfile is a great concept to build a single

container. However, in many situations an application will use multiple containers with a

dependency between them such as a web application and a database. Therefore, Docker

provides a capability called compose that allows you to build and run a set of containers

including references to Dockerfiles and dependencies. You can read the complete

reference on docker compose at https://docs.docker.com/compose/overview.

Again, let’s use the example from https://github.com/Microsoft/sqllinuxlabs/

tree/master/containers lab to show you an example (Note: this example is similar to

an example in the Docker documentation you can read at https://docs.docker.com/

compose/aspnet-mssql-compose). For this example, I have two containers I need for my

application:

• An SQL Server container that includes a database called

ProductCatalog. In this case, I have a T-SQL script I’d like to run that

creates the databases, logins, users, objects, and populates data.

Chapter 11 SQL Server and ContainerS

https://docs.docker.com/compose/overview
https://github.com/Microsoft/sqllinuxlabs/tree/master/containers
https://github.com/Microsoft/sqllinuxlabs/tree/master/containers
https://docs.docker.com/compose/aspnet-mssql-compose
https://docs.docker.com/compose/aspnet-mssql-compose

564

• A container that contains an ASP.NET application based on .NET

Core that will access the ProductCatalog database connecting and

running queries against the SQL Server container. You will see that

using the compose process with Docker will allow the application to

connect to a logical name that maps to the SQL Server container.

Let’s go through the process of composing the application using Docker and then I’ll

explain a few details on how these containers work:

 1. First, we need to install the docker-compose package using the

following commands from the bash shell:

sudo curl -L https://github.com/docker/compose/releases/

download/1.21.2/docker-compose-$(uname -s)-$(uname -m) -o /usr/

local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

sudo ln -s /usr/local/bin/docker-compose /usr/bin/docker-compose

 2. Change directory to the directory where all the files are located,

running the following command from the bash shell:

cd sqllinuxlabs/containers/mssql-aspcore-example

 3. Edit the docker-compose.yml file and put in your sa password

in place of the value of the environment variable SA_PASSWORD

(I use the nano editor). A docker-compose.yml file is a YAML

file (YAML stands for YAML Ain’t Markup Language), which is

used to define container images, services, and dependencies. I’ll

describe below more about how this file works. Think of this file

as the launching point to build the Docker images and run the

containers.

 4. Edit the file ./mssql-aspcore-example-db/db-init.sh and put in

the sa password for the -P parameter that is used for sqlcmd.

Chapter 11 SQL Server and ContainerS

565

 5. Run the following command from the bash shell to compose the

Docker application, which will build the Docker images and run

the containers:

sudo docker-compose up

A lot of information is going to scroll by as this executes. Figure 11-2 shows the

docker compose in progress in my Linux ssh session.

The containers are not run in the background, so when the compose is finished your

screen may look like Figure 11-3.

Figure 11-2. Docker compose in progress

Chapter 11 SQL Server and ContainerS

566

 6. To run the application I need to open up a port for my Azure

Virtual machine. The ASP.NET application is listening on port

5000. See the instructions at https://github.com/Microsoft/

sqllinuxlabs/tree/master/open_azure_vm_port to open up

port 5000.

 7. Now from your browser go to the following URL:

http:<public IP address>:5000

You should see a page like Figure 11-4 when the webpage for the application renders.

Click on Product Catalog Demo at the top left of the page and your screen should

now look like Figure 11-5.

Figure 11-4. The initial ASP.Net container application screen

Figure 11-3. Status in ssh after docker compose starts containers

Chapter 11 SQL Server and ContainerS

https://github.com/Microsoft/sqllinuxlabs/tree/master/open_azure_vm_port
https://github.com/Microsoft/sqllinuxlabs/tree/master/open_azure_vm_port

567

Figure 11-5. The Product Catalog data from the ASP.Net docker container
application

Let’s poke behind the scenes on how docker compose and these containers work.

From a separate ssh session (you can’t use the current ssh session because these

containers are not running in the background. If you type in <ctrl>+<c> you will end the

containers), run the following command from the bash shell to see what containers are

running. You can also force the containers to the background with <ctrl>+<z>:

sudo docker ps --no-trunc

You should see results like the following:

CONTAINER ID

IMAGE COMMAND

CREATED STATUS PORTS NAMES

22b900fd8f3ea03ca7a9d923441291a507dc4b3eb07fb3189fea6b3c8a6e0935

mssql-aspcore-example_web "dotnet belgrade-product-catalog-demo.dll"

16 minutes ago Up 16 minutes 0.0.0.0:5000->5000/tcp

mssql-aspcore-example_web_1

549d476ec793d96049a0193aeec78c6f32dc1661d79370c8855d7e50cc9797aa

mssql-aspcore-example_db "/bin/sh -c '/bin/bash ./entrypoint.sh'"

16 minutes ago Up 16 minutes 0.0.0.0:1500->1433/tcp

mssql-aspcore-example_db_1

Chapter 11 SQL Server and ContainerS

568

You can see there are two containers running. For the first container, the command

to run in the container uses the program dotnet, which is used to execute an ASP.

NET application, in this case implemented by the belgrade-product-catalog-demo.

dll (which is built when the Docker image is created). I won’t spend too much detail

on the mechanics of the ASP.NET application except for how the connection to SQL

Server works. You can look through the Dockerfile and all the sources in the directory

sqllinuxlabs/containers/mssql-aspcore-example/mssql-aspcore-example-app.

The second container has the following command:

/bin/sh -c '/bin/bash ./entrypoint.sh'

This is the container for the SQL Server image, so let’s explore how entrypoint.sh is

used to launch SQL Server.

 1. Change to the following directory by running the following

command from the bash shell:

cd ~/sqllinuxlabs/containers/mssql-aspcore-example/mssql-aspcore-

example-db

 2. First, let’s look at the file called Dockerfile by executing cat

Dockerfile. The results should look like the following:

FROM microsoft/mssql-server-linux:latest

COPY . /

RUN chmod +x /db-init.sh

CMD /bin/bash ./entrypoint.sh

So we know the Docker image in this directory will be built from the SQL Server

latest image, all files in the current directory will be copied into the container, and then

the db-init.sh script will be changed so it can be executed. Finally, the command to

launch the container is the script entrypoint.sh.

 3. We know entrypoint.sh is used to run the container, so let’s look at

this file by executing cat entrypoint.sh. The results should look

like the following (I took out the comments from the output):

/db-init.sh & /opt/mssql/bin/sqlservr

Chapter 11 SQL Server and ContainerS

569

This command will execute db-init.sh in the background and then launch sqlservr in

the foreground.

 4. Now let’s look at db-init.sh by executing cat db-init.sh. Your

results should look like the following:

#wait for the SQL Server to come up

sleep 15s

#run the setup script to create the DB and the schema in the DB

/opt/mssql-tools/bin/sqlcmd -S localhost -U sa -P Sql2017isfast -d

master -i db-init.sql

Here is a little of where the magic lies. This script will wait for 15 seconds to let SQL

Server start up and then execute the db-init.sql script using sqlcmd in the container. I’ll

let you look at db-init.sql further. but it basically creates the ProductCatalog database,

creates logins and objects, and populates some data into the database.

 5. Now you see the mechanics of how you can start an SQL Server

container and launch a T-SQL script to create your database,

objects, and data.

Let’s look at the docker-compose.yml file to see how docker compose knows how to

build each container.

 1. Change to the original directory where the docker-compose.yml

exists by executing the following command in the bash shell:

cd ~/sqllinuxlabs/containers/mssql-aspcore-example/

 2. Now dump out the contents of the docker-compose.yml file by

executing cat docker-compose.yml. Your results should look like

the following:

version: "3"

services:

 web:

 build: ./mssql-aspcore-example-app

 ports:

 - "5000:5000"

 depends_on:

 - db

Chapter 11 SQL Server and ContainerS

570

 db:

 build: ./mssql-aspcore-example-db

 environment:

 SA_PASSWORD: "Sql2017isfast"

 ACCEPT_EULA: "Y"

 ports:

 - "1500:1433"

The services: tag allows you to define specific containers that will be run as part of

the application. For each service, you can define the location of the Dockerfile to build

the image, the ports to use when running the container including the mapped port, and

if one of the services depends on the other. In this case, the web service depends on the

db service. This means the container for the db service will be created and started before

the container for the web service.

You can also specify any environment variables needed for the container, which in

this case are the EULA agreement and sa password for the SQL Server container. And for

the container for the db service, port 1500 is mapped for SQL Server port 1433.

So in summary, when docker-compose up is executed, docker will use the docker-

compose.yml file to build the container for the db service first by using the Dockerfile in

the ./mssql-aspcore-example-db directory. It will then run the container based on this

image using the environment variables specified, and the SQL Service is available on the

host’s port 1500.

Then it will run the container for the web service that is to create the Docker image

from the Dockerfile in the ./mssql-aspcore-example-app directory and run a container

based on that image using port 5000.

One last important observation: When I first looked at these containers I couldn’t

figure out how the ASP.NET application knows how to connect to port 1500 for the SQL

Server container. The service definition in the docker-compose.yml file is the key. The

service named db is effectively mapped to localhost,1500. So the ASP.NET application

can use a servername of db in the connection string to connect to SQL Server in the

container associated with the db service.

I know this feels a bit complex but only because I dove into the details behind the

scenes to describe how composing a multicontainer application works. Now for some

fun. Move on to the next section to see me take the SQL Mac challenge!

Chapter 11 SQL Server and ContainerS

571

 The SQL Mac Challenge
In February of 2018 I was speaking at one of my favorite events, SQLBits in London.

One of my presentations was on SQL Server on Linux. I was using my trusty HP Zbook

Studio laptop running Windows 10 to do the presentation and demos. Someone from

the audience raised their hand and said “Bob, I love that Microsoft has adopted Linux,

but I’m a MacBook user. You are using a PC here in these demos. But I don’t see the

commitment from Microsoft for the MacBook community.”

Even though I had not researched the topic, I was confident in this reply. “We

now have the software and tools where you can run and interact with SQL Server

with no virtualization and no Windows tools on your MacBook. And I believe you

can get this installed and up and running in 5 minutes.” I called it “Take the SQL Mac

challenge.” The person in the audience said they would take me up on this challenge

(you can see the result of this challenge on his tweet at https://twitter.com/thofle/

status/967437807697448965).

I actually really didn’t know if what I said was 100% accurate (especially the no

virtualization and the five-minute part) but I knew two things to make this bold

statement: (1) I knew our docker container image was portable and would run easily on

a MacBook, since I knew Docker exists for macOS; and (2) our SQL Operations Studio

tool is cross-platform so natively runs on macOS.

When I got back to Texas, I did something I thought I would never do as an employee

at Microsoft. I asked my manager, Asad Khan, if I could buy a MacBook. He said with all

the work I’m doing on Linux and containers that this made perfect sense. Once I got the

MacBook, I decided myself to take the SQL Mac challenge (you know, put your money

where your mouth is). And I’m here to say I was wrong. I was wrong in the sense that it

took me four minutes, not five minutes, to get this software installed.

Let me walk you through the experience so all of you who are reading this book who

are MacBook users can try this yourself.

 1. The first thing I did was install and download Docker for Mac

(Community Edition), as described at https://store.docker.

com/editions/community/docker-ce-desktop-mac. (I used

the Stable channel). Figure 11-6 shows this experience after the

download.

Chapter 11 SQL Server and ContainerS

https://twitter.com/thofle/status/967437807697448965
https://twitter.com/thofle/status/967437807697448965
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac

572

Note in all transparency, there is some virtualization for macoS for docker, but
it is far better than before. docker for Mac used to require virtualBox, but now
macoS has a built-in light hypervisor framework, so it is more accurate to say
docker for Mac does not require a separate heavy virtualization environment.
You can read more about the docker for Mac environment at https://docs.
docker.com/docker-for-mac/docker-toolbox/#the-docker-for-mac-
environment.

Figure 11-6. Downloading Docker for Mac

Chapter 11 SQL Server and ContainerS

https://docs.docker.com/docker-for-mac/docker-toolbox/#the-docker-for-mac-environment
https://docs.docker.com/docker-for-mac/docker-toolbox/#the-docker-for-mac-environment
https://docs.docker.com/docker-for-mac/docker-toolbox/#the-docker-for-mac-environment

573

 2. After the download for Docker for Mac is extracted, a new window

pops up for you to install Docker as a Mac application by a simple

drag and drop, as seen in Figure 11-7.

 3. Now that Docker is installed as an application, I launched it from

the Launchpad application on my MacBook. Now at the top of my

screen I get an icon for Docker and I can see it is starting, as seen

in Figure 11-8.

Figure 11-7. Installing Docker for Mac

Chapter 11 SQL Server and ContainerS

574

 4. Now I wanted to multitask, so while Docker was starting up I

downloaded SQL Operations Studio for MacOS from https://

docs.microsoft.com/sql/sql-operations-studio/download.

 5. While this was downloading, Docker had started up. So I pulled

down the SQL Server image using docker from the macOS

Terminal, which is effectively a bash shell. I ran a command like

the following:

docker pull microsoft/mssql-server-linux:2017-latest

 6. While the pull was running, I then extracted the download from

SQL Operations Studio. This extraction should look like

Figure 11-9.

Figure 11-8. Docker for Mac starting up

Chapter 11 SQL Server and ContainerS

https://docs.microsoft.com/sql/sql-operations-studio/download
https://docs.microsoft.com/sql/sql-operations-studio/download

575

 7. While this was extracting, the docker pull had completed for me,

so now I can run my container with the following command from

the MacOS terminal:

docker run -e 'ACCEPT_EULA=Y' -e 'MSSQL_SA_PASSWORD=Sql2017isfast'

-p 1401:1433 --name sql1 -d microsoft/mssql-server-linux:2017-

latest

Figure 11-9. Extracting SQL Operations Studio for macOS

Chapter 11 SQL Server and ContainerS

576

 8. SQL Operations Studio has extracted, so I can choose it to install

like seen in Figure 11-10.

 9. I can now launch SQL Operations Studio from Launchpad,

connect to localhost, 1401, and run queries against the container

with SQL Server, as seen in Figure 11-11.

Figure 11-10. Installing SQL Operations Studio for macOS

Chapter 11 SQL Server and ContainerS

577

There it is. If you just follow the steps without all of my commentary and you have a

reasonable Internet connection, you can do all of this in less than five minutes. And you

will have officially taken the SQL Mac challenge. Let’s conclude the chapter by looking

at a unique way to run containers with SQL Server in production using an environment

called Kubernetes.

 SQL Server and Kubernetes
Kubernetes as defined on their website at https://kubernetes.io is “an open-source

system for automating deployment, scaling, and management of containerized

applications”—also referred to as a container orchestrator. In a nutshell, Kubernetes is

a system for deploying and managing a production set of containers. It is one thing to

run a multicontainer application on your Linux server, but what if you want to deploy

hundreds of containers. How do you deploy and manage these in an efficient manner?

Furthermore, how can you set up an HADR system for your SQL Server containers?

Kubernetes provides all of that.

Figure 11-11. Running queries against an SQL Server container in macOS

Chapter 11 SQL Server and ContainerS

https://kubernetes.io

578

According to Wikipedia (https://en.wikipedia.org/wiki/Kubernetes),

Kubernetes was founded by engineers at Google in 2014. Kubernetes means “governor”

or “captain” in Greek. When I first started working with Kubernetes, I remember seeing

emails from my colleague Travis Wright with the abbreviation k8s to mean Kubernetes.

So I looked it up and sure enough k8s is an abbreviation to replace the 8 letters between

the “k” and “s” in the word Kubernetes (see https://kubernetes.io/docs/concepts/

overview/what-is-kubernetes/#what-does-kubernetes-mean-k8s). So I’ll use k8s

myself for the rest of the chapter to refer to Kubernetes.

One of the beautiful aspects to k8s is that it now runs on many platforms: on bare

metal machines, virtual machines, and cloud solutions. For example, you could on

your laptop set up a Minikube (https://kubernetes.io/docs/setup/minikube) to

see the basics of k8s in action with Docker containers. Or you can use a cloud solution

like RedHat’s Openshift (https://www.openshift.com) or Microsoft Azure Kubernetes

Service (AKS) at https://azure.microsoft.com/services/kubernetes-service/.

Take a look through the complete set of known solutions for k8s at https://

kubernetes.io/docs/setup/pick-right-solution/. You should also bookmark the main

k8s documentation page at https://kubernetes.io/docs/home for future reference.

 The Basics
There are many aspects of k8s you can learn to develop container applications or operate

the entire k8s system. For the purposes of SQL Server with k8s, I think it is important you

know these following terms:

• Cluster

A k8s cluster is a deployment of containers through a set of nodes

and pods, which I define next.

• Pod

A pod in k8s is a group of one or more containers that can share

storage, networking, and a specification on how to run the

containers.

• Node

I love the definition of a node from the k8s docs (at https://

kubernetes.io/docs/concepts/architecture/nodes/). “A node

is a worker machine in Kubernetes, previously known as minion.

Chapter 11 SQL Server and ContainerS

https://en.wikipedia.org/wiki/Kubernetes
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#what-does-kubernetes-mean-k8s
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#what-does-kubernetes-mean-k8s
https://kubernetes.io/docs/setup/minikube
https://www.openshift.com
https://azure.microsoft.com/services/kubernetes-service/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/home
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/architecture/nodes/

579

A node may be a VM or physical machine.” Effectively, think of

nodes as a host for a set of one or more pods.

• Replica set

A replica set defines how many instances of a specific pod should

be running at any point time and helps define the high availability

of pods. Replica sets are important to allow Kubernetes to

automatically start new pods should a pod fail.

• Deployment

A deployment is a declarative method to define pods and

replica sets. It is recommended to use deployments to define the

configuration of pods and replica sets for high availability. This

is the method we will use to show how to define and configure

HADR for SQL Server with k8s.

• Persistent volume claim

K8s supports the concept of storage that can be used by pods

through a PersistentVolume. This storage can be shared across

pods (which lines up very well for a shared storage HADR solution

for SQL Server). A Persistent volume claim is a request by a user

for a PersistentVolume storage.

• Service

A service is a logical set of pods that can be abstracted. One type

of service is a load balancer for connectivity. You can specify an

IP address for the load balancer service. Each pod has a unique

IP address, but a load balancer is a known IP address. Think of

this like the virtual IP address concept used by Failover Cluster

Instance or the listener for Availability Groups. It will provide SQL

Server with an abstracted IP address even when a k8s “failover” is

executed.

You can read a more complete description of k8s components and architecture at

https://kubernetes.io/docs/concepts/. With the knowledge of these terms, let’s see

them all in action by deploying an SQL Server container in k8s using AKS.

Chapter 11 SQL Server and ContainerS

https://kubernetes.io/docs/concepts/

580

 SQL Server HADR and Kubernetes
As I’ve described the fundamentals of k8s, perhaps you can see that k8s provides a

platform that supports HADR for containers. SQL Server can take advantage of this built-

in HADR capability, provided you structure your deployment and service in the correct

way. In this section, I’ll first describe how HADR works with k8s and then talk about a

very nice tutorial you can use to walk through the process of deploying SQL Server

with k8s.

 How HADR Works with k8s

I’ve described the fundamental terms of nodes, pods, and services. Let me use some

visualization to show how HADR work with pods, these concepts nodes, and services.

Configuring SQL Server with pods and persistent volume claims is a shared storage

HADR solution and provides similar functionality to an Always On Failover Cluster

Instance.

First, if k8s detects a pod has an issue or fails, k8s will automatically create a new pod

on the same node the pod currently runs on, which will start up any containers in that

pod. Furthermore, if the pod is using a persistent volume claim, the container in the new

pod will be able to access the same data stored in that persistent volume. Also, if you

set up a load balancer service associated with the pod (which has a unique IP address),

users can connect to the load balancer service, which has a fixed IP address, to avoid

having to know the details of the pod IP address. Figures 11-12 shows the concept of a

Pod failure.

Chapter 11 SQL Server and ContainerS

581

K8s also supports failover if a node fails for any reason. A new pod on a new node

will be started and the load balancer service will be redirected to the new pod on the

new node. Because k8s supports node failures, any production k8s cluster for SQL Server

should have at least three nodes to support failover, not only for the SQL Server but also

for the load balancer service. Figure 11-13 shows this scenario.

Figure 11-12. k8s HADR for a POD failure

Figure 11-13. k8s HADR for a node failure

Chapter 11 SQL Server and ContainerS

582

One nice feature of k8s and failover not listed in these visuals is the situation where

SQL Server crashes or is shut down in the container. In this situation, k8s will start a new

container in the same pod on the same node.

Note When k8s has to start the SQL Server container in a new pod on a new
node, the container may take longer to start because the SQL Server image may
not be cached on that new node and will have to be pulled from the docker hub.
once the image is pulled, it will be cached on the node, and subsequent starts
should be faster.

Let’s see k8s, SQL Server, and built-in HADR in action by looking at a tutorial

supported in the Microsoft documentation.

 Using SQL Server with Azure Kubernetes Service

One of my colleagues, the very talented Mihaela Blendea, took time to build out a very

nice tutorial on how to setup SQL Server with k8s using AKS. I’ll let you use your Azure

subscription to walk through this tutorial at https://docs.microsoft.com/sql/linux/

tutorial-sql-server-containers-kubernetes. I’ve been through this tutorial, so let

me add a few observations:

Tip if you want to go through this tutorial without using the azure CLi on your
local machine, consider using the new azure CloudShell through the portal. You get
a bash shell (or a powerShell) so tools like sqlcmd and the nano editor are installed
by default. it is incredibly cool! You can read more about the azure CloudShell at
https://azure.microsoft.com/en-us/features/cloud-shell/.

• The prerequisites in the tutorial point to this documentation page

to first create an AKS cluster: http://docs.microsoft.com/azure/

aks/tutorial-kubernetes-deploy-cluster. I just used the portal to

create a Kubernetes Service and used most of the defaults to create

my cluster. However, I had to connect to the AKS cluster I created

first, using the following steps in this part of the documentation:

https://docs.microsoft.com/azure/aks/tutorial-kubernetes-

Chapter 11 SQL Server and ContainerS

https://docs.microsoft.com/sql/linux/tutorial-sql-server-containers-kubernetes
https://docs.microsoft.com/sql/linux/tutorial-sql-server-containers-kubernetes
https://azure.microsoft.com/en-us/features/cloud-shell/
http://docs.microsoft.com/azure/aks/tutorial-kubernetes-deploy-cluster
http://docs.microsoft.com/azure/aks/tutorial-kubernetes-deploy-cluster
https://docs.microsoft.com/azure/aks/tutorial-kubernetes-deploy-cluster#connect-to-cluster-using-kubectl

583

deploy-cluster#connect-to-cluster-using-kubectl. My

Kubernetes service (aka my k8s cluster) is called bwsqlk8s in the

resource group bwk8s. So I used the following command from the

Azure CloudShell to connect to my AKS service:

az aks get-credentials --resource-group bwk8s --name bwsqlk8s

Then, to verify my nodes, I ran the following command from the Azure Cloud Shell:

kubectl get nodes

I built a three-node cluster, so my results looked like

NAME STATUS ROLES AGE VERSION

aks-agentpool-38442334-0 Ready agent 21m v1.11.2

aks-agentpool-38442334-1 Ready agent 21m v1.11.2

aks-agentpool-38442334-2 Ready agent 21m v1.11.2

Once this was completed, I could move forward with the tutorial.

• Use the following command to ensure your pod with the SQL Server

container is running:

kubectl get pods

It took about five minutes for my pod to show a status of Running. Your out should

look something like

NAME READY STATUS RESTARTS AGE

mssql-deployment-3813464711-h312s 1/1 Running 0 17m

• sqlcmd (Yes!) is built into the Azure CloudShell, so I was able to

connect to my new SQL Server deployment by using the external IP

address of the Load Balancer service.

• If you go through the exercise of deleting a pod to see how HADR

works, it could take up to four minutes or so for the new pod to start

up. This is unfortunately one of the weaknesses of using SQL Server

with k8s. Four minutes can be a long time for SQL Server to be down.

We are working in to bring other innovations the future to SQL Server

and k8s to make this faster and better.

Chapter 11 SQL Server and ContainerS

https://docs.microsoft.com/azure/aks/tutorial-kubernetes-deploy-cluster#connect-to-cluster-using-kubectl

584

• Use the following command with kubectl to see which node your pod

is running on:

kubectl get pods -o wide

• K8s even supports restarting the container running SQL Server

should it crash, or if SQL Server is shutdown. Try it yourself. Connect

to the SQL Server container via the external IP address of the load

balancer and execute the T-SQL SHUTDOWN command. If you then

execute kubectl get pods, you will briefly see the STATUS of Error

and CrashLoopBackOff, but then within the same pod it will be back

to Running.

• Here is an advanced test. Try draining the node where the pod is

running with the SQL Server container. Draining a node is a way to

simulate a node failure. The kubectl get pods -o wide command

shows the name of the node for the running pod. Using that name,

execute the following command:

kubectl drain <node name> --ignore-daemonsets

Now use kubectl get pods -o wide to see the SQL Server container get started

with a new pod on a new node. To allow the node you drained to be used again, run the

following command:

kubectl uncordon <node name>

You can see the power of built-in HADR with k8s. No failover cluster instance

software is required, and SQL Server is quite frankly unaware it is running in this HADR

environment. As with any SQL Server production environment, always include a solid

backup strategy.

I have to admit this was one of the more fun chapters to write, as I believe containers

and k8s are amazing new technologies that will become more and more popular for

hosting application and database systems like SQL Server. In this chapter, I introduced

you to the basics of containers, showed you how to deploy and use containers with SQL

Server, and even challenged MacBook users to use SQL Server “Windows free.” Then

I concluded the chapter with a look at the new way to host SQL Server and containers

called Kubernetes (k8s).

Chapter 11 SQL Server and ContainerS

585

 Summary
And with this chapter I have concluded the book, one of the most enjoyable yet difficult

things I’ve done in my 25-year career at Microsoft. I have taken you on a journey starting

with the history behind SQL Server on Linux and the deployment process and details. I

then showed you how to build your own database and application. I then detailed out

all the amazing tools and built-in features SQL Server provides for all of your needs.

Then you were able to see how robust SQL Server truly is by seeing the capabilities of

performance, security, and HADR. I then gave you insight into powerful management

and monitoring features for SQL Server on Linux. In Chapter 10 I showed you migration

techniques including a comparison of SQL Server with PostgreSQL. And then you just

completed reading the chapter on the technology of containers bringing a new set of

scenarios to deploy and run SQL Server. I hope you have enjoyed reading through the

book and will be able to use it for your reference in the future for your journey with SQL

Server on Linux and containers.

Chapter 11 SQL Server and ContainerS

587
© Bob Ward 2018
B. Ward, Pro SQL Server on Linux, https://doi.org/10.1007/978-1-4842-4128-8_12

CHAPTER 12

Epilogue
The SQL Server Engineering team moves at the speed of the cloud. That is my observation

since joining the team over two years ago. My good friend and architect of the SQL

Server product, Conor Cunningham, once told me that if we wanted to, Microsoft could

ship a quality release of SQL Server every month these days. That is a far cry from the

days of Yukon (SQL Server 2005) when it took several years to ship a release. Of course

we need value and new features to make a new release viable for the industry, so once a

month is probably not the right cadence. SQL Server 2017 came right off the heels of SQL

Server 2016, and a big part of that release was bringing SQL Server on Linux to market.

So what is next for SQL Server, especially for SQL Server on Linux and containers?

As SQL Server 2017 was announced in October of 2017, our team was already

working on the next release of SQL Server including improvements specifically targeted

for SQL Server on Linux and containers. By the time this book releases, it is very likely we

will have made announcements regarding how we are improving SQL Server on Linux

and containers. These enhancements include but are not limited to:

• SQL Server Replication

• Machine Learning Services including R, Python, and maybe even

other languages

• Distributed Transactions (DTC) support

• Active Directory integration for Replication and Linked Servers

• Polybase for SQL Server on Linux

588

We also want to continue to make containers a great experience, so we have plans for

these improvements:

• Containers images for RHEL

• Moving containers to be registered in the Microsoft Container

Registry (MCR; you can still find them on Docker Hub, but they will

be linked to MCR). You can read more about MCR at https://azure.

microsoft.com/blog/microsoft-syndicates-container-catalog.

• Kubernetes support for Always On Availability Groups. This

one is exciting because it provides a far better RTO story for k8s

with SQL Server than shared storage. Travis Wright has built a

video already to preview the experience at https://youtu.be/

Xa1ec4z6XIk?list=PL-_k_UrAvrYsSydSyVeXIXy-vInFEruxr.

You will also see that Microsoft has in store other new features and enhancements

with the next release of SQL Server for both Windows and Linux. In addition, we are

looking at new innovations for integration with Big Data systems and the General

Availability of SQL Operations Studio (I wouldn’t be surprised if there is a new name for

this tool).

The future for SQL Server is bright. Shipping SQL Server on Linux has opened up

new markets, new customers, and new opportunities for Microsoft. At the same time, we

still strongly believe in SQL Server on Windows Server as a great combination. It is all

about choice with compatibility: your choice. Doubling down on new technologies like

containers and Kubernetes positions SQL Server as a data platform for all developers,

applications, and private and public cloud environments. I look forward to continuing to

help Microsoft make SQL Server the preferred modern data platform for years to come.

Chapter 12 epilogue

https://azure.microsoft.com/blog/microsoft-syndicates-container-catalog
https://azure.microsoft.com/blog/microsoft-syndicates-container-catalog
https://youtu.be/Xa1ec4z6XIk?list=PL-_k_UrAvrYsSydSyVeXIXy-vInFEruxr
https://youtu.be/Xa1ec4z6XIk?list=PL-_k_UrAvrYsSydSyVeXIXy-vInFEruxr

589
© Bob Ward 2018
B. Ward, Pro SQL Server on Linux, https://doi.org/10.1007/978-1-4842-4128-8

Index

A
Active Directory authentication, 526

commands and objects
Domain Controller, 324
Kerberos, 325
keytab, 324
kinit, 324
realm, 324
SPN, 324
TGT, 324

setting up, 326–327
single sign-on, 323
usage, 328
Windows Authentication, 323

Adaptive Index Defragmentation, 473
Adaptive Join operator, 312
Adaptive query processing (AQP), 296,

311–313, 525
Always Encrypted, 352–354, 527
Always On Availability Groups (AGs)

architecture and data synchronization
flow, 407

asynchronous (async), 408
Automatic Page Repair, 434
clustering

automatic failover, 410
configuration replica, 409
data protection and high

availability, 409
flexible failover policies, 410

intelligence, 408
Linux vs. Windows, 410
REQUIRED_SYNCHRONIZED_

SECONDARIES_TO_COMMIT, 409
secondary replica, 408–409
sp_server_diagnostics, 410
sync replica, 408
sys.dm_hadr_database

_replica_states, 409
clusterless, 434–435
configuration

cfgendpoint.sql, 417
copycertkeys.sh, 415
cowboysrule, 421
createag.sql, 418
dbag.sql, 420
dbjoinag.sql, 420
dbmirrorfirewall.sh, 417
dbmloginuser.sql, 414
enableag.sh, 413
enableagxe.sql, 414
endpoint.sql, 416
ERRORLOG, 418–419
firewall, 417
joinag.sql, 419
listdbs.sql, 420
movecertkeys.sh, 415
primaryagcert.sql, 414
primary replica, 418
replica, 406

https://doi.org/10.1007/978-1-4842-4128-8

590

secondaryagcert.sql, 416
sys.availability_groups and sys.

availability_replicas, 418
Database Health Detection, 431
Database Mirroring, 406
description, 405
distributed, 411
fault tolerance and high

availability, 406
install Linux and SQL Server, 412–413
Pacemaker cluster

(see Pacemaker cluster)
performance, 431–432
primary replica, 406
readable secondaries, 433
resource, cluster, 425–427
secondary replica, 406
software components, 406
synchronous (sync), 407
testing

data replication, 428
failover, 429–431

transaction log, 407–408
Always On Failover Cluster Instance (FCI)

data protection, 397
doc reference, 399
documentation, 398
functionality, 397
HA Add-On, 398
Linux vs. Windows, 400
mssql-server-ha package, 399
Pacemaker, 398
resource agent, 399
setup and configuration, 401–402
software and hardware

components, 398–399

sp_server_diagnostics
Corosync, 405
flexible failover policies, 403–404
monitoring policies, 404
Pacemaker, 403–405
quorum, 404–405
STONITH, 405
system stored procedure, 403

WSFC, 398
Amazon Elastic Container

Service (ECS), 21
Application Binary Interface (ABI), 5
Application Programming

Interface (API), 4
ASYNC_NETWORK_IO behavior, 287
Auditing, 527
Automatic Page Repair, 434
Automatic Plan Correction, 313
Automatic Tuning, 313–316, 535
Azure Container Service, 21
Azure Kubernetes Service (AKS), 578,

582–584

B
BACPAC files, 509
bcp tool, 151–153
Business Intelligence (BI), 18

C
callProcedure () method, 123
Capabilities, SQL Server

graph database, 139–142
JSON, 136
modern data platform, 135
native scoring, 142–143
temporal tables, 136–139

Always On Availability
Groups (AGs) (cont.)

Index

591

Cardinality estimation, 284
CentOS, 24
Change control and auditing process, 438
Chatty application, 285
Checksum, 461–463
Client URL Request Library (cURL), 36
Clusterless Availability Groups, 434–435
Columnstore indexes, 474

benefits
batch mode execution, 296
compression, 296
data elimination, 296

choosing, 296–297
customer stories and resources, 302
data loading, 301
fact_sales_all.sql script, 300
fact_sales_count.sql script, 299
fact_sales_query.sql script, 300
fragmentation, 301
in-memory technology, 294
lob logical reads value, 300
partitions, 301
performance, 301
Rowstore, 294
SET STIATISTICS IO, 301
structure of, 295
T-SQL statement, 298
WideWorldImportersDW

database, 298–299
working

clustered index, 295
delta rowgroup, 295
nonclustered index, 295
rowgroup, 294
segment, 294

Command line tools
bcp, 151–153
mssql-cli, 153–155

mssql-scripter, 156–157
sqlcmd, 147–150
sqlservr, 158–159

Common table expression (CTE), 540
Connection pooling, 125
Connection strings, 223
Container orchestrator, 577
Containers

CI/CD, 21
compose, multicontainer application

ASP.Net container application
screen, 566

Azure Virtual machine, 566
docker-compose package,

install, 564
docker-compose.yml file, 564,

569–570
entrypoint.sh,

SQL Server, 568–569
product catalog data, 567
run, 565
SQL Server image, 568

database, 20
definition, 19, 545
Docker Engine, 20
Dockerfile

bash shell, 560
creation, 559
docker build command, 560
execution, 562
Linux host server, 563
restore database, 562
run, 562
T-SQL statement, 563

HADR, 580
improvements, 587–588
Kubernetes, 21
macOS (see SQL Mac challenge)

Index

592

platform independence, portability,
and consistency, 20–21

SQL Server
deploying containers, 549
Docker engine installation, 548
updating, 556

vs. virtual machines, 546
Continuous integration and continuous

deployment (CI/CD), 21
Copy-only backup, 378
Core database engine

buffer pool cache, 518
checksum, 517
CPU and NUMA assignment, 517
database size control, 517
graph database, 518
native scoring, 519
plan cache, 518
tablespace, 517
temporal tables, 518
threads vs. processes, 516

Cumulative Updates (CUs), 35, 42

D
Data application, 111

enhancing, 125
executing stored procedures, 123–125
inserting and reading, 118–123
node.js, 114–117
programming interfaces, 113
programming languages, 114

Database backup
copy-only, 378
differential, 378
full (see Full database backup)
recovery models

bulk logged, 376
full, 376
simple, 375
transaction log, 375

snapshots, 379
system, 380
transaction log, 376–378
T-SQL RESTORE statement, 370
VDI and snapshots, 379–380

Database Console Commands (DBCC),
214–215

Database Experimentation Assistant
(DEA) tool, 497

blog posts, 504
documentation, 501
firewall reconfiguration, 503
flow, 501–502
initial screen, 502
ostress.exe, 503

Database Health Detection, 431
Database Mirroring, 406
Database recovery

fast recovery, 382
LSN, 382
phases

analysis, 382
redo, 382
undo, 382

process of, 381
WAL, 381

Database restore
backup sequence, 386
CHECKSUM option, 386
files/filegroups, 394
metadata, 384
moving files, 385
MTF format, 383
pages, 394–395

Containers (cont.)

Index

593

piecemeal restore, 394
point-in-time restores, 393
RESTORE T-SQL, 384
RESTORE VERIFYONLY, 386
restorewwifilelistonly.sql, 384
restorewwiheaderonly.sql, 383
restorewwimove.sql, 385
RTO and RPO

requirements, 393
system, 395–397
transaction log, 387
/var/opt/mssql directory, 385
WideWorldImporters database

backupwwidiff.sql, 390
backupwwilog1.sql, 389
backupwwilog2.sql, 390
backupwwilog3.sql, 391
backupwwi.sql, 388
backupwwitailoflog.sql, 391
insertdeandre.sql, 390
insertdennis.sql, 390
insertdirk.sql, 389
insertluka.sql, 391
letsgomavs.sql, 389
mavstothenbafinals.sql, 392
restorewwiall.sql, 392
restorewwi.sh and

restorewwi_linux.sql
scripts, 388

series of backups, 393
wwisetfull.sql, 388

Databases
ALTER DATABASE

EMERGENCY, 457
PAGE_VERIFY, 458
[READ_ONLY | READ_WRITE], 457
[SINGLE_USER | RESTRICTED_

USER |MULTI_USER], 458

WITH [ROLLBACK AFTER |
ROLLBACK IMMEDIATE | NO_
WAIT], 458

detaching and attaching, 455–457
moving, 452–453
space usage, 453–455

Database snapshots
documentation, 379
pages, 379
read-only, 379
sparse files, 379
and VDI, 379–380

Data Migration Assistant (DMA)
tool, 497–500

DBCC CHECKDB repair
observations, 464
REPAIR_ALLOW_DATA_LOSS, 463
REPAIR_REBUILD, 463

DBCC command, 523
DBFS tool, 195–196
DB_NAME() system function, 190
db_owner database, 332
Dedicated Admin Connection (DAC), 530

amidac.sql, 447
ERRORLOG, 446
hung, 445
logins/queries, 446
remote connectivity issues, 447
scenarios, 448–449
sqlcmd, 446, 448
sys.sysschobjs, 448
TCP port (1434), 446–447
T-SQL statements, 448

Delayed durability, 245
Deployment, 22
Developers

Application Name, 287
connections, 286

Index

594

deadlocks, 287
power of T-SQL, 284–285
processing results, 287

Differential backups, 378
Dirty pages, 245
Disaster recovery, 529
Distributed availability groups, 411
Docker client, 547
Docker compose, 565
Docker containers

characteristics, 547
components, 547
images, 546
methods, connect SQL server, 553
namespaces, 547
UnionFS, 546

Docker daemon, 547
Docker Hub container image, 550
Drawbridge

ABI, 5
API, 4
library OS, 4
Midori, 6
PAL, 4
picoprocess, 4–5
Slava, 6
virtualization, 4

Dynamic data masking
(DDM), 340–344, 527

Dynamic management functions
(DMF), 185

database_id and file_id, 190
dm_exec_sql_text, 187
dm_io_virtual_file_stats, 189
dm_os_memory_clerks, 191
memory clerk types, 192

T-SQL Intellisense, SQL Operations
Studio, 189

Dynamic management views (DMVs),
520–521

DBFS tool, 195–196
dm_db_missing_index_details, 193
dm_exec_query_stats, 187
dm_exec_requests.sql, 186
dm_io_virtual_file_stats.sql, 189
dm_os_ring_buffers, 194
dm_os_ring_buffers_exception.sql, 194
dm_os_sys_info, 193
dm_os_waiting_tasks, 188
dm_os_wait_stats, 188
dm_tran_locks, 192
sys.dm_exec_sessions, 186
sysprocesses and syslocks, 184
VIEW SERVER state permission, 185

E
Emergency mode repair, 465–466
Eager Writes, 246
Encryption

Always Encrypted, 352–354
connections, 349–352
Crypto API, 345
database backups, 348
database master key, 346
features, 345, 355
service master key, 346
SQL Server certificate, 347
transparent data, 347–348

Executable and Linkable Format (ELF), 12
Extended events

objects, 197–199
quicksessionstandard.sql, 199–200

Developers (cont.)

Index

595

scenarios, 203
session, creation, 199
start_xevent_session.sql, 200
sys.server_event_sessions, 199
tools, 201–203

Extract, Transform, and Load (ETL)
process, 218, 508

F
Files and file groups

advantages, 262
growth, planning, 268–269
hosted disk storage system, 260
multiple database

bigdb.sql, 264
bigtab.sql, 265
CREATE DATABASE

statement, 264
DEFAULT keyword, 265
disks and mounted directories, 263
dm_db_file_space_usage

script, 266
filegroup, 262
page allocations, 268
pages_by_object.sql script, 268
storage system, 262
total_page_count, 267
USERDATA filegroup, 267
virtual machine, 263

proportional fill algorithm, 262
round-robin algorithm, 262
separate data and transaction log file,

260–261
single database file, 260

Fill factor, 280
Filtered indexes, 280
Flat File Destination, 225

Full database backup
BACKUP DATABASE command

CHECKSUM, 373
files/filegroups, 375
STATS=5, 373
TO DISK, 372
WITH INIT, 372

COMPRESSION with TDE, 374
ERRORLOG, 374
MTF protocol, 371
threads, 374
WideWorldImporters database, 370–371

FULLSCAN option, 281

G
Graph database, 139–142

H
Hardware virtualization, 545
Hekaton, 302–305
Helsinki, 3

Drawbridge, 4–6
Slava, 7–8
SQLOS, 6–7
SQLPAL, 7
SQL Server on Linux

binary format, 12
calling convention, 12
components, 13
ELF, 12
Host Extension, 9, 12
LibOS components, 13
PE format, 12
single Linux process, 11
SQLOS, 12
SQLPAL.DLL, 12
sqlservr, 11

Index

596

High availability and disaster recovery
(HADR), 367

backup and restore, 528
database snapshots, 529
disaster recovery, 529
Failover clustering and Availability

Groups, 529–530
startup and parallel recovery, 528–529

Hybrid Transactional Analytical
Processing (HTAP), 297

I
Indexes

Adaptive Index Defragmentation, 473
ALTER INDEX, 470
clustered indexes, 271–272
Columnstore, 270, 474
creating database, 270
DROP INDEX, 469
fragmentation

logical/extent, 470
page compactness, 471
sys.dm_db_index_physical_stats,

472
maintain, 470
modifying, 474
nonclustered indexes, 273–274
rebuilding, 472–473
reorganization, 473
resources to guide, 270
tools

Database Tuning Advisor tool, 276
dm_db_missing_index_details, 276
Index Seek, 280
IO statistics, 277, 279
Missing Indexes, 277–278
query optimizer, 278

query plan, 279
XML schema, 276

types and considerations, 280
WideWorldImporters database,

274–275
Indirect checkpoint, 245
INFORMATION_SCHEMA, 183
Infrastructure as a Service (IAAS)

platform, 56
In-Memory OLTP

fundamentals, 303
Hekaton engine, 303–305
indexes, 308–309
memory optimized FILEGROUP,

305–306
memory optimized tables, 306–308
natively compiled stored procedure,

309–310
usage scenarios, 310–311

Installation
Azure Virtual Machine, 56–58
deploy in 60 seconds, 35–36
exploring

EULA files, 62
log files, 63–64
/opt/mssql, 62
/var/opt/mssql, 62

Linux Distributions, 24–26
Linux tips

commands, 29, 31
sudo, 31–32
system logging, 33–34
viewing and editing files and

scripts, 32–33
offline, 53–55
packages, 55–56
post-install configuration

(see Post- install configuration)

Index

597

repository config file, downloading,
36–37

setup, 39, 41–42
SQL Server Engine, 37–39
system requirements, 26–27
testing for SQL Server

HammerDB, 28
WideWorldImporters sample, 27

troubleshooting
debugging, 61
mssql-conf, 59–60
permissions and ownership, 61
poor or no Internet connectivity,

58–59
yum lock problem, 60

unattended, 52–53
updates and uninstall

previous update, roll back, 73–74
removing SQL Server, 74–75
updating SQL Server, 71–73

verification
connect and run query, 45–48
connect remotely, 48–49
running mssql-server service,

44–45
SQL Server functionality, 49–51

versions
CUs, 42
GDR repository, 43
mssql-server-2017, 42
mssql-server-2017-gdr, 42

Integration Services project, 220
Intelligent query processing, 311
Intelligent SQL Server Engine

adaptive query processing, 311–313
Automatic Tuning, 313–316

Interpreted T-SQL, 309
I/O processing

automatic checkpoints, 245
data compression, 246–247
dirty pages, 245
Eager Writes, 246
indirect checkpoint, 245
lazywrites, 246
read-ahead

methods, 240
query hints, 242
read_size column, 244
size, 240
T-SQL statement, 243

RECOVERY WRITER, 245
shred XML data, 243
WAL protocol, 246
WideWorldImporters database, 241, 243
write-ahead logging, 244

J
journal, 89
journalctl, 33–34
JSON, 136

K
Kubernetes (k8s), 21

AKS, 582–584
basics, 578–579
description, 577
HADR, 580–581
Pod failure, 580, 581

L
Large Pages, 71
Lazywrites, 246
Lightweight query profiling, 210–211

Index

598

Linux tools
dstat, 488
htop, 486–487
iotop, 486
LinuxKI, 488
sar, 487
top, 485–486

Log sequence
number (LSN), 382

Log shipping, 369
Log truncation, 375
LOG WRITER, 245

M
Management

database (see Databases)
indexes (see Indexes)
server-side code, 475
SQL Server instance configuration

ALTER SERVER
CONFIGURATION, 439

DAC, 445–448
mssql-conf, 439
Resource Governor (see Resource

Governor)
sp_configure, 439
SQL Server

Agent job, 440–441
sqlservr command line

options, 449–451
tools, 438

tables
ALTER TABLE, 467–468
TRUNCATE TABLE, 469

Microsoft Tape Format (MTF)
protocol, 371

Midori, 6
Migration, SQL server

DEA (see Database Experimentation
Assistant (DEA) tool)

DMA tool, 497–500
execution

BACPAC files, 509
restoring, database backup,

505–506, 508
SSIS package, 508

Oracle
execution, 511–514
preparation, 510

PostgreSQL (see PostgreSQL)
process, 496

Missing indexes, 535
MobaXterm, 25
Monitoring SQL Server

performance, 437, 476
DMVs

Automatic Tuning, 479
Batch Requests/sec, 478
dm_exec_query_profiles, 477
dm_exec_query_stats, 477
dm_exec_requests, 477
dm_os_performance_counters, 478
dm_os_waiting_tasks, 477
dm_os_wait_stats, 477
SQLServer:SQL Statistics, 478
top 5 counter areas, 479

Extended Events
DMV dm_os_performance_

counters, 482
lightweight query profiling, 480
Query Store, 480
QuickSessionTSQL, 481

Index

599

SQL Server Profiler, 481–482
system health session, 483–484
tracepagesplits.sql, 482
XEProfiler, 480–482

Linux tools, 485–488
Query Store, 479–480
running, 476–477
smart log backups, 485
waiting, 477

Moving databases, 452–453
mssql-cli, 153, 155
mssql-scripter, 156–157
mssql-server, 30
Multi-Statement TVF (MSTVF), 535

N
Native scoring, 142–143

O
Object Explorer, 167–169, 176–179
Object Relational Mapping

(ORM), 114, 542
Online Transaction

Processing (OLTP), 302
Operating system virtualization, 545
ORACLE Enterprise Linux (OEL), 24
OverlayFS, 546

P
Pacemaker cluster, 15, 398

clusterproperties.sh, 424
creating, 423
firewall ports, 422
password, 422
poolid, 422

run commands, 423
services, 422
SQL Server HA Resource Agent, 424
STONITH, 424
subscription, 421
user name and password, 421

PAGELATCH, 272
Parallel processing

backup/restore, 248
building indexes, 249
bum rap, 247
creating databases, 248
DBCC CHECKDB, 249
query plan, 247–248
recovery, 249
sqlqpparallel.sql script, 247
statistics, 249
T-SQL SELECT statement, 247

Parameter sniffing, 314
Parent Watchdog process, 13
Partition elimination, 288
Peek Definition, 174
Performance capabilities

accelerating
columnstore indexes, 294–302
In-Memory OLTP (see In-Memory

OLTP)
partitioned tables and

indexes, 288–294
configuration

affinity process, 252
ceiling, 250
cost threshold for parallelism, 252
database options, 255–257
memorylimitmb option, 250
Linux kernel, 258–259
max server memory, 250
min server memory, 250

Index

600

parallel execution, 251
plan cache, 254
tempdb files, 254
threads, 253–254
tracing, 253

developers (see Developers)
dynamic memory and cache

management
buffer pool, 236, 239
database and restore, 236
database cache

memory, 239
Plan Cache, 236
resources, 235
sqlmem.sql script, 237
sqlservr process, 237
sys.dm_os_performance

_counters, 238
target cache memory, 239
total server memory, 239

efficient I/O processing
(see I/O processing)

files and file groups, 260–269
indexes, 270–280
Intelligent SQL Server Engine

(see Intelligent SQL Server Engine)
parallel processing

(see Parallel processing)
scalability

affinity process, 235
Auto Soft NUMA, 234–235
dm_os_tasks, 233
dm_os_workers, 233
schedulers, 231–233
SQLOS component, 231

scripts to restore, 230
statistics, 280–284
WideWorldImporters database, 230

Performance Monitor tool, 238
Permissions and access, security

application roles, 335
Availability Groups, 336
database roles, 332–335
dynamic data masking, 340–344
grant and revoke access, 328–329
RLS, 336, 338–339
securables, 328
server roles, 329–331

pgAdmin, 523
Picoprocess, 4
Piecemeal restore, 394
Plan choice regressions, 314
Platform Abstraction Layer (PAL), 4
Platforms, 2–3
Portable Execution (PE) format, 12
Port mapping, 552
PostgreSQL

core database engine
(see Core database engine)

execution, 532–533
HADR, 528–530
management and monitoring, 530–531
performance capabilities

AQP, 525
columnstore indexes, 525
In-Memory OLTP, 525
parallel queries, 525
query hints and options, 525
read-ahead, 524
scalability and TPC

benchmarks, 524

Performance capabilities (cont.)

Index

601

security, 526–527
SQL language, 519–520
SQL Server, 514
tools

DBCC CLONEDATABASE, 523
DBCC commands, 523
DMVs, 520–521
ERRORLOG, 521
live query statistics, 522
Query Store, 521–522
SSIS, 523

Post-install configuration
Linux

instant file initialization, 70
Large Pages, 71
locked packages, 70
WSFC, 71

mssql-conf, 64–68
SQL Server Instance

ALTER SERVER
CONFIGURATION, 69–70

sp_configure, 69
Post migration

database compatibility
backward compatibility, 540
query processing

enhancements, 539
features, 541–542
HADR strategy, 537
objects, 541
optimizing performance

baselines and monitoring, 536
indexes, 535–536
new features, 537
recommendations, 534–535

PREDICT function, 143
PRIMARY filegroup, 262
PSSDiag, 492–493

Q
Query hash, 256
Query plan regression, 314
Query Store, 212–214, 314, 479–480,

521–522

R
Real-time operational analytics, 297
Recovery Point Objective (RPO), 378
Recovery Time Objective (RTO), 378
RECOVERY WRITER, 245
Red Hat Enterprise Linux (RHEL) 7.3

and 7.4, 24
Repairing databases

blog posts, 459
cause of corruption, 466–467
checksum, 461–463
database states, 459–461
DBCC CHECKDB, 463–464
emergency mode, 465–466
RESTORE with CONTINUE_AFTER_

ERROR, 466
SQLIntersection, 459
SQL Server product, 459

Resource Governor
classifier function, 444
configurations, 445
resource pool

AFFINITY, 442
CAP_CPU_PERCENT, 442
default, 442
internal, 442
MAX_IOPS_PER_VOLUME, 443
MAX_MEMORY_PERCENT, 442

workload groups, 443–444
ring_buffer_types.sql, 194

Index

602

RML Utilities, 503
Rowgroup elimination, 296
Row Level Security (RLS), 336–340
Rowstore index, 296

S
Security, 317

Active Directory authentication,
323–328

data classification, 356–359
encryption (see Encryption)
logins and users

authentication, 318
for database, 319–320
dbo user, 318, 321
newuser login, 322–323
for sqllinux, 321
user guest, 318

permissions and access
(see Permissions and access,
security)

SQL Server Audit
action group, 362
action_id column, 366
action to, 362
database audit specification, 362
Extended Events, 362
process, 362–365
server audit specification, 362
target, 362

vulnerability assessment, 360–361
Server-side programming, 285, 475
Service Principal Name (SPN), 324
sp_addextendedproperty procedure, 359
SQL Mac challenge

downloading Docker, 572
extracting SQL Operations Studio, 575

installing
Docker, 573
SQL Operations Studio, 576

Mac starting up, 574
running queries, 577

SQL Operations Studio
configuration, 163
database dashboard, 171–172
extensions, 172
features, 174
installation, 160
Object Explorer, 167–169
server dashboard, 170
T-SQL query editor, 173–174

SQL Platform Abstraction Layer
(SQLPAL), 3

SQL Server 2016, 231
SQL Server Analysis Services (SSAS), 18
SQL Server Integration Services (SSIS)

package, 15, 508, 523
connection string, 224
data flow task, 222, 225
dtexec, 219, 220
execution, 226–227
Flat File Destination, 225
integration services project, 221
ODBC connection string, 223
ODBC source, 223
Package Designer, 220
SSDT, 219
ssis-conf, 219

SQL Server Management Studio (SSMS)
interface, 176
Object Explorer, 176–179
reports, 180–181
T-SQL query editor, 179–180
XEProfiler, 203

SQL Server memory clerks, 191

Index

603

SQL Server Migration
Assistant (SSMA), 510

SQL Server on Windows Server, 588
SQL Vulnerability

Assessment, 360
Statistics

and automation, 282–283
cardinality estimation, 284
indexes and columns, 281–282

SUSE Linux Enterprise Server (SLES)
v12SP2, 24

System database backup, 380
System database restore

force setup, 396
master, 396
model, 396
msdb, 395
T-SQL scripts, 397

System databases
databases.sql, 80
master, 80
model template, 81
msdb, 81
resource, 81
tempdb, 81

System stored procedures, 184

T
Tables

ALTER TABLE
ADD column, 467
ALTER COLUMN column, 468
documentation, 469
DROP COLUMN column, 468
properties, 468
Sch-M, 468
Sch-S, 468

TRUNCATE TABLE, 469

Table valued functions (TVFs), 535
Tabular Data Stream (TDS) protocol, 114
Tail-Log Backup, 378
Tedious, 114
Temporal tables, 136–139
Ticket Granting Server (TGS), 324
Ticket Granting Ticket (TGT), 324
Tools, database engine

DBCC, 214–215
DMV (see Dynamic management

views (DMVs))
extended events (see Extended events)
query store, 212–214
system stored procedures, 184
system tables and catalog views,

182–183
trace flags, 216–218

Trained model, 143
Transaction log backup, 376–378
Transaction log file, 89
Transparent Data Encryption

(TDE), 346, 527
Transport Layer Security (TLS), 15, 349
Troubleshooting

core dump files, 491–492
dump files, 489–490
PSSDiag, 492–493

T-SQL
analytic queries, 132–133
commands, 135
complex datatypes, 133–135
database creation

cleanup.sql, 101
createcustomers.sql, 101
createlogin.sql, 100–101
createpeople.sql, 101
createschemas.sql, 101
createsequences.sql, 101

Index

604

createwwi.cmd, 100
createwwi.sh, 100
database context, 80–82
database owner (dbo), 83
dropandcreatedb.sql, 101
features, 89
instance, 79
sa password, 100
scripts execution, 101
server name, 100
sqllinux login, 82–83, 100
user database (see User database)

environment, 112–113
mssql extension, 78–79
Query Editor, 173–174, 179–180
string functions, 135
system databases, 80–81
table creation

application schema, 90
clustered index, 95
color coding, 94–95
column definitions, 94
constraints, 95
createcustomers.sql, 97–98
createpeople.sql, 92–93
customers table, 90, 97
default value constraint, 96
foreign key constraint, 96, 99
identity column, 91
people table, 90, 94
PersonID, 94, 96–97
primary key constraint, 95
sales schema, 90
schemas, 90–91
sequences, 91–92
shell, 89
storage size, 89

UNIQUE constraint, 99
temporary objects

global temporary table, 131
stored procedure, 130–131
tables and table variables, 127–130
table valued parameters, 130
tempdb, internal usage, 131

testing queries
basic statements and scripts, 102
capabilities, 106
createview.sql, 106
execinsertcustomer.sql, 108
findcustomercontacts.sql, 107
getdate(), 105
insertcustomerproc.sql, 107
insert data, 102–104
read data, 105
server-side programming, 107
stored procedure, 107–108
updating and deleting data,

105–106
view object, 106–107

triggers, 132
Visual Studio code, 78–79
WideWorldImporters database, 77–78

T-SQL performance features
lightweight query profiling, 210–211
SET STATISTICS

commands, 208
SET STATISTIC IO output, 210
SET STATISTICS TIME output, 209

SHOWPLAN
commands, 204
graphical query plan, 206
query plan operator details, 207
SET SHOWPLAN_XML, 205
SET STATISTICS XML, 207

T-SQL sequences, 520

T-SQL (cont.)

Index

605

U
Ubuntu, 24
UNIX development

projects, 1
User database

cleanup.sql, 84
createdbifexists.sql, 87
createdb.sql, 85
database context, 88
dropandcreatedb.sql, 88
execute query, 86–87
intellisense, 85–86
mssql extension, 84
USE keyword, 88
WideWorldImporters_log.ldf, 89
WideWorldImporters.mdf, 88

V
Virtual Device

Interface (VDI), 379–380, 528
Visual Studio Code, 78–79

W
Windows Authentication, 323
Windows vs. Linux

capabilities and features, 14–15
developer, 17
Enterprise, 16
Express, 17
features unavailable, 17–18
Standard edition, 16
use of, 18–19
Web, 17

Windows Server Failover Clustering
(WSFC), 71, 398

Write ahead logging (WAL), 244, 381

X
XEProfiler, 202

Y, Z
Yellow Dog Linux, 37
YellowDog Updater Modifier (Yum), 37

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Why SQL Server on Linux?
	Platform of Choice
	How We Built It
	Drawbridge
	SQLOS, SQLPAL, and Helsinki
	The SQL Server on Linux Architecture

	SQL Server on Windows vs. Linux. Is it the Same?
	SQL Server on Linux Capabilities
	What Features Are Not Available
	Should I Use Windows or Linux?

	Containers Are the New Virtual Machine
	Database Containers
	Platform Independence, Portability, and Consistency
	Continuous Integration/Continuous Deployment
	Kubernetes

	Summary

	Chapter 2: Install and Configuration
	Preparing for Install
	Linux Distributions
	System Requirements
	Testing for SQL Server
	The WideWorldImporters Sample
	Putting the Hammer on SQL Server

	Linux Tips
	Common Commands
	sudo
	Viewing and Editing Files and Scripts
	System Logging

	Just Install It!
	Deploy in 60 Seconds
	Download a Repository Config File
	Do the Install of the SQL Server Engine
	Complete the Setup of SQL Server

	The Complete Installation Experience
	Installing Other Versions
	Verifying Install
	Check the mssql-server Service Is Running
	Connect Locally and Run a Query
	Connect Remotely
	More Ways to Verify SQL Server Functionality

	Unattended Install
	Offline Install
	Installing Other Packages
	Installing in Azure
	Troubleshooting Install
	Poor or No Internet Connectivity
	Install Not Completed with mssql-conf
	The Yum Lock
	Changing Permissions or Ownership of SQL Server Directories
	Debugging Installation

	Exploring SQL Server on Linux
	What Is Installed
	/opt/mssql
	/var/opt/mssql
	Other Files

	Using Log Files

	Post-Install Configuration
	Using mssql-conf
	SQL Server Instance Configuration
	sp_configure
	ALTER SERVER CONFIGURATION

	Windows Configuration Options on Linux
	Locked Pages
	Instant File Initialization
	Large Pages
	Windows Server Failover Clustering

	Updates and Uninstall
	Updating SQL Server
	Rolling Back to a Previous Update
	Removing SQL Server

	Summary

	Chapter 3: Building a Database and T-SQL Fundamentals
	Setting Up Your Environment
	Creating a Database
	System Databases
	Creating a Login and User
	Creating a User Database

	Creating Tables
	Creating Schemas
	Creating Sequences
	Finally Creating the Tables

	Creating the Complete Database
	Building and Running Queries
	Inserting and Reading Data
	Updating and Deleting data
	Building Views and Stored Procedures

	Summary

	Chapter 4: Building an Application and Advanced T-SQL
	Setting Up Your Environment
	Building and Running a Data Application for SQL Server
	Using node.js with SQL Server
	Connecting to SQL Server with node.js
	Inserting and Reading Data
	Executing Stored Procedures
	Enhancing Your Application

	Go Big on T-SQL
	Creating and Using Temporary Objects
	Temporary Tables and Table Variables
	Other Temporary Objects
	Internal Usage of tempdb

	Triggers
	Analytic Queries
	Complex Datatypes
	String Functions
	Other T-SQL Commands

	Exploring New SQL Server Capabilities
	JSON
	Temporal Tables
	Graph Database
	Native Scoring

	Summary

	Chapter 5: SQL Server Tools
	Command Line Tools
	sqlcmd
	bcp
	mssql-cli
	mssql-scripter
	sqlservr Command Line Options

	SQL Operations Studio
	Installation
	Configuration
	Object Explorer
	Dashboards, Insights, and Extensions
	T-SQL Query Editor
	Other Features

	SQL Server Management Studio
	Object Explorer
	T-SQL Query Editor
	Reports

	Tools Built into the Engine
	System Tables and Catalog Views
	System Stored Procedures
	Dynamic Management Views
	The Views
	DBFS Tool

	Extended Events
	Extended Event Objects
	Usage and Scenarios
	Tools

	T-SQL Performance Features
	SHOWPLAN
	SET STATISTICS
	Lightweight Query Profiling

	Query Store
	DBCC Commands
	Trace Flags

	SSIS for ETL
	Creating a Package
	SQL Server Data Tools
	Building the Package

	Executing a Package
	Go Further with SSIS

	Summary

	Chapter 6: Performance Capabilities
	Performance Built In
	SQL Server Built-in Scalability
	Dynamic Memory and Cache Management
	Efficient I/O Processing
	Read-Ahead
	Write-Ahead Logging
	Checkpoint, LazyWrites, and Eager Writes
	Data Compression

	Parallel Processing

	Configuration for Maximum Performance
	SQL Server Instance Configuration
	Database Options
	Linux Kernel Configuration

	Tuning for Success
	Files and File Groups
	Separate Data and Transaction Log Files
	Using Multiple Database Files and Filegroups
	Planning for File Growth

	Indexes
	Clustered Indexes
	Nonclustered Indexes
	Looking at WideWorldImporters
	Use the Tools
	Index Types and Other Considerations

	Statistics
	Statistics on Indexes and Columns
	Automation and Statistics
	Cardinality Estimation

	Tips for Developers
	Use the Power of T-SQL
	Connections, Transactions, and Deadlocks
	Process Your Results!
	Set Your Application Name

	Accelerating Performance
	Partitioned Tables and Indexes
	Columnstore Indexes
	How it Works
	When and Which Should I Choose?
	Columnstore in Action
	Tips
	Customer Stories and Resources

	In-Memory OLTP
	Fundamentals
	The Hekaton Engine
	Memory Optimized FILEGROUP
	Memory Optimized Tables
	Indexes
	Natively Compiled Stored Procedures
	Usage Scenarios

	The Intelligent SQL Server Engine
	Adaptive Query Processing
	Automatic Tuning

	Summary

	Chapter 7: Security in SQL Server
	Logins and Users
	Active Directory Authentication
	How it Works
	Setting it Up
	Using AD Authentication

	Permissions and Access
	Grant and Revoking Access
	Roles and Permissions
	Server Roles
	Database Roles
	Application Roles
	Other Permissions

	Row Level Security
	Dynamic Data Masking

	SQL Server and Encryption
	SQL Server Keys and Certificates
	Transparent Data Encryption
	Encrypting Database Backups
	Encrypting Connections
	Always Encrypted
	Encryption Summary

	Data Classification and Auditing
	Data Classification
	Vulnerability Assessment
	SQL Server Audit

	Summary

	Chapter 8: High Availability and Disaster Recovery for SQL Server
	Backup and Restore
	Database Backup
	Full Database Backup
	Recovery Models
	Transaction Log Backup
	Differential and Copy-Only Backup
	Database Snapshots
	VDI and Snapshot Backup
	System Database Backup

	Database Restore and Recovery
	Database Recovery
	Restoring a Database
	Complete Database Restore
	File, Piecemeal, and Page Restore
	System Database Restore

	Always On Failover Cluster Instance
	How It Works
	Setup and Configuration
	sp_server_diagnostics and failover

	Always On Availability Groups
	How it Works
	Synchronization Options
	Clustering and Availability Groups
	Distributed Availability Groups

	Setup and Configuration
	Install Linux and SQL Server
	Create and Configure the AG across these SQL Servers Replicas
	Create the Cluster Using Pacemaker
	Add the AG as a Resource in the Cluster

	Let’s Test it
	Testing Data Replication
	Testing Failover

	Database Health Detection
	Performance Considerations
	Readable Secondaries
	Automatic Page Repair
	Clusterless Availability Groups

	Summary

	Chapter 9: Managing and Monitoring SQL Server
	Managing the SQL Server Instance
	Changing Server Configuration Options
	Creating an SQL Server Agent Job
	Using Resource Governor
	Using the Dedicated Admin Connection
	sqlservr Command Line Options

	Managing Databases
	Moving Databases
	Managing Files
	Detaching and Attaching Databases
	ALTER DATABASE Usage Scenarios
	Repairing Databases
	Database States
	More About Checksum
	DBCC CHECKDB Repair
	Emergency Mode Repair
	RESTORE with CONTINUE_AFTER_ERROR
	Finding the Cause of Corruption

	Managing Objects
	Managing Tables
	Altering Tables
	Truncating Tables

	Managing Indexes
	Index Fragmentation
	Rebuilding an Index
	Reorganizing an Index
	Adaptive Index Defragmentation
	Modifying an Index
	Maintaining Columnstore Indexes

	Managing Server-Side Code

	Monitoring SQL Server
	Monitoring SQL Server Performance
	Running or Waiting
	Using DMVs to Monitor Performance
	Using the Query Store to Monitor Performance
	Using Extended Events for Performance

	Using the System Health Session
	Smart Log Backups
	Linux Tools for Monitoring

	SQL Server Troubleshooting
	Dump Files
	Core Dump Files
	PSSDiag

	Summary

	Chapter 10: Migrating to SQL Server on Linux
	Migrating from SQL Server
	Preparing for the Migration
	Data Migration Assistant
	Database Experimentation Assistant

	Executing the Migration
	Restore a Database Backup
	Copy Data with Bulk Copy or SSIS Package
	Export and Import with BACPAC

	Migrating from Oracle
	Preparing for the Migration
	Executing the Migration

	Migrating from PostgreSQL
	How Does PostgreSQL Compare with SQL Server?
	Core Database Engine
	The SQL Language
	Tools
	Performance
	Security
	HADR
	Management and Monitoring

	Executing the Migration

	Post Migration Considerations
	Optimizing Performance Post Migration
	Rebuild Existing Indexes and Build New Indexes
	Establish New Baselines and Performance Monitoring Strategy
	Enable New Features for Performance

	Design Your Security and HADR Strategy
	Using Database Compatibility
	Enabling New Functionality with Database Compatibility
	Using Database Compatibility for Backward Compatibility

	Migrate SQL Server Instance Objects
	Using New Features
	Using an Existing Application Against SQL Server on Linux

	Summary

	Chapter 11: SQL Server and Containers
	Introduction to Containers
	How to use SQL Server with Containers
	Deploy and Run the SQL Server Image
	Docker Container SQL Server Basics
	Updating SQL Server Using Containers

	Build Your Own Container with a Dockerfile
	Compose a Multicontainer Application

	The SQL Mac Challenge
	SQL Server and Kubernetes
	The Basics
	SQL Server HADR and Kubernetes
	How HADR Works with k8s
	Using SQL Server with Azure Kubernetes Service

	Summary

	Chapter 12: Epilogue
	Index

