
PROFESSIONAL ANDROID®, FOURTH EDITION

INTRODUCTION . xxxi

CHAPTER 1 Hello, Android . 1

CHAPTER 2 Getting Started . 13

CHAPTER 3 Applications and Activities and Fragments, Oh My! 57

CHAPTER 4 Defining the Android Manifest and Gradle Build Files,
and Externalizing Resources . 95

CHAPTER 5 Building User Interfaces . 129

CHAPTER 6 Intents and Broadcast Receivers . 177

CHAPTER 7 Using Internet Resources . 211

CHAPTER 8 Files, Saving State, and User Preferences . 245

CHAPTER 9 Creating and Using Databases . 281

CHAPTER 10 Content Providers and Search . 317

CHAPTER 11 Working in the Background . 377

CHAPTER 12 Implementing the Android Design Philosophy 433

CHAPTER 13 Implementing a Modern Android User Experience 463

CHAPTER 14 Advanced Customization of Your User Interface 501

CHAPTER 15 Location, Contextual Awareness, and Mapping 541

CHAPTER 16 Hardware Sensors . 619

CHAPTER 17 Audio, Video, and Using the Camera . 665

CHAPTER 18 Communicating with Bluetooth, NFC, and Wi-Fi Peer-to-Peer . . . 713
CHAPTER 19 Invading the Home Screen . 743

CHAPTER 20 Advanced Android Development . 787

CHAPTER 21 Releasing, Distributing, and Monitoring Applications 825

INDEX . 863

www.allitebooks.com

http://www.allitebooks.org

PROFESSIONAL

Android®

Fourth Edition

www.allitebooks.com

http://www.allitebooks.org

PROFESSIONAL

Android®

Fourth Edition

Reto Meier
Ian Lake

www.allitebooks.com

http://www.allitebooks.org

Professional Android ®, Fourth Edition

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-94952-8
ISBN: 978-1-118-94954-2 (ebk)
ISBN: 978-1-118-94953-5 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://book-
support.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2018951986

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Android is a registered trademark of Google, LLC All other trademarks
are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor
mentioned in this book.

www.allitebooks.com

http://www.allitebooks.org

To Kris.

—Reto

To Andrea and Hannah.

—Ian

www.allitebooks.com

http://www.allitebooks.org

ABOUT THE AUTHORS

RETO MEIER has been working to help Android developers create the best applications possible
for their users since the initial Android release in 2007. Reto grew up in Perth, Western Australia,
and then spent “the next 18 months” in London for a total of 6 years, before settling in the San
Francisco Bay Area with his wife in 2011.

Reto has spent 10 years as a Developer Advocate at Google, contributing articles, online training,
conference talks, and YouTube videos to the developer community.

Before smartphones were invented, Reto spent over 10 years as a software developer in various
industries, including offshore oil and gas and finance.

You can learn more about Reto’s thoughts on Android development, ask him questions, and see pic-
tures of his cats on Twitter at www.twitter.com/retomeier, where he shares more than he prob-
ably should, and read longer thoughts on Medium at medium.com/@retomeier.

IAN LAKE has lived in nine states across the United States before settling in the San Francisco Bay
Area in 2013.

Ian is a member of the Android Toolkit team at Google, focused on providing the libraries and
APIs needed for modern Android development. His prior experience includes that as an Android
Developer Advocate, Android app developer, and enterprise application developer back when
Android wasn’t even an option.

You can connect with Ian on Google+ (plus.google.com/+IanLake) or Twitter (www.twitter
.com/ianhlake) to learn more about his wonderful family, hobbies (mostly Android development),
and interests.

While Reto and Ian work at Google, the views and opinions expressed in this book are theirs alone
and do not necessarily represent those of their employer.

ABOUT THE TECHNICAL EDITORS

DANIEL ULERY is a Senior Software Engineer who lives near Lewiston, Idaho. His experience includes
software engineering projects using technologies such as Java Enterprise, C# WinForms, SQL Server,
Raspberry Pi, and Android. Dan received his Bachelor of Science in Computer Science from the
University of Idaho in 2004. When he’s not working on software projects, he’s likely working on one
of many DIY projects.

ED WOODWARD is a Senior Development Manager and Android Developer for OpenStax at Rice
University. He currently manages the Devops team and is tech lead on the Business Intelligence team
along with developing OpenStax’s Android app. Prior to joining OpenStax, Ed was a Vice President/
Application Architect at JPMorganChase. Ed was a Band Director at the high school and middle
school level for several years before transitioning to programming.

CHAIM KRAUSE is an expert computer programmer with more than 30 years of experience to prove
it. He has worked as a lead tech support engineer for ISPs as early as 1995, as a senior developer
support engineer with Borland for Delphi, and has worked in Silicon Valley for over a decade in
various roles, including technical support engineer and developer support engineer. He is currently
a military simulation specialist for the US Army’s Command and General Staff College, working on
projects such as developing serious games for use in training exercises. He has also authored several
video training courses on Linux topics, and has been a technical reviewer for over 20 books, includ-
ing Amazon Web Services for Mobile Developers (Sybex, 2017) and Professional Swift (Wrox,
2015). It seems only natural then that he would be an avid gamer and have his own electronics lab
and server room in his basement. He currently resides in Leavenworth, Kansas, with his beautiful
partner Ivana and a menagerie of four-legged companions: their two dogs, Dasher and Minnie, and
their three cats, Pudems, Talyn, and Alaska.

MURAT YENER is a code geek, open source committer, Java Champion, and ex-Google Developer
Expert on Android, who is working at Google. He is the author of Expert Android Studio (Wiley,
2016) and Professional Java EE Design Patterns (Wiley, 2015). He has extensive experience with
developing Android, Java, web, JavaEE, and OSGi applications, in addition to teaching courses and
mentoring. Murat was an Eclipse committer and one of the initial committers of the Eclipse Libra
project. Murat had been a user group leader at GDG Istanbul and in GDG San Francisco, organiz-
ing, participating, and speaking at events. He is also a regular speaker at major conferences, such as
DroidCon, JavaOne, and Devoxx.

PROJECT EDITOR
John Sleeva

TECHNICAL EDITORS
Daniel Ulery
Ed Woodward
Chaim Krause
Murat Yener

PRODUCTION EDITOR
Barath Kumar Rajasekaran

COPY EDITOR
Kimberly A. Cofer

PRODUCTION MANAGER
Kathleen Wisor

CONTENT ENABLEMENT AND OPERATIONS
MANAGER
Pete Gaughan

MARKETING MANAGER
Christie Hilbrich

EXECUTIVE EDITOR
Jim Minatel

PROJECT COORDINATOR, COVER
Brent Savage

PROOFREADER
Nancy Bell

INDEXER
Johnna VanHoose Dinse

COVER DESIGNER
Wiley

COVER IMAGE
© 1971yes/iStock.com

CREDITS

ACKNOWLEDGMENTS

FIRST, I’D LIKE TO THANK MY WIFE KRISTY, whose love and support makes everything I do possible.

A big thank you to my friends and colleagues at Google, particularly all the amazing people in the
Android team, without whom I’d have nothing to write about, and the developer relations team who
inspire me every day.

I also thank our army of technical editors, including Dan Ulery, Ed Woodward, Chaim Krause,
Murat Yener, James Harmon, and Chad Darby, without whom this book would contain far more
errors than it does. Those that remain are entirely my fault. Thank you to the whole team at Wrox,
especially John Sleeva and Jim Minatel, whose patience and support in getting this book completed
was non-trivial.

An extra big thank you goes out to the incredible Android community, made up of passionate, gen-
erous, and hard working developers who seem to spend as much time helping each other as they do
building amazing apps. Your efforts have been critical in making Android the huge success that it is.
Thank you.

—Reto

MY FAMILY, ANDREA AND HANNAH, are what make everything worth it. Without their support, I
wouldn’t be able to do much of anything, much less write this book.

I’d like to echo Reto’s thanks for everyone involved in publishing and making this book a reality, the
Android team for giving us plenty to talk about, and the Android developer community for sharing
our passion around building better apps.

—Ian

CONTENTS

INTRODUCTION xxxi

ChapTEr 1: hELLO, aNDrOID 1

Android Application Development 1
A Little Background 2

The Not-So-Distant Past 3
Living in the Future 3

The Android Ecosystem 3
Pre-installed Android Applications 4
Android SDK Features 5
What Does Android Run On? 6
Why Develop for Mobile? 6
Why Develop for Android? 7
Introducing the Development Framework 7

What Comes in the Box 8
Understanding the Android Software Stack 8
The Android Run Time 10
Android Application Architecture 11
Android Libraries 12

ChapTEr 2: GETTING STarTED 13

Getting Started Developing Android Apps 14
Developing for Android 15

What You Need to Begin 15
Creating Your First Android Application 20
Getting Started Writing Android Apps Using Kotlin 35
Using the Android Support Library Package 36

Developing for Mobile and Embedded Devices 39
Hardware-Imposed Design Considerations 39
Considering the User’s Environment 43
Developing for Android 44

Android Development Tools 48
Android Studio 49
The Android Virtual Device Manager 51
The Android Emulator 51

xviii

CONTENTS

Android Profiler 52
The Android Debug Bridge 54
APK Analyzer 54
The Lint Tool 55
Monkey, Monkey Runner, and Espresso UI Testing 55
Gradle 56

ChapTEr 3: appLICaTIONS aND aCTIVITIES
aND FraGMENTS, Oh MY! 57

Applications, Activities, and Fragments 58
The Components of an Android Application 58
The Android Application Life Cycle, Priority, and Process States 59
Introducing the Android Application Class 61
A Closer Look at Android Activities 61

Creating Activities 62
Using the AppCompatActivity 63
The Activity Life Cycle 64
Responding to Memory Pressure 71

Introducing Fragments 73
Creating New Fragments 73
The Fragment Life Cycle 74
Introducing the Fragment Manager 79
Adding Fragments to Activities 79
Communicating Between Fragments and Activities 85
Fragments Without User Interfaces 86

Building an Earthquake Viewer Application 87

ChapTEr 4: DEFINING ThE aNDrOID MaNIFEST
aND GraDLE BUILD FILES, aND EXTErNaLIZING rESOUrCES 95

The Manifest, Build Files, and Resources 96
Introducing the Android Manifest 96
Configuring the Gradle Build 101

Gradle Settings File 101
Project Gradle Build File 102
Module Gradle Build Files 102

Externalizing Resources 107
Creating Resources 108
Using Resources 119
Creating Resources for Different Languages and Hardware 122
Runtime Configuration Changes 126

xix

CONTENTS

ChapTEr 5: BUILDING USEr INTErFaCES 129

Fundamental Android Design 130
Density-Independent Design 130
Android User Interface Fundamentals 131

Assigning User Interfaces to Activities 132
Introducing Layouts 132

Defining Layouts 134
Using Layouts to Create Device-Independent User Interfaces 136
Optimizing Layouts 139

The Android Widget Toolbox 143
Working with Lists and Grids 144

Recycler View and Layout Managers 145
Introducing Adapters 146
Returning to the Earthquake Viewer Application 149

Introducing Data Binding 150
Enabling Data Binding 151
Variables in Data Binding 152
Data Binding for the Earthquake Viewer Application 153

Creating New Views 155
Modifying Existing Views 155
Creating Compound Controls 159
Creating Simple Compound Controls as a Layout 161
Creating Custom Views 162
Using Custom Controls 176

ChapTEr 6: INTENTS aND BrOaDCaST rECEIVErS 177

Using Intents and Broadcast Receivers 178
Using Intents to Launch Activities 178

Explicitly Starting New Activities 179
Implicit Intents and Late Runtime Binding 179
Determining If an Intent Will Resolve 180
Returning Results from Activities 181
Using Platform-Native Actions to Launch Activities 184

Creating Intent Filters to Receive Implicit Intents 186
Defining an Intent Filter 186
Using Intent Filters for Plug-Ins and Extensibility 194

Introducing Linkify 198
Native Linkify Link Types 198
Creating Custom Link Strings 199

xx

CONTENTS

Using the Match Filter 200
Using the Transform Filter 200

Using Intents to Broadcast Events 200
Broadcasting Events with Intents 201
Listening for Intent Broadcasts with Broadcast Receivers 202
Registering Broadcast Receivers in Code 203
Registering Broadcast Receivers in Your Application Manifest 204
Managing Manifest Receivers at Run Time 204
Monitoring Device State Changes Through Broadcast Intents 205

Introducing the Local Broadcast Manager 207
Introducing Pending Intents 208

ChapTEr 7: USING INTErNET rESOUrCES 211

Connecting to the Internet 211
Connecting, Downloading, and Parsing Internet Resources 212

Why Build a Native Internet App? 212
Connecting to an Internet Resource 213
Performing Network Operations on Background Threads Using View
Models, Live Data, and Asynchronous Tasks 214
Parsing XML Using the XML Pull Parser 219
Connecting the Earthquake Viewer to the Internet 220
Parsing JSON Using the JSON Parser 228

Using the Download Manager 233
Downloading Files 233
Customizing Download Manager Notifications 235
Specifying a Download Location 237
Canceling and Removing Downloads 238
Querying the Download Manager 238

Best Practices for Downloading Data Without Draining the Battery 241
An Introduction to Internet Services and Cloud Computing 242

ChapTEr 8: FILES, SaVING STaTE, aND USEr prEFErENCES 245

Saving Files, States, and Preferences 246
Saving and Restoring Activity and Fragment Instance
State Using the Lifecycle Handlers 246
Retaining Instance State with Headless Fragments
and View Models 248

View Models and Live Data 248
Headless Fragments 251

Creating and Saving Shared Preferences 252
Retrieving Shared Preferences 253

xxi

CONTENTS

Introducing On Shared Preference Change Listeners 254
Configuring Auto Backup of Application Files
and Shared Preferences 254
Building a Preference UI 256

Using the Preference Support Library 256
Defining a Preference Screen Layout in XML 257
Introducing the Preference Fragment 260

Creating a Settings Activity for the Earthquake Monitor 261
Including Static Files as Resources 267
Working with the Filesystem 267

File-Management Tools 267
Creating Files on Application-Specific Internal Storage 268
Creating Files on Application-Specific External Storage 268
Accessing Public Directories Using Scoped Directory Access 270

Sharing Files Using File Provider 274
Creating a File Provider 274
Sharing a File Using a File Provider 275
Receiving a File from a File Provider 275

Accessing Files from Other Applications Using
the Storage Access Framework 275

Requesting Temporary Access to Files 276
Requesting Persistent Access to Files 277
Requesting Access to Directories 277
Creating New Files 278

Using URI-Based Permissions 278

ChapTEr 9: CrEaTING aND USING DaTaBaSES 281

Introducing Structured Data Storage in Android 282
Storing Data Using the Room Persistence Library 282

Adding the Room Persistence Library 283
Defining a Room Database 284
Persisting Complex Objects Using Type Convertors 286
Defining Room Database Interactions Using Data Access Objects 288
Performing Room Database Interactions 291
Monitoring Query Result Changes with Live Data 292

Persisting Earthquakes to a Database with Room 294
Working with SQLite Databases 298

Input Validation and SQL Injection 299
Cursors and Content Values 299
Defining a Database Contract 300
Introducing the SQLiteOpenHelper 300

xxii

CONTENTS

Opening Databases with the SQLite Open Helper 302
Opening and Creating Databases Without the SQLite Open Helper 303
Adding, Updating, and Deleting Rows 303
Querying a Database 305
Extracting Values from a Cursor 307

Introducing the Firebase Realtime Database 308
Adding Firebase to Your App 309
Defining a Firebase Database and Defining Access Rules 311
Adding, Modifying, Deleting, and Querying Data from
a Firebase Realtime Database 313

ChapTEr 10: CONTENT prOVIDErS aND SEarCh 317

Introducing Content Providers 318
Why Should I Use Content Providers? 318
Creating Content Providers 319

Creating the Content Provider’s Database 320
Registering Content Providers 321
Publishing Your Content Provider’s URI Address 321
Implementing Content Provider Queries 322
Content Provider Transactions 325
Sharing Files Using a Content Provider 327
Adding Permission Requirements to Content Providers 328

Accessing Content Providers with Content Resolvers 330
Querying Content Providers 330
Cancelling Queries 333
Querying for Content Asynchronously with a Cursor Loader 333
Adding, Deleting, and Updating Content 336
Accessing Files Stored in Content Providers 338
Accessing Permission-Restricted Content Providers 339

Using Native Android Content Providers 341
Accessing the Call Log 341
Using the Media Store Content Provider 342
Using the Contacts Content Provider 344
Using the Calendar Content Provider 351

Adding Search to Your Application 354
Defining Your Search Metadata 354
Creating a Search Results Activity 355
Searching a Content Provider 357
Using the Search View Widget 360
Providing Search Suggestions Using a Content Provider 362
Searching the Earthquake Monitor Database 366

xxiii

CONTENTS

ChapTEr 11: WOrKING IN ThE BaCKGrOUND 377

Working in the Background 378
Using Background Threads 379

Using Asynchronous Tasks to Run Tasks Asynchronously 379
Manual Thread Creation Using Handler Threads 383

Scheduling Background Jobs 385
Creating a Job Service for the Job Scheduler 386
Scheduling Jobs with the Job Scheduler 388
Scheduling Jobs with the Firebase Job Dispatcher 391
Scheduling Work with the Work Manager 393
An Earthquake-Monitoring Job Service Example 396

Using Notifications to Notify Users 401
Introducing the Notification Manager 401
Working with Notification Channels 402
Creating Notifications 403
Setting a Notification’s Priority 407
Adding Notification Actions 411
Adding Direct Reply Actions 412
Grouping Multiple Notifications 413
Adding Notifications to the Earthquake Monitor 414

Using Firebase Cloud Messaging 417
Triggering Notifications Remotely with Firebase Notifications 418
Receiving Data with Firebase Cloud Messaging 421

Using Alarms 422
Creating, Setting, and Canceling Alarms 423
Setting an Alarm Clock 424

Introducing Services 424
Using Bound Services 425
Creating a Started Service 427

ChapTEr 12: IMpLEMENTING ThE aNDrOID
DESIGN phILOSOphY 433

Introducing the Android Design Philosophy 434
Designing for Every Screen 434

Resolution Independence 435
Supporting and Optimizing for Different Screen Sizes 436
Creating Scalable Graphics Assets 439

Introducing Material Design 445
Thinking in Terms of Paper and Ink 446
Using Color and Keylines as Guides 447
Continuity Through Motion 449

xxiv

CONTENTS

Material Design UI Elements 452
The App Bar 452
Applying Material Design to the Earthquake Monitor 455
Using Cards to Display Content 456
Floating Action Buttons 460

ChapTEr 13: IMpLEMENTING a MODErN aNDrOID USEr
EXpErIENCE 463

The Modern Android UI 464
Creating Consistent, Modern User Interfaces
Using AppCompat 464

Creating and Applying Themes Using AppCompat 465
Creating Theme Overlays for Specific Views 466

Adding a Menu and Actions to the App Bar 467
Defining a Menu Resource 467
Adding a Menu to an Activity 468
Adding a Menu to a Fragment 469
Updating Menu Items Dynamically 469
Handling Menu Selections 470
Adding Action Views and Action Providers 470

Going Beyond the Default App Bar 472
Replacing Your App Bar with a Toolbar 472
Advanced Scrolling Techniques for the Toolbar 473
Incorporating Menus Without the App Bar 476

Improving the Earthquake Monitor’s App Bar 477
App Navigation Patterns 479

Navigating with Tabs 479
Implementing a Bottom Navigation Bar 482
Using a Navigation Drawer 485
Combining Navigation Patterns 491

Adding Tabs to the Earthquake Monitor 492
Choosing the Right Level of Interruption 496

Initiating a Dialog 497
Let’s Make a Toast 498
Inline Interruptions with Snackbars 499

ChapTEr 14: aDVaNCED CUSTOMIZaTION OF YOUr USEr
INTErFaCE 501

Expanding the User Experience 502
Supporting Accessibility 502

xxv

CONTENTS

Supporting Navigation Without a Touch Screen 502
Providing a Textual Description of Each View 503

Introducing Android Text-to-Speech 503
Using Speech Recognition 505

Using Speech Recognition for Voice Input 506
Using Speech Recognition for Search 507

Controlling Device Vibration 508
Going Full Screen 508
Working with Property Animations 510
Enhancing Your Views 513
Advanced Canvas Drawing 514

Creating Interactive Controls 530
Composite Drawable Resources 536

Transformative Drawables 536
Layer Drawables 537
State List Drawables 537
Level List Drawables 538

Copy, Paste, and the Clipboard 539
Copying Data to the Clipboard 539
Pasting Clipboard Data 539

ChapTEr 15: LOCaTION, CONTEXTUaL aWarENESS,
aND MappING 541

Adding Location, Maps, and Contextual Awareness to Your
Applications 542
Introducing Google Play Services 542

Adding Google Play Services to Your Application 543
Determining the Availability of Google Play Services 545

Finding Device Location Using Google Location Services 546
Using the Emulator to Test Location-Based Functionality 548
Finding the Last Known Location 549
“Where Am I” Example 551
Requesting Location Change Updates 555
Changing Device Location Settings 560
Updating the Location in the “Where Am I” Example 563
Best Practices When Using Location 566

Setting and Managing Geofences 567
Using the Legacy Platform Location-Based Services 571

Selecting a Location Provider 572
Finding the Last Known Location 574

xxvi

CONTENTS

Requesting Location Change Updates 575
Best Practice for Using the Legacy Location-Based Services 577

Using the Geocoder 580
Reverse Geocoding 581
Forward Geocoding 582
Geocoding Where Am I 583

Creating Map-Based Activities 585
Getting Your Maps API Key 586
Creating a Map-Based Activity 586
Configuring Google Maps 589
Changing the Camera Position with Camera Updates 590
Mapping Where Am I 592
Displaying the Current Location with the My Location Layer 596
Displaying Interactive Map Markers 596
Adding Shapes to Google Maps 599
Adding Image Overlays to Google Maps 602
Adding Markers and Shapes to Where Am I 602

Mapping the Earthquake Example 605
Adding Contextual Awareness 609

Connecting to the Google Play Services API Client
and Obtaining API Keys 610
Using Awareness Snapshots 612
Setting and Monitoring Awareness Fences 613
Awareness Best Practices 617

ChapTEr 16: harDWarE SENSOrS 619

Introducing Android Sensors 620
Using the Sensor Manager 620
Understanding the Android Sensors 621
Discovering and Identifying Sensors 623
Determining Sensor Capabilities 625
Wakeup and Non-Wakeup Sensors 627
Monitoring Sensor Results 627
Interpreting Sensor Values 632

Testing Sensors with the Android Virtual Device and Emulator 635
Best Practices for Working with Sensors 637
Monitoring a Device’s Movement and Orientation 637

Determining the Natural Orientation of a Device 638
Introducing Accelerometers 639
Detecting Acceleration Changes 640
Creating a Gravitational Force Meter 642
Determining a Device’s Orientation 645
Creating a Compass and Artificial Horizon 650

xxvii

CONTENTS

Using the Environmental Sensors 654
Using the Barometer Sensor 654
Creating a Weather Station 655

Using Body Sensors 659
User Activity Recognition 662

ChapTEr 17: aUDIO, VIDEO, aND USING ThE CaMEra 665

Playing Audio and Video, and Using the Camera 666
Playing Audio and Video 666

Introducing the Media Player 667
Using Media Player for Video Playback 669
Using ExoPlayer for Video Playback 672
Requesting and Managing Audio Focus 674
Pausing Playback When the Output Changes 676
Responding to the Volume Controls 677
Working with a Media Session 678

Using the Media Router and Cast Application Framework 682
Background Audio Playback 686

Building an Audio Playback Service 686
Using a Media Browser to Connect Your Activity to a
Media Browser Service 688
Life Cycle of a Media Browser Service 690
Playing Audio as a Foreground Service 691
Creating Media Style Notifications 693

Using the Media Recorder to Record Audio 695
Using the Camera for Taking Pictures 697

Using Intents to Take Pictures 697
Controlling the Camera Directly 699
Reading and Writing JPEG EXIF Image Details 706

Recording Video 706
Using Intents to Record Video 707
Using the Media Recorder to Record Video 707

Adding Media to the Media Store 710
Inserting Media Using the Media Scanner 710
Inserting Media Manually 711

ChapTEr 18: COMMUNICaTING WITh BLUETOOTh,
NFC, aND WI-FI pEEr-TO-pEEr 713

Networking and Peer-to-Peer Communication 713
Transferring Data Using Bluetooth 714

Managing the Local Bluetooth Device Adapter 714
Being Discoverable and Remote Device Discovery 716

xxviii

CONTENTS

Bluetooth Communications 720
Bluetooth Profiles 725
Bluetooth Low Energy 726

Transferring Data Using Wi-Fi Peer-to-Peer 728
Initializing the Wi-Fi Peer-to-Peer Framework 729
Discovering Peers 731
Connecting with Peers 732
Transferring Data Between Peers 733

Using Near Field Communication 735
Reading NFC Tags 735
Using the Foreground Dispatch System 736

Using Android Beam 738
Creating Android Beam Messages 739
Assigning the Android Beam Payload 740
Receiving Android Beam Messages 742

ChapTEr 19: INVaDING ThE hOME SCrEEN 743

Customizing the Home Screen 743
Introducing Home Screen Widgets 744

Defining the Widget Layout 745
Defining Your Widget Size and Other Metadata 746
Implementing Your Widget 748
Updating the Widget UI Using the App Widget Manager
and Remote Views 749
Forcing Refreshes of Your Widget Data and UI 753
Creating and Using a Widget Configuration Activity 756

Creating an Earthquake Widget 757
Introducing Collection View Widgets 763

Creating Collection View Widget Layouts 764
Updating Collection View Items with a Remote Views Factory 765
Updating Collection View Items with a Remote Views Service 767
Populating Collection View Widgets Using a Remote Views Service 768
Adding Interactivity to the Items Within a Collection View Widget 769
Refreshing Your Collection View Widgets 770
Creating an Earthquake Collection View Widget 770

Creating Live Wallpaper 777
Creating a Live Wallpaper Definition Resource 778
Creating a Wallpaper Service Engine 778
Creating a Wallpaper Service 780

xxix

CONTENTS

Creating App Shortcuts 781
Static Shortcuts 783
Dynamic Shortcuts 784
Tracking App Shortcut Use 785

ChapTEr 20: aDVaNCED aNDrOID DEVELOpMENT 787

Advanced Android 788
Paranoid Android 788

Linux Kernel Security 788
Re-introducing Permissions 789
Storing Keys in the Android Keystore 792
Using the Fingerprint Sensor 792

Dealing with Different Hardware and Software Availability 793
Specifying Required Hardware 794
Confirming Hardware Availability 795
Building Backward-Compatible Applications 795

Optimizing UI Performance with Strict Mode 797
Telephony and SMS 798

Telephony 799
Sending and Receiving SMS Messages 806

ChapTEr 21: rELEaSING, DISTrIBUTING, aND MONITOrING
appLICaTIONS 825

Preparing for Release 826
Preparing Release Support Material 826
Preparing Your Code for a Release Build 827

Updating Application Metadata in Your Application Manifest 828
Reviewing Application Installation Restrictions 828
Application Versioning 830

Signing Production Builds of Your Application 830
Creating a Keystore and Signing Key with Android Studio 832
Obtaining API Keys Based on Your Private Release Key 833
Building and Signing a Production Release 834

Distributing Your Application on the Google Play Store 835
Introducing the Google Play Store 835
Getting Started with the Google Play Store 836
Creating an Application on the Google Play Store 837
Publishing Your Application 845
Monitoring Your Application in Production 848

xxx

CONTENTS

An Introduction to Monetizing Applications 853
Application Marketing, Promotion, and Distribution Strategies 854

Application Launch Strategies 854
Internationalization 855

Using Firebase to Monitor Your Application 856
Adding Firebase to Your Application 856
Using Firebase Analytics 857
Firebase Performance Monitoring 860

INDEX 863

INTRODUCTION

For many people, smartphones have become an extension of themselves. Now running on over
2 billion monthly-active devices, Android is the most common smartphone operating system in use
world-wide, with users installing an average of 50 apps each, resulting in over 94 billion apps down-
loaded from the Play app store in 2017 alone.

Ubiquitous and indispensable, smartphones are so advanced and personal that studies have shown
people become anxious if they misplace their device, lose connectivity, or run low on battery.

In the 10 years since launching in 2008, Android has expanded beyond mobile phones to become a
development platform for a wide range of hardware, with 24,000 devices from over 1,300 brands,
including everything from tablets to televisions, watches, cars, and Internet of Things (IoT) devices.
Over the same period, there have been 28 platform and SDK releases.

These innovations, combined with the size of the ecosystem, provide unparalleled opportunities for
developers to create innovative new applications for a global audience of users.

Android offers an open platform for mobile application development. Without artificial barriers, Android
developers are free to write apps that take full advantage of an incredible range of devices. Using Google
Play for distribution, developers can distribute free and paid applications to compatible Android devices
globally.

This book is a hands-on guide to building Android applications for all Android devices. It’s written
based on version 8.1 of the Android SDK, using Android Studio 3.1. Chapter by chapter, it takes
you through a series of sample projects, each introducing new features and techniques to get the
most out of Android. It covers all the basic functionality to get started, as well as the information
for experienced mobile developers to take full advantage of the features of Android, to enhance
existing products or create innovative new ones.

The Android team releases a new major platform every year, a new version of Android Studio
every few months, and incremental changes to Jetpack, such as the support library and Android
Architecture Components, many times each year. With such rapid release cycles, there are regular
changes, additions, and improvements to the tools, platform APIs, and development libraries you’ll
use—and which are described in this book. To minimize the impact of these changes, the Android
engineering team works hard to ensure backward compatibility.

However, future releases will date some of the information provided in this book, and not all active
Android devices will be running the latest platform release. To mitigate this, wherever possible, we
have used backward-compatible support libraries, and included details on which platform releases
support the functionality described—and which alternatives may exist to provide support for users
of devices running earlier platforms.

Further, the explanations and examples included will give you the grounding and knowledge needed
to write compelling mobile applications using the current SDK, along with the flexibility to quickly
adapt to future enhancements.

xxxii

INTRODUCTION

WHO THIS BOOK IS FOR

This book is for anyone interested in creating applications for the Android platform. It includes
information that will be valuable, whether you’re an experienced mobile developer on other plat-
forms, making your first foray into writing mobile apps, and if you have some Android development
experience.

It will help if you’ve used a smartphone (particularly an Android device), but it’s not necessary, nor
is prior experience in mobile application development.

It’s expected that you’ll have experience in software development and be familiar with basic object-
oriented paradigms. An understanding of Java syntax is expected, though not a strict necessity.

Chapters 1 and 2 introduce mobile development and the Android development platform, and contain
instructions to get you started. Beyond that, there’s no requirement to read the chapters in order,
although a good understanding of the core components described in Chapters 3–7 is important
before you venture into the remaining chapters. Chapter 11 covers important details on how to
ensure your apps are responsive and efficient, while Chapters 12–14 describe how to provide a
rich and consistent user experience. The remaining chapters cover a variety of functionality whose
relevance will vary based on your application, and can be read in whatever order interest or need
dictates.

WHAT THIS BOOK COVERS

Chapter 1 introduces Android, including what it is and how it fits into the mobile development eco-
system. What Android offers as a development platform and why it’s an exciting opportunity for
creating mobile phone applications are then examined in greater detail.

Chapter 2 covers some best practices for mobile development and explains how to download and
install Android Studio and the Android SDK. It then introduces some of the tools and features
included with Android Studio, and demonstrates how they can be used to create and debug new
applications.

Chapters 3–7 take an in-depth look at the fundamental Android application components—start-
ing by examining the components that make up an Android application, and then moving on to
“Activities” and “Fragments,” and their associated lifetimes and lifecycles.

You’ll then be introduced to the application manifest and the Gradle build system, before learning
more about the external resource framework used to support devices used in different counties, with
different languages, and in a variety of shapes and sizes.

You’ll learn how to create basic user interfaces with layouts, Views, and Fragments, before being
introduced to the Intent and Broadcast Receiver mechanisms used to perform actions and send
messages between application components. Accessing Internet resources is then covered, followed
by a detailed look at data storage, retrieval, and sharing. You’ll start with the preference-saving

xxxiii

INTRODUCTION

mechanism and then move on to file handling, databases, and Content Providers—including access-
ing data from the native databases.

This section finishes with an examination of how to ensure your app is always responsive, and is
efficient in its use of battery when running in the background. You’ll be introduced to threading
APIs that enable asynchronous execution, and mechanisms that support efficient scheduling of back-
ground work. You’ll also learn how to create and display interactive Notifications.

Chapters 12–14 build on the UI framework introduced in Chapter 5. You’ll learn to enhance the
user experience through the principles of material design and to make your applications accessible
and optimized for a variety of screen sizes and resolutions. You’ll further improve the user experi-
ence by understanding the variety of navigation options available, adding movement through anima-
tions, and the use of Toolbars and Menus.

Chapters 15–19 look at more advanced topics. You’ll learn how to use Google Play services to add
interactive maps, find the user’s location, and how to create geo- and awareness-fences. Using move-
ment and environmental Sensors—including the compass, accelerometers, and the barometer—
you’ll make your applications react to their environment.

After looking at how to play and record multimedia, as well as how to use the camera to take
pictures and record video, you’ll be introduced to Android’s communication capabilities, includ-
ing Bluetooth, NFC, and Wi-Fi Direct. Next, you’ll learn how your applications can interact with
users directly from the home screen using dynamic Widgets, Live Wallpaper, and the Application
Shortcuts.

Chapter 20 discusses several advanced development topics, including security, using the fingerprint
sensor, and Strict Mode, followed by the telephony APIs and the APIs used to send and receive SMS
messages.

Finally, Chapter 21 examines the process for building, releasing, monitoring, and monetizing your
applications. In particular, it includes details for publishing and distributing your applications
within Google Play.

HOW THIS BOOK IS STRUCTURED

This book is structured in a logical sequence to help readers of different development backgrounds
learn how to write advanced Android applications. There’s no requirement to read each chapter
sequentially, but several of the sample projects are developed over the course of multiple chapters,
adding new functionality and other enhancements at each stage.

Experienced mobile developers who have already installed Android Studio, and those with a work-
ing knowledge of Android development, can skim the first two chapters—which are an introduction
to mobile development and instructions for creating your development environment—and then dive
in at Chapters 3–7. These chapters cover the fundamentals of Android development, so it’s impor-
tant to have a solid understanding of the concepts they describe.

xxxiv

INTRODUCTION

With this covered, you can move on to the remaining chapters, which look at material design, maps,
location-based services, background applications, and more advanced topics, such as hardware
interaction and networking.

WHAT YOU NEED TO USE THIS BOOK

To use the code samples in this book, you will need to create an Android development environment
by downloading Android Studio and the Android SDK. It’s also possible to use other IDEs, or even
to build your apps from the command-line. We’ll assume, however, you’re using Android Studio.

Android development is supported on Windows, macOS, and Linux, with Android Studio and the
SDK available from the Android website.

You do not need an Android device to use this book or develop Android applications—though it can
be useful, particularly when testing.

NOTE Chapter 2 outlines these requirements in more detail and describes where
to download and how to install each component.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

NOTE Notes, tips, hints, tricks, and asides to the current discussion are offset
and placed in italics like this.

WARNING Boxes like this one hold important, not-to-be forgotten information
that is directly relevant to the surrounding text.

As for styles in the text:

 ➤ We show file names, URLs, and code within the text like so: persistence.properties.

 ➤ To help readability, class names in text are often represented using a regular font but capital-
ized like so: Content Provider.

xxxv

INTRODUCTION

 ➤ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to indicate changes or additions from a similar previous
code snippet.

 ➤ In some code samples, you’ll see lines marked as follows:

[... Existing code ...]

or
[... Implement something here ...]

These represent instructions to replace the entire line (including the square brackets) with
actual code, either from a previous code snippet (in the former case) or with your own
implementation (in the latter).

 ➤ To keep the code samples reasonably concise, we have not always included every pack-
age definition or import statement required in the code snippets. The downloadable code
samples described below include all the required import statements. Additionally, if you are
developing using Android Studio, you can enable auto-import or use the keyboard shortcut
Ctrl+Space (Cmd+Space) to add the required import statements.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code files that accompany the book. All the source code used in this book
is available for download at www.wrox.com. When at the site, simply locate the book’s title (use the
Search box or one of the title lists) and click the Download Code link on the book’s detail page to
obtain all the source code for the book.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete

xxxvi

INTRODUCTION

book list, including links to each book’s errata, is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the informa-
tion and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent
editions of the book.

PROFESSIONAL

Android®

Fourth Edition

Hello, Android
WHAT’S IN THIS CHAPTER?

 ➤ A background of mobile application development

 ➤ What is Android?

 ➤ Which devices Android runs on

 ➤ Why you should develop for mobile and Android

 ➤ An introduction to the Android SDK and development framework

ANDROID APPLICATION DEVELOPMENT

Whether you’re an experienced mobile engineer, a desktop or web developer, or a complete
programming novice, Android represents an exciting opportunity to write applications for an
audience of over two billion Android device users.

You’re probably already familiar with Android, the most common software powering mobile
phones. If not, and you purchased this book in the hope that Android development would help
you create an unstoppable army of emotionless robot warriors on a relentless quest to cleanse
the earth of the scourge of humanity, you should reconsider this book purchase (and your life
choices.)

When announcing Android at its launch in 2007, Andy Rubin described it as follows:

The first truly open and comprehensive platform for mobile devices. It
includes an operating system, user-interface and applications—all of the

1

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

2 ❘ CHAPTER 1 Hello, Android

software to run a mobile phone but without the proprietary obstacles that have
hindered mobile innovation.

—Where’s My Gphone?

(http://googleblog.blogspot.com/2007/11/wheres-my-gphone.html)

Since then, Android has expanded beyond mobile phones to provide a development platform for an
increasingly wide range of hardware, including tablets, televisions, watches, cars, and Internet-of-
Things (IoT) devices.

Android is an open source software stack that includes an operating system, middleware, and key
applications for mobile and embedded devices.

Critically, for us as developers, it also includes a rich set of API libraries that make it possible to
write applications that can shape the look, feel, and function of the Android devices on which they
run.

In Android, system, bundled, and all third-party applications are written with the same APIs and
executed on the same run time. These APIs feature hardware access, video recording, location-based
services, support for background services, maps, notifications, sensors, relational databases, inter-
application communication, Bluetooth, NFC, and 2D and 3D graphics.

This book describes how to use these APIs to create your own Android applications. In this chapter
you learn some guidelines for mobile and embedded hardware development, and are introduced to
some of the platform features available to Android developers.

Android has powerful APIs, a huge and diverse ecosystem of users, excellent documentation, a
thriving developer community, and has no required costs for development or distribution. As the
Android device ecosystem continues to grow, you have the opportunity to create innovative applica-
tions for users, no matter what your development experience.

A LITTLE BACKGROUND

In the days before Instagram, Snapchat, and Pokémon Go, when Google was still a twinkle in its
founders’ eyes and dinosaurs roamed the earth, mobile phones were just that—portable phones
small enough to fit inside a briefcase, featuring batteries that could last up to several hours. They
did, however, offer the freedom to make calls without being physically connected to a landline.

In the 10 years since the first Android device was launched, smart phones have become ubiquitous
and indispensable. Hardware advancements have made devices more powerful, featuring bigger,
brighter screens and featuring advanced hardware including accelerometers, fingerprint scanners,
and ultra-high-resolution cameras.

These same advances have more recently resulted in a proliferation of additional form factors for
Android devices, including a large variety of smart-phones, tablets, watches, and televisions.

These hardware innovations offer fertile ground for software development, providing many oppor-
tunities to create innovative new applications.

The Android Ecosystem ❘ 3

The Not-So-Distant Past
In the early days of native phone application development, developers, generally coding in low-level
C or C++, needed to understand the specific hardware they were coding for, typically a single device
or possibly a range of devices from a single manufacturer. The complexity inherent in this approach
meant the applications written for these devices often lagged behind their hardware counterparts.
As hardware technology and mobile Internet access have advanced, this closed approach has become
outmoded.

The next significant advancement in mobile phone application development was the introduction
of Java-hosted MIDlets. MIDlets were executed on a Java virtual machine (JVM), a process that
abstracted the underlying hardware and let developers create applications that ran on many devices
that supported the Java run time.

Unfortunately, this convenience came at the price of more heavily restricted access to the device
hardware. Similarly, it was considered normal for third-party applications to receive different hard-
ware access and execution rights from those given to native applications written by the phone manu-
facturers, with MIDlets often receiving few of either.

The introduction of Java MIDlets expanded developers’ audiences, but the lack of low-level hard-
ware access and sandboxed execution meant that most mobile applications were regular desktop
programs or websites designed to render on a smaller screen, and didn’t take advantage of the inher-
ent mobility of the handheld platform.

Living in the Future
At its introduction, Android was part of a new wave of modern mobile operating systems designed
specifically to support application development on increasingly powerful mobile hardware.

Android offers an open development platform built on an open source Linux kernel. Hardware
access is available to all applications through a series of API libraries, and application interaction,
while carefully controlled, is fully supported.

In Android, all applications have equal standing. Third-party and native Android applications are
written with the same APIs and are executed on the same run time. Users can replace most system
application with a third-party developer’s alternative; indeed, even the dialer and home screens can
be replaced.

THE ANDROID ECOSYSTEM

The Android ecosystem is made up of a combination of three components:

 ➤ A free, open source operating system for embedded devices

 ➤ An open source development platform for creating applications

 ➤ Devices that run the Android operating system (and the applications created for it)

4 ❘ CHAPTER 1 Hello, Android

More specifically, Android is made up of several necessary and dependent parts, including the
following:

 ➤ A Compatibility Definition Document (CDD) and Compatibility Test Suite (CTS) that
describe the capabilities required for a device to support the Android software stack.

 ➤ A Linux operating system kernel that provides a low-level interface with the hardware,
memory management, and process control, all optimized for mobile and embedded devices.

 ➤ Open source libraries for application development, including SQLite, WebKit, OpenGL, and
a media manager.

 ➤ A run time used to execute and host Android applications, including the Android Run Time
(ART) and the core libraries that provide Android-specific functionality. The run time is
designed to be small and efficient for use on embedded devices.

 ➤ An application framework that agnostically exposes system services to the application layer,
including the Window Manager and Location Manager, databases, telephony, and sensors.

 ➤ A user interface framework used to host and launch applications.

 ➤ A set of core preinstalled applications.

 ➤ A software development kit (SDK) used to create applications, including the related tools,
IDE, sample code, and documentation.

What really makes Android compelling is its open philosophy, which ensures that you can fix any
deficiencies in user interface or native application design by writing an extension or replacement.
Android provides you, as a developer, with the opportunity to create applications designed to look,
feel, and function exactly as you imagine them.

With more than 2 billion monthly active users of devices running the Android operating system,
installing over 82 billion apps and games in from Google Play in 2016 alone, the Android eco-
system represents an unparalleled chance to create apps that can affect and improve billions of
people’s lives.

PRE-INSTALLED ANDROID APPLICATIONS

Android devices typically come with a suite of preinstalled applications that users expect. On smart
phones these typically include:

 ➤ A phone dialer

 ➤ An SMS management application

 ➤ A web browser

 ➤ An e-mail client

 ➤ A calendar

 ➤ A contacts list

Android SDK Features ❘ 5

 ➤ A music player and picture gallery

 ➤ A camera and video recording application

 ➤ A calculator

 ➤ A home screen

 ➤ An alarm clock

In many cases Android devices also ship with the following proprietary Google mobile applications:

 ➤ The Google Play Store for downloading third-party Android applications

 ➤ The Google Maps application, including StreetView, driving directions, and turn-by-turn
navigation, satellite views, and traffic conditions

 ➤ The Gmail email client

 ➤ The YouTube video player

 ➤ The Google Chrome browser

 ➤ The Google home screen and Google Assistant

The data stored and used by many of these native applications—such as contact details—are also
available to third-party applications.

The exact makeup of the applications available on new Android devices is likely to vary based on
the hardware manufacturer, the carrier or distributor, and the type of device.

The open source nature of Android means that carriers and OEMs can customize the user interface
and the applications bundled with each Android device.

It’s important to note that for compatible devices, the underlying platform and SDK remains consis-
tent across OEM and carrier variations. The look and feel of the user interface may vary, but your
applications will function in the same way across all compatible Android devices.

ANDROID SDK FEATURES

For us developers, the true appeal of Android lies in its APIs.

As an application-neutral platform, Android gives you the opportunity to create applications that
are as much a part of the phone as anything provided out-of-the-box. The following list highlights
some of the most noteworthy Android features:

 ➤ Transparent access to telephony and Internet resources through GSM, EDGE, 3G, 4G, LTE,
and Wi-Fi network support, enabling your app to send and retrieve data across mobile and
Wi-Fi networks

 ➤ Comprehensive APIs for location-based services such as GPS and network-based location
detection

 ➤ Full support for integrating maps within the user interface

6 ❘ CHAPTER 1 Hello, Android

 ➤ Full multimedia hardware control, including playback and recording with the camera and
microphone

 ➤ Media libraries for playing and recording a variety of audio/video or still-image formats

 ➤ APIs for using sensor hardware, including accelerometers, compasses, barometers, and finger-
print sensors

 ➤ Libraries for using Wi-Fi, Bluetooth, and NFC hardware

 ➤ Shared data stores and APIs for contacts, calendar, and multi-media

 ➤ Background services and an advanced notification system

 ➤ An integrated web browser

 ➤ Mobile-optimized, hardware-accelerated graphics, including a path-based 2D graphics library
and support for 3D graphics using OpenGL ES 2.0

 ➤ Localization through a dynamic resource framework

WHAT DOES ANDROID RUN ON?

The first Android mobile handset, the T-Mobile G1, was released in the United States in October
2008. By the end of 2017 there are more than 2 billion monthly active Android devices globally,
making it the most common smart phone operating system in use world-wide.

Rather than being a mobile OS created for a single hardware implementation, Android is designed
to support a large variety of hardware platforms, from smart phones to tablets, televisions, watches,
and IoT devices.

With no licensing fees or proprietary software, the cost to handset manufacturers for providing
Android devices is comparatively low, which, combined with a massive ecosystem of powerful
applications, has encouraged device manufacturers to produce increasingly diverse and tailored
hardware.

As a result, hundreds of manufacturers, including Samsung, LG, HTC, and Motorola, are creating
Android devices. These devices are distributed to users via hundreds of carriers world-wide.

WHY DEVELOP FOR MOBILE?

Smart phones have become so advanced and personal to us that for many people they’ve become an
extension of themselves. Studies have shown that many mobile phone users become anxious if they
misplace their device, lose connectivity, or their battery runs out.

The ubiquity of mobile phones, and our attachment to them, makes them a fundamentally different
platform for development from PCs. With a microphone, camera, touchscreen, location detection,
and environmental sensors, a phone can effectively become an extra-sensory perception device.

Smart phone ownership easily surpasses computer ownership in many countries, with more than 3
billion mobile phone users worldwide. 2009 marked the year that more people accessed the Internet
for the first time from a mobile phone rather than a PC.

Introducing the Development Framework ❘ 7

The increasing popularity of smart phones, combined with the increasing availability of high-speed
mobile data and Wi-Fi hotspots, has created a huge opportunity for advanced mobile applications.

Smartphone applications have changed the way people use their phones. This gives you, the applica-
tion developer, a unique opportunity to create dynamic, compelling new applications that become a
vital part of people’s lives.

WHY DEVELOP FOR ANDROID?

In addition to providing access to the largest ecosystem of smart phone users, Android represents a
dynamic framework for app development based on the reality of modern mobile devices designed by
developers, for developers.

With a simple, powerful, and open SDK, no licensing fees, excellent documentation, a diverse
range of devices and form-factors, and a thriving developer community, Android represents an
opportunity to create software that can change people’s lives.

The barrier to entry for new Android developers is minimal:

 ➤ No certification is required to become an Android developer.

 ➤ The Google Play Store provides free, up-front purchase, in-app billing, and subscription
options for distribution and monetization of your applications.

 ➤ There is no approval process for application distribution.

 ➤ Developers have total control over their brands.

From a commercial perspective, Android represents the most common smart phone operating sys-
tem, and provides access to over 2 billion monthly active Android devices globally, offering unparal-
leled reach to make your applications available to users around the world.

INTRODUCING THE DEVELOPMENT FRAMEWORK

Android applications normally are written using the Java or Kotlin programming languages, and are
executed by means of the Android Run Time (ART).

NOTE Historically, Android apps were written primarily using Java language
syntax. More recently, Android Studio 3.0 introduced full support for Kotlin as
an official first class language for application development. Kotlin is a JVM lan-
guage, which is interoperable with existing Android languages and the Android
Run Time, allowing you to use both Java and Kotlin syntax within the same
applications.

Each Android application runs in a separate process, relinquishing all responsibility for memory and
process management to the Android Run Time, which stops and kills processes as necessary to man-
age resources.

8 ❘ CHAPTER 1 Hello, Android

ART sits on top of a Linux kernel that handles low-level hardware interaction, including drivers and
memory management, while a set of APIs provides access to all the underlying services, features,
and hardware.

What Comes in the Box
The Android SDK includes everything you need to start developing, testing, and debugging Android
applications:

 ➤ The Android API Libraries—The core of the SDK is the Android API libraries that provide
developer access to the Android stack. These are the same libraries that Google uses to create
native Android applications.

 ➤ Development tools—The SDK includes the Android Studio IDE and several other devel-
opment tools that let you compile and debug your applications to turn Android source
code into executable applications. You learn more about the developer tools in Chapter 2,
“Getting Started.”

 ➤ The Android Virtual Device Manager and Emulator—The Android Emulator is a fully inter-
active mobile device emulator featuring several alternative skins. The Emulator runs within
an Android Virtual Device (AVD) that simulates a device hardware configuration. Using the
Emulator you can see how your applications will look and behave on a real Android device.
All Android applications run within ART, so the software emulator is an excellent develop-
ment environment—in fact, because it’s hardware-neutral, it provides a better independent
test environment than any single hardware implementation.

 ➤ Full documentation—The SDK includes extensive code-level reference information detailing
exactly what’s included in each package and class and how to use them. In addition to the
code documentation, Android’s reference documentation and developer guides explain how
to get started, give detailed explanations of the fundamentals behind Android development,
highlight best practices, and provide deep-dives into framework topics.

 ➤ Sample code—The Android SDK includes a selection of sample applications that demonstrate
some of the possibilities available with Android, as well as simple programs that highlight
how to use individual API features.

 ➤ Online support—Android has vibrant developer communities on most online social
networks, Slack, and many developer forums. Stack Overflow (www.stackoverflow.com/
questions/tagged/android) is a hugely popular destination for Android questions and a
great place to find answers to beginner questions. Many Android engineers from Google are
active on Stack Overflow and Twitter.

Understanding the Android Software Stack
The Android software stack is a Linux kernel and a collection of C/C++ libraries exposed through
an application framework that provides services for, and management of, the run time and applica-
tions, as shown in Figure 1-1.

Introducing the Development Framework ❘ 9

Application Layer

Your Apps

Support/Compatibility/Proprietary Libraries

Android Support Library

Application Framework

Views

Native (C/C++) Libraries Android Runtime

Android Runtime
(ART)

Android Core
Libraries

Media

Media

Hardware Abstraction Layer (HAL)

Audio

Linux Kernal

Hardware
Drivers

Process
Management

Memory
Management

Power Management

Binder (IPC) Security

Peripherals

Automotive

Sensors

Bluetooth

Storage

Camera

TV

DRM

SQLite

Iibc
Graphics

(OpenGL, ...)

SSL & Webkit ...

Content
Providers

Telephony
Manager

Window
Manager

Package
Manager

Location
Manager

Activity
Manager

Fragment
Manager

Resource
Manager

Notification
Manager

Google Play Services Firebase

Other 3rd Party Apps System/Bundled Apps

FIGURE 1-1

10 ❘ CHAPTER 1 Hello, Android

 ➤ Linux kernel—Core services (including hardware drivers, process and memory management,
security, network, and power management) are handled by a Linux kernel (the specific kernel
version depends on the Android platform version and hardware platform).

 ➤ Hardware Application Layer (HAL)—The HAL provides an abstraction layer between the
underlying physical device hardware and the remainder of the stack.

 ➤ Libraries—Running on top of the kernel and HAL, Android includes various C/C++ core
libraries such as libc and SSL, as well as the following:

 ➤ A media library for playback of audio and video media

 ➤ A surface manager to provide display management

 ➤ Graphics libraries that include SGL and OpenGL for 2D and 3D graphics

 ➤ SQLite for native database support

 ➤ SSL and WebKit for integrated web browser and Internet security

 ➤ Android Run Time—The run time is what makes an Android phone an Android phone
rather than a mobile Linux implementation. Including the core libraries, the Android Run
Time is the engine that powers your applications and forms the basis for the application
framework.

 ➤ Core libraries—Although most Android application development is written using the Java or
Kotlin JVM languages, ART is not a Java VM. The core Android libraries provide most of
the functionality available in the core Java libraries, as well as the Android-specific libraries.

 ➤ Application framework—The application framework provides the classes used to create
Android applications. It also provides a generic abstraction for hardware access and manages
the user interface and application resources.

 ➤ Application layer—All applications, both native and third-party, are built on the application
layer by means of the same API libraries. The application layer runs within the Android Run
Time, using the classes and services made available from the application framework.

The Android Run Time
One of the key elements of Android is the Android Run Time (ART). Rather than using a traditional
Java VM such as Java ME, Android uses its own custom run time designed to ensure that multiple
instances run efficiently on a single device.

ART uses the device’s underlying Linux kernel to handle low-level functionality, including security,
threading, and process and memory management. It’s also possible to write C/C++ applications that
run closer to the underlying Linux OS. Although you can do this, in most cases there’s no reason
you should need to.

If the speed and efficiency of C/C++ is required for your application, Android provides a native
development kit (NDK). The NDK is designed to enable you to create C++ libraries using the libc
and libm libraries, along with native access to OpenGL.

Introducing the Development Framework ❘ 11

NOTE This book focuses exclusively on writing applications that run within
ART using the SDK; NDK development is not within the scope of this book. If
your inclinations run toward NDK development, exploring the Linux kernel
and C/C++ underbelly of Android, modifying ART, or otherwise tinkering with
things under the hood, check out the Android Open Source Project at
source.android.com.

All Android hardware and system service access is managed using ART as a middle tier. By using
this run time to host application execution, developers have an abstraction layer that ensures they
should never have to worry about a particular hardware implementation.

ART executes Dalvik executable files (.dex)—named after an earlier virtual machine implementation
named “Dalvik”—a format optimized to ensure minimal memory footprint. You create .dex executa-
bles by transforming Java or Kotlin language compiled classes using the tools supplied within the SDK.

NOTE You learn more about how to create Dalvik executables in Chapter 2.

Android Application Architecture
Android’s architecture encourages component reuse, enabling you to publish and share Activities,
Services, and data with other applications, with access managed by the security restrictions you define.

The same mechanism that enables you to produce a replacement contact manager or phone dialer
can let you expose your application’s components in order to let other developers build on them by
creating new UI front ends or functionality extensions.

The following application services are the architectural cornerstones of all Android applications,
providing the framework you’ll be using for your own software:

 ➤ Activity Manager and Fragment Manager—Activities and Fragments are used to define the
user interface of your apps. The Activity and Fragment Managers control the life cycle of
your Activities and Fragments, respectively, including management of the Activity stack
(described in Chapters 3 and 5).

 ➤ Views—Used to construct the user interfaces controls within your Activities and Fragments,
as described in Chapter 5.

 ➤ Notification Manager—Provides a consistent and nonintrusive mechanism for signaling your
users, as described in Chapter 11.

 ➤ Content Providers—Lets your applications share data, as described in Chapter 10.

 ➤ Resource Manager—Enables non-code resources, such as strings and graphics, to be external-
ized, as shown in Chapter 4.

 ➤ Intents—Provides a mechanism for transferring data between applications and their compo-
nents, as described in Chapter 6.

12 ❘ CHAPTER 1 Hello, Android

Android Libraries
Android offers a number of APIs for developing your applications. Rather than list them all here,
check out the documentation at developer.android.com/reference/packages.html, which gives
a complete list of packages included in the Android SDK.

Android is intended to target a wide range of mobile hardware, so be aware that the suitability and
implementation of some of the advanced or optional APIs may vary depending on the host device.

Getting Started
WHAT’S IN THIS CHAPTER?

 ➤ Installing the Android SDK and Android Studio development
environment

 ➤ Creating and debugging your projects

 ➤ Writing Android apps using Kotlin

 ➤ Using the Android Support Library

 ➤ Understanding mobile design considerations

 ➤ The importance of optimizing for speed and efficiency

 ➤ Designing for small screens and mobile data connections

 ➤ Introducing Android Virtual Devices and the Emulator

 ➤ Tips for using Android Studio and improving build performance

 ➤ Understanding app performance using the Android Profiler

 ➤ Introducing Gradle builds and app testing

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The downloads for this chapter are found at www.wrox.com. The code for this chapter is
divided into the following major examples:

 ➤ Snippets_ch2.zip

 ➤ HelloWorld.zip

2

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

14 ❘ CHAPTER 2 GettinG Started

GETTING STARTED DEVELOPING ANDROID APPS

All you need to start writing your own Android applications is a copy of the Android SDK and a
Java Development Kit (JDK). Unless you’re a masochist, you’ll also want to use an integrated
development environment (IDE)—we strongly recommend using Android Studio, Google’s officially
supported IDE for Android app development that includes an integrated JDK and manages the
installation of the Android SDK and associated tools.

Android Studio, the Android SDK, and a JDK are each available for Windows, MacOS, and
Linux, so you can explore Android from the comfort of whatever operating system (OS) you favor.
Android applications themselves are run within the ART managed runtime, optimized for resource-
constrained mobile devices, so there’s no advantage to developing on any particular OS.

Traditionally, Android code is written using Java language syntax—until 2017 Android app
development required the use of Java. Android Studio 3.0 added Kotlin as a fully supported lan-
guage alternative, allowing you to write Android app in part, or entirely, using Kotlin.

Kotlin is a statically typed language that is fully interoperable with Java source files and the Android
runtime. It’s considered expressive and concise and introduces improvements including reduced
language verbosity, null-pointer safety, extension functions, and infix notation.

NOTE At the time of writing this book Java was still the default for new proj-
ects, and most existing Android projects were written predominantly using Java
syntax. Accordingly, we’ve used Java syntax for the code snippets and sample
projects featured within this book.

Given the advantages of Kotlin, we expect its use to increase quickly, and
highly recommend you familiarize yourself with the Kotlin language for writing
Android apps. More details on using Kotlin for your Android Apps are avail-
able in the aptly named section, “Getting Started Writing Android Apps Using
Kotlin.”

The core Android libraries include most of the features from the core Java APIs in addition to the
rich suite of Android-specific APIs. You can access all these libraries using either Java or Kotlin
when writing your apps.

Although it’s possible to download and install the Android SDK and JDK separately, installing and
using Android Studio simplifies the process of getting started. Android Studio includes an integrated
OpenJDK and manages the installation of the Android SDK components and tools using the inte-
grated Android SDK Manager.

The SDK Manager is used to download Android framework SDK libraries and optional add-ons
(including the Google APIs and support libraries). It also includes the platform and development
tools you will use to write and debug your applications, such as the Android Emulator to run your
projects and the Android Profiler to profile CPU, memory, and network use. All these tools are inte-
grated directly into Android Studio for your convenience.

Developing for Android ❘ 15

By the end of this chapter, you’ll have installed Android Studio, the Android SDK and its add-ons,
and the development tools. You’ll have set up your development environment, built your first Hello
World application in Java and Kotlin, and run and debugged it using the DDMS and Emulator run-
ning on an Android Virtual Device (AVD).

If you’ve developed for mobile devices before, you already know that their small form factor, limited
battery life, and restricted processing power and memory create some unique design challenges.
Even if you’re new to the game, it’s obvious that some of the things you can take for granted on the
desktop, web, or server—such as always-on Internet and power—aren’t applicable when writing
apps for mobile or embedded devices.

The user environment brings its own challenges in addition to those introduced by hardware limita-
tions. Many Android devices are used on the move and are often a distraction rather than the focus
of attention, so your application needs to be fast, responsive, and easy to learn. Even if your appli-
cation is designed for devices more conducive to an immersive experience, such as tablets or televi-
sions, the same design principles can be critical for delivering a high-quality user experience.

DEVELOPING FOR ANDROID

The Android SDK includes all the tools and APIs you need to write compelling and powerful mobile
applications. The biggest challenge with Android, as with any new development toolkit, is learning
the features and limitations of those APIs.

Since Android Studio 3.0, it’s possible to write Android apps using Java, Kotlin, or a combination
of both languages. If you have experience in Java or Kotlin development, you’ll find that the syntax
and grammar you’ve been using will translate directly into Android. If you don’t have experience
with Java, but have used other object-oriented languages (such as C#), you should find the transition
to either Java or Kotlin syntax straightforward.

The power of Android comes from its APIs, not the language being used, so being unfamiliar with
Java or Kotlin syntax and/or Java-specific classes won’t present a meaningful disadvantage.

There’s no cost to download or use the SDK, and Google doesn’t require your application to pass a
review to distribute your finished apps on the Google Play Store. Although Google Play requires a
small one-time fee to publish applications, if you choose not to distribute via the Google Play Store,
you can do so at no cost.

What You Need to Begin
Because Android applications run within the Android Run Time, you can write them on any plat-
form that supports the developer tools. Throughout this book we’ll be using Android Studio, which
currently supports:

 ➤ Microsoft Windows 7/8/10 (32- or 64-bit)

 ➤ Mac OS X 10.8.5 or later

 ➤ GNOME or KDE Linux desktop (including GNU C Library 2.11 or later)

16 ❘ CHAPTER 2 GettinG Started

On all platforms, Android Studio requires at least 2 GB of RAM (with 8 GB strongly recom-
mended), and 1280 x 800 minimum screen resolution.

NOTE Android development requires Java Development Kit (JDK) 8 to be
installed. Android Studio has integrated the latest version of the OpenJDK since
Android Studio 2.2; if you don’t plan to use Android Studio, you’ll need to
download and install a compatible JDK.

Developing with Android Studio
The examples and step-by-step instructions in this book are targeted at developers using Android
Studio. Android Studio is Android’s official IDE, built on top of IntelliJ IDEA, a popular IDE for
Java development that also supports Android development using Kotlin.

Android Studio is purpose-built by the Android team at Google to accelerate your development and
help you build high-quality apps. It supports all Android form factors including phones, tablets, TV,
Wear, and Auto—and offers tools tailored specifically for Android developers, including rich code
editing, debugging, testing, and profiling.

Some of Android Studio’s features include:

 ➤ Intelligent code editing with advanced code completion, refactoring, and code analysis.

 ➤ Version control integration including GitHub and Subversion.

 ➤ Robust static analysis framework with over 280 different Lint checks along with quick fixes.

 ➤ Extensive testing tools and frameworks including JUnit 4 and functional UI tests. You can
run your tests on a device, an emulator, a continuous integration environment, or in the
Firebase Test Lab.

In addition to these IDE features, using Android Studio for your Android development offers some
significant advantages through the tight integration of many of the Android build and debug tools,
as well as ensured support for the latest Android platform releases.

Android Studio includes the following features:

 ➤ The Android Project Wizard, which simplifies creating new projects and includes several
application and Activity templates

 ➤ Editors to help create, edit, and validate your XML resources

 ➤ Automated building of Android projects, conversion to Android executables (.dex), packag-
ing to package files (.apk), and installation of packages onto Android Run Times (running
both within the Emulator or on physical devices)

 ➤ The Android Virtual Device manager, which lets you create and manage virtual devices to
host Emulators that run a specific release of the Android OS and with set hardware and
memory constraints

Developing for Android ❘ 17

 ➤ The Android Emulator, including the ability to control the Emulator’s appearance and net-
work connection settings, and the ability to simulate incoming calls, SMS messages, and sen-
sor values

 ➤ The Android Profiler, which lets you monitor CPU, memory, and network performance

 ➤ Access to the device or Emulator’s filesystem, enabling you to navigate the folder tree and
transfer files

 ➤ Runtime debugging, which enables you to set breakpoints and view call stacks

 ➤ All Android logging and console outputs

NOTE Android Studio replaces the Android Development Tools (ADT) plug-
in for Eclipse, which was deprecated in 2014 and sunsetted after the release of
Android Studio 2.2 in 2016. Though it remains possible to develop for Android
using Eclipse or other IDEs, the use of Android Studio is highly recommended.

Installing Android Studio and the Android SDK
You can download the latest version of Android Studio for your chosen development platform from
the Android Studio homepage at developer.android.com/studio.

NOTE Unless otherwise noted, the version of Android Studio used for writing
this book was Android Studio 3.0.1.

When you have initiated the download for your platform, you will be shown detailed installation
instructions that can be summarized as follows:

 ➤ Windows—Run the downloaded installation executable. The Windows installer download
includes OpenJDK and the Android SDK.

 ➤ MacOS—Open the downloaded Android Studio DMG file, and then drag Android Studio into
your “Applications” folder. Double-click to open Android Studio, and the Setup Wizard will
guide you through the rest of the setup, which includes downloading the Android SDK.

 ➤ Linux—Unzip the downloaded .zip file to an appropriate location for your applications,
such as within /usr/local/ for your user profile, or /opt/ for shared users. Open a termi-
nal, navigate to the android-studio/bin/ directory, and execute studio.sh. The Setup
Wizard will then guide you through the rest of the setup, which includes downloading the
Android SDK.

Since Android Studio 2.2, OpenJDK has been integrated with Android Studio, ensuring you don’t
need to download and install the JDK separately.

18 ❘ CHAPTER 2 GettinG Started

Once the installation wizard is completed, the latest Android platform SDK; SDK, platform, and
build tools; and support library will have been downloaded and installed.

You can download older platform versions, as well as additional SDK components using the SDK
Manager as described in the following section.

NOTE As an open source platform, the Android SDK source is also available for
you to download and compile from source.android.com.

Installing Additional Android SDK Components Using the SDK Manager
The SDK Manager (Figure 2-1) is available through a shortcut on the toolbar, the Android SDK
settings option, or from within the Tools ➪ Android ➪ SDK Manager menu item. It offers tabs for
SDK Platforms, SDK Tools, and SDK Update Sites.

FIGURE 2-1

The SDK Platforms tab shows which platform SDKs you have downloaded. By default, this will
include the newest Android platform SDK—in this case, Android 8.1 Oreo (API Level 27).

The SDK Tools tab shows which tools and support libraries you have installed, including the SDK,
platform, and build tools—as well as the support repository, which is required to use the Android
Support Library (described later in this chapter.)

By selecting the Show Package Contents Details checkbox, you can find additional details on which
versions each tool have been installed.

Developing for Android ❘ 19

Downloading and Installing Updates to Android Studio, the Android SDK, and
Tools

Android Studio receives frequent updates that improve stability and add new features. You will
be prompted with an alert tip when a new version of Android Studio is available for download, as
shown in Figure 2-2.

FIGURE 2-2

You will similarly be prompted when new revisions of the Android SDK, developer tools, support
library, Kotlin, and other SDK packages become available.

You can force a check for a new version of Android Studio by opening the Settings dialog box and
navigating to Settings ➪ Updates and clicking the “Check Now” button, as shown in Figure 2-3, or
by selecting the Help ➪ Check For Updates menu item.

FIGURE 2-3

20 ❘ CHAPTER 2 GettinG Started

NOTE In addition to the official “stable” release available from the Android
Developer site, the Android Studio team also makes preview releases of the next
version available to developers who like to live on the edge. If you too like to live
dangerously, you can change the channel to which your installation of Android
Studio is subscribed by selecting Canary or Beta from the drop-down menu in
the Updates screen shown in Figure 2-3.

Canary represents the bleeding edge, released approximately weekly. These
are early previews released in order to obtain real-world feedback during
development.

Beta represents release candidates based on stable Canary builds, released and
updated to obtain feedback prior to the stable release.

You can learn more about each release channel, including details on how to
install parallel installations of Android Studio, at developer.android.com/
studio/preview.

Creating Your First Android Application
With Android Studio installed and the SDK downloaded you’re ready to start developing apps
for Android. You’ll begin by creating a new Android project, configuring the Android Emulator,
and setting up your Android Studio run and debug configurations, as described in the following
sections.

Creating a New Android Project
To create a new Android project using Android Studio’s New Project Wizard, do the following:

 1. The first time you start Android Studio you are presented with the welcome screen shown
in Figure 2-4. You can return to this screen by selecting the File ➪ Close menu item to close
any open projects. From the welcome screen, select the “Start a new Android Studio proj-
ect” option. Alternatively, within Android Studio select the File ➪ New ➪ New Project...
menu item.

 2. In the wizard that appears, enter the details for your new project. On the first page
(Figure 2-5) enter an Application Name and your Company Domain. These will be combined
to create a unique Package Name as displayed on the wizard.

Each Android application must have a unique package name, so it’s good practice to use a
domain you own to minimize the chance of a collision. That said, owning the domain you
use isn’t required or enforced, so you can use almost any domain you want provided the
resulting package name is unique.

Finally, select the directory location to which your project will be saved.

Developing for Android ❘ 21

FIGURE 2-4

FIGURE 2-5

22 ❘ CHAPTER 2 GettinG Started

 3. The next page (Figure 2-6) lets you select the form factors you wish to support within this
project, as well as the minimum Android platform version on which your application will
run. To get started, we’ll target just phones and tablets and use the default minimum SDK.

FIGURE 2-6

NOTE Selecting the minimum SDK version allows you to choose the level of
backward compatibility you’re willing to support. The lower this SDK version,
the more devices will be able to run your app, but this will also make it more
challenging to support newer platform features.

Selecting each minimum SDK from the drop down will display the proportion of
active Android devices running that platform version.

At the time of this writing, more than 90% of Android devices were running at
least Android 4.4 KitKat (API Level 19), while the latest release was Android
8.1 (API Level 27).

 4. The next page (Figure 2-7) lets you select a template for your app’s main Activity (user inter-
face screen). Select the Empty Activity.

Developing for Android ❘ 23

FIGURE 2-7

 5. The final page (Figure 2-8) allows you to specify the class name for your initial Activity, and
specify the name for the XML file that will be used to provide the Activity’s UI layout. In the
case of the empty Activity template, you can also choose if you wish the wizard to generate
a layout file at all. You also have the option to make your Activity backward compatible by
selecting the Backwards Compatibility check box, which is highly recommended. Marking
this box checked will result in the new Activity inheriting from the Android Support
Library’s AppCompatActivity class rather than the framework’s Activity class, which
will allow your Activity to take advantage of new API features in a way that’s backward
compatible.

 6. When you’ve entered these details, click Finish.

Android Studio will now create a new project that includes a class that extends
AppCompatActivity. Rather than being completely empty, the default template implements “Hello
World.”

Before modifying the project, take this opportunity to create an Android Virtual Device, enable
debugging on a physical device, and run our new Hello World project.

24 ❘ CHAPTER 2 GettinG Started

FIGURE 2-8

Creating an Android Virtual Device
Android Virtual Devices (AVDs) are used to simulate the hardware and software configurations of
physical Android devices. The Android Emulator runs within AVDs, allowing you test your applica-
tions on a variety of different hardware and software platforms.

There are no prebuilt AVDs included in the Android Studio or Android SDK downloads so, if you
don’t have a physical device, you’ll need to create at least one before you can run and debug your
applications:

 1. Select Tools ➪ Android ➪ AVD Manager (or select the AVD Manager icon on the Android
Studio toolbar).

 2. Click the “Create Virtual Device…” button.

The resulting Virtual Device Configuration dialog box (Figure 2-9) allows you to select a
device definition from a list of Pixel and Nexus hardware and standard device configura-
tions—each with its own physical size, resolution, and pixel density.

 3. You’ll then be asked to select a device system image corresponding to a particular Android
platform release, as shown in Figure 2-10. If you have not already done so, you will need to
download the desired system image before it can be used.

Developing for Android ❘ 25

FIGURE 2-9

FIGURE 2-10

26 ❘ CHAPTER 2 GettinG Started

Notice that for each platform release you can choose system images for different ABIs
(application binary interfaces)—typically x86 or ARM. Consider using a system image
using the same architecture as your host computer to maximize Emulator performance.

You can also decide if you want a system image that includes the Google APIs. These are
necessary if your app includes Google Play Services features such as maps and Location
Based Services, as described in Chapter 15.

 4. Specify a descriptive device name, and then hit Finish to create a new AVD, as shown in
Figure 2-11. Note that by clicking Show Advanced Settings you can reveal additional options
to assign your webcam to the front or rear camera, adjust the emulated network speed and
latency, and customize the number of emulated cores, system memory, and storage.

FIGURE 2-11

 5. Starting a new AVD can take some time, so start it now by clicking the green arrow in the
right-most column. This will ensure the emulator is prepared and running when you’re ready
to run your app on it.

Configuring a Physical Device for Testing and Debugging
There’s nothing quite like making software run on real hardware, so if you have an Android device,
it’s simple to run and debug your applications on it directly:

Developing for Android ❘ 27

 1. Start by enabling developer mode on your device. Open the phone’s Settings and find and
select System ➪ “About phone.” Scroll to the bottom of the resulting list until “Build num-
ber” is visible, as shown in Figure 2-12.

FIGURE 2-12

 2. Touch “Build number” seven times, until a message is displayed congratulating you on
becoming a developer. If you embarked on your journey to become an Android developer to
win a bet, you can now safely collect. Congratulations!

 3. If not, navigate back, and you’ll find a new settings category labeled “Developer options.”
Select it, and scroll until you see the option for “USB debugging,” as shown in Figure 2-13.

28 ❘ CHAPTER 2 GettinG Started

FIGURE 2-13

 4. Enable “USB debugging.”

 5. Now connect your device to your development host computer using a USB cable. Your device
will display the dialog box shown in Figure 2-14, asking if you wish to allow USB debugging
when connected to the current computer. Select OK.

Developing for Android ❘ 29

FIGURE 2-14

 6. When connected, this device will now be available as a target when launching your app for
running or debugging within Android Studio.

Running and Debugging Your Android Application
You’ve created your first project and created an Android Virtual Device (or connected a physical
device) on which to run it. Before making any changes, let’s try running and debugging the Hello
World project.

30 ❘ CHAPTER 2 GettinG Started

From the Run menu, select “Run app” (or “Debug app”). If you haven’t already selected a default,
you’ll be presented with the dialog box shown in Figure 2-15, asking you to select your deployment
target—a connected device, a running AVD, or a defined (but not yet running) AVD.

FIGURE 2-15

Running or debugging your application does the following behind the scenes:

 ➤ Compiles the current project source to bytecode, and converts that to an Android executable
(.dex)

 ➤ Packages the executable and your project’s resources and manifest into an Android package
(.apk)

 ➤ Starts the virtual device (if you’ve targeted one and it’s not already running)

 ➤ Deploys your APK to the target device and installs it

 ➤ Starts your application

If you’re debugging, the Android Studio debugger will then be attached, allowing you to set break-
points and debug your code.

If everything is working correctly, you’ll see a new Activity running on the device or in the
Emulator, as shown in Figure 2-16.

Understanding Hello World
Take a step back and have a look at the source code for your first Android application, starting with
the MainActivity.java file.

In Android, Activity is the base class for the visual, interactive screens within your application;
it is roughly equivalent to a Form in traditional desktop development (and is described in detail in
Chapter 3, “Applications and Activities and Fragments, Oh My!”).

AppCompatActivity is a variation of the Activity class supplied by the Android Support Library,
which provides backward compatibility. Using AppCompatActivity in preference to the Activity
class is considered best practice, and we’ll be doing so throughout this book. Note that by conven-
tion we still refer to classes that extend AppCompatActivity as Activities.

Developing for Android ❘ 31

FIGURE 2-16

Listing 2-1 shows the skeleton code for an Activity; note that it extends AppCompatActivity and
overrides the onCreate method.

LISTING 2-1: Hello World

package com.professionalandroid.apps.helloworld;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}

Visual components within Activities are called Views, which are similar to controls or widgets in
traditional desktop and web development. The Hello World template created by the wizard overrides

32 ❘ CHAPTER 2 GettinG Started

the onCreate method to call setContentView, which lays out the UI by inflating a layout resource,
as highlighted in bold in the following snippet:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
}

The resources for an Android project are stored in the res folder of your project hierarchy, which
includes layout, values, drawable, and mipmap subfolders. Android Studio interprets these
resources and provides design-time access to them through the R variable, as described in Chapter 4.

Listing 2-2 shows the UI layout as defined in the activity_main.xml file, created by the Android
project template and stored in the project’s res/layout folder.

LISTING 2-2: Hello World layout resource

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.professionalandroid.apps.myapplication.MainActivity">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>
</android.support.constraint.ConstraintLayout>

NOTE The specific layout created as part of the Android Project Wizard may
change over time, so your layout may look slightly different to the XML shown
here, though the resulting UI should appear very similar.

Defining your UI in XML and inflating it is the preferred way of implementing your user interfaces
(UIs), because it neatly decouples your application logic from your UI design.

To get access to your UI elements in code, you can add identifier attributes to them in the XML
definition:

<TextView
 android:id="@+id/myTextView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

Developing for Android ❘ 33

 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>

You can then use the findViewById method to return a reference to each named item at run time:

TextView myTextView = findViewById(R.id.myTextView);

Alternatively (although it’s not generally considered good practice), you can create your layout
directly in code, as shown in Listing 2-3.

LISTING 2-3: Creating layouts in code

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 RelativeLayout.LayoutParams lp;
 lp =
 new RelativeLayout.LayoutParams(LinearLayout.LayoutParams.MATCH_PARENT,
 LinearLayout.LayoutParams.MATCH_PARENT);

 RelativeLayout.LayoutParams textViewLP;
 textViewLP = new RelativeLayout.LayoutParams(
 RelativeLayout.LayoutParams.WRAP_CONTENT,
 RelativeLayout.LayoutParams.WRAP_CONTENT);

 Resources res = getResources();
 int hpad = res.getDimensionPixelSize(R.dimen.activity_horizontal_margin);
 int vpad = res.getDimensionPixelSize(R.dimen.activity_vertical_margin);

 RelativeLayout rl = new RelativeLayout(this);
 rl.setPadding(hpad, vpad, hpad, vpad);

 TextView myTextView = new TextView(this);
 myTextView.setText("Hello World!");

 rl.addView(myTextView, textViewLP);

 addContentView(rl, lp);
}

Note that all the properties available in code can also be set with attributes in the XML layout.

More generally, keeping the visual design decoupled from the application code helps keep the code
concise. With Android available on hundreds of different devices of varying screen sizes, defining
your layouts as XML resources makes it easier for you to include multiple layouts optimized for dif-
ferent screens.

You learn how to build your user interface by creating layouts and building your own custom Views
in Chapter 5, “Building User Interfaces.”

34 ❘ CHAPTER 2 GettinG Started

Opening Android Sample Projects
Android includes a number of well-documented sample projects that are an excellent source for full,
working examples of applications written for Android. When you finish setting up your develop-
ment environment, it’s worth going through some of them.

The Android sample projects are stored on GitHub, and Android Studio provides a simple mecha-
nism for cloning them:

 1. From within Android Studio, select File ➪ New ➪ Import Sample… to open the Import
Sample Wizard, as shown in Figure 2-17. You can also select “Import an Android code sam-
ple” from the Welcome to Android Studio Wizard if you have no projects currently open.

FIGURE 2-17

 2. Select the sample you wish to import and click Next.

 3. Specify an application name and location on your host machine and click Finish to download
and open the sample.

The selected sample project will be cloned from GitHub and be opened as a new Android Studio
project.

NOTE To view all of the Android code samples available for import into
Android Studio, see the Google Samples page on GitHub at github.com/
googlesamples/.

Developing for Android ❘ 35

Getting Started Writing Android Apps Using Kotlin
Until 2017, Android app development required the use of the Java language syntax. Android Studio
3.0 added Kotlin as a fully supported language alternative.

Kotlin is a statically typed language that is fully interoperable with the existing Java language syn-
tax and runtime used with Android. It’s considered expressive and concise, and introduces improve-
ments including reduced language verbosity, null-pointer safety, extension functions, and infix
notation.

Since Android Studio 3.0, Kotlin is an officially supported Android development language; however,
at the time of this book’s writing, Java was still the default for new projects—and most existing
Android projects were still written predominantly using Java syntax. It’s also very easy to convert
Java syntax into Kotlin, simply by pasting Java syntax into a Kotlin source file. As a result, we have
used Java syntax within the code snippets and sample projects featured within this book.

Given the advantages of Kotlin in terms of improved development time and code readability, we
expect the proportion of apps written primarily in Kotlin to increase quickly, and we highly recom-
mend that you familiarize yourself with the Kotlin language for writing Android apps. To assist,
each of the code snippets and sample projects are also available in Kotlin, downloadable from the
Wrox site alongside the Java syntax versions.

Your Android projects can be written from scratch in Kotlin, can include interoperable Kotlin and
Java source files, or can be converted from Java source files to Kotlin during development.

To begin a new project in Kotlin, select the File ➪ New ➪ New Project... menu item, as previously
described, but on the first page of the wizard, select the “Include Kotlin support” checkbox, as
shown in Figure 2-18.

FIGURE 2-18

36 ❘ CHAPTER 2 GettinG Started

Proceed through the wizard as described in the earlier section. When complete, take a look at the
Kotlin source code for your Activity in the MainActivity.kt file. Kotlin files are stored alongside
Java source files and can be found in the Java folder when using the Android project view:

package com.professionalandroid.apps.myapplication

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 }
}

Note that while the code is somewhat more concise, the syntactic changes at this point are mini-
mal. The package and import statements are the same, the MainActivity class still extends
AppCompatActivity, and the override of the onCreate method remains the same.

To add a new Kotlin file to your project, select Kotlin from the Source Language dropdown list
when adding a new application component from the File ➪ New menu. Alternatively, you can select
the File ➪ New ➪ Kotlin File/Class menu item to create a basic file.

Because Kotlin and Java files can coexist in the same project, it’s possible to add Kotlin source files
to a project you started without ticking the Kotlin support checkbox or to add Java source files to a
project started with Kotlin support.

It’s also possible to convert existing Java syntax source files into Kotlin. You can do this by open-
ing an existing Java source file and selecting the Code ➪ Convert Java File to Kotlin File menu item.
Alternatively, you can create a new Kotlin file and paste Java syntax source code into it. You will be
prompted to convert the pasted code into Kotlin, as shown in Figure 2-19.

FIGURE 2-19

Note that these automatic conversions may not always use idiomatic Kotlin, so the resulting code
might not use Kotlin’s best language features.

Using the Android Support Library Package
The Android Support Library package (also referred to as the compatibility library or AppCompat)
is a set of libraries you can include as part of your projects, to gain either convenience APIs that

Developing for Android ❘ 37

aren’t packaged as part of the framework (such as the View Pager), or useful APIs that are not avail-
able on all platform releases (such as Fragments).

The Support Library enables you to use framework API features that were introduced in newer
Android platform releases on devices running earlier platform versions. This helps you provide a
consistent user experience and greatly simplifies your development process by reducing the burden of
supporting older platform versions, while taking advantage of newer features.

NOTE It’s good practice to use the Support Library rather than the framework
APIs when you want to support devices running earlier platform releases, and
where the Support Library offers all the functionality you require.

Accordingly, the examples in this book will target Android 8.1 (API Level 27)
and use the support library APIs where available, in preference to the frame-
work, while highlighting specific areas where the Support Library may not be a
suitable alternative.

The Android Support Library package contains several individual libraries, each of which offers
support for a specific range of Android platform versions and features.

We will introduce new libraries as required in the following chapters. To begin with, it’s good
practice to include the v7 appcompat library in all new projects because it supports a wide range of
Android versions—back to Android 2.3 Gingerbread (API Level 9)—and provides APIs for many
recommended user interface patterns.

The application templates provided by Android Studio—including the Hello World example we cre-
ated earlier—include a dependency on the v7 appcompat library by default.

To incorporate an Android Support Library package into your project, perform the following steps:

 1. Use the SDK Manager to ensure you have downloaded the Android Support Repository.

 2. Add a dependency to your Gradle build for the desired library, either by:

 2.1 Opening your module:app build.gradle file and adding a reference to the library
name and version you wish to include, within the dependency node:

dependencies {
 [... Existing dependencies ...]
 implementation 'com.android.support:appcompat-v7:27.1.1'
}

 2.2 Or using Android Studio’s Project Structure UI, as shown in Figure 2-20. Select the File
➪ Project Structure..., menu item and then select your app module from the list on the
left before choosing the Dependencies tab. Add a new library by selecting the green
“plus” symbol on the right-side toolbar and selecting the desired library.

38 ❘ CHAPTER 2 GettinG Started

FIGURE 2-20

Notice that we’re adding a dependency to a specific version of the support library. By design, the
Android Support Library package will be updated more regularly than the Android framework
SDK. By downloading new versions of the Support Libraries, and updating your dependencies to
reference the newest releases, you can continue to incorporate bug fixes and improvements to your
app as the Support Libraries are updated.

NOTE The Support Library classes mirror the names of their framework coun-
terparts. In most cases the Support Library class is postfixed with compat (for
example, NotificationCompat); however, some earlier Support Library classes
use the same names as their framework equivalents. As a result, there’s a sig-
nificant risk that the code completion and automatic import-management tools
in Android Studio (and other IDEs) will select the wrong library—particularly
when you’re building against newer versions of the SDK.

It’s good practice to set your project build target to the minimum platform ver-
sion you plan to support, and to ensure the import statements are using the
compatibility library for classes that also exist in the target framework.

Developing for Mobile and Embedded Devices ❘ 39

DEVELOPING FOR MOBILE AND EMBEDDED DEVICES

Android does a lot to simplify mobile- or embedded-device software development, but to build high-
quality apps you need to understand the reasons behind the conventions. You have several factors to
consider when writing software for mobile and embedded devices, and when developing for Android
in particular.

NOTE In this chapter you learn some of the techniques and best practices for
writing efficient Android code. In later chapters, these best practices are some-
times compromised for clarity and brevity when new Android concepts or func-
tionality are introduced. In the best tradition of “Do as I say, not as I do,” some
examples will show the simplest (or easiest-to-understand) way of doing some-
thing, not necessarily the best way of doing it in production.

Hardware-Imposed Design Considerations
Small and portable, mobile devices offer exciting opportunities for software development. Their lim-
ited screen size and reduced memory, storage, and processor power are far less exciting, and instead
present some unique challenges.

Compared to desktop or notebook computers, mobile devices have relatively:

 ➤ Low processing power

 ➤ Limited RAM

 ➤ Limited storage capacity

 ➤ Small screens

 ➤ High costs associated with data transfers

 ➤ Intermittent connectivity, slow data transfer rates, and high latency

 ➤ Limited battery life

Each new generation of devices improves on many of these restrictions, but the device ecosystem
also caters for a wide variety of prices—which results in significant variety in hardware capabilities.
This is amplified by the huge growth in smart phone adoption in emerging markets, which are sig-
nificantly more price sensitive, and that in turn results in large numbers of new devices with lower
specification hardware.

The expansion of Android into an increasingly diverse variety of form factors—including tablets,
TVs, automotive head-units, and wearable devices further expands the range of devices on which
your application may be running.

40 ❘ CHAPTER 2 GettinG Started

In some cases you may find your app running on hardware significantly more powerful than you
expected; however it’s always good practice to design to accommodate the worst-case scenario to
ensure you’re providing a great user experience to all users, no matter what their hardware platform.

Performance Matters
Manufacturers of embedded devices, particularly mobile devices, often value thinner form factors
and bigger (and higher resolution) screens over significant improvements to processor speeds. For
us as developers, that means losing the head start traditionally afforded thanks to Moore’s law (the
doubling of the number of transistors placed on an integrated circuit every two years). In desktop
and server hardware, Moore’s Law typically results directly in processor performance improve-
ments; for mobile devices, it instead means thinner devices, with brighter, higher-resolution screens.
By comparison, improvements in processor power take a back seat.

In practice, this means that you always need to optimize your code so that it runs quickly and
responsively, assuming that hardware improvements over the lifetime of your software are unlikely
to do you any favors.

Code efficiency is a big topic in software engineering, so I’m not going to try to cover it extensively
here. Later in this chapter you learn some Android-specific efficiency tips, but for now note that effi-
ciency is particularly important for resource-constrained platforms.

Expect Limited Storage Capacity
Advances in flash memory and solid-state disks have led to a dramatic increase in mobile-device
storage capacities. Although devices with 64, 128, or even 256 GB of storage are no longer uncom-
mon, many popular lower-end devices have significantly less available space. Given that most of the
available storage on a mobile device is likely to be used to store photos, music, and movies, users are
likely to uninstall apps that are taking a disproportionate amount of storage space relative to their
perceived value.

As a result, the install size of your application is an important consideration, though even more
important is ensuring that your application is polite in its use of system resources—so you must
carefully consider how you store your application data.

To make life easier, you can use the Android databases to persist, reuse, and share large quantities
of data, as described in Chapter 9, “Creating and Using Databases.” For files, preferences, and state
information, Android provides optimized frameworks, as described in Chapter 8, “Files, Saving
State, and User Preferences.”

Part of being polite is cleaning up after yourself. Techniques such as caching, pre-fetching, and lazy
loading are useful for limiting repetitive network lookups and improving application responsiveness,
but don’t leave files on the filesystem or records in a database when they’re no longer needed.

Design for Different Screens and Form Factors
The small size and portability of mobiles are challenge for creating good interfaces, particularly
when users are demanding an increasingly striking and information-rich graphical user experience.

Developing for Mobile and Embedded Devices ❘ 41

Combined with the wide range of screen sizes that make up the Android device ecosystem, creating
consistent, intuitive, and delightful user interfaces can be a significant challenge.

Write your applications knowing that users will often only glance at the screen. Make your applica-
tions intuitive and easy to use by reducing the number of controls and putting the most important
information front and center.

Graphical controls, such as the ones you’ll create in Chapter 5, are an excellent means of displaying
a lot of information in a way that’s easy to understand. Rather than a screen full of text with a lot of
buttons and text-entry boxes, use colors, shapes, and graphics to convey information.

You’ll also need to consider how touch input is going to affect your interface design, and how you
can support accessibility and non–touch screen devices such as TVs.

Android devices are now available in a huge variety of screen sizes, resolutions, and input mecha-
nisms. With multi-window support included in Android 7.0, the screen size for your app may even
change while running on a single device.

To ensure that your application looks good and behaves well on all the possible host devices, you
need to create responsive designs and test your application on a variety of screens, optimizing for
small screens and tablets, while also ensuring that your UIs scale well.

You learn some techniques for optimizing your UI for different screen sizes in Chapters 4 and 5.

Expect Low Speeds, High Latency
The ability to connect to the Internet is a big part of what has made smart phones smart, and ubiq-
uitous. Unfortunately, mobile Internet connectivity isn’t as fast, reliable, cheap, or readily available
as we would like; when you’re developing your Internet-based applications, it’s best to assume that
the network connection will be slow, intermittent, expensive, and unreliable.

This is especially true in emerging markets where relative data prices are significantly higher. By
designing for the worst case you can ensure that you always deliver a high-standard user experi-
ence. This also means making sure that your applications can handle losing (or not finding) a data
connection.

The Android Emulator enables you to control the speed and latency of your network connection.
Figure 2-21 shows the Emulator’s network connection speed and signal strength, simulating a
distinctly suboptimal EDGE connection.

Experiment to ensure seamlessness and responsiveness no matter what the speed, latency, and avail-
ability of network access. Some techniques include limiting the functionality of your application, or
reducing network lookups to cached bursts, when the available network connection supports only
limited data transfer capabilities.

In Chapter 7, “Using Internet Resources,” you learn how to use Internet resources in your
applications.

42 ❘ CHAPTER 2 GettinG Started

FIGURE 2-21

Save Battery Life
The more useful the apps on a device, the more that device is used—and the more quickly its battery
is depleted. Combine this with larger, higher-resolution screens and thinner device form factors, and
battery life quickly becomes a significant issue for device owners.

There’s no more effective way to have users uninstall your app than to have it quickly deplete the
battery. You should always endeavor to create apps that limit their impact on battery life.

One of the most dramatic influencers of how your app affects battery life is its use of network data
transfers—particularly when your app isn’t currently in the foreground. For your app to be a good
citizen on the device, you must carefully consider if, and when, you choose to transfer data.

Android offers a number of APIs to help you minimize your impact on battery life, including Doze,
App Standby, and Job Scheduler—each of which is designed to help you ensure your app adheres
to best practices in conserving battery life when performing network transfers and operating in the
background.

We explore these and other battery-saving best practices in Chapter 11.

Developing for Mobile and Embedded Devices ❘ 43

Considering the User’s Environment
Sadly, you can’t assume that your users will consider your application the most important feature of
their device.

In the case of smart phones, they are typically first and foremost a communications device, secondly
a camera, thirdly a music and video player, and fourthly a games platform. The applications you
write will most likely be in the fifth category of “useful stuff.”

That’s not a bad thing—they’ll be in good company with others, including Google Maps and the
web browser. That said, each user’s usage model will be different; some people will never use their
device to listen to music, some devices don’t support telephony, and some don’t include cameras—
but the multitasking principle inherent in a device as ubiquitous as it is indispensable is an important
consideration for usability design.

It’s also important to consider when and how your users will use your application. People use their
mobiles all the time—on the train, walking down the street, or even while driving. You can’t make
people use their phones appropriately, but you can make sure that your applications don’t distract
them any more than necessary.

What does this mean in terms of software design? Make sure that your application:

 ➤ Is predictable and well behaved—There’s a fine line between a delightful moment and an
unpleasant surprise. The outcome of any user interaction should be predictable and revers-
ible, making it easy for new users to understand how to perform tasks, and minimizing any
risk from experimenting.

 ➤ Switches seamlessly from the background to the foreground—With the multitasking nature
of mobile devices, it’s likely that your applications will regularly move into and out of the
background. It’s important that they “come to life” quickly and seamlessly. Unless users have
explicitly closed your app, they shouldn’t notice a difference between restarting and resum-
ing it; switching should be seamless, with users being shown the UI and application state they
last saw.

 ➤ Is polite—Never steal focus or interrupt a user’s current Activity. Use Notifications (detailed
in Chapter 11) to request user attention, when and as appropriate, when your application
isn’t in the foreground.

 ➤ Presents an attractive and intuitive UI—Spend the time and resources necessary to produce a
UI that is as attractive as it is functional, and don’t force users to interpret and relearn your
application every time they open it. Using your app should be simple, easy, obvious, and
delightful.

 ➤ Is responsive—Responsiveness is one of the most critical design considerations on a mobile
device. You’ve no doubt experienced the frustration of a “frozen” piece of software; the mul-
tifunctional nature of mobile devices makes this even more annoying. With the possibility of
delays caused by slow and unreliable data connections, it’s important that your application
always remains responsive.

44 ❘ CHAPTER 2 GettinG Started

Developing for Android
In addition to the preceding general guidelines, the Android design philosophy demands that high-
quality applications be designed for:

 ➤ Performance

 ➤ Responsiveness

 ➤ Freshness

 ➤ Security

 ➤ Seamlessness

 ➤ Accessibility

Being Performant
One of the keys to writing efficient Android code is not to carry over assumptions from desktop
and server environments into embedded devices. A lot of what you already know about writing effi-
cient code will be applicable to Android, but the limitations of embedded systems and the use of the
Android Run Time mean you can’t take things for granted.

There are two basic rules for writing efficient code:

 ➤ Don’t do work that you don’t need to do.

 ➤ Don’t allocate memory if you can avoid it.

System memory is a scarce commodity, so you need to take special care to use it efficiently. This
means thinking about how you use the stack and heap, limiting object creation, and being aware of
how variable scope affects memory use.

The Android team has published specific and detailed guidance on writing efficient code for
Android, so rather than rehashing it here, visit d.android.com/training/articles/perf-tips
.html for suggestions.

Being Responsive
Generally, 100 to 200ms is the threshold at which users perceive a delay or “jank” in an application,
so you should always endeavor to respond to user input within that timeframe.

The Android Activity Manager and Window Manager also enforce a time limit beyond which the
application is considered unresponsive, and the user will be given the opportunity to force-close
the app. If either service detects an unresponsive application, it will display an “[Application] isn’t
responding” (ANR) dialog box, as shown in Figure 2-22.

Developing for Mobile and Embedded Devices ❘ 45

FIGURE 2-22

Android monitors two conditions to determine responsiveness:

 ➤ An application must respond to any user action, such as a key press or screen touch, within 5
seconds.

 ➤ A Broadcast Receiver must return from its onReceive handler within 10 seconds.

The ANR dialog box is a last resort of usability; the generous five-second limit is a worst-case sce-
nario, not a target. You can ensure that your application doesn’t trigger an ANR, and is as respon-
sive as possible, in a number of ways:

 ➤ Lengthy tasks such as network or database lookups, complex processing (such as cal-
culating game moves), and file I/O should all be moved off the main UI thread and run
asynchronously.

 ➤ Show progress within your UI if there are long-running tasks happening in the background.

 ➤ If your application has a time-consuming initial setup phase, render the main view as quickly
as possible, indicate that loading is in progress, and fill the information asynchronously. You
could also consider showing a splash screen—but in either case, indicate that progress is
being made, to avoid the user perception that the application has frozen.

46 ❘ CHAPTER 2 GettinG Started

Ensuring Data Freshness
From a usability perspective, the right time to update your application is immediately before the user
looks at it—in practice, you need to weigh the update frequency against its effect on battery life and
data usage.

When designing your application, it’s critical that you consider how often you will update its data.
You need to minimize the time users are waiting for refreshes or updates, while limiting the effect
of these background updates on the battery life. You are introduced to the Job Scheduler to update
your application in the background in Chapter 11.

Developing Secure Applications
Android applications have access to networks and hardware, can be distributed independently, and
are built on an open source platform featuring open communication, so it shouldn’t be surprising
that security is a significant consideration.

The Android security model sandboxes each application and restricts access to services and func-
tionality by requiring applications to declare the permissions they require, and allowing users to
accept or reject those requests.

The framework also includes robust implementations of security functionality including cryp-
tography and secure IPC, as well as technologies like ASLR, NX, ProPolice, safe_iop, OpenBSD
dlmalloc, OpenBSD calloc, and Linux mmap_min_addr to mitigate risks associated with common
memory management errors.

This doesn’t get you off the hook. You not only need to make sure your application is secure for its
own sake, but you also need to ensure that it doesn’t “leak” permissions, data, and hardware access
to compromise the device or user data. You can use several techniques to help maintain device secu-
rity, and they are covered in more detail as you learn the technologies involved. In particular, you
should do the following:

 ➤ Be security conscious when storing or transmitting data. By default, files that you create
on internal storage are accessible only to your app, but you must be particularly careful if
your app shares files or data with other applications—for example, through shared Services,
Content Providers, or broadcast Intents. If you have access to user data and can avoid storing
or transmitting the information, do not store or transmit the data. Take special care to ensure
you aren’t sharing or transmitting sensitive information, such as PII (personally identifiable
information) or location data.

 ➤ Always perform input validation. Insufficient input validation is one of the most common
security problems affecting applications, regardless of what platform they run on. Take spe-
cial care when accepting input to your application from user input or external sources, such
as the Internet, Bluetooth, NFC, SMS messages, or instant messaging (IM).

 ➤ Be cautious when your application may expose access to lower-level hardware to third-party
applications.

 ➤ Minimize the data your application uses and which permissions it requires.

Developing for Mobile and Embedded Devices ❘ 47

NOTE You can learn more about Android’s security model in Chapter 20,
“Advanced Android Development,” and at developer.android.com/train-
ing/articles/security-tips.html.

Ensuring a Seamless User Experience
The idea of a seamless user experience is an important, if somewhat nebulous, concept. What do
we mean by seamless? The goal is a consistent user experience in which applications start, stop, and
transition instantly and without perceptible delays or jarring transitions.

The speed and responsiveness of a mobile device shouldn’t degrade the longer it’s used. Android’s
process management helps by acting as a silent assassin, killing background applications to free
resources as required. Knowing this, your applications should always present a consistent interface,
regardless of whether they’re being restarted or resumed.

Start by ensuring that your Activities are properly suspended when they’re not in the foreground.
Android fires event handlers when your Activity is paused and resumed, so you can pause UI
updates and network lookups when your application isn’t visible—and resume them as soon as it is.

Persist data between sessions, and when the application isn’t visible, suspend tasks that use proces-
sor cycles, network bandwidth, or battery life.

When your application is brought back to the front, or restarted, it should seamlessly return to its
last visible state. As far as your users are concerned, each application should be sitting silently, ready
to be used but just out of sight.

Use a consistent and intuitive approach to usability. You can create applications that are revolution-
ary and unfamiliar, but even these should integrate cleanly with the wider Android environment.

Use a consistent design language within your app—ideally following the material design principles
discussed in more detail in Chapter 12 and at material.io/guidelines/.

You can use many other techniques to ensure a seamless user experience, and you’ll be introduced
to some of them as you discover more of the possibilities available in Android in the upcoming
chapters.

Providing Accessibility
When designing and developing your applications, it’s important not to assume that every user
will be exactly like you. This has implications for internationalization and usability but is critical
for providing accessible support for users with disabilities that require them to interact with their
Android devices in different ways.

Android provides facilities to help these users navigate their devices more easily using text-to-speech,
haptic feedback, and trackball or D-pad navigation.

To provide a good user experience for everyone—including people with visual, physical, or age-
related disabilities that prevent them from fully using or seeing a touch screen—you can leverage
Android’s accessibility features.

48 ❘ CHAPTER 2 GettinG Started

NOTE Best practices for making your application accessible are covered in
detail in Chapter 14, “Advanced Customization of Your User Interface.”

As a bonus, the same steps required to help make your touch screen applications useful for users
with disabilities will also make your applications easier to use on non–touch screen devices, such
as TVs.

ANDROID DEVELOPMENT TOOLS

The Android SDK includes several tools and utilities to help you create, test, and debug your proj-
ects. We explore several of these in more detail throughout the remainder of this book, though a
detailed examination of each developer tool is outside our scope. However, it is worth reviewing
what’s available, and for additional details, check out the Android Studio documentation at
developer.android.com/studio.

As mentioned earlier, Android Studio conveniently incorporates all of these tools, including the
following:

 ➤ The Android Virtual Device Manager and Emulator—The AVD Manager is used to create
and manage AVDs, virtual hardware that hosts an Emulator running a particular build of
Android. Each AVD can specify a particular screen size and resolution, memory and storage
capacities, and available hardware capabilities (such as touch screens and GPS). The Android
Emulator is an implementation of the Android Run Time designed to run within an AVD on
your host development computer.

 ➤ The Android SDK Manager—Used to download SDK packages including Android platform
SDKs, support libraries, and the Google Play Services SDK.

 ➤ Android Profiler—Visualize the behavior and performance of your app. The Android Profiler
can track memory and CPU use in real time, as well as analyze network traffic.

 ➤ Lint—A static analysis tool that analyzes your application and its resources to suggest
improvements and optimizations.

 ➤ Gradle—An advanced build system and toolkit that manages the compilation, packaging,
and deployment of your applications.

 ➤ Vector Asset Studio—Generates bitmap files for each screen density to support older versions
of Android that don’t support the Android vector drawable format.

 ➤ APK Analyzer—Provides insight into the composition of your built APK files.

The following additional tools are also available:

 ➤ Android Debug Bridge (ADB)—A client-server application that provides a link between your
host computer and virtual and physical Android devices. It lets you copy files, install com-
piled application packages (.apk), and run shell commands.

Android Development Tools ❘ 49

 ➤ Logcat—A utility used to view and filter the output of the Android logging system.

 ➤ Android Asset Packaging Tool (AAPT)—Constructs the distributable Android package files
(.apk).

 ➤ SQLite3—A database tool that you can use to access the SQLite database files created and
used by Android.

 ➤ Hprof-conv—A tool that converts HPROF profiling output files into a standard format to
view in your preferred profiling tool.

 ➤ Dx—Converts Java .class bytecode into Android .dex bytecode.

 ➤ Draw9patch—A handy utility to simplify the creation of NinePatch graphics using a
WYSIWYG editor.

 ➤ Monkey and Monkey Runner—Monkey runs within the Android Run Time, generating
pseudorandom user and system events. Monkey Runner provides an API for writing pro-
grams to control the VM from outside your application.

 ➤ ProGuard—A tool to shrink and obfuscate your code by replacing class, variable, and
method names with semantically meaningless alternatives. This is useful to make your code
more difficult to reverse engineer.

Android Studio
As a developer, the Android Studio IDE is where you’ll be spending the majority of your time, so
it pays to understand some of its nuances. The following sections introduce some tips for reducing
build times—specifically through the use of Instant Run—as well as some shortcuts and advanced
features you can use while writing and debugging your code.

Improving Build Performance
The simplest way to improve build performance is by ensuring you have allocated enough RAM to
the build process. You can modify the amount of RAM allocated to the build system (the Gradle
Daemon VM) by editing the gradle.properties file within your project.

For good performance, it’s recommended that you allocate a minimum of 2Gb, using the
org.gradle.jvmargs property:

org.gradle.jvmargs=-Xmx2048m

The ideal value for each system will vary based on different hardware, so you should experiment to
see what works best for you.

Additionally, if you’re on Windows, Windows Defender Real-Time Protection might cause build
slowdowns. You can avoid this by adding your project folder to the list of Windows Defender
exclusions.

50 ❘ CHAPTER 2 GettinG Started

Using Instant Run
Instant Run is an Android Studio feature that significantly reduces the build and deploy times for
incremental code changes during your coding, testing, and debugging life cycles.

The first time you hit Run or Debug, the Gradle build system will compile your source code into
bytecode and convert that to Android .dex files. Those are combined with your application’s mani-
fest and resources into an APK, which is deployed to your target device where the app is installed
and launched.

When Instant Run is enabled, the build process will inject some additional instrumentation and an
App Server into your debug APK to support Instant Run.

From then on, a small yellow lightning bolt icon is available, indicating that Instant Run is active.
Each time you make a change and hit Instant Run, Android Studio will attempt to improve the build
and deploy speed by “swapping” code and resource changes directly into your running debug app
process.

The nature of the improvements varies based on the changes you make as follows:

 ➤ Hot Swap—Incremental code changes are applied and reflected in the app without needing
to relaunch the app or even restart the current Activity. Can be used for most simple changes
within method implementations.

 ➤ Warm Swap—The Activity needs to be restarted before changes can be seen and used.
Typically required for changes to resources.

 ➤ Cold Swap—The app is restarted (but still not reinstalled). Required for any structural
changes such as to inheritance or method signatures.

Instant Run is enabled by default, and is controlled by Android Studio, so only start/restart your
debug instance from the IDE — don’t start/restart your app from the device or command line.

Tips for Using Android Studio
Hundreds of tips and tricks can make your Android Studio experience faster and more productive.
The following are a small sampling of some not immediately obvious, but very helpful shortcuts to
help you make every keystroke count.

Quick Search
The most useful shortcut to remember in Android Studio is action search, triggered by press-
ing Ctrl+Shift+A (Cmd+Shift+A on MacOS). After pressing that shortcut, you can start typing
keywords, and any available actions or options containing those words will be available for your
selection.

To specifically search for files within a project, you can press Shift twice to display the Search
Everywhere dialog.

Alternatively, wherever there’s a long list—such as files in the project hierarchy or menu options in a
large menu such as Refactor This..., just start typing and it’ll start filtering results.

Android Development Tools ❘ 51

Using Tab to Autocomplete Selections
Pressing Tab (instead of Enter) when selecting an autocomplete option replaces any existing methods
and values, rather than inserting the new selection in front of it.

Postfix Code Completion
Postfix code completion lets you transform a simple, already typed, value or expression into a more
complex one.

For example, you can create a for-loop over a List variable by typing .fori after the variable name,
or turn a Boolean expression into an if statement by postfixing .if (or .else). You can see all the
valid postfixes available for a given context by typing Ctrl+J (Cmd+J on MacOS).

Live Templates
Live Templates let you use shortcuts that are available as autocompletion options to insert templa-
tized snippets into your code.

Dozens of generic and Android-specific Live Templates are available, including a selection of logging
shortcuts — or you can create your own to simplify best-practice patterns or boilerplate within your
own code. You can view the existing Live Templates (and create your own) by opening the settings
window and navigating to Editor ➪ Live Templates.

The Android Virtual Device Manager
The Android Virtual Device Manager is used to create and manage the virtual hardware devices
that will host instances of the Emulator.

AVDs are used to simulate the hardware configurations of different physical devices. This lets you
test your application on a variety of hardware platforms without needing to buy a variety of phones.

NOTE The Android SDK doesn’t include any prebuilt virtual devices, so you
will need to create at least one device before you can run your applications
within an Emulator.

Each virtual device is configured with a name, physical device type, Android system image, screen
size and resolution, ABI/CPU, memory and storage capacities, and hardware capabilities including
camera and network speeds.

Different hardware settings and screen resolutions will present alternative UI skins to represent
the different hardware configurations. This simulates a variety of device types including different
phones and tablets, as well as TVs and Android Wear devices.

The Android Emulator
The Emulator runs within an AVD, and is available for testing and debugging your applications as
an alternative to using a physical device.

52 ❘ CHAPTER 2 GettinG Started

The Emulator is an implementation of the Android Run Time, making it as valid a platform for run-
ning Android applications as any Android phone. Because it’s decoupled from any particular hard-
ware, it’s an excellent baseline to use for testing your applications.

Full network connectivity is provided along with the ability to tweak the Internet connection speed
and latency while debugging your applications. You can also simulate placing and receiving voice
calls and SMS messages.

Android Studio integrates the Emulator so that it’s launched automatically within the selected AVD
when you run or debug your projects.

Once running, you can use the toolbar shown in Figure 2-23 to emulate pressing the hardware
power and volume buttons, software home, back, and recents buttons, rotate the display, or take
screen shots. Pressing the “…” button opens the extended controls, which are also shown in
Figure 2-23, and that allow you to:

 ➤ Set the current GPS location, and simulate GPS track playback.

 ➤ Modify the simulated cellular network connectivity, including signal strength, speed, and
data connection type.

 ➤ Set battery health, level, and charging status.

 ➤ Simulate incoming phone calls and SMS messages.

 ➤ Simulate the fingerprint sensor.

 ➤ Provide mock sensor data including results for accelerometer, ambient temperature, and mag-
netic field sensor.

Android Profiler
The Emulator enables you to see how your application will look, behave, and interact, but to actu-
ally see what’s happening under the surface, you need the Android Profiler.

The Android Profiler displays real-time profiling data for the CPU, memory, and network activity
related to your app. You can perform sample-based method tracing to time your code execution,
capture heap dumps, view memory allocations, and inspect the details of network-transmitted files.

To open the Android Profiler, click the Android Profiler icon in the toolbar, or navigate to the View
➪ Tool Windows ➪ Android Profiler menu item. The shared timeline window will be displayed, as
shown in Figure 2-24.

The Profiler window displays real-time graphs for CPU, memory, and network usage, as well as an
event timeline that indicates changes in Activity state, user inputs, and screen rotations.

To access the detailed profiling tools for CPU, memory, or network use, click the associated
graph. Depending on the resource being profiled, each detail view will allow you to do one of the
following:

 ➤ Inspect CPU activity and method traces.

 ➤ Inspect the Java heap and memory allocations.

 ➤ Inspect incoming and outgoing network traffic.

Android Development Tools ❘ 53

FIGURE 2-23

FIGURE 2-24

54 ❘ CHAPTER 2 GettinG Started

The Android Debug Bridge
The Android Debug Bridge (ADB) is a client-service application that lets you connect with an
Android device (virtual or actual). It’s made up of three components:

 ➤ A daemon running on the device or Emulator

 ➤ A service that runs on your development computer

 ➤ Client applications that communicate with the daemon through the service

As a communications conduit between your development hardware and the Android device/
Emulator, the ADB lets you install applications, push and pull files, and run shell commands on the
target device. Using the device shell, you can change logging settings and query or modify SQLite
databases available on the device.

Android Studio automates and simplifies a lot of your usual interaction with the ADB, including
application installation and updating, file logging, and debugging.

NOTE To learn more about what you can do with the ADB, check out the docu-
mentation at developer.android.com/studio/command-line/adb.html.

APK Analyzer
The APK Analyzer enables you to better understand the composition of your APK files by providing
an interface to:

 ➤ View the absolute and relative size of files stored within the APK, including .DEX and
resource files.

 ➤ View the final versions of .DEX files stored within the APK.

 ➤ View the final version of the AndroidManifest.xml file.

 ➤ Perform a side-by-side comparison of two APKs.

To analyze your APK, you can drag and drop an APK file directly into the editor window of
Android Studio, navigate to an APK in the build ➪ output ➪ apks directory using the Project per-
spective and double-click the desired APK, or click the Build ➪ Analyze APK menu item and select
an APK.

The APK Analyzer window, shown in Figure 2-25, displays each file and folder stored within the
APK, and allows you to navigate within each folder or to display additional details on each file.

The Raw File Size column represents the uncompressed size of each entity, while the Download Size
indicates the estimated compressed size of the entity when delivered by Google Play.

By selecting the application manifest, you can view the XML form of the final manifest file pack-
aged within your APK.

Android Development Tools ❘ 55

For more details on how to use the APK Analyzer, refer to developer.android.com/studio/
build/apk-analyzer.html.

FIGURE 2-25

The Lint Tool
Android Studio provides a static code analysis tool called Lint, which helps identify and correct
structural quality issues within your code, without having to run the app or write those specific
tests.

The configured Lint and IDE inspections run automatically whenever you build your app, checking
your source code and resource files for potential bugs and optimization improvements, including
correctness, security, performance, usability, accessibility, and internationalization.

Potential problems are highlighted within the IDE with a description, severity level, and where pos-
sible a suggested remedy.

Using Lint to identify and rectify potential structural issues within your code can dramatically
improve the readability, reliability, and efficiency of your code. It’s best practice to ensure all Lint
warnings are dealt with as part of your development process.

Monkey, Monkey Runner, and Espresso UI Testing
UI testing helps to ensure that users don’t encounter unexpected results when interacting with your
app. Android Studio includes a number of tools to assist you in creating user interface/user interac-
tion tests.

Monkey works from within the ADB shell, sending a stream of pseudorandom, but repeatable,
system and UI events to your application. It’s particularly useful to stress-test your applications to
investigate edge cases you might not have anticipated through unconventional use of the UI.

Alternatively, Monkey Runner is a Python scripting API that lets you send specific UI commands to
control an Emulator or device from outside the application. It’s extremely useful for performing UI,
functional, and unit tests in a predictable, repeatable fashion.

56 ❘ CHAPTER 2 GettinG Started

The Espresso testing framework, provided through the Android Testing Support Library, provides
APIs for writing UI tests to simulate specific user interactions for a specific app. Espresso detects
when the main thread is idle, and runs your test commands at the appropriate time to improve test
reliability. This capability also relieves you from needing to add timing workarounds, such as a sleep
period, into your test code.

You can learn more about Espresso testing at developer.android.com/training/testing/
espresso.

Gradle
Gradle is an advanced build system and toolkit, integrated into Android Studio, which makes it pos-
sible for you to perform custom build configurations without needing to modify your app’s source
files.

The use of Gradle as Android’s build system is intended to make it easier to configure, extend and
customize the build process, simplify code and resource reuse, and to more easily create multiple
build variants of an application.

Gradle is plug-in–based, so integration with Android Studio is managed through the Android Plugin
for Gradle, which works with the build toolkit to provide a UI within Android Studio for processes
and configurable settings that are specific to building and testing Android applications.

Gradle itself, and the Android Plugin, are integrated with—but ultimately independent of—Android
Studio. As a result, you can build your Android apps from within Android Studio, the command
line on your machine, or on machines where Android Studio is not installed (such as continuous
integration servers). The output of the build is the same whether you are building a project from the
command line, on a remote machine, or using Android Studio.

Within this book, we will be building our applications within Android Studio using the Android
Plugin for Gradle to manage our interactions with the build system. Full coverage of Gradle, custom
builds, and Gradle build scripts is beyond the scope of this book, but you can learn more details at
developer.android.com/studio/build/.

NOTE Because Gradle and the Android Plugin for Gradle are independent from
Android Studio, you will be prompted to update your build tools separately
from Android Studio, similarly to how SDK updates are performed.

Applications and Activities and
Fragments, Oh My!

WHAT’S IN THIS CHAPTER?

 ➤ Introducing the Android application

 ➤ Understanding the Android application life cycle

 ➤ Recognizing your application’s priority

 ➤ Creating new Activities

 ➤ Understanding an Activity’s state transitions and life cycle

 ➤ Responding to system memory pressure

 ➤ Creating and using Fragments

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The code downloads for this chapter are found at www.wrox.com. The code for this chapter is
divided into the following major examples:

 ➤ Snippets_ch3.zip

 ➤ Earthquake_ch3.zip

3

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

58 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

APPLICATIONS, ACTIVITIES, AND FRAGMENTS

Android applications (or simply “apps”) are software programs that are installed and run natively
on Android devices. To write high-quality applications, it’s important to understand the components
they consist of, and how those components work together. This chapter introduces each of the appli-
cation components, with special attention paid to Activities and Fragments—the visual components
of your application.

In Chapter 2, “Getting Started,” you learned that each Android application runs in a separate pro-
cess, in its own instance of the Android Run Time. In this chapter, you learn how the Android Run
Time manages your application, and the impact this has on the application life cycle. An applica-
tion’s state determines its priority that, in turn, affects the likelihood of its being terminated when
the system requires more resources. You are also introduced to the Activity and Fragment states,
state transitions, and event handlers.

The Activity class forms the basis for all your user interface (UI) screens. You’ll learn how to
create Activities and gain an understanding of their life cycles and how they affect the application
lifetime and priority.

The range of screen sizes and display resolutions for the devices on which your application will be
used has expanded with the range of Android devices now available. The Fragment API provides
support for creating dynamic layouts that can be optimized for all devices including tablets and
smartphones.

You’ll learn how to use Fragments to encapsulate state within your UI components, and to create
layouts that scale and adapt to accommodate a variety of device types, screen sizes, and resolutions.

THE COMPONENTS OF AN ANDROID APPLICATION

Android applications consist of loosely coupled components, bound by an application manifest that
describes each component and how they interact. The following components comprise the building
blocks for all your Android applications:

 ➤ Activities—Your application’s presentation layer. The UI of your application is built around
one or more extensions of the Activity class. Activities use Fragments and Views to lay out
and display information, and to respond to user actions. Compared to desktop development,
Activities are equivalent to Forms. You learn more about Activities later in this chapter.

 ➤ Services—Service components run without a UI, updating your data sources, triggering
Notifications, and broadcasting Intents. They’re used to perform long-running tasks, or those
that require no user interaction (such as tasks that need to continue even when your applica-
tion’s Activities aren’t active or visible). You learn more about how to create and use Services
in Chapter 11, “Working in the Background.”

 ➤ Intents—A powerful inter-application message-passing framework; Intents are used exten-
sively throughout Android. You will use Intents to start and stop Activities and Services, to
broadcast messages system-wide or to a specific Activity, Service, or Broadcast Receiver—or

The Android Application Life Cycle, Priority, and Process States ❘ 59

to request an action be performed on a particular piece of data. Explicit, implicit, and broad-
cast Intents are explored in more detail in Chapter 6, “Intents and Broadcast Receivers.”

 ➤ Broadcast Receivers—Broadcast Receivers (or just “Receivers”) are used to receive broadcast
Intents, enabling your application to listen for Intents that match the criteria you specify.
Broadcast Receivers start your application to react to any received Intent, making them per-
fect for creating event-driven applications. Broadcast Receivers are covered alongside Intents
in Chapter 6.

 ➤ Content Providers—Content Providers are the preferred means to share data across applica-
tion boundaries. You can configure your application’s Content Providers to allow access
from other applications, and you can access the Content Providers exposed by others.
Android devices include several native Content Providers that expose useful databases such
as the media store and contacts. You learn how to create and use Content Providers in
Chapter 10, “Content Providers and Search.”

 ➤ Notifications—Notifications enable you to alert users to application events without stealing
focus or interrupting their current Activity. They’re the preferred technique for getting a
user’s attention when your application is not visible or active, typically triggered from within
a Service or Broadcast Receiver. For example, when a device receives a text message or an
e-mail, the messaging and Gmail applications use Notifications to alert you. You can trigger
these notifications from your applications, as discussed in Chapter 11.

By decoupling the dependencies between application components, you can share and use individual
Content Providers, Services, and even Activities with other applications—both your own and those
of third parties.

THE ANDROID APPLICATION LIFE CYCLE, PRIORITY, AND
PROCESS STATES

Unlike many traditional application platforms, Android applications have limited control over their
own life cycles. Instead, application components must listen for changes in the application state and
react accordingly, taking particular care to be prepared for untimely termination.

By default, each Android application runs in its own process, each of which is running a separate
instance of the Android Run Time (ART). Memory and process management is handled exclusively
by the run time.

NOTE You can force application components within the same application to
run in different processes or to have multiple applications share the same process
using the android:process attribute on the affected component nodes within
the manifest.

60 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

Android aggressively manages its resources, doing whatever is necessary to ensure a smooth and
stable user experience. In practice, that means processes (and therefore applications) will be killed,
in some cases without warning, to free resources if higher-priority applications require them.

The order in which processes are killed to reclaim resources is determined by the priority of their
hosted applications. An application’s priority is equal to that of its highest-priority component.

If two applications have the same priority, the process that has been at that priority longest will
typically be killed first. Process priority is also affected by interprocess dependencies; if an applica-
tion has a dependency on a Service or Content Provider supplied by a second application, the sec-
ondary application is assigned at least as high a priority as the application it supports.

It’s important to structure your application to ensure that its priority is appropriate for the work
it’s doing. If you don’t, your application could be killed while it’s in the middle of something impor-
tant, or it could remain running when it could safely be terminated to free resources and maintain a
smooth user experience.

Figure 3-1 shows the priority tree used to determine the order of application termination.

1. Active Process Critical Priority

High Priority

Medium Priority

Low Priority

2. Visible Process

3. Started Background Service

4. Background Process

FIGURE 3-1

The following list details each of the application states shown in Figure 3-1, explaining how the
state is determined by the application components of which it comprises:

 ➤ Active processes (Top Priority)—Active (foreground) processes have application components
the user is interacting with. These are the processes Android tries to keep running smoothly
and responsively by reclaiming resources from other applications. There are generally very
few of these processes.

Active processes include one or more of the following components:

 ➤ Activities in an active state—that is, those in the foreground responding to user
events. You explore Activity states in greater detail later in this chapter.

 ➤ Broadcast Receivers executing onReceive event handlers as described in Chapter 6.

 ➤ Services executing onStart, onCreate, or onDestroy event handlers as described in
Chapter 11.

A Closer Look at Android Activities ❘ 61

 ➤ Visible processes (High Priority)—Visible but inactive processes are those hosting “visible”
Activities or foreground Services. As the name suggests, visible Activities are visible but they
aren’t in the foreground or responding to user input. This happens when an Activity is only
partially obscured (by a non–full-screen or transparent Activity), or the non-active window
in a multi-window environment. There are generally very few visible processes, and they’ll be
killed only under extreme circumstances to allow active processes to continue. Since Android
6.0 Marshmallow (API Level 23), running Services that have been flagged to run in the
foreground have a slightly lower priority than active processes, making it possible—though
unlikely—for a foreground Service to be killed to allow an active Activity with significant
memory requirements to continue running.

 ➤ Started background Service processes (Medium Priority)—Processes hosting background
Services that have been started. Because these Services don’t interact directly with the user,
they receive a slightly lower priority than visible Activities or foreground Services. You learn
more about Services in Chapter 11.

 ➤ Background processes (Low Priority)—Processes hosting Activities that aren’t visible and that
don’t have any running Services. Every time you switch between applications by pressing the
home key, or using the “recent apps” selector, the previously active application goes to the
background. There will generally be a large number of background apps that Android will
kill using a last-seen-first-killed pattern, giving some consideration to prioritize killing appli-
cations consuming more memory, in order to obtain resources for foreground processes.

INTRODUCING THE ANDROID APPLICATION CLASS

Your application’s Application object remains instantiated whenever your application is running—
unlike Activities, the Application is not restarted as a result of configuration changes.

Extending the Application class with your own implementation enables you to respond to
application-level events broadcast by the Android run time (such as low memory conditions.)

When your Application implementation is registered in the manifest, it will be instantiated when
your application process is created. As a result, if you choose to create a custom Application class
implementation, it is by nature a singleton and should be implemented as such.

A CLOSER LOOK AT ANDROID ACTIVITIES

Each Activity represents a screen that an application can present to your users. The more compli-
cated your application, the more screens you are likely to need.

Typically, this includes at least a “main Activity”—the primary interface screen—that handles the
main UI functionality of your application. This primary interface is generally supported by a set of
secondary Activities. To move between screens, you start a new Activity (or return from one).

62 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

Creating Activities
To create a new Activity, extend the Activity class—or one of its subclasses (most commonly the
AppCompatActivity, as described in the next section). Within your new class you must assign a UI
and implement your functionality. Listing 3-1 shows the basic skeleton code for a new Activity.

LISTING 3-1: Activity skeleton code

package com.professionalandroid.apps.helloworld;

import android.app.Activity;
import android.os.Bundle;

public class MyActivity extends Activity {

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 }
}

The base Activity class presents an empty screen that encapsulates the window display handling.
An empty Activity isn’t particularly useful, so the first thing you’ll want to do is create the UI
using Fragments, layouts, and Views.

Views are the UI widgets/controls that display data and provide user interaction. Android provides
several layout classes, called View Groups, which can contain multiple Views to help you lay out
your UI. Fragments—discussed later in this chapter—are also available to encapsulate segments
of your UI, making it simple to create dynamic interfaces that can be rearranged to optimize your
layouts for different screen sizes and orientations.

NOTE Chapter 5 discusses Views, View Groups, and layouts in detail, examin-
ing what’s available, how to use them, and how to create your own.

To assign a UI to an Activity, call setContentView from the onCreate method. In this next snippet,
an instance of a TextView is used as the Activity’s UI:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView textView = new TextView(this);
 setContentView(textView);
}

A Closer Look at Android Activities ❘ 63

There’s a good chance you’ll want to use a slightly more complex UI design. You can create a layout
in code using layout View Groups, or you can use the standard Android convention of passing a
resource ID for a layout defined in an external resource, as shown in the following snippet:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
}

To use an Activity in your application, you need to register it in the manifest. Add a new activity
tag within the application node of the manifest; the activity tag includes attributes for meta-
data, such as the label, icon, required permissions, and themes used by the Activity.

<activity android:label="@string/app_name"
 android:name=".MyActivity">
</activity>

An Activity without a corresponding activity tag can’t be used—attempting to start it will result
in a runtime exception:

Within the activity tag you can add intent-filter nodes that specify the Intents that can be
used to start your Activity. Each Intent Filter defines one or more actions and categories that your
Activity supports. Intents and Intent Filters are covered in depth in Chapter 6, but it’s worth
noting that for an Activity to be available from the application launcher, it must include an Intent
Filter listening for the MAIN action and the LAUNCHER category, as highlighted in Listing 3-2.

LISTING 3-2: Main Application Activity definition

<activity android:label="@string/app_name"
 android:name=".MyActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

Using the AppCompatActivity
As mentioned in Chapter 2, the AppCompatActivity class is an Activity subclass available from
the Android Support Library. It provides ongoing, backward compatibility for features added to the
Activity class in each new platform release.

As such, it’s considered best practice to use the AppCompatActivity in preference to the Activity
class, and we’ll continue to do so throughout this book, generally referring to classes that extend
AppCompatActivity as Activities.

Listing 3-3 updates the code from Listing 3-1 showing the skeleton code for a new Activity that
extends AppCompatActivity.

64 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

LISTING 3-3: AppCompatActivity Activity skeleton code

package com.professionalandroid.apps.helloworld;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

public class MyActivity extends AppCompatActivity {

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 }
}

The Activity Life Cycle
A good understanding of the Activity life cycle is vital to ensure that your application provides a
seamless user experience and properly manages its resources.

As explained earlier, Android applications do not control their own process lifetimes; the Android
Run Time manages the process of each application, and by extension that of each Activity within it.

Although the run time handles the termination and management of an Activity’s process, the
Activity’s state helps determine the priority of its parent application. The application priority,
in turn, influences the likelihood that the run time will terminate it and the Activities running
within it.

Activity Stacks and the Least-Recently Used (LRU) List
The state of each Activity is determined by its position on the Activity stack (or “back stack”), a
last-in–first-out collection of all the currently running Activities. When a new Activity starts, it
becomes active and is moved to the top of the stack. If the user navigates back using the Back but-
ton, or the foreground Activity is otherwise closed, the next Activity down on the stack moves up
and becomes active. Figure 3-2 illustrates this process.

As described previously in this chapter, an application’s priority is influenced by its highest-priority
Activity. When the Android memory manager is deciding which application to terminate to free
resources, it uses this Activity stack to determine the priority of applications.

When none of an application’s Activities are visible, the application itself moves onto the least-
recently used (LRU) list, which is used to determine the order in which applications will be termi-
nated to free resources as described earlier.

A Closer Look at Android Activities ❘ 65

New Activity Active Activity

Activity Stack

Previously Active Activities

...

Previous Active
Activity

Removed

Removed to
free resources

Back button
pushed or

Activity closed

New Activity
Started

FIGURE 3-2

Activity States
Throughout an application’s life cycle, its Activities move in and out of the Activity stack, as shown
in Figure 3-2. As they do so, they transition through four possible states:

 ➤ Active—When an Activity is at the top of the stack it is the visible, focused, foreground
Activity that is receiving user input. Android will attempt to keep it alive at all costs, killing
applications that own Activities further down the stack as needed, to ensure this Activity has
the resources it needs. When another Activity becomes active, this one will be paused—and
when it is no longer visible, it will be stopped, as described in the following points.

 ➤ Paused—In some cases your Activity will be visible but will not have focus; at this point it’s
paused. This state may also be reached in which your application is being used in a multi-
window environment—where multiple applications may be visible, but only the Activity
with which the user last interacted is considered active. Similarly, if your Activity has a
transparent or non–full-screen Activity active in front of it, it will remain in a paused state.
When paused, an Activity is treated as if it were active; however, it doesn’t receive user input
events. In extreme cases Android will kill a paused Activity to recover resources for the active
Activity. When an Activity becomes totally obscured, it is stopped; all Activities transition
through the paused state before becoming stopped.

66 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

 ➤ Stopped—When an Activity isn’t visible, it “stops.” The Activity will remain in memory,
retaining all state information; however, it is now a likely candidate for termination when the
system requires memory. When an Activity is in a stopped state, it’s important to save data
and the current UI state, and to stop any non-critical operations. Once an Activity has exited
or closed, it becomes inactive.

 ➤ Inactive—After an Activity has been killed, as well as before it’s been launched, it’s inactive.
Inactive Activities have been removed from the Activity stack and need to be restarted before
they can be displayed and used.

State transitions occur through user and system actions, meaning your application has no control
over when they happen. Similarly, application termination is handled by the Android memory
manager, which will start by closing applications that contain inactive Activities, followed by those
that are stopped. In extreme cases, it will remove those that are paused.

NOTE To ensure a seamless user experience, transitions between states should
be invisible to the user. There should be no difference in an Activity moving from
a paused, stopped, or inactive state back to active, so it’s important to save all
UI state and persist all data when an Activity is stopped.

It’s best practice to perform any time-consuming state persistence operations
(such as database transactions or network transfers) when the Activity transi-
tions to the stopped state (within the onStop handler, as described later in this
chapter), rather than during the transition to the paused state (within onPause).

Activities may transition between active and paused states frequently and rap-
idly—particularly when used in a multi-window environment—so it’s important
that this transition execute as quickly as possible. Once an Activity does become
active, it should restore those saved values.

Similarly, apart from changes to the Activity’s priority, transitions between the
active, paused, and stopped states have little direct impact on the Activity itself.
It’s up to you to use these signals to pause and stop your Activities accordingly,
and to be prepared for termination at any time.

Understanding Activity Lifetimes
To ensure that Activities can react to state changes, Android provides a series of event handlers that
are fired as an Activity transitions through its full, visible, and active lifetimes. Figure 3-3 summa-
rizes these lifetimes in terms of the Activity states described in the previous section.

Within an Activity’s full lifetime, between creation and destruction, it goes through one or more
iterations of the active and visible lifetimes. Each transition triggers the method handlers previously
described. The following sections provide a closer look at each of these lifetimes and the events that
bracket them.

A Closer Look at Android Activities ❘ 67

Activity.
onCreate

Activity.
onStart

Activity.
onResume Activity.

onSaveInstanceState

Activity.
onRestart

Activity.
onPause

Activity.
onStop Activity.

onDestroy

Activity may be
killed

If system terminating Activity

Activity.
onRestoreInstanceState

If system terminated Activity

Active Lifetime

Visible Lifetime

Full Lifetime

FIGURE 3-3

The Full Lifetime
The full lifetime of your Activity occurs between the first call to onCreate and when it is destroyed.
It’s not uncommon for an Activity’s process to be terminated without the corresponding onDestroy
handler being called.

Use the onCreate method to initialize your Activity: inflate the user interface, get references
to Fragments, allocate references to class variables, bind data to controls, and start Services.
If the Activity was terminated unexpectedly by the run time, the onCreate method is passed a
Bundle object containing the state saved in the last call to onSaveInstanceState. You should
use this Bundle to restore the UI to its previous state, either within the onCreate method or
onRestoreInstanceState.

Override onDestroy to clean up any resources created in onCreate, and ensure that all external
connections, such as network or database links, are closed.

As part of Android’s guidelines for writing efficient code, it’s recommended that you avoid repeated
creation of short-term objects. The rapid creation and destruction of objects forces additional gar-
bage collection, a process that can have a direct negative impact on the user experience. If your
Activity creates the same set of objects regularly, consider creating them in the onCreate method, as
it’s called only once during the Activity’s lifetime.

The Visible Lifetime
An Activity’s visible lifetimes are bounded between calls to onStart and onStop. Between these
calls your Activity will be visible to the user, although it may not have focus and may be partially
obscured. Activities are likely to go through several visible lifetimes during their full lifetime as they
move between the foreground and background. Since Android 3.0 Honeycomb (API Level 11), you
can safely assume onStop will be called before your application process is terminated.

The onStop method should be used to pause or stop animations, threads, Sensor listeners, GPS
lookups, Timers, Services, or other processes that are used exclusively to update the UI. There’s little
value in consuming resources (such as memory, CPU cycles, or network bandwidth) to update the

68 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

UI when it isn’t visible. Use the onStart method to resume or restart these processes when the UI is
visible again.

The onRestart method is called immediately prior to all but the first call to onStart. Use it to
implement special processing that you want done only when the Activity restarts within its full
lifetime.

The onStart/onStop methods should also be used to register and unregister Broadcast Receivers
used exclusively to update the UI.

NOTE You learn more about using Broadcast Receivers in Chapter 6.

The Active Lifetime
The active lifetime starts with a call to onResume and ends with a corresponding call to onPause.

An active Activity is in the foreground and is receiving user input events. Your Activity is likely
to go through many active lifetimes before it’s destroyed, as the active lifetime will end when a
new Activity is displayed, the device goes to sleep, or the Activity loses focus. Try to keep code in
the onPause and onResume methods fast and lightweight to ensure that your application remains
responsive when moving in and out of the foreground. You can safely assume that during the active
lifetime onPause will be called before the process is terminated.

NOTE If the system determines that this Activity state may need to be resumed,
then immediately before onPause a call is made to onSaveInstanceState. This
method provides an opportunity to save the Activity’s UI state in a Bundle that
may be passed to the onCreate and onRestoreInstanceState methods.

Use onSaveInstanceState to save the UI state to ensure that the Activity can
present the same UI when it next becomes active. The onSaveInstanceState
handler will not be called if the system determines that the current state will not
be resumed—for example, if the Activity is closed by pressing the Back button.

Since Android 3.0 Honeycomb (API Level 11), the completion of the onStop handler marks the
point beyond which an Activity may be killed without warning. This allows you to move all
time-consuming operations required to save state into onStop, keeping your onPause lightweight
and focused on suspending memory- or CPU-intensive operations while the Activity isn’t active.
Depending on your application architecture, that may include suspending threads, processes, or
Broadcast Receivers while your Activity is not in the foreground.

The corresponding onResume method should also be lightweight. You do not need to reload the UI
state here, because this should handled by the onCreate and onRestoreInstanceState methods as
required. Use onResume to reverse actions performed within onPause—such as allocating released
resources, initializing or registering removed or unregistered components, and resuming any sus-
pended behavior.

A Closer Look at Android Activities ❘ 69

Monitoring State Changes
The skeleton code in Listing 3-4 shows the stubs for the state change method handlers available in
an Activity as described in the previous section. Comments within each stub describe the actions
you should consider taking on each state change event.

LISTING 3-4: Activity state event handlers

public class StateChangeMonitoringActivity extends AppCompatActivity {

 // Called at the start of the full lifetime.
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Initialize Activity and inflate the UI.
 }

 // Called before subsequent visible lifetimes
 // for an Activity process. That is, before an Activity
 // returns to being visible having previously been hidden.
 @Override
 public void onRestart() {
 super.onRestart();

 // Load changes knowing that the Activity has already
 // been visible within this process.
 }

 // Called at the start of the visible lifetime.
 @Override
 public void onStart() {
 super.onStart();

 // Apply any required UI change now that the Activity is visible.
 // This is where you'd typically start any processes that
 // are required to ensure your UI is appropriately populated and
 // updated.
 }

 // Called after onStart has finished, in cases where an Activity is
 // started after having last been destroyed by the runtime rather than
 // through user or programmatic action (such as the user hitting back or
 // your app calling finish().
 @Override
 public void onRestoreInstanceState(Bundle savedInstanceState) {
 super.onRestoreInstanceState(savedInstanceState);

 // Restore UI state from the savedInstanceState.
 // This bundle has also been passed to onCreate.
 // Will only be called if the Activity has been
 // killed by the system since it was last visible.
 }

70 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

 // Called at the start of the active lifetime.
 @Override
 public void onResume() {
 super.onResume();

 // Resume any paused UI updates, threads, or processes required
 // by the Activity but suspended when it becomes inactive.
 // At this stage, your Activity is active and receiving input
 // from users actions.
 }

 // Called at the end of the active lifetime.
 @Override
 public void onPause() {
 super.onPause();

 // Suspend UI updates, threads, or CPU intensive processes
 // that don't need to be updated when the Activity isn't
 // the active foreground Activity. Note that in multi-screen
 // mode, paused Activities may still be visible, and as such
 // should continue performing required UI updates.
 }

 // Called when appropriate to save UI state changes at the
 // end of the active lifecycle.
 @Override
 public void onSaveInstanceState(Bundle savedInstanceState) {
 super.onSaveInstanceState(savedInstanceState);

 // Save UI state changes to the savedInstanceState.
 // This bundle will be passed to onCreate and
 // onRestoreInstanceState if the process is
 // killed and restarted by the run time. Note that
 // this handler may not be called if the runtime determines
 // that the Activity is being "permanently" terminated.
 }

 // Called at the end of the visible lifetime.
 @Override
 public void onStop() {
 super.onStop();

 // Suspend remaining UI updates, threads, or processing
 // that aren't required when the Activity isn't visible.
 // Persist all edits or state changes as your Activity
 // may be killed at any time after onStop has
 // completed.
 }

 // Sometimes called at the end of the full lifetime.
 @Override
 public void onDestroy() {
 super.onDestroy();

 // Clean up any resources including ending threads,
 // closing database connections etc.
 }

A Closer Look at Android Activities ❘ 71

As shown in the preceding code, you should always call back to the superclass when overriding these
event handlers.

Responding to Memory Pressure
The Android system will terminate applications without warning in order to free resources required
by any active and visible applications.

To provide the best possible user experience, Android must find a balance between killing applica-
tions to free resources and provide a responsive system, and retaining as many background apps as
possible to improve the experience of switching between apps.

You can help by overriding the onTrimMemory handler, to respond to system requests that you
reduce your memory usage. When killing application processes, the system will begin with empty
processes before moving on to background applications—those hosting Activities that aren’t visible
and that don’t have any running Services. In extreme cases, applications with visible Activities, or
even foreground Services, may be terminated to free resources for the application hosting the active
Activity.

The order in which applications are terminated is generally determined by the least-recently used
(LRU) list—where the applications that have been unused the longest are the first killed. However,
the run time does also consider the amount of memory potentially freed by killing each application,
and is more likely to kill those that offer higher gains. So the less memory you consume, the less
likely it is that your application will be terminated, and the better the overall system performance.

The onTrimMemory handler is available within each application component, including Activities and
Services. It provides an opportunity for well-behaved applications to free additional memory when
the system is running low on resources.

You should implement onTrimMemory to incrementally release memory based on current system con-
straints using the level parameter that provides context for the request. Note that the levels passed
into onTrimMemory don’t represent a simple linear progression, but rather a series of contextual
clues to help you decide how best to reduce overall system memory pressure:

TRIM_MEMORY_RUNNING_MODERATE—Your application is running and not being considered
for termination, but the system is beginning to feel memory pressure.

TRIM_MEMORY_RUNNING_LOW—Your application is running and not being considered for
termination, but the system is beginning to run significantly low on memory. Releasing
memory now will improve system (and therefore your application’s) performance.

TRIM_MEMORY_RUNNING_CRITICAL—Your application is running and not being considered
for termination, but the system is running extremely low on memory. The system will now
begin killing background processes if apps don’t free resources, so by releasing non-critical
resources now you can prevent performance degradation and reduce the chance of other
apps being terminated.

TRIM_MEMORY_UI_HIDDEN—Your application is no longer displaying a visible UI. This is
a good opportunity to release large resources that are used only by your UI. It’s considered
good practice to do this here, rather than within your onStop handler, as it will avoid purg-
ing/reloading UI resources if your UI quickly switches from hidden to visible.

72 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

TRIM_MEMORY_BACKGROUND—Your application is no longer visible and has been added to
the least-recently used (LRU) list—and is therefore a low-risk candidate for termination.
However, the system is running low on memory and may already be killing other apps on
the LRU list. Release resources that are easy to recover now, to reduce system pressure and
make your application less likely to be terminated.

TRIM_MEMORY_MODERATE—Your application is in the middle of the LRU list and the system
is running low on memory. If the system becomes further constrained for memory, there’s a
good chance your process will be killed.

TRIM_MEMORY_COMPLETE—Your application is one of the, if not the, most likely candidates
for termination if the system does not recover memory immediately. You should release
absolutely everything that’s not critical to resuming your application state.

Rather than compare the current level to these exact values, you should check if the level value is
greater or equal to a level you are interested in, allowing for future intermediate state, as shown in
Listing 3-5.

LISTING 3-5: Memory trim request event handlers

@Override
public void onTrimMemory(int level) {
 super.onTrimMemory(level);

 // Application is a candidate for termination.
 if (level >= TRIM_MEMORY_COMPLETE) {
 // Release all possible resources to avoid immediate termination.
 } else if (level >= TRIM_MEMORY_MODERATE) {
 // Releasing resources now will and make your app less likely
 // to be terminated.
 } else if (level >= TRIM_MEMORY_BACKGROUND) {
 // Release resources that are easy to recover now.
 }

 // Application is no longer visible.
 else if (level >= TRIM_MEMORY_UI_HIDDEN) {
 // Your application no longer has any visible UI. Free any resources
 // associated with maintaining your UI.
 }

 // Application is running and not a candidate for termination.
 else if (level >= TRIM_MEMORY_RUNNING_CRITICAL) {
 // The system will now begin killing background processes.
 // Release non-critical resources now to prevent performance degradation
 // and reduce the chance of other apps being terminated.
 } else if (level >= TRIM_MEMORY_RUNNING_MODERATE) {
 // Release resources here to alleviate system memory pressure and
 // improve overall system performance.
 } else if (level >= TRIM_MEMORY_RUNNING_LOW) {
 // The system is beginning to feel memory pressure.
 }
}

Introducing Fragments ❘ 73

NOTE You can retrieve your application process’s current trim level at any point
using the static getMyMemoryState method from the ActivityManager, which
will return the result via the passed in RunningAppProcessInfo parameter.
Additionally, to support API levels lower than 14, you can use the onLowMemory
handler as a fallback that’s roughly equivalent to the TRIM_MEMORY_COMPLETE
level.

INTRODUCING FRAGMENTS

Fragments enable you to divide your Activities into fully encapsulated reusable components, each
with its own life cycle and state.

Each Fragment is an independent module that is loosely coupled but tightly bound to the Activity
into which it is added. Fragments can either contain a UI or not, and can be used within multiple
Activities. Fragments that encapsulate a UI can be laid out in a variety of combinations to suit multi-
pane UIs, and also added to, removed from, and exchanged within a running Activity to help build
dynamic user interfaces.

Although it is not necessary to divide your Activities (and their corresponding layouts) into
Fragments, doing so can drastically improve the flexibility of your UI and make it easier for you to
adapt your user experience for new device configurations.

NOTE Fragments were introduced to Android as part of the Android 3.0
Honeycomb (API Level 11) release. They are now also available as part of the
Android Support Library, including through the use of the AppCompatActivity,
as we are using.

If you are using the compatibility library, it’s critical that you ensure that all
your Fragment-related imports and class references are using only the Support
Library classes. The native and Support Library set of Fragment packages are
closely related, but their classes are not interchangeable.

Creating New Fragments
Extend the Fragment class to create a new Fragment, (optionally) defining the UI and implementing
the functionality it encapsulates.

In most circumstances you’ll want to assign a UI to your Fragment. It is possible to create a
Fragment that doesn’t include a UI but instead provides background behavior for an Activity. This is
explored in more detail later in this chapter.

If your Fragment does require a UI, override the onCreateView handler to inflate and return the
required View hierarchy, as shown in the Fragment skeleton code in Listing 3-6.

74 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

LISTING 3-6: Fragment skeleton code

import android.content.Context;
import android.net.Uri;
import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class MySkeletonFragment extends Fragment {

 public MySkeletonFragment() {
 // Required empty public constructor
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 // Inflate the layout for this fragment
 return inflater.inflate(R.layout.my_skeleton_fragment_layout,
 container, false);
 }
}

You can create a layout in code using layout View Groups; however, as with Activities, the preferred
way to design Fragment UI layouts is by inflating an XML resource.

Unlike Activities, Fragments don’t need to be registered in your manifest. This is because Fragments
can exist only when embedded into an Activity, with their life cycles dependent on that of the
Activity to which they’ve been added.

The Fragment Life Cycle
The life cycle events of a Fragment mirror those of its parent Activity; however, after the contain-
ing Activity is in its active—resumed—state, adding or removing a Fragment will affect its life cycle
independently.

Fragments include a series of event handlers that mirror those in the Activity class. They are trig-
gered as the Fragment is created, started, resumed, paused, stopped, and destroyed. Fragments also
include a number of additional callbacks that indicate attaching and detaching the Fragment to
and from its parent’s Context, creation (and destruction) of the Fragment’s View hierarchy, and the
completion of the creation of the parent Activity.

Figure 3-4 summarizes the Fragment life cycle.

The skeleton code in Listing 3-7 shows the stubs for the life-cycle handlers available in a Fragment.
Comments within each stub describe the actions you should consider taking on each state change
event.

Introducing Fragments ❘ 75

Fragment.
onAttach

Fragment.
onCreate

Fragment.
onCreateView

Fragment.
onDetach

Fragment.
onDestroy

Fragment.
onDestroyView

Fragment.
onActivityCreated

Fragment.
onStart

Fragment.
onResume

Visible

Fragment returns to the
layout from the backstack

Active

Fragment.
onStop

Fragment.
onPause

FIGURE 3-4

NOTE You must call back to the superclass when overriding most of these event
handlers.

LISTING 3-7: Fragment life cycle event handlers

public class MySkeletonFragment extends Fragment {

 // Required empty public constructor
 public MySkeletonFragment() {}

 // Called when the Fragment is attached to its parent Activity.
 @Override
 public void onAttach(Context context) {
 super.onAttach(context);
 // Get a reference to a Context representing
 // the parent component.
 }

 // Called to do the initial creation of the Fragment.
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // Initialize the Fragment.
 }

 // Called once the Fragment has been created in order for it to
 // create its user interface.
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 // Create, or inflate the Fragment's UI, and return it.
 // If this Fragment has no UI then return null.
 return inflater.inflate(R.layout.my_skeleton_fragment_layout,
 container, false);
 }

76 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

 // Called once the parent Activity and the Fragment's UI have
 // been created.
 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 // Complete the Fragment initialization – particularly anything
 // that requires the parent Activity to be initialized or the
 // Fragment's view to be fully inflated.
 }

 // Called at the start of the visible lifetime.
 @Override
 public void onStart() {
 super.onStart();

 // Apply any required UI change now that the Fragment is visible.
 }

 // Called at the start of the active lifetime.
 @Override
 public void onResume() {
 super.onResume();

 // Resume any paused UI updates, threads, or processes required
 // by the Fragment but suspended when it became inactive.
 }

 // Called at the end of the active lifetime.
 @Override
 public void onPause() {
 super.onPause();

 // Suspend UI updates, threads, or CPU intensive processes
 // that don't need to be updated when the Activity isn't
 // the active foreground activity.
 // Persist all edits or state changes
 // as after this call the process is likely to be killed.
 }

 // Called to save UI state changes at the
 // end of the active lifecycle.
 @Override
 public void onSaveInstanceState(Bundle savedInstanceState) {
 super.onSaveInstanceState(savedInstanceState);

 // Save UI state changes to the savedInstanceState.
 // This bundle will be passed to onCreate, onCreateView, and
 // onCreateView if the parent Activity is killed and restarted.
 }

 // Called at the end of the visible lifetime.
 @Override
 public void onStop() {
 super.onStop();

Introducing Fragments ❘ 77

 // Suspend remaining UI updates, threads, or processing
 // that aren't required when the Fragment isn't visible.
 }

 // Called when the Fragment's View has been detached.
 @Override
 public void onDestroyView() {
 super.onDestroyView();

 // Clean up resources related to the View.
 }

 // Called at the end of the full lifetime.
 @Override
 public void onDestroy() {
 super.onDestroy();

 // Clean up any resources including ending threads,
 // closing database connections etc.
 }

 // Called when the Fragment has been detached from its parent Activity.
 @Override
 public void onDetach() {
 super.onDetach();

 // Clean up any references to the parent Activity
 // including references to its Views or classes. Typically setting
 // those references to null.
 }
}

Fragment-Specific Life-Cycle Events
Most of the Fragment life-cycle events correspond to their equivalents in the Activity class, which
were covered in detail earlier in this chapter. Those that remain are specific to Fragments and the
way in which they’re added to their parent Activity.

Attaching and Detaching Fragments from the Parent Context
The full lifetime of your Fragment begins when it’s bound to its parent’s Context and ends when it’s
been detached. These events are represented by the calls to onAttach and onDetach, respectively.

The onAttach event is triggered before the Fragment’s UI has been created, before the Fragment
itself or its parent have finished their initialization. Typically, the onAttach event is used to gain a
reference to the parent component’s Context in preparation for further initialization tasks.

The onDetach handler will be called if you remove a Fragment from its parents, as well as if the
component containing your Fragment is destroyed. As with any handler called after a Fragment/
Activity has become paused, it’s possible that onDetach will not be called if the parent component’s
process is terminated before completing its full life cycle.

78 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

Creating and Destroying Fragments
The created lifetime of your Fragment occurs between the first call to onCreate and the final call to
onDestroy. It’s not uncommon for an Activity’s process to be terminated without the corresponding
onDestroy method being called, so a Fragment can’t rely on its onDestroy handler being triggered.

As with Activities, you should use the onCreate method to initialize your Fragment. It’s good prac-
tice to create any class-scoped objects here to ensure they’re created only once in the Fragment’s
lifetime.

Note that unlike Activities, the Fragment UI is not inflated within the onCreate handler.

Creating and Destroying User Interfaces
A Fragment’s UI is initialized (and destroyed) within a new set of event handlers: onCreateView and
onDestroyView, respectively.

Use the onCreateView method to initialize your Fragment: inflate the UI and get references (and
bind data to) the Views it contains.

Once you have inflated your View hierarchy, it should be returned from the handler:

return inflater.inflate(R.layout.my_skeleton_fragment_layout,
 container, false);

If your Fragment needs to interact with the UI of a parent Activity, wait until the onActivity-
Created event has been triggered. This signifies that the containing Activity has completed its
initialization and its UI has been fully constructed.

Fragment States
The fate of a Fragment is inextricably bound to that of the component to which it belongs. As a
result, Fragment state transitions are closely related to the corresponding Activity state transitions.

Like Activities, Fragments are “active” when they belong to an Activity that is focused and in the
foreground. When an Activity is paused or stopped, the Fragments it contains are also paused and
stopped, and the Fragments contained by an inactive Activity are also inactive. When an Activity is
finally destroyed, each Fragment it contains is likewise destroyed.

As the Android memory manager regularly closes applications to free resources, the Fragments
within those Activities are also destroyed.

While Activities and their Fragments are tightly bound, one of the advantages of using Fragments
to compose your Activity’s UI is the flexibility to dynamically add or remove Fragments from an
Activity. As a result, each Fragment can progress through its full, visible, and active life cycle several
times within the active lifetime of its parent Activity.

Whatever the trigger for a Fragment’s transition through its life cycle, managing its state transitions
is critical in ensuring a seamless user experience. There should be no difference in a Fragment mov-
ing from a detached, paused, stopped, or inactive state back to active, so it’s important to save all UI
state and persist all data when a Fragment is paused or stopped. Like an Activity, when a Fragment
becomes active again, it should restore that saved state.

Introducing Fragments ❘ 79

Introducing the Fragment Manager
Each Activity includes a Fragment Manager to manage the Fragments it contains. As we’re using
the support library, we’ll access the Fragment Manager using the getSupportFragmentManager
method:

FragmentManager fragmentManager = getSupportFragmentManager();

The Fragment Manager provides the methods used to access the Fragments currently added to the
Activity, and to perform Fragment Transactions to add, remove, and replace Fragments.

Adding Fragments to Activities
The simplest way to add a Fragment to an Activity is by including it within the Activity’s layout
using the fragment tag, as shown in Listing 3-8.

LISTING 3-8: Adding Fragments to Activities using XML layouts

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <fragment android:name="com.professionalandroid.apps.MyListFragment"
 android:id="@+id/my_list_fragment"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:layout_weight="1"
 />
 <fragment android:name="com.professionalandroid.apps.DetailFragment"
 android:id="@+id/details_fragment"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:layout_weight="3"
 />
</LinearLayout>

Once the Fragment has been inflated, it becomes a View Group within the view hierarchy, laying out
and managing its UI within the Activity.

This technique works well when you use Fragments to define a set of static layouts based on
various screen sizes. If you plan to dynamically modify your layouts by adding, removing, and
replacing Fragments at run time, a better approach is to create layouts that use container Views into
which Fragments can be placed at run time, based on the current application state.

Listing 3-9 shows an XML snippet that you could use to support this approach.

80 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

LISTING 3-9: Specifying Fragment layouts using container views

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <FrameLayout
 android:id="@+id/list_container"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:layout_weight="1"
 />
 <FrameLayout
 android:id="@+id/details_container"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:layout_weight="3"
 />
</LinearLayout>

You then need to create and add the corresponding Fragments to their appropriate parent containers
within your Activity using Fragment Transactions, as described in the next section.

Using Fragment Transactions
Fragment Transactions are used to add, remove, and replace Fragments within an Activity at run
time. Using Fragment Transactions, you can make your layouts dynamic—that is, they will adapt
and change based on user interactions and application state.

Each Fragment Transaction can include any combination of supported actions, including adding,
removing, or replacing Fragments. They also support the specification of the transition animations
to display and whether to add a Transaction to the back stack.

A new Fragment Transaction is created using the beginTransaction method from the Fragment
Manager. Modify the layout using the add, remove, and replace methods, as required, before set-
ting the animations to display, and setting the appropriate back-stack behavior. When you are ready
to execute the change, call commit to add the transaction to the UI queue asynchronously, or com-
mitNow to block until the transaction is fully complete:

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();

// Add, remove, and/or replace Fragments.
// Specify animations.
// Add to back stack if required.

fragmentTransaction.commitNow();

Using commitNow is the preferred alternative, but is only available if the current transaction is not
being added to the back stack. This option, as well as each transaction type and related options, is
explored in the following sections.

Introducing Fragments ❘ 81

Adding, Removing, and Replacing Fragments
When adding a new UI Fragment, begin by creating it and pass the new Fragment instance, along
with the container View into which the Fragment will be placed, to the add method of your
Fragment Transaction. Optionally, you can specify a tag that can later be used to find the Fragment
when using the findFragmentByTag method:

final static String MY_FRAGMENT_TAG = "detail_fragment";

With the tag defined, you can use the add method as follows:

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();
fragmentTransaction.add(R.id.details_container, new DetailFragment(),
 MY_FRAGMENT_TAG);
fragmentTransaction.commitNow();

To remove a Fragment, you first need to find a reference to it, usually using either the Fragment
Manager’s findFragmentById or findFragmentByTag methods. Then pass the found Fragment
instance as a parameter to the remove method of a Fragment Transaction:

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();
Fragment fragment = fragmentManager.findFragmentByTag(MY_FRAGMENT_TAG);
fragmentTransaction.remove(fragment);
fragmentTransaction.commitNow();

You can also replace one Fragment with another. Using the replace method, specify the container
ID containing the Fragment to be replaced, the Fragment with which to replace it, and (optionally) a
tag to identify the newly inserted Fragment:

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();
fragmentTransaction.replace(R.id.details_container,
 new DetailFragment(selected_index),
 MY_FRAGMENT_TAG);
fragmentTransaction.commitNow();

Fragments and Configuration Changes
In order to maintain a consistent UI state between configuration changes, all the Fragments added
to your UI will automatically be restored when an Activity is re-created following an orientation
change or unexpected termination.

This is particularly important if you are populating your Activity layout with Fragments within
the onCreate handler—in which case you must check if the Fragments have already been added to
avoid creating multiple copies.

You can do this either by checking for Fragments before adding them, or if this is an Activity restart
by checking if the savedInstanceState is null:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 if (savedInstanceState == null) {

82 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

 // Create and add your Fragments.
 } else {
 // Get references to Fragments that have already been restored.
 }
}

Using the Fragment Manager to Find Fragments
To find Fragments within your Activity, use the Fragment Manager’s findFragmentById method. If
you have added your Fragment to the Activity layout in XML, you can use the Fragment’s resource
identifier:

MyFragment myFragment =
 (MyFragment)fragmentManager.findFragmentById(R.id.MyFragment);

If you’ve added a Fragment using a Fragment Transaction, you can instead specify the resource iden-
tifier of the container View to which you added the Fragment you want to find:

DetailFragment detailFragment =
 (DetailFragment)fragmentManager.findFragmentById(R.id.details_container);

Alternatively, you can use the findFragmentByTag method to search for the Fragment using the tag
you specified in the Fragment Transaction:

DetailFragment detailFragment =
 (DetailFragment)fragmentManager.findFragmentByTag(MY_FRAGMENT_TAG);

Later in this chapter you are introduced to Fragments that don’t include a UI. The findFragment-
ByTag method is essential for interacting with these Fragments. Because they’re not part of the
Activity’s View hierarchy, they don’t have a resource identifier or a container resource identifier to
pass in to the findFragmentById method.

Populating Dynamic Activity Layouts with Fragments
If you’re dynamically changing the composition and layout of your Fragments at run time, it’s good
practice to define only the parent containers within your XML layout and populate it exclusively
using Fragment Transactions at run time to ensure consistency when configuration changes (such as
screen rotations) cause the UI to be re-created, as described earlier.

Listing 3-10 shows the skeleton code used to populate an Activity’s layout with Fragments at run
time; in this case we test for the existence of a Fragment before creating and adding a new one.

LISTING 3-10: Populating Fragment layouts using container views

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Inflate the layout containing the Fragment containers
 setContentView(R.layout.fragment_container_layout);

 FragmentManager fragmentManager = getSupportFragmentManager();

Introducing Fragments ❘ 83

 // Check to see if the Fragment containers have been populated
 // with Fragment instances. If not, create and populate the layout.
 DetailFragment detailsFragment =
 (DetailFragment) fragmentManager.findFragmentById(R.id.details_container);

 if (detailsFragment == null) {
 FragmentTransaction ft = fragmentManager.beginTransaction();
 ft.add(R.id.details_container, new DetailFragment());
 ft.add(R.id.list_container, new MyListFragment());
 ft.commitNow();
 }
}

To ensure a consistent user experience, Android persists the Fragment layout and associated back
stack when an Activity is restarted due to a configuration change.

For the same reason, when creating alternative layouts for run time configuration changes, it’s con-
sidered good practice to include any view containers involved in any transactions in all the layout
variations. Failing to do so may result in the Fragment Manager attempting to restore Fragments to
containers that don’t exist in the new layout.

To remove a Fragment container in a given orientation layout, simply mark its visibility attribute
as gone in your layout definition, as shown in Listing 3-11.

LISTING 3-11: Hiding Fragments in layout variations

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <FrameLayout
 android:id="@+id/list_container"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:layout_weight="1"
 />
 <FrameLayout
 android:id="@+id/details_container"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:layout_weight="3"
 android:visibility="gone"
 />
</LinearLayout>

Fragments and the Back Stack
Earlier in this chapter we described the concept of Activity stacks—the logical stacking of Activities
that are no longer visible—which allow users to navigate back to previous screens using the Back
button.

84 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

Fragments enable you to create dynamic Activity layouts that can be modified to present significant
changes in the UIs. In some cases these changes could be considered a new screen—in which case a
user may reasonably expect the Back button to return to the previous layout. This involves reversing
previously executed Fragment Transactions.

Android provides a convenient technique for providing this functionality. To add the Fragment
Transaction to the back stack, call addToBackStack on a Fragment Transaction before calling
commit. It’s important to note that commitNow cannot be used when applying Fragment
Transactions that are added to the back stack.

In the following code snippet, we have a layout that displays either the list or the detail view. This
transaction will remove the list Fragment and add the detail Fragment, and adds the change to the
back stack:

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();

// Find and remove the list Fragment
Fragment fragment = fragmentManager.findFragmentById(R.id.ui_container);
fragmentTransaction.remove(fragment);

// Create and add the detail Fragment
fragmentTransaction.add(R.id.ui_container, new DetailFragment());

// Add the Fragment Transaction to the backstack and commit the change.
fragmentTransaction.addToBackStack(BACKSTACK_TAG);
fragmentTransaction.commit();

Pressing the Back button will then reverse the previous Fragment Transaction and return the UI to
the earlier layout.

When the preceding Fragment Transaction is committed, the List Fragment is stopped, detached,
and moved to the back stack, rather than simply destroyed. If the Transaction is reversed, the Detail
Fragment is destroyed, and the List Fragment is restarted and reattached to the Activity.

Animating Fragment Transactions
To apply one of the default transition animations, use the setTransition method on any Fragment
Transaction, passing in one of the FragmentTransaction.TRANSIT_FRAGMENT_* constants:

fragementTransaction.setTransition(FragmentTransaction.TRANSIT_FRAGMENT_OPEN);

You can also apply custom animations to Fragment Transactions by using the setCustomAnimations
method, before calling the add or remove methods in your Fragment Transaction.

This method accepts two Object Animator XML resources: one for Fragments that are being added
to the layout, and another for Fragments being removed:

fragmentTransaction.setCustomAnimations(android.R.anim.fade_in,
 android.R.anim.fade_out);

This is a particularly useful way to add seamless dynamic transitions when you are replacing
Fragments within your layout. You can find more details on creating custom Animator and
Animation resources in Chapter 14, “Advanced Customization of Your User Interface.”

Introducing Fragments ❘ 85

Communicating Between Fragments and Activities
When your Fragment needs to share events with its host Activity (such as signaling UI selections),
it’s good practice to create a callback interface within the Fragment that a host Activity must
implement.

Listing 3-12 shows a code snippet from within a Fragment class that defines a public event listener
interface. The onAttach handler is overridden to obtain a reference to the host Activity, confirming
that it implements the required interface. The onDetach handler sets our reference to null, and the
onButtonPressed method is used as a placeholder example that calls the interface method on our
parent Activity.

LISTING 3-12: Defining Fragment event callback interfaces

public class MySkeletonFragment extends Fragment {

 public interface OnFragmentInteractionListener {
 // TODO Update argument type and name
 void onFragmentInteraction(Uri uri);
 }

 private OnFragmentInteractionListener mListener;

 public MySkeletonFragment() {}

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 // Inflate the layout for this fragment
 return inflater.inflate(R.layout.my_skeleton_fragment_layout,
 container, false);
 }

 @Override
 public void onAttach(Context context) {
 super.onAttach(context);
 if (context instanceof OnFragmentInteractionListener) {
 mListener = (OnFragmentInteractionListener) context;
 } else {
 throw new RuntimeException(context.toString()
 + " must implement OnFragmentInteractionListener");
 }
 }

 @Override
 public void onDetach() {
 super.onDetach();
 mListener = null;
 }

86 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

 public void onButtonPressed(Uri uri) {
 if (mListener != null) {
 mListener.onFragmentInteraction(uri);
 }
 }
}

You can also use the getContext method within any Fragment to return a reference to the Context
of the component within which it’s embedded.

Although it’s possible for Fragments to communicate with each other using the host Activity’s
Fragment Manager, it’s generally considered better practice to use the Activity as an intermediary.
This allows the Fragments to be as independent and loosely coupled as possible, with the respon-
sibility for deciding how an event in one Fragment should affect the overall UI falling to the host
Activity.

Fragments Without User Interfaces
In most circumstances, Fragments are used to encapsulate modular components of the UI; however,
you can also create a Fragment without a UI to provide background behavior that persists across
Activity restarts caused by configuration changes.

You can choose to have an active Fragment retain its current instance when its parent Activity is
re-created using the setRetainInstance method. After you call this method, the Fragment’s life
cycle will change.

Rather than being destroyed and re-created with its parent Activity, the same Fragment instance is
retained when the Activity restarts. It will receive the onDetach event when the parent Activity is
destroyed, followed by the onAttach, onCreateView, and onActivityCreated events as the new
parent Activity is instantiated.

The following snippet shows the skeleton code for a Fragment without a UI:

public class WorkerFragment extends Fragment {

 public final static String MY_FRAGMENT_TAG = "my_fragment";

 @Override
 public void onAttach(Context context) {
 super.onAttach(context);

 // Get a type-safe reference to the parent context.
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Create ongoing threads and tasks.
 }

Building an Earthquake Viewer Application ❘ 87

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 // Initiate worker threads and tasks.
 }
}

To add this Fragment to your Activity, create a new Fragment Transaction, specifying a tag to use to
identify it. Because the Fragment has no UI, it should not be associated with a container View and
must not be added to the back stack:

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();

fragmentTransaction.add(new WorkerFragment(), WorkerFragment.MY_FRAGMENT_TAG);

fragmentTransaction.commitNow();

Use the findFragmentByTag from the Fragment Manager to find a reference to it later:

WorkerFragment workerFragment
 = (WorkerFragment)fragmentManager
 .findFragmentByTag(WorkerFragment.MY_FRAGMENT_TAG);

BUILDING AN EARTHQUAKE VIEWER APPLICATION

In the following example you’ll start to create an app that will use a feed of earthquake data from
the United States Geological Survey (USGS) to display a list (and eventually a map) of recent
earthquakes.

In this chapter we’ll begin by creating the Activity UI for this application using Activities, layouts,
and Fragments; you will return to this earthquake application several times in the following
chapters, gradually adding more features and functionality.

Figure 3-5 shows the basic application architecture that we’ll construct using the following steps.

Activity

RecyclerView

ViewHolder

RecyclerView.Adapter

Earthquake
List Item Layout

Displaying list of
earthquakes

Populated
Earthquake List Item

Layouts

List<Earthquake> Earthquake

FIGURE 3-5

88 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

NOTE To simplify readability, each of these examples excludes the import
statements. If you are using Android Studio, you can enable “automati-
cally add unambiguous imports on the fly” within the Settings dialog under
Editor ➪ General ➪ Auto Import, as shown in Figure 3-6, to populate the
import statements required to support the classes used in your code as you
type. Alternatively, you can press Alt+Enter on each unresolved class name as
required.

FIGURE 3-6

 1. Start by creating a new Earthquake project. It should support phones and tablets, with a min-
imum SDK of API 16. When prompted, name the primary Activity EarthquakeMainActivity
using the Empty Activity template. It should also use the App Compatibility library, which is
enabled by selecting the Backwards Compatibility (AppCompat) checkbox.

 2. Create a new public Earthquake class. This class will be used to store the details (id, date,
details, location, magnitude, and link) of each earthquake. Override the toString method to
provide the string that will be used to represent each earthquake in the earthquake list:

import java.util.Date;
import java.text.SimpleDateFormat;
import java.util.Locale;

import android.location.Location;

public class Earthquake {
 private String mId;
 private Date mDate;
 private String mDetails;
 private Location mLocation;
 private double mMagnitude;
 private String mLink;

 public String getId() { return mId; }
 public Date getDate() { return mDate; }
 public String getDetails() { return mDetails; }

Building an Earthquake Viewer Application ❘ 89

 public Location getLocation() { return mLocation; }
 public double getMagnitude() { return mMagnitude; }
 public String getLink() { return mLink; }

 public Earthquake(String id, Date date, String details,
 Location location,
 double magnitude, String link) {
 mId = id;
 mDate = date;
 mDetails = details;
 mLocation = location;
 mMagnitude = magnitude;
 mLink = link;
 }

 @Override
 public String toString() {
 SimpleDateFormat sdf = new SimpleDateFormat("HH.mm", Locale.US);
 String dateString = sdf.format(mDate);
 return dateString + ": " + mMagnitude + " " + mDetails;
 }

@Override
 public boolean equals(Object obj) {
 if (obj instanceof Earthquake)
 return (((Earthquake)obj).getId().contentEquals(mId));
 else
 return false;
 }
}

 3. Create a new dimens.xml XML resource file in the res/values folder to store dimension
resource values. Create new dimensions for screen margins based on the 16dp recommended
by the Android design guidelines.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <!-- Default screen margins, per the Android Design guidelines. -->
 <dimen name="activity_horizontal_margin">16dp</dimen>
 <dimen name="activity_vertical_margin">16dp</dimen>
 <dimen name="text_margin">16dp</dimen>
</resources>

 4. Now create a new list_item_earthquake.xml layout resource in the res/layout folder.
This will be used to display each earthquake in the list. For now, use a simple TextView that
displays a single line of text using the margin from Step 3, and the Android framework’s
list item text appearance. We’ll return to this in Chapter 5 to create a richer, more complex
layout:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <TextView
 android:id="@+id/list_item_earthquake_details"
 android:layout_width="match_parent"

90 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

 android:layout_height="wrap_content"
 android:layout_margin="@dimen/text_margin"
 android:textAppearance="?attr/textAppearanceListItem"/>
</FrameLayout>

 5. Create a new EarthquakeListFragment class that extends Fragment and stores an array of
Earthquakes:

public class EarthquakeListFragment extends Fragment {

 private ArrayList<Earthquake> mEarthquakes =
 new ArrayList<Earthquake>();

 public EarthquakeListFragment() {
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 }
}

 6. Our list of Earthquakes will be displayed using a RecyclerView within the Fragment
created in Step 5. A Recycler View is a visual component that displays a scrolling list of
items, we explore the Recycler View in more detail in Chapter 5. To begin, add a dependency
to the Recycler View library in the app module build.gradle file:

dependencies {
 [... Existing dependencies ...]
 implementation 'com.android.support:recyclerview-v7:27.1.1'
}

 7. Now create a new fragment_earthquake_list.xml layout file in the res/layout folder,
which defines the layout for the Fragment class created in Step 5; it should include a single
RecyclerView element:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.RecyclerView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_marginLeft="16dp"
 android:layout_marginRight="16dp"
 app:layoutManager="LinearLayoutManager"
/>

 8. Return to the Earthquake List Fragment class and override the onCreateView method to
inflate the layout from Step 7:

Building an Earthquake Viewer Application ❘ 91

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View view = inflater.inflate(R.layout.fragment_earthquake_list,
 container, false);
 return view;
}

 9. Modify the activity_earthquake_main.xml, replacing the default layout with a
FrameLayout that will be used as the container for the Fragment you created in Step 5. Be
sure to give it an ID so that you can reference it from the Activity code:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/main_activity_frame">
</FrameLayout>

 10. Return to the Earthquake Main Activity, and update the onCreate method to use the
Fragment Manager to add the Earthquake List Fragment from Step 5, to the Frame Layout
we defined in Step 9. Note that if your Activity is re-created due to a device configuration
change, any Fragments added using the Fragment Manager will automatically be re-added.
As a result, we only add a new Fragment if this is not a configuration-change restart; other-
wise, we can find it using its tag:

private static final String TAG_LIST_FRAGMENT = "TAG_LIST_FRAGMENT";

EarthquakeListFragment mEarthquakeListFragment;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_earthquake_main);

 FragmentManager fm = getSupportFragmentManager();

 // Android will automatically re-add any Fragments that
 // have previously been added after a configuration change,
 // so only add it if this isn't an automatic restart.
 if (savedInstanceState == null) {
 FragmentTransaction ft = fm.beginTransaction();

 mEarthquakeListFragment = new EarthquakeListFragment();
 ft.add(R.id.main_activity_frame,
 mEarthquakeListFragment, TAG_LIST_FRAGMENT);

 ft.commitNow();
 } else {
 mEarthquakeListFragment =
 (EarthquakeListFragment)fm.findFragmentByTag(TAG_LIST_FRAGMENT);
 }
}

 11. Now create a new EarthquakeRecyclerViewAdapter class that extends RecyclerView
.Adapter, and within it create a new ViewHolder class that extends RecyclerView

92 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

.ViewHolder. The View Holder will be used to hold a reference to each View from the
Earthquake item layout definition in Step 4, when you bind the earthquake values to it in
the onBindViewHolder method of the Earthquake Recycler View Adapter. The role of the
Earthquake Recycler View Adapter is to provide populated View layouts based on the list of
Earthquakes it maintains. We’ll look at the Recycler View and its adapter in more detail in
Chapter 5.

public class EarthquakeRecyclerViewAdapter extends

RecyclerView.Adapter<EarthquakeRecyclerViewAdapter.ViewHolder> {

 private final List<Earthquake> mEarthquakes;

 public EarthquakeRecyclerViewAdapter(List<Earthquake> earthquakes) {
 mEarthquakes = earthquakes;
 }

 @Override
 public ViewHolder onCreateViewHolder(ViewGroup parent, int viewType) {
 View view = LayoutInflater.from(parent.getContext())
 .inflate(R.layout.list_item_earthquake,
 parent, false);
 return new ViewHolder(view);
 }

 @Override
 public void onBindViewHolder(final ViewHolder holder, int position) {
 holder.earthquake = mEarthquakes.get(position);
 holder.detailsView.setText(mEarthquakes.get(position).toString());
 }

 @Override
 public int getItemCount() {
 return mEarthquakes.size();
 }

 public class ViewHolder extends RecyclerView.ViewHolder {
 public final View parentView;
 public final TextView detailsView;
 public Earthquake earthquake;

 public ViewHolder(View view) {
 super(view);
 parentView = view;
 detailsView = (TextView)
 view.findViewById(R.id.list_item_earthquake_details);
 }

 @Override
 public String toString() {
 return super.toString() + " '" + detailsView.getText() + "'";
 }
 }
}

Building an Earthquake Viewer Application ❘ 93

 12. Return to the Earthquake List Fragment and update onCreateView to get a refer-
ence to the Recycler View, and override the onViewCreated method to assign the
EarthquakeRecyclerViewAdapter from Step 11 to the Recycler View:

private RecyclerView mRecyclerView;
private EarthquakeRecyclerViewAdapter mEarthquakeAdapter =
 new EarthquakeRecyclerViewAdapter(mEarthquakes);

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View view = inflater.inflate(R.layout.fragment_earthquake_list,
 container, false);

 mRecyclerView = (RecyclerView) view.findViewById(R.id.list);

 return view;
}

@Override
public void onViewCreated(View view, Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 // Set the Recycler View adapter
 Context context = view.getContext();
 mRecyclerView.setLayoutManager(new LinearLayoutManager(context));
 mRecyclerView.setAdapter(mEarthquakeAdapter);
}

 13. Still within the Earthquake List Fragment, add a setEarthquakes method that takes a List
of Earthquakes, checks for duplicates, and then adds each new Earthquake to the Array List.
It should also notify the Recycler View Adapter that a new item has been inserted:

public void setEarthquakes(List<Earthquake> earthquakes) {
 for (Earthquake earthquake: earthquakes) {
 if (!mEarthquakes.contains(earthquake)) {
 mEarthquakes.add(earthquake);
 mEarthquakeAdapter
 .notifyItemInserted(mEarthquakes.indexOf(earthquake));
 }
 }
}

 14. In Chapter 7 you’ll learn how to download and parse the USGS feed for earthquakes, but to
confirm that your application is working, update your onCreate method of the Earthquake
Main Activity to create some dummy Earthquakes—ensuring that you’re importing the
java.util.Date and java.util.Calendar libraries for the date/time functions. Once cre-
ated, pass the new Earthquakes to your Earthquake List Fragment using its setEarthquakes
method:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_earthquake_main);

94 ❘ CHAPTER 3 ApplicAtions And Activities And FrAgments, oh my!

 FragmentManager fm = getSupportFragmentManager();
 if (savedInstanceState == null) {
 FragmentTransaction ft = fm.beginTransaction();
 mEarthquakeListFragment = new EarthquakeListFragment();
 ft.add(R.id.main_activity_frame, mEarthquakeListFragment,
 TAG_LIST_FRAGMENT);
 ft.commitNow();
 } else {
 mEarthquakeListFragment =
 (EarthquakeListFragment)fm.findFragmentByTag(TAG_LIST_FRAGMENT);
 }

 Date now = Calendar.getInstance().getTime();
 List<Earthquake> dummyQuakes = new ArrayList<Earthquake>(0);
 dummyQuakes.add(new Earthquake("0", now, "San Jose", null, 7.3, null));
 dummyQuakes.add(new Earthquake("1", now, "LA", null, 6.5, null));

 mEarthquakeListFragment.setEarthquakes(dummyQuakes);
}

 15. When you run your project, you should see a Recycler View that features the two dummy
earthquakes, as shown in Figure 3-7.

FIGURE 3-7

Defining the Android Manifest
and Gradle Build Files, and
Externalizing Resources

WHAT’S IN THIS CHAPTER?

 ➤ Understanding your application’s manifest

 ➤ Configuring your application’s build files

 ➤ Creating externalized resources

 ➤ Using resources in code and referencing them within other
resources

 ➤ Using system-defined resources

 ➤ Using resources to provide dynamic support for internationalization
and different device configurations

 ➤ Handling runtime configuration changes

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The code download for this chapter is found at www.wrox.com:

 ➤ Snippets_ch4.zip

4

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

96 ❘ CHAPTER 4 Defining the AnDroiD MAnifest AnD grADle BuilD files, AnD externAlizing resources

THE MANIFEST, BUILD FILES, AND RESOURCES

Each Android project includes a manifest file that defines the structure and metadata of your appli-
cation, its components, and its requirements.

In this chapter you learn how to configure your application manifest, as well as understand how
to modify the Gradle build configuration files. These Gradle build files are used to define required
dependencies, and define parameters when compiling and building your apps.

You should always provide the best possible experience for users, no matter which country they’re
in or which of the wide variety of Android device types, form factors, and screen sizes they’re using.
In this chapter, you learn how to externalize resources, and use the resource framework to provide
optimized resources to ensure your applications run seamlessly on different hardware (particularly
different screen resolutions and pixel densities), in different countries, and supporting multiple
languages.

INTRODUCING THE ANDROID MANIFEST

Each Android project includes a manifest file, AndroidManifest.xml. Within Android Studio, you
can access the application manifest from the app/manifests folder as shown in Figure 4-1.

FIGURE 4-1

The manifest defines the structure and metadata of your application, its components, and its
requirements.

Your manifest includes nodes for each of the Activities, Services, Content Providers, and Broadcast
Receivers that make up your application and, using Intent Filters and Permissions, determines how
they interact with each other and with other applications.

Introducing the Android Manifest ❘ 97

The manifest is made up of a root manifest tag with a package attribute set to the project’s unique
package name. It should also include an xmlns:android attribute that supplies several system attri-
butes required within the file.

The following XML snippet shows a typical manifest root node:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.professionalandroid.apps.helloworld" >
 [... manifest nodes ...]
</manifest>

The manifest specifies application metadata (such as its icon and theme) within the top-level
application node. Additional top-level nodes can specify any required permissions, unit tests, and
define hardware, screen, or platform requirements (as described in the following section).

The following list gives a summary of some of the available manifest sub-node tags and provides
an XML snippet demonstrating how each tag is used:

 ➤ uses-feature—Android is available on a wide variety of hardware platforms, you can use
uses-feature nodes to specify hardware and software features your application requires in
order to properly function.

Note that this will prevent your application from being installed on a device that does not
include a specified feature, such as NFC hardware in the following snippet:

<uses-feature android:name="android.hardware.nfc" />

Use this node only if you want to prevent your application being installed on devices that
don’t include certain features. Currently, supported required features include the following
categories:

 ➤ Audio—For applications that require a low-latency or pro-level audio pipeline, or
require microphone input.

 ➤ Bluetooth—Where a Bluetooth or BTLE radio is required.

 ➤ Camera—For applications that require a camera. You can also require (or set as
optional) front- or rear-facing, autofocus, manual post-processing, manual sensor,
flash, or RAW support.

 ➤ Device Hardware UI—Where the application is designed for a specific device user
interface: such as automotive or watch.

 ➤ Fingerprint—Requires biometric hardware capable of reading fingerprints.

 ➤ Gamepad—For games (or apps) that require game controller input, either from the
device itself or from a connected gamepad.

 ➤ Infrared—Indicates a requirement for infrared (IR) capabilities (typically to commu-
nicate with other consumer IR devices).

98 ❘ CHAPTER 4 Defining the AnDroiD MAnifest AnD grADle BuilD files, AnD externAlizing resources

 ➤ Location—If you require location-based services. You can also specify either network
or GPS support explicitly.

 ➤ NFC—Requires NFC (near-field communications) support.

 ➤ OpenGL ES hardware—The application requires the OpenGL ES Android Extension
Pack installed on the device.

 ➤ Sensors—Enables you to specify a requirement for any of the potentially available
hardware sensors, including a accelerometer, barometer, compass, gyroscope, sen-
sors to detect ambient temperature, heart rate, light, proximity, humidity, and a step
counter and step detector.

 ➤ Telephony—To specify that either telephony in general, or a specific telephony radio
(GSM or CDMA) is required.

 ➤ Touchscreen—To specify the type of touch screen your application requires, includ-
ing how many distinct input touches can be detected and tracked.

 ➤ USB—For applications that require either USB host or accessory mode support.

 ➤ Wi-Fi—Where Wi-Fi networking support is required.

 ➤ Communication software—The application requires support for Session Initiation
Protocol (SIP) services or Voice Over Internet Protocol (VoIP) services.

 ➤ Device management software—Use these optional software features to specify that
your application requires the device support device management features including
backup service, device policy enforcement, managed users, user removal, and verified
boot.

 ➤ Media software—If your application requires MIDI support, printing, a “lean back”
(television) UI, live TV, or homescreen widgets.

As the variety of platforms on which Android is available increases, so too will the
optional hardware and software. You can find a full list of uses-feature hardware at
developer.android.com/guide/topics/manifest/uses-feature-element
.html#features-reference.

To ensure compatibility, specifying the requirement of some permissions, implies a feature
requirement. Specifically, requesting permission to access Bluetooth, the camera, any of the
location service permissions, audio recording, Wi-Fi, and telephony-related permissions
implies the corresponding hardware feature. You can override these implied requirements by
adding a required attribute and setting it to false—for example, a note-taking application
that supports (but does not require) recording an audio note may choose to make the micro-
phone hardware optional:

<uses-feature android:name="android.hardware.microphone"
 android:required="false" />

The camera hardware also represents a special case. For compatibility reasons, requesting
permission to use the camera, or adding a uses-feature node requiring it, implies a
requirement for the camera to support autofocus. You can specify it as optional as
necessary:

Introducing the Android Manifest ❘ 99

<uses-feature android:name="android.hardware.camera" />
<uses-feature android:name="android.hardware.camera.autofocus"
 android:required="false" />
<uses-feature android:name="android.hardware.camera.flash"
 android:required="false" />

 ➤ supports-screens—With the proliferation of hundreds of different screen sizes, resolutions,
and densities—and the introduction of multi-window mode, you should create responsive UI
designs for your application that provide a good experience for all users. While it is techni-
cally possible to use the supports-screen node to limit your application’s availability to a
subset of supported screen resolutions, this is considered bad practice and should be avoided.

 ➤ supports-gl-texture—Declares that the application is capable of providing texture assets
that are compressed using a particular GL texture compression format. You must use
multiple supports-gl-texture elements if your application is capable of supporting mul-
tiple texture compression formats. You can find the most up-to-date list of supported GL
texture compression format values at developer.android.com/guide/topics/manifest/
supports-gl-texture-element.html.

<supports-gl-texture android:name="GL_OES_compressed_ETC1_RGB8_texture" />

 ➤ uses-permission—As part of the security model, uses-permission tags declare the user
permissions your application requires. Each permission you specify will be presented to the
user either before the application is installed (on devices running Android 5.1 or lower), or
while the application is running (on devices running Android 6.0 and higher). Permissions are
required for many APIs and method calls, generally those with an associated cost or security
implication (such as dialing, receiving SMS, or using the location-based services). We intro-
duce these throughout the rest of this book as required.

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

 ➤ permission—Your shared application components can also create permissions to restrict
access to them from other application components. You can use the existing platform permis-
sions for this purpose, or define your own permissions in the manifest. To do this, use the
permission tag to create a permission definition.

You can specify the level of access the permission permits (normal, dangerous, signature,
signatureOrSystem), a label, and an external resource containing the description that
explains the risks of granting the specified permission. You can find more details on creating
and using your own permissions in Chapter 20, “Advanced Android Development.”

<permission android:name="com.professionalandroid.perm.DETONATE_DEVICE"
 android:protectionLevel="dangerous"
 android:label="Self Destruct"
 android:description="@string/detonate_description">
</permission>

 ➤ application—A manifest can contain only one application node. It uses attributes to
specify the metadata for your application including its name, icon, and theme. You can also
indicate if you will allow data to be backed up automatically using Android Auto Backup (as
described in Chapter 8), and if you support right-to-left UI layouts.

If you are using a custom application class, you must specify it here using the android:name
attribute.

100 ❘ CHAPTER 4 Defining the AnDroiD MAnifest AnD grADle BuilD files, AnD externAlizing resources

The application node also acts as a container for the Activity, Service, Content Provider,
and Broadcast Receiver nodes that specify the application components.

<application
 android:label="@string/app_name"
 android:icon="@mipmap/ic_launcher"
 android:theme="@style/AppTheme"
 android:allowBackup="true"
 android:supportsRtl="true"
 android:name=".MyApplicationClass">
 [... application component nodes ...]
</application>

 ➤ activity—An activity tag is required for every Activity within your applica-
tion. Use the android:name attribute to indicate the Activity class name. You
must include the main launch Activity and any other Activity that may be displayed.
Trying to start an Activity that’s not included in the manifest will throw a runtime
exception. Each Activity node supports intent-filter child tags that define the
Intents that can be used to start the Activity.

Note that a period is used as shorthand for the application’s package name when
specifying the Activity’s class name:

<activity android:name=".MyActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

 ➤ service—As with the activity tag, add a service tag for each Service class
(described in Chapter 11) used in your application.

<service android:name=".MyService"/>

 ➤ provider—Provider tags specify each of your application’s Content Providers.
Content Providers are used to manage database access and sharing as described in
Chapter 10.

<provider
 android:name=".MyContentProvider"
 android:authorities="com.professionalandroid.myapp.MyContentProvider"
/>

 ➤ receiver—By adding a receiver tag, you can register a Broadcast Receiver with-
out having to launch your application first. As you’ll see in Chapter 6, Broadcast
Receivers are like global event listeners that, when registered, will execute whenever
a matching Intent is broadcast by the system. By registering a Broadcast Receiver in
your manifest, you can make this process entirely autonomous.

<receiver android:name=".MyIntentReceiver">
</receiver>

Configuring the Gradle Build ❘ 101

NOTE You can find a more detailed description of the manifest and each of
these nodes at developer.android.com/guide/topics/manifest/manifest-
intro.html.

The Android Studio New Project Wizard automatically creates a new manifest file when it creates a
new project. You’ll return to the manifest as each of the application components is introduced and
explored throughout this book.

CONFIGURING THE GRADLE BUILD

Each project contains a series of Gradle files used to define your build configuration, consisting of a:

 ➤ Project-scoped settings.gradle file that defines which modules should be included when
building your application.

 ➤ Project-scoped build.gradle file in which the repositories and dependencies for Gradle itself
are specified, as well as any repositories and dependencies common to all your modules.

 ➤ Module-scoped build.gradle file(s) used to configure build settings for your application,
including dependencies, minimum and targeted platform versions, your application’s version
information, and multiple build types and product flavors.

For most applications the default settings and project-scoped build Gradle files won’t need to be
changed. The default settings file specifies a single module (your application). The top-level Gradle
build file includes JCenter and Google as repositories for Gradle to search for dependencies and
includes the Android Plugin for Gradle as a project dependency.

In contrast, you will likely need to make ongoing changes to the module-level Gradle build file,
which lets you define one or more build configurations for your application including dependencies
on new support libraries, changes in version numbers, and which platform and SDK versions you
support.

Gradle Settings File
The settings.gradle file is located in your project’s root folder and is used to tell Gradle which
modules it should include when building your application. By default, your single application mod-
ule is included:

include ':app'

If your project expands to use multiple modules, you would need to add them here.

102 ❘ CHAPTER 4 Defining the AnDroiD MAnifest AnD grADle BuilD files, AnD externAlizing resources

Project Gradle Build File
The top-level project-scoped build.gradle file is located in the root project directory. It allows you
to specify dependencies—and the repositories Gradle uses to search for and then download those
dependencies—that apply to the project and all its modules.

The buildscript node is used to indicate the repositories and dependencies that are used by Gradle
itself—not for your application.

For example, the default dependencies block includes the Android Plugin for Gradle, because
that’s necessary for Gradle to build Android application modules, and the repositories block
pre-configures JCenter and Google as repositories Gradle should use to look for it:

buildscript {
 repositories {
 google()
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:3.1.3'
 }
}

Note that this is not where you indicate your application dependencies; they belong in the relevant
module build.gradle file for your application module, as described in the next section.

Use the allprojects block to specify repositories and dependencies used by all modules in your
project, though for projects with a single module it’s common practice to include its dependencies in
the module-level build.gradle file.

For new projects, Android Studio adds JCenter and Google as default repositories.

allprojects {
 repositories {
 google()
 jcenter()
 }
}

Android Studio also defines a new project task—clean—that deletes the contents of your project’s
build folder:

task clean(type: Delete) {
 delete rootProject.buildDir
}

Module Gradle Build Files
The module-level build.gradle file, located in each of your project’s module directories, is used to
configure build settings for the corresponding module, including required dependencies, minimum
and targeted platform versions, your application’s version information, and different build types and
product flavors.

Configuring the Gradle Build ❘ 103

The first line in the build configuration applies the Android Plugin for Gradle to this build, which
makes it possible to use the android block to specify Android-specific build options:

apply plugin: 'com.android.application'

Within the top level of the android block you specify the Android application configuration
options, such as the version of the SDK with which to compile your application. Be sure to update
these values when you download a new SDK release:

android {
 compileSdkVersion 27

 defaultConfig {...}
 buildTypes {...}
 productFlavors {...}
 splits {...}
}

Default Configuration
The defaultConfig block (within the android block) specifies default settings that will be shared
across all your different product flavors:

defaultConfig {
 applicationId 'com.professionalandroid.apps.helloworld'

 minSdkVersion 16
 targetSdkVersion 27

 versionCode 1
 versionName "1.0"
}

As shown in the preceding code, you should specify the:

applicationId—To provide a unique “package name” that will be used to identify the
built APK for publishing and distribution. By default, and requirement, this should use the
same package name as defined within your manifest, and you application classes.

minSdkVersion—To set the lowest version of the Android platform your application is
compatible with. This lets you indicate the earliest Android platform release on which your
application can be installed and run—the Android framework will prevent users from
installing your application if the system’s API level is lower than this value. If you fail to
specify a minimum version, it defaults to 1 and will be available on all devices, resulting in
crashes if unavailable APIs are called.

targetSdkVersion—To specify the Android platform version against which you did your
development and testing. Setting a target SDK tells the system that there is no need to apply
any forward- or backward-compatibility changes to support that particular platform. To
take advantage of the newest platform UI improvements, it’s considered good practice to
update the target SDK of your application to the latest platform release after you confirm it
behaves as expected, even if you aren’t making use of any new APIs.

versionCode—To define the current application version as an integer that increases with
each version iteration you release.

104 ❘ CHAPTER 4 Defining the AnDroiD MAnifest AnD grADle BuilD files, AnD externAlizing resources

versionName—To specify a public version identifier that will be displayed to users.

testInstrumentationRunner—To specify a test runner to use. By default, the Android
support library AndroidJUnitRunner instrumentation will be included, and allows you to
run JUnit3 and JUnit4 tests against your application.

NOTE Some of these build configuration values can also be specified within the
Android manifest. When your application is built, Gradle merges these values
with those provided by your manifest—with the Gradle build values taking pre-
cedence. To avoid confusion it’s best practice to only specify these values within
the Gradle build files.

One special case is your application’s package name. You must still include a
package attribute at the root element of your manifest file. The package name
defined there also serves a secondary purpose as the package name used for your
application’s classes, including the R resource class.

As you see later, Gradle makes it possible to easily build multiple variations (or
“flavors”) of your application (for example “free” and “pro” or “alpha,” “beta,”
and “release” variants). Each flavor must have a different package name, but to
use a single codebase, the package name for your classes must be consistent.

As a result, the package name used in your manifest is used for your R class,
and to resolve any other class name ambiguities within your application, but
the application ID indicated in your Gradle build files are used as the package
names when building their associated APKs.

Build Types
The buildTypes block is used to define multiple different build types—typically debug and release.
When you create a new module, Android Studio automatically creates a release build type for you,
and in most cases you won’t need to change it.

Note that the debug build type doesn’t need to be explicitly included in the Gradle build file, but by
default Android Studio will configure your debug builds with debuggable true. As a result, these
builds are signed with the debug keystore, and you can debug them on locked and signed Android
devices.

The default release build type (shown in the following code) applies Proguard settings to shrink and
obfuscate the compiled code, and does not use a default signing key:

buildTypes {
 release {
 minifyEnabled true
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
 }
}

Configuring the Gradle Build ❘ 105

Product Flavors and Flavor Dimensions
The flavorDimensions and productFlavors blocks are optional nodes, not included by default,
which allows you to override any of the values you defined in the defaultConfig block to support
different versions (flavors) of your application using the same codebase. Each product flavor should
specify its own unique application ID so that each can be distributed and installed independently:

productFlavors {
 freeversion {
 applicationId 'com.professionalandroid.apps.helloworld.free'
 versionName "1.0 Free"
 }

 paidversion {
 applicationId 'com.professionalandroid.apps.helloworld.paid'
 versionName "1.0 Full"
 }
}

Flavor dimensions allow you to create groups of product flavors that can be combined to create a
final build variant. This allows you to specify build changes along multiple dimensions—for exam-
ple, changes based on free versus paid builds—as well as changes based on minimum API level:

flavorDimensions "apilevel", "paylevel"

productFlavors {
 freeversion {
 applicationId 'com.professionalandroid.apps.helloworld.free'
 versionName "1.0 Free"
 dimension "paylevel"
 }

 paidversion {
applicationId 'com.professionalandroid.apps.helloworld.paid'
 versionName "1.0 Full"
 dimension "paylevel"
 }

 minApi24 {
 dimension "apilevel"
 minSdkVersion 24
 versionCode 24000 + android.defaultConfig.versionCode
 versionNameSuffix "-minApi24"
 }

 minApi23 {
 dimension "apilevel"
 minSdkVersion 16
 versionCode 16000 + android.defaultConfig.versionCode
 versionNameSuffix "-minApi23"
 }
 }
}

106 ❘ CHAPTER 4 Defining the AnDroiD MAnifest AnD grADle BuilD files, AnD externAlizing resources

When building your application, Gradle will combine the product flavors along each dimension,
along with a build type configuration, to create the final build variant. Gradle does not combine
product flavors that belong to the same flavor dimension.

Note that Gradle determines the priority of flavor dimensions based on the order in which they
are specified, where the first dimension will override values assigned along the second dimension
and so on.

Since Gradle 3.0.0, in order to define flavors, you must define at least one product dimension. Each
flavor must have an associated product dimension, though if you have only one dimension defined, it
will be used by default by each flavor.

You can detect the current product flavor at run time, and modify your product behavior accord-
ingly, using this code snippet:

if (BuildConfig.FLAVOR == "orangesherbert") {
 // Do groovy things
} else {
 // Enable paid features
}

Alternatively, you can create a new set of classes and resources—a new source-set—for your appli-
cation to use for each flavor, by creating an additional directory structure parallel to the default
“main” source path.

For classes, you’ll need to create the folders manually, whereas for resources, you can choose
the source-set a new resource should belong to, as shown in the New Resource File dialog box in
Figure 4-2.

FIGURE 4-2

NOTE When building your application, Gradle will merge the Java source and
resources from your flavor source-set with the “main” source-set using the same
package name (as defined in your manifest). As a result, you can’t use a class
name in a flavor that duplicates a class name in the main source-set.

Externalizing Resources ❘ 107

Within Android Studio, you can select the build you wish to build and run using the Build ➪
Select Build Variant menu item and selecting it from the drop-down displayed in the Build Variant
window.

Splits
You can use the optional splits block to configure different APK builds that contain only the code
and resources for each supported screen density or ABI.

It’s generally best practice to create and distribute a single APK to support all your target devices,
but in some cases (particularly games) this might result in a prohibitively large APK size.

Creating and distributing split APKs is outside the scope of this book, but you can find more details
on configuring APK splits at developer.android.com/studio/build/configure-apk-splits
.html.

Dependencies
The dependencies block specifies the dependencies required to build your application.

By default, a new project will include a local binary dependency that tells Gradle to include all JAR
files located in the apps/libs folder, remote binary dependencies on the Android Support Library
and JUnit, and a dependency on the Android Espresso testing library:

dependencies {
 implementation fileTree(dir: 'libs', include: ['*.jar'])
 implementation 'com.android.support:appcompat-v7:27.1.1'
 implementation 'com.android.support.constraint:constraint-layout:1.1.2'
 testImplementation 'junit:junit:4.12'
 androidTestImplementation 'com.android.support.test:runner:1.0.2'
 androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.2'
}

We’ll return to the dependency block throughout the book as new library dependencies are required.

EXTERNALIZING RESOURCES

It’s always good practice to keep non-code resources, such as images and string constants, external
to your code. Android supports the externalization of resources, ranging from simple values such as
strings and colors to more complex resources such as images, animations, themes, and UI layouts.

By externalizing resources, you make them easier to maintain, update, and manage. This also
lets you create alternative resource values to support internationalization, and to include different
resources to support variations in hardware—particularly screen size and resolution.

When an application starts, Android automatically selects the correct resources from the available
alternatives without you having to write a line of code. Later in this section you see how Android
dynamically selects resources from resource trees that contain different values for alternative hard-
ware configurations, languages, and locations.

108 ❘ CHAPTER 4 Defining the AnDroiD MAnifest AnD grADle BuilD files, AnD externAlizing resources

Among other things, this lets you change the layout based on the screen size and orientation, images
based on screen density, and customize text based on a user’s language and country.

Creating Resources
Application resources are stored under the res folder in your project hierarchy. Each of the available
resource types is stored in subfolders, grouped by resource type.

If you create a new project using the Android Studio New Project Wizard, it creates a res folder
that contains subfolders for the values, mipmap, and layout resources that contain the default val-
ues for string, dimensions, color, and style resource, as well as an application icon and the default
layout, as shown in Figure 4-3.

FIGURE 4-3

NOTE Note that the mipmap resource folder contains five different application
icons for different density displays. You learn more about supplying different
resource values for hardware variations later in this chapter.

When your application is built, these resources will be compressed as efficiently as possible and
packaged into your APK.

Externalizing Resources ❘ 109

The build process also generates an R class file that contains references to each of the resources
included in your project. This enables you to reference resources from your code, with the advantage
of design-time syntax checking.

The following sections describe many of the specific resource types available and how to create them
for your applications.

In all cases, the resource filenames should contain only lowercase letters, numbers, and the period (.)
and underscore (_) symbols.

Simple Values
Supported simple values include strings, colors, dimensions, styles, Boolean or integer values, and
string or typed arrays. All simple values are stored within XML files in the res/values folder.

Each values XML file allows you to describe multiple resources. You indicate the type of value being
stored using tags, as shown in the sample XML file in Listing 4-1.

LISTING 4-1: Simple values XML

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">To Do List</string>
 <plurals name="androidPlural">
 <item quantity="one">One android</item>
 <item quantity="other">%d androids</item>
 </plurals>
 <color name="app_background">#FF0000FF</color>
 <dimen name="default_border">5px</dimen>
 <integer name="book_ignition_temp">451</integer>
 <bool name="is_a_trap">true</bool>
 <string-array name="string_array">
 <item>Item 1</item>
 <item>Item 2</item>
 <item>Item 3</item>
 </string-array>
 <integer-array name="integer_array">
 <item>3</item>
 <item>2</item>
 <item>1</item>
 </integer-array>
 <array name="color_typed_array">
 <item>#FF0000FF</item>
 <item>#00FFFF00</item>
 <item>#FF00FF00</item>
 </array>
 <style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
 <item name="colorPrimary">@color/colorPrimary</item>
 </style>
</resources>

110 ❘ CHAPTER 4 Defining the AnDroiD MAnifest AnD grADle BuilD files, AnD externAlizing resources

This example includes many different simple value types. By convention, for clarity and readability,
resources are typically stored in separate files, one for each type; for example, res/values/
strings.xml would contain only string resources.

The following sections detail the options for defining some common simple resources.

Strings
Externalizing your strings helps maintain consistency within your application and makes it much
easier to internationalize them.

String resources are specified with the string tag, as shown in the following XML snippet:

<string name="stop_message">Stop.</string>

Apostrophes (') , double-quotes ("), and backslashes (\) must be escaped using a backslash, like this:

<string name="quoting_myself">
Escape \"Apostrophes (\') and double-quotes (\") with a backslash (\\)\"
</string>

Android supports simple text styling, so you can use the HTML tags , <i>, and <u> to apply
bold, italics, or underlining, respectively, to parts of your text strings, as shown in the following
example:

<string name="stop_message">Stop.</string>

You can also use resource strings as input parameters for the String.format method. However,
String.format does not support the text styling previously described. To apply styling to a format
string, you have to escape the HTML tags when creating your resource, as shown in the following
snippet:

<string name="stop_message">Stop. %1$s</string>

Within your code, use the Html.fromHtml method to convert this back into a styled character
sequence:

String rString = getString(R.string.stop_message);
String fString = String.format(rString, "Collaborate and listen.");
CharSequence styledString = Html.fromHtml(fString, FROM_HTML_MODE_LEGACY);

NOTE Android 6.0 Nougat (API Level 24) introduced the Html.fromHtml
method shown in the snippet above, which allows you to specify a flag to deter-
mine how block-level elements are separated. For applications supporting earlier
versions of Android, you can continue to use the deprecated Html.fromHtml
method that behaves identically to the new method using the FROM_HTML_MODE_
LEGACY flag.

You can also define alternative plural forms for your strings. This enables you to define different
strings based on the number of items you refer to. For example, in English you would refer to “one
Android” but “seven Androids.”

Externalizing Resources ❘ 111

By creating a plurals resource, you can specify an alternative string for any of zero, one, multiple,
few, many, or other quantities. In English the singular is a special case, whereas some languages
require finer detail and in others the singular is never used:

<plurals name="unicorn_count">
 <item quantity="one">One unicorn</item>
 <item quantity="other">%d unicorns</item>
</plurals>

To access the correct plural in code, use the getQuantityString method on your application’s
Resources object, passing in the resource ID of the plural resource, and specifying the number of
objects you want to describe:

Resources resources = getResources();
String unicornStr = resources.getQuantityString(
 R.plurals.unicorn_count, unicornCount, unicornCount);

Note that in this example the object count is passed in twice—once to return the correct plural
string, and again as an input parameter to complete the sentence.

Colors
Use the color tag to define a new color resource. Specify the color value using a # symbol followed
by the (optional) alpha channel, and then the red, green, and blue values using one or two hexadeci-
mal numbers with any of the following notations:

 ➤ #RGB

 ➤ #RRGGBB

 ➤ #ARGB

 ➤ #AARRGGBB

The following example shows how to specify Android green and a partially transparent blue:

<color name="android_green">#A4C639</color>
<color name="transparent_blue">#770000FF</color>

Dimensions
Dimensions are most commonly referenced within style and layout resources. They’re useful for
defining layout values, such as borders and font heights.

To specify a dimension resource, use the dimen tag, specifying the dimension value, followed by an
identifier describing the scale of your dimension:

 ➤ dp (density-independent pixels)

 ➤ sp (scalable pixels)

 ➤ px (screen pixels)

 ➤ in (physical inches)

 ➤ pt (physical points)

 ➤ mm (physical millimeters)

112 ❘ CHAPTER 4 Defining the AnDroiD MAnifest AnD grADle BuilD files, AnD externAlizing resources

Although you can use any of these measurements to define a dimension, it’s best practice to use
either density independent or scalable pixels. These alternatives let you define a dimension using
relative scales that account for different screen resolutions and densities to simplify scaling on differ-
ent hardware.

Scalable pixels are particularly well suited when defining font sizes because they automatically scale
if the user changes the system font size.

The following XML snippet shows how to specify dimension values for a large font size and a stan-
dard border:

<dimen name="large_font_size">16sp</dimen>
<dimen name="activity_horizontal_margin">16dp</dimen>

Styles and Themes
Style resources let your applications maintain a consistent look and feel by enabling you to
specify the attribute values used by Views—most commonly colors, borders, and font sizes for an
application.

To create a style, use a style tag that includes a name attribute and contains one or more item
tags. Each item tag should include a name attribute used to specify the attribute (such as font size or
color) being defined. The tag itself should then contain the value, as shown in the following skeleton
code:

<style name="base_text">
 <item name="android:textSize">14sp</item>
 <item name="android:textColor">#111</item>
</style>

Styles support inheritance using the parent attribute on the style tag, making it easy to create
simple variations:

<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
 <item name="colorPrimary">@color/colorPrimary</item>
 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>
 <item name="colorAccent">@color/colorAccent</item>
</style>

In Chapter 13 you learn more about using the themes and styles provided by the Android Support
Library to create applications that are consistent with the Android platform and the material design
philosophy.

Drawables
Drawable resources include bitmaps, NinePatches (stretchable PNG images), and scalable Vector
Drawables. They also include complex composite Drawables, such as LevelListDrawables and
StateListDrawables, which are defined in XML.

Externalizing Resources ❘ 113

NOTE NinePatch Drawables, Vector Drawables, and complex composite
resources are covered in more detail in the next chapter.

All Drawables are stored as individual files in the res/drawable folder. Note that it’s good practice
to store bitmap image assets in the appropriate drawable-ldpi, -mdpi, -hdpi, and -xhdpi folders,
as described later in this chapter. The resource identifier for a Drawable resource is the lowercase
filename without its extension.

NOTE The preferred format for a Drawable bitmap resource is PNG, although
JPG and GIF files are also supported.

MipMaps
It’s considered good practice to store your application’s launcher icon image within the MipMap
folder group—one for each resolution size up to xxxhdpi (as seen in your Hello World application).

Different home screen launcher apps on different devices show application launcher icons at vari-
ous resolutions—some devices scale-up the launcher icons by as much as 25%. Application resource
optimization techniques can remove Drawable resources for unused screen densities; however, all
MipMap resources are preserved—ensuring that launcher apps can pick icons with the best resolu-
tion for display.

Note that the mipmap-xxxhdpi qualifier is typically supplied only to ensure a suitably high-
resolution launcher icon is available in the case of up-scaling on an xxhdpi device; you typically
won’t need to supply xxxhdpi assets for the rest of your Drawable resources.

Layouts
Layout resources enable you to decouple your presentation layer from your business logic by design-
ing UI layouts in XML, rather than constructing them in code.

You can use layouts to define the UI for any visual component, including Activities, Fragments,
and Widgets. Once defined in XML, the layout must be “inflated” into the user interface. Within
an Activity you do this using setContentView (usually within the onCreate method), whereas
Fragments are inflated using the inflate method from the Inflator object passed in to the
Fragment’s onCreateView handler.

For more detailed information on using and creating layouts in Activities and Fragments, see
Chapter 5, “Building User Interfaces.”

Using layouts to construct your screens in XML is best practice in Android. The decoupling of the
layout from the code enables you to create optimized layouts for different hardware configurations,

114 ❘ CHAPTER 4 Defining the AnDroiD MAnifest AnD grADle BuilD files, AnD externAlizing resources

such as varying screen sizes, orientation, or the presence of keyboards and touch screens as
described later in this chapter.

Each layout definition is stored in its own XML file, within the res/layout folder, with the file-
name becoming the resource identifier.

A thorough explanation of layout containers and View elements is included in the next chapter, but
Listing 4-2 shows the layout created by the New Project Wizard. It uses a Constraint Layout con-
tainer for a Text View that displays the “Hello World” greeting.

LISTING 4-2: Hello World layout

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>
</android.support.constraint.ConstraintLayout>

Animations
Android supports three types of animation that can be applied within a View or Activity, and is
defined in XML:

 ➤ Property animations—A tweened animation that can be used to potentially animate any
property on the target object by applying incremental changes between two values. This can
be used for anything from changing the color or opacity of a View to gradually fade it in or
out, to changing a font size, or increasing a character’s hit points.

 ➤ View animations—Tweened animations that can be applied to rotate, move, fade, and stretch
a View.

 ➤ Frame animations—Frame-by-frame “cell” animations used to display a sequence of
Drawable images.

Android also includes the scene transition framework, which you can use to animate from one
layout to another at run time by interpolating and modifying each of their property values of the
views in each layout hierarchy.

Externalizing Resources ❘ 115

NOTE You can find a comprehensive overview of creating, using, and applying
animations and scene transitions in Chapter 14, “Advanced Customization of
Your User Interface.”

Defining property, view, and frame animations as external resources enables you to reuse the same
sequence in multiple places and provides you with the opportunity to present different animations
based on device hardware or orientation.

Defining Property Animations
Property animators are a powerful framework that can be used to create interpolated animation
paths for almost any value or property.

Each property animation is stored in a separate XML file in the project’s res/animator folder. As
with layouts and Drawable resources, the animation’s filename is used as its resource identifier.

You can use a property animator to animate most numeric properties on a target object. You can
define animators that are tied to a specific property, or a generic value animator that can be allo-
cated to any property and object.

The following simple XML snippet shows a property animator that changes the opacity of the tar-
get object by calling its setAlpha method (or modifying the alpha property) incrementally between
0 and 1 over the course of a second:

<?xml version="1.0" encoding="utf-8"?>
<objectAnimator xmlns:android="http://schemas.android.com/apk/res/android"
 android:propertyName="alpha"
 android:duration="1000"
 android:valueFrom="0f"
 android:valueTo="1f"
/>

You can create more complex animations that modify multiple property values using the nestable
set tag. Within each property animator set, you can choose to execute the grouped animations con-
currently (the default option) or sequentially using the ordering tag as shown here:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:ordering="sequentially">
 <set>
 <objectAnimator
 android:propertyName="x"
 android:duration="200"
 android:valueTo="0"
 android:valueType="intType"/>
 <objectAnimator
 android:propertyName="y"
 android:duration="200"
 android:valueTo="0"
 android:valueType="intType"/>
 </set>

116 ❘ CHAPTER 4 Defining the AnDroiD MAnifest AnD grADle BuilD files, AnD externAlizing resources

 <objectAnimator
 android:propertyName="alpha"
 android:duration="1000"
 android:valueTo="1f"/>
</set>

Note that property animations actually change the properties of the target object, and those modifi-
cations are persisted.

Defining View Animations
Each view animation is stored in a separate XML file in the project’s res/anim folder. As with lay-
outs and Drawable resources, the animation’s filename is used as its resource identifier.

An animation can be defined for changes in alpha (fading), scale (scaling), translate (movement),
or rotate (rotation).

NOTE While still sometimes useful, View animations have some significant
restrictions compared to the new property animator described previously. As a
result, it’s typically good practice to use property animators whenever possible.

Table 4-1 shows the valid attributes, and attribute values, supported by each animation type.

TABLE 4-1: Animation Type Attributes

ANIMATION

TYPE

ATTRIBUTES VALID VALUES

Alpha fromAlpha/toAlpha Float from 0 to 1

Scale fromXScale/toXScale Float from 0 to 1

 fromYScale/toYScale Float from 0 to 1

 pivotX/pivotY String of the percentage of graphic width/height from
0% to 100%

Translate fromXDelta/toXDelta One of either a float representing number of pixels rela-
tive to the normal position, a percentage relative to the
element width (using “%” suffix), or a percentage rela-
tive to the parent width (using “%p” suffix).

 fromYDelta/toYDelta One of either a float representing number of pixels rela-
tive to the normal position, a percentage relative to the
element width (using “%” suffix), or a percentage rela-
tive to the parent width (using “%p” suffix).

Rotate fromDegrees /
toDegrees

Float from 0 to 360

Externalizing Resources ❘ 117

ANIMATION

TYPE

ATTRIBUTES VALID VALUES

pivotX/pivotY String of the percentage of graphic width/height from
0% to 100%

String indicating the X and Ycoordinate (respectively)
in pixels relative to the object’s left edge, or percent-
age relative to the object’s left edge (using “%”), or in
percentage relative to the parent container’s left edge
(using “%p”).

You can create a combination of animations using the set tag. An animation set contains one or
more animation transformations and supports various additional tags and attributes to customize
when and how each animation within the set is run.

The following list shows some of the set tags available:

 ➤ duration—Duration of the full animation in milliseconds.

 ➤ startOffset—Millisecond delay before the animation starts.

 ➤ fillBefore—Applies the animation transformation before it begins.

 ➤ fillAfter—Applies the animation transformation after it ends.

 ➤ interpolator—Sets how the speed of this effect varies over time. Chapter 14 explores
the interpolators available. To specify one, reference the system animation resources at
android:anim/interpolatorName.

The following example shows an animation set that spins the target 360 degrees while it shrinks and
fades out:

NOTE If you do not use the startOffset tag, all the animation effects within a
set will execute simultaneously.

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/accelerate_interpolator">
 <rotate
 android:fromDegrees="0"
 android:toDegrees="360"
 android:pivotX="50%"
 android:pivotY="50%"
 android:startOffset="500"
 android:duration="1000" />
 <scale
 android:fromXScale="1.0"
 android:toXScale="0.0"

118 ❘ CHAPTER 4 Defining the AnDroiD MAnifest AnD grADle BuilD files, AnD externAlizing resources

 android:fromYScale="1.0"
 android:toYScale="0.0"
 android:pivotX="50%"
 android:pivotY="50%"
 android:startOffset="500"
 android:duration="500" />
 <alpha
 android:fromAlpha="1.0"
 android:toAlpha="0.0"
 android:startOffset="500"
 android:duration="500" />
</set>

Defining Frame-by-Frame Animations
Frame-by-frame (cell) animations represent a sequence of Drawables, each of which is displayed for
a specified duration.

Because frame-by-frame animations represent animated Drawables, they are stored in the res/
drawable folder and use their filenames (without the .xml extension) as their resource IDs.

The following XML snippet shows a simple animation that cycles through a series of bitmap
resources, displaying each one for half a second. To use this snippet, you will also need to create
new image resources android1 through android3:

<animation-list
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:oneshot="false">
 <item android:drawable="@drawable/android1" android:duration="500" />
 <item android:drawable="@drawable/android2" android:duration="500" />
 <item android:drawable="@drawable/android3" android:duration="500" />
</animation-list>

Note that in many cases you should include multiple resolutions of each of the Drawables used
within the animation list.

To play the animation, start by assigning the resource to a host View before getting a reference to
the Animation Drawable object and starting it:

ImageView androidIV = findViewById(R.id.iv_android);
androidIV.setBackgroundResource(R.drawable.android_anim);

AnimationDrawable androidAnimation =
 (AnimationDrawable)androidIV.getBackground();

androidAnimation.start();

Typically, you do this in two steps; you assign the resource to the background within the onCreate
handler.

Within this handler the animation is not fully attached to the window, so the animations can’t be
started; instead, this is usually done as a result to user action (such as a button press) or within the
onWindowFocusChanged handler.

Externalizing Resources ❘ 119

Using Resources
In addition to the resources you supply, the Android platform includes several system resources that
you can use in your applications. All resources can be used within your application code, and can
also be referenced from within other resources. For example, a dimension or string resource might
be referenced in a layout definition.

Later in this chapter you learn how to define alternative resource values for different languages,
locations, and hardware. It’s important to note that when using resources, you don’t choose a par-
ticular alternative; Android automatically selects the correct value for a given resource identifier
based on the current hardware, device, and language configurations.

Using Resources in Code
Within your application, you access resources in code using the static R class. R is a generated class,
created when your project is built, that lets you reference any resource you’ve included to offer
design-time syntax checking.

The R class contains static subclasses for each of the resources available, such as R.string and
R.drawable subclasses.

NOTE If you use Android Studio, the R class is created automatically when
you build your application after making changes to an external resource file or
folder. Remember that R is a build-generated class, so don’t make any manual
modifications to it because they will be lost when the file is regenerated.

Each of the subclasses within R exposes its associated resources as variables, with the variable names
matching the resource identifiers—for example, R.string.app_name or R.mipmap.ic_launcher.

The value of these variables is an integer that represents each resource’s location in the resource
table, not an instance of the resource itself.

Where a constructor or method, such as setContentView, accepts a resource identifier, you can
pass in the resource variable, as shown in the following code snippet:

// Inflate a layout resource.
setContentView(R.layout.main);
// Display a transient dialog box that displays the
// app name string resource.
Toast.makeText(this, R.string.app_name, Toast.LENGTH_LONG).show();

When you need an instance of the resource itself, you need to use helper methods to extract them
from the resource table. The resource table is represented within your application as an instance of
the Resources class.

These methods perform lookups on the application’s current resource table, so these helper methods
can’t be static. Use the getResources method on your application context, as shown in the follow-
ing snippet, to access your application’s Resources instance:

Resources myRes = getResources();

120 ❘ CHAPTER 4 Defining the AnDroiD MAnifest AnD grADle BuilD files, AnD externAlizing resources

The Resources class includes getters for each of the available resource types and generally works by
passing in the resource ID you’d like an instance of.

The Android Support Library also includes a ResourcesCompat class that offers backward-
compatible getter functions where a Framework class has been deprecated (such as getDrawable).

The following code snippet shows an example of using the helper methods to return a selection of
resource values:

CharSequence styledText = myRes.getText(R.string.stop_message);

float borderWidth = myRes.getDimension(R.dimen.standard_border);

Animation tranOut;
tranOut = AnimationUtils.loadAnimation(this, R.anim.spin_shrink_fade);

ObjectAnimator animator =
 (ObjectAnimator)AnimatorInflater.loadAnimator(this,
 R.animator.my_animator);

String[] stringArray;
stringArray = myRes.getStringArray(R.array.string_array);

int[] intArray = myRes.getIntArray(R.array.integer_array);

Android 5.0 Lollipop (API Level 21) added support for Drawable theming, so you should use the
ResourcesCompat library to obtain both Drawable and Color resources as shown in the following
snippet. Note that both methods accept null values for themes:

Drawable img = ResourcesCompat.getDrawable(myRes,
 R.drawable.an_image, myTheme);
int opaqueBlue = ResourcesCompat.getColor(myRes,
 R.color.opaque_blue, myTheme);

Frame-by-frame animated resources are inflated into AnimationResources. You can return the
value using getDrawable and casting the return value, as shown here:

AnimationDrawable androidAnimation;
androidAnimation =
 (AnimationDrawable)ResourcesCompat.getDrawable(R.myRes,
 drawable.frame_by_frame,
 myTheme);

Referencing Resources Within Resources
You can also use resource references as attribute values in other XML resources.

This is particularly useful for layouts and styles, letting you create specialized variations on themes
and localized strings and image assets. It’s also a useful way to support different images and spacing
for a layout to ensure that it’s optimized for different screen sizes and resolutions.

To reference one resource from another, use the @ notation, as shown in the following snippet:

attribute="@[packagename:]resourcetype/resourceidentifier"

Externalizing Resources ❘ 121

NOTE Android assumes you use a resource from the same package, so you only
need to fully qualify the package name if you use a resource from a different
package.

Listing 4-3 shows a layout that uses dimension, color, and string resources.

LISTING 4-3: Using resources in a layout

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/activity_main"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context="com.professionalandroid.apps.helloworld.MainActivity">
 <TextView
 android:id="@+id/myTextView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textColor="@color/colorAccent"
 android:text="@string/hello"
 />
</RelativeLayout>

Using System Resources
The Android framework makes many native resources available, providing you with various strings,
images, animations, styles, and layouts to use in your applications.

Accessing the system resources in code is similar to using your own resources. The difference is that
you use the native Android resource classes available from android.R, rather than the application-
specific R class. The following code snippet uses the getString method available in the application
Context to retrieve an error message available from the system resources:

CharSequence httpError = getString(android.R.string.httpErrorBadUrl);

To access system resources in XML, specify android as the package name, as shown in this XML
snippet:

<EditText
 android:id="@+id/myEditText"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@android:string/httpErrorBadUrl"
 android:textColor="@android:color/darker_gray"
/>

122 ❘ CHAPTER 4 Defining the AnDroiD MAnifest AnD grADle BuilD files, AnD externAlizing resources

You can find the full list of available Android resources at developer.android.com/reference/
android/R.html.

Referring to Styles in the Current Theme
Using themes is an excellent way to ensure consistency for your application’s UI. Rather than fully
define each style, Android provides a shortcut to enable you to use styles from the currently applied
theme.

To do this, use ?android: rather than @ as a prefix to the resource you want to use. The following
example shows a snippet of the preceding code but uses the current theme’s text color rather than a
system resource:

<EditText
 android:id="@+id/myEditText"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@android:string/httpErrorBadUrl"
 android:textColor="?android:textColor"
/>

This technique enables you to create styles that change if the current theme changes, without you
modifying each individual style resource. Note that the textColor resource value must be defined in
the current theme. You learn more about using Themes and Styles in Chapter 13.

Creating Resources for Different Languages and Hardware
You can create different resource values for specific languages, locations, and hardware configura-
tions using a parallel directory structure within the res folder.

A hyphen (-) is used to separate qualifiers that specify the conditions for which you are providing
alternatives. Android chooses from among these values dynamically at run time using its dynamic
resource-selection mechanism.

The following example hierarchy shows a folder structure that features default string values, with
French language and French Canadian location variations:

Project/
 res/
 values/
 strings.xml
 values-fr/
 strings.xml
 values-fr-rCA/
 strings.xml

If you’re using Android Studio, these parallel folders are repre-
sented as shown in Figure 4-4—a folder with the name of the file,
that contains each version, followed by the qualifier in parentheses. FIGURE 4-4

Externalizing Resources ❘ 123

You can construct these qualified folders manually or, using Android Studio, you can create new
folders as required when creating the alternative files they’ll contain.

To do so, either right-click the parent folder (for example, res/values) and select “New [Values]
resource file,” or select the parent folder and select File ➪ New ➪ [Values] resource file. This dis-
plays the New Resource File dialog box as shown in Figure 4-5, which provides all the optional
qualifier categories, and available options, before creating the folder and placing your new file
within it. Note that not every available qualifier is available in the Android Studio dialog; in this
case you’ll have to create the folder manually.

FIGURE 4-5

The following list gives the qualifiers you can use to customize your resource values:

 ➤ Mobile Country Code and Mobile Network Code (MCC/MNC)—The country, and option-
ally the network, associated with the SIM currently used in the device. The MCC is specified
by mcc followed by the three-digit country code. You can optionally add the MNC using
mnc and the two- or three-digit network code (for example, mcc234-mnc20 or mcc310).
You can find a list of MCC/MNC codes on Wikipedia at en.wikipedia.org/wiki/
Mobile_country_code.

 ➤ Language and Region—Language specified by the lowercase two-letter ISO 639-1 language
code, followed optionally by a region specified by a lowercase r followed by the upper-
case two-letter ISO 3166-1-alpha-2 language code (for example, en, en-rUS, or en-rGB).
Available under “locale” within the Android Studio “New Resource File” dialog.

 ➤ Layout Direction—The layout direction of your user interface where ldrtl represents right-
to-left, and ldltr left-to-right (the default value). Use this modifier to provide a different
layout (or any other resource) to better support right-to-left languages.

 ➤ Smallest Screen Width—The lowest of the device’s screen dimensions (height and width)
specified in the form sw<Dimension value>dp (for example, sw600dp, sw320dp, or
sw720dp). This is generally used when providing multiple layouts, where the value specified

124 ❘ CHAPTER 4 Defining the AnDroiD MAnifest AnD grADle BuilD files, AnD externAlizing resources

should be the smallest screen width that your layout requires in order to render correctly.
Where you supply multiple directories with different smallest screen width qualifiers,
Android selects the largest value that doesn’t exceed the smallest dimension available on the
device.

 ➤ Available Screen Width—The minimum screen width required to use the contained resources,
specified in the form w<Dimension value>dp (for example, w600dp, w320dp, or w720dp).
Also used to supply multiple layouts alternatives, but unlike smallest screen width, the avail-
able screen width changes to reflect the current screen width when the device orientation
changes. Android selects the largest value that doesn’t exceed the currently available screen
width.

 ➤ Available Screen Height—The minimum screen height required to use the contained
resources, specified in the form h<Dimension value>dp (for example, h720dp, h480dp, or
h1280dp). Like available screen width, the available screen height changes when the device
orientation changes to reflect the current screen height. Android selects the largest value that
doesn’t exceed the currently available screen height.

 ➤ Screen Size—One of small (smaller than HVGA), normal (at least HVGA and typically
smaller than VGA), large (VGA or larger), or xlarge (significantly larger than HVGA).
Because each of these screen categories can include devices with significantly different screen
sizes (particularly tablets), it’s good practice to use the more specific smallest screen size,
and available screen width and height whenever possible. Because they precede this screen
size qualifier, where both are specified, the more specific qualifiers will be used in preference
where supported.

 ➤ Screen Aspect Ratio—Specify long or notlong for resources designed specifically for wide
screen. (For example, WVGA is long; QVGA is notlong.)

 ➤ Screen Shape—Specify round or notround for resources designed specifically for round
screens (such as watches) or rectangular screens (such as phones or tablets), respectively.

 ➤ Screen Color Gamut—Specify widecg for resources designed for displays capable of display-
ing a wide color gamut such as Display P3 or AdobeRGB, or nowidecg for displays with a
narrow color gamut such as sRGB.

 ➤ Screen Dynamic Range—Either highdr for displays that support a high-dynamic range
(HDR) or lowdr for displays with a normal dynamic range.

 ➤ Screen Orientation: One of port (portrait) or land (landscape).

 ➤ UI Mode—Indicate resources (typically layouts) designed specifically for one of car (car
dock), desk (desk dock), television (10 foot lean-back experience), appliance (no visible
UI), watch (wrist mounted display), or vrheadset (virtual reality headset.

 ➤ Night Mode—One of night (night mode) or notnight (day mode). Used in combination
with the UI mode qualifier, this provides a simple way to change the theme and/or color
scheme of an application to make it more suitable for use at night.

 ➤ Screen Pixel Density—Pixel density in dots per inch (dpi). Best practice is to supply ldpi,
mdpi, hdpi, xhdpi, and xxhdpi Drawable resources to include low (120 dpi), medium (160

Externalizing Resources ❘ 125

dpi), high (240 dpi), extra high (320 dpi), and extra extra high (480 dpi) pixel density assets,
to ensure crisp assets on all devices. For launcher icons, it’s good practice to also supply an
xxxhdpi resource for launchers that may choose to display a larger icon. You can specify
nodpi for bitmap resources you don’t want scaled to support an exact screen density, and
anydpi for scalable vector graphics. To better support applications targeting televisions run-
ning Android, you can also use the tvdpi qualifier for assets of approximately 213dpi. This
is generally unnecessary for most applications, where including medium- and high-resolution
assets is sufficient for a good user experience. Unlike with other resource types, Android
does not require an exact match to select a resource. When selecting the appropriate folder,
it chooses the nearest match to the device’s pixel density and scales the resulting Drawables
accordingly.

 ➤ Touchscreen Type—Either notouch or finger, allowing you to provide layouts or dimen-
sions optimized for the availability of touch screen input.

 ➤ Keyboard Availability—One of keysexposed, keyshidden, or keyssoft, representing a
device that currently has a hardware keyboard available, a hardware keyboard that’s not cur-
rently available, or uses a software keyboard (visible or not), respectively.

 ➤ Keyboard Input Type—One of nokeys, qwerty, or 12key representing no physical keyboard,
a full qwerty keyboard, or 12-key physical keyboard, respectively—whether the keyboard is
currently available or not.

 ➤ Navigation Key Availability—One of navexposed or navhidden.

 ➤ UI Navigation Type—One of nonav, dpad, trackball, or wheel.

 ➤ Platform Version—The target API level, specified in the form v<API Level> (for example,
v7). Used for resources restricted to devices running at the specified API level or higher.

You can specify multiple qualifiers for any resource type, separating each qualifier with a hyphen.
Any combination is supported; however, they must be used in the order given in the preceding list,
and no more than one value can be used per qualifier.

The following example shows valid and invalid directory names for alternative layout resources:

Valid

 layout-large-land
 layout-xlarge-port-keyshidden
 layout-long-land-notouch-nokeys

Invalid

 values-rUS-en (out of order)
 values-rUS-rUK (multiple values for a single qualifier)

When Android retrieves a resource at run time, it finds the best match from the available alterna-
tives. Starting with a list of all the folders in which the required value exists, it selects the one with
the greatest number of matching qualifiers. If two folders are an equal match, the tiebreaker is based
on the order of the matched qualifiers in the preceding list.

126 ❘ CHAPTER 4 Defining the AnDroiD MAnifest AnD grADle BuilD files, AnD externAlizing resources

WARNING If no resource matches are found on a given device, your applica-
tion throws an exception when attempting to access that resource. To avoid this,
you should always include default values for each resource type in a folder that
includes no qualifiers.

Runtime Configuration Changes
Android handles runtime changes to the language, location, and hardware by terminating and
restarting the active Activity. This forces the resource resolution for the Activity to be reevaluated
and the most appropriate resource values for the new configuration to be selected.

In some special cases this default behavior may be inconvenient, particularly for applications that
don’t want to alter UI based on screen orientation changes. You can customize your application’s
response to such changes by detecting and reacting to them yourself.

To have an Activity listen for runtime configuration changes, add an android:configChanges attri-
bute to its manifest node, specifying the configuration changes you want to handle.

The following list describes some of the configuration changes you can specify:

 ➤ mcc and mnc—A SIM has been detected and the mobile country or network code (respec-
tively) has changed.

 ➤ locale—The user has changed the device’s language settings.

 ➤ keyboardHidden—The keyboard, d-pad, or other input mechanism has been exposed or
hidden.

 ➤ keyboard—The type of keyboard has changed; for example, the phone may have a 12-key
keypad that flips out to reveal a full keyboard, or an external keyboard might have been
plugged in.

 ➤ fontScale—The user has changed the preferred font size.

 ➤ uiMode—The global UI mode has changed. This typically occurs if you switch between car
mode, day or night mode, and so on.

 ➤ orientation—The screen has been rotated between portrait and landscape.

 ➤ screenLayout—The screen layout has changed; typically occurs if a different screen has
been activated.

 ➤ screenSize—Occurs when the available screen size has changed; for example, a change in
orientation between landscape and portrait or with multi-window mode.

 ➤ smallestScreenSize—Occurs when the physical screen size has changed, such as when a
device has been connected to an external display.

 ➤ layoutDirection—The screen/text layout direction has changed; for example, switching
between left-to-right and right-to-left (RTL).

Externalizing Resources ❘ 127

In certain circumstances multiple events will be triggered simultaneously. For example, when
the user slides out a keyboard, most devices fire both the keyboardHidden and orientation
events, and connecting an external display is likely to trigger orientation, screenLayout,
screenSize, and smallestScreenSize events.

You can select multiple events you want to handle yourself by separating the values with a pipe
(|), as shown in Listing 4-4, which shows an Activity node declaring that it will handle changes in
screen size and orientation, and access to a physical keyboard.

LISTING 4-4: Activity definition for handling dynamic resource changes

<activity
 android:name=".MyActivity"
 android:label="@string/app_name"
 android:configChanges="screenSize|orientation|keyboardHidden">
 <intent-filter >
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

Adding an android:configChanges attribute suppresses the restart for the specified configu-
ration changes, instead triggering the onConfigurationChanged handler in the associated
Activity. Override this method to handle the configuration changes yourself, using the passed-in
Configuration object to determine the new configuration values, as shown in Listing 4-5. Be sure
to call back to the superclass and reload any resource values that the Activity uses, in case they’ve
changed.

LISTING 4-5: Handling configuration changes in code

@Override
public void onConfigurationChanged(Configuration newConfig) {
 super.onConfigurationChanged(newConfig);

 // [... Update any UI based on resource values ...]

 if (newConfig.orientation == Configuration.ORIENTATION_LANDSCAPE) {
 // [... React to different orientation ...]
 }

 if (newConfig.keyboardHidden == Configuration.KEYBOARDHIDDEN_NO) {
 // [... React to changed keyboard visibility ...]
 }
}

When onConfigurationChanged is called, the Activity’s Resource variables have already been
updated with the new values, so they’ll be safe to use.

Any configuration change that you don’t explicitly flag as being handled by your application will
cause your Activity to restart, without a call to onConfigurationChanged.

Building User Interfaces
WHAT’S IN THIS CHAPTER?

 ➤ Density-independent UI Design

 ➤ Using Views and layouts

 ➤ Optimizing layouts

 ➤ Working with Lists and Grids

 ➤ Using the Recycler View and Adapters

 ➤ Implementing Data Binding

 ➤ Extending, grouping, creating, and using Views

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The code downloads for this chapter are found at www.wrox.com. The code for this chapter is
divided into the following major examples:

 ➤ Snippets_ch5.zip

 ➤ Earthquake_ch5_1.zip

 ➤ Earthquake_ch5_2.zip

 ➤ Compass_ch5.zip

5

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

130 ❘ CHAPTER 5 Building user interfaces

FUNDAMENTAL ANDROID DESIGN

At the beginning of the smart-phone era, Stephen Fry described the interplay of style and substance
in the design of digital devices as follows:

As if a device can function if it has no style. As if a device can be called stylish
that does not function superbly…. Yes, beauty matters. Boy, does it matter. It is
not surface, it is not an extra, it is the thing itself.

—Stephen Fry, The Guardian (October 27, 2007)

Although Fry was describing the style of the devices themselves, the same can be said of the applica-
tions that run on them.

That sentiment has only gained relevance since then—with design and user experience becoming
increasingly important in the success of smart devices, and a significant focus for Android applica-
tion developers.

Bigger, brighter, and higher resolution displays have made applications increasingly visual. As
phones evolved beyond purely functional devices, and Android devices expanding past phone form
factors, the user experience your application provides has become critically important.

For Android apps, this focus on design and user experience has most been apparent in the launch
and adoption of the material design philosophy, which we’ll describe in more detail in later chapters.

In this chapter, we’ll focus on the Android components used to create UIs; you’ll learn how to use
Views to create functional and intuitive UIs within your Activities and Fragments.

The individual elements of an Android UI are arranged on screen by means of a variety of Layout
Managers derived from the ViewGroup class. This chapter introduces several native layout classes,
demonstrates how to use them, and introduces techniques to ensure your use of layouts is as efficient
as possible.

You’ll examine Android’s data binding framework, and how it can be used to dynamically bind data
to your UI based on your layouts. With many user interfaces based on lists of content, you’ll learn
how to use the RecyclerView to efficiently display lists connected to your underlying data sources.

Android also allows you to extend and customize the available Views and View Groups. Using View
Groups, you’ll combine Views to create atomic, reusable UI elements made up of interacting sub-
controls. You’ll also create your own Views to display data, and to interact with users in creative
new ways.

DENSITY-INDEPENDENT DESIGN

User interface (UI) design, user experience (UX), human computer interaction (HCI), and usability
are huge topics that can’t be covered in the depth they deserve within the confines of this book.
Nonetheless, the importance of creating a UI that your users will understand and enjoy using can’t
be overstated.

Android User Interface Fundamentals ❘ 131

There is a huge variety of different Android devices, including a number of different sizes and form
factors. From a UI perspective that means understanding that the number of pixels available to
your application, and the underlying density of the display hardware, will vary significantly across
devices.

You can abstract away the impact of different device densities by always thinking in terms of
density-independent pixels (dp). Density-independent pixels represent physical sizes—two UI elements
of the same size measured in dp, will appear to users as the same size on screen whether they are on
a low-density device or newest super high-density screen. Knowing that users will physically interact
with your UI (touching visual elements with their fingers) makes the importance and usefulness of
this abstraction clear. Very few things are more frustrating than a button that is too small to tap!

For font sizes, we use the scalable pixel (sp). The sp shares the same base density independence as
dp, but is also scaled independently based on the user’s preferred text size: an important consider-
ation for accessibility, allowing users to increase the font size for all apps on their device.

Android 5.0 Lollipop (API Level 21) introduced support for device-independent Vector Drawables.
Vector Drawables are defined in XML, and can be scaled to support any display density.
Alternatively, where you have assets that can’t be described as vector graphics, the Android resource
system will automatically down-scale graphics, or you can provide multiple resources in different
resource folders, as described in Chapter 4.

As a result of making your designs density independent, you can focus on optimizing and adapt-
ing your designs for different screen sizes. You’ll note that the UI elements throughout the book are
written in terms of density-independent pixels (dp) and text sizes are written in terms of scalable
pixels (sp).

ANDROID USER INTERFACE FUNDAMENTALS

All visual components in Android descend from the View class and are referred to generically as
Views. You’ll often see Views referred to as controls or widgets (not to be confused with home-
screen App Widgets described in Chapter 19, “Invading the Home Screen”)—terms you’re probably
familiar with if you’ve previously done GUI development on other platforms.

The ViewGroup class is an extension of View that supports adding child Views (commonly referred
to as children). View Groups are responsible for deciding how large each child View is, and deter-
mining their positions. View Groups that focus primarily on laying out child Views are referred to
as layouts.

View Groups are Views, so—like any other View—they can also draw their own customized UI,
and handle user interactions.

The Views and View Groups included in the Android SDK provide the components you need to
build an effective and accessible UI. You can create and lay out your Views within your UI program-
matically, but it’s strongly recommended to use XML layout resources to build and construct your
UI. This approach makes it possible to specify different layouts optimized for different hardware
configurations—particularly screen size variations—potentially even modifying them at run time
based on hardware changes (such as orientation changes).

132 ❘ CHAPTER 5 Building user interfaces

Each View contains a set of XML attributes that allow you to set its initial state from your layout
resource. For example, to set the text on a TextView, you’d set the android:text attribute.

In the following sections you’ll learn how to put together increasingly complex UIs, before being
introduced to Fragments, the Views available in the SDK, how to extend these Views, build your
own compound controls, and create your own custom Views from scratch.

Assigning User Interfaces to Activities
A new Activity starts with an invitingly empty screen, onto which you can place your UI. To do so,
call setContentView, passing in the View instance, or layout resource, to display.

An empty screen lacks the visceral appeal required by today’s savvy users, so you’ll almost always
use setContentView to assign an Activity’s UI when overriding its onCreate handler. Because the
setContentView method accepts either a layout’s resource ID or a single View instance at the root
of your view hierarchy, you can define your UI either in code or using the best-practice technique of
external layout resources:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
}

Using layout resources allows you to decouple the presentation layer from the application logic,
providing the flexibility to change the presentation without changing code. This makes it possible to
specify different layouts optimized for different hardware configurations, even changing them at run
time based on hardware changes (such as screen orientation changes).

Once the layout has been set, you can obtain a reference to each of the Views within it using the
findViewById method:

TextView myTextView = findViewById(R.id.myTextView);

If you’re using Fragments to encapsulate portions of your Activity’s UI, the View set within your
Activity’s onCreate handler will be a layout that describes the relative position of each of your
Fragments (or their containers). The UI used for each Fragment is defined in its own layout and
inflated within the Fragment itself and should, in almost all cases, be handled solely by that
Fragment.

INTRODUCING LAYOUTS

In most cases, building your UI will include many Views contained within one or more nested
layouts—extensions of the ViewGroup class. By combining different layouts and Views, you can
create arbitrarily complex UIs.

The Android SDK includes a number of layout classes. You will use these, modify them, or create
your own to construct UI layouts for your Views, Fragments, and Activities. Your challenge, should
you choose to accept it, is to find the right combination of layouts to make your UI aesthetically
pleasing, easy to use, and efficient to display.

Introducing Layouts ❘ 133

The following list includes some of the most commonly used layout classes available in the Android
SDK, as illustrated in Figure 5-1.

 ➤ FrameLayout—The simplest of the Layout Managers, the Frame Layout pins each child
View within its frame. The default position is the top-left corner, though you can use the
layout_gravity attribute on a child View to alter its location. Adding multiple children
stacks each new child on top of the one before, with each new View potentially obscuring the
previous ones.

 ➤ LinearLayout—The Linear Layout aligns its child Views in either a vertical or a horizon-
tal line. A vertical layout has a column of Views, whereas a horizontal layout has a row of
Views. The Linear Layout supports a layout_weight attribute for each child View that can
control the relative size of each child View within the available space.

 ➤ RelativeLayout—One of the most flexible of the native layouts, though potentially expen-
sive to render, the Relative Layout lets you define the positions of each child View relative to
the others, and to the layout’s boundaries.

 ➤ ConstraintLayout—The newest (and recommended) layout, it’s designed to support large
and complex layouts without the need to nest layouts. It’s similar to the Relative Layout but
provides greater flexibility and is more efficient to lay out. The Constraint Layout positions
its child Views through a series of constraints—requiring child Views be positioned accord-
ing to a boundary, other child Views, or to custom guidelines. The Constraint Layout has
its own Visual Layout Editor, used to position each control and define the constraints rather
than relying on manually editing the XML. The Constraint Layout is available through the
Constraint Layout package of the Android Support Library, making it backward compatible.

FrameLayout LinearLayout

RelativeLayout ConstraintLayout

FIGURE 5-1

Each of these layouts can scale to fill the host device’s screen size by avoiding the use of absolute
positions or predetermined pixel values. This makes them particularly useful when designing appli-
cations that work well on a diverse set of Android hardware.

134 ❘ CHAPTER 5 Building user interfaces

Layouts use a variety of attributes assigned to the root node to modify the way in which all child
nodes will be positioned (such as Linear Layout’s android:orientation attribute):

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">
 [... Child Views ...]
</LinearLayout>

To change the measurement and positioning of specific child Views, you will use layout_ attributes
within the child nodes directly. These attributes are used to instruct the parent ViewGroup on how
the child should be laid out:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>
</LinearLayout>

The most common layout_ attributes are layout_width and layout_height—required attributes
on all Views—but most layouts feature custom child View attributes to provide the majority of the
layout-specific functionality they provide.

The Android documentation describes the features and properties of each layout class in detail; so,
rather than repeat that information here, I’ll refer you to developer.android.com/guide/topics/
ui/declaring-layout.html#CommonLayouts.

NOTE When reviewing documentation on layout attributes, make sure to look
at the LayoutParams class for the layout. For example, if the parent layout is a
FrameLayout, documentation on its layout_gravity attribute will be found on
the FrameLayout.LayoutParams class.

You’ll see practical example of how these layouts should be used as they’re introduced in the exam-
ples throughout this book. Later in this chapter you’ll also learn how to create compound controls
by using and/or extending these layout classes.

Defining Layouts
The preferred way to define a layout is by using XML external resources, either by manually writing
the XML or using the Constraint Layout’s visual layout editor to create it for you.

Each layout XML must contain a single root element, which can contain as many nested layouts and
Views as necessary to construct an arbitrarily complex UI.

Introducing Layouts ❘ 135

The following snippet shows a simple layout that places a TextView above an EditText control
using a vertical LinearLayout that covers the full screen height and width:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Enter Text Below" />
 <EditText
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Text Goes Here!" />
</LinearLayout>

For each of the layout elements, the constants wrap_content and match_parent are used rather
than specifying an exact height or width in pixels (or dp). These constants, combined with layouts
that scale (such as the Linear Layout, Relative Layout, and Constraint Layout) offer the simplest,
and most powerful, technique for ensuring your layouts are screen-size and resolution independent.

The wrap_content constant sets the size of a View to the minimum required to contain the contents
it displays (such as the height required to display a wrapped text string). The match_parent con-
stant expands the View to match the available space within the parent View, Fragment, or Activity.

Later in this chapter you’ll learn how these constants are used when creating your own controls, as
well as further best practices for resolution independence.

Implementing layouts in XML decouples the presentation layer from the View, Fragment, and
Activity controller code and business logic. It also lets you create hardware configuration–specific
variations that are dynamically loaded without requiring code changes.

When preferred, or required, you can implement layouts in code. When assigning Views to layouts
in code, it’s important to apply LayoutParameters using the setLayoutParams method, or by pass-
ing them into the addView call:

LinearLayout ll = new LinearLayout(this);
ll.setOrientation(LinearLayout.VERTICAL);

TextView myTextView = new TextView(this);
EditText myEditText = new EditText(this);

myTextView.setText("Enter Text Below");
myEditText.setText("Text Goes Here!");

int lHeight = LinearLayout.LayoutParams.MATCH_PARENT;
int lWidth = LinearLayout.LayoutParams.WRAP_CONTENT;

ll.addView(myTextView, new LinearLayout.LayoutParams(lWidth, lHeight));
ll.addView(myEditText, new LinearLayout.LayoutParams(lWidth, lHeight));

setContentView(ll);

136 ❘ CHAPTER 5 Building user interfaces

Using Layouts to Create Device-Independent User Interfaces
A defining feature of the layout classes is their ability to scale and adapt to a range of screen sizes,
resolutions, and orientations.

The variety of Android devices is a critical part of the platform’s success, but for us as application
developers, it introduces a challenge in designing UIs that offer the best possible experience for
users, regardless of which Android device they own.

Using a Linear Layout
The Linear Layout is one of the simplest layout classes. It allows you to create simple UIs (or UI ele-
ments) that align a sequence of child Views either vertically or horizontally.

The simplicity of the Linear Layout makes it easy to use, but limits its flexibility. In most cases you
will use Linear Layouts to construct UI elements that will be nested within other layouts, such as the
Relative or Constraint Layouts.

Listing 5-1 shows two nested Linear Layouts—a horizontal layout of two equally sized buttons
within a vertical layout that places the buttons above a Recycler View.

LISTING 5-1: Using a Linear Layout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="5dp"
 android:layout_marginRight="5dp"
 android:layout_marginTop="5dp"
 android:orientation="horizontal">
 <Button
 android:id="@+id/cancel_button"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="@string/cancel_button_text" />
 <Button
 android:id="@+id/ok_button"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="@string/ok_button_text" />
 </LinearLayout>
 <android.support.v7.widget.RecyclerView
 android:layout_width="match_parent"
 android:layout_height="match_parent"

Introducing Layouts ❘ 137

 android:paddingBottom="5dp"
 android:clipToPadding="false" />
</LinearLayout>

If you find yourself creating increasingly complex nesting patterns of Linear Layouts, you will likely
be better served using a more flexible Layout Manager such as the Constraint Layout.

Using a Relative Layout
The Relative Layout provides a great deal of flexibility for your layouts, allowing you to define the
position of each element within the layout in terms of its parent and the other Views.

Listing 5-2 modifies the layout described in Listing 5-1 to move the buttons below the Recycler
View.

LISTING 5-2: Using a Relative Layout

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <LinearLayout
 android:id="@+id/button_bar"
 android:layout_alignParentBottom="true"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="5dp"
 android:layout_marginRight="5dp"
 android:layout_marginBottom="5dp"
 android:orientation="horizontal">
 <Button
 android:id="@+id/cancel_button"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="@string/cancel_button_text" />
 <Button
 android:id="@+id/ok_button"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="@string/ok_button_text" />
 </LinearLayout>
 <android.support.v7.widget.RecyclerView
 android:layout_above="@id/button_bar"
 android:layout_alignParentLeft="true"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingTop="5dp"
 android:clipToPadding="false" />
</RelativeLayout>

138 ❘ CHAPTER 5 Building user interfaces

Using a Constraint Layout
The Constraint Layout provides the most flexibility of any of the Layout Managers, offering the
advantage of both a visual layout editor, and a flat view hierarchy without the nesting shown in the
previous examples.

It’s available as part of the Android Support Library, and must be included as a dependency to your
project’s module-level build.gradle file:

dependencies {
 [... Existing dependencies ...]
 implementation 'com.android.support.constraint:constraint-layout:1.1.2'
}

As the name suggests, the Constraint Layout positions its child Views through the specification
of constraints that define the relationship between a View and elements such as boundaries, other
views, and custom guidelines.

While it’s possible to define a Constraint Layout in XML manually, it’s much simpler (and less error
prone) to use the visual layout editor. Figure 5-2 shows the Layout Editor used to create the same UI
as the previous example using a Constraint Layout.

FIGURE 5-2

Listing 5-3 shows the XML produced by the visual editor in Figure 5-2.

Introducing Layouts ❘ 139

LISTING 5-3: USING A CONSTRAINT LAYOUT

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <Button
 android:id="@+id/cancel_button"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="5dp"
 android:layout_marginBottom="5dp"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintEnd_toStartOf="@+id/ok_button"
 app:layout_constraintTop_toBottomOf="@+id/recyclerView"
 app:layout_constraintBottom_toBottomOf="parent"
 android:text="@string/cancel_button_text" />
 <Button
 android:id="@+id/ok_button"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginEnd="5dp"
 android:layout_marginBottom="5dp"
 app:layout_constraintStart_toEndOf="@id/cancel_button"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintTop_toBottomOf="@id/recyclerView"
 app:layout_constraintBottom_toBottomOf="parent"
 android:text="@string/ok_button_text" />
 <android.support.v7.widget.RecyclerView
 android:id="@+id/recyclerView"
 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintBottom_toTopOf="@id/ok_button"
 android:paddingTop="5dp"
 android:clipToPadding="false" />
</android.support.constraint.ConstraintLayout>

Notice in particular that this layout removes the need to nest a second layout within the parent
Constraint Layout. Flattening our hierarchy reduces the number of measure and layout passes
required to render it on screen, making it more efficient as described in more detail in the following
section.

Optimizing Layouts
Inflating layouts is an expensive process; each additional nested layout and included View directly
impacts on the performance and responsiveness of your application. This is one of the reasons why
Constraint Layout, with its ability to flatten the View hierarchy, is strongly recommended.

140 ❘ CHAPTER 5 Building user interfaces

To keep your applications smooth and responsive, it’s important to keep your layouts as simple as
possible, and to avoid inflating entirely new layouts for relatively small UI changes.

Redundant Layout Containers Are Redundant
A Linear Layout within a Frame Layout, both of which are set to MATCH_PARENT, does nothing but
add extra time to inflate. Look for redundant layouts, particularly if you’ve been making significant
changes to an existing layout or are adding child layouts to an existing layout.

Layouts can be arbitrarily nested, so it’s easy to create complex, deeply nested hierarchies. Although
there is no hard limit, it’s good practice to restrict nesting to fewer than 10 levels.

One common example of unnecessary nesting is a Frame Layout used to create the single root node
required for a layout, as shown in the following snippet:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <ImageView
 android:id="@+id/myImageView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:src="@drawable/myimage"
 />
 <TextView
 android:id="@+id/myTextView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 android:gravity="center_horizontal"
 android:layout_gravity="bottom"
 />
</FrameLayout>

In this example, when the Frame Layout is added to a parent, it will become redundant. A better
alternative is to use the merge tag:

<?xml version="1.0" encoding="utf-8"?>
<merge
 xmlns:android="http://schemas.android.com/apk/res/android">
 <ImageView
 android:id="@+id/myImageView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:src="@drawable/myimage"
 />
 <TextView
 android:id="@+id/myTextView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 android:gravity="center_horizontal"
 android:layout_gravity="bottom"
 />
</merge>

Introducing Layouts ❘ 141

When a layout containing a merge tag is added to another layout, the merge node is removed and its
child Views are added directly to the new parent.

The merge tag is particularly useful in conjunction with the include tag, which is used to insert the
contents of one layout into another:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <include android:id="@+id/my_action_bar"
 layout="@layout/actionbar"/>
 <include android:id="@+id/my_image_text_layout"
 layout="@layout/image_text_layout"/>
</LinearLayout>

Combining the merge and include tags enables you to create flexible, reusable layout definitions
that don’t create deeply nested layout hierarchies. You’ll learn more about creating and using simple
and reusable layouts later in this chapter.

Avoid Using Excessive Views
Each additional View takes time and resources to inflate. To maximize the speed and responsiveness
of your application, none of its layouts should include more than 80 Views. When you exceed this
limit, the time taken to inflate the layout can become significant.

To minimize the number of Views inflated within a complex layout, you can use a ViewStub.

A View Stub works like a lazy include—a stub that represents the specified child Views within the
parent layout—but the stub is only inflated explicitly via the inflate method or when it’s made
visible:

// Find the stub
View stub = findViewById(R.id.download_progress_panel_stub);
// Make it visible, causing it to inflate the child layout
stub.setVisibility(View.VISIBLE);

// Find the root node of the inflated stub layout
View downloadProgressPanel = findViewById(R.id.download_progress_panel);

As a result, the Views contained within the child layout aren’t created until they are required—mini-
mizing the time and resource cost of inflating complex UIs.

When adding a View Stub to your layout, you can override the id and layout parameters of the
root View of the layout it represents:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout "xmlns:android=http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <ListView

142 ❘ CHAPTER 5 Building user interfaces

 android:id="@+id/myListView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />
 <ViewStub
 android:id="@+id/download_progress_panel_stub"

 android:layout="@layout/progress_overlay_panel"
 android:inflatedId="@+id/download_progress_panel"

 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom"
 />
</FrameLayout>

This snippet modifies the width, height, and gravity of the imported layout to suit the requirements
of the parent layout. This flexibility makes it possible to create and reuse the same generic child lay-
outs in a variety of parent layouts.

An ID has been specified for both the stub and the View Group it will become when inflated using
the id and inflatedId attribute, respectively.

NOTE When the View Stub is inflated, it is removed from the hierarchy and
replaced by the root node of the View it imported. If you need to modify the vis-
ibility of the imported Views, you must either use the reference to their root node
(returned by the inflate call) or find the View by using findViewById, using
the layout ID assigned to it within the corresponding View Stub node.

Using Lint to Analyze Your Layouts
To assist you in optimizing your layout hierarchies, the Android SDK includes lint—a powerful
tool that you can use to detect problems within your application, including layout performance
issues.

The Lint tool is available within Android Studio through the Inspect Code option in the Analyze
menu as shown in Figure 5-3, or as a command-line tool.

In addition to using Lint to detect each optimization issue described previously in this section, you
can also use Lint to detect missing translations, unused resources, inconsistent array sizes, accessi-
bility and internationalization problems, missing or duplicated image assets, usability problems, and
manifest errors.

Lint is a constantly evolving tool, with new rules added regularly. You can find a full list of the tests
performed by the Lint tool at http://tools.android.com/tips/lint-checks.

The Android Widget Toolbox ❘ 143

FIGURE 5-3

THE ANDROID WIDGET TOOLBOX

Android supplies a toolbox of standard Views to help you create your UIs. By using these controls
(and modifying or extending them, as necessary), you can simplify your development and provide
consistency across applications and with the Android system UI.

The following list highlights some of the more familiar controls:

 ➤ TextView—A standard read-only text label that supports multiline display, string formatting,
and automatic word-wrapping.

 ➤ EditText—An editable text entry box that accepts multiline entry, word-wrapping, and hint
text.

 ➤ ImageView—A View that shows a single image.

 ➤ Toolbar—A View that shows a title and common actions, often used as the main app bar at
the top of an Activity.

 ➤ ProgressBar—A View that shows either an indeterminate progress indicator (a spinning
circle) or a horizontal progress bar.

 ➤ RecyclerView—A View Group that manages displaying a large number of Views in a scroll-
ing container. Supports a number of layout managers that allow you to lay out Views as a
vertical and horizontal list or a grid.

 ➤ Button—A standard interactive push button.

 ➤ ImageButton—A push button for which you can specify a customized background image.

144 ❘ CHAPTER 5 Building user interfaces

 ➤ CheckBox—A two-state button represented by a checked or unchecked box.

 ➤ RadioButton—A two-state grouped button. A group of these presents the user with a num-
ber of possible options, of which only one can be enabled at a time.

 ➤ VideoView—Handles all state management and display Surface configuration for playing
videos more simply from within your Activity.

 ➤ ViewPager—Implements a horizontally scrolling set of Views. The View Pager allows users
to swipe or drag left or right to switch between different Views.

This is only a selection of the widgets available. Android also supports several more advanced View
implementations, including date-time pickers, and auto-complete input boxes.

NOTE Chapter 12, “Implementing the Android Design Philosophy,” and
Chapter 13, “Implementing a Modern Android User Experience,” introduce the
Design Library and several new material design components that are included
within it, including tabs, Floating Action Buttons , and the bottom navigation
bar. These material design components are expected to go through a much faster
evolution, including deprecation of whole components, than these basic building
block UI elements.

WORKING WITH LISTS AND GRIDS

When you need to display a large dataset within your UI, it may be tempting to add hundreds of
Views to your UI. This is almost always the wrong approach. Instead, the RecyclerView (available
from the Android Support Library) offers a scrollable View Group specifically designed to efficiently
display, and scroll through, a large number of items.

The Recycler View can be used in both vertical and horizontal orientations, configured using the
android:orientation attribute:

<android.support.v7.widget.RecyclerView
 xmlns:android:"http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/recycler_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 [... Layout Manager Attributes ...]
/>

In a vertical orientation, items are laid out from top to bottom and the Recycler View scrolls verti-
cally, while a horizontal orientation will lay out items from left to right and the Recycler View will
scroll horizontally.

Working with Lists and Grids ❘ 145

Recycler View and Layout Managers
The RecyclerView itself doesn’t control how each item is displayed; that responsibility belongs to
the associated RecyclerView.LayoutManager. This separation of duties allows you to substitute
Layout Manager classes, without affecting other parts of your application.

A number of Layout Managers are available, as shown in Figure 5-4, and described here:

 ➤ LinearLayoutManager—Lays out items in a single vertical or horizontal list.

 ➤ GridLayoutManager—Similar to the Linear Layout Manager, but displays a grid. When laid
out vertically, each row can include multiple items, where each is the same height. For hori-
zontal orientation each item in a given column must be the same width.

 ➤ StaggeredGridLayoutManager—Similar to the Grid Layout Manager but creates a “stag-
gered” grid, where each grid cell can have a different height or width, with cells staggered to
eliminate gaps.

Linear Grid Staggered Grid

FIGURE 5-4

The Layout Manager operates in the same way as a standard layout—responsible for laying out the
Views representing each item in your dataset.

The Recycler View gets its name from the way it supports scrolling. Rather than creating a view for
each item upfront, or continually creating them when they’re scrolled into view, the Recycler View
is able to “recycle” existing Views that are no longer visible—changing their content and position to
represent newly visible items.

To support this behavior, the Layout Manager is also responsible for determining when a View can
safely be recycled. In most cases, this allows the Recycler View to support a nearly infinite (226) list
of items, while creating just enough Views to fill a single screen.

The Layout Manager for a Recycler View can be set either in XML or programmatically.

For example, the following snippet lays out a vertically aligned Recycler View with a Grid Layout
Manager that features two columns:

<android.support.v7.widget.RecyclerView
 xmlns:android:"http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"

146 ❘ CHAPTER 5 Building user interfaces

 android:id="@+id/recycler_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 app:layoutManager="GridLayoutManager"
 app:spanCount="2"
/>

To assign the same Layout Manager in code, for an existing Recycler View, you would use the fol-
lowing snippet:

RecyclerView recyclerView = findViewById(R.id.recycler_view);
GridLayoutManager gridLayoutManager = new GridLayoutManager(2);
recyclerView.setLayoutManager(gridLayoutManager);

Introducing Adapters
Layout Managers aren’t particularly useful until you have data for them to display; that data is pro-
vided by the RecyclerView.Adapter. The Adapter has two important roles:

 ➤ The initial creation of the Views to display, including inflating the appropriate layout

 ➤ The creation of the View Holders you’ll use to “bind” the View elements to the underlying
data source

A View Holder stores the View to be displayed, and also allows the Adapter to store additional
metadata and View references to simplify data binding, as shown later. This typically includes find-
ing references to any child Views within an item layout (ensuring that work is only done once).

The Adapter’s onCreateViewHolder method is called to get a new RecyclerView.ViewHolder
instance whenever the Layout Manager doesn’t have an unused View to reuse—typically only
enough views to fill the screen.

Listing 5-4 shows a simple Adapter implementation that uses a single Text View to display a data
stored in an array of strings.

LISTING 5-4: Creating a Recycler View Adapter

public class SimpleAdapter
 extends RecyclerView.Adapter<SimpleAdapter.ViewHolder> {

 // Underlying data to be displayed.
 private String[] mData;

 // Set the initial data in the constructor
 public SimpleAdapter(String[] data) {
 mData = data;
 }

Working with Lists and Grids ❘ 147

 // Tell the Layout Manager how many items exist in the data
 @Override
 public int getItemCount() {
 return mData == null ? 0 : mData.length;
 }

 public static class ViewHolder extends RecyclerView.ViewHolder {
 public TextView textView;

 public ViewHolder(View v) {
 super(v);
 // Only do findViewById once
 textView = v.findViewById(R.id.text);
 }
 }

 @Override
 public SimpleAdapter.ViewHolder onCreateViewHolder(
 ViewGroup parent, int viewType) {
 // Create the new View
 View v = LayoutInflater.from(parent.getContext())
 .inflate(R.layout.simple_text, parent, false);

 return new ViewHolder(v);
 }

Notice that the View Holder itself doesn’t assign values from the underlying data to the Views it
contains—its role is to make the elements within the View’s layout available for the adapter to bind
data to them.

Every time an item needs to be displayed, the Layout Manager will call the Adapter’s onBindView-
Holder method, providing you a previously created ViewHolder and the position in the dataset
requested. This binding phase runs very frequently when scrolling through a list (once for every ele-
ment that scrolls into view) so it should be as lightweight as possible.

@Override
public void onBindViewHolder(ViewHolder holder, int position) {
 holder.textView.setText(mData[position]);
}

NOTE When binding a new data element, it’s important to reset any View ele-
ment that may have been set previously. Because the View Holder (and its View
elements) are constantly reused, they will retain any state set from previous
onBindViewHolder calls.

To assign your Adapter to a Recycler View, use the setAdapter method:

RecyclerView recyclerView = findViewById(R.id.recycler_view);
SimpleAdapter adapter =
 new SimpleAdapter(new String[] {"Sample", "Sample 2"});

recyclerView.setAdapter(adapter);

148 ❘ CHAPTER 5 Building user interfaces

Static datasets like this example are fun, but in reality we’re rarely that lucky. In most cases the
underlying data will change when new data is loaded from the server, if the user adds or deletes an
item, or even if the sort order is changed.

When you update an Adapter with new or changed data, you must call one of the Adapter’s notify
methods to inform the Layout Manager that something has changed. The RecyclerView will then
animate a transition between the previous and updated states (cross fading changed items, collaps-
ing and removing removed items, and animating in new items).

You can customize the animations used for each state change by assigning a RecyclerView
.ItemAnimator using the setItemAnimator method.

There are different methods for notifying the change, insertion, move, or removal of a single item,
and for a range of items. You can use the DiffUtil class to understand which changes should be
applied to transition from one dataset to another, as shown in Listing 5-5.

LISTING 5-5: Calculating the transitions between datasets

public class SimpleAdapter
 extends RecyclerView.Adapter<SimpleAdapter.ViewHolder> {

 [... Existing SimpleAdapter Implementation ...]

 public void setData(final String[] newData) {
 // Store a copy of the previous data
 final String[] previousData = mData;

 // apply the new data
 mData = newData;

 // Calculate the differences between the old and new data
 DiffUtil.calculateDiff(new DiffUtil.Callback() {
 @Override
 public int getOldListSize() {
 return previousData != null ? previousData.length : 0;
 }

 @Override
 public int getNewListSize() {
 return newData != null ? previousData.length : 0;
 }

 @Override
 public boolean areItemsTheSame(int oldItemPosition,
 int newItemPosition) {
 // This method should compare the item's unique identifiers
 // if available. Returning true means the two items should be
 // crossfaded. In this example, we don't have an identifier,
 // so we'll compare the string values.
 return TextUtils.equals(previousData[oldItemPosition],
 newData[newItemPosition]);
 }

Working with Lists and Grids ❘ 149

 @Override
 public boolean areContentsTheSame(int oldItemPosition,
 int newItemPosition) {
 // This method should do a deep inspection of the items to determine
 // if their visible contents are the same.
 // If they are the same, no animation is required.
 // In this example, if the items are the same,
 // the contents are the same
 return true;
 }
 }).dispatchUpdatesTo(this);
 }
}

Returning to the Earthquake Viewer Application
With the newfound knowledge of layouts and Views, we can improve the Earthquake Viewer built
in Chapter 3, replacing the simple TextView with a more complicated layout that better displays the
data in the Earthquake class:

 1. Replace the list_item_earthquake.xml layout resource with a new layout that uses a
Constraint Layout to display the magnitude, date, and details in separate Text Views:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:paddingLeft="@dimen/activity_vertical_margin"
 android:paddingRight="@dimen/activity_vertical_margin">
 <TextView
 android:id="@+id/magnitude"
 android:layout_width="wrap_content"
 android:layout_height="0dp"
 android:gravity="center_vertical"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintBottom_toBottomOf="parent"
 android:textAppearance="?attr/textAppearanceListItem"/>
 <TextView
 android:id="@+id/date"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginTop="@dimen/text_margin"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintRight_toLeftOf="@id/magnitude"/>
 <TextView
 android:id="@+id/details"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginBottom="@dimen/text_margin"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintBottom_toBottomOf="parent"

150 ❘ CHAPTER 5 Building user interfaces

 app:layout_constraintRight_toLeftOf="@id/magnitude"
 app:layout_constraintTop_toBottomOf="@id/date"/>
</android.support.constraint.ConstraintLayout>

 2. Update the EarthquakeRecyclerViewAdapter to cache the new Views elements added in Step
1 within the View Holder constructor, and then bind those Views to each Earthquake item
within the onBindViewHolder by using java.text.SimpleDateFormat:

private static final SimpleDateFormat TIME_FORMAT =
 new SimpleDateFormat("HH:mm", Locale.US);
private static final NumberFormat MAGNITUDE_FORMAT =
 new DecimalFormat("0.0");

public static class ViewHolder extends RecyclerView.ViewHolder {
 public final TextView date;
 public final TextView details;
 public final TextView magnitude;

 public ViewHolder(View view) {
 super(view);
 date = (TextView) view.findViewById(R.id.date);
 details = (TextView) view.findViewById(R.id.details);
 magnitude = (TextView) view.findViewById(R.id.magnitude);
 }
}

@Override
public void onBindViewHolder(ViewHolder holder, int position) {
 Earthquake earthquake = mEarthquakes.get(position);

 holder.date.setText(TIME_FORMAT.format(earthquake.getDate()));
 holder.details.setText(earthquake.getDetails());
 holder.magnitude.setText(
 MAGNITUDE_FORMAT.format(earthquake.getMagnitude()));
}

INTRODUCING DATA BINDING

The Data Binding library makes it possible to write declarative layouts that minimize the glue code
needed to bind View elements to underlying data sources by generating that code for you at compile
time.

NOTE Data Binding is a complex topic that is beyond the scope of this book.
We’ll introduce you to the fundamentals, but recommend you refer to the
Android Developer documentation to dive into the details at developer.android
.com/topic/libraries/data-binding.

Introducing Data Binding ❘ 151

Enabling Data Binding
Data Binding is an optional library, so before you can take advantage of it you must enable it in
your application module’s build.gradle file:

android {
 [... Existing Android Node ...]
 dataBinding.enabled = true
}

dependencies {
 [... Existing dependencies element ...]
 implementation 'com.android.support:support-v4:27.1.1'
}

Once enabled, you can apply Data Binding to any layout by wrapping the elements of a layout file in
a new <layout> element, as seen in Listing 5-6:

LISTING 5-6: Enabling Data Binding in a layout

<?xml version="1.0" encoding="utf-8"?>
<layout
 xmlns:android="http://schemas.android.com/apk/res/android">
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">
 <TextView
 android:id="@+id/user_name"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <TextView
 android:id="@+id/email"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 </LinearLayout>
</layout>

This triggers Data Binding to generate a Binding class based on the name of the modified layout file.
For example, for a layout defined in profile_activity.xml, the generated Binding class would be
named ProfileActivityBinding.

You create an instance of a Binding class using DataBindingUtil, and use its setContentView
method in place of the Activity’s setContentView:

ProfileActivityBinding binding =
 DataBindingUtil.setContentView(this, R.layout.profile_activity);

For inflating the View associated with a Fragment or Recycler View item, you would use the Binding
class’s inflate method:

ProfileActivityBinding binding =
 ProfileActivityBinding.inflate(layoutInflater, viewGroup, false);

152 ❘ CHAPTER 5 Building user interfaces

Alternatively, you can create a Data Binding class from an existing View:

ProfileActivityBinding binding =
 (ProfileActivityBinding) DataBindingUtil.bind(view);

The Binding class automatically calls findViewById on each View with an ID within the associated
layout, so instead of keeping a reference to every View in your layout or having to call findView-
ById yourself, you can reference the View through the Binding class:

binding.userName.setText("professionalandroid");
binding.email.setText("example@example.com");

Variables in Data Binding
The power of this fully operational Data Binding is its ability to simplify the process of dynamically
binding your underlying data to the layout. You do this by adding a <data> element and declaring
variables that can be used within the layout using the @{name.classvariable} syntax as shown in
Listing 5-7.

LISTING 5-7: Applying Data Binding variables in a layout

<?xml version="1.0" encoding="utf-8"?>
<layout
 xmlns:android="http://schemas.android.com/apk/res/android">
 <data>
 <variable name="user" type="com.professionalandroid.databinding.User" />
 </data>
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@{user.userName}" />
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@{user.email}" />
 </LinearLayout>
</layout>

By declaring a variable named user, of the class User, our Binding class will generate a setUser
method.

Calling this method will set all of the properties referencing that class using the @{} syntax. Data
Binding will look for public variables, getter methods of the style get<Variable> or is<Variable>
(for example, getEmail or isValid), or the exact method name when resolving expressions:

User user = new User("professionalandroid", "example@example.com");
binding.setUser(user);

This allows you to keep all of the View-specific logic in the layout file itself while your code can
focus on only providing the appropriate data to the Binding class.

Introducing Data Binding ❘ 153

You’ll note that the android:id attributes were removed in the preceding example because Data
Binding does not require IDs to evaluate variable expressions.

In addition to specifying variables, you can use almost all Java language syntax within these
expressions. For example, you can use the null-coalescing operator ?? to shorten simple ternary
expressions:

android:text='@{user.email ?? "No email"}'

By default, any variables binding you apply is done after the next frame redraw. This can
cause a visible flicker when used in scrollable views such as Recycler View. To avoid this, call
executePendingBindings after setting your variables, causing the binding to be done immediately:

User user = userList.get(position);
binding.setUser(user);
binding.executePendingBindings();

Data Binding for the Earthquake Viewer Application
Data Binding enables us to simplify the Earthquake Viewer’s RecyclerView.Adapter by binding
each Earthquake to the layout for each row:

 1. Update the build.gradle file to enable data binding:

android {
 [... Existing android element ...]
 dataBinding.enabled = true
}

dependencies {
 [... Existing dependencies element ...]
 implementation 'com.android.support:support-v4:27.1.1'
}

 2. Update the list_item_earthquake.xml layout resource to take advantage of Data Binding:

<?xml version="1.0" encoding="utf-8"?>
<layout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <data>
 <variable name="timeformat" type="java.text.DateFormat" />
 <variable name="magnitudeformat" type="java.text.NumberFormat" />
 <variable name="earthquake"
 type="com.professionalandroid.apps.earthquake.Earthquake" />
 </data>
 <android.support.constraint.ConstraintLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:paddingLeft="@dimen/activity_vertical_margin"
 android:paddingRight="@dimen/activity_vertical_margin">
 <TextView
 android:id="@+id/magnitude"
 android:layout_width="wrap_content"
 android:layout_height="0dp"
 android:gravity="center_vertical"

154 ❘ CHAPTER 5 Building user interfaces

 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintBottom_toBottomOf="parent"
 android:textAppearance="?attr/textAppearanceListItem"
 android:text="@{magnitudeformat.format(earthquake.magnitude)}"/>
 <TextView
 android:id="@+id/date"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginTop="@dimen/text_margin"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintRight_toLeftOf="@id/magnitude"
 android:text="@{timeformat.format(earthquake.date)}"/>
 <TextView
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginBottom="@dimen/text_margin"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintRight_toLeftOf="@id/magnitude"
 app:layout_constraintTop_toBottomOf="@id/date"
 android:text="@{earthquake.details}"/>
 </android.support.constraint.ConstraintLayout>
</layout>

 3. Generate the Binding class by rebuilding the project. You can trigger this manually via the
Build ➪ Make Project menu item.

 4. Update the EarthquakeRecyclerViewAdapter.ViewHolder to receive the Binding class as the
input and do the one-time initialization of setting the time and magnitude format variables:

public static class ViewHolder extends RecyclerView.ViewHolder {
 public final ListItemEarthquakeBinding binding;

 public ViewHolder(ListItemEarthquakeBinding binding) {
 super(binding.getRoot());
 this.binding = binding;
 binding.setTimeformat(TIME_FORMAT);
 binding.setMagnitudeformat(MAGNITUDE_FORMAT);
 }
}

 5. Update the EarthquakeRecyclerViewAdapter to create the Binding class in onCreateView-
Holder and simplify onBindViewHolder:

@Override
public ViewHolder onCreateViewHolder(ViewGroup parent, int viewType) {
 ListItemEarthquakeBinding binding = ListItemEarthquakeBinding.inflate(
 LayoutInflater.from(parent.getContext()), parent, false);
 return new ViewHolder(binding);
}

Creating New Views ❘ 155

@Override
public void onBindViewHolder(ViewHolder holder, int position) {
 Earthquake earthquake = mEarthquakes.get(position);
 holder.binding.setEarthquake(earthquake);
 holder.binding.executePendingBindings();
}

CREATING NEW VIEWS

It’s only a matter of time before you, as an innovative developer, encounter a situation in which none
of the built-in controls meets your needs.

The ability to extend existing Views, assemble composite controls, and create unique new Views
makes it possible to implement beautiful UIs optimized for your application’s specific workflow.
Android lets you subclass the existing View toolbox or implement your own View controls, giving
you total freedom to tailor your UI to optimize the user experience.

NOTE When designing a UI, it’s important to balance raw aesthetics and usabil-
ity. With the power to create your own custom controls comes the temptation to
rebuild all your controls from scratch. Resist that urge. The standard Views will
be familiar to users from other Android applications and will update in line with
new platform releases. On small screens, with users often paying limited atten-
tion, familiarity can often provide better usability than a slightly shinier control.

The best approach to use when creating a new View depends on what you want to achieve:

 ➤ Modify or extend the appearance and/or behavior of an existing View when it supplies the
basic functionality you want. By overriding the event handlers and/or onDraw, but still calling
back to the superclass’s methods, you can customize a View without having to re-implement
its functionality. For example, you could customize a TextView to display numbers using a
set number of decimal points.

 ➤ Combine Views to create atomic, reusable controls that leverage the functionality of several
interconnected Views. For example, you could create a stopwatch timer by combining a
TextView and a Button that resets the counter when clicked.

 ➤ Create an entirely new control when you need a completely different interface that you can’t
get by changing or combining existing controls.

Modifying Existing Views
The Android widget toolbox includes Views that provide many common UI requirements, but the
controls are necessarily generic. By customizing these basic Views, you avoid re-implementing exist-
ing behavior while still tailoring the UI, and functionality, to your application’s needs.

To create a new View based on an existing control, create a new class that extends it, as shown with
the TextView derived class shown in Listing 5-8. In this example you extend the Text View to cus-
tomize its appearance and behavior.

156 ❘ CHAPTER 5 Building user interfaces

LISTING 5-8: Extending Text View

import android.content.Context;
import android.graphics.Canvas;
import android.util.AttributeSet;
import android.view.KeyEvent;
import android.widget.TextView;

public class MyTextView extends TextView {

 // Constructor used when creating the View in code
 public MyTextView (Context context) {
 this(context, null);
 }

 // Constructor used when inflating the View from XML
 public MyTextView (Context context, AttributeSet attrs) {
 this(context, attrs, 0);
 }

 // Constructor used when inflating the View from XML when it has a
 // style attribute
 public MyTextView(Context context, AttributeSet attrs, int defStyleAttr) {
 super(context, attrs, defStyleAttr);

 // Do any custom initialization here
 }
}

If you are building a reusable View, it is strongly recommended to override all three of these con-
structors to ensure that your View can be created in code and inflated in XML files just like all of
the Views included in the Android SDK.

To override the appearance or behavior of your new View, override and extend the event handlers
associated with the behavior you want to change.

In the following extension of the Listing 5-8 code, the onDraw method is overridden to modify the
View’s appearance, and the onKeyDown handler is overridden to allow custom key-press handling:

public class MyTextView extends TextView {

 public MyTextView(Context context) {
 this(context, null);
 }

 public MyTextView(Context context, AttributeSet attrs) {
 this(context, attrs, 0);
 }

 public MyTextView(Context context, AttributeSet attrs, int defStyleAttr) {
 super(context, attrs, defStyleAttr);
 }

Creating New Views ❘ 157

 @Override
 public void onDraw(Canvas canvas) {
 [... Draw things on the canvas under the text ...]

 // Render the text as usual using the TextView base class.
 super.onDraw(canvas);

 [... Draw things on the canvas over the text ...]
 }

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent keyEvent) {
 [... Perform some special processing ...]
 [... based on a particular key press ...]

 // Use the existing functionality implemented by
 // the base class to respond to a key press event.
 return super.onKeyDown(keyCode, keyEvent);
 }
}

The event handlers available within Views are covered in more detail later in this chapter.

Defining Custom Attributes
As mentioned in the previous section, you have three primary constructors for Views, used to sup-
port creating a View in code as well as part of an XML file. This same duality applies to functional-
ity you might add to your View—you’ll want to support changing added functionality via both code
and via XML.

Adding functionality in code is no different for a View or any other class, and generally involves
adding a set and get method:

public class PriceTextView extends TextView {
 private static NumberFormat CURRENCY_FORMAT =
 NumberFormat.getCurrencyInstance();

 private float mPrice;

 // These three constructors are required for all Views
 public PriceTextView(Context context) {
 this(context, null);
 }

 public PriceTextView(Context context, AttributeSet attrs) {
 this(context, attrs, 0);
 }

 // Constructor used when inflating the View from XML when it has a
 // style attribute
 public MyTextView(Context context, AttributeSet attrs, int defStyleAttr) {
 super(context, attrs, defStyleAttr);
 }

158 ❘ CHAPTER 5 Building user interfaces

 public void setPrice(float price) {
 mPrice = price;
 setText(CURRENCY_FORMAT.format(price));
 }

 public float getPrice() {
 return mPrice;
 }
}

However, this only allows changing the price in code. To set the displayed price as part of your
XML files, you can create a custom attribute, generally in a res/values/attrs.xml file that con-
tains one or more <declare-styleable> elements:

<resources>
 <declare-styleable name="PriceTextView">
 <attr name="price" format="reference|float" />
 </declare-styleable>
</resources>

It is convention that the <declare-styleable> name matches the name of the class using the attri-
bute, although it is not strictly required.

It is important to note that the names used are global—your application will not compile if the same
attribute is declared more than once (such as in your application and in a library you use); consider
adding a prefix to your attributes if they are likely to be common names.

The basic formats available for attributes include color, boolean, dimension, float, integer,
string, fraction, enum, and flag. The reference format is particularly important and allows you
to reference another resource when using your custom attribute (such as using @string/app_name).
If you want to allow multiple formats, combine the formats with the | character.

Your View XML can then reference the custom attribute by adding a namespace declaration associ-
ated with all of the attributes declared by your application, usually using xmlns:app (although app
can be any identifier you choose):

<PriceTextView
 xmlns:android:"http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 app:price="1999.99" />

You can then read the custom attributes in your class by using the obtainStyledAttributes
method:

// Constructor used when inflating the View from XML when it has a
// style attribute
public MyTextView(Context context, AttributeSet attrs, int defStyleAttr) {
 super(context, attrs, defStyleAttr);

 final TypedArray a = context.obtainStyledAttributes(attrs,
 R.styleable.PriceTextView, // The <declare-styleable> name
 defStyleAttr,
 0); // An optional R.style to use for default values

Creating New Views ❘ 159

 if (a.hasValue(R.styleable.PriceTextView_price)) {
 setPrice(a.getFloat(R.styleable.PriceTextView_price,
 0)); // default value
 }
 a.recycle();
}

NOTE You must always call recycle when you are done reading values from the
TypedArray.

Creating Compound Controls
Compound controls are atomic, self-contained View Groups that contain multiple child Views laid
out and connected together.

When you create a compound control, you define the layout, appearance, and interaction of the
Views it contains. You create compound controls by extending a ViewGroup (usually a layout). To
create a new compound control, choose the layout class that’s most suitable for positioning the child
controls and extend it:

public class MyCompoundView extends LinearLayout {
 public MyCompoundView(Context context) {
 this(context, null);
 }

 public MyCompoundView(Context context, AttributeSet attrs) {
 this(context, attrs, 0);
 }

 public MyCompoundView(Context context, AttributeSet attrs,
 int defStyleAttr) {
 super(context, attrs, defStyleAttr);
 }
}

As with Activities, the preferred way to design compound View UI layouts is by using an external
resource.

Listing 5-9 shows the XML layout definition for a simple compound control consisting of an Edit
Text for text entry, with a “Clear” Button beneath it.

LISTING 5-9: A compound View layout resource

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"

160 ❘ CHAPTER 5 Building user interfaces

 android:layout_height="wrap_content">
 <EditText
 android:id="@+id/editText"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 />
 <Button
 android:id="@+id/clearButton"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Clear"
 />
</LinearLayout>

To use this layout in your new compound View, override its constructor to inflate the layout
resource using the inflate method from the LayoutInflate system service. The inflate method
takes the layout resource and returns the inflated View.

For circumstances such as this, in which the returned View should be the class you’re creating, you
can pass in the parent View and attach the result to it automatically.

Listing 5-10 demonstrates this using the ClearableEditText class. Within the constructor it
inflates the layout resource from Listing 5-9 and then finds a reference to the Edit Text and Button
Views it contains. It also makes a call to hookupButton that will later be used to hook up the
plumbing that will implement the clear text functionality.

LISTING 5-10: Constructing a compound View

public class ClearableEditText extends LinearLayout {

 EditText editText;
 Button clearButton;

 public ClearableEditText(Context context) {
 this(context, null);
 }

 public ClearableEditText(Context context, AttributeSet attrs) {
 this(context, attrs, 0);
 }

 public ClearableEditText(Context context, AttributeSet attrs,
 int defStyleAttr) {
 super(context, attrs, defStyleAttr);

 // Inflate the view from the layout resource.
 String infService = Context.LAYOUT_INFLATER_SERVICE;
 LayoutInflater li;
 li = (LayoutInflater)getContext().getSystemService(infService);
 li.inflate(R.layout.clearable_edit_text, this, true);

Creating New Views ❘ 161

 // Get references to the child controls.
 editText = (EditText)findViewById(R.id.editText);
 clearButton = (Button)findViewById(R.id.clearButton);

 // Hook up the functionality
 hookupButton();
 }
}

If you prefer to construct your layout in code, you can do so just as you would for an Activity:

public ClearableEditText(Context context, AttributeSet attrs,
 int defStyleAttr) {
 super(context, attrs, defStyleAttr);

 // Set orientation of layout to vertical
 setOrientation(LinearLayout.VERTICAL);

 // Create the child controls.
 editText = new EditText(getContext());
 clearButton = new Button(getContext());
 clearButton.setText("Clear");

 // Lay them out in the compound control.
 int lHeight = LinearLayout.LayoutParams.WRAP_CONTENT;
 int lWidth = LinearLayout.LayoutParams.MATCH_PARENT;

 addView(editText, new LinearLayout.LayoutParams(lWidth, lHeight));
 addView(clearButton, new LinearLayout.LayoutParams(lWidth, lHeight));

 // Hook up the functionality
 hookupButton();
}

After constructing the View layout, you can hook up the event handlers for each child control to
provide the functionality you need. In Listing 5-11, the hookupButton method is filled in to clear
the Edit Text when the button is pressed.

LISTING 5-11: Implementing the “Clear” Button

private void hookupButton() {
 clearButton.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 editText.setText("");
 }
 });
}

Creating Simple Compound Controls as a Layout
It’s often sufficient, and more flexible, to define the layout and appearance of a set of Views without
hard-wiring their interactions.

162 ❘ CHAPTER 5 Building user interfaces

You can create a reusable layout by creating an XML resource that encapsulates the UI pattern
you want to reuse. You can then import these layout patterns when creating the UI for Activities or
Fragments by using the include tag within their layout resource definitions:

<include layout="@layout/clearable_edit_text"/>

The include tag also enables you to override the id and layout parameters of the root node of the
included layout:

<include
 layout="@layout/clearable_edit_text"
 android:id="@+id/add_new_entry_input"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="top"
/>

Creating Custom Views
Creating new Views gives you the power to fundamentally shape the way your applications look and
feel. By creating your own controls, you can create UIs that are uniquely suited to your needs.

To create new controls from a blank canvas, you extend either the View or SurfaceView class. The
View class provides a Canvas object with a series of draw methods and Paint classes. Use them to
create a visual interface with bitmaps and raster graphics. You can then override user events, includ-
ing screen touches or key presses to provide interactivity.

In situations in which extremely rapid repaints and 3D graphics aren’t required, the View base class
offers a powerful lightweight solution.

The SurfaceView class provides a Surface object that supports drawing from a background thread
and optionally using OpenGL to implement your graphics. This is an excellent option for graphics-
heavy controls that are frequently updated (such as live video) or that display complex graphical
information (particularly, games and 3D visualizations).

REFERENCE This section focuses on building controls based on the View class.
To learn more about the SurfaceView class and some of the more advanced
Canvas paint features available in Android, see Chapter 14, “Advanced
Customization of Your User Interface.”

Creating a New Visual Interface
The base View class presents a distinctly empty 100-pixel-by-100-pixel square. To change the size of
the control and display a more compelling visual interface, you need to override the onMeasure and
onDraw methods.

Within onMeasure your View will determine the height and width it will occupy given a set of
boundary conditions. The onDraw method is where you draw onto the Canvas.

Creating New Views ❘ 163

Listing 5-12 shows the skeleton code for a new View class, which will be examined and developed
further in the following sections.

LISTING 5-12: Creating a new View

public class MyView extends View {

 public MyView(Context context) {
 this(context, null);
 }

 public MyView (Context context, AttributeSet attrs) {
 this(context, attrs, 0);
 }

 public MyView(Context context, AttributeSet attrs, int defStyleAttr) {
 super(context, attrs, defStyleAttr);
 }

 @Override
 protected void onMeasure(int wMeasureSpec, int hMeasureSpec) {
 int measuredHeight = measureHeight(hMeasureSpec);
 int measuredWidth = measureWidth(wMeasureSpec);

 // MUST make this call to setMeasuredDimension
 // or you will cause a runtime exception when
 // the control is laid out.
 setMeasuredDimension(measuredHeight, measuredWidth);
 }

 private int measureHeight(int measureSpec) {
 int specMode = MeasureSpec.getMode(measureSpec);
 int specSize = MeasureSpec.getSize(measureSpec);

 [... Calculate the view height ...]

 return specSize;
 }

 private int measureWidth(int measureSpec) {
 int specMode = MeasureSpec.getMode(measureSpec);
 int specSize = MeasureSpec.getSize(measureSpec);

 [... Calculate the view width ...]

 return specSize;
 }

 @Override
 protected void onDraw(Canvas canvas) {
 [... Draw your visual interface ...]
 }
}

164 ❘ CHAPTER 5 Building user interfaces

NOTE The onMeasure method calls setMeasuredDimension. You must always
call this method within your overridden onMeasure method; otherwise, your
View will throw an exception when the parent container attempts to lay it out.

Drawing Your Control
The onDraw method is where the magic happens. If you’re creating a new widget from scratch, it’s
because you want to create a completely new visual interface. The Canvas parameter in the onDraw
method is the surface you’ll use to bring your imagination to life.

The Android Canvas uses the painter’s algorithm, meaning that each time you draw on to the
Canvas, it will cover anything previously drawn on the same area.

The drawing APIs provide a variety of tools to help draw your design on the Canvas using various
Paint objects. The Canvas class includes helper methods for drawing primitive 2D objects, includ-
ing circles, lines, rectangles, text, and Drawables (images). It also supports transformations that let
you rotate, translate (move), and scale (resize) the Canvas while you draw on it.

When these tools are used in combination with Drawables and the Paint class (which offer a vari-
ety of customizable fills and pens), the complexity and detail that your control can render are lim-
ited only by the size of the screen and the power of the processor rendering it.

WARNING One of the most important techniques for writing efficient code
in Android is to avoid the repetitive creation and destruction of objects. Any
object created in your onDraw method will be created and destroyed every time
the screen refreshes. Improve efficiency by making as many of these objects (par-
ticularly instances of Paint and Drawable) class-scoped and by moving their
creation into the constructor.

Listing 5-13 shows how to override the onDraw method to display a simple text string in the center
of the View.

LISTING 5-13: Drawing a custom View

@Override
protected void onDraw(Canvas canvas) {
 // Get the size of the control based on the last call to onMeasure.
 int height = getMeasuredHeight();
 int width = getMeasuredWidth();

 // Find the center
 int px = width/2;
 int py = height/2;

Creating New Views ❘ 165

 // Create the new paint brushes.
 // NOTE: For efficiency this should be done in
 // the views's constructor
 Paint mTextPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 mTextPaint.setColor(Color.WHITE);

 // Define the string.
 String displayText = "Hello View!";

 // Measure the width of the text string.
 float textWidth = mTextPaint.measureText(displayText);

 // Draw the text string in the center of the control.
 canvas.drawText(displayText, px-textWidth/2, py, mTextPaint);
}

So that we don’t diverge too far from the current topic, a more detailed look at the Canvas and Paint
classes, and the techniques available for drawing more complex visuals is included in Chapter 14,
“Advanced Customization of Your User Interface.”

NOTE Changes to any element of your Canvas require that the entire Canvas
be repainted; modifying the color of a brush will not change your View’s display
until the control is invalidated and redrawn. Alternatively, you can use OpenGL
to render graphics. For more details, see the discussion on SurfaceView in
Chapter 17, “Audio, Video, and Using the Camera.”

Sizing Your Control
Unless you conveniently require a control that always occupies a space 100 pixels square, you will
also need to override onMeasure.

The onMeasure method is called when the control’s parent is laying out its child controls. It asks the
question, “How much space will you use?” and passes in two parameters: widthMeasureSpec and
heightMeasureSpec. These parameters specify the space available for the control and some meta-
data to describe that space.

Rather than return a result, you pass the View’s height and width into the setMeasuredDimension
method.

The following snippet shows how to override onMeasure. The calls to the local method stubs
measureHeight and measureWidth are used to decode the widthHeightSpec and
heightMeasureSpec values and calculate the preferred height and width values, respectively:

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {

 int measuredHeight = measureHeight(heightMeasureSpec);
 int measuredWidth = measureWidth(widthMeasureSpec);

 setMeasuredDimension(measuredHeight, measuredWidth);
}

166 ❘ CHAPTER 5 Building user interfaces

private int measureHeight(int measureSpec) {
 // Return measured widget height.
}

private int measureWidth(int measureSpec) {
 // Return measured widget width.
}

The boundary parameters, widthMeasureSpec and heightMeasureSpec, are passed in as integers
for efficiency reasons. Before they can be used, they first need to be decoded using the static
getMode and getSize methods from the MeasureSpec class:

int specMode = MeasureSpec.getMode(measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);

Depending on the mode value, the size represents either the maximum space available for the con-
trol (in the case of AT_MOST), or the exact size that your control will occupy (for EXACTLY). In the
case of UNSPECIFIED, your control does not have any reference for what the size represents.

By marking a measurement size as EXACT, the parent is insisting that the View will be placed into
an area of the exact size specified. The AT_MOST mode says the parent is asking what size the View
would like to occupy, given an upper boundary. In many cases the value you return will either be the
same, or the size required to appropriately wrap the UI you want to display.

In either case, you should treat these limits as absolute. In some circumstances it may still be appro-
priate to return a measurement outside these limits, in which case you can let the parent choose how
to deal with the oversized View, using techniques such as clipping and scrolling.

Listing 5-14 shows a typical implementation for handling View measurements.

LISTING 5-14: A typical View measurement implementation

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 int measuredHeight = measureHeight(heightMeasureSpec);
 int measuredWidth = measureWidth(widthMeasureSpec);

 setMeasuredDimension(measuredHeight, measuredWidth);
}

private int measureHeight(int measureSpec) {
 int specMode = MeasureSpec.getMode(measureSpec);
 int specSize = MeasureSpec.getSize(measureSpec);

 // Default size in pixels if no limits are specified.
 int result = 500;

 if (specMode == MeasureSpec.AT_MOST) {
 // Calculate the ideal size of your
 // control within this maximum size.
 // If your control fills the available
 // space return the outer bound.
 result = specSize;

Creating New Views ❘ 167

 } else if (specMode == MeasureSpec.EXACTLY) {
 // If your control can fit within these bounds return that value.
 result = specSize;
 }
 return result;
}

private int measureWidth(int measureSpec) {
 int specMode = MeasureSpec.getMode(measureSpec);
 int specSize = MeasureSpec.getSize(measureSpec);

 // Default size in pixels if no limits are specified.
 int result = 500;

 if (specMode == MeasureSpec.AT_MOST) {
 // Calculate the ideal size of your control
 // within this maximum size.
 // If your control fills the available space
 // return the outer bound.
 result = specSize;
 } else if (specMode == MeasureSpec.EXACTLY) {
 // If your control can fit within these bounds return that value.
 result = specSize;
 }
 return result;
}

Handling User Interaction Events
For your new View to be interactive, it will need to respond to user-initiated events such as key
presses, screen touches, and button clicks. Android exposes several virtual event handlers that you
can use to react to user input:

 ➤ onKeyDown—Called when any device key is pressed; includes the D-pad, keyboard, hang-up,
call, back, and camera buttons

 ➤ onKeyUp—Called when a user releases a pressed key

 ➤ onTouchEvent—Called when the touch screen is pressed or released, or when it detects
movement

Listing 5-15 shows a skeleton class that overrides each of the user interaction handlers in a View.

LISTING 5-15: Input event handling for Views

@Override
public boolean onKeyDown(int keyCode, KeyEvent keyEvent) {
 // Return true if the event was handled.
 return true;
}

168 ❘ CHAPTER 5 Building user interfaces

@Override
public boolean onKeyUp(int keyCode, KeyEvent keyEvent) {
 // Return true if the event was handled.
 return true;
}

@Override
public boolean onTouchEvent(MotionEvent event) {
 // Get the type of action this event represents
 int actionPerformed = event.getAction();
 // Return true if the event was handled.
 return true;
}

Further details on using each of these event handlers, including greater detail on the parameters
received by each method and support for multitouch events, are available in Chapter 14.

Supporting Accessibility in Custom Views
Creating a custom View with a beautiful interface is only half the story. It’s just as important to cre-
ate accessible controls that can be used by users with disabilities that require them to interact with
their devices in different ways.

The Accessibility APIs provide alternative interaction methods for users with visual, physical, or
age-related disabilities that make it difficult to interact fully with a touch screen.

The first step is to ensure that your custom View is accessible and navigable using D-pad events, as
described in the previous section. It’s also important to use the content description attribute within
your layout definition to describe the input widgets. (This is described in more detail in Chapter 14.)

To be accessible, custom Views must implement the AccessibilityEventSource interface and
broadcast AccessibilityEvents using the sendAccessibilityEvent method.

The View class already implements the Accessibility Event Source interface, so you only need to
customize the behavior to suit the functionality introduced by your custom View. Do this by pass-
ing the type of event that has occurred—usually one of clicks, long clicks, selection changes, focus
changes, and text/content changes—to the sendAccessibilityEvent method. For custom Views
that implement a completely new UI, this will typically include a broadcast whenever the displayed
content changes, as shown in Listing 5-16.

LISTING 5-16: Broadcasting Accessibility Events

public void setSeason(Season season) {
 mSeason = season;
 sendAccessibilityEvent(AccessibilityEvent.TYPE_VIEW_TEXT_CHANGED);
}

Clicks, long clicks, and focus and selection changes typically will be broadcast by the underlying
View implementation, although you should take care to broadcast any additional events not cap-
tured by the base View class.

The broadcast Accessibility Event includes a number of properties used by the accessibility service
to augment the user experience. Several of these properties, including the View’s class name and

Creating New Views ❘ 169

event timestamp, won’t need to be altered; however, by overriding the dispatchPopulateAcces-
sibilityEvent handler, you can customize details such as the textual representation of the View’s
contents, checked state, and selection state of your View, as shown in Listing 5-17.

LISTING 5-17: Customizing Accessibility Event properties

@Override
public boolean dispatchPopulateAccessibilityEvent(
 final AccessibilityEvent event) {

 super.dispatchPopulateAccessibilityEvent(event);
 if (isShown()) {
 String seasonStr = Season.valueOf(season);
 if (seasonStr.length() > AccessibilityEvent.MAX_TEXT_LENGTH)
 seasonStr =
 seasonStr.substring(0, AccessibilityEvent.MAX_TEXT_LENGTH-1);

 event.getText().add(seasonStr);
 return true;
 }
 else
 return false;
}

Creating a Compass View Example
In the following example you’ll create a new Compass View by extending the View class. This View
will display a traditional compass rose to indicate a heading/orientation. When complete, it should
appear as in Figure 5-5.

FIGURE 5-5

170 ❘ CHAPTER 5 Building user interfaces

A compass is an example of a UI control that requires a radically different visual display from the
Text Views and Buttons available in the SDK toolbox, making it an excellent candidate for building
from scratch.

NOTE In Chapter 14 you will learn some advanced techniques for Canvas
drawing that will let you dramatically improve its appearance. Then in Chapter
16, “Hardware Sensors,” you’ll use this Compass View and the device’s built-in
accelerometer to display the user’s current orientation.

Start by creating a new Compass project that will contain your new CompassView, and create an ini-
tially empty CompassActivity within which to display it:

 1. Create a new CompassView class that extends View and add constructors that will allow
the View to be instantiated, either in code or through inflation from a resource layout. Add
setFocusable(true) to the final constructor to allow a user using a D-pad to select and focus
the compass (this will allow them to receive accessibility events from the View):

package com.professionalandroid.apps.compass;

import android.content.Context;
import android.content.res.Resources;
import android.content.res.TypedArray;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.support.v4.content.ContextCompat;
import android.util.AttributeSet;
import android.view.View;
import android.view.accessibility.AccessibilityEvent;

public class CompassView extends View {
 public CompassView(Context context) {
 this(context, null);
 }

 public CompassView(Context context, AttributeSet attrs) {
 this(context, attrs, 0);
 }

 public CompassView(Context context, AttributeSet attrs, int defStyleAttr) {
 super(context, attrs, defStyleAttr);

 setFocusable(true);
 }
}

 2. The Compass View should always be a perfect circle that takes up as much of the canvas as
this restriction allows. Override the onMeasure method to calculate the length of the shortest
side, and use setMeasuredDimension to set the height and width using this value:

Creating New Views ❘ 171

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 // The compass is a circle that fills as much space as possible.
 // Set the measured dimensions by figuring out the shortest boundary,
 // height or width.
 int measuredWidth = measure(widthMeasureSpec);
 int measuredHeight = measure(heightMeasureSpec);

 int d = Math.min(measuredWidth, measuredHeight);

 setMeasuredDimension(d, d);
}

private int measure(int measureSpec) {
 int result = 0;

 // Decode the measurement specifications.
 int specMode = MeasureSpec.getMode(measureSpec);
 int specSize = MeasureSpec.getSize(measureSpec);

 if (specMode == MeasureSpec.UNSPECIFIED) {
 // Return a default size of 200 if no bounds are specified.
 result = 200;
 } else {
 // As you want to fill the available space
 // always return the full available bounds.
 result = specSize;
 }
 return result;
}

 3. Modify the activity_compass.xml layout resource and replace it with a Frame Layout con-
taining your new CompassView:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <com.professionalandroid.apps.compass.CompassView
 android:id="@+id/compassView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />
</FrameLayout>

 4. Use resource files to store the colors and text strings you’ll use to draw the compass.

 4.1. Create the text string resources by replacing the res/values/strings.xml file with
the following:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Compass</string>
 <string name="cardinal_north">N</string>
 <string name="cardinal_east">E</string>

172 ❘ CHAPTER 5 Building user interfaces

 <string name="cardinal_south">S</string>
 <string name="cardinal_west">W</string>
</resources>

 4.2. Add the following color resources to res/values/colors.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <color name="colorPrimary">#3F51B5</color>
 <color name="colorPrimaryDark">#303F9F</color>
 <color name="colorAccent">#FF4081</color>
 <color name="background_color">#F555</color>
 <color name="marker_color">#AFFF</color>
 <color name="text_color">#AFFF</color>
</resources>

 5. Return to the CompassView class. Add a new property to store the displayed bearing, and
create get and set methods for it. Call invalidate in the set method to ensure that the View
is repainted when the bearing changes:

private float mBearing;

public void setBearing(float bearing) {
 mBearing = bearing;
 invalidate();
}

public float getBearing() {
 return mBearing;
}

 6. Create a custom attribute for setting the bearing in XML.

 6.1. Create the custom attribute in the res/values/attrs.xml file:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <declare-styleable name="CompassView">
 <attr name="bearing" format="reference|float" />
 </declare-styleable>
</resources>

 6.2. Update the constructor to read the bearing from the XML attribute:

public CompassView(Context context, AttributeSet attrs,
 int defStyleAttr) {
 super(context, attrs, defStyleAttr);
 setFocusable(true);
 final TypedArray a = context.obtainStyledAttributes(attrs,
 R.styleable.CompassView, defStyleAttr, 0);
 if (a.hasValue(R.styleable.CompassView_bearing)) {
 setBearing(a.getFloat(R.styleable.CompassView_bearing, 0));
 }
 a.recycle();
}

Creating New Views ❘ 173

 7. In the constructor, get references to each resource created in Step 4. Store the string values as
instance variables, and use the color values to create new class-scoped Paint objects. You’ll
use these objects in the next step to draw the compass face.

private Paint markerPaint;
private Paint textPaint;
private Paint circlePaint;
private String northString;
private String eastString;
private String southString;
private String westString;
private int textHeight;

public CompassView(Context context, AttributeSet attrs, int defStyleAttr) {
 super(context, attrs, defStyleAttr);

 setFocusable(true);
 final TypedArray a = context.obtainStyledAttributes(attrs,
 R.styleable.CompassView, defStyleAttr, 0);
 if (a.hasValue(R.styleable.CompassView_bearing)) {
 setBearing(a.getFloat(R.styleable.CompassView_bearing, 0));
 }
 a.recycle();

 Context c = this.getContext();
 Resources r = this.getResources();

 circlePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 circlePaint.setColor(ContextCompat.getColor(c, R.color.background_color));
 circlePaint.setStrokeWidth(1);
 circlePaint.setStyle(Paint.Style.FILL_AND_STROKE);

 northString = r.getString(R.string.cardinal_north);
 eastString = r.getString(R.string.cardinal_east);
 southString = r.getString(R.string.cardinal_south);
 westString = r.getString(R.string.cardinal_west);

 textPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 textPaint.setColor(ContextCompat.getColor(c, R.color.text_color));

 textHeight = (int)textPaint.measureText("yY");

 markerPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 markerPaint.setColor(ContextCompat.getColor(c, R.color.marker_color));
}

 8. The next step is to draw the compass face using the String and Paint objects you created in
Step 7. The following code snippet is presented with only limited commentary. You can find
more detail about drawing on the Canvas and using advanced Paint effects in Chapter 14.

 8.1. Start by overriding the onDraw method in the CompassView class:

@Override
protected void onDraw(Canvas canvas) {

174 ❘ CHAPTER 5 Building user interfaces

 8.2. Find the center of the control, and store the length of the smallest side as the Compass’s
radius:

 int mMeasuredWidth = getMeasuredWidth();
 int mMeasuredHeight = getMeasuredHeight();

 int px = mMeasuredWidth / 2;
 int py = mMeasuredHeight / 2 ;

 int radius = Math.min(px, py);

 8.3. Draw the outer boundary, and color the background of the Compass face using the
drawCircle method. Use the circlePaint object you created in Step 7:

 // Draw the background
 canvas.drawCircle(px, py, radius, circlePaint);

 8.4. This Compass displays the current heading by rotating the face so that the current
direction is always at the top of the device. To achieve this, rotate the canvas in the
opposite direction to the current heading:

 // Rotate our perspective so that the 'top' is
 // facing the current bearing.
 canvas.save();
 canvas.rotate(-mBearing, px, py);

 8.5. All that’s left is to draw the markings. Rotate the canvas through a full rotation, draw-
ing markings every 15 degrees and the abbreviated direction string every 45 degrees:

 int textWidth = (int)textPaint.measureText("W");
 int cardinalX = px-textWidth/2;
 int cardinalY = py-radius+textHeight;

 // Draw the marker every 15 degrees and text every 45.
 for (int i = 0; i < 24; i++) {
 // Draw a marker.
 canvas.drawLine(px, py-radius, px, py-radius+10, markerPaint);

 canvas.save();
 canvas.translate(0, textHeight);

 // Draw the cardinal points
 if (i % 6 == 0) {
 String dirString = "";
 switch (i) {
 case(0) : {
 dirString = northString;
 int arrowY = 2*textHeight;
 canvas.drawLine(px, arrowY, px-5, 3*textHeight,
 markerPaint);
 canvas.drawLine(px, arrowY, px+5, 3*textHeight,
 markerPaint);
 break;
 }

Creating New Views ❘ 175

 case(6) : dirString = eastString; break;
 case(12) : dirString = southString; break;
 case(18) : dirString = westString; break;
 }
 canvas.drawText(dirString, cardinalX, cardinalY, textPaint);
 }

 else if (i % 3 == 0) {
 // Draw the text every alternate 45deg
 String angle = String.valueOf(i*15);
 float angleTextWidth = textPaint.measureText(angle);

 int angleTextX = (int)(px-angleTextWidth/2);
 int angleTextY = py-radius+textHeight;
 canvas.drawText(angle, angleTextX, angleTextY, textPaint);
 }
 canvas.restore();

 canvas.rotate(15, px, py);
 }
 canvas.restore();
}

 9. The next step is to add accessibility support. The Compass View presents a heading visu-
ally, so to make it accessible you need to broadcast an Accessibility Event signifying that the
“text” (in this case, content) has changed when the bearing changes. Do this by modifying
the setBearing method:

 public void setBearing(float bearing) {
 mBearing = bearing;
 invalidate();
 sendAccessibilityEvent(AccessibilityEvent.TYPE_VIEW_TEXT_CHANGED);
}

 10. Override the dispatchPopulateAccessibilityEvent to use the current heading as the
content value to be used for accessibility events:

@Override
public boolean dispatchPopulateAccessibilityEvent(
 final AccessibilityEvent event) {
 super.dispatchPopulateAccessibilityEvent(event);
 if (isShown()) {
 String bearingStr = String.valueOf(mBearing);
 event.getText().add(bearingStr);
 return true;
 }
 else
 return false;
}

Run the Activity, and you should see the CompassView displayed. See Chapter 16, “Hardware
Sensors,” to learn how to bind the CompassView to the device’s compass sensor.

176 ❘ CHAPTER 5 Building user interfaces

Using Custom Controls
Having created your own custom Views, you can use them within code and layouts as you would
any other View. Note that you must specify the fully qualified class name when you add a node for
your new View in the layout definition:

<com.professionalandroid.apps.compass.CompassView
 android:id="@+id/compassView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:bearing="45" />

You can inflate the layout and get a reference to the CompassView, as usual, using the following
code:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 CompassView cv = findViewById(R.id.compassView);
 // Update the bearing by calling setBearing as needed
}

You can also add your new View to a layout in code:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 CompassView cv = new CompassView(this);
 setContentView(cv);
 cv.setBearing(45);
}

Custom Views are a powerful way to provide distinct functionality to your application. Once
created, they can be used in the same way as any Android framework View.

Intents and Broadcast Receivers
WHAT’S IN THIS CHAPTER?

 ➤ Introducing Intents and Pending Intents

 ➤ Starting Activities and Services using implicit and explicit Intents

 ➤ Returning results from sub-Activities

 ➤ Understanding how Intents are resolved

 ➤ Extending application functionality using Intent Filters

 ➤ Adding links to text fields with Linkify

 ➤ Monitoring device state changes with broadcast Intents

 ➤ Sending broadcast Intents within your application with the Local
Broadcast Manager

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The code downloads for this chapter are found at www.wrox.com. The code for this chapter is
divided into the following major examples:

 ➤ Snippets_ch6.zip

 ➤ StarSignPicker_ch6.zip

6

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

178 ❘ CHAPTER 6 Intents and Broadcast receIvers

USING INTENTS AND BROADCAST RECEIVERS

Intents are a message-passing mechanism you can use within your application, between applica-
tions, and between the system and your application. Intents are used to do the following:

 ➤ Explicitly start a particular Service, Broadcast Receiver, Activity, or sub-Activity using its
class name

 ➤ Start an Activity, sub-Activity, or Service to perform an action with (or on) a particular piece
of data

 ➤ Return information from a sub-Activity

 ➤ Broadcast that an event has occurred

Intents are a fundamental part of the Android OS, they’re also quite unique to Android, and as such
can be a confusing concept to master.

Intents can be used to send information among any application components installed on an Android
device, no matter which application they’re a part of. This turns your device from a platform con-
taining a collection of independent components into a single, interconnected system. Alternatively,
for improved security and efficiency, you can use the Local Broadcast Manager to send Intents only
to components within your application.

One of the most common uses for Intents is to launch (or “start”) Activities, either explicitly (by
specifying the class to load) or implicitly (by creating an action Intent that requests a specific action
be performed on a piece of data). In the latter case the action does not necessarily have to be per-
formed by an Activity within the calling application.

Using Intents, rather than explicitly loading classes, to launch application components—even within
the same application—is a fundamental Android design principle.

You can also use Intents to broadcast messages across the system; these are known as broadcast
Intents. Applications can register Broadcast Receivers to listen for, and react to, these broadcast
Intents. This enables you to create event-driven applications based on internal or system events.

The Android system uses broadcast Intents to announce system events, such as changes in Internet
connectivity or battery charge levels. The native Android applications, such as the Phone Dialer and
SMS Manager, register components that listen for specific broadcast Intents and react accordingly.
As a result, you can replace many of the native applications by registering Broadcast Receivers that
listen for the same Intents.

USING INTENTS TO LAUNCH ACTIVITIES

The most common use of Intents is to connect your application components, and to communicate
between them. For example, Intents are used within Activities to start new Activities, allowing you
to create a workflow made up of multiple screens.

Using Intents to Launch Activities ❘ 179

NOTE The instructions in this section refer to starting new Activities, but
the same approach also applies to Services. Details on starting (and creating)
Services are available in Chapter 11, “Working in the Background.”

To create and display an Activity, call startActivity, passing in an Intent, as follows:

startActivity(myIntent);

The startActivity method finds and starts the single Activity that best matches your Intent.

You can construct an Intent that explicitly specifies a particular Activity class to start, or it can
include an action that the target Activity must be able to perform. In the latter case, the run time
will dynamically choose an Activity to through intent resolution.

When you use startActivity, your application won’t receive any notification when the newly
launched Activity finishes. To track feedback from a sub-Activity, use startActivityForResult, as
described later in this chapter.

Explicitly Starting New Activities
You learned in Chapter 3, “Applications and Activities and Fragments, Oh My!” that applications con-
sist of a number of interrelated screens—Activities—that must be included in the application manifest.

To transition between them, you can explicitly indicate an Activity to start by creating a new Intent,
specifying the current Activity’s Context and the class of the Activity to launch. Once defined, pass
this Intent into startActivity as shown in Listing 6-1 to launch the new Activity.

LISTING 6-1: Explicitly starting a specific Activity

Intent intent = new Intent(MyActivity.this, MyOtherActivity.class);
startActivity(intent);

After startActivity is called, the new Activity (in this example, MyOtherActivity) will be cre-
ated, started, and resumed—replacing MyActivity at the top of the Activity stack.

Calling finish on the new Activity, or pressing the hardware back button, closes it and removes it
from the stack. Alternatively, you can continue to navigate to other Activities using startActivity.

Note that each time you call startActivity, a new Activity will be added to the stack. Pressing
back (or calling finish) will remove each of these Activities, in turn; if an Activity is not closed in
this way it will remain on the stack while the application is running. As a result, it’s possible to have
multiple instances of the same Activity on your Activity stack.

Implicit Intents and Late Runtime Binding
An implicit Intent is used to ask the system to find and start an Activity that can perform a particu-
lar action, without you knowing exactly which application, or Activity, will be started.

180 ❘ CHAPTER 6 Intents and Broadcast receIvers

For example, to let users make calls from your application, you could implement a new dialer, or
(if you don’t hate yourself), you could use an implicit Intent that requests the action (dialing) be
performed on a phone number (represented as a URI):

if (somethingWeird && itDontLookGood) {
 Intent intent =
 new Intent(Intent.ACTION_DIAL, Uri.parse("tel:555-2368"));

 startActivity(intent);
}

Android resolves this Intent by finding, and then starting, an Activity that can perform the dial
action on a telephone number URI—in this case, typically the bundled phone dialer application.

When constructing a new implicit Intent, you specify an action to perform and the URI of the data
on which to perform that action. You can send additional data to the target Activity by adding
extras to the Intent.

Extras are a mechanism used to attach primitive values to an Intent. You can use the overloaded
putExtra method on any Intent to attach a new name/value pair (NVP):

intent.putExtra("STRING_EXTRA", "Beverly Hills");
intent.putExtra("INT_EXTRA", 90210);

The extras are stored within the Intent as a Bundle object, available from within the started Activity
using the getExtras method. You can extract each extra value directly from the Intent using the
corresponding get[type]Extra method:

Intent intent = getIntent();
String myStringExtra = intent.getStringExtra("STRING_EXTRA");
int myIntExtra = intent.getIntExtra("INT_EXTRA", DEFAULT_INT_VALUE);

When you use an implicit Intent to start an Activity, Android will—at run time—resolve it into the
Activity class best suited to performing the required action on the type of data specified. This means
you can create projects that use functionality from other applications without knowing exactly
which application you’re borrowing functionality from ahead of time.

In circumstances where multiple Activities can potentially perform a given action, the user is pre-
sented with a choice. The process of Intent resolution is determined through an analysis of the
Activities’ Intent Filters, which are described in detail later in this chapter.

Various native applications provide Activities capable of performing actions against specific data.
Third-party applications, including your own, can be registered to support new actions or to pro-
vide an alternative provider of native actions. You are introduced to some of the native actions, as
well as how to register your own Activities to support them, later in this chapter.

Determining If an Intent Will Resolve
Incorporating the Activities and Services of a third-party application into your own is incredibly
powerful; however, there is no guarantee that any particular application will be installed on a
device, or even that any installed application is capable of handling your request.

Using Intents to Launch Activities ❘ 181

As a result, it’s good practice to check if your implicit Intent will resolve to an Activity before pass-
ing it to startActivity.

You can use the Package Manager to query which, if any, Activity will be launched in response to a
specific Intent by calling resolveActivity on your Intent object, passing in the Package Manager,
as shown in Listing 6-2.

LISTING 6-2: Implicitly starting an Activity

if (somethingWeird && itDontLookGood) {
 // Create the implicit Intent to use to start a new Activity.
 Intent intent =
 new Intent(Intent.ACTION_DIAL, Uri.parse("tel:555-2368"));

 // Check if an Activity exists to perform this action.
 PackageManager pm = getPackageManager();
 ComponentName cn = intent.resolveActivity(pm);
 if (cn == null) {
 // There is no Activity available to perform the action
 // Log an error and modify app behavior accordingly,
 // typically by disabling the UI element that would allow
 // users to attempt this action.
 Log.e(TAG, "Intent could not resolve to an Activity.");
 }
 else
 startActivity(intent);
}

If no Activity is found, you can choose to either disable the related functionality (and associated user
interface controls) or direct users to an appropriate application in the Google Play Store. Note that
Google Play is not available on all devices, so it’s good practice to check for that as well.

Returning Results from Activities
An Activity started via startActivity is independent of the calling Activity, and will not provide
any feedback when it closes.

Where feedback is required, you can start an Activity as a sub-Activity that can pass results back to
its parent. Sub-Activities are really just Activities opened in a different way; as such, you must still
register them in the application manifest in the same way as any other Activity.

Any manifest-registered Activity can be opened as a sub-Activity, including those provided by the
system or third-party applications.

When a sub-Activity is finished, it triggers the onActivityResult event handler within the calling
parent Activity. Sub-Activities are particularly useful in situations where one Activity is providing
data input for another, such as a user filling in a form or selecting an item from a list.

182 ❘ CHAPTER 6 Intents and Broadcast receIvers

Launching Sub-Activities
The startActivityForResult method works much like startActivity, but with one important
difference. In addition to passing in the explicit or implicit Intent used to determine which Activity
to launch, you also pass in a request code. This value will later be used to uniquely identify the sub-
Activity that has returned a result.

Listing 6-3 shows the skeleton code for launching a sub-Activity explicitly.

LISTING 6-3: Explicitly starting a sub-Activity for a result

private static final int SHOW_SUBACTIVITY = 1;

private void startSubActivity() {
 Intent intent = new Intent(this, MyOtherActivity.class);
 startActivityForResult(intent, SHOW_SUBACTIVITY);
}

Like regular Activities, you can start sub-Activities implicitly or explicitly. Listing 6-4 uses an
implicit Intent to launch a new sub-Activity to pick a contact.

LISTING 6-4: Implicitly starting a sub-Activity for a result

private static final int PICK_CONTACT_SUBACTIVITY = 2;

private void startSubActivityImplicitly() {
 // Create an Intent that requests an Activity capable
 // of allowing users to pick a contact.
 Uri uri = Uri.parse("content://contacts/people");
 Intent intent = new Intent(Intent.ACTION_PICK, uri);
 startActivityForResult(intent, PICK_CONTACT_SUBACTIVITY);
}

Returning Results from a Sub-Activity
When your sub-Activity is ready to return, call setResult before finish to return a result to the
calling Activity.

The setResult method takes two parameters: the result code and the result data itself, represented
as an Intent.

The result code indicates the success of running the sub-Activity—generally, either Activity.
RESULT_OK or Activity.RESULT_CANCELED. In some circumstances, where neither OK nor canceled
sufficiently or accurately describes the result, you’ll want to use your own response codes to handle
application-specific choices; setResult supports any integer value.

The result Intent often includes a data URI that points to a piece of content (such as the selected
contact, phone number, or media file) and a collection of extras used to return additional
information.

Using Intents to Launch Activities ❘ 183

Listing 6-5, taken from a sub-Activity’s onCreate method, shows how OK and Cancel buttons
might return different results to the calling Activity.

LISTING 6-5: Returning a result from a sub-Activity

Button okButton = findViewById(R.id.ok_button);
okButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 // Create a URI that points to the currently selected item
 Uri selectedHorse = Uri.parse("content://horses/" +
 selected_horse_id);
 Intent result = new Intent(Intent.ACTION_PICK, selectedHorse);

 setResult(RESULT_OK, result);
 finish();
 }
});

Button cancelButton = findViewById(R.id.cancel_button);
cancelButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 setResult(RESULT_CANCELED);
 finish();
 }
});

If the Activity is closed by the user pressing the hardware back key, or finish is called without a
prior call to setResult, the result code will be set to RESULT_CANCELED and the result Intent set to
null.

Handling Sub-Activity Results
When a sub-Activity closes, the onActivityResult event handler is fired within the calling Activity.
Override this method to handle the results returned by sub-Activities.

The onActivityResult handler receives a number of parameters:

 ➤ Request code—The request code that was used to launch the returning sub-Activity.

 ➤ Result code—The result code set by the sub-Activity to indicate its result. It can be any inte-
ger value, but typically will be either Activity.RESULT_OK or Activity.RESULT_CANCELED.

 ➤ Data—An Intent used to package returned data. Depending on the purpose of the sub-Activ-
ity, it may include a URI that represents a selected piece of content. The sub-Activity can also
return information as extras within the returned data Intent.

NOTE If the sub-Activity closes abnormally or doesn’t specify a result code
before it closes, the result code is Activity.RESULT_CANCELED.

184 ❘ CHAPTER 6 Intents and Broadcast receIvers

Listing 6-6 shows the skeleton code for implementing the onActivityResult event handler within
an Activity.

LISTING 6-6: Implementing an On Activity Result handler

private static final int SELECT_HORSE = 1;
private static final int SELECT_GUN = 2;

Uri selectedHorse = null;
Uri selectedGun = null;

@Override
public void onActivityResult(int requestCode,
 int resultCode,
 Intent data) {

 super.onActivityResult(requestCode, resultCode, data);

 switch(requestCode) {
 case (SELECT_HORSE):
 if (resultCode == Activity.RESULT_OK)
 selectedHorse = data.getData();
 break;

 case (SELECT_GUN):
 if (resultCode == Activity.RESULT_OK)
 selectedGun = data.getData();
 break;

 default: break;
 }
}

Using Platform-Native Actions to Launch Activities
Applications distributed as part of the Android platform also use Intents to launch Activities and
sub-Activities.

The following (non-comprehensive) list shows some of the native actions available as static string
constants in the Intent class. When creating implicit Intents, you can use these actions, known as
Activity Intents, to start Activities and sub-Activities within your own applications.

NOTE Later you are introduced to Intent Filters and how to register your own
Activities as handlers for these actions.

 ➤ ACTION_DELETE—Starts an Activity that lets you delete the data specified at the Intent’s
data URI.

Using Intents to Launch Activities ❘ 185

 ➤ ACTION_DIAL—Brings up a dialer application with the number to dial pre-populated from
the Intent’s data URI. By default, this is handled by the native Android phone dialer. The
dialer can normalize most number schemas—for example, tel:555-1234 and tel:(212)
555 1212 are both valid numbers.

 ➤ ACTION_EDIT—Requests an Activity that can edit the data at the Intent’s data URI.

 ➤ ACTION_INSERT—Opens an Activity capable of inserting new items into the Cursor specified
in the Intent’s data URI. When called as a sub-Activity, it should return a URI to the newly
inserted item.

 ➤ ACTION_PICK—Launches a sub-Activity that lets you pick an item from the Content Provider
specified by the Intent’s data URI. When closed, it should return a URI to the item that was
picked. The Activity launched depends on the data being picked—for example, passing
content://contacts/people will invoke the native contacts list.

 ➤ ACTION_SEARCH—Typically used to launch a specific search Activity. When it’s fired with-
out a specific Activity, the user will be prompted to select from all applications that support
search. Supply the search term as a string in the Intent’s extras using SearchManager.QUERY
as the key.

 ➤ ACTION_SENDTO—Launches an Activity to send data to the contact specified by the Intent’s
data URI.

 ➤ ACTION_SEND—Launches an Activity that sends the data specified in the Intent. The recipient
contact needs to be selected by the resolved Activity. Use setType to set the MIME type of
the transmitted data. The data itself should be stored as an extra by means of the key EXTRA_
TEXT or EXTRA_STREAM, depending on the type. In the case of email, the native Android
applications will also accept extras via the EXTRA_EMAIL, EXTRA_CC, EXTRA_BCC, and EXTRA_
SUBJECT keys. Use the ACTION_SEND action only to send data to a remote recipient (not to
another application on the device).

 ➤ ACTION_VIEW—This is the most common generic action. View asks that the data supplied in
the Intent’s data URI be viewed in the most reasonable manner. Different applications will
handle view requests depending on the URI schema of the data supplied. Natively http:
addresses will open in the browser; tel: addresses will open the dialer to call the number;
geo: addresses will be displayed in the Google Maps application; and contact content will be
displayed in the Contact Manager.

 ➤ ACTION_WEB_SEARCH—Opens the Browser to perform a web search based on the query sup-
plied using the SearchManager.QUERY key.

NOTE In addition to these Activity actions, Android includes a large number of
broadcast actions that are used to create Intents that are broadcast to announce
system events. These broadcast actions are described later in this chapter.

186 ❘ CHAPTER 6 Intents and Broadcast receIvers

CREATING INTENT FILTERS TO RECEIVE IMPLICIT INTENTS

Where an Activity Intent is a request for an action to be performed on a set of data, an Intent Filter
is the corresponding declaration that an Activity is capable of performing an action on a type of
data.

As you see later in this chapter, Intent Filters are also used by Broadcast Receivers to indicate the
broadcast actions they wish to receive.

Defining an Intent Filter
Using Intent Filters, Activities can declare the actions and data they are able to support.

To register an Activity as a potential Intent handler, add an intent-filter tag to its manifest node
using the following tags (and associated attributes):

 ➤ action—Uses the android:name attribute to specify the name of the action that can be per-
formed. Each Intent Filter must have at least one action tag, and actions should be unique
strings that are self-describing. You can define your own actions (best practice is to use a
naming system based on the Java package naming conventions) or use one of the system
actions provided by Android.

 ➤ category—Uses the android:name attribute to specify under which circumstances the
action can be performed. Each Intent Filter tag can include multiple category tags. You can
specify your own categories or use one of the standard values provided by Android.

 ➤ data—The data tag enables you to specify which data types your component can act on; you
can include several data tags as appropriate. You can use any combination of the following
attributes to specify the data your component supports:

 ➤ android:host—Specifies a valid hostname (for example, google.com).

 ➤ android:mimetype—Specifies the type of data your component is capable of han-
dling. For example, vnd.android.cursor.dir/* would match any Android cursor.

 ➤ android:path—Specifies valid path values for the URI (for example, /transport/
boats/).

 ➤ android:port—Specifies valid ports for the specified host.

 ➤ android:scheme—Requires a particular scheme (for example, content or http).

The following snippet shows an Intent Filter for an Activity that can perform the SHOW_DAMAGE
action as either a primary or an alternative action based on its Earthquake cursor mime type:

<intent-filter>
 <action
 android:name="com.paad.earthquake.intent.action.SHOW_DAMAGE"/>
 <category
 android:name="android.intent.category.DEFAULT"/>

Creating Intent Filters to Receive Implicit Intents ❘ 187

 <category
 android:name="android.intent.category.SELECTED_ALTERNATIVE"/>
 <data android:mimeType=
 "vnd.android.cursor.item/vnd.com.professionalandroid.provider.earthquake"
 />
</intent-filter>

You may have noticed that clicking a link to a YouTube video or Google Maps location on an
Android device prompts you to use YouTube or Google Maps, respectively, rather than a web
browser. This is achieved by specifying the scheme, host, and path attributes within the data tag of
an Intent Filter, as shown in Listing 6-7. In this example, any link of the form that begins http://
blog.radioactiveyak.com can be serviced by this Activity.

LISTING 6-7: Registering an Activity as an Intent Receiver for viewing content from a specific
website using an Intent Filter

<activity android:name=".MyBlogViewerActivity">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />
 <data android:scheme="http"
 android:host="blog.radioactiveyak.com"/>
 </intent-filter>
</activity>

Note that you must include the browsable category in order for links clicked within the browser to
trigger this behavior.

How Android Resolves Intents Using Intent Filters
The process of deciding which Activity to start when an implicit Intent is passed in to
start Activity is called Intent resolution. The aim of intent resolution is to find the best
Intent Filter match possible by means of the following process:

 1. Android puts together a list of all the Intent Filters available from the installed packages.

 2. Intent Filters that do not match the action or category associated with the Intent being
resolved are removed from the list.

 ➤ Action matches are made only if the Intent Filter includes the specified action. An
Intent Filter will fail the action match check if none of its actions matches the one
specified by the Intent.

 ➤ For category matching, Intent Filters must include all the categories defined in the
resolving Intent, but can include additional categories not included in the Intent. An
Intent Filter with no categories specified matches only Intents with no categories.

 3. Each part of the Intent’s data URI is compared to the Intent Filter’s data tag. If the Intent
Filter specifies a scheme, host/authority, path, or MIME type, these values are compared to
the Intent’s URI. Any mismatch will remove the Intent Filter from the list. Specifying no data
values in an Intent Filter will result in a match with all Intent data values.

188 ❘ CHAPTER 6 Intents and Broadcast receIvers

 ➤ The MIME type is the data type of the data being matched. When matching data
types, you can use wildcards to match subtypes. If the Intent Filter specifies a data
type, it must match the Intent; specifying no data types results in a match with all of
them.

 ➤ The scheme is the “protocol” part of the URI (for example, http:, mailto:, or
tel:).

 ➤ The hostname or data authority is the section of the URI between the scheme and the
path (for example, developer.android.com). For a hostname to match, the Intent
Filter’s scheme must also match. If no scheme is specified the hostname is ignored.

 ➤ The data path is what comes after the authority (for example, /training). A path
can match only if the scheme and hostname parts of the data tag also match.

 4. When you implicitly start an Activity, if more than one component is resolved from this pro-
cess, all the matching possibilities are offered to the user.

Native Android application components are part of the Intent-resolution process in exactly the same
way as third-party applications. They do not have a higher priority and can be completely replaced
with new Activities that declare Intent Filters that service the same actions.

As a result, when defining an Intent Filter indicating your application can view URL links, the
browser will still be offered (in addition to your application.)

Finding and Using Intents Within an Activity
When an Activity is started through an implicit Intent, it needs to find the action it’s been asked to
perform, and the data it needs to perform it on.

To find the Intent used to start the Activity, call getIntent, as shown in Listing 6-8.

LISTING 6-8: Finding the launch Intent for an Activity

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Intent intent = getIntent();
 String action = intent.getAction();
 Uri data = intent.getData();
}

Use the getData and getAction methods to find the data and action, respectively, associated with
the Intent. Use the type-safe get<type>Extra methods to extract additional information stored in
its extras Bundle.

The getIntent method will always return the initial Intent used to create the Activity; in some
circumstances your Activity may continue to receive Intents after it has been launched.

Creating Intent Filters to Receive Implicit Intents ❘ 189

For example, if your application moves to the background, the user may click a Notification to
return the running application to the foreground, resulting in a new Intent being delivered to the rel-
evant Activity. If your Activity is configured such that when re-launched, instead of a new instance
being created, the existing instance is moved to the top of the Activity stack a new Intent is delivered
via the onNewIntent handler.

You can call setIntent to update the Intent returned when you call getIntent:

@Override
public void onNewIntent(Intent newIntent) {
 // TODO React to the new Intent
 setIntent(newIntent);
 super.onNewIntent(newIntent);
}

Selecting a Star Sign Example
In this example, you create a new Activity that services ACTION_PICK for a list of star signs. The
picker application displays a list of star signs, and lets the user select one before closing and return-
ing the selected sign to the calling Activity.

NOTE As with previous examples, to simplify readability, not all of the required
import statements are included in these steps. You can enable “automatically
add unambiguous imports on the fly” within the Android Studio settings or press
Alt+Enter on each unresolved class name, as required.

 1. Create a new StarSignPicker project that includes a StarSignPicker Activity based on the
Empty Activity template and using the App Compatibility library. Add an EXTRA_SIGN_NAME
string constant that will be used to store an extra in our return Intent to indicate the star sign
selected by user:

public class StarSignPicker extends AppCompatActivity {

 public static final String EXTRA_SIGN_NAME = "SIGN_NAME";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_star_sign_picker);
 }
}

 2. Modify the activity_star_sign_picker.xml layout resource to include a single
RecyclerView control. This control will be used to display the contacts:

190 ❘ CHAPTER 6 Intents and Broadcast receIvers

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.RecyclerView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/recycler_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 app:layoutManager="LinearLayoutManager"
/>

 3. Create a new list_item_layout.xml layout resource based on a FrameLayout that includes
a single TextView control. This control will be used to display each star sign in the Recycler
View:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <TextView
 android:id="@+id/itemTextView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="8dp"
 android:textAppearance="?attr/textAppearanceListItem"/>
</FrameLayout>

 4. Add the Recycler View library to your app module Gradle build file:

dependencies {
 [... Existing dependencies ...]
 implementation 'com.android.support:recyclerview-v7:27.1.1'
}

 5. Create a new StarSignPickerAdapter class that extends RecyclerView.Adapter, and
which contains a string array of star signs:

public class StarSignPickerAdapter
 extends RecyclerView.Adapter<StarSignPickerAdapter.ViewHolder> {

 private String[] mStarSigns = {"Aries", "Taurus", "Gemini", "Cancer",
 "Leo", "Virgo", "Libra", "Scorpio",
 "Sagittarius", "Capricorn", "Aquarius",
 "Pisces" };

 public StarSignPickerAdapter() {
 }

 @Override
 public int getItemCount() {
 return mStarSigns == null ? 0 : mStarSigns.length;
 }
}

 5.1 Within the Adapter created in Step 5, create a new ViewHolder class that extends
RecyclerView.ViewHolder and implements an OnClickListener. It should expose a
TextView and an OnClickListener:

Creating Intent Filters to Receive Implicit Intents ❘ 191

public static class ViewHolder extends RecyclerView.ViewHolder
 implements View.OnClickListener {
 public TextView textView;
 public View.OnClickListener mListener;

 public ViewHolder(View v, View.OnClickListener listener) {
 super(v);
 mListener = listener;
 textView = v.findViewById(R.id.itemTextView);
 v.setOnClickListener(this);
 }

 @Override
 public void onClick(View v) {
 if (mListener != null)
 mListener.onClick(v);
 }
}

 5.2 Still within the Adapter, override onCreateViewHolder using the ViewHolder created
in Step 5.1, inflating the list_item_layout created in Step 3:

@Override
public StarSignPickerAdapter.ViewHolder
 onCreateViewHolder(ViewGroup parent, int viewType) {
 // Create the new View
 View v = LayoutInflater.from(parent.getContext())
 .inflate(R.layout.list_item_layout, parent, false);

 return new ViewHolder(v, null);
}

 5.3 Create a new Interface that contains an onItemClicked method that takes a String
argument; add a setOnAdapterItemClick method to the Adapter to store a reference
to this event handler. We will use this handler notify the parent Activity which list item
has been selected:

public interface IAdapterItemClick {
 void onItemClicked(String selectedItem);
}

IAdapterItemClick mAdapterItemClickListener;

public void setOnAdapterItemClick(
 IAdapterItemClick adapterItemClickHandler) {
 mAdapterItemClickListener = adapterItemClickHandler;
}

 5.4 Finally, override the Adapter’s onBindViewHolder method, assigning a star sign to
the Text View defined in our View Holder. Take this opportunity to implement the
onClickListener for each View Holder, which will call the IAdapterItemClick han-
dler from Step 5.3 if an item in our list is clicked:

@Override
public void onBindViewHolder(ViewHolder holder, final int position) {
 holder.textView.setText(mStarSigns[position]);
 holder.mListener = new View.OnClickListener() {

192 ❘ CHAPTER 6 Intents and Broadcast receIvers

 @Override
 public void onClick(View v) {
 if (mAdapterItemClickListener != null)
 mAdapterItemClickListener.onItemClicked(mStarSigns[position]);
 }
 };
}

 6. Return to the StarSignPicker Activity and modify the onCreate method. It currently
begins like this:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_starsign_picker);

 6.1 Now, still within onCreate, instantiate the StarSignPickerAdapter you created in
Step 5:

StarSignPickerAdapter adapter = new StarSignPickerAdapter();

 6.2 Create a new IAdapterItemClick handler and assign it to the Adapter using the
setOnAdapterItemClick method. When an item is clicked, create a new result Intent
and use the EXTRA_SIGN_NAME string to assign an extra that contains the selected star
sign. Assign the new Intent as this Activity’s result using setResult and call finish to
close the Activity and return to the caller:

adapter.setOnAdapterItemClick(
 new StarSignPickerAdapter.IAdapterItemClick() {
 @Override
 public void onItemClicked(String selectedItem) {
 // Construct the result URI.
 Intent outData = new Intent();
 outData.putExtra(EXTRA_SIGN_NAME, selectedItem);
 setResult(Activity.RESULT_OK, outData);
 finish();
 }
});

 6.3 Assign the adapter to the Recycler View using setAdapter:

RecyclerView rv = findViewById(R.id.recycler_view);
rv.setAdapter(adapter);

 6.4 Close off the onCreate method:

}

 7. Modify the application manifest and replace the intent-filter tag of the Activity to add
support for the ACTION_PICK action on star signs:

<activity android:name=".StarSignPicker">
 <intent-filter>
 <action android:name="android.intent.action.PICK" />
 <category android:name="android.intent.category.DEFAULT"/>
 <data android:scheme="starsigns" />
 </intent-filter>
</activity>

Creating Intent Filters to Receive Implicit Intents ❘ 193

 8. This completes the sub-Activity. To test it, create a new test harness StarSignPickerTester
launcher Activity with an activity_star_sign_picker_tester.xml layout file. Update
the layout to include a TextView to display the selected star sign, and a Button to start the
sub-Activity:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/selected_starsign_textview"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?attr/textAppearanceListItem"
 android:layout_margin="8dp"
 />
 <Button
 android:id="@+id/pick_starsign_button"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Pick Star Sign"
 />
</LinearLayout>

 9. Override the onCreate method of the StarSignPickerTester to add a click listener to
the Button so that it implicitly starts a new sub-Activity by specifying the ACTION_PICK and
starsign as the data scheme:

public class StarSignPickerTester extends AppCompatActivity {

 public static final int PICK_STARSIGN = 1;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_star_sign_picker_tester);

 Button button = findViewById(R.id.pick_starsign_button);

 button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View _view) {
 Intent intent = new Intent(Intent.ACTION_PICK,
 Uri.parse("starsigns://"));
 startActivityForResult(intent, PICK_STARSIGN);
 }
 });
 }
}

 10. When the sub-Activity returns, use the result to populate the Text View with the selected star
sign:

@Override
public void onActivityResult(int reqCode, int resCode, Intent data) {
 super.onActivityResult(reqCode, resCode, data);

194 ❘ CHAPTER 6 Intents and Broadcast receIvers

 switch(reqCode) {
 case (PICK_STARSIGN) : {
 if (resCode == Activity.RESULT_OK) {
 String selectedSign =
 data.getStringExtra(StarSignPicker.EXTRA_SIGN_NAME);
 TextView tv = findViewById(R.id.selected_starsign_textview);
 tv.setText(selectedSign);
 }
 break;
 }
 default: break;
 }
}

When your test Activity is running, press the “pick star sign” button. The star sign picker Activity
should appear, as shown in Figure 6-1.

After you select a star sign, the parent Activity should return to the foreground with the selection
displayed (see Figure 6-2).

FIGURE 6-1

Using Intent Filters for Plug-Ins and Extensibility
Having used Intent Filters to declare the actions your Activities can perform on different types of
data, it stands to reason that applications can also query to find which actions are available to be
performed on a particular piece of data.

FIGURE 6-2

Creating Intent Filters to Receive Implicit Intents ❘ 195

Android provides a plug-in model that lets your applications take advantage of functionality, pro-
vided anonymously from your own or third-party application components you haven’t yet conceived
of, without your having to modify or recompile your projects.

Supplying Anonymous Actions to Applications
To use this mechanism to make your Activity’s actions available anonymously for existing applica-
tions, publish them using intent-filter tags within their manifest nodes, as described earlier.

The Intent Filter describes the action it performs and the data upon which it can be performed. The
latter will be used during the Intent-resolution process to determine when this action should be
available. The category tag must be either ALTERNATIVE or SELECTED_ALTERNATIVE, or both. The
android:label attribute should be a human-readable label that describes the action.

NOTE The ALTERNATIVE category is used to indicate that the action described
is an alternative to what the user may currently be viewing. It is used to indicate
an action to be displayed in a set of alternative things the user can do, usually
as part of an options menu. The SELECTED_ALTERNATIVE category is similar
but indicates an action that is typically performed on a selected item displayed
within a list.

Listing 6-9 shows an example of an Intent Filter used to advertise an Activity’s capability to nuke
Moon bases from orbit.

LISTING 6-9: Advertising supported Activity actions

<activity android:name=".NostromoController">
 <intent-filter
 android:label="Nuke From Orbit">
 <action
 android:name="com.professionalandroid.nostromo.NUKE_FROM_ORBIT"/>
 <data android:mimeType=
 "vnd.android.cursor.item/vnd.com.professionalandroid.provider.moonbase"
 />
 <category android:name="android.intent.category.ALTERNATIVE"/>
 <category
 android:name="android.intent.category.SELECTED_ALTERNATIVE"
 />
 </intent-filter>
</activity>

196 ❘ CHAPTER 6 Intents and Broadcast receIvers

Discovering New Actions from Third-Party Intent Receivers
Using the Package Manager, you can create an Intent that specifies a type of data and a category of
action, and have the system return a list of Activities capable of performing an action on that data.

The elegance of this concept is best explained by an example. If the data your Activity displays is a
list of places, you might include functionality to View them on a map or “Show directions to” each.
Jump a few months ahead and you’ve created an application that interfaces with your car, allowing
your phone to set the destination for self-driving. Thanks to the runtime menu generation, when a
new Intent Filter—with a DRIVE_CAR action—is included within the new Activity’s node, Android
will resolve this new action and make it available to your earlier application.

This provides you with the ability to retrofit functionality to your application when you create new
components capable of performing actions on a given type of data.

The Intent you create will be used to resolve components with Intent Filters that supply actions for
the data you specify. The Intent is being used to find actions, so don’t assign it one; it should specify
only the data to perform actions on. You should also specify the category of the action, either
CATEGORY_ALTERNATIVE or CATEGORY_SELECTED_ALTERNATIVE.

The skeleton code for creating an Intent for menu-action resolution is shown here:

Intent intent = new Intent();
intent.setData(MyProvider.CONTENT_URI);
intent.addCategory(Intent.CATEGORY_ALTERNATIVE);

Pass this Intent into the Package Manager method queryIntentActivityOptions, specifying any
options flags.

Listing 6-10 shows how to generate a list of actions to make available within your application.

LISTING 6-10: Generating a list of possible actions to be performed on specific data

PackageManager packageManager = getPackageManager();

// Create the intent used to resolve which actions
// should appear in the menu.
Intent intent = new Intent();
intent.setType(
 "vnd.android.cursor.item/vnd.com.professionalandroid.provider.moonbase");
intent.addCategory(Intent.CATEGORY_SELECTED_ALTERNATIVE);

// Specify flags. In this case, return all matches
int flags = PackageManager.MATCH_ALL;

// Generate the list
List<ResolveInfo> actions;
actions = packageManager.queryIntentActivities(intent, flags);

// Extract the list of action names
ArrayList<CharSequence> labels = new ArrayList<CharSequence>();
Resources r = getResources();
for (ResolveInfo action : actions)
 labels.add(action.nonLocalizedLabel);

Creating Intent Filters to Receive Implicit Intents ❘ 197

Incorporating Anonymous Actions as Menu Items
The most common way to incorporate actions from third-party applications is to include them
within your Menu Items of your App Bar. Menus and the App Bar are described in more detail in
Chapter 13, “Implementing a Modern Android User Experience.”

The addIntentOptions method, available from the Menu class, lets you specify an Intent that
describes the data acted upon within your Activity, as described previously; however, rather than
simply returning a list of possible actions, a new Menu Item will be created for each, with the text
populated from the matching Intent Filters’ labels.

To add Menu Items to your Menus dynamically at run time, use the addIntentOptions method on
the Menu object in question: Pass in an Intent that specifies the data for which you want to provide
actions. Generally, this will be handled within your Activities’ or Fragments’ onCreateOptionsMenu
handlers.

As in the previous section, the Intent you create will be used to resolve Activities with Intent Filters
that can supply actions for the data you specify. The Intent is being used to find actions, so don’t
assign it one; it should specify only the data to perform actions on. You should also specify the cat-
egory of the action, either CATEGORY_ALTERNATIVE or CATEGORY_SELECTED_ALTERNATIVE.

The skeleton code for creating an Intent for menu-action resolution is shown here:

Intent intent = new Intent();
intent.setData(MyProvider.CONTENT_URI);
intent.addCategory(Intent.CATEGORY_ALTERNATIVE);

Pass this Intent in to addIntentOptions on the Menu you want to populate, as well as any options
flags, the name of the calling class, the Menu group to use, and the Menu ID values. You can also
specify an array of Intents you’d like to use to create additional Menu Items.

Listing 6-11 gives an idea of how to dynamically populate an Activity Menu.

LISTING 6-11: Dynamic Menu population from advertised actions

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 // Create the intent used to resolve which actions
 // should appear in the menu.
 Intent intent = new Intent();
 intent.setType(
 "vnd.android.cursor.item/vnd.com.professionalandroid.provider.moonbase");
 intent.addCategory(Intent.CATEGORY_SELECTED_ALTERNATIVE);

 // Normal menu options to let you set a group and ID
 // values for the menu items you're adding.
 int menuGroup = 0;
 int menuItemId = 0;
 int menuItemOrder = Menu.NONE;

198 ❘ CHAPTER 6 Intents and Broadcast receIvers

 // Provide the name of the component that's calling
 // the action -- generally the current Activity.
 ComponentName caller = getComponentName();

 // Define intents that should be added first.
 Intent[] specificIntents = null;
 // The menu items created from the previous Intents
 // will populate this array.
 MenuItem[] outSpecificItems = null;

 // Set any optional flags.
 int flags = Menu.FLAG_APPEND_TO_GROUP;

 // Populate the menu
 menu.addIntentOptions(menuGroup,
 menuItemId,
 menuItemOrder,
 caller,
 specificIntents,
 intent,
 flags,
 outSpecificItems);

 return true;
}

INTRODUCING LINKIFY

Linkify is a helper class that creates hyperlinks within Text View (and Text View-derived) classes
through RegEx pattern matching. The hyperlinks work by creating new Intents that are used to
start a new Activity when the link is clicked.

Text that matches a specified RegEx pattern will be converted into a clickable hyperlink that implic-
itly fires startActivity(new Intent(Intent.ACTION_VIEW, uri)), using the matched text as the
target URI.

You can specify any string pattern to be treated as a clickable link; for convenience, the Linkify
class provides presets for common content types.

Native Linkify Link Types
The Linkify class has presets that can detect and linkify web URLs, email addresses, map
addresses, and phone numbers. To apply a preset, use the static Linkify.addLinks method, pass-
ing in a View to Linkify and a bitmask of one or more of the following self-describing Linkify class
constants: WEB_URLS, EMAIL_ADDRESSES, PHONE_NUMBERS, MAP_ADDRESSES, and ALL.

TextView textView = findViewById(R.id.myTextView);
Linkify.addLinks(textView, Linkify.WEB_URLS|Linkify.EMAIL_ADDRESSES);

You can also linkify Views directly within a layout using the android:autoLink attribute. It sup-
ports one or more of the following values: none, web, email, phone, map, and all.

Introducing Linkify ❘ 199

<TextView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:text="@string/linkify_me"
 android:autoLink="phone|email"
/>

Creating Custom Link Strings
To linkify your own data, you need to define your own linkify strings. Do this by creating a new
RegEx pattern that matches the text you want to display as hyperlinks.

As with the native types, you can linkify the target Text View by calling Linkify.addLinks; how-
ever, rather than passing in one of the preset constants, pass in your RegEx pattern. You can also
pass in a prefix that will be prepended to the target URI when a link is clicked.

Listing 6-12 shows a View being linkified to support earthquake data provided by an Android
Content Provider. Note that rather than include the entire schema, the specified RegEx matches
any text that starts with “quake” and is followed by a number, with optional whitespace. The full
schema is then prepended to the URI before the Intent is fired.

LISTING 6-12: Creating custom link strings in Linkify

// Define the base URI.
String baseUri = "content://com.paad.earthquake/earthquakes/";

// Construct an Intent to test if there is an Activity capable of
// viewing the content you are Linkifying. Use the Package Manager
// to perform the test.
PackageManager pm = getPackageManager();
Intent testIntent = new Intent(Intent.ACTION_VIEW, Uri.parse(baseUri));
boolean activityExists = testIntent.resolveActivity(pm) != null;

// If there is an Activity capable of viewing the content
// Linkify the text.
if (activityExists) {
 int flags = Pattern.CASE_INSENSITIVE;
 Pattern p = Pattern.compile("\\bquake[\\s]?[0-9]+\\b", flags);
 Linkify.addLinks(myTextView, p, baseUri);
}

Note that in this example, including whitespace between “quake” and a number will return a
match, but the resulting URI won’t be valid. You can implement and specify one or both of a
TransformFilter and MatchFilter interface to resolve this problem. These interfaces, defined in
detail in the following section, offer additional control over the target URI structure and the defini-
tion of matching strings, and are used as in the following skeleton code:

Linkify.addLinks(myTextView, p, baseUri,
 new MyMatchFilter(), new MyTransformFilter());

200 ❘ CHAPTER 6 Intents and Broadcast receIvers

Using the Match Filter
To add additional conditions to RegEx pattern matches, implement the acceptMatch method in a
Match Filter. When a potential match is found, acceptMatch is triggered, with the match start and
end index (along with the full text being searched) passed in as parameters.

Listing 6-13 shows a MatchFilter implementation that cancels any match immediately preceded by
an exclamation mark.

LISTING 6-13: Using a Linkify Match Filter

class MyMatchFilter implements MatchFilter {
 public boolean acceptMatch(CharSequence s, int start, int end) {
 return (start == 0 || s.charAt(start-1) != '!');
 }
}

Using the Transform Filter
The Transform Filter lets you modify the implicit URI generated by matching link text. Decoupling
the link text from the target URI gives you more freedom in how you display data strings to your
users.

To use the Transform Filter, implement the transformUrl method in your Transform Filter. When
Linkify finds a successful match, it calls transformUrl, passing in the RegEx pattern used and the
matched text string (before the base URI is prepended). You can modify the matched string and
return it such that it can be appended to the base string as the data for a View Intent.

As shown in Listing 6-14, the TransformFilter implementation transforms the matched text into a
lowercase URI, having also removed any whitespace characters.

LISTING 6-14: Using a Linkify Transform Filter

class MyTransformFilter implements TransformFilter {
 public String transformUrl(Matcher match, String url) {
 return url.toLowerCase().replace(" ", "");
 }
}

USING INTENTS TO BROADCAST EVENTS

So far, we’ve used Intents to start new application components, but you can also use Intents to
broadcast messages between components using the sendBroadcast method.

As a system-level message-passing mechanism, Intents are capable of sending structured messages
across process boundaries. As a result, you can implement Broadcast Receivers to listen for,
and respond to, Broadcast Intents within your application for your own broadcasts as well as those
from other apps or the system itself.

Using Intents to Broadcast Events ❘ 201

Android broadcasts Intents extensively, to announce system events, such as changes in network con-
nectivity, docking state, and incoming calls.

Broadcasting Events with Intents
Within your application, construct the Intent you want to broadcast and use the sendBroadcast
method to send it.

As with Intents used to start Activities, you can broadcast either an explicit or implicit Intent.
Explicit Intents indicate the class of the Broadcast Receiver you want to trigger, whereas implicit
Intents specify the action, data, and category of your Intent in a way that lets potential Broadcast
Receivers accurately determine their interest.

Implicit Intent broadcasts are particularly useful where you have multiple Receivers that are poten-
tial targets for a broadcast.

For implicit Intents, the action string is used to identify the type of event being broadcast, so it
should be a unique string that identifies the event type. By convention, action strings are constructed
using the same form as Java package names:

public static final String NEW_LIFEFORM_ACTION =
 "com.professionalandroid.alien.action.NEW_LIFEFORM_ACTION";

If you want to include data within the Intent, you can specify a URI using the Intent’s data prop-
erty. You can also include extras to add additional primitive values. Considered in terms of an event-
driven paradigm, the extras equate to optional parameters passed into an event handler.

Listing 6-15 shows the basic creation of explicit and implicit broadcast Intents, the latter using the
action defined previously with additional event information stored as extras.

LISTING 6-15: Broadcasting an Intent

Intent explicitIntent = new Intent(this, MyBroadcastReceiver.class);
intent.putExtra(LifeformDetectedReceiver.EXTRA_LIFEFORM_NAME,
 detectedLifeform);
intent.putExtra(LifeformDetectedReceiver.EXTRA_LATITUDE,
 mLatitude);
intent.putExtra(LifeformDetectedReceiver.EXTRA_LONGITUDE,
 mLongitude);

sendBroadcast(explicitIntent);

Intent intent = new Intent(LifeformDetectedReceiver.NEW_LIFEFORM_ACTION);
intent.putExtra(LifeformDetectedReceiver.EXTRA_LIFEFORM_NAME,
 detectedLifeform);
intent.putExtra(LifeformDetectedReceiver.EXTRA_LATITUDE,
 mLatitude);
intent.putExtra(LifeformDetectedReceiver.EXTRA_LONGITUDE,
 mLongitude);

sendBroadcast(intent);

The explicit Intent will be received only by the MyBroadcastReceiver class indicated, whereas the
implicit Intent could potentially be received by multiple Receivers.

202 ❘ CHAPTER 6 Intents and Broadcast receIvers

Listening for Intent Broadcasts with Broadcast Receivers
Broadcast Receivers (commonly referred to as Receivers) are used to listen for broadcast Intents. For
a Receiver to receive broadcasts, it must be registered, either in code or within the application mani-
fest—the latter case is referred to as a manifest Receiver.

To create a new Broadcast Receiver, extend the BroadcastReceiver class and override the
onReceive event handler:

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

public class MyBroadcastReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 //TODO: React to the Intent received.
 }
}

When a broadcast Intent is started, the onReceive method will be executed on the main applica-
tion Thread. Any non-trivial work should be performed asynchronously after calling goAsync—as
described in Chapter 11, “Working in the Background.”

In any case, all processing within the Broadcast Receiver must complete within 10 seconds or the
system will consider it unresponsive, and attempt to terminate it.

To avoid this, Broadcast Receivers will typically schedule a background job or launch a bound
Service to initiate potentially long-running tasks, or it can update the containing parent Activity UI
or trigger a Notification to notify the user of received changes.

Listing 6-16 shows how to implement a Broadcast Receiver that extracts the data and several extras
from the broadcast Intent and uses them to trigger a Notification. In the following sections you
learn how to register it in code or in your application manifest.

LISTING 6-16: Implementing a Broadcast Receiver

public class LifeformDetectedReceiver
 extends BroadcastReceiver {

 public static final String NEW_LIFEFORM_ACTION
 = "com.professionalandroid.alien.action.NEW_LIFEFORM_ACTION";
 public static final String EXTRA_LIFEFORM_NAME
 = "EXTRA_LIFEFORM_NAME";
 public static final String EXTRA_LATITUDE = "EXTRA_LATITUDE";
 public static final String EXTRA_LONGITUDE = "EXTRA_LONGITUDE";
 public static final String FACE_HUGGER = "facehugger";

 private static final int NOTIFICATION_ID = 1;

 @Override
 public void onReceive(Context context, Intent intent) {
 // Get the lifeform details from the intent.

Using Intents to Broadcast Events ❘ 203

 String type = intent.getStringExtra(EXTRA_LIFEFORM_NAME);
 double lat = intent.getDoubleExtra(EXTRA_LATITUDE, Double.NaN);
 double lng = intent.getDoubleExtra(EXTRA_LONGITUDE, Double.NaN);

 if (type.equals(FACE_HUGGER)) {
 NotificationManagerCompat notificationManager =
 NotificationManagerCompat.from(context);

 NotificationCompat.Builder builder =
 new NotificationCompat.Builder(context);

 builder.setSmallIcon(R.drawable.ic_alien)
 .setContentTitle("Face Hugger Detected")
 .setContentText(Double.isNaN(lat) || Double.isNaN(lng) ?
 "Location Unknown" :
 "Located at " + lat + "," + lng);

 notificationManager.notify(NOTIFICATION_ID, builder.build());
 }
 }
}

Registering Broadcast Receivers in Code
Broadcast Receivers that respond to broadcasts sent from your own application, and those that alter
the UI of an Activity, are typically registered dynamically in code. A Receiver registered program-
matically can respond to broadcast Intents only when the application component it is registered
within is running.

This is useful when the Receiver behavior is tightly bound to a particular component—for exam-
ple, one that updates the UI elements of an Activity. In this case, it’s good practice to register the
Receiver within the onStart handler and unregister it during onStop.

Listing 6-17 shows how to register and unregister a Broadcast Receiver in code using the
IntentFilter class that defines an action associated with an implicit broadcast Intent the Receiver
should respond to.

LISTING 6-17: Registering and unregistering a Broadcast Receiver in code

private IntentFilter filter =
 new IntentFilter(LifeformDetectedReceiver.NEW_LIFEFORM_ACTION);

private LifeformDetectedReceiver receiver =
 new LifeformDetectedReceiver();

@Override
public void onStart() {
 super.onStart();

 // Register the broadcast receiver.
 registerReceiver(receiver, filter);
}

204 ❘ CHAPTER 6 Intents and Broadcast receIvers

@Override
public void onStop() {
 // Unregister the receiver
 unregisterReceiver(receiver);

 super.onStop();
}

Registering Broadcast Receivers in Your Application Manifest
Broadcast Receivers registered statically in your application manifest are always active, and will
receive Broadcast Intents even when your application has been killed or hasn’t been started; your
application will be started automatically when a matching Intent is broadcast.

To include a Broadcast Receiver in the application manifest, add a receiver tag within the
application node, specifying the class name of the Broadcast Receiver to register:

<receiver android:name=".LifeformDetectedReceiver"/>

Prior to Android 8.0 Oreo (API Level 26), it was possible for manifest Receivers to include an intent-
filter tag that specified an action to support listening for implicit broadcasts:

<receiver android:name=".LifeformDetectedReceiver">
 <intent-filter>
 <action android:name=
 "com.professionalandroid.alien.action.NEW_LIFEFORM_ACTION"
 />
 </intent-filter>
</receiver>

Manifest Receivers let you create event-driven applications that will respond to broadcast events
even after your application has been closed or killed—however, it also introduces associated
resource use risks. If an Intent is broadcast frequently it could cause your application to wake
repeatedly, potentially resulting in significant battery drain.

To minimize this risk, Android 8.0 no longer supports manifest Receivers for arbitrary implicit
Intents.

Apps can continue to register for explicit broadcasts in their manifests, and you can register
Receivers at runtime for any broadcast, both implicit or explicit—but only a limited number of
broadcast system actions can be used to register an implicit Intent within your manifest. The sup-
ported actions are described later in this chapter in the section, “Monitoring Device State Changes
through Broadcast Intents.”

Managing Manifest Receivers at Run Time
Using the Package Manager, you can enable and disable any of your application’s manifest Receivers
at run time using the setComponentEnabledSetting method. You can use this technique to enable
or disable any application component (including Activities and Services), but it is particularly useful
for manifest Receivers.

Using Intents to Broadcast Events ❘ 205

To minimize the potential battery drain caused by your application, it’s good practice to disable
manifest Receivers that listen for system events when your application doesn’t need to respond to
those events.

Listing 6-18 shows how to enable and disable a manifest Receiver at run time.

LISTING 6-18: Dynamically toggling manifest Receivers

ComponentName myReceiverName =
 new ComponentName(this,LifeformDetectedReceiver.class);
PackageManager pm = getPackageManager();

// Enable a manifest receiver
pm.setComponentEnabledSetting(myReceiverName,
 PackageManager.COMPONENT_ENABLED_STATE_ENABLED,
 PackageManager.DONT_KILL_APP);

// Disable a manifest receiver
pm.setComponentEnabledSetting(myReceiverName,
 PackageManager.COMPONENT_ENABLED_STATE_DISABLED,
 PackageManager.DONT_KILL_APP);

Monitoring Device State Changes Through Broadcast Intents
Many of the system Services broadcast Intents to signal changes in device state. You can monitor
these broadcasts to add functionality to your own projects based on events such as the completion of
device booting, time-zone changes, changes in dock state, and battery status.

A comprehensive list of the broadcast actions used and transmitted natively by Android is available
at developer.android.com/reference/android/content/Intent.html. Due to the restrictions
on registering implicit manifest Broadcast Receivers introduced in Android 8.0, only a subset of the
system broadcast Intents can be registered in the manifest. You can find the list of implicit broadcast
exceptions at developer.android.com/guide/components/broadcast-exceptions.html.

The following sections examine how to create Intent Filters to register Broadcast Receivers that can
react to some of these system events, and how to extract the device state information accordingly.

Listening for Docking Changes
Some Android devices can be docked in a car dock or desk dock, where the desk dock can be analog
(low-end) or digital (high-end).

By registering a Receiver to listen for the Intent.ACTION_DOCK_EVENT (android.intent.action
.ACTION_DOCK_EVENT), you can determine the docking status and type of dock on devices that
support docks:

<action android:name="android.intent.action.ACTION_DOCK_EVENT"/>

206 ❘ CHAPTER 6 Intents and Broadcast receIvers

The dock event Broadcast Intent is sticky, meaning you will receive the current dock status when
calling registerReciver, even if no receiver is specified. Listing 6-19 shows how to extract the
current docking status from the Intent returned by calling registerReceiver, using the Intent
.ACTION_DOCK_EVENT Intent. Note that if the device doesn’t include support for docking, the call to
registerReceiver will return null.

LISTING 6-19: Determining docking state

boolean isDocked = false;
boolean isCar = false;
boolean isDesk = false;

IntentFilter dockIntentFilter =
 new IntentFilter(Intent.ACTION_DOCK_EVENT);
Intent dock = registerReceiver(null, dockIntentFilter);

if (dock != null) {
 int dockState = dock.getIntExtra(Intent.EXTRA_DOCK_STATE,
 Intent.EXTRA_DOCK_STATE_UNDOCKED);

 isDocked = dockState != Intent.EXTRA_DOCK_STATE_UNDOCKED;
 isCar = dockState == Intent.EXTRA_DOCK_STATE_CAR;
 isDesk = dockState == Intent.EXTRA_DOCK_STATE_DESK ||
 dockState == Intent.EXTRA_DOCK_STATE_LE_DESK ||
 dockState == Intent.EXTRA_DOCK_STATE_HE_DESK;
}

Listening for Battery State and Data Connectivity Changes
Prior to the introduction of the Job Scheduler, the most common reason for listening for battery
status and data connectivity changes was to delay large downloads or similarly time-consuming,
battery draining processes until the device was connected to an appropriate data network and/or
charging.

Chapter 11, “Working in the Background,” describes how to use the Job Scheduler and Firebase Job
Dispatcher to schedule jobs using criteria including network connectivity and battery charging state,
as a more efficient and comprehensive solution than manually monitoring these state changes.

To monitor changes in the battery level and charging status within an Activity, you can register a
Receiver using an Intent Filter that listens for the Intent.ACTION_BATTERY_CHANGED broadcast by
the Battery Manager.

Listing 6-20 shows how to extract the current battery charge and charging status from the sticky
battery status change Intent.

LISTING 6-20: Determining battery and charge state information

IntentFilter batIntentFilter = new IntentFilter(Intent.ACTION_BATTERY_CHANGED);
Intent battery = context.registerReceiver(null, batIntentFilter);

Introducing the Local Broadcast Manager ❘ 207

int status = battery.getIntExtra(BatteryManager.EXTRA_STATUS, -1);
boolean isCharging =
 status == BatteryManager.BATTERY_STATUS_CHARGING ||
 status == BatteryManager.BATTERY_STATUS_FULL;

Note that you can’t register the battery changed action within a manifest Receiver; however, you can
monitor connection and disconnection from a power source and a low battery level using the follow-
ing action strings, each prefixed with android.intent.action:

 ➤ ACTION_BATTERY_LOW

 ➤ ACTION_BATTERY_OKAY

 ➤ ACTION_POWER_CONNECTED

 ➤ ACTION_POWER_DISCONNECTED

Changes to the battery level and status occur regularly, so it’s generally considered good practice not
to register receivers to listen for these broadcasts unless your application provides functionality spe-
cifically related to these changes.

To monitor changes in network connectivity, register a Broadcast Receiver within your application
to listen for the ConnectivityManager.CONNECTIVITY_ACTION action (apps targeting Android 7.0
Nougat (API Level 24) and higher will not receive this broadcast if they declare the Receiver in their
manifest).

The connectivity change broadcast isn’t sticky and doesn’t contain any additional information
regarding the change. To extract details on the current connectivity status, you need to use the
Connectivity Manager, as shown in Listing 6-21.

LISTING 6-21: Determining connectivity state information

String svcName = Context.CONNECTIVITY_SERVICE;
ConnectivityManager cm =
 (ConnectivityManager)context.getSystemService(svcName);

NetworkInfo activeNetwork = cm.getActiveNetworkInfo();
boolean isConnected = activeNetwork.isConnectedOrConnecting();
boolean isMobile = activeNetwork.getType() ==
 ConnectivityManager.TYPE_MOBILE;

INTRODUCING THE LOCAL BROADCAST MANAGER

The Local Broadcast Manager was introduced to the Android Support Library to simplify the pro-
cess of registering for, sending, and receiving Intents broadcast only between components within
your application.

Because of the reduced broadcast scope, using the Local Broadcast Manager is more efficient than
sending a global broadcast. It also ensures that the Intent you broadcast cannot be received by any
other applications, ensuring that there is no risk of leaking private or sensitive data.

208 ❘ CHAPTER 6 Intents and Broadcast receIvers

Similarly, other applications can’t transmit broadcasts to your Receivers, negating the risk of these
Receivers becoming vectors for security exploits. Note that the Broadcast Receiver specified can also
be used to handle global Intent broadcasts.

To use the Local Broadcast Manager, you must first include the Android Support Library in your
application, as described in Chapter 2.

Use the LocalBroadcastManager.getInstance method to return an instance of the Local
Broadcast Manager:

LocalBroadcastManager lbm = LocalBroadcastManager.getInstance(this);

To register a local Broadcast Receiver, use the Local Broadcast Manager’s registerReceiver
method, much as you would register a global receiver, passing in a Broadcast Receiver and an Intent
Filter as shown in Listing 6-22.

LISTING 6-22: Registering and unregistering a local Broadcast Receiver

@Override
public void onResume() {
 super.onResume();

 // Register the broadcast receiver.
 LocalBroadcastManager lbm = LocalBroadcastManager.getInstance(this);
 lbm.registerReceiver(receiver, filter);
}

@Override
public void onPause() {
 // Unregister the receiver
 LocalBroadcastManager lbm = LocalBroadcastManager.getInstance(this);
 lbm.unregisterReceiver(receiver);

 super.onPause();
}

To transmit a local Broadcast Intent, use the Local Broadcast Manager’s sendBroadcast method,
passing in the Intent to broadcast:

lbm.sendBroadcast(new Intent(LOCAL_ACTION));

The Local Broadcast Manager also includes a sendBroadcastSync method that operates synchro-
nously, blocking until each registered Receiver has processed the broadcast Intent.

INTRODUCING PENDING INTENTS

The PendingIntent class provides a mechanism for creating Intents that can be fired on your appli-
cation’s behalf by the system, or another application, at a later time.

A Pending Intent is commonly used to package Intents that will be fired in response to a future
event, such as when a user touches a Notification.

Introducing Pending Intents ❘ 209

NOTE When used, Pending Intents execute the packaged Intent with the same
permissions and identity as if you had executed them yourself, within your own
application.

The PendingIntent class offers static methods to construct Pending Intents used to start an
Activity, to start background or foreground Services, or to broadcast implicit or explicit Intents:

int requestCode = 0;
int flags = 0;

// Start an Activity
Intent startActivityIntent = new Intent(this, MyActivity.class);
PendingIntent.getActivity(this, requestCode,
 startActivityIntent, flags);

// Start a Service
Intent startServiceIntent = new Intent(this, MyService.class);
PendingIntent.getService(this, requestCode,
 startServiceIntent, flags);

// Start a foreground Service (API Level 26 or higher)
Intent startForegroundServiceIntent = new Intent(this, MyFGService.class);
PendingIntent.getForegroundService(this, requestCode,
 startForegroundServiceIntent flags);

// Broadcast an Intent to an explicit Broadcast Receiver
Intent broadcastExplicitIntent = new Intent(this, MyReceiver.class);
PendingIntent.getBroadcast(this, requestCode,
 broadcastExplicitIntent, flags);

// Broadcast an implicit Intent (API Level 25 or lower)
Intent broadcastImplicitIntent = new Intent(NEW_LIFEFORM_ACTION);
PendingIntent.getBroadcast(this, requestCode,
 broadcastImplicitIntent, flags);

The PendingIntent class includes static constants that can be used to specify flags to update or
cancel any existing Pending Intent that matches your specified action, as well as to specify if this
Intent is to be fired only once. The various options are examined in more detail when Notifications
are introduced in Chapter 11.

Because Pending Intents are triggered outside the scope of your application, it’s important to con-
sider the user’s context when these Intents are likely to be executed; an Intent that starts a new
Activity should be used only in response to direct user action, such as selecting a notification.

To improve battery life, Android 8.0 Oreo (API Level 26) introduced strict limits on application
background execution that affect Pending Intents.

Since Android 8.0, apps can’t start new background Services if the app itself is idle in the
background. As a result, a Pending Intent created using the startService method can’t
start a new Service if the app is in the background when it’s triggered. For this reason, the

210 ❘ CHAPTER 6 Intents and Broadcast receIvers

startForegroundService method was introduced in Android 8.0. Pending Intents created using
this method are allowed to start a new Service, which—once started—has five seconds to become
a foreground Service through a call to startForeground, or it will be stopped and the application
shown as not responding.

As mentioned previously, Android 8.0 also eliminated support for using your manifest to register for
implicit Intent broadcasts. As Pending Intents are commonly fired when your application isn’t run-
ning, so it’s necessary to use an explicit Intent to ensure the target Receiver is triggered.

Using Internet Resources
WHAT’S IN THIS CHAPTER?

 ➤ Connecting to Internet resources

 ➤ Using Asynchronous Tasks to download and process Internet
resources on background threads

 ➤ Using View Models and Live Data to store and observe data

 ➤ Parsing XML resources

 ➤ Parsing JSON feeds

 ➤ Using the Download Manager to download files

 ➤ Minimizing battery drain when transferring data

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The code downloads for this chapter are found at www.wrox.com. The code for this chapter is
divided into the following major examples:

 ➤ Snippets_ch7.zip

 ➤ Earthquake_ch7.zip

CONNECTING TO THE INTERNET

One of the most powerful aspects of modern smart devices is their ability to connect to
Internet services, and to expose the information—or those services—to users within native
applications.

7

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

212 ❘ CHAPTER 7 Using internet resoUrces

This chapter introduces Android’s Internet connectivity model and techniques for downloading and
parsing data efficiently. You learn how to connect to an Internet resource and how to use the SAX
Parser, XML Pull Parser, and JSON Reader to parse data feeds. Android requires that you perform
all network tasks on a background thread, so you learn how to do this efficiently using a combina-
tion of View Models, Live Data, and Asynchronous Tasks.

Expanding the earthquake-monitoring example demonstrates how to tie together all these features.

This chapter also introduces the Download Manager, and you learn how to use it to schedule and
manage long-running shared downloads. You are also introduced to the Job Scheduler, and learn
the best practices for ensuring your downloads are fast, efficient, and don’t drain the battery.

Finally, this chapter introduces some popular Internet cloud services you can leverage to add addi-
tional cloud-based functionality to your Android apps.

CONNECTING, DOWNLOADING, AND PARSING INTERNET
RESOURCES

Using Android’s network APIs, you can connect to remote server endpoints, make HTTP requests,
and process server results and data feeds—including the ability to extract and process data using a
parser, such as SAX, the XML Pull Parser, or the JSON Reader.

Modern mobile devices offer a number of alternatives for accessing the Internet. Broadly speaking,
Android provides two connection techniques for Internet connectivity, each is offered to the appli-
cation layer automatically—you don’t have to indicate which technology to use when making an
Internet connection:

 ➤ Mobile Internet—GPRS, EDGE, 3G, 4G, and LTE Internet access is available through carri-
ers that offer mobile data.

 ➤ Wi-Fi—Private and public Wi-Fi access points.

If you use Internet resources in your application, remember that your users’ data connections are
dependent on the communications technology available to them. EDGE and GSM connections are
notoriously low-bandwidth, whereas a Wi-Fi connection may be unreliable in a mobile setting.

Optimize the user experience by always minimizing the quantity of data transmitted and ensure that
your application is robust enough to handle network outages and bandwidth/latency limitations.

Why Build a Native Internet App?
Given that a web browser is available on most smart devices, you might ask if there’s any reason to
create native Internet-based applications when you could make a web-based version instead.

While mobile web browsers are becoming increasingly powerful, there are still a number of ben-
efits to creating thick- and thin-client native applications rather than relying on entirely web-based
solutions:

Connecting, Downloading, and Parsing Internet Resources ❘ 213

 ➤ Bandwidth—Static resources such as images, layouts, and sounds can be expensive on devices
with bandwidth restraints. By creating a native application, you can limit the bandwidth
requirements to changed data only.

 ➤ Offline availability—With a browser-based solution, a patchy Internet connection can result
in intermittent application availability. A native application can cache data and user actions
to provide as much functionality as possible without a live connection, and synchronize with
the cloud when a connection is reestablished.

 ➤ Latency and UX—By building a native application, you can take advantage of lower user-
interaction latency as well as ensure the user experience is consistent with the OS and other
first- and third-party apps.

 ➤ Reducing battery drain—Each time your application opens a connection to a server, the wire-
less radio will be turned on (or kept on). A native application can bundle its connections,
minimizing the number of connections initiated. The longer the period between network
requests, the longer the wireless radio can be left off and the lower the impact on battery life.

 ➤ Native features—Android devices are more than simple platforms for running a browser.
They include location-based services, Notifications, widgets, cameras, Bluetooth radios, back-
ground Services, and hardware sensors. By creating a native application, you can combine the
data available online with the hardware features available on the device to provide a richer
user experience.

Connecting to an Internet Resource
Before you can access Internet resources, you need to add an INTERNET uses-permission node to
your application manifest, as shown in the following XML snippet:

<uses-permission android:name="android.permission.INTERNET"/>

Listing 7-1 shows the basic pattern for opening an Internet data connection and receiving a stream
of data from a data feed.

LISTING 7-1: Opening an Internet data stream

try {
 URL url = new URL(myFeed);

 // Create a new HTTP URL connection
 URLConnection connection = url.openConnection();
 HttpURLConnection httpConnection = (HttpURLConnection) connection;

 int responseCode = httpConnection.getResponseCode();
 if (responseCode == HttpURLConnection.HTTP_OK) {
 InputStream in = httpConnection.getInputStream();
 processStream(in);
 }
 httpConnection.disconnect();

214 ❘ CHAPTER 7 Using internet resoUrces

} catch (MalformedURLException e) {
 Log.e(TAG, "Malformed URL Exception.", e);
} catch (IOException e) {
 Log.e(TAG, "IO Exception.", e);
}

WARNING On Android, attempting to perform network operations on the
main UI thread will cause a NetworkOnMainThreadException. In order to con-
nect to an Internet resource, you must do so from a background thread. The
next section describes a best-practice technique for moving network operations
to background threads using a combination of the View Model, Live Data, and
Asynchronous Task classes.

Android includes several classes to help you handle network communications. They are available in
the java.net.* and android.net.* packages.

Performing Network Operations on Background Threads Using
View Models, Live Data, and Asynchronous Tasks

It’s always good practice to perform potentially time-consuming tasks such as network operations
on a background thread. Doing so ensures you’re not blocking the UI thread, which would make
your application janky or unresponsive. On Android, this best practice is enforced for network
operations through the NetworkOnMainThreadException, which is triggered whenever a network
operation is attempted on the main UI thread.

NOTE In Chapter 11, “Working in the Background,” you learn a broad range of
options for moving operations to background threads. You are also introduced
to APIs designed for scheduling background network operations efficiently,
including the Job Scheduler.

Within your Activity you can create and run a new Thread as shown in the following code. When
you’re ready to post to the UI thread, call runOnUIThread and apply your UI changes within
another Runnable:

Thread t = new Thread(new Runnable() {
 public void run() {
 // Perform Network operations and processing.
 final MyDataClass result = loadInBackground();
 // Synchronize with the UI thread to post changes.
 runOnUiThread(new Runnable() {

LISTING 7-1 (continued)

Connecting, Downloading, and Parsing Internet Resources ❘ 215

 @Override
 public void run() {
 deliverResult(result);
 }
 });
 }
});
t.start();

Alternatively, you can take advantage of the AsyncTask class, which encapsulates this process for
you. An Async Task lets you define an operation to be performed in the background and provides
event handlers that enable you to monitor progress and post the results on the GUI Thread.

Async Task handles all the Thread creation, management, and synchronization, enabling you to cre-
ate an asynchronous task consisting of processing to be done in the background, and UI updates to
be performed both during the processing and once it’s complete.

To create a new asynchronous task, extend the AsyncTask class, specifying the parameter types to
use, as shown in this skeleton code:

private class MyAsyncTask extends AsyncTask<String, Integer, String> {
 @Override
 protected String doInBackground(String... parameter) {
 // Moved to a background thread.
 String result = "";
 int myProgress = 0;
 int inputLength = parameter[0].length();
 // Perform background processing task, update myProgress
 for (int i = 1; i <= inputLength; i++) {
 myProgress = i;
 result = result + parameter[0].charAt(inputLength-i);
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) { }
 // Send progress to onProgressUpdate handler
 publishProgress(myProgress);
 }
 // Return the value to be passed to onPostExecute
 return result;
 }

 @Override
 protected void onProgressUpdate(Integer... progress) {
 // Synchronized to UI thread.
 // Update progress bar, Notification, or other UI elements
 }

 @Override
 protected void onPostExecute(String result) {
 // Synchronized to UI thread.
 // Report results via UI update, Dialog, or notifications
 }
}

216 ❘ CHAPTER 7 Using internet resoUrces

After you’ve implemented an Asynchronous Task, execute it by creating a new instance and calling
execute, passing in any parameters as required:

String input = "redrum ... redrum";
new MyAsyncTask().execute(input);

Each Async Task instance can be executed only once. If you attempt to call execute a second time,
an exception will be thrown.

These approaches have several significant limitations stemming from the Activity life cycle described
in Chapter 3. As you know, an Activity (and its Fragments) may be destroyed and re-created when-
ever the device configuration changes. As a result a user rotating the screen may interrupt your run-
ning network Thread or Async Task, which will be destroyed along with its parent Activity.

For Threads that are started through user action, this will effectively cancel the operation. For
Threads initiated within the Activity’s lifecycle handlers—such as onCreate or onStart—they will
be re-created and rerun when the Activity is re-created—potentially executing the same network
operation multiple times. This can result in duplicative data transfers and a shorter battery life.

A better approach is to use the ViewModel and LiveData classes provided as part of the Android
Architecture Components. Any View Models associated with an Activity or Fragment are designed
specifically to persist across configuration changes, effectively providing caching for the data they
store. The data within a View Model is typically returned as Live Data.

Live Data is a lifecycle-aware class used to store, and provide observable updates for, application
data. Lifecycle-awareness means that Live Data only sends updates to Observers within app compo-
nents that are in an active lifecycle state.

To use View Models and Live Data, you must first add Android Architecture Components to your
app module’s Gradle Build file:

dependencies {
 [... Existing dependencies nodes ...]
 implementation "android.arch.lifecycle:extensions:1.1.1"
}

Listing 7-2 shows a simple View Model implementation that takes advantage of the standard
MutableLiveData class. It uses an AsyncTask to download and parse an Internet resource in the
background, and returns the result as a Live Data representing a List of Strings.

LISTING 7-2: Using a View Model to download on a background thread using an Async
Task

public class MyViewModel extends AndroidViewModel {
 private static final String TAG = "MyViewModel";

 private final MutableLiveData<List<String>> data;

 public MyViewModel(Application application) {
 super(application);
 }

Connecting, Downloading, and Parsing Internet Resources ❘ 217

 public LiveData<List<String>> getData() {
 if (data == null)
 data = new MutableLiveData<List<String>>();
 loadData();
 }
 return data;
 }

 private void loadData() {
 new AsyncTask<Void, Void, List<String>>() {
 @Override
 protected List<String> doInBackground(Void... voids) {
 ArrayList<String> result = new ArrayList<>(0);

 String myFeed = getApplication().getString(R.string.my_feed);
 try {
 URL url = new URL(myFeed);

 // Create a new HTTP URL connection
 URLConnection connection = url.openConnection();
 HttpURLConnection httpConnection = (HttpURLConnection) connection;

 int responseCode = httpConnection.getResponseCode();
 if (responseCode == HttpURLConnection.HTTP_OK) {
 InputStream in = httpConnection.getInputStream();
 // Process the input stream to generate our result list
 result = processStream(in);
 }
 httpConnection.disconnect();
 } catch (MalformedURLException e) {
 Log.e(TAG, "Malformed URL Exception.", e);
 } catch (IOException e) {
 Log.e(TAG, "IO Exception.", e);
 }
 return result;
 }

 @Override
 protected void onPostExecute(List<String> data) {
 // Update the Live Data data value.
 data.setValue(data);
 }
 }.execute();
 }
}

To use a View Model within your application, you must first create a new (or return the existing)
instance of your View Model within the Activity or Fragment that will be observing the Live Data.

Use the ViewModelProviders class’s static of method—passing in the current application component
—to retrieve the View Models available, and use the get method to specify the View Model you wish
to use:

MyViewModel myViewModel = ViewModelProviders.of(this)
 .get(MyViewModel.class);

218 ❘ CHAPTER 7 Using internet resoUrces

Once you have a reference to your View Model, you must add an Observer in order to receive the
Live Data it contains. Call getData on the View Model, then use the observe method to add an
Observer implementation whose onChanged handler will be triggered whenever the underlying data
changes:

myViewModel.getData()
 .observe(this, new Observer<List<String>>() {
 @Override
 public void onChanged(@Nullable List<String> data) {
 // TODO When new View Model data is received, update the UI.
 }
});

The full process of obtaining a View Model for your Activity, requesting the Live Data, and observ-
ing it for changes is shown in Listing 7-3.

LISTING 7-3: Using Live Data and a View Model from an Activity

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Obtain (or create) an instance of the View Model
 MyViewModel myViewModel = ViewModelProviders.of(this)
 .get(MyViewModel.class);

 // Get the current data and observe it for changes.
 myViewModel.getData()
 .observe(this, new Observer<List<String>>() {
 @Override
 public void onChanged(@Nullable List<String> data) {
 // Update your UI with the loaded data.
 // Returns cached data automatically after a configuration change,
 // and will be fired again if underlying Live Data object is modified.
 }
 });
}

Because your View Model lifecycle is based on your application—rather than the parent Activity or
Fragment—the View Model’s Live Data’s loading function won’t be interrupted by a device configu-
ration change.

Similarly, your results are implicitly cached across device configuration changes. After a rotation,
when observe is called on the View Model’s data, it will immediately return the last result set via
the onChanged handler—without the View Model’s loadData method being called. This saves sig-
nificant time and battery power by eliminating duplicative network downloads and the associated
processing.

In Chapter 11 you are introduced to more powerful APIs for scheduling background network opera-
tions, which take into account timing and device state to improve the efficiency of your network
transfers.

Connecting, Downloading, and Parsing Internet Resources ❘ 219

Parsing XML Using the XML Pull Parser
Although detailed instructions for parsing XML and interacting with specific web services are out-
side the scope of this book, it’s important to understand the available technologies.

This section provides a brief overview of the XML Pull Parser, and the following sections demon-
strate the use of the DOM parser and JSON Reader to retrieve earthquake details from the United
States Geological Survey (USGS).

The XML Pull Parser API is available from the following libraries:

org.xmlpull.v1.XmlPullParser;
org.xmlpull.v1.XmlPullParserException;
org.xmlpull.v1.XmlPullParserFactory;

It enables you to parse an XML document in a single pass. Unlike the DOM parser, the Pull Parser
presents the elements of your document in a sequential series of events and tags.

Your location within the document is represented by the current event. You can determine the cur-
rent event by calling getEventType. Each document begins at the START_DOCUMENT event and ends
at END_DOCUMENT.

To proceed through the tags, simply call next, which causes you to progress through a series of
matched (and often nested) START_TAG and END_TAG events. You can extract the name of each tag by
calling getName and extract the text between each set of tags using getNextText.

Listing 7-4 demonstrates how to use the XML Pull Parser to extract details from the points of inter-
est list returned by the Google Places API.

LISTING 7-4: Parsing XML using the XML Pull Parser

private void processStream(InputStream inputStream) {
 // Create a new XML Pull Parser.
 XmlPullParserFactory factory;
 try {
 factory = XmlPullParserFactory.newInstance();
 factory.setNamespaceAware(true);
 XmlPullParser xpp = factory.newPullParser();

 // Assign a new input stream.
 xpp.setInput(inputStream, null);
 int eventType = xpp.getEventType();

 // Allocate a variable for extracted name tags.
 String name;

 // Continue until the end of the document is reached.
 while (eventType != XmlPullParser.END_DOCUMENT) {
 // Check for a start tag of the results tag.
 if (eventType == XmlPullParser.START_TAG &&
 xpp.getName().equals("result")) {
 eventType = xpp.next();
 // Process each result within the result tag.

220 ❘ CHAPTER 7 Using internet resoUrces

 while (!(eventType == XmlPullParser.END_TAG &&
 xpp.getName().equals("result"))) {
 // Check for the name tag within the results tag.
 if (eventType == XmlPullParser.START_TAG &&
 xpp.getName().equals("name")) {
 // Extract the POI name.
 name = xpp.nextText();
 doSomethingWithName(name);
 }
 // Move on to the next tag.
 eventType = xpp.next();
 }
 // Do something with each POI name.
 }
 // Move on to the next result tag.
 eventType = xpp.next();
 }
 } catch (XmlPullParserException e) {
 Log.e("PULLPARSER", "XML Pull Parser Exception", e);
 } catch (IOException e) {
 Log.e("PULLPARSER", "IO Exception", e);
 }
}

Connecting the Earthquake Viewer to the Internet
In this example you extend the Earthquake Viewer you began in Chapter 3 and improved in
Chapter 5. You’ll replace the dummy Array List of Earthquakes with a real list, by connecting to an
earthquake feed, downloading, and parsing it so it can be displayed in your List Fragment.

The earthquake feed XML is parsed here by the DOM parser. Several alternatives exist, including
the XML Pull Parser described in the previous section. Alternatively, you could parse the JSON feed
using the JsonReader class, as shown in the following section

 1. For this example, the feed used is the one-day USGS Atom feed for earthquakes with a mag-
nitude greater than 2.5 on the Richter scale. Add the location of your feed as an external
string resource within the Strings.xml resource file in the res/values folder. This lets you
potentially specify a different feed based on a user’s locale:

<resources>
 <string name="app_name">Earthquake</string>
 <string name="earthquake_feed">
 https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_day.atom
 </string>
</resources>

 2. Before you can access this feed, your application needs to request permission for Internet
access. Add the Internet uses-permission to the top of your manifest file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.professionalandroid.apps.earthquake">

LISTING 7-4 (continued)

Connecting, Downloading, and Parsing Internet Resources ❘ 221

 <uses-permission android:name="android.permission.INTERNET"/>

 [... Application Node ...]

</manifest>

 3. Our Internet access must happen on a background thread, and the results should persist on
device configuration changes. Use a View Model and Live Data for this. Start by adding a
dependency to the Android Architecture Components lifecycle extensions to your app mod-
ule Gradle build file:

dependencies {
 [... Existing dependencies nodes ...]
 implementation "android.arch.lifecycle:extensions:1.1.1"
}

 4. Create a new EarthquakeViewModel that extends AndroidViewModel and includes a
MutableLiveData variable that represents a List of Earthquakes. This View Model will be
cached and maintained across configuration changes. Create a getEarthquakes method that
will check if our Earthquake List Live Data has been populated already, and if not, will load
the Earthquakes from the feed:

public class EarthquakeViewModel extends AndroidViewModel {
 private static final String TAG = "EarthquakeUpdate";

 private MutableLiveData<List<Earthquake>> earthquakes;

 public EarthquakeViewModel(Application application) {
 super(application);
 }

 public LiveData<List<Earthquake>> getEarthquakes() {
 if (earthquakes == null) {
 earthquakes = new MutableLiveData<List<Earthquake>>();
 loadEarthquakes();
 }
 return earthquakes;
 }

 // Asynchronously load the Earthquakes from the feed.
 public void loadEarthquakes() {
 }
}

 5. Update the loadEarthquakes method to download and parse the earthquake feed. This
must be done on a background thread, so implement an AyncTask to simplify this process. In
the background, extract each earthquake and parse the details to obtain the ID, date, magni-
tude, link, and location. Once the feed has been parsed, update the onPostExecute handler
to set the value of the Mutable Live Data that represents our List of Earthquakes. This will
alert any registered Observers, passing them the updated list:

public void loadEarthquakes() {
 new AsyncTask<Void, Void, List<Earthquake>>() {
 @Override

222 ❘ CHAPTER 7 Using internet resoUrces

 protected List<Earthquake> doInBackground(Void... voids) {
 // Result ArrayList of parsed earthquakes.
 ArrayList<Earthquake> earthquakes = new ArrayList<>(0);

 // Get the XML
 URL url;
 try {
 String quakeFeed =
 getApplication().getString(R.string.earthquake_feed);
 url = new URL(quakeFeed);

 URLConnection connection;
 connection = url.openConnection();

 HttpURLConnection httpConnection = (HttpURLConnection)connection;
 int responseCode = httpConnection.getResponseCode();

 if (responseCode == HttpURLConnection.HTTP_OK) {
 InputStream in = httpConnection.getInputStream();

 DocumentBuilderFactory dbf =
 DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();

 // Parse the earthquake feed.
 Document dom = db.parse(in);
 Element docEle = dom.getDocumentElement();

 // Get a list of each earthquake entry.
 NodeList nl = docEle.getElementsByTagName("entry");
 if (nl != null && nl.getLength() > 0) {
 for (int i = 0 ; i < nl.getLength(); i++) {
 // Check to see if our loading has been cancelled, in which
 // case return what we have so far.
 if (isCancelled()) {
 Log.d(TAG, "Loading Cancelled");
 return earthquakes;
 }
 Element entry =
 (Element)nl.item(i);
 Element id =
 (Element)entry.getElementsByTagName("id").item(0);
 Element title =
 (Element)entry.getElementsByTagName("title").item(0);
 Element g =
 (Element)entry.getElementsByTagName("georss:point")
 .item(0);
 Element when =
 (Element)entry.getElementsByTagName("updated").item(0);
 Element link =
 (Element)entry.getElementsByTagName("link").item(0);

 String idString = id.getFirstChild().getNodeValue();
 String details = title.getFirstChild().getNodeValue();
 String hostname = "http://earthquake.usgs.gov";
 String linkString = hostname + link.getAttribute("href");

Connecting, Downloading, and Parsing Internet Resources ❘ 223

 String point = g.getFirstChild().getNodeValue();
 String dt = when.getFirstChild().getNodeValue();
 SimpleDateFormat sdf =
 new SimpleDateFormat("yyyy-MM-dd'T'hh:mm:ss.SSS'Z'");
 Date qdate = new GregorianCalendar(0,0,0).getTime();
 try {
 qdate = sdf.parse(dt);
 } catch (ParseException e) {
 Log.e(TAG, "Date parsing exception.", e);
 }

 String[] location = point.split(" ");
 Location l = new Location("dummyGPS");
 l.setLatitude(Double.parseDouble(location[0]));
 l.setLongitude(Double.parseDouble(location[1]));

 String magnitudeString = details.split(" ")[1];
 int end = magnitudeString.length()-1;
 double magnitude =
 Double.parseDouble(magnitudeString.substring(0, end));

 if (details.contains("-"))
 details = details.split("-")[1].trim();
 else
 details = "";

 final Earthquake earthquake = new Earthquake(idString,
 qdate,
 details, l,
 magnitude,
 linkString);

 // Add the new earthquake to our result array.
 earthquakes.add(earthquake);
 }
 }
 }
 httpConnection.disconnect();
 } catch (MalformedURLException e) {
 Log.e(TAG, "MalformedURLException", e);
 } catch (IOException e) {
 Log.e(TAG, "IOException", e);
 } catch (ParserConfigurationException e) {
 Log.e(TAG, "Parser Configuration Exception", e);
 } catch (SAXException e) {
 Log.e(TAG, "SAX Exception", e);
 }
 // Return our result array.
 return earthquakes;
 }

224 ❘ CHAPTER 7 Using internet resoUrces

 @Override
 protected void onPostExecute(List<Earthquake> data) {
 // Update the Live Data with the new list.
 earthquakes.setValue(data);
 }
 }.execute();
}

 6. Update your Earthquake Main Activity to remove the dummy data and update the
Earthquake List Fragment to use your new EarthquakeViewModel.

 6.1. Start by updating the Activity’s onCreate handler, removing the dummy data

EarthquakeViewModel earthquakeViewModel;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_earthquake_main);

 FragmentManager fm = getSupportFragmentManager();

 // Android will automatically re-add any Fragments that
 // have previously been added after a configuration change,
 // so only add it if this is an automatic restart.
 if (savedInstanceState == null) {
 FragmentTransaction ft = fm.beginTransaction();
 mEarthquakeListFragment = new EarthquakeListFragment();
 ft.add(R.id.main_activity_frame, mEarthquakeListFragment,
 TAG_LIST_FRAGMENT);
 ft.commitNow();
 } else {
 mEarthquakeListFragment =
 (EarthquakeListFragment)fm.findFragmentByTag(TAG_LIST_FRAGMENT);
 }

 // Retrieve the Earthquake View Model for this Activity.
 earthquakeViewModel = ViewModelProviders.of(this)
 .get(EarthquakeViewModel.class);
}

 6.2. Within the Earthquake List Fragment, update the onActivityCreated handler. Using
the View Model Provider’s static of method to retrieve the current instance of your
Earthquake View Model. Add an Observer to the Live Data returned from your View
Model—it will set the Earthquake List Fragment Earthquake List when your Activity is
created, and again whenever the list of parsed Earthquakes is updated:

protected EarthquakeViewModel earthquakeViewModel;

@Override
public void onActivityCreated(@Nullable Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 // Retrieve the Earthquake View Model for the parent Activity.
 earthquakeViewModel = ViewModelProviders.of(getActivity())
 .get(EarthquakeViewModel.class);

Connecting, Downloading, and Parsing Internet Resources ❘ 225

 // Get the data from the View Model, and observe any changes.
 earthquakeViewModel.getEarthquakes()
 .observe(this, new Observer<List<Earthquake>>() {
 @Override
 public void onChanged(@Nullable List<Earthquake> earthquakes) {
 // When the View Model changes, update the List
 if (earthquakes != null)
 setEarthquakes(earthquakes);
 }
 });
}

 7. When you run your project, you should see a Recycler View that features the earthquakes
from the last 24 hours with a magnitude greater than 2.5 (Figure 7-1).

FIGURE 7-1

 8. The earthquake data is cached by the View Model, so it will persist across device configuration
changes, and only refresh when the app is restarted. Let’s update the app to let users refresh the
earthquake list using the swipe-to-refresh pattern. Update the fragment_earthquake_list
.xml layout resource to include a SwipeRefreshLayout as the parent of the RecyclerView:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.widget.SwipeRefreshLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/swiperefresh"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <android.support.v7.widget.RecyclerView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/list"
 android:layout_width="match_parent"

226 ❘ CHAPTER 7 Using internet resoUrces

 android:layout_height="match_parent"
 android:layout_marginLeft="16dp"
 android:layout_marginRight="16dp"
 app:layoutManager="LinearLayoutManager"
 />
</android.support.v4.widget.SwipeRefreshLayout>

 9. Update onCreateView within the Earthquake List Fragment to get a reference to the Swipe
Refresh Layout added in Step 8, and update onViewCreated to assign a refresh listener to
the Swipe Refresh Layout that calls a new updateEarthquakes method when the swipe to
refresh action is made:

private SwipeRefreshLayout mSwipeToRefreshView;

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View view = inflater.inflate(R.layout.fragment_earthquake_list,
 container, false);

 mRecyclerView = (RecyclerView) view.findViewById(R.id.list);
 mSwipeToRefreshView = view.findViewById(R.id.swiperefresh);
 return view;
}

@Override
public void onViewCreated(View view, Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 // Set the Recycler View adapter
 Context context = view.getContext();
 mRecyclerView.setLayoutManager(new LinearLayoutManager(context));
 mRecyclerView.setAdapter(mEarthquakeAdapter);

 // Setup the Swipe to Refresh view
 mSwipeToRefreshView.setOnRefreshListener(new
 SwipeRefreshLayout.OnRefreshListener() {
 @Override
 public void onRefresh() {
 updateEarthquakes();
 }
 });
}

protected void updateEarthquakes() {
}

 10. Update the setEarthquakes method to disable the “refreshing” visual indicator when an
update has been received:

public void setEarthquakes(List<Earthquake> earthquakes) {
 mEarthquakes.clear();
 mEarthquakeAdapter.notifyDataSetChanged();
 for (Earthquake earthquake: earthquakes) {
 if (!mEarthquakes.contains(earthquake)) {
 mEarthquakes.add(earthquake);
 mEarthquakeAdapter.notifyItemInserted(

Connecting, Downloading, and Parsing Internet Resources ❘ 227

 mEarthquakes.indexOf(earthquake));
 }
 }
 mSwipeToRefreshView.setRefreshing(false);
}

 11. The update itself will be performed by the Earthquake View Model, which we communicate with
through the parent Activity. Define a new OnListFragmentInteractionListener within the
Earthquake List Fragment; it should include an onListFragmentRefreshRequested method
that’s called when we request a refresh via the updateEarthquakes method added in Step 9:

public interface OnListFragmentInteractionListener {
 void onListFragmentRefreshRequested();
}

private OnListFragmentInteractionListener mListener;

@Override
public void onAttach(Context context) {
 super.onAttach(context);
 mListener = (OnListFragmentInteractionListener) context;
}

@Override
public void onDetach() {
 super.onDetach();
 mListener = null;
}

protected void updateEarthquakes() {
 if (mListener != null)
 mListener.onListFragmentRefreshRequested();
}

 12. Return to the Earthquake Main Activity and have it implement the Interface defined in
Step 11, and use the Earthquake View Model to force a refresh when requested:

public class EarthquakeMainActivity extends AppCompatActivity implements
 EarthquakeListFragment.OnListFragmentInteractionListener {

 @Override
 public void onListFragmentRefreshRequested() {
 updateEarthquakes();
 }

 private void updateEarthquakes() {
 // Request the View Model update the earthquakes from the USGS feed.
 earthquakeViewModel.loadEarthquakes();
 }

 [... Existing Class Definition ...]
}

 13. You should also add a refresh action as a menu item or on your app’s action bar to support
users who may not be able to perform a swipe gesture (for example, users with accessibility
issues can trigger action bar actions using external devices, such as keyboards and D-pads).
We show how to do this in Chapter 13, “Implementing a Modern Android User Experience.”

228 ❘ CHAPTER 7 Using internet resoUrces

Parsing JSON Using the JSON Parser
This section provides a brief overview of the JsonParser, demonstrating how it can be used to
parse earthquake details from the JSON feed from the United States Geological Survey (USGS)
found at earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_day.geojson.

As with XML parsing in the earlier sections, detailed instructions for parsing JSON are outside the
scope of this book; however, with many APIs now providing JSON feeds it’s important to introduce
the concepts.

Like the pull parser, the JSON Parser enables you to parse a document in a single pass, presenting
the elements of your document in a sequential series of objects, arrays, and values.

To create a recursive parser, you must first create an entry point method that takes an Input Stream
and creates a new JSON Reader:

private List<Earthquake> parseJson(InputStream in) throws IOException {

 // Create a new Json Reader to parse the input.
 JsonReader reader =
 new JsonReader(new InputStreamReader(in, "UTF-8"));
 // TODO: Parse the InputStream
}

Data within each JSON feed are stored as names and values, structured using objects and arrays.
JSON objects are used similarly to code objects—grouping together values that are semantically
related. JSON also supports arrays to group multiple values or objects together.

For example, the USGS feed contains a type value, and metadata and bounding box objects at the
root level, as well as an array of multiple feature objects representing each earthquake. Each feature
object then contains values for type and ID, and objects to group earthquake properties and geom-
etry details. The geometry object in turn includes a value for the geometry type, and an array of val-
ues representing the latitude, longitude, and depth of each earthquake. This structure is illustrated
in part in Figure 7-2.

To parse these structures, create handler methods that will parse each object, and array, within the
JSON text.

For the object structure handler methods, begin by calling your JSON Reader object’s beginObject
method to consume the opening brace. Then use the hasNext method to control a while loop within
which you can extract values, or further objects (or arrays). Use the endObject method to read the
object’s closing brace when the object has been fully read:

private MyObject readMyObject(JsonReader reader) throws IOException {
 // Create variables for the return values.
 String myValue = null;

 // Consume the opening brace.
 reader.beginObject();

 // Traverse the values, objects, and arrays within this object.
 while (reader.hasNext()) {
 // Find the next name.
 String name = reader.nextName();

Connecting, Downloading, and Parsing Internet Resources ❘ 229

 // Extract each of the values based on name matches.
 if (name.equals("my_value")) {
 myValue = reader.nextString();

 // Skip any unexpected (or purposefully ignored) values.
 } else {
 reader.skipValue();
 }
 }

 // Consume closing brace.
 reader.endObject();

 // Return parsed object.
 return new MyObject(myValue);
}

Earthquake JSON Feed

Type

Type

Type

Coordinates

ID

Properties

Geometry

...

...

mag
place
time
url
...

Metadata

Features

[Value]

generated
url

title
ap

count
status

[Value]
[Value]
[Value]
[Value]
[Value]
[Value]

[Value]

[Value]

[Value]
[Value]
[Value]
[Value]

...

[Value]

[Value] [Value] [Value]

Type

Type

Coordinates

ID

Properties

Geometry

mag
place
time
url
...

[Value]

[Value]

[Value]
[Value]
[Value]
[Value]

...

[Value]

[Value] [Value] [Value]

FIGURE 7-2

Arrays are handled similarly, using the beginArray and endArray methods to consume the opening
and closing brackets respectively. The values within an array are homogenous, allowing you to sim-
ply add each value to a list:

public List<Double> readDoublesArray(JsonReader reader)
 throws IOException {

230 ❘ CHAPTER 7 Using internet resoUrces

 List<Double> doubles = new ArrayList<Double>();

 reader.beginArray();

 while (reader.hasNext()) {
 doubles.add(reader.nextDouble());
 }

 reader.endArray();
 return doubles;
}

As you traverse each object or array, if a nested object or array is found, simply pass the JSON
Reader object to the corresponding parsing method.

If an unknown name is encountered, you can choose to call skipValue to recursively skip the val-
ue’s nested tokens

Listing 7-5 demonstrates how to use the JSON Parser to extract details from the JSON feed of mag-
nitude 2.5+ earthquake over the past day supplied by the USGS.

LISTING 7-5: Parsing JSON using the JSON Parser

private List<Earthquake> parseJson(InputStream in) throws IOException {

 // Create a new Json Reader to parse the input.
 JsonReader reader =
 new JsonReader(new InputStreamReader(in, "UTF-8"));

 try {
 // Create an empty list of earthquakes.
 List<Earthquake> earthquakes = null;

 // The root node of the Earthquake JSON feed is an object that
 // we must parse.
 reader.beginObject();
 while (reader.hasNext()) {
 String name = reader.nextName();
 // We are only interested in one sub-object: the array of
 // earthquakes labeled as features.
 if (name.equals("features")) {
 earthquakes = readEarthquakeArray(reader);
 } else {
 // We will ignore all other root level values and objects.
 reader.skipValue();
 }
 }
 reader.endObject();

 return earthquakes;

 } finally {

Connecting, Downloading, and Parsing Internet Resources ❘ 231

 reader.close();
 }
}

// Traverse the array of earthquakes.
private List<Earthquake> readEarthquakeArray(JsonReader reader)
 throws IOException {

 List<Earthquake> earthquakes = new ArrayList<Earthquake>();

 // The earthquake details are stored in an array.
 reader.beginArray();
 while (reader.hasNext()) {
 // Traverse the array, parsing each earthquake.
 earthquakes.add(readEarthquake(reader));
 }
 reader.endArray();

 return earthquakes;
}

// Parse each earthquake object within the earthquake array.
public Earthquake readEarthquake(JsonReader reader) throws IOException {
 String id = null;
 Location location = null;
 Earthquake earthquakeProperties = null;

 reader.beginObject();
 while (reader.hasNext()) {
 String name = reader.nextName();
 if (name.equals("id")) {
 // The ID is stored as a value.
 id = reader.nextString();
 } else if (name.equals("geometry")) {
 // The location is stored as a geometry object
 // that must be parsed.
 location = readLocation(reader);
 } else if (name.equals("properties")) {
 // Most of the earthquake details are stored as a
 // properties object that must be parsed.
 earthquakeProperties = readEarthquakeProperties(reader);
 } else {
 reader.skipValue();
 }
 }
 reader.endObject();

 // Construct a new Earthquake based on the parsed details.
 return new Earthquake(id,
 earthquakeProperties.getDate(),
 earthquakeProperties.getDetails(),
 location,
 earthquakeProperties.getMagnitude(),
 earthquakeProperties.getLink());
}

232 ❘ CHAPTER 7 Using internet resoUrces

// Parse the properties object for each earthquake object
// within the earthquake array.
public Earthquake readEarthquakeProperties(JsonReader reader) throws IOException {
 Date date = null;
 String details = null;
 double magnitude = -1;
 String link = null;

 reader.beginObject();
 while (reader.hasNext()) {
 String name = reader.nextName();
 if (name.equals("time")) {
 long time = reader.nextLong();
 date = new Date(time);
 } else if (name.equals("place")) {
 details = reader.nextString();
 } else if (name.equals("url")) {
 link = reader.nextString();
 } else if (name.equals("mag")) {
 magnitude = reader.nextDouble();
 } else {
 reader.skipValue();
 }
 }
 reader.endObject();
 return new Earthquake(null, date, details, null, magnitude, link);
}

// Parse the coordinates object to obtain a location.
private Location readLocation(JsonReader reader) throws IOException {
 Location location = null;

 reader.beginObject();
 while (reader.hasNext()) {
 String name = reader.nextName();
 if (name.equals("coordinates")) {
 // The location coordinates are stored within an
 // array of doubles.
 List<Double> coords = readDoublesArray(reader);
 location = new Location("dummy");
 location.setLatitude(coords.get(0));
 location.setLongitude(coords.get(1));
 } else {
 reader.skipValue();
 }
 }
 reader.endObject();
 return location;
}

// Parse an array of doubles.
public List<Double> readDoublesArray(JsonReader reader) throws IOException {
 List<Double> doubles = new ArrayList<Double>();

LISTING 7-5 (continued)

Using the Download Manager ❘ 233

 reader.beginArray();
 while (reader.hasNext()) {
 doubles.add(reader.nextDouble());
 }
 reader.endArray();
 return doubles;
}

USING THE DOWNLOAD MANAGER

The Download Manager is a Service designed to optimize the handling of long-running downloads,
by managing the HTTP connection and monitoring connectivity changes and system reboots to
ensure each download completes successfully.

Downloads managed by the Download Manager are stored in a globally accessible location, so it’s
unsuitable for privacy-sensitive downloads.

It’s good practice to use the Download Manager when a download is large—and therefore likely to
continue in the background between user sessions, when successful completion is important, and
when the file being downloaded will be shared with other applications (such as an image or PDF).

NOTE By default, files downloaded by the Download Manager are stored in the
shared download cache directory (Environment.getDownloadCacheDirectory),
meaning that they will be available to other apps, and deleted by the system if
it requires space. Similarly, they will be managed through the Download app,
meaning your downloads could be deleted manually by users. You can change
these defaults as described later in this section.

To access the Download Manager, request the DOWNLOAD_SERVICE using the getSystemService
method:

DownloadManager downloadManager =
 (DownloadManager)getSystemService(Context.DOWNLOAD_SERVICE);

As the Download Manager uses the Internet, your app will need to request the INTERNET permission
within its manifest in order to use the Download Manager:

<uses-permission android:name="android.permission.INTERNET"/>

Downloading Files
To request a download, create a new DownloadManager.Request, specifying the URI of the file to
download and passing it in to the Download Manager’s enqueue method, as shown in Listing 7-6.

LISTING 7-6: Downloading files using the Download Manager

DownloadManager downloadManager =
 (DownloadManager)getSystemService(Context.DOWNLOAD_SERVICE);

234 ❘ CHAPTER 7 Using internet resoUrces

Uri uri = Uri.parse(
 "http://developer.android.com/shareables/icon_templates-v4.0.zip");

DownloadManager.Request request = new DownloadManager.Request(uri);
long reference = downloadManager.enqueue(request);

You can use the returned reference value to perform future actions or query the download, including
checking its status or canceling it.

You can add an HTTP header to your request, or override the mime type returned by the server, by
calling addRequestHeader and setMimeType, respectively, on your Request object.

You can also specify the connectivity conditions under which to execute the download. The
setAllowedNetworkTypes method enables you to restrict downloads to either Wi-Fi or mobile net-
works. The setAllowedOverRoaming and setAllowedOverMetered methods allow you to prevent
downloads while the phone is roaming or over a metered (paid) connection.

The following snippet shows how to ensure a large file is downloaded only when connected to
Wi-Fi:

request.setAllowedNetworkTypes(Request.NETWORK_WIFI);

After calling enqueue, the download begins as soon as suitable connectivity is available, and the
Download Manager is free.

NOTE Android Virtual Devices don’t include virtualized Wi-Fi hardware,
so downloads restricted to Wi-Fi only will be enqueued but never commence
downloading.

By default, ongoing and completed downloads are indicated as Notifications. You should create a
Broadcast Receiver that listens for the ACTION_NOTIFICATION_CLICKED action, which will be broad-
cast whenever a user selects a download from the Notification tray or the Downloads app. It will
include an EXTRA_NOTIFICATION_CLICK_DOWNLOAD_IDS extra that contains the reference ID of the
download that was selected.

When the download is complete, the Download Manager will broadcast the ACTION_DOWNLOAD_
COMPLETE action, with an EXTRA_DOWNLOAD_ID extra indicating the reference ID of the completed
file download, as shown in Listing 7-7.

LISTING 7-7: Implementing a Broadcast Receiver for handling Download Manager
broadcasts

public class DownloadsReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 String extraNotificationFileIds =
 DownloadManager.EXTRA_NOTIFICATION_CLICK_DOWNLOAD_IDS;

LISTING 7-6 (continued)

Using the Download Manager ❘ 235

 String extraFileId = DownloadManager.EXTRA_DOWNLOAD_ID;
 String action = intent.getAction();

 if (DownloadManager.ACTION_DOWNLOAD_COMPLETE.equals(action)) {
 long reference = intent.getLongExtra(extraFileId,-1);
 if (myDownloadReference == reference) {
 // Do something with downloaded file.
 }
 }
 else if (DownloadManager.ACTION_NOTIFICATION_CLICKED.equals(action)) {
 long[] references = intent.getLongArrayExtra(extraNotificationFileIds);
 for (long reference : references)
 if (myDownloadReference == reference) {
 // Respond to user selecting your file download notification.
 }
 }
 }
}

The Download Manager will continue downloading your files between user sessions of your app, as
well as phone reboots. As a result, it’s important for you to store the download reference numbers to
ensure your app remembers them.

For the same reason you should register your Broadcast Receivers for Notification clicks and down-
load completions within the manifest, as shown in Listing 7-8, because there is no guarantee your
app will be running when a user selects a download notification, or the download is completed.

LISTING 7-8: Registering a Broadcast Receiver for Download Manager broadcasts

<receiver
 android:name="com.professionalandroid.apps.MyApp.DownloadsReceiver">
 <intent-filter>
 <action
 android:name="android.intent.action.DOWNLOAD_NOTIFICATION_CLICKED" />
 <action
 android:name="android.intent.action.DOWNLOAD_COMPLETE" />
 </intent-filter>
</receiver>

Once the download has completed, you can use Download Manager’s openDownloadedFile
method to receive a Parcel File Descriptor to your file, or use the ID to query the Download
Manager and obtain metadata details.

You learn more about file handling in Chapter 8, “Saving State, User Preferences, and Using and
Sharing Files.”

Customizing Download Manager Notifications
By default, ongoing Notifications will be displayed for each file while it’s being downloaded by the
Download Manager. Each Notification will show the current download progress and the filename
(Figure 7-3).

236 ❘ CHAPTER 7 Using internet resoUrces

The Download Manager enables you to customize the Notification displayed for each download
request, including hiding it completely. The following snippet shows how to use the setTitle
and setDescription methods to customize the text displayed in the file download Notification.
Figure 7-4 shows the result.

request.setTitle("Hive Husks");
request.setDescription("Downloading Splines for Reticulation");

FIGURE 7-3

The setNotificationVisibility method lets you control when, and if, a Notification should be
displayed for your download using one of the following flags:

 ➤ Request.VISIBILITY_VISIBLE—An ongoing Notification will be visible for the duration
that the download is in progress. It will be removed when the download is complete. This is
the default option.

 ➤ Request.VISIBILITY_VISIBLE_NOTIFY_COMPLETED—An ongoing Notification will be dis-
played during the download and will continue to be displayed once the download has com-
pleted, until it is selected or dismissed.

 ➤ Request.VISIBILITY_VISIBLE_NOTIFY_ONLY_COMPLETION—Useable only when using
addCompletedDownload to add an already downloaded file to the downloads database sys-
tem. When selected, a notification will be displayed after the file has been added.

 ➤ Request.VISIBILITY_HIDDEN—No Notification will be displayed for this download. In
order to set this flag, your application must have the DOWNLOAD_WITHOUT_NOTIFICATION
permission specified in its manifest:

<uses-permission
 android:name="android.permission.DOWNLOAD_WITHOUT_NOTIFICATION"/>

FIGURE 7-4

Using the Download Manager ❘ 237

NOTE You learn more about creating your own custom Notifications in
Chapter 11.

Specifying a Download Location
By default, all Download Manager downloads are saved to the shared download cache using system-
generated filenames, where they may be deleted automatically by the system, or manually by users.

Alternatively, a download Request can indicate a URI to a specific download location. In that case,
the location must be on external storage, and accordingly your app must have the WRITE_EXTERNAL_
STORAGE permission defined in its manifest:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

The following code snippet shows how to specify an arbitrary path on external storage:

request.setDestinationUri(Uri.fromFile(f));

If the downloaded file is specific to your application, you may want to place it in your application’s
external storage folder. Note that access control is not applied to this folder, and other applications
will be able to access it. If your application is uninstalled, files stored in these folders will also be
removed.

The following snippet specifies storing a file in your application’s external downloads folder:

request.setDestinationInExternalFilesDir(this,
 Environment.DIRECTORY_DOWNLOADS, "bugdroid.png");

For files that can or should be shared with other applications—particularly those you want to scan
with the Media Scanner—you can specify a location within the public folder on the external stor-
age. The following snippet requests a file be stored in the public music folder:

request.setDestinationInExternalPublicDir(Environment.DIRECTORY_MUSIC,
 "android_anthem.mp3");

NOTE See Chapter 8 for more details about external storage and the static
Environment variables you can use to indicate folders within it.

It’s important to note that by default, files downloaded by the Download Manager are not scanned
by Media Scanner, so they might not appear in apps such as photo galleries and music players.

To make downloaded files scannable, call allowScanningByMediaScanner on the Request object
before it is enqueued by the Download Manager:

request.allowScanningByMediaScanner();

By default, your files will be visible and manageable by the system’s Downloads app. If you’d prefer
they not be, you can call setVisibleInDownloadsUi, passing in false:

request.setVisibleInDownloadsUi(false);

238 ❘ CHAPTER 7 Using internet resoUrces

Canceling and Removing Downloads
The Download Manager’s remove method lets you cancel a pending download, abort a download in
progress, or delete a completed download.

As shown in the following code snippet, the remove method accepts download IDs as optional argu-
ments, enabling you to specify one or many downloads to cancel:

downloadManager.remove(fileRef1, fileRef2, fileRef3);

It returns the number of downloads successfully canceled. If a download is canceled, all associated
files—both partial and complete—are removed.

Querying the Download Manager
You can query the Download Manager to find the status, progress, and details of your download
requests by using the query method, which returns a Cursor to the list of downloads.

NOTE The Cursor class represents a data construct used by Android to return
data, typically stored in a Content Provider or SQLite database. You learn
more about Content Providers, Cursors, and how to find data stored in them in
Chapter 10, “Content Providers and Search.”

The query method takes a DownloadManager.Query object as a parameter. Use the setFilterById
method on a Query object to specify a sequence of download reference IDs, or use the setFilter-
ByStatus method to filter on a download status using one of the DownloadManager.STATUS_* con-
stants to specify running, paused, failed, or successful downloads.

The Download Manager includes a number of COLUMN_ static String constants that you can use to
query the result Cursor. You can find details for each download, including the status, files size, bytes
downloaded so far, title, description, URI, media type, and Media Provider download URI.

In addition, the Download Manager includes the getUriForDownloadedFile and openDownloaded-
File methods. Listing 7-9 expands on Listing 7-7 to demonstrate how to find the Uri, or Parcel File
Descriptor of completed downloads from within a Broadcast Receiver registered to listen for down-
load completions.

LISTING 7-9: Finding details of completed downloads

@Override
public void onReceive(Context context, Intent intent) {

 DownloadManager downloadManager =
 (DownloadManager)getSystemService(Context.DOWNLOAD_SERVICE);

 String extraNotificationFileIds =
 DownloadManager.EXTRA_NOTIFICATION_CLICK_DOWNLOAD_IDS;
 String extraFileId = DownloadManager.EXTRA_DOWNLOAD_ID;
 String action = intent.getAction();

Using the Download Manager ❘ 239

 if (DownloadManager.ACTION_DOWNLOAD_COMPLETE.equals(action)) {
 long reference = intent.getLongExtra(extraFileId,-1);
 if (myDownloadReference == reference) {
 DownloadManager.Query myDownloadQuery = new DownloadManager.Query();
 myDownloadQuery.setFilterById(reference);

 Cursor myDownload = downloadManager.query(myDownloadQuery);
 if (myDownload.moveToFirst()) {
 int fileIdIdx =
 myDownload.getColumnIndex(DownloadManager.COLUMN_ID);

 long fileId = myDownload.getLong(fileIdIdx);

 Uri fileUri = downloadManager.getUriForDownloadedFile(fileId);
 // Do something with downloaded file.
 }
 myDownload.close();
 }
 }
 else if (DownloadManager.ACTION_NOTIFICATION_CLICKED.equals(action)) {
 long[] references = intent.getLongArrayExtra(extraNotificationFileIds);
 for (long reference : references)
 if (myDownloadReference == reference) {
 // Respond to user selecting your file download notification.
 try {
 ParcelFileDescriptor fileDescriptor =
 downloadManager.openDownloadedFile(reference);
 } catch (FileNotFoundException e) {
 Log.e(TAG, "Downloaded file open error.", e);
 }
 }
 }
}

For downloads that are either paused or have failed, you can query the COLUMN_REASON column to
find the cause represented as an integer.

In the case of STATUS_PAUSED downloads, you can interpret the reason code by using one of the
DownloadManager.PAUSED_ static constants to determine if the download has been paused while
waiting for network connectivity, a Wi-Fi connection, or pending a retry.

For STATUS_FAILED downloads, you can determine the cause of failure using the
DownloadManager.ERROR_ codes. Possible error codes include lack of a storage device, insufficient
free space, duplicate filenames, or HTTP errors.

Listing 7-10 shows how to find a list of the currently paused downloads, extracting the reason the
download was paused, the filename, its title, and the current progress.

LISTING 7-10: Finding details of paused downloads

// Obtain the Download Manager Service.
String serviceString = Context.DOWNLOAD_SERVICE;
DownloadManager downloadManager;

240 ❘ CHAPTER 7 Using internet resoUrces

downloadManager = (DownloadManager)getSystemService(serviceString);

// Create a query for paused downloads.
DownloadManager.Query pausedDownloadQuery = new DownloadManager.Query();
pausedDownloadQuery.setFilterByStatus(DownloadManager.STATUS_PAUSED);

// Query the Download Manager for paused downloads.
Cursor pausedDownloads = downloadManager.query(pausedDownloadQuery);

// Find the column indexes for the data we require.
int reasonIdx = pausedDownloads.getColumnIndex(DownloadManager.COLUMN_REASON);
int titleIdx = pausedDownloads.getColumnIndex(DownloadManager.COLUMN_TITLE);
int fileSizeIdx = pausedDownloads.getColumnIndex(
 DownloadManager.COLUMN_TOTAL_SIZE_BYTES);
int bytesDLIdx = pausedDownloads.getColumnIndex(
 DownloadManager.COLUMN_BYTES_DOWNLOADED_SO_FAR);

// Iterate over the result Cursor.
while (pausedDownloads.moveToNext()) {
 // Extract the data we require from the Cursor.
 String title = pausedDownloads.getString(titleIdx);
 int fileSize = pausedDownloads.getInt(fileSizeIdx);
 int bytesDL = pausedDownloads.getInt(bytesDLIdx);

 // Translate the pause reason to friendly text.
 int reason = pausedDownloads.getInt(reasonIdx);
 String reasonString = "Unknown";
 switch (reason) {
 case DownloadManager.PAUSED_QUEUED_FOR_WIFI :
 reasonString = "Waiting for WiFi."; break;
 case DownloadManager.PAUSED_WAITING_FOR_NETWORK :
 reasonString = "Waiting for connectivity."; break;
 case DownloadManager.PAUSED_WAITING_TO_RETRY :
 reasonString = "Waiting to retry."; break;
 default : break;
 }

 // Construct a status summary
 StringBuilder sb = new StringBuilder();
 sb.append(title).append("\n");
 sb.append(reasonString).append("\n");
 sb.append("Downloaded ").append(bytesDL).append(" / ").append(fileSize);

 // Display the status
 Log.d("DOWNLOAD", sb.toString());
}

// Close the result Cursor.
pausedDownloads.close();

LISTING 7-10 (continued)

Best Practices for Downloading Data Without Draining the Battery ❘ 241

BEST PRACTICES FOR DOWNLOADING DATA WITHOUT
DRAINING THE BATTERY

Using the wireless radios to transfer data is a significant cause of battery drain. The mobile and
Wi-Fi radios use a lot of power, not only transferring data, but powering up and maintaining net-
work data connections.

The timing and approach you use to download data can have a significant effect on battery life, so
to minimize the battery drain associated with network activity it’s critical that you understand how
your connectivity model will affect the underlying radio hardware.

NOTE For a much more detailed look at how to reduce the impact of network
connections and data transfers, refer to “Reducing Network Battery Drain” at
developer.android.com/training/performance/battery/network.

A cellular wireless radio transmitting or receiving data consumes significant power, while at the
same time, powering up to provide connectivity introduces latency. As a result, the radio transitions
between different power modes in order to conserve power and minimize latency.

For a typical 3G network radio that typically involves three energy states:

 ➤ Full power—Used when a connection is actively transferring data.

 ➤ Low power—Activated a short time (~5s) after a transfer has concluded. It uses around 50%
of the power of a full connection, but has improved startup latency compared to standby
mode.

 ➤ Standby—The minimal power draw state, activated after a reasonable period (~15s) during
which no network traffic has occurred.

Every time you create a new connection or download additional data, you risk waking the wireless
radio from standby mode, and/or prolonging the amount of time it spends in full- and low-power
modes.

To use a converse example, creating frequent, short-lived connections that download small amounts
of data can have a dramatically negative impact on the battery. Transferring data every 15 seconds
can effectively keep the network radio at full power constantly.

The solution is to reduce the frequency and size of your data transfers. You can use the following
techniques to minimize your application’s battery impact:

 ➤ Cache and compress data—Avoid downloading data more often than necessary by storing or
caching it locally. Minimize the duration of transfers by compressing data efficiently at the
server source, before transmitting it to your device.

242 ❘ CHAPTER 7 Using internet resoUrces

 ➤ Consider Wi-Fi versus mobile network connections—The Wi-Fi radio can be significantly less
power-hungry than the mobile network cell radio. For large files, and also where timeliness
isn’t as important, consider delaying transfers until the device is connected over Wi-Fi.

 ➤ Aggressively prefetch—The more data you download in a single connection, the less fre-
quently the radio will need to be powered up to download more data. This will need to be
balanced with downloading too much data that won’t be used.

 ➤ Bundle your connections and downloads—Rather than sending time-insensitive data such
as analytics as they’re received, bundle them together and schedule them to transmit con-
currently with other connections, such as when refreshing content or prefetching data.
Remember, each new connection has the potential of powering up the radio.

 ➤ Reuse existing connections rather than creating new ones—Using existing connections rather
than initiating new ones for each transfer can dramatically improve network performance,
reduce latency, and allow the network to intelligently react to congestion and related issues.

 ➤ Use server-initiated updates in preference to periodic downloads—Every time you initiate a
connection you potentially power up the radio, even if you don’t end up downloading any
new data. Instead of regular polling, have your server notify each client when there’s new
data to download using Firebase Cloud Messaging (discussed in Chapter 11).

 ➤ Schedule periodic downloads as infrequently as possible—When periodic updates are neces-
sary, it’s good practice to set the default refresh frequency to as low as usability will allow,
rather than as frequent as possible. For users who require their updates to be more frequent,
provide preferences that allow them to sacrifice battery life in exchange for freshness.

Android offers a number of APIs to assist you in performing data transfers efficiently, specifically
the Android frameworks Job Scheduler.

This API provides facilities for you to intelligently schedule background data transfers within your
application process. As a global Service, it can batch and defer transfers from multiple apps, in order
to minimize the overall battery impact.

It provides:

 ➤ Scheduling for one-off or periodic downloads

 ➤ Automatic back-off and failure retry

 ➤ Persistence of scheduled transfers between device reboots

 ➤ Scheduling based on network connection type and device charging status.

We explore this API in detail in Chapter 11.

AN INTRODUCTION TO INTERNET SERVICES AND CLOUD
COMPUTING

Software as a service (SaaS) and cloud computing are becoming increasingly popular as companies
reduce the cost overheads associated with installing, upgrading, and maintaining their own hard-
ware. The result is a range of rich Internet services and cloud resources with which you can build
and enhance mobile applications.

An Introduction to Internet Services and Cloud Computing ❘ 243

The idea of using a middle tier to reduce client-side load is not a novel one, and happily there are
many Internet-based options to supply your applications with the level of service you need.

The sheer volume of Internet services available makes it impossible to list them all here (let alone
look at them in any detail), but the following list shows some of the more mature and common
Internet services currently available. With Android being primarily developed by Google, Google’s
Cloud Platform offerings are particularly well supported, as summarized in the following section:

 ➤ Google Cloud Platform Compute services—A variety of services for running cloud-based
servers, including Compute Engine for running large-scale workloads on virtual machines,
the App Engine platform for building scalable mobile back ends, and Kubernetes Engine for
running containers.

 ➤ Google Cloud Platform Storage and BigQuery—A range of products for storing data in the
cloud, including Cloud Storage for object storage with global edge-caching, Cloud Spanner
and Cloud SQL for relational databases supporting SQL queries, Cloud Bigtable for mas-
sively scalable NoSQL databases, and Cloud Datastore for NoSQL, schemaless databases
(designed for storing non-relational data). They also offer BigQuery, a fully managed, pet-
abyte scale, low-cost enterprise data warehouse for data analysis.

 ➤ Google Machine Learning APIs—Google offers a range of Machine Intelligence APIs built
on its machine learning capabilities. That includes a Vision API that can understand the con-
tent of images, a Speech API for advanced speech recognition, a Natural Language API that
derives insights from unstructured text, and a Translate API for programmatically translating
text in real time.

 ➤ Amazon Web Services—Amazon offers a range of cloud-based services including a similar
range of services for cloud compute and storage, including distributed storage solution (S3)
and Elastic Compute Cloud (EC2).

A more detailed exploration of these products is out of scope for this book. However, Chapter 11
provides some additional details on how to use Firebase Cloud Messaging to replace client-side poll-
ing with server-driven updates.

Files, Saving State, and User
Preferences

WHAT’S IN THIS CHAPTER?

 ➤ Persisting application data using Shared Preferences

 ➤ Managing application settings and building Preference Screens

 ➤ Saving Activity instance data between sessions

 ➤ Using View Models and Live Data

 ➤ Including static files as external resources

 ➤ Saving and loading files, and managing the local filesystem

 ➤ Using the application file caches

 ➤ Storing files in public directories

 ➤ Sharing files between applications

 ➤ Accessing files from other applications

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The code downloads for this chapter are found at www.wrox.com. The code for this chapter is
divided into the following major examples:

 ➤ Snippets_ch8.zip

 ➤ Earthquake_ch8.zip

8

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

246 ❘ CHAPTER 8 Files, saving state, and User PreFerences

SAVING FILES, STATES, AND PREFERENCES

This chapter introduces some of the simplest and most versatile data-persistence and file sharing
techniques in Android: Shared Preferences, instance-state Bundles, local files, and the Storage Access
Framework.

At a minimum, an Activity should save its user interface (UI) state before becoming inactive, to
ensure the same UI is presented when the Activity restarts. It’s also likely that you’ll need to save
user preferences and UI selections.

Android’s nondeterministic Activity and application lifetimes make persisting UI state and applica-
tion data between sessions particularly important, because your application process may have been
killed and restarted before it returns to the foreground.

We will explore mechanisms to store complex, structured data in Chapter 9, “Creating and Using
Databases” and Chapter 10, “Content Providers and Search”—but for saving simple values or
files within your application Android offers several alternatives, each optimized to fulfill a
particular need:

 ➤ Saved application UI state—Activities and Fragments include specialized event handlers to
record the current UI state when your application is moved to the background.

 ➤ Shared Preferences—When storing UI state, user preferences, or application settings, you
want a lightweight mechanism to store a known set of values. Shared Preferences let you save
groups of name/value pairs of primitive data as named preferences.

 ➤ Files—Sometimes writing to and reading from files is the only way to go, particularly when
saving binary data such as images, audio, and video. Android lets you create, load, and share
files on the device’s internal or external media, as well as providing support for temporary
caches. The File Provider and Storage Access Framework also provide the ability to share files
with, and access files from, other applications.

SAVING AND RESTORING ACTIVITY AND FRAGMENT INSTANCE
STATE USING THE LIFECYCLE HANDLERS

To save the state of instance variables within Activities and Fragments, Android provides the
onSaveInstanceState handler to persist data associated with UI state across sessions.

While View state for any View with an android:id is automatically saved and restored by the
framework, you are responsible for saving and restoring any other instance variables that are needed
to re-create and restore the UI.

The onSaveInstanceState is designed specifically to allow you to persist UI state, in case the
Activity is terminated by the run time within a single user session—either in an effort to free
resources for foreground applications or to accommodate restarts caused by hardware configuration
changes.

Saving and Restoring Activity and Fragment Instance State Using the Lifecycle Handlers ❘ 247

When overriding an Activity’s onSaveInstanceState event handler, use its Bundle parameter to
save instance variables related to your UI using the put methods associated with each primitive
type. Remember to always call the super type method to save the default state:

private static final String SEEN_WARNING_KEY = "SEEN_WARNING_KEY";

// Has the user has seen an important warning during this session
private boolean mSeenWarning = false;

@Override
public void onSaveInstanceState(Bundle saveInstanceState) {
 super.onSaveInstanceState(saveInstanceState);
 // Save state associated with the UI
 saveInstanceState.putBoolean(SEEN_WARNING_KEY,
 mSeenWarning);
}

This handler will be triggered whenever an Activity completes its active lifecycle, but only when
it’s not being explicitly finished (with a call to finish). As a result, it’s used to ensure a consistent
Activity state between active lifecycles of a single user session.

The saved Bundle is passed in to the onRestoreInstanceState and onCreate methods if the
Activity is restarted:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 if (savedInstanceState != null &&
 savedInstanceState.containsKey(SEEN_WARNING_KEY)) {
 mSeenWarning = savedInstanceState.getBoolean(SEEN_WARNING_KEY);
 }
}

If an Activity is explicitly closed by the user (by pressing the Back button), or programmatically with
a call to finish, the saved instance state Bundle will not be passed in to onCreate or onRestore-
InstanceState when the Activity is next created. Data that should be persisted across user sessions
should be stored using Shared Preferences, as described in the next sections.

The UI for many applications will be encapsulated within Fragments. Accordingly, Fragments
also include an onSaveInstanceState handler that works in much the same way as its Activity
counterpart.

The instance state persisted in that Bundle is passed as a parameter to the Fragment’s onCreate,
onCreateView, and onActivityCreated handlers.

For Fragments with a UI component, the same techniques used for saving Activity state apply to
Fragments: they should restore their exact UI state if an Activity is destroyed and restarted to handle
a hardware configuration change, such as the screen orientation changing. Because Android will
automatically re-create Fragments, any Fragments programmatically added within an Activity’s

248 ❘ CHAPTER 8 Files, saving state, and User PreFerences

onCreate should only be added if the savedInstanceState parameter is null, in order to prevent
duplicate Fragments, as shown in Listing 8-1.

LISTING 8-1: Programmatically adding a Fragment in onCreate

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 if (savedInstanceState == null) {
 FragmentTransaction ft = getSupportFragmentManager().beginTransaction();
 ft.add(R.id.fragment_container, new MainFragment());
 ft.commit();
 }
}

RETAINING INSTANCE STATE WITH HEADLESS FRAGMENTS
AND VIEW MODELS

Activities and Fragments are designed to display UI data and react to user interactions; they are
destroyed and re-created each time the device configuration changes—most commonly when the
display is rotated.

As a result, if you store data—or perform time consuming asynchronous operations—within
these UI components, a user rotating the screen will destroy this data and interrupt any ongoing
processes.

This can result in duplicative work, increased latency, and redundant processing. Instead, it is
strongly recommended that you move application data and processing out of Activities and into a
class that is persisted when device configuration changes cause Activity restarts.

View Models and headless Fragments provide two such mechanisms that ensure data is persisted
across configuration changes, while also ensuring that your Activity or Fragment UI can be updated
without risk of memory leaks.

View Models and Live Data
View Models and Live Data were introduced in Chapter 7 as part of a way to perform network
operations on background Threads. They are the recommended best practice technique for persist-
ing state across device configurations.

View Models are designed specifically to store and manage UI-related data such that it’s persisted
across configuration changes. View Models provide a simple way to separate the data being dis-
played from the UI controller logic that belongs in the Fragment or Activity. As a result, it’s good
practice to move all your data, business logic, and any code not directly related to UI elements out of
your Activity or Fragment, and into a View Model.

Retaining Instance State with Headless Fragments and View Models ❘ 249

Because View Models are retained during configuration changes, data they hold is immediately
available to a newly re-created Activity or Fragment instance.

The data stored within a View Model is typically returned as LiveData, a class specifically designed
to hold individual data fields for View Models.

Live Data is a lifecycle-aware class used to provide observable updates for application data.
Lifecycle-awareness means that Live Data only sends updates to Observers within app components
that are in an active lifecycle state. It’s sometimes useful to create your own Live Data class;
however, in most instances the MutableLiveData class is sufficient.

Each Mutable Live Data instance can be declared to represent a particular data type:

private final MutableLiveData<List<String>> data;

Within your View Model, you can modify the value stored by your Live Data using the setValue
method while on the main UI Thread:

data.setValue(data);

Alternatively, you can use postValue to update the UI from a background Thread, which will post
a Task to a main Thread to perform the update.

Whenever the value of a Live Data object is changed, the new value will be dispatched to any active
Observers as described later in this section.

An Observer added by an Activity or Fragment will automatically be removed when the correspond-
ing Activity or Fragment is destroyed, ensuring they can safely observe Live Data without worrying
about memory leaks.

The ViewModel and related LiveData classes are available as part of the Android Architecture
Components library, so to use them you first need to add a dependency to your app module’s Gradle
Build file:

dependencies {
 [... Existing dependencies nodes ...]
 implementation "android.arch.lifecycle:extensions:1.1.1"
}

The following snippet shows the skeleton code for a simple View Model implementation using a
standard Mutable Live Data object to store UI-related data. It also uses an AsyncTask to encapsu-
late the background Threading needed to load the associated data:

public class MyViewModel extends AndroidViewModel {
 private static final String TAG = "MyViewModel";

 private MutableLiveData<List<String>> data = null;

 public MyViewModel(Application application) {
 super(application);
 }

 public LiveData<List<String>> getData() {
 if (data == null) {
 data = new MutableLiveData<List<String>>();

250 ❘ CHAPTER 8 Files, saving state, and User PreFerences

 loadData();
 }
 return data;
 }

 // Asynchronously load / update the data represented
 // by the Live Data object.
 public void loadData() {
 new AsyncTask<Void, Void, List<String>>() {
 @Override
 protected List<String> doInBackground(Void... voids) {
 ArrayList<String> result = new ArrayList<>(0);
 // TODO Load the data from this background thread.
 return result;
 }

 @Override
 protected void onPostExecute(List<String> resultData) {
 // Update the Live Data data value.
 data.setValue(resultData);
 }
 }.execute();
 }
}

Once defined, to use a View Model within your application you must first create a new (or return
the existing) instance of your View Model from within an Activity or Fragment.

The ViewModelProviders class includes a static of method that can be used to retrieve all the View
Models associated with a given Context:

ViewModelProvider providers = ViewModelProviders.of(this);

Then use the get method to specify the View Model you wish to use:

MyViewModel myViewModel = providers.get(MyViewModel.class);

Once you have a reference to your View Model, access any of the Live Data fields it contains and
use the observe method to add an Observer that will receive updates (via the onChanged handler)
when the Observer is added, and again whenever the underlying data changes. This is typically done
within the onCreate handler of your Activity or Fragment:

myViewModel.getData().observe(this,
 new Observer<List<String>>() {
 @Override
 public void onChanged(@Nullable List<String> data) {
 // TODO When new View Model data is received, update the UI.
 }
 }
);

Because your View Model lifecycle is based on your application—rather than the corresponding
Activity or Fragment—the View Model’s loading function won’t be interrupted by a device configu-
ration change.

Retaining Instance State with Headless Fragments and View Models ❘ 251

Similarly, your results are implicitly cached across device configuration changes. After a rotation,
when observe is called on the View Model’s data, it will immediately return the last result set via
the onChanged handler—without the View Model’s loadData method being called.

Headless Fragments
Prior to the availability of View Models through the Android Architecture Components, headless
Fragments were useful mechanisms for retaining instance state across device configuration changes.

Fragments are not required to contain a UI—a “headless” Fragment can be created by returning
null within its onCreateView method (this is the default implementation). Headless Fragments that
are retained across Activity restarts can be used to encapsulate self-contained operations that need
access to lifecycle methods, or that should not be terminated and restarted along with the Activity
after a configuration change.

NOTE The introduction of View Models and Live Data has largely deprecated
the use of headless Fragments for retaining state information across device con-
figuration changes. Details are included here for your reference as you are likely
to encounter this approach in apps that were designed prior to the introduction
of Android Architecture Components.

You can request that your Fragment instance be retained across configuration changes by calling
setRetainInstance within a Fragment’s onCreate handler. This will disconnect the Fragment
instance’s re-creation lifecycle from its parent Activity, meaning it will not be killed and restarted
along with its parent Activity:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Retain this fragment across configuration changes.
 setRetainInstance(true);
}

@Override
public View onCreateView (LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState){
 return null;
}

As a result, the onDestroy and onCreate handlers for a retained Fragment will not be called when
the device configuration changes and the attached Activity is destroyed and re-created. This can pro-
vide a significant efficiency improvement if you move the majority of your object creation into this
Fragment’s onCreate handler.

252 ❘ CHAPTER 8 Files, saving state, and User PreFerences

Note that the rest of the Fragment’s lifecycle handlers, including onAttach, onCreateView, on
ActivityCreated, onStart, onResume, and their corresponding tear-down handlers, will still be
called based on the parent Activity’s lifecycle.

As headless Fragments have no View associated with them, they can’t be created by adding a <frag-
ment> tag to your layout; they must be created programmatically.

Fragment instances are only retained when they are active, meaning that this can only be used with
Fragments not on the back stack.

NOTE When using headless Fragments that retain their instance, remember that
it must not store any references to the host Activity—or any objects that contain
a reference to that Activity (such as a View within its layout), because this may
cause a memory leak when the Activity is destroyed but cannot be garbage col-
lected due to the retained Fragment maintaining a reference to it.

CREATING AND SAVING SHARED PREFERENCES

Using the SharedPreferences class, you can create named maps of name/value pairs that can be
persisted across sessions and shared among application components running within the same appli-
cation sandbox, but that aren’t accessible to other apps.

To create or modify a Shared Preference, call getSharedPreferences on the current Context, pass-
ing in the name of the Shared Preference to change:

SharedPreferences prefs = getSharedPreferences(MY_PREFS,
 Context.MODE_PRIVATE);

In most cases, you can use the default Shared Preferences file by calling the static getDefault-
SharedPreferences method from the Preference Manager:

Context context = getApplicationContext();
SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(context);

To modify a Shared Preference, use the SharedPreferences.Editor class. Get the Editor object
by calling edit on the Shared Preferences object you want to change:

SharedPreferences.Editor editor = prefs.edit();

Use the put<type> methods to insert or update the values associated with the specified name:

// Store new primitive types in the shared preferences object.
editor.putBoolean("isTrue", true);
editor.putFloat("lastFloat", 1f);
editor.putInt("wholeNumber", 2);
editor.putLong("aNumber", 3l);
editor.putString("textEntryValue", "Not Empty");

Retrieving Shared Preferences ❘ 253

To save edits, call apply or commit on the Editor object to save the changes asynchronously or syn-
chronously, respectively:

// Commit the changes.
editor.apply();

NOTE Saving edits to Shared Preferences involves disk I/O and should be
avoided on the main thread. Because the apply method causes a safe asynchro-
nous write of the Shared Preference Editor on a separate thread, it is the pre-
ferred technique for saving Shared Preferences.

If you require confirmation of success, you can call the commit method, which
blocks the calling thread and returns true once a successful write has completed,
or false otherwise.

Android 6.0 Marshmallow (API Level 23) introduced a new Cloud Backup feature that by default
(but with user permission), backs up almost all data created by an app to the cloud, including Shared
Preferences files. Whenever a user installs your app on a new device, the system will automatically
restore this backup data.

If you have device-specific Shared Preference values that should not be backed up with Android’s
Auto Backup, they must be stored in a separate file that can be excluded using a backup scheme defi-
nition XML file stored in the res/xml resources folder. Note that you must include the full filename
of the Shared Preference, which includes the .xml extension:

<?xml version="1.0" encoding="utf-8"?>
<full-backup-content>
 <exclude domain="sharedpref" path="supersecretlaunchcodes.xml"/>
</full-backup-content>

You assign this scheme to your app by specifying it using the android:fullBackupContent attri-
bute in the application node of your application manifest:

<application ...
 android:fullBackupContent="@xml/appbackupscheme">
</application>

More details on Auto Backup, including which files it backs up, and how to disable Auto Backup are
covered later in this chapter.

RETRIEVING SHARED PREFERENCES

To access Shared Preferences, like editing and saving them, you use the getSharedPreferences
method.

Use the type-safe get<type> methods to extract saved values. Each getter takes a key and a default
value (returned when no value has been saved for that key):

// Retrieve the saved values.
boolean isTrue = prefs.getBoolean("isTrue", false);

254 ❘ CHAPTER 8 Files, saving state, and User PreFerences

float lastFloat = prefs.getFloat("lastFloat", 0f);
int wholeNumber = prefs.getInt("wholeNumber", 1);
long aNumber = prefs.getLong("aNumber", 0);
String stringPreference = prefs.getString("textEntryValue", "");

You can return a map of all the available Shared Preferences keys values by calling getAll, or check
for the existence of a particular key by calling the contains method:

Map<String, ?> allPreferences = prefs.getAll();
boolean containsLastFloat = prefs.contains("lastFloat");

INTRODUCING ON SHARED PREFERENCE CHANGE LISTENERS

You can implement the onSharedPreferenceChangeListener to invoke a callback whenever a par-
ticular Shared Preference value is added, removed, or modified.

This is particularly useful for Activities and Services that use the Shared Preference framework to
set application preferences. Using this handler, your application components can listen for changes
to user preferences and update their UIs, or behavior, as required.

Register your On Shared Preference Change Listeners using the Shared Preference you want to
monitor:

public class MyActivity extends Activity implements
 OnSharedPreferenceChangeListener {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Register this OnSharedPreferenceChangeListener
 // with any SharedPreferences instance
 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(this);
 prefs.registerOnSharedPreferenceChangeListener(this);
 }

 public void onSharedPreferenceChanged(SharedPreferences prefs,
 String key) {
 // TODO Check the shared preference and key parameters
 // and change UI or behavior as appropriate.
 }
}

CONFIGURING AUTO BACKUP OF APPLICATION FILES
AND SHARED PREFERENCES

Introduced as part of Android 6.0 Marshmallow (API Level 23), Auto Backup automatically backs
up at most 25MB of files, databases, and Shared Preferences created by your app, by encrypting and
uploading it to the user’s Google Drive account, such that it can automatically be restored when the
app is installed on a new device, or after a device wipe.

Configuring Auto Backup of Application Files and Shared Preferences ❘ 255

Automatic backups occur at most once every 24 hours when the device is connected to Wi-Fi, charg-
ing, and idle.

NOTE In order for Auto Backup to be enabled on a given device, Google
Services must be available, and the user must have opted in. There is no charge
to you or the user for data storage, and the saved data does not count toward the
user’s personal Google Drive quota.

When your app is installed by the same user on a new device, or if they reinstall your app on the
same device, the system will use the last backup snapshot to restore your application data.

By default, almost all your application data files will be backed up, with the exception of all files
stored in:

 ➤ The temporary cache directories returned by getCacheDir and getCodeCacheDir

 ➤ External storage, except those stored in the directory returned by getExternalFilesDir

 ➤ The directory returned by getNoBackupFilesDir

You can also define a backup scheme XML file using the full-backup-content tag, defining spe-
cific files to include or exclude from the Auto Backup. Note that if you specify an explicit include, it
will prevent any file not specified in an include node from being backed up:

<?xml version="1.0" encoding="utf-8"?><full-backup-content>
 <include domain=["file" | "database" | "sharedpref" | "external" | "root"]
 path="[relative file path string]" />
 <exclude domain=["file" | "database" | "sharedpref" | "external" | "root"]
 path="[relative file path string]" />
</full-backup-content>

As shown here, each include or exclude tag must include a domain attribute, which indicates the
root directory for a file of that domain, and the path to the file (including file extension) relative to
that domain root directory, where:

 ➤ root is the app’s root directory.

 ➤ file is the directory returned by the getFilesDir method.

 ➤ database is the default location for SQL databases, as returned by getDatabasePath.

 ➤ sharedpref indicates a Shared Preferences XML file returned by getSharedPreferences.

 ➤ external corresponds to a file in the directory returned by getExternalFilesDir.

For example, this following snippet excludes a database file from Auto Backup:

<?xml version="1.0" encoding="utf-8"?>
<full-backup-content>
 <exclude domain="database" path="top_secret_launch_codes.db"/>
</full-backup-content>

256 ❘ CHAPTER 8 Files, saving state, and User PreFerences

Once your backup scheme is defined, store it in your res/xml folder and associate it with your
application using the android:fullBackupContent attribute in the application node of your
manifest:

<application ...
 android:fullBackupContent="@xml/mybackupscheme">
</application>

Alternatively, if you wish to simply disable automatic app data backups completely, you can set the
android:allowBackup attribute to false within the application node of your manifest:

<application ...
 android:allowBackup="false">
</application>

While it’s possible to disable Auto Backup, this isn’t recommended, as it offers a worse user experi-
ence for users moving between devices. Most users will expect your app to back up their settings
and remember them when installing the app onto a new device. For this reason, allowBackup
defaults to true. Make sure you have set up an alternate backup mechanism (for example, tied to
your own custom login system) if you disable Android’s built in data backup.

BUILDING A PREFERENCE UI

Android offers an XML-driven framework to create system-style Preference Screens for your appli-
cations. By using this framework you can create a user-preferences UI that is consistent with those
used in both native and other third-party applications.

This has two distinct advantages:

 ➤ Users will be familiar with the layout and use of your settings screens.

 ➤ You can integrate settings from other applications (including system settings, such as location
settings) into your application’s preferences.

The preference framework consists of two primary components:

 ➤ Preference Screen layout—An XML file that defines the hierarchy of items displayed in your
Preference Screens. It specifies the text and associated controls to display, the allowed values,
and the Shared Preference keys to use for each control.

 ➤ Preference Fragment—Preference Screens are hosted within a PreferenceFragment or
PreferenceFragmentCompat. It inflates the Preference Screen XML files, manages Preference
dialog boxes, and handles transitions to other Preference Screens.

Using the Preference Support Library
The framework PreferenceFragment class must be added to a PreferenceActivity, meaning
you can’t use Activity classes such as AppCompatActivity. As a result, it’s best practice use the
PreferenceFragmentCompat class from the Preference Support Library, which allows you to add a
support Preference Fragment to any Activity—which is what we’ll be doing in the remainder of this
chapter.

Building a Preference UI ❘ 257

If you’ve already downloaded the Android Support Library as described in Chapter 2, you only need
to add a Gradle dependency for the Preference Support Library, in order to take advantage of these
features.

Open your build.gradle file and add the Fragment Support Library to the dependencies section:

dependencies {
 [... Existing dependencies ...]
 implementation "com.android.support:preference-v14:27.1.1"
}

Defining a Preference Screen Layout in XML
Unlike standard UI layouts, preference definitions are stored in the res/xml resources folder.

Although conceptually they are similar to the UI layout resources described in Chapter 5, “Building
User Interfaces,” Preference Screen layouts use a specialized set of UI controls designed specifically
for Preference Screens. These native preference controls are described in the next section.

Each preference layout is defined as a hierarchy, beginning with a single PreferenceScreen
element:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
</PreferenceScreen>

You can nest Preference Screen elements, where each nested screen
is represented as a selectable element that displays a new screen
when tapped.

Each Preference Screen can include any combination of
PreferenceCategory and Preference elements.

Preference Category elements, as shown in the following snippet,
are used to break each Preference Screen into subcategories using a
title bar separator:

<PreferenceCategory
 android:title="My Preference Category"/>

For example, Figure 8-1 shows the My Account and Services
Preference Categories used on the Google Settings Preference
Screen.

Preference elements are used to set and display the preferences
themselves. The specific attributes used for each Preference element
vary, but each includes at least the following:

 ➤ android:key—The Shared Preference key against which
the selected value will be recorded.

 ➤ android:title—The text displayed to represent the preference.

FIGURE 8-1

258 ❘ CHAPTER 8 Files, saving state, and User PreFerences

 ➤ android:summary—The longer text description displayed in a smaller font below the title
text.

 ➤ android:defaultValue—The default value that will be displayed (and selected) if no prefer-
ence value has been assigned to the associated preference key.

Listing 8-2 shows a sample Preference Screen that includes a Preference Category and Switch
Preference.

LISTING 8-2: A simple Preference Screen layout

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <PreferenceCategory
 android:title="My Preference Category">
 <SwitchPreference
 android:key="PREF_BOOLEAN"
 android:title="Switch Preference"
 android:summary="Switch Preference Description"
 android:defaultValue="true"
 />
 </PreferenceCategory>
</PreferenceScreen>

When displayed, this Preference Screen will appear as shown in
Figure 8-2. You learn how to display a Preference Screen later in
this chapter.

Native Preference Element Types
Android includes several Preference elements you can use to con-
struct your Preference Screens:

 ➤ CheckBoxPreference—A standard preference check box control used to set preferences to
true or false.

 ➤ SwitchPreference—A two-state Boolean toggle displayed as an on-or-off switch to set pref-
erences to true or false. Generally used in preference to the Check Box preference.

 ➤ EditTextPreference—Allows users to enter a string value as a preference. Selecting the
preference text at run time displays a text-entry dialog box.

 ➤ ListPreference—The preference equivalent of a spinner. Selecting this preference displays
a dialog box containing a list of values from which to select. You can specify separate arrays
to contain different display text and corresponding selection values.

 ➤ MultiSelectListPreference—This is the preference equivalent of a check box list, allow-
ing users to select multiple entries from a single list of options.

FIGURE 8-2

Building a Preference UI ❘ 259

 ➤ RingtonePreference—A specialized List Preference that presents the list of available ring-
tones for user selection. This is particularly useful when you’re constructing a screen to con-
figure Notification settings.

You can use a combination of each Preference element to construct your Preference Screen hierarchy.
Alternatively, you can create your own specialized Preference elements by extending the Preference
class (or any of the Preference subclasses from the list above.)

NOTE You can find further details about Preference elements at developer
.android.com/reference/android/support/v7/preference/Preference
.html.

Using Intents to Add System Settings to Your Preference Screens
In addition to including your own Preference Screens, your hierarchies can include Preference
Screens from other applications or—more usefully—the system Preferences.

You can invoke any Activity within your Preference Screen using an Intent; if you add an Intent
element within a Preference Screen definition, the system will interpret this as a request to call
startActivity using the specified action. The following XML snippet adds a link to the system’s
display settings:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <PreferenceCategory
 android:title="My Preference Category">
 <Preference
 android:title="Intent preference"
 android:summary="System preference imported using an intent">
 <intent android:action="android.settings.DISPLAY_SETTINGS"/>
 </Preference>
 </PreferenceCategory>
</PreferenceScreen>

The android.provider.Settings class includes a number of android.settings.* constants that
can be used to invoke the system settings screens including Bluetooth, location, and connectivity.
You can see all of the available Intent actions at d.android.com/reference/android/provider/
Settings.html.

Making Your Preference Screens Available to the System
To make your own Preference Screens available for invocation using this technique, simply add an
Intent Filter to the manifest entry for the host Preference Activity (described in detail in the follow-
ing section):

<activity android:name=".UserPreferences" android:label="My User Preferences">
 <intent-filter>
 <action android:name="com.paad.myapp.ACTION_USER_PREFERENCE" />

260 ❘ CHAPTER 8 Files, saving state, and User PreFerences

 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
</activity>

The most common use for this technique is to manage network usage. Since Android 4.0 Ice Cream
Sandwich (API Level 14), the system preferences have allowed users to disable background data on
a per-app basis. You can specify a Preference Activity that will be displayed when this setting is
selected by adding an Intent Filter for ACTION_MANAGE_NETWORK_USAGE:

<activity android:name=".DataPreferences" android:label="Data Preferences">
 <intent-filter>
 <action android:name="android.intent.action.MANAGE_NETWORK_USAGE" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
</activity>

The associated Preference Activity should provide settings for your app that provide fine-grained
control over your app’s use of data, particularly in the background, such that users are more likely
to modify data usage than disable background data completely.

Typical settings in this Preference Activity include update frequency, requirements for unmetered
(Wi-Fi) connections, and charging status. In Chapter 11, “Working in the Background” you’ll learn
how to use the Job Scheduler to apply these settings to your background updates.

Introducing the Preference Fragment
The PreferenceFragment class hosts the Preference Screens defined earlier. To create a new
Preference Fragment, extend the PreferenceFragment class. It’s best practice to use the support
library Fragments, in which case you’ll extend the PreferenceFragmentCompat class:

public class MyPreferenceFragment extends PreferenceFragmentCompat

To inflate the Preference Screens, override onCreatePreferences and call addPreferencesFrom-
Resource, as shown in Listing 8-3.

LISTING 8-3: Creating a Preference Fragment

import android.os.Bundle;
import android.support.v7.preference.PreferenceFragmentCompat;

public class MyPreferenceFragment extends PreferenceFragmentCompat {

 @Override
 public void onCreatePreferences(Bundle savedInstanceState, String rootKey) {
 setPreferencesFromResource(R.xml.preferences, rootkey);
 }
}

Your application can include multiple Preference Fragments, which, just like any other Fragment,
can be included in any Activity and added, removed, and replaced at run time. By convention the
Preference Fragment will be the only Fragment displayed within its parent Activity.

Creating a Settings Activity for the Earthquake Monitor ❘ 261

Before you can add a Preference Fragment to an Activity, you must also include a preferenceTheme
element in your Activity’s style. The following example uses the PreferenceThemeOverlay.v14
.Material style available from the Preferences Support Library:

<style name="AppTheme" parent="@style/Theme.AppCompat">
 <item name="colorPrimary">@color/primary</item>
 <item name="colorPrimaryDark">@color/primaryDark</item>
 <item name="colorAccent">@color/colorAccent</item>

 <item
 name="preferenceTheme">@style/PreferenceThemeOverlay.v14.Material
 </item>
</style>

NOTE The Preference Theme shown in the previous code snippet requires a
device running at least Android 4.0 Ice Cream Sandwich (API Level 14). If
your application needs to support devices running an earlier Android plat-
form, you should create a separate style definition that uses the @style/
PreferenceThemeOverlay value for the preferenceTheme attribute.

CREATING A SETTINGS ACTIVITY FOR THE EARTHQUAKE
MONITOR

In the following example you build a settings Activity to set user preferences for the earthquake
viewer last seen in the previous chapter. This Activity lets users configure settings for a more per-
sonalized experience. You’ll provide the option to toggle automatic updates, control the frequency of
updates, and filter the minimum earthquake magnitude displayed.

 1. Open the Earthquake project you last modified in Chapter 7, “Using Internet Resources,”
and add the Preferences Support Library API to the app module build.gradle file. Our
minimum SDK is 16, so we can use the v14 version of the preference support library:

implementation 'com.android.support:preference-v14:27.1.1'

 2. Add new string resources to the res/values/strings.xml file for the labels to be displayed
in the Preference Screen. Also, add a string for the new Menu Item that will let users open the
Preference Screen:

<resources>
 <string name="app_name">Earthquake</string>
 <string name="earthquake_feed">
https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_day.atom
 </string>
 <string name="menu_update">Refresh Earthquakes</string>
 <string name="auto_update_prompt">Auto refresh?</string>
 <string name="update_freq_prompt">Refresh Frequency</string>
 <string name="min_quake_mag_prompt">Minimum Quake Magnitude</string>
 <string name="menu_settings">Settings</string>
</resources>

262 ❘ CHAPTER 8 Files, saving state, and User PreFerences

 3. Create four array resources in a new res/values/arrays.xml file. They will provide the
values to use for the update frequency and minimum magnitude spinners:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="update_freq_options">
 <item>Every Minute</item>
 <item>5 minutes</item>
 <item>10 minutes</item>
 <item>15 minutes</item>
 <item>Every Hour</item>
 </string-array>
 <string-array name="update_freq_values">
 <item>1</item>
 <item>5</item>
 <item>10</item>
 <item>15</item>
 <item>60</item>
 </string-array>
<string-array name="magnitude_options">
 <item>All Magnitudes</item>
 <item>Magnitude 3</item>
 <item>Magnitude 5</item>
 <item>Magnitude 6</item>
 <item>Magnitude 7</item>
 <item>Magnitude 8</item>
 </string-array>
 <string-array name="magnitude_values">
 <item>0</item>
 <item>3</item>
 <item>5</item>
 <item>6</item>
 <item>7</item>
 <item>8</item>
 </string-array>
</resources>

 4. Create a new XML resource folder at res/xml. Within it create a new userpreferences
.xml file. This file will define the settings UI for your earthquake application settings. Include
a switch for indicating the “auto refresh” toggle, and List Preferences to select the update
rate and magnitude filter. Note the key values for each preference:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <SwitchPreference
 android:key="PREF_AUTO_UPDATE"
 android:title="@string/auto_update_prompt"
 android:summary="Select to turn on automatic updating"
 android:defaultValue="true"
 />
<ListPreference
 android:key="PREF_UPDATE_FREQ"
 android:title="@string/update_freq_prompt"
 android:summary="Frequency at which to refresh earthquake list"

Creating a Settings Activity for the Earthquake Monitor ❘ 263

 android:entries="@array/update_freq_options"
 android:entryValues="@array/update_freq_values"
 android:dialogTitle="Refresh frequency"
 android:defaultValue="60"
 />
 <ListPreference
 android:key="PREF_MIN_MAG"
 android:title="@string/min_quake_mag_prompt"
 android:summary="Select the minimum magnitude earthquake to display"
 android:entries="@array/magnitude_options"
 android:entryValues="@array/magnitude_values"
 android:dialogTitle="Magnitude"
 android:defaultValue="3"
 />
</PreferenceScreen>

 5. Create a new preferences.xml layout resource in the res/layout folder for the
Preferences Activity. Note that it includes a PrefFragment inner class defined within the
PreferencesActivty. You’ll create those in the next step.

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <fragment
 android:id="@+id/preferences_fragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:name=
"com.professionalandroid.apps.earthquake.PreferencesActivity$PrefFragment"/>
</FrameLayout>

 6. Create the PreferencesActivity Activity by extending AppCompatActivity. Override
onCreate to inflate the layout you created in Step 5, and create a static PrefFragment class
that extends PreferenceFragmentCompat. Your Pref Fragment will contain your Preference
Screen within the Preference Activity.

import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.support.v7.preference.PreferenceFragmentCompat;

public class PreferencesActivity extends AppCompatActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.preferences);
 }

 public static class PrefFragment extends PreferenceFragmentCompat {
 }
}

 7. Within your PrefFragment class, override the onCreatePreferences method to inflate the
userpreferences.xml file you created in Step 4:

public static class PrefFragment extends PreferenceFragmentCompat {
 @Override

264 ❘ CHAPTER 8 Files, saving state, and User PreFerences

 public void onCreatePreferences(Bundle savedInstanceState,
 String rootKey) {
 setPreferencesFromResource(R.xml.userpreferences, null);
 }
}

 8. Within your PreferencesActivity, add public static string values that correspond to the
preference keys used in Step 4. You’ll use these strings to access the Shared Preferences used
to store each preference value.

public class PreferencesActivity extends AppCompatActivity {

 public static final String PREF_AUTO_UPDATE = "PREF_AUTO_UPDATE";
 public static final String USER_PREFERENCE = "USER_PREFERENCE";
 public static final String PREF_MIN_MAG = "PREF_MIN_MAG";
 public static final String PREF_UPDATE_FREQ = "PREF_UPDATE_FREQ";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.preferences);
 }
}

 9. Open your res/values/styles.xml file and add a new item that defines your prefer-
enceTheme to use the v14 Material design Preference Theme Overlay:

<style name="AppTheme" parent="@style/Theme.AppCompat">
 <item name="colorPrimary">@color/primary</item>
 <item name="colorPrimaryDark">@color/primaryDark</item>
 <item name="colorAccent">@color/colorAccent</item>

 <item
 name="preferenceTheme">@style/PreferenceThemeOverlay.v14.Material
 </item>
</style>

 10. That completes your Preferences Activity. Open the application manifest and add an entry
for this Activity, including an Intent Filter that it will be triggered if the user chooses to mod-
ify the app’s background data settings from the system preferences.

<activity android:name=".PreferencesActivity">
 <intent-filter>
 <action android:name="android.intent.action.MANAGE_NETWORK_USAGE" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
</activity>

 11. Return to the EarthquakeMainActivity, and add support for using the preferences selected
from your Preference Activity. Start by adding a Menu Item to display the Preferences
Activity. Override the onCreateOptionsMenu method to include a new item that will open
the Preferences Activity:

private static final int MENU_PREFERENCES = Menu.FIRST+1;

@Override

Creating a Settings Activity for the Earthquake Monitor ❘ 265

public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 menu.add(0, MENU_PREFERENCES, Menu.NONE, R.string.menu_settings);

 return true;
}

 12. Override the onOptionsItemSelected method to display the PreferencesActivity when
the new Menu Item from Step 11 is selected. To launch the Preferences Activity, create an
explicit Intent, and pass it in to the startActivityForResult method. This will launch the
Activity and alert the EarthquakeMainActivity class when the Preferences Activity is fin-
ished via the onActivityResult handler.

private static final int SHOW_PREFERENCES = 1;

public boolean onOptionsItemSelected(MenuItem item){
 super.onOptionsItemSelected(item);
 switch (item.getItemId()) {
 case MENU_PREFERENCES:
 Intent intent = new Intent(this, PreferencesActivity.class);
 startActivityForResult(intent, SHOW_PREFERENCES);
 return true;
 }
 return false;
}

 13. Launch your application and select Preferences from the Activity menu. The Preferences
Activity should be displayed, as shown in Figure 8-3.

FIGURE 8-3

266 ❘ CHAPTER 8 Files, saving state, and User PreFerences

 14. All that’s left is to apply the preferences to the earthquake app functionality. Implementing
the automatic updates will be left until Chapter 11, “Working in the Background,” where
you learn to use the Job Scheduler for this. For now you can apply the magnitude filter. Start
by creating a new updateFromPreferences method in the EarthquakeListFragment that
reads the Shared Preference minimum magnitude value:

private int mMinimumMagnitude = 0;

private void updateFromPreferences() {
 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(getContext());

 mMinimumMagnitude = Integer.parseInt(
 prefs.getString(PreferencesActivity.PREF_MIN_MAG, "3"));
}

 15. Apply the magnitude filter by updating the setEarthquakes method from the
EarthquakeListFragment to update the minimum magnitude preference, and check each
earthquake’s magnitude before adding it to the list:

public void setEarthquakes(List<Earthquake> earthquakes) {
 updateFromPreferences();

 for (Earthquake earthquake: earthquakes) {
 if (earthquake.getMagnitude() >= mMinimumMagnitude) {
 if (!mEarthquakes.contains(earthquake)) {
 mEarthquakes.add(earthquake);
 mEarthquakeAdapter.notifyItemInserted(
 mEarthquakes.indexOf(earthquake));
 }
 }
 }

 if (mEarthquakes != null && mEarthquakes.size() > 0)
 for (int i = mEarthquakes.size() - 1; i >= 0; i--) {
 if (mEarthquakes.get(i).getMagnitude() < mMinimumMagnitude) {
 mEarthquakes.remove(i);
 mEarthquakeAdapter.notifyItemRemoved(i);
 }
 }

 mSwipeToRefreshView.setRefreshing(false);
}

 16. The final step is to create a new OnSharedPreferenceChangeListener within the
Earthquake List Fragment that will repopulate the Earthquake list, applying the magnitude
filter based on the new setting. :

@Override
protected void onActivityCreated(Bundle savedInstanceState) {

 [... Existing onActivityCreated method ...]

 // Register an OnSharedPreferenceChangeListener

Working with the Filesystem ❘ 267

 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(getContext());
 prefs.registerOnSharedPreferenceChangeListener(mPrefListener);
}

private SharedPreferences.OnSharedPreferenceChangeListener mPrefListener
 = new SharedPreferences.OnSharedPreferenceChangeListener() {
 @Override
 public void onSharedPreferenceChanged(SharedPreferences
 sharedPreferences,
 String key) {
 if (PreferencesActivity.PREF_MIN_MAG.equals(key)) {
 List<Earthquake> earthquakes
 = earthquakeViewModel.getEarthquakes().getValue();
 if (earthquakes != null)
 setEarthquakes(earthquakes);
 }
 }
};

INCLUDING STATIC FILES AS RESOURCES

If your application requires external file resources, you can include them in your distribution pack-
age by placing them in the res/raw folder of your project resources hierarchy.

To access these read-only file resources, call the openRawResource method from your application’s
Resource object to receive an InputStream based on the specified file. Pass in the filename (without
the extension) as the variable name from the R.raw class, as shown in the following skeleton code:

Resources myResources = getResources();
InputStream myFile = myResources.openRawResource(R.raw.myfilename);

Adding raw files to your resources hierarchy is an excellent alternative for large, preexisting data
sources (such as dictionaries) for which it’s not desirable (or even possible) to convert them into
Android databases.

Android’s resource mechanism lets you specify alternative resource files for different languages,
locations, and hardware configurations. For example, you could create an application that loads a
different dictionary resource based on the user’s language settings.

WORKING WITH THE FILESYSTEM

It’s good practice to use Shared Preferences or a database (described in more detail in Chapter 9,
“Creating and Using Databases”) to store your application data, but there may still be times when
you’ll want to use files directly rather than rely on Android’s managed mechanisms—particularly
when working with binary files.

File-Management Tools
Android supplies some basic file-management tools to help you deal with the filesystem. Many of
these utilities are located within the java.io.File package.

268 ❘ CHAPTER 8 Files, saving state, and User PreFerences

Although complete coverage of Java file-management utilities is beyond the scope of this book,
Android does supply some specialized utilities for file management that are available from the appli-
cation Context.

 ➤ deleteFile—Enables you to remove files created by the current application

 ➤ fileList—Returns a string array that includes all the files created by the current application

These methods are particularly useful for cleaning up temporary files left behind if your application
crashes or is killed unexpectedly.

Creating Files on Application-Specific Internal Storage
Each application is provided with a data directory on internal storage where it can create files that
are private to the application, and not accessible to other apps. This data directory and all files
within it are automatically deleted when the app is uninstalled.

The two primary subdirectories within this data directory are the files directory and cache direc-
tory, available via the getFilesDir and getCacheDir methods of your Context respectively.

WARNING The returned path for these directories may change over time so you
should only store relative paths to files in these directories.

The location returned by getFilesDir is the appropriate place to store persistent, private files that
your app expects to be available until/unless it removes them.

In contrast, files storied in the location returned by getCacheDir will potentially be erased by the
system when it is running low on available storage, and should therefore be considered temporary
storage. As such, these cache files won’t be backed up by Auto Backup, their absence or deletion
should not cause the user to lose any data, and your app should be prepared for these files to be
removed at any time. In addition to the system, users can manually choose to remove these tempo-
rary cache files by selecting “Clear Cache” from the system settings for your app.

Creating Files on Application-Specific External Storage
In addition to the data directory on internal storage, your application also has access to application-
specific directories on external storage. Similarly to the previously discussed internal storage direc-
tories, files created in these application-specific external storage directories are also deleted when the
app is uninstalled.

When referring to external storage, we refer to the shared/media storage that is accessible by all
applications and can typically be mounted to a computer filesystem when the device is connected via
USB. Depending on the device, this can be a separate partition on the internal storage or on the SD
card. Environment.isExternalStorageEmulated returns true if the internal storage and external
storage are backed by the same underlying storage device.

Working with the Filesystem ❘ 269

The most important thing to remember when storing files on external storage is that no security
is enforced on files stored here. Any application can access, overwrite, or delete files stored on the
external storage.

NOTE It’s important to remember that files stored on external storage may not
always be available. If an SD card is ejected, or the device is mounted for access
via a computer, your application will be unable to read (or create) files on the
external storage.

The Context method getExternalFilesDir is the external storage equivalent to getFilesDir. It
accepts a string parameter that can be used to specify the subdirectory into which you want to place
your files. The Environment class includes a number of DIRECTORY_[Category] string constants
that represent standard directories, such as for images, movies, and music files.

Similar to the case for internal storage, getExternalCacheDir allows you to store temporary files
in external storage. Note that Android does not always monitor available storage space on external
storage, so you must monitor and manage the size and age of your cache, deleting files when a rea-
sonable maximum cache size is exceeded.

For devices that have multiple external directories available such as those with an emulated external
storage and a separate SD card, Android 4.4 Kit Kat (API Level 19) added the getExternalFiles-
Dirs and getExternalCacheDirs directories, which will return an array of directories, allowing
your app read and write access to application-specific directories on each external storage device.
The first directories in the array correspond with the directory returned by getExternalFilesDir
or getExternalCacheDir.

NOTE Prior to Android 4.4 Kit Kat (API Level 19), your app must have
the READ_EXTERNAL_STORAGE and WRITE_EXTERNAL_STORAGE permissions
to read and write to any folder on external storage, respectively. By adding
android:maxSdkVersion="18" to the corresponding <uses-permission> ele-
ments, you can ensure that you will only request these “dangerous” permissions
on the earlier platform releases that require them.

Files stored in the application folders should be specific to the parent application and are typi-
cally not detected by the Media Scanner, and therefore won’t be added to the Media Library
automatically.

If your application downloads or creates files that should be added to the Media Library such as
images, audio, or video files, you should store them in the location returned by the getExternal
MediaDirs method added in Android 6.0 Marshmallow (API Level 21) so that they are automati-
cally scanned by the Media Scanner.

270 ❘ CHAPTER 8 Files, saving state, and User PreFerences

NOTE As the getExternalMediaDirs method was introduced in Android 6.0
Marshmallow (API Level 21), to support earlier platform releases you should
use MediaScannerConnection.scanFile to explicitly add any file stored on
external storage to the media database.

Accessing Public Directories Using Scoped Directory Access
Files stored in the application-specific directories on internal and external storage as described previ-
ously are deleted when the app is uninstalled. However, applications can also store files in shared
public directories; these files will be persisted even if after your app is uninstalled.

Due to the shared nature of these public directories, users must explicitly give your app access before
it can read or write files in these directories. Scoped Directory Access, introduced in Android 7.0
Nougat (API Level 24), is the process through which you can request access to these shared public
directories on a given Storage Volume.

The primary Storage Volume is the same storage device as the application-specific external storage
directories described previously. Secondary Storage Volumes may include SD cards and temporarily
attached storage devices such as USB attached devices.

A particular StorageVolume object is retrieved using the StorageManager, as shown in the follow-
ing snippet that retrieves the primary storage volume using the getPrimaryStorageVolume method:

StorageManager sm =
 (StorageManager)getSystemService(Context.STORAGE_SERVICE);
StorageVolume volume = sm.getPrimaryStorageVolume();

To access a particular public directory, call createAccessIntent, passing in a parameter that spec-
ifies the directory you require using one of the Environment.DIRECTORY_ static constants:

Intent intent =
 volume.createAccessIntent(Environment.DIRECTORY_PICTURES);

The Environment class includes a number of static string constants that let you specify the public
directory you wish to access, including:

 ➤ DIRECTORY_ALARMS—Audio files that should be available as user-selectable alarm sounds

 ➤ DIRECTORY_DCIM—Pictures and videos taken by the device

 ➤ DIRECTORY_DOCUMENTS—Documents created by the user

 ➤ DIRECTORY_DOWNLOADS—Files downloaded by the user

 ➤ DIRECTORY_MOVIES—Video files that represent movies

 ➤ DIRECTORY_MUSIC—Audio files that represent music

 ➤ DIRECTORY_NOTIFICATIONS—Audio files that should be available as user-selectable notifica-
tion sounds

 ➤ DIRECTORY_PICTURES—Image files that represent pictures

Working with the Filesystem ❘ 271

 ➤ DIRECTORY_PODCASTS—Audio files that represent podcasts

 ➤ DIRECTORY_RINGTONES—Audio files that should be available as user-selectable ringtones

NOTE When using secondary storage volumes, passing in null for the direc-
tory value provides access to the entire storage volume. This option is not avail-
able for the primary storage volume. Access to the root of the primary storage is
strongly discouraged due to the wide reaching consequences and security of the
user’s personal files.

However, you can request the READ_EXTERNAL_STORAGE and WRITE_EXTERNAL_
STORAGE permissions to read and write any directory on the primary storage vol-
ume returned by Environment.getExternalStorageDirectory.

Once you have an Intent returned from createAccessIntent, pass it to startActivityForResult
as seen in Listing 8-4:

LISTING 8-4: Requesting access with Scoped Directory Access

StorageManager sm =
 (StorageManager)getSystemService(Context.STORAGE_SERVICE);
StorageVolume volume = sm.getPrimaryStorageVolume();

Intent intent =
 volume.createAccessIntent(Environment.DIRECTORY_PICTURES);

startActivityForResult(intent, PICTURE_REQUEST_CODE);

The user will be shown a dialog box, as shown in Figure 8-4,
where they can grant your app access to the specified directory
(and any subdirectories) on the given storage volume. If users have
previously denied your request, they will be offered a “Don’t ask
again” check box, which, if selected, will lead to an automatic
denial on any further requests for the same location.

If the user accepts your request, the callback to onActivityResult
will have a result code of RESULT_OK and getData will return a document tree URI to the newly
accessible directory, as seen in Listing 8-5.

LISTING 8-5: Receiving access with Scoped Directory Access

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == PICTURE_REQUEST_CODE && resultCode == RESULT_OK) {
 Uri documentTreeUri = data.getData();

FIGURE 8-4

272 ❘ CHAPTER 8 Files, saving state, and User PreFerences

 // Use the returned URI to access the files within the directory
 handleDocumentTreeUri(documentTreeUri);
 }
}

Unlike a traditional java.io.File, a document URI provides access to files through methods
within the DocumentContract class, and by using a ContentResolver to query metadata about the
file. Similarly, you must use openInputStream to access the contents of each document, as seen in
Listing 8-6.

LISTING 8-6: Using Document Contract to parse a document tree

private void handleDocumentTreeUri(Uri documentTreeUri) {
 Uri childrenUri = DocumentsContract.buildChildDocumentsUriUsingTree(
 documentTreeUri, DocumentsContract.getDocumentId(documentTreeUri));
 try (Cursor children = getContentResolver().query(childrenUri,
 new String[] { DocumentsContract.Document.COLUMN_DOCUMENT_ID,
 DocumentsContract.Document.COLUMN_MIME_TYPE },
 null /* selection */,
 null /* selectionArgs */,
 null /* sortOrder */)) {
 if (children == null) {
 return;
 }

 while (children.moveToNext()) {
 String documentId = children.getString(0);
 String mimeType = children.getString(1);
 Uri childUri = DocumentsContract.buildDocumentUriUsingTree(
 documentTreeUri, documentId);
 if (DocumentsContract.Document.MIME_TYPE_DIR.equals(mimeType)) {
 handleDocumentTreeUri(childUri);
 } else {
 try (InputStream in =
 getContentResolver().openInputStream(childUri)) {
 // TODO Read the file
 } catch (FileNotFoundException e) {
 Log.e(TAG, e.getMessage(), e);
 } catch (IOException e) {
 Log.e(TAG, e.getMessage(), e);
 }
 }
 }
 }
}

Alternatively, the Support Library includes a helper DocumentFile class, which emulates the File
API at the expense of additional overhead, as shown in Listing 8-7.

Working with the Filesystem ❘ 273

LISTING 8-7: Using Document File to parse directory document tree

private void handleDocumentTreeUri(Uri documentTreeUri) {
 DocumentFile directory = DocumentFile.fromTreeUri(
 this, // Context
 documentTreeUri);

 DocumentFile[] files = directory.listFiles();

 for (DocumentFile file : files) {
 if (file.isDirectory()) {
 handleDocumentTreeUri(file.getUri());
 } else {
 try (InputStream in =
 getContentResolver().openInputStream(file.getUri())) {
 // TODO Read the file
 } catch (FileNotFoundException e) {
 Log.e(TAG, e.getMessage(), e);
 } catch (IOException e) {
 Log.e(TAG, e.getMessage(), e);
 }
 }
 }
}

You can find more details on using document URIs and using DocumentContract later in this
chapter within the “Accessing Files from Other Applications Using the Storage Access Framework”
section.

By default, each request for Scoped Directory Access will persist only for the current session. If your
app needs persistent access to the requested directory, you must call ContentResolver.take
PersistableUriPermission passing in the received document tree URI, and either (or both) FLAG_
GRANT_READ_URI_PERMISSION and/or FLAG_GRANT_WRITE_URI_PERMISSION to request persistent
read and/or write permission, respectively.

If the user grants permission, subsequent access requests will automatically return successfully with
no user interaction or dialog box. This will allow your app to continue to have access to the direc-
tory across multiple sessions—even after the device reboots:

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == PICTURE_REQUEST_CODE && resultCode == RESULT_OK) {
 Uri documentTreeUri = data.getData();

 // Persist access to the directory so it can be accessed multiple times
 getContentResolver().takePersistableUriPermission(documentTreeUri,
 Intent.FLAG_GRANT_READ_URI_PERMISSION);

 // Use the returned URI to access the files within the directory
 handleDocumentTreeUri(documentTreeUri);
 }
}

274 ❘ CHAPTER 8 Files, saving state, and User PreFerences

NOTE Scoped Directory Access was introduced in Android 7.0 Nougat (API
Level 24). You can access the public directories of the primary storage volume on
earlier platform releases, using the Environment.getExternalStorage
PublicDirectory method, which requires the READ_EXTERNAL_STORAGE and
WRITE_EXTERNAL_STORAGE permissions to read and write, respectively.

SHARING FILES USING FILE PROVIDER

The Android Support Library contains the FileProvider class, specifically designed for transform-
ing files in application-specific directories into content URIs, making it possible to share them with
other apps.

Creating a File Provider
Unlike Services or Activities, which you must extend and implement, File Providers are added
directly to your manifest using a provider node:

<provider
 android:name="android.support.v4.content.FileProvider"
 android:authorities="${applicationId}.files"
 android:grantUriPermissions="true"
 android:exported="false">
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/filepaths"
 />
</provider>

The android:authorities attribute must be a unique string, typically prefixed with the app’s
applicationId or package name. Gradle offers a placeholder—${applicationId}—that you can
use to insert the application ID.

Each File Provider allows sharing from the directories you specify in the XML paths file you specify
in the android:resource attribute of the android.support.FILE_PROVIDER_PATHS metadata
node. This XML file lets you specify paths relative to your application’s internal and external files
and caches, for example:

<paths>
 <!-- Any number of paths can be declared here -->
 <files-path name="my_images" path="images/" />
 <cache-path name="internal_image_cache" path="imagecache/" />
 <external-files-path name="external_audio" path="audio/" />
 <external-cache-path name="external_image_cache" path="imagecache/" />
</paths>

Each path node requires a unique name for that directory, and its relative path.

Accessing Files from Other Applications Using the Storage Access Framework ❘ 275

Sharing a File Using a File Provider
Sharing a file with FileProvider requires that you first create a content URI for it. You can do this
using FileProvider.getUriForFile and passing in a Context, the authority you added to your
manifest, and the file itself:

File photosDirectory = new File(context.getFilesDir(), "images");
File imageToShare = new File(photosDirectory, "shared_image.png");

Uri contentUri = FileProvider.getUriForFile(context,
 BuildConfig.APPLICATION_ID + ".files", imageToShare);

The content URI can then be attached to an ACTION_SEND Intent to share with another app. The
Android Support Library includes the ShareCompat class, which makes this simple:

ShareCompat.IntentBuilder.from(activity)
 .setType("image/png")
 .setStream(contentUri)
 .startChooser();

NOTE Prior to Android 4.1 Jellybean (API Level 16), you must also call
setData(contentUri) and addFlags(Intent.FLAG_GRANT_READ_URI_
PERMISSION) on the Intent, as described later in this chapter in the section
“Using URI-Based Permissions,” to ensure that the receiving app has permission
to read the content URI. This is done for you on in the case of ACTION_SEND
from API 16.

Receiving a File from a File Provider
When you receive a shared file, you can get access to its contents using ContentResolver.open
InputStream. For example, to extract a Bitmap from a received content URI:

Uri uri = ShareCompat.IntentReader.from(activity).getStream();
Bitmap bitmap;
try (InputStream in = getContentResolver().openInputStream(uri)) {
 bitmap = BitmapFactory.decodeStream(in);
} catch (IOException e) {
 Log.e(TAG, e.getMessage(), e);
}

ACCESSING FILES FROM OTHER APPLICATIONS USING
THE STORAGE ACCESS FRAMEWORK

The Storage Access Framework provides a standard system-wide UI that can be used to enable users
to pick files from the external public storage directories, or from apps that choose to provide files by
exposing Document Providers.

276 ❘ CHAPTER 8 Files, saving state, and User PreFerences

This feature is useful for applications that may wish to include files, particularly images, created and
stored by those applications—such as when composing an e-mail, sending a text message, or posting
to social media.

Android provides a number of built in Document Providers that provide access to images, videos,
and audio files on the device—as well as access to the contents of all external public directories,
including those on SD cards or other external storage devices.

NOTE Document Providers can be used to provide access to files stored
remotely—for example Google Drive and Google Photos. If you wish to pro-
vide other applications access to files stored remotely by your application, you
can create your own DocumentsProvider. Coverage of how to build your own
Documents Provider is out of scope for this book; however, you can learn more
about it at d.android.com/guide/topics/providers/create-document-
provider.html#custom.

Document Providers accessed through the Storage Access Framework provide access to documents,
not traditional files.

Documents differ from files in that they are addressed by a URI, rather than by path and file name.
They also provide a level of abstraction over the usual file APIs to allow transparent access to cloud
based files.

Therefore when working with documents, you can’t use the java.io APIs. Instead, the
DocumentsContract class contains the equivalent methods that take a document Uri.

NOTE The Storage Access Framework was added in Android 4.4 Kit Kat (API
Level 19). However, the ACTION_GET_CONTENT described next can be used on all
versions of Android in conjunction with apps that provide an Activity that has
an Intent Filter for android.intent.action.GET_CONTENT.

Requesting Temporary Access to Files
When performing a one-time operation, such as posting a file to social media, you will only need
temporary access to the relevant file. You can enable users to select one or more files by using the
ACTION_GET_CONTENT action within an Intent:

Intent intent = new Intent(Intent.ACTION_GET_CONTENT);
intent.setType("image/*");
intent.addCategory(Intent.CATEGORY_OPENABLE);
intent.putExtra(Intent.EXTRA_ALLOW_MULTIPLE, true);
startActivityForResult(intent, REQUEST_IMAGES_CODE);

Accessing Files from Other Applications Using the Storage Access Framework ❘ 277

Using startActivityForResult, passing in this Intent, launches the Storage Access Framework UI,
which filters the available files based on the mime type specified in the Intent using setType.

Android supports both openable files (those with direct byte representations that you can access
with openInputStream) and virtual files (that do not have a byte representation). By specifying
CATEGORY_OPENABLE using addCategory, only openable files will be available to select.

The EXTRA_ALLOW_MULTIPLE extra is optional and indicates that the user can select multiple files
to return to your app. You can then use getClipData to retrieve the list of URIs selected when the
result Intent is returned. In all cases, the first URI selected is available by calling getData.

NOTE Because ACTION_GET_CONTENT preceded the Storage Access Framework,
legacy apps will still appear in the Storage Access Framework UI. Since API
Level 19, files returned using this technique will be Document URIs; how-
ever, legacy apps will return simple files. As a result, you can’t assume that all
returned URIs will be Document URIs. To determine if you’ve received a docu-
ment URI and can use the DocumentsContract APIs, use DocumentsContract
.isDocumentUri.

Requesting Persistent Access to Files
If you require persistent access to selected files, you should use ACTION_OPEN_DOCUMENT instead of
ACTION_GET_CONTENT. This allows your app to receive updates if the file is changed within the origi-
nal provider.

All URIs returned when using ACTION_OPEN_DOCUMENT will be document URIs, allowing advanced
functionality including retrieving metadata about the file (including the name and a summary of the
file), as well as optional functionality (such as getting a thumbnail).

It also enables you to manage the file using operations such as copying, deleting, moving, removing,
or renaming. Once you receive the document URI, you must call ContentResolver.take
PersistableUriPermission for each URI to get persistent permission to access the URI across
sessions and device reboots.

Requesting Access to Directories
Persistent access to files allows a client app to stay in sync with the Document Provider app, but
ignores any structural changes such as the addition of new files or new subdirectories. ACTION_
OPEN_DOCUMENT_TREE solves this problem by allowing the user to select a directory, and giving your
app persistent access to the entire directory tree, as seen in Listing 8-8.

LISTING 8-8: Requesting access to a directory with the Storage Access Framework

Intent intent = new Intent(Intent.ACTION_OPEN_DOCUMENT_TREE);
startActivityForResult(intent, REQUEST_DIRECTORY_CODE);

278 ❘ CHAPTER 8 Files, saving state, and User PreFerences

When a directory is selected, you’ll receive a document tree URI, allowing you to recursively enu-
merate all of the files in that directory. The same code used for Scoped Directory Access in Listings
8-6 and 8-7 can be used to parse the results of ACTION_OPEN_DOCUMENT_TREE.

Creating New Files
By creating an Intent that uses the ACTION_CREATE_DOCUMENT action, you can enable users to select
a location to save content—be it locally or to a cloud-based Document Provider offered through the
Storage Access Framework. The only required field is a mime type, set using setType; however, you
can provide a suggested initial name by including an EXTRA_TITLE extra. To ensure that you can
write the byte representation of the new file, CATEGORY_OPENABLE is also specified:

Intent intent = new Intent(Intent.ACTION_CREATE_DOCUMENT);
intent.setType("image/png");
intent.addCategory(Intent.CATEGORY_OPENABLE);
intent.putExtra(Intent.EXTRA_TITLE, "YourImage.png");
startActivityForResult(intent, REQUEST_CREATE_IMAGE_CODE);

When the user has selected a location for the new file (either by selecting an existing file of the
same mime type to override, or choosing a new filename), a document URI will be returned, and
the content of the file can be written using ContentResolver.openOutputStream. You can main-
tain persistent permission to access the newly created file by passing the returned content URI to
ContentResolver.takePersistableUriPermission as described earlier in this chapter.

USING URI-BASED PERMISSIONS

Android apps can only store files in application-specific directories, effectively segmenting them
from all other apps. This useful security property would normally prevent apps from sharing files to
other apps; however, Android provides a number of techniques using URI-based permissions, which
allow your app to grant temporary or persistent access of its files to other applications.

URI-based permissions are applied to single URIs, where each URI represents a specific file or direc-
tory. This allows a much more fine-grained security model than file permissions.

URI-based permissions are used behind the scenes to enable Scoped Directory Access, File
Providers, and the Storage Access Framework described earlier in this chapter, so understanding
how they operate can be useful.

Using URI-based permissions, an application can grant access to a particular file or directory within
its sandbox to another app—be it on the same user profile or on a work profile. You do this by
including FLAG_GRANT_READ_URI_PERMISSION or FLAG_GRANT_WRITE_URI_PERMISSION, as appro-
priate, within an Intent passed to the app seeking to access its files:

Intent sendIntent = new Intent();
sendIntent.setAction(Intent.ACTION_VIEW);
sendIntent.setType("image/png");
sendIntent.setData(contentUri);
sendIntent.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);
startActivity(sendIntent);

Using URI-Based Permissions ❘ 279

NOTE On Android 4.2 Jellybean (API Level 17) and higher devices, FLAG_
GRANT_READ_URI_PERMISSION is automatically added for all URIs included
in an ACTION_SEND Intent’s EXTRA_STREAM. Similarly, FLAG_GRANT_READ_
URI_PERMISSION and FLAG_GRANT_WRITE_URI_PERMISSION are automatically
added to an ACTION_IMAGE_CAPTURE and ACTION_VIDEO_CAPTURE Intent’s
EXTRA_OUTPUT.

Using FLAG_GRANT_PREFIX_URI_PERMISSION can be combined with the read or write URI permis-
sion to grant access to all URIs with a particular prefix.

URI-based permissions are short lived—as soon as the component that received the Intent with the
URI permission flags is destroyed, access to that URI is revoked. However, if the receiving compo-
nent forwards the Intent, including the flags to a Service for processing, the permission will remain
valid until both components are destroyed.

Further, if the sending app includes FLAG_GRANT_PERSISTABLE_URI_PERMISSION with the Intent,
the permission can be persisted with ContentResolver.takePersistableUriPermission and will
be kept until the app calls releasePersistableUriPermission, or the sending app calls Context
.revokeUriPermission.

This level of fine-grained control and ability for a sending app to grant permissions to resources to
other apps make URI-based permissions ideal for sharing files between apps.

Creating and Using Databases
WHAT’S IN THIS CHAPTER?

 ➤ Persisting application data using the Room persistence library

 ➤ Using Room to add, modify, and delete saved data

 ➤ Querying Room databases and observing query result changes
using Live Data

 ➤ Creating databases using the SQLite library

 ➤ Using the SQLiteOpenHelper to simplify SQLite database access

 ➤ Validating database input

 ➤ Using Content Values to add, modify, and delete database records

 ➤ Querying database records and managing Cursors

 ➤ Adding, modifying, and deleting data within a Firebase Database

 ➤ Querying and observing changes to a Firebase Database

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The code downloads for this chapter are found at www.wrox.com. The code for this chapter is
divided into the following major examples:

 ➤ Snippets_ch9.zip

 ➤ Earthquake_ch9.zip

9

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

282 ❘ CHAPTER 9 Creating and Using databases

INTRODUCING STRUCTURED DATA STORAGE IN ANDROID

This chapter introduces structured data storage in Android, starting with the Room persistence
library, before investigating the underlying SQLite relational database, and exploring the Firebase
Realtime NoSQL Database.

Room provides an abstraction layer over SQLite that allows you to persist your applications data
using the powerful SQLite database, while abstracting away the complexity of managing the data-
base itself.

You learn how to define the Room database and how to query it and perform transactions using
Data Access Objects (DAO). You also learn how to use Live Data to track changes in query results
within your application’s data layer, when the underlying data changes.

This chapter also explores the SQLite database APIs underlying Room. Using SQLite, you can cre-
ate fully encapsulated relational databases for your applications, and use them to store and manage
complex, structured application data.

Every application can create its own SQLite databases, over which it has complete control; all data-
bases are private, accessible only by the application that created them.

In addition to the SQLite relational database library, you can use the Firebase Realtime Database to
create and use a cloud-hosted NoSQL database.

By the end of this chapter, you’ll learn how to incorporate and use a cloud-based Firebase Database,
which stores its contents as a JSON tree on each device and automatically synchronizes it in real
time to the cloud-host and every connected client.

STORING DATA USING THE ROOM PERSISTENCE LIBRARY

Room is a persistence library that simplifies the process of adding a structured SQL database to
your app. Room provides an abstraction layer over an SQLite backend, making it easier to define
and access a database for your app’s structured data, while still offering the full power of SQLite.

One of the challenges of adding a database to your app is creating and maintaining an object-
relational mapping (ORM). An ORM is necessary, because while your application’s data is stored
as variables within objects defined by your classes, relational databases store data in rows using col-
umns within tables.

As a result, whenever you wish to store data in an SQLite table, you must first extract the data
stored as variables within each object, and convert them into a row of values according to the col-
umns of your table (using Content Values). Similarly, when extracting data from the table, you
receive one or more rows of values (as a Cursor), which must be translated into one or more objects.
Figure 9-1 shows the typical mapping of objects to rows within tables.

Storing Data Using the Room Persistence Library ❘ 283

Class: Hoard Table: Hoard

HoardNameString HoardName
int GoldHoarded

Boolean HoardAccessible

HoardName : Smegol
GoldHoarded : 10

HoardAccessible : TRUE

Object/
Relational
Mapping

Smegol

Smaug

10

1000000

TRUE

FALSE

.........

Objects

GoldHoarded HoardAccessible

FIGURE 9-1

Creating and maintaining the ORM code required to translate between your application’s class-
based data model, and the relational databases tables and columns, is one of the most error prone
and time-consuming aspects of using relational databases such as SQLite.

Room simplifies this by allowing you to use annotations within your class definitions, which map
class variables to table columns, and methods to SQL statements. This abstracts away the underly-
ing database, meaning you don’t need to maintain a separate list of table and column names, or
separately maintain SQL statements for inserting, deleting, updating, or querying SQL statements.

Query annotations use SQL, providing the full power of SQLite, while also allowing the compiler to
verify each query at compile time. As a result, if a query has invalid field/column names, a compila-
tion error occurs instead of a runtime failure.

Adding the Room Persistence Library
The Room persistence library is available as part of the Android Architecture Components suite of
libraries, available from Google’s Maven repository.

To add Room to your application, first ensure your project build.gradle file includes the Google
Maven repository within the all projects repositories node:

allprojects {
 repositories {
 jcenter()
 maven { url 'https://maven.google.com' }
 }
}

284 ❘ CHAPTER 9 Creating and Using databases

Open your app module build.gradle file and add the following Room library dependencies within
the dependencies node (as always, you should indicate the newest version available to you):

dependencies {
 [... Existing dependencies ...]

 implementation "android.arch.lifecycle:extensions:1.1.1"
 implementation "android.arch.persistence.room:runtime:1.1.1"
 annotationProcessor "android.arch.persistence.room:compiler:1.1.1"
 testImplementation "android.arch.persistence.room:testing:1.1.1"
}

Defining a Room Database
The Room persistence model requires you to define three components:

 ➤ Entity—One or more classes, annotated with the @Entity annotation, which define the struc-
ture of a database table that will be used to store instances of the annotated class.

 ➤ Data Access Object—A class annotated with the @Dao annotation that will define the meth-
ods used to modify or query the database.

 ➤ Room Database—An abstract class annotated with the @Database annotation that extends
RoomDatabase. This class is the main access point for the underlying SQLite connection, and
must also include an abstract method that returns the Data Access Object class and the list of
entities the database will contain.

Figure 9-2 illustrates the relationship between the Room persistence model, the underlying database,
and your application.

Classes annotated as entities are used to define the tables within your database. Each entity must
include one non-nullable field annotated as the primary key using the @PrimaryKey annotation. The
following snippet will create a table that includes three columns containing the hoard name, amount
of gold hoarded, and the hoard’s accessibility, where the hoard name is the primary key:

@Entity
public class Hoard {
 @NonNull
 @PrimaryKey
 public String HoardName;
 public int GoldHoarded;
 public boolean HoardAccessible;
}

By default, all public fields will be included in the table definition. You can use the @Ignore annota-
tion to indicate fields that should not be persisted.

To persist fields that are accessed using getters and setters, rather than public variables, you can
annotate the private variables, provided that the getters and setters use JavaBeans notation, where
the methods for variable foo would be getFoo and setFoo respectively, as shown in Listing 9-1.
Note that for Boolean values, an is method—isFoo—can be used instead of a get method.

Storing Data Using the Room Persistence Library ❘ 285

Rest of Your Application

Persist or
Retrieve
Entities

Data Access Object
(DAO)

Room Database
Entities

Table Table

SQLite Database

Table

Retrieve
DAO

Classes to
Persist

Class Instance
Objects

Set/Get
Object/Entity Values

FIGURE 9-2

LISTING 9-1: Defining a Room entity

@Entity
public class Hoard {
 @NonNull
 @PrimaryKey
 private String hoardName;
 private int goldHoarded;
 private boolean hoardAccessible;

 public String getHoardName() {
 return hoardName;
 }
 public void setHoardName(String hoardName) {
 this.hoardName = hoardName;
 }

 public int getGoldHoarded() {
 return goldHoarded;
 }

continues

286 ❘ CHAPTER 9 Creating and Using databases

 public void setGoldHoarded(int goldHoarded) {
 this.goldHoarded = goldHoarded;
 }

 public boolean getHoardAccessible() {
 return hoardAccessible;
 }

 public void setHoardAccessible(boolean hoardAccessible) {
 this.hoardAccessible = hoardAccessible;
 }

 public Hoard(String hoardName, int goldHoarded, boolean hoardAccessible) {
 this.hoardName = hoardName;
 this.goldHoarded = goldHoarded;
 this.hoardAccessible = hoardAccessible;
 }
}

The parameters for your class’s constructors should contain names and types that correspond to the
entity fields, as shown in Listing 9-1. Empty or partial constructors are also supported.

Once your entities are defined, create a new abstract class that extends RoomDatabase, annotating
it with a @Database annotation that includes a list of each of your entity classes and the current ver-
sion number—as shown in Listing 9-2.

LISTING 9-2: Defining a Room database

@Database(entities = {Hoard.class}, version = 1)
public abstract class HoardDatabase extends RoomDatabase{
}

Before you can use your database you must create a data access object class, which will be returned
from your Room Database, as shown in the section, “Defining Room Database Interactions Using
Data Access Objects.”

Persisting Complex Objects Using Type Convertors
Room will attempt to allocate a column for each field; however, only the primitive types supported
by SQLite—Booleans, Strings, integers, longs, and doubles—will work by default.

For public fields that hold class objects, you can choose to use the @Ignore annotation, as shown in
the following snippet, to indicate a field that should not be stored in the database:

@Entity
public class Album {
 @NonNull

LISTING 9-1 (continued)

Storing Data Using the Room Persistence Library ❘ 287

 @PrimaryKey
 public String albumName;
 public String artistName;
 @Ignore
 public Bitmap albumArt;
}

Alternatively, if you wish to record the contents of an object within your Room database you must
define a pair of Type Convertor methods—annotated using the @TypeConverter annotation—that
can translate back-and-forth between the object stored in the field and a single primitive value.

The following snippet shows a simple pair of Type Converters that translate between a Date object
and a long value representing the timestamp:

public class MyTypeConverters {
 @TypeConverter
 public static Date dateFromTimestamp(Long value) {
 return value == null ? null : new Date(value);
 }

 @TypeConverter
 public static Long dateToTimestamp(Date date) {
 return date == null ? null : date.getTime();
 }
}

Once defined, you can use the @TypeConverters annotation to apply the Type Converters within
one or more classes, defined as an array value as shown in the following snippet:

@TypeConverters({MyTypeConverters.class})

Typically, you will apply the @TypeConverters annotation to the Room Database definition as
shown in this snippet:

@Database(entities = {Album.class}, version = 1)
@TypeConverters({MyTypeConverters.class})
public abstract class AlbumDatabase extends RoomDatabase{
}

This will apply the Type Converters within the specified class to every Entity and DAO within your
database.

Alternatively, you can restrict the scope of the Type Converters within a given class to one or more
specific Entities, DAOs, specific Entity fields, DAO methods, or even individual DAO method
parameters.

As a result, you can create multiple alternative Type Converters—between the same object/
primitive-type pairs—that are applied to different elements within your Room Database.

For more information on why Room doesn’t automatically support storage or object references, see
the Room documentation at d.android.com/training/data-storage/room/referencing-data
.html.

288 ❘ CHAPTER 9 Creating and Using databases

Defining Room Database Interactions Using Data Access
Objects

Data Access Objects (DAO) are classes used to define your Room database interactions, including
methods used to insert, delete, update, and query your database. If your database includes multiple
tables, it’s best practice to have multiple DAO classes, one for each table.

DAO’s are defined either as interfaces or abstract classes, annotated using the @Dao annotation as
shown in Listing 9-3.

LISTING 9-3: Defining a Room Data Access Object

@Dao
public interface HoardDAO {
}

Once defined, make it available to your app by adding a new abstract public method to the Room
Database class that returns the new DAO, as shown in Listing 9-4 that extends Listing 9-2.

LISTING 9-4: Returning a DAO from a Room database

@Database(entities = {Hoard.class}, version = 1)
public abstract class HoardDatabase extends RoomDatabase{
 public abstract HoardDAO hoardDAO();
}

Within your DAO, create new methods to support each of your database interactions using the
@Insert, @Update, @Delete, and @Query annotations.

Inserting Entities
Use the @Insert annotation to annotate methods that will be used to insert a new object/entity
instance into your database. Each insert method can accept one or more parameters (including col-
lections), of the type/entity represented by this DAO.

As shown in Listing 9-5, you can include multiple insert methods, and optionally use the
on Conflict annotation parameter to indicate a strategy for handling conflicts where the inserted
object has the same primary key value as an existing stored object.

LISTING 9-5: Defining a Room database insert method within a DOA

@Dao
public interface HoardDAO {
 // Insert a list of hoards, replacing stored
 // hoards using the same name.
 @Insert(onConflict = OnConflictStrategy.REPLACE)
 public void insertHoards(List<Hoard> hoards);

Storing Data Using the Room Persistence Library ❘ 289

 // Insert one new hoard.
 @Insert
 public void insertHoard(Hoard hoard);
}

In addition to the replace strategy for conflict resolution shown in Listing 9-5, the following alterna-
tives are available:

 ➤ ABORT—Cancel the ongoing transaction.

 ➤ FAIL—Cause the current transaction to fail.

 ➤ IGNORE—Ignore the conflicting new data and continue the transaction.

 ➤ REPLACE—Override the existing value with the newly supplied value and continue the
transaction.

 ➤ ROLLBACK—Roll back the current transaction, reversing any previously made changes.

Updating Entities
You can create methods that update objects stored within your database using the @Update annota-
tion, as shown in Listing 9-6.

Like insert methods, each update method can accept one or more entity parameters (including col-
lections). Each object parameter passed in will be matched against the primary key of existing data-
base entities and updated accordingly.

LISTING 9-6: Defining a Room database update method within a DOA

@Update
public void updateHoards(Hoard... hoard);

@Update
public void updateHoard(Hoard hoard);

Deleting Entities
To define a method that deletes or removes an object from the database, use the @Delete annota-
tion, as shown in Listing 9-7. Room will use the primary key of each received parameter to find enti-
ties within the database and remove them.

LISTING 9-7: Defining a Room database delete method within a DOA

@Delete
public void deleteHoard(Hoard hoard);

@Delete
public void deleteTwoHoards(Hoard hoard1, Hoard hoard2);

290 ❘ CHAPTER 9 Creating and Using databases

If you wish to remove all the entities stored within a given table, you must use a @Query annotation
that deletes all the entries from a given table:

@Query("DELETE FROM hoard")
public void deleteAllHoards();

Query annotations can be used to perform arbitrary SQL operations against your Room database,
as shown in the following section.

Querying a Room Database
The most powerful annotation you can use within your DAO class is @Query. The @Query anno-
tation allows you to perform read/write operations on the database using SELECT, UPDATE, and
DELETE SQL statements, defined in the annotation value as shown in the snippet below, which will
be executed when the associated method is called:

@Query("SELECT * FROM hoard")
public List<Hoard> loadAllHoards();

Each @Query SQL statement is verified at compile time, so if there is a problem with the query, a
compilation error occurs instead of a runtime failure.

To use method parameters within the SQL query statement, you can reference them by prepending
a colon (:) to the parameter name, as shown in Listing 9-8, which shows two common SELECT
statements—one that returns all the database table entries, and another that returns a given row
based on a primary key value.

LISTING 9-8: Querying a Room database

// Return all hoards
@Query("SELECT * FROM hoard")
public List<Hoard> loadAllHoards();

// Return a named hoard
@Query("SELECT * FROM hoard WHERE hoardName = :hoardName")
public Hoard loadHoardByName(String hoardName);

For SELECT queries that return one or more entities from a table, Room auto-generates the code that
converts the query result into the return type indicated by your method.

It’s also possible to pass through method parameters that contain a List or array of values as shown
in Listing 9-9.

LISTING 9-9: Using a List parameter when querying a Room database

@Query("SELECT * FROM Hoard WHERE hoardName IN(:hoardNames)")
public List<Hoard> findByNames(String[] hoardNames);

Storing Data Using the Room Persistence Library ❘ 291

Room will construct a query that binds each element in the array or list, for example if the hoard-
Names parameter in Listing 9-9 is an array of 3 elements, Room will run the query as follows:

SELECT * FROM Hoard WHERE hoardName IN(?, ?, ?)

For efficiency reasons, it’s often desirable to return only a subset of fields/columns from the underly-
ing Room database—or to return a single calculated value such as in this snippet:

@Query("SELECT SUM(goldHoarded) FROM hoard")
public int totalGoldHoarded();

To return a subset of columns/fields, create a new class that contains public fields that match the
returned columns, as shown in this snippet:

public class AnonymousHoard {
 public int goldHoarded;
 public boolean hoardAccessible;
}

Then define a SELECT statement that indicates the columns to return, and set the return type of the
method to any class that contains public fields that match the returned column names, as shown in
Listing 9-10.

LISTING 9-10: Returning a subset of columns from a Room database query

@Query("SELECT goldHoarded, hoardAccessible FROM hoard")
public List<AnonymousHoard> getAnonymousAmounts();

@Query("SELECT AVG(goldHoarded) FROM hoard")
public int averageGoldHoarded();

When a single row is returned, the return type can be any compatible type. For queries that return
multiple values, you can use a List or array of a compatible type. It’s also possible to return a raw
Cursor, or have the results wrapped in a LiveData object as described in a later section.

Room verifies the return results of SELECT queries, such that if the fields in the method’s return type
don’t match the columns names in the query response, you’ll receive a warning (if only some field
names match), or an error (if no field names match.)

Performing Room Database Interactions
Once you’ve defined the entities, DAO, and Room Database classes for your Room database, you
can interact with it using the Room databaseBuilder method, passing in the application context,
your Room Database, and filename to use for your database.

Creating and maintaining a Room Database instance is resource intensive, so it’s best practice to use
a singleton pattern to control access, as shown in Listing 9-11.

292 ❘ CHAPTER 9 Creating and Using databases

LISTING 9-11: Creating a Room Database access singleton

public class HoardDatabaseAccessor {

 private static HoardDatabase HoardDatabaseInstance;
 private static final String HOARD_DB_NAME = "hoard_db";

 private HoardDatabaseAccessor() {}

 public static HoardDatabase getInstance(Context context) {
 if (HoardDatabaseInstance == null) {
 // Create or open a new SQLite database, and return it as
 // a Room Database instance.
 HoardDatabaseInstance = Room.databaseBuilder(context,
 HoardDatabase.class, HOARD_DB_NAME).build();
 }

 return HoardDatabaseInstance;
 }
}

You can then access your Room Database anywhere in your code, using the DAO classes to perform
insert, delete, update, and query operations on your database as shown in Listing 9-12.

LISTING 9-12: Performing database interactions with Room

// Access the Hoard Database instance.
HoardDatabase hoardDb =
 HoardDatabaseAccessor.getInstance(getApplicationContext());

// Add new hoards to the database.
hoardDb.hoardDAO().insertHoard(new Hoard("Smegol", 1, true));
hoardDb.hoardDAO().insertHoard(new Hoard("Smaug", 200000, false));

// Query the database.
int totalGold = hoardDb.hoardDAO().totalGoldHoarded();
List<Hoard> allHoards = hoardDb.hoardDAO().loadAllHoards();

WARNING As with accessing Internet resources, Room doesn’t allow data-
base interactions to occur on the main UI thread. Chapter 11, “Working in the
Background” presents a number of options for moving your database interac-
tions safely onto a background thread.

Monitoring Query Result Changes with Live Data
The LiveData API allows you to receive updates when modifications to a database result in changes
to the results of a query.

Storing Data Using the Room Persistence Library ❘ 293

Live Data is an observable data holder that respects the lifecycle of Activities and Fragments, such
that an observed Live Data only updates observers that are in an active lifecycle state.

To use Live Data, first add the Android Architecture Components Lifecycle extensions library
to your project, by modifying your app module build.gradle file to include the following
dependency:

implementation "android.arch.lifecycle:extensions:1.1.1"

To enable observing a Room query result for changes, set its return type to LiveData, and indicate
the type being observed—as shown in Listing 9-13.

LISTING 9-13: Creating an observable query using Live Data

@Query("SELECT * FROM hoard")
public LiveData<List<Hoard>> monitorAllHoards()

To monitor a Live Data query, implement a new Observer of the appropriate type—overriding the
onChanged handler. Use your Database’s DAO to return an instance of the Live Data query result,
and call its observe method, passing in the lifecycle owner (typically the Activity or Fragment
whose UI is affected by the changed query result) and your Observer implementation, as shown in
Listing 9-14.

Note that it’s generally considered best practice to begin observing a Live Data query from within a
component’s onCreate handler.

LISTING 9-14: Observing a Room query Live Data result

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // The observer, which will be triggered when the Live Data changes
 final Observer<List<Hoard>> hoardObserver = new Observer<List<Hoard>>() {
 @Override
 public void onChanged(@Nullable final List<Hoard> updatedHoard) {
 // Update the UI with the updated database results.
 }
 };

 // Observe the LiveData
 LiveData hoardLiveData =
 HoardDatabaseAccessor.getInstance(getApplicationContext())
 .hoardDAO().monitorAllHoards();
 hoardLiveData.observe(this, hoardObserver);
}

Calling observe will immediately result in the Observer’s onChanged handler being triggered, after
which it will be triggered again any time data in the underlying tables changes.

294 ❘ CHAPTER 9 Creating and Using databases

Live Data only notifies active observers about updates, automatically handling Activity and
Fragment lifecycle changes, preventing crashes due to stopped Activities, and safely handling con-
figuration changes.

You can learn more about the Lifecycle Library and other Android Architecture Components on the
Android Developers site at: developer.android.com/topic/libraries/architecture

PERSISTING EARTHQUAKES TO A DATABASE WITH ROOM

In this example you modify the ongoing earthquake monitoring example application by creating a
Room database to persist the earthquake data between user sessions.

 1. Begin by ensuring the project’s build.gradle file includes the Google Maven repository
within the all projects repositories node:

allprojects {
 repositories {
 jcenter()
 maven { url 'https://maven.google.com' }
 }
}

 2. Then open your app module build.gradle file and add dependencies for the Android
Architecture Components Room and Live Data libraries within the dependencies node:

dependencies {
 [... Existing dependencies nodes ...]

 implementation "android.arch.persistence.room:runtime:1.1.1"
 annotationProcessor "android.arch.persistence.room:compiler:1.1.1"
 testImplementation "android.arch.persistence.room:testing:1.1.1"
 implementation "android.arch.lifecycle.extensions:1.1.1"
}

 3. You will be persisting instances of the Earthquake class, so open it now, and annotate the
class using the @Entity annotation. Take this opportunity to annotate the mId field to be the
non-null primary key.

@Entity
public class Earthquake {
 @NonNull
 @PrimaryKey
 private String mId;
 private Date mDate;
 private String mDetails;
 private Location mLocation;

Persisting Earthquakes to a Database with Room ❘ 295

 private double mMagnitude;
 private String mLink;

 [... Existing Class definition ...]
}

 4. Notice that our Earthquake fields include complex Date and Location objects. Create a new
EarthquakeTypeConverters class with static methods to convert back-and-forth between
Date objects and Long values, and Location objects and String values. Each method must be
annotated with the @TypeConverter annotation:

public class EarthquakeTypeConverters {
 @TypeConverter
 public static Date dateFromTimestamp(Long value) {
 return value == null ? null : new Date(value);
 }

 @TypeConverter
 public static Long dateToTimestamp(Date date) {
 return date == null ? null : date.getTime();
 }

 @TypeConverter
 public static String locationToString(Location location) {
 return location == null ?
 null : location.getLatitude() + "," +
 location.getLongitude();
 }

 @TypeConverter
 public static Location locationFromString(String location) {
 if (location != null && (location.contains(","))) {
 Location result = new Location("Generated");
 String[] locationStrings = location.split(",");
 if (locationStrings.length == 2) {
 result.setLatitude(Double.parseDouble(locationStrings[0]));
 result.setLongitude(Double.parseDouble(locationStrings[1]));
 return result;
 }
 else return null;
 }
 else
 return null;
 }
}

 5. Create a new EarthquakeDAO interface definition. It should be annotated using the @Dao
annotation, and will act as our Earthquake table Data Access Object. Include methods anno-
tated with @Insert that insert one Earthquake or a List of Earthquakes, and which resolves
conflicts by replacing existing database entries. Also define a query method that returns a

296 ❘ CHAPTER 9 Creating and Using databases

Live Data containing a List of all the Earthquakes, using the @Query annotation with an SQL
statement that selects all rows from the earthquake table:

@Dao
public interface EarthquakeDAO {
 @Insert(onConflict = OnConflictStrategy.REPLACE)
 public void insertEarthquakes(List<Earthquake> earthquakes);

 @Insert(onConflict = OnConflictStrategy.REPLACE)
 public void insertEarthquake(Earthquake earthquake);

 @Delete
 public void deleteEarthquake(Earthquake earthquake);

 @Query("SELECT * FROM earthquake ORDER BY mDate DESC")
 public LiveData<List<Earthquake>> loadAllEarthquakes();
}

 6. Complete the database setup by creating a new abstract EarthquakeDatabase class that
extends RoomDatabase. It should be annotated using the @Database annotation, with values
specifying the Earthquake class as an entity, and a database schema version number. Use the
@TypeConverters annotation to specify that our Earthquake Type Converters from Step 4
should be used, and include an abstract method that returns our EarthquakeDAO data access
object from Step 5:

@Database(entities = {Earthquake.class}, version = 1)
@TypeConverters({EarthquakeTypeConverters.class})
public abstract class EarthquakeDatabase extends RoomDatabase {
 public abstract EarthquakeDAO earthquakeDAO();
}

 7. To interact with your new database, create a new EarthquakeDatabaseAccessor class,
which uses the Singleton pattern to return an instance of the EarthquakeDatabase defined in
Step 6:

public class EarthquakeDatabaseAccessor {

 private static EarthquakeDatabase EarthquakeDatabaseInstance;
 private static final String EARTHQUAKE_DB_NAME = "earthquake_db";

 private EarthquakeDatabaseAccessor() {}

 public static EarthquakeDatabase getInstance(Context context) {
 if (EarthquakeDatabaseInstance == null) {
 // Create or open a new SQLite database, and return it as
 // a Room Database instance.
 EarthquakeDatabaseInstance = Room.databaseBuilder(context,
 EarthquakeDatabase.class, EARTHQUAKE_DB_NAME).build();
 }

 return EarthquakeDatabaseInstance;
 }
}

Persisting Earthquakes to a Database with Room ❘ 297

 8. Now update the doInBackground method within the Async Task of your EarthquakeView-
Model to store the newly parsed List of Earthquakes into the database using the Earthquake
Database Accessor from Step 7. Note that our DAO insert method has been configured to handle
collisions by replacing existing rows to avoid duplicate entries:

@Override
protected List<Earthquake> doInBackground(Void... voids) {
 // Result ArrayList of parsed earthquakes.
 ArrayList<Earthquake> earthquakes = new ArrayList<>(0);

 [... Existing earthquake feed downloading and parsing code ...]

 // Insert the newly parsed array of Earthquakes
 EarthquakeDatabaseAccessor
 .getInstance(getApplication())
 .earthquakeDAO()
 .insertEarthquakes(earthquakes);

 // Return our result array.
 return earthquakes;
}

 9. Still within the Earthquake View Model, update the onPostExecute handler within your
Async Task. The loadEarthquakes method will no longer directly apply the list of parsed
Earthquakes to our Live Data field, instead we’ll replace our Mutable Live Data with a query
of the database:

@Override
protected void onPostExecute(List<Earthquake> data) {
}

 10. Update the View Model’s earthquakes class variable to be of type LiveData, and update
the getEarthquakes method to query the Room database. The Earthquake List Fragment
is already expecting Live Data, so no further changes are necessary—the onChanged handler
will be triggered whenever the Room database is modified:

private LiveData<List<Earthquake>> earthquakes;

public LiveData<List<Earthquake>> getEarthquakes() {
 if (earthquakes == null) {
 // Load the Earthquakes from the database.
 earthquakes =
 EarthquakeDatabaseAccessor
 .getInstance(getApplication())
 .earthquakeDAO()
 .loadAllEarthquakes();

 // Load the earthquakes from the USGS feed.
 loadEarthquakes();
 }

 return earthquakes;
}

298 ❘ CHAPTER 9 Creating and Using databases

WORKING WITH SQLITE DATABASES

The SQLite APIs provide direct, low-level access to the SQLite database library. While powerful,
using SQLite directly can require significant amounts of boilerplate code. It also offers no compile-
time verification of SQL queries, increasing the risk of runtime errors.

To help simplify the process of storing application data within SQLite databases, Android has intro-
duced the Room persistence library, described in the previous section. Room provides an abstraction
layer over SQLite and is now considered best practice for storing and querying information for your
application.

That said, there may be circumstances where you want to create or access your own SQLite data-
base directly. This section assumes you have basic familiarity with SQL databases, and aims to help
you apply that knowledge to SQLite databases on Android specifically.

SQLite is a well-regarded SQL-based relational database management system (RDBMS). It is:

 ➤ Open source

 ➤ Standards-compliant, implementing most of the SQL standard

 ➤ Lightweight

 ➤ Single-tier

 ➤ ACID compliant

It has been implemented as a compact C library that’s included as part of the Android software
stack.

By being implemented as a library, rather than running as a separate ongoing process, each SQLite
database is an integrated part of the application that created it. This reduces external dependencies,
minimizes latency, and simplifies transaction locking and synchronization.

Lightweight and powerful, SQLite differs from many conventional SQL database engines by loosely
typing each column, meaning that column values are not required to conform to a single type;
instead, each value is typed individually in each row. As a result, type checking isn’t necessary when
assigning or extracting values from each column within a row.

Android databases are stored in the /data/data/<package_name>/databases folder on your
device (or emulator).

NOTE For more comprehensive coverage of SQLite, including its particular
strengths and limitations, check out the official site at www.sqlite.org.

Relational database design is a big topic that deserves more thorough coverage than is possible
within this book. It is worth highlighting that standard database best practices still apply in
Android. In particular, when you’re creating databases for resource-constrained devices (such as
mobile phones), it’s important to normalize your data to minimize redundancy.

Working with SQLite Databases ❘ 299

The SQLite databases described in detail in this chapter are only one of countless database options
available for storing structured data within your application—a comprehensive investigation
of available database technologies is beyond the scope of this book.

Input Validation and SQL Injection
Insufficiently validating user input is one of the most common security risks for applications, irre-
spective of the underlying platform or database implementation. To minimize these risks, Android
has multiple platform-level features that reduce the potential impact of input validation issues.

Dynamic, string-based languages such as SQL are particularly at risk from input validation prob-
lems due to their support for escape characters and the possibility of script injection.

If user data is used within the query or transaction strings submitted to an SQLite database (or
Content Provider), SQL injection may be an issue. The most important best practice is to always
pass in user strings using the parameterized query methods query, insert, update, and delete,
as described in the following sections. This will minimize the potential for SQL injection from
untrusted sources.

Using parameterized methods is not sufficient if the selection parameter is built by concatenating
user data prior to submitting it to the method. Instead, you should use ? to indicate user-supplied
variables that are then passed in as an array of strings using the selectionargs parameter. These
selection arguments are bound as strings, negating the risk of escape character or SQL injection.

You can learn more about SQL injection and how to mitigate the risks associated with it here:
www.owasp.org/index.php/SQL_Injection

Cursors and Content Values
SQLite Database and Content Provider query results are returned using Cursor objects. Rather than
extracting and returning a copy of the result values, Cursors are pointers to the result set within the
underlying data. Cursors provide a managed way of controlling your position (row) in the result set
of a query.

The Cursor class includes a number of navigation and interaction functions, including, but not lim-
ited to, the following:

 ➤ moveToFirst—Moves the cursor to the first row in the query result

 ➤ moveToNext—Moves the cursor to the next row

 ➤ moveToPrevious—Moves the cursor to the previous row

 ➤ getCount—Returns the number of rows in the result set

 ➤ getColumnIndexOrThrow—Returns the zero-based index for the column with the specified
name (throwing an exception if no column exists with that name)

 ➤ getColumnName—Returns the column name with the specified index

 ➤ getColumnNames—Returns a string array of all the column names in the current Cursor

 ➤ moveToPosition—Moves the cursor to the specified row

 ➤ getPosition—Returns the current cursor row position

300 ❘ CHAPTER 9 Creating and Using databases

Where Cursors return results, Content Values are used to insert or update rows. Each
ContentValues object represents a single table row as a map of column names to values.

Defining a Database Contract
It’s good form to encapsulate the underlying database and expose only the public methods and
constants required to interact with the underlying data, generally using what’s often referred to as
a contract or helper class. This class should expose database constants, particularly column names,
which will be required for populating and querying the database as shown in Listing 9-15.

LISTING 9-15: Skeleton code for contract class constants

public static class HoardContract {
 // The index (key) column name for use in where clauses.
 public static final String KEY_ID = "_id";

 // The name and column index of each column in your database.
 // These should be descriptive.
 public static final String KEY_GOLD_HOARD_NAME_COLUMN =
 "GOLD_HOARD_NAME_COLUMN";
 public static final String KEY_GOLD_HOARD_ACCESSIBLE_COLUMN =
 "OLD_HOARD_ACCESSIBLE_COLUMN";
 public static final String KEY_GOLD_HOARDED_COLUMN =
 "GOLD_HOARDED_COLUMN";
}

Introducing the SQLiteOpenHelper
SQLiteOpenHelper is an abstract class used to help implement the best practice pattern for creating,
opening, and upgrading databases.

By implementing an SQLite Open Helper, you can encapsulate and hide the logic used to decide if a
database needs to be created or upgraded before it’s opened, as well as ensure that each operation is
completed efficiently.

It’s good practice to defer creating and opening databases until they’re needed, and the SQLite Open
Helper facilitates this pattern by caching database instances after they’ve been successfully opened,
so you can make requests to open the database immediately prior to performing any query or trans-
action. For the same reason, there is no need to close the database manually until the Activity is
finished.

Listing 9-16 shows how to extend the SQLiteOpenHelper class by overriding the constructor,
onCreate, and onUpgrade methods to handle the creation of a new database, and upgrading to a
new version, respectively.

Working with SQLite Databases ❘ 301

LISTING 9-16: Implementing an SQLite Open Helper

public static class HoardDBOpenHelper extends SQLiteOpenHelper {

 public static final String DATABASE_NAME = "myDatabase.db";
 public static final String DATABASE_TABLE = "GoldHoards";
 public static final int DATABASE_VERSION = 1;

 // SQL Statement to create a new database.
 private static final String DATABASE_CREATE =
 "create table " + DATABASE_TABLE + " (" + HoardContract.KEY_ID +
 " integer primary key autoincrement, " +
 HoardContract.KEY_GOLD_HOARD_NAME_COLUMN + " text not null, " +
 HoardContract.KEY_GOLD_HOARDED_COLUMN + " float, " +
 HoardContract.KEY_GOLD_HOARD_ACCESSIBLE_COLUMN + " integer);";

 public HoardDBOpenHelper(Context context, String name,
 SQLiteDatabase.CursorFactory factory, int version)
 {
 super(context, name, factory, version);
 }

 // Called when no database exists in disk and the helper class needs
 // to create a new one.
 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL(DATABASE_CREATE);
 }

 // Called when there is a database version mismatch meaning that
 // the version of the database on disk needs to be upgraded to
 // the current version.
 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) {
 // Log the version upgrade.
 Log.w("TaskDBAdapter", "Upgrading from version " +
 oldVersion + " to " +
 newVersion +
 ", which will destroy all old data");

 // Upgrade the existing database to conform to the new
 // version. Multiple previous versions can be handled by
 // comparing oldVersion and newVersion values.

 // The simplest case is to drop the old table and create a new one.
 db.execSQL("DROP TABLE IF EXISTS " + DATABASE_TABLE);
 // Create a new one.
 onCreate(db);
 }
}

302 ❘ CHAPTER 9 Creating and Using databases

NOTE In this example onUpgrade simply drops the existing table and replaces
it with the new definition. This is often the simplest and most practical solution;
however, for important data that is not synchronized with an online service or
is hard to recapture, a better approach may be to migrate existing data into the
new table.

The database creation SQL string defined in the DATABASE_CREATE variable in Listing 9-16 creates a
new table that includes an auto-incrementing key. Although not strictly a requirement, it’s strongly
recommended that all tables include an auto-increment key field to guarantee a unique identifier for
each row.

If you plan to share your table using a Content Provider (described in Chapter 10), a unique ID field
is required.

Opening Databases with the SQLite Open Helper
To access a database using the SQLite Open Helper, call getWritableDatabase or getReadable-
Database to open and obtain an instance of the underlying database.

Behind the scenes, if the database doesn’t exist, the helper executes its onCreate handler. If the
database version has changed, the onUpgrade handler will fire. In either case, the get<read/
writ>ableDatabase call will return the cached, newly opened, newly created, or upgraded data-
base, as appropriate.

Note that in situations where the database exists and has previously been opened, both get<read/
writ>ableDatabase methods will return the same, cached writeable database instance.

To create or upgrade the database, it must be opened in a writeable form; therefore, it’s generally
good practice to always attempt to open a writeable database. However, a call to getWritable-
Database can fail due to disk space or permission issues so it’s good practice to fall back to the get-
ReadableDatabase method for queries if possible as shown in Listing 9-17.

LISTING 9-17: Opening a database using the SQLite Open Helper

HoardDBOpenHelper hoardDBOpenHelper = new HoardDBOpenHelper(context,
 HoardDBOpenHelper.DATABASE_NAME, null,
 HoardDBOpenHelper.DATABASE_VERSION);

SQLiteDatabase db;
try {
 db = hoardDBOpenHelper.getWritableDatabase();
} catch (SQLiteException ex) {
 db = hoardDBOpenHelper.getReadableDatabase();
}

Working with SQLite Databases ❘ 303

When a database has been successfully opened, the SQLite Open Helper will cache it, so you can
(and should) use these methods each time you query or perform a transaction on the database,
rather than caching the open database within your application.

Opening and Creating Databases Without the SQLite Open
Helper

If you would prefer to manage the creation, opening, and version control of your databases directly,
without the SQLite Open Helper, you can use the application Context’s openOrCreateDatabase
method to create the database itself:

SQLiteDatabase db = context.openOrCreateDatabase(DATABASE_NAME,
 Context.MODE_PRIVATE,
 null);

This approach does not check for the existence of the database, or what version it is, so you must
handle the creation and upgrade logic yourself—typically using the database’s execSQL method to
create and drop tables, as required.

Adding, Updating, and Deleting Rows
The SQLiteDatabase class exposes insert, delete, and update methods that encapsulate the SQL
statements required to perform these actions. Additionally, the execSQL method lets you execute any
valid SQL statement on your database tables, should you want to execute these (or any other) opera-
tions manually.

Any time you modify the underlying database values, you should update any query result Cursors by
re-running any queries.

NOTE Database operations should always be performed on a background
Thread to ensure they don’t interrupt the UI, as described in detail in Chapter
11. It’s also best practice not to handle database interactions directly within
Activities or Fragments; View Models are designed specifically as a mechanism
to store database results and handle interactions so that database operations
aren’t interrupted on device configuration changes.

Inserting Rows
To create a new row, construct a ContentValues object and use its put methods to add name/value
pairs representing each column name and its associated value.

Insert the new row by passing the Content Values into the insert method called on the target data-
base—along with the table name—as shown in Listing 9-18.

304 ❘ CHAPTER 9 Creating and Using databases

LISTING 9-18: Inserting a new row into an SQLite database

// Create a new row of values to insert.
ContentValues newValues = new ContentValues();

// Assign values for each row.
newValues.put(HoardContract.KEY_GOLD_HOARD_NAME_COLUMN, newHoardName);
newValues.put(HoardContract.KEY_GOLD_HOARDED_COLUMN, newHoardValue);
newValues.put(HoardContract.KEY_GOLD_HOARD_ACCESSIBLE_COLUMN,
 newHoardAccessible);
// [... Repeat for each column / value pair ...]

// Insert the row into your table
SQLiteDatabase db = hoardDBOpenHelper.getWritableDatabase();
db.insert(HoardDBOpenHelper.DATABASE_TABLE, null, newValues);

NOTE The second parameter used in the insert method shown in Listing 9-18 is
known as the null column hack.

If you want to add a new row to an SQLite database by passing in an empty
Content Values object, you must also pass in the name of a column whose value
can be explicitly set to null.

When inserting a new row into an SQLite database, you must always explicitly
specify at least one column and a corresponding value, the latter of which can be
null. If you set the null column hack parameter to null, as shown in Listing 9-18,
when inserting an empty Content Values object SQLite will throw an exception.

Updating Rows
You also update rows using Content Values. Create a new ContentValues object, using the put
methods to assign new values to each column you want to update. Call the update method on the
database, passing in the table name, the updated Content Values object, and a where clause that
specifies the row(s) to update, as shown in Listing 9-19.

LISTING 9-19: Updating a database row

// Create the updated row Content Values.
ContentValues updatedValues = new ContentValues();

// Assign values for each row.
updatedValues.put(HoardContract.KEY_GOLD_HOARDED_COLUMN, newHoardValue);
// [... Repeat for each column to update ...]

// Specify a where clause that defines which rows should be
// updated. Specify where arguments as necessary.

Working with SQLite Databases ❘ 305

String where = HoardContract.KEY_ID + "=?";
String whereArgs[] = {hoardId};

// Update the row with the specified index with the new values.
SQLiteDatabase db = hoardDBOpenHelper.getWritableDatabase();
db.update(HoardDBOpenHelper.DATABASE_TABLE, updatedValues,
 where, whereArgs);

Deleting Rows
To delete a row, simply call the delete method on a database, specifying the table name and a
where clause that describes the rows you want to delete, as shown in Listing 9-20.

LISTING 9-20: Deleting a database row

// Specify a where clause that determines which row(s) to delete.
// Specify where arguments as necessary.
String where = HoardContract.KEY_ID + "=?";
String whereArgs[] = {hoardId};

// Delete the rows that match the where clause.
SQLiteDatabase db = hoardDBOpenHelper.getWritableDatabase();
db.delete(HoardDBOpenHelper.DATABASE_TABLE, where, whereArgs);

Querying a Database
To execute a query on an SQLite Database object, use its query method, passing in the following:

 ➤ An optional Boolean that specifies if the result set should contain only unique values.

 ➤ The name of the table to query.

 ➤ A projection, as an array of strings that lists the columns to include in the result set.

 ➤ A where clause that defines the criteria that will be used to limit the rows returned. You can
include ? wildcards that will be replaced by the values passed in through the selection argu-
ment parameter.

 ➤ An array of selection argument strings that will replace the ? wildcards in the where clause,
bound as String values.

 ➤ A group by clause that defines how the resulting rows will be grouped.

 ➤ A having clause that defines which row groups to include if you specified a group by clause.

 ➤ A string that describes the order of the returned rows.

 ➤ A string that limits the maximum number of rows in the result set.

Each database query is returned as a Cursor, which lets Android manage resources more efficiently
by retrieving and releasing row and column values on demand.

306 ❘ CHAPTER 9 Creating and Using databases

NOTE As mentioned earlier, database operations should always be performed
on a background, as described in Chapter 11, and database results and interac-
tions should be encapsulated by a View Model, as described in Chapter 8.

Listing 9-21 shows how to return a selection of rows from within an SQLite database.

LISTING 9-21: Querying a database

HoardDBOpenHelper hoardDBOpenHelper =
 new HoardDBOpenHelper(context,
 HoardDBOpenHelper.DATABASE_NAME, null,
 HoardDBOpenHelper.DATABASE_VERSION);

// Specify the result column projection. Return the minimum set
// of columns required to satisfy your requirements.
String[] result_columns = new String[] {
 HoardContract.KEY_ID,
 HoardContract.KEY_GOLD_HOARD_ACCESSIBLE_COLUMN,
 HoardContract.KEY_GOLD_HOARDED_COLUMN };

// Specify the where clause that will limit our results.
String where = HoardContract.KEY_GOLD_HOARD_ACCESSIBLE_COLUMN + "=?";
String whereArgs[] = {"1"};

// Replace these with valid SQL statements as necessary.
String groupBy = null;
String having = null;

// Return in ascending order of gold hoarded.
String order = HoardContract.KEY_GOLD_HOARDED_COLUMN + " ASC";

SQLiteDatabase db = hoardDBOpenHelper.getWritableDatabase();

Cursor cursor = db.query(HoardDBOpenHelper.DATABASE_TABLE,
 result_columns, where, whereArgs, groupBy, having, order);

NOTE It’s good practice to request a database instance each time you perform
a query or transaction on the database. For efficiency reasons, you should close
your database instance only when you believe you will no longer require it—
typically, when the Activity using it is stopped.

Working with SQLite Databases ❘ 307

Extracting Values from a Cursor
To extract values from a Cursor, first use the moveTo<location> methods to move to the desired
row. Then use the type-safe get<type> methods (passing in a column index) to return the value
stored at the current row for the specified column.

The use of projections means that result Cursors may contain only a subset of the full set of
columns available in the queried table, so the index of each column may be different for different
result Cursors. To find the current index of a particular column within each result Cursor, use the
getColumnIndexOrThrow and getColumnIndex methods.

It’s good practice to use getColumnIndexOrThrow when you expect a column to exist:

try {
 int columnIndex =
 cursor.getColumnIndexOrThrow(HoardContract.KEY_GOLD_HOARDED_COLUMN);
 String columnValue = cursor.getString(columnIndex);
 // Do something with the column value.
}
catch (IllegalArgumentException ex) {
 Log.e(TAG, ex.getLocalizedMessage());
}

Using getColumnIndex and checking for a –1 result, as shown in the following snippet, is a more
efficient technique than catching exceptions when you expect the column might not always exist:

int columnIndex =
 cursor.getColumnIndex(HoardContract.KEY_GOLD_HOARDED_COLUMN);
if (columnIndex > -1) {
 String columnValue = cursor.getString(columnIndex);
 // Do something with the column value.
}
else {
 // Do something else if the column doesn't exist.
}

Note that the column indexes will not change within a given result cursor, so for efficiency reasons
you should determine these prior to iterating over the Cursor to extract results, as shown in
Listing 9-22.

NOTE Database implementations should publish static constants that provide
the column names to simplify the process of extracting results from Cursors.
These static constants are typically exposed from within the database contract
class.

Listing 9-22 shows how to iterate over a result Cursor, extracting and averaging a column of float
values.

308 ❘ CHAPTER 9 Creating and Using databases

LISTING 9-22: Extracting values from a Cursor

float totalHoard = 0f;
float averageHoard = 0f;

// Find the index to the column(s) being used.
int GOLD_HOARDED_COLUMN_INDEX =
 cursor.getColumnIndexOrThrow(HoardContract.KEY_GOLD_HOARDED_COLUMN);

// Find the total number of rows.
int cursorCount = cursor.getCount();

// Iterate over the cursors rows.
// The Cursor is initialized at before first, so we can
// check only if there is a "next" row available. If the
// result Cursor is empty this will return false.
while (cursor.moveToNext())
 totalHoard += cursor.getFloat(GOLD_HOARDED_COLUMN_INDEX);

// Calculate an average -- checking for divide by zero errors.
averageHoard = cursor.getCount() > 0 ?
 (totalHoard / cursorCount) : Float.NaN;

// Close the Cursor when you've finished with it.
cursor.close();

Because SQLite database columns are loosely typed, you can cast individual values into valid types,
as required. For example, values stored as floats can be read back as strings.

When you have finished using your result Cursor, it’s important to close it to avoid memory leaks
and reduce your application’s resource load:

cursor.close();

INTRODUCING THE FIREBASE REALTIME DATABASE

The Firebase Realtime Database is a cloud-hosted NoSQL database, whose data is synced across all
clients in real time, and which remains available for queries and transactions on your device even
when you lose Internet connectivity.

This approach to databases is significantly different from the SQLite databases described earlier in
this chapter. SQLite databases are created and stored locally, and would need to be synchronized
with a cloud-based data source to maintain a cloud copy of the data, or to share data across multiple
devices.

Where SQLite databases are relational, and use SQL statements to execute queries and transactions
that can include features such as joins across multiple tables, the Firebase Realtime Database works
differently. As a NoSQL database, it is not relational and you do not use SQL statements to interact
with it. The database is stored locally on each device as JSON files, which are synchronized in real
time to the cloud-host and in turn with every connected client.

Introducing the Firebase Realtime Database ❘ 309

The Firebase Realtime Database is optimized for responsiveness and real-time updates, making it
ideal for data that is frequently stored or modified by users, and which needs to be continuously syn-
chronized across devices including mobile and web clients.

While a thorough investigation into the options available using the Firebase Realtime Database is
beyond the scope of this book, within this section we will describe the simple case of adding it to
your Android project, and interacting with it.

Adding Firebase to Your App
To add the Firebase Realtime Database to your app, you must install the Firebase SDK, which
requires Android 4.0 Ice Cream Sandwich (API Level 14) and Google Play services version 10.2.6 or
higher.

Android Studio includes a Firebase Assistant to simplify adding Firebase components to your app.
To use it, select Tools ➪ Firebase to display the assistant window shown in Figure 9-3.

Expand the Realtime Database list item and select the hyperlinked Save and retrieve data text, to
display the Firebase Realtime Database assistant, as shown in Figure 9-4.

Select Connect to Firebase, and a browser window will open, where you’ll be prompted to select a
Google account to connect to. When you’re logged in, you’ll be prompted to accept a series of per-
missions as shown in Figure 9-5.

FIGURE 9-3

310 ❘ CHAPTER 9 Creating and Using databases

FIGURE 9-4

FIGURE 9-5

Introducing the Firebase Realtime Database ❘ 311

You are now signed into Firebase within Android Studio. Return to Android Studio and you’ll see a
dialog, shown in Figure 9-6, which allows you to create a new Firebase project, or select an existing
one to use with your app.

With your app connected, you can choose to “Add the Realtime Database to Your App,” which will
add the Firebase Gradle build script dependency to your project-level build.gradle file, add the
Firebase plug-in for Gradle, and add a dependency for the Firebase Database library to your build
.gradle file.

Defining a Firebase Database and Defining Access Rules
Unlike SQLite databases, the Firebase Database is cloud-hosted, so we will use the Firebase Console
to define our data structure and access rules.

In your browser, navigate to console.firebase.google.com, and select the project associated with
your Android app.

Using the left-bar navigation, select the Develop item and then the Database option to display the
configuration console for the Realtime Database, as shown in Figure 9-7.

FIGURE 9-6

312 ❘ CHAPTER 9 Creating and Using databases

FIGURE 9-7

The Firebase Realtime Database uses a declarative rules language to define how your data should be
accessed.

By default, Firebase Databases require Firebase Authentication, and grant full read and write per-
missions to all authenticated users. During development it can be useful to permit full unauthenti-
cated access to get started, allowing you to develop your database before you have completed the
authentication piece.

To set the access rules to public, switch to the rules tab and set the read and write elements to true:

{
 "rules": {
 ".read": true,
 ".write": true
 }
}

Once you’re set up, you can customize your rules to your needs, so be sure to configure more secure
and appropriate rules before launching your app.

Introducing the Firebase Realtime Database ❘ 313

Adding, Modifying, Deleting, and Querying Data from a
Firebase Realtime Database

Firebase Realtime Database data is stored as JSON objects, effectively creating a cloud-hosted JSON
tree. The data tab of the Firebase database console shows you the current state of the JSON tree rep-
resenting the data you are recording in your database.

Unlike the SQLite databases described previously in this chapter, there are no tables or records.
When you add new data, it becomes an element in the JSON tree, accessible using the associated
key. You can define your own keys, such as unique user IDs, or you can let Firebase provide them
for you automatically.

To write to a Firebase Database from within your Android app, you must first retrieve an instance of
your database using the static getInstance method:

FirebaseDatabase database = FirebaseDatabase.getInstance();

Use the getReference method to find root-level nodes, and the child method to descend down the
tree. To set a value for a given node, use the setValue method. Setting the value for a node or leaf
element will automatically create all the parent nodes.

The following snippet shows how to add a new item to a Firebase table, using a simple data struc-
ture that stores similar information to the previous SQLite examples:

// Write a message to the database
FirebaseDatabase database = FirebaseDatabase.getInstance();

// Get a node corresponding to the root of our list of hoards.
DatabaseReference listRootRef = database.getReference("hoards");

// Get a node for our current hoard.
DatabaseReference itemRootRef = listRootRef.child(hoard.getHoardName());

// Set values for the properties of our hoard.
itemRootRef.child("hoardName").setValue(hoard.getHoardName());
itemRootRef.child("goldHoarded").setValue(hoard.getGoldHoarded());
itemRootRef.child("hoardAccessible").setValue(hoard.getHoardAccessible());

Figure 9-8 shows how that data is represented in a JSON tree in the
Firebase Console.

The setValue method allows you to pass in objects as well as
primitives. When you pass in an object, the result of all its getters
are saved as children of the node you’re saving to. The following
snippet is the equivalent of the previous, using an object rather
than passing in individual values:

// Write a message to the database
FirebaseDatabase database = FirebaseDatabase.getInstance();

FIGURE 9-8

314 ❘ CHAPTER 9 Creating and Using databases

// Get a node corresponding to the root of our list of hoards.
DatabaseReference listRootRef = database.getReference("hoards");

// Get a node for our current hoard and set its values.
listRootRef.child(hoard.getHoardName()).setValue(hoard);

When constructing your data structure it’s important to keep in mind some best practices, including
avoiding nested data, flattening data structures, and creating data that scales. To learn more about
how to structure data in a NoSQL database like Firebase, refer to the Firebase “Structure Your
Database” guide at firebase.google.com/docs/database/android/structure-data.

To modify an entry, simply use setValue as you would to create a new entry, and the previous
value(s) will be overridden with the new values.

To delete an entry, call removeValue on the node or element you wish to remove:

DatabaseReference listRootRef = database.getReference("hoards");
listRootRef.child(hoard.getHoardName()).removeValue();

You query a Firebase Database by adding a ValueEventListener to the Database Reference, and
overriding its onDataChange handler:

FirebaseDatabase database = FirebaseDatabase.getInstance();
DatabaseReference listRootRef = database.getReference("hoards");

// Read from the database
listRootRef.addValueEventListener(new ValueEventListener() {
 @Override
 public void onDataChange(DataSnapshot dataSnapshot) {
 // This method is called once with the initial value and again
 // whenever data at this location is updated.
 String key = dataSnapshot.getKey();
 String value = dataSnapshot.getValue().toString();
 Log.d(TAG, "Key is: " + key);
 Log.d(TAG, "Value is: " + value);
 }

 @Override
 public void onCancelled(DatabaseError error) {
 // Failed to read value
 Log.w(TAG, "Failed to read value.", error.toException());
 }
});

This handler is called immediately after the listener is attached, and again every time the data for
it—and any of its children—is changed. As a result, you receive real-time updates whenever the
database is changed, either within your app or from an external source—such as the server or
another client.

To bind a Firebase Database to Android UI elements, you must store a local copy of the database
tree, and use the ValueEventListener to observe and apply changes.

To simplify this process, the Firebase team has created the FirebaseUI open source library for
Android, which allows you to quickly connect common UI elements, such as the Recycler View,

Introducing the Firebase Realtime Database ❘ 315

to Firebase APIs like the Realtime Database or Firebase Authentication. The FirebaseUI library is
available at github.com/firebase/firebaseui-android.

You can learn more about the Firebase Realtime Database here:

firebase.google.com/docs/database/

Google has also released a new databse system, Cloud Firestore, into public Beta. Firestore is a
highly-scalable NoSQL cloud database that, like Firebase Realtime Database, can be used to sync
application data across servers and client apps in real time.

Firestore is designed specifically to be highly scalable and supports more expressive and efficient
querying, including shallow queries that don’t require retrieving the entire collection, and sup-
port for sorting, filtering, and limiting query returns. It also offers seamless integration with other
Firebase and Google Cloud Platform products, including Cloud Functions.

In addition to Android, web, and iOS SDKs, Firestore APIs are available in Node.js, Java, Python,
and Go.

As Firestore is in beta at the time of writing this book, a more detailed exploration is beyond our
scope. You can find more detail on Firestore at firebase.google.com/docs/firestore/.

Content Providers and Search
WHAT’S IN THIS CHAPTER?

 ➤ Creating Content Providers

 ➤ Using Content Providers to share application data

 ➤ Restricting shared data access using permissions

 ➤ Querying and performing transactions with databases using
Content Providers

 ➤ Using the Content Resolver to query, add, update, and delete data
stored in databases

 ➤ Asynchronously querying Content Providers using Cursor Loaders

 ➤ Using the native call log, Media Store, contacts, and calendar
Content Providers

 ➤ Adding search capabilities to your applications

 ➤ Providing search suggestions to Search Views

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The code downloads for this chapter are found at www.wrox.com. The code for this chapter is
divided into the following major examples:

 ➤ Snippets_ch10.zip

 ➤ Earthquake_ch10.zip

10

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

318 ❘ CHAPTER 10 Content Providers and searCh

INTRODUCING CONTENT PROVIDERS

In this chapter you learn how to create and use Content Providers as a consistent way to share, and
consume structured data within and between applications by providing an abstraction from the
underlying data storage technique.

You see how to query Content Providers asynchronously using Cursor Loaders, to ensure your appli-
cation remains responsive while you retrieve data.

In Android, access to a database is restricted to the application that created it, so Content Providers
offer a standard interface your applications can use to share data with, and consume data from,
other applications—including many of the native databases.

Content Providers are used extensively by the Android framework, giving you the opportunity to
enhance your own applications with native Content Providers, including contacts, calendar, and the
Media Store. You learn how to store and retrieve data from these core Android Content Providers to
provide your users with a richer, more consistent, and fully integrated user experience.

Finally, you learn how to use Content Providers to offer rich search options, including how to pro-
vide real-time search suggestions using the Search View.

WHY SHOULD I USE CONTENT PROVIDERS?

The main reason to use a Content Provider is to facilitate data sharing across applications. Content
Providers allow you to define granular data access restrictions so that other applications can
securely access and modify your app’s data.

Any application—with the appropriate permissions—can potentially query, add, remove, or update
data provided by another application through a Content Provider, including the native Android
Content Providers.

By publishing your own Content Providers, you make it possible for you (and potentially other
developers) to incorporate and extend your data in other applications. Content Providers are also
the mechanism used to provide search results for the Search View, and to generate real-time search
suggestions.

Content Providers are also useful as a way to decouple your application layers from the underlying
data layers, by encapsulating and abstracting your underlying database. This approach is useful
in making your applications data-source agnostic, such that your data storage mechanism can be
modified or replaced without affecting your application layer.

If you aren’t planning to share your application data, you don’t need to use Content Providers; how-
ever, many developers still choose to create Content Providers on top of their databases so they can
take advantage of a consistent abstraction layer. Content Providers also allow you to take advantage
of several convenience classes for data access, particularly the Cursor Loader, as described later in
this chapter.

Several native Content Providers have been made accessible for access by third-party applications,
including the contact manager, Media Store, and calendar, as described later in this chapter.

Creating Content Providers ❘ 319

CREATING CONTENT PROVIDERS

Content Providers are an abstraction layer over an underlying data source, which provide an inter-
face for publishing data that will be consumed using a Content Resolver, potentially across process
boundaries. Content Providers use an interface for publishing and consuming data based around a
simple URI addressing model using the content:// schema.

Content Providers allow you to decouple the application components that consume data from their
underlying data sources, providing a generic mechanism through which applications can share their
data or consume data provided by others.

They allow you to share data access across application process boundaries, and support the use of
granular data access restrictions so that other applications can securely access and modify your app
data.

To create a new Content Provider, extend the abstract ContentProvider class as shown in
Listing 10-1.

LISTING 10-1: Creating a new Content Provider

public class MyHoardContentProvider extends ContentProvider {

 @Override
 public boolean onCreate() {
 return false;
 }

 @Nullable
 @Override
 public Cursor query(@NonNull Uri uri,
 @Nullable String[] projection,
 @Nullable String selection,
 @Nullable String[] selectionArgs,
 @Nullable String sortOrder) {
 // TODO: Perform a query and return Cursor.
 return null;
 }

 @Nullable
 @Override
 public String getType(@NonNull Uri uri) {
 // TODO: Return the mime-type of a query.
 return null;
 }

 @Nullable
 @Override
 public Uri insert(@NonNull Uri uri, @Nullable ContentValues values) {
 // TODO: Insert the Content Values and return a URI to the record.
 return null;
 }

continues

320 ❘ CHAPTER 10 Content Providers and searCh

 @Override
 public int delete(@NonNull Uri uri,
 @Nullable String selection,
 @Nullable String[] selectionArgs) {
 // TODO: Delete the matching records and return the number
 // of records deleted.
 return 0;
 }

 @Override
 public int update(@NonNull Uri uri,
 @Nullable ContentValues values,
 @Nullable String selection,
 @Nullable String[] selectionArgs) {
 // TODO: Update the matching records with the provided
 // Content Values, returning the number of records updated.
 return 0;
 }
}

In the following sections you learn how to implement the onCreate handler to initialize the underly-
ing data source, and update the query, getType, insert, update, and delete methods to imple-
ment the interface used by the Content Resolver to interact with the data.

Creating the Content Provider’s Database
To initialize the data source you plan to access through the Content Provider, override the onCreate
method, as shown in Listing 10-2. If you are using an SQLite database, this can be handled using an
SQLite Open Helper implementation, as described in the previous chapter.

LISTING 10-2: Creating the Content Provider’s database

private HoardDB.HoardDBOpenHelper mHoardDBOpenHelper;

@Override
public boolean onCreate() {
 // Construct the underlying database.
 // Defer opening the database until you need to perform
 // a query or transaction.
 mHoardDBOpenHelper =
 new HoardDB.HoardDBOpenHelper(getContext(),
 HoardDB.HoardDBOpenHelper.DATABASE_NAME,
 null,
 HoardDB.HoardDBOpenHelper.DATABASE_VERSION);
 return true;
}

LISTING 10-1 (continued)

Creating Content Providers ❘ 321

We’ll continue to use an SQLite database for all our examples of underlying databases within this
chapter, but remember that the database implementation you choose is arbitrary—you may use a
cloud-based database, an entirely in-memory database, or an alternative SQL or no-SQL database
library. Later in this chapter, we’ll create a Content Provider over a Room database to provide
search results for the ongoing Earthquake example. You can learn more about using SQLite in
Chapter 9, “Creating and Using Databases.”

Registering Content Providers
Like Activities and Services, Content Providers are application components that must be registered
in your application manifest before the Content Resolver can discover and use them. You do this
using a provider tag that includes a name attribute, describing the Provider’s class name, and an
authorities tag.

Use the authorities tag to define the base URI of the Provider; a Content Provider’s authority is
used by the Content Resolver as an address to find the database to interact with.

Each Content Provider authority must be unique, so it’s good practice to base the URI path on your
package name. The general form for defining a Content Provider’s authority is as follows:

com.<CompanyName>.provider.<ApplicationName>

The completed provider tag should follow the format shown in Listing 10-3.

LISTING 10-3: Registering a new Content Provider in the application manifest

<provider android:name=".MyHoardContentProvider"
 android:authorities="com.professionalandroid.provider.hoarder"/>

Publishing Your Content Provider’s URI Address
By convention, each Content Provider should expose its authority using a public static CONTENT_URI
property that includes a data path to the primary content, as shown in Listing 10-4.

LISTING 10-4: Publishing your Content Provider authority

public static final Uri CONTENT_URI =
 Uri.parse("content://com.professionalandroid.provider.hoarder/lairs");

These content URIs will be used when accessing your Content Provider using a Content Resolver,
as shown in the following sections. A query made using this form represents a request for all rows,
whereas an appended trailing /<rownumber>, as shown in the following snippet, represents a request
for a specific single record:

content://com.professionalandroid.provider.hoarder/lairs/5

322 ❘ CHAPTER 10 Content Providers and searCh

It’s good practice to support access to your provider for both of these forms. The simplest way to do
this is to add a UriMatcher to your Content Provider implementation to parse URIs, determine their
forms, and extract the provided details.

Listing 10-5 shows the implementation pattern for defining a Uri Matcher that analyzes the form of
a URI—specifically determining if a URI is a request for all data or for a single row.

LISTING 10-5: Defining a Uri Matcher

// Create the constants used to differentiate between the different URI
// requests.
private static final int ALLROWS = 1;
private static final int SINGLE_ROW = 2;

private static final UriMatcher uriMatcher;

// Populate the UriMatcher object, where a URI ending in
// 'elements' will correspond to a request for all items,
// and 'elements/[rowID]' represents a single row.
static {
 uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 uriMatcher.addURI("com.professionalandroid.provider.hoarder",
 "lairs", ALLROWS);
 uriMatcher.addURI("com.professionalandroid.provider.hoarder",
 "lairs/#", SINGLE_ROW);
}

You can use the same technique to expose alternative URIs within the same Content Provider that
represent different subsets of data, or different tables within your database.

Implementing Content Provider Queries
To support queries with your Content Provider, you must override the query and getType methods.
The Content Resolver uses these methods to access the underlying data, without knowing its struc-
ture or implementation. These methods enable applications to share data across application bound-
aries without having to publish a specific interface for each data source.

In this chapter we show how to use a Content Provider to provide access to an SQLite database, but
within these methods you can access any source of data (including Room, files, application instance
variables, or cloud-based databases).

Having used the Uri Matcher to distinguish between full table and single row queries, you can refine
the query requests, and use the SQLiteQueryBuilder class to easily apply additional selection con-
ditions to a query.

Android 4.1 Jelly Bean (API Level 16) extended the query method to support a
CancellationSignal parameter:

CancellationSignal mCancellationSignal = new CancellationSignal();

Creating Content Providers ❘ 323

By using a Cancellation Signal, you can notify the Content Provider that you wish to abort the cur-
rently running query by calling the Cancellation Signal’s cancel method:

mCancellationSignal.cancel();

For backward compatibility reasons, Android requires that you also implement the query method
that doesn’t include the Cancellation Signal parameter, as shown in Listing 10-6.

Listing 10-6 shows the skeleton code for implementing queries within a Content Provider using an
underlying SQLite database, using an SQLite Query Builder to pass each of the query parameters,
including the Cancellation Signal, into a query made to the underlying SQLite database.

LISTING 10-6: Implementing queries within a Content Provider

@Nullable
@Override
public Cursor query(@NonNull Uri uri,
 @Nullable String[] projection,
 @Nullable String selection,
 @Nullable String[] selectionArgs,
 @Nullable String sortOrder) {
 return query(uri, projection, selection, selectionArgs, sortOrder, null);
}

@Nullable
@Override
public Cursor query(@NonNull Uri uri,
 @Nullable String[] projection,
 @Nullable String selection,
 @Nullable String[] selectionArgs,
 @Nullable String sortOrder,
 @Nullable CancellationSignal cancellationSignal) {
 // Open the database.
 SQLiteDatabase db;
 try {
 db = mHoardDBOpenHelper.getWritableDatabase();
 } catch (SQLiteException ex) {
 db = mHoardDBOpenHelper.getReadableDatabase();
 }

 // Replace these with valid SQL statements if necessary.
 String groupBy = null;
 String having = null;

 // Use an SQLite Query Builder to simplify constructing the
 // database query.
 SQLiteQueryBuilder queryBuilder = new SQLiteQueryBuilder();

 // If this is a row query, limit the result set to the passed in row.
 switch (uriMatcher.match(uri)) {
 case SINGLE_ROW :
 String rowID = uri.getLastPathSegment();

continues

324 ❘ CHAPTER 10 Content Providers and searCh

 queryBuilder.appendWhere(HoardDB.HoardContract.KEY_ID + "=" + rowID);
 default: break;
 }

 // Specify the table on which to perform the query. This can
 // be a specific table or a join as required.
 queryBuilder.setTables(HoardDB.HoardDBOpenHelper.DATABASE_TABLE);

 // Specify a limit to the number of returned results, if any.
 String limit = null;

 // Execute the query.
 Cursor cursor = queryBuilder.query(db, projection, selection,
 selectionArgs, groupBy, having, sortOrder, limit, cancellationSignal);

 // Return the result Cursor.
 return cursor;
}

If a running query is canceled, SQLite will throw an OperationCanceledException. If your
Content Provider doesn’t use an SQLite database, you will need to listen for cancellation signals
using an onCancelListener handler, and handle them yourself:

cancellationSignal.setOnCancelListener(
 new CancellationSignal.OnCancelListener() {
 @Override
 public void onCancel() {
 // TODO React when my query is cancelled.
 }
 }
);

Having implemented queries, you must also specify a MIME type to indicate the type of data
returned. Override the getType method to return a string that uniquely describes your data type.

The type returned should include two forms, one for a single entry and another for all the entries,
following these forms:

 ➤ Single item:

vnd.android.cursor.item/vnd.<companyname>.<contenttype>

 ➤ All items:

vnd.android.cursor.dir/vnd.<companyname>.<contenttype>

Listing 10-7 shows how to override the getType method to return the correct MIME type based on
the URI passed in.

LISTING 10-7: Returning a Content Provider MIME type

@Nullable
@Override

LISTING 10-6 (continued)

Creating Content Providers ❘ 325

public String getType(@NonNull Uri uri) {
 // Return a string that identifies the MIME type
 // for a Content Provider URI
 switch (uriMatcher.match(uri)) {
 case ALLROWS:
 return "vnd.android.cursor.dir/vnd.professionalandroid.lairs";
 case SINGLE_ROW:
 return "vnd.android.cursor.item/vnd.professionalandroid.lairs";
 default:
 throw new IllegalArgumentException("Unsupported URI: " + uri);
 }
}

Content Provider Transactions
To support delete, insert, and update transactions on your Content Provider, override the corre-
sponding delete, insert, and update methods.

Like query, these methods are used by Content Resolvers to perform transactions on the underlying
data without knowing its implementation.

When performing transactions that modify the dataset, it’s good practice to call the Content
Resolver’s notifyChange method. This will notify any Content Observers, registered for a given
Cursor using the Cursor.registerContentObserver method, that the underlying table (or a par-
ticular row) has been removed, added, or updated.

Listing 10-8 shows the skeleton code for implementing transactions within a Content Provider on an
underlying SQLite database.

LISTING 10-8: Content Provider insert, update, and delete implementations

@Override
public int delete(@NonNull Uri uri,
 @Nullable String selection,
 @Nullable String[] selectionArgs) {

 // Open a read / write database to support the transaction.
 SQLiteDatabase db = mHoardDBOpenHelper.getWritableDatabase();

 // If this is a row URI, limit the deletion to the specified row.
 switch (uriMatcher.match(uri)) {
 case SINGLE_ROW :
 String rowID = uri.getLastPathSegment();
 selection = KEY_ID + "=" + rowID
 + (!TextUtils.isEmpty(selection) ?
 " AND (" + selection + ')' : "");
 default: break;
 }

 // To return the number of deleted items you must specify a where
 // clause. To delete all rows and return a value pass in "1".
 if (selection == null) continues

326 ❘ CHAPTER 10 Content Providers and searCh

 selection = "1";

 // Perform the deletion.
 int deleteCount = db.delete(HoardDB.HoardDBOpenHelper.DATABASE_TABLE,
 selection, selectionArgs);

 // Notify any observers of the change in the data set.
 getContext().getContentResolver().notifyChange(uri, null);

 // Return the number of deleted items.
 return deleteCount;
}

@Nullable
@Override
public Uri insert(@NonNull Uri uri, @Nullable ContentValues values) {

 // Open a read / write database to support the transaction.
 SQLiteDatabase db = mHoardDBOpenHelper.getWritableDatabase();

 // To add empty rows to your database by passing in an empty
 // Content Values object you must use the null column hack
 // parameter to specify the name of a column that can be
 // explicitly set to null.
 String nullColumnHack = null;

 // Insert the values into the table
 long id = db.insert(HoardDB.HoardDBOpenHelper.DATABASE_TABLE,
 nullColumnHack, values);

 // Construct and return the URI of the newly inserted row.
 if (id > -1) {
 // Construct and return the URI of the newly inserted row.
 Uri insertedId = ContentUris.withAppendedId(CONTENT_URI, id);

 // Notify any observers of the change in the data set.
 getContext().getContentResolver().notifyChange(insertedId, null);

 return insertedId;
 }
 else
 return null;
}

@Override
public int update(@NonNull Uri uri,
 @Nullable ContentValues values,
 @Nullable String selection,
 @Nullable String[] selectionArgs) {

 // Open a read / write database to support the transaction.
 SQLiteDatabase db = mHoardDBOpenHelper.getWritableDatabase();

LISTING 10-8 (continued)

Creating Content Providers ❘ 327

 // If this is a row URI, limit the deletion to the specified row.
 switch (uriMatcher.match(uri)) {
 case SINGLE_ROW :
 String rowID = uri.getLastPathSegment();
 selection = KEY_ID + "=" + rowID
 + (!TextUtils.isEmpty(selection) ?
 " AND (" + selection + ')' : "");
 default: break;
 }

 // Perform the update.
 int updateCount = db.update(HoardDB.HoardDBOpenHelper.DATABASE_TABLE,
 values, selection, selectionArgs);

 // Notify any observers of the change in the data set.
 getContext().getContentResolver().notifyChange(uri, null);

 return updateCount;
}

NOTE When working with content URIs, the ContentUris class includes the
withAppendedId convenience method to easily append a specific row ID to the
CONTENT_URI of a Content Provider. This is used in Listing 10-8 to construct the
URI of newly inserted rows.

Sharing Files Using a Content Provider
Rather than store large files within your Content Provider, you should represent them within a table
as fully qualified URIs to files stored somewhere else on the file-system.

To include files within your table, include a column labeled _data that will contain the path
to the file represented by that record—this column should not be used by client applications
directly. Instead, override the openFile handler within your Content Provider to provide a
ParcelFileDescriptor when the Content Resolver requests a file associated with that record by
providing its URI path.

To simplify this process, Android includes the openFileHelper method, which queries the
Content Provider for the file path stored in the _data column and creates and returns a Parcel File
Descriptor, as shown in Listing 10-9.

LISTING 10-9: Returning files from a Content Provider

@Nullable
@Override
public ParcelFileDescriptor openFile(@NonNull Uri uri, @NonNull String mode)
 throws FileNotFoundException {

 return openFileHelper(uri, mode);
}

328 ❘ CHAPTER 10 Content Providers and searCh

NOTE Because the files associated with rows in the database are stored on the
file-system, not within the database table, it’s important to consider what the
effect of deleting a row should have on the underlying file.

A better approach for sharing files between applications is the Storage Access Framework, intro-
duced in Android 4.4 KitKat (API Level 19). The Storage Access Framework is described in detail in
Chapter 8, “Files, Saving State, and Preferences.”

Adding Permission Requirements to Content Providers
The primary purpose of Content Providers is to share data with other applications; by default, any
application that knows the right URIs can use the Content Resolver to access your Content Provider
and query its data or perform transactions.

If you have no intention of making your Content Provider accessible to other applications, set the
android:exported attribute to false, to restrict access to only your application:

<provider
 android:name=".MyHoardContentProvider"
 android:authorities="com.professionalandroid.provider.hoarder"
 android:exported="false">
</provider>

Alternatively, you can restrict read and/or write access to your Providers using permissions.

For example, native Android Content Providers that include sensitive information—such as contact
details and call logs—require read and write permissions respectively to access and modify their
content (native Content Providers are described in more detail in the section “Using Native Android
Content Providers”).

Using permissions prevents malicious applications from corrupting data, gaining access to sensitive
information, or making excessive (or unauthorized) use of hardware resources or external communi-
cation channels.

The most common use of permissions with Content Providers is to restrict access only to applica-
tions signed with the same signature—meaning other apps you have created and released—in order
that they can work together.

To do this, you must first define a new permission within the application manifest of both the con-
sumer and Content Provider apps, indicating a protection level of signature:

<permission
 android:name="com.professionalandroid.provider.hoarder.ACCESS_PERMISSION"
 android:protectionLevel="signature">
</permission>

Also add the corresponding uses-permission entry in each Manifest:

<uses-permission
 android:name="com.professionalandroid.provider.hoarder.ACCESS_PERMISSION"
/>

Creating Content Providers ❘ 329

In addition to the signature protection level, which restricts access to apps signed with the same
signature, permissions can be defined as requiring normal or dangerous protection levels. Normal
permissions are displayed to the user at installation time, while dangerous permissions require run-
time user acceptance.

More details on creating and using your own permissions is available in Chapter 20, “Advanced
Android Development.”

Once you have defined a permission, you can apply it by modifying the Content Provider manifest
entry, indicating the permission required to read or write to the Provider. You can specify different
permissions for read or write access, or require permissions for only one or the other:

<provider
 android:name=".MyHoardContentProvider"
 android:authorities="com.professionalandroid.provider.hoarder"
 android:writePermission=
 "com.professionalandroid.provider.hoarder.ACCESS_PERMISSION"
/>

It’s also possible to provide apps with temporary permission, to access or modify a particular
record, using Intents. This works by having the requesting app send an Intent to the Content
Provider host application, which then returns an Intent that contains the appropriate permissions for
a specific URI, which lasts until the calling Activity is finished.

To support temporary permissions, start by setting the android:grantUriPermissions attribute to
true in your Provider’s manifest entry:

<provider
 android:name=".MyHoardContentProvider"
 android:authorities="com.professionalandroid.provider.hoarder"
 android:writePermission=
 "com.professionalandroid.provider.hoarder.ACCESS_PERMISSION"
 android:grantUriPermissions="true"
/>

This will allow you to grant temporary permissions to any URI used to access your Provider.
Alternatively, you can use a grant-uri-permission child node within your provider node to
define a specific path pattern or prefix.

Within your application, provide functionality that listens for an Intent from another app (as
described in Chapter 6, “Intents and Broadcast Receivers”). When such an Intent is received,
display a UI to support the requested action, and return an Intent with a URI to the affected/
selected record, setting either the FLAG_GRANT_READ_URI_PERMISSION or FLAG_GRANT_WRITE_URI_
PERMISSION flag as applicable:

protected void returnSelectedRecord(int rowId) {
 Uri selectedUri =
 ContentUris.withAppendedId(MyHoardContentProvider.CONTENT_URI,
 rowId);

 Intent result = new Intent(Intent.ACTION_PICK, selectedUri);
 result.addFlags(FLAG_GRANT_READ_URI_PERMISSION);

 setResult(RESULT_OK, result);
 finish();
}

330 ❘ CHAPTER 10 Content Providers and searCh

Using this approach, your app provides the intermediation between the user the third-party applica-
tion and your Content Provider—for example, by providing the UI that allows the user to select a
record or modify data.

This limits the risks of data leakage or corruption by restricting the amount of data accessed,
and ensuring your app—and by extension the user—is able to cancel any inappropriate access or
changes. As a result, the requesting app does not need to request any special permissions when using
an Intent to query or modify data.

The approach of using Intents to grant temporary permissions is used extensively to provide access
to native Content Providers, as described in the section “Using Native Content Providers.”

ACCESSING CONTENT PROVIDERS WITH CONTENT RESOLVERS

Each application includes a ContentResolver instance, accessible using the getContentResolver
method, as follows:

ContentResolver cr = getContentResolver();

Content Resolvers are used to query and perform transactions on Content Providers. The Content
Resolver supplies methods to query and perform transactions on Content Providers, taking a URI
that indicates which Content Provider to interact with.

A Content Provider’s URI is its authority as defined by its manifest entry, and typically published as
a static constant on the Content Provider implementation.

As described in the previous section, Content Providers usually accept two forms of URI—one for
requests against all data and another that specifies only a single row. The form for the latter appends
the row identifier (in the form /<rowID>) to the base URI.

Querying Content Providers
Content Provider queries take a form very similar to that of SQLite database queries. Query results
are returned as Cursors over a result set, and the values extracted, in the same way as described in
the previous chapter describing SQLite databases.

Using the query method on the ContentResolver object, pass in the following:

 ➤ A URI to the Content Provider content you want to query.

 ➤ A projection that lists the columns you want to include in the result set.

 ➤ A where clause that defines the rows to be returned. You should include ? wildcards that will
be replaced by the values passed into the selection argument parameter.

 ➤ An array of selection argument strings that will replace the ? wildcards in the where clause.

 ➤ A String that describes the order of the returned rows.

Listing 10-10 shows how to use a Content Resolver to apply a query to a Content Provider.

Accessing Content Providers with Content Resolvers ❘ 331

LISTING 10-10: Querying a Content Provider with the Content Resolver

// Get the Content Resolver.
ContentResolver cr = getContentResolver();

// Specify the result column projection. Return the minimum set
// of columns required to satisfy your requirements.
String[] result_columns = new String[] {
 HoardDB.HoardContract.KEY_ID,
 HoardDB.HoardContract.KEY_GOLD_HOARD_ACCESSIBLE_COLUMN,
 HoardDB.HoardContract.KEY_GOLD_HOARDED_COLUMN };

// Specify the where clause that will limit your results.
String where = HoardDB.HoardContract.KEY_GOLD_HOARD_ACCESSIBLE_COLUMN
 + "=?";
String[] whereArgs = {"1"};

// Replace with valid SQL ordering statement as necessary.
String order = null;

// Return the specified rows.
Cursor resultCursor = cr.query(MyHoardContentProvider.CONTENT_URI,
 result_columns, where, whereArgs, order);

In this example the query is made using the column names provided as static constants from the
HoardContract class and the CONTENT_URI available from the MyHoardContentProvider class;
however, it’s worth noting that a third-party application can perform the same query, provided it
knows the content URI and column names, and has the appropriate permissions.

Most Content Providers also include a shortcut URI pattern that allows you to address a particular
row by appending a row ID to the content URI. You can use the static withAppendedId method
from the ContentUris class to simplify this, as shown in Listing 10-11.

LISTING 10-11: Querying a Content Provider for a particular row

private Cursor queryRow(int rowId) {
 // Get the Content Resolver.
 ContentResolver cr = getContentResolver();

 // Specify the result column projection. Return the minimum set
 // of columns required to satisfy your requirements.
 String[] result_columns = new String[] {
 HoardDB.HoardContract.KEY_ID,
 HoardDB.HoardContract.KEY_GOLD_HOARD_NAME_COLUMN,
 HoardDB.HoardContract.KEY_GOLD_HOARDED_COLUMN };

 // Append a row ID to the URI to address a specific row.
 Uri rowAddress =
 ContentUris.withAppendedId(MyHoardContentProvider.CONTENT_URI,
 rowId);

continues

332 ❘ CHAPTER 10 Content Providers and searCh

 // These are null as we are requesting a single row.
 String where = null;
 String[] whereArgs = null;
 String order = null;

 // Return the specified row.
 return cr.query(rowAddress, result_columns, where, whereArgs, order);
}

To extract values from a result Cursor, use the same techniques described in the previous chapter,
using the moveTo<location> methods in combination with the get<type> methods to extract val-
ues from the specified row and column.

Listing 10-12 extends the code from Listing 10-11, by iterating over a result Cursor and displaying
the name of the largest hoard.

LISTING 10-12: Extracting values from a Content Provider result Cursor

float largestHoard = 0f;
String largestHoardName = "No Hoards";

// Find the index to the column(s) being used.
int GOLD_HOARDED_COLUMN_INDEX = resultCursor.getColumnIndexOrThrow(
 HoardDB.HoardContract.KEY_GOLD_HOARDED_COLUMN);
int HOARD_NAME_COLUMN_INDEX = resultCursor.getColumnIndexOrThrow(
 HoardDB.HoardContract.KEY_GOLD_HOARD_NAME_COLUMN);

// Iterate over the cursors rows.
// The Cursor is initialized at before first, so we can
// check only if there is a "next" row available. If the
// result Cursor is empty, this will return false.
while (resultCursor.moveToNext()) {
 float hoard = resultCursor.getFloat(GOLD_HOARDED_COLUMN_INDEX);
 if (hoard > largestHoard) {
 largestHoard = hoard;
 largestHoardName = resultCursor.getString(HOARD_NAME_COLUMN_INDEX);
 }
}

// Close the Cursor when you've finished with it.
resultCursor.close();

When you have finished using your result Cursor it’s important to close it to avoid memory leaks
and reduce your application’s resource load:

resultCursor.close();

You see more examples of querying for content later in this chapter when the native Android
Content Providers are introduced in the section “Using Native Android Content Providers.”

LISTING 10-11 (continued)

Accessing Content Providers with Content Resolvers ❘ 333

WARNING Database queries can take significant time to execute. By default,
the Content Resolver will execute queries—as well as all other transactions—
on the main application thread.

To ensure your application remains smooth and responsive, you must execute all
queries asynchronously, as described later in this chapter.

Cancelling Queries
Android 4.1 Jelly Bean (API Level 16) extended the Content Resolver query method to support a
CancellationSignal parameter:

CancellationSignal mCancellationSignal = new CancellationSignal();

The Android Support Library includes a ContentResolverCompat class that allows you to support
query cancellation in a backward-compatible fashion:

Cursor resultCursor = ContentResolverCompat.query(cr,
 MyHoardContentProvider.CONTENT_URI,
 result_columns, where, whereArgs, order,
 mCancellationSignal);

Through its cancel method, a Cancellation Signal enables you to notify a Content Provider that you
wish to abort a query:

 mCancellationSignal.cancel();

If the query is canceled while running, a OperationCanceledException will be thrown.

Querying for Content Asynchronously with a Cursor Loader
Database operations can be time-consuming, so it’s particularly important that no database or
Content Provider queries or transactions are performed on the main application thread.

To help simplify the process of managing Cursors, synchronizing correctly with the UI thread, and
ensuring all queries occur on a background Thread, Android provides the Loader class.

Loaders and the Loader Manager are used to simplify asynchronous background data loading. Loaders
create a background thread within which your database queries and transactions are performed, before
syncing with the UI thread, and returning your processed data via callback handlers.

The Loader Manager includes simple caching, ensuring Loaders aren’t interrupted by Activity
restarts due to device configuration changes, and Loaders are aware of Activity and Fragment life-
cycle events. This ensures Loaders are removed when the parent Activity or Fragment is permanently
destroyed.

The AsyncTaskLoader class can be extended to load any kind of data from any data source; of
particular interest is the CursorLoader class. The Cursor Loader is designed specifically to sup-
port asynchronous queries on Content Providers, returning a result Cursor and notifications of any
updates to the underlying provider.

334 ❘ CHAPTER 10 Content Providers and searCh

NOTE To maintain concise and encapsulated code, not all the examples in this
chapter explicitly show a Cursor Loader being used when making a Content
Provider query—which is bad and we feel bad about it. For your applications
it’s important to always use a Cursor Loader—or other background Threading
technique—when performing queries or transactions on Content Providers or
databases.

The Cursor Loader handles all the management tasks required to use a Cursor, including managing
the Cursor life cycle to ensure Cursors are closed when the Activity is terminated.

Cursor Loaders also observe changes in the underlying query, so you don’t need to implement your
own Content Observers.

Implementing Cursor Loader Callbacks
To use a Cursor Loader, create a new LoaderManager.LoaderCallbacks implementation. Loader
Callbacks are implemented using generics, so you should specify the explicit type being loaded, in
this case Cursors, when implementing your own:

LoaderManager.LoaderCallbacks<Cursor> loaderCallback
 = new LoaderManager.LoaderCallbacks<Cursor>() {

 @Override
 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 return null;
 }

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor data) {}

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {}
};

If you require only a single Loader implementation within your Fragment or Activity, you typically
do this by having that component implement the interface:

public class MyActivity extends AppCompatActivity
 implements LoaderManager.LoaderCallbacks<Cursor>

The Loader Callbacks consist of three handlers:

 ➤ onCreateLoader—Called when the Loader is initialized, this handler should create and
return new Cursor Loader object. The Cursor Loader constructor arguments mirror those
required for executing a query using the Content Resolver. Accordingly, when this handler
is executed, the query parameters you specify will be used to perform a query using the
Content Resolver. Note that a Cancellation Signal is not required (or supported). Instead, the
Cursor Loader creates its own Cancellation Signal object, which can be triggered by calling
cancelLoad.

Accessing Content Providers with Content Resolvers ❘ 335

 ➤ onLoadFinished—When the Loader Manager has completed the asynchronous query, the
onLoadFinished handler is called, with the result Cursor passed in as a parameter. Use this
Cursor to update adapters and other UI elements.

 ➤ onLoaderReset—When the Loader Manager resets your Cursor Loader, onLoaderReset is
called. Within this handler you should release any references to data returned by the query
and reset the UI accordingly. The Cursor will be closed by the Loader Manager, so you
shouldn’t attempt to close it.

Listing 10-13 shows a skeleton implementation of the Cursor Loader Callbacks.

LISTING 10-13: Implementing Loader Callbacks

public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 // Construct the new query in the form of a Cursor Loader. Use the id
 // parameter to construct and return different loaders.
 String[] projection = null;
 String where = null;
 String[] whereArgs = null;
 String sortOrder = null;

 // Query URI
 Uri queryUri = MyHoardContentProvider.CONTENT_URI;

 // Create the new Cursor loader.
 return new CursorLoader(this, queryUri, projection,
 where, whereArgs, sortOrder);
}

public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 // You are now on the UI thread, update your UI with the loaded data.
 // Returns cached data automatically if initLoader is called after
 // a configuration change.
}

public void onLoaderReset(Loader<Cursor> loader) {
 // Handle any cleanup necessary when Loader (or its parent)
 // is completely destroyed, for example the application being
 // terminated. Note that the Cursor Loader will close the
 // underlying result Cursor so you don't have to.
}

Initializing, Restarting, and Cancelling a Cursor Loader
To initialize a new Loader, call the Loader Manager’s initLoader method, passing in a reference to
your Loader Callback implementation, an optional arguments Bundle, and a Loader identifier. Here,
as in the remainder of the book, we will use the Support Library version of the Loader Manager to
ensure backward compatibility. Note also that in this snippet the enclosing Activity implements the
Loader Callbacks:

Bundle args = null;
// Initialize Loader. "this" is the enclosing Activity that implements callbacks
getSupportLoaderManager().initLoader(LOADER_ID, args, this);

336 ❘ CHAPTER 10 Content Providers and searCh

This is generally done within the onCreate method of the host Activity (or the onActivityCreated
handler in the case of Fragments).

If a Loader corresponding to the identifier used doesn’t already exist, it is created within the associ-
ated Loader Callback’s onCreateLoader handler as described in the previous section.

In most circumstances this is all that’s required. The Loader Manager will handle the life cycle of
any Loaders you initialize and the underlying queries and resulting Cursors, including any changes
in the query results.

If your Loader completes during a device configuration change, the result Cursor will be queued,
and you’ll receive it via onLoadFinished once the parent Activity or Fragment has been re-created.

After a Loader has been created, your results are cached across device configuration changes.
Repeated calls to initLoader will immediately return the last result set via the onLoadFinished
handler—without the Loader’s onStartLoading method being called. This saves significant time
and battery power by eliminating duplicative database reads and the associated processing.

Should you want to discard the previous Loader and re-create it, use the restartLoader method:

getSupportLoaderManager().restartLoader(LOADER_ID, args, this);

This is typically necessary only when your query parameters change—such as search queries, sort
order, or filter parameters.

If you want to cancel a Cursor Loader while it’s running, you can call its cancelLoad method:

getSupportLoaderManager().getLoader(LOADER_ID).cancelLoad();

The will trigger an internal Cancellation Signal within the Cursor Loader, which will in turn be
passed to the associated Content Provider.

Adding, Deleting, and Updating Content
To perform transactions on Content Providers, use the insert, delete, and update methods on the
Content Resolver. Like queries, Content Provider transactions must be explicitly moved to a back-
ground worker Thread to avoid blocking the UI thread with potentially time-consuming operations.

Inserting Content
The Content Resolver offers two methods for inserting new records into a Content Provider: insert
and bulkInsert. Both methods accept the URI of the Content Provider into which you’re inserting;
the insert method takes a single new ContentValues object, and the bulkInsert method takes an
array of them.

The insert method returns a URI to the newly added record, whereas the bulkInsert method
returns the number of successfully added rows.

Listing 10-14 shows how to use the insert method to add new rows to a Content Provider.

Accessing Content Providers with Content Resolvers ❘ 337

LISTING 10-14: Inserting new rows into a Content Provider

// Create a new row of values to insert.
ContentValues newValues = new ContentValues();

// Assign values for each row.
newValues.put(HoardDB.HoardContract.KEY_GOLD_HOARD_NAME_COLUMN,
 newHoardName);
newValues.put(HoardDB.HoardContract.KEY_GOLD_HOARDED_COLUMN,
 newHoardValue);
newValues.put(HoardDB.HoardContract.KEY_GOLD_HOARD_ACCESSIBLE_COLUMN,
 newHoardAccessible);

// Get the Content Resolver
ContentResolver cr = getContentResolver();

// Insert the row into your table
Uri newRowUri = cr.insert(MyHoardContentProvider.CONTENT_URI,
 newValues);

Deleting Content
To delete a single record, call delete on the Content Resolver, passing in the URI of the row you
want to remove. Alternatively, you can specify a where clause to remove multiple rows. Calls to
delete will return the number of rows removed. Listing 10-15 demonstrates how to delete a num-
ber of rows matching a given condition.

LISTING 10-15: Deleting rows from a Content Provider

// Specify a where clause that determines which row(s) to delete.
// Specify where arguments as necessary.
String where = HoardDB.HoardContract.KEY_GOLD_HOARDED_COLUMN +
 "=?";
String[] whereArgs = {"0"};

// Get the Content Resolver.
ContentResolver cr = getContentResolver();

// Delete the matching rows
int deletedRowCount =
 cr.delete(MyHoardContentProvider.CONTENT_URI, where, whereArgs);

Updating Content
You can update rows by using the Content Resolver’s update method. The update method takes the
URI of the target Content Provider, a ContentValues object that maps column names to updated
values, and a where clause that indicates which rows to update.

338 ❘ CHAPTER 10 Content Providers and searCh

When the update is executed, every row matched by the where clause is updated using the specified
Content Values, and the number of successful updates is returned.

Alternatively, you can choose to update a specific row by specifying its unique URI, as shown in
Listing 10-16.

LISTING 10-16: Updating a record in a Content Provider

// Create a URI addressing a specific row.
Uri rowURI =
 ContentUris.withAppendedId(MyHoardContentProvider.CONTENT_URI,
 hoardId);

// Create the updated row content, assigning values for each row.
ContentValues updatedValues = new ContentValues();
updatedValues.put(HoardDB.HoardContract.KEY_GOLD_HOARDED_COLUMN,
 newHoardValue);
// [... Repeat for each column to update ...]

// If we specify a specific row, no selection clause is required.
String where = null;
String[] whereArgs = null;

// Get the Content Resolver.
ContentResolver cr = getContentResolver();
// Update the specified row.
int updatedRowCount =
 cr.update(rowURI, updatedValues, where, whereArgs);

Accessing Files Stored in Content Providers
In the earlier section, “Storing Files in a Content Provider,” we described how to store files within
Content Providers. To access a file stored in, or to insert a new file into, a Content Provider, use
the Content Resolver’s openOutputStream or openInputStream methods.

Pass in the URI to the Content Provider row that includes the file you require, and the Content
Provider will use its openFile implementation to interpret your request and return an input or out-
put stream to the requested file, as shown in Listing 10-17.

LISTING 10-17: Reading and writing files from and to a Content Provider

public void addNewHoardWithImage(int rowId, Bitmap hoardImage) {
 // Create a URI addressing a specific row.
 Uri rowURI =
 ContentUris.withAppendedId(MyHoardContentProvider.CONTENT_URI, rowId);

 // Get the Content Resolver
 ContentResolver cr = getContentResolver();

Accessing Content Providers with Content Resolvers ❘ 339

 try {
 // Open an output stream using the row's URI.
 OutputStream outStream = cr.openOutputStream(rowURI);
 // Compress your bitmap and save it into your provider.
 hoardImage.compress(Bitmap.CompressFormat.JPEG, 80, outStream);
 }
 catch (FileNotFoundException e) {
 Log.d(TAG, "No file found for this record.");
 }
}

public Bitmap getHoardImage(long rowId) {
 Uri myRowUri =
 ContentUris.withAppendedId(MyHoardContentProvider.CONTENT_URI, rowId);

 try {
 // Open an input stream using the new row's URI.
 InputStream inStream =
 getContentResolver().openInputStream(myRowUri);

 // Make a copy of the Bitmap.
 Bitmap bitmap = BitmapFactory.decodeStream(inStream);
 return bitmap;
 }
 catch (FileNotFoundException e) {
 Log.d(TAG, "No file found for this record.");
 }

 return null;
}

Accessing Permission-Restricted Content Providers
Many Content Providers require specific permissions before you can read and write to them. For
example, native Content Providers that include sensitive information such as contact details and call
logs have both their read and write access protected by permissions. Native Content Providers are
described in more detail in the section “Using Native Android Content Providers.”

To query or modify a Content Provider that has a permission requirement, you need to declare the
corresponding uses-permissions in your manifest to read and/or write to them, respectively:

<uses-permission android:name="android.permission.READ_CONTACTS"/>
<uses-permission android:name="android.permission.WRITE_CALL_LOG"/>

Manifest permissions are granted by the user as part of the regular installation flow; however,
Android 6.0 Marshmallow (API Level 23) introduced an additional requirement for dangerous per-
missions—including those which guard access to potentially sensitive information.

Dangerous permissions require explicit approval from the user when they are first accessed within
the app, by way of runtime permission requests.

340 ❘ CHAPTER 10 Content Providers and searCh

Each time you attempt to access a Content Provider protected by a dangerous permission you must
use the ActivityCompat.checkSelfPermission method, passing in the appropriate permission
constant to determine if you have access to the Provider. It will return PERMISSION_GRANTED if user
permission is granted, or PERMISSION_DENIED if the user has declined, or not yet granted, access:

int permission = ActivityCompat.checkSelfPermission(this,
 Manifest.permission.READ_CONTACTS);

if (permission==PERMISSION_GRANTED) {
 // Access the Content Provider
} else {
 // Request the permission or
 // display a dialog showing why the function is unavailable.
}

If you have not been granted permission, you can use the ActivityCompat class’s shouldShow-
RequestPermissionRationale method to determine if this is the first time this app has presented
the user with a request for this permission—indicated with a false result—or if the user has
already declined a request. In the latter case you may consider providing additional context describ-
ing why you need the requested permission, before presenting them with the permission-request
dialog again:

if (ActivityCompat.shouldShowRequestPermissionRationale(
 this, Manifest.permission.READ_CALL_LOG)) {
 // TODO: Display additional rationale for the requested permission.
}

To display the system’s runtime permission-request dialog, call the ActivityCompat.request-
Permission method, specifying the required permissions:

ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.READ_CONTACTS},
 CONTACTS_PERMISSION_REQUEST);

This function runs asynchronously, displaying a standard Android dialog that can’t be customized.
You can receive a callback when the user has either accepted or denied your runtime request, by
overriding the onRequestPermissionsResult handler:

@Override
public void onRequestPermissionsResult(int requestCode,
 @NonNull String[] permissions,
 @NonNull int[] grantResults) {
 super.onRequestPermissionsResult(requestCode, permissions, grantResults);
 // TODO React to granted / denied permissions.
}

It’s common practice to listen for this callback, and if permission is granted to execute the function-
ality that was previously protected by your permission check. The result, for the user, will be an
interstitial permission dialog displayed before the requested action is completed. This is generally
preferable to them having to reinitiate the action; however, be careful not to create an endless loop
of request-denial-request.

Using Native Android Content Providers ❘ 341

USING NATIVE ANDROID CONTENT PROVIDERS

Android exposes several native Content Providers that you can access directly using the techniques
described earlier in this chapter. The android.provider package includes many useful Content
Providers, including the following:

 ➤ Browser—Reads or modifies browser and browser search history.

 ➤ Calendar—Creates new events, and deletes, updates, and reads existing calendar entries. That
includes modifying the attendee lists and setting reminders.

 ➤ Call Log and Blocked Numbers—The Call Log Provider stores the call history, including
incoming and outgoing calls, missed calls, and call details, including caller IDs and call dura-
tions. Blocked Numbers exposes a table containing blocked numbers and e-mail addresses.

 ➤ Contacts—Retrieves, modifies, or stores contact details.

 ➤ Media Store—Provides centralized, managed access to the multimedia on your device,
including audio, video, and images. You can store your own multimedia within the Media
Store and make it globally available, as shown in Chapter 17, “Audio, Video, and Using the
Camera.”

Where possible, you should use native Content Providers rather than duplicating them whenever you
are building an app that augments or replaces the native apps that use these Providers.

Accessing the Call Log
The Android Call Log contains information about placed and received calls. Access to the Call Log
is protected by the READ_CALL_LOG manifest uses-permission:

<uses-permission android:name="android.permission.READ_CALL_LOG"/>

For Android devices running Android 6.0 Marshmallow (API Level 23) and above, you also require
the corresponding runtime permission:

int permission = ActivityCompat.checkSelfPermission(this,
 Manifest.permission.READ_CALL_LOG);

Use the Content Resolver to query the Call Log Calls table using its CONTENT_URI static constant:
CallLog.Calls.CONTENT_URI.

The Call Log is used to store all the incoming and outgoing call details, such as date/time of calls,
phone numbers, and call durations, as well as cached values for caller details such as name, URI,
and photos. Listing 10-18 shows how to query the Call Log for all outgoing calls, showing the
name, number, and duration of each call.

LISTING 10-18: Accessing the Call Log Content Provider

// Create a projection that limits the result Cursor
// to the required columns.
String[] projection = {

continues

342 ❘ CHAPTER 10 Content Providers and searCh

 CallLog.Calls.DURATION,
 CallLog.Calls.NUMBER,
 CallLog.Calls.CACHED_NAME,
 CallLog.Calls.TYPE
};

// Return only outgoing calls.
String where = CallLog.Calls.TYPE + "=?";
String[] whereArgs = {String.valueOf(CallLog.Calls.OUTGOING_TYPE)};

// Get a Cursor over the Call Log Calls Provider.
Cursor cursor =
 getContentResolver().query(CallLog.Calls.CONTENT_URI,
 projection, where, whereArgs, null);

// Get the index of the columns.
int durIdx = cursor.getColumnIndexOrThrow(CallLog.Calls.DURATION);
int numberIdx = cursor.getColumnIndexOrThrow(CallLog.Calls.NUMBER);
int nameIdx = cursor.getColumnIndexOrThrow(CallLog.Calls.CACHED_NAME);

// Initialize the result set.
String[] result = new String[cursor.getCount()];

// Iterate over the result Cursor.
while (cursor.moveToNext()) {
 String durStr = cursor.getString(durIdx);
 String numberStr = cursor.getString(numberIdx);
 String nameStr = cursor.getString(nameIdx);

 result[cursor.getPosition()] = numberStr + " for " + durStr + "sec" +
 ((null == nameStr) ?
 "" : " (" + nameStr + ")");
 Log.d(TAG, result[cursor.getPosition()]);
}

// Close the Cursor.
cursor.close();

Using the Media Store Content Provider
The Android Media Store is a managed repository of audio, video, and image files.

Whenever you add a new multimedia file to the filesystem, it should also be added to the Media
Store, as described in Chapter 17; this will expose it to other applications, including media players.
In most circumstances it’s not necessary (or recommended) to modify the contents of the Media
Store Content Provider directly.

LISTING 10-18 (continued)

Using Native Android Content Providers ❘ 343

To access the media available within the Media Store, the MediaStore class includes Audio, Video,
and Images subclasses, which in turn contain subclasses that are used to provide the column
names and content URIs for the corresponding media providers.

The Media Store segregates media kept on the internal and external volumes of the host device.
Each Media Store subclass provides a URI for either the internally or externally stored media using
the forms:

 ➤ MediaStore.<mediatype>.Media.EXTERNAL_CONTENT_URI

 ➤ MediaStore.<mediatype>.Media.INTERNAL_CONTENT_URI

Listing 10-19 shows a simple code snippet used to find the song title and album name for each piece
of audio stored on the internal volume.

LISTING 10-19: Accessing the Media Store Content Provider

// Get a Cursor over every piece of audio on the external volume,
// extracting the song title and album name.
String[] projection = new String[] {
 MediaStore.Audio.AudioColumns.ALBUM,
 MediaStore.Audio.AudioColumns.TITLE
};

Uri contentUri = MediaStore.Audio.Media.INTERNAL_CONTENT_URI;

Cursor cursor =
 getContentResolver().query(contentUri, projection,
 null, null, null);

// Get the index of the columns we need.
int albumIdx =
 cursor.getColumnIndexOrThrow(MediaStore.Audio.AudioColumns.ALBUM);
int titleIdx =
 cursor.getColumnIndexOrThrow(MediaStore.Audio.AudioColumns.TITLE);

// Create an array to store the result set.
String[] result = new String[cursor.getCount()];

// Iterate over the Cursor, extracting each album name and song title.
while (cursor.moveToNext()) {
 // Extract the song title.
 String title = cursor.getString(titleIdx);
 // Extract the album name.
 String album = cursor.getString(albumIdx);

 result[cursor.getPosition()] = title + " (" + album + ")";
}

// Close the Cursor.
cursor.close();

344 ❘ CHAPTER 10 Content Providers and searCh

NOTE In Chapter 17 you learn how to play audio and video resources stored in
the Media Store by specifying the URI of a particular multimedia item, as well as
how to properly add media to the Media Store.

Using the Contacts Content Provider
Android makes the full database of contact information available to any application that has been
granted the READ_CONTACTS permission.

The ContactsContract Provider provides an extensible database of contact-related informa-
tion. This allows users to use and combine multiple sources for their contact information. More
importantly, it allows developers to arbitrarily extend the data stored against each contact, or even
become an alternative provider for contacts and contact details.

Rather than providing a single, fully defined table of contact detail columns, the Contacts Contract
provider uses a three-tier data model to store data, associate it with a contact, and aggregate it to a
single person using the following subclasses:

 ➤ Data—Each row in the underlying table defines a set of personal data (phone numbers,
e-mail addresses, and so on), separated by MIME type. Although there is a predefined set of
common column names for each personal data type available (along with the appropriate
MIME types from subclasses within ContactsContract.CommonDataKinds), this table can
be used to store any value.

The kind of data stored in a particular row is determined by the MIME type specified for
that row. A series of generic columns is then used to store up to 15 different pieces of data
varying by MIME type.

When adding new data to the Data table, you specify a Raw Contact to which a set of data
will be associated.

 ➤ RawContacts—Users can add multiple contact account providers to their device—for exam-
ple, if they’ve added multiple Gmail accounts. Each row in the Raw Contacts table defines an
account to which a set of Data values is associated.

 ➤ Contacts—The Android Contacts app aggregates and exposes all contacts, from every
account on the device, in a single list. It’s possible for the same person to be included as a
contact in multiple accounts—for example, your significant other may appear as an entry in
both your personal and work Gmail accounts. The Contacts table represents the aggregation
of multiple rows from Raw Contacts that describe the same person, so they appear as one
entry in the Android Contacts app.

The contents of each of these tables are aggregated as shown in Figure 10-1.

Using Native Android Content Providers ❘ 345

Contacts Table

Raw Contacts
Table Rows

ID
Display Name

...

Phone Number

Personal Gmail

Email

Address

⬝⬝⬝

ID
Display Name

...

Phone Number

Work Email

Email

Address

⬝⬝⬝

⬝⬝⬝
⬝⬝⬝
⬝⬝⬝

⬝⬝⬝

Data Table Rows

Aggregated Raw Contacts

⬝⬝⬝

FIGURE 10-1

Typically, you will use the Data table to add, delete, or modify data stored against an existing con-
tact account, the Raw Contacts table to create and manage accounts, and both the Contact and
Data tables to query the database to extract contact details.

Reading Contact Details
To access any of the Contact Contract Providers, you must include the READ_CONTACTS uses-
permission in your application manifest:

<uses-permission android:name="android.permission.READ_CONTACTS"/>

Android devices running Android 6.0 Marshmallow (API Level 23) also require the corresponding
runtime permission:

int permission = ActivityCompat.checkSelfPermission(this,
 Manifest.permission.READ_CONTACTS);

Use the Content Resolver to query any of the three Contact Contracts Providers previously described
using their respective CONTENT_URI static constants. Each class includes their column names as static
properties.

Listing 10-20 queries the Contacts table for a Cursor to every person in the address book, creating
an array of strings that holds each contact’s name and unique ID.

346 ❘ CHAPTER 10 Content Providers and searCh

LISTING 10-20: Accessing the Contacts Contract Contact Content Provider

// Create a projection that limits the result Cursor
// to the required columns.
String[] projection = {
 ContactsContract.Contacts._ID,
 ContactsContract.Contacts.DISPLAY_NAME
};

// Get a Cursor over the Contacts Provider.
Cursor cursor =
 getContentResolver().query(ContactsContract.Contacts.CONTENT_URI,
 projection, null, null, null);

// Get the index of the columns.
int nameIdx =
 cursor.getColumnIndexOrThrow(ContactsContract.Contacts.DISPLAY_NAME);
int idIdx =
 cursor.getColumnIndexOrThrow(ContactsContract.Contacts._ID);

// Initialize the result set.
String[] result = new String[cursor.getCount()];

// Iterate over the result Cursor.
while(cursor.moveToNext()) {
 // Extract the name.
 String name = cursor.getString(nameIdx);
 // Extract the unique ID.
 String id = cursor.getString(idIdx);

 result[cursor.getPosition()] = name + " (" + id + ")";
 }

// Close the Cursor.
cursor.close();

The ContactsContract.Data Content Provider is used to store all the contact details, such as
addresses, phone numbers, and e-mail addresses. In most cases, you will likely be querying for con-
tact details based on a full or partial contact name.

To simplify this lookup, Android provides the ContactsContract.Contacts.CONTENT_FILTER_URI
query URI. Append the full or partial name to this lookup as an additional path segment to the
URI. To extract the associated contact details, find the _ID value from the returned Cursor, and use
it to create a query on the Data table.

The content of each column with a row in the Data table depends on the MIME type specified for
that row. As a result, any query on the Data table must filter the rows by MIME type to meaning-
fully extract data.

Listing 10-21 shows how to use the contact-detail column names available in the CommonDataKinds
subclasses to extract the display name and mobile phone number from the Data table for a particu-
lar contact.

Using Native Android Content Providers ❘ 347

LISTING 10-21: Finding contact details for a contact name

ContentResolver cr = getContentResolver();
String[] result = null;

// Find a contact using a partial name match
String searchName = "john";
Uri lookupUri =
 Uri.withAppendedPath(ContactsContract.Contacts.CONTENT_FILTER_URI,
 searchName);

// Create a projection of the required column names.
String[] projection = new String[] {
 ContactsContract.Contacts._ID
};

// Get a Cursor that will return the ID(s) of the matched name.
Cursor idCursor = cr.query(lookupUri,
 projection, null, null, null);

// Extract the first matching ID if it exists.
String id = null;
if (idCursor.moveToFirst()) {
 int idIdx =
 idCursor.getColumnIndexOrThrow(ContactsContract.Contacts._ID);
 id = idCursor.getString(idIdx);
}

// Close that Cursor.
idCursor.close();

// Create a new Cursor searching for the data associated
// with the returned Contact ID.
if (id != null) {
 // Return all the PHONE data for the contact.
 String where = ContactsContract.Data.CONTACT_ID +
 " = " + id + " AND " +
 ContactsContract.Data.MIMETYPE + " = '" +
 ContactsContract.CommonDataKinds.Phone.CONTENT_ITEM_TYPE +
 "'";

 projection = new String[] {
 ContactsContract.Data.DISPLAY_NAME,
 ContactsContract.CommonDataKinds.Phone.NUMBER
 };

 Cursor dataCursor =
 getContentResolver().query(ContactsContract.Data.CONTENT_URI,
 projection, where, null, null);

 // Get the indexes of the required columns.
 int nameIdx =
 dataCursor.getColumnIndexOrThrow(ContactsContract.Data.DISPLAY_NAME);
 int phoneIdx =

continues

348 ❘ CHAPTER 10 Content Providers and searCh

 dataCursor.getColumnIndexOrThrow(
 ContactsContract.CommonDataKinds.Phone.NUMBER);

 result = new String[dataCursor.getCount()];

 while(dataCursor.moveToNext()) {
 // Extract the name.
 String name = dataCursor.getString(nameIdx);
 // Extract the phone number.
 String number = dataCursor.getString(phoneIdx);

 result[dataCursor.getPosition()] = name + " (" + number + ")";
 }

 dataCursor.close();
}

The Contacts subclass also offers a phone number lookup URI to help find a contact associated
with a particular phone number. This query is highly optimized to return fast results for caller-ID
notification.

Use ContactsContract.PhoneLookup.CONTENT_FILTER_URI, appending the number to look up as
an additional path segment, as shown in Listing 10-22.

LISTING 10-22: Performing a caller-ID lookup

String incomingNumber = "(555) 123-4567";
String result = "Not Found";

Uri lookupUri =
 Uri.withAppendedPath(ContactsContract.PhoneLookup.CONTENT_FILTER_URI,
 incomingNumber);

String[] projection = new String[] {
 ContactsContract.Contacts.DISPLAY_NAME
};

Cursor cursor = getContentResolver().query(lookupUri,
 projection, null, null, null);

if (cursor.moveToFirst()) {
 int nameIdx =
 cursor.getColumnIndexOrThrow(ContactsContract.Contacts.DISPLAY_NAME);

 result = cursor.getString(nameIdx);
}

cursor.close();

LISTING 10-21 (continued)

Using Native Android Content Providers ❘ 349

Using the Intents API for the Contacts Content Provider
The Contacts Contract Content Provider includes an Intent-based mechanism that can be used to
view, insert, or select a contact using an existing contact application (typically, the native contact
app).

This is the best practice approach and has the advantage of presenting the user with a consistent
interface for performing the same task, avoiding ambiguity and improving the overall user experi-
ence. Because the user has the power to abort the action without affecting the Content Provider, you
don’t require any special permissions to utilize this technique for selecting or creating new contacts.

Accessing Contacts Using Intents
To display a list of contacts for your users to select from, you can use the Intent.ACTION_PICK
action, and use the setType method to indicate the MIME type of the contact data you wish to use.
Listing 10-23 requests that we pick a Contact with a phone number.

LISTING 10-23: Picking a contact

private static int PICK_CONTACT = 0;

private void pickContact() {
 Intent intent = new Intent(Intent.ACTION_PICK);
 intent.setType(ContactsContract.CommonDataKinds.Phone.CONTENT_TYPE);
 startActivityForResult(intent, PICK_CONTACT);
}

This will display a List View of the contacts available (as shown in Figure 10-2).

FIGURE 10-2

350 ❘ CHAPTER 10 Content Providers and searCh

When the user selects a contact, it will be returned as a lookup URI within the data property of the
returned Intent. To retrieve specific contact details, use the Content Resolver to perform a query
using the lookup URI, and extract the required details as shown in this extension to Listing 10-23:

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 if ((requestCode == PICK_CONTACT) && (resultCode == RESULT_OK)) {
 Uri selectedContact = data.getData();
 Cursor cursor = getContentResolver().query(selectedContact,
 null, null, null, null);
 // If the cursor returned is valid, get the phone number
 if (cursor != null && cursor.moveToFirst()) {
 int numberIndex = cursor.getColumnIndex(
 ContactsContract.CommonDataKinds.Phone.NUMBER);
 String number = cursor.getString(numberIndex);

 int nameIndex = cursor.getColumnIndex(
 ContactsContract.CommonDataKinds.Identity.DISPLAY_NAME);
 String name = cursor.getString(nameIndex);

 // TODO: Do something with the selected name and phone number.
 }
 }
}

The contacts app delegates read and write permissions to this content URI for the life of your
Activity, meaning you can use it to access the associated data without requesting special permission.

Inserting or Modifying Contacts with Intents
To insert a new contact, you will use an Intent specifying a phone number or e-mail address, along
with extras that will pre-populate the new contact form.

The ContactsContract.Intents.SHOW_OR_CREATE_CONTACT action will search the Contacts
Provider for a particular e-mail address or telephone number URI, offering to insert a new entry
only if a contact with the specified contact address doesn’t exist. If the contact does exist, it will be
displayed.

Use the constants in the ContactsContract.Intents.Insert class to include Intent extras that can
be used to pre-populate contact details, including the name, company, e-mail, phone number, notes,
and postal address of the new contact, as shown in Listing 10-24.

LISTING 10-24: Inserting a new contact using an Intent

Intent intent =
 new Intent(ContactsContract.Intents.SHOW_OR_CREATE_CONTACT,
 ContactsContract.Contacts.CONTENT_URI);
intent.setData(Uri.parse("tel:(650)253-0000"));

intent.putExtra(ContactsContract.Intents.Insert.COMPANY, "Google");

Using Native Android Content Providers ❘ 351

intent.putExtra(ContactsContract.Intents.Insert.POSTAL,
 "1600 Amphitheatre Parkway, Mountain View, California");

startActivity(intent);

Using the Calendar Content Provider
Android 4.0 (API Level 14) introduced a supported API for accessing the Calendar Content
Provider. The Calendar API allows you to insert, view, and edit the complete Calendar database,
providing access to calendars, events, attendees, and event.

Like the Contacts Contract Content Provider, the Calendar Content Provider is designed to support
multiple synchronized accounts. As a result, you can choose to read from, and contribute to, exist-
ing calendar applications and accounts; develop an alternative Calendar Provider by creating a cal-
endar Sync Adapter; or create an alternative calendar application.

Querying the Calendar
The Calendar Provider requires that you include the READ_CALENDAR uses-permission in your appli-
cation manifest:

<uses-permission android:name="android.permission.READ_CALENDAR"/>

Android devices running Android 6.0 Marshmallow (API Level 23) also require the granting of the
corresponding runtime permission:

int permission = ActivityCompat.checkSelfPermission(this,
 Manifest.permission.READ_CALENDAR);

Use the Content Resolver to query any of the Calendar Provider tables using their CONTENT_URI
static constant. Each table is exposed from within the CalendarContract class, including:

 ➤ Calendars—The Calendar application can display multiple calendars associated with mul-
tiple accounts. This table holds each calendar that can be displayed, as well as details such as
the calendar’s display name, time zone, and color.

 ➤ Events—The Events table includes an entry for each scheduled calendar event, including the
name, description, location, and start/end times.

 ➤ Instances—Each event has one or (in the case of recurring events) multiple instances. The
Instances table is populated with entries generated by the contents of the Events table and
includes a reference to the event that generated it.

 ➤ Attendees—Each entry in the Attendees table represents a single attendee of a given event.
Each attendee can include a name, e-mail address, and attendance status, and if they are
optional or required guests.

 ➤ Reminders—Event reminders are represented within the Reminders table, with each row rep-
resenting one reminder for a particular event.

Each class includes its column names as static properties.

352 ❘ CHAPTER 10 Content Providers and searCh

Listing 10-25 queries the Events table for every event, creating an array of strings that holds each
event’s name and unique ID.

LISTING 10-25: Querying the Events table

// Create a projection that limits the result Cursor
// to the required columns.
String[] projection = {
 CalendarContract.Events._ID,
 CalendarContract.Events.TITLE
};

// Get a Cursor over the Events Provider.
Cursor cursor =
 getContentResolver().query(CalendarContract.Events.CONTENT_URI,
 projection, null, null, null);

// Get the index of the columns.
int nameIdx =
 cursor.getColumnIndexOrThrow(CalendarContract.Events.TITLE);
int idIdx = cursor. getColumnIndexOrThrow(CalendarContract.Events._ID);

// Initialize the result set.
String[] result = new String[cursor.getCount()];

// Iterate over the result Cursor.
while(cursor.moveToNext()) {
 // Extract the name.
 String name = cursor.getString(nameIdx);
 // Extract the unique ID.
 String id = cursor.getString(idIdx);

 result[cursor.getPosition()] = name + " (" + id + ")";
 }

// Close the Cursor.
cursor.close();

Creating Calendar Entries Using Intents
The Calendar Content Provider includes an Intent-based mechanism that allows you to perform
common actions without the need for special permissions by utilizing the Calendar application UI.
Using Intents, you can open the Calendar application to a specific time, view event details, and
insert a new event.

NOTE At the time of writing, the Android documentation also describes sup-
port for editing calendar entries using Intents. Unfortunately, at this time this
mechanism doesn’t work as described. To edit calendar entries, you can either
interact with the Content Provider directly or display the entry and encourage
the user to make the changes to the event themselves.

Using Native Android Content Providers ❘ 353

Like the Contacts API, using Intents is the best practice approach for manipulating calendar entries
and should be used in preference to direct manipulation of the underlying tables whenever possible.

Using the Intent.ACTION_INSERT action, specifying the CalendarContract.Events.CONTENT_
URI, you can add new events to an existing calendar without requiring any special permissions.

Your Intent can include extras that define each of the event attributes, including the title, start and
end time, location, and description, as shown in Listing 10-26. When triggered, the Intent will be
received by the Calendar application, which will create a new entry pre-populated with the data
provided.

LISTING 10-26: Inserting a new calendar event using an Intent

// Create a new insertion Intent.
Intent intent = new Intent(Intent.ACTION_INSERT,
 CalendarContract.Events.CONTENT_URI);

// Add the calendar event details
intent.putExtra(CalendarContract.Events.TITLE, "Book Launch!");
intent.putExtra(CalendarContract.Events.DESCRIPTION,
 "Professional Android Release!");
intent.putExtra(CalendarContract.Events.EVENT_LOCATION, "Wrox.com");

Calendar startTime = Calendar.getInstance();
startTime.set(2018, 6, 19, 0, 30);
intent.putExtra(CalendarContract.EXTRA_EVENT_BEGIN_TIME,
 startTime.getTimeInMillis());

intent.putExtra(CalendarContract.EXTRA_EVENT_ALL_DAY, true);

// Use the Calendar app to add the new event.
startActivity(intent);

To view a calendar event, you must first know its row ID. To find this, you need to query the Events
Content Provider, as described earlier in this section.

When you have the ID of the event you want to display, create a new Intent using the Intent
.ACTION_VIEW action and a URI that appends the event’s row ID to the end of the Events table’s
CONTENT_URI, as shown in Listing 10-27.

LISTING 10-27: Viewing a calendar event using an Intent

// Create a URI addressing a specific event by its row ID.
// Use it to create a new edit Intent.
long rowID = 760;
Uri uri = ContentUris.withAppendedId(
 CalendarContract.Events.CONTENT_URI, rowID);

Intent intent = new Intent(Intent.ACTION_VIEW, uri);

// Use the Calendar app to view the calendar entry.
startActivity(intent);

354 ❘ CHAPTER 10 Content Providers and searCh

To view a specific date and time, the URI should be of the form content://com.android
.calendar/time/[milliseconds since epoch], as shown in Listing 10-28.

LISTING 10-28: Displaying a time on the calendar using an Intent

// Create a URI that specifies a particular time to view.
Calendar startTime = Calendar.getInstance();
startTime.set(2012, 2, 13, 0, 30);

Uri uri = Uri.parse("content://com.android.calendar/time/" +
 String.valueOf(startTime.getTimeInMillis()));
Intent intent = new Intent(Intent.ACTION_VIEW, uri);

// Use the Calendar app to view the time.
startActivity(intent);

ADDING SEARCH TO YOUR APPLICATION

Surfacing your application’s content through search is a simple and powerful way to make your con-
tent more discoverable and increase user engagement. On mobile devices speed is everything, and
search helps users quickly find the content they need within your app.

Android includes a framework that helps you to implement a search experience within your app
that’s consistent with the system and other applications.

You can provide search capabilities for your application in a
number of ways, but the best practice solution is to use the
Search View, included as an action in the app bar, as shown in its
expanded form in Figure 10-3.

It’s possible to add the Search View anywhere within your
Activity layout, though the app bar is by far the most common location.

A Search View can be configured to display search suggestions as you type, providing a powerful
mechanism for improving the responsiveness of your application.

Before you can enable a Search View within your application, you need to define what is being
searched and how to display the results.

Defining Your Search Metadata
The first step in utilizing the system search facilities is to create a Searchable XML file that defines
the settings that will be used by the Search View.

Create a new Searchable XML resource in your project’s res/xml folder. As shown in Listing
10-29, you must specify the android:label attribute (typically your application name), and an
android:hint attribute to help users understand what they can search for. The hint is typically in

FIGURE 10-3

Adding Search to Your Application ❘ 355

the form of “Search for [content type or product name].” Note that the hint must be a reference to a
string resource. If you use a String constant, it will not be displayed.

LISTING 10-29: Defining application search metadata

<?xml version="1.0" encoding="utf-8"?>
<searchable
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:label="@string/app_name"
 android:hint="@string/search_hint">
</searchable>

In the section “Providing Search Suggestions Using a Content Provider” later in this chapter, you
learn how to modify your Searchable configuration to provide as-you-type search suggestions within
your application’s search framework.

Creating a Search Results Activity
When a search is executed using the Search View, it launches an associated search results Activity,
which receives the search query as an Intent. Your search results Activity must then extract the
search query from the Intent, perform the search, and present the results.

Your search results Activity can use any UI, but is most commonly a simple list of results, typically
implemented using a Recycler View. It’s good practice to set your search results Activity as “single
top,” ensuring that the same instance will be used repeatedly, rather than creating a new instance
for each search and risk stacking search results on your back stack.

To indicate that an Activity will be used to provide search results, include an Intent Filter registered
for the SEARCH action:

<intent-filter>
 <action android:name="android.intent.action.SEARCH" />
</intent-filter>

You must also include a meta-data tag that includes a name attribute that specifies android.app
.searchable, and a corresponding resource attribute that specifies the searchable XML resource
described in the previous section.

Listing 10-30 shows a simple application manifest entry for a search Activity.

LISTING 10-30: Registering a search results Activity

<activity
 android:name=".MySearchActivity"
 android:label="Hoard Search"
 android:launchMode="singleTop">
 <intent-filter>
 <action android:name="android.intent.action.SEARCH" />
 </intent-filter>

continues

356 ❘ CHAPTER 10 Content Providers and searCh

 <meta-data
 android:name="android.app.searchable"
 android:resource="@xml/hoard_search"
 />
</activity>

When a search is initiated, your search results Activity will be started and the search query will be
available from within the launch Intent, accessible through the SearchManager.QUERY extra, as
shown in Listing 10-31.

LISTING 10-31: Extracting the search query

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my_search);

 // Parse the launch Intent to perform the search
 // and display the results.
 parseIntent();
}

@Override
protected void onNewIntent(Intent intent) {
 super.onNewIntent(intent);

 // If the search Activity exists, and another search
 // is performed, set the launch Intent to the newly
 // received search Intent and perform a new search.
 setIntent(intent);
 parseIntent();
}

private void parseIntent() {
 Intent searchIntent = getIntent();
 // If the Activity was started to service a Search request,
 // extract the search query.
 if (Intent.ACTION_SEARCH.equals(searchIntent.getAction())) {
 String searchQuery = searchIntent.getStringExtra(SearchManager.QUERY);
 // Perform the search
 performSearch(searchQuery);
 }
}

private void performSearch(String searchQuery) {
 // TODO: Perform the search and update the UI to display the results.
}

LISTING 10-30 (continued)

Adding Search to Your Application ❘ 357

When your search Activity receives a new search query, execute the search and display the results
within the Activity. How you choose to implement your search query and display its results depends
on your application, what you’re searching, and where the searchable content is stored.

Searching a Content Provider
Using a Content Provider to expose the data you plan to make searchable has a number of advan-
tages; one of the most powerful is the ability to provide real-time search suggestions, as described
later in this chapter.

If you’re providing results from a Content Provider, it’s good practice to use a Cursor Loader to
execute a query and bind the result to the UI. In most circumstances you’ll want to provide func-
tionality for users to select a search result and navigate to an appropriate part of your app to interact
with it.

Listing 10-32 shows how to create a search results Activity that searches a Content Provider, dis-
plays the results Cursor in a Recycler View, and adds a Click Listener you can use to support a user
selecting a search result. For brevity, the layout resources for the Activity and the search result items
are not included in this listing.

LISTING 10-32: Performing a search and displaying the results

public class MySearchActivity extends AppCompatActivity
 implements LoaderManager.LoaderCallbacks<Cursor>
{

 private static final String QUERY_EXTRA_KEY = "QUERY_EXTRA_KEY";

 private MySearchResultRecyclerViewAdapter mAdapter;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.searchresult_list);

 // Set the adapter
 mAdapter = new MySearchResultRecyclerViewAdapter(null, mListener);

 // Update the Recycler View
 RecyclerView resultsRecyclerView = findViewById(R.id.list);
 resultsRecyclerView.setLayoutManager(new LinearLayoutManager(this));
 resultsRecyclerView.setAdapter(mAdapter);

 // Initiate the Cursor Loader
 getSupportLoaderManager().initLoader(0, null, this);
 }

 @Override
 protected void onNewIntent(Intent intent) {
 super.onNewIntent(intent);

continues

358 ❘ CHAPTER 10 Content Providers and searCh

 // If the search Activity exists, and another search
 // is performed, set the launch Intent to the newly
 // received search Intent and perform a new search.
 setIntent(intent);

 getSupportLoaderManager().restartLoader(0, null, this);
 }

 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 // Extract the search query from the Intent.
 String query = getIntent().getStringExtra(SearchManager.QUERY);

 // Construct the new query in the form of a Cursor Loader.
 String[] projection = {
 HoardDB.HoardContract.KEY_ID,
 HoardDB.HoardContract.KEY_GOLD_HOARD_NAME_COLUMN,
 HoardDB.HoardContract.KEY_GOLD_HOARDED_COLUMN
 };

 String where = HoardDB.HoardContract.KEY_GOLD_HOARD_NAME_COLUMN
 + " LIKE ?";
 String[] whereArgs = {"%" + query + "%"};

 String sortOrder = HoardDB.HoardContract.KEY_GOLD_HOARD_NAME_COLUMN +
 " COLLATE LOCALIZED ASC";

 // Create the new Cursor loader.
 return new CursorLoader(this, MyHoardContentProvider.CONTENT_URI,
 projection, where, whereArgs, sortOrder);
 }

 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 // Replace the result Cursor displayed by the Cursor Adapter with
 // the new result set.
 mAdapter.setCursor(cursor);
 }

 public void onLoaderReset(Loader<Cursor> loader) {
 // Remove the existing result Cursor from the List Adapter.
 mAdapter.setCursor(null);
 }

 private OnListItemInteractionListener mListener =
 new OnListItemInteractionListener() {
 @Override
 public void onListItemClick(Uri selectedContent) {
 // TODO If an item is clicked, open an Activity
 // to display further details.
 }
 };

LISTING 10-32 (continued)

Adding Search to Your Application ❘ 359

 public class MySearchResultRecyclerViewAdapter
 extends RecyclerView.Adapter<MySearchResultRecyclerViewAdapter.ViewHolder>
 {
 private Cursor mValues;
 private OnListItemInteractionListener mClickListener;

 private int mHoardIdIndex = -1;
 private int mHoardNameIndex = -1;
 private int mHoardAmountIndex = -1;

 public MySearchResultRecyclerViewAdapter(Cursor items,
 OnListItemInteractionListener clickListener) {

 mValues = items;
 mClickListener = clickListener;
 }

 public void setCursor(Cursor items) {
 mValues = items;

 if (items != null) {
 mHoardIdIndex =
 items.getColumnIndex(HoardDB.HoardContract.KEY_ID);
 mHoardNameIndex =
 items.getColumnIndex(
 HoardDB.HoardContract.KEY_GOLD_HOARD_NAME_COLUMN);
 mHoardAmountIndex =
 items.getColumnIndex(
 HoardDB.HoardContract.KEY_GOLD_HOARDED_COLUMN);
 }

 notifyDataSetChanged();
 }

 @Override
 public ViewHolder onCreateViewHolder(ViewGroup parent, int viewType) {
 View view = LayoutInflater.from(parent.getContext())
 .inflate(R.layout.searchresult_item, parent, false);

 return new ViewHolder(view);
 }

 @Override
 public void onBindViewHolder(final ViewHolder holder, int position) {
 if (mValues != null) {
 // Move the Cursor to the correct position, extract the
 // search result values, and assign them to the UI for
 // each search result.
 mValues.moveToPosition(position);
 holder.mNameView.setText(mValues.getString(mHoardNameIndex));
 holder.mAmountView.setText(mValues.getString(mHoardAmountIndex));

 // Create a Uri that points to this search result item.
 int rowId = mValues.getInt(mHoardIdIndex);

360 ❘ CHAPTER 10 Content Providers and searCh

 final Uri rowAddress =
 ContentUris.withAppendedId(MyHoardContentProvider.CONTENT_URI,
 rowId);

 // Return the Uri to this search result item if clicked.
 holder.mView.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mClickListener.onListItemClick(rowAddress);
 }
 });
 }
 }

 @Override
 public int getItemCount() {
 if (mValues != null)
 return mValues.getCount();
 else
 return 0;
 }

 // View Holder is used as a template to encapsulate the UI
 // for each search result item.
 public class ViewHolder extends RecyclerView.ViewHolder {
 public final View mView;
 public final TextView mNameView;
 public final TextView mAmountView;

 public ViewHolder(View view) {
 super(view);
 mView = view;
 mNameView = view.findViewById(R.id.id);
 mAmountView = view.findViewById(R.id.content);
 }
 }
 }

 // Interface used to encapsulate the behavior when a user
 // clicks on a search result item.
 public interface OnListItemInteractionListener {
 void onListItemClick(Uri selectedContent);
 }
}

Using the Search View Widget
The Search View widget appears and behaves much the same as an Edit Text View, but is designed
to offer search suggestions and to initiate search queries within your application.

You can add the Search View anywhere in your View hierarchy and configure it in the same way;
however, it’s best practice to add it as an action View within the app bar, as shown in Listing 10-33.

Adding Search to Your Application ❘ 361

LISTING 10-33: Adding a Search View to the app bar

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 tools:context=
 "com.professionalandroid.apps.databasechaptersnippets.MainActivity">
 <item android:id="@+id/search_view"
 android:title="@string/search_label"
 app:showAsAction="collapseActionView|ifRoom"
 app:actionViewClass="android.support.v7.widget.SearchView" />
</menu>

Figure 10-4 shows a collapsed Search View displaying a mag-
nifying glass icon within an app bar. You learn more about
the app bar in Chapter 12, “Implementing the Android Design
Philosophy.”

To configure a Search View to display your search results
Activity, you must first add a new meta-data tag to the manifest entry of the Activity that hosts the
Search View, setting the android.app.default_searchable value to our search Activity, as shown
in Listing 10-34.

LISTING 10-34: Binding a Search View to your searchable Activity

<activity
 android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 <meta-data
 android:name="android.app.default_searchable"
 android:value=".MySearchActivity" />
</activity>

Extract a reference to your SearchableInfo using the Search Manager’s getSearchableInfo
method. Use the Search View’s setSearchableInfo method to bind this object to your Search
View, as shown in Listing 10-35.

LISTING 10-35: Binding a Search View to your searchable Activity

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the options menu from XML
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.menu_main, menu);

FIGURE 10-4

continues

362 ❘ CHAPTER 10 Content Providers and searCh

 // Use the Search Manager to find the SearchableInfo related
 // to this Activity.
 SearchManager searchManager =
 (SearchManager) getSystemService(Context.SEARCH_SERVICE);
 SearchableInfo searchableInfo =
 searchManager.getSearchableInfo(getComponentName());

 SearchView searchView =
 menu.findItem(R.id.search_view).getActionView();
 searchView.setSearchableInfo(searchableInfo);
 searchView.setIconifiedByDefault(false);

 return true;
}

When connected, your Search View will send the entered search query to the Search Activity for
execution and results display.

By default, the Search View will be displayed as an icon that, when touched, expands to display the
search edit box. You can use the setIconifiedByDefault method to disable this and have it always
display as an edit box:

searchView.setIconifiedByDefault(false);

Also by default, a Search View query is initiated when the user presses Enter. You can choose to also
display a button to submit a search using the setSubmitButtonEnabled method:

searchView.setSubmitButtonEnabled(true);

Providing Search Suggestions Using a Content Provider
One of the most engaging innovations in search is the provision of
real-time search suggestions as users type their queries.

Search suggestions display a list of possible search results
beneath the Search View as users enter their queries, as shown in
Figure 10-5.

Users can then select a suggestion from this list, which allows
us to handle this case directly, rather than displaying the list of
potential search results as shown in the previous section. Search suggestion selections must still be
handled by the search results Activity, but it can potentially start a new Activity without the search
Activity being displayed.

If you want to provide search suggestions, you need to create (or modify) a Content Provider to
receive search queries and return suggestions using the expected projection. Speed is critical for real-
time search results; in many cases it’s good practice to create a separate table specifically to store
and provide suggestions.

LISTING 10-35 (continued)

FIGURE 10-5

Adding Search to Your Application ❘ 363

To support search suggestions, configure your Content Provider to recognize specific URI paths as
search queries. Listing 10-36 shows a Uri Matcher used within a Content Provider to compare a
requested URI to the known search-query path values.

LISTING 10-36: Detecting search suggestion requests in Content Providers

private static final UriMatcher uriMatcher;

// Create the constants used to differentiate between the different URI
// requests.
private static final int ALLROWS = 1;
private static final int SINGLE_ROW = 2;
private static final int SEARCH = 3;

static {
 uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 uriMatcher.addURI("com.professionalandroid.provider.hoarder",
 "lairs", ALLROWS);
 uriMatcher.addURI("com.professionalandroid.provider.hoarder",
 "lairs/#", SINGLE_ROW);

 uriMatcher.addURI("com.professionalandroid.provider.hoarder",
 SearchManager.SUGGEST_URI_PATH_QUERY, SEARCH);
 uriMatcher.addURI("com.professionalandroid.provider.hoarder",
 SearchManager.SUGGEST_URI_PATH_QUERY + "/*", SEARCH);
 uriMatcher.addURI("com.professionalandroid.provider.hoarder",
 SearchManager.SUGGEST_URI_PATH_SHORTCUT, SEARCH);
 uriMatcher.addURI("com.professionalandroid.provider.hoarder",
 SearchManager.SUGGEST_URI_PATH_SHORTCUT + "/*", SEARCH);
}

Use the Uri Matcher to return the search suggestion MIME type for search queries using the
getType handler, as shown in Listing 10-37.

LISTING 10-37: Returning the correct MIME type for search results

@Nullable
@Override
public String getType(@NonNull Uri uri) {
 // Return a string that identifies the MIME type
 // for a Content Provider URI
 switch (uriMatcher.match(uri)) {
 case ALLROWS:
 return "vnd.android.cursor.dir/vnd.professionalandroid.lairs";
 case SINGLE_ROW:
 return "vnd.android.cursor.item/vnd.professionalandroid.lairs";
 case SEARCH :
 return SearchManager.SUGGEST_MIME_TYPE;
 default:
 throw new IllegalArgumentException("Unsupported URI: " + uri);
 }
}

364 ❘ CHAPTER 10 Content Providers and searCh

The Search Manager will request search suggestions by initiating a query on your Content Provider
and passing in the current search term as the last element in the URI path, making new queries as
the user continues to type. To return suggestions, your Content Provider must return a Cursor with
a set of predefined columns.

Two columns are required: SUGGEST_COLUMN_TEXT_1, which displays the search result text, and _id,
which indicates the unique row ID. You can also supply another column containing text, and an
icon to be displayed on either the left or right of the text results.

Listing 10-38 shows how to create a projection that returns a Cursor suitable for search suggestions.

LISTING 10-38: Creating a projection for returning search suggestions

private static final HashMap<String, String> SEARCH_SUGGEST_PROJECTION_MAP;
static {
 SEARCH_SUGGEST_PROJECTION_MAP = new HashMap<String, String>();

 // Map our ID column to "_id"
 SEARCH_SUGGEST_PROJECTION_MAP.put("_id",
 HoardDB.HoardContract.KEY_ID + " AS " + "_id");

 // Map our search field to the suggestions's first text field
 SEARCH_SUGGEST_PROJECTION_MAP.put(
 SearchManager.SUGGEST_COLUMN_TEXT_1,
 HoardDB.HoardContract.KEY_GOLD_HOARD_NAME_COLUMN +
 " AS " + SearchManager.SUGGEST_COLUMN_TEXT_1);
}

To perform the query that will supply the search suggestions, use the Uri Matcher within your
query implementation, applying the projection map of the form defined in the previous listing, as
shown in Listing 10-39.

LISTING 10-39: Returning search suggestions for a query

@Nullable
@Override
public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {

 // Open the database.
 SQLiteDatabase db = null;
 try {
 db = mHoardDBOpenHelper.getWritableDatabase();
 } catch (SQLiteException ex) {
 db = mHoardDBOpenHelper.getReadableDatabase();
 }

 // Replace these with valid SQL statements if necessary.
 String groupBy = null;
 String having = null;

Adding Search to Your Application ❘ 365

 // Use an SQLite Query Builder to simplify constructing the
 // database query.
 SQLiteQueryBuilder queryBuilder = new SQLiteQueryBuilder();

 // If this is a row query, limit the result set to the passed in row.
 switch (uriMatcher.match(uri)) {
 case SINGLE_ROW :
 String rowID = uri.getLastPathSegment();
 queryBuilder.appendWhere(HoardDB.HoardContract.KEY_ID + "=" + rowID);
 case SEARCH :
 String query = uri.getLastPathSegment();
 queryBuilder.appendWhere(
 HoardDB.HoardContract.KEY_GOLD_HOARD_NAME_COLUMN +
 " LIKE \"%" + query + "%\"");
 queryBuilder.setProjectionMap(SEARCH_SUGGEST_PROJECTION_MAP);
 break;
 default: break;
 }

 // Specify the table on which to perform the query. This can
 // be a specific table or a join as required.
 queryBuilder.setTables(HoardDB.HoardDBOpenHelper.DATABASE_TABLE);

 // Execute the query.
 Cursor cursor = queryBuilder.query(db, projection, selection,
 selectionArgs, groupBy, having, sortOrder);

 // Return the result Cursor.
 return cursor;
}

The final step is to update your Searchable XML resource as shown in Listing 10-40. You need
to specify the authority of the Content Provider that will be used to supply search suggestions for
the Search View. This can be the same Content Provider used to execute regular searches (if you’ve
mapped the columns as required), or an entirely different Provider.

It’s also useful to specify both a searchSuggestIntentAction and searchSuggestIntentData
attribute. These attributes are used to create an Intent that is fired when a search suggestion is
selected by the user, indicating the Intent action, and the base URI that will be used in the Intent’s
data value.

LISTING 10-40: Configuring a searchable resource for search suggestions

<?xml version="1.0" encoding="utf-8"?>
<searchable
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:label="@string/app_name"
 android:hint="@string/search_hint"

 android:searchSuggestAuthority=
 "com.professionalandroid.provider.hoarder"

continues

366 ❘ CHAPTER 10 Content Providers and searCh

 android:searchSuggestIntentAction="android.intent.action.VIEW"
 android:searchSuggestIntentData=
 "content://com.professionalandroid.provider.hoarder/lairs">
</searchable>

If you specify an Intent action and base URI within the Searchable resource, you should update your
Projection to include a column named SearchManager.SUGGEST_COLUMN_INTENT_DATA_ID that
includes the row ID that will be appended to the base URI, as shown in Listing 10-41.

LISTING 10-41: Updating a search suggestion projection to include Intent data

private static final HashMap<String, String> SEARCH_SUGGEST_PROJECTION_MAP;
static {
 SEARCH_SUGGEST_PROJECTION_MAP = new HashMap<String, String>();

 // Map our ID column to "_id"
 SEARCH_SUGGEST_PROJECTION_MAP.put("_id",
 HoardDB.HoardContract.KEY_ID + " AS " + "_id");

 // Map our search field to the suggestions's first text field
 SEARCH_SUGGEST_PROJECTION_MAP.put(
 SearchManager.SUGGEST_COLUMN_TEXT_1,
 HoardDB.HoardContract.KEY_GOLD_HOARD_NAME_COLUMN +
 " AS " + SearchManager.SUGGEST_COLUMN_TEXT_1);

 // Map the ID column to the suggestion's data ID. This will be
 // combined with the base URI specified in our Searchable definition
 // to supply the data value for the selection Intent.
 SEARCH_SUGGEST_PROJECTION_MAP.put(
 SearchManager.SUGGEST_COLUMN_INTENT_DATA_ID,
 KEY_ID + " AS " + SearchManager.SUGGEST_COLUMN_INTENT_DATA_ID);
}

It’s also possible to specify unique actions and data URIs for each search suggestion, using the
Search Manager’s SUGGEST_COLUMN_INTENT_ACTION and SUGGEST_COLUMN_INTENT_DATA constants,
respectively.

Searching the Earthquake Monitor Database
In the following example, you add search functionality to the Earthquake project, by adding a
Search View that supports search suggestions to the action bar:

 1. To begin, open the Earthquake project and create a new EarthquakeSearchProvider class
that extends ContentProvider. It will be used exclusively to generate search suggestions for
your Search View. Include the required stubs overriding the abstract onCreate, getType,
query, insert, delete, and update methods:

public class EarthquakeSearchProvider extends ContentProvider {
 @Override

LISTING 10-41 (continued)

Adding Search to Your Application ❘ 367

 public boolean onCreate() {
 return false;
 }

 @Nullable
 @Override
 public Cursor query(@NonNull Uri uri, @Nullable String[] projection,
 @Nullable String selection,
 @Nullable String[] selectionArgs,
 @Nullable String sortOrder) {
 return null;
 }

 @Nullable
 @Override
 public String getType(@NonNull Uri uri) {
 return null;
 }

 @Nullable
 @Override
 public Uri insert(@NonNull Uri uri, @Nullable ContentValues values) {
 return null;
 }

 @Override
 public int delete(@NonNull Uri uri, @Nullable String selection,
 @Nullable String[] selectionArgs) {
 return 0;
 }

 @Override
 public int update(@NonNull Uri uri, @Nullable ContentValues values,
 @Nullable String selection,
 @Nullable String[] selectionArgs) {
 return 0;
 }
}

 2. Add a UriMatcher, which can be used to handle requests made using different URI patterns.
As you will use this Content Provider exclusively for search suggestions, you only need to
include matches for those query types:

private static final int SEARCH_SUGGESTIONS = 1;

// Allocate the UriMatcher object, recognize search requests.
private static final UriMatcher uriMatcher;
static {
 uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 uriMatcher.addURI("com.professionalandroid.provider.earthquake",
 SearchManager.SUGGEST_URI_PATH_QUERY, SEARCH_SUGGESTIONS);
 uriMatcher.addURI("com.professionalandroid.provider.earthquake",
 SearchManager.SUGGEST_URI_PATH_QUERY + "/*", SEARCH_SUGGESTIONS);
 uriMatcher.addURI("com.professionalandroid.provider.earthquake",
 SearchManager.SUGGEST_URI_PATH_SHORTCUT, SEARCH_SUGGESTIONS);

368 ❘ CHAPTER 10 Content Providers and searCh

 uriMatcher.addURI("com.professionalandroid.provider.earthquake",
 SearchManager.SUGGEST_URI_PATH_SHORTCUT + "/*", SEARCH_SUGGESTIONS);
}

 3. Also override the Content Provider’s getType method to return the MIME type for search
suggestions:

@Nullable
@Override
public String getType(@NonNull Uri uri) {
 switch (uriMatcher.match(uri)) {
 case SEARCH_SUGGESTIONS :
 return SearchManager.SUGGEST_MIME_TYPE;
 default:
 throw new IllegalArgumentException("Unsupported URI: " + uri);
 }
}

 4. Rather than accessing a SQLite database directly, you will use the Room Database created in
Chapter 9 to perform searches. Confirm you can access it within the onCreate handler, and
return true:

@Override
public boolean onCreate() {
 EarthquakeDatabaseAccessor
 .getInstance(getContext().getApplicationContext());
 return true;
}

 5. Open the EarthquakeDAO and add a new query method that returns a Cursor of search sug-
gestions based on a partial query passed in as a parameter. Search suggestion columns require
specific names and unfortunately, it’s not currently possible to use static constants, or passed
parameters, when defining column aliases. Instead, while not ideal, hard-code the required
String constants. You may want to shower afterwards:

@Query("SELECT mId as _id, " +
 "mDetails as suggest_text_1, " +
 "mId as suggest_intent_data_id " +
 "FROM earthquake " +
 "WHERE mDetails LIKE :query " +
 "ORDER BY mdate DESC")
public Cursor generateSearchSuggestions(String query);

 6. Still within the Earthquake Data Access Object, add another query method that includes a
query String parameter. This method returns full search results as a Live Data object contain-
ing a List of Earthquakes that match the query:

@Query("SELECT * " +
 "FROM earthquake " +
 "WHERE mDetails LIKE :query " +
 "ORDER BY mdate DESC")
public LiveData<List<Earthquake>> searchEarthquakes(String query);

Adding Search to Your Application ❘ 369

 7. Return to the Content Provider, and implement the query method stub. Check if the received
URI is of the form of a request for search suggestions, and if so query the Room database
using the current partial query:

@Nullable
@Override
public Cursor query(@NonNull Uri uri, @Nullable String[] projection,
 @Nullable String selection,
 @Nullable String[] selectionArgs,
 @Nullable String sortOrder) {

 if (uriMatcher.match(uri) == SEARCH_SUGGESTIONS) {
 String searchQuery = "%" + uri.getLastPathSegment() + "%";

 EarthquakeDAO earthquakeDAO
 = EarthquakeDatabaseAccessor
 .getInstance(getContext().getApplicationContext())
 .earthquakeDAO();

 Cursor c = earthquakeDAO.generateSearchSuggestions(searchQuery);

 // Return a cursor of search suggestions.
 return c;
 }
 return null;
}

 8. Now that it’s complete, add the Content Provider to the manifest. Note that this Content
Provider is very limited; it does not include the ability to insert, delete, or update records—
nor does it support queries beyond supplying search suggestions:

<provider android:name=".EarthquakeSearchProvider"
 android:authorities=
 "com.professionalandroid.provider.earthquake"/>

 9. Open the strings.xml resource file (in the res/values folder) and add new string resources
that describe the Earthquake search label and text entry hint:

<resources>
 [... Existing String resource values ...]
 <string name="search_label">Search</string>
 <string name="search_hint">Search for earthquakes...</string>
</resources>

 10. Create a new searchable.xml file in the res/xml folder that defines the metadata for your
Earthquake Search Provider. Use the search_hint String from Step 9 as the hint value, and
use the app_name String resource as the label value. Note that the label value must be the
same as the application label specified in the manifest. Also set the authority to use for gen-
erating search suggestions to the Earthquake Search Provider’s authority, and configure the
searchSuggestIntentAction and searchSuggestIntentData attributes:

<?xml version="1.0" encoding="utf-8"?>
<searchable

370 ❘ CHAPTER 10 Content Providers and searCh

 xmlns:android="http://schemas.android.com/apk/res/android"
 android:label="@string/app_name"
 android:hint="@string/search_hint"

 android:searchSuggestAuthority=
 "com.professionalandroid.provider.earthquake"
 android:searchSuggestIntentAction="android.intent.action.VIEW"
 android:searchSuggestIntentData=
 "content://com.professionalandroid.provider.earthquake/earthquakes">
</searchable>

 11. Now create a new empty EarthquakeSearchResultActivity that extends
AppCompatActivity:

public class EarthquakeSearchResultActivity
 extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_earthquake_search_result);
 }
}

 12. The list of Earthquake search results will be displayed using a Recycler View that uses your
existing Earthquake list item layout and Recycler View Adapter. Modify the layout for the
Earthquake Search Result Activity created in Step 11 to include a Recycler View:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.RecyclerView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/search_result_list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_marginLeft="16dp"
 android:layout_marginRight="16dp"
 app:layoutManager="LinearLayoutManager"
/>

 13. Within the Earthquake Search Result Activity, update the onCreate handler to apply the
Earthquake Recycler View Adapter to the Recycler View that will display the search results:

private ArrayList<Earthquake> mEarthquakes = new ArrayList< >();

private EarthquakeRecyclerViewAdapter mEarthquakeAdapter
 = new EarthquakeRecyclerViewAdapter(mEarthquakes);

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_earthquake_search_result);

Adding Search to Your Application ❘ 371

 RecyclerView recyclerView = findViewById(R.id.search_result_list);
 recyclerView.setLayoutManager(new LinearLayoutManager(this));
 recyclerView.setAdapter(mEarthquakeAdapter);
}

 14. Some of the next steps require Lambda functions, so make sure your project is targeting Java
1.8. Open your App module build.gradle file and confirm the target and source compat-
ibility compile options within the Android node are set to 1.8:

android {
 [... Existing Android node values ...]

 compileOptions {
 targetCompatibility 1.8
 sourceCompatibility 1.8
 }
}

 15. Return to the Search Results Activity, and add a new Live Data Observer that will update
the Array List of Earthquakes displayed by the Recycler View. Also create a new Mutable
Live Data that will store the current search query, and a setSearchQuery method that will
modify that query:

MutableLiveData<String> searchQuery;

private void setSearchQuery(String query) {
 searchQuery.setValue(query);
}

private final Observer<List<Earthquake>> searchQueryResultObserver
 = updatedEarthquakes -> {
 // Update the UI with the updated search query results.
 mEarthquakes.clear();
 if (updatedEarthquakes != null)
 mEarthquakes.addAll(updatedEarthquakes);
 mEarthquakeAdapter.notifyDataSetChanged();
 };

 16. To simplify the process of applying updated search terms, we can use Transformations
.switchMap. This method automatically modifies the underlying data of one Live Data based
on changes in another. Apply a Switch Map that monitors the searchQuery Live Data, and
when it changes—update a searchResults Live Data variable, by querying the database
using the updated search term. Then use the Observer from Step 15 to observe changes in the
searchResults Live Data. Finally, extract the search query from the Intent that launched
the Activity, and pass it into the setSearchQuery method.

LiveData<List<Earthquake>> searchResults;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_earthquake_search_result);

372 ❘ CHAPTER 10 Content Providers and searCh

 RecyclerView recyclerView = findViewById(R.id.search_result_list);
 recyclerView.setLayoutManager(new LinearLayoutManager(this));
 recyclerView.setAdapter(mEarthquakeAdapter);

 // Initialize the search query Live Data.
 searchQuery = new MutableLiveData<>();
 searchQuery.setValue(null);

 // Link the search query Live Data to the search results Live Data.
 // Configure Switch Map such that a change in the search query
 // updates the search results by querying the database.
 searchResults = Transformations.switchMap(searchQuery,
 query -> EarthquakeDatabaseAccessor
 .getInstance(getApplicationContext())
 .earthquakeDAO()
 .searchEarthquakes("%" + query + "%"));

 // Observe changes to the search results Live Data.
 searchResults.observe(EarthquakeSearchResultActivity.this,
 searchQueryResultObserver);

 // Extract the search query term and update the search query
 // Live Data.
 String query = getIntent().getStringExtra(SearchManager.QUERY);
 setSearchQuery(query);
}

 17. Also override the onNewIntent handler to update the search query if a new search request
Intent is received:

@Override
protected void onNewIntent(Intent intent) {
 super.onNewIntent(intent);

 // If the search Activity exists, and another search
 // is performed, set the launch Intent to the newly
 // received search Intent.
 setIntent(intent);

 // Extract the search query and update the searchQuery Live Data.
 String query = getIntent().getStringExtra(SearchManager.QUERY);
 setSearchQuery(query);
}

 18. Open the application Manifest, and modify the EarthquakeSearchResultActivity ele-
ment, making its launch mode singleTop and adding an Intent Filter for the SEARCH Action.
You will also need to add a meta-data tag that specifies the searchable XML resource you
created in Step 10:

<activity
 android:name=".EarthquakeSearchResultActivity"
 android:launchMode="singleTop">
 <intent-filter>
 <action android:name="android.intent.action.SEARCH" />
 </intent-filter>

Adding Search to Your Application ❘ 373

 <meta-data
 android:name="android.app.searchable"
 android:resource="@xml/searchable"
 />
</activity>

 19. Still in the manifest, add a new meta-data tag to the Earthquake Main Activity to specify the
Earthquake Search Results Activity as its default search provider:

<activity android:name=".EarthquakeMainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 <meta-data
 android:name="android.app.default_searchable"
 android:value=".EarthquakeSearchResultActivity"
 />
</activity>

 20. Now add a Search View to the Earthquake Main Activity’s app bar as an action button.
Create a new options_menu.xml resource in the res/menu folder that includes a menu item
for displaying settings, as well as a new Search View:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/settings_menu_item"
 android:title="Settings" />
 <item android:id="@+id/search_view"
 android:title="@string/search_label"
 app:showAsAction="collapseActionView|ifRoom"
 app:actionViewClass="android.support.v7.widget.SearchView" />
</menu>

 21. Return to the Earthquake Main Activity and modify the onCreateOptionsMenu handler to
inflate the new XML menu definition, before connecting the Search View to your searchable
definition:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 // Inflate the options menu from XML
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.options_menu, menu);

 // Use the Search Manager to find the SearchableInfo related
 // to the Search Result Activity.
 SearchManager searchManager =
 (SearchManager) getSystemService(Context.SEARCH_SERVICE);

 SearchableInfo searchableInfo = searchManager.getSearchableInfo(
 new ComponentName(getApplicationContext(),
 EarthquakeSearchResultActivity.class));

374 ❘ CHAPTER 10 Content Providers and searCh

 SearchView searchView =
 (SearchView)menu.findItem(R.id.search_view).getActionView();
 searchView.setSearchableInfo(searchableInfo);
 searchView.setIconifiedByDefault(false);

 return true;
}

 22. Modify the onOptionsItemSelected handler to use the Menu Item identifier from the XML
definition created in Step 20:

public boolean onOptionsItemSelected(MenuItem item) {
 super.onOptionsItemSelected(item);
 switch (item.getItemId()) {
 case R.id.settings_menu_item:
 Intent intent = new Intent(this, PreferencesActivity.class);
 startActivityForResult(intent, SHOW_PREFERENCES);
 return true;
 }
 return false;
}

 23. If you start the application, you can now initiate a search by touching the “Search” action
bar button and entering a query. As a final step, modify the search results query to handle
the case of users selecting a search suggestion. For now, you will display the search result as
though the user had completed the full search String. First, return to the Earthquake DAO
and add a new getEarthquake query method that takes an Earthquake unique ID, and
returns a Live Data containing the matching Earthquake:

@Query("SELECT * " +
 "FROM earthquake " +
 "WHERE mId = :id " +
 "LIMIT 1")
public LiveData<Earthquake> getEarthquake(String id);

 24. Then, within the Earthquake Search Result Activity, add a new selectedSearch-
SuggestionId Mutable Live Data variable that will store the ID of the selected search
suggestion. Create a setSelectedSearchSuggestion method that will modify the
selected SearchSuggestionId Live Data based on the Earthquake ID extracted from a
Content Provider Uri, and create an Observer that will set the search query term using the
details extracted from the selected search suggestion:

MutableLiveData<String> selectedSearchSuggestionId;

private void setSelectedSearchSuggestion(Uri dataString) {
 String id = dataString.getPathSegments().get(1);
 selectedSearchSuggestionId.setValue(id);
}

final Observer<Earthquake> selectedSearchSuggestionObserver
 = selectedSearchSuggestion -> {
 // Update the search query to match the selected search suggestion.
 if (selectedSearchSuggestion != null) {
 setSearchQuery(selectedSearchSuggestion.getDetails());
 }
 };

Adding Search to Your Application ❘ 375

 25. Modify the onCreate handler to initialize the selected search suggestion Id Live Data
and repeat the process from Step 16 to apply a Switch Map. This one should monitor the
selectedSearchSuggestionId Live Data, and update the selectedSearchSuggestion
Live Data variable, by querying the database using the selected suggestion’s Id. Also check
for the View action, which is sent when a suggested search result is selected. In that case,
apply the Observer from Step 24 to the selectedSearchSuggestion Live Data, and use the
setSelectedSearchSuggestion to extract and set the selected search suggestion Id.

LiveData<Earthquake> selectedSearchSuggestion;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_earthquake_search_result);

 RecyclerView recyclerView = findViewById(R.id.search_result_list);
 recyclerView.setLayoutManager(new LinearLayoutManager(this));
 recyclerView.setAdapter(mEarthquakeAdapter);

 // Initialize the search query Live Data.
 searchQuery = new MutableLiveData<>();
 searchQuery.setValue(null);

 // Link the search query Live Data to the search results Live Data.
 // Configure Switch Map such that a change in the search query
 // updates the search results by querying the database.
 searchResults = Transformations.switchMap(searchQuery,
 query -> EarthquakeDatabaseAccessor
 .getInstance(getApplicationContext())
 .earthquakeDAO()
 .searchEarthquakes("%" + query + "%"));

 // Observe changes to the search results Live Data.
 searchResults.observe(EarthquakeSearchResultActivity.this,
 searchQueryResultObserver);

 // Initialize the selected search suggestion Id Live Data.
 selectedSearchSuggestionId = new MutableLiveData<>();
 selectedSearchSuggestionId.setValue(null);

 // Link the selected search suggestion ID Live Data to the
 // selected search suggestion Live Data.
 // Configure Switch Map such that a change in the ID of the
 // selected search suggestion, updates the Live Data that
 // returns the corresponding Earthquake by querying the database.
 selectedSearchSuggestion =
 Transformations.switchMap(selectedSearchSuggestionId,
 id -> EarthquakeDatabaseAccessor
 .getInstance(getApplicationContext())
 .earthquakeDAO()
 .getEarthquake(id));

 // If the Activity was launched by a search suggestion

376 ❘ CHAPTER 10 Content Providers and searCh

 if (Intent.ACTION_VIEW.equals(getIntent().getAction())) {
 selectedSearchSuggestion.observe(this,
 selectedSearchSuggestionObserver);
 setSelectedSearchSuggestion(getIntent().getData());
 }
 else {
 // If the Activity was launched from a search query.
 String query = getIntent().getStringExtra(SearchManager.QUERY);
 setSearchQuery(query);
 }
}

 26. Finally, update the onNewIntent handler to also check for the View action to update either
the selected search suggestion or the search query as appropriate:

@Override
protected void onNewIntent(Intent intent) {
 super.onNewIntent(intent);

 // If the search Activity exists, and another search
 // is performed, set the launch Intent to the newly
 // received search Intent and perform a new search.
 setIntent(intent);

 if (Intent.ACTION_VIEW.equals(getIntent().getAction())) {
 // Update the selected search suggestion Id.
 setSelectedSearchSuggestion(getIntent().getData());
 }
 else {
 // Extract the search query and update the searchQuery Live Data.
 String query = getIntent().getStringExtra(SearchManager.QUERY);
 setSearchQuery(query);
 }
}

We’ll return to the Earthquake app in later chapters.

Working in the Background
WHAT’S IN THIS CHAPTER?

 ➤ Using Asynchronous Tasks to execute background tasks

 ➤ Creating background Threads and using Handlers to synchronize
with the GUI Thread

 ➤ Scheduling background jobs with the Job Scheduler and Firebase
Job Dispatcher

 ➤ Scheduling background work with the Work Manager

 ➤ Displaying Notifications and setting Notification priority

 ➤ Creating Notification actions and responding to user interactions

 ➤ Receiving server-initiated messages with Firebase Cloud
Messaging

 ➤ Using Firebase Notifications

 ➤ Using Alarms to schedule application events

 ➤ Creating bound and foreground Services

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The code downloads for this chapter are found at www.wrox.com. The code for this chapter is
divided into the following major examples:

 ➤ Snippets_ch11.zip

 ➤ Earthquake_ch11_Part1.zip

 ➤ Earthquake_ch11_Part2.zip

11

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

378 ❘ CHAPTER 11 Working in the Background

WORKING IN THE BACKGROUND

To help balance the trade-offs between timely, low-latency app data updates and longer battery life,
Android provides a number of APIs and best-practice patterns designed to support running back-
ground tasks, while minimizing their impact on battery life.

By default, all Activities, Services, and Broadcast Receivers are executed on the main application UI
Thread. To keep your applications responsive while they execute long-running tasks, in this chapter
you learn to move any non-trivial tasks that aren’t directly related to updating the UI onto back-
ground Threads, using the HandlerThread and AsyncTask classes.

It makes sense that when the screen turns off no apps should be running, and no data transferred;
however, in practice such an extreme approach would result in a significantly worse user experience
by delaying a variety of time-sensitive updates and behaviors. Finding the right balance between
longer battery life and lower update latency is one of the biggest challenges in developing for mobile
devices.

We expect alerts for everything from phone calls to SMS messages and incoming instant messages to
be received immediately (and to be notified accordingly). We expect alarms to wake us each morn-
ing, for e-mail to arrive in a timely fashion, and for music to keep playing—even when the screen is
off and the phone is in our pockets.

To minimize battery drain associated with running background tasks, Android 5.0 Lollipop (API
Level 21) introduced the JobScheduler. You’ll learn to use the Job Scheduler to batch background
tasks (or “jobs”), scheduled by multiple apps across the entire system. The Job Scheduler executes
jobs at times, and in a sequence, designed to minimize the associated battery drain by taking into
consideration constraints such as network availability and charging state.

To provide a backward compatible API for devices running Android 4.0 Ice Cream Sandwich (API
Level 14) or above, you’ll learn to use the Firebase JobDispatcher, which is available on devices
that include Google Play services. You’ll also be introduced to the WorkManager, available as part
of the Android Architecture Components, which dynamically selects the best way to execute back-
ground tasks—Threads, Job Scheduler, Firebase Job Dispatcher, or the Alarm Manager—based on
factors including app state and platform API level.

When applications perform background tasks, they often have no visible UI to provide user feed-
back. In this chapter you learn to use Notifications to display information to users when your app is
in the background, as well as optionally providing user actions related to that information.

The most efficient way to perform background tasks related to updating your app from a remote
server is to rely on the server itself to push information or messages directly to each device; you
learn to implement this using Firebase Cloud Messaging and Firebase Notifications as an alternative
to client-side polling.

This chapter also introduces the Alarm Manager, a mechanism for firing Intents at set times, out-
side the scope of your application’s life cycle. An Alarm will fire even after its owner application has
been closed and can wake a device from sleep, so you learn to use Alarms to trigger actions based
on a specific time or time interval.

Using Background Threads ❘ 379

Finally, for ongoing processing that interacts directly with the user, such as music playback or file
uploads, a foreground Service may be necessary. You learn to use foreground Services that include
the required Notification that gives users the ability to stop, control, and observe the progress of
long-running background operations.

USING BACKGROUND THREADS

All Android application components—including Activities, Services, and Broadcast Receivers—run
on the main application Thread. As a result, time-consuming processing in any component can
block all other components, including any running Services and the visible Activity.

Activities that don’t respond to an input event (such as a screen touch) within 5 seconds, and
Broadcast Receivers that don’t complete their onReceive handlers within 10 seconds, are considered
unresponsive.

Not only do you want to avoid this scenario, you don’t even want to come close. In practice, users
will notice input delays and UI pauses of more than a couple of hundred milliseconds.

Responsiveness is one of the most critical attributes of a good user experience for Android applica-
tions. To ensure that your app responds quickly to any user interaction or system event, your app
should use background Threads for all nontrivial processing that doesn’t directly interact with user
interface components. It’s particularly important that long-running operations such as file I/O,
network lookups, database transactions, and complex calculations are executed on background
Threads.

The AsyncTask class is a wrapper around standard Java Threading; it encapsulates the most com-
mon pattern of executing background work on a child Thread, before syncing with the UI Thread to
deliver progress and the final result. An Async Task allows you to execute background tasks sequen-
tially, in parallel, or through your own Thread Pool.

Alternatively, if you need more control over your Threads, or don’t need to synchronize with the UI
Thread when the work has been completed, the HandlerThread class can be used to create a Thread
to which components can send work using the Handler class.

Using Asynchronous Tasks to Run Tasks Asynchronously
The AsyncTask class implements the best-practice pattern for moving time-consuming operations
onto a background Thread, and then synchronizing with the UI Thread to report updates, and again
when the processing is complete.

It’s important to note that Async Tasks have no built-in understanding of the life cycle of the com-
ponents they’re running within. This means that if you are creating an Async Task in an Activity, to
avoid memory leaks you should define it as static (and ensure that it doesn’t hold a strong reference
to an Activity or its Views).

380 ❘ CHAPTER 11 Working in the Background

Creating New Asynchronous Tasks
Each Async Task implementation can specify parameter types to be used for input parameters,
progress-reporting values, and the returned result value. If you don’t need, or want, your implemen-
tation to take input parameters, update progress, or report a final result, specify Void for any or all
the required types.

To create a new asynchronous task, extend the AsyncTask class and specify the parameter types to
use, as shown in the skeleton code of Listing 11-1.

LISTING 11-1: An Asynchronous Task definition

// The Views in your UI that you want to update from the AsyncTask
private ProgressBar asyncProgress;
private TextView asyncTextView;

private class MyAsyncTask extends AsyncTask<String, Integer, String> {
 @Override
 protected String doInBackground(String... parameter) {
 // Moved to a background Thread.
 String result = "";
 int myProgress = 0;

 int inputLength = parameter[0].length();

 // Perform background processing task, update myProgress]
 for (int i = 1; i <= inputLength; i++) {
 myProgress = i;
 result = result + parameter[0].charAt(inputLength-i);
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) { }
 publishProgress(myProgress);
 }

 // Return the value to be passed to onPostExecute
 return result;
 }

 @Override
 protected void onPreExecute() {
 // Synchronized to UI Thread.
 // Update the UI to indicate that background loading is occurring
 asyncProgress.setVisibility(View.VISIBLE);
 }

 @Override
 protected void onProgressUpdate(Integer... progress) {
 // Synchronized to UI Thread.
 // Update progress bar, Notification, or other UI elements
 asyncProgress.setProgress(progress[0]);
 }

Using Background Threads ❘ 381

 @Override
 protected void onPostExecute(String result) {
 // Synchronized to UI Thread.
 // Report results via UI update, Dialog, or Notifications
 asyncProgress.setVisibility(View.GONE);
 asyncTextView.setText(result);
 }
}

Your subclass should override the following event handlers:

 ➤ doInBackground—This method will be executed on a background Thread, so place your
long-running code here, and don’t attempt to interact with UI objects from within this han-
dler. It takes a set of parameters of the type defined in your class implementation.

Immediately before this method is called, the onPreExecute method will be called. You can
then use the publishProgress method from within this handler to pass parameter values
to the onProgressUpdate handler. When your background task is complete return the final
result, which will be passed as a parameter to the onPostExecute handler—from where you
can update the UI accordingly.

 ➤ onPreExecute—Override this handler to update the UI immediately before doInBackground
runs. For example, to show a loading Progress Bar.

This handler is synchronized with the UI Thread when executed, so you can safely modify
UI elements.

 ➤ onProgressUpdate—Override this handler to update the UI with interim progress updates.
This handler receives the set of parameters passed in to publishProgress (typically from
within the doInBackground handler).

This handler is synchronized with the UI Thread when executed, so you can safely modify
UI elements.

 ➤ onPostExecute—When doInBackground has completed, its return value is passed in to this
event handler.

This handler is synchronized with the UI Thread when executed, so you can safely use this
handler to update any UI components when your asynchronous task has completed.

Running Asynchronous Tasks
After you’ve implemented an asynchronous task, execute it by creating a new instance and calling
execute, as shown in Listing 11-2. You can pass in a number of parameters, each of the type speci-
fied in your implementation.

LISTING 11-2: Executing an Async Task

String input = "redrum ... redrum";
new MyAsyncTask().execute(input);

382 ❘ CHAPTER 11 Working in the Background

NOTE Each AsyncTask instance can be executed only once. If you attempt to
call execute a second time, an exception will be thrown.

By default, Async Tasks are executed using the AsyncTask.SERIAL_EXECUTOR, which results in
every Async Task within your application being executed serially, on the same background Thread.
You can modify this behavior using the executeOnExecutor method instead of execute, which
allows you to specify an alternative executor.

If you specify the AsyncTask.THREAD_POOL_EXECUTOR as seen in Listing 11-3, a new Thread Pool
will be created, sized appropriately for the number of CPUs available on the device, and your Async
Tasks will be executed in parallel.

LISTING 11-3: Executing Async Tasks in parallel

String input = "redrum ... redrum";
new MyAsyncTask().executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, input);

You can also pass in your own Executor implementation, or use the static methods found in the
Executors class, such as newFixedThreadPool, to create a new Executor—in that case one that
reuses a fixed number of Threads.

Using Asynchronous Tasks in a Broadcast Receiver
As described in Chapter 6 “Intents and Broadcast Receivers,” a Broadcast Receiver can receive
callbacks from other applications, and can handle processing a small amount of work in the
background.

Like all components, its onReceive method runs on the main application UI Thread. By calling
goAsync within onReceive, you can move work onto a background Thread for up to 10 seconds,
before it is terminated as non-responsive.

Listing 11-4 shows how an Async Task can be useful in this context. It provides a simple way to
marshal the background work within doInBackground, and uses the onPostExecute handler to
call the finish method on the BroadcastReceiver.PendingResult as required to indicate that the
asynchronous background work is complete.

LISTING 11-4: Asynchronous processing within a Broadcast Receiver using AsyncTask

public class BackgroundBroadcastReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, final Intent intent) {
 final PendingResult result = goAsync();
 new AsyncTask<Void, Void, Boolean>() {
 @Override
 protected Boolean doInBackground(Void... voids) {
 // Do your background work, processing the Intent

Using Background Threads ❘ 383

 return true;
 }

 @Override
 protected void onPostExecute(Boolean success) {
 result.finish();
 }
 }.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR);
 }
}

Manual Thread Creation Using Handler Threads
An Async Task is a useful shortcut for running one-off tasks, but you may also need to create and
manage your own Threads to perform background processing. This is often the case when you have
long-running or inter-related Threads that require more subtle or complex management than is pos-
sible using Async Task.

A Thread, by itself, is very similar to an Async Task in that it runs a single Runnable and then stops.
To provide a persistent Thread that can be used as a queue for background tasks, Android provides
a special subclass, the HandlerThread.

A HandlerThread is kept alive by a Looper, a class that manages a queue of incoming work. Work
can then be added to the work queue as a Runnable, posted to a Handler as seen in Listing 11-5.

LISTING 11-5: Moving processing to a background Handler Thread

private HandlerThread mWorkerThread;
private Handler mHandler;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mWorkerThread = new HandlerThread("WorkerThread");
 mWorkerThread.start();
 mHandler = new Handler(mWorkerThread.getLooper());
}

// This method is called on the main Thread.
private void doBackgroundExecution() {
 mHandler.post(new Runnable() {
 public void run() {
 // [... Time consuming operations ...]
 }
 });
}

@Override
public void onDestroy() {
 super.onDestroy();
 mWorkerThread.quitSafely();
}

384 ❘ CHAPTER 11 Working in the Background

Multiple Runnables posted to the same Handler Thread will be run sequentially. To ensure all the
Thread’s resources are properly cleaned up, you must call quit (which stops the Thread after the
current Runnable has completed, and drops all queued Runnables) or quitSafely (which allows all
queued Runnables to complete), to clean up the Thread’s resources.

Handlers can send information across Threads using the Message class. A Message is constructed
using the Handler’s obtainMessage methods (which use a pool of Messages to avoid unnecessary
object creation), or the helper method sendEmptyMessage.

An empty Message contains a single integer code in its what field, while an obtained Message
instance can also contain a Bundle of information set via its setData method, making it a useful
mechanism for sending information between Handlers.

When you send a new Message to a Handler, the handleMessage method is executed on the Thread
the Handler is associated with, as seen in Listing 11-6.

LISTING 11-6: Sending information between Threads with Messages

private static final int BACKGROUND_WORK = 1;

private HandlerThread mWorkerThread;
private Handler mHandler;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mWorkerThread = new HandlerThread("WorkerThread");
 mWorkerThread.start();
 mHandler = new Handler(mWorkerThread.getLooper(),
 new Handler.Callback() {
 @Override
 public void handleMessage(Message msg) {
 if (msg.what == BACKGROUND_WORK) {
 // [... Time consuming operations ...]
 }
 // else, handle a different type of message
 }
 });
}

// This method is called on the main Thread.
private void backgroundExecution() {
 mHandler.sendEmptyMessage(BACKGROUND_WORK);
}

@Override
public void onDestroy() {
 super.onDestroy();
 mWorkerThread.quitSafely();
}

Scheduling Background Jobs ❘ 385

Operations that directly interact with objects created on the UI Thread (such as Views), or that
display messages (such as Toasts), must always be invoked on the main Thread. Within an Activity,
you can use the runOnUiThread method to force a Runnable to execute on the same Thread as the
Activity UI, as shown in the following code snippet:

runOnUiThread(new Runnable() {
 public void run() {
 // Update a View or other Activity UI element.
 }
});

The UI Thread, just like a Handler Thread, has an associated Looper (Looper.getMainLooper).
You can use this to create a Handler and post methods directly to the UI Thread.

The Handler class also enables you to delay posts or execute them at a specific time, using the post-
Delayed and postAtTime methods, respectively:

// Start work after 1sec.
handler.postDelayed(aRunnable, 1000);

// Start work after the device has been in use for 5mins.
int upTime = 1000*60*5;
handler.postAtTime(aRunnable, SystemClock.uptimeMillis()+upTime);

SCHEDULING BACKGROUND JOBS

Applications performing tasks in the background is one of the most powerful features of Android,
but also the most likely to result in significant battery drain. Having multiple applications wake, and
keep the device awake, can significantly reduce the expected battery life of a device.

The JobScheduler API was introduced in Android 5.0 Lollipop (API Level 21) to serve as a coor-
dinator for all background work requested by any application running on a device. It effectively
batches the background jobs of multiple applications, introducing efficiencies in both battery and
memory use, which serves to reduce the overall impact of each individual background job.

More recently, Android Architecture Components introduced the Work Manager, which offers the
same features as the Job Scheduler with the advantage of backward-compatible support for earlier
platform releases.

As described in Chapter 7, “Using Internet Resources,” every network request made while connected
using a cellular network will result in the cell radio moving to a higher power-use state, and staying
there for some time. As a result, poorly timed data transfers, initiated without context from multiple
apps, can result in the radio staying in a high power state for prolonged periods.

By batching network data transfers from multiple apps such that they occur during the same time
window, the Job Scheduler avoids the power drain caused by the cell radio turning on, and stay-
ing on, multiple times. The Job Scheduler also encapsulates the best practices of background jobs.
It holds Wake Locks to ensure your jobs complete, checks for (and monitors) network connectivity,
and it will defer and retry jobs if they fail.

386 ❘ CHAPTER 11 Working in the Background

Similarly, you can specify that your scheduled jobs should only occur when the device is connected
to Wi-Fi, or while the device is charging, as described later in this chapter.

The Job Scheduler also reduces overall system memory usage. As described in Chapter 3
“Applications and Activities and Fragments—Oh My!,” Android manages system memory primarily
by killing Application processes until there is sufficient memory to support the highest-priority pro-
cesses. On devices running Android 7.0 Nougat (API Level 24), the Job Scheduler optimizes back-
ground work by serializing and ordering jobs based on the available memory, effectively minimizing
the risk of background tasks being killed—a strong likelihood if multiple background tasks attempt
to execute simultaneously.

Creating a Job Service for the Job Scheduler
To use the Job Scheduler, your application must include a JobService that overrides the onStart-
Job handler. Within this handler you include the code that implements the background job to be
run, while the Job Service itself is used by the system Job Scheduler to schedule and execute jobs.

You can include multiple Job Services within your app, so it’s good practice to create a separate one
for each distinct job type your app requires.

Listing 11-7 shows a simple JobService implementation; the Job Scheduler will call onStartJob on
the main UI Thread when it’s determined your job should begin.

LISTING 11-7: A simple Job Service class

import android.app.job.JobParameters;
import android.app.job.JobService;

public class SimpleJobService extends JobService {
 @Override
 public boolean onStartJob(JobParameters params) {
 // Do work directly on the main Thread

 // Return false if no time consuming
 // work remains to be completed on a background thread.
 return false;

 // Otherwise start a thread and return true.
 }

 @Override
 public Boolean onStopJob(JobParameters params) {
 // Return false if the job does not need to be rescheduled
 return false;
 }
}

If your background work can be completed quickly and safely on the main Thread, you can return
false from onStartJob to indicate that there is no further work to be done; in this case onStopJob
will not be called.

Scheduling Background Jobs ❘ 387

In most cases—such as when accessing Internet data, performing database operations, or file I/O—
your job will need to be executed asynchronously. You can do this by creating and starting a new
Thread within onStartJob, using the techniques described earlier in this chapter. In this case, you
must return true from onStartJob, to indicate that additional work is still being completed.

When the work on the background Thread is completed, you must call the Job Service’s job-
Finished method, passing in any JobParameters associated with the job that finished, and a bool-
ean indicating whether or not the job completed successfully or should be rescheduled.

Listing 11-8 shows how this asynchronous approach can be implemented using an AsyncTask cre-
ated and started within onStartJob. It moves our processing to a background Thread, and sup-
plies a convenient callback to indicate success or failure—and by utilizing the AsyncTask cancel
method, we can fulfill the contract of calling onStopJob.

LISTING 11-8: A Job Service using an Async Task

import android.app.job.JobParameters;
import android.app.job.JobService;

public class BackgroundJobService extends JobService {
 private AsyncTask<Void, Void, Boolean> mJobTask = null;

 @Override
 public boolean onStartJob(final JobParameters params) {
 // TODO Do work directly on the main Thread

 // Execute additional work within a background thread.
 mJobTask = new AsyncTask<Void, Void, Boolean>() {
 @Override
 protected Boolean doInBackground(Void... voids) {
 // TODO Do your background work.

 // Return true if the job succeeded or false if it should be
 // rescheduled due to a transient failure
 return true;
 }

 @Override
 protected void onPostExecute(Boolean success) {
 // Reschedule the job if it did not succeed
 jobFinished(params, !success);
 }
 };

 mJobTask.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR);

 // You must return true to signify that you're doing work
 // in the background
 return true;
 }

continues

388 ❘ CHAPTER 11 Working in the Background

 @Override
 Public boolean onStopJob(JobParameters params) {
 if (mJobTask != null) {
 mJobTask.cancel(true);
 }
 // If we had to interrupt the job, reschedule it
 return true;
 }
}

By calling jobFinished you notify the Job Scheduler that your background job is complete, which
releases the Wake Lock and allows the device to return to standby.

If the JobService is only responsible for a single job, a single Async Task is enough. If you have
multiple jobs running from the same Job Service, you should instead maintain a Map of Async
Tasks.

Between returning true from onStartJob and calling jobFinished, the system may call onStopJob
to indicate that there has been a system change such that the requirements you specified when sched-
uling the job are no longer being met. For example, if you required a charging device and the device
is unplugged, or if you requested an unmetered connection and the Wi-Fi signal is lost.

When the onStopJob handler is triggered, you should cancel any ongoing processes as the sys-
tem will release the Wakelock being held for your app—as a result of which your Thread may be
stopped. The return value you indicate within onStopJob allows you to indicate if your job should
be rescheduled to retry when your conditions are once again met.

Job Service extends the Service application component so, like all Service implementations, you must
include each of your Job Services within your application manifest as shown in Listing 11-9.

LISTING 11-9: Adding a Job Service to the application manifest

<service
 android:name=".SimpleJobService"
 android:permission="android.permission.BIND_JOB_SERVICE"
 android:exported="true"/>
<service
 android:name=".BackgroundJobService"
 android:permission="android.permission.BIND_JOB_SERVICE"
 android:exported="true"/>

Scheduling Jobs with the Job Scheduler
Having defined your job by implementing a JobService, you use the JobScheduler to schedule
when, and under what circumstances, it should be run.

LISTING 11-8 (continued)

Scheduling Background Jobs ❘ 389

The Job Scheduler is a system Service that you can access using the getSystemService method,
passing in Context.JOB_SCHEDULER_SERVICE:

 JobScheduler jobScheduler
 = (JobScheduler) context.getSystemService(Context.JOB_SCHEDULER_SERVICE);

To schedule a job, use the Job Scheduler’s schedule method, passing in a JobInfo object that is
used to specify the timeframe and conditions under which your job should be run.

To create a JobInfo object, use the JobInfo.Builder. The Job Info Builder requires two manda-
tory parameters: an Integer indicating the job ID, and the ComponentName for your Job Service
implementation. A common pattern used to encapsulate the logic of scheduling a job is to include a
static method in your JobService implementation as shown in Listing 11-10.

LISTING 11-10: Scheduling a job that requires unmetered network and charging

// Can be any integer, just needs to be unique across your app
private static final int BACKGROUND_UPLOAD_JOB_ID = 13;

public static void scheduleBackgroundUpload(Context context) {
 // Access the Job Scheduler
 JobScheduler jobScheduler = (JobScheduler)
 context.getSystemService(Context.JOB_SCHEDULER_SERVICE);

 // Get a reference to my Job Service implementation
 ComponentName jobServiceName = new ComponentName(
 context, BackgroundJobService.class);

 // Build a Job Info to run my Job Service
 jobScheduler.schedule(
 new JobInfo.Builder(BACKGROUND_UPLOAD_JOB_ID, jobServiceName)
 .setRequiredNetworkType(JobInfo.NETWORK_TYPE_UNMETERED)
 .setRequiresCharging(true)
 // Wait at most a day before relaxing our network constraints
 .setOverrideDeadline(TimeUnit.DAYS.toMillis(1))
 .build());
}

The specified job ID is a unique identifier for a particular job; scheduling a new job with the same
job ID will override any previously scheduled jobs. Similarly, you can pass this job ID into the Job
Scheduler’s cancel method to cancel a job scheduled with that identifier.

NOTE Note that you can schedule multiple jobs using the same Job Service by
creating multiple JobInfo objects with different job IDs. You can obtain the
job ID used to schedule a job from within your Job Service using the getJobId
method from the passed in Job Parameters.

390 ❘ CHAPTER 11 Working in the Background

The builder used to construct your JobInfo supports a large number of optional constraints that
specify the timing and system conditions that determine when, and if, your job should be run. These
include:

 ➤ setRequiredNetworkType—Defines a mandatory network type for your job. Must be
one of:

 ➤ NETWORK_TYPE_NONE—The default option, meaning no network connectivity is
required.

 ➤ NETWORK_TYPE_ANY—Requires a network connection, but can be of any type.

 ➤ NETWORK_TYPE_UNMETERED—Requires an unmetered network connection, meaning a
connection that likely doesn’t charge for data traffic (typically Wi-Fi).

 ➤ NETWORK_TYPE_NOT_ROAMING—Requires a network connection (Wi-Fi or cellular)
that isn’t roaming (only available on Android 7.0 (API Level 24) or higher).

 ➤ NETWORK_TYPE_METERED—Requires a metered network connection (typically a cellu-
lar connection). Only available on Android 8.0 Oreo (API Level 26) or higher.

 ➤ setRequiresCharging—Restricts your job to run only when the device is plugged in and
charging.

 ➤ setRequiresDeviceIdle—Restricts your job to only run when the device is not in use and
has not been in use for some time.

 ➤ addTriggerContentUri—Indicates your job should be triggered when a particular
 content:// URI changes (typically indicating a database has changed). Only available on
devices running Android 7.0 Nougat (API Level 24) or higher.

 ➤ setPeriodic—Schedules the job to recur, at a frequency no greater than the specified
period.

 ➤ setMinimumLatency—Requires that the job be executed no sooner than after the specified
time has passed. This cannot be combined with a periodic job.

 ➤ setOverrideDeadline—Indicates an amount of time after which the job must run, even if
the other constraints aren’t met. You can check if this has occurred from within your Job
Service by checking the Job Parameter’s isOverrideDeadlineExpired value.

Listing 11-10 schedules a job that requires unmetered network connectivity and a charging device,
making it suitable for a one-time upload of information that isn’t time sensitive.

NOTE It is strongly recommended that you always use setOverrideDeadline
if you set a criterion requiring a particular network type because there are users
who will never connect to Wi-Fi, and those who will never connect to a cell
network. Consider rescheduling your job with relaxed network connectivity
requirements if your override deadline is reached.

Scheduling Background Jobs ❘ 391

In addition to setting conditions for when a job is run, you can also use the Job Info Builder to indi-
cate the correct behavior if a job fails, or if the device is rebooted before the job executes.

As shown in Listing 11-11, you can use setBackoffCriteria to customize the back-off/retry policy
by defining the length of an initial back-off and either a linear or exponential back-off strategy. By
default, the Job Scheduler will use a 30 second initial value with and linear back-off. You can also
use setPersisted to indicate if a job should be retained across device reboots.

LISTING 11-11: Scheduling a job with customized back-off criteria

jobScheduler.schedule(
 new JobInfo.Builder(BACKGROUND_UPLOAD_JOB_ID, jobServiceName)
 // Require a network connection
 .setRequiredNetworkType(JobInfo.NETWORK_TYPE_ANY)
 // Require the device has been idle
 .setRequiresDeviceIdle(true)
 // Force Job to ignore constraints after 1 day
 .setOverrideDeadline(TimeUnit.DAYS.toMillis(1))
 // Retry after 30 seconds, with linear back-off
 .setBackoffCriteria(30000, JobInfo.BACKOFF_POLICY_LINEAR)
 // Reschedule after the device has been rebooted
 .setPersisted(true)
 .build());

The Job Info Builder also provides the setExtras method to support sending additional data to
your JobInfo.

Scheduling Jobs with the Firebase Job Dispatcher
The Job Scheduler was introduced in Android 5.0 Lollipop (API Level 21); the Firebase Job
Dispatcher was created to provide support for devices running Android 4.0 Ice Cream Sandwich
(API Level 14) and above.

On Android 7.0 Nougat (API Level 24) and higher devices, the Firebase Job Dispatcher passes
responsibility for scheduling jobs to the framework Job Scheduler, ensuring future compatibility
with system-wide background optimizations while maintaining backward compatibility for earlier
platform versions.

NOTE Note that the Job Dispatcher requires Google Play services to be running
on the device. To learn more about the Firebase Job Dispatcher, see github
.com/firebase/firebase-jobdispatcher-android.

To include the Firebase Job Dispatcher within your project, add a dependency to your App Module
Build.gradle file:

dependencies {
 implementation 'com.firebase:firebase-jobdispatcher:0.8.5'
}

392 ❘ CHAPTER 11 Working in the Background

The Firebase Job Dispatcher includes a JobService class as part of the com.firebase.job-
dispatcher package (rather than the framework’s com.android.job package). Like the Job
Scheduler, The Job Dispatcher includes onStartJob and onStopJob methods to override.

In cases where you only need to run a single job at a time on a background thread, Job Dispatcher
provides a SimpleJobService, which implements onStartJob and onStopJob for you. You instead
only override onRunJob, which is called on a background Thread, as shown in Listing 11-12:

LISTING 11-12: Implementing a Simple Job Service

import com.firebase.jobdispatcher.JobParameters;
import com.firebase.jobdispatcher.SimpleJobService;

public class FirebaseJobService extends SimpleJobService {
 @Override
 public int onRunJob(final JobParameters job) {
 // TODO Do your background work.
 // Return RESULT_FAIL_RETRY to back off
 // or RESULT_FAIL_NORETRY to give up
 return RESULT_SUCCESS;
 }
}

Once you’ve created your Job Dispatcher Job Service, you can add it to your application manifest as
shown in Listing 11-13.

LISTING 11-13: Adding a Firebase Job Dispatcher Job Service to the application manifest

<service
 android:name=".FirebaseJobService"
 android:exported="false">
 <intent-filter>
 <action android:name="com.firebase.jobdispatcher.ACTION_EXECUTE"/>
 </intent-filter>
</service>

The Job Dispatcher allows you to define many of the same constraints as the Job Scheduler using the
Job Dispatcher’s newJobBuilder method, as shown in Listing 11-14, that re-creates the same job
defined earlier using the Job Scheduler in Listing 11-10.

LISTING 11-14: Scheduling a job that requires unmetered network and charging using the
Firebase Job Dispatcher

// Can be any String
private static final String BACKGROUND_UPLOAD_JOB_TAG = "background_upload";

public static void scheduleBackgroundUpload(Context context) {
 FirebaseJobDispatcher jobDispatcher =
 new FirebaseJobDispatcher(new GooglePlayDriver(context));

Scheduling Background Jobs ❘ 393

 jobDispatcher.mustSchedule(
 jobDispatcher.newJobBuilder()
 .setTag(BACKGROUND_UPLOAD_JOB_TAG)
 .setService(FirebaseJobService.class)
 .setConstraints(
 Constraint.ON_UNMETERED_NETWORK,
 Constraint.DEVICE_CHARGING)
 .setTrigger(Trigger.executionWindow(
 0, // can start immediately
 (int) TimeUnit.DAYS.toSeconds(1))) // wait at most a day
 .build());
}

With backward compatibility and parity with Job Scheduler, Firebase Job Dispatcher allows you to
write one system to handle background jobs that works on all devices with Google Play services.

Scheduling Work with the Work Manager
The Work Manager is an Android Architecture Component that provides a rich, backward-compatible
way to use the features provided by the platform Job Scheduler.

Like the Job Scheduler, the Work Manager is intended for work that must be completed even if your
app has been closed. Background work that can be abandoned if your app is closed or terminated
by the runtime should be handled using Handlers, Threads, or Thread Pools, as described earlier in
this chapter.

When work is scheduled, the Work Manager will determine the best available alternative to exe-
cute scheduled work: the latest available version of the platform Job Scheduler, the firebase Job
Dispatcher, or even the Alarm Manager. The scheduled work is guaranteed to run, even if your app
has been terminated or the device has been rebooted.

WARNING At the time of writing this book, the Work Manager was an alpha
release. As such its API and functionality is particularly likely to change.

To use the Work Manager, add a dependency to the Android Architecture Components Work
Manager library, and (optionally) the Work Manager Firebase Job Dispatcher library, to your app
module’s Gradle Build file:

dependencies {
 implementation "android.arch.work:work-runtime:1.0.0-alpha03"
 implementation "android.arch.work:work-firebase:1.0.0-alpha03"
 androidTestImplementation "android.arch.work:work-testing:1.0.0-alpha03"
}

The Work Manager API is similar to the Job Scheduler and Firebase Job Dispatcher. Begin by
extending the Worker class, overriding its doWork handler to implement the background work to be

394 ❘ CHAPTER 11 Working in the Background

executed. Return Worker.Result.SUCCESS to indicate the background work has been successfully
completed, FAILURE to indicate it has failed and should not be retried, or RETRY to indicate Work
Manager should retry the Worker at a later point:

public class MyBackgroundWorker extends Worker {

 @Override
 public Worker.Result doWork() {
 // TODO Do your background work.

 // Return SUCCESS if the background work has executed successfully.
 return Result.SUCCESS;

 // Return RETRY to reschedule this work.
 // Return FAILURE to indicate a failure that shouldn't be retried.
 }
}

Once you’ve defined a Worker, request an instance of the Work Manager to request your Worker be
executed using a OneTimeWorkRequest or PeriodicWorkRequest to schedule a one-off or repeating
request, respectively:

// Schedule a one-off execution of the background work
OneTimeWorkRequest myOneTimeWork =
 new OneTimeWorkRequest.Builder(MyBackgroundWorker.class)
 .build();

// Schedule a background worker to repeat every 12 hours.
PeriodicWorkRequest myPeriodicWork =
 new PeriodicWorkRequest.Builder(MyBackgroundWorker.class,
 12, TimeUnit.HOURS)
 .build();

// Enqueue the work requests.
WorkManager.getInstance().enqueue(myOneTimeWork);
WorkManager.getInstance().enqueue(myPeriodicWork);

Once your Work Request has been enqueued, Work Manager will schedule a time to execute the
specified Worker based on available system resources, and any constraints you’ve specified.

If no constraints have been specified (such as in the previous code snippet), the Work Manager will
typically run the Worker immediately. Alternatively, you can use the Constraint.Builder to con-
struct a Constraint, which specifies requirements—including battery and storage level, charging
and idle status, and network connection type—and assign it to your Work Request using the set-
Constraints method:

Constraints myConstraints = new Constraints.Builder()
 .setRequiresDeviceIdle(true)
 .setRequiresCharging(true)
 .build();

Scheduling Background Jobs ❘ 395

OneTimeWorkRequest myWork =
 new OneTimeWorkRequest.Builder(MyBackgroundWorker.class)
 .setConstraints(myConstraints)
 .build();

WorkManager.getInstance().enqueue(myWork);

The Work Manager also provides support for Worker chaining, and using Live Data to observe
Work Status and associated output values.

Chaining allows you to schedule Work Requests sequentially, effectively creating a dependency
graph between independent Work Requests.

To create a new chained sequence, use the Work Manager’s beginWith method, passing in the first
Work Request to execute. This will return a WorkContinuation object whose then method allows
you to add the next Work Request, and so on. When the sequence definition is complete, you call
enqueue on the final Work Continuation object:

WorkManager.getInstance()
 .beginWith(myWork)
 .then(mySecondWork)
 .then(myFinalWork)
 .enqueue();

Each beginWith and then method can accept multiple Work Request objects, all of which will then
be run in parallel, and must complete, before the next Worker (or group of Workers) is run. It’s
possible to create even more complex sequences by joining multiple chains together using the Work
Continuation’s combine methods.

In any case, each Worker is still subject to any Constraints you assign, and a permanent failure on
any Worker in the chain will terminate the entire sequence.

The current status of any enqueued Work Request is reported using a WorkStatus within a Live
Data object, and can be observed by calling the getStatusById method on a Work Manager
instance, passing in the unique ID of the Work Request to monitor:

WorkManager.getInstance().getStatusById(myWork.getId())
 .observe(lifecycleOwner, workStatus -> {
 if (workStatus != null) {
 // TODO Do something with the current status
 }
 });

When the Work Request has completed, you can extract any output Data assigned within your
Worker implementation:

@Override
public Worker.Result doWork() {
 // TODO Do your background work.

396 ❘ CHAPTER 11 Working in the Background

 Data outputData = new Data.Builder()
 .putInt(KEY_RESULT, result)
 .build();
 setOutputData(outputData);

 return Result.SUCCESS;
}

To extract the output Data, use the Work Status getOutputData method, and specify the desired
keys:

if (workStatus != null && workStatus.getState().isFinished()) {
 int myResult = workStatus.getOutputData()
 .getInt(KEY_RESULT, defaultValue));
}

To cancel an enqueued Work Request, pass its UUID to the Work Manager’s cancelWorkById
method:

UUID myWorkId = myWork.getId();
WorkManager.getInstance().cancelWorkById(myWorkId);

An Earthquake-Monitoring Job Service Example
In this example you move the earthquake updating and processing functionality into its own
SimpleJobService component.

NOTE At the time of writing this book, the Android Architecture Components
Work Manager, described in the previous section, was still in alpha. As a result,
in this example we demonstrate using the Firebase Job Dispatcher. As an exer-
cise, we recommend you upgrade this sample to use the Work Manager instead.

 1. Update your build.gradle file to add a dependency on Firebase Job Dispatcher:

dependencies {
 [...existing dependencies ...]

 implementation 'com.firebase:firebase-jobdispatcher:0.8.5'
}

 2. Update the res/values/arrays.xml to use more realistic frequency options (loading more
often than every 15 minutes should only be done in response to push messages, described
later in this chapter):

<string-array name="update_freq_options">
 <item>Every 15 minutes</item>
 <item>Every hour</item>
 <item>Every 4 hours</item>
 <item>Every 12 hours</item>

Scheduling Background Jobs ❘ 397

 <item>Every 24 hours</item>
</string-array>
<string-array name="update_freq_values">
 <item>15</item>
 <item>60</item>
 <item>240</item>
 <item>720</item>
 <item>1440</item>
</string-array>

 3. Create a new EarthquakeUpdateJobService that extends SimpleJobService and requires
a network connection for the job to be run:

package com.professionalandroid.apps.earthquake;

import com.firebase.jobdispatcher.Constraint;
import com.firebase.jobdispatcher.FirebaseJobDispatcher;
import com.firebase.jobdispatcher.GooglePlayDriver;
import com.firebase.jobdispatcher.JobParameters;
import com.firebase.jobdispatcher.SimpleJobService;

public class EarthquakeUpdateJobService extends SimpleJobService {
 private static final String TAG = "EarthquakeUpdateJob ";
 private static final String UPDATE_JOB_TAG = "update_job";
 private static final String PERIODIC_JOB_TAG = "periodic_job";

 public static void scheduleUpdateJob(Context context) {
 FirebaseJobDispatcher jobDispatcher =
 new FirebaseJobDispatcher(new GooglePlayDriver(context));

 jobDispatcher.schedule(jobDispatcher.newJobBuilder()
 .setTag(UPDATE_JOB_TAG)
 .setService(EarthquakeUpdateJobService.class)
 .setContraints(Constraint.ON_ANY_NETWORK)
 .build());
 }

 @Override
 public int onRunJob(final JobParameters job) {
 return RESULT_SUCCESS;
 }
}

 4. Add this new Service to the manifest by adding a new service tag within the application
node:

<service android:name=".EarthquakeUpdateJobService"
 android:exported="true">
 <intent-filter>
 <action
 android:name="com.firebase.jobdispatcher.ACTION_EXECUTE/>
 </action>
 </intent-filter>
</service>

398 ❘ CHAPTER 11 Working in the Background

 5. Move the XML parsing code from the doInBackground handler within the Async Task
defined in the loadEarthquakes method of the EarthquakeViewModel, into the onRunJob
method in the EarthquakeUpdateJobService. Take the opportunity to also create a new
scheduleNextUpdate method that should be called after the parsed Earthquakes have been
added to the database:

@Override
public int onRunJob(final JobParameters job) {
 // Result ArrayList of parsed earthquakes.
 ArrayList<Earthquake> earthquakes = new ArrayList<>();

 // Get the XML
 URL url;
 try {
 String quakeFeed = getString(R.string.quake_feed);
 url = new URL(quakeFeed);

 URLConnection connection;
 connection = url.openConnection();

 HttpURLConnection httpConnection = (HttpURLConnection)connection;
 int responseCode = httpConnection.getResponseCode();

 if (responseCode == HttpURLConnection.HTTP_OK) {
 InputStream in = httpConnection.getInputStream();

 DocumentBuilderFactory dbf
 = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();

 // Parse the earthquake feed.
 Document dom = db.parse(in);
 Element docEle = dom.getDocumentElement();

 // Get a list of each earthquake entry.
 NodeList nl = docEle.getElementsByTagName("entry");
 if (nl != null && nl.getLength() > 0) {
 for (int i = 0 ; i < nl.getLength(); i++) {
 Element entry = (Element)nl.item(i);
 Element title
 = (Element)entry.getElementsByTagName("title").item(0);
 Element g
 = (Element)entry.getElementsByTagName("georss:point")
 .item(0);
 Element when
 = (Element)entry.getElementsByTagName("updated").item(0);
 Element link
 = (Element)entry.getElementsByTagName("link").item(0);

 String details = title.getFirstChild().getNodeValue();
 String hostname = "http://earthquake.usgs.gov";
 String linkString = hostname + link.getAttribute("href");

Scheduling Background Jobs ❘ 399

 String point = g.getFirstChild().getNodeValue();
 String dt = when.getFirstChild().getNodeValue();
 SimpleDateFormat sdf
 = new SimpleDateFormat("yyyy-MM-dd'T'hh:mm:ss'Z'");
 Date qdate = new GregorianCalendar(0,0,0).getTime();
 try {
 qdate = sdf.parse(dt);
 } catch (ParseException e) {
 Log.e(TAG, "Date parsing exception.", e);
 }

 String[] location = point.split(" ");
 Location l = new Location("dummyGPS");
 l.setLatitude(Double.parseDouble(location[0]));
 l.setLongitude(Double.parseDouble(location[1]));

 String magnitudeString = details.split(" ")[1];
 int end = magnitudeString.length()-1;
 double magnitude
 = Double.parseDouble(magnitudeString.substring(0, end));

 if (details.contains("-"))
 details = details.split(",")[1].trim();
 else
 details = "";

 final Earthquake earthquake = new Earthquake(
 idString, qdate, details, l,
 magnitude, linkString);

 // Add the new earthquake to our result array.
 earthquakes.add(earthquake);
 }
 }
 }
 httpConnection.disconnect();

 EarthquakeDatabaseAccessor
 .getInstance(getApplicationContext())
 .earthquakeDAO()
 .insertEarthquakes(earthquakes);

 scheduleNextUpdate();

 return RESULT_SUCCESS;
 } catch (MalformedURLException e) {
 Log.e(TAG, "Malformed URL Exception", e);
 return RESULT_FAIL_NORETRY;
 } catch (IOException e) {
 Log.e(TAG, "IO Exception", e);
 return RESULT_FAIL_RETRY;
 } catch (ParserConfigurationException e) {
 Log.e(TAG, "Parser Configuration Exception", e);
 return RESULT_FAIL_NORETRY;
 } catch (SAXException e) {

400 ❘ CHAPTER 11 Working in the Background

 Log.e(TAG, "SAX Exception", e);
 return RESULT_FAIL_NORETRY;
 }
}

private void scheduleNextUpdate() {
}

 6. Update the loadEarthquakes method within the EarthquakeViewModel to remove
the Async Task and instead call the static scheduleUpdateJob method within the
EarthquakeUpdateJobService to schedule the job to execute:

public void loadEarthquakes() {
 EarthquakeUpdateJobService.scheduleUpdateJob(getApplication());
}

 7. Return to the EarthquakeUpdateJobService. Update the scheduleNextUpdate method to
create a new periodic job that will be used to regularly update the earthquake list if the user
has set a preference to do so:

private void scheduleNextUpdate() {
 if (job.getTag().equals(UPDATE_JOB_TAG)) {
 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(this);
 int updateFreq = Integer.parseInt(
 prefs.getString(PreferencesActivity.PREF_UPDATE_FREQ, "60"));
 boolean autoUpdateChecked =
 prefs.getBoolean(PreferencesActivity.PREF_AUTO_UPDATE, false);

 if (autoUpdateChecked) {
 FirebaseJobDispatcher jobDispatcher =
 new FirebaseJobDispatcher(new GooglePlayDriver(context));

 jobDispatcher.schedule(jobDispatcher.newJobBuilder()
 .setTag(PERIODIC_JOB_TAG)
 .setService(EarthquakeUpdateJobService.class)
 .setConstraints(Constraint.ON_ANY_NETWORK)
 .setReplaceCurrent(true)
 .setRecurring(true)
 .setTrigger(Trigger.executionWindow(
 updateFreq*60 / 2,
 updateFreq*60))
 .setLifetime(Lifetime.FOREVER)
 .build());
 }
 }
}

Now, when the Earthquake Main Activity is launched, it will start the Earthquake Update Job
Service, which will continue to schedule jobs—updating the database in the background—even after
the Activity is suspended or closed.

Because the Earthquake List Fragment is observing the database, each new Earthquake will auto-
matically be added to the list.

Using Notifications to Notify Users ❘ 401

USING NOTIFICATIONS TO NOTIFY USERS

Notifications, such as those shown in Figure 11-1, are a
powerful mechanism that makes it possible for your applica-
tion to communicate important, timely information with
users, even when none of your app’s Activities are visible.

While it’s likely that your users will have their phones with
them at all times, it’s quite unlikely that they will be paying
attention to them, or your application, at any given time.
Generally, users will have several applications open in the
background, and they won’t be paying attention to any of them.

Depending on priority, Notifications can be displayed visually above the active Activity; trigger
sounds, lights, and/or a status bar icon; or be completely passive—visible only when the Notification
tray is open.

It’s also possible to dramatically change the appearance and interactivity of each Notification, or
group of Notifications, using Notification Styles and actions. Actions add interactive controls to the
Notification UI, making it possible for users to respond to Notifications without needing to open
your app.

Notifications are the preferred mechanism for invisible application components (particularly Job
Services) to alert users that events have occurred that may require timely attention. They are also
required to indicate a running Service with foreground priority as described later in this chapter.

Introducing the Notification Manager
The NotificationManager is a system Service used to manage Notifications. To provide a consis-
tent experience across all API levels, the Support Library provides a NotificationManagerCompat
class, which you should use rather than the framework Notification Manager when posting
Notifications.

The Support Library Notification Manager can be accessed as shown in Listing 11-15.

LISTING 11-15: Using the Notification Manager

NotificationManagerCompat notificationManager =
 NotificationManagerCompat.from(context);

Using the Notification Manager, you can trigger new Notifications, modify existing ones, or cancel
those that are no longer required.

Each Notification is identified by a unique integer ID, and an optional String tag that are used to
determine if a new Notification should be created, or if an existing Notification should be updated.
Similarly, these properties are used to determine which Notification to cancel.

FIGURE 11-1

402 ❘ CHAPTER 11 Working in the Background

Working with Notification Channels
Starting in Android 8.0 Oreo (API Level 26), all Notifications must be associated with a
Notification Channel. At minimum, each Notification Channel has a unique ID and a user-
visible name, but they are also used to define a default priority, sound, light, and vibration for all
Notifications posted to that Notification Channel.

After you’ve created a Notification Channel, and posted a Notification to it, the user can modify
that Channel’s settings—including raising or lowering the priority of all future Notifications posted
to that Channel.

As a result, it’s critical to create the right granularity of Notification Channels and carefully set
the defaults to be consistent with the expectations of the majority of your users. For example,
Notifications for messges received from other users should be in a separate—higher—priority
Notification Channel from Notifications regarding service updates.

Mixing different Notifications types within the same Notification Channel makes it is much more
likely that users will disable or demote the priority of that Channel, consistent with the expectations
for the lowest priority Notifications they receive.

In most cases, an app has a fixed number of Notification Channels, each with a static String ID.
This type of Notification Channel is shown in Listing 11-16. Note that you must create your
Notification Channels using the system Notification Manager, and only on devices running Android
8.0 or later.

LISTING 11-16: Creating a Notification Channel

private static final String MESSAGES_CHANNEL = "messages";

public void createMessagesNotificationChannel(Context context) {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
 CharSequence name = context
 .getString(R.string.messages_channel_name);

 NotificationChannel channel = new NotificationChannel(
 MESSAGES_CHANNEL,
 name,
 NotificationManager.IMPORTANCE_HIGH);

 NotificationManager notificationManager =
 context.getSystemService(NotificationManager.class);
 notificationManager.createNotificationChannel(channel);
 }
}

This method should then be called before every Notification to ensure the corresponding
Notification Channel is created.

Using Notifications to Notify Users ❘ 403

As the Android system UI allows users to directly adjust the settings for each Notification Channel,
your app doesn't need to provide a separate UI for setting Notification preferences on Android 8.0
or higher devices. However, you may consider providing those settings within your app for users on
older versions of Android.

For Android 8.0 or higher devices, rather than providing Notification settings within your app, you
should redirect users to the system Notification settings screen:

Intent intent = new Intent(Settings.ACTION_CHANNEL_NOTIFICATION_SETTINGS);
intent.putExtra(Settings.EXTRA_APP_PACKAGE, context.getPackageName());
startActivity(intent);

Creating Notifications
In addition to a Notification Channel, every Notification is required to contain three primary
elements: a small icon, a title, and descriptive text.

The small icon is displayed in the status bar, and should be immediately recognizable as representing
your app. A small icon should be 24x24dp in size and should be white on a transparent background.

NOTE On Android 5.0 Lollipop (API Level 21) or higher devices, you should
consider using a vector Drawable for your small icon so that the system can
scale it to any size. Vector Drawables are discussed in detail in Chapter 12,
“Implementing the Android Design Philosophy.”

Small icons are typically simplified versions of your app’s
launcher icon, and should always match the iconography
used within your app so that users will recognize them in
the status bar.

The main content of a Notification is split across two lines
as shown in Figure 11-2.

The first line is the title, with the text beneath.

With these fields, it is possible to build a simple Notification using a NotificationCompat.Builder
and post a Notification using notify, as shown in Listing 11-17.

LISTING 11-17: Creating and posting a Notification

final int NEW_MESSAGE_ID = 0;

createMessagesNotificationChannel(context);
NotificationCompat.Builder builder = new NotificationCompat.Builder(
 Context, MESSAGES_CHANNEL);

FIGURE 11-2

continues

404 ❘ CHAPTER 11 Working in the Background

// These would be dynamic in a real app
String title = "Reto Meier";
String text = "Interested in a new book recommendation?" +
 " I have one you should check out!";

builder.setSmallIcon(R.drawable.ic_notification)
 .setContentTitle(title)
 .setContentText(text);

notificationManager.notify(NEW_MESSAGE_ID, builder.build());

The title should contain the information needed to understand each Notification’s importance to
the user. It’s always displayed on a single line, so whenever possible it’s important to keep the title
length under 30 characters to ensure it’s displayed in full.

For example, Notifications indicating incoming messages from another person should display the
sender’s name in the title. Always avoid using your app’s name within the title; it’s redundant—and
the app name is displayed within the header on Android 7.0 Nougat (API Level 24) and higher
devices.

The content text provides the context and more detailed information. In our messaging example, the
content text would be the latest message received. In all cases the content text should not duplicate
information already available in the title.

It’s also good practice to use the setColor method to specify a color for your Notifications consis-
tent with your app’s branding:

builder.setColor(ContextCompat.getColor(context, R.color.colorPrimary));

Between Android 5.0 Lollipop (API Level 21) and Android
6.0 Marshmallow (API Level 23), this color is used as
the background color surrounding the small icon on a
Notification. Since Android 7.0 Nougat (API Level 24) the
specified color is used for the small icon, app name, and any
actions you use as shown in Figure 11-3.

In either case, the color you select should contrast with the
light background color used on the Notification tray.

Notifications also support the use of a large icon. The large
icon is displayed in an open Notification, and provides addi-
tional context alongside the content title and text strings, as
shown in Figure 11-4.

You can set a large icon using a Bitmap passed in to the
setLargeIcon method of the Builder:

builder.setLargeIcon(profilePicture);

LISTING 11-7 (continued)

FIGURE 11-3

FIGURE 11-4

Using Notifications to Notify Users ❘ 405

Handling Notification Taps
In almost all cases, a Notification should respond to a user tap by opening the corresponding
application, and navigating to the correct context for the user to either get more detail or provide a
response.

To support taps, each Notification can include a content Intent, specified using the setContent-
Intent method of the Notification Builder. This method takes a PendingIntent that should launch
the appropriate Activity.

In most cases, a Notification tap will deep link into a specific Activity within your application—for
example, an e-mail to read or an image to view. In this case, it’s important to also construct the cor-
rect back stack to ensure navigation occurs the way users would predict when using the back button.

To accomplish this, you should use the TaskStackBuilder class as shown in Listing 11-18:

LISTING 11-18: Adding a content Intent to start an Activity

// This could be any Intent. Here we use the app's
// launcher activity as a simple example
Intent launchIntent = context.getPackageManager()
 .getLaunchIntentForPackage(context.getPackageName());

PendingIntent contentIntent = TaskStackBuilder.create(context,
 .addNextIntentWithParentStack(launchIntent)
 .getPendingIntent(0, PendingIntent.FLAG_UPDATE_CURRENT);
builder.setContentIntent(contentIntent);

By default, Activities have no parent Activity declared, which means that tapping the Notification
does not create any additional back stack. While this is appropriate for your launcher Activity, a
parent Activity should be set for all other Activities in your app. The process for setting the parent
Activity is described in Chapter 12.

To dismiss a Notification when it is tapped, you can set the Notification to automatically cancel
with setAutoCancel:

builder.setAutoCancel(true);

Handling Notification Dismissal by Users
Users can dismiss Notifications by swiping them away individually, or by choosing to clear all of
them at once. You can specify a delete Intent using the setDeleteIntent method on the Builder
that will be sent to your app when a Notification is dismissed, rather than clicked or canceled.

This is useful if you need to sync dismissals across multiple devices, or update your app’s internal
state. The Pending Intent you specify here should almost always point to a Broadcast Receiver that
can do the processing in the background, or initiate a background job if necessary:

Intent intent = new Intent(context, DeleteReceiver.class);

// Add any extras or a data URI that uniquely defines this Notification

406 ❘ CHAPTER 11 Working in the Background

PendingIntent deleteIntent = PendingIntent.getBroadcast(context, 0,
 intent, PendingIntent.FLAG_UPDATE_CURRENT);

builder.setDeleteIntent(deleteIntent);

Using an Expanded Notification Style
Android 4.1 Jelly Bean (API Level 16) introduced the ability to create Notifications that can be
expanded to show additional information, as well as include user actions. Android provides multiple
expanded Notification styles:

 ➤ BigTextStyle—Displays multiple lines of text.

 ➤ BigPictureStyle—Displays a large image within the expanded Notification.

 ➤ MessagingStyle—Displays messages received as part of conversations.

 ➤ MediaStyle—Displays information on playing media and up to five actions to control media
playback.

 ➤ InboxStyle—Displays a summary Notification that represents multiple Notifications.

Each Notification style provides a different UI and set of
functionality, as shown in Figure 11-5 and described below.

The most widely applicable is the BigTextStyle, which
displays multiple lines of text as specified using the bigText
method from the Big Text Style, rather than the single line
of text displayed in a standard (non-styled) Notification.

Listing 11-19 shows how to apply the Big Text Style using the setStyle method of the Notification
Builder.

LISTING 11-19: Applying a Big Text Style to a Notification

builder.setSmallIcon(R.drawable.ic_notification)
 .setContentTitle(title)
 .setContentText(text)
 .setLargeIcon(profilePicture)
 .setStyle(new NotificationCompat.BigTextStyle().bigText(text));

For purely visual content, the BigPictureStyle allows you to specify a large image using the big-
Picture method, returned when adding the Big Picture Style, when the Notification is expanded—
as shown in Listing 11-20.

LISTING 11-20: Applying a Big Picture Style to a Notification

builder.setSmallIcon(R.drawable.ic_notification)
 .setContentTitle(title)
 .setContentText(text)

FIGURE 11-5

Using Notifications to Notify Users ❘ 407

 .setLargeIcon(profilePicture)
 .setStyle(new NotificationCompat.BigPictureStyle()
 .bigPicture(aBigBitmap));

For Notifications published by messaging apps—particularly those featuring conversations with
multiple people—you can use the MessagingStyle.

When using this style, provide a userDisplayName string to represent the current user, and a set of
messages using the addMessage method as shown in Listing 11-21.

LISTING 11-21: Creating a Messaging Style Notification

builder
 .setShowWhen(true) // Show the time the Notification was posted
 .setStyle(new NotificationCompat.MessagingStyle(userDisplayName)
 .addMessage("Hi Reto!", message1TimeInMillis, "Ian Lake")
 .addMessage("How's it going?", message2TimeInMillis, "Ian Lake")
 .addMessage("Very well indeed. And you?", message3TimeInMillis, null));

Each added message has three main properties: the text of the incoming message, the time the mes-
sage was sent (in milliseconds), and the name of the sender. A null sender indicates that the message
was sent by the user of the host device. For group conversations, the conversation title can be set
with setConversationTitle.

For media playback apps, a MediaStyle Notification offers users quick access to up to five actions
(such as play/pause, next/previous track). This style is discussed in detail in Chapter 17, “Audio,
Video, and Using the Camera.”

InboxStyle Notifications are particularly useful for generating a summary Notification, as discussed
later in this chapter within the “Grouping Multiple Notifications” section.

Setting a Notification’s Priority
The priority attached to a Notification represents its relative importance to your users, and the level
of user-interruption it will cause.

The lowest-priority Notifications (such as weather forecasts) are only presented when the
Notification tray is expanded, while the highest-priority Notifications (such as incoming calls) trig-
ger sounds, lights, and vibrations—as well as potentially bypassing users’ Do Not Disturb settings.

Setting the importance on a Notification Channel
On Android 8.0 Oreo (API Level 26) or higher devices, the priority of a Notification is set by the
importance on its Notification Channel:

channel.setImportance(NotificationManager.IMPORTANCE_HIGH);

The default importance, IMPORTANCE_DEFAULT, causes Notifications to show on the status bar as an
icon and will alert the user. By default, this uses the default sound, but you can choose to specify a
custom sound, vibration, or light pattern (as discussed below).

408 ❘ CHAPTER 11 Working in the Background

For time-sensitive alerts such as incoming communication
messages from chat services, consider using a channel with
IMPORTANCE_HIGH. Notifications from channels of this
importance or higher will “peek” onto the user’s screen (if
the screen is on), as shown in Figure 11-6.

Alternatively, IMPORTANCE_LOW is appropriate for non-time-
sensitive information. A status bar icon will still be dis-
played, but no sound, vibration, or lights will be used.

For nice-to-know information that should not intrude on the user at all, IMPORTANCE_MIN should
be used. These Notifications are not displayed as icons in the status bar; they are shown only at the
bottom of the Notification tray when it is expanded.

Understanding the Notification Priority System
Prior to Android 8.0, the priority of a Notification is set using the setPriority method on the
Notification Builder:

builder.setPriority(NotificationCompat.PRIORITY_HIGH);

The priorities here match the importance levels of Notification Channels, with one exception: a
PRIORITY_MAX was also available. Generally, PRIORITY_MAX should not be used except for the
most critical, time-sensitive Notifications such as incoming phone calls, which must be handled
immediately.

 ➤ PRIORITY_HIGH—Equivalent to IMPORTANCE_HIGH

 ➤ PRIORITY_DEFAULT—Equivalent to IMPORTANCE_DEFAULT

 ➤ PRIORITY_LOW—Equivalent to IMPORTANCE_LOW

 ➤ PRIORITY_MIN—Equivalent to IMPORTANCE_MIN

NOTE Unlike Notification Channels, setting the priority on a Notification does
not limit the types of alerts you can add to the Notification. Stay consistent with
Notification Channels by refraining from adding sound, vibration, or lights to
PRIORITY_LOW or PRIORITY_MIN Notifications.

Adding Sound, Vibration, and Lights to Notifications
Notification Channels of IMPORTANCE_DEFAULT or higher can alert the user via sound, vibration or
lights.

By default, the default Notification ring tone is used. The default vibration or light pattern can be
added by calling the appropriate methods when constructing your Notification Channel:

channel.enableVibration(true);
channel.enableLights(true);

FIGURE 11-6

Using Notifications to Notify Users ❘ 409

Prior to Android 8.0, the simplest and most consistent way to add sounds, lights, and vibrations to
your Notifications is to use the default settings. Using the setDefaults method on the Notification
Builder, you can combine the following constants:

 ➤ NotificationCompat.DEFAULT_SOUND

 ➤ NotificationCompat.DEFAULT_VIBRATE

 ➤ NotificationCompat.DEFAULT_LIGHTS

For example, the following code snippet assigns the default sound and vibration settings to a
Notification:

builder.setDefaults(NotificationCompat.DEFAULT_SOUND |
 NotificationCompat.DEFAULT_VIBRATE);

If you want to use all the default values, you can use the NotificationCompat.DEFAULT_ALL
constant.

The sound, vibration pattern, and LED color and rate can be customized from the default values
using the setSound, setVibrationPattern, and setLightColor methods on the Notification
Channel, respectively.

Generally, sounds are chosen from the RingtoneManager class, which respects the user’s prefer-
ences. A custom vibration pattern can be specified using an array of longs, alternating between
the milliseconds to remain on and milliseconds to remain off. The color of the LED can also be
customized, and prior to Android 8.0, you can also set the rate at which the LED flashes using two
 integers—the number of milliseconds for the LED to be on and then the number of milliseconds to
be off.

Listing 11-22 builds a Notification that uses the RingtoneManager to get an appropriate sound,
vibrates the phone for a total of three times over a 5-second period, and rapidly blinks the LED red.

LISTING 11-22: Customizing a Notification’s alerts

// For Android 8.0+ higher devices:
channel.setSound(
 RingtoneManager.getDefaultUri(RingtoneManager.TYPE_NOTIFICATION));
channel.setVibrationPattern(new long[] { 1000, 1000, 1000, 1000, 1000});
channel.setLightColor(Color.RED);

// For Android 7.1 or lower devices:
builder.setPriority(NotificationCompat.PRIORITY_HIGH)
 .setSound(
 RingtoneManager.getDefaultUri(RingtoneManager.TYPE_NOTIFICATION))
 .setVibrate(new long[] { 1000, 1000, 1000, 1000, 1000 })
 .setLights(Color.RED, 0, 1);

410 ❘ CHAPTER 11 Working in the Background

NOTE Each device may have different limitations with regard to control over
the LED. If the color you specify is not available, as close an approximation as
possible will be used. When using LEDs to convey information to the user, keep
this limitation in mind and avoid making it the only way such information is
made available.

To only have the sound and vibrate occur the first time the Notification is posted and not every time
the Notification is updated, you can use setOnlyAlertOnce passing in true:

builder.setOnlyAlertOnce(true);

Respecting Requests That You “Do Not Disturb”
Since Android 5.0 Lollipop (API Level 21), users have been able to customize which Notifications
can use sound, vibration, and lights to alert them while in “Do Not Disturb” (or “Priority Only”)
mode.

When deciding if these alerting mechanisms are allowed while Do Not Disturb mode is active, the
Notification Manager uses two pieces of metadata: the Notification category, and the person whose
action triggered the Notification.

A Notification’s category is set using the setCategory method:

builder.setCategory(NotificationCompat.CATEGORY_EVENT);

The Notification class includes a variety of category constants including CATEGORY_ALARM,
CATEGORY_REMINDER, CATEGORY_EVENT, CATEGORY_MESSAGE, and CATEGORY_CALL. By setting the
correct category, you ensure that the user’s system settings to enable or disable certain categories
while in Do Not Disturb mode are respected.

For some Notification categories, specifically message and call, users can choose to allow
Notifications only from specific people—namely, their starred contacts.

You can attach people to the Notification by using addPerson, passing in one of three types of
URIs, as shown in Listing 11-23:

 ➤ A CONTENT_LOOKUP_URI or the “permanent” link to an individual contact already in the
user’s Contacts Content Provider

 ➤ A tel: schema for phone numbers, which will use ContactsContract.PhoneLookup to find
the associated user

 ➤ A mailto: schema for e-mail addresses

LISTING 11-23: Setting a Notification category and sender

builder.setCategory(NotificationCompat.CATEGORY_CALL)
 .addPerson("tel:5558675309");

Using Notifications to Notify Users ❘ 411

Adding Notification Actions
Expanded Notifications also enable you to offer users up to three actions in addition to tapping the
Notification itself. For example, an e-mail Notification might contain an action to archive or delete it.

Any action added to the Notification must offer unique functionality rather than duplicate the
action taken when tapping the Notification. Actions are only available when the Notification
has been expanded, so it’s best practice to ensure that every action available in the expanded
Notification is also available in the Activity launched when the Notification is tapped.

Each Notification action has a title, an icon (32x32dp, white on a transparent background), and a
PendingIntent. On devices running Android 7.0 Nougat (API Level 24) or above, the icon is not
displayed in the expanded Notification, but it’s used on devices such as Wear OS and on earlier
 versions of Android.

Add new actions to a Notification using the addAction method on the Notification Builder as shown
in Listing 11-24.

LISTING 11-24: Adding a Notification action

Intent deleteAction = new Intent(context, DeleteBroadcastReceiver.class);
deleteAction.setData(emailUri);

PendingIntent deleteIntent = PendingIntent.getBroadcast(context, 0,
 deleteAction, PendingIntent.FLAG_UPDATE_CURRENT);

builder.addAction(
 new NotificationCompat.Action.Builder(
 R.drawable.delete,
 context.getString(R.string.delete_action),
 deleteIntent).build());

NOTE After an action is triggered, it is the receiving component’s responsibility
to cancel the Notification if appropriate. The setAutoCancel mechanism only
applies when the content Intent is fired by the user tapping the Notification itself.

The Notification Builder offers additional support for actions on Wear OS through the Action
.WearableExtender class. You can provide quick access to a primary action on Android Wear
devices using its setHintDisplayActionInline method:

builder.addAction(
 new NotificationCompat.Action.Builder(
 R.drawable.archive,
 context.getString(R.string.archive_action),
 archiveIntent)
 .extend(new NotificationCompat.Action.WearableExtender()
 .setHintDisplayActionInline(true))
 .build());

412 ❘ CHAPTER 11 Working in the Background

The Wearable Extender can also be used to further improve the transition animation on Wear OS
using the setHintLaunchesActivity(true) when appropriate, which will play an “Opened on the
phone” animation when set to true.

Adding Direct Reply Actions
The actions described in the previous section are limited
to firing a predefined Intent when an action is selected.
Android 7.0 Nougat (API Level 24) and Wear OS expand
this further with the introduction of “direct reply actions,”
making it possible for users to respond to a Notification by
entering text directly from the Notification itself, as shown
in Figure 11-7.

Direct reply actions are particularly useful for situa-
tions where the most common user response to a Notification is to provide a short reply—such as
responding to an incoming message. For this reason, direct reply actions are typically paired with
the MessagingStyle.

To add a direct reply action to your Notification, add a RemoteInput object to the action, as shown
in Listing 11-25.

LISTING 11-25: Adding a direct reply action

// The key you'll use to later retrieve the reply
final String KEY_TEXT_REPLY = "KEY_TEXT_REPLY";

Intent replyAction = new Intent(context, ReplyBroadcastReceiver.class);
replyAction.setData(chatThreadUri);
PendingIntent replyIntent = PendingIntent.getBroadcast(context, 0,
 replyAction, PendingIntent.FLAG_UPDATE_CURRENT);

// Construct the RemoteInput
RemoteInput remoteInput = new RemoteInput.Builder(KEY_TEXT_REPLY)
 .setLabel(context.getString(R.string.reply_hint_text))
 .build();

builder.addAction(
 new NotificationCompat.Action.Builder(
 R.drawable.reply,
 context.getString(R.string.reply_action),
 replyIntent)
 .addRemoteInput(remoteInput)
 .setAllowGeneratedReplies(true)
 .extend(new NotificationCompat.Action.WearableExtender()
 .setHintDisplayActionInline(true))
 .build());

FIGURE 11-7

Using Notifications to Notify Users ❘ 413

A simple way to improve the user experience on Android Wear devices is to enable generated
replies with setAllowGeneratedReplies(true). Generated replies attempt to predict likely user
responses, allowing the user to select a predetermined reply rather than needing to type (or say) any-
thing at all.

When users enter their reply, it is included in your Pending Intent with the key you used to construct the
RemoteInput. You can extract the text within your app using the static RemoteInput.getResults-
FromIntent method to obtain a Bundle from which you can extract the user’s inputted text:

Bundle remoteInput = RemoteInput.getResultsFromIntent(intent);
CharSequence message = remoteInput != null
 ? remoteInput.getCharSequence(KEY_TEXT_REPLY)
 : null;

Immediately after users have entered their reply, Android will add an indeterminate progress spinner
to indicate that your app is processing the reply. Once you receive and process the user input, you
must update the Notification such that it reflects their input and the progress spinner is removed.

If you’re using the MessagingStyle, you can do this by adding a new message using addMessage.
For any other Notification style, use setRemoteInputHistory.

// If you have multiple replies, the most recent
// should be the first in the array
builder.setRemoteInputHistory(new CharSequence[] { lastReply });

Grouping Multiple Notifications
Rather than sending multiple individual Notifications (such
as one per e-mail), it’s generally a better user experience
to bundle multiple Notifications into a single group. This
ensures users retain a Notification tray that can be under-
stood at a glance, and won’t be overwhelmed with multiple
Notifications from any single app.

One approach is to have a single Notification that is updated
to reflect multiple items that triggered it; however, the small
available space limits the information you can display.

A better approach is to bundle multiple individual
Notifications from your app. These grouped Notifications
appear the same size as a single Notification, as shown in
Figure 11-8, but can be expanded, such that a user can view
and interact with multiple individual Notifications from
within that group.

Notifications can be added to a group by calling setGroup
on the Builder, passing in a String that provides a unique
key for each group:

String accountName = "reto@example.com";
builder.setGroup(accountName); FIGURE 11-8

414 ❘ CHAPTER 11 Working in the Background

NOTE On Android 7.0 Nougat (API Level 24) and higher devices, Notification
grouping is enforced automatically for any app that posts more than four indi-
vidual Notifications.

For each group, you must also post a group summary Notification—a Notification that has the same
setGroup call and also calls setGroupSummary(true), as shown in Listing 11-26.

LISTING 11-26: Building an InboxStyle group summary Notification

InboxStyle inboxStyle = new NotificationCompat.InboxStyle();
for (String emailSubject : emailSubjects)
 inboxStyle.addLine(emailSubject);

builder.setSubText(accountName)
 .setGroup(accountName)
 .setGroupSummary(true)
 .setStyle(inboxStyle);

On devices running Android 7.0 Nougat (API Level 24) and higher, this summary Notification is
used only to populate the content Intent, delete Intent, and the subtext that is seen when the bundle
is collapsed.

However, on Android 6.0 Marshmallow (API Level 23) and earlier devices—where Notification
bundling is not available—this summary bundle will be the only one displayed for your app. This
makes Inbox Style the best style to use, as it provides a single line summary of each Notification that
can be accessed when the user clicks on the summary Notification.

This means that your summary Notification should contain enough information to be useful even
without the child Notifications, and every time a Notification within the group is created, updated,
or deleted, the summary Notification should also be updated to reflect the current summary state.

Adding Notifications to the Earthquake Monitor
The following example enhances the EarthquakeUpdateJobService to trigger a Notification for
the most severe new earthquake after an update. The Notification will show the magnitude and
location in the Notification tray, and selecting the Notification will open the Earthquake Activity.

 1. Start by adding an earthquake_channel_name String to the res/values/strings.xml file:

<string name="earthquake_channel_name">New earthquake!</string>

 2. In the EarthquakeUpdateJobService, add new constants which we’ll use for constructing
each Notification:

private static final String NOTIFICATION_CHANNEL = "earthquake";
public static final int NOTIFICATION_ID = 1;

Using Notifications to Notify Users ❘ 415

 3. Still within the Earthquake Update Job Service, add a createNotificationChannel method
to define a high importance channel with vibration and lights, suitable for something as high
priority as a new earthquake:

private void createNotificationChannel() {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
 CharSequence name = getString(R.string.earthquake_channel_name);

 NotificationChannel channel = new NotificationChannel(
 NOTIFICATION_CHANNEL,
 name,
 NotificationManager.IMPORTANCE_HIGH);
 channel.enableVibration(true);
 channel.enableLights(true);

 NotificationManager notificationManager =
 getSystemService(NotificationManager.class);
 notificationManager.createNotificationChannel(channel);
 }
}

 4. Create a Notification icon named notification_icon and store it in your res/drawable
folder by selecting the New ➪ Vector Asset menu item in Android Studio. For the icon,
select the vibration material icon. Use the default 24 x 24 dp (which is the correct size for
Notification icons). Edit the resulting notification_icon.xml to change the fillColor to
#FFF (white):

<vector
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:width="24dp"
 android:height="24dp"
 android:viewportWidth="24.0"
 android:viewportHeight="24.0">
 <path
 android:fillColor="#FFF"
 android:pathData="M0,15h2L2,9L0,9v6z
 M3,17h2L5,7L3,7v10zM22,9v6h2L24,9h-2z
 M19,17h2L21,7h-2v10z
 M16.5,3h-9C6.67,3 6,3.67 6,4.5v15
 c0,0.83 0.67,1.5 1.5,1.5h9
 c0.83,0 1.5,-0.67 1.5,-1.5v-15
 c0,-0.83 -0.67,-1.5 -1.5,-1.5z
 M16,19L8,19L8,5h8v14z"/>
</vector>

 5. Create a new broadcastNotification method that will call createNotificationChannel,
then create the Notification Builder instance using an Earthquake object:

private void broadcastNotification(Earthquake earthquake) {
 createNotificationChannel();

 Intent startActivityIntent = new Intent(this,
 EarthquakeMainActivity.class);

416 ❘ CHAPTER 11 Working in the Background

 PendingIntent launchIntent = PendingIntent.getActivity(this, 0,
 startActivityIntent, PendingIntent.FLAG_UPDATE_CURRENT);

 final NotificationCompat.Builder earthquakeNotificationBuilder
 = new NotificationCompat.Builder(this, NOTIFICATION_CHANNEL);

 earthquakeNotificationBuilder
 .setSmallIcon(R.drawable.notification_icon)
 .setColor(ContextCompat.getColor(this, R.color.colorPrimary))
 .setDefaults(NotificationCompat.DEFAULT_ALL)
 .setVisibility(NotificationCompat.VISIBILITY_PUBLIC)
 .setContentIntent(launchIntent)
 .setAutoCancel(true)
 .setShowWhen(true);

 earthquakeNotificationBuilder
 .setWhen(earthquake.getDate().getTime())
 .setContentTitle("M:" + earthquake.getMagnitude())
 .setContentText(earthquake.getDetails())
 .setStyle(new NotificationCompat.BigTextStyle()
 .bigText(earthquake.getDetails()));

 NotificationManagerCompat notificationManager
 = NotificationManagerCompat.from(this);

 notificationManager.notify(NOTIFICATION_ID,
 earthquakeNotificationBuilder.build());
}

 6. To avoid interrupting users with Notification for earthquakes that have already been recived,
we’ll need to compare any newly parsed earthquakes with those already in the database.

 6.1 In the EarthquakeDAO class, create an loadAllEarthquakesBlocking method that
will be used to synchronously return all Earthquakes when called from the background
thread that onRunJob runs on:

@Query("SELECT * FROM earthquake ORDER BY mDate DESC")
List<Earthquake> loadAllEarthquakesBlocking();

 6.2 Return to the EarthquakeUpdateJobService class. Create a findLargestNewEarthquake
method to compare the two lists of Earthquakes:

private Earthquake findLargestNewEarthquake(
 List<Earthquake> newEarthquakes) {

 List<Earthquake> earthquakes = EarthquakeDatabaseAccessor
 .getInstance(getApplicationContext())
 .earthquakeDAO()
 .loadAllEarthquakesBlocking();

 Earthquake largestNewEarthquake = null;

 for (Earthquake earthquake : newEarthquakes) {
 if (earthquakes.contains(earthquake)) {
 continue;
 }

Using Firebase Cloud Messaging ❘ 417

 if (largestNewEarthquake == null
 || earthquake.getMagnitude() >
 largestNewEarthquake.getMagnitude()) {
 largestNewEarthquake = earthquake;
 }
 }
 return largestNewEarthquake;
}

 7. Update the onRunJob method to broadcast a new Notification when the periodic job finds
a new earthquake that is larger than the user’s specified minimum magnitude. Add a call to
broadcastNotification immediately before the call to insert the new Earthquakes into the
database:

public int onRunJob(final JobParameters job) {
 [... Existing onRunJob ...]

 if (job.getTag().equals(PERIODIC_JOB_TAG)) {
 Earthquake largestNewEarthquake
 = findLargestNewEarthquake(earthquakes);

 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(this);
 int minimumMagnitude = Integer.parseInt(
 prefs.getString(PreferencesActivity.PREF_MIN_MAG, "3"));

 if (largestNewEarthquake != null
 && largestNewEarthquake.getMagnitude() >= minimumMagnitude) {
 // Trigger a Notification
 broadcastNotification(quake);
 }
 }

 [... Existing onRunJob ...]
}

USING FIREBASE CLOUD MESSAGING

Firebase Cloud Messaging (FCM) can be used to “push” Notifications or data messages, directly
from the cloud, or your server, to your app running on multiple devices. Using FCM you can
remotely deliver simple Notifications, notify your app of updates to data on the server, or send data
directly to your app.

Using FCM allows you to significantly lower the battery impact associated with synchronizing updates
to your app (such as receiving new e-mail or changes to your calendar). This is an alternative to client-
side polling, where your app wakes the device to check for server updates. Using a push model for
updates ensures your app only wakes the device for updates when it knows they are available.

This approach also ensures more timely delivery of time-sensitive server-side messages, such as new
chat messages, which users expect to be shown on their devices immediately.

Your apps can receive FCM messages even when they’re not running, and while the device is asleep.
FCM messages can display Notifications directly, or wake your app remotely, allowing them to

418 ❘ CHAPTER 11 Working in the Background

respond by displaying a Notification of their own, updating their UI based on the received message
data, or by starting a background job that performs a synchronization with the updated server data.

Before you can use Firebase Cloud Messaging in your app, the API must first be added as a Gradle
dependency. Note that the version number in the following code snippet should be replaced with the
latest version of Firebase Cloud Messaging:

dependencies {
 implementation 'com.google.firebase:firebase-messaging:17.0.0'
}

NOTE Firebase Cloud Messaging replaces the previously released “Google
Cloud Messaging” (GCM) API. In this chapter we will describe features avail-
able only with FCM, and recommend that if you’re using GCM, you upgrade to
FCM as soon as possible.

FCM is distributed as part of the Firebase SDK, meaning that it can be updated
more frequently than the Android platform. We recommend that you always
use the latest Firebase SDK; the latest version and documentation is available at
firebase.google.com/docs/cloud-messaging/android/client.

Triggering Notifications Remotely with Firebase Notifications
One of the most powerful features of Firebase Cloud Messaging is the Firebase Notifications API.

Built on top of Firebase Cloud Messaging, Firebase Notifications can be sent directly to your app
from the Firebase Console at console.firebase.google.com (shown in Figure 11-9), without
needing to write any server-side, or client-side, code.

FIGURE 11-9

Using the console, you can send Firebase Notifications to all of your users, a subset based on properties
such as the app version, or an individual device—or group of devices—belonging to a particular user.

When creating a Firebase Notification, you can specify the message text that’s displayed as the
Notification’s content title, the content text using the Notification title field, and a delivery time, as
shown in Figure 11-10.

Using Firebase Cloud Messaging ❘ 419

FIGURE 11-10

420 ❘ CHAPTER 11 Working in the Background

Listing 11-27 shows the meta-data properties you should add to your application manifest to
indicate the small icon, Notification color, and the Notification Channel that should be used for
displaying received Firebase Notifications.

LISTING 11-27: Specifying Firebase Notification metadata

<meta-data
 android:name="com.google.firebase.messaging.default_notification_icon"
 android:value="@drawable/ic_notification" />
<meta-data
 android:name="com.google.firebase.messaging.default_notification_color"
 android:value="@color/colorPrimary" />
<meta-data
 android:name="com.google.firebase.messaging.default_notification_channel_id"
 android:value="@string/default_notification_channel" />

The content Intent, triggered if a user touches the Notification, is always set to your main launcher
Activity.

When you send a Firebase Notification from the console, you can optionally enable sound, which
will add the default Notification Ringtone to the Notification. Firebase Notifications default to high
priority, so if your message is not time critical, consider reducing the priority to normal.

Sending Firebase Notifications to a Topic
Firebase Notifications can also be sent to devices that have subscribed to a specific topic. You can
define these topics within your app, providing the ability to segment your users based on arbitrary
business logic, app status, or explicit user selection.

Within your application, you can subscribe to a particular topic using the subscribeToTopic
method, passing in a string representing a topic name to an instance of the FirebaseMessaging
class:

FirebaseMessaging.getInstance()
 .subscribeToTopic("imminent_missile_attack");

Unsubscribing to a topic is similar, using the corresponding unsubscribeFromTopic method:

FirebaseMessaging.getInstance()
 .unsubscribeFromTopic("imminent_missile_attack");

Once an application has subscribed to a new topic, it will be available within the Firebase Console,
and can be used as a target for new Firebase Notifications.

Receiving Firebase Notifications When in the Foreground
Firebase Notifications are designed to display Notifications, and like the Notifications described ear-
lier in this chapter, they are displayed only when no Activities for your app are active.

To receive Firebase Notifications while your app is in the foreground, you must create a new
FirebaseMessagingService, overriding the onMessageReceived handler, as shown in Listing 11-28.

Using Firebase Cloud Messaging ❘ 421

LISTING 11-28: Handling the Firebase Notification callback

public class MyFirebaseMessagingService
 extends FirebaseMessagingService {

 @Override
 public void onMessageReceived(RemoteMessage message) {
 RemoteMessage.Notification notification = message.getNotification();

 if (notification != null) {
 String title = notification.getTitle();
 String body = notification.getBody();

 // Post your own notification using NotificationCompat.Builder
 // or send the information to your UI
 }
 }
}

Within this callback you can extract the received Notification details and either create a
Notification, or update your current Activity to display the message inline.

Once created, be sure to register the new Service in your manifest, including an Intent Filter for
com.google.firebase.MESSAGING_EVENT as shown in Listing 11-29.

LISTING 11-29: Registering the FirebaseMessagingService

<service android:name=".MyFirebaseMessagingService>
 <intent-filter>
 <action android:name="com.google.firebase.MESSAGING_EVENT" />
 </intent-filter>
</service>

Receiving Data with Firebase Cloud Messaging
In addition to the Notifications described in the previous sections, Firebase Cloud Messaging (FCM)
can also be used to send your app data in the form of key/value pairs.

The simplest case is by attaching custom data to a Firebase Notification, which will be received in
the extras of the content Intent if the user selects your Notification, as shown in Listing 11-30.

LISTING 11-30: Receiving data from a Firebase Notification

Intent intent = getIntent();
if (intent != null) {
 String value = intent.getStringExtra("your_key");
 // Change your behavior based on the value such as starting
 // the appropriate deep link activity
}

422 ❘ CHAPTER 11 Working in the Background

The same data is available from the onMessageReceived callback within your Firebase Messaging
Service implementing using the getData method, as shown in Listing 11-31.

LISTING 11-31: Receiving data using the Firebase Messaging Service

@Override
public void onMessageReceived(RemoteMessage message) {
 Map<String,String> data = message.getData();

 if (data != null) {
 String value = data.get("your_key");

 // Post your own Notification using NotificationCompat.Builder
 // or send the information to your UI
 }
}

When building your own server or using the Firebase Admin API, it is possible to send a message
that does not contain a Notification and only contains data. In these cases, every message results in
a callback to onMessageReceived, whether your app is in the foreground or background, giving you
complete control over your app’s behavior and allowing you to use the full Notification API or trig-
ger additional background processing.

NOTE More information on building a Firebase Cloud Messaging Server can
be found at firebase.google.com/docs/cloud-messaging/server, and more
information about the Firebase Admin API can be found at firebase.google
.com/docs/cloud-messaging/admin.

USING ALARMS

Alarms are a means of firing Intents at predetermined times. Unlike Handlers, alarms operate out-
side the scope of your application, so you can use them to trigger application events or actions even
after your application has been closed.

Unlike the Job Scheduler, Firebase Job Dispatcher, and Work Manager, alarms can be set to trigger
at exact times, making them particularly suitable for calendar events or alarm clocks.

NOTE For timing operations that occur only during the lifetime of your applica-
tions, using the Handler class in combination with postDelayed and Threads is
a better approach than using alarms, as this allows Android better control over
system resources. Alarms provide a mechanism to reduce the lifetime of your
applications by moving scheduled events out of their control.

Using Alarms ❘ 423

Alarms remain active even when your app’s process is killed; however, all alarms are canceled when-
ever the device is rebooted and must be manually re-created.

Alarm operations are handled through the AlarmManager, a system Service accessed via get-
SystemService, as follows:

AlarmManager alarmManager =
 (AlarmManager) getSystemService(Context.ALARM_SERVICE);

Creating, Setting, and Canceling Alarms
To create a new alarm that fires at a specific time, use the setExactAndAllowWhileIdle method
and specify an alarm type of RTC_WAKEUP, a trigger time, and a Pending Intent to fire when the
alarm triggers. If the trigger time you specify for the alarm occurs in the past, the alarm will be trig-
gered immediately.

Listing 11-32 shows the Alarm-creation process.

LISTING 11-32: Creating an alarm that triggers at the top of the hour

// Get a reference to the Alarm Manager
AlarmManager alarmManager =
 (AlarmManager)getSystemService(Context.ALARM_SERVICE);

// Find the trigger time
Calendar calendar = Calendar.getInstance();
calendar.set(Calendar.MINUTE, 0);
calendar.set(Calendar.SECOND, 0);
calendar.set(Calendar.MILLISECOND, 0);
calendar.add(Calendar.HOUR, 1);
long time = calendar.getTimeInMillis();

// Create a Pending Intent that will broadcast and action
String ALARM_ACTION = "ALARM_ACTION";
Intent intentToFire = new Intent(ALARM_ACTION);
PendingIntent alarmIntent = PendingIntent.getBroadcast(this, 0,
 intentToFire, 0);

// Set the alarm
alarmManager.setExactAndAllowWhileIdle(AlarmManager.RTC_WAKEUP,
 time, alarmIntent);

When the alarm goes off, the Pending Intent you specified will be broadcast. Setting a second alarm
using the same Pending Intent replaces the previous alarm.

To cancel an alarm, call cancel on the Alarm Manager, passing in the Pending Intent you no longer
want to trigger, as shown in the Listing 11-33.

424 ❘ CHAPTER 11 Working in the Background

LISTING 11-33: Canceling an Alarm

alarmManager.cancel(alarmIntent);

If you have multiple exact alarms in your app (say, multiple upcoming alarm clocks), it’s best prac-
tice to schedule only the next alarm. When your Broadcast Receiver fires, it should respond to the
triggered alarm, and also set the next one. This ensures the system only needs to manage the mini-
mal number of alarms at any given time.

Setting an Alarm Clock
Alarms, despite the name, are not user visible; only alarms set via setAlarmClock—as seen in
Listing 11-34—are shown to the user, typically within the Clock app.

LISTING 11-34: Setting an Alarm Clock

// Create a Pending Intent that can be used to show or edit the alarm clock
// when the alarm clock icon is touched
Intent alarmClockDetails = new Intent(this, AlarmClockActivity.class);
PendingIntent showIntent = PendingIntent.getActivity(this, 0,
 alarmClockDetails, 0);

// Set the alarm clock, which will fire the alarmIntent at the set time
alarmManager.setAlarmClock(
 new AlarmManager.AlarmClockInfo(time, showIntent),
 alarmIntent);

You can retrieve the next scheduled alarm clock using the Alarm Manager’s getNextAlarmClock
method.

The system will exit the low-power doze-mode several minutes before an alarm clock fires, ensuring
that apps have an opportunity to fetch fresh data before the users pick up their device.

INTRODUCING SERVICES

While short amounts of background work are best accomplished with a Broadcast Receiver, and the
Job Service (or Work Manager) is preferred for batching background work, there are cases where
your app will need to continue running well beyond the lifecycle of a particular Activity. These
types of longer running operations that happen in the background are the focus for Services.

Most Services have their life cycle tied to other components; these are called bound Services. Many
of the Services introduced in this book are extensions of bound Services, such as the JobService
introduced earlier in this chapter. The Job Service is bound to the system, and unbound when your
jobs have finished processing, allowing it to be terminated.

Introducing Services ❘ 425

Services that have an unbounded life cycle may remain active when no Activity is visible; these
are called “started Services.” This type of Service should be started as a foreground Service which
ensures that they are given a high priority by the system (to avoid being terminated due to low
memory) and that the user is aware of the background work via a required notification.

WARNING Prior to Android 8.0 Oreo (API Level 26), started Services could be
called from an idle/background app—and could continue running indefinitely.
Android 8.0 introduced new restrictions to limit started Services, specifically
limiting the ability to start Services to foreground apps, foreground Services, and
to limited window of several minutes after an app moves to the background or
after receiving a high-priority Firebase Cloud Messaging (FCM) message, receiv-
ing a broadcast, or executing a Pending Intent from a notification.

For most use-cases, you should avoid using Services if an alternative exists—in
particular the Job Scheduler is considered a best-practice alternative for schedul-
ing operations to be performed while your app is in the background.

 Using Bound Services
Services can be bound to other components, with the latter maintaining a reference to an instance
of the former, enabling you to make method calls on the running Service as you would on any other
instantiated class.

Binding is useful for components that would benefit from a detailed interface with a Service, or
where the Service lifetime is directly tied to its client component(s). This strong coupling is often
used as the basis for a higher-level API, such as the JobService, that takes advantage of the direct
communication available between two bound components. This same capability can be used within
your own app to provide a detailed interface between two components, such as a Service and your
Activity.

A bound Service has a life cycle that is intrinsically linked to one or more ServiceConnection
objects representing application components to which it is bound; a bound Service will live until all
of its clients unbind from it.

To support binding for a Service, implement the onBind method, returning the current instance of
the Service being bound, as shown in Listing 11-35.

LISTING 11-35: Implementing a bound Service

public class MyBoundService extends Service {
 private final IBinder binder = new MyBinder();

 @Override
 public IBinder onBind(Intent intent) {
 return binder;
 }

continues

426 ❘ CHAPTER 11 Working in the Background

 public class MyBinder extends Binder {
 MyBoundService getService() {
 return MyBoundService.this;
 }
 }
}

The connection between the Service and another component is represented as a Service-
Connection.

To bind a Service to another application component, you need to implement a new Service-
Connection, overriding the onServiceConnected and onServiceDisconnected methods to get a
reference to the Service instance after a connection has been established, as shown in
Listing 11-36.

LISTING 11-36: Creating a Service Connection for Service binding

// Reference to the service
private MyBoundService serviceRef;

// Handles the connection between the service and activity
private ServiceConnection mConnection = new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder service) {
 // Called when the connection is made.
 serviceRef = ((MyBoundService.MyBinder)service).getService();
 }

 public void onServiceDisconnected(ComponentName className) {
 // Received when the service unexpectedly disconnects.
 serviceRef = null;
 }
};

To perform the binding, call bindService within your Activity, passing in an explicit Intent that
selects the Service to bind to, and an instance of a ServiceConnection implementation.

You can also specify a number of binding flags, as shown in Listing 11-37. In this example you
specify that the target Service should be created when the binding is initiated. Generally you do this
in the onCreate of your Activity and the equivalent unbindService is done in onDestroy.

LISTING 11-37: Binding to a Service

// Bind to the service
Intent bindIntent = new Intent(MyActivity.this, MyBoundService.class);
bindService(bindIntent, mConnection, Context.BIND_AUTO_CREATE);

LISTING 11-35 (continued)

Introducing Services ❘ 427

The last parameter to bindService is a flag that can be used and combined when binding a Service
to an application:

 ➤ BIND_ADJUST_WITH_ACTIVITY—Causes the Service’s priority to be adjusted based on the
relative importance of the Activity to which it is bound. As a result, the run time will increase
the priority of the Service when the Activity is in the foreground.

 ➤ BIND_ABOVE_CLIENT and BIND_IMPORTANT—Specify that the bound Service is so important
to the binding client that it should become a foreground process when the client is in the
foreground—in the case of BIND_ABOVE_CLIENT, you are specifying that the run time should
terminate the Activity before the bound Service in cases of low memory.

 ➤ BIND_NOT_FOREGROUND—Ensures the bound Service is never brought to foreground priority.
By default, the act of binding a Service increases its relative priority.

 ➤ BIND_WAIVE_PRIORITY—Indicates that binding the specified Service shouldn’t alter its
priority.

When the Service has been bound, all its public methods and properties are available through the
serviceBinder object obtained from the onServiceConnected handler.

Android applications do not (normally) share memory, but in some cases your application may want
to interact with (and bind to) Services running in different application processes.

You can communicate with a Service running in a different process by using Android Interface
Definition Language (AIDL). AIDL defines the Service’s interface in terms of OS-level primitives,
allowing Android to transmit objects across process boundaries. AIDL definitions are described at
developer.android.com/guide/components/aidl.html.

Creating a Started Service
A started Service can be started and stopped separate from any other application components.
While the life cycle of a bound Service is explicitly tied to the components to which it’s bound, the
life cycle of a started Service must be explicitly managed.

Without intervention, a started Service may continue to take up system resources for several min-
utes, even if it is not actively doing any work, and its high priority will impact the system’s efforts to
terminate it (and the application that contains it.)

NOTE Before Android 8.0 Oreo (API Level 26), Services may continue run-
ning in the background indefinitely, consuming device resources and providing
a worse user experience. Android 8.0 modified this behavior to stop running
Services when their app has been in the background after several minutes. While
this new behavior mitigates the impact of poorly managed background Services,
it’s critically important that you take steps to properly manage your Services
regardless of the target platform.

428 ❘ CHAPTER 11 Working in the Background

Started Services should be used sparingly, typically in cases where they provide user interactiv-
ity that happens without a visible user interface—such that it should continue running even after
the user moves your app’s Activities to the background. Wherever possible, it’s best practice
to use higher-level APIs that use bound Services—such as the Job Scheduler or Firebase Cloud
Messaging—that take advantage of the Service architecture without requiring you to manually man-
age Service life cycles.

The most common use for creating your own started Service is to create foreground Services.
Foreground Services run at the same priority as an active foreground Activity, ensuring that it will
almost certainly not be removed due to low memory. This is useful if you’re creating an application
that interacts with the user without a UI always visible—such as a music player or turn-by-turn
navigation.

Android also allows you to construct Services that are both bound and started. A common example
is in audio playback, as described in Chapter 17, “Audio, Video, and Using the Camera.”

Creating a Service
Every Service class must implement the onBind method, as shown in Listing 11-38. In the case of
a started Service, this method can return null, indicating that no caller can bind to the Service.

LISTING 11-38: A skeleton Service class

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class MyService extends Service {
 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }
}

To ensure your Service can be started and stopped only by your own application, add a permission
attribute to its Service node in your application manifest:

<service android:enabled="true"
 android:name=".MyService"
 android:permission="com.paad.MY_SERVICE_PERMISSION"/>

This will require any third-party applications to include a uses-permission in their manifests in
order to access your Service. You learn more about creating and using permissions in Chapter 20,
“Advanced Android Development.”

Starting and Stopping Services
To start a Service, call startService. Services require that you always use an explicit Intent by
including the class to start. If the Service requires permissions that your application does not have,
the call to startService will throw a SecurityException.

Introducing Services ❘ 429

WARNING On Android 8.0 Oreo (API Level 26) and higher devices, calling
startService while your app is in the background (typically from a Broadcast
Receiver or a Pending Intent) will result in an IllegalStateException.
You must instead use startForegroundService and call startForeground
within the Service, within 5 seconds, to start a foreground Service while your
app is in the background. See the “Creating Foreground Services” section for
more details on foreground Services.

Any information added to the Intent such as is demonstrated in Listing 11-39 will be available in the
Service’s onStartCommand method.

LISTING 11-39: Starting a Service

// Explicitly start My Service
Intent intent = new Intent(this, MyService.class);
intent.setAction("Upload");
intent.putExtra("TRACK_NAME", "Best of Chet Haase");
startService(intent);

To stop a Service, call stopService, using an Intent that defines the Service to stop (in the same
way you specified which Service to start), as shown in Listing 11-40.

LISTING 11-40: Stopping a Service

// Stop a service explicitly.
stopService(new Intent(this, MyService.class));

Calls to startService do not nest, so a single call to stopService will terminate the running
Service it matches, no matter how many times startService has been called.

Since Android 8.0, any non-foreground started Services will be automatically stopped by the system
several minutes after your app goes into the background just as if you had called stopService. This
prevents started Services from adversely affecting system performance long after the user puts the
app in the background. If your Service needs to continue while your Activity is in the background,
you will need to start a foreground Service as described later in this chapter.

Controlling Service Restart Behavior
The onStartCommand handler is called whenever a Service is started using startService, so it may
be executed several times within a Service’s lifetime. You should ensure that your Service accounts
for this.

You should override the onStartCommand event handler to execute the task (or begin the ongoing
operation) encapsulated by your Service. You can also specify your Service’s restart behavior within
this handler.

430 ❘ CHAPTER 11 Working in the Background

Like all components, Services are launched on the main Application Thread, meaning that any pro-
cessing done in the onStartCommand handler will happen on the UI Thread. The standard pattern
for implementing a Service is to create and run a new Thread or Async Task (as described earlier in
this chapter) from onStartCommand to perform the processing in the background, and then stop the
Service when it’s been completed.

Listing 11-41 extends the skeleton code shown in Listing 11-38 by overriding the onStartCommand
handler. Note that it returns a value that controls how the system will respond if the Service is
restarted should it be killed by the run time before completing.

LISTING 11-41: Overriding Service restart behavior

@Override
public int onStartCommand(Intent intent, int flags, int startId) {
 // TODO Start your work on a background thread
 return START_STICKY;
}

This pattern lets onStartCommand complete quickly, and it enables you to control the restart behav-
ior by returning one of the following Service constants:

 ➤ START_STICKY—This is the standard behavior and indicates that the system should call
onStartCommand any time your Service restarts after being terminated by the run time. Note
that on a restart the Intent parameter passed in to onStartCommand will be null.

This mode typically is used for Services that handle their own states and that are explicitly
started and stopped as required (via startService and stopService).

 ➤ START_NOT_STICKY—This mode is used for Services that are started to process specific
actions or commands. Typically, they will use stopSelf to terminate once that command has
been completed.

Following termination by the run time, Services set to this mode restart only if there are
pending start calls. If no startService calls have been made since the Service was termi-
nated, the Service will be stopped without a call being made to onStartCommand.

 ➤ START_REDELIVER_INTENT—In some circumstances you will want to ensure that the com-
mands you have requested from your Service are completed—for example, when timeliness is
important.

This mode is a combination of the first two; if the Service is terminated by the run time, it
will restart only if there are pending start calls or the process was killed prior to its calling
stopSelf. In the latter case, a call to onStartCommand will be made, passing in the initial
Intent whose processing did not properly complete.

Note that each mode requires you to explicitly stop your Service, through a call to stopService or
stopSelf, when your processing has completed. Both methods are discussed in more detail later in
this chapter.

Introducing Services ❘ 431

The restart mode you specify in your onStartCommand return value will affect the parameter val-
ues passed in to it on subsequent calls. Initially, the Intent will be the parameter you passed in to
startService to start your Service. After system-based restarts it will be either null, in the case of
START_STICKY mode, or the original Intent if the mode is set to START_REDELIVER_INTENT.

You can use the flag parameter to discover how the Service was started. In particular, you deter-
mine if either of the following cases is true:

 ➤ START_FLAG_REDELIVERY—Indicates that the Intent parameter is a redelivery caused by the
system run time’s having terminated the Service before it was explicitly stopped by a call to
stopSelf.

 ➤ START_FLAG_RETRY—Indicates that the Service has been restarted after an abnormal termina-
tion. It is passed in when the Service was previously set to START_STICKY.

Self-Terminating Services
By explicitly stopping the Service when your processing is complete, you allow the system to recover
the resources otherwise required to keep it running.

When your Service has completed the actions or processing for which it was started, you should ter-
minate it by making a call to stopSelf. You can call stopSelf either without a parameter to force
an immediate stop, or by passing in a startId value to ensure processing has been completed for
each instance of startService called so far.

Creating Foreground Services
In cases where your Service is interacting directly with the user, it may be appropriate to lift its pri-
ority to the equivalent of a foreground Activity. You can do this by setting your Service to run in the
foreground by calling its startForeground method.

Because foreground Services are expected to be interacting directly with the user (for example by
playing music), calls to startForeground must specify a Notification that will be displayed for as
long as your Service is running in the foreground.

NOTE Moving a Service to the foreground effectively makes it impossible for the
run time to kill it in order to free resources. Having multiple unkillable Services
running simultaneously can make it extremely difficult for the system to recover
from resource-starved situations.

Use this technique only if it is necessary for your Service to function properly,
and even then keep the Service in the foreground only as long as absolutely
necessary.

432 ❘ CHAPTER 11 Working in the Background

As the Notification cannot be manually dismissed by the user while your service is in the fore-
ground, it’s good practice to provide an action within the Notification that lets users cancel or stop
the ongoing operation. It’s also best practice to have the content Intent bring the users to an Activity
where they can manage or cancel the ongoing Service.

When your Service no longer requires foreground priority, you can move it back to the back-
ground, and optionally remove the ongoing Notification, using the stopForeground method. The
Notification will be canceled automatically if your Service stops or is terminated.

Implementing the Android
Design Philosophy

WHAT’S IN THIS CHAPTER?

 ➤ Designing user interfaces optimized for every screen

 ➤ Creating scalable image assets in XML

 ➤ Understanding the principles of material design

 ➤ Using paper and ink as metaphors in your UI designs

 ➤ Guiding user attention through color and keylines

 ➤ Providing continuity through motion

 ➤ Customizing the app bar

 ➤ Displaying grouped content with cards

 ➤ Using the Floating Action Button

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The code downloads for this chapter are found at www.wrox.com. The code for this chapter is
divided into the following major examples:

 ➤ Snippets_ch12.zip

 ➤ Earthquake_ch12.zip

12

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

434 ❘ CHAPTER 12 ImplementIng the AndroId desIgn phIlosophy

INTRODUCING THE ANDROID DESIGN PHILOSOPHY

In Chapter 5, “Building User Interfaces,” you learned the basics of creating user interfaces (UIs) in
Android with an introduction to layouts and Views. These functional skills are the basis for build-
ing the UI for all apps, but creating a successful Android app requires a deeper understanding of
Android’s design principles, and the things to consider when building your UI.

This chapter introduces you to some best practices and techniques to create user experiences that are
compelling and aesthetically pleasing on a diverse range of devices, and to an equally diverse range
of users.

You are introduced to the best practices for creating resolution- and density-independent UIs, and
how to use Drawables to create scalable image assets—including Vector Drawables.

Next you dive into the material design philosophy, which provides the foundation for all modern
Android visual design. You learn how to apply the principles of material design to your app, includ-
ing how to create screen elements that reflect physical sheets of paper, how to guide users through
color and keylines, and how motion can provide continuity that will aid users’ understanding.

Finally, you learn how to use three common material design UI elements: The app bar, cards—to
visually group content and actions, and the Floating Action Buttons (FABs)—a high-profile circular
button used to promote a single important action within your UI.

NOTE As a design philosophy material design is constantly evolving. To see the
latest, complete details around material design—as well as further guidance for
designing and implementing your UIs consistent with this philosophy, refer to
the guidelines on the material design site at material.io/guidelines.

DESIGNING FOR EVERY SCREEN

The first four Android handsets all featured identical 3.2" HVGA screens; making UI design rela-
tively simple. Since then, tens of thousands of different Android devices have been created, resulting
in thousands of different combinations of screen sizes and pixel densities—ranging from wearable
devices, to phones, tablets, and even televisions. This has helped make Android incredibly popular
with consumers, but creates a challenge for designers.

To provide a great experience for users no matter what Android device they own, it’s important to
create your UIs knowing that your applications can run on a broad variety of resolutions and physi-
cal screen sizes. It’s impractical to attempt to create custom UI layouts for every possible variation,
so in practice this means designing and building application interfaces with the expectation that
they be capable of being used on an infinitely varied set of devices.

That means supplying image assets that can be scaled where possible, and in a variety of pixel den-
sities where not. It means creating layouts that can scale within a known range of resolutions, and
defining multiple layouts optimized for a variety of different size ranges and interaction models.

Designing for Every Screen ❘ 435

The following sections describe the range of screens you need to consider, and how to support them,
before detailing some best practices for ensuring that your applications are resolution- and density-
independent—and optimized for a range of different screen sizes and layouts.

NOTE The Android Developer site includes some excellent tips for support-
ing multiple screen types. You can find this documentation at d.android.com/
guide/practices/screens_support.html.

Resolution Independence
A display’s pixel density is calculated as a function of the physical screen size and resolution, refer-
ring to the number of physical pixels on a display relative to the physical size of that display. It’s
typically measured in dots per inch (dpi).

Using Density-Independent Pixels
As a result of the variations in screen size and resolution for Android devices, the same number of
pixels can correspond to different physical sizes on different devices based on the screen’s DPI.

As you learned in Chapter 5, “Building User Interfaces,” this makes it impossible to create consis-
tent layouts by specifying pixels. Instead, Android uses density-independent pixels (dp) to specify
screen dimensions that scale to appear the same on screens of the same physical dimensions but with
different pixel densities.

In practical terms, one density-independent pixel is equivalent to one pixel on a 160dpi screen. For
example, a line specified as 2dp wide appears as 3 pixels on a display with 240dpi (or 7 pixels on a
Pixel XL).

When specifying your user interface, you should always use density-independent pixels, avoiding
specifying any layout dimensions, View sizes, or Drawable dimensions using raw pixel values.

In addition to dp units, Android also uses a scalable pixel (sp) for the special case of font sizes.
Scalable pixels use the same base unit as density-independent pixels but can be further scaled based
on the user’s preferred text size.

Resource Qualifiers for Pixel Density
Chapter 4, “Understanding the Android Manifest, Gradle Build Files, and Externalizing Resources”
introduced you to the Android resource framework, which uses a parallel directory structure for
including resources such as Drawables within your app.

The res/drawable directory is suitable for graphics that work on all pixel densities such as Vector
Drawables and other scalable graphic assets detailed later in this chapter. It is strongly recom-
mended that you use these types of graphics whenever possible as they will automatically scale to all
pixel densities, without the requirement that you provide additional assets. This helps reduce your
app’s size, as well as improving forward compatibility.

436 ❘ CHAPTER 12 ImplementIng the AndroId desIgn phIlosophy

There will be circumstances where scalable graphics can’t be used, and you must include bitmap
images in your app. Scaling bitmap images can result in either lost detail (when scaling down) or
pixilation (when scaling up). To ensure that your UI is crisp, clear, and devoid of artifacts, you can
create and include image assets optimized for each pixel density category, including:

 ➤ res/drawable-mdpi—Medium-density resources for screens approximately 160pi

 ➤ res/drawable-hdpi—High-density resources for screens approximately 240dpi

 ➤ res/drawable-xhdpi—Extra-high density resources for screens approximately 320dpi

 ➤ res/drawable-xxhdpi—Extra-extra-high density resources for screens approximately
480dpi

 ➤ res/drawable-xxxhdpi—Extra-extra-extra-high density resources for screens approxi-
mately 640dpi

 ➤ res/drawable-nodpi—Used for resources that must not be scaled regardless of the host
screen’s density

Keep in mind that including multiple sizes of bitmaps does have a cost in the form of an increased
size of your application. In addition, while these pixel density buckets give you a rough set of densi-
ties to target, there are devices that exist between these generic buckets; where a specific resolution
asset is unavailable, Android will automatically scale your bitmaps for these devices, preferring to
scale down.

Supporting and Optimizing for Different Screen Sizes
Android devices come in countless shapes and sizes (though so far mainly quadrilaterals and circles),
so when designing your UI it’s important to ensure that your layouts not only support different
screen sizes, orientations, and aspect ratios, but also that they’re accordingly optimized.

It’s neither practical nor desirable to create a layout specific to each possible screen configuration;
instead, best practice is to take a two-phased approach:

 ➤ Ensure that all your layouts are capable of scaling within a reasonable set of bounds.

 ➤ Create a set of alternative layouts whose bounds overlap, such that all possible screen con-
figurations are covered.

This approach is similar to that taken by most websites and desktop applications. After a fling with
fixed-width pages in the ’90s, most websites now scale to fit the available space on desktop browsers
and offer an alternative CSS definition to provide an optimized layout based on the available win-
dow size.

The same is true for mobile devices. After those first four devices, developers were forced to use the
same approach of flexible layouts. We now create optimized layouts for different screen size ranges,
each capable of scaling to account for variation within that range.

Designing for Every Screen ❘ 437

Creating Scalable Layouts
The layouts provided by the framework were described in detail in Chapter 5, “Building User
Interfaces.” They are designed to support the implementation of UIs that scale to fit the available
space. In all cases, you should avoid defining the location of your layout elements in absolute terms.

In most cases the Constraint Layout offers the most powerful and flexible alternative, supporting
complex layouts that would otherwise require you to nest layouts.

For very simple UIs, the Linear Layout can be used to represent a simple column or row that fills
the available width or height of the screen, respectively, whereas the Relative Layout can be used to
define the position of each UI element relative to the parent Activity and other elements.

When defining the height or width of your scalable UI elements (such as Buttons and Text Views) it’s
good practice to avoid providing specific dimensions. Instead, you can define the height and width
of Views using wrap_content or match_parent attributes, as appropriate:

<Button
 android:id="@+id/button"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/buttonText"
/>

The wrap_content flag enables the View to define its size based on the amount of space potentially
available to it, whereas the match_parent flag enables the element to expand as necessary to fill the
available space.

Deciding which screen element should expand (or contract) when the screen size changes is one of
the most important factors in optimizing your layouts for variable screen dimensions.

Optimizing Layouts for Different Screen Types
In addition to providing layouts that scale, you should consider creating alternative layout defini-
tions optimized for different screen sizes.

There is a significant difference in screen space available on a 3" QVGA smart phone display com-
pared to a 4K 10" tablet. Similarly, and particularly for devices with significant aspect ratios, a lay-
out that works well viewed in landscape mode might be unsuitable when the device is rotated into
portrait.

Creating a layout that scales to accommodate the space available is a good first step; it’s also good
practice to consider ways that you can take advantage of the extra space (or consider the effect of
reduced space) to create a better user experience.

With the introduction of multi-window support in Android 7.0 Nougat (API Level 24), the screen
size available to your app might be only a fraction of the total screen size. This, combined with a
spectrum of devices that include large phones and small tablets, makes it best practice to optimize
your layouts based on the available space, rather than designing for a particular category of device.

438 ❘ CHAPTER 12 ImplementIng the AndroId desIgn phIlosophy

The Android resource system allows you to build alternate layouts and provide alternate dimen-
sions. Your default layouts and dimensions should be placed in the res/layout and res/values
resource directories—these will be used when there is the smallest amount of screen-space available.
You can then provide alternate layouts and dimensions by using additional resource qualifiers for
larger screens.

For most apps, the available width is going to be the most influential factor affecting your layout
design—a single column of elements might look fine on a phone in portrait, but becomes increas-
ingly sub-optimal as the width increases, first through a rotation into landscape, and further still on
a larger tablet device.

This leads to a natural system of “breaking points”—specific widths at which scaling stops being
effective and you need a more fundamental change to your layout. To support this, the Android
resource system provides the w resource qualifier to indicate a minimum supported width.

A layout in the res/layout-w600dp will be used instead of one in res/layout when the available
width is over 600dp.

NOTE 600dp is one of the most common breakpoints as it is the first width you
would seriously consider having two levels of content hierarchy (say, a list of
items and a single item’s details) on screen at the same time.

In some cases, your UI requires a minimum height—such as in cases where you have a vertically
scrolling container of full-bleed images. With insufficient height, users might not be able to ever
actually see a full image on screen at once! Android provides the h resource qualifier for this pur-
pose; for example, res/layout-h480dp.

Using height and width modifiers allows you to account for different devices, and rotation from
landscape to portrait on any given device. In addition to these modifiers, the sw resource qualifier
can be used to handle the smallest width on the device.

Unlike width and height, smallest width does not change when a device is rotated—it is always the
smallest value of width and height. This is incredibly useful in building a rotation-insensitive UI—a
concept where all operations are available in every orientation and that the basic usage patterns are
consistent across rotation.

This is even more important in multi-window mode, where
“landscape” and “portrait” are not tied to the device’s ori-
entation, but whether the available width is greater than the
height (landscape) or vice versa (portrait).

Figure 12-1 shows how each of the values described previ-
ously correspond to a real device in standard and multi-
window mode.

w360dp
h640dp

sw360dp

w360dp
h320dp

sw320dp

w640dp
h360dp

sw360dp

FIGURE 12-1

Designing for Every Screen ❘ 439

Building a rotation-insensitive UI, you ensure that small adjustments to the size of your app do not
result in large UI changes that could be disorienting to users. A natural ordering occurs when struc-
turing your layouts and dimensions where larger structural UI changes are tied to smallest width
and smaller changes are tied to width or height breakpoints. As with any other resource qualifier,
you can combine these qualifiers, allowing you to provide a layout optimized for use when a screen
is a particular width now, and has the possibility of being no smaller than another value when
rotated.

For example, the following resource folder is optimized for a display
800dp wide, provided that when rotated, the screen width will be no
smaller than 600dp, as shown in Figure 12-2:

res/layout-sw600dp-w800dp

Layouts in this folder would share the same larger structure of the
UI with layouts in the res/layout-sw600dp (to provide a rotation-
insensitive UI) but would offer some smaller structural changes to take
advantage of the extra width.

Creating Scalable Graphics Assets
Android includes a number of simple Drawable resource types that can be defined entirely in XML.
These include the ColorDrawable, ShapeDrawable, and VectorDrawable classes. These resources
are stored in the res/drawable folder.

When these Drawables are defined in XML, and you specify their attributes using density-
independent pixels, these Drawables can be scaled dynamically at run time to display correctly,
without scaling artifacts, regardless of screen size, resolution, or pixel density.

As you will see in Chapter 14, “Advanced Customization of Your User Interface,” you can use these
Drawables in combination with transformative Drawables and composite Drawables. Together, they
can result in dynamic, scalable UI elements that require fewer resources and appear crisp on any
screen.

Android also supports NinePatch PNG images, described later in this section, that enable you to
mark the parts of a bitmap image that can be stretched.

Color Drawables
A ColorDrawable, the simplest of the XML-defined Drawables, enables you to specify an image
asset based on a single solid color. Color Drawables, such as this solid red Drawable, are defined as
XML files using the color tag in the res/drawable folder:

<color xmlns:android="http://schemas.android.com/apk/res/android"
 android:color="#FF0000"
/>

Shape Drawables
Shape Drawable resources let you define simple primitive shapes by defining their dimensions, back-
ground, and stroke/outline using the shape tag.

layout-sw600dp-w800dp

w800dp

600dp

FIGURE 12-2

440 ❘ CHAPTER 12 ImplementIng the AndroId desIgn phIlosophy

Each shape consists of a type (specified via the shape attribute), attributes that define the dimen-
sions of that shape, and subnodes to specify padding, stroke (outline), and background color values.

Android currently supports the following shape types as values for the shape attribute:

 ➤ line—A horizontal line spanning the width of the parent View. The line’s width and style
are described by the shape’s stroke.

 ➤ oval—A simple oval shape.

 ➤ rectangle—A simple rectangular shape. Also supports a corners subnode that uses a
radius attribute to create a rounded rectangle.

 ➤ ring—Supports the innerRadius and thickness attributes to let you specify the inner
radius of the ring shape and its thickness, respectively. Alternatively, you can use inner
RadiusRatio and thicknessRatio to define the ring’s inner radius and thickness,
 respectively, as a proportion of its width (where an inner radius of a quarter of the width
would use the value 4).

Use the stroke subnode to specify an outline for your shapes using width and color attributes.

You can also include a padding node to automatically inset the contents of the View that uses this
Shape Drawable, to prevent overlapping between the content and the shape’s outline.

More usefully, you can include a subnode to specify the background color.
The simplest case involves using the solid node, including the color attri-
bute, to define a solid background color.

The following snippet shows a rectangular Shape Drawable with a solid fill,
rounded edges, 5dp outline, and 10dp of padding. Figure 12-3 shows the
result.

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
 <solid
 android:color="#f0600000"/>
 <stroke
 android:width="5dp"
 android:color="#00FF00"/>
 <corners
 android:radius="15dp" />
 <padding
 android:left="10dp"
 android:top="10dp"
 android:right="10dp"
 android:bottom="10dp"
 />
</shape>

FIGURE 12-3

Designing for Every Screen ❘ 441

Vector Drawables
Android 5.0 Lollipop (API Level 21) introduced the VectorDrawable to define more complicated,
custom shapes. The Vector Support Library is also available for using Vector Drawables within apps
supporting devices running at least Android 4.0 Ice Cream Sandwich (API Level 14).

NOTE For older versions of Android that don’t support Vector Drawables,
Vector Asset Studio can, at build time, turn your Vector Drawables into multiple
bitmaps optimized for each screen density bucket.

Vector Drawables are defined using the vector tag, and require four additional attributes. You must
specify height and width to indicate the intrinsic size of the Drawable (its default size), and the
viewportWidth and viewportHeight to define the size of the virtual canvas that the vector’s path
will be drawn on.

While you’ll typically create at least one Vector Drawable with identical for height/width and their
viewport equivalents, it’s often useful to create duplicate Vector Drawables with different height/
width values.

This is because the Android system creates a single bitmap cache for each Vector Drawable to opti-
mize for the re-drawing performance. If you refer to the same Vector Drawable multiple times,
specifying different sizes, the bitmap will be re-created and redrawn every time a different size is
required. As a result, it is more efficient to create multiple Vector Drawables, one for each required
size.

Within the vector tag, the shape is defined using the path element. The color of the
shape is determined by the fillColor attribute, while the pathData attribute uses
the same syntax as SVG path elements to define arbitrary shapes or lines. The fol-
lowing snippet creates the shape shown in Figure 12-4:

<?xml version="1.0" encoding="utf-8"?>
<vector xmlns:android="http://schemas.android.com/apk/res/android"
 android:height="256dp"
 android:width="256dp"
 android:viewportWidth="32"
 android:viewportHeight="32">
 <path
 android:fillColor="#8f00"
 android:pathData="M20.5,9.5
 c-1.955,0,-3.83,1.268,-4.5,3
 c-0.67,-1.732,-2.547,-3,-4.5,-3
 C8.957,9.5,7,11.432,7,14
 c0,3.53,3.793,6.257,9,11.5
 c5.207,-5.242,9,-7.97,9,-11.5
 C25,11.432,23.043,9.5,20.5,9.5z" />
</vector>

The strokeColor and strokeWidth attributes indicate the color and width of the shape’s outline—
or if no fill color is specified, the color and width of the line being drawn.

FIGURE 12-4

442 ❘ CHAPTER 12 ImplementIng the AndroId desIgn phIlosophy

Android Studio includes a tool called the Vector Asset Studio (shown in Figure 12-5) accessible
through the New ➪ Vector Asset menu item, which includes support for importing Scalable Vector
Graphic (SVG) and Adobe Photoshop Document (PSD) files into your project as Vector Drawable
resources.

FIGURE 12-5

You can find more details on the SVG path elements at
www.w3.org/TR/SVG/paths.html#PathData.

Animating Vector Drawables
Vector Drawables also support animations through the aptly named AnimatedVectorDrawable
class. When building an animation, it is important to set the name on each path that you plan to
animate—this allows you to reference it when building the animation. If you have multiple paths
that need to be animated together, you can put all of the paths within a named group element and
scale, rotate, or translate all of the paths simultaneously.

When creating an Animated Vector Drawable, you can include the Vector Drawable directly within
its definition:

<animated-vector xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:aapt="http://schemas.android.com/aapt">
 <aapt:attr name="android:drawable">
 <vector
 android:height="256dp"
 android:width="256dp"
 android:viewportWidth="32"
 android:viewportHeight="32">
 <path
 android:name="heart"

Designing for Every Screen ❘ 443

 [... Vector Drawable path definition ...]
 />
 </vector>
 </aapt:attr>
 [... Remainder of Animated Vector Drawable definition ...]
</animated-vector>

Alternatively, you can reference an existing Vector Drawable by adding a drawable attribute to the
root animated-vector element:

<animated-vector xmlns:android="http://schemas.android.com/apk/res/android"
 android:drawable="@drawable/vectordrawable">
 [... Remainder of Animated Vector Drawable definition ...]
</animated-vector>

You can then add a series of animations by adding target elements, where the name attribute within
the target element specifies the name in the Vector Drawable that the animation applies to:

<animated-vector xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:aapt="http://schemas.android.com/aapt">
 <aapt:attr name="android:drawable">
 <vector
 android:height="256dp"
 android:width="256dp"
 android:viewportWidth="32"
 android:viewportHeight="32">
 <path
 android:name="heart"
 [... Vector Drawable path definition ...]
 />
 </vector>
 </aapt:attr>

 <target android:name="heart">
 [... Animation definition goes here ...]
 </target>

</animated-vector>

The objectAnimator node allows you to define a simple animation. The timing
of each animation is determined by the duration in milliseconds and an optional
startOffset (also in milliseconds). The path or group attribute that is being
animated is set by the propertyName attribute. The initial and final values are set
by the valueFrom and valueTo attributes, respectively, as shown in Listing 12-1.
Figure 12-6 shows the end state of the animation.

LISTING 12-1: A simple Animated Vector Drawable

<?xml version="1.0" encoding="utf-8"?>
<animated-vector xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:aapt="http://schemas.android.com/aapt">
 <aapt:attr name="android:drawable">
 <vector

FIGURE 12-6

continues

444 ❘ CHAPTER 12 ImplementIng the AndroId desIgn phIlosophy

 android:height="256dp"
 android:width="256dp"
 android:viewportWidth="32"
 android:viewportHeight="32">
 <path
 android:name="heart"
 android:fillColor="#8f00"
 android:pathData="M20.5,9.5
 c-1.955,0,-3.83,1.268,-4.5,3
 c-0.67,-1.732,-2.547,-3,-4.5,-3
 C8.957,9.5,7,11.432,7,14
 c0,3.53,3.793,6.257,9,11.5
 c5.207,-5.242,9,-7.97,9,-11.5
 C25,11.432,23.043,9.5,20.5,9.5z" />
 </vector>
 </aapt:attr>

 <target android:name="heart">
 <aapt:attr name="android:animation">
 <objectAnimator
 android:duration="1000"
 android:propertyName="fillColor"
 android:valueFrom="#8f00"
 android:valueTo="#ffc0cb"
 android:interpolator="@android:interpolator/fast_out_slow_in" />
 </aapt:attr>
 </target>
</animated-vector>

The interpolator attribute lets you control the rate of change between values within the anima-
tion. If you have multiple animations that share the same timing, you can include them all in a set
element.

Within your application, you retrieve a reference to Animated Vector Drawables using the
ContextCompat.getDrawable method, passing in the resource ID (the filename) of your Animated
Vector Drawable:

AnimatedVectorDrawable avd =
 (AnimatedVectorDrawable)ContextCompat.getDrawable(context,
 R.drawable.avd);

If you are using the Android Support Library to support Animated Vector Drawables, you must
instead use its associated create method:

AnimatedVectorDrawableCompat avd =
 (AnimatedVectorDrawableCompat)AnimatedVectorDrawableCompat.create(
 context,
 R.drawable.avd);

LISTING 12-1 (continued)

Introducing Material Design ❘ 445

In either case, you can then use the Animated Vector Drawable in any operation that accepts a
Drawable, and call start to trigger the animation:

imageView.setImageDrawable(avd);
avd.start();

NinePatch Drawables
NinePatch (or stretchable) images are PNG files that mark the parts of an image that can be
stretched. They’re stored in your res/drawable folders with names ending in .9.png extensions:

res/drawable/stretchable_background.9.png

NinePatches use a one-pixel border to define the area of the image that can be
stretched if the image is enlarged. This makes them particularly useful for creating
backgrounds for Views or Activities that may have a variable size.

To create a NinePatch, draw single-pixel black lines that represent stretchable areas
along the left and top borders of your image, as shown in Figure 12-7.

The unmarked sections won’t be resized, and the relative size of each
of the marked sections remains the same as the image size changes, as
shown in Figure 12-8.

To simplify the process of creating NinePatch images for your application, Android Studio includes
a WYSIWIG Draw 9-Patch tool. To use it, right-click the PNG image you’d like to create a
NinePatch image from, then click “Create 9-patch file.”

INTRODUCING MATERIAL DESIGN

Material design is Google’s design philosophy and language for mobile platforms and the web. It
provides a set of guidelines and specifications that offer guidance for creating a modern look and
feel for applications.

Material design became the standard design used within the Android system and core applications
in Android 5.0 Lollipop (API Level 21), but many of its related APIs and design components are now
available in the Android Support Library. As a result, material design is the de facto design standard
for all Android devices, irrespective of API level.

As an evolving design philosophy, it’s impossible to cover the full breadth of material design within
the confines of this book. However, we will build an understanding of the core concepts behind
material design, and introduce some of the most common iconic components that embody its
philosophy.

In Chapter 13, “Implementing a Modern Android User Experience,” we’ll return to material design
and explore the practicalities of implementing a design using its underlying philosophy.

FIGURE 12-7

FIGURE 12-8

446 ❘ CHAPTER 12 ImplementIng the AndroId desIgn phIlosophy

NOTE Material design is an ever-evolving design language. Whether you are an
Android designer or developer, consider reading through the latest, full material
design specifications at material.io/guidelines.

Thinking in Terms of Paper and Ink
The foundational principle of material design is “material is the metaphor.” While acknowledging
that everything visible on screen is a digital creation, our goal is to make this digital environment
parallel our expectations of real-world materials.

In material design, every View displayed is imagined as being placed on a physical material—a con-
ceptual piece of paper. Each sheet of virtual material, just like a piece of paper, is flat and 1dp thick.
Just like real-world material, where you can stack paper, each piece of virtual material is imagined
in a 3D environment, and has an elevation (defined using the elevation attribute) that is used to
give your finished layout the appearance of depth.

Views with a higher elevation are shown above those at a lower elevation, and should cast shadows
on the Views below them.

As a result elevation plays a meaningful role in the structural design of your UI layout, with global
navigation elements being placed at a higher elevation than the Activity-specific content. Many of
the built-in navigation elements discussed in Chapter 13 have their default elevations set according
to this principle.

Building on the core material metaphor, material design prescribes that everything drawn in your UI
should be as ink on the material surfaces.

This concept is readily apparent when handling touch feedback. Whenever a material design but-
ton is touched, it produces a ripple centered on the location the user has touched. The default touch
feedback provided by the backgrounds of selectableItemBackground produces the same ripple,
making it simple to apply to your own touchable screen elements as shown in Listing 12-2.

LISTING 12-2: A material design ripple layout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:clickable="true"
 android:background="?attr/selectableItemBackground">
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Click me!" />
 <TextView

Introducing Material Design ❘ 447

 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Clicking anywhere on the layout produces a ripple effect" />
</LinearLayout>

Just like ink, the ripple only flows to the material it is on. However, if your clickable layout is just a
part of a larger piece of continuous material, consider using selectableItemBackgroundBorder-
less to allow the ripple of ink to spread outside of the boundaries of the single View.

Using Color and Keylines as Guides
The second principle of material design is to be bold, graphic, and intentional.

Every element of your design should be a deliberate choice not just to look good, but to enforce the
hierarchy and importance of each element of your app in order to assist and guide users on their
journey within your app.

Using Color in Your App
One of the most bold design choices you can make is your use of color.

A monochromatic user interface runs the risk of being more than a little bland, but will also make
it difficult for users to identify the most significant Views with which they’ll likely interact. A design
that uses every color of the spectrum may be striking, but can also be jarring and just as difficult to
understand as a black-and-white UI.

A better approach is to construct a complementary color palette that you’ll to use throughout your
app. This color palette should be based on a primary—signature—color, a darker variant, and an
accent color.

Material design encourages you to always put the content first. Having a strong primary color can
act as subtle branding, making the app feel unique and distinct—without explicit branding elements
that would otherwise occupy valuable screen real estate that should be dedicated to displaying your
content.

The darker variant of your primary color is commonly used to color the status bar, to visually sepa-
rate it from your application’s content.

The accent color should be distinct, but complementary, to your primary color; it’s used to draw
attention to important Views within your UI, such as Floating Action Buttons, links within body
text, or as a highlight color on a text entry View.

NOTE To see examples of how to select colors, see the material design color pal-
ettes at material.io/guidelines/style/color.html#color-color-palette.

You can integrate these colors into your app by building a custom theme. A theme is a collection
of attributes that you can apply to an Activity using the android:theme attribute of your Activity
node, or to all your app’s Activities using the Application element within your Application manifest.

448 ❘ CHAPTER 12 ImplementIng the AndroId desIgn phIlosophy

A simple theme that incorporates the color palette just described would consist of a res/values/
colors.xml file containing a colorPrimary, colorPrimaryDark, and a colorAccent.

These colors are then used to construct a theme within a res/values/styles.xml resource:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="AppTheme" parent="Theme.AppCompat">
 <item name="colorPrimary">@color/primary</item>
 <item name="colorPrimaryDark">@color/primary_dark</item>
 <item name="colorAccent">@color/accent</item>
 </style>
</resources>

The theme can then be applied to your entire application by adding android:theme="@style/
AppTheme" in your application element in the manifest:

<application
 android:theme="@style/AppTheme">

 [... Remaining application node ...]
</application>

This will result in the app bar and status bar along the top of each activity colored according to the
colorPrimary and colorPrimaryDark, respectively.

In the preceding snippet, we use a parent theme of Theme.AppCompat—this theme is provided by the
Android Support Library and includes a consistent base for applying a material-style theme for all
API levels, without you needing to define each element yourself.

We go into more details on how themes can be used in your app in Chapter 13.

Aligning to Keylines
Reducing the visual noise of your layout is vital for drawing attention to its critical elements. To
help, material design incorporates techniques from traditional print design—one of the most impor-
tant being aligning content to keylines.

A keyline is a vertical or horizontal guideline used to align elements, particularly text. By aligning
everything to a set of keylines, users are able to easily scan your app’s layout and content to find
what they’re looking for.

A number of keylines and dimensions are specified by the material design specifications. The most
important are the horizontal margins found on the edges of the screen, and the content’s left margin
from the screen edge, shown in Figure 12-9.

The horizontal margins defined by material design for mobile devices is 16dp, while for tablets it
expands to 24dp. The content left margin from the screen edge is 72dp on mobile and 80dp on
tablets.

With more visual space on larger devices, having a larger margin allows you to make better use of
the available space, and prevents content from appearing too close to the edge of the screen.

Introducing Material Design ❘ 449

FIGURE 12-9

Note that the content left margin applies primarily to text—ensuring it’s aligned with the Toolbar’s
title. Icons and round avatars should be aligned with the 16dp horizontal margin.

NOTE For more details on the keylines that make up material design, see
material.io/guidelines/layout/metrics-keylines.html.

Continuity Through Motion
The third, and final, principle of material design is that motion provides meaning.

When experimenting with motion it’s tempting to move everything around, simply because you can.
Don’t. Unnecessary motion is distracting at best, and frustrating at worst. No one wants to chase
a touch target around the screen. Material design requires a disciplined approach to using motion
within your UI, with each movement intentionally designed to guide the user’s eyes and attention.

The ripple animation described earlier is itself considered a form of motion, designed to provide
feedback to the user. It’s a common pattern in material design that a user’s actions initiate motion.

450 ❘ CHAPTER 12 ImplementIng the AndroId desIgn phIlosophy

The Animated Vector Drawables, discussed earlier in this chapter, are an example of how actions
and feedback can be linked. For example, an audio player app might animate the play button into
a pause button using an Animated Vector Drawable to transition between mutually exclusive—but
tightly related—states.

Animating View Visibility Using the Reveal Effect
To provide visual continuity for user actions that result in the reveal of new Views, Android pro-
vides the ViewAnimationUtils.createCircularReveal method for devices running Android 5.0
Lollipop (API Level 21) or higher. This creates an animation that reveals (or hides) a View by clip-
ping it within a circle with a growing (or shrinking) radius.

Depending on where you center the reveal animation, this might require some minor math as shown
in Listing 12-3.

LISTING 12-3: Using a circular reveal to show a View

final View view = findViewById(R.id.hidden_view);

// Center the reveal on the middle of the View
int centerX = view.getWidth() / 2;
int centerY = view.getHeight() / 2;

// Determine what radius circle will cover the entire View
float coveringRadius = (float) Math.hypot(centerX, centerY);

// Build the circular reveal
Animator anim = ViewAnimationUtils.createCircularReveal(
 view,
 centerX,
 centerY,
 0, // initial radius
 coveringRadius // final covering radius
);

// Set the View to VISIBLE before starting the animation
view.setVisibility(View.VISIBLE);
anim.start();

The same approach can be used in reverse to hide a View as shown in Listing 12-4.

LISTING 12-4: Using a circular reveal to hide a View

// Build the circular hide animation
Animator anim = ViewAnimationUtils.createCircularReveal(
 view,
 centerX,
 centerY,
 coveringRadius, // initial radius
 0 // final radius

Introducing Material Design ❘ 451

);

anim.addListener(new AnimatorListenerAdapter() {
 @Override
 public void onAnimationEnd(Animator animation) {
 // Set the view to invisible only at the end of the animation
 view.setVisibility(View.INVISIBLE);
 }
});

anim.start();

Building Shared Element Activity Transitions
Typically the largest transitions within your app will be moving between Activities. Android 5.0
Lollipop (API Level 21) introduced shared element Activity transitions that provide visual continu-
ity for critical Views that exist in both Activities—dynamically transitioning them from their initial
position in the first Activity, to their final position in the next.

To take advantage of shared element Activity transitions, add the android:transitionName attri-
bute to Views within the layouts of both Activities to link the Views for animation:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">
 <ImageView
 android:id="@+id/avatar_view"
 android:transitionName="avatar_view_transition"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>
 <TextView
 android:id="@+id/username_view"
 android:transitionName="username_view_transition"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>
</LinearLayout>

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <ImageView
 android:id="@+id/avatar_view"
 android:transitionName="avatar_view_transition"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"/>
 <TextView
 android:id="@+id/username_view"
 android:transitionName="username_view_transition"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"/>
</LinearLayout>

452 ❘ CHAPTER 12 ImplementIng the AndroId desIgn phIlosophy

To activate an animated transition between two Activities, pass in a Bundle built from the
makeSceneTransitionAnimation method of the ActivityOptionsCompat class, passing it Pair
instances representing the Views in your current Activity’s layout, and the transitionName they are
transitioning to (found by passing each View to the ViewCompat.getTransitionName method) as
shown in Listing 12-5.

LISTING 12-5: Initiating a shared element Activity transition

Intent intent = new Intent(context, SecondActivity.class);

Bundle bundle = ActivityOptionsCompat.makeSceneTransitionAnimation(
 this,
 Pair.create((View)avatarView,
 ViewCompat.getTransitionName(avatarView)),
 Pair.create((View)userNameView,
 ViewCompat.getTransitionName(userNameView))
).toBundle();

startActivity(intent, bundle);

You can apply the same animation in reverse if the second Activity is closed by calling
ActivityCompat.finishAfterTransition instead of finish.

MATERIAL DESIGN UI ELEMENTS

Along with guiding principles, material design introduces a range of new UI elements. They are used
frequently throughout the system UI and the core apps. By incorporating these elements within your
app, you will make it more easily understood to new users, and more consistent with the system and
other third-party apps using the material design philosophy.

The App Bar
The app bar, formerly known as the Action Bar, runs along the top of your app as shown in
Figure 12-10.

FIGURE 12-10

Material Design UI Elements ❘ 453

Its prominence at the very top of your UI means that it’s often the first thing a user sees and reads.
For that reason, your app bar serves as the anchor for your user interface, offering a familiar place
for users to return when unsure of where they’ve navigated.

The app bar is automatically colored using the colorPrimary attribute as defined by your app’s
theme, offering a subtle indication of which app the user has open.

When defining a Theme, ensure that you assign a “parent” theme that will display a strong contrast
between your colorPrimary and the text color used in the app bar. You can ensure this by selecting
from one of the following:

 ➤ Theme.AppCompat—Use when you have a dark background for your UI and a dark
colorPrimary. Text colors will be light to contrast with the dark backgrounds.

 ➤ Theme.AppCompat.Light—Use with a light background and primary color; it provides dark
text.

 ➤ Theme.AppCompat.Light.DarkActionBar—Matches the light theme, but inverts the colors
specifically for the app bar.

NOTE Using these themes is critical if you are using the built-in app bar.
Chapter 13 explores using a Toolbar as your app bar, and offers alternative
themes that explicitly remove the default app bar described here.

The most prominent text displayed with the app bar is the android:title attribute taken from
each Activity’s manifest entry. It offers users a visual signpost of where they are within your app by
updating as you move between Activities.

To programmatically change the title, call the getSupportActionBar method from your
AppCompatActivity to retrieve the app bar and call setTitle to specify a new value:

String title = "New Title";
getSupportActionBar().setTitle(title);

The app bar also includes a navigation button, most often used for navigating up your app’s naviga-
tion hierarchy.

The goal of “up” navigation differs from the Back button. Where the Back button should return the
user to exactly the previous location (including restoring the state of the previous Activity), pressing
“up” should serve as an escape hatch.

It should always move the user to a specific Activity in a fresh state; repeatedly pressing up should
eventually take users to the main launch Activity.

Up button navigation is constructed by defining each Activity’s parent. Consider a simple app
that has a MainActivity that typically leads to CategoryActivity, which in turn leads to a
DetailActivity.

454 ❘ CHAPTER 12 ImplementIng the AndroId desIgn phIlosophy

As shown in Figure 12-11, MainActivity has no parent, while CategoryActivity has a parent of
MainActivity and DetailActivity has a parent of CategoryActivity. As a result the up button
should transition from the very specific pieces of content (a detail screen) up the content hierarchy
until reaching the main Activity.

MainActivity

CategoryActivity

DetailActivity

FIGURE 12-11

You can indicate the parent of each Activity within your Application manifest using the
android:parentActivityName attribute. The parentActivityName attribute was introduced in
Android 4.1 Jelly Bean (API Level 16), so you must also add a <meta-data> element to support ear-
lier platform releases:

<application ...>
 ...

 <activity
 android:name="com.example.MainActivity" ...>
 ...
 </activity>

 <activity
 android:name="com.example.CategoryActivity"
 android:parentActivityName="com.example.MainActivity"
 ...>
 ...
 <!-- This is only needed to support Android 4.0 or lower -->
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value="com.example.MainActivity" />
 </activity>

 <activity
 android:name="com.example.DetailActivity"
 android:parentActivityName="com.example.CategoryActivity"
 ...>
 ...
 <!-- This is only needed to support Android 4.0 or lower -->
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value="com.example.CategoryActivity" />
 </activity>

</application>

Material Design UI Elements ❘ 455

To enable the up button on your app bar, call setDisplayHomeAsUpEnabled(true) within the
onCreate handler of each Activity.

getSupportActionBar().setDisplayHomeAsUpEnabled(true);

In cases where there may be multiple instances of a given parent Activity, you must add more detail
to the Intent to ensure you navigate to the correct Activity.

You do this by overriding getSupportParentActivityIntent and adding the appropriate extras.
For example, the DetailActivity example above may want to pass an additional extra to its parent
CategoryActivity to ensure the correct category is shown:

@Override
public Intent getSupportParentActivityIntent() {
 // Get the Intent from the parentActivityName
 Intent intent = super.getSupportParentActivityIntent();
 // Add the information needed to create the CategoryActivity
 // in a fresh state
 intent.putExtra(CategoryActivity.EXTRA_CATEGORY_ID, mCategoryId);
 return intent;
}

Applying Material Design to the Earthquake Monitor
The default project templates in Android Studio provide the correct scaffolding to include material
design in your app, but the personal branding of the app is something that must be added on top of
that scaffolding. The earthquake viewer built over the previous chapters is no exception.

You’ll now update the default theme to use new colors, use the Image Asset wizard to create an app
icon, and ensure that each Activity has the appropriate “Up” hierarchy.

 1. Open the Earthquake project and update the colors in the res/values/colors.xml file:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="colorPrimary">#D32F2F</color>
 <color name="colorPrimaryDark">#9A0007</color>
 <color name="colorAccent">#448AFF</color>
</resources>

 2. Open the Image Asset wizard by selecting File ➪ New ➪ Image Asset. Ensure the Icon Type
is set to Launcher Icons and change the following options, and then click Finish to apply the
new launcher icon:

 2.1. For the foreground layer, change the Asset Type to Clip Art and select the vibration
icon. Change the color to FFF and resize the icon to 80%.

 2.2. For the background layer, change the Asset Type to Color and use the color D32F2F.

 3. Open AndroidManifest.xml and add parent Activities to both PreferencesActivity and
EarthquakeSearchResultActivity:

<activity
 android:name=".PreferencesActivity"
 android:parentActivityName=".EarthquakeMainActivity">
 <intent-filter>

456 ❘ CHAPTER 12 ImplementIng the AndroId desIgn phIlosophy

 <action
 android:name="android.intent.action.MANAGE_NETWORK_USAGE"/>
 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value=".EarthquakeMainActivity" />
</activity>

<activity
 android:name=".EarthquakeSearchResultActivity"
 android:launchMode="singleTop"
 android:parentActivityName=".EarthquakeMainActivity">
 <intent-filter>
 <action android:name="android.intent.action.SEARCH" />
 </intent-filter>
 <meta-data
 android:name="android.app.searchable"
 android:resource="@xml/searchable"
 />
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value=".EarthquakeMainActivity" />
</activity>

 4. Update the PreferenceActivity to call setDisplayHomeAsUpEnabled(true) after the
setContentView call:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.preferences);

 getSupportActionBar().setDisplayHomeAsUpEnabled(true);
}

 5. Also update the EarthquakeSearchResultActivity to also call
setDisplayHomeAsUpEnabled(true) after the setContentView call:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_earthquake_search_result);

 getSupportActionBar().setDisplayHomeAsUpEnabled(true);

 [... Existing onCreate method ...]
}

Using Cards to Display Content
No matter your design philosophy, content should always be the focus of your app; providing struc-
ture for that content helps the user focus on it as well.

Material Design UI Elements ❘ 457

A card, as shown in Figure 12-12, is a raised piece of material with rounded corners that groups
together information and actions about a single subject.

FIGURE 12-12

When all elements are similar, and quick scanning is important, a traditional list or grid of content
works well. Cards come into their own when there are many different elements, many actions asso-
ciated with each piece of content, or when it’s important that users can remove individual cards.

The CardView class, offered as part of the Android Support Library, provides an implementation of
the card concept, including the visual elements including rounded corners and elevation. In order to
use Card Views in your app, you must add a dependency for the Card View library into your app
module build.gradle file:

implementation 'com.android.support:cardview-v7:27.0.2'

CardView extends FrameLayout, so all of the layout techniques introduced in Chapter 5, “Building
User Interfaces,” apply to placing content within a Card View, with the exception of padding.
Within Card Views you should use the contentPadding attribute rather than padding to ensure
only the content within the card is padded inward (rather than the card’s border).

NOTE Prior to Android 5.0 Lollipop (API Level 21), CardView padded all con-
tent rather than clipping content to the rounded corners. You can disable this
using setPreventCornerOverlap(false). If you want your Card View to look
identical on all API levels, you can enable the padding on API 21+ devices by
using setUseCompatPadding(true).

Cards are designed to be modular. Each card is assembled using a set of common content blocks,
added in a particular order from the top to bottom as shown in Figure 12-13, including:

 ➤ An optional header (not pictured) with an avatar image, title, and subtitle for cards associ-
ated with a person.

458 ❘ CHAPTER 12 ImplementIng the AndroId desIgn phIlosophy

 ➤ Rich media in a 16:9 or 1:1 aspect ratio.

 ➤ A primary title and subtitle (if not using a “person header”). This is used to describe the con-
tent of the card.

 ➤ Multiple lines of supporting text.

 ➤ Actions—either left aligned text or right aligned icons.

Expanded supporting text can be used by adding an expansion action that displays additional
content appended to the bottom of the card.

FIGURE 12-13

NOTE For examples of cards and the content they can contain, see material
.io/guidelines/components/cards.html#cards-content.

Material Design UI Elements ❘ 459

Listing 12-6 shows a simple card that contains a 16:9 image, a primary title and subtitle, and two
actions.

LISTING 12-6: A Card View implementation

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.CardView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <android.support.constraint.ConstraintLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <ImageView
 android:id="@+id/image"
 android:layout_width="0dp"
 app:layout_constraintDimensionRatio="16:9"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />
 <TextView
 android:id="@+id/title"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:paddingTop="24dp"
 android:paddingLeft="16dp"
 android:paddingRight="16dp"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toBottomOf="@id/image"
 android:textAppearance="@style/TextAppearance.AppCompat.Headline" />
 <TextView
 android:id="@+id/subtitle"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:padding="16dp"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toBottomOf="@id/title"
 android:textAppearance="@style/TextAppearance.AppCompat.Body2" />
 <Button
 android:id="@+id/first_action"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="8dp"
 android:layout_marginLeft="8dp"
 android:layout_marginBottom="8dp"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintTop_toBottomOf="@id/subtitle"
 app:layout_constraintBottom_toBottomOf="parent"
 android:text="@string/first_action_text"
 style="?borderlessButtonStyle" />

continues

460 ❘ CHAPTER 12 ImplementIng the AndroId desIgn phIlosophy

 <Button
 android:id="@+id/second_action"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="8dp"
 app:layout_constraintLeft_toRightOf="@id/first_action"
 app:layout_constraintTop_toBottomOf="@id/subtitle"
 app:layout_constraintBottom_toBottomOf="parent"
 android:text="@string/second_action_text"
 style="?borderlessButtonStyle" />
 </android.support.constraint.ConstraintLayout>
</android.support.v7.widget.CardView>

Floating Action Buttons
The Floating Action Button (FAB), shown in Figure 12-14, is an iconic pattern of material design,
designed to draw attention to the single most important action the user can take within an Activity.

FIGURE 12-14

A FAB is represented as a circular icon with an increased elevation that appears above the rest of the
UI, colored with your application’s accent color. The floating action button should stand out consid-
erably, making it possible for users to easily identify and find the action.

LISTING 12-6 (continued)

Material Design UI Elements ❘ 461

The Android Design Support Library contains the FloatingActionButton class, which implements
the material design specifications for a FAB. It supports both the default size of 56dp and the mini
size of 40dp with the fabSize attribute.

In almost all cases, the default size is most appropriate—the only exception is when you have other
elements such as avatar images (which are also 40dp) that the FAB should align with. In either case,
the icon it contains is 24dp square.

Unlike other Views, where visibility is set using setVisibility, it is strongly recommended to use
the show and hide methods to control FAB visibility. This will animate the FAB by scaling it up
from a 0 radius or back down to a 0 radius, respectively.

Where you position the FAB is ultimately a design choice, and it’s important to note that not every
app, nor every Activity, needs a floating action button. If there is not primary action, then you
should avoid including a floating action button.

Implementing a Modern
Android User Experience

WHAT’S IN THIS CHAPTER?

 ➤ Creating and applying themes to user interfaces

 ➤ Creating Menus and app bar actions

 ➤ Using Action Views and Action Providers

 ➤ Customizing the app bar using Toolbars

 ➤ Implementing advanced scrolling techniques

 ➤ Utilizing tabs, bottom navigation bars, and the navigation drawer
for effective navigation

 ➤ Alerting the user with Dialogs, Toasts, and Snackbars

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The code downloads for this chapter are found at www.wrox.com. The code for this chapter is
divided into the following major examples:

 ➤ Snippets_ch13.zip

 ➤ Earthquake_ch13_part1.zip

 ➤ Earthquake_ch13_part2.zip

13

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

464 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

THE MODERN ANDROID UI

To help you create a user interface (UI) that’s stylish, easy to use, and that offers a user experience
consistent with the underlying platform and other applications, this chapter demonstrates techniques
to expand the user experience beyond layouts and UI components.

This starts with an exploration of the AppCompat API, provided as part of the Android Support
Library, which makes it possible to create a consistent, modern look for your app across all Android
API levels using themes.

The app bar, introduced in Chapter 5, is an important component of your application. In this chap-
ter you learn how to customize it further through the addition of Menus and actions. You also learn
to utilize Toolbars to replace the app bar within your own layouts, and to take advantage of the
functionality it supports, including specialized scrolling techniques.

When your app grows beyond a single screen, you need to incorporate a navigation pattern to
facilitate user interaction. Tabs are one pattern that allows users to easily swipe between top-level
Activities, while a bottom navigation bar offers persistent access to 3–5 top-level Activities, and
finally a navigation drawer makes it possible for users to focus solely on content, while still making
simple navigation easily accessible.

In addition to navigation, you are introduced to techniques used to alert users of exceptional cir-
cumstances. Modal dialogs force users to handle issues before continuing their work, while Toasts
provide a mechanism for completely non-interactive floating messages. The Snackbar provides a
non-modal alert that’s interactive, and makes it simple for users to recover from potentially destruc-
tive interactions through a single action.

CREATING CONSISTENT, MODERN USER INTERFACES
USING APPCOMPAT

The Android platform is constantly evolving, and the prevailing design language evolves with it;
each Android release introduces new UI patterns, elements, and functionality.

The AppCompat API is available within the Android Support Library, and provides a single, back-
ward compatible API, which developers can use to offer a consistent, modern user interface across
all versions of Android.

AppCompat provides a set of themes, each prefixed with Theme.AppCompat. To take advantage of
AppCompat’s ability to make your app’s appearance backward compatible, you must create a new
theme that uses one of these AppCompat themes as its parent—and extend the AppCompatActivity
within your app when creating new Activities.

AppCompat provides a number of attributes that have the same name as the framework equiva-
lents. For example, android:colorAccent defines the accent color for many views on Android
5.0 Lollipop (API Level 21) and higher devices. To produce the same behavior on older versions of
Android—when android:colorAccent wasn’t available—you can instead use the colorAccent
attribute within your theme.

Creating Consistent, Modern User Interfaces Using AppCompat ❘ 465

In cases where an attribute exists both in AppCompat and the framework, you should always pick
the AppCompat equivalent to ensure compatibility across all API levels.

NOTE In order to support theming, if you are extending standard Views such
as TextView or CheckBox to implement custom behavior, or creating Views
programmatically, make sure you are extending (or creating) Views from
the android.support.v7.widget package such as AppCompatTextView and
AppCompatCheckBox.

Creating and Applying Themes Using AppCompat
In Chapter 12, “Implementing the Android Design Philosophy,” you were introduced to the need
to define a basic color palette for your app using colorPrimary, colorPrimaryDark, and color-
Accent within your application’s theme. We can use similar techniques to further customize the
appearance of your app’s Views without needing to extend or create custom Views.

For controlling the “normal” state of components such as an unselected EditText, Checkbox, and
RadioButton, you can override the colorControlNormal attribute. The default value for this attri-
bute is ?android:attr/textColorSecondary.

The activated or checked state for Checkboxes and Radio Buttons can be separately controlled by
colorControlActivated if you wish to override the default color of ?attr/colorAccent.

Finally, the colorControlHighlight attribute controls the ripple coloring. In almost all cases,
this should be kept to the default 20% white color (#33ffffff) for dark themes, and 12% black
(#1f000000) for light themes.

Listing 13-1 shows a custom theme that specifies custom View colors.

LISTING 13-1: Defining a custom theme for Views

<resources>
 <style name="AppTheme"
 parent="Theme.AppCompat.Light.DarkActionBar">
 <item name="colorPrimary">@color/colorPrimary</item>
 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>
 <item name="colorAccent">@color/colorAccent</item>
 </style>

 <!-- The implied parent here is AppTheme -->
 <style name="AppTheme.Custom">
 <item name="colorControlNormal">
 @color/colorControlNormal</item>
 <item name="colorControlActivated">
 @color/colorControlActivated</item>
 </style>
</resources>

466 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

Once defined, a theme can be added to the application manifest, where it can be applied to the entire
application (via the android:theme attribute on the application element) or a specific Activity
(using the android:theme attribute on the activity element):

<application ...
 android:theme="@style/AppTheme">
 <activity
 android:theme="@style/AppTheme.Custom" />
</application>

Creating Theme Overlays for Specific Views
It’s also possible to apply a theme to a specific View (and its children) by applying the
android:theme attribute to an individual View within a layout definition.

Unlike themes applied at the Application or Activity level, themes applied directly to Views should
have a parent theme of ThemeOverlay.AppCompat (rather than Theme.AppCompat).

Theme overlays are designed to be applied over the base AppCompat theme, only affecting specific
elements and ignoring attributes that are only applicable at the Activity level.

The two most common theme overlays are ThemeOverlay.AppCompat.Light and ThemeOverlay
.AppCompat.Dark. The light theme alters the background colors, text colors, and highlight colors
so that they are appropriate for a light background, and the dark theme does the same when using a
dark background.

This approach can be particularly useful if you choose to color a portion of your screen with your
primary color, and overlay it with text that must be readable:

<!-- Ensure text is readable on a dark
 primary color background by using
 a Dark ThemeOverlay -->
<FrameLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="?attr/colorPrimary"
 android:theme="@style/ThemeOverlay.AppCompat.Dark">
 [... Remaining Layout Definition ...]
</FrameLayout>

A custom theme overlay is defined like any other theme. Start by declaring a parent theme using the
parent attribute, and then specify any attributes you wish to modify:

<style name="ThemeOverlay.AccentSecondary"
 parent="ThemeOverlay.AppCompat">
 <item name="colorAccent">@color/accent_secondary</item>
</style>

Adding a Menu and Actions to the App Bar ❘ 467

ADDING A MENU AND ACTIONS TO THE APP BAR

With the app bar a standard fixture within most apps, it’s a useful
surface onto which we can add functionality. For common actions
that are associated with the entire Activity, or a Fragment that
takes up the majority of the screen, you can define a menu that
will appear on the app bar in the form of icons, or within an over-
flow menu, as shown in Figure 13-1.

Defining a Menu Resource
Menus can be defined as an XML resource, stored in the res/menu folder of your project. This gives
you the ability to create different Menus for alternative hardware configurations, screen sizes, lan-
guages, or Android versions.

Each Menu consists of a menu tag at the root node, and a series of item tags each specifying a Menu
Item. The android:title is what is displayed to the user. Each Menu hierarchy must be created as
a separate file.

Each item should also have an android:id, which you will use within your app to determine which
Menu Item was tapped, as shown in Listing 13-2.

LISTING 13-2: Defining a menu in XML

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/action_settings"
 android:title="@string/action_settings" />
 <item
 android:id="@+id/action_about"
 android:title="@string/action_about" />
</menu>

By default, Menu Items will appear in the overflow menu. To promote a Menu Item onto the app
bar, you must add the app:showAsAction attribute, which controls where the Menu Item is shown:

 ➤ always—Forces the Menu Item to always be displayed as an action on the app bar.

 ➤ ifRoom—Indicates that the Menu Item should be displayed as an action provided there is
enough space in the app bar to display it. It is good practice to use this option in preference
to always giving the system flexibility when displaying actions.

 ➤ never—The default value, which ensures the Menu Item is only shown in the overflow menu.

FIGURE 13-1

468 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

NOTE app:showAsAction is one example of an AppCompat equivalent to the
framework android:showAsAction. You should always use app:showAsAction
when using AppCompat.

For each Menu Item that uses always or ifRoom, you should also include an android:icon
attribute.

When shown in the overflow menu, only the text title will be displayed. When displayed as part of
the app bar, the Menu Item will be represented as an icon (a long press will briefly display the title).
By including a withText modifier (separated with a |), both the icon and title are displayed on the
App Bar. This should be used rarely, and only when there is ample space.

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res/res-auto">
 <item
 android:id="@+id/action_filter"
 android:icon="@drawable/action_filter"
 android:title="@string/action_filter"
 app:showAsAction="ifRoom|withText"
 />
</menu>

Displaying Menu Items as actions on the app bar should be reserved for those that are very fre-
quently used, critically important for users to discover, or highly expected based on actions available
in similar applications.

Generic and seldom used Menu Items, such as settings, help, or about, should never be presented as
action items.

Adding a Menu to an Activity
To associate a Menu with an Activity, you must first inflate your Menu XML resource into a Menu
instance by overriding the Activity’s onCreateOptionsMenu handler. You must return true to dis-
play your Menu (false hides the Menu entirely), as shown in Listing 13-3.

LISTING 13-3: Adding a Menu to an Activity

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 // You should always call super.onCreateOptionsMenu()
 // to ensure this call is also dispatched to Fragments
 super.onCreateOptionsMenu(menu);

 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.my_menu, menu);

 return true;
}

Adding a Menu and Actions to the App Bar ❘ 469

As with layouts, it’s also possible to programmatically create Menu Items, and add them to the
Menu object using its add method. The ID used when creating these dynamic Menu Items must
always be greater than or equal to the Menu.FIRST constant, to avoid conflicting with any previ-
ously inflated Menu Items.

Adding a Menu to a Fragment
Menus can also be associated with Fragments. Fragment Menus will only be visible on the app bar
when the host Fragment is visible. This allows you to dynamically change the actions available to
match the content being displayed.

Fragment Menus should be inflated within the Fragment’s onCreateOptionsMenu handler; however,
unlike Activities you must also call setHasOptionsMenu(true) within the Fragment’s onCreate
handler, as shown in Listing 13-4.

LISTING 13-4: Adding a Menu to a Fragment

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setHasOptionsMenu(true);
}

@Override
public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 inflater.inflate(R.menu.my_menu, menu);
}

Updating Menu Items Dynamically
By overriding your Activity’s or Fragment’s onPrepareOptionsMenu method, you can modify a
Menu based on an application’s current state at run time, immediately before the Menu is displayed.
This lets you dynamically disable/enable Menu Items, set visibility, and even modify text.

To modify Menu Items dynamically, you can either record a reference to them from within the
onCreateOptionsMenu method when they’re created, or you can use the findItem method on the
Menu object, as shown in Listing 13-5:

LISTING 13-5: Modifying Menu Items dynamically

@Override
public boolean onPrepareOptionsMenu(Menu menu) {
 super.onPrepareOptionsMenu(menu);

 MenuItem menuItem = menu.findItem(R.id.action_filter);

 // Modify Menu Items
 menuItem.setVisible(false);

 return true;
}

470 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

Handling Menu Selections
Android handles the app bar actions and overflow Menu using a single event handler, onOptions-
ItemSelected. The Menu Item selected is passed in to this method as the MenuItem parameter.

To react to the menu selection, compare the item.getItemId value to the resource identifiers in
your Menu XML (or the Menu Item identifiers you used when populating the Menu programmati-
cally), as shown in Listing 13-6, and perform the corresponding action.

LISTING 13-6: Handling Menu Item selections

public boolean onOptionsItemSelected(MenuItem item) {
 // Find which Menu Item has been selected
 switch (item.getItemId()) {

 // Check for each known Menu Item
 case (R.id.action_settings):
 [... Perform menu handler actions ...]
 return true;

 // Pass on any unhandled Menu Items to super.onOptionsItemSelected
 // This is required to ensure that the up button and Fragment Menu Items
 // are dispatched properly.
 default: return super.onOptionsItemSelected(item);
 }
}

If you have supplied Menu Items from within a Fragment, you can choose to handle them within the
onOptionsItemSelected handler of either the Activity or the Fragment. Note that the Activity will
receive the selected Menu Item first, and that the Fragment will not receive it if the Activity handles
it and returns true.

Adding Action Views and Action Providers
To support cases where a simple icon is not a rich enough interface, Menu Items can also display an
arbitrary layout. This comes in two varieties: a CollapsibleActionView and an ActionProvider.

When an icon (and/or text) is suitable as a prompt, but a richer interface is required after it’s
selected, you should consider adding an app:actionLayout or app:actionViewClass attribute to
your Menu Item definition.

The app:actionLayout attribute is suitable when you have defined a Menu Item layout as a layout
resource, while app:actionViewClass is optimized for a single View (or View Group).

Add the collapseActionView value to your app:showAsAction attribute to ensure your Menu Item
uses the Collapsible Action View specified, as shown in Listing 13-7.

LISTING 13-7: Adding an Action View to a Menu Item

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <item

Adding a Menu and Actions to the App Bar ❘ 471

 android:id="@+id/action_search"
 android:icon="@drawable/action_search"
 android:title="@string/action_search"
 app:showAsAction="ifRoom|collapseActionView"
 app:actionViewClass="android.support.v7.widget.SearchView" />
</menu>

When the Menu Item is tapped, it will be expanded to fill the app bar, as shown in Figure 13-2.

FIGURE 13-2

Once added, you will need to implement handlers to react to user interaction with the collapsible
Action View. This is typically done within the onCreateMenuOptions handler:

MenuItem searchItem = menu.findItem(R.id.action_search);
SearchView searchView = (SearchView) searchItem.getActionView();

searchView.setOnSearchClickListener(new OnClickListener() {
 public void onClick(View v) {
 // TODO React to the button press.
 }
});

The example in Listing 13-7 uses the SearchView, which is implemented to receive callbacks when
it’s collapsed or expanded. If you’re using your own custom layout, you should make sure it also
implements this approach. Alternatively, you can set an OnActionExpandListener via the setOn-
ActionExpandListener method.

In circumstances where the custom layout should remain visible in the app bar at all times,
you can use an ActionProvider. The Action Provider is attached to a Menu Item using the
app:actionProviderClass attribute, and is responsible for displaying the appropriate layout—and
handling any user interactions with it.

Listing 13-8 demonstrates adding a MediaRouteActionProvider—an Action Provider used to sup-
port Google Cast integration, which handles the connection status and selection of Cast devices.

LISTING 13-8: Adding an Action Provider to a Menu Item

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <item
 android:id="@+id/action_media_route"
 android:title="@string/action_cast"
 app:showAsAction="always"
 app:actionProviderClass="android.support.v7.app.MediaRouteActionProvider"
 />
</menu>

472 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

GOING BEYOND THE DEFAULT APP BAR

Any Activity that applies a Theme.AppCompat theme will display an AppCompat-style app bar by
default. You can choose to customize this, by delegating the responsibilities of the app bar to a
Toolbar that you can add directly to your Activity layout.

This flexibility makes it possible to take advantage of scrolling behaviors, such as having your
Toolbar scroll “off screen” as part of your content scrolling, to offer more room for content to be
displayed.

Toolbars support all of the same functionality as the app bar, including the “up” navigation affor-
dance, an Activity title, Menu Item actions, and the overflow Menu.

Replacing Your App Bar with a Toolbar
To add a Toolbar to an Activity, you must first disable the default app bar by applying a
NoActionBar theme such as Theme.AppCompat.NoActionBar or Theme.AppCompat
.Light.NoActionBar to your Activity within the manifest:

android:theme="@style/Theme.AppCompat.NoActionBar"

Within the Activity layout, add a Toolbar element aligned with the top of the screen, and sized to
match the app bar:

<android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
/>

Within your Activity’s onCreate handler, specify the Toolbar within your layout to be used as your
app bar replacement using the setSupportActionBar method, as shown in Listing 13-9. Any Menu
Items added within the onCreateOptionsMenu handler will then be added to, and displayed, on
your Toolbar.

LISTING 13-9: Setting a Toolbar as your App Bar

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.basic_toolbar_activity);
 Toolbar toolbar = findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);
}

The Toolbar is available as part of the Android Design Support Library. Before it can be used, you
must add the Android Design Support Library to your app module build.gradle file:

implementation 'com.android.support:design:27.1.1'

Listing 13-10 shows how to style the look and feel of the standard app bar for your Toolbar by
wrapping the Toolbar in an AppBarLayout, part of the Android Design Support Library. The App

Going Beyond the Default App Bar ❘ 473

Bar Layout automatically sets the background color to your colorPrimary resource value, and adds
the correct elevation; the App Bar Layout should always be used when using a Toolbar to replace the
app bar. To set the correct text and icon colors, select a theme from:

 ➤ ThemeOverlay.AppCompat.ActionBar—Sets the correct styling to support a Search View,
and sets the colorControlNormal to android:textColorPrimary.

 ➤ ThemeOverlay.AppCompat.Dark.ActionBar—As above, but also sets the text colors to be
light for use on a dark background.

 ➤ ThemeOverlay.AppCompat.Light.ActionBar—As for the first item, but also sets the text
colors to be dark for use on a light background.

LISTING 13-10: Styling a Toolbar to match the app bar

<!-- Ensure text is readable on a dark primary color background
by using a Dark ThemeOverlay -->
<android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar">

 <Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"/>
</android.support.design.widget.AppBarLayout>

Advanced Scrolling Techniques for the Toolbar
While app bars and toolbars present users with important information and priority actions, they’re
also part of the app’s “chrome”—and as such steal space from the content, which should always be
prioritized. To help balance these two considerations, material design includes a number of tech-
niques that can be used to alter the behavior of the Toolbar when users scroll app content.

NOTE Much of what’s described in this section relies on understanding differ-
ent gestures and motions. It will be useful to review videos of these effects on
the material design page at material.io/guidelines/patterns/scrolling-
techniques.html.

Scrolling techniques often involve interaction between multiple Views—the View being scrolled and
any View (or Views) reacting to the scrolling (typically the Toolbar replacing your app bar.)

To ensure this interaction is properly coordinated, each affected View must be the direct child of a
CoordinatorLayout. The Coordinator Layout is used to attach Behaviors to specific Views using
the app:layout_behavior attribute in their layout element. Each Behavior can intercept touch

474 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

events, window insets, measurement and layout, and nested scrolling events for the affected View
without requiring you to subclass the Views to add that additional functionality.

NOTE More information on Behaviors and examples of custom Behaviors can
be found at medium.com/google-developers/intercepting-everything-
with-coordinatorlayout-behaviors-8c6adc140c26.

The most basic scrolling technique is to have the Toolbar scroll “off-screen,” such that it disappears
when the user begins scrolling the content, and then have it scroll back on-screen when the user
scrolls in the opposite direction.

This is achieved by placing your Toolbar within an AppBarLayout and adding the
ScrollingViewBehavior to the View being scrolled (typically a Recycler View or Nested Scroll
View), as demonstrated in Listing 13-11.

LISTING 13-11: Scrolling a Toolbar off-screen

<android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <! -- Your Scrollable View -->
 <android.support.v7.widget.RecyclerView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_behavior="@string/appbar_scrolling_view_behavior" />

 <! – App bar style Toolbar -->
 <android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar">

 <android.support.v7.widget.Toolbar
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:layout_scrollFlags="scroll|snap|enterAlways" />
 </android.support.design.widget.AppBarLayout>
</android.support.design.widget.CoordinatorLayout>

In this layout, as the Recycler View scrolls, the ScrollingViewBehavior attached to it causes the
App Bar Layout to respond based on the app:layout_scrollFlags attribute on each of the App

Going Beyond the Default App Bar ❘ 475

Bar Layout’s child views. This flag controls the behavior for the View as it scrolls on, and off, the
screen:

 ➤ scroll—Required for any View that is to scroll off the screen—Views without this flag will
always remain at the top of the screen.

 ➤ snap—When a scroll event ends, Views with this flag will be scrolled to the closest edge,
ensuring they are either fully visible, or completely scrolled off screen.

 ➤ enterAlways—Indicates that the View will immediately begin entering the screen on any
reverse (downward) scroll event. This enables the “quick return” pattern, without which
the user would need to scroll to the very top of the Recycler View before the Toolbar was
scrolled back into frame.

 ➤ enterAlwaysCollapsed—Can be added to enterAlways to ensure the View is only scrolled
back to its “collapsed” height, as described later within this section.

 ➤ exitUntilCollapsed—When scrolling off the screen, the view will first “collapse” before
exiting and scrolling off the screen.

The App Bar Layout supports multiple children, laying them out similarly to a vertical Linear
Layout. Every View that includes the scroll flag must be positioned above Views without it. This
ensures that views are always scrolled off the top of the screen.

The collapsing flags are useful if you have a view that initially has a larger height (set with
android:layout_height), but a smaller minimum height set with android:minHeight. This pat-
tern is often found in combination with the CollapsingToolbarLayout, as shown in Listing 13-12.
It provides fine-grained control over which elements collapse, and which should be “pinned” to the
top of the Collapsing Toolbar Layout.

LISTING 13-12: Collapsing Toolbar

<android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="192dp"
 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar">

 <android.support.design.widget.CollapsingToolbarLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_scrollFlags="scroll|exitUntilCollapsed">

 <android.support.v7.widget.Toolbar
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 app:layout_collapseMode="pin" />
 </android.support.design.widget.CollapsingToolbarLayout>
</android.support.design.widget.AppBarLayout>

Note that the AppBarLayout has a fixed height—this is the expanded height. The Toolbar’s height
is set to ?attr/actionBarSize, which is the default height of the app bar. The Collapsing Toolbar
Layout ensures the title text animates correctly while the View collapses, moving from the bottom

476 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

of the View to the appropriate location on the Toolbar, which has its navigation button and actions
pinned using the app:layout_collapseMode="pin".

The Collapsing Toolbar Layout supports multiple children, laying them out similar to a Frame
Layout. This is useful when adding an additional ImageView serving as a “hero image” behind the
expanded app bar. Use the attribute app:layout_collapseMode="parallax" to have the image
scroll at a different rate than the scrolling content to provide a parallax effect:

<android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="192dp"
 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar">

 <android.support.design.widget.CollapsingToolbarLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_scrollFlagts="scroll|exitUntilCollapsed">

 <ImageView
 android:id="@+id/hero_image"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_collapseMode="parallax" />

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 app:layout_collapseMode="pin" />
 </android.support.design.widget.CollapsingToolbarLayout>
</android.support.design.widget.AppBarLayout>

Incorporating Menus Without the App Bar
The app bar is the first place users will look for actions related to your app, but its top-level context
makes it an inappropriate place for actions associated with only a portion of your layout. This can
commonly be the case for large layouts, such as those optimized for tablets.

To provide actions for a specific portion of your layout, you can include a Toolbar specifically
for that region. Actions can be added to that Toolbar using inflateMenu or programmatically
by using the Toolbar’s getMenu method. Any Menu Item selected will trigger a callback to the
OnMenuItemClickListener you’ve set using with the Toolbar’s setOnMenuItemClickListener.

If you don’t need a navigation icon or a title, you can use the ActionMenuView as an alternative.
Similar to the Toolbar, you can add Menu Items using the getMenu method and use setOnMenu-
ItemClickListener to allocate a Menu Item Click Listener to handle selections, as shown in
Listing 13-13.

Improving the Earthquake Monitor’s App Bar ❘ 477

LISTING 13-13: Adding a menu to an Action Menu View

ActionMenuView actionMenuView = findViewById(R.id.menu_view);

MenuInflater menuInflater = getMenuInflater();
menuInflater.inflate(actionMenuView.getMenu(), R.menu.action_menu);
actionMenuView.setOnMenuItemClickListener(new OnMenuItemClickListener() {
 public boolean onMenuItemClick(MenuItem item) {
 switch (item.getItemId()) {
 case (R.id.action_menu_item) :
 // TODO Handle menu clicks.
 return true;
 default: return false;
 }
 }
});

IMPROVING THE EARTHQUAKE MONITOR’S APP BAR

In the following example, the earthquake-monitoring application, which you updated to material
design in Chapter 12, “Implementing the Android Design Philosophy,” will be enhanced to use a
Toolbar and scroll techniques:

 1. Update the app build.gradle file to include Design Support Library:

dependencies {
 [... Existing dependencies ...]
 implementation 'com.android.support:design:27.1.1'
}

 2. Update the styles.xml resource, adding a new AppTheme.NoActionBar theme:

<style name="AppTheme.NoActionBar"
 parent="Theme.AppCompat.Light.NoActionBar">
 <item name="colorPrimary">@color/colorPrimary</item>
 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>
 <item name="colorAccent">@color/colorAccent</item>
</style>

 3. Modify the AndroidManifest.xml entry for EarthquakeMainActivity to use the new
theme added in Step 2:

<activity
 android:name=
 "com.professionalandroid.apps.earthquake.EarthquakeMainActivity"
 android:theme="@style/AppTheme.NoActionBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>

478 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

 <meta-data
 android:name="android.app.default_searchable"
 android:value=".EarthquakeSearchResultActivity"
 />
</activity>

 4. Update the activity_earthquake_main.xml layout to use a CoordinatorLayout,
AppBarLayout, and Toolbar using the scroll|enterAlways|snap scroll flags so that the
Toolbar scrolls off the screen, returns immediately when the user scrolls up, and snaps to
avoid being only partially visible:

<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar">

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:layout_scrollFlags="scroll|enterAlways|snap"/>
 </android.support.design.widget.AppBarLayout>

 <FrameLayout
 android:id="@+id/main_activity_frame"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"/>
</android.support.design.widget.CoordinatorLayout>

 5. Update the onCreate method in the Earthquake Main Activity to set the Toolbar as the
app bar:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_earthquake_main);

 Toolbar toolbar = findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);

 [... Existing onCreate Method ...]
}

App Navigation Patterns ❘ 479

While a static image won’t show any visible difference, scrolling the earthquake list will cause the
app bar to scroll off-screen, ensuring users have the maximum amount of space to interact with the
content. By using the enterAlways scroll flag, the app bar will return as soon as the user scrolls
back, allowing quick access to the overflow menu and Search View.

APP NAVIGATION PATTERNS

Apps come in many different sizes and complexities, resulting in a number of different patterns to
help users navigate your app easily.

Three primary navigation patterns are in common use:

 ➤ Tabs—allow users to swipe between equally important top-level screens

 ➤ Bottom navigation bar—an always visible bar containing 3 to 5 generally independent top-
level screens

 ➤ Navigation drawer—a drawer generally only accessed by manually opening it, suitable for
apps that have one primary screen and multiple independent secondary screens

Navigating with Tabs
Tabs are an effective navigation pattern when you have two equally
important top-level Views. When using Tabs, users can switch
between these Views either by tapping the Tab, or swiping between
the Views.

Tabs are displayed using TabLayout, and are always shown along
the top of the screen, as shown in Figure 13-3.

Tabs are generally included as a second child View of an App Bar
Layout beneath a Toolbar, as shown in Listing 13-14.

Note that the swipe functionality is provided by the incorporation of a ViewPager.

LISTING 13-14: Using Tabs for app navigation

<android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <!-- Your Main Content View -->
 <android.support.v4.view.ViewPager

FIGURE 13-3

continues

480 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

 android:id="@+id/view_pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_behavior="@string/appbar_scrolling_view_behavior" />

 <android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar">

 <android.support.v7.widget.Toolbar
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:layout_scrollFlags="scroll|snap|enterAlways" />

 <android.support.design.widget.TabLayout
 android:id="@+id/tab_layout"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 </android.support.design.widget.AppBarLayout>
</android.support.design.widget.CoordinatorLayout>

The TabLayout in Listing 13-14 does not include any app:layout_scrollFlags—as a result, the
tabs remain visible when the user scrolls.

The content displayed within the View Pager is populated using a PagerAdapter. By default, the
Pager Adapter inflates a single View for each page; however, when working with Tabs, it’s often
more convenient to use the FragmentPagerAdapter and use a Fragment to represent each page.

This structure allows each Fragment to add actions using onCreateOptionsMenu that will only be
visible when the associated Tab is selected.

To build a Fragment Pager Adapter, extend FragmentPagerAdapter and override getCount to
return the number of pages, and getItem to return the appropriate Fragment for a given position.

To use your Fragment Pager Adapter with Tab navigation, you’ll also need to override getPage-
Title to return a title for a given position, which will be displayed within the Tab Layout.

When using a View Pager and Tab Layout for your main navigation with a fixed set of elements,
getItem and getPageTitle can be simple switch statements mapping positions to fixed data, as
shown in Listing 13-15.

LISTING 13-15: Creating a Fragment Pager Adapter for a Tab Layout

class FixedTabsPagerAdapter extends FragmentPagerAdapter {
 public FixedTabsPagerAdapter(FragmentManager fm) {

LISTING 13-14 (continued)

App Navigation Patterns ❘ 481

 super(fm);
 }

 @Override
 public int getCount() {
 return 2;
 }

 @Override
 public Fragment getItem(int position) {
 switch(position) {
 case 0:
 return new HomeFragment();
 case 1:
 return new ProfileFragment();
 default:
 return null;
 }
 }

 @Override
 public CharSequence getPageTitle(int position) {
 // To support internationalization, use string
 // resources for these titles
 switch(position) {
 case 0:
 return "Home";
 case 1:
 return "Profile";
 default:
 return null;
 }
 }
}

Connect your PagerAdapter and your ViewPager using the setAdapter method, then call
setupWithViewPager on the TabLayout to create the correct Tabs. Ensure that Tab selection events
change the selected page and that swiping through pages updates the selected tab, as shown in
Listing 13-16.

LISTING 13-16: Connecting the View Pager to a Tab Layout

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.app_bar_tabs);

482 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

 ViewPager viewPager = findViewById(R.id.view_pager);
 PagerAdapter pagerAdapter =
 new FixedTabsPagerAdapter(getSupportFragmentManager());
 viewPager.setAdapter(pagerAdapter);

 TabLayout tabLayout = findViewById(R.id.tab_layout);
 tabLayout.setupWithViewPager(viewPager);
}

Navigating between Tabs does not affect the back stack, so pressing the back button won’t reverse
Tab navigation. As a result, individual pages should not include any internal navigation or back
stack history—all navigation should be done by opening a Dialog (as discussed later in this chapter),
or through a new Activity.

By following these guidelines, users will always have a consistent experience when tapping the back
button.

NOTE While we’ve focused on TabLayout and ViewPager as a high-level navi-
gation pattern, both components can be used in many other places within your
app. For example, scrollable tabs via the app:tabMode="scrollable" attribute
can be useful in splitting up a large set of elements into categories (consider
extending from FragmentStatePagerAdapter to only keep a few Fragments in
memory rather than all of them). For more information, see developer
.android.com/training/implementing-navigation/lateral.html.

Implementing a Bottom Navigation Bar
A bottom navigation bar, as shown in Figure 13-4, is presented
along the bottom of the screen; users can switch between Views by
tapping on the desired item.

Users will generally read from top to bottom, so this layout puts
more emphasis on the content, while still ensuring that the top-
level Views are available.

Bottom navigation bars are ideal when your app has three to five
top-level navigation destinations that are of similar importance but generally independent of each
other.

Unlike Tabs, a bottom navigation bar navigation pattern should not support swiping between
Views, and transitions should cross-fade from the current item to the new, rather than using a lateral
animation to “slide in.”

As a result, any of the Views available from the bottom navigation can support swiping behaviors—
for example, you may want to swipe to delete an e-mail from a list, or embed scrollable tabs to cat-
egorize content.

FIGURE 13-4

App Navigation Patterns ❘ 483

Selecting a bottom navigation item should reset that View’s task state instead of restoring any previ-
ous intermediate state (such as scroll position).

The items displayed in the bottom navigation bar are defined as a Menu, as shown in Listing 13-17.
Each item is defined using item elements, where the android:id attribute is later used to identify
which item has been selected, and the android:icon and android:title attributes are used to
populate the title and icon displayed for the bottom navigation bar items.

LISTING 13-17: Defining a Menu for a bottom navigation bar

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <item
 android:id="@+id/nav_home"
 android:icon="@drawable/nav_home"
 android:title="@string/nav_home" />
 <item
 android:id="@+id/nav_profile"
 android:icon="@drawable/nav_profile"
 android:title="@string/nav_profile" />
 <item
 android:id="@+id/nav_notifications"
 android:icon="@drawable/nav_notifications"
 android:title="@string/nav_notifications" />
</menu>

To add a bottom navigation bar, add a BottomNavigationView element, part of the Android Design
Support Library, to your layout. Use the app:menu attribute to associate a Menu resource that
defines the available selections, as shown in Listing 13-18.

LISTING 13-18: Adding a Bottom Navigation View to a Layout

<android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <!-- Your Main Content View -->
 <FrameLayout
 android:id="@+id/main_content"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_marginBottom="56dp"
 app:layout_behavior="@string/appbar_scrolling_view_behavior" />

 <android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"

484 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

 android:layout_height="wrap_content"
 android:background="?attr/colorPrimary"
 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar">

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:layout_scrollFlags="scroll|snap|enterAlways" />
 </android.support.design.widget.AppBarLayout>

 <android.support.design.widget.BottomNavigationView
 android:id="@+id/bottom_nav"
 android:layout_width="match_parent"
 android:layout_height="56dp"
 android:layout_gravity="bottom"
 app:menu="@menu/bottom_nav_menu" />
</android.support.design.widget.CoordinatorLayout>

Set an OnNavigationItemSelectedListener to the Bottom Navigation View to listen for selection
changes. Each selection should result in a FragmentTransaction that replaces the currently dis-
played content with a new Fragment based on the selection.

An OnNavigationItemReselectedListener is also available to receive callbacks when the cur-
rently selected item is reselected. By convention, selecting the currently selected item should
scroll the content to the top. Listing 13-19 implements this by having each Fragment extend
ScrollableFragment, which adds a single method—scrollToTop.

LISTING 13-19: Handling bottom navigation Item selection events

private static final String CURRENT_ITEM_KEY = "current_item";
// This should be saved in onSaveInstanceState() using CURRENT_ITEM_KEY
int mCurrentItem = R.id.nav_home;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.app_bar_bottom_nav);

 // Restore the ID of the current tab
 if (savedInstanceState != null) {
 mCurrentItem = savedInstanceState.getInt(CURRENT_ITEM_KEY);
 }

 BottomNavigationView bottomNav = findViewById(R.id.bottom_nav);
 bottomNav.setOnNavigationItemSelectedListener(
 new OnNavigationItemSelectedListener() {
 @Override
 public boolean onNavigationItemSelected(MenuItem item) {
 FragmentManager fm = getSupportFragmentManager();
 // Create the newly selected item's Fragment
 Fragment newFragment;

App Navigation Patterns ❘ 485

 switch(item.getItemId()) {
 case R.id.nav_home:
 newFragment = new HomeFragment();
 getSupportActionBar().setTitle(R.string.nav_home);
 break;
 case R.id.nav_profile:
 newFragment = new ProfileFragment();
 getSupportActionBar().setTitle(R.string.nav_profile);
 break;
 case R.id.nav_notifications:
 newFragment = new NotificationsFragment();
 getSupportActionBar().setTitle(R.string.nav_notifications);
 break;
 default: break;
 }
 // Replace the current fragment with the newly selected item
 fm.beginTransaction()
 .replace(R.id.main_content, newFragment)
 .setTransition(FragmentTransaction.TRANSIT_FRAGMENT_FADE)
 .commit();
 }
 return true;
 }
 });

 bottomNav.setOnNavigationItemReselectedListener(
 new OnNavigationItemReselectedListener() {
 @Override
 public boolean onNavigationItemReselected(MenuItem item) {
 // Scroll to the top of the current tab if it supports scrolling
 // This can be done in many ways: this code assumes all Fragments
 // implement a ScrollableFragment subclass you've created
 ScrollableFragment fragment =
 (ScrollableFragment) fm.findFragmentById(R.id.main_content);
 fragment.scrollToTop();
 }
 });
}

As with Tabs, bottom navigation bar navigation should not add to the back stack, and pressing the
back button should not undo a selection.

Using a Navigation Drawer
The navigation drawer, shown in Figure 13-5, is typically hidden
until invoked by the user tapping the navigation icon in the
app bar.

Because the navigation options are hidden by default, this pat-
tern is particularly appropriate when a single, main screen is FIGURE 13-5

486 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

significantly more important than the others. It also supports app architectures that require six or
more equally important top-level screens.

The NavigationView class, also part of the Android Design Support Library, provides the UI for
a Navigation Drawer. Like the Bottom Navigation View, the Navigation View is populated using a
Menu resource, either through the app:menu attribute in your layout XML resource, or program-
matically using the inflateMenu or getMenu methods.

When creating your navigation drawer Menu definition, use menu groups via the android:
checkableBehavior="single" attribute, as shown in Listing 13-20.

LISTING 13-20: Defining a Menu for a Navigation View

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <group android:checkableBehavior="single">
 <item
 android:id="@+id/nav_home"
 android:icon="@drawable/nav_home"
 android:title="@string/nav_home"
 android:checked="true" />
 <item
 android:id="@+id/nav_account"
 android:icon="@drawable/nav_account"
 android:title="@string/nav_account" />
 <item
 android:id="@+id/nav_settings"
 android:icon="@drawable/nav_settings"
 android:title="@string/nav_settings" />
 <item
 android:id="@+id/nav_about"
 android:icon="@drawable/nav_about"
 android:title="@string/nav_about" />
 </group>
</menu>

Using this approach, only one Menu Item can be selected at a time, and calling setChecked on a
different Menu Item will automatically uncheck the previous selection.

The Navigation View also supports the app:headerLayout attribute (and corresponding add-
HeaderView method), to add headers to be displayed above any following Menu Items. The header
can be retrieved in code using the getHeaderView method.

For larger screen UIs, a Navigation View can be included within the layout and made permanently
visible as a side navigation affordance (see Figure 13-6).

App Navigation Patterns ❘ 487

FIGURE 13-6

However, in most cases where side navigation is used, it’s common to use a Navigation View within
a DrawerLayout. Using a Drawer Layout makes it possible for users to swipe from the left screen
edge to open the drawer, and swipe in the opposite direction to close the drawer.

This also allows the temporary side navigation to be toggled open and closed by selecting the navi-
gation affordance on the left of the app bar, causing the Navigation View to appear over the content
while the user selects a new top-level screen, as shown in Figure 13-7.

FIGURE 13-7

488 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

A Drawer Layout’s first child view should always be the main layout that is always visible—in turn,
this layout contains the CoordinatorLayout, AppBarLayout, and the layout or View that will con-
tain your content, as shown in Listing 13-21. Setting android:fitsSystemWindows="true" on
both the DrawerLayout and NavigationView ensures that the navigation drawer will be drawn
underneath the status bar—as suggested by the material design guidelines.

LISTING 13-21: Building a layout using a Drawer Layout and Navigation View

<android.support.v4.widget.DrawerLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/drawer_layout"
 android:layout_height="match_parent"
 android:layout_width="match_parent"
 android:fitsSystemWindows="true">

 <!-- Your Main Content View -->
 <android.support.design.widget.CoordinatorLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <FrameLayout
 android:id="@+id/main_content"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_behavior="@string/appbar_scrolling_view_behavior" />

 <android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="?attr/colorPrimary"
 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar">

 <android.support.v7.widget.Toolbar
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:layout_scrollFlags="scroll|snap|enterAlways" />
 </android.support.design.widget.AppBarLayout>
 </android.support.design.widget.CoordinatorLayout>

 <!-- Side navigation view -->
 <android.support.design.widget.NavigationView
 android:id="@+id/nav_view"
 android:layout_height="match_parent"
 android:layout_width="wrap_content"
 android:layout_gravity="start"
 android:fitsSystemWindows="true"
 app:headerLayout="@layout/nav_header"
 app:menu="@menu/side_nav_menu"/>
</android.support.v4.widget.DrawerLayout>

App Navigation Patterns ❘ 489

To connect the app bar’s navigation icon to the Navigation Drawer, use the ActionBarDrawer-
Toggle. To ensure that the state of the ActionBarDrawerToggle is updated correctly, you must
override onPostCreate and onConfigurationChanged, including a call to the syncState method.

By calling your Action Bar Drawer Toggle’s onOptionsItemSelected method from within the
Activity’s onOptionsMenuSelected handler, as shown in Listing 13-22, selecting the app bar navi-
gation affordance will toggle the navigation drawer visibility.

LISTING 13-22: Connecting the App Bar and Navigation Drawer

private ActionBarDrawerToggle mDrawerToggle;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.app_bar_side_nav);

 // Ensure the navigation button is visible
 getSupportActionBar().setDisplayHomeAsUpEnabled(true);

 DrawerLayout drawerLayout = findViewById(R.id.drawer_layout);
 mDrawerToggle = new ActionBarDrawerToggle(this,
 drawerLayout,
 R.string.drawer_open_content_description,
 R.string.drawer_closed_content_description);
}

@Override
public void onPostCreate(Bundle savedInstanceState) {
 super.onPostCreate(savedInstanceState);
 mDrawerToggle.syncState();
}

@Override
public void onConfigurationChanged(Configuration newConfig) {
 super.onConfigurationChanged(newConfig);
 mDrawerToggle.syncState();
}

@Override
public boolean onOptionsMenuSelected(MenuItem item) {
 if (mDrawerToggle.onOptionsMenuSelected(item)) {
 return true;
 }

 // Follow with your own Menu Item selection logic
 return super.onOptionsMenuSelected(item);
}

490 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

When a Navigation View item is selected, the OnNavigationItemSelectedListener callback is
called. Within that handler, the received Menu Item should be compared to the currently visible
screen—and then the drawer should be closed—before the transition to the newly selected screen (if
it’s different from that currently displayed) should begin.

The content transition should begin only after the drawer has completely closed. This reduces jank
by avoiding multiple concurrent animations, as well as making it easier for users to understand what
is changing.

Listing 13-23 demonstrates how to configure the Action Bar Drawer Toggle by implementing a
DrawerListener, an interface that provides callbacks for the drawer opening and closing.

Note that the main content transition, and related events such as updating the title in the app bar,
are run within the onDrawerClosed handler.

LISTING 13-23: Connecting the App Bar and Navigation Drawer

private int mSelectedItem = 0;
private ActionBarDrawerToggle mDrawerToggle;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.app_bar_side_nav);

 // Ensure the navigation button is visible
 getSupportActionBar().setDisplayHomeAsUpEnabled(true);

 final DrawerLayout drawerLayout = findViewById(R.id.drawer_layout);

 mDrawerToggle = new ActionBarDrawerToggle(this,
 drawerLayout,
 R.string.drawer_open_content_description,
 R.string.drawer_closed_content_description) {

 @Override
 public void onDrawerClosed(View view) {
 // Create the newly selected item's Fragment
 Fragment newFragment;
 switch(mSelectedItem) {
 case R.id.nav_home:
 newFragment = new HomeFragment();
 getSupportActionBar().setTitle(R.string.nav_home);
 break;
 case R.id.nav_account:
 newFragment = new AccountFragment();
 getSupportActionBar().setTitle(R.string.nav_account);
 break;

App Navigation Patterns ❘ 491

 case R.id.nav_settings:
 newFragment = new SettingsFragment();
 getSupportActionBar().setTitle(R.string.nav_settings);
 break;
 case R.id.nav_about:
 newFragment = new AboutFragment();
 getSupportActionBar().setTitle(R.string.nav_about);
 break;
 default:
 return;
 }
 // Replace the current fragment with the newly selected item
 fm.beginTransaction()
 .replace(R.id.main_content, newFragment)
 .setTransition(FragmentTransaction.TRANSIT_FRAGMENT_FADE)
 .commit();
 // Reset the selected item
 mSelectedItem = 0;
 }
 };

 final NavigationView navigationView = findViewById(R.id.nav_view);

 navigationView.setNavigationItemSelectedListener(
 new OnNavigationItemSelectedListener() {
 @Override
 public boolean onNavigationItemSelected(MenuItem item) {
 mSelectedItem = item.getItemId();
 item.setChecked(true);
 drawerLayout.closeDrawer(navigationView);
 }
 });
}

Combining Navigation Patterns
It can often be useful to combine multiple navigation patterns. For
example, when using tabs it’s common to have one or two addi-
tional secondary views accessible as app bar actions (for example,
Settings and About). When you have three or more of these sec-
ondary views, you might consider adding a navigation drawer, as
shown in Figure 13-8.

This provides users with a visual cue (in the form of the drawer
indicator icon) that additional screens are available, without dis-
tracting from the tabs that should be the focus of user navigation attention.

Similarly, if you are using a bottom navigation bar, you should consider also using a navigation
drawer when there are three or more secondary views, as shown in Figure 13-9.

FIGURE 13-8

492 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

FIGURE 13-9

In both of these examples, the navigation drawer should not contain the items available within the
primary navigation element.

ADDING TABS TO THE EARTHQUAKE MONITOR

Let’s improve the earthquake-monitoring example by incorporating Tab navigation. The two tabs
will be the existing list of earthquakes, and a second tab will be used to display a map of the earth-
quake locations.

In this example, we’ll add the navigation elements—the map itself will be added in Chapter 15,
“Location, Contextual Awareness, and Mapping.”

 1. Start by creating the layout for the Fragment that will be used to display the map by creating
a new fragment_earthquake_map.xml layout in the res/layout folder. A Text View will
serve as a placeholder until we add a map in Chapter 15:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:text="Map Goes Here!"
 />
</FrameLayout>

Adding Tabs to the Earthquake Monitor ❘ 493

 2. Create a new EarthquakeMapFragment class that extends Fragment, overriding the
on CreateView handler to inflate the fragment_earthquake_map layout from Step 1:

public class EarthquakeMapFragment extends Fragment {

 @Override
 public View onCreateView(@NonNull LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 return inflater.inflate(R.layout.fragment_earthquake_map,
 container, false);
 }
}

 3. On larger screens (such as a tablet) we can display the list and map side-by-side. Create a
variation of the activity_earthquake_main.xml layout within the res/layout-sw720dp
folder that we’ll optimize for displays with at least 720dp of screen width. This layout will
display the Earthquake List Fragment and Earthquake Map Fragment side-by-side, limit-
ing the width of the list Fragment to half the minimum width for this layout (360dp). With
the additional screen space available, we can also use an expanded toolbar pattern, built
with an AppBarLayout that is double the height of a normal Toolbar on tablets (64dp), a
CollapsingToolbarLayout and a Toolbar:

<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="128dp"
 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar">

 <android.support.design.widget.CollapsingToolbarLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"/>
 </android.support.design.widget.CollapsingToolbarLayout>
 </android.support.design.widget.AppBarLayout>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:baselineAligned="false"
 android:orientation="horizontal"
 app:layout_behavior="@string/appbar_scrolling_view_behavior">

 <fragment
 android:id="@+id/EarthquakeListFragment"
 android:name=
 "com.professionalandroid.apps.earthquake.EarthquakeListFragment"

494 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

 android:layout_width="360dp"
 android:layout_height="match_parent"/>
 <fragment
 android:id="@+id/EarthquakeMapFragment"
 android:name=
 "com.professionalandroid.apps.earthquake.EarthquakeMapFragment"
 android:layout_width="0dp"
 android:layout_weight="1"
 android:layout_height="match_parent"
 android:layout_weight="1"/>
 </LinearLayout>
</android.support.design.widget.CoordinatorLayout>

 4. On smaller screens (such as a phone) we will display only the list or the map at any given
time, using tabs to switch between them. Modify strings.xml to add the labels for the new
tabs:

<string name="tab_list">List</string>
<string name="tab_map">Map</string>

 5. Modify the activity_earthquake_main.xml layout in the res/layout folder, adding a
ViewPager that will contain the list and map Fragments. Also take this opportunity to add a
TabLayout to the App Bar Layout:

<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar">

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:layout_scrollFlags="scroll|enterAlways|snap" />

 <android.support.design.widget.TabLayout
 android:id="@+id/tab_layout"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 </android.support.design.widget.AppBarLayout>

 <android.support.v4.view.ViewPager
 android:id="@+id/view_pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"/>
</android.support.design.widget.CoordinatorLayout>

Adding Tabs to the Earthquake Monitor ❘ 495

 6. Now add navigation support for switching between the list and map. In your Earthquake
Main Activity, create a FragmentPagerAdapter that displays the list as the first tab, and the
map as the second:

class EarthquakeTabsPagerAdapter extends FragmentPagerAdapter {

 EarthquakeTabsPagerAdapter(FragmentManager fm) {
 super(fm);
 }

 @Override
 public int getCount() {
 return 2;
 }

 @Override
 public Fragment getItem(int position) {
 switch(position) {
 case 0:
 return new EarthquakeListFragment();
 case 1:
 return new EarthquakeMapFragment();
 default:
 return null;
 }
 }

 @Override
 public CharSequence getPageTitle(int position) {
 switch(position) {
 case 0:
 return getString(R.string.tab_list);
 case 1:
 return getString(R.string.tab_map);
 default:
 return null;
 }
 }
}

 7. Still within the Earthquake Main Activity, modify the onCreate handler to remove the
Fragment Transaction code and instead set up tab navigation when the View Pager is
detected, using the Pager Adapter from Step 6:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_earthquake_main);
 Toolbar toolbar = findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);

 ViewPager viewPager = findViewById(R.id.view_pager);
 if (viewPager != null) {

496 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

 PagerAdapter pagerAdapter =
 new EarthquakeTabsPagerAdapter(getSupportFragmentManager());
 viewPager.setAdapter(pagerAdapter);

 TabLayout tabLayout = findViewById(R.id.tab_layout);
 tabLayout.setupWithViewPager(viewPager);
 }

 [... Existing code for loading and observing data ...]
}

Figure 13-10 shows the app running on a phone, where it displays the App Bar with two Tabs, and
on a tablet device, where the two Fragments are shown side-by-side.

FIGURE 13-10

CHOOSING THE RIGHT LEVEL OF INTERRUPTION

In Chapter 11, “Working on the Background,” you were introduced to Notifications as a method of
informing users of important information while your app is in the background. Android also offers
a number of mechanisms that can be used to inform—and even interrupt—the user while your app
is in the foreground, including Dialogs, Toast messages, and Snackbars.

Whenever possible, your app should allow users to continue with their regular workflow unhin-
dered. In exceptional cases, though, it may make sense to interrupt the users to inform them of a
significant event or change.

Note that every interruption or significant change in your app’s appearance has an inherent cost;
users must process what has changed and what, if any, actions they need to perform in response.

Choosing the Right Level of Interruption ❘ 497

Initiating a Dialog
Android Dialogs are partially transparent, floating windows
that partially obscure the UI that launched them, as shown in
Figure 13-11.

Dialog boxes are a common UI metaphor in desktop, web, and
mobile applications. Modal Dialogs are the most intrusive of the
options available for interrupting users—presenting information
and requiring a response before allowing users to continue.

In terms of Android UX design, Dialogs should be used to repre-
sent global system-level events, such as displaying system errors
or supporting required account selection. It’s good practice to limit the use of Dialogs within your
applications, and to minimize the degree to which you customize them.

Create Dialogs by extending the AppCompatDialogFragment class, a Fragment subclass that
includes all of the AppCompat styling, and handles saving and restoring the Dialog appropriately
during configuration changes.

Most Dialogs fall into a number of standard Dialog categories:

 ➤ A confirmation message with positive and negative response buttons

 ➤ A single-choice list of items for the user to make a selection

 ➤ A multiple-select list of items with checkboxes

These standard cases can be accommodated using an AlertDialog. To take advantage of the stan-
dard Alert Dialog UI, you must create a new AlertDialog.Builder object within the onCreate-
Dialog handler of your AppCompatDialogFragment, before assigning values for the title, message to
display, and optionally for any buttons, selection items, and text input boxes required—as shown in
Listing 13-24.

Clicking either button will close the Dialog after executing the attached On Click Listeners.

LISTING 13-24: Configuring an Alert Dialog in an AppCompat Dialog Fragment

public class PitchBlackDialogFragment extends AppCompatDialogFragment {
 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());

 builder.setTitle("It is Pitch Black")
 .setMessage("You are likely to be eaten by a Grue.")
 .setPositiveButton(
 "Move Forward",
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int arg1) {
 eatenByGrue();

FIGURE 13-11

498 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

 }
 })
 .setNegativeButton(
 "Go Back",
 new DialogInterface.OnClickListener(){
 @Override
 public void onClick(DialogInterface dialog, int arg1) {
 // do nothing
 }
 });
 // Create and return the AlertDialog
 return builder.create();
 }
}

Use the setCancelable method to determine if the user should be able to close the Dialog by press-
ing the back button without making a selection. If you choose to make the Dialog cancelable, you
can override the onCancel method in the App Compat Dialog Fragment to react to this event.

It’s also possible to build an entirely custom Dialog by overriding the onCreateView and inflating
your own layout.

Whether you are using a totally custom Dialog, an AlertDialog, or one of the other specialized
Dialog subclasses such as DatePickerDialog or TimePickerDialog, the dialog is shown by calling
the show method, as shown in Listing 13-25.

LISTING 13-25: Displaying a Dialog Fragment

String tag = "warning_dialog";
DialogFragment dialogFragment = new PitchBlackDialogFragment();

dialogFragment.show(getSupportFragmentManager(), tag);

Let’s Make a Toast
On the other end of the interruption spectrum are Toast messages. Toasts are transient notifications
that don’t steal focus, cannot be interacted with, and are non-modal; they appear, show a brief mes-
sage, and then disappear.

Given these limitations, they should only be used to confirm a user’s action immediately after it
occurs, or for system-level messages. They should only be displayed when your app has an active
Activity visible.

The Toast class includes a static makeText method that creates a standard Toast display window.
To construct a new Toast, pass the current Context, the text to display, and the length of time to
display it (LENGTH_SHORT or LENGTH_LONG) into the makeText method. After creating a Toast, you
can display it by calling show, as shown in Listing 13-26.

Choosing the Right Level of Interruption ❘ 499

LISTING 13-26: Displaying a Toast

Context context = this;
String msg = "To health and happiness!";
int duration = Toast.LENGTH_SHORT;

Toast toast = Toast.makeText(context, msg, duration);

// Remember, you must *always* call show()
toast.show();

Figure 13-12 shows a Toast. It will remain on-screen for approximately 2 seconds before fading out.
The application behind it remains fully responsive and interactive while the Toast is visible.

FIGURE 13-12

NOTE It should be noted that a Toast message must always be created and
shown on the UI thread. Make sure that if you’re building a Toast after the com-
pletion of background work, that your UI is still visible and you show it on the
UI thread—for example, within an Async Task’s onPostExecute handler.

Inline Interruptions with Snackbars
A Snackbar allows you to build interruptions directly into your UI
using a temporary View that is displayed by animating up from the
bottom of the screen, as shown in Figure 13-13.

Users can choose to swipe away a Snackbar immediately, or allow
it to time out and disappear automatically—similar to a Toast.

The Snackbar API, available as part of the Android Design
Support Library, includes a make method that takes a View, the text to display, and the length of
time to display it. Unlike Toasts, Snackbars also offer the ability to add a single action using the
setAction method, as shown in Listing 13-27.

FIGURE 13-13

500 ❘ CHAPTER 13 ImplementIng a modern androId User experIence

LISTING 13-27: Building and showing a Snackbar

Snackbar snackbar = Snackbar.make(coordinatorLayout, "Deleted",
 Snackbar.LENGTH_LONG);

// Define the action
snackbar.setAction("Undo", new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 // Undo the deletion
 }
});

// React to the Snackbar being dismissed
snackbar.addCallback(new Snackbar.Callback() {
 @Override
 public void onDismissed(Snackbar transientBottomBar, int event) {
 // Finalize the deletion
 }
});

// Show the Snackbar
snackbar.show();

This is often used to offer users an “undo” facility to recover from destructive actions. For example,
when a user deletes an object, it can be marked for deletion while the Snackbar is displayed, while a
callback is added using the addCallback method. Selecting the “undo” action simply unmarks the
object for deletion, while the onDismissed callback would apply the deletion.

The position of the Snackbar is dependent on what View you pass into make. If the View you pass
in is a Coordinator Layout or has a Coordinator Layout as one of its parents (either directly or indi-
rectly), the Snackbar will be positioned at the bottom of that Coordinator Layout. If no Coordinator
Layout is found, the Snackbar will be positioned at the bottom of your Activity.

NOTE When a Snackbar is used with a Coordinator Layout, users are able to
swipe it away and any FloatingActionButton that would potentially overlap
the incoming Snackbar will be smoothly animated alongside the Snackbar.

The Snackbar mechanism reduces risk and anxiety with your users by eliminating the potential of
a mistake causing an inadvertent—and unrecoverable—destructive action, without regularly inter-
rupting experienced users.

Strongly consider replacing blocking “are you sure?” confirmation Dialogs with Snackbars that
include restorative actions, as it allows both new users and frequent users to recover when needed
without constantly interrupting their workflow.

Advanced Customization of
Your User Interface

WHAT’S IN THIS CHAPTER?

 ➤ Making applications accessible

 ➤ Using the text-to-speech and speech recognition libraries

 ➤ Controlling device vibration

 ➤ Going full screen

 ➤ Using property animators

 ➤ Advanced Canvas drawing

 ➤ Handling touch events

 ➤ Advanced Drawable resources

 ➤ Copy, paste, and the clipboard

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The code downloads for this chapter are found at www.wrox.com. The code for this chapter is
divided into the following major examples:

 ➤ Snippets_ch14.zip

 ➤ Compass_ch14.zip

14

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

502 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

EXPANDING THE USER EXPERIENCE

Material design serves as the basis for the structure, UI, and the interaction patterns that make for a
great user experience (UX) on Android, but it’s only a base to build upon.

In this chapter you learn to think beyond basic necessities and create applications that combine pur-
pose with beauty and simplicity, even (or especially) when they’re providing complex functionality.

You also discover how to ensure your app offers a great user experience to all users, including those
users who take advantage of accessibility services when using their devices.

Next, you are introduced to the text-to-speech, speech recognition, and vibration APIs, in order to
expand the range of interactions available to users.

To further immerse the user within your app, you then learn to control the visibility of the system
UI including the status bar and navigation bar on the top and bottom of the screen, respectively.

You also discover how to use property animations to change individual views and how to enhance
the custom Views you created in Chapter 5, “Building User Interfaces,” using advanced canvas-
drawing techniques and your own touch event handling.

SUPPORTING ACCESSIBILITY

An important part of creating a compelling UI is to ensure that it can be used by everyone, including
people with disabilities that require them to interact with their devices in different ways.

The Accessibility APIs provide alternative interaction methods for users with visual, physical, or
age-related disabilities that make it difficult to interact fully with a touch screen.

In Chapter 5 you learned how to make your custom Views accessible and navigable. This section
summarizes some of the best practices to ensure your entire user experience is accessible.

Supporting Navigation Without a Touch Screen
While physical directional controllers, such as D-pads and arrow keys, are no longer common on
smartphone devices, they are emulated when users enable the Accessibility Services, making them
the primary means of navigation for many users.

To ensure that your UI is navigable without requiring a touch screen, it’s important that your appli-
cation supports each of these input mechanisms.

The first step is to ensure that each input View is focusable and clickable. Pressing the center or OK
button should then affect the focused control in the same way as touching it using the touch screen.

It’s good practice to visually indicate when a control has the input focus, allowing users to know
which control they are interacting with. All the Views included in the Android SDK are focusable.

The Android run time determines the focus order for each control in your layout based on an algo-
rithm that finds the nearest neighbor in a given direction. You can manually override that order
using the android:nextFocusDown, android:nextFocusLeft, android:nextFocusRight, and
android:nextFocusUp attributes for any View within your layout definition. It’s good practice to

Introducing Android Text-to-Speech ❘ 503

ensure that consecutive navigation movements in the opposite direction should return you to the
original location.

Providing a Textual Description of Each View
Context is of critical importance when designing your UI. Button images, text labels, or even the
relative location of each control can be used to indicate the purpose of each input View.

To ensure your application is accessible, consider how a user without visual context can navigate
and use your UI. To assist, each View can include an android:contentDescription attribute that
can be read aloud to users who have enabled the accessibility speech tools:

<Button
 android:id="@+id/pick_contact_button"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/pick_contact_button"
 android:contentDescription="@string/pick_contact_button_description"
/>

Every View within your layout that can hold focus should have a content description that provides
the entire context necessary for a user to act on it.

INTRODUCING ANDROID TEXT-TO-SPEECH

The text-to-speech (TTS) libraries, also known as speech synthesis, enable you to output synthesized
speech from within your applications, allowing them to “talk” to your users.

Due to storage space constraints on some Android devices, the language packs are not always prein-
stalled on each device. Before using the TTS engine, it’s good practice to confirm the language packs
are installed.

To check for the TTS libraries, start a new Activity for a result using the ACTION_CHECK_TTS_DATA
action from the TextToSpeech.Engine class:

Intent intent = new Intent(TextToSpeech.Engine.ACTION_CHECK_TTS_DATA);
startActivityForResult(intent, TTS_DATA_CHECK);

The onActivityResult handler receives CHECK_VOICE_DATA_PASS if the voice data has been
installed successfully. If the voice data is not currently available, start a new Activity using the
ACTION_INSTALL_TTS_DATA action from the TTS Engine class to initiate its installation:

Intent installVoice = new Intent(Engine.ACTION_INSTALL_TTS_DATA);
startActivity(installVoice);

After confirming the voice data is available, you need to create and initialize a new TextToSpeech
instance. Note that you cannot use the new Text To Speech object until initialization is complete.
Pass an OnInitListener into the constructor that will be fired when the TTS engine has been
initialized:

boolean ttsIsInit = false;
TextToSpeech tts = null;

504 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 if (requestCode == TTS_DATA_CHECK) {
 if (resultCode == Engine.CHECK_VOICE_DATA_PASS) {
 tts = new TextToSpeech(this, new OnInitListener() {
 public void onInit(int status) {
 if (status == TextToSpeech.SUCCESS) {
 ttsIsInit = true;
 // TODO Speak!
 }
 }
 });
 }
 }
}

After initializing Text To Speech, you can use the speak method to synthesize voice data using the
default device audio output:

Bundle parameters = null;
String utteranceId = null; // Can be used with setOnUtteranceProgressListener
tts.speak("Hello, Android", TextToSpeech.QUEUE_ADD, parameters, utteranceId);

The speak method enables you to specify either to add the new voice output to the existing queue or
to flush the queue and start speaking immediately.

You can affect the way the voice output sounds using the setPitch and setSpeechRate methods.
Each method accepts a float parameter that modifies the pitch and speed, respectively, of the voice
output.

You can also change the pronunciation of your voice output using the setLanguage method. This
method takes a Locale parameter to specify the country and language of the text to speak. This
affects the way the text is spoken to ensure the correct language and pronunciation models are used.

When you have finished speaking, use stop to halt voice output and shutdown to free the TTS
resources:

tts.stop();
tts.shutdown();

Listing 14-1 determines whether the TTS voice library is installed, initializes a new TTS engine, and
uses it to speak in UK English.

LISTING 14-1: Using text-to-speech

private static int TTS_DATA_CHECK = 1;

private TextToSpeech tts = null;
private boolean ttsIsInit = false;

private void initTextToSpeech() {
 Intent intent = new Intent(Engine.ACTION_CHECK_TTS_DATA);
 startActivityForResult(intent, TTS_DATA_CHECK);
}

Using Speech Recognition ❘ 505

protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 if (requestCode == TTS_DATA_CHECK) {
 if (resultCode == Engine.CHECK_VOICE_DATA_PASS) {
 tts = new TextToSpeech(this, new OnInitListener() {
 public void onInit(int status) {
 if (status == TextToSpeech.SUCCESS) {
 ttsIsInit = true;
 if (tts.isLanguageAvailable(Locale.UK) >= 0)
 tts.setLanguage(Locale.UK);
 tts.setPitch(0.8f);
 tts.setSpeechRate(1.1f);
 speak();
 }
 }
 });
 } else {
 Intent installVoice = new Intent(Engine.ACTION_INSTALL_TTS_DATA);
 startActivity(installVoice);
 }
 }
}

private void speak() {
 if (tts != null && ttsIsInit) {
 tts.speak("Hello, Android old chap!", TextToSpeech.QUEUE_ADD, null);
 }
}

@Override
public void onDestroy() {
 if (tts != null) {
 tts.stop();
 tts.shutdown();
 }
 super.onDestroy();
}

USING SPEECH RECOGNITION

Android supports voice input and speech recognition using the RecognizerIntent class. This API
enables you to accept voice input into your application using the standard voice input dialog, as
shown in Figure 14-1.

FIGURE 14-1

506 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

To add voice input to your app, your app must hold the RECORD_AUDIO permission:

<uses-permission android:name="android.permission.RECORD_AUDIO"/>

NOTE The RECORD_AUDIO permission is a dangerous permission that must be
requested at run time on Android 6.0 Marshmallow (API Level 23) and higher
devices.

To initialize voice recognition, call startNewActivityForResult, passing in an Intent that specifies
the RecognizerIntent.ACTION_RECOGNIZE_SPEECH or RecognizerIntent.ACTION_WEB_SEARCH
actions. The former action enables you to receive the input speech within your application, whereas
the latter action enables you to trigger a web search or voice action using the native providers.

The launch Intent must include the RecognizerIntent.EXTRA_LANGUAGE_MODEL extra to specify the
language model used to parse the input audio. This can be either LANGUAGE_MODEL_FREE_FORM or
LANGUAGE_MODEL_WEB_SEARCH; both are available as static constants from the RecognizerIntent
class.

You can also specify a number of optional extras to control the language, potential result count, and
display prompt using the following Recognizer Intent constants:

 ➤ EXTRA_LANGUAGE—Specifies a language constant from the Locale class to use an input lan-
guage other than the device default. You can find the current default by calling the static
getDefault method on the Locale class.

 ➤ EXTRA_MAXRESULTS—Uses an integer value to limit the number of potential recognition
results returned.

 ➤ EXTRA_PROMPT—Specifies a string that displays in the voice input dialog (shown in
Figure 14-1) to prompt the user to speak.

NOTE The engine that handles the speech recognition may not be capable of
understanding spoken input from all the languages available from the Locale
class.

Not all devices include support for speech recognition. In such cases it is gener-
ally possible to download the voice recognition library from the Google Play
Store.

Using Speech Recognition for Voice Input
When using voice recognition to provide user input to your application, call startNewActivity-
ForResult using the RecognizerIntent.ACTION_RECOGNIZE_SPEECH action, as shown in
Listing 14-2.

Using Speech Recognition ❘ 507

LISTING 14-2: Initiating a speech recognition request

Intent intent = new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);
// Specify free form input
intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
 RecognizerIntent.LANGUAGE_MODEL_FREE_FORM);
intent.putExtra(RecognizerIntent.EXTRA_PROMPT,
 "or forever hold your peace");
intent.putExtra(RecognizerIntent.EXTRA_MAX_RESULTS, 1);
intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE, Locale.ENGLISH);
startActivityForResult(intent, VOICE_RECOGNITION);

When the user finishes speaking, the speech recognition engine analyzes and processes the resulting
audio and returns the results through the onActivityResult handler as an Array List of strings in
the EXTRA_RESULTS extra, as shown in Listing 14-3.

LISTING 14-3: Finding the results of a speech recognition request

@Override
protected void onActivityResult(int requestCode,
 int resultCode,
 Intent data) {
 if (requestCode == VOICE_RECOGNITION && resultCode == RESULT_OK) {
 ArrayList<String> results =
 data.getStringArrayListExtra(RecognizerIntent.EXTRA_RESULTS);

 float[] confidence =
 data.getFloatArrayExtra(
 RecognizerIntent.EXTRA_CONFIDENCE_SCORES);

 // TODO Do something with the recognized voice strings
 }}

Each string returned in the Array List represents a potential match for the spoken input. You can
find the recognition engine’s confidence in each result using the float array returned in the EXTRA_
CONFIDENCE_SCORES extra. Each value in the array is the confidence score between 0 (no confidence)
and 1 (high confidence) that the speech has been correctly recognized.

Using Speech Recognition for Search
When using speech recognition to facilitate search, rather than handling the received speech yourself
you can use the RecognizerIntent.ACTION_WEB_SEARCH action to display a web search result or to
trigger another type of voice action based on the user’s speech, as shown in Listing 14-4.

LISTING 14-4: Finding the results of a speech recognition request

Intent intent = new Intent(RecognizerIntent.ACTION_WEB_SEARCH);
intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
 RecognizerIntent.LANGUAGE_MODEL_WEB_SEARCH);
startActivityForResult(intent, 0);

508 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

CONTROLLING DEVICE VIBRATION

In Chapter 11, “Working in the Background,” you learned how to create Notifications that can use
vibration to enrich event feedback. In some circumstances, you may want to vibrate the device inde-
pendently of Notifications.

For example, vibrating the device is an excellent way to provide haptic user feedback, and is particu-
larly popular as a feedback mechanism for games.

To control device vibration, your applications needs the VIBRATE permission:

<uses-permission android:name="android.permission.VIBRATE"/>

Device vibration is controlled through the Vibrator Service, accessible via the getSystemService
method:

String vibratorService = Context.VIBRATOR_SERVICE;
Vibrator vibrator = (Vibrator)getSystemService(vibratorService);

Not all devices contain a vibrator (for example, televisions), so use the hasVibrator method to
determine if you should use a different mechanism to provide feedback to the user:

boolean hasVibrator = vibrator.hasVibrator();

Call vibrate to start device vibration; you can pass in either a vibration duration or a pattern of
alternating vibration/pause sequences along with an optional index parameter that repeats the pat-
tern starting at the index specified:

long[] pattern = {1000, 2000, 4000, 8000, 16000 };
vibrator.vibrate(pattern, 0); // Execute vibration pattern.
Vibrator.vibrate(pattern, -1); // Execute vibration pattern just once
vibrator.vibrate(1000); // Vibrate for 1 second.

To cancel vibration, call cancel; exiting your application automatically cancels any vibration it has
initiated:

vibrator.cancel();

GOING FULL SCREEN

If, and only if, you’re building an application that is designed to be fully immersive it may make
sense for your application to occupy the entire screen, hiding or obscuring the system UI includ-
ing the status bar along the top of the screen and any on-screen navigation controls. Examples of
immersive applications include games such as first-person racers or shooters, e-learning applications,
and video players.

To control the visibility of the navigation bar on handsets, or the appearance of the system bar in
tablets, you can use the setSystemUiVisibility method on any View visible within your Activity
hierarchy. The SYSTEM_UI_FLAG_HIDE_NAVIGATION flag hides the navigation bar while the SYSTEM_UI_
FLAG_FULLSCREEN flag will result in the status bar being hidden.

Going Full Screen ❘ 509

By default, any user interaction with the Activity will show the navigation bar, and swiping down
from the top edge of the screen will show the status bar, resetting the flags. This is appropriate for
apps such as video players where you expect minimal user interaction.

Android 4.4 Kit Kat (API Level 19) added the ability to provide truly immersive experiences even
when the user is interacting with your Activity. This comes with the addition of two additional flags:

 ➤ SYSTEM_UI_FLAG_IMMERSIVE—In Immersive mode, users can interact with the Activity, requir-
ing that they swipe down from the top edge of the screen in order to reveal the hidden system
UI and exit immersive mode. This is appropriate for a book or news reader, where users will
need to touch the Activity to scroll or change pages.

 ➤ SYSTEM_UI_FLAG_IMMERSIVE_STICKY—Similar to Immersive mode, the user can fully interact
with the Activity. However, swiping down only temporarily reveals the system UI, before it
automatically hides again. This is appropriate for a game or drawing app that expects infre-
quent use of the system UI.

When using only these flags, the position of your Views will be adjusted whenever the system UI is
hidden or shown. To stabilize your UI, you can use the additional flags of SYSTEM_UI_FLAG_LAYOUT_
FULLSCREEN, SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION, and SYSTEM_UI_FLAG_LAYOUT_STABLE to
request that the Activity always be laid out as if the system UI is always hidden:

private void hideSystemUI() {
 // Hide the navigation bar, status bar, and use IMMERSIVE
 // Note the usage of the _LAYOUT flags to keep a stable layout
 getWindow().getDecorView().setSystemUiVisibility(
 View.SYSTEM_UI_FLAG_LAYOUT_STABLE
 | View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION
 | View.SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN
 | View.SYSTEM_UI_FLAG_HIDE_NAVIGATION // hide nav bar
 | View.SYSTEM_UI_FLAG_FULLSCREEN // hide status bar
 | View.SYSTEM_UI_FLAG_IMMERSIVE);
}

// Show the system UI – note how the _LAYOUT flags are kept to maintain
// a stable layout
private void showSystemUI() {
 getWindow().getDecorView().setSystemUiVisibility(
 View.SYSTEM_UI_FLAG_LAYOUT_STABLE
 | View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION
 | View.SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN);
}

It’s good practice to synchronize other changes within your UI with changes in navigation visibility.
For example, you may choose to hide and display the App Bar and other navigational controls based
on entering and exiting full screen mode.

You can do this by registering an OnSystemUiVisibilityChangeListener to a View—typically, the
View you’re using to control the navigation visibility—as shown in Listing 14-5.

510 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

LISTING 14-5: Reacting to changes in system UI visibility

myView.setOnSystemUiVisibilityChangeListener(
 new OnSystemUiVisibilityChangeListener() {

 public void onSystemUiVisibilityChange(int visibility) {
 if (visibility == View.SYSTEM_UI_FLAG_VISIBLE) {
 // TODO Display Action Bar and Status Bar
 }
 else {
 // TODO Hide Action Bar and Status Bar
 }
 }
});

Note that the system UI flags are reset whenever the user leaves (and subsequently returns to) your
app. As a result the timing of calls to set these flags is important to ensure the UI is always in the
state you expect. It’s recommended that you set and reset any system UI flags within the onResume
and onWindowFocusChanged handlers.

WORKING WITH PROPERTY ANIMATIONS

In Chapter 12, “Implementing the Android Design Philosophy,” you learned how to build “reveal”
animations and shared element Activity transitions, to help construct larger transitions within your
app. When it comes to animating individual Views, you can use property animators.

A property animator directly modifies any property—visual or otherwise—to transition from one
value to another, over a specified period of time, using the interpolation algorithm of your choice,
and repeating as required. The value can be any variable or object, from a regular integer to a com-
plex Class instance.

You can use property animators to create a smooth transition for anything within your code; the
target property doesn’t even need to represent something visual. Property animations are effectively
iterators implemented using a background timer to increment or decrement a value according to a
given interpolation path over a given period of time.

This is an incredibly powerful tool that can be used for anything from a simple View effect (such as
moving, scaling, or fading a View), to complex animations, including runtime layout changes and
curved transitions.

Creating Property Animations
The simplest technique for creating property animations is using an ObjectAnimator. The Object
Animator class includes the ofFloat, ofInt, and ofObject static methods to easily create an ani-
mation that transitions the specified property of the target object between the values provided:

String propertyName = "alpha";
float from = 1f;
float to = 0f;

Working with Property Animations ❘ 511

ObjectAnimator anim = ObjectAnimator.ofFloat(targetObject, propertyName,
 from, to);
// Make sure to start your animation!
anim.start();

Alternatively, you can provide a single value to animate the property from its current value to its
final value:

ObjectAnimator anim = ObjectAnimator.ofFloat(targetObject, propertyName, to);
anim.start();

NOTE To animate a given property, there must be associated getter/setter func-
tions on the underlying object. In the preceding example, the targetObject
must include getAlpha and setAlpha methods that return and accept a float
value, respectively.

To target a property of a type other than integer or float, use the ofObject method. This method
requires that you supply an implementation of the TypeEvaluator class. Implement the evaluate
method to return an object that should be returned when the animation is a given fraction of the
way through animating between the start and end objects:

TypeEvaluator<MyClass> evaluator = new TypeEvaluator<MyClass>() {
 public MyClass evaluate(float fraction,
 MyClass startValue,
 MyClass endValue) {
 MyClass result = new MyClass();
 // TODO Modify the new object to represent itself the given
 // fraction between the start and end values.
 return result;
 }
};

// Animate between two instances
ValueAnimator oa
 = ObjectAnimator.ofObject(evaluator, myClassFromInstance, myClassToInstance);

oa.setTarget(myClassInstance);
oa.start();

By default, each animation will run once with a 300ms duration. Use the setDuration method to
alter the amount of time the interpolator should use to complete the transition:

anim.setDuration(500);

You can use the setRepeatMode and setRepeatCount methods to cause the animation to be applied
either a set number of times or infinitely:

anim.setRepeatCount(ValueAnimator.INFINITE);

You can set the repeat mode either to restart from the beginning or to apply the animation in
reverse:

anim.setRepeatMode(ValueAnimator.REVERSE);

512 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

To create the same Object Animator as an XML resource, create a new XML file in the res/anima-
tor folder:

<objectAnimator xmlns:android="http://schemas.android.com/apk/res/android"
 android:valueTo="0"
 android:propertyName="alpha"
 android:duration="500"
 android:valueType="floatType"
 android:repeatCount="-1"
 android:repeatMode="reverse"
/>

The filename can then be used as the resource identifier. To affect a particular object with an XML
animator resource, use the AnimatorInflator.loadAnimator method, passing in the current con-
text and the resource ID of the animation to apply in order to obtain a copy of the Object Animator,
and then use the setTarget method to apply it to an object:

Animator anim = AnimatorInflater.loadAnimator(context, resID);
anim.setTarget(targetObject);

By default, the interpolator used to transition between the start and end values of each animation
uses a nonlinear AccelerateDecelerateInterpolator, which provides the effect of accelerating at
the beginning of the transition and decelerating when approaching the end.

You can use the setInterpolator method to apply one of the following SDK interpolators:

 ➤ AccelerateDecelerateInterpolator—The rate of change starts and ends slowly but
accelerates through the middle.

 ➤ AccelerateInterpolator—The rate of change starts slowly but accelerates through the
middle.

 ➤ AnticipateInterpolator—The change starts backward and then flings forward.

 ➤ AnticipateOvershootInterpolator—The change starts backward, flings forward, over-
shoots the target value, and finally goes back to the final value.

 ➤ BounceInterpolator—The change bounces at the end.

 ➤ CycleInterpolator—The change is repeated following a sinusoidal pattern.

 ➤ DecelerateInterpolator—The rate of change starts out quickly and then decelerates.

 ➤ LinearInterpolator—The rate of change is constant.

 ➤ OvershootInterpolator—The change flings forward, overshoots the last value, and then
comes back.

 ➤ PathInterpolator—The change follows a Path object that extends from Point (0, 0) to (1,
1). The x coordinate along the Path is the input value and the output is the y coordinate of
the line at that point:

anim.setInterpolator(new OvershootInterpolator());

You can also extend your own TimeInterpolator class to specify a custom interpolation algorithm.

Enhancing Your Views ❘ 513

To execute an animation, you must call its start method:

anim.start();

Creating Property Animation Sets
Android includes the AnimatorSet class to make it easier to create complex, interrelated animations:

AnimatorSet bouncer = new AnimatorSet();

To add a new animation to an Animator Set, use the play method. This returns an AnimatorSet
.Builder object that lets you specify when to play the new animation in relation to the existing set:

AnimatorSet mySet = new AnimatorSet();
mySet.play(firstAnimation).before(concurrentAnim1);
mySet.play(concurrentAnim1).with(concurrentAnim2);
mySet.play(lastAnim).after(concurrentAnim2);

Use the start method to execute the sequence of animations:

mySet.start();

Using Animation Listeners
The Animator.AnimationListener class lets you create event handlers that are fired when an ani-
mation begins, ends, repeats, or is canceled:

Animator.AnimatorListener animListener = new AnimatorListener() {

 public void onAnimationStart(Animator animation) {
 // TODO Auto-generated method stub
 }

 public void onAnimationRepeat(Animator animation) {
 // TODO Auto-generated method stub
 }

 public void onAnimationEnd(Animator animation) {
 // TODO Auto-generated method stub
 }

 public void onAnimationCancel(Animator animation) {
 // TODO Auto-generated method stub
 }
};

To apply an Animation Listener to your property animation, use the addListener method:

anim.addListener(animListener);

ENHANCING YOUR VIEWS

Custom Views were introduced in Chapter 5 and can serve as an important differentiator among a
sea of standard apps when used properly—overuse often leads to additional user confusion as they
are overwhelmed with custom controls and new UI elements to understand.

514 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

It’s important when building custom Views to ensure this additional risk is offset by a dramatically
improved user experience. This could be through improved visual effects or through intuitive inter-
actions by handling touch events.

ADVANCED CANVAS DRAWING

You were introduced to the Canvas class in Chapter 5, where you learned how to go beyond the
included Views and build custom UIs. In this section you learn more about the Canvas, and take
advantage of advanced UI visual effects such as Shaders and translucency.

The concept of the canvas is a common metaphor in graphics programming, and generally consists
of three basic drawing components:

 ➤ Canvas—Supplies the draw methods that paint drawing primitives onto the underlying
bitmap.

 ➤ Paint—Also referred to as a “brush,” Paint lets you specify how a primitive is drawn on
the bitmap.

 ➤ Bitmap—The surface being drawn on.

Most of the advanced techniques described in this chapter involve variations and modifications to
the Paint object that enable you to add depth and texture to otherwise flat raster drawings.

The Android drawing API supports translucency, gradient fills, rounded rectangles, and anti-
aliasing. These drawing APIs use a traditional raster-style painter’s algorithm. The result of this
raster approach is improved efficiency, but changing a Paint object does not affect primitives that
have already been drawn; it affects only new elements.

What Can You Draw?
The Canvas class encapsulates the bitmap used as a surface for your artistic endeavors; it also
exposes the draw methods used to implement your designs.

Without going into detail about each draw method, the following list provides a taste of the primi-
tives available:

 ➤ drawARGB/drawRGB/drawColor—Fills the canvas with a single color.

 ➤ drawArc—Draws an arc between two angles within an area bounded by a rectangle.

 ➤ drawBitmap—Draws a bitmap on the Canvas. You can alter the appearance of the target bit-
map by specifying a target size or using a matrix to transform it.

 ➤ drawBitmapMesh—Draws a bitmap using a mesh that lets you manipulate the appearance of
the target by moving points within it.

 ➤ drawCircle—Draws a circle of a specified radius centered on a given point.

 ➤ drawLine[s]—Draws a line (or series of lines) between two points.

 ➤ drawOval—Draws an oval bounded by the rectangle specified.

Advanced Canvas Drawing ❘ 515

 ➤ drawPaint—Fills the entire Canvas with the specified Paint.

 ➤ drawPath—Draws the specified Path. A Path object is often used to hold a collection of
drawing primitives within a single object.

 ➤ drawPicture—Draws a Picture object within the specified rectangle.

 ➤ drawRect—Draws a rectangle.

 ➤ drawRoundRect—Draws a rectangle with rounded edges.

 ➤ drawText—Draws a text string on the Canvas. The text font, size, color, and rendering prop-
erties are set in the Paint object used to render the text.

 ➤ drawTextOnPath—Draws text that follows along a specified path (not supported when using
hardware acceleration).

 ➤ drawVertices—Draws a series of tri-patches specified as a series of vertex points (not sup-
ported when using hardware acceleration).

Each drawing method lets you specify a Paint object to render it. In the following sections, you
learn how to create and modify Paint objects to get the most out of your drawings.

Getting the Most from Your Paint
The Paint class represents a paintbrush and palette. It lets you choose how to render the primitives
you draw onto the Canvas using the draw methods described in the previous section. By modifying
the Paint object, you can control the color, style, font, and special effects used when drawing.

NOTE Not all the Paint options described here are available if you’re using hard-
ware acceleration to improve 2D drawing performance. As a result, it’s impor-
tant to check how hardware acceleration affects your 2D drawing.

Most simply, setColor enables you to select the color of a Paint, whereas the style of a Paint object
(controlled using setStyle) enables you to decide if you want to draw only the outline of a drawing
object (STROKE), just the filled portion (FILL), or both (STROKE_AND_FILL).

Beyond these simple controls, the Paint class also supports transparency and can be modified with
a variety of Shaders, filters, and effects to provide a rich palette of complex paints and brushes.

In the following sections, you learn what some of the features available in the Paint class are and
how to use them. These sections outline what can be achieved (such as gradients and edge emboss-
ing) without exhaustively listing all possible alternatives.

Using Translucency
All colors in Android include an opacity component (alpha channel). You define an alpha value for a
color when you create it using the argb or parseColor methods:

// Make color red and 50% transparent
int opacity = 127;

516 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

int intColor = Color.argb(opacity, 255, 0, 0);
int parsedColor = Color.parseColor("#7FFF0000");

Alternatively, you can set the opacity of an existing Paint object using the setAlpha method:

// Make color 50% transparent
int opacity = 127;
myPaint.setAlpha(opacity);

Creating a paint color that’s not 100 percent opaque means that any primitive drawn with it will be
partially transparent—making whatever is drawn beneath it partially visible.

You can use transparency effects in any class or method that uses colors including Paint colors,
Shaders, and Mask Filters.

Introducing Shaders
Extensions of the Shader class let you create Paints that fill drawn objects with more than a single
solid color.

The most common use of Shaders is to define gradient fills; gradients are an excellent way to add
depth and texture to 2D drawings. Android includes three gradient Shaders as well as a Bitmap
Shader and a Compose Shader.

Trying to describe painting techniques seems inherently futile, so Figure 14-2 shows how each
Shader works. Represented from left to right are LinearGradient, RadialGradient, and
SweepGradient.

NOTE Not included in the image in Figure 14-2 is the ComposeShader, which
lets you create a composite of multiple Shaders, nor the BitmapShader,
which lets you create a brush based on a bitmap image.

FIGURE 14-2

Advanced Canvas Drawing ❘ 517

Creating Gradient Shaders
Gradient Shaders let you fill drawings with an interpolated color range. You can define the gradient
in two ways. The first is a simple transition between two colors:

int colorFrom = Color.BLACK;
int colorTo = Color.WHITE;

LinearGradient myLinearGradient =
 new LinearGradient(x1, y1, x2, y2,
 colorFrom, colorTo, TileMode.CLAMP);

The second alternative is to specify a more complex series of colors distributed at set proportions:

int[] gradientColors = new int[3];
gradientColors[0] = Color.GREEN;
gradientColors[1] = Color.YELLOW;
gradientColors[2] = Color.RED;

float[] gradientPositions = new float[3];
gradientPositions[0] = 0.0f;
gradientPositions[1] = 0.5f;
gradientPositions[2] = 1.0f;

RadialGradient radialGradientShader
 = new RadialGradient(centerX, centerY,
 radius,
 gradientColors,
 gradientPositions,
 TileMode.CLAMP);

Each gradient Shader (linear, radial, and sweep) lets you define the gradient fill using either of these
techniques.

Applying Shaders to Paint
To use a Shader when drawing, apply it to a Paint using the setShader method:

shaderPaint.setShader(myLinearGradient);

Anything you draw with this Paint will be filled with the Shader you specified rather than the paint
color.

Using Shader Tile Modes
The brush sizes of the gradient Shaders are defined using explicit bounding rectangles or center
points and radius lengths; the Bitmap Shader implies a brush size through its bitmap size.

If the area defined by your Shader brush is smaller than the area being filled, the TileMode deter-
mines how the remaining area will be covered. You can define which tile mode to use with the fol-
lowing static constants:

 ➤ CLAMP—Uses the edge colors of the Shader to fill the extra space

 ➤ MIRROR—Flips the Shader image horizontally and vertically so that each image seams with
the last

 ➤ REPEAT—Repeats the Shader image horizontally and vertically, but doesn’t flip it

518 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

Using Mask Filters
The MaskFilter classes let you assign edge effects to your Paint. Mask Filters are not supported
when the Canvas is hardware-accelerated.

Extensions to MaskFilter apply transformations to the alpha-channel of a Paint along its outer
edge. Android includes the following Mask Filters:

 ➤ BlurMaskFilter—Specifies a blur style and radius to feather the edges of your Paint

 ➤ EmbossMaskFilter—Specifies the direction of the light source and ambient light level to add
an embossing effect

To apply a Mask Filter, use the setMaskFilter method, passing in a MaskFilter object:

// Set the direction of the light source
float[] direction = new float[]{ 1, 1, 1 };
// Set the ambient light level
float light = 0.4f;
// Choose a level of specularity to apply
float specular = 6f;
// Apply a level of blur to apply to the mask
float blur = 3.5f;
EmbossMaskFilter emboss = new EmbossMaskFilter(direction, light,
 specular, blur);

// Apply the mask
if (!canvas.isHardwareAccelerated())
 myPaint.setMaskFilter(emboss);

Using Color Filters
Whereas Mask Filters are transformations of a Paint’s alpha-channel, a ColorFilter applies a
transformation to each of the RGB channels. All ColorFilter-derived classes ignore the alpha-
channel when performing their transformations.

Android includes three Color Filters:

 ➤ ColorMatrixColorFilter—Lets you specify a 4 x 5 ColorMatrix to apply to a Paint.
Color Matrixes are commonly used to perform image processing programmatically and are
useful because they support chaining transformations using matrix multiplication.

 ➤ LightingColorFilter—Multiplies the RGB channels by the first color before adding the
second. The result of each transformation will be clamped between 0 and 255.

 ➤ PorterDuffColorFilter—Lets you use any one of the 18 Porter-Duff rules for digital
image compositing to apply a specified color to the Paint. The Porter-Duff rules are defined at
developer.android.com/reference/android/graphics/PorterDuff.Mode.html.

Apply ColorFilters using the setColorFilter method:

myPaint.setColorFilter(new LightingColorFilter(Color.BLUE, Color.RED));

Advanced Canvas Drawing ❘ 519

Using Path Effects
The effects described so far affect the way the Paint fills a drawing; Path Effects are used to control
how its outline (stroke) is drawn.

Using Path Effects, you can change the appearance of a shape’s corners and control the appear-
ance of the outline. Path Effects are particularly useful for drawing Path primitives, but they can be
applied to any Paint via the setPathEffect method:

borderPaint.setPathEffect(new CornerPathEffect(5));

Android includes several Path Effects, including the following:

 ➤ CornerPathEffect—Lets you smooth sharp corners in the shape of a primitive by replacing
them with rounded corners.

 ➤ DashPathEffect—Rather than drawing a solid outline, you can use the Dash Path Effect
to create an outline of broken lines (dashes/dots). You can specify any repeating pattern of
solid/empty line segments.

 ➤ DiscretePathEffect—Similar to the Dash Path Effect, but with added randomness.
Specifies the length of each segment and a degree of deviation from the original path to use
when drawing it.

 ➤ PathDashPathEffect—Enables you to define a new shape (path) to use as a stamp to out-
line the original path.

The following effects let you combine multiple Path Effects to a single Paint:

 ➤ SumPathEffect—Adds two effects to a path in sequence, such that each effect is applied to
the original path and the two results are combined.

 ➤ ComposePathEffect—Applies first one effect and then applies the second effect to the result
of the first.

Path Effects that modify the shape of the object being drawn change the area of the affected shape.
This ensures that any fill effects applied to the same shape are drawn within the new bounds.

Changing the Transfer Mode
Change a Paint’s Xfermode to affect the way it paints new colors on top of what’s already on the
Canvas. Under normal circumstances, painting on top of an existing drawing layers the new shape
on top. If the new Paint is fully opaque, it totally obscures the paint underneath; if it’s partially
transparent, it tints the colors underneath.

The PorterDuffXfermode is a powerful transfer mode with which you can use any of the 18 Porter-
Duff rules for image composition to control how the paint interacts with the existing canvas image.

To apply transfer modes, use the setXferMode method:

PorterDuffXfermode mode = new PorterDuffXfermode(
 PorterDuff.Mode.DST_OVER);
borderPen.setXfermode(mode);

520 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

Improving Paint Quality with Anti-Aliasing
When you create a new Paint object, you can pass in several flags that affect the way the Paint will
be rendered. One of the most interesting is the ANTI_ALIAS_FLAG, which ensures that diagonal lines
drawn with this paint are anti-aliased to give a smooth appearance (at the cost of performance).

Anti-aliasing is particularly important when drawing text, as anti-aliased text can be significantly
easier to read. To create even smoother text effects, you can apply the SUBPIXEL_TEXT_FLAG, which
applies subpixel anti-aliasing.

Paint paint = new Paint(Paint.ANTI_ALIAS_FLAG|Paint.SUBPIXEL_TEXT_FLAG);

You can also set both of these flags manually using the setSubpixelText and setAntiAlias
methods:

myPaint.setSubpixelText(true);
myPaint.setAntiAlias(true);

Canvas Drawing Best Practice
2D owner-draw operations tend to be expensive in terms of processor use; inefficient drawing rou-
tines can block the GUI thread and have a detrimental effect on application responsiveness. This is
particularly true for resource-constrained mobile devices.

In Chapter 5 you learned how to create your own Views by overriding the onDraw method within a
View-derived class. To ensure you don’t end up with an attractive application that’s unresponsive,
laggy, or “janky,” you should be conscious of the resource drain and CPU-cycle cost of your onDraw
method.

Rather than focus on general principles, I’ll describe some Android-specific considerations for
ensuring that you can create Views that look good and remain interactive. (Note that list is not
exhaustive.)

 ➤ Consider size and orientation—When you design your Views and Overlays, be sure to con-
sider (and test!) how they look at different resolutions, pixel densities, and sizes.

 ➤ Create static objects once—Object creation and garbage collection are particularly expensive
operations. Where possible, create drawing objects such as Paint objects, Paths, and Shaders
once, rather than re-creating them each time the View is invalidated.

 ➤ Remember that onDraw is expensive—Performing the onDraw method is an expensive process
that forces Android to perform several image composition and bitmap construction opera-
tions. Many of the following points suggest ways to modify the appearance of your Canvas
without having to call redraw:

 ➤ Use Canvas transforms—Use Canvas transforms, such as rotate and translate,
to simplify complex relational positioning of elements on your canvas. For example,
rather than positioning and rotating each text element around a clock face, simply
rotate the canvas 22.5 degrees, and draw the text in the same place.

Advanced Canvas Drawing ❘ 521

 ➤ Use Animations—Consider using Animations to perform preset transformations
of your View rather than manually redrawing it. Scale, rotation, and transla-
tion Animations can be performed on any View within an Activity and provide a
resource-efficient way to provide zoom, rotate, or shake effects.

 ➤ Consider using bitmaps, Vector Drawables, NinePatches, and Drawable resources—
It is less computationally expensive to add a pre-rendered bitmap to a Canvas than
drawing it from scratch. Where possible, you should consider using a Drawable such
as a bitmap, scalable NinePatch, Vector Drawable, or static XML Drawable rather
than dynamically creating it at run time.

 ➤ Avoid overdrawing—A combination of raster painting and layered Views can result in many
layers being drawn on top of each other. Before drawing a layer or object, check to confirm
if it will be completely obscured by a layer above it. It’s good practice to avoid drawing more
than 2.5 times the number of pixels on screen per frame. Transparent pixels still count—and
are more expensive to draw than opaque colors.

Advanced Compass Face Example
In Chapter 5, you created a simple compass UI. In the following example, you make some signifi-
cant changes to the Compass View’s onDraw method to change it from a simple, flat compass to a
dynamic artificial horizon, as shown in Figure 14-3. Because the image in Figure 14-3 is limited to
black and white, you need to create the control to see it in its full technicolor glory.

FIGURE 14-3

522 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

 1. Start by adding properties to store the pitch and roll values to the CompassView class:

private float mPitch;

public void setPitch(float pitch) {
 mPitch = pitch;
 sendAccessibilityEvent(AccessibilityEvent.TYPE_VIEW_TEXT_CHANGED);
}

public float getPitch() {
 return mPitch;
}

private float mRoll;

public void setRoll(float roll) {
 mRoll = roll;
 sendAccessibilityEvent(AccessibilityEvent.TYPE_VIEW_TEXT_CHANGED);
}

public float getRoll() {
 return mRoll;
}

 2. Modify the colors.xml resource file to include color values for the border gradient, the glass
compass shading, the sky, and the ground. Also update the colors used for the border and the
face markings:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="background_color">#F000</color>
 <color name="marker_color">#FFFF</color>
 <color name="text_color">#FFFF</color>

 <color name="shadow_color">#7AAA</color>
 <color name="outer_border">#FF444444</color>
 <color name="inner_border_one">#FF323232</color>
 <color name="inner_border_two">#FF414141</color>
 <color name="inner_border">#FFFFFFFF</color>
 <color name="horizon_sky_from">#FFA52A2A</color>
 <color name="horizon_sky_to">#FFFFC125</color>
 <color name="horizon_ground_from">#FF5F9EA0</color>
 <color name="horizon_ground_to">#FF00008B</color>
</resources>

 3. The Paint and Shader objects used for the sky and ground in the artificial horizon are cre-
ated based on the size of the current View, so they can’t be static like the Paint objects
you created in Chapter 5. Instead of creating Paint objects, update the constructor of the
CompassView class to construct the gradient arrays and colors they use. The existing method
code can be left largely intact, with some changes to the textPaint, circlePaint, and
markerPaint variables, as highlighted in the following code:

int[] borderGradientColors;
float[] borderGradientPositions;

Advanced Canvas Drawing ❘ 523

int[] glassGradientColors;
float[] glassGradientPositions;

int skyHorizonColorFrom;
int skyHorizonColorTo;
int groundHorizonColorFrom;
int groundHorizonColorTo;

public CompassView(Context context, AttributeSet attrs,
 int defStyleAttr) {
 setFocusable(true);
 final TypedArray a = context.obtainStyledAttributes(attrs,
 R.styleable.CompassView, defStyleAttr, 0);
 if (a.hasValue(R.styleable.CompassView_bearing)) {
 setBearing(a.getFloat(R.styleable.CompassView_bearing, 0));
 }

 Context c = this.getContext();
 Resources r = this.getResources();

 circlePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 circlePaint.setColor(ContextCompat.getColor(c,
 R.color.background_color));
 circlePaint.setStrokeWidth(1);
 circlePaint.setStyle(Paint.Style.STROKE);

 northString = r.getString(R.string.cardinal_north);
 eastString = r.getString(R.string.cardinal_east);
 southString = r.getString(R.string.cardinal_south);
 westString = r.getString(R.string.cardinal_west);

 textPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 textPaint.setColor(ContextCompat.getColor(c,
 R.color.text_color));
 textPaint.setFakeBoldText(true);
 textPaint.setSubpixelText(true);
 textPaint.setTextAlign(Align.LEFT);
 textPaint.setTextSize(30);

 textHeight = (int)textPaint.measureText("yY");

 markerPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 markerPaint.setColor(r.getColor(R.color.marker_color));
 markerPaint.setAlpha(200);
 markerPaint.setStrokeWidth(1);
 markerPaint.setStyle(Paint.Style.STROKE);
 markerPaint.setShadowLayer(2, 1, 1, ContextCompat.getColor(c,
 R.color.shadow_color));
}

 3.1 Still within the constructor, create the color and position arrays that will be used by a
radial Shader to paint the outer border:

524 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

public CompassView(Context context, AttributeSet attrs,
 int defStyleAttr) {

 [... Existing code ...]

 borderGradientColors = new int[4];
 borderGradientPositions = new float[4];

 borderGradientColors[3] = ContextCompat.getColor(c,
 R.color.outer_border);
 borderGradientColors[2] = ContextCompat.getColor(c,
 R.color.inner_border_one);
 borderGradientColors[1] = ContextCompat.getColor(c,
 R.color.inner_border_two);
 borderGradientColors[0] = ContextCompat.getColor(c,
 R.color.inner_border);
 borderGradientPositions[3] = 0.0f;
 borderGradientPositions[2] = 1-0.03f;
 borderGradientPositions[1] = 1-0.06f;
 borderGradientPositions[0] = 1.0f;
}

 3.2 Then create the radial gradient color and position arrays that will be used to create
the semitransparent “glass dome” that sits on top of the View to give it the illusion of
depth:

public CompassView(Context context, AttributeSet attrs,
 int defStyleAttr) {

 [... Existing code ...]

 glassGradientColors = new int[5];
 glassGradientPositions = new float[5];

 int glassColor = 245;
 glassGradientColors[4] = Color.argb(65, glassColor,
 glassColor, glassColor);
 glassGradientColors[3] = Color.argb(100, glassColor,
 glassColor, glassColor);
 glassGradientColors[2] = Color.argb(50, glassColor,
 glassColor, glassColor);
 glassGradientColors[1] = Color.argb(0, glassColor,
 glassColor, glassColor);
 glassGradientColors[0] = Color.argb(0, glassColor,
 glassColor, glassColor);
 glassGradientPositions[4] = 1-0.0f;
 glassGradientPositions[3] = 1-0.06f;
 glassGradientPositions[2] = 1-0.10f;
 glassGradientPositions[1] = 1-0.20f;
 glassGradientPositions[0] = 1-1.0f;
}

 3.3 Finally, get the colors you’ll use to create the linear gradients that will represent the sky
and the ground in the artificial horizon:

Advanced Canvas Drawing ❘ 525

public CompassView(Context context, AttributeSet attrs,
 int defStyleAttr) {

 [... Existing code ...]

 skyHorizonColorFrom = ContextCompat.getColor(c,
 R.color.horizon_sky_from);
 skyHorizonColorTo = ContextCompat.getColor(c,
 R.color.horizon_sky_to);

 groundHorizonColorFrom = ContextCompat.getColor(c,
 R.color.horizon_ground_from);
 groundHorizonColorTo = ContextCompat.getColor(c,
 R.color.horizon_ground_to);
}

 4. Before you start drawing the face, create a new enum that stores each of the cardinal
directions:

private enum CompassDirection { N, NNE, NE, ENE,
 E, ESE, SE, SSE,
 S, SSW, SW, WSW,
 W, WNW, NW, NNW }

 5. Now you need to completely replace the existing onDraw method. You start by figuring out
some size-based values, including the center of the View, the radius of the circular control,
and the rectangles that will enclose the outer (heading) and inner (tilt and roll) face elements.
To start, replace the existing onDraw method:

@Override
protected void onDraw(Canvas canvas) {

 6. Calculate the width of the outer (heading) ring based on the size of the font used to draw the
heading values:

 float ringWidth = textHeight + 4;

 7. Calculate the height and width of the View, and use those values to establish the radius of the
inner and outer face dials, as well as to create the bounding boxes for each face:

 int height = getMeasuredHeight();
 int width = getMeasuredWidth();

 int px = width/2;
 int py = height/2;
 Point center = new Point(px, py);

 int radius = Math.min(px, py)-2;

 RectF boundingBox = new RectF(center.x - radius,
 center.y - radius,
 center.x + radius,
 center.y + radius);

 RectF innerBoundingBox = new RectF(center.x - radius + ringWidth,
 center.y - radius + ringWidth,

526 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

 center.x + radius - ringWidth,
 center.y + radius - ringWidth);

 float innerRadius = innerBoundingBox.height()/2;

 8. With the dimensions of the View established, it’s time to start drawing the faces.

Start from the bottom layer at the outside, and work your way in and up, starting with the
outer face (heading). Create a new RadialGradient Shader using the colors and positions
you defined in Step 3.2, and assign that Shader to a new Paint before using it to draw a
circle:

 RadialGradient borderGradient = new RadialGradient(px, py, radius,
 borderGradientColors, borderGradientPositions, TileMode.CLAMP);

 Paint pgb = new Paint();
 pgb.setShader(borderGradient);

 Path outerRingPath = new Path();
 outerRingPath.addOval(boundingBox, Direction.CW);

 canvas.drawPath(outerRingPath, pgb);

 9. Now you need to draw the artificial horizon. You do this by dividing the circular face into
two sections, one representing the sky and the other the ground. The proportion of each sec-
tion depends on the current pitch.

Start by creating the Shader and Paint objects that will be used to draw the sky and earth:

 LinearGradient skyShader = new LinearGradient(center.x,
 innerBoundingBox.top, center.x, innerBoundingBox.bottom,
 skyHorizonColorFrom, skyHorizonColorTo, TileMode.CLAMP);

 Paint skyPaint = new Paint();
 skyPaint.setShader(skyShader);

 LinearGradient groundShader = new LinearGradient(center.x,
 innerBoundingBox.top, center.x, innerBoundingBox.bottom,
 groundHorizonColorFrom, groundHorizonColorTo, TileMode.CLAMP);

 Paint groundPaint = new Paint();
 groundPaint.setShader(groundShader);

 10. Normalize the pitch and roll values to clamp them within ±90 degrees and ±180 degrees,
respectively:

 float tiltDegree = mPitch;
 while (tiltDegree > 90 || tiltDegree < -90) {
 if (tiltDegree > 90) tiltDegree = -90 + (tiltDegree - 90);
 if (tiltDegree < -90) tiltDegree = 90 - (tiltDegree + 90);
 }

 float rollDegree = mRoll;
 while (rollDegree > 180 || rollDegree < -180) {
 if (rollDegree > 180) rollDegree = -180 + (rollDegree - 180);
 if (rollDegree < -180) rollDegree = 180 - (rollDegree + 180);
 }

Advanced Canvas Drawing ❘ 527

 11. Create paths that will fill each segment of the circle (ground and sky). The proportion of each
segment should be related to the clamped pitch:

 Path skyPath = new Path();
 skyPath.addArc(innerBoundingBox,
 -tiltDegree,
 (180 + (2 * tiltDegree)));

 12. Spin the canvas around the center in the opposite direction to the current roll, and draw the
sky and ground paths using the Paints you created in Step 4:

 canvas.save();
 canvas.rotate(-rollDegree, px, py);
 canvas.drawOval(innerBoundingBox, groundPaint);
 canvas.drawPath(skyPath, skyPaint);
 canvas.drawPath(skyPath, markerPaint);

 13. Next is the face marking. Start by calculating the start and endpoints for the horizontal hori-
zon markings:

 int markWidth = radius / 3;
 int startX = center.x - markWidth;
 int endX = center.x + markWidth;

 14. To make the horizon values easier to read, you should ensure that the pitch scale always
starts at the current value. The following code calculates the position of the UI between the
ground and sky on the horizon face:

 double h = innerRadius*Math.cos(Math.toRadians(90-tiltDegree));
 double justTiltY = center.y - h;

 15. Find the number of pixels representing each degree of tilt:

 float pxPerDegree = (innerBoundingBox.height()/2)/45f;

 16. Iterate over 180 degrees, centered on the current tilt value, to give a sliding scale of possible
pitch:

 for (int i = 90; i >= -90; i -= 10) {
 double ypos = justTiltY + i*pxPerDegree;

 // Only display the scale within the inner face.
 if ((ypos < (innerBoundingBox.top + textHeight)) ||
 (ypos > innerBoundingBox.bottom - textHeight))
 continue;

 // Draw a line and the tilt angle for each scale increment.
 canvas.drawLine(startX, (float)ypos,
 endX, (float)ypos,
 markerPaint);
 int displayPos = (int)(tiltDegree - i);
 String displayString = String.valueOf(displayPos);
 float stringSizeWidth = textPaint.measureText(displayString);

528 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

 canvas.drawText(displayString,
 (int)(center.x-stringSizeWidth/2),
 (int)(ypos)+1,
 textPaint);
 }

 17. Draw a thicker line at the earth/sky interface. Change the stroke thickness of the marker-
Paint object before drawing the line (and then set it back to the previous value):

 markerPaint.setStrokeWidth(2);
 canvas.drawLine(center.x - radius / 2,
 (float)justTiltY,
 center.x + radius / 2,
 (float)justTiltY,
 markerPaint);
 markerPaint.setStrokeWidth(1);

 18. To make it easier to read the exact roll, you should draw an arrow and display a text string
that shows the value.

Create a new Path, and use the moveTo/lineTo methods to construct an open arrow that
points straight up. Draw the path and a text string that shows the current roll:

 // Draw the arrow
 Path rollArrow = new Path();
 rollArrow.moveTo(center.x - 3, (int)innerBoundingBox.top + 14);
 rollArrow.lineTo(center.x, (int)innerBoundingBox.top + 10);
 rollArrow.moveTo(center.x + 3, innerBoundingBox.top + 14);
 rollArrow.lineTo(center.x, innerBoundingBox.top + 10);
 canvas.drawPath(rollArrow, markerPaint);

 // Draw the string
 String rollText = String.valueOf(rollDegree);
 double rollTextWidth = textPaint.measureText(rollText);
 canvas.drawText(rollText,
 (float)(center.x - rollTextWidth / 2),
 innerBoundingBox.top + textHeight + 2,
 textPaint);

 19. Spin the canvas back to upright so that you can draw the rest of the face markings:

 canvas.restore();

 20. Draw the roll dial markings by rotating the canvas 10 degrees at a time, drawing a value
every 30 degrees and otherwise draw a mark. When you’ve completed the face, restore the
canvas to its upright position:

 canvas.save();
 canvas.rotate(180, center.x, center.y);

 for (int i = -180; i < 180; i += 10) {
 // Show a numeric value every 30 degrees
 if (i % 30 == 0) {
 String rollString = String.valueOf(i*-1);
 float rollStringWidth = textPaint.measureText(rollString);
 PointF rollStringCenter =

Advanced Canvas Drawing ❘ 529

 new PointF(center.x-rollStringWidth/2,
 innerBoundingBox.top+1+textHeight);
 canvas.drawText(rollString,
 rollStringCenter.x, rollStringCenter.y,
 textPaint);
 }

 // Otherwise draw a marker line
 else {
 canvas.drawLine(center.x, (int)innerBoundingBox.top,
 center.x, (int)innerBoundingBox.top + 5,
 markerPaint);
 }

 canvas.rotate(10, center.x, center.y);
 }
 canvas.restore();

 21. The final step in creating the face is drawing the heading markers around the outside edge:

 canvas.save();
 canvas.rotate(-1*(mBearing), px, py);

 double increment = 22.5;

 for (double i = 0; i < 360; i += increment) {
 CompassDirection cd = CompassDirection.values()
 [(int)(i / 22.5)];
 String headString = cd.toString();

 float headStringWidth = textPaint.measureText(headString);
 PointF headStringCenter =
 new PointF(center.x - headStringWidth / 2,
 boundingBox.top + 1 + textHeight);

 if (i % increment == 0)
 canvas.drawText(headString,
 headStringCenter.x, headStringCenter.y,
 textPaint);
 else
 canvas.drawLine(center.x, (int)boundingBox.top,
 center.x, (int)boundingBox.top + 3,
 markerPaint);

 canvas.rotate((int)increment, center.x, center.y);
 }

 canvas.restore();

 22. With the face complete, you can add some finishing touches.

Start by adding a “glass dome” over the top to give the illusion of a watch face. Using the
radial gradient array you constructed earlier, create a new Shader and Paint object. Use
them to draw a circle over the inner face that makes it look like it’s covered in glass:

 RadialGradient glassShader =
 new RadialGradient(px, py, (int)innerRadius,

530 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

 glassGradientColors,
 glassGradientPositions,
 TileMode.CLAMP);
 Paint glassPaint = new Paint();
 glassPaint.setShader(glassShader);

 canvas.drawOval(innerBoundingBox, glassPaint);

 23. All that’s left is to draw two more circles as clean borders for the inner and outer face bound-
aries. Then restore the canvas to upright, and finish the onDraw method:

 // Draw the outer ring
 canvas.drawOval(boundingBox, circlePaint);

 // Draw the inner ring
 circlePaint.setStrokeWidth(2);
 canvas.drawOval(innerBoundingBox, circlePaint);
}

If you run the parent activity, you will see an artificial horizon, as shown at the beginning of this
example in Figure 14.3.

Creating Interactive Controls
The primary interaction model for Android Devices is through the touch screen, however—as noted
above in the accessibility section—you can’t take this for granted. As Android continues to expand
to devices including TVs and laptop form factors, your app must consider that user input may also
come from D-pads, keyboards, and mice.

The challenge for you as a developer is to create intuitive UIs that make the most of whatever input
hardware is available, while introducing as few hardware dependencies as possible.

The techniques described in this section show how to listen for (and react to) user input from touch-
screen taps and key presses using the following event handlers in Views and Activities:

 ➤ onTouchEvent—The touch-screen event handler, triggered when the touch screen is touched,
released, or dragged

 ➤ onKeyDown—Called when any hardware key is pressed

 ➤ onKeyUp—Called when any hardware key is released

Using the Touch Screen
The physical size and dimensions of mobile devices are inexorably tied to the size of their touch
screens, so it should come as no surprise that touch screen input is all about fingers—a design prin-
ciple that assumes users will use their fingers rather than a specialized stylus to touch the screen and
navigate your UI.

Finger-based touch makes interaction less precise and is often based more on movement than simple
contact. Android’s native applications make extensive use of finger-based, touch-screen UIs—including
the use of dragging motions to scroll through lists, swipe between screens, or perform actions.

Advanced Canvas Drawing ❘ 531

Android supports two types of touch interactions: traditional touch interactions using a finger or
stylus and “faketouch” where a trackpad or mouse input is interpreted as touch input events. By
default, all Android apps require faketouch support, making them compatible with devices such as
TVs and laptops without a touch screen.

If you’d like your app to be available only on devices with a real touch screen you must specify this
in your manifest by adding required="true" to the android.hardware.touchscreen feature:

<manifest xmlns:android=http://schemas.android.com/apk/res/android
 ... >
 <uses-feature android:name="android.hardware.touchscreen"
 android:required="true" />
</manifest>

To create a View or Activity that uses touch-screen interaction (including faketouch), override the
onTouchEvent handler:

@Override
public boolean onTouchEvent(MotionEvent event) {
 return super.onTouchEvent(event);
}

Return true if you have handled the screen press; otherwise, return false to pass events down
through the View stack until the touch has been successfully handled.

Processing Single and Multiple Touch Events
For each gesture, the onTouchEvent handler is fired several times. Starting when the user touches
the screen, multiple times while the system tracks the current finger position, and, finally, once more
when the contact ends.

Android supports processing an arbitrary number of simultaneous touch events. Each touch event
is allocated a separate pointer identifier that is referenced in the Motion Event parameter of the
onTouchEvent handler.

Call getAction on the MotionEvent parameter to find the event type that triggered the handler.
For either a single touch device, or the first touch event on a multi-touch device, you can use the
ACTION_UP[DOWN/MOVE/CANCEL/OUTSIDE] constants to find the event type:

@Override
public boolean onTouchEvent(MotionEvent event) {
 int action = event.getAction();
 switch (action) {
 case (MotionEvent.ACTION_DOWN):
 // Touch screen pressed
 return true;
 case (MotionEvent.ACTION_MOVE):
 // Contact has moved across screen
 return true;
 case (MotionEvent.ACTION_UP):
 // Touch screen touch ended
 return true;
 case (MotionEvent.ACTION_CANCEL):
 // Touch event cancelled

532 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

 return true;
 case (MotionEvent.ACTION_OUTSIDE):
 // Movement has occurred outside the
 // bounds of the current screen element
 return true;
 default: return super.onTouchEvent(event);
 }
}

To track touch events from multiple pointers, you need to apply the MotionEvent.ACTION_MASK
and MotionEvent.ACTION_POINTER_INDEX_MASK constants to find the touch event (either ACTION_
POINTER_DOWN or ACTION_POINTER_UP) and the pointer ID that triggered it, respectively. Call get-
PointerCount to find if this is a multiple-touch event:

@Override
public boolean onTouchEvent(MotionEvent event) {
 int action = event.getAction();

 if (event.getPointerCount() > 1) {
 int actionPointerId = action & MotionEvent.ACTION_POINTER_INDEX_MASK;
 int actionEvent = action & MotionEvent.ACTION_MASK;
 // Do something with the pointer ID and event.
 }
 return super.onTouchEvent(event);
}

The Motion Event also includes the coordinates of the current screen contact. You can access these
coordinates using the getX and getY methods. These methods return the coordinate relative to the
responding View or Activity.

In the case of multiple-touch events, each Motion Event includes the current position of each
pointer. To find the position of a given pointer, pass its index into the getX or getY methods. Note
that its index is not equivalent to the pointer ID. To find the index for a given pointer, use the find-
PointerIndex method, passing in the pointer ID whose index you need:

int xPos = -1;
int yPos = -1;

if (event.getPointerCount() > 1) {
 int actionPointerId = action & MotionEvent.ACTION_POINTER_INDEX_MASK;
 int actionEvent = action & MotionEvent.ACTION_MASK;

 int pointerIndex = event.findPointerIndex(actionPointerId);
 xPos = (int)event.getX(pointerIndex);
 yPos = (int)event.getY(pointerIndex);
}
else {
 // Single touch event.
 xPos = (int)event.getX();
 yPos = (int)event.getY();
}

The Motion Event parameter also includes the pressure being applied to the screen using getPres-
sure, a method that returns a value usually between 0 (no pressure) and 1 (normal pressure).

Advanced Canvas Drawing ❘ 533

You use the getToolType method to determine whether the touch event was from a finger, mouse,
stylus, or eraser, allowing you to handle them differently.

Finally, you can also determine the normalized size of the current contact area by using the getSize
method. This method returns a value between 0 and 1, where 0 suggests a precise measurement and
1 indicates a possible “fat touch” event in which the user may not have intended to press anything.

NOTE Depending on the calibration of the hardware, it may be possible to
return values greater than 1.

Tracking Movement
Whenever the current touch contact position, pressure, or size changes, a new onTouchEvent is trig-
gered with an ACTION_MOVE action.

The Motion Event parameter can include historical values, in addition to the fields described previ-
ously. This history represents all the movement events that have occurred between the previously
handled onTouchEvent and this one, allowing Android to buffer rapid movement changes to pro-
vide fine-grained capture of movement data.

You can find the size of the history by calling getHistorySize, which returns the number of move-
ment positions available for the current event. You can then obtain the times, pressures, sizes, and
positions of each of the historical events by using a series of getHistorical* methods and passing
in the position index. Note that as with the getX and getY methods described earlier, you can pass
in a pointer index value to track historical touch events for multiple cursors:

int historySize = event.getHistorySize();

if (event.getPointerCount() > 1) {
 int actionPointerId = action & MotionEvent.ACTION_POINTER_ID_MASK;
 int pointerIndex = event.findPointerIndex(actionPointerId);
 for (int i = 0; i < historySize; i++) {
 float pressure = event.getHistoricalPressure(pointerIndex, i);
 float x = event.getHistoricalX(pointerIndex, i);
 float y = event.getHistoricalY(pointerIndex, i);
 float size = event.getHistoricalSize(pointerIndex, i);
 long time = event.getHistoricalEventTime(i);
 // TODO Do something with each point
 }
}
else {
 for (int i = 0; i < historySize; i++) {
 float pressure = event.getHistoricalPressure(i);
 float x = event.getHistoricalX(i);
 float y = event.getHistoricalY(i);
 float size = event.getHistoricalSize(i);
 // TODO Do something with each point
 }
}

534 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

The normal pattern for handling movement events is to process each of the historical events first,
followed by the current Motion Event values, as shown in Listing 14-6.

LISTING 14-6: Handling touch screen movement events

@Override
public boolean onTouchEvent(MotionEvent event) {

 int action = event.getAction();

 switch (action) {
 case (MotionEvent.ACTION_MOVE):
 {
 int historySize = event.getHistorySize();
 for (int i = 0; i < historySize; i++) {
 float x = event.getHistoricalX(i);
 float y = event.getHistoricalY(i);
 processMovement(x, y);
 }

 float x = event.getX();
 float y = event.getY();
 processMovement(x, y);

 return true;
 }
 }

 return super.onTouchEvent(event);
}

private void processMovement(float x, float y) {
 // TODO Do something on movement.
}

Using an On Touch Listener
You can listen for touch events without subclassing an existing View by attaching an
OnTouchListener to any View object, using the setOnTouchListener method:

myView.setOnTouchListener(new OnTouchListener() {
 public boolean onTouch(View view, MotionEvent event) {
 // TODO Respond to motion events
 return false;
 }
});

Using the Device Keys, Buttons, and D-Pad
Button and key-press events for all hardware keys are handled by the onKeyDown and onKeyUp han-
dlers of the active Activity or the focused View. This includes keyboard keys, the D-pad, and the

Advanced Canvas Drawing ❘ 535

back button. The only exception is the home key, which is reserved to ensure that users can never
get locked within an application.

To have your View or Activity react to button presses, override the onKeyUp and onKeyDown event
handlers:

@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
 // Perform on key pressed handling, return true if handled
 return false;
}

@Override
public boolean onKeyUp(int keyCode, KeyEvent event) {
 // Perform on key released handling, return true if handled
 return false;
}

The keyCode parameter contains the value of the key being pressed; compare it to the static key
code values available from the KeyEvent class to perform key-specific processing.

NOTE You should never unconditionally return true in the onKeyUp or onKey-
Down methods as this will cause system-level key events to be incorrectly con-
sumed by your app, causing issues such as media button events being consumed
rather than being sent to the appropriate music app. Only return true if you
handle the KeyEvent.

The KeyEvent parameter also includes the isCtrlPressed, isAltPressed, isShiftPressed,
isFunctionPressed, and isSymPressed methods to determine if the Control, Alt, Shift, function, or
symbols keys are also being held. The static isModifierKey method accepts the keyCode and deter-
mines whether this key event was triggered by the user pressing one of these modifier keys.

Using the On Key Listener
To respond to key presses within existing Views in your Activities, implement an OnKeyListener,
and assign it to a View using the setOnKeyListener method. Rather than implementing a separate
method for key-press and key-release events, the OnKeyListener uses a single onKey event:

myView.setOnKeyListener(new OnKeyListener() {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 // TODO Process key press event, return true if handled
 return false;
 }
});

Use the keyCode parameter to find the key pressed. The KeyEvent parameter is used to determine
if the key has been pressed or released, where ACTION_DOWN represents a key press and ACTION_UP
signals its release.

536 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

COMPOSITE DRAWABLE RESOURCES

In Chapter 12, “Implementing the Android Design Philosophy,” you examined a number of scalable
Drawable resources, including shapes, colors, and vectors. This section introduces a number of addi-
tional XML-defined Drawables.

Composite Drawables are used to combine and manipulate other Drawable resources. You can use
any Drawable resource within the following composite resource definitions, including bitmaps,
shapes, and colors. Similarly, you can use these new Drawables within each other and assign them to
Views in the same way as all other Drawable assets.

Transformative Drawables
You can scale and rotate existing Drawable resources using the aptly named ScaleDrawable and
RotateDrawable classes. These transformative Drawables are particularly useful for creating prog-
ress bars or animating Views:

 ➤ ScaleDrawable—Within the scale tag, use the scaleHeight and scaleWidth attributes to
define the target height and width relative to the bounding box of the original Drawable,
respectively. Use the scaleGravity attribute to control the anchor point for the scaled
image:

<?xml version="1.0" encoding="utf-8"?>
<scale xmlns:android="http://schemas.android.com/apk/res/android"
 android:drawable="@drawable/icon"
 android:scaleHeight="100%"
 android:scaleWidth="100%"
 android:scaleGravity="center_vertical|center_horizontal"
/>

 ➤ RotateDrawable—Within the rotate tag, use fromDegrees and toDegrees to define the
start and end rotation angle around a pivot point, respectively. Define the pivot using the
pivotX and pivotY attributes, specifying a percentage of the Drawable’s width and height,
respectively, using nn% notation:

<?xml version="1.0" encoding="utf-8"?>
<rotate xmlns:android="http://schemas.android.com/apk/res/android"
 android:drawable="@drawable/icon"
 android:fromDegrees="0"
 android:toDegrees="90"
 android:pivotX="50%"
 android:pivotY="50%"
/>

To apply the scaling and rotation at run time, use the setImageLevel method on the View object
hosting the Drawable to move between the start and finish values on a scale of 0 to 10,000. This
allows you to define a single Drawable that can be modified to suit particular circumstances—such
as an arrow that can point in multiple directions.

Composite Drawable Resources ❘ 537

When moving through levels, level 0 represents the start angle (or smallest scale result). Level
10,000 represents the end of the transformation (the finish angle or highest scale). If you do not
specify the image level, it will default to 0:

ImageView rotatingImage
 = findViewById(R.id.RotatingImageView);
ImageView scalingImage
 = findViewById(R.id.ScalingImageView);

// Rotate the image 50% of the way to its final orientation.
rotatingImage.setImageLevel(5000);

// Scale the image to 50% of its final size.
scalingImage.setImageLevel(5000);

Layer Drawables
A LayerDrawable lets you composite several Drawable resources on top of one another. If you
define an array of partially transparent Drawables, you can stack them on top of one another to
create complex combinations of dynamic shapes and transformations.

Similarly, you can use Layer Drawables as the source for the transformative Drawable resources
described in the preceding section, or the State List and Level List Drawables that follow.

Layer Drawables are defined via the layer-list node tag. Within that tag, create a new item node
using the drawable attribute to specify each Drawables to add. Each Drawable will be stacked in
index order, with the first item in the array at the bottom of the stack:

<?xml version="1.0" encoding="utf-8"?>
<layer-list xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:drawable="@drawable/bottomimage"/>
 <item android:drawable="@drawable/image2"/>
 <item android:drawable="@drawable/image3"/>
 <item android:drawable="@drawable/topimage"/>
</layer-list>

State List Drawables
A State List Drawable is a composite resource that enables you to specify a different Drawable to
display based on the state of the View to which it has been assigned.

Most native Android Views use State List Drawables, including the image used on Buttons and the
background used for standard List View items.

To define a State List Drawable, create an XML file containing a root selector tag. Add a series of
item nodes, each of which uses an android:state_ attribute and android:drawable attribute to
assign a specific Drawable to a particular state:

<selector xmlns:android="http://schemas.android.com/apk/res/android">
<item android:state_pressed="true"

538 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

 android:drawable="@drawable/widget_bg_pressed"/>
 <item android:state_focused="true"
 android:drawable="@drawable/widget_bg_selected"/>
 <item android:state_window_focused="false"
 android:drawable="@drawable/widget_bg_normal"/>
 <item android:drawable="@drawable/widget_bg_normal"/>
</selector>

Each state attribute can be set to true or false, allowing you to specify a different Drawable for
each combination of the following list View states:

 ➤ android:state_pressed—Pressed or not pressed.

 ➤ android:state_focused—Has focus or does not have focus.

 ➤ android:state_hovered—Introduced in API Level 11, the cursor is hovering over the view
or is not hovering.

 ➤ android:state_selected—Selected or not selected.

 ➤ android:state_checkable—Can or can’t be checked.

 ➤ android:state_checked—Is or isn’t checked.

 ➤ android:state_enabled—Enabled or disabled.

 ➤ android:state_activated—Activated or not activated.

 ➤ android:state_window_focused—The parent window has focus or does not have focus.

When deciding which Drawable to display for a given View, Android will apply the first item in the
state list that matches the current state of the object. As a result, your default value should be the
last in the list.

Level List Drawables
Using a Level List Drawable you can create an array of Drawable resources, assigning an integer
index value for each layer. Use the level-list node to create a new Level List Drawable, using
item nodes to define each layer, with android:drawable / android:maxLevel attributes defining
the Drawable for each layer and its corresponding index:

<level-list xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:maxLevel="0" android:drawable="@drawable/earthquake_0"/>
 <item android:maxLevel="1" android:drawable="@drawable/earthquake_1"/>
 <item android:maxLevel="2" android:drawable="@drawable/earthquake_2"/>
 <item android:maxLevel="4" android:drawable="@drawable/earthquake_4"/>
 <item android:maxLevel="6" android:drawable="@drawable/earthquake_6"/>
 <item android:maxLevel="8" android:drawable="@drawable/earthquake_8"/>
 <item android:maxLevel="10" android:drawable="@drawable/earthquake_10"/>
</level-list>

To select which image to display in code, call setImageLevel on the View displaying the Level List
Drawable resource, passing in the index of the Drawable you want to display:

imageView.setImageLevel(5);

Copy, Paste, and the Clipboard ❘ 539

The View will display the image corresponding to the index with an equal or greater value to the
one specified.

COPY, PASTE, AND THE CLIPBOARD

Android includes full support for copy and paste operations within (and between) Android applica-
tions using the Clipboard Manager:

ClipboardManager clipboard =
 (ClipboardManager)getSystemService(CLIPBOARD_SERVICE);

The clipboard supports text strings, URIs (typically directed at a Content Provider item), and Intents
(for copying application shortcuts). To copy an object to the clipboard, create a new ClipData
object that contains a ClipDescription that describes the metadata related to the copied object,
and any number of ClipData.Item objects, as described in the following section. Add it to the clip-
board using the setPrimaryClip method:

clipboard.setPrimaryClip(newClip);

The clipboard can contain only one Clip Data object at any time. Copying a new object replaces the
previously held clipboard item. As a result, you can assume neither that your application will be the
last to have copied something to the clipboard nor that it will be the only application that pastes it.

Copying Data to the Clipboard
The ClipData class includes a number of static convenience methods to simplify the creation
of typical Clip Data objects. Use the newPlainText method to create a new Clip Data that
includes the specified string, sets the description to the label provided, and sets the MIME type to
MIMETYPE_TEXT_PLAIN:

ClipData newClip = ClipData.newPlainText("copied text","Hello, Android!");

For Content Provider-based items, use the newUri method, specifying a Content Resolver, label, and
URI from which the data is to be pasted:

ClipData newClip = ClipData.newUri(getContentResolver(),"URI", myUri);

Pasting Clipboard Data
To provide a good user experience, you should enable and disable the paste option from your UI
based on whether there is data copied to the clipboard. You can do this by querying the clipboard
service using the hasPrimaryClip method:

if (!(clipboard.hasPrimaryClip())) {
 // TODO Disable paste UI option.
}

It’s also possible to query the data type of the Clip Data object currently in the clipboard. Use the
getPrimaryClipDescription method to extract the metadata for the clipboard data, using its has-
MimeType method to specify the MIME type you support pasting into your application:

540 ❘ CHAPTER 14 AdvAnced customizAtion of Your user interfAce

if (!(clipboard.getPrimaryClipDescription().hasMimeType(MIMETYPE_TEXT_PLAIN)))
{
 // TODO Disable the paste UI option if the content in
 // the clipboard is not of a supported type.
}
else
{
 // TODO Enable the paste UI option if the clipboard contains data
 // of a supported type.
}

To access the data itself, use the getItemAt method, passing in the index of the item you want to
retrieve:

ClipData.Item item = clipboard.getPrimaryClip().getItemAt(0);

You can extract the text, URI, or Intent using the getText, getUri, and getIntent methods,
respectively:

CharSequence pasteData = item.getText();
Intent pastIntent = item.getIntent();
Uri pasteUri = item.getUri();

It’s also possible to paste the content of any clipboard item, even if your application supports only
text. Using the coerceToText method you can transform the contents of a ClipData.Item object
into a string:

CharSequence pasteText = item.coerceToText(this);

Location, Contextual
Awareness, and Mapping

WHAT’S IN THIS CHAPTER?

 ➤ Installing and using Google Play services

 ➤ Determining and updating the device’s physical location

 ➤ Using the emulator to test location-based functionality

 ➤ Setting and monitoring Geofences

 ➤ Finding addresses and address locations with the Geocoder

 ➤ Adding interactive maps to your application

 ➤ Changing the map camera position

 ➤ Displaying user location on a map

 ➤ Adding markers, shapes, and image overlays to maps

 ➤ Adding awareness of the user’s context using awareness snapshots

 ➤ Setting and monitoring contextual awareness fences

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The code downloads for this chapter are found at www.wrox.com. The code for this chapter is
divided into the following major examples:

 ➤ Snippets_ch15.zip

 ➤ WhereAmI_ch15_part1.zip

15

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

542 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

 ➤ WhereAmI_ch15_part2.zip

 ➤ WhereAmI_ch15_part3.zip

 ➤ WhereAmI_ch15_part4.zip

 ➤ Earthquake_ch15.zip

ADDING LOCATION, MAPS, AND CONTEXTUAL AWARENESS
TO YOUR APPLICATIONS

One of the defining features of mobile devices is their portability, so it’s not surprising that some of
the most enticing APIs are those that enable you to find, contextualize, and map the user’s physical
location, environment, and context. In this chapter you learn how to install and use Google Play
services to take advantage of these powerful and efficient APIs.

Location Services enable you to find the device’s current location, and get updates as it changes.
You’ll learn how to use the Fused Location Provider to take advantage of underlying GPS-, cell-,
or Wi-Fi-based location-sensing technologies. You’ll also learn about the legacy platform location-
based services (LBS) and how to use them when Google Play services aren’t available.

Using the Google Maps API, also included as part of the Google Play services library, you can cre-
ate map-based Activities using Google Maps as a user interface element. You have full access to the
map, which enables you to control the camera position, alter the zoom level, and annotate maps
using markers, shapes, and image overlays—as well as handling user interactions.

Maps and location-based services use latitude and longitude to pinpoint geographic locations, but
your users are more likely to think in terms of a street address. Android includes a geocoder that
you can use to convert back and forth between latitude/longitude values and real-world addresses.

Finally, you are introduced to the Awareness API that helps you understand and react to changes
in your user’s context. The Awareness API combines device state with the results from a dozen dif-
ferent sensors, and additional web-sourced environmental information such as weather. It provides
access to this information through snapshots or “fences” in a way that’s fast and battery efficient.

INTRODUCING GOOGLE PLAY SERVICES

The Google Play services SDK (often referred to as Play Services or GMS) is a set of libraries that
you can include in your projects to access over 20 Google-proprietary features including Location
Services, Google Maps, and the Awareness APIs—each of which is described within this chapter.

Like the support package introduced in Chapter 2, “Getting Started,” Google Play services APIs
often replace or extend framework API features, helping you provide a consistently updated user
experience—as well as taking advantage of new features, bug fixes, and efficiencies.

Like the Android Support Library and SDK platform releases, new versions of the Google Play
services client library are delivered through the Android SDK Manager. Note that like the support
library, Google Play services are updated far more frequently than the Android platform SDK.

By downloading new versions of the SDK, and updating your dependencies to reference the newest
releases, you can continue to incorporate bug fixes and improvements to your app as the Google

Introducing Google Play Services ❘ 543

Play services are updated. The Google Play services libraries interact with the Google Play services
application, which is automatically distributed and updated through the Google Play store. The
Google Play services app runs as a background service on supported devices.

Unlike the Android Support Library, Google Play services are not guaranteed to be available on all
Android devices. Because the Google Play services SDK depends on the Google Play services APK,
which is delivered through the Google Play Store, both must be installed on the host device in order
for your app to successfully use the SDK.

NOTE Due to the Google Play services SDK’s dependency on the Google Play
Store, if you plan to release via other distribution channels you may need to
include alternative implementations for functionality that depends on Google
Play services. If you plan to distribute your application exclusively through the
Google Play Store, you can assume Google Play services will be available, but
not necessarily the specific version required by your application.

To assist you, the Google Play services can resolve issues such as a missing, dis-
abled, or out-of-date Google Play services at run time.

It’s good practice to use the Google Play services SDK, rather than the framework API libraries,
whenever the host device is capable of supporting them.

Adding Google Play Services to Your Application
To incorporate Google Play services into your project, start by downloading the Google Play ser-
vices SDK.

Within Android Studio, open the SDK Manager (Figure 15-1), which is available through a shortcut
on the toolbar, or from within the Android Studio settings dialog. It offers a tab for SDK Platforms
and SDK Tools.

FIGURE 15-1

544 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

The SDK Tools tab shows which SDK, platform, and build tools you have downloaded, as well as
the support repository, emulator, and Google Play services SDK.

Ensure the Google Play services check box is ticked, and click Apply or OK to download and install
the SDK.

Once the SDK is installed, you can add it as a dependency to your application’s project using your
application module’s build.gradle file within the dependencies node:

dependencies {
 ...
 implementation 'com.google.android.gms:play-services:15.0.1'
}

NOTE The specific version number specified in your dependency node must cor-
respond to the version of the Google Play services SDK you have downloaded
and installed. Similarly, when you install newer versions of the SDK, you must
update the dependency node accordingly.

Alternatively, you can use Android Studio’s Project Structure UI as shown in Figure 15-2. Click
File ➪ Project Structure, select “app” within the Modules section of the left navigation, and then
choose the Dependencies tab. Add a new library by selecting the green “+” symbol and indicating
the desired library.

FIGURE 15-2

Introducing Google Play Services ❘ 545

The Google Play services SDK contains more than 20 individual libraries, each of which offers an
API related to a specific Google Service. The dependency declaration in the preceding code snippet
includes all the Google Play services libraries, many of which you may not use.

Instead, it’s best practice to include only the libraries you plan to use within your application, as
shown in Listing 15-1, which adds only the Location, Maps, and Awareness libraries. Note again
that the version number specified here should be updated to correspond to the SDK version you are
developing against.

LISTING 15-1: Adding Google Play services as app dependencies

dependencies {
 ...
 implementation 'com.google.android.gms:play-services-awareness:15.0.1'
 implementation 'com.google.android.gms:play-services-maps:15.0.1'
 implementation 'com.google.android.gms:play-services-location:15.0.1'
}

You can find a full list of the available Google Play services libraries and their build.gradle
descriptions at developers.google.com/android/guides/setup.

Notice that we’re adding a dependency to a specific version of Google Play services. New releases
of the Google Play services APK are regularly distributed, automatically, to all supported devices
through the Google Play Store. It’s best practice to update your app dependencies to the latest ver-
sion of Google Play services so that you can take advantage of bug fixes, new features, and efficiency
improvements. To update the version of Google Play services used by your app, install the updated
SDK and modify your dependency node accordingly.

Determining the Availability of Google Play Services
The Google Play services APK is delivered and updated on all Android devices running Google Play.
However, updates can take time to roll out to all devices so it’s possible that a user’s device will
receive your updated application before it receives the Google Play services update upon which your
app depends.

If you are using the Google Maps or Location Services, or using the Google API Client to connect
to any of the other Google Services, the API will handle situations where a compatible device is run-
ning an outdated, missing, or disabled Google Play services APK.

For issues that can be resolved by the user at run time, a dialog will be displayed with instructions
on how to fix the error.

Should you choose to distribute your app outside the Google Play ecosystem, it may be installed and
run on a device that doesn’t include, or support, Google Play services; in this case you will need to
consider how to handle the missing libraries.

For some, such as location-based services, you may be able to fall back on platform functionality.
In others, such as mapping, you may consider reverting to an alternative library such as Open Street
Map. In the most extreme case, where critical functionality requires Google Play services, you may

546 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

choose to display an error, disable functionality, or even force an exit of the application. You can
detect the availability (or lack thereof) of Google Play services by looking for an unresolvable error
using the isGooglePlayServicesAvailable method on the GoogleApiAvailability class as
shown in Listing 15-2.

LISTING 15-2: Checking if Google Play services is available

GoogleApiAvailability availability = GoogleApiAvailability.getInstance();
int result = availability.isGooglePlayServicesAvailable(this);
if (result != ConnectionResult.SUCCESS) {
 if (!availability.isUserResolvableError(result))
 // TODO: Google Play services not available.
}

FINDING DEVICE LOCATION USING GOOGLE LOCATION
SERVICES

The Location Services library, offered through Google Play services, provides a best-practice wrap-
per around a number of different platform technologies used to find and monitor a device’s location.
In addition to dramatically simplifying the process of using location services within your app, the
Google Play Location Services also offer a dramatic improvement in accuracy and battery efficiency.

NOTE The Android framework includes location-based services through the
Location Manager, as described in the section “Using the Legacy Platform
Location-Based Services.” For efficiency and accuracy reasons, the Google Play
services location APIs are strongly preferred over the legacy platform APIs and
should be used whenever possible.

Using the Location Service, you can do the following:

 ➤ Obtain your current location

 ➤ Follow movement

 ➤ Set geofences for detecting movement into and out of a specified area

Access to the Location Services is provided by the Google Play service location library, which must
be added as a dependency to your app module’s build.gradle file after you’ve installed Google
Play services as described earlier in this chapter:

dependencies {
 [... Existing dependencies ...]
 implementation 'com.google.android.gms:play-services-location:15.0.1'
}

Finding Device Location Using Google Location Services ❘ 547

NOTE The version number indicated in the previous snippet was the latest ver-
sion when this book was written. You should always target the newest available
version of the library within your app.

Obtaining the current device location requires one of two uses-permission tags in your manifest,
specifying the degree of location accuracy you require, where:

 ➤ Fine represents high accuracy, and will enable you to receive the most accurate possible loca-
tion to the maximum resolution supported by the hardware.

 ➤ Coarse represents low accuracy, limiting the resolution of returned location results to
approximately a city block.

The following snippet shows how to request the fine and coarse permissions in your application
manifest; note that requesting/granting fine permission implicitly grants coarse permission:

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

Both location permissions are marked as dangerous, meaning you need to check for—and if neces-
sary request, and be granted—runtime user permission before you can receive location results, as
shown in Listing 15-3.

LISTING 15-3: Requesting the fine location permission at runtime

int permission = ActivityCompat.checkSelfPermission(this,
 Manifest.permission.ACCESS_FINE_LOCATION);

if (permission == PERMISSION_GRANTED) {
 // TODO Access the location-based services.
} else {
 // Request fine location permission.
 if (ActivityCompat.shouldShowRequestPermissionRationale(
 this, Manifest.permission.ACCESS_FINE_LOCATION)) {
 // TODO Display additional rationale for the requested permission.
 }
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.ACCESS_FINE_LOCATION},
 LOCATION_PERMISSION_REQUEST);
}

The requestPermissions method runs asynchronously, displaying a standard Android dialog that
can’t be customized. You can receive a callback when the user has either accepted or denied your
runtime request, by overriding the onRequestPermissionsResult handler:

@Override
public void onRequestPermissionsResult(int requestCode,
 @NonNull String[] permissions,
 @NonNull int[] grantResults) {
 super.onRequestPermissionsResult(requestCode, permissions, grantResults);
 // TODO React to granted / denied permissions.
}

548 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

It’s common practice to listen for this callback, and if permission is granted, to execute the function-
ality that was previously protected by the permission check.

To find or follow the device location, use the Fused Location Provider (FLP). The FLP uses a combi-
nation of software and hardware (including Wi-Fi, GPS, and other sensors available on the device)
to determine the current location in a way that optimizes both accuracy and battery power.

To access the Fused Location Provider, request an instance of the FusedLocationProviderClient
by calling the static getFusedLocationProviderClient method from the LocationServices
class, as shown in Listing 15-4.

LISTING 15-4: Accessing the Fused Location Provider

FusedLocationProviderClient fusedLocationClient;
fusedLocationClient = LocationServices.getFusedLocationProviderClient(this);

Using the Emulator to Test Location-Based Functionality
All location-based functionality is dependent on the host hardware being able to determine the
current location. When you develop and test with the emulator, your hardware is virtualized, and
you’re likely to stay in pretty much the same location.

To compensate, Android includes hooks that enable you to emulate movement for testing location-
based applications.

Updating the Emulator’s Virtual Location
Use the Location tab available from the emulator’s Extended Controls window, as shown in Figure
15-3, to push a new location directly to the emulator.

You can specify a particular latitude/longitude pair in decimal or sexigesimal format along with an
altitude value. Alternatively, click the Load GPX/KML button to import Keyhole Markup Language
(KML) or GPS Exchange Format (GPX) files, respectively. After these load, you can jump to par-
ticular waypoints (locations) or play back each sequence of locations at up to 5x speed.

NOTE Most GPS systems record track-files using GPX, whereas KML is used
extensively online to define geographic information. You can handwrite your
own KML file or generate one by using Google Earth to create a path between
locations.

Enabling Location Services on the Emulator
The location results returned by the location APIs are not updated unless at least one application
has requested location updates. Similarly, the techniques used to update the emulator’s location,
described in the previous section, take effect only when at least one application has requested loca-
tion updates from the GPS.

Finding Device Location Using Google Location Services ❘ 549

FIGURE 15-3

As a result, when the Emulator is first started, the result returned
from the current location may be null.

To ensure all Location Services are enabled, and location updates
are being received, you should start the Google Maps app within
the emulator and accept the prompts regarding location as shown
in Figure 15-4.

Finding the Last Known Location
One of the most powerful uses of the Location Services is to find
the physical location of the device. The accuracy of the returned
location is dependent on the hardware available, the permissions
requested by and granted to your application, and the user’s system
location settings.

Using the Fused Location Provider, you can find the last location
fix received by the device using the getLastLocation method.

FIGURE 15-4

550 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

NOTE The underlying Android framework includes multiple Location
Providers of varying power drain and accuracy, such as GPS, Wi-Fi, and cell
network. Location Providers are described later in this chapter.

In addition to improved accuracy and efficiency, another advantage of using
the Fused Location Provider is that it will return the last Location value found
using any underlying provider, with the best accuracy available within the con-
straints of your app’s location permissions. If the last Location available is more
accurate than your application can receive, the precision of the result will be
“smudged” to preserve the user’s privacy.

The Location Service uses the Tasks API, which makes it easier to compose asynchronous opera-
tions, and handles the underlying connection process between your app and the Location Service—
including the resolution for some connection failures.

As a result, to obtain the Location value, add an OnSuccessListener to the returned Task using the
addOnSuccessListener method, as shown in Listing 15-5. The new OnSuccessListener should
use a Location type, and implement the onSuccess handler.

LISTING 15-5: Obtaining the last known device Location

FusedLocationProviderClient fusedLocationClient;
fusedLocationClient = LocationServices.getFusedLocationProviderClient(this);
fusedLocationClient.getLastLocation()
 .addOnSuccessListener(this, new OnSuccessListener<Location>() {
 @Override
 public void onSuccess(Location location) {
 // In some rare situations this can be null.
 if (location != null) {
 // TODO Do something with the returned location.
 }
 }
 });

Similarly, you can use the addOnFailureListener method to add an OnFailureListener whose
onFailure method will be triggered if the Location Service is unable to successfully return a last
known Location value:

fusedLocationClient.getLastLocation()
 .addOnSuccessListener(this, new OnSuccessListener<Location>() {
 @Override
 public void onSuccess(Location location) {
 // In some rare situations this can be null.
 if (location != null) {
 // TODO Do something with the returned location.
 }
 }
 })

Finding Device Location Using Google Location Services ❘ 551

 .addOnFailureListener(this, new OnFailureListener() {
 @Override
 public void onFailure(@NonNull Exception e) {
 // TODO Failed to obtain the last location.
 }
 });

WARNING Requesting the last Location does not ask the Location Service to
find the current position. If the device has not recently updated the current posi-
tion, it may be out of date. In some rare cases a last Location value may not
exist, in which case null will be returned.

The Location object returned includes all the position information available from the provider that
supplied it. This can include the time it was obtained, the accuracy of the coordinate found, and its
latitude, longitude, bearing, altitude, and speed. All these properties are available via get methods
on the Location object.

“Where Am I” Example
The following example—Where Am I—features a new Activity that finds the device’s last known
location using the Fused Location Provider from the Google Play services Location Services library.

NOTE For this example to work, the test device (or emulator) must have
recorded at least one location update. This is most easily achieved by starting the
Google Maps application and sending a location update as described earlier in
this chapter.

 1. Create a new Where Am I project with an empty WhereAmIActivity. This example will use
fine accuracy, so you need to include the uses-permission tag for ACCESS_FINE_LOCATION
in your application manifest. We’ll also add the ACCESS_COARSE_LOCATION:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.professionalandroid.apps.whereami">

 <uses-permission
 android:name="android.permission.ACCESS_COARSE_LOCATION"
 />
 <uses-permission
 android:name="android.permission.ACCESS_FINE_LOCATION"
 />

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"

552 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name=".WhereAmIActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

 2. Add a dependency to the Location library within the app module build.gradle file:

dependencies {
 implementation fileTree(dir: 'libs', include: ['*.jar'])
 implementation 'com.android.support:appcompat-v7:27.1.1'
 implementation 'com.android.support.constraint:constraint-layout:1.1.0'
 testImplementation 'junit:junit:4.12'
 androidTestImplementation 'com.android.support.test:runner:1.0.2'
 androidTestImplementation 'com.android.support.test.espresso' +
 ':espresso-core:3.0.2'
 implementation 'com.android.support:support-media-compat:27.1.1'
 implementation 'com.android.support:support-v4:27.1.1'

 implementation 'com.google.android.gms:play-services-location:15.0.1'
}

 3. Modify the activity_where_am_i.xml layout resource to use a Linear Layout and add an
android:id attribute for the TextView control so that you can access it from within the
Activity:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context="com.professionalandroid.apps.whereami.WhereAmIActivity">
 <TextView
 android:id="@+id/myLocationText"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:padding="16dp"
 android:text="Hello World!"/>
</LinearLayout>

 4. Override the onCreate method of the Where Am I Activity to confirm that Google Play services
are (or could be) available on this device, and obtain a reference to the Text View from the layout:

private static final String ERROR_MSG
 = "Google Play services are unavailable.";

private TextView mTextView;

@Override

Finding Device Location Using Google Location Services ❘ 553

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_where_am_i);
 mTextView = findViewById(R.id.myLocationText);

 GoogleApiAvailability availability
 = GoogleApiAvailability.getInstance();
 int result = availability.isGooglePlayServicesAvailable(this);
 if (result != ConnectionResult.SUCCESS) {
 if (!availability.isUserResolvableError(result)) {
 Toast.makeText(this, ERROR_MSG, Toast.LENGTH_LONG).show();
 }
 }
}

 5. We’ll update the current location each time the app becomes visible, so override the onStart
method to check for runtime permission to access fine location accuracy. Add the stub
method getLastLocation to call when permission is granted or rejected:

private static final int LOCATION_PERMISSION_REQUEST = 1;

@Override
protected void onStart() {
 super.onStart();

 // Check if we have permission to access high accuracy fine location.
 int permission = ActivityCompat.checkSelfPermission(this,
 Manifest.permission.ACCESS_FINE_LOCATION);

 // If permission is granted, fetch the last location.
 if (permission == PERMISSION_GRANTED) {
 getLastLocation();
 } else {
 // If permission has not been granted, request permission.
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.ACCESS_FINE_LOCATION},
 LOCATION_PERMISSION_REQUEST);
 }
}

@Override
public void onRequestPermissionsResult(int requestCode,
 @NonNull String[] permissions,
 @NonNull int[] grantResults) {
 super.onRequestPermissionsResult(requestCode, permissions,
 grantResults);

 if (requestCode == LOCATION_PERMISSION_REQUEST) {
 if (grantResults[0] != PERMISSION_GRANTED)
 Toast.makeText(this, "Location Permission Denied",
 Toast.LENGTH_LONG).show();
 else
 getLastLocation();
 }
}

private void getLastLocation() {
}

554 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

 6. Now update the getLastLocation stub. Get a reference to the Fused Location Provider and
use the getLastLocation method to find the last known location. Create a method stub
updateTextView that will take the returned Location and update the Text View. It’s worth
noting that the Location Service is capable of detecting and resolving multiple potential issues
with the Google Play services APK, so we don’t need to handle the connection or failure cases
within our code:

private void getLastLocation() {
 FusedLocationProviderClient fusedLocationClient;
 fusedLocationClient =
 LocationServices.getFusedLocationProviderClient(this);

 if (
 ActivityCompat
 .checkSelfPermission(this, ACCESS_FINE_LOCATION)
 ==PERMISSION_GRANTED ||
 ActivityCompat
 .checkSelfPermission(this, ACCESS_COARSE_LOCATION)
 ==PERMISSION_GRANTED) {
 fusedLocationClient.getLastLocation()
 .addOnSuccessListener(this, new OnSuccessListener<Location>() {
 @Override
 public void onSuccess(Location location) {
 updateTextView(location);
 }
 });
 }
}

private void updateTextView(Location location) {
}

 7. Finally, update the updateTextView method stub to extract the latitude and longitude from
each location and display it in the Text View:

private void updateTextView(Location location) {
 String latLongString = "No location found";
 if (location != null) {
 double lat = location.getLatitude();
 double lng = location.getLongitude();
 latLongString = "Lat:" + lat + "\nLong:" + lng;
 }

 mTextView.setText(latLongString);
}

When running, your Activity should look like Figure 15-5.

Finding Device Location Using Google Location Services ❘ 555

FIGURE 15-5

Requesting Location Change Updates
In most circumstances, getting the last known Location is unlikely to be sufficient for your needs.
Not only is the value likely to be quickly out of date, but most location-sensitive applications need to
be reactive to user movement—and querying the Location Service for the last known Location does
not force it to update.

The requestLocationUpdates method is used to request regular updates of the device’s location
using a LocationCallback. The Location Callback also notifies you of changes to device location
information availability.

The requestLocationUpdates method accepts a LocationRequest object that provides informa-
tion the Fused Location Provider uses to determine the most efficient way to return results at the
level of accuracy and precision required.

To optimize efficiency and minimize cost and power use, you can specify a number of criteria based
on your application needs:

 ➤ setPriority—Allows you to indicate the relative importance of reducing battery drain and
getting accurate results, using one of the following constants:

556 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

 ➤ PRIORITY_HIGH_ACCURACY—Indicates that high accuracy is the priority. As a
result the FLP will attempt to obtain the most precise location possible at a cost of
increased battery drain. This can return results accurate to within a few feet and is
typically used for mapping and navigation apps.

 ➤ PRIORITY_BALANCED_POWER_ACCURACY—Attempts to balance accuracy and power
drain, resulting in precision to within a city block or approximately 100 meters.

 ➤ PRIORITY_LOW_POWER—Indicates that low battery drain is the priority. As a result,
coarse location updates at city-level precision of approximately 10 kilometers are
acceptable.

 ➤ PRIORITY_NO_POWER—Indicates that your app should not trigger location updates,
but should receive location updates caused by other apps.

 ➤ setInterval—Your preferred rate of updates in milliseconds. This will force the Location
Service to attempt to update the location at this rate. Updates may be less frequent if it is
unable to determine the location, or more frequent if other applications are receiving updates
more often.

 ➤ setFastestInterval—The fastest update rate your application can support. Specify this if
more frequent updates may cause UI issues or data overflow within your app.

Listing 15-6 shows the skeleton code for defining a Location Request that requires high accuracy
updates every 5 seconds. Note that you can specify a Looper parameter, this allows you to schedule
the callbacks on a particular thread—setting the parameter to null will force it to return on the call-
ing thread.

LISTING 15-6: Requesting location updates using a Location Request

LocationCallback mLocationCallback = new LocationCallback() {
 @Override
 public void onLocationResult(LocationResult locationResult) {
 for (Location location : locationResult.getLocations()) {
 // TODO React to newly received locations.
 }
 }
};

private void startTrackingLocation() {
 if (
 ActivityCompat
 .checkSelfPermission(this, ACCESS_FINE_LOCATION)==PERMISSION_GRANTED ||
 ActivityCompat
 .checkSelfPermission(this, ACCESS_COARSE_LOCATION)==PERMISSION_GRANTED) {

 FusedLocationProviderClient locationClient =
 LocationServices.getFusedLocationProviderClient(this);

 LocationRequest request = new LocationRequest()

Finding Device Location Using Google Location Services ❘ 557

 .setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY)
 .setInterval(5000); // Update every 5 seconds.

 locationClient.requestLocationUpdates(request, mLocationCallback, null);
 }
}

When a new location update is received, the attached Location Callback executes its onLocation-
Result event.

Note that it’s possible to receive multiple Locations within a Location Result parameter; this occurs
if you set the max wait time to more than twice the update interval:

LocationRequest request = new LocationRequest()
 .setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY)
 .setInterval(5000) // Check for changes every 5s
 .setMaxWaitTime(25000); // App can wait up to 25s to receive updates.

The max wait time indicates the maximum amount of time your application can wait before receiv-
ing location updates, at which point it will receive a batch of all the new Locations received during
that interval. This can be a useful way to improve the efficiency of your app if you need to receive
updates in a short interval but don’t need to update the UI immediately, such as when tracking a
path—for example, hiking or running.

To minimize the cost to battery life, you should disable updates whenever possible in your applica-
tion, especially in cases where your application isn’t visible and Location updates are used only to
update an Activity’s UI. You can improve performance further by making the minimum time and
distance between updates as large as possible.

To remove a Location Request, call removeLocationUpdates, passing in the relevant Location
Callback instance. It’s generally good practice to disable location updates within the onStop han-
dler, as shown in Listing 15-7, which is triggered when your UI is no longer visible.

LISTING 15-7: Cancelling location updates

@Override
protected void onStop () {
 super.onStop();

 FusedLocationProviderClient fusedLocationClient =
 LocationServices.getFusedLocationProviderClient(this);

 fusedLocationClient.removeLocationUpdates(mLocationCallback);
}

If you remove Location Requests when the Activity stops, you’ll need to keep track of when updates
have been enabled to ensure they are restarted if the Activity is restarted due to a configuration
change. You can find details for maintaining application state in Chapter 8, “Files, Saving State, and
User Preferences.”

558 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

Receiving Location Updates with Pending Intents
In rare cases, it may be necessary for your application to continue receiving location updates when it
is in the background. To support this, the Fused Location Provider allows you to use Pending Intents
to receive updates rather than the Location Callback.

NOTE The most common example of an application continuing to receive
updates while in the background is one with a foreground service—such as
real-time driving navigation that continues to receive high accuracy updates at
a short frequency. However, when using a foreground Service it’s still recom-
mended that you use the Location Callback as described in the previous section.

When receiving location updates in the background, it’s important to minimize the impact on battery
life. As such, it’s good practice to set the priority to low- or no-battery. To further improve battery life,
on devices running Android 8.0 Oreo (API Level 26) or newer, the system strictly limits background
location updates, and your app will receive updates only a few times each hour.

Rather than creating a Location Callback, you can specify a Pending Intent that will be triggered
whenever the location changes or the location availability status changes. Pass the received Intent
into the hasResult and extractResult methods to determine if it contains a new Location Result
and to extract the Location Result, respectively.

WARNING To ensure your application doesn’t leak sensitive location informa-
tion, you should target a specific Broadcast Receiver, as shown in Listing 15-8.

Listing 15-8 shows how to create a Pending Intent that triggers a Broadcast Receiver to handle new
location updates.

LISTING 15-8: Requesting location updates using a Pending Intent

FusedLocationProviderClient fusedLocationClient
 = LocationServices.getFusedLocationProviderClient(this);

LocationRequest request = new LocationRequest()
 .setInterval(60000*10) // Update every 10 minutes.
 .setPriority(LocationRequest.PRIORITY_NO_POWER);

final int locationUpdateRC = 0;
int flags = PendingIntent.FLAG_UPDATE_CURRENT;
Intent intent = new Intent(this, MyLocationUpdateReceiver.class);
PendingIntent pendingIntent =
 PendingIntent.getBroadcast(this, locationUpdateRC, intent, flags);

fusedLocationClient.requestLocationUpdates(request, pendingIntent);

Finding Device Location Using Google Location Services ❘ 559

Listing 15-9 shows how to create a Broadcast Receiver that listens for changes in location broadcast
using the Pending Intent as shown in Listing 15-8.

LISTING 15-9: Receiving location updates using a Broadcast Receiver

public class MyLocationUpdateReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent intent) {
 if (LocationResult.hasResult(intent)) {
 LocationResult locationResult = LocationResult.extractResult(intent);
 for (Location location : locationResult.getLocations()) {
 // TODO React to newly received location.
 }
 }
 }
}

Remember that you must add your Broadcast Receiver to the application manifest before it can
begin receiving the Pending Intents.

To stop location updates, call removeLocationUpdates, as shown in the following code, passing in
the Pending Intent that you no longer want to have broadcast:

fusedLocationClient.removeLocationUpdates(pendingIntent);

Defining Expiration Criteria for Updates
Not every app requires continuous location updates. In some cases only a single location fix is
required, or updates may be required for only a short length of time to provide adequate context for
the functionality they provide or information they display.

When defining your Location Request, you can indicate several additional criteria that will limit the
number of location updates you receive, and will automatically remove the Location Request once
the limit is reached:

 ➤ setExpirationDuration—Updates will expire after the specified duration in milliseconds.

 ➤ setExpirationTime—Updates will expire when the elapsed real time since device boot (in
milliseconds) is reached.

 ➤ setNumUpdates—Only the specified number of updates will be received.

The following snippet shows an (unlikely) Location Request that specifies an expiration duration,
time, and fixed number of updates:

LocationRequest request = new LocationRequest()
 .setExpirationDuration(3600000) // Expire in 1 hour
 .setExpirationTime(SystemClock.elapsedRealtime()+360000)) // Expire in 1 hour
 .setNumUpdates(10) // Receive 10 updates.

560 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

 .setInterval(60000) // Update every minute.
 .setPriority(LocationRequest.PRIORITY_NO_POWER);

If you want to start receiving more updates after an expiration condition is met, you must request
location updates again.

Background Location Update Limits
In order to reduce the battery life impact of Location updates, Android 8.0 Oreo (API Level 26)
introduced strict limits on the frequency at which apps can receive Location updates while they are
in the background. Specifically, apps that have no active foreground Activities or Services will receive
updates only a few times each hour. These new limits are applied to all apps on devices running
Android 8.0 or above, irrespective of your apps’ target SDK.

Foreground apps continue to receive updates at the rate you specify. This includes apps with a visible
Activity or with a running foreground Service. Location Requests that specify a max wait time will
receive batches of updates at the reduced interval, making this a useful approach if your app requires
frequent updates but doesn’t require them in real time.

Alternatively, the Geofencing API has been optimized for background operation and will receive
transition events more frequently than Location updates from the Fused Location Provider. By com-
parison, Geofences are checked for transitions once every few minutes.

Changing Device Location Settings
The combination of the location accuracy permission you request
and the priority of your Location Request indicates the level of
location accuracy and precision your application requires. This
typically corresponds to one or more hardware devices used to
determine location—such as Wi-Fi and/or GPS.

For privacy and battery efficiency reasons, users can select their
preferred Location mode, as shown in Figure 15-6.

As a result, it’s possible that when your app makes a request to
receive location updates, the system settings may prevent it from
obtaining the accuracy of location data that it needs; for example,
GPS or Wi-Fi scanning may be disabled.

To ensure your application receives Location results of the required accuracy, you can use the
Google Play services Settings API to check the users’ current system-wide location settings and
prompt them to modify their selection if required.

Use the static LocationSettingsRequest.Builder to add each of the Location Request objects
your application will use to request location updates.

Get an instance of the Location Services SettingsClient using the getSettingsClient method,
and use its checkLocationSettings method—passing in the Location Settings Request—to start a
Task that will deliver a LocationSettingsResponse, as shown in Listing 15-10.

FIGURE 15-6

Finding Device Location Using Google Location Services ❘ 561

LISTING 15-10: Check if the current Location Settings satisfy your requirements

// Get the settings client.
SettingsClient client = LocationServices.getSettingsClient(this);

// Create a new Location Settings Request, adding our Location Requests
LocationSettingsRequest.Builder builder =
 new LocationSettingsRequest.Builder().addLocationRequest(request);

// Check if the Location Settings satisfy our requirements.
Task<LocationSettingsResponse> task =
 client.checkLocationSettings(builder.build());

You can find the results of the Location Settings Response Task by adding onSuccess and
onFailure handlers.

A successful response indicates that the location settings are sufficient for your application’s
Location Request so you can initiate your location updates, as shown in Listing 15-11.

LISTING 15-11: Create a handler for when Location Settings satisfy your requirements

task.addOnSuccessListener(this,
 new OnSuccessListener<LocationSettingsResponse>() {
 @Override
 public void onSuccess(LocationSettingsResponse locationSettingsResponse) {
 // Location settings satisfy the requirements of the Location Request
 startTrackingLocation();
 }
 });

When the onFailure handler of the onFailureListener is triggered, it indicates that the current
system location settings may not be capable of satisfying the requirements you specified in your
Location Requests. You can extract the status code from the returned exception to determine your
next step. A status of RESOLUTION_REQUIRED indicates that the issue could be resolved through user
action, while SETTINGS_CHANGE_UNAVAILABLE indicates that the issue can’t be resolved:

int statusCode = ((ApiException) e).getStatusCode();

switch (statusCode) {
 case CommonStatusCodes.RESOLUTION_REQUIRED:
 // Issue can be user resolved.
 break;
 case LocationSettingsStatusCodes.SETTINGS_CHANGE_UNAVAILABLE:
 // Issue can't be user resolved.
 break;
 default: break;
}

562 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

In the former case, you can prompt the user to change the location settings to meet your require-
ments by calling startResolutionForResult on the Resolvable API Exception received by the
onFailure handler:

ResolvableApiException resolvable = (ResolvableApiException) e;
resolvable.startResolutionForResult(MainActivity.this, CHECK_SETTINGS);

This will display a dialog, such as the one shown in Figure 15-7,
requesting the user’s permission to modify location settings as
required.

The full skeleton code for an onFailureListener implementation
that displays a user dialog requesting a change in location settings is
shown in Listing 15-12.

LISTING 15-12: Request user changes to location settings

task.addOnFailureListener(this, new OnFailureListener() {
 @Override
 public void onFailure(@NonNull Exception e) {
 // Extract the status code for the failure from within the Exception.
 int statusCode = ((ApiException) e).getStatusCode();
 switch (statusCode) {
 case CommonStatusCodes.RESOLUTION_REQUIRED:
 // Location settings don't satisfy the requirements of the
 // Location Request, but they could be resolved through user
 // selection within a Dialog.
 try {
 // Display a user dialog to resolve the location settings issue.
 ResolvableApiException resolvable = (ResolvableApiException) e;
 resolvable.startResolutionForResult(MainActivity.this,
 REQUEST_CHECK_SETTINGS);
 } catch (IntentSender.SendIntentException sendEx) {
 Log.e(TAG, "Location Settings resolution failed.", sendEx);
 }
 break;
 case LocationSettingsStatusCodes.SETTINGS_CHANGE_UNAVAILABLE:
 // Location settings don't satisfy the requirements of the
 // Location Request, however it can't be resolved with a user
 // dialog.
 // TODO Start monitoring location updates anyway, or abort.
 break;
 }
 }
});

The result of the user’s interaction with the dialog is returned within the onActivityResult
handler as shown in Listing 15-13.

If the result is RESULT_OK it indicates the requested settings changes were applied, and you are
free to request location updates. If RESULT_CANCELED is received, the user chose not to apply the
requested changes.

FIGURE 15-7

Finding Device Location Using Google Location Services ❘ 563

LISTING 15-13: Handling the user’s response to our request to change location settings

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data){
 final LocationSettingsStates states =
 LocationSettingsStates.fromIntent(data);

 if (requestCode == REQUEST_CHECK_SETTINGS) {
 switch (resultCode) {
 case Activity.RESULT_OK:
 // TODO Changes were applied.
 break;
 case Activity.RESULT_CANCELED:
 // TODO Changes were not applied.
 // TODO Check states to confirm if we can attempt
 // TODO to request location updates anyway.
 break;
 default: break;
 }
 }
}

If the user declines the requested settings changes you must decide how to respond. You could
attempt to request location results knowing the accuracy is less than desired, disable the functional-
ity that requires the updates, or—in extreme cases—display an error and exit the application.

To help decide on the best approach, you can extract additional Location Settings States from the
Intent returned to the onActivityResult handler:

final LocationSettingsStates states =
 LocationSettingsStates.fromIntent(data);

The Location Settings States includes a number of methods indicating the availability and usability
of location-related support including location itself, GPS, cell network/Wi-Fi, and BLE.

Updating the Location in the “Where Am I” Example
In the following example, the Where Am I project is enhanced to update your current location by
listening for location changes with a 5-second interval:

 1. Open the WhereAmIActivity in the Where Am I project. Update the onCreate method to
create a new LocationRequest that prioritizes high accuracy and has a 5-second update
interval:

private LocationRequest mLocationRequest;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_where_am_i);
 mTextView = findViewById(R.id.myLocationText);

 GoogleApiAvailability availability

564 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

 = GoogleApiAvailability.getInstance();
 int result = availability.isGooglePlayServicesAvailable(this);
 if (result != ConnectionResult.SUCCESS) {
 if (!availability.isUserResolvableError(result)) {
 Toast.makeText(this, ERROR_MSG, Toast.LENGTH_LONG).show();
 }
 }

 mLocationRequest = new LocationRequest()
 .setInterval(5000)
 .setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY);
}

 2. Create a new LocationCallback that calls the updateTextView method to update the Text
View whenever a new Location update is received:

LocationCallback mLocationCallback = new LocationCallback() {
 @Override
 public void onLocationResult(LocationResult locationResult) {
 Location location = locationResult.getLastLocation();
 if (location != null) {
 updateTextView(location);
 }
 }
};

 3. Create a new requestLocationUpdates method that will initiate a request to receive
Location updates using the Location Request defined in Step 1 and the Location Callback
from Step 2:

private void requestLocationUpdates() {
 if (ActivityCompat
 .checkSelfPermission(this, ACCESS_FINE_LOCATION)
 ==PERMISSION_GRANTED ||
 ActivityCompat
 .checkSelfPermission(this, ACCESS_COARSE_LOCATION)
 ==PERMISSION_GRANTED) {

 FusedLocationProviderClient fusedLocationClient
 = LocationServices.getFusedLocationProviderClient(this);

 fusedLocationClient.requestLocationUpdates(mLocationRequest,
 mLocationCallback, null);
 }
}

 4. Update the onStart method to compare the system location settings with the requirements
of our Location Request. If the settings are compatible, or if they can’t be resolved, call the
requestLocationUpdates method from Step 3. If they do not meet our requirements, but
can be resolved through user action, display a dialog asking the users to change their settings
accordingly:

public static final String TAG = "WhereAmIActivity";
private static final int REQUEST_CHECK_SETTINGS = 2;

Finding Device Location Using Google Location Services ❘ 565

@Override
protected void onStart() {
 super.onStart();

 // Check if we have permission to access high accuracy fine location.
 int permission = ActivityCompat.checkSelfPermission(this,
 ACCESS_FINE_LOCATION);

 // If permission is granted, fetch the last location.
 if (permission == PERMISSION_GRANTED) {
 getLastLocation();
 } else {
 // If permission has not been granted, request permission.
 ActivityCompat.requestPermissions(this,
 new String[]{ACCESS_FINE_LOCATION},
 LOCATION_PERMISSION_REQUEST);
 }

 // Check of the location settings are compatible with our Location
 //Request.
 LocationSettingsRequest.Builder builder =
 new LocationSettingsRequest.Builder()
 .addLocationRequest(mLocationRequest);

 SettingsClient client = LocationServices.getSettingsClient(this);

 Task<LocationSettingsResponse> task =
 client.checkLocationSettings(builder.build());

 task.addOnSuccessListener(this,
 new OnSuccessListener<LocationSettingsResponse>() {
 @Override
 public void onSuccess(LocationSettingsResponse
 locationSettingsResponse) {
 // Location settings satisfy the requirements of the Location
 // Request.
 // Request location updates.
 requestLocationUpdates();
 }
 });

 task.addOnFailureListener(this, new OnFailureListener() {
 @Override
 public void onFailure(@NonNull Exception e) {
 // Extract the status code for the failure from within the
 // Exception.
 int statusCode = ((ApiException) e).getStatusCode();
 switch (statusCode) {
 case CommonStatusCodes.RESOLUTION_REQUIRED:
 try {
 // Display a user dialog to resolve the location settings
 // issue.
 ResolvableApiException resolvable
 = (ResolvableApiException) e;
 resolvable.startResolutionForResult(WhereAmIActivity.this,

566 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

 REQUEST_CHECK_SETTINGS);
 } catch (IntentSender.SendIntentException sendEx) {
 Log.e(TAG, "Location Settings resolution failed.", sendEx);
 }
 break;
 case LocationSettingsStatusCodes.SETTINGS_CHANGE_UNAVAILABLE:
 // Location settings issues can't be resolved by user.
 // Request location updates anyway.
 Log.d(TAG, "Location Settings can't be resolved.");
 requestLocationUpdates();
 break;
 }
 }
 });
}

 5. Override the onActivityResult handler to listen for a return from the dialog potentially
displayed in Step 4. If the user accepts the requested changes, request location updates. If
they are rejected, check to see if any location services are available—and request updates
if so:

@Override
protected void onActivityResult(int requestCode,
 int resultCode,Intent data){
 final LocationSettingsStates states =
 LocationSettingsStates.fromIntent(data);

 if (requestCode == REQUEST_CHECK_SETTINGS) {
 switch (resultCode) {
 case Activity.RESULT_OK:
 // Requested changes made, request location updates.
 requestLocationUpdates();
 break;
 case Activity.RESULT_CANCELED:
 // Requested changes were NOT made.
 Log.d(TAG, "Requested settings changes declined by user.");
 // Check if any location services are available, and if so
 // request location updates.
 if (states.isLocationUsable())
 requestLocationUpdates();
 else
 Log.d(TAG, "No location services available.");
 break;
 default: break;
 }
 }
}

If you run the application and start changing the device location, you see the Text View update
accordingly.

Best Practices When Using Location
Incorporating user location within your application can add powerful personalization and contextu-
alization features that improve the user experience and make unique features possible. These power-
ful features must be balanced against the impact on battery life and user privacy.

Setting and Managing Geofences ❘ 567

To take advantage of these features without draining the device battery, consider the following
factors:

Battery life versus accuracy—Carefully consider how accurate your location updates need
to be, and consider modifying the requirements at run time to minimize the impact on bat-
tery life.

Minimize update rate—Slower updates can reduce battery drain at the price of less timely
updates.

Modify the fastest interval—Increasing the fastest interval is useful when your application is
performing a time-consuming operation that will prevent it from processing further location
updates. Increase this value to allow the Location Services to buffer location updates until
your app can process them. Once the long-running work is done, reset the fastest interval
back to a faster value.

Unsubscribe when appropriate—Your app should always unsubscribe from updates when-
ever they aren’t needed. This is especially important if location updates are updating your
UI, and your Activity is no longer visible.

Access to the user’s current location introduces significant privacy considerations. As such, it’s
important that your application treats location data in a way that respects user privacy:

 ➤ Obtain the current location and request location updates only when it is strictly necessary for
your application to function. When possible, allow users to decline location-dependent fea-
tures while still using the rest of your app.

 ➤ Inform users of how and why using their location is necessary.

 ➤ Notify users when you are tracking their location, and if and how that location information
is used, transmitted, and stored.

 ➤ Avoid storing or transmitting user location; when storage and transmission is necessary, take
every precaution to prevent other applications from accessing this information.

 ➤ Be careful not to leak location information through broadcast Intents or unsecured
databases.

 ➤ Respect user settings and system location preferences. Allow users to disable location updates
within your app, and provide as much functionality as possible even when users restrict loca-
tion accuracy.

SETTING AND MANAGING GEOFENCES

Geofences are defined by a given latitude and longitude, combined with an effective radius. Using
Geofences, you can set Pending Intents that are fired based on the user’s proximity to specified loca-
tions. Your app can specify up to 100 Geofences per device user.

568 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

NOTE Internally, Geofences use the Fused Location Provider, using different
accuracy priorities depending on how close you are to the outside edge of your
target area. This allows the power use and cost to be minimized when the alert is
unlikely to be fired based on your distance from the target area interface.

The Geofence API is part of the Google Play service Location Services library, which must be added
as a dependency to your app module’s build.gradle file after you’ve installed Google Play services as
described earlier in this chapter:

dependencies {
 ...
 implementation 'com.google.android.gms:play-services-location:15.0.1'
}

The Geofence API requires the fine location permission to be defined in your application manifest:

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

As a dangerous permission, fine location access must also be requested at run time prior to setting a
Geofence:

// Check if we have permission to access high accuracy fine location.
int permission = ActivityCompat.checkSelfPermission(this,
 Manifest.permission.ACCESS_FINE_LOCATION);

// If permission is granted, fetch the last location.
if (permission == PERMISSION_GRANTED) {
 setGeofence();
} else {
 // If permission has not been granted, request permission.
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.ACCESS_FINE_LOCATION},
 LOCATION_PERMISSION_REQUEST);
}

To set a Geofence, request an instance of the GeofencingClient by calling the static getGeo-
fencingClient method from the LocationServices class, as shown in Listing 15-14.

LISTING 15-14: Accessing the Geofencing Client

GeofencingClient geofencingClient =
 LocationServices.getGeofencingClient(this);

As shown in Listing 15-15, you can define a Geofence around a given location using the Geofence
.Builder class. Specify a unique ID, the center point (using longitude and latitude values), a radius
around that point, an expiry time-out, and the transition types that will cause the Pending Intent to
fire: entry, exit, and/or dwell.

Setting and Managing Geofences ❘ 569

LISTING 15-15: Defining a Geofence

Geofence newGeofence = new Geofence.Builder()
 .setRequestId(id) // unique name of geofence
 .setCircularRegion(location.getLatitude(),
 location.getLongitude(),
 30) // 30 meter radius.
 .setExpirationDuration(Geofence.NEVER_EXPIRE) // Or expiration time in ms
 .setLoiteringDelay(10*1000) // Dwell after 10 seconds
 .setNotificationResponsiveness(10*1000) // Notify within 10 seconds
 .setTransitionTypes(Geofence.GEOFENCE_TRANSITION_DWELL)
 .build();

The loitering delay indicates the time (in milliseconds) that the device must be within the radius
before the transition type moves from enter to dwell, while the notification responsiveness allows
you to indicate your preferred latency between a transition and the firing of an Intent. This defaults
to 0, but setting a large value here can significantly improve battery performance.

To add a Geofence you need to pass a GeofencingRequest and a Pending Intent to fire to the
Geofencing Client.

Create the Geofencing Request using the GeofencingRequest.Builder, adding either a list of
Geofences, or an individual one as shown in Listing 15-16. You can also specify the initial trigger,
which can be useful if you’re triggering on entering the Geofence and want to receive a trigger if the
device is already within the proximity radius when the Geofence is created.

LISTING 15-16: Creating a Geofencing Request

GeofencingRequest geofencingRequest = new GeofencingRequest.Builder()
 .addGeofence(newGeofence)
 .setInitialTrigger(GeofencingRequest.INITIAL_TRIGGER_DWELL)
 .build();

To specify the Intent to fire, you use a PendingIntent, a class that wraps an Intent in a kind of
method pointer, as described in Chapter 6, “Intents and Broadcast Receivers.”:

Intent intent = new Intent(this, GeofenceBroadcastReceiver.class);
PendingIntent geofenceIntent = PendingIntent.getBroadcast(this, -1,
 intent, 0);

Listing 15-17 shows how to initiate a Geofencing Request with the Geofencing Client, indicating
the specified Pending Intent to be broadcast when the Geofence is triggered. You can use On Success
and On Failure Listeners to observe if the attempt to add the Geofence(s) was successful.

LISTING 15-17: Initiating a Geofencing Request

geofencingClient.addGeofences(geofencingRequest, geofenceIntent)
 .addOnSuccessListener(this, new OnSuccessListener<Void>() {
 @Override

continues

570 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

 public void onSuccess(Void aVoid) {
 // TODO Geofence added.
 }
 })
 .addOnFailureListener(this, new OnFailureListener() {
 @Override
 public void onFailure(@NonNull Exception e) {
 Log.d(TAG, "Adding Geofence failed", e);
 // TODO Geofence failed to add.
 }
 });

When the Location Service detects that you have crossed the Geofence radius boundary, the Pending
Intent fires. Depending on your Pending Intent, the Intent fired when the Geofence is triggered can
trigger a Broadcast Receiver, such as the one shown in Listing 15-18.

LISTING 15-18: Creating a Geofence Broadcast Receiver

public class GeofenceBroadcastReceiver extends BroadcastReceiver {

 private static final String TAG = "GeofenceReceiver";

 @Override
 public void onReceive(Context context, Intent intent) {
 GeofencingEvent geofencingEvent = GeofencingEvent.fromIntent(intent);
 if (geofencingEvent.hasError()) {
 int errorCode = geofencingEvent.getErrorCode();
 String errorMessage =
 GeofenceStatusCodes.getStatusCodeString(errorCode);
 Log.e(TAG, errorMessage);
 } else {
 // Get the transition type.
 int geofenceTransition = geofencingEvent.getGeofenceTransition();

 // A single event can trigger multiple geofences.
 // Get the geofences that were triggered.
 List<Geofence> triggeringGeofences =
 geofencingEvent.getTriggeringGeofences();

 // TODO React to the Geofence(s) transition(s).
 }
 }
}

You can extract the GeofencingEvent by passing the received Intent into the Geofencing
Event’s fromIntent method. Using the Geofencing Event, you can determine what, if any, errors
occurred—as well as the type of transition and List of the Geofences that triggered the Intent
broadcast.

LISTING 15-17 (continued)

Using the Legacy Platform Location-Based Services ❘ 571

Geofences will automatically be removed once their time expires, or you can manually remove them
using the Geofence Client’s removeGeofences method, passing in either a List of identifier strings or
the Pending Intent associated with the Geofences you want to remove:

geofencingClient.removeGeofences(geofenceIntent);

NOTE At the time of writing this book, it was not possible to test Geofences
using the Android emulator, as they never trigger. At this time, in order to test
Geofences, you must run them on a physical device. If you want to avoid having
to actually move, enable “Allow mock locations” within the Developer options
settings on your device, and add the ACCESS_MOCK_LOCATION permission within
your manifest. This will enable you to send mock locations to your app, as
described at d.android.com/guide/topics/location/strategies
.html#MockData.

Once added, Geofences are kept active within the Location Services process even if your app is
closed or killed by the system. They will be persisted except in the cases of device reboot, uninstalla-
tion of your application, a user-initiated clear of your app data (or Google Play services app data), or
if you receive a GEOFENCE_NOT_AVAILABLE error.

Android 8.0 Oreo (API Level 26) introduced strict limits on the frequency at which apps can receive
Location updates while they are in the background. However, because the Geofencing API has been
optimized for background operation, it receives transition events more frequently than Location
updates from the Fused Location Provider while your app is in the background—typically once
every few minutes.

Nonetheless, just as receiving location updates within your app can have a significant impact on
power consumption, so too will setting multiple Geofences likely to trigger often. To minimize the
associated battery impact, set the notification responsiveness to as slow a value as possible, and
increase the size of your Geofence radius to at least 150 meters—reducing the need for the device to
check its location.

USING THE LEGACY PLATFORM LOCATION-BASED SERVICES

In addition to the Google Play services Location Services, the Android framework includes location-
based services that are available on all Android devices. The Google Play Location library utilizes
these platform location APIs to implement its functionality.

The Fused Location provider implements many of the best practices described in this section, pro-
viding increased battery efficiency and location accuracy, making it the recommended API to use
whenever possible.

“Location-based services” is an umbrella term that describes the different technologies used by the
platform to find a device’s current location. The two main LBS elements are:

 ➤ Location Manager—Provides hooks to the location-based services.

 ➤ Location Providers—Each of these represents a different location-finding technology used to
determine the device’s current location.

572 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

Using the Location Manager, you can do the following:

 ➤ Obtain your current location

 ➤ Follow movement

 ➤ Find available Location Providers

 ➤ Monitor the status of the GPS receiver

Access to the location-based services is provided by the Location Manager. To access the Location
Manager, request a reference to it by passing in the LOCATION_SERVICE constant to the getSystem-
Service method:

LocationManager
 = (LocationManager) getSystemService(Context.LOCATION_SERVICE);

As with the Google Play services Location Services library, the platform location-based services
require one or more uses-permission tags in your manifest:

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

As dangerous permissions, both fine and coarse location access require the user to accept runtime
permissions before your app can retrieve location information using the location-based services.

Selecting a Location Provider
Depending on the device, you can use several technologies to determine the current location. Each
technology, available as a Location Provider, offers different capabilities—including differences in
power consumption, accuracy, and the ability to determine altitude, speed, or heading information.

NOTE The Fused Location Provider, provided by the Google Play Location
library described in the previous section, incorporates all of the available
Location Providers in order to provide the most accurate location results with
the least battery drain.

Finding Location Providers
The LocationManager class includes static string constants that return the provider name for three
Location Providers:

 ➤ GPS_PROVIDER

 ➤ NETWORK_PROVIDER

 ➤ PASSIVE_PROVIDER

NOTE The GPS provider requires fine permission, as does the passive provider,
whereas the network (Cell ID/Wi-Fi) provider requires only coarse.

Using the Legacy Platform Location-Based Services ❘ 573

To get a list of the names of all the Providers available (based on hardware available on the device,
and the permissions granted the application), call getProviders, using a Boolean to indicate if you
want all, or only the enabled, Providers to be returned:

boolean enabledOnly = true;
List<String> providers = locationManager.getProviders(enabledOnly);

Finding Location Providers by Specifying Criteria
In most scenarios it’s unlikely that you want to explicitly choose a Location Provider. It’s better
practice to specify your requirements and let Android determine the best technology to use.

Use the Criteria class to dictate the requirements of a Provider in terms of accuracy, power use
(low, medium, high), financial cost, and the ability to return values for altitude, speed, and heading:

Criteria criteria = new Criteria();
criteria.setAccuracy(Criteria.ACCURACY_COARSE);
criteria.setPowerRequirement(Criteria.POWER_LOW);
criteria.setAltitudeRequired(false);
criteria.setBearingRequired(false);
criteria.setSpeedRequired(false);
criteria.setCostAllowed(true);

The coarse/fine values passed in to the setAccuracy represent a subjective level of accuracy, where
fine represents GPS or better and coarse represents any technology significantly less accurate than
that.

It’s also possible to specify additional Criteria properties to get more control over the level of accu-
racy you require including horizontal (latitude/longitude), vertical (elevation), speed, and bearing
accuracy:

criteria.setHorizontalAccuracy(Criteria.ACCURACY_HIGH);
criteria.setVerticalAccuracy(Criteria.ACCURACY_MEDIUM);

criteria.setBearingAccuracy(Criteria.ACCURACY_LOW);
criteria.setSpeedAccuracy(Criteria.ACCURACY_LOW);

In terms of horizontal and vertical accuracy, high accuracy represents a requirement for results
correct to within 100m. Low accuracy Providers are correct to more than 500m, whereas medium
accuracy Providers represent accuracy between 100 and 500 meters.

When specifying accuracy requirements for bearing and speed, only ACCURACY_LOW and ACCURACY_
HIGH are valid parameters.

Having defined the required Criteria, you can use getBestProvider to return the best match-
ing Location Provider or getProviders to return all the possible matches. The following snippet
demonstrates the use of getBestProvider to return the best Provider for your Criteria where the
Boolean enables you restrict the result to currently enabled Providers:

String bestProvider = locationManager.getBestProvider(criteria, true);

In most cases, if more than one Location Provider matches your Criteria, the one with the greatest
accuracy is returned. If no Location Providers meet your requirements, the Criteria are loosened, in
the following order, until a Provider is found:

574 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

 ➤ Power use

 ➤ Accuracy of returned location

 ➤ Accuracy of bearing, speed, and altitude

 ➤ Availability of bearing, speed, and altitude

The criterion for allowing a device with monetary cost is never implicitly relaxed. If no Provider is
found, null is returned.

To get a list of names for all the Providers matching your Criteria, use getProviders. It accepts a
Criteria object and returns a List of Strings containing all Location Providers that match it. As with
the getBestProvider call, if no matching providers are found, this method returns null or an
empty List:

List<String> matchingProviders = locationManager.getProviders(criteria,
 false);

Determining Location Provider Capabilities
To get an instance of a specific Provider, call getProvider, passing in the name:

String providerName = LocationManager.GPS_PROVIDER;

LocationProvider gpsProvider
 = locationManager.getProvider(providerName);

This is useful only for obtaining the capabilities of a particular Provider—specifically the accuracy
and power requirements through the getAccuracy and getPowerRequirement methods.

In the following sections, most Location Manager methods require only a Provider name or a
Criteria to perform location-based functions.

Finding the Last Known Location
You can find the last location fix obtained by a particular Location Provider using the getLast-
KnownLocation method, passing in the name of the Location Provider. The following example finds
the last location fix taken by the GPS provider:

String provider = LocationManager.GPS_PROVIDER;
Location location = locationManager.getLastKnownLocation(provider);

WARNING getLastKnownLocation does not ask the Location Provider to
update the current position. If the device has not recently updated the current
position, this value may be out of date or may not exist.

The Location object returned includes all the position information available from the provider that
supplied it. This can include the time it was obtained, the accuracy of the location found, and its
latitude, longitude, bearing, altitude, and speed. All these properties are available via get methods
on the Location object.

Using the Legacy Platform Location-Based Services ❘ 575

Note that each device has multiple Location Providers, each of which may have been updated at a
different time and different accuracy. To get the best last known location, you may need to query
multiple Location Providers and compare their accuracies and timestamps. Alternatively, the Fused
Location Provider described earlier in this chapter handles this for you with a single method call.

Requesting Location Change Updates
The Location Manager’s requestLocationUpdates methods are used to request regular updates of
location changes using a LocationListener. Location Listeners also contain handlers that trigger
based on changes in a provider’s status and availability.

The requestLocationUpdates method accepts either a specific Location Provider name or a set
of Criteria to determine the provider to use. To optimize efficiency and minimize cost and power
use, you can also specify the minimum time and the minimum distance between location change
updates:

String provider = LocationManager.GPS_PROVIDER;

int t = 5000; // milliseconds
int distance = 5; // meters

LocationListener myLocationListener = new LocationListener() {

 public void onLocationChanged(Location location) {
 // Update application based on new location.
 }

 public void onProviderDisabled(String provider){
 // Update application if provider disabled.
 }

 public void onProviderEnabled(String provider){
 // Update application if provider enabled.
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras){
 // Update application if provider hardware status changed.
 }
};

locationManager.requestLocationUpdates(provider, t, distance,
 myLocationListener);

When the minimum time and distance values are exceeded, the attached Location Listener executes
its onLocationChanged event.

NOTE You can request multiple location updates pointing to the same or differ-
ent Location Listeners using different minimum time and distance thresholds or
Location Providers.

576 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

It’s also possible to specify a Pending Intent that will be broadcast whenever the location changes or
the location provider status or availability changes, rather than using a Location Listener. The new
location is stored as an extra with the key KEY_LOCATION_CHANGED:

String provider = LocationManager.GPS_PROVIDER;

int t = 5000; // milliseconds
int distance = 5; // meters

final int locationUpdateRC = 0;
int flags = PendingIntent.FLAG_UPDATE_CURRENT;

Intent intent = new Intent(this, MyLocationUpdateReceiver.class);
PendingIntent pendingIntent = PendingIntent.getBroadcast(this,
 locationUpdateRC, intent, flags);

locationManager.requestLocationUpdates(provider, t,
 distance, pendingIntent);

WARNING To ensure your application doesn’t leak sensitive location informa-
tion, you need to either target a specific Broadcast Receiver, or require permis-
sions for your location update Intents to be received. More details on applying
permissions to Broadcast Intents are available in Chapter 20, “Advanced
Android Development.”

When broadcasting Pending Intents for location changes, you will need to create a Broadcast
Receiver that listens for changes in location broadcast:

public class MyLocationUpdateReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent intent) {
 String key = LocationManager.KEY_LOCATION_CHANGED;
 Location location = (Location)intent.getExtras().get(key);
 // TODO Do something with the new location
 }

}

To stop location updates, call removeUpdates, as shown in the following code. Pass in either the
Location Listener instance or Pending Intent that you no longer want to have triggered:

locationManager.removeUpdates(myLocationListener);
locationManager.removeUpdates(pendingIntent);

To minimize the cost to battery life, you should disable updates whenever possible in your applica-
tion, especially in cases where your application isn’t visible and location changes are used only to
update an Activity’s UI. You can improve performance further by making the minimum time and
distance between updates as large as possible.

Using the Legacy Platform Location-Based Services ❘ 577

Where timeliness is not a significant factor, you might consider using the Passive Location Provider,
as shown in the following snippet:

String passiveProvider = LocationManager.PASSIVE_PROVIDER;
locationManager.requestLocationUpdates(passiveProvider, 0, 0,
 myLocationListener);

The Passive Location Provider receives location updates if, and only if, another application requests
them, letting your application passively receive updates without activating a Location Provider.

Because the updates may come from any Location Provider, your application must request the
ACCESS_FINE_LOCATION permission to use the Passive Location Provider. Call getProvider on the
Location received by the registered Location Listener to determine which Location Provider gener-
ated each update.

Best Practice for Using the Legacy Location-Based Services
When using the platform location-based services within your application, you should consider the
same factors as described earlier in “Best Practices when Using Location.” In addition, the platform
location-based services require you to consider the following additional factors that are handled
automatically by the Fused Location Provider:

 ➤ Startup time—In a mobile environment the time taken to get an initial location can have a
dramatic effect on the user experience—particularly if your app requires a location to be
used. GPS, for example, can have a significant startup time, which you may need to mitigate.

 ➤ Provider availability—Users can toggle the availability of Location Providers, so your appli-
cation needs to monitor changes in Location Provider status to ensure the best alternative is
used at all times.

Having used Criteria to select the best Provider available for receiving location updates, you need
to monitor changes in the availability of Location Providers to ensure that the one selected remains
available and the best alternative.

The following snippet shows how to monitor the status of your selected Provider, dynamically
switching to a new Provider should it become unavailable and switching to a better alternative
should one be enabled:

public class DynamicProvidersActivity extends Activity {
 private LocationManager locationManager;
 private final Criteria criteria = new Criteria();
 private static final int minUpdateTime = 30*1000; // 30 Seconds
 private static final int minUpdateDistance = 100; // 100m

 private static final String TAG = "DYNAMIC_LOCATION";
 private static final int LOCATION_PERMISSION_REQUEST = 1;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_dynamic_providers);

578 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

 // Get a reference to the Location Manager
 locationManager
 = (LocationManager)getSystemService(Context.LOCATION_SERVICE);

 // Specify Location Provider criteria
 criteria.setAccuracy(Criteria.ACCURACY_FINE);
 criteria.setPowerRequirement(Criteria.POWER_LOW);
 criteria.setAltitudeRequired(true);
 criteria.setBearingRequired(true);
 criteria.setSpeedRequired(true);
 criteria.setCostAllowed(true);

 criteria.setHorizontalAccuracy(Criteria.ACCURACY_HIGH);
 criteria.setVerticalAccuracy(Criteria.ACCURACY_MEDIUM);
 criteria.setBearingAccuracy(Criteria.ACCURACY_LOW);
 criteria.setSpeedAccuracy(Criteria.ACCURACY_LOW);
 }

 @Override
 protected void onStop() {
 super.onStop();
 unregisterAllListeners();
 }

 @Override
 protected void onStart() {
 super.onStart();
 registerListener();
 }

 private void registerListener() {
 unregisterAllListeners();
 String bestProvider =
 locationManager.getBestProvider(criteria, false);
 String bestAvailableProvider =
 locationManager.getBestProvider(criteria, true);

 Log.d(TAG, bestProvider + " / " + bestAvailableProvider);

 // Check permissions.
 if (ActivityCompat
 .checkSelfPermission(this, ACCESS_FINE_LOCATION) !=
 PERMISSION_GRANTED ||
 ActivityCompat
 .checkSelfPermission(this, ACCESS_COARSE_LOCATION) !=
 PERMISSION_GRANTED) {
 permissionsRequest();
 }

 if (bestProvider == null)
 Log.d(TAG, "No Location Providers exist.");
 else if (bestProvider.equals(bestAvailableProvider))
 locationManager.requestLocationUpdates(bestAvailableProvider,
 minUpdateTime, minUpdateDistance,
 bestAvailableProviderListener);

Using the Legacy Platform Location-Based Services ❘ 579

 else {
 locationManager.requestLocationUpdates(bestProvider,
 minUpdateTime, minUpdateDistance, bestProviderListener);

 if (bestAvailableProvider != null)
 locationManager.requestLocationUpdates(bestAvailableProvider,
 minUpdateTime, minUpdateDistance,
 bestAvailableProviderListener);
 else {
 List<String> allProviders = locationManager.getAllProviders();
 for (String provider : allProviders)
 locationManager.requestLocationUpdates(provider, 0, 0,
 bestProviderListener);
 Log.d(TAG, "No Location Providers available.");
 }
 }
 }

 private void unregisterAllListeners() {
 locationManager.removeUpdates(bestProviderListener);
 locationManager.removeUpdates(bestAvailableProviderListener);
 }

 private void permissionsRequest() {
 if (ActivityCompat.shouldShowRequestPermissionRationale(
 this, ACCESS_FINE_LOCATION)) {
 // TODO: Display additional rationale for the requested permission.
 }
 ActivityCompat.requestPermissions(this,
 new String[]{ACCESS_FINE_LOCATION, ACCESS_COARSE_LOCATION},
 LOCATION_PERMISSION_REQUEST);
 }

 @Override
 public void onRequestPermissionsResult(int requestCode,
 @NonNull String[] permissions,
 @NonNull int[] grantResults) {
 super.onRequestPermissionsResult(requestCode, permissions, grantResults);

 if (requestCode == LOCATION_PERMISSION_REQUEST) {
 if (grantResults[0] != PERMISSION_GRANTED) {
 Log.d(TAG, "Location Permission Denied.");
 // TODO React to denied permission.
 } else {
 registerListener();
 }
 }
 }

 private void reactToLocationChange(Location location) {
 // TODO [React to location change]
 }

 private LocationListener bestProviderListener
 = new LocationListener() {

580 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

 public void onLocationChanged(Location location) {
 reactToLocationChange(location);
 }

 public void onProviderDisabled(String provider) {
 }

 public void onProviderEnabled(String provider) {
 registerListener();
 }

 public void onStatusChanged(String provider,
 int status, Bundle extras) {}
 };

 private LocationListener bestAvailableProviderListener =
 new LocationListener() {
 public void onProviderEnabled(String provider) {
 }

 public void onProviderDisabled(String provider) {
 registerListener();
 }

 public void onLocationChanged(Location location) {
 reactToLocationChange(location);
 }

 public void onStatusChanged(String provider,
 int status, Bundle extras) {}
 };
}

USING THE GEOCODER

Geocoding enables you to translate in both directions between street addresses and longitude/lati-
tude map coordinates. This can give you a recognizable context for the locations and coordinates
used in location-based services and map-based Activities.

The Geocoder class provides access to two geocoding functions:

 ➤ Forward geocoding—Finds the latitude and longitude of an address

 ➤ Reverse geocoding—Finds the street address for a given latitude and longitude

The results from these calls are contextualized by means of a locale (used to define your usual
location and language). The following snippet shows how you set the locale when creating your
Geocoder. If you don’t specify a locale, it assumes the device’s default:

Geocoder geocoder = new Geocoder(this, Locale.getDefault());

Using the Geocoder ❘ 581

Both geocoding functions return a list of Address objects. Each list can contain several possible
results, up to a limit you specify when making the call.

Each Address is populated with as much detail as the Geocoder is able to resolve. This can include
the latitude, longitude, phone number, and increasingly granular address details from country to
street and house number.

NOTE Geocoder lookups are performed synchronously, so they block the call-
ing thread. It’s important to move these lookups into a background thread, as
demonstrated in Chapter 11, “Working in the Background.”

The Geocoder uses a web service to implement its lookups that may not be included on all Android
devices. Use the isPresent method to determine if a Geocoder implementation exists on a given
device:

boolean geocoderExists = Geocoder.isPresent();

If no Geocoder implementation exists on the device, the forward and reverse geocoding queries
described in the following sections will return an empty list.

As the geocoding lookups are done on the server, your app also requires the Internet uses-
permission in your manifest:

<uses-permission android:name="android.permission.INTERNET"/>

The web service used to implement the Geocoder can vary by device, but is most commonly the
Google Maps API. Note that these backend services may have limits to the number and frequency of
requests. The limits of the Google Maps-based service include:

 ➤ A maximum of 2,500 requests per day per device

 ➤ No more than 50 QPS (queries per second)

The Google Maps geocoding API limitations are described in more detail at developers.google
.com/maps/documentation/geocoding/geocoding-strategies?csw=1#quota-limits. In
order to minimize the chance of exceeding your quota it’s best practice to use techniques such as
caching to reduce the number of geocoding requests made.

Reverse Geocoding
Reverse geocoding returns street addresses for physical locations specified by latitude/longitude
pairs. It’s a useful way to get a recognizable context for the Locations returned by location-based
services.

To perform a reverse lookup, pass the target latitude and longitude to a Geocoder object’s getFrom-
Location method and it will return a list of possible address matches. If the Geocoder could not
resolve any addresses for the specified coordinate, it returns null.

Listing 15-19 shows how to reverse-geocode a given Location, limiting the number of possible
addresses to the top 10.

582 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

LISTING 15-19: Reverse-geocoding a given location

private void reverseGeocode(Location location) {

 double latitude = location.getLatitude();
 double longitude = location.getLongitude();
 List<Address> addresses = null;

 Geocoder gc = new Geocoder(this, Locale.getDefault());
 try {
 addresses = gc.getFromLocation(latitude, longitude, 10);
 } catch (IOException e) {
 Log.e(TAG, "Geocoder I/O Exception", e);
 }
}

The accuracy and granularity of reverse lookups are entirely dependent on the quality of data in the
geocoding database; as a result, the quality of the results may vary widely between different coun-
tries and locales.

Forward Geocoding
Forward geocoding (or just geocoding) determines map coordinates for a given location.

NOTE What constitutes a valid location varies depending on the Locale within
which you search. Generally, it includes regular street addresses of varying
granularity (from country to street name and number), postcodes, train stations,
landmarks, and hospitals. As a general guide, valid search terms are similar to
the addresses and locations you can enter into a Google Maps search.

To geocode an address, call getFromLocationName on a Geocoder object. Pass in a string that
describes the address you want the coordinates for, the maximum number of results to return, and
optionally provide a geographic bounding box within which to restrict your search results:

List<Address> result = geocoder.getFromLocationName(streetAddress, 5);

The returned list of Addresses may include multiple possible matches for the named location. Each
Address includes latitude and longitude and any additional address information available for those
coordinates. This is useful to confirm that the correct location was resolved, and for providing loca-
tion specifics in searches for landmarks.

NOTE As with reverse geocoding, if no matches are found, null is returned. The
availability, accuracy, and granularity of geocoding results depend entirely on
the database available for the area you search.

Using the Geocoder ❘ 583

When you do forward lookups, the Locale specified when instantiating the Geocoder is particu-
larly important. The Locale provides the geographical context for interpreting your search requests
because the same location names can exist in multiple areas.

Where possible, consider selecting a regional Locale to help avoid place-name ambiguity, and try to
provide as many address details as possible, as shown in Listing 15-20.

LISTING 15-20: Geocoding an address

Geocoder geocoder = new Geocoder(this, Locale.US);
String streetAddress = "160 Riverside Drive, New York, New York";

List<Address> locations = null;
try {
 locations = geocoder.getFromLocationName(streetAddress, 5);
} catch (IOException e) {
 Log.e(TAG, "Geocoder I/O Exception", e);
}

For even more specific results, you can restrict your search to within a geographical area by specify-
ing the lower-left and upper-right latitude and longitude as shown here:

List<Address> locations = null;
try {
 locations = geocoder.getFromLocationName(streetAddress, 10,
 llLat, llLong, urLat, urLong);
} catch (IOException e) {
 Log.e(TAG, "IO Exception", e);
}

This overload is particularly useful when working with a map, letting you restrict the search to the
visible area.

Geocoding Where Am I
In this example you extend the Where Am I project to include and update the current street address
whenever the device moves.

 1. Start by modifying the manifest to include the Internet uses-permission:

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission android:name="android.permission.INTERNET"/>

 2. Then open the WhereAmIActivity. Create a new geocodeLocation method that takes a
Location and returns a String:

private String geocodeLocation(Location location) {
 String returnString = "";
 return returnString;
}

584 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

 3. Within the new method, check if the Geocoder is available, and if so instantiate a new
Geocoder object and pass the Location parameter into the Geocoder’s getFromLocation
method to find and return the street address:

private String geocodeLocation(Location location) {
 String returnString = "";

 if (location == null) {
 Log.d(TAG, "No Location to Geocode");
 return returnString;
 }

 if (!Geocoder.isPresent()) {
 Log.e(TAG, "No Geocoder Available");
 return returnString;
 } else {
 Geocoder gc = new Geocoder(this, Locale.getDefault());
 try {
 List<Address> addresses
 = gc.getFromLocation(location.getLatitude(),
 location.getLongitude(),
 1); // One Result
 StringBuilder sb = new StringBuilder();
 if (addresses.size() > 0) {
 Address address = addresses.get(0);

 for (int i = 0; i < address.getMaxAddressLineIndex(); i++)
 sb.append(address.getAddressLine(i)).append("\n");

 sb.append(address.getLocality()).append("\n");
 sb.append(address.getPostalCode()).append("\n");
 sb.append(address.getCountryName());
 }
 returnString = sb.toString();
 } catch (IOException e) {
 Log.e(TAG, "I/O Error Geocoding.", e);
 }
 return returnString;
 }
}

 4. Update the updateTextView method to geocode each Location and append the result to our
Text View:

private void updateTextView(Location location) {
 String latLongString = "No location found";
 if (location != null) {
 double lat = location.getLatitude();
 double lng = location.getLongitude();
 latLongString = "Lat:" + lat + "\nLong:" + lng;
 }

 String address = geocodeLocation(location);

 String outputText = "Your Current Position is:\n" + latLongString;

Creating Map-Based Activities ❘ 585

 if (!address.isEmpty())
 outputText += "\n\n" + address;

 mTextView.setText(outputText);
}

If you run the example now, it should appear as shown in Figure 15-8.

FIGURE 15-8

CREATING MAP-BASED ACTIVITIES

One of the most intuitive ways to provide context for a physical location or address is to use a
map. Using a GoogleMap from within a MapFragment, you can create Activities that include an
interactive map.

Google Maps support annotation using markers, shapes, and image overlays that can be pinned to
geographical locations. Google Maps offer full programmatic control of the map display, letting you
control camera angle, zoom, location target, and display modes—including the option to display a
satellite or terrain view, and to style the appearance of the map.

Access to the Google Maps API is provided by the Google Play services Maps library, which must be
added as a dependency to your app module’s build.gradle file after you’ve installed Google Play
services (as described earlier in this chapter):

dependencies {
 ...
 implementation 'com.google.android.gms:play-services-maps:15.0.1'
}

586 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

Getting Your Maps API Key
To use a Google Map within your application, you must first obtain an API key from the Google
API Console. Navigate to developers.google.com/maps/documentation/android-api/signup
and click Get a Key, after which you’ll be asked to select an existing, or create a new, project for
your Android app. Follow the guide to register your project and activate the Google Maps Android
API to receive a generic, unrestricted key for your app development, as shown in Figure 15-9.

FIGURE 15-9

NOTE The unrestricted key provided here is appropriate for development and
testing, but not for production deployment. When you’re ready to distribute
or publish your app, create a new production project with a new key that’s
Android-restricted, using the Google API console. Full details for creating
keys and adding restrictions are available at developers.google.com/maps/
documentation/android-api/signup#detailed-guides.

Copy the key value, as you’ll need to add it to your project before you can use the Google Map.

Once you’ve obtained your API key, add it to your application manifest by adding a new meta-data
node immediately prior to the closing application tag, as shown in Listing 15-21.

LISTING 15-21: Adding your map API key to the application manifest

<meta-data
 android:name="com.google.android.geo.API_KEY"
 android:value="[YOUR_API_KEY]"
/>

Creating a Map-Based Activity
To use maps in your application, you need to create an Activity that includes a MapFragment or
SupportMapFragment within its layout (the latter allows you to include a Map Fragment when using

Creating Map-Based Activities ❘ 587

the Support Library Fragment Manager, which is best practice and the approach we’ll use in all our
examples).

The Map Fragment includes a GoogleMap with which you’ll interact to modify the map UI.

The simplest way to add a new map-based Activity to your project within Android Studio is by
selecting menu option File ➪ New ➪ Activity ➪ Gallery and selecting the Google Maps Activity, as
highlighted in Figure 15-10.

FIGURE 15-10

NOTE If you use the wizard mechanism just described to add a map Activity to
your project, you can skip the step of adding your API key directly to your mani-
fest as described in Listing 15-21. Instead, the wizard creates a google_maps_
api.xml resource file into which you can paste your API key.

The wizard will create a layout that includes a Support Map Fragment, and an Activity that includes
the boilerplate code needed to inflate the Fragment and prepare the map for display and use.

Alternatively, you can create your own layout, and include a Support Map Fragment element as
shown in Listing 15-22.

588 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

LISTING 15-22: Adding a Support Map Fragment to your layout

<fragment
 android:id="@+id/map"
 android:name="com.google.android.gms.maps.SupportMapFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
/>

The Activity that inflates the layout containing the Support Map Fragment must extend
FragmentActivity and implement OnMapReadyCallback. Within its onCreate handler, get a refer-
ence to the Map Fragment and call getMapAsync to initiate an asynchronous request for access to
the Google Map; then implement the onMapReady handler to be notified when the Google Map is
ready to be used—as shown in Listing 15-23.

LISTING 15-23: Accessing a Google Map within your Activity

import android.support.v4.app.FragmentActivity;
import android.os.Bundle;
import com.google.android.gms.maps.GoogleMap;
import com.google.android.gms.maps.OnMapReadyCallback;
import com.google.android.gms.maps.SupportMapFragment;

public class MapsActivity extends FragmentActivity
 implements OnMapReadyCallback {

 private GoogleMap mMap;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_maps);
 // Obtain the SupportMapFragment and request the Google Map object.
 SupportMapFragment mapFragment =
 (SupportMapFragment)getSupportFragmentManager()
 .findFragmentById(R.id.map);
 mapFragment.getMapAsync(this);
 }

 /**
 * This callback is triggered when the map is ready to be used.
 * If Google Play services is not installed on the device, the user
 * will be prompted to install it inside the SupportMapFragment.
 * This method will only be triggered once the user has
 * installed Google Play services and returned to the app.
 */
 @Override
 public void onMapReady(GoogleMap googleMap) {
 mMap = googleMap;

 // TODO Manipulate the map.
 }
}

Creating Map-Based Activities ❘ 589

Configuring Google Maps
By default the Map View shows the standard street map as shown in Figure 15-11.

FIGURE 15-11

Alternatively, you can choose to display one of satellite, terrain, or hybrid views—as well as option-
ally display 3D buildings, indoor maps, and a traffic overlay as indicated by the following code
snippet:

mMap.setMapType(GoogleMap.MAP_TYPE_NORMAL);
// mMap.setMapType(GoogleMap.MAP_TYPE_SATELLITE);
// mMap.setMapType(GoogleMap.MAP_TYPE_TERRAIN);
// mMap.setMapType(GoogleMap.MAP_TYPE_HYBRID);

mMap.setBuildingsEnabled(true);
mMap.setIndoorEnabled(true);
mMap.setTrafficEnabled(true);

You can also use the getUiSettings to obtain the current map UI settings and customize them as
required:

mMap.getUiSettings().setCompassEnabled(false);
mMap.getUiSettings().setAllGesturesEnabled(false);
mMap.getUiSettings().setIndoorLevelPickerEnabled(false);
mMap.getUiSettings().setMapToolbarEnabled(false);
mMap.getUiSettings().setRotateGesturesEnabled(false);
mMap.getUiSettings().setScrollGesturesEnabled(false);
mMap.getUiSettings().setTiltGesturesEnabled(false);
mMap.getUiSettings().setZoomControlsEnabled(false);
mMap.getUiSettings().setZoomGesturesEnabled(false);

590 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

Changing the Camera Position with Camera Updates
The perspective of the map display can best be described in terms of an artificial camera pointing
at a Mercator projection of the Earth’s surface. Users can move, rotate, and tilt the camera using a
series of gestures to modify what part of the map they’re viewing, at what zoom level, orientation,
and angle.

You can modify the camera perspective programmatically using the CameraUpdateFactory and
CameraPosition.Builder to produce CameraUpdates that can be passed to the Google Map’s
moveCamera or animateCamera methods.

The camera’s target is the latitude/longitude coordinate at the center of the displayed map. You can
create a Camera Update that will modify the camera’s target using the Camera Update Factory’s
static newLatLng method, passing in a LatLng object indicating the new latitude and longitude
coordinates:

Double lat = 37.422006;
Double lng = -122.084095;
LatLng latLng = new LatLng(lat, lng);
CameraUpdate cameraUpdate = CameraUpdateFactory.newLatLng(latLng);

You can adjust how much of the world is visible on the Google Map by adjusting the camera’s zoom
level, indicated as a float between 1, representing the widest (or most distant) zoom, and 21, repre-
senting the tightest (nearest) view.

Each integer increase in the zoom level doubles the width of the visible world; however, the zoom
level doesn’t need to be an integer. The maximum zoom level available for a specific location
depends on a number of factors, including the resolution of Google’s maps and the available imagery
for the visible area, map type, and screen size. You can find the max zoom by calling the Google
Map’s getMaxZoomLevel method.

The following list shows the approximate level of detail corresponding with a range of zoom levels:

 ➤ 1—World

 ➤ 5—Landmass/continent

 ➤ 10—City

 ➤ 15—Streets

 ➤ 20—Buildings

To modify the camera zoom level, use the Camera Update Factory’s static zoomIn or zoomOut
methods to increase or decrease the zoom level by 1, or zoomTo to set the zoom to a specific level.
Alternatively, you can use the newLatLngZoom method to create a Camera Update that targets a new
location at a specific zoom level:

Double lat = 37.422006;
Double lng = -122.084095;
LatLng latLng = new LatLng(lat, lng);
CameraUpdate cameraUpdate = CameraUpdateFactory.newLatLngZoom(latLng, 16);

Creating Map-Based Activities ❘ 591

If you want to display a particular area bound by a latitude and longitude span, you can use the
Camera Update Factory’s newLatLngBounds method to specify a pair of latitude/longitude points
that define the total area to be displayed. Alternatively, you can use the LatLngBounds.Builder to
add multiple points and generate the smallest bounding box that includes all of them:

mMap.setOnMapLoadedCallback(new GoogleMap.OnMapLoadedCallback() {
 @Override
 public void onMapLoaded() {
 Double firstLat = 20.288193;
 Double firstLng = -155.881057;
 LatLng firstLatLng = new LatLng(firstLat, firstLng);

 Double secondLat = 18.871097;
 Double secondLng = -154.747620;
 LatLng secondLatLng = new LatLng(secondLat, secondLng);

 LatLngBounds llBounds = LatLngBounds.builder()
 .include(firstLatLng)
 .include(secondLatLng)
 .build();

 int padding = 16;
 CameraUpdate bUpdate = CameraUpdateFactory.newLatLngBounds(llBounds,
 padding);
 }
});

Because this method must know the size of the Map in order to determine the correct bound-
ing box and zoom level, the View containing the Map must have been layed out before this
method can be called. To ensure layout has completed, you can add a handler to listen for the
OnMapLoadedCallback callback on the Map object, once the onMapReady handler has been
triggered.

To modify the heading (rotation) or tilt (angle) of the camera, use the Camera Position Builder to
generate a new Camera Position, to be passed into the Camera Update Factory’s static newCamera-
Position method:

CameraPosition cameraPosition = CameraPosition.builder()
 .bearing(0)
 .target(latLng)
 .tilt(10)
 .zoom(15)
 .build();

CameraUpdate posUpdate
 = CameraUpdateFactory.newCameraPosition(cameraPosition);

The Camera Position Builder enables you to specify every aspect of the camera’s position including
the target, zoom, heading, and tilt. Conversely, you can get the current Camera Position using the
Google Maps’s getCameraPosition method and extract the position elements.

Once you’ve created a new Camera Update, you must apply it using either the moveCamera or
animateCamera methods on the Google Map object as shown in Listing 15-24.

592 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

LISTING 15-24: Moving the Google Maps camera

mMap.setOnMapLoadedCallback(new GoogleMap.OnMapLoadedCallback() {
 @Override
 public void onMapLoaded() {
 Double firstLat = 20.288193;
 Double firstLng = -155.881057;
 LatLng firstLatLng = new LatLng(firstLat, firstLng);

 Double secondLat = 18.871097;
 Double secondLng = -154.747620;
 LatLng secondLatLng = new LatLng(secondLat, secondLng);

 LatLngBounds llBounds = LatLngBounds.builder()
 .include(firstLatLng)
 .include(secondLatLng)
 .build();

 CameraUpdate bUpdate = CameraUpdateFactory.newLatLngBounds(llBounds, 0);
 mMap.animateCamera(bUpdate);
 }
});

The moveCamera method will cause the camera to immediately “jump” to the new position and
orientation, while animateCamera will smoothly transition from the current Camera Position to the
new one; you can optionally choose to specify the duration of the animation.

Animated camera updates can be interrupted, either by a user gesture or through a call to stop-
Animation. If you want to be notified of a successful completion or interruption, you can pass in an
optional CancelableCallback as shown in Listing 15-25.

LISTING 15-25: Animating a Google Maps camera update

int duration = 2000; // 2 seconds.

mMap.animateCamera(bUpdate, duration, new GoogleMap.CancelableCallback() {
 @Override
 public void onFinish() {
 // TODO The camera update animation completed successfully.
 }

 @Override
 public void onCancel() {
 // TODO The camera update animation was cancelled.
 }
});

Mapping Where Am I
The following code example extends the Where Am I project again. This time you will add mapping
functionality by adding a Map Fragment. As the device location changes, the map automatically re-
centers on the new position.

Creating Map-Based Activities ❘ 593

 1. Modify your app module build.gradle file to include a dependency on the Google Play ser-
vice Maps library:

dependencies {
 implementation fileTree(dir: 'libs', include: ['*.jar'])
 implementation 'com.android.support:appcompat-v7:27.1.1'
 implementation 'com.android.support.constraint:constraint-layout:1.1.0'
 testImplementation 'junit:junit:4.12'
 androidTestImplementation 'com.android.support.test:runner:1.0.2'
 androidTestImplementation 'com.android.support.test.espresso' +
 ':espresso-core:3.0.2'
 implementation 'com.android.support:support-media-compat:27.1.1'
 implementation 'com.android.support:support-v4:27.1.1'

 implementation 'com.google.android.gms:play-services-location:15.0.1'
 implementation 'com.google.android.gms:play-services-maps:15.0.1'
}

 2. Navigate to developers.google.com/maps/documentation/android-api/signup to cre-
ate a new project and obtain an API key. Modify the application manifest to include a new
meta-data node and enter your API key accordingly:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.professionalandroid.apps.whereami">

 <uses-permission
 android:name="android.permission.ACCESS_COARSE_LOCATION"
 />
 <uses-permission
 android:name="android.permission.ACCESS_FINE_LOCATION"
 />
 <uses-permission android:name="android.permission.INTERNET"/>

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name=".WhereAmIActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 <meta-data
 android:name="com.google.android.geo.API_KEY"
 android:value="[YOUR_API_KEY]"
 />
 </application>
</manifest>

 3. Modify the WhereAmIActivity to implement OnMapReadyCallback, and add the onMap-
Ready handler accordingly. It should assign the passed-in Google Map to a member variable:

public class WhereAmIActivity extends AppCompatActivity
 implements OnMapReadyCallback {

594 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

 private GoogleMap mMap;

 @Override
 public void onMapReady(GoogleMap googleMap) {
 mMap = googleMap;
 }

 [... existing Activity code ...]
}

 4. Modify the activity_where_am_i.xml layout resource to include a SupportMapFragment
beneath the existing Text View:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context="com.professionalandroid.apps.whereami.WhereAmIActivity">
 <TextView
 android:id="@+id/myLocationText"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:padding="16dp"
 android:text="Hello World!"/>
 <fragment
 android:id="@+id/map"
 android:name="com.google.android.gms.maps.SupportMapFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>
</LinearLayout>

 5. Returning to the WhereAmIActivity, update the onCreate handler to find a reference to the
Map Fragment and request a reference to the Google Map:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_where_am_i);
 mTextView = findViewById(R.id.myLocationText);

 // Obtain the SupportMapFragment and request the Google Map object.
 SupportMapFragment mapFragment =
 (SupportMapFragment)getSupportFragmentManager()
 .findFragmentById(R.id.map);
 mapFragment.getMapAsync(this);

 GoogleApiAvailability availability
 = GoogleApiAvailability.getInstance();
 int result = availability.isGooglePlayServicesAvailable(this);
 if (result != ConnectionResult.SUCCESS) {

Creating Map-Based Activities ❘ 595

 if (!availability.isUserResolvableError(result)) {
 Toast.makeText(this, ERROR_MSG, Toast.LENGTH_LONG).show();
 }
 }

 mLocationRequest = new LocationRequest()
 .setInterval(5000)
 .setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY);
}

 6. Running the application now should display the original address text with a MapView
beneath it, as shown in Figure 15-12.

FIGURE 15-12

 7. Now update the onMapReady handler to display the satellite view and zoom in to building
level:

@Override
public void onMapReady(GoogleMap googleMap) {
 mMap = googleMap;

 mMap.setMapType(GoogleMap.MAP_TYPE_SATELLITE);
 mMap.animateCamera(CameraUpdateFactory.zoomTo(17));
}

 8. The final step is to modify the Location Callback to re-center the map on the current
location:

LocationCallback mLocationCallback = new LocationCallback() {
 @Override

596 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

 public void onLocationResult(LocationResult locationResult) {
 Location location = locationResult.getLastLocation();
 if (location != null) {
 updateTextView(location);
 if (mMap != null) {
 LatLng latLng = new LatLng(location.getLatitude(),
 location.getLongitude());
 mMap.animateCamera(CameraUpdateFactory.newLatLng(latLng));
 }
 }
 }
};

Displaying the Current Location with the
My Location Layer

The My Location layer is designed to show the device’s current
location on the Google Map, represented as a flashing blue marker.
Adding the My Location layer also enables the My Location but-
ton, displayed as crosshairs at the upper right of the map, as shown
in Figure 15-13.

Selecting the My Location button will re-center the camera target
on the device’s last known location.

The My Location layer depends on the Fused Location Provider to
provide the device location, and as such requires either coarse or
fine location permissions to be requested in your application manifest, and to have been granted at
runtime by the user, before the layer can be enabled:

if (ActivityCompat.checkSelfPermission(this,
 Manifest.permission.ACCESS_FINE_LOCATION)
 == PackageManager.PERMISSION_GRANTED ||
 ActivityCompat.checkSelfPermission(this,
 Manifest.permission.ACCESS_COARSE_LOCATION)
 == PackageManager.PERMISSION_GRANTED) {
 mMap.setMyLocationEnabled(true);
}

For more details on the location permissions, refer to the earlier section “Finding the Location Using
Google Location Services.”

Displaying Interactive Map Markers
You can add interactive, customizable markers to a Google Map (Figure 15-14) using the addMarker
method, passing in a MarkerOptions object that specifies a latitude/longitude position at which to
place the Marker:

Double lat = -32.0;
Double lng = 115.5;

FIGURE 15-13

Creating Map-Based Activities ❘ 597

LatLng position = new LatLng(lat, lng);

Marker newMarker = mMap.addMarker(new MarkerOptions().position(position));

When a Marker is selected, the map toolbar is displayed, providing the user with a shortcut to dis-
play, or navigate to, the Marker location in the Google Maps app. To disable the toolbar modify the
Google Map UI settings:

mMap.getUiSettings().setMapToolbarEnabled(false);

By providing a title and snippet text, as shown in Listing 15-26, markers can become interactive.

LISTING 15-26: Adding a marker to a Google Map

Marker newMarker = mMap.addMarker(new MarkerOptions()
 .position(latLng)
 .title("Honeymoon Location")
 .snippet("This is where I had my honeymoon!"));

When a user selects a given Marker, an information window with the associated title and snippet
text is displayed, as shown in Figure 15-15.

FIGURE 15-14

The Google Map handles the drawing, placement, click handling, focus control, and layout optimi-
zation of each marker for you. To remove a Marker, you must maintain a reference to it when it’s
added and call its remove method:

newMarker.remove();

By default, the Marker displays the standard “Google Maps” icon, which can be customized by
altering its color, or replacing the icon entirely with a custom image.

To alter the color of a Marker icon, or to use a custom Marker icon, use the icon method
of the Marker Options. It takes a BitmapDescriptor that can be created using the
BitmapDescriptorFactory.

FIGURE 15-15

598 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

To change the color of the default Marker icon, use the defaultMarker method passing in the hue,
either as a value between 0 and 360, or one of the predefined hues available as constants from the
Bitmap Descriptor Factory:

BitmapDescriptor icon
 = BitmapDescriptorFactory.defaultMarker(BitmapDescriptorFactory.HUE_GREEN);

Marker newMarker = mMap.addMarker(new MarkerOptions()
 .position(latLng)
 .icon(icon));

To change the Marker opacity, use the alpha method to indicate an opacity value between 0 (trans-
parent) and 1 (opaque):

Marker newMarker = mMap.addMarker(new MarkerOptions()
 .position(latLng)
 .alpha(0.6f));

Alternatively, if you want to replace the Marker icon entirely, you can use the various from[source]
methods from the Bitmap Descriptor Factory to select a Bitmap from a file, path, resource, asset, or
Bitmap object:

BitmapDescriptor icon
 = BitmapDescriptorFactory.fromResource(R.mipmap.ic_launcher);

Marker newMarker = mMap.addMarker(new MarkerOptions()
 .position(latLng)
 .icon(icon));

By default, Markers will be displayed with respect to the screen, meaning that rotating, tilting, or
zooming the Map won’t change the appearance of the Marker.

Using the flat method, you can set the orientation of the Marker to be flat against the Map, causing
it to rotate and change perspective as the map is rotated or tilted:

Marker newMarker = mMap.addMarker(new MarkerOptions()
 .position(latLng)
 .flat(true));

It’s also possible to rotate a Marker around a specified anchor point, using a combination of the
anchor and rotation methods within the Marker Options. Rotation is measured in degrees clock-
wise, and anchor represents the center of rotation in terms of a proportion of the size of the image in
the horizontal and vertical directions:

Marker newMarker = mMap.addMarker(new MarkerOptions()
 .position(latLng)
 .anchor(0.5, 0.5)
 .rotation(90));

It’s also possible to customize the behavior of a Marker when selected, and the appearance of the
info window that’s displayed.

Creating Map-Based Activities ❘ 599

To alter the Marker selection behavior, add an OnMarkerClickListener to the Google Map. The
onMarkerClick handler will receive an instance of the Marker selected. Return true if your handler
should replace the default behavior, or false if the info window should still be displayed:

mMap.setOnMarkerClickListener(new GoogleMap.OnMarkerClickListener() {
 @Override
 public boolean onMarkerClick(Marker marker) {
 if (marker.equals(newMarker)) {
 // TODO React to marker selection.
 }
 // Return false to display the Info Window.
 return false;
 }
});

To modify the info window appearance, use the Google Map’s setInfoWindowAdapter method,
passing in an implementation of the InfoWindowAdapter interface to define a populated View that
should be used for the Marker passed in as a parameter:

mMap.setInfoWindowAdapter(new GoogleMap.InfoWindowAdapter() {
 @Override
 public View getInfoWindow(Marker marker) {
 // TODO Define a view to entirely replace the default info window.
 return myView;
 }

 @Override
 public View getInfoContents(Marker marker) {
 // TODO Define a view to replace the interior of the info window.
 return myView;
 }
});

Returning a View from the getInfoWindow handler will replace the info window in its entirety,
while returning a View only from the getInfoContents handler will keep the same frame and
background as the default info window, replacing only the contents. If null is returned from both
handlers the default info window will be displayed.

Adding Shapes to Google Maps
In addition to Markers, Google Maps allows you to overlay lines, polygons, and circles onto the
map surface. You can set the visibility, z-order, fill color, line caps, joint types, and the stroke
(outline) width, style, and color for each shape.

You can draw multiple shapes on top of each map, and optionally choose to have user touches han-
dled by one or more of them. All three shape types (Circles, Polygons, and Polylines) are mutable,
meaning that they can be adjusted (or deleted) after they’ve been created and added to the map.

The simplest available shape is a circle, represented as a target latitude/longitude with a radius
in meters. The circle is drawn as a geographically accurate projection on the Earth’s surface.

600 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

Depending on the size and location of the circle, and the current zoom—the Mercator project used
by the Google Map may result in the circle appearing as an ellipse.

To add a circle to your map, create a new CircleOptions object, specifying the center and radius of
the circle and any additional settings such as fill color or stroke:

 CircleOptions circleOptions = new CircleOptions()
 .center(new LatLng(37.4, -122.1))
 .radius(1000) // 1000 meters
 .fillColor(Color.argb(50, 255, 0, 0))
 .strokeColor(Color.RED);

Pass the Circle Options into the Google Map’s addCircle method. Note that it will return a muta-
ble Circle object that can be modified at run time:

Circle circle = mMap.addCircle(circleOptions);

You can create an irregular enclosed shape by defining a polygon using the PolygonOptions class.
Use the add method to define a series of latitude/longitude pairs that each define a node in the shape.
The default fill is transparent, so specify the fill, stroke, and joint types as needed to modify the
shape’s appearance:

PolygonOptions polygonOptions = new PolygonOptions()
 .add(new LatLng(66.992803, -26.369462),
 new LatLng(51.540138, -2.990557),
 new LatLng(50.321568, -6.066729),
 new LatLng(49.757089, -5.231768),
 new LatLng(50.934844, 1.425947),
 new LatLng(52.873063, 2.107099),
 new LatLng(56.124692, -1.738115),
 new LatLng(67.569820, -13.625322))
 .fillColor(Color.argb(44,00,00,44));

Note that the polygon will automatically join the last point to the first, so there’s no need to close it
yourself. You can also use the Polygon Options addAll method to supply a List of LatLng objects.

Using the addHole method, you can create complex shapes such as filled rings or donuts by compos-
ing multiple paths. After defining the outer shape, use the addHole method to define a second, fully
enclosed, smaller path:

List<LatLng> holePoints = new ArrayList<>();
holePoints.add(new LatLng(53.097936, -2.331377));
holePoints.add(new LatLng(52.015946, -2.067705));
holePoints.add(new LatLng(52.117943, 0.383657));
holePoints.add(new LatLng(53.499125, -1.088511));

mMap.addPolygon(new PolygonOptions()
 .add(new LatLng(66.992803, -26.369462),
 new LatLng(51.540138, -2.990557),
 new LatLng(50.321568, -6.066729),
 new LatLng(49.757089, -5.231768),
 new LatLng(50.934844, 1.425947),
 new LatLng(52.873063, 2.107099),
 new LatLng(56.124692, -1.738115),
 new LatLng(67.569820, -13.625322))

Creating Map-Based Activities ❘ 601

 .fillColor(Color.argb(44,00,00,44))
 .addHole(holePoints);

When drawn, it will appear as though a section of the surrounding polygon has been removed.

By default, the Polygon is drawn as straight lines on the Mercator projection used to display the
Google Map. You can use the geodesic method within the Polygon Options to request each seg-
ment be drawn such that it represents the shortest path along the Earth’s surface. Geodesic segments
will typically appear as curved lines when observed on the Google Map:

PolygonOptions polygonOptions = new PolygonOptions()
 .add(new LatLng(66.992803, -26.369462),
 new LatLng(51.540138, -2.990557),
 new LatLng(50.321568, -6.066729),
 new LatLng(49.757089, -5.231768),
 new LatLng(50.934844, 1.425947),
 new LatLng(52.873063, 2.107099),
 new LatLng(56.124692, -1.738115),
 new LatLng(67.569820, -13.625322))
 .fillColor(Color.argb(44,00,00,44))
 .geodesic(true);

Add each Polygon to your Google Map using its addPolygon method, passing in the Polygon
Options. It will return a mutable Polygon object that can be modified at run time:

Polygon polygon = mMap.addPolygon(polygonOptions);

Finally, if you don’t want to enclose an area, you can create a Polyline, which will draw a series of
connected line segments based on a series of latitude/longitude pairs.

A Polyline is defined in much the same way as a Polygon; however, the ends won’t be connected and
the shape can’t be filled. Create a new PolyLineOptions object, specifying the points individually,
or as a List, using the add method as described for Polygons:

PolylineOptions polylineOptions = new PolylineOptions()
 .add(new LatLng(66.992803, -26.369462),
 new LatLng(51.540138, -2.990557),
 new LatLng(50.321568, -6.066729),
 new LatLng(49.757089, -5.231768),
 new LatLng(50.934844, 1.425947),
 new LatLng(52.873063, 2.107099),
 new LatLng(56.124692, -1.738115),
 new LatLng(67.569820, -13.625322))
 .geodesic(true);

Polyline segments can be geodesic, and you can define the color and style of the stroke, the joint
types, and end caps. Once defined, use the addPolyline method to add the Polyline Options to your
Google Map:

Polyline polyline = mMap.addPolyline(polylineOptions);

By default, none of the shapes respond to user touches; however, each shape class includes a set-
Clickable method that can make them clickable:

polyline.setClickable(true);
circle.setClickable(true);
polygon.setClickable(true);

602 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

To respond to shape clicks, use the Google Map’s setOnCircleClickListener, setOnPolygon-
ClickListener, and setOnPolylineClickListener to add Circle, Polygon, and Polyline Click
Listeners. The click handlers for each Listener receive an instance of the shape that was clicked:

mMap.setOnCircleClickListener(new OnCircleClickListener() {
 @Override
 public void onCircleClick(Circle circle) {
 // TODO React to the cicle being clicked.
 }
});

If multiple shapes or Markers overlap at the touch point, the click event is sent first to the markers,
then to each shape (in z-index order) until a marker or shape with a click handler is found—note
that at most one handler will be triggered.

Adding Image Overlays to Google Maps
In addition to Markers and shapes, it’s also possible to create a GroundOverlay, which will place an
image tied to latitude/longitude coordinates over a section of the map.

To add a Ground Overlay, create a new GroundOverlayOptions, specifying the image to overlay as
a BitmapDescriptor as well as the position at which to place the image. The image position can be
specified as either a LatLng anchor at the South West point with a width (and optionally height), or
as a LatLngBounds that contains both the South West and North East anchors:

LatLng rottnest = new LatLng(40.714086, -74.228697);
GroundOverlayOptions rottnestOverlay = new GroundOverlayOptions()
 .image(BitmapDescriptorFactory.fromResource(R.drawable.rottnest_wa_1902))
 .position(rottnest, 8600f, 6500f);

NOTE The length and width of Ground Overlays must be powers of two. If
your source image doesn’t conform to this requirement, it will be adjusted.

To apply the Ground Overlay to the Google Map, call the addGroundOverlay method, passing in
the Ground Overlay Options:

GroundOverlay groundOverlay = mMap.addGroundOverlay(rottnestOverlay);

You can remove a Ground Overlay at any time by calling its remove method:

groundOverlay.remove();

Adding Markers and Shapes to Where Am I
This final modification to the Where Am I example adds a new marker each time the location
changes, and updates a Polyline connecting each marker.

Creating Map-Based Activities ❘ 603

We’ll also take this opportunity to enable the My Location layer to show the current device position.

 1. Create new member variables to store a List of Markers and the polyline:

private List<Marker> mMarkers = new ArrayList<>();
private Polyline mPolyline;

 2. Update the onMapReady handler to enable the My Location layer and create a new Polyline
without any points:

@Override
public void onMapReady(GoogleMap googleMap) {
 mMap = googleMap;

 mMap.setMapType(GoogleMap.MAP_TYPE_SATELLITE);
 mMap.animateCamera(CameraUpdateFactory.zoomTo(17));

 if (ActivityCompat.checkSelfPermission(this,
 Manifest.permission.ACCESS_FINE_LOCATION)
 == PackageManager.PERMISSION_GRANTED ||
 ActivityCompat.checkSelfPermission(this,
 Manifest.permission.ACCESS_COARSE_LOCATION)
 == PackageManager.PERMISSION_GRANTED) {
 mMap.setMyLocationEnabled(true);
 }

 PolylineOptions polylineOptions = new PolylineOptions()
 .color(Color.CYAN)
 .geodesic(true);
 mPolyline = mMap.addPolyline(polylineOptions);
}

 3. Update the Location Callback to add a new Marker at each location, using the info window
to display the date and time it was added and its place in the sequence:

LocationCallback mLocationCallback = new LocationCallback() {
 @Override
 public void onLocationResult(LocationResult locationResult) {
 Location location = locationResult.getLastLocation();
 if (location != null) {
 updateTextView(location);
 if (mMap != null) {
 LatLng latLng = new LatLng(location.getLatitude(),
 location.getLongitude());
 mMap.animateCamera(CameraUpdateFactory.newLatLng(latLng));

 Calendar c = Calendar.getInstance();
 String dateTime
 = DateFormat.format("MM/dd/yyyy HH:mm:ss",
 c.getTime()).toString();

 int markerNumber = mMarkers.size()+1;

604 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

 mMarkers.add(mMap.addMarker(new MarkerOptions()
 .position(latLng)
 .title(dateTime)
 .snippet("Marker #" + markerNumber +
 " @ " + dateTime)));
 }
 }
 }
};

 4. Make a final update to the Location Callback that modifies the Polyline to connect each
Marker location:

LocationCallback mLocationCallback = new LocationCallback() {
 @Override
 public void onLocationResult(LocationResult locationResult) {
 Location location = locationResult.getLastLocation();
 if (location != null) {
 updateTextView(location);
 if (mMap != null) {
 LatLng latLng = new LatLng(location.getLatitude(),
 location.getLongitude());
 mMap.animateCamera(CameraUpdateFactory.newLatLng(latLng));

 Calendar c = Calendar.getInstance();
 String dateTime
 = DateFormat.format("MM/dd/yyyy HH:mm:ss",
 c.getTime()).toString();

 int markerNumber = mMarkers.size()+1;
 mMarkers.add(mMap.addMarker(new MarkerOptions()
 .position(latLng)
 .title(dateTime)
 .snippet("Marker #" + markerNumber +
 " @ " + dateTime)));

 List<LatLng> points = mPolyline.getPoints();
 points.add(latLng);
 mPolyline.setPoints(points);
 }
 }
 }
};

When run, your application displays your current device location with a blue dot using the My
Location overlay, with Markers at each location received, connected with a blue Polyline, as shown
in Figure 15-16.

Mapping the Earthquake Example ❘ 605

FIGURE 15-16

MAPPING THE EARTHQUAKE EXAMPLE

The following step-by-step guide demonstrates how to add a map to the Earthquake project you last
saw in Chapter 13. The map will be used to display the recent earthquakes.

 1. Start by downloading the Google Play services SDK, and adding a dependency to the Maps
library within the app module build.gradle file:

dependencies {
 [... Existing Dependencies ...]
 implementation 'com.google.android.gms:play-services-maps:15.0.1'
}

 2. Navigate to developers.google.com/maps/documentation/android-api/signup to cre-
ate a new project and obtain an API key. Modify the application manifest to include a new
meta-data node immediately before the closing application tag, and enter your API key
accordingly:

<meta-data
 android:name="com.google.android.geo.API_KEY"
 android:value="[Your API Key Goes Here]"
/>

606 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

 3. Modify the EarthquakeMapFragment to implement OnMapReadyCallback, and add the
onMapReady handler accordingly. It should assign the passed-in Google Map to a member
variable:

public class EarthquakeMapFragment extends Fragment
 implements OnMapReadyCallback {

 private GoogleMap mMap;

 @Override
 public void onMapReady(GoogleMap googleMap) {
 mMap = googleMap;
 }

 [... existing Fragment code ...]
}

 4. Modify the fragment_earthquake_map.xml layout resource, replacing the existing Frame
Layout and Text View with a SupportMapFragment:

<fragment
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:map="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/map"
 android:name="com.google.android.gms.maps.SupportMapFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
/>

 5. Return to the EarthquakeMapFragment and override the onViewCreated handler to find a
reference to the Map Fragment and request a reference to the Google Map:

@Override
public void onViewCreated(@NonNull View view,
 Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);
 // Obtain the SupportMapFragment and request the Google Map object.
 SupportMapFragment mapFragment
 = (SupportMapFragment)getChildFragmentManager()
 .findFragmentById(R.id.map);
 mapFragment.getMapAsync(this);
}

At this point, starting your application should make the Map View visible either in the tab-
let view or when the Map tab is selected on a phone.

 6. Create a new updateFromPreferences method, identical to the same method from the
Earthquake List Fragment, which finds the current user preference for the minimum magni-
tude of earthquake to display:

private int mMinimumMagnitude = 0;

private void updateFromPreferences() {
 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(getContext());

Mapping the Earthquake Example ❘ 607

 mMinimumMagnitude = Integer.parseInt(
 prefs.getString(PreferencesActivity.PREF_MIN_MAG, "3"));
}

 7. Create a new setEarthquakeMarkers method that iterates over a List of Earthquakes and
creates a Marker for each, and then removes any previous Markers that should no longer be
displayed:

Map<String, Marker> mMarkers = new HashMap<>();
List<Earthquake> mEarthquakes;

public void setEarthquakeMarkers(List<Earthquake> earthquakes) {
 updateFromPreferences();

 mEarthquakes = earthquakes;
 if (mMap == null || earthquakes == null) return;
 Map<String, Earthquake> newEarthquakes = new HashMap<>();

 // Add Markers for each earthquake above the user threshold.
 for (Earthquake earthquake : earthquakes) {
 if (earthquake.getMagnitude() >= mMinimumMagnitude) {
 newEarthquakes.put(earthquake.getId(), earthquake);

 if (!mMarkers.containsKey(earthquake.getId())) {
 Location location = earthquake.getLocation();
 Marker marker = mMap.addMarker(
 new MarkerOptions()
 .position(new LatLng(location.getLatitude(),
 location.getLongitude()))
 .title("M:" + earthquake.getMagnitude()));

 mMarkers.put(earthquake.getId(), marker);
 }
 }
 }

 // Remove any Markers representing earthquakes that should no longer
 // be displayed.
 for (Iterator<String> iterator = mMarkers.keySet().iterator();
 iterator.hasNext();) {
 String earthquakeID = iterator.next();
 if (!newEarthquakes.containsKey(earthquakeID)) {
 mMarkers.get(earthquakeID).remove();
 iterator.remove();
 }
 }
}

 8. Override the onMapReady handler to observe the Live Data from the Earthquake View
Model, which represents changes in the underlying Earthquake database; call the set-
EarthquakeMarkers method from Step 7 to update the map Markers accordingly:

@Override
public void onMapReady(GoogleMap googleMap) {
 mMap = googleMap;

608 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

 // Retrieve the Earthquake View Model for this Fragment.
 earthquakeViewModel = ViewModelProviders.of(getActivity())
 .get(EarthquakeViewModel.class);

 // Get the data from the View Model, and observe any changes.
 earthquakeViewModel.getEarthquakes()
 .observe(this, new Observer<List<Earthquake>>() {
 @Override
 public void onChanged(@Nullable List<Earthquake> earthquakes) {
 // Update the UI with the updated database results.
 if (earthquakes != null)
 setEarthquakeMarkers(earthquakes);
 }
 });
}

 9. Create a new On Shared Preference Change Listener that refreshes the Markers whenever the
user alters their minimum Earthquake magnitude value, and register it within the
onActivityCreated handler:

@Override
public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 // Register an OnSharedPreferenceChangeListener
 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(getContext());

 prefs.registerOnSharedPreferenceChangeListener(mPListener);
}

private SharedPreferences.OnSharedPreferenceChangeListener mPListener
 = new SharedPreferences.OnSharedPreferenceChangeListener() {
 @Override
 public void onSharedPreferenceChanged(SharedPreferences
 sharedPreferences,
 String key) {
 if (PreferencesActivity.PREF_MIN_MAG.equals(key)) {
 // Repopulate the Markers.
 List<Earthquake> earthquakes
 = earthquakeViewModel.getEarthquakes().getValue();

 if (earthquakes != null)
 setEarthquakeMarkers(earthquakes);
 }
 }
 };

Adding Contextual Awareness ❘ 609

If you run the application and view the Map tab, your application should appear, as shown in
Figure 15-17.

FIGURE 15-17

ADDING CONTEXTUAL AWARENESS

The Awareness API combines multiple signals including location, user context, and the environment
to provide a mechanism that allows you to add context-based functionality to your app, with mini-
mal impact on system resources.

There are two variations of the Awareness API: Snapshots and Fences; both are optimized for effi-
ciency—particularly battery life—through caching and cross-app optimizations.

The Snapshot API offers a snapshot of the user’s current environment. Awareness Fences—similar
to Geofences (described earlier in this chapter)—let you receive callbacks based on a combination of
specific context signals whose specified conditions must be met.

The Awareness API currently supports up to seven different context signals:

Time—The local time window during which a fence can trigger, defined as specific time or
semantic descriptions (that is, “holidays” or “Tuesdays”).

Location—The physical user location defined as distance from a specific latitude/longitude
target.

User Activity—What activity the user is engaged in.

610 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

Nearby Beacons—The physical proximity of specific Beacons.

Places—Nearby businesses and points of interest as defined by the Google Places API.

Device state—Currently limited to headphone connection state.

Environmental conditions—Currently limited to the local weather.

Access to the Awareness API is provided by the Google Play services Awareness library, which must
be added as a dependency to your app module’s build.gradle file after you’ve installed Google
Play services, as described earlier in this chapter:

dependencies {
 [... Existing Dependencies ...]
 implementation 'com.google.android.gms:play-services-awareness:15.0.1'
}

As a dynamic API available through Google Play services, you should expect that the range of avail-
able signals will increase over time.

Connecting to the Google Play Services API Client and
Obtaining API Keys

The Awareness API, like many of the Google APIs available from the Google Play services
library, requires you to create and connect an instance of the GoogleApiClient. The Google API
Client manages the network connection between the user’s device and the Google Services you
want to use.

You can manage the Google API Client’s connection yourself; however, it’s best practice to use the
automatic connection management mechanism instead.

When your auto-managed Google API Client attempts to connect to the Google APIs, it will display
user dialogs as needed to attempt to fix any user resolvable connection failures.

For issues that can’t be resolved, have your Activity implement the OnConnectionFailedListener
interface, whose onConnectionFailed handler will be used to notify you of any user-unresolvable
errors.

Create an instance of the Google API Client using the GoogleApiClient.Builder within your
Activity’s onCreate handler, specifying the Google APIs you want to use, along with the Activity
and On Connection Failed Listener for the auto-manage functionality, as shown in the skeleton code
in Listing 15-27.

LISTING 15-27: Connecting to the Google API Client

public class MainActivity extends AppCompatActivity
 implements GoogleApiClient.OnConnectionFailedListener {

 private static final String TAG = "CONTEXT_ACTIVITY";

Adding Contextual Awareness ❘ 611

 GoogleApiClient mGoogleApiClient;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addApi(Awareness.API)
 .enableAutoManage(this, // MainActivity
 this) // OnConnectionFailedListener
 .build();
 }

 @Override
 public void onConnectionFailed(@NonNull ConnectionResult connectionResult){
 Log.e(TAG, "Failed to connect to Google Services: " +
 connectionResult.getErrorMessage() +
 " (" + connectionResult.getErrorCode() + ")");
 // TODO Handled failed connection.
}

When auto-managed, your Google API Client will automatically connect during onStart and dis-
connect after onStop.

The Awareness API takes advantage of multiple Google Services. To extract Snapshots or create
fences using data from these services, you must obtain API keys for each, and include them in your
application manifest.

First and foremost you’ll need to obtain a key for the Awareness API from developers.google
.com/awareness/android-api/get-a-key.

Once obtained, add it to your application manifest immediately before the closing application tag
enclosed within a meta-data node as shown in the following snippet:

<meta-data
 android:name="com.google.android.awareness.API_KEY"
 android:value="[YOUR_API_KEY]"
/>

The preceding URL also provides details for obtaining API keys for the Places and Nearby (beacons)
APIs, which can be added in the same way as the Awareness API key:

<meta-data
 android:name="com.google.android.geo.API_KEY"
 android:value="[YOUR_API_KEY]"
/>

<meta-data
 android:name="com.google.android.nearby.messages.API_KEY"
 android:value="[YOUR_API_KEY]"
/>

612 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

Using Awareness Snapshots
Awareness Snapshots allow you to retrieve details about the user’s current context from multiple
Services. It’s optimized to return results quickly while minimizing battery drain and memory
impact.

The Awareness API uses cached values for the data associated with each Service; if there is no
data—or the data is stale—it will use sensing and inference to return fresh values.

To obtain snapshot context signal values, use one of the get methods on the Awareness
.SnapshotApi class, passing in your Google API Client.

Attach a ResultCallBack, parameterized with the result type. The returned value will be passed to
the onResult handler. Call getStatus to determine if the lookup was successful, and if so extract the
result using the getter, as shown in Listing 15-28.

LISTING 15-28: Retrieving Snapshot context signal results

Awareness.SnapshotApi.getDetectedActivity(mGoogleApiClient)
 .setResultCallback(new ResultCallback<DetectedActivityResult>() {
 @Override
 public void onResult(@NonNull DetectedActivityResult
 detectedActivityResult) {
 if (!detectedActivityResult.getStatus().isSuccess()) {
 Log.e(TAG, "Current activity unknown.");
 } else {
 ActivityRecognitionResult ar =
 detectedActivityResult.getActivityRecognitionResult();
 DetectedActivity probableActivity = ar.getMostProbableActivity();
 // TODO: Do something with the detected user activity.
 }
 }
 });

The Snapshot API includes static get methods corresponding to each of the context signals avail-
able. The returned values for each are consistent with the classes and values returned if you were to
query the underlying Services directly. Note also that several of these methods require manifest and
runtime permissions:

 ➤ getBeaconState—Provides the state of nearby beacons by returning a BeaconStateResult.
Call getBeaconState to extract Beacon details. Requires the ACCESS_FINE_LOCATION man-
ifest and runtime permission.

 ➤ getDetectedActivity—Returns the user’s detected physical Activity (running, walking, and
so on) by returning a DetectedActivityResult. Extract the activity recognition results by
calling getActivityRecognitionResult. Requires the ACTIVITY_RECOGNITION manifest
permission.

 ➤ getHeadphoneState—Indicates if the headphones are currently plugged in by returning a
HeadphoneStateResult object, on which you must call getState to determine if the head-
phones are PLUGGED_IN or UNPLUGGED.

Adding Contextual Awareness ❘ 613

 ➤ getLocation—Returns the user’s last known Location using a LocationResult. The
Location value can be extracted with getLocation. Requires the ACCESS_FINE_LOCATION
manifest and runtime permission.

 ➤ getPlaces—Returns a list of nearby places, such as businesses and points of interest, within
a PlacesResult. Call getPlaceLikelihoods for a list of potential places ranked by likeli-
hood. Requires the ACCESS_FINE_LOCATION manifest and runtime permission.

 ➤ getWeather—Returns the weather conditions in your current location within a
WeatherResult. Call getWeather to extract a Weather object that includes the temperature,
“feels like” temperature, humidity, dew point, and an array of descriptive weather condi-
tions. Requires the ACCESS_FINE_LOCATION manifest and runtime permission.

You can find full details on each of the Snapshot methods, with examples of how to extract the
data, on the Google Developer’s site at developers.google.com/awareness/android-api/
snapshot-get-data.

Setting and Monitoring Awareness Fences
Awareness Fences allow your app to adapt to the user’s changing environment by defining a series of
conditions that, when met, will trigger a callback, even while your app is in the background.

The concept of an Awareness “fence” is an expansion of the Geofences described earlier in this
chapter in the section “Setting and Managing Geofences.” Whereas a Geofence is based on the
user’s proximity to a specific location, Awareness Fences expand the trigger to include contextual
conditions including time, nearby Beacons, headphone state, and the user’s current activity.

Each of these signals can be combined using logical operators, allowing you to define custom fences
based on combinations of criteria, such as:

 ➤ Starting to run while your headphones are plugged in on a weekend afternoon

 ➤ Starting to drive away from a given location on a weekday morning

 ➤ Moving within range of a beacon on your bicycle between 8am and 9am on Wednesdays

Awareness Fences are stored as instances of the AwarenessFence class. You can create new Awareness
Fences for each of the available context triggers using the static methods available in the following
classes:

BeaconFence—Use the found, lost, and near methods to specify that one or more Beacons
matching the specified TypeFilter objects are initially detected, just lost, or nearby, respec-
tively. Requires the ACCESS_FINE_LOCATION permission.

DetectedActivityFence—Use the starting, stopping, and during methods to indicate
the user has just begun, just stopped, or is currently performing a given activity. Detectable
activities include IN_VEHICLE, ON_BICYCLE, ON_FOOT, RUNNING, WALKING, or STILL.
Requires the ACTIVITY_RECOGNITION permission.

HeadphoneFence—Use the pluggingIn, unplugging, and during methods to indicate the
headphones have just been connected, just unplugged, or are currently plugged in.

614 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

LocationFence—Works like the Geofence. Use the entering, exiting, and in methods
specifying a latitude, longitude, radius, and dwell time to indicate the user has entered,
exited, or remained within the given area for the specified dwell time.

TimeFence—Provides a variety of static methods allowing you to indicate semantic and spe-
cific days and times:

 ➤ aroundTimeInstant—Specify a time instant, currently sunset or sunrise, and a start
and stop offset around that time.

 ➤ inDailyInterval—Specify a daily start and stop time within a given time zone.

 ➤ inInterval—Specify an absolute one-off start and stop time.

 ➤ inIntervalofDay—Specify a repeating start and stop time for a given day of the
week in a given time zone.

 ➤ inTimeInterval—Specify a specific semantic time interval such as day of the week,
morning, afternoon, evening, night, weekday, weekend, or holiday.

For example, Listing 15-29 shows Awareness Fences based on each of the context signals.

LISTING 15-29: Creating Awareness Fences

// Near one of my custom beacons.
BeaconState.TypeFilter typeFilter
 = BeaconState.TypeFilter.with("com.professionalandroid.apps.beacon",
 "my_type");
AwarenessFence beaconFence = BeaconFence.near(typeFilter);

// While walking.
AwarenessFence activityFence
 = DetectedActivityFence.during(DetectedActivityFence.WALKING);

// Having just plugged in my headphones.
AwarenessFence headphoneFence = HeadphoneFence.pluggingIn();

// Within 1km of Google for longer than a minute.
double lat = 37.4220233;
double lng = -122.084252;
double radius = 1000; // meters
long dwell = 60000; // milliseconds.
AwarenessFence locationFence = LocationFence.in(lat, lng, radius, dwell);

// In the morning
AwarenessFence timeFence =
 TimeFence.inTimeInterval(TimeFence.TIME_INTERVAL_MORNING);

// During holidays
AwarenessFence holidayFence =
 TimeFence.inTimeInterval(TimeFence.TIME_INTERVAL_HOLIDAY);

Adding Contextual Awareness ❘ 615

To combine multiple Awareness Fences, use the static and, or, and not methods within the
AwarenessFence class as shown in Listing 15-30.

LISTING 15-30: Combining Awareness Fences

// Trigger when headphones are plugged in and walking in the morning
// either within a kilometer of Google or near one of my beacons --
// but not on a holiday.
AwarenessFence morningWalk = AwarenessFence
 .and(activityFence,
 headphoneFence,
 timeFence,
 AwarenessFence.or(locationFence,
 beaconFence),
 AwarenessFence.not(holidayFence));

Like Geofences, when triggered an Awareness Fence will broadcast a Pending Intent that can be
used to trigger a Broadcast Receiver. If you have multiple Awareness Fences, you could create a
unique Pending Intent for each; however, for efficiency reasons it’s best practice to use a single
Pending Intent each with a unique key String, specified when registering the fence:

int flags = PendingIntent.FLAG_UPDATE_CURRENT;
Intent intent = new Intent(this, WalkFenceReceiver.class);
PendingIntent awarenessIntent = PendingIntent.getBroadcast(this, -1,
 intent, flags);

To add an Awareness Fence you need to create a FenceUpdateRequest that includes the Fences
you want to add, the Pending Intent to be broadcast when the Awareness Fence is triggered, and a
unique identifier.

Create the Fence Update Request using the FenceUpdateRequest.Builder, adding one or more
Awareness Fences as shown in Listing 15-31.

LISTING 15-31: Creating an Awareness Fence Update Request

FenceUpdateRequest fenceUpdateRequest = new FenceUpdateRequest.Builder()
 .addFence(WALK_FENCE_KEY, morningWalk, awarenessIntent)
 .build();

Listing 15-32 shows how to update your app’s Awareness Fences by passing in your Fence Update
Request to the Fence API’s updateFences method. You can use the setResultCallback to receive
an onResult callback indicating the success or failure of the update request.

LISTING 15-32: Adding a new Awareness Fence

Awareness.FenceApi.updateFences(
 mGoogleApiClient,
 fenceUpdateRequest)

616 ❘ CHAPTER 15 Location, contextuaL awareness, and Mapping

 .setResultCallback(new ResultCallback<Status>() {
 @Override
 public void onResult(@NonNull Status status) {
 if(!status.isSuccess()) {
 Log.d(TAG, "Fence could not be registered: " + status);
 }
 }
 });

When the Awareness Service detects that each of your conditions has been met, the Pending Intent
fires. The Pending Intent will also be fired immediately after it has been added, regardless of the
state of each condition; this allows you to extract the initial state.

When the Pending Intent has been received, you can examine the current state of the Fence using the
FenceState class, which you can extract from the Intent using the FenceState.extract method:

FenceState fenceState = FenceState.extract(intent);

To receive Awareness Fence trigger notifications, create and register a Broadcast Receiver to listen
for the broadcast Intent, such as the one shown in Listing 15-33.

LISTING 15-33: Listening for Awareness Fence trigger Intent broadcasts

public class WalkFenceReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent intent) {
 FenceState fenceState = FenceState.extract(intent);

 String fenceKey = fenceState.getFenceKey();
 int fenceStatus = fenceState.getCurrentState();

 if (fenceKey.equals(WALK_FENCE_KEY)) {
 if (fenceStatus == FenceState.TRUE) {
 // TODO React to fence being triggered.
 }
 }
 }
}

To remove an Awareness Fence use the removeFence method within the Fence Update Request,
specifying either the unique key or the Pending Intent associated with a Fence. Pass the resulting
Fence Update Request to the updateFences method of the Fence API as shown in Listing 15-34.

LISTING 15-34: Removing an Awareness Fence

FenceUpdateRequest fenceUpdateRequest = new FenceUpdateRequest.Builder()
 .removeFence(WalkFenceKey)
 .build();

Awareness.FenceApi.updateFences(
 mGoogleApiClient,

Adding Contextual Awareness ❘ 617

 fenceUpdateRequest)
 .setResultCallback(new ResultCallback<Status>() {
 @Override
 public void onResult(@NonNull Status status) {
 if(!status.isSuccess()) {
 Log.d(TAG, "Fence could not be removed: " + status);
 }
 }
 });

Awareness Best Practices
Adding contextual awareness to your app means asking your users to trust you with that informa-
tion. The more context you ask for, the more trust you’re requesting — remember that it’s hard to
build that trust but very easy to lose it — even if what you’re doing is confusing or obscure rather
than malicious.

To maintain that trust, it’s important to use contextual information responsibly, in a way that maxi-
mizes user control and privacy. While aiming for delight, it’s important not to miss and shock or
surprise users.

The following is a selection of best practices to help ensure you maintain that trust:

 ➤ Tell your users what you’re doing, why you’re doing it, and whenever possible let them
say no.

 ➤ Always explain how you’re using their context, and what you’re doing with the data — both
on the device, and especially if that data is being stored or transmitted.

 ➤ Don’t transmit or store location or contact details unless that’s clear to the user, and a critical
part of your app’s functionality.

 ➤ If you are storing any context data, make it simple and easy for users to erase it — both on
their device and on your servers.

 ➤ Have a clear privacy policy that’s easy for users to find and understand.

 ➤ Your app should be an intuitive friend, not a creepy stalker; use Awareness to improve the
quality of notifications, not to spam your users.

Hardware Sensors
WHAT’S IN THIS CHAPTER?

 ➤ Using the Sensor Manager

 ➤ Introducing the different types of sensors

 ➤ Discovering available sensors and their capabilities

 ➤ Finding and using dynamic sensors

 ➤ Learning best practices for using sensors

 ➤ Testing sensors using the Emulator

 ➤ Finding a device’s natural orientation

 ➤ Remapping a device’s orientation reference frame

 ➤ Monitoring sensors and interpreting sensor values

 ➤ Using sensors to monitor a device’s movement and orientation

 ➤ Using sensors to monitor a device’s environment

 ➤ Using sensors to monitor a user’s vital signs

 ➤ User activity tracking using Activity Recognition

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The code downloads for this chapter are found at www.wrox.com. The code for this chapter is
divided into the following major examples:

 ➤ Snippets_ch16.zip

 ➤ Weatherstation.zip

16

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

620 ❘ CHAPTER 16 Hardware SenSorS

 ➤ GForceMeter.zip

 ➤ Compass_ch16.zip

INTRODUCING ANDROID SENSORS

Android devices are much more than simple communications and web browsing platforms; they’re
extra-sensory input devices using movement, the environment, and body sensors to extend your
users’ perceptions.

Sensors that detect physical and environmental properties offer an exciting avenue for innovations
that enhance the user experience of mobile applications. The incorporation of an increasingly rich
array of sensor hardware in modern devices provides new possibilities for user interaction and appli-
cation development, including augmented or virtual reality, movement-based input, and environ-
mental customizations.

This chapter introduces you to the sensors currently available in Android and how to use the Sensor
Manager to monitor them.

You take a closer look at how to determine movement, and changes in the device orientation—
regardless of the natural orientation of the host device.

You also explore the environmental sensors, including how to use the barometer to detect the
current altitude, the light Sensor to determine the level of cloud cover, and the temperature Sensor
to measure the ambient temperature.

Finally, you learn about body sensors, which are attached directly to the user and can be used to
determine vital signs, such as heart rate, and to use the Activity Recognition APIs to monitor the
users current physical activity.

Using the Sensor Manager
The Sensor Manager is used to manage the sensor hardware available on Android devices. Use
getSystemService to return a reference to the Sensor Manager Service:

SensorManager sensorManager
 = (SensorManager)getSystemService(Context.SENSOR_SERVICE);

Rather than interact with the sensor hardware directly, you work with a series of Sensor objects
that represent that hardware. These Sensor objects describe the properties of the hardware sensor
they represent, including the type, name, manufacturer, and details on accuracy and range.

The Sensor class includes a set of constants that describe which type of hardware sensor is being
represented by a particular Sensor object. These constants take the form of Sensor.TYPE_ followed
by the name of a supported Sensor. The following section describes each supported Sensor type,
after which you learn how to find and use these Sensors.

Introducing Android Sensors ❘ 621

Understanding the Android Sensors
The availability of specific Sensors varies based on the platform version and the hardware available
in the host device. The section, “Discovering and Identifying Sensors” describes how to identify
which sensors are available to your application on a given host device.

Sensors can generally be divided into two categories: physical hardware sensors and virtual sensors.

Hardware Sensors, such as the light and barometric pressure Sensors, report results directly from a
physical hardware sensor designed for that purpose. These hardware-based Sensors typically work
independently of each other, each reporting the results obtained from a particular piece of hardware
and generally don’t apply any filtering or smoothing.

Virtual Sensors are used to present simplified, corrected, or composite sensor data in a way that
makes them easier to use within some applications. Sensors such as the rotation vector and linear-
acceleration Sensors are examples of virtual Sensors that may use a smoothed and filtered combina-
tion of accelerometers, magnetic-field Sensors, and gyroscopes, rather than the output of one specific
hardware sensor.

In some circumstances, Android offers virtual sensors based on a particular hardware sensor. For
example, there are virtual gyroscope and orientation Sensors that attempt to improve the quality
and performance of their respective hardware; this involves using filters and the output of multiple
Sensors to smooth, correct, or filter the raw output.

Environmental Sensors
Environmental Sensors are used to monitor the surrounding physical environment, including the
current temperature, light levels, and atmospheric pressure.

 ➤ Sensor.TYPE_AMBIENT_TEMPERATURE—Introduced in Android 4.0 (API Level 14), this is a
thermometer that returns the ambient room temperature in degrees Celsius.

 ➤ Sensor.TYPE_GRAVITY—A three-axis gravity sensor that returns the current direction and
magnitude of gravity along three axes in m/s2. The gravity sensor typically is implemented as
a virtual sensor by applying a low-pass filter to the accelerometer results.

 ➤ Sensor.TYPE_LIGHT—An ambient light sensor that returns a single value describing the
ambient illumination in lux. A light sensor is typically used by the system to alter the screen
brightness dynamically.

 ➤ Sensor.TYPE_MAGNETIC_FIELD—A magnetometer that finds the current magnetic field in
microteslas (µT) along three axes.

 ➤ Sensor.TYPE_PRESSURE—An atmospheric pressure sensor (barometer) that returns the
current atmospheric pressure in millibars (mbars) as a single value. The pressure Sensor can
be used to determine altitude using the getAltitude method on the Sensor Manager to
 compare the atmospheric pressure in two locations. Barometers can also be used in weather
forecasting by measuring changes in atmospheric pressure in the same location over time.

622 ❘ CHAPTER 16 Hardware SenSorS

 ➤ Sensor.TYPE_PROXIMITY—A proximity sensor that indicates the distance between the device
and the target object in centimeters. How a target object is selected, and the distances sup-
ported, will depend on the hardware implementation of the proximity detector.

 ➤ Sensor.TYPE_RELATIVE_HUMIDITY—A relative humidity sensor that returns the relative
humidity as a percentage. This Sensor was introduced in Android 4.0 (API Level 14).

Device Movement and Orientation Sensors
Device movement and orientation sensors help you to track device movement and changes in the
device’s physical orientation. Using these sensors, you can determine the device’s relative orientation
on all three axes, acceleration, and device movement (or lack thereof).

 ➤ Sensor.TYPE_ACCELEROMETER—A three-axis accelerometer that returns the current accelera-
tion along three axes in m/s2 (meters per second, per second.) The accelerometer is explored
in greater detail later in this chapter.

 ➤ Sensor.TYPE_GYROSCOPE—A three-axis gyroscope that returns the rate of device rotation
along three axes in radians/second. You can integrate the rate of rotation over time to deter-
mine the current orientation of the device; however, it generally is better practice to use this
in combination with other sensors (typically the accelerometers) to provide a smoothed and
corrected orientation. You learn more about the gyroscope later in this chapter.

 ➤ Sensor.TYPE_LINEAR_ACCELERATION—A three-axis linear acceleration Sensor that returns
the acceleration, minus gravity, along three axes in m/s2. Like the gravity sensor, the linear
acceleration is typically implemented as a virtual sensor using the accelerometer output. In
this case, to obtain the linear acceleration, a high-pass filter is applied to the accelerometer
output.

 ➤ Sensor.TYPE_ROTATION_VECTOR—Returns the orientation of the device as a combination of
an angle around an axis. It typically is used as an input to the getRotationMatrixFromVec-
tor method from the Sensor Manager to convert the returned rotation vector into a rotation
matrix. The rotation vector is typically implemented as a virtual sensor that can combine and
correct the results obtained from multiple sensors, such as the accelerometers and gyroscope,
to provide a smoother rotation matrix.

 ➤ Sensor.TYPE_GEOMAGNETIC_ROTATION_VECTOR—An alternative to the rotation vector,
implemented as a virtual Sensor using the magnetometer rather than gyroscope. As a result,
it uses lower power but is noisier and best used outdoors. Introduced in Android 4.4 (API
Level 19).

 ➤ Sensor.TYPE_POSE_6DOF—A pose sensor with 6 degrees of freedom; similar to the rotation
vector, but with an additional delta translation from an arbitrary reference point. This is a
high-power sensor that is expected to be more accurate than the rotation vector. Introduced
in Android 7.0 (API Level 24).

 ➤ Sensor.TYPE_MOTION_DETECT—A virtual Sensor that returns a value of 1.0 if it determines
that the device has been in motion for at least 5 seconds, with a maximum latency of another
5 seconds. Introduced in Android 7.0 (API Level 24).

Introducing Android Sensors ❘ 623

 ➤ Sensor.TYPE_STATIONARY_DETECT—A virtual Sensor that returns a value of 1.0 if it deter-
mines that the device has been stationary for at least 5 seconds, with a maximum latency of
another 5 seconds. Introduced in Android 7.0 (API Level 24).

 ➤ Sensor.TYPE_SIGNIFICANT_MOTION—A one-shot Sensor that is triggered when a significant
device movement is detected, and then automatically disables itself to prevent further results.
This is a wakeup sensor, meaning that it will continue to monitor for changes while the
device is asleep, and will wake the device when motion is detected. Introduced in Android 4.3
(API Level 18).

Body and Exercise Sensors
With new hardware such as watches and fitness monitors available through devices including
Android Wear, a new set of external sensors is available. Body Sensors are typically placed on—or
in proximity to—the user’s body, allowing you to detect body and health data such as heart beat,
heart rate, and step count.

 ➤ Sensor.TYPE_HEART_BEAT—A Sensor that monitors heart-beats, returning a single value
whenever a heart-beat-peak is detected, corresponding to the positive peak in the QRS com-
plex of an ECG signal. Introduced in Android 7.0 (API Level 24).

 ➤ Sensor.TYPE_HEART_RATE—A heart-rate monitor that returns a single value describing the
user’s heart rate in beats-per-minute (bpm). Introduced in Android 4.4 (API Level 20).

 ➤ Sensor.TYPE_LOW_LATENCY_OFFBODY_DETECT—Returns a single value whenever a wearable
device transitions from being in contact/not in contact with a person’s body. Introduced in
Android 8.0 (API Level 26.)

 ➤ Sensor.TYPE_STEP_COUNTER—Returns the cumulative number of steps detected while active
since the last device reboot. This sensor is implemented as a low-power hardware Sensor
that can be used to continuously track steps over a long period of time. Unlike most of the
Sensors described, you should not unregister this Sensor when your Activity is stopped if
you want to continue counting steps while your app is in the background. Introduced in
Android 4.4 (API Level 19).

 ➤ Sensor.TYPE_STEP_DETECTOR—Returns a single value of 1.0 whenever a step is taken, cor-
responding with the foot touching the ground. If you want to track the number of steps, the
step counter sensor is more appropriate. Introduced in Android 4.4 (API Level 19).

Discovering and Identifying Sensors
You can determine if a particular type of Sensor is available on the host device using the Sensor
Manager’s getDefaultSensor method, passing in the relevant Sensor.TYPE_ constant. If no Sensor
of that type is available, null will be returned; if one or more Sensors are available, the default
implementation will be returned.

Listing 16-1 shows how to determine if an atmospheric pressure Sensor is available.

624 ❘ CHAPTER 16 Hardware SenSorS

LISTING 16-1: Determining if a type of sensor is available

SensorManager sensorManager
 = (SensorManager) getSystemService(Context.SENSOR_SERVICE);

if (sensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE) != null){
 // TODO Barometer is available.
} else {
 // TODO No barometer is available.
}

NOTE Where a Sensor is required for your application to function, you can
specify it as a required feature in the application’s manifest, as described
in Chapter 4, “Defining the Android Manifest and Gradle Build Files, and
Externalizing Resources.”

As the name suggests, the getDefaultSensor method returns the default sensor of a given type, so
it’s worth noting that some Android devices may have multiple independent hardware sensors, or
virtual Sensors, of a given type.

To discover every Sensor available on the host platform, you can use the getSensorList method on
the Sensor Manager, passing in a Sensor type, or Sensor.TYPE_ALL to return a list of every Sensor:

List<Sensor> allSensors = sensorManager.getSensorList(Sensor.TYPE_ALL);

To find a list of all the available Sensors of a particular type, use the Sensor constants to indicate the
type of Sensor you require, as shown in the following code that returns all the available gyroscopes:

List<Sensor> gyroscopes = sensorManager.getSensorList(Sensor.TYPE_GYROSCOPE);

By convention, any hardware Sensor implementations are returned at the top of the list, followed
by virtual implementations, though this is not guaranteed. Since Android 5.0 (API Level 21), the
default Sensor is the first Sensor in this list that isn’t a wakeup Sensor (unless the Sensor is by defini-
tion a wakeup sensor). The difference between wakeup and non-wakeup Sensors is described in the
“Wakeup and Non-Wakeup Sensors” section,

You can also use an overloaded implementation of getDefaultSensor that takes both a Sensor
type, and a Boolean indicating if you specifically require a wakeup sensor:

Sensor wakeupProximitySensor =
 sensorManager.getDefaultSensor(Sensor.TYPE_PROXIMITY, TRUE);

Android 7.0 Nougat (API Level 24) introduced the concept of dynamic Sensors, primarily to sup-
port the Android Things platform. Dynamic Sensors behave like traditional Sensors but can be con-
nected or disconnected at run time.

You can determine if dynamic Sensors are available on the current host platform using the Sensor
Manager’s isDynamicSensorDiscoverySupported method. To determine if a specific Sensor is
dynamic, call its isDynamicSensor method.

Introducing Android Sensors ❘ 625

To return a list of the available dynamic Sensors you can use getDynamicSensorList in the same
way as described previously for all Sensors, specifying Sensor.TYPE_ALL to return all the dynamic
Sensors, or the Sensor type constants for a particular Sensor type:

if (sensorManager.isDynamicSensorDiscoverySupported()) {
 List<Sensor> allDynamicSensors
 = sensorManager.getDynamicSensorList(Sensor.TYPE_ALL);
 // TODO Do something with the dynamic sensor list.
}

Because they can be added or removed at run time, the result of the getDynamicSensor call may
change while your app is running.

To track the addition or removal of dynamic Sensors, you can implement the
DynamicSensorCallback, and register it with the Sensor Manager, as shown in the following code:

SensorManager.DynamicSensorCallback dynamicSensorCallback =
 new SensorManager.DynamicSensorCallback() {
 @Override
 public void onDynamicSensorConnected(Sensor sensor) {
 super.onDynamicSensorConnected(sensor);
 // TODO React to the new Sensor being connected.
 }

 @Override
 public void onDynamicSensorDisconnected(Sensor sensor) {
 super.onDynamicSensorDisconnected(sensor);
 // TODO React to the Sensor being disconnected.
 }
};

sensorManager.registerDynamicSensorCallback(dynamicSensorCallback);

Determining Sensor Capabilities
If there are multiple Sensor implementations for a given sensor type, you may want to decide which
of the returned Sensors to use by querying the returned Sensors and comparing their capabilities.

Each Sensor provides methods to report its name, power use while active (in mA), minimum delay
latency (minimum delay between two subsequent events in microseconds), maximum range and
resolution (in the units of its return values), module version, and vendor string:

String name = sensor.getName();
float power = sensor.getPower();
float maxRange = sensor.getMaximumRange();
float resolution = sensor.getResolution();
float minLatency = sensor.getMinDelay();
int version = sensor.getVersion();
String vendor = sensor.getVendor();

Log.d(TAG, "Sensor " + name + " (" + vendor + ":" + version +
 ") Power:" + power + ", Range: " + maxRange +
 ", Resolution: " + resolution + ", Latency: " + minLatency);

626 ❘ CHAPTER 16 Hardware SenSorS

It can be useful to examine and experiment with the available Sensors in order to utilize the most
appropriate implementation for your needs. In many cases the smoothing, filtering, and corrections
applied to the virtual Sensors may provide better results for your applications than the default hard-
ware results.

The following code snippet shows how to select a light Sensor with the highest maximum range and
lowest power requirement:

List<Sensor> lightSensors
 = sensorManager.getSensorList(Sensor.TYPE_LIGHT);

Sensor bestLightSensor
 = sensorManager.getDefaultSensor(Sensor.TYPE_LIGHT);

if (bestLightSensor != null)
 for (Sensor lightSensor : lightSensors) {
 float range = lightSensor.getMaximumRange();
 float power = lightSensor.getPower();

 if (range >= bestLightSensor.getMaximumRange())
 if (power < bestLightSensor.getPower() ||
 range > bestLightSensor.getMaximumRange())
 bestLightSensor = lightSensor;
 }

Android 5.0 Lollipop (API Level 21) introduced support for finding the maximum delay latency,
which returns the slowest frequency supported by a sensor—typically corresponding to when the
batch FIFO (first-in-first-out) queue will be full. Ignore this value if it returns zero or a negative
value:

float maxLatency = sensor.getMaxDelay();

API Level 21 also introduced the concept of a reporting mode for each sensor. By calling a Sensor’s
getReportingMode method, you can determine how it reports its results, represented as one of the
following return constants:

 ➤ REPORTING_MODE_CONTINUOUS—Events are returned at least at the constant rate defined by
the rate parameter used when you register a listener (as described in the following section).

 ➤ REPORTING_MODE_ON_CHANGE—Events are returned only when the value changes, limited to
be no more often than the rate parameter used when registering a listener.

 ➤ REPORTING_MODE_ONE_SHOT—Events are reported only once, when the event is detected.
Sensors of this type are monitored by requesting a trigger listener rather than an event lis-
tener, as described in the following section.

 ➤ REPORTING_MODE_SPECIAL_TRIGGER—Used by Sensors that have special triggers that aren’t
continuous, one-off, nor change-triggered. For example, step detectors, which return results
when a step is detected.

Introducing Android Sensors ❘ 627

Wakeup and Non-Wakeup Sensors
Typically, if your application is not holding a Wake Lock, a period of non–user-interaction will
result in the system’s application processor entering a low-power suspend mode to preserve battery
(Wake Locks can be used to force the processor to remain active).

When the processor goes into low-power mode, non-wakeup Sensors will continue to consume
power and generate events, but they will not wake the processor in order for your application to
receive and process them. Instead, they will be placed into their hardware FIFO data queue, if one is
available.

Older events will be lost when the maximum queue sized is reached, meaning you risk losing data
that has been collected at significant battery cost. As a result, it’s best practice to start and stop lis-
tening to Sensor results within the onResume and onPause methods of your Activities, respectively.
This ensures your non-wakeup Sensors are drawing power only when the Activity is active.

Conversely, wakeup Sensors will wake the processor when their FIFO buffer is full or when it
reaches the maximum latency you specify when requesting updates. Waking the processor will sig-
nificantly increase battery use, so the larger the latency you specify, the lower the battery impact
from your Sensor use. The process for requesting updates is described in the following section.

You can determine if a particular Sensor is a wakeup Sensor using the isWakeupSensor method:

boolean isWakeup = sensor.isWakeUpSensor();

You can find the maximum FIFO queue size for a Sensor using its maxFifoEventCount method.

Monitoring Sensor Results
How you monitor the values observed by a Sensor depends on the reporting mode used by that
Sensor.

For most Sensors—those that report results continuously, on change, or caused by a special
trigger—you receive Sensor Events by implementing a SensorEventListener, and registering it
using the Sensor Manager’s registerListener method.

Override the onSensorChanged handler to receive new Sensor values, and onAccuracyChanged to
react to changes in a Sensor’s accuracy, as shown in the skeleton code in Listing 16-2.

LISTING 16-2: Sensor Event Listener skeleton code

 final SensorEventListener mySensorEventListener = new SensorEventListener() {
 public void onSensorChanged(SensorEvent sensorEvent) {
 // TODO React to new Sensor result.
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // TODO React to a change in Sensor accuracy.
 }
};

628 ❘ CHAPTER 16 Hardware SenSorS

The SensorEvent parameter received by the onSensorChanged method includes the following four
properties to describe each Sensor Event:

 ➤ sensor—The Sensor object that triggered the event.

 ➤ accuracy—The accuracy of the Sensor when the event occurred (as described in the
next list).

 ➤ values—A float array that contains the new value(s) observed. The following section
explains the values returned for each Sensor type.

 ➤ timestamp—The time (in nanoseconds) at which the Sensor Event occurred.

You can monitor changes in the accuracy of a Sensor separately, using the onAccuracyChanged
method.

In both handlers the accuracy value represents the Sensor’s accuracy, using one of the following
Sensor Manager constants:

 ➤ SENSOR_STATUS_ACCURACY_LOW—Indicates that the Sensor is reporting with low accuracy
and needs to be calibrated.

 ➤ SENSOR_STATUS_ACCURACY_MEDIUM—Indicates that the Sensor data is of average accuracy
and that calibration might improve the accuracy of the reported results.

 ➤ SENSOR_STATUS_ACCURACY_HIGH—Indicates that the Sensor is reporting with the highest
possible accuracy.

 ➤ SENSOR_STATUS_UNRELIABLE—Indicates that the Sensor data is unreliable, meaning that
either calibration is required or readings are not currently possible.

 ➤ SENSOR_STATUS_NO_CONTACT—Indicates that the Sensor data is unreliable because the
Sensor has lost contact with what it measures (for example, the heart rate monitor is not in
contact with the user).

To listen for Sensor Events, register your Sensor Event Listener with the Sensor Manager. Specify
the Sensor to observe, and the minimum frequency at which you want to receive updates, either
in microseconds or using one of the SensorManager.SENSOR_DELAY_ constants, as shown in
Listing 16-3.

LISTING 16-3: Registering a Sensor Event Listener

Sensor sensor = sensorManager.getDefaultSensor(Sensor.TYPE_PROXIMITY);
sensorManager.registerListener(mySensorEventListener,
 sensor,
 SensorManager.SENSOR_DELAY_NORMAL);

The rate you select is not binding; the Sensor Manager may return results faster or slower than you
specify, though it will tend to be faster. To minimize the associated resource cost of using the Sensor
in your application, it is best practice to select the slowest acceptable rate.

Introducing Android Sensors ❘ 629

You can (and must) unregister your Sensor Event Listeners when your application no longer needs to
receive updates:

sensorManager.unregisterListener(mySensorEventListener);

Android 4.4 KitKat (API Level 19) introduced an overloaded registerListener method, as shown
in Listing 16-4, that also allows you to indicate a maximum reporting latency, representing the lon-
gest time (in microseconds) that events can be delayed before being returned to the handler.

LISTING 16-4: Registering a Sensor Event Listener with a maximum Latency

Sensor sensor = sensorManager.getDefaultSensor(Sensor.TYPE_PROXIMITY);
sensorManager.registerListener(mySensorEventListener,
 sensor,
 SensorManager.SENSOR_DELAY_NORMAL,
 10000000);

Specifying a large reporting latency is an effective way to reduce battery use when using wakeup
Sensors.

For one-shot Sensors, such as the significant motion detector, you should monitor updates by
implementing a TriggerEventListener, rather than the Sensor Event Listener, and overriding the
onTrigger handler as shown in Listing 16-5.

LISTING 16-5: Trigger Event Listener skeleton code

TriggerEventListener triggerEventListener = new TriggerEventListener() {
 @Override
 public void onTrigger(TriggerEvent event) {
 // TODO React to trigger event.
 }
};

The TriggerEvent parameter received by the onTrigger handler includes the following properties
to describe each Trigger Event:

 ➤ sensor—The Sensor object that triggered the event.

 ➤ values—A float array that contains the new value(s) observed. The following section
explains the values returned for each sensor type.

 ➤ timestamp—The time (in nanoseconds) at which the Sensor Event occurred.

To listen for Sensor Events, register your Trigger Event Listener with the Sensor Manager, specifying
the Sensor to observe, as shown in Listing 16-6.

LISTING 16-6: Registering a Trigger Event Listener

Sensor sensor = sensorManager.getDefaultSensor(Sensor.TYPE_SIGNIFICANT_MOTION);
sensorManager.requestTriggerSensor(triggerEventListener, sensor);

630 ❘ CHAPTER 16 Hardware SenSorS

Unlike continuous or on-change Sensors, which deliver multiple events as their values change, one-
shot trigger Sensors return an event only once. When the Sensor detects the trigger condition the
Trigger Event Listener will be fired, and the trigger Sensor request automatically cancelled.

To receive additional Trigger Events for the same Sensor, you must call requestTriggerSensor
again. Alternatively, if you have not received a Trigger Event, and your application no longer needs
to respond to it, you should cancel your Trigger Event Listeners manually:

sensorManager.cancelTriggerSensor(triggerEventListener, sensor);

Android 7.0 Nougat (API Level 24) also introduced support for Sensors to return information
beyond the accuracy status and value arrays described earlier. You can determine if a Sensor is capa-
ble of reporting this additional information using the isAdditionalInfoSupported method.

If a Sensor is capable of returning Sensor Additional Info, you can use the new
SensorEventCallback, an extension of the Sensor Event Listener that includes additional callback
handlers, as shown in the skeleton code of Listing 16-7.

LISTING 16-7: Registering a Sensor Event Callback to receive Sensor Additional Info

SensorEventCallback sensorEventCallback = new SensorEventCallback() {
 @Override
 public void onSensorChanged(SensorEvent event) {
 super.onSensorChanged(event);
 // TODO Monitor Sensor changes.
 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 super.onAccuracyChanged(sensor, accuracy);
 // TODO React to a change in Sensor accuracy.
 }

 @Override
 public void onFlushCompleted(Sensor sensor) {
 super.onFlushCompleted(sensor);
 // FIFO of this sensor has been flushed.
 }

 @Override
 public void onSensorAdditionalInfo(SensorAdditionalInfo info) {
 super.onSensorAdditionalInfo(info);
 // TODO Monitor additional sensor information.
 }
};

sensorManager.registerListener(sensorEventCallback, sensor,
 SensorManager.SENSOR_DELAY_NORMAL);

Introducing Android Sensors ❘ 631

The onSensorChanged and onAccuracyChanged handlers for the Sensor Event Callback behave
identically to the Sensor Event Listener described previously. Additionally, you can override the
onFlushCompleted and onSensorAdditionalInfo handlers.

Use the onFlushCompleted handler to be notified when the Sensor Manager’s flush method has
been called and completed:

sensorManager.flush(sensorEventCallback);

When called, this method will flush the FIFO of any Sensors associated with the passed-in Sensor
Event Listener. As a result, if there are events currently in Sensor’s FIFO queue, they will be returned
to the listener as though the specified maximum report latency has expired.

The onSensorAdditionalInfo handler returns a SensorAdditionalInfo object that includes addi-
tional information regarding the current state of the sensor, including:

 ➤ intValues and floatValues—Integer and float arrays that may contain payload value(s)
for the Sensor, as described by the information type.

 ➤ type—Sensors can return multiple types of additional sensor information. They are grouped
together within a frame of data. Each frame is bound by the TYPE_FRAME_BEGIN and TYPE_
FRAME_END types, between which data for multiple additional types can be returned, and the
results made available using the integer or float value arrays. The type of the current data
returned can be identified using the type value, corresponding to one of the following:

 ➤ TYPE_FRAME_BEGIN and TYPE_FRAME_END—Mark the beginning and end of this
frame of additional information.

 ➤ TYPE_INTERNAL_TEMPERATURE—The internal Sensor temperature, returned in
degrees Celsius as the first value in the floatValues array.

 ➤ TYPE_SAMPLING—The raw sampling period, in seconds, returned as the first value in
the float array; and the estimated sample time-jitter returned as the standard devia-
tion, available in the second value in the float array.

 ➤ TYPE_SENSOR_PLACEMENT—The physical location and angle of the Sensor relative to
the device’s geometric Sensor. The values are returned as a homogeneous matrix in
the first twelve values in the float array.

 ➤ TYPE_UNTRACKED_DELAY—The delays to the Sensor results introduced by data pro-
cessing (such as filtering or smoothing), which have not been taken into account in
the Sensor Event timestamps. The first float array value is the estimated delay, the
second value is the estimated standard deviation in estimated delays.

 ➤ TYPE_VEC3_CALIBRATION—The vector calibration parameter, representing the
calibration applied to a Sensor with three-element vector output. Returns a homoge-
neous matrix in the first 12 values in the float array describing any linear transforma-
tion, including rotation, scaling, shear, and shift.

 ➤ serial—Each information type returned within a frame is numbered sequentially, with the
serial value identifying the sequence number within the frame.

632 ❘ CHAPTER 16 Hardware SenSorS

A Sensor may return multiple Sensor Additional Info values for each new Sensor value,
corresponding to the multiple possible info types. The collection of values is referred to as a frame.
As a result, the onSensorAdditionalInfo handler is likely to be triggered many times for each
onSensorChanged trigger.

Interpreting Sensor Values
The length and composition of the values array within the Sensor Event parameter returned to the
onSensorChanged handler vary depending on the type of Sensor being monitored. The details are
summarized in Table 16-1. You can find further details on the use of the accelerometer, orientation,
magnetic field, gyroscopic, and environmental Sensors in the following sections.

NOTE The Android documentation describes the values returned by each sen-
sor type with some additional commentary at d.android.com/reference/
android/hardware/SensorEvent.html.

TABLE 16-1 Sensor Return Values

SENSOR TYPE VALUE

COUNT

VALUE COMPOSITION COMMENTARY

TYPE_ACCELEROMETER 3 value[0]: X-axis
(Lateral)

value[1]: Y-axis
(Longitudinal)

value[2]: Z-axis
(Vertical)

Acceleration along three axes in m/
s2. Note that when at rest, these
values will include the acceleration
due to gravity.

TYPE_GRAVITY 3 value[0]: X-axis
(Lateral)

value[1]: Y-axis
(Longitudinal)

value[2]: Z-axis
(Vertical)

Force of gravity along three axes in
m/s2. The Sensor Manager includes
a set of gravity constants of the
form SensorManager.GRAVITY_

TYPE_RELATIVE_

HUMIDITY
1 value[0]: Relative

humidity
Relative humidity as a percentage
(%).

TYPE_LINEAR_

ACCELERATION
3 value[0]: X-axis

(Lateral)

value[1]: Y-axis
(Longitudinal)

value[2]: Z-axis
(Vertical)

Linear acceleration along three axes
in m/s2 without the force of gravity.

Introducing Android Sensors ❘ 633

SENSOR TYPE VALUE

COUNT

VALUE COMPOSITION COMMENTARY

TYPE_GYROSCOPE 3 value[0]: X-axis

value[1]: Y-axis

value[2]: Z-axis

Rate of rotation around three axes
in radians/second (rad/s).

TYPE_ROTATION_

VECTOR and
TYPE_GEOMAGNETIC_

ROTATION_VECTOR

4 values[0]:
x*sin(θ/2)

values[1]:
y*sin(θ/2)

values[2]: z*sin(θ/2)

values[3]: cos(θ/2)

values[4]:
Estimated heading
accuracy (in radians)

Device orientation described as an
angle of rotation around an axis (°).

Note that the third value was
optional, and the fourth unavail-
able, until API 18. Both will now
always be returned.

TYPE_MAGNETIC_

FIELD
3 value[0]: X-axis

(Lateral)

value[1]: Y-axis
(Longitudinal)

value[2]: Z-axis
(Vertical)

Ambient magnetic field measured
in microteslas (µT) across three
axes.

TYPE_LIGHT 1 value[0]:
Illumination

Ambient light measured in lux (lx).
The Sensor Manager includes a set
of constants representing different
standard illuminations of the form
SensorManager.LIGHT_

TYPE_PRESSURE 1 value[0]:
Atmospheric
Pressure

Atmospheric pressure measured in
millibars/hectopascals (hPa).

TYPE_PROXIMITY 1 value[0]: Distance Distance from target measured in
centimeters (cm). Some sensors are
capable only of returning binary
“far” or “near” values, which are
represented as the maximum range
for the former, and a lesser value
for the latter.

TYPE_AMBIENT_

TEMPERATURE
1 value[0]:

Temperature
Ambient temperature measured in
degrees Celsius (°C).

continues

634 ❘ CHAPTER 16 Hardware SenSorS

SENSOR TYPE VALUE

COUNT

VALUE COMPOSITION COMMENTARY

TYPE_POSE_6DOF 15 value[0]: x*sin(θ/2)

value[1]: y*sin(θ/2)

value[2]: z*sin(θ/2)

value[3]: cos(θ/2)

value[4]:
Translation along
x-axis from an arbi-
trary origin.

value[5]:
Translation along
y-axis from an
arbitrary origin.

value[6]:
Translation along
z-axis from an
arbitrary origin.

value[7]: Delta
quaternion rotation
x*sin(θ/2)

value[8]: Delta
quaternion rotation
y*sin(θ/2)

value[9]: Delta
quaternion rotation
z*sin(θ/2)

value[10]: Delta
quaternion rotation
cos(θ/2)

value[11]: Delta
translation along
x-axis.

value[12]: Delta
translation along
y-axis.

value[13]: Delta
translation along
z-axis.

value[14]:
Sequence number

A rotation expressed as a quater-
nion and a translation expressed in
SI units. Also includes rotation and
translation deltas indicating the
change in pose since the previous
pose.

TABLE 16-1 (continued)

Testing Sensors with the Android Virtual Device and Emulator ❘ 635

SENSOR TYPE VALUE

COUNT

VALUE COMPOSITION COMMENTARY

TYPE_STATIONARY_

DETECT
1 value[0]: 1.0 Event indicating the device has

been stationary for at least 5
seconds.

TYPE_MOTION_DETECT 1 value[0]: 1.0 Event indicating the device has
been in motion for at least 5
seconds.

TYPE_HEART_BEAT 1 value[0]:
Correctness
confidence

Confidence (0 to 1) that the associ-
ated timestamp correctly repre-
sents the positive peak in the QRS
complex of an ECG signal indicat-
ing a heart beat.

TYPE_LOW_LATENCY_

OFFBODY_DETECT
1 value[0]: Off-body

state
Indication if the device is in contact
with a body. 1.0 indicates on-body,
0.0 indicates off-body.

TYPE_SIGNIFICANT_

MOTION
1 value[0]: 1.0 Event indicating the device has

registered a significant movement.

TYPE_HEART_RATE 1 value[0]: Heart rate The user’s heart rate in beats-per-
minute (bpm).

TYPE_STEP_COUNTER 1 value[0]: Step
count

Cumulative number of steps
detected since the last device
reboot.

TYPE_STEP_DETECTOR 1 value[0]: 1.0 Event corresponding with the
moment a foot touches the ground.

TESTING SENSORS WITH THE ANDROID VIRTUAL DEVICE AND
EMULATOR

The availability of particular Sensors is heavily dependent on the physical hardware available on
particular devices. To help with testing, the Android Virtual Device and emulator include a set of
virtual sensor controls that emulate physical hardware sensors, returning values through the Sensor
Manager.

You can control the values returned by the emulator’s sensors using the extended controls screen, as
shown in Figure 16-1.

636 ❘ CHAPTER 16 Hardware SenSorS

FIGURE 16-1

Monitoring a Device’s Movement and Orientation ❘ 637

The emulator currently supports virtualized sensors to simulate movement and rotation through the
accelerometer, magnetometer, and rotation vector Sensors, as well as environmental Sensors includ-
ing ambient temperature, proximity, light level, atmospheric pressure, and relative humidity.

BEST PRACTICES FOR WORKING WITH SENSORS

Using Sensors in your applications can be incredibly powerful; like all good things, their use comes
at a price—primarily the cost of increased battery drain.

You should follow several best practices to ensure you make the most of the device Sensors, without
having a negative overall impact on the user experience:

Always verify Sensors exist before attempting to use them—The Android framework doesn’t
require Android devices to include any particular Sensor. The wide variety of devices, form-
factors, and manufacturers ensures that you can’t assume any particular Sensor is available.

Provide alternatives to Sensor input—If you are using Sensors to provide user-input to your
app, it’s good practice to offer an alternative mechanism to account for devices that don’t
support those Sensors.

Don’t use deprecated Sensor types—For historical and legacy reasons, the framework
includes several Sensor types and convenience methods that have since been deprecated and
replaced with more accurate and efficient alternatives.

Be conservative when selecting Sensor reporting frequencies—Always opt for the slow-
est possible update rate. If your app isn’t using every received Sensor result, it’s wasting
resources and battery.

Don’t block the onSensorChanged handler—The high frequency at which some sensors are
capable of returning new values means you should limit the work being done within the
onSensorChanged handler to ensure you aren’t blocking it from receiving new results.

Unregister your Sensor Event Listeners—The most important pattern to follow is ensuring
all your Sensor Listeners are unregistered when you no longer need them to continue col-
lecting data. If you are using Sensor data to alter the UI, you should always unregister the
listener when the Activity is paused.

MONITORING A DEVICE’S MOVEMENT AND ORIENTATION

Sensors such as accelerometers, compasses, and gyroscopes make it possible to use the device’s
direction, orientation, and movement to offer new and innovative input mechanisms.

The availability of specific Sensors depends on the hardware and software platform on which your
application is running. A 70” flat screen is difficult to lift and awkward to maneuver, so as a result
Android TVs are unlikely to include orientation and movement Sensors.

Where they are available, movement and orientation sensors can be used by your application to:

 ➤ Determine the device orientation

 ➤ React to changes in orientation

638 ❘ CHAPTER 16 Hardware SenSorS

 ➤ React to movement or acceleration

 ➤ Understand which direction the user is facing

 ➤ Monitor gestures based on movement, rotation, or acceleration

This opens some intriguing possibilities for your applications. By monitoring orientation, direction,
and movement, you can:

 ➤ Use the device’s heading or orientation with a map, camera, and location-based service to
create augmented-reality apps.

 ➤ Use the rotation vector and pose Sensors to create low-latency virtual reality applications.

 ➤ Monitor for rapid acceleration to detect if a device has been dropped, thrown, or picked up.

 ➤ Measure movement or vibration.

 ➤ Create app interfaces that use physical gestures and movement as input.

 ➤ Use orientation and linear acceleration Sensors to monitor physical activity and movement to
track fitness.

Determining the Natural Orientation of a Device
Before calculating the device’s orientation, you must first understand its “at rest” (natural) orienta-
tion. The natural orientation of a device is the position at which the orientation is 0 on all three
axes. The natural orientation can be either portrait or landscape, but it typically is identifiable by
the placement of branding and hardware buttons.

For a typical smartphone, the natural orientation is with the device laying on its back on a desk,
with the top of the device pointing due north.

More creatively, you can imagine yourself perched on top of a jet fuselage during level flight. An
Android device has been strapped to the fuselage in front of you. In its natural orientation the screen
is pointing up into space, the top of the device pointing toward the nose of the plane, and the plane
is heading due north, as shown in Figure 16-2.

Z

Y

X

FIGURE 16-2

Monitoring a Device’s Movement and Orientation ❘ 639

NOTE Before you head out to an airfield, note that this example is contrived to
provide a useful metaphor for understanding the standard reference frame. The
electronic compass and accelerometers included in most Android devices make
them unsuitable for determining the heading, pitch, and roll of an aircraft in
flight. It’s also really unsafe to sit on top of a jet fuselage during flight.

Android can rotate the display for your convenience; however, the Sensor axes described in
Table 16-1 do not change as the device rotates. As a result, the display orientation and device
orientation can be different.

Sensor values are always returned relative to the natural orientation of the device, whereas your
application is likely to want the current orientation relative to the display orientation. As a result,
if your application uses device orientation or linear acceleration as an input, it may be necessary to
adjust your Sensor inputs based on the display orientation relative to the natural orientation. This is
particularly important because the natural orientation of most early Android phones was portrait;
however, with the range of Android devices having expanded to also include tablets and televi-
sions, many Android devices (including smartphones) are naturally oriented when the display is in
landscape.

You can find the current screen rotation using the getRotation method on the default Display
object, as shown in Listing 16-8.

LISTING 16-8: Finding the screen orientation relative to the natural orientation

WindowManager wm = (WindowManager)getSystemService(Context.WINDOW_SERVICE);
Display display = wm.getDefaultDisplay();
int rotation = display.getRotation();
switch (rotation) {
 case (Surface.ROTATION_0) : break; // Natural
 case (Surface.ROTATION_90) : break; // On its left side
 case (Surface.ROTATION_180) : break; // Upside down
 case (Surface.ROTATION_270) : break; // On its right side
 default: break;
}

Note that in some cases Android will not rotate the screen to accommodate the device being upside
down. As a result, the user may be holding the phone upside down, but the screen will still be dis-
played at (and report as) the same relative orientation.

Introducing Accelerometers
Acceleration is defined as the rate of change of velocity; that means accelerometers measure how
quickly the speed of the device is changing in a given direction. Using an accelerometer you can
detect movement and, more usefully, the rate of change of the speed of that movement in a given
direction (also known as linear acceleration).

640 ❘ CHAPTER 16 Hardware SenSorS

NOTE Accelerometers are also known as gravity sensors because they measure
acceleration caused both by movement and by gravity. As a result, an acceler-
ometer detecting acceleration on an axis perpendicular to the earth’s surface will
read –9.8m/s2 when it’s at rest. (This value is available as the SensorManager.
STANDARD_GRAVITY constant.)

Generally, you’ll be interested in acceleration changes relative to a rest state, or rapid movement
(signified by rapid changes in acceleration), such as gestures used for user input. In the former case
you’ll often need to calibrate the device to calculate the initial acceleration to take those effects into
account for future results.

NOTE It’s important to note that accelerometers do not measure velocity,
so you can’t measure speed directly based on a single accelerometer reading.
Instead, you need to integrate the acceleration over time to find the velocity. You
can then integrate the velocity over time to determine the distance traveled.

Detecting Acceleration Changes
Acceleration is a measure of the rate of change in velocity, where velocity is the speed of movement
in a particular direction. The rate of acceleration can tell you how much faster (or slower) you are
moving, but by itself offers no information on the current speed or the direction of travel.

As a result, at a given moment deceleration in a given direction will produce the same result as
acceleration in the opposite direction.

Acceleration can be measured along three directional axes:

 ➤ Left-right (lateral)

 ➤ Forward-backward (longitudinal)

 ➤ Up-down (vertical)

The Sensor Manager reports accelerometer sensor changes along all three axes.

The sensor values returned through the values property of the Sensor Event Listener’s Sensor Event
parameter represent lateral, longitudinal, and vertical acceleration, in that order.

Figure 16-3 illustrates the mapping of the three directional acceleration axes in relation to the device
at rest in its natural orientation. Note that for the remainder of this section, I will refer to the move-
ment of the device in relation to its natural orientation, which may be either landscape or portrait.

 ➤ x-axis (lateral)—Sideways (left or right) acceleration, for which positive values represent
acceleration toward the right (or deceleration to the left), and negative values indicate accel-
eration toward the left (or deceleration toward the right).

Monitoring a Device’s Movement and Orientation ❘ 641

 ➤ y-axis (longitudinal)—Forward or backward acceleration, for which forward acceleration,
such as the device being pushed in the direction of the top of the device, is represented by
a positive value and acceleration backward represented by negative values. Deceleration in
either direction is reversed—deceleration while moving forward results in negative results,
and while moving backwards results in positive numbers.

 ➤ z-axis (vertical)—Upward or downward acceleration, for which positive represents upward
acceleration, such as the device being lifted. While at rest at the device’s natural orientation,
the vertical accelerometer will register –9.8m/s2 as a result of gravity.

z-axis
(vertical)

y-axis
(longitudinal)

x-axis
(lateral)

FIGURE 16-3

As described earlier, you can monitor changes in acceleration using a Sensor Event Listener. Register
an implementation of SensorEventListener with the Sensor Manager, using a Sensor object of
type Sensor.TYPE_ACCELEROMETER to request accelerometer updates. Listing 16-9 registers the
default accelerometer using the default update rate.

LISTING 16-9: Monitoring an accelerometer sensor

SensorManager sm = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
int sensorType = Sensor.TYPE_ACCELEROMETER;
sm.registerListener(mySensorEventListener,
 sm.getDefaultSensor(sensorType),
 SensorManager.SENSOR_DELAY_NORMAL);

Your Sensor Listener should implement the onSensorChanged method, which will be fired when
acceleration in any direction is measured.

The onSensorChanged method receives a SensorEvent that includes a values float-array param-
eter, containing the acceleration measured along all three axes. When a device is held in its natu-
ral orientation, the first element represents lateral acceleration; the second element represents

642 ❘ CHAPTER 16 Hardware SenSorS

longitudinal acceleration; and the final element represents vertical acceleration, as shown in the
following extension to Listing 16-9:

final SensorEventListener mySensorEventListener = new SensorEventListener() {
 public void onSensorChanged(SensorEvent sensorEvent) {
 if (sensorEvent.sensor.getType() == Sensor.TYPE_ACCELEROMETER) {
 float xAxis_lateralA = sensorEvent.values[0];
 float yAxis_longitudinalA = sensorEvent.values[1];
 float zAxis_verticalA = sensorEvent.values[2];
 // TODO apply the acceleration changes to your application.
 }
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};

Creating a Gravitational Force Meter
In the following example you create a simple device to measure gravitational force (g-force) using
the accelerometers to determine the current force being exerted on the device.

The acceleration force exerted on the device at rest is 9.8 m/s2 toward the center of the Earth. In this
example you’ll negate the force of gravity by accounting for it using the SensorManager.STANDARD_
GRAVITY constant. If you plan to use this application on another planet, you can use an alternative
gravity constant, as appropriate.

 1. Start by creating a new GForceMeter project that includes a backwards compatible blank
ForceMeterActivity Activity. Modify the new Activity’s layout resource to display two
centered lines of large, bold text that will be used to display the current g-force and maxi-
mum observed g-force:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/acceleration"
 android:gravity="center"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textStyle="bold"
 android:textSize="32sp"
 android:text="Current Acceleration"
 android:layout_margin="10dp"/>
 <TextView
 android:id="@+id/maxAcceleration"
 android:gravity="center"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textStyle="bold"
 android:textSize="40sp"
 android:text="Maximum Acceleration"
 android:layout_margin="10dp"/>
</LinearLayout>

Monitoring a Device’s Movement and Orientation ❘ 643

 2. Within the ForceMeterActivity, create instance variables to store references to the Text
Views and the Sensor Manager. Also create variables to record the current and maximum
detected acceleration values:

private SensorManager mSensorManager;
private TextView mAccelerationTextView;
private TextView mMaxAccelerationTextView;
private float mCurrentAcceleration = 0;
private float mMaxAcceleration = 0;

 3. Add a calibration constant that represents the acceleration due to gravity:

private final double calibration = SensorManager.STANDARD_GRAVITY;

 4. Create a new SensorEventListener implementation that sums the acceleration detected
along each axis and negates the acceleration due to gravity. It should update the current (and
possibly maximum) acceleration whenever a change in acceleration is detected:

private final SensorEventListener mSensorEventListener
 = new SensorEventListener() {

 public void onAccuracyChanged(Sensor sensor, int accuracy) { }

 public void onSensorChanged(SensorEvent event) {
 double x = event.values[0];
 double y = event.values[1];
 double z = event.values[2];

 double a = Math.round(Math.sqrt(Math.pow(x, 2) +
 Math.pow(y, 2) +
 Math.pow(z, 2)));
 mCurrentAcceleration = Math.abs((float)(a-calibration));

 if (mCurrentAcceleration > mMaxAcceleration)
 mMaxAcceleration = mCurrentAcceleration;
 }
};

 5. Update the onCreate method to get a reference to the two Text Views and the Sensor
Manager:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_force_meter);

 mAccelerationTextView = findViewById(R.id.acceleration);
 mMaxAccelerationTextView = findViewById(R.id.maxAcceleration);
 mSensorManager =
 (SensorManager) getSystemService(Context.SENSOR_SERVICE);
}

 6. Override the onResume handler to register your new Listener for accelerometer updates using
the SensorManager:

@Override
protected void onResume() {

644 ❘ CHAPTER 16 Hardware SenSorS

 super.onResume();

 Sensor accelerometer
 = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 mSensorManager.registerListener(mSensorEventListener,
 accelerometer,
 SensorManager.SENSOR_DELAY_FASTEST);
}

 7. Also override the corresponding onPause method to unregister the Sensor Event Listener
when the Activity is no longer active:

@Override
protected void onPause() {
 super.onPause();

 mSensorManager.unregisterListener(mSensorEventListener);
}

 8. The accelerometers can update hundreds of times a second, so updating the Text Views for
every change in acceleration would quickly flood the UI event queue. Instead, create a new
updateGUI method that synchronizes with the GUI thread and updates the Text Views. This
will be executed regularly using a Timer introduced in the next step:

private void updateGUI() {
 runOnUiThread(new Runnable() {
 public void run() {
 String currentG = mCurrentAcceleration /
 SensorManager.STANDARD_GRAVITY
 + "Gs";
 mAccelerationTextView.setText(currentG);
 mAccelerationTextView.invalidate();
 String maxG = mMaxAcceleration/SensorManager.STANDARD_GRAVITY
 + "Gs";
 mMaxAccelerationTextView.setText(maxG);
 mMaxAccelerationTextView.invalidate();
 }
 });
}

 9. Update the onCreate method to create a timer that triggers the UI update method defined in
Step 8 every 100 milliseconds:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_force_meter);

 mAccelerationTextView = findViewById(R.id.acceleration);
 mMaxAccelerationTextView = findViewById(R.id.maxAcceleration);
 mSensorManager =
 (SensorManager) getSystemService(Context.SENSOR_SERVICE);

 Timer updateTimer = new Timer("gForceUpdate");
 updateTimer.scheduleAtFixedRate(new TimerTask() {
 public void run() {

Monitoring a Device’s Movement and Orientation ❘ 645

 updateGUI();
 }
 }, 0, 100);
}

 10. Finally, because this application is functional only when the host device features an acceler-
ometer sensor, modify the manifest to include a uses-feature node specifying the require-
ment for accelerometer hardware:

<uses-feature android:name="android.hardware.sensor.accelerometer" />

When finished, you’ll want to test this out. Ideally, you can do this in an F16 while Maverick
performs high-g maneuvers over the Atlantic. That’s been known to end badly, so, failing that,
you can experiment with spinning around in circles while holding your phone at arm’s length.
Remember to grip your phone tightly.

The Sensor processing performed within this example is effectively the same as the preprocessing
performed by the linear acceleration Sensor. As an exercise, update this sample to use the linear
acceleration Sensor rather than processing the raw accelerometer results.

Determining a Device’s Orientation
You typically calculate a device’s orientation using the combined output of the magnetic field, accel-
erometers, and gyroscope.

If you’ve done a bit of trigonometry, you’ve got the skills required to calculate the device orientation
based on the results from these three Sensors. If you enjoyed trig as much as I did, you’ll be happy to
learn that Android can do these calculations for you.

Understanding the Standard Reference Frame
Using the standard reference frame, the device orientation is reported along three dimensions, as
shown in Figure 16-4.

z-axis
(heading)

y-axis
(roll)

x-axis
(pitch)

FIGURE 16-4

646 ❘ CHAPTER 16 Hardware SenSorS

The standard reference frame is described relative to the device’s natural orientation, as described
earlier in this chapter.

Continuing the airplane analogy, imagining yourself perched on top of a jet fuselage during level
flight, the z-axis comes out of the screen toward space; the y-axis comes out of the top of the device
toward the nose of the plane; and the x-axis heads out toward the starboard wing. Relative to that,
pitch, roll, and azimuth can be described as follows:

 ➤ Pitch—The angle of the device around the x-axis. During level flight, the pitch will be 0; as
the nose angles upward, the pitch increases. It will hit 90 when the jet is pointed straight
up. Conversely, as you angle the nose downward past level, the pitch will decrease until it
reaches –90 as you hurtle toward imminent death. If the plane flips onto its back the pitch
will report either +/–180.

 ➤ Roll—The device’s sideways rotation between –90 and 90 degrees around the y-axis. During
level flight the roll is zero. As you execute a roll toward the starboard (right) side, the roll
will increase, reaching 90 when the wings are perpendicular to the ground. As you continue,
you will reach 180 when the plane is upside down. Rolling from level toward port (left) will
decrease the roll in the same way.

 ➤ Azimuth—The azimuth (also referred to as heading or yaw) is the direction the device is fac-
ing around the z-axis, where 0/360 degrees is magnetic north, 90 east, 180 south, and 270
west. Changes in the plane’s heading will be reflected in changes in the azimuth value.

Determining Orientation Using the Rotation Vector Sensors
The Android framework offers a number of virtual orientation Sensors implemented to combine and
correct the results obtained from multiple hardware sensors—including accelerometers, magnetom-
eters, and gyroscopes—to provide smoother, more accurate orientation results.

The rotation vector Sensors return the orientation of the device as a vector describing an angle
around an axis. This vector can be passed into the getRotationMatrixFromVector method from
the Sensor Manager to convert a rotation vector into a rotation matrix, from which you can extract
the orientation along each axis using the getOrientation method.

The three variations of the rotation vector sensor, each with subtle differences, are:

 ➤ Sensor.TYPE_ROTATION_VECTOR—The basic rotation vector Sensor introduced in
Android 2.3 (API Level 9), which uses the accelerometer and gyroscope to calculate
orientation changes.

 ➤ Sensor.TYPE_GEOMAGNETIC_ROTATION_VECTOR—An alternative to the rotation vector,
implemented using the magnetometer rather than gyroscope. It uses lower power but is
noisier and best used outdoors. Introduced in Android 4.4 (API Level 19).

 ➤ Sensor.TYPE_GAME_ROTATION_VECTOR—Identical to the rotation vector Sensor, except
that the y-axis doesn’t point north, but instead to some other reference, which is allowed to
drift by the same order of magnitude as the gyroscope drift around the z-axis. Introduced in
Android 4.3 (API Level 18).

Monitoring a Device’s Movement and Orientation ❘ 647

Listing 16-10 shows how to use the getRotationMatrixFromVector and getOrientation methods
to extract the current device orientation from the results of a rotation vector Sensor.

LISTING 16-10: Calculating the device orientation using the rotation vector

public void onSensorChanged(SensorEvent sensorEvent) {
 float[] rotationMatrix = new float[9];
 float[] orientation = new float[3];

 // Convert the result Vector to a Rotation Matrix.
 SensorManager.getRotationMatrixFromVector(rotationMatrix,
 sensorEvent.values);

 // Extract the orientation from the Rotation Matrix.
 SensorManager.getOrientation(rotationMatrix, orientation);
 Log.d(TAG, "Yaw: " + orientation[0]); // Yaw
 Log.d(TAG, "Pitch: " + orientation[1]); // Pitch
 Log.d(TAG, "Roll: " + orientation[2]); // Roll
}

Note that getOrientation returns its results in radians, not degrees, with positive values represent-
ing anticlockwise rotation around the axis:

 ➤ values[0]—The azimuth, or rotation around the z-axis, is zero when the device is heading
magnetic north.

 ➤ values[1]—The pitch, or rotation around the x-axis.

 ➤ values[2]—The roll, or rotation around the y-axis.

Calculating Orientation Using the Accelerometer, Magnetometer, and
Gyroscope

It’s also possible to determine the current device orientation using the unfiltered results provided
directly by the accelerometer, magnetometer, and gyroscope.

Because you’re using multiple sensors, you need to create and register a Sensor Event Listener to
monitor each of them. Within the onSensorChanged methods for each Sensor Event Listener, record
the values array property received in separate field variables, as shown in Listing 16-11.

LISTING 16-11: Monitoring the accelerometer and magnetometer

private float[] mAccelerometerValues;
private float[] mMagneticFieldValues;

final SensorEventListener mCombinedSensorListener = new SensorEventListener() {
 public void onSensorChanged(SensorEvent sensorEvent) {
 if (sensorEvent.sensor.getType() == Sensor.TYPE_ACCELEROMETER)
 mAccelerometerValues = sensorEvent.values;

continues

648 ❘ CHAPTER 16 Hardware SenSorS

LISTING 16-11: (continued)

 if (sensorEvent.sensor.getType() == Sensor.TYPE_MAGNETIC_FIELD)
 mMagneticFieldValues = sensorEvent.values;
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};

Register each Sensor with the Sensor Manager, as shown in the following code extension to
Listing 16-11; this snippet uses the default hardware and UI update rate for both Sensors:

SensorManager sm = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
Sensor aSensor = sm.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
Sensor mfSensor = sm.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);

sm.registerListener(mCombinedSensorListener,
 aSensor,
 SensorManager.SENSOR_DELAY_UI);

sm.registerListener(mCombinedSensorListener,
 mfSensor,
 SensorManager.SENSOR_DELAY_UI);

To calculate the current orientation from these Sensor values, use the getRotationMatrix and
getOrientation methods from the Sensor Manager, as shown in Listing 16-12.

LISTING 16-12: Finding the current orientation using the accelerometer and magnetometer

float[] values = new float[3];
float[] R = new float[9];
SensorManager.getRotationMatrix(R, null,
 mAccelerometerValues,
 mMagneticFieldValues);
SensorManager.getOrientation(R, values);

// Convert from radians to degrees if preferred.
values[0] = (float) Math.toDegrees(values[0]); // Azimuth
values[1] = (float) Math.toDegrees(values[1]); // Pitch
values[2] = (float) Math.toDegrees(values[2]); // Roll

As in the previous section, the getOrientation method returns its results in radians, with posi-
tive values representing anticlockwise rotation around the axis in order of azimuth, pitch, and roll
around the z-, x-, and y-axes, respectively.

Many Android devices also feature a gyroscope in addition to the accelerometer and magnetometer
sensors. The gyroscope is used to measure angular speed around a given axis in radians per second,
using the same coordinate system as described for the acceleration Sensor.

Android gyroscopes return the rate of rotation around three axes, where their sensitivity and high-
frequency update rates provide extremely smooth and accurate updates. This makes them par-
ticularly good candidates for applications that use changes in orientation (as opposed to absolute
orientation) as an input mechanism.

Monitoring a Device’s Movement and Orientation ❘ 649

Because gyroscopes measure speed rather than direction, their results must be integrated over time
in order to determine the current orientation, as shown in Listing 16-13. The calculated result will
represent a change in orientation around a given axis, so you will need to either calibrate or use
additional Sensors in order to determine the initial orientation.

LISTING 16-13: Calculating an orientation change using the gyroscope Sensor

final float nanosecondsPerSecond = 1.0f / 100000000.0f;
private long lastTime = 0;
final float[] angle = new float[3];

SensorEventListener myGyroListener = new SensorEventListener() {
 public void onSensorChanged(SensorEvent sensorEvent) {
 if (lastTime != 0) {
 final float dT = (sensorEvent.timestamp - lastTime) *
 nanosecondsPerSecond;
 angle[0] += sensorEvent.values[0] * dT;
 angle[1] += sensorEvent.values[1] * dT;
 angle[2] += sensorEvent.values[2] * dT;
 }
 lastTime = sensorEvent.timestamp;
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};

SensorManager sm
 = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
int sensorType = Sensor.TYPE_GYROSCOPE;
sm.registerListener(myGyroListener,
 sm.getDefaultSensor(sensorType),
 SensorManager.SENSOR_DELAY_NORMAL);

It’s worth noting that orientation values derived solely from a gyroscope can become increasingly
inaccurate due to calibration errors and noise. To account for this effect, gyroscopes are often used
in combination with other sensors—particularly accelerometers—to provide smoother and more
accurate orientation results.

Remapping the Orientation Reference Frame
To measure the device orientation using a reference frame other than the natural orientation, use the
remapCoordinateSystem method from the Sensor Manager. This typically is done to simplify the
calculations required to create applications that can be used on devices whose natural orientation is
portrait, as well as those that are landscape.

The remapCoordinateSystem method accepts four parameters:

 ➤ The initial rotation matrix, found using getRotationMatrix, as described earlier

 ➤ A variable used to store the output (transformed) rotation matrix

 ➤ The remapped x-axis

 ➤ The remapped y-axis

650 ❘ CHAPTER 16 Hardware SenSorS

The Sensor Manager provides a set of constants that let you specify the remapped x- and y-axes
relative to the reference frame: AXIS_X, AXIS_Y, AXIS_Z, AXIS_MINUS_X, AXIS_MINUS_Y, and
AXIS_MINUS_Z.

Listing 16-14 shows how to remap the reference frame so that the current display orientation (either
portrait or landscape) is used as the reference frame for calculating the current device orientation.
This is useful for games or applications that are locked to either landscape or portrait mode, as the
device will report either 0 or 90 degrees based on the natural orientation of the device. By modifying
the reference frame, you can ensure that the orientation values you use already take into account the
orientation of the display relative to the natural orientation.

LISTING 16-14: Remapping the orientation reference frame based on the natural orientation
of the device

// Determine the current orientation relative to the natural orientation
WindowManager wm = (WindowManager) getSystemService(Context.WINDOW_SERVICE);
Display display = wm.getDefaultDisplay();
int rotation = display.getRotation();

int x_axis = SensorManager.AXIS_X;
int y_axis = SensorManager.AXIS_Y;

switch (rotation) {
 case (Surface.ROTATION_0): break;
 case (Surface.ROTATION_90):
 x_axis = SensorManager.AXIS_Y;
 y_axis = SensorManager.AXIS_MINUS_X;
 break;
 case (Surface.ROTATION_180):
 y_axis = SensorManager.AXIS_MINUS_Y;
 break;
 case (Surface.ROTATION_270):
 x_axis = SensorManager.AXIS_MINUS_Y;
 y_axis = SensorManager.AXIS_X;
 break;
 default: break;
}

SensorManager.remapCoordinateSystem(inR, x_axis, y_axis, outR);

// Obtain the new, remapped, orientation values.
SensorManager.getOrientation(outR, values);

Creating a Compass and Artificial Horizon
In Chapter 14, “Advanced Customization of Your User Interface,” you improved the CompassView
to display pitch, roll, and heading. In this example, you finally connect your Compass View to the
hardware sensors to display the device orientation.

Monitoring a Device’s Movement and Orientation ❘ 651

 1. Open the Compass project you last changed in Chapter 14 and open the CompassActivity.
Use the Sensor Manager to listen for orientation changes using the rotation vector Sensor.
Start by adding local variables to store the CompassView, SensorManager, screen rotation
value, and latest Sensor results:

private CompassView mCompassView;
private SensorManager mSensorManager;
private int mScreenRotation;
private float[] mNewestValues;

 2. Create a new updateOrientation method that uses new heading, pitch, and roll values to
update the CompassView:

private void updateOrientation(float[] values) {
 if (mCompassView!= null) {
 mCompassView.setBearing(values[0]);
 mCompassView.setPitch(values[1]);
 mCompassView.setRoll(-values[2]);
 mCompassView.invalidate();
 }
}

 3. Update the onCreate method to get references to the CompassView and SensorManager.
Also determine the current screen orientation relative to the natural device orientation and
initialize the heading, pitch, and roll:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mCompassView = findViewById(R.id.compassView);

 mSensorManager
 = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
 WindowManager wm
 = (WindowManager) getSystemService(Context.WINDOW_SERVICE);

 Display display = wm.getDefaultDisplay();
 mScreenRotation = display.getRotation();

 mNewestValues = new float[] {0, 0, 0};
}

 4. Create a new calculateOrientation method to evaluate the device orientation using the
last received rotation vector values. Remember to account for the natural orientation of the
device by remapping the reference frame, if necessary:

private float[] calculateOrientation(float[] values) {
 float[] rotationMatrix = new float[9];
 float[] remappedMatrix = new float[9];
 float[] orientation = new float[3];

 // Determine the rotation matrix
 SensorManager.getRotationMatrixFromVector(rotationMatrix, values);

652 ❘ CHAPTER 16 Hardware SenSorS

 // Remap the coordinates based on the natural device orientation.
 int x_axis = SensorManager.AXIS_X;
 int y_axis = SensorManager.AXIS_Y;

 switch (mScreenRotation) {
 case (Surface.ROTATION_90):
 x_axis = SensorManager.AXIS_Y;
 y_axis = SensorManager.AXIS_MINUS_X;
 break;
 case (Surface.ROTATION_180):
 y_axis = SensorManager.AXIS_MINUS_Y;
 break;
 case (Surface.ROTATION_270):
 x_axis = SensorManager.AXIS_MINUS_Y;
 y_axis = SensorManager.AXIS_X;
 break;
 default: break;
 }

 SensorManager.remapCoordinateSystem(rotationMatrix,
 x_axis, y_axis,
 remappedMatrix);

 // Obtain the current, corrected orientation.
 SensorManager.getOrientation(remappedMatrix, orientation);

 // Convert from Radians to Degrees.
 values[0] = (float) Math.toDegrees(orientation[0]);
 values[1] = (float) Math.toDegrees(orientation[1]);
 values[2] = (float) Math.toDegrees(orientation[2]);

 return values;
}

 5. Create a new updateGUI method that synchronizes with the GUI thread and calls
updateOrientation to update the Compass View. This will be executed regularly using a
Timer introduced in the next step:

private void updateGUI() {
 runOnUiThread(new Runnable() {
 public void run() {
 updateOrientation(mNewestValues);
 }
 });
}

 6. Update the onCreate method to create a Timer that triggers the UI update method defined in
Step 5 sixty times a second:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

Monitoring a Device’s Movement and Orientation ❘ 653

 mCompassView = findViewById(R.id.compassView);

 mSensorManager
 = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
 WindowManager wm
 = (WindowManager) getSystemService(Context.WINDOW_SERVICE);

 Display display = wm.getDefaultDisplay();
 mScreenRotation = display.getRotation();

 mNewestValues = new float[] {0, 0, 0};

 Timer updateTimer = new Timer("compassUpdate");
 updateTimer.scheduleAtFixedRate(new TimerTask() {
 public void run() {
 updateGUI();
 }
 }, 0, 1000/60);
}

 7. Implement a SensorEventListener as a field variable. Within its onSensorChanged it
should update the latest Sensor result array based on sending the received Sensor values to
calculateOrientation, created in Step 4:

private final SensorEventListener mSensorEventListener
 = new SensorEventListener() {

 public void onSensorChanged(SensorEvent sensorEvent) {
 mNewestValues = calculateOrientation(sensorEvent.values);
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};

 8. Override onResume and onPause to register and unregister the SensorEventListener when
the Activity becomes active and inactive, respectively:

@Override
protected void onResume() {
 super.onResume();

 Sensor rotationVector
 = mSensorManager.getDefaultSensor(Sensor.TYPE_ROTATION_VECTOR);

 mSensorManager.registerListener(mSensorEventListener,
 rotationVector,
 SensorManager.SENSOR_DELAY_FASTEST);
}

@Override
protected void onPause() {
 super.onPause();
 mSensorManager.unregisterListener(mSensorEventListener);
}

654 ❘ CHAPTER 16 Hardware SenSorS

If you run the application now, you should see the Compass View “centered” at 0, 0, 0 when the
device is laying flat on a table with the top of the device pointing North. Moving the device should
result in the Compass View dynamically updating as the orientation of the device changes.

You will also find that as you rotate the device through 90 degrees, the screen will rotate and the
Compass View will reorient accordingly. You can extend this project by disabling automatic screen
rotation.

USING THE ENVIRONMENTAL SENSORS

Like orientation Sensors, the availability of specific environmental Sensors depends on the host
hardware. Where they are available, environmental Sensors can be used by your application to:

 ➤ Improve location detection and track movement based on altitude

 ➤ Alter the screen brightness or functionality based on ambient light

 ➤ Make environmental weather observations

 ➤ Determine on which planetary body the device is currently located

Using the Barometer Sensor
A barometer is used to measure atmospheric pressure. The inclusion of this Sensor in some Android
devices makes it possible for users to determine their current altitude and, potentially, to forecast
weather changes.

To monitor changes in atmospheric pressure, register an implementation of SensorEventListener
with the Sensor Manager, using a Sensor object of type Sensor.TYPE_PRESSURE. The current atmo-
spheric pressure is returned as the first (and only) value in the returned values array in hectopascals
(hPa), which is an equivalent measurement to millibars (mbar).

To calculate the current altitude in meters, you can use the static getAltitude method from the
Sensor Manager, as shown in Listing 16-15, supplying it with the current pressure and the local
pressure at sea level.

NOTE To ensure accurate results, you should use a local value for sea-level
atmospheric pressure, although the Sensor Manager provides a value for one
standard atmosphere via the PRESSURE_STANDARD_ATMOSPHERE constant as a
useful approximation.

LISTING 16-15: Finding the current altitude using the barometer Sensor

final SensorEventListener myPressureListener = new SensorEventListener() {
 public void onSensorChanged(SensorEvent sensorEvent) {
 if (sensorEvent.sensor.getType() == Sensor.TYPE_PRESSURE) {

Using the Environmental Sensors ❘ 655

 float currentPressure = sensorEvent.values[0];

 // Calculate altitude
 float altitude = SensorManager.getAltitude(
 SensorManager.PRESSURE_STANDARD_ATMOSPHERE,
 currentPressure);
 }
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};

SensorManager sm
 = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
int sensorType = Sensor.TYPE_PRESSURE;
sm.registerListener(myPressureListener,
 sm.getDefaultSensor(sensorType),
 SensorManager.SENSOR_DELAY_NORMAL);

It’s important to note that getAltitude calculates altitude using the current atmospheric pressure
relative to local sea-level values, not two arbitrary atmospheric pressure values. As a result, to cal-
culate the difference in altitude represented by two observed pressure values, you need to determine
the altitude for each pressure and find the difference between those results, as shown in the follow-
ing snippet:

float altitudeChange =
 SensorManager.getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE,
 newPressure) -
 SensorManager.getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE,
 initialPressure);

Creating a Weather Station
To fully explore the environmental Sensors available to Android devices, the following project
implements a simple weather station that monitors barometric pressure, ambient temperature, rela-
tive humidity, and ambient light levels.

 1. Start by creating a new WeatherStation project that includes a blank, backwards compatible
WeatherStationActivity Activity. Modify the resulting activity_weather_station lay-
out resource to display four centered lines of large, bold text that will be used to display the
current temperature, barometric pressure, humidity, and cloud level:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/temperature"
 android:gravity="center"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"

656 ❘ CHAPTER 16 Hardware SenSorS

 android:textStyle="bold"
 android:textSize="28sp"
 android:text="Temperature"
 android:layout_margin="10dp"/>
 <TextView
 android:id="@+id/pressure"
 android:gravity="center"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textStyle="bold"
 android:textSize="28sp"
 android:text="Pressure"
 android:layout_margin="10dp"/>
 <TextView
 android:id="@+id/humidity"
 android:gravity="center"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textStyle="bold"
 android:textSize="28sp"
 android:text="Humidity"
 android:layout_margin="10dp"/>
 <TextView
 android:id="@+id/light"
 android:gravity="center"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textStyle="bold"
 android:textSize="28sp"
 android:text="Light"
 android:layout_margin="10dp"/>
</LinearLayout>

 2. Within the WeatherStationActivity, create instance variables to store references to each
of the Text Views, and the Sensor Manager. Also create variables to record the last recorded
value obtained from each sensor:

private SensorManager mSensorManager;
private TextView mTemperatureTextView;
private TextView mPressureTextView;
private TextView mHumidityTextView;
private TextView mLightTextView;

private float mLastTemperature = Float.NaN;
private float mLastPressure = Float.NaN;
private float mLastLight = Float.NaN;
private float mLastHumidity = Float.NaN;

 3. Update the onCreate method to get a reference to the Text Views and the Sensor Manager:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_weather_station);

Using the Environmental Sensors ❘ 657

 mTemperatureTextView = findViewById(R.id.temperature);
 mPressureTextView = findViewById(R.id.pressure);
 mLightTextView = findViewById(R.id.light);
 mHumidityTextView = findViewById(R.id.humidity);
 mSensorManager
 = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
}

 4. Create a new SensorEventListener implementation that records results from each of the
pressure, temperature, humidity, and light sensors. It should simply record the last observed
value:

private final SensorEventListener mSensorEventListener
 = new SensorEventListener() {

 public void onAccuracyChanged(Sensor sensor, int accuracy) { }

 public void onSensorChanged(SensorEvent event) {
 switch (event.sensor.getType()) {
 case (Sensor.TYPE_AMBIENT_TEMPERATURE):
 mLastTemperature = event.values[0];
 break;
 case (Sensor.TYPE_RELATIVE_HUMIDITY):
 mLastHumidity = event.values[0];
 break;
 case (Sensor.TYPE_PRESSURE):
 mLastPressure = event.values[0];
 break;
 case (Sensor.TYPE_LIGHT):
 mLastLight = event.values[0];
 break;
 default: break;
 }
 }
};

 5. Override the onResume handler to register your new Listener for updates using the
SensorManager. Atmospheric and environmental conditions are likely to change slowly over
time, so you can choose a relatively slow update rate. You should also check to confirm a
default Sensor exists for each of the conditions being monitored, notifying the user where one
or more Sensors are unavailable:

@Override
protected void onResume() {
 super.onResume();

 Sensor lightSensor = mSensorManager.getDefaultSensor(Sensor.TYPE_LIGHT);
 if (lightSensor != null)
 mSensorManager.registerListener(mSensorEventListener,
 lightSensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 else
 mLightTextView.setText("Light Sensor Unavailable");

658 ❘ CHAPTER 16 Hardware SenSorS

 Sensor pressureSensor =
 mSensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE);
 if (pressureSensor != null)
 mSensorManager.registerListener(mSensorEventListener,
 pressureSensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 else
 mPressureTextView.setText("Barometer Unavailable");

 Sensor temperatureSensor =
 mSensorManager.getDefaultSensor(Sensor.TYPE_AMBIENT_TEMPERATURE);
 if (temperatureSensor != null)
 mSensorManager.registerListener(mSensorEventListener,
 temperatureSensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 else
 mTemperatureTextView.setText("Thermometer Unavailable");

 Sensor humiditySensor =
 mSensorManager.getDefaultSensor(Sensor.TYPE_RELATIVE_HUMIDITY);
 if (humiditySensor != null)
 mSensorManager.registerListener(mSensorEventListener,
 humiditySensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 else
 mHumidityTextView.setText("Humidity Sensor Unavailable");
}

 6. Override the corresponding onPause method to unregister the Sensor Event Listener when
the Activity is no longer active:

@Override
protected void onPause() {
 super.onPause();
 mSensorManager.unregisterListener(mSensorEventListener);
}

 7. Create a new updateGUI method that synchronizes with the GUI thread and updates the
Text Views. This will be executed regularly using a Timer introduced in the next step:

private void updateGUI() {
 runOnUiThread(new Runnable() {
 public void run() {
 if (!Float.isNaN(mLastPressure)) {
 mPressureTextView.setText(mLastPressure + "hPa");
 mPressureTextView.invalidate();
 }
 if (!Float.isNaN(mLastLight)) {
 String lightStr = "Sunny";
 if (mLastLight <= SensorManager.LIGHT_CLOUDY)
 lightStr = "Night";
 else if (mLastLight <= SensorManager.LIGHT_OVERCAST)
 lightStr = "Cloudy";
 else if (mLastLight <= SensorManager.LIGHT_SUNLIGHT)
 lightStr = "Overcast";

Using Body Sensors ❘ 659

 mLightTextView.setText(lightStr);
 mLightTextView.invalidate();
 }
 if (!Float.isNaN(mLastTemperature)) {
 mTemperatureTextView.setText(mLastTemperature + "C");
 mTemperatureTextView.invalidate();
 }
 if (!Float.isNaN(mLastHumidity)) {
 mHumidityTextView.setText(mLastHumidity + "% Rel. Humidity");
 mHumidityTextView.invalidate();
 }
 }
 });
}

 8. Update the onCreate method to create a Timer that triggers the UI update method defined in
Step 7 once every second:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_weather_station);

 mTemperatureTextView = findViewById(R.id.temperature);
 mPressureTextView = findViewById(R.id.pressure);
 mLightTextView = findViewById(R.id.light);
 mHumidityTextView = findViewById(R.id.humidity);
 mSensorManager =
 (SensorManager) getSystemService(Context.SENSOR_SERVICE);

 Timer updateTimer = new Timer("weatherUpdate");
 updateTimer.scheduleAtFixedRate(new TimerTask() {
 public void run() {
 updateGUI();
 }
 }, 0, 1000);
}

USING BODY SENSORS

The launch of Android Wear introduced the concept of Android Sensors that aren’t physically incor-
porated into the primary Android device. Instead, they are available through peripherals, such as an
Android Wear device, or attached remotely using Bluetooth LE.

This made it possible to incorporate body sensors—such as the heart rate monitor—into the
Android framework. Body sensors require physical contact with the user in order to operate.
Because they monitor and report sensitive personal information from the user, they require the
BODY_SENSORS permission be granted before they will be returned from getDefaultSensor or
getSensorsList:

<uses-permission android:name="android.permission.BODY_SENSORS" />

660 ❘ CHAPTER 16 Hardware SenSorS

As a dangerous permission, in addition to a manifest entry, it requires explicit approval from the
user when first used, by way of a run-time permission requests.

Before attempting to find a body sensor, use the ActivityCompat.checkSelfPermission method,
passing in the Manifest.permission.BODY_SENSORS constant to determine if you have been
granted access, in which case it will return PERMISSION_GRANTED:

int permission = ActivityCompat.checkSelfPermission(this,
 Manifest.permission.BODY_SENSORS);

if (permission==PERMISSION_GRANTED) {
 // Access the body sensor
} else {
 if (ActivityCompat.shouldShowRequestPermissionRationale(
 this, Manifest.permission.BODY_SENSORS)) {
 // TODO: Display additional rationale for the requested permission.
 }
 // Request the permission or display a dialog
 // showing why the function is unavailable.
}

To display the permission request dialog, call the ActivityCompat.requestPermission method,
specifying the required permissions:

ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.BODY_SENSORS},
 BODY_SENSOR_PERMISSION_REQUEST);

This function runs asynchronously, displaying a standard Android dialog that can’t be custom-
ized. You will receive a callback when the user has either accepted or denied your runtime request,
received by the onRequestPermissionsResult handler:

@Override
public void onRequestPermissionsResult(int requestCode,
 @NonNull String[] permissions,
 @NonNull int[] grantResults) {
 super.onRequestPermissionsResult(requestCode, permissions, grantResults);
 // TODO React to granted / denied permissions.
}

Body Sensors are only accurate and useful when in physical contact with the body whose vital signs
are being monitored. As a result, it’s important to always monitor the accuracy of body sensors. If
the Sensor is not in contact with a body, it will return SENSOR_STATUS_NO_CONTACT:

if (sensorEvent.accuracy == SensorManager.SENSOR_STATUS_NO_CONTACT ||
 sensorEvent.accuracy == SensorManager.SENSOR_STATUS_UNRELIABLE) {
 // TODO Ignore Sensor results.

Listing 16-16 shows the skeleton code for connecting a Sensor Event Listener to a heart rate Sensor
that returns a single value describing the user’s heart rate in beats-per-minute (bpm). Remember
that in addition to this code, you also need to add the body sensor permission to the application
manifest.

Using Body Sensors ❘ 661

LISTING 16-16: Connecting a Sensor Event Listener to a heart rate monitor

private static final String TAG = "HEART_RATE";
private static final int BODY_SENSOR_PERMISSION_REQUEST = 1;

private void connectHeartRateSensor() {
 int permission = ActivityCompat.checkSelfPermission(this,
 Manifest.permission.BODY_SENSORS);

 if (permission == PERMISSION_GRANTED) {
 // If permission granted, connect the event listener.
 doConnectHeartRateSensor();
 } else {
 if (ActivityCompat.shouldShowRequestPermissionRationale(
 this, Manifest.permission.BODY_SENSORS)) {
 // TODO: Display additional rationale for the requested permission.
 }
 // Request the permission
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.BODY_SENSORS},
 BODY_SENSOR_PERMISSION_REQUEST);
 }
}

@Override
public void onRequestPermissionsResult(int requestCode,
 @NonNull String[] permissions,
 @NonNull int[] grantResults) {
 super.onRequestPermissionsResult(requestCode, permissions, grantResults);

 if (requestCode == BODY_SENSOR_PERMISSION_REQUEST &&
 grantResults.length > 0 &&
 grantResults[0] == PERMISSION_GRANTED) {
 // If permission granted, connect the heart rate sensor.
 doConnectHeartRateSensor();
 } else {
 Log.d(TAG, "Body Sensor access permission denied.");
 }
}

private void doConnectHeartRateSensor() {
 SensorManager sm = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
 Sensor heartRateSensor = sm.getDefaultSensor(Sensor.TYPE_HEART_RATE);

 if (heartRateSensor == null)
 Log.d(TAG, "No Heart Rate Sensor Detected.");
 else {
 sm.registerListener(mHeartRateListener, heartRateSensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 }
}

continues

662 ❘ CHAPTER 16 Hardware SenSorS

LISTING 16-16 (continued)

final SensorEventListener mHeartRateListener = new SensorEventListener() {
 public void onSensorChanged(SensorEvent sensorEvent) {
 if (sensorEvent.sensor.getType() == Sensor.TYPE_HEART_RATE) {

 if (sensorEvent.accuracy == SensorManager.SENSOR_STATUS_NO_CONTACT ||
 sensorEvent.accuracy == SensorManager.SENSOR_STATUS_UNRELIABLE) {
 Log.d(TAG, "Heart Rate Monitor not in contact or unreliable");
 } else {
 float currentHeartRate = sensorEvent.values[0];
 Log.d(TAG, "Heart Rate: " + currentHeartRate);
 }
 }
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};

USER ACTIVITY RECOGNITION

Google’s Activity Recognition API enables you to understand what activity your users are per-
forming in the physical world. By periodically analyzing short bursts of data received from device
Sensors, Activity Recognition attempts to detect what activities the user is performing, including
walking, driving, cycling, and running.

Access to the Activity Recognition API is provided by the Google Play services Location library,
which must be added as a dependency to your app module’s build.gradle file (after you’ve
installed Google Play services as described in Chapter 15, “Location, Contextual Awareness, and
Mapping”):

dependencies {
 ...
 implementation 'com.google.android.gms:play-services-location:11.8.0'
}

You must also include the ACTIVITY_RECOGNITION permission in your manifest:

<uses-permission
 android:name="com.google.android.gms.permission.ACTIVITY_RECOGNITION"
/>

To receive updates on the user’s current activity, first get an instance of the
ActivityRecognitionClient using the ActivityRecognition.getClient static method, and
passing in a Context:

ActivityRecognitionClient activityRecognitionClient
 = ActivityRecognition.getClient(this);

User Activity Recognition ❘ 663

To request updates, use the requestActivityUpdates method, passing in a preferred detec-
tion interval in milliseconds and a Pending Intent that will be fired when a change in user activity
is detected. Typically, the Pending Intent is used to start an Intent Service that will respond to the
change in user activity:

long updateFreq = 1000*60;

Intent startServiceIntent = new Intent(this, MyARService.class);
PendingIntent pendingIntent
 = PendingIntent.getService(this, ACTIVITY_RECOGNITION_REQUEST_CODE,
 startServiceIntent, 0);

Task task
 = activityRecognitionClient.requestActivityUpdates(updateFreq,
 pendingIntent);

NOTE The returned Task can be used to check the success of the call, using the
addSuccessListener and addOnFailureListener methods to add On Success
and On Failure Listeners, respectively.

Any subsequent request using the same Pending Intent will remove and replace earlier requests.

The specified update frequency determines the rate at which changes in the user’s activity are
returned; larger values result in fewer updates, which improves battery life by waking the device
and turning on the Sensors less often. Like all Sensors, it’s best practice to request updates as infre-
quently as possible.

The requested update rate is used as a guide by the Activity Recognition API; in some circumstances
you may receive updates more often (for example, if other apps have requested more frequent
updates). More often, you may receive less frequent updates. The API may pause updates to conserve
battery when it detects that the device has remained stationary for an extended period, or when the
screen is off and the device is in power saver mode.

To extract the Activity Recognition Result from the Intent fired when a new user activity has been
detected, use the extractResult method.

 ActivityRecognitionResult activityResult = extractResult(intent);

The returned Activity Recognition Result includes the getMostProbableActivity method that
returns a DetectedActivity that describes the activity type for which it has the highest confidence
that it’s being performed:

DetectedActivity detectedActivity = activityResult.getMostProbableActivity();

Alternately, you can use the getProbableActivities method to return a list of all the likely
activities:

List<DetectedActivity> allActivities = activityResult.getProbableActivities();

664 ❘ CHAPTER 16 Hardware SenSorS

For any Detected Activity, use the getType and getConfidence methods to find the type of activity
detected and the percent confidence in that result, respectively:

@Override
protected void onHandleIntent(@Nullable Intent intent) {
 ActivityRecognitionResult activityResult = extractResult(intent);

 DetectedActivity detectedActivity = activityResult.getMostProbableActivity();
 int activityType = detectedActivity.getType();
 int activityConfidence = detectedActivity.getConfidence(); /* Pecent */

 switch (activityType) {
 case (DetectedActivity.IN_VEHICLE): /* TODO Driving */ break;
 case (DetectedActivity.ON_BICYCLE): /* TODO Cycling */ break;
 case (DetectedActivity.ON_FOOT) : /* TODO On Foot */ break;
 case (DetectedActivity.STILL) : /* TODO Still */ break;
 case (DetectedActivity.WALKING) : /* TODO Walking */ break;
 case (DetectedActivity.RUNNING) : /* TODO Running */ break;
 case (DetectedActivity.UNKNOWN) : /* TODO Unknown */ break;
 case (DetectedActivity.TILTING) : {
 // TODO Device angle changed significantly
 break;
 }
 default : break;
 }
}

When you no longer need to receive activity change updates, call removeActivityUpdates, passing
in the Pending Intent used to request the update results:

activityRecognitionClient.removeActivityUpdates(pendingIntent);

Note that active requests for updates will keep the Google Play services connection active, so it’s
important to explicitly remove the request for updates when they are no longer needed—both to
reduce battery drain and to maintain the advantages of automatic connection management with
Google Play services.

Audio, Video, and Using the
Camera

WHAT’S IN THIS CHAPTER?

 ➤ Playing audio and video with the Media Player and Exoplayer

 ➤ Handling audio focus

 ➤ Working with a Media Session

 ➤ Building Media Controls

 ➤ Background audio playback

 ➤ Using the Media Router and Cast Application Framwork

 ➤ Creating Media Style Notifications

 ➤ Recording audio

 ➤ Recording video and taking pictures using Intents

 ➤ Previewing recorded video and displaying live camera streams

 ➤ Taking pictures and controlling the camera directly

 ➤ Adding recorded media the Media Store

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The following code download for this chapter is found at www.wrox.com on the Download
Code tab:

 ➤ Snippets_ch17.zip

17

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

666 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

PLAYING AUDIO AND VIDEO, AND USING THE CAMERA

Smartphones and tablets have become so popular that for many people they have entirely replaced
all other portable electronics—including cameras, music players, and audio recorders. As a result
Android’s media APIs, which allow us to build apps that offer a rich audio, video, and camera expe-
riences, have become increasingly powerful and important.

This chapter introduces you to the Android APIs for controlling audio and video recording and play-
back, controlling the audio focus of the device, and reacting appropriately when other applications
take focus or the output channel is changed (for example, when headphones are unplugged).

You also learn how to use the Media Session APIs to communicate information about your media
playback to the system and to other apps as well as receive play, pause, and other media events from
Notifications, headsets, and connected devices including Wear OS and Android Auto.

You learn how to build an audio playback service, and how to keep your UI synchronized with
the current audio state. You also explore the importance of the life cycle and foreground status for
audio playback, and how to build Media Style Notifications.

The best camera is the one that’s with you, and for most people that’s their smartphone camera. You
learn to use the Android camera APIs to take photos and record video, as well as how to display the
live camera feed.

PLAYING AUDIO AND VIDEO

Android 8.1 Oreo (API Level 27) supports the following multimedia formats for playback as part of
the framework. Note that some devices may support playback of additional file formats:

 ➤ Audio

 ➤ AAC LC

 ➤ HE-AACv1 (AAC+)

 ➤ HE-AACv2 (Enhanced AAC+)

 ➤ AAC ELD (Enhanced Low Delay AAC)

 ➤ AMR-NB

 ➤ AMR-WB

 ➤ FLAC

 ➤ MP3

 ➤ MIDI

 ➤ Ogg Vorbis

 ➤ PCM/WAVE

 ➤ Opus

Playing Audio and Video ❘ 667

 ➤ Image

 ➤ JPEG

 ➤ PNG

 ➤ WEBP

 ➤ GIF

 ➤ BMP

 ➤ Video

 ➤ H.263

 ➤ H.264 AVC

 ➤ H.265 HEVC

 ➤ MPEG-4 SP

 ➤ VP8

 ➤ VP9

The following network protocols are supported for streaming media:

 ➤ RTSP (RTP, SDP)

 ➤ HTTP/HTTPS progressive streaming

 ➤ HTTP/HTTPS live streaming (on devices running Android 3.0 or above)

NOTE For full details on the currently supported media formats and recom-
mendations for video encoding and audio streaming, see the Supported Media
Formats page on the Android Developer documentation site: developer
.android.com/guide/topics/media/media-formats.html.

Introducing the Media Player
Using the Media Player, you can play audio and video stored in application resources, local files,
Content Providers, or streamed from a network URL. The MediaPlayer class is available as part of
the Android framework on all devices for supporting audio and video playback.

NOTE For applications supporting Android 4.1 (API Level 16) or later, the
ExoPlayer library is available as an alternative to the Media Player API. Details
on using ExoPlayer are described later in this chapter.

668 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

The Media Player’s management of audio/video files and streams is handled as a state machine. In
the most simplistic terms, transitions through the state machine can be described as follows:

 1. Initialize the Media Player with media to play.

 2. Prepare the Media Player for playback.

 3. Start the playback.

 4. Pause or stop the playback prior to it completing.

 5. The playback is complete.

NOTE A more detailed and thorough description of the Media Player state
machine is provided at the Android developer site, at developer.android.com/
reference/android/media/MediaPlayer.html#StateDiagram.

To play a media resource, you need to create a new MediaPlayer instance, initialize it with a media
source, and prepare it for playback. MediaPlayer contains a number of static create methods that
combine all three of these steps.

Alternatively, you can use the setDataSource method on an existing Media Player instance, as
shown in Listing 17-1. This method accepts a file path, Content Provider URI, streaming media
URL path, or File Descriptor.

Because preparing the data source involves potentially expensive operations like fetching data over
the network and decoding the data stream, you should never call the prepare method on the UI
thread. Instead set a MediaPlayer.OnPreparedListener and use prepareAsync to keep your UI
responsive while preparing for media playback.

LISTING 17-1: Playback using the Media Player

MediaPlayer mediaPlayer = new MediaPlayer();
mediaPlayer.setDataSource("http://site.com/audio/mydopetunes.mp3");
mediaPlayer.setOnPreparedListener(myOnPreparedListener);
mediaPlayer.prepareAsync();

To stream Internet media using the Media Player, your application manifest must include the
INTERNET permission:

<uses-permission android:name="android.permission.INTERNET"/>

WARNING Android supports a limited number of simultaneous Media Player
objects; not releasing them can cause runtime exceptions when the system runs
out. When you finish playback, call release on your Media Player object to free
the associated resources:

mediaPlayer.release();

Playing Audio and Video ❘ 669

When a Media Player has finished preparing, the associated on Prepared Listener handler will be
triggered, and you can call start to begin playback of the associated media:

private MediaPlayer.OnPreparedListener myOnPreparedListener =
 new MediaPlayer.OnPreparedListener() {

 @Override
 public void onPrepared(MediaPlayer mp) {
 mp.start();
 }
};

Once playback has begun, you can use the Media Player’s stop and pause methods to stop and
pause playback, respectively.

The Media Player also provides the getDuration method to find the length of the media being
played and the getCurrentPosition method to find the playback position. Use the seekTo method
to jump to a specific position in the media.

WARNING MediaPlayer is a relatively expensive object to create and maintain,
so you should avoid creating multiple instances. Consider using the SoundPool
class if you need low-latency playback of many audio streams such as would be
common in a game with background music and multiple sound effects.

Using Media Player for Video Playback
The steps of initializing, setting a playback source, and preparing for playback apply to both audio
and video playback. In addition, video playback requires that you also must have a Surface on
which to display the video.

This is generally handled using a SurfaceView object. The Surface View class is a wrapper around
a Surface Holder, which, in turn, is a wrapper around the Surface that is used to support visual
updates from background threads.

NOTE Prior to Android 7.0 (API Level 24), each SurfaceView was rendered in
its own window, separately from the rest of your UI. As a result, unlike View-
derived classes it could not be moved, transformed, or animated. As an alterna-
tive for earlier platform versions, the TextureView class offers support for these
operations, but is less battery-efficient.

To include a Surface Holder in your UI layout, use the SurfaceView class:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"

670 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

 android:orientation="vertical" >
 <SurfaceView
 android:id="@+id/surfaceView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="30"
 />
 <LinearLayout
 android:id="@+id/linearLayout1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1">
 <Button
 android:id="@+id/buttonPlay"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Play"
 />
 <Button
 android:id="@+id/buttonPause"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Pause"
 />
 <Button
 android:id="@+id/buttonSkip"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Skip"
 />
 </LinearLayout>
</LinearLayout>

Use the Media Player’s setDisplay method to assign a SurfaceHolder object that will display your
video content.

Listing 17-2 shows the skeleton code used to initialize a Surface View within your Activity, and
assigns it as a display target for a Media Player.

LISTING 17-2: Initializing and assigning a Surface View to a Media Player

public class SurfaceViewVideoViewActivity extends Activity
 implements SurfaceHolder.Callback {

 static final String TAG = "VideoViewActivity";

 private MediaPlayer mediaPlayer;

 public void surfaceCreated(SurfaceHolder holder) {
 try {
 // When the surface is created, assign it as the
 // display surface and assign and prepare a data
 // source.
 mediaPlayer.setDisplay(holder);

Playing Audio and Video ❘ 671

 // Specify the path, URL, or Content Provider URI of
 // the video resource to play.
 File file = new File(Environment.getExternalStorageDirectory(),
 "sickbeatsvideo.mp4");
 mediaPlayer.setDataSource(file.getPath());

 mediaPlayer.prepare();
 } catch (IllegalArgumentException e) {
 Log.e(TAG, "Illegal Argument Exception", e);
 } catch (IllegalStateException e) {
 Log.e(TAG, "Illegal State Exception", e);
 } catch (SecurityException e) {
 Log.e(TAG, "Security Exception", e);
 } catch (IOException e) {
 Log.e(TAG, "IO Exception", e);
 }
 }

 public void surfaceDestroyed(SurfaceHolder holder) {
 mediaPlayer.release();
 }

 public void surfaceChanged(SurfaceHolder holder,
 int format, int width, int height) { }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.surfaceviewvideoviewer);

 // Create a new Media Player.
 mediaPlayer = new MediaPlayer();

 // Get a reference to the Surface View.
 final SurfaceView surfaceView =
 findViewById(R.id.surfaceView);

 // Configure the Surface View.
 surfaceView.setKeepScreenOn(true);

 // Configure the Surface Holder and register the callback.
 SurfaceHolder holder = surfaceView.getHolder();
 holder.addCallback(this);
 holder.setFixedSize(400, 300);

 // Connect a play button.
 Button playButton = findViewById(R.id.buttonPlay);
 playButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 mediaPlayer.start();
 }
 });

continues

672 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

 // Connect a pause button.
 Button pauseButton = findViewById(R.id.buttonPause);
 pauseButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 mediaPlayer.pause();
 }
 });

 // Add a skip button.
 Button skipButton = findViewById(R.id.buttonSkip);
 skipButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 mediaPlayer.seekTo(mediaPlayer.getDuration()/2);
 }
 });
 }
}

Note that Surface Holders are created asynchronously, so you must wait until the surfaceCreated
handler has been fired, before assigning the returned Surface Holder object to the Media Player, by
implementing the SurfaceHolder.Callback interface.

As shown in Listing 17-2, setDataSource is used to specify either a path, URL, or Content Provider
URI of a video resource to play.

After you select your media source, call prepare to initialize the Media Player in preparation for
playback.

Using ExoPlayer for Video Playback
For applications supporting Android 4.1 (API Level 16) or later, the Media Player API can be
replaced with the ExoPlayer library. ExoPlayer has been built by Google to provide a consistent
experience, better extensibility, and additional format support for media playback on all devices
running Android 4.1 (API Level 16) or higher.

The exoplayer-core library is the only required dependency for integrating ExoPlayer into your
app; however, ExoPlayer also provides a number of subcomponents that offer additional functional-
ity. For example, the exoplayer-ui library provides pre-built UI components that greatly simplify
common operations including playback controls.

To use ExoPlayer for video playback, you must add the ExoPlayer core and UI libraries as dependen-
cies to your app module’s build.gradle file:

implementation "com.google.android.exoplayer:exoplayer-core:2.8.2"
implementation "com.google.android.exoplayer:exoplayer-ui:2.8.2"

The ExoPlayer UI library provides a PlayerView class that encapsulates both the playback sur-
face and playback controls including play, pause, fast forward, rewind, and a seek bar for skipping
through the video, and which can be added to your Activity or Fragment layout:

LISTING 17-2 (continued)

Playing Audio and Video ❘ 673

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <com.google.android.exoplayer2.ui.PlayerView
 android:id="@+id/player_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />
</FrameLayout>

Listing 17-3 shows the skeleton code used to initialize a Player View within your Activity, and start
video playback.

LISTING 17-3: Playing a video using Player View

public class SurfaceViewVideoViewActivity extends Activity {

 private PlayerView playerView;
 private SimpleExoPlayer player;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.playerview);

 playerView = findViewById(R.id.player_view);
 }

 @Override
 protected void onStart() {
 // Create a new Exo Player
 player = ExoPlayerFractory.newSimpleInstance(this,
 new DefaultTrackSelector());

 // Associate the ExoPlayer with the Player View
 playerView.setPlayer(player);

 // Build a DataSource.Factory capable of
 // loading http and local content
 DataSource.Factory dataSourceFactory = new DefaultDataSourceFactory(
 this,
 Util.getUserAgent(this, getString(R.string.app_name)));

 // Specify the URI to play
 File file = new File(Environment.getExternalStorageDirectory(),
 "test2.mp4");
 ExtractorMediaSource mediaSource =
 new ExtractorMediaSource.Factory(dataSourceFactory)
 .createMediaSource(Uri.fromFile(file));

continues

674 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

 // Start loading the media source
 player.prepare(mediaSource);

 // Start playback automatically when ready
 player.setPlayWhenReady(true);
 }

 @Override
 protected void onStop() {
 playerView.setPlayer(null);
 player.release();
 player = null;
 super.onStop();
 }
}

You can learn more about ExoPlayer at github.com/google/ExoPlayer.

Requesting and Managing Audio Focus
Audio focus is the implementation of the concept that only one app can be the focus of what the
user is listening to at any given time. This could be an ongoing phone call, a video being played, or
transient sounds such as a notification sound or navigation directions.

Sound output is an inherently shared channel—like sitting in a room and having multiple simultane-
ous conversions, having multiple apps simultaneously playing audio would quickly become unintel-
ligible. A critical portion of being a good citizen when playing audio is in sharing and respecting
audio focus.

For your app, that means always requesting audio focus before beginning audio playback, holding
audio only until your playback is finished, and relinquishing focus when another app requests it.

Requesting Audio Focus
To request audio focus before beginning playback, use the Audio Manager’s requestAudio Focus
method. When requesting the audio focus, you can specify which stream you require (typically
STREAM_MUSIC), and for how long you expect to require focus—either ongoing (such as when play-
ing music) or transiently (such as when providing navigation instructions). In the latter case you
can also specify if your transient interruption can be handled by the currently focused application
“ducking” (lowering its volume) until your interruption is complete.

Specifying the nature of the audio focus you require allows other applications to better react to los-
ing the audio focus, as described later in this section.

Listing 17-4 shows the skeleton code for an Activity that requests ongoing audio focus for the music
stream. You must also specify an OnAudioFocusChangeListener object, which lets you monitor for
loss of audio focus and respond accordingly (and is described in more detail later in this section).

LISTING 17-3 (continued)

Playing Audio and Video ❘ 675

LISTING 17-4: Requesting audio focus

AudioManager am = (AudioManager)getSystemService(Context.AUDIO_SERVICE);

// Request audio focus for playback
int result = am.requestAudioFocus(focusChangeListener,
 // Use the music stream.
 AudioManager.STREAM_MUSIC,
 // Request ongoing focus.
 AudioManager.AUDIOFOCUS_GAIN);

if (result == AudioManager.AUDIOFOCUS_REQUEST_GRANTED) {
 mediaPlayer.start();
}

There are cases—such as when the user is in a phone call—when a request for audio focus will
fail. As a result, you should be careful to only start playback if you receive AUDIOFOCUS_REQUEST_
GRANTED after making the request.

NOTE The sounds generated by Notifications are a special case. Android will
automatically request temporary audio focus for Notification sounds added
via setSound, or by using the DEFAULT_SOUND or DEFAULT_ALL flag for set-
Defaults. It’s important to utilize these methods for associating audio with your
Notifications to ensure that you honor the user’s Do Not Disturb settings.

Responding to Audio Focus Changes
Audio focus is assigned to each application that requests it. That means that if another application
requests audio focus, your application will lose it.

You will be notified of the loss of audio focus through the onAudioFocusChange handler of
the Audio Focus Change Listener you registered when requesting the audio focus, as shown in
Listing 17-5.

The focusChange parameter indicates the nature of the focus loss—either transient or ongoing—
and whether ducking is permitted.

It’s best practice to pause your media playback whenever you lose audio focus, or, in the case of a
transient loss that supports ducking, to lower the volume of your audio output.

LISTING 17-5: Responding to the loss of audio focus

private OnAudioFocusChangeListener focusChangeListener =
 new OnAudioFocusChangeListener() {

continues

676 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

 public void onAudioFocusChange(int focusChange) {
 AudioManager am =
 (AudioManager)getSystemService(Context.AUDIO_SERVICE);

 switch (focusChange) {
 case (AudioManager.AUDIOFOCUS_LOSS_TRANSIENT_CAN_DUCK) :
 // Lower the volume while ducking.
 mediaPlayer.setVolume(0.2f, 0.2f);
 break;

 case (AudioManager.AUDIOFOCUS_LOSS_TRANSIENT) :
 mediaPlayer.pause();
 break;

 case (AudioManager.AUDIOFOCUS_LOSS) :
 mediaPlayer.stop();
 am.abandonAudioFocus(this);
 break;

 case (AudioManager.AUDIOFOCUS_GAIN) :
 // Return the volume to normal and resume if paused.
 mediaPlayer.setVolume(1f, 1f);
 mediaPlayer.start();
 break;

 default: break;
 }
 }
};

In the case of a transient focus loss, you will be notified when you have regained focus by receiving
an AudioManager.AUDIOFOCUS_GAIN event, at which point you can return to playing your audio at
the previous volume.

For a permanent focus loss, you should stop playback and it should only be restarted through a user
interaction (such as pressing the play button within your UI). You will not receive any further call-
backs to your OnAudioFocusChangeListener after permanently losing audio focus.

For cases where your app is requesting transient audio focus, consider using Media Player’s
OnCompletionListener to know when your audio has finished so that you can abandon audio
focus in a timely manner.

Pausing Playback When the Output Changes
If the current output stream is a headset, disconnecting it will result in the system automatically
switching output to the device’s speakers. It’s considered good practice to pause (or reduce the vol-
ume of) your audio output in these circumstances.

LISTING 17-5 (continued)

Playing Audio and Video ❘ 677

To do so, create a Broadcast Receiver that listens for the AudioManager.ACTION_AUDIO_BECOMING_
NOISY broadcast and pauses your playback:

private class NoisyAudioStreamReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 if (AudioManager.ACTION_AUDIO_BECOMING_NOISY.equals
 (intent.getAction())) {
 pauseAudioPlayback();
 }
 }
}

Because this broadcast is only needed when your app is actively playing audio/video, it is not appro-
priate to register this receiver in your manifest. Instead, you should create an instance of your
BroadcastReceiver and register it programmatically when you start playback (after receiving
audio focus) and unregister it when you pause playback:

// Create the Receiver.
NoisyAudioStreamReceiver mNoisyAudioStreamReceiver =
 new NoisyAudioStreamReceiver();

// On Play
public void registerNoisyReceiver() {
 IntentFilter filter = new
 IntentFilter(AudioManager.ACTION_AUDIO_BECOMING_NOISY);
 registerReceiver(mNoisyAudioStreamReceiver, filter);
}

// On Pause
public void unregisterNoisyReceiver() {
 unregisterReceiver(mNoisyAudioStreamReceiver);
}

Responding to the Volume Controls
To ensure a consistent user experience, it’s important that your application correctly handles users
pressing the volume keys.

By default, using the volume keys, on either the device or an attached headset, changes the volume
of whichever audio stream is currently playing.

Using the Activity’s setVolumeControlStream method—typically within its onCreate method—
allows you to specify which audio stream should be controlled by the volume keys while the current
Activity is active:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.audioplayer);

 setVolumeControlStream(AudioManager.STREAM_MUSIC);
}

678 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

You can specify any of the available audio streams, but when using the Media Player, you should
specify the STREAM_MUSIC stream to make it the focus of the volume keys.

WARNING Although it’s also possible to listen for volume key presses directly,
this is generally considered poor practice. A user can modify the audio volume
in several ways, including the hardware buttons as well as software controls.
Triggering volume changes manually based only on the hardware buttons is
likely to make your application respond unexpectedly and frustrate your users.
Frustrated users lower your application’s volume by uninstalling it.

Working with a Media Session
The Media Session API offers a consistent interface for your app to provide metadata and playback
controls for the media being played by your app through any media playback mechanism available
to the system.

By creating a Media Session and responding to its user-initiated commands, your app will support
playback and control from connected devices such as Bluetooth-enabled cars or headsets, WearOS,
and Android Auto—all of which can retrieve metadata about your media, and allow users to control
playback without needing to interact directly with their mobile device, or by opening your app.

NOTE One of the most useful and common clients for displaying media meta-
data and hosting media playback controls is a Notification. We discuss how to
create custom Notifications for this purpose later in this chapter in the section,
“Constructing Media Style Notifications.”

Controlling Playback with Media Session
The Media Session API is provided as part of the Android Support Library. To create and initialize
a Media Session, create a new instance of the MediaSessionCompat class from within the onCreate
method of your Activity, passing in a Context and a String for logging error messages:

MediaSessionCompat mMediaSession = new MediaSessionCompat(context, LOG_TAG);

To receive media controls from devices such as Bluetooth headsets, Wear OS, and Android Auto, you
must then call setFlags, indicating that you wish the Media Session to handle media buttons and
transport controls:

mMediaSession.setFlags(
 MediaSessionCompat.FLAG_HANDLES_MEDIA_BUTTONS |
 MediaSessionCompat.FLAG_HANDLES_TRANSPORT_CONTROLS);

Playing Audio and Video ❘ 679

The final step is to create and set an instance of the MediaSessionCompat.Callback class. The call-
back methods you implement within this class will receive the media button requests and allow you
to respond to them appropriately:

mMediaSession.setCallback(new MediaSessionCompat.Callback() {
 @Override
 public void onPlay() {
 mediaPlayer.start();
 }

 @Override
 public void onPause() {
 mediaPlayer.pause();
 }

 @Override
 public void onSeekTo(long pos) {
 mediaPlayer.seekTo((int) pos);
 }
});

To start receiving callbacks, you must first indicate which actions your Media Session supports. You
can do this by building a PlaybackStateCompat and passing it in using the setPlaybackState
method:

public void updatePlaybackState() {
 PlaybackStateCompat.Builder playbackStateBuilder =
 new PlaybackStateCompat.Builder();

 playbackStateBuilder
 // Available actions
 .setActions(
 PlaybackStateCompat.ACTION_PLAY_PAUSE |
 PlaybackStateCompat.ACTION_PLAY |
 PlaybackStateCompat.ACTION_PAUSE |
 PlaybackStateCompat.ACTION_STOP |
 PlaybackStateCompat.ACTION_SEEK_TO)
 // Current playback state
 .setState(
 PlaybackStateCompat.STATE_PLAYING,
 0, // Track position in ms
 1.0f); // Playback speed
 mMediaSession.setPlaybackState(playbackStateBuilder.build());
}

NOTE A playback state has two components: the actions you support and the
current state. These are related as generally two will be simultaneously changed
(for example, disabling ACTION_FAST_FORWARD when STATE_BUFFERING).

680 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

You must always update your Media Session playback state whenever your Media Player state
changes, to ensure they remain synchronized. It’s also considered best practice to maintain the
PlaybackStateCompat.Builder object, and only perform incremental updates rather than rebuild-
ing it from scratch each time.

Finally, you need to activate your Media Session by calling setActive(true), typically after receiv-
ing audio focus:

mMediaSession.setActive(true);

Correspondingly, call setActive(false) after stopping playback and abandoning audio focus.
When you’ve finished playback, call release on your Media Session object to free the associated
resources:

 mMediaSession.release();

Sharing Metadata Using Media Session
In addition to controlling playback, you can use the Media Session API to surface metadata about
the media your application is playing, including album art, track names, and durations, using the
setMetadata method.

Use the MediaMetadataCompat.Builder to create the MediaMetadataCompat object that contains
the metadata for your media.

Using the builder object, use the putBitmap method to specify an associated bitmap using the
MediaMetadataCompat.METADATA_KEY_ART or MediaMetadataCompat.METADATA_KEY_ALBUM_ART
keys:

builder.putBitmap(MediaMetadataCompat.METADATA_KEY_ART, artworkthumbnail);
builder.putString(MediaMetadataCompat.METADATA_KEY_ART_URI,
 fullSizeArtworkUri);

WARNING There is a considerable cost with passing bitmaps between proc-
esses. Strongly consider using the METADATA_KEY_ART_URI and METADATA_KEY_
ALBUM_ART_URI keys to add a world-readable URI to a full-size image instead of
directly including the full-size image. A good rule of thumb is to only include a
single Bitmap of at most 640x640 pixels.

public void updateMetadata() {
 MediaMetadataCompat.Builder builder = new MediaMetadataCompat.Builder();

 builder.putString(MediaMetadataCompat.METADATA_KEY_ART_URI,
 fullSizeArtworkUri);

 mMediaSession.setMetadata(builder.build());

You can also indicate the track number, CD number, year of recording, and duration using the
putLong method with the respective MediaMetadataCompat.METADATA_KEY_constants:

builder.putLong(MediaMetadataCompat.METADATA_KEY_DURATION, duration);

Playing Audio and Video ❘ 681

Similarly, using the putString method you can specify the album name, album artist, track title,
author, compilation, composer, release date, genre, and writer of the current media:

builder.putString(MediaMetadataCompat.METADATA_KEY_ALBUM, album);
builder.putString(MediaMetadataCompat.METADATA_KEY_ARTIST, artist);
builder.putString(MediaMetadataCompat.METADATA_KEY_TITLE, title);

NOTE Since Android 5.0 (API Level 21), the framework contains a
MediaSession class. However, it’s best practice to use the Android Support
Library’s MediaSessionCompat to ensure a consistent experience across all plat-
form releases, as well as to take advantage of new features and bug fixes.

Connecting Your Application’s Media Controls to the Media Session Using the
Media Controller

Using the Media Session callbacks to receive the media button requests, as described earlier, helps
you to centralize all your media control code—and ensures that the system can display consistent
media controls across multiple possible interfaces (including Notifications, Wear OS, and Android
Auto).

As a result, it’s considered best practice to have the media playback controls within your own UI use
the same Media Session callback mechanism as other parts of the system, such that they send com-
mands to the Media Session rather than controlling your Media Player directly.

You can do this using the MediaControllerCompat class. Create a new Media Controller using the
Media Session you’ve constructed:

// After creating your Media Session
final MediaControllerCompat mediaController =
 new MediaControllerCompat(context, mMediaSession);

Then connect the media control buttons in your UI, such that when they are clicked, they use the
Media Controller to send commands to the Media Session, rather than directly modifying the media
playback:

// Connect a play button.
Button playButton = findViewById(R.id.buttonPlay);
playButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 mediaController.getTransportControls().play();
 }
});

// Connect a pause button.
Button pauseButton = findViewById(R.id.buttonPause);
pauseButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 mediaController.getTransportControls().pause();
 }
});

682 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

USING THE MEDIA ROUTER AND CAST APPLICATION
FRAMEWORK

The Media Router APIs provide a consistent mechanism that can be used to enable your users to
redirect video display and audio playback to remote devices wirelessly. This is most commonly
implemented as Google Cast, a Google Play services API that allows you to “cast” video or audio to
Google Cast, Google TV, and Google Home devices.

To add support for Google Cast to your app, you must add dependencies for appcompat, Media
Router, and the Google Play services Cast framework to your App Module build.gradle file:

dependencies {
 compile 'com.android.support:appcompat-v7:25.1.0'
 compile 'com.android.support:mediarouter-v7:25.1.0'
 compile 'com.google.android.gms:play-services-cast-framework:10.0.1'
}

To add Cast functionality to an Activity, start by creating a new OptionsProvider implementation
that will define the Google Cast options, and return them via a CastOptions object from the
getCastOptions handler:

public class CastOptionsProvider implements OptionsProvider {
 @Override
 public CastOptions getCastOptions(Context context) {
 CastOptions castOptions = new CastOptions.Builder()
 .setReceiverApplicationId(CastMediaControlIntent
 .DEFAULT_MEDIA_RECEIVER_APPLICATION_ID)
 .build();
 return castOptions;
 }

 @Override
 public List<SessionProvider> getAdditionalSessionProviders(Context context) {
 return null;
 }
}

Only the receiver application ID is a required option, as it’s used to filter the list of available destina-
tions and to launch the receiver app on the selected target device when a Cast session is started.

The destination for your app’s routed media is a Cast receiver application, an HTML5/JavaScript
application running on a receiver device, which provides the UI to display your app’s content and
handle media control messages.

The Cast Application Framework includes a pre-built receiver application hosted by Google that can
be used by providing CastMediaControlIntent.DEFAULT_MEDIA_RECEIVER_APPLICATION_ID as
the application ID.

It is also possible to create your own custom Media Receiver, although that is beyond the scope of
this book. Instructions for building a custom receiver can be found at developers.google.com/
cast/docs/android_sender_setup.

Using the Media Router and Cast Application Framework ❘ 683

Once your Options Provider has been defined, declare it within your Application manifest using a
meta-data tag:

<meta-data
 android:name=
 "com.google.android.gms.cast.framework.OPTIONS_PROVIDER_CLASS_NAME"
 android:value="com.professionalandroid.CastOptionsProvider"
/>

All of your application’s interactions with the Cast Application Framework are coordinated through
the CastContext object, accessed by calling getSharedInstance on the CastContext class—
typically within the onCreate handler of the Activity from which you plan to Cast media:

CastContext mCastContext;

@Override
public void onCreate() {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_layout);

 mCastContext = CastContext.getSharedInstance(this);
}

The Cast Application Framework provides several user interface elements that you can use to
initiate, and interact with, a Cast session—including the Cast Button and Mini and Expanded
Controllers.

The Cast Button is displayed when Cast discovers an available Receiver to which your app can cast.
When the user clicks the Cast Button, a dialog is displayed listing either all the available remote
devices to cast to or the metadata associated with the currently cast content.

The Cast Button can be added to the app bar of your Activity as Media Route Action Provider:

<menu xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/media_route_menu_item"
 android:title="@string/media_route_menu_title"
 app:actionProviderClass="android.support.v7.app.MediaRouteActionProvider"
 app:showAsAction="always" />
</menu>

Then within the Fragments or Activities from which you want to Cast, override the
onCreateOptionsMenu handler to setup the Media Route Button:

@Override public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 getMenuInflater().inflate(R.menu.main, menu);
 CastButtonFactory.setUpMediaRouteButton(getApplicationContext(),
 menu,
 R.id.media_route_menu_item);
 return true;
}

684 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

Alternatively, you can add a Media Route Button to your Activity Layout:

<android.support.v7.app.MediaRouteButton
 android:id="@+id/media_route_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:mediaRouteTypes="user"
 android:visibility="gone"
/>

Connect the Media Route Button to the Cast Application Framework within your Activity’s onCre-
ate handler:

CastContext mCastContext;
MediaRouteButton mMediaRouteButton;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_layout);

 mCastContext = CastContext.getSharedInstance(this);

 mMediaRouteButton = findViewById(R.id.media_route_button);
 CastButtonFactory.setUpMediaRouteButton(getApplicationContext(),
 mMediaRouteButton);
}

Once the Cast Button has been added to your app, you will use a Cast Session to specify the media
(and its associated metadata) that your app will cast.

Each Cast Session starts when the user selects a remote receiver from the Cast destination selection
dialog, and ends when they choose to stop casting (or another sender casts to the same device).

Sessions are managed by the SessionManager; you can access the current CastSession using the
getCurrentCastSession method on the CastContext, typically within the onResume handler of
your Activity.

CastContext mCastContext;
MediaRouteButton mMediaRouteButton;

CastSession mCastSession;
SessionManager mSessionManager;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_layout);

 mCastContext = CastContext.getSharedInstance(this);

 mMediaRouteButton = findViewById(R.id.media_route_button);
 CastButtonFactory.setUpMediaRouteButton(getApplicationContext(),
 mMediaRouteButton);

Using the Media Router and Cast Application Framework ❘ 685

 mSessionManager = mCastContext.getSessionManager();
}

@Override
protected void onResume() {
 super.onResume();
 mCastSession = mSessionManager.getCurrentCastSession();
}

@Override
protected void onPause() {
 super.onPause();
 mCastSession = null;
}

You can also attach a SessionManagerListener to your Session Manager instance to listen for cre-
ation, suspension, resumption, and termination of new Cast Sessions.

Once the user has established a Cast Session, a new instance of the RemoteMediaClient will be cre-
ated, which can be accessed by calling getRemoteMediaClient on the current Cast Session.

You can use the Remote Media Client to set the content to stream to the remote device, and the
metadata that describes it using the MediaMetadata class:

MediaMetadata movieMetadata =
 new MediaMetadata(MediaMetadata.MEDIA_TYPE_MOVIE);

movieMetadata.putString(MediaMetadata.KEY_TITLE, mCurrentMovie.getTitle());
movieMetadata.addImage(new WebImage(Uri.parse(mCurrentMovie.getImage(0))));

Define the media to be played on the remote device using the MediaInfo.Builder, specifying a
URL to the selected content, details of the format and type of stream, and the Media Metadata
defined above:

private void castMovie() {
 MediaInfo mediaInfo = new MediaInfo.Builder(mCurrentMovie.getUrl())
 .setStreamType(MediaInfo.STREAM_TYPE_BUFFERED)
 .setContentType("videos/mp4")
 .setMetadata(movieMetadata)
 .setStreamDuration(mCurrentMovie.getDuration()
 * 1000)
 .build();

 RemoteMediaClient remoteMediaClient = mCastSession.getRemoteMediaClient();
 remoteMediaClient.load(mediaInfo, autoPlay, currentPosition);
}

You can then control media playback on the remote device using the Remote Media Client.

The Cast design checklist requires your sender app provide a mini controller that’s displayed when-
ever the user navigates away from the primary content page, and an expanded controller that dis-
plays a full-screen UI when the user clicks the media Notification or the mini controller.

686 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

The mini controller is available as a Fragment that can be added to the bottom of your Activities:

<fragment
 android:id="@+id/castMiniController"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:visibility="gone"
 class=
 "com.google.android.gms.cast.framework.media.widget.MiniControllerFragment"
/>

The expanded controller is provided as the abstract ExpandedControllerActivity, which
you must subclass to add a Cast Button, as described at developers.google.com/cast/docs/
android_sender_integrate#add_expanded_controller.

Detailed instructions for customizing the controllers and integrating Cast control through
Notifications can be found in the Google Cast SDK reference documentation at developers
.google.com/cast/docs/android_sender_setup.

BACKGROUND AUDIO PLAYBACK

When playing video, there’s a good chance users will have an Activity visible in the foreground. For
audio playback, it’s much more likely to happen while your app is in the background.

To support this, your Media Player and Media Session must be part of a Service that will continue
to run when your Activity isn’t visible (or even running).

Android provides the MediaBrowserServiceCompat and MediaBrowserCompat APIs, to simplify
the separation of your audio playback Service from any connected clients—including your playback
Activity.

NOTE As with the MediaSession class, Android 5.0 (API Level 21) introduced
a MediaBrowserService and MediaBrowser class. However, we strongly recom-
mend using MediaBrowserServiceCompat and MediaBrowserCompat from the
Android Support Library, and will use the compatibility library classes through-
out this chapter.

Building an Audio Playback Service
Listing 17-6 provides the minimal implementation of a new Media Browser Service.

Once the Media Session is created, use setSessionToken to pass its session token to our Media
Browser Service, and implement the two abstract methods onGetRoot and onLoadChildren.

The onGetRoot and onLoadChildren methods are used to provide support for Android Auto and
Wear OS. They provide a list of media items that users can select from the Auto and Wear UIs in

Background Audio Playback ❘ 687

order to start playback of specific songs, albums, or artists. A minimal implementation, as shown in
the previous listing, should return a non-null result in onGetRoot, because a null result will cause
connections to fail.

LISTING 17-6: A skeleton Media Browser Service implementation

public class MediaPlaybackService extends MediaBrowserServiceCompat {
 private static final String LOG_TAG = "MediaPlaybackService";

 private MediaSessionCompat mMediaSession;

 @Override
 public void onCreate() {
 super.onCreate();
 mMediaSession = new MediaSessionCompat(this, LOG_TAG);

 // Other initialization such as setFlags, setCallback, etc.

 setSessionToken(mMediaSession.getSessionToken());
 }

 @Override
 public BrowserRoot onGetRoot(@NonNull String clientPackageName,
 int clientUid, Bundle rootHints) {
 // Returning null == no one can connect so we'll return something
 return new BrowserRoot(
 getString(R.string.app_name), // Name visible in Android Auto
 null); // Bundle of optional extras
 }

 @Override
 public void onLoadChildren(String parentId,
 Result<List<MediaBrowserCompat.MediaItem>> result) {

 // If you want to allow users to browse media content your app returns on
 // Android Auto or Wear OS, return those results here.
 result.sendResult(new ArrayList<MediaBrowserServiceCompat.MediaItem>());
 }
}

Note that we initialize our Media Session within the Service’s onCreate method rather than the
playback Activity. The same should be done for all the media playback mechanisms described previ-
ously as we move control of media playback to this Service.

NOTE For more information on implementing the browsing APIs required for
Android Auto support, see developer.android.com/training/auto/audio.

688 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

Once your Media Browser Service has been constructed, in order for your Activities and other
potential media playback clients to connect to it, you must add it, with a corresponding android
.media.browse.MediaBrowserService Intent Filter to your manifest, as shown in Listing 17-7.

LISTING 17-7: Manifest entry for a Media Browser Service

<service android:name=".MediaPlaybackService"
 android:exported="true">
 <intent-filter>
 <action android:name="android.media.browse.MediaBrowserService" />
 </intent-filter>
</service>

Using a Media Browser to Connect Your Activity to a Media
Browser Service

Once you’ve moved your Media Session to a Media Browser Service, it’s important to ensure the
media playback and control UI within your Activity is kept in sync.

While your Activity no longer has direct access to the underlying Media Player, your Activity
can connect to your Media Browser Service, and create a new Media Controller using the
MediaBrowserCompat API as shown in Listing 17-8.

LISTING 17-8: Connecting to your Media Browser Service from your Activity

private MediaBrowserCompat mMediaBrowser;
private MediaControllerCompat mMediaController;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main_activity);

 // Create the MediaBrowserCompat
 mMediaBrowser = new MediaBrowserCompat(
 this,
 new ComponentName(this, MediaPlaybackService.class),
 new MediaBrowserCompat.ConnectionCallback() {
 @Override
 public void onConnected() {
 try {
 // We can construct a media controller from the session's token
 MediaSessionCompat.Token token = mMediaBrowser.getSessionToken();
 mMediaController = new MediaControllerCompat(
 MainActivity.this, token);
 } catch (RemoteException e) {
 Log.e(TAG, "Error creating controller", e);
 }
 }

Background Audio Playback ❘ 689

 @Override
 public void onConnectionSuspended() {
 // We were connected, but no longer are.
 }

 @Override
 public void onConnectionFailed() {
 // The attempt to connect failed completely.
 // Check the ComponentName!
 }
 },
 null);
 mMediaBrowser.connect();
}

@Override
protected void onDestroy() {
 super.onDestroy();
 mMediaBrowser.disconnect();
}

Within your Activity, you can now use the Media Controller to send media commands such as play
and pause to the Media Session as described in the previous section. The Media Session will then, in
turn, send your commands to the associated Media Browser Service.

The Media Controller also provides APIs for retrieving the Media Metadata and Playback State
from the Media Session using the getMetadata and getPlaybackState methods, respectively.

To ensure your UI stays in sync with your Service, register a MediaControllerCompat.Callback
using the registerCallback method on the Media Controller, as shown in Listing 17-9. This will
ensure you receive a callback whenever the metadata or playback state changes, allowing you to
keep your UI updated at all times.

LISTING 17-9: Keeping your UI in sync with playback state and metadata changes

@Override
public void onConnected() {
 try {
 // We can construct a media controller from the session's token
 MediaSessionCompat.Token token = mMediaBrowser.getSessionToken();
 mMediaController = new MediaControllerCompat(
 MainActivity.this, token);
 mMediaController.registerCallback(new MediaControllerCompat.Callback() {
 @Override
 public void onPlaybackStateChanged(PlaybackStateCompat state) {
 // Update the UI based on playback state change.
 }

 @Override
 public void onMetadataChanged(MediaMetadataCompat metadata) {
 // Update the UI based on Media Metadata change.
 }

690 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

 });

 } catch (RemoteException e) {
 Log.e(TAG, "Error creating controller", e);
 }
}

Life Cycle of a Media Browser Service
When a Media Browser connects to your Media Browser Service, it binds to it—creating it if neces-
sary. This allows you to prepare your media playback, and to minimize the latency between the user
selecting media to play and hearing the audio. Note, however, that a bound service does not begin
running until it’s started.

Because we have decoupled the playback controls in our Activity from the Service that handles
media playback, the Service will handle starting and stopping itself, based on the callbacks it
receives from its Media Session, triggered when the Activity UI sends playback commands via the
Media Controller.

In Listing 17-10, you can see how the Media Browser Service starts itself after receiving a play com-
mand, successfully gaining audio focus, and beginning media playback.

Once started, your Service will continue playback even if the playback Activity is closed. Once
the Service receives the command to stop playback—from any source—it terminates itself using
stopSelf.

LISTING 17-10: Starting playback on a Media Browser Service

mMediaSession.setCallback(new MediaSessionCompat.Callback() {
 @Override
 public void onPlay() {
 AudioManager am = (AudioManager)getSystemService(Context.AUDIO_SERVICE);

 // Request audio focus for playback
 int result = am.requestAudioFocus(focusChangeListener,
 AudioManager.STREAM_MUSIC,
 AudioManager.AUDIOFOCUS_GAIN);

 if (result == AudioManager.AUDIOFOCUS_REQUEST_GRANTED) {
 registerNoisyReceiver();
 mMediaSession.setActive(true);

 updateMetadata();
 updatePlaybackState();
 mediaPlayer.start();

 // Call startService to keep your Service alive during playback.
 startService(new Intent(MediaPlaybackService.this,
 MediaPlaybackService.class));
 }
 }

Background Audio Playback ❘ 691

 @Override
 public void onStop() {
 AudioManager am = (AudioManager) getSystemService(Context.AUDIO_SERVICE);
 am.abandonAudioFocus();

 updatePlaybackState();
 mMediaSession.setActive(false);
 mediaPlayer.stop();

 // Then call stopSelf to allow your service to be destroyed
 // now that playback has stopped
 stopSelf();
 }
});

Similarly, if your playback Activity is closed by the user before media playback is started, your
Service would be destroyed. This ensures that your app is not unnecessarily taking up resources in
the background when there is no media being played.

Playing Audio as a Foreground Service
As described in Chapter 11, “Working in the Background,” by default, Services run in the back-
ground and can be killed to free resources as needed. Interruptions in audio playback is very notice-
able to users, so it’s good practice to give your Service foreground priority when you begin media
playback, to minimize the possibility of interrupted playback.

NOTE Foreground Services require an associated Notification to be visible while
running. The following section, “Creating Media Style Notifications,” provides
details on how to build a Notification tailored for a Media Playback Service.

Your Service should only maintain foreground priority when it is actively playing audio, as
described by the following process:

 1. Call startForeground (passing in a Media Style Notification) when you begin media
playback.

 2. Call stopForeground(false) when playback is paused to remove the foreground status,
but maintain the notification.

 3. Call stopForeground(true) when playback has stopped, to remove the foreground status
and remove the notification.

This flow can be seen in Listing 17-11, which updates Listing 17-10 to set the started Service as a
foreground Service.

692 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

LISTING 17-11: Using a foreground Service for media playback

mMediaSession.setCallback(new MediaSessionCompat.Callback() {
 @Override
 public void onPlay() {
 AudioManager am = (AudioManager)getSystemService(Context.AUDIO_SERVICE);

 // Request audio focus for playback
 int result = am.requestAudioFocus(focusChangeListener,
 AudioManager.STREAM_MUSIC,
 AudioManager.AUDIOFOCUS_GAIN);

 if (result == AudioManager.AUDIOFOCUS_REQUEST_GRANTED) {
 registerNoisyReceiver();
 mMediaSession.setActive(true);

 updateMetadata();
 updatePlaybackState();
 mediaPlayer.start();

 // Construct a Media Style Notification and start the foreground Service
 startForeground(NOTIFICATION_ID, buildMediaNotification());
 }
 }

 @Override
 public void onPause() {
 unregisterNoisyReceiver();
 updatePlaybackState();
 mediaPlayer.pause();

 // Stop being a foreground service, but don't remove the notification
 stopForeground(false);
 }

 @Override
 public void onStop() {
 AudioManager am = (AudioManager) getSystemService(Context.AUDIO_SERVICE);
 am.abandonAudioFocus();

 updatePlaybackState();
 mMediaSession.setActive(false);
 mediaPlayer.stop();

 // Stop being a foreground service and remove the notification
 stopForeground(true);

 // Then call stopSelf to allow your service to be destroyed
 // now that playback has stopped
 stopSelf();
 }
}

Background Audio Playback ❘ 693

Creating Media Style Notifications
Notifications are one of the most convenient, and therefore frequently used, mechanisms for users to
control media playback.

As described in Chapter 11, Android provides a num-
ber of templates or “styles” for notifications—with the
MediaStyle specifically designed for controlling media
playback.

Media Style Notifications embed the media playback con-
trols directly within the Notification, making it possible for
users to control media playback in both the collapsed and
expanded form of the Notification, as shown in Figure 17-1.

You construct your Notification using the
NotificationCompat.Builder. The primary source for constructing your Notification is the media
metadata available from your Media Session; this ensures a consistent display of media information
across all mechanisms (including Wear OS and Android Auto).

Use the getDescription method to extract the title, subtitle, description, and icon from the Media
Metadata, and pass each into the corresponding set methods on the Notification Builder.

You can specify which (if any) playback controls should appear in the collapsed mode using
setShowActionsInCompactView.

It is important that you also pass the token associated with your Media Session into
setMediaSession or actions taken on Wear OS devices will not be received by your app.

Listing 17-12 shows the creation of a typical Media Style Notification.

LISTING 17-12: Building a Media Style Notification

public Notification buildMediaNotification() {
 MediaControllerCompat controller = mMediaSession.getController();
 MediaMetadataCompat mediaMetadata = controller.getMetadata();
 MediaDescriptionCompat description = mediaMetadata.getDescription();

 NotificationCompat.Builder builder = new
 NotificationCompat.Builder(context);

 // Add description metadata from the media session
 builder
 .setContentTitle(description.getTitle())
 .setContentText(description.getSubtitle())
 .setSubText(description.getDescription())
 .setLargeIcon(description.getIconBitmap())
 .setContentIntent(controller.getSessionActivity())
 .setDeleteIntent(MediaButtonReceiver.buildMediaButtonPendingIntent(

FIGURE 17-1

continues

694 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

 this, // Context
 PlaybackStateCompat.ACTION_STOP))
 .setVisibility(NotificationCompat.VISIBILITY_PUBLIC);

 // Add branding from your app
 builder
 .setSmallIcon(R.drawable.notification_icon)
 .setColor(ContextCompat.getColor(this, R.color.primary));

 // Add actions
 builder
 .addAction(new NotificationCompat.Action(
 R.drawable.pause, getString(R.string.pause),
 MediaButtonReceiver.buildMediaButtonPendingIntent(
 this, PlaybackStateCompat.ACTION_PLAY_PAUSE)))
 .addAction(new NotificationCompat.Action(
 R.drawable.skip_to_next, getString(R.string.skip_to_next),
 MediaButtonReceiver.buildMediaButtonPendingIntent(
 this, PlaybackStateCompat.ACTION_SKIP_TO_NEXT)));

 // Add the MediaStyle
 builder
 .setStyle(new NotificationCompat.MediaStyle()
 .setShowActionsInCompactView(0)
 .setMediaSession(mMediaSession.getSessionToken())

 // These two lines are only required if your minSdkVersion is <API 21
 .setShowCancelButton(true)
 .setCancelButtonIntent(MediaButtonReceiver.buildMediaButtonPendingIntent(
 this, PlaybackStateCompat.ACTION_STOP)));

 return builder.build();
}

NOTE For versions of Android prior to Android 7.0 (API Level 24), the color
set with setColor was used as the background color for the entire notification.
Make sure text is readable and the color is not too bright; your primary dark
color is typically a good choice.

When a Notification, or any of its associated controls, is selected by the user, it fires Pending Intents
that must be handled by your application. This can be done using the MediaButtonReceiver from
the Android Support Library, and its buildMediaButtonPendingIntent method.

Add the MediaButtonReceiver to your manifest:

<receiver android:name="android.support.v4.media.session.MediaButtonReceiver" >
 <intent-filter>

LISTING 17-12 (continued)

Using the Media Recorder to Record Audio ❘ 695

 <action android:name="android.intent.action.MEDIA_BUTTON" />
 </intent-filter>
</receiver>

Within your Media Browser Service implementation, call the MediaButtonReceiver’s
handleIntent method in the onStartCommand handler:

@Override
public int onStartCommand(Intent intent, int flags, int startId) {
 MediaButtonReceiver.handleIntent(mMediaSession, intent);
 return super.onStartCommand(intent, flags, startId);
}

This technique will route Notification commands into your Media Session and Media Controller,
allowing you to handle them as you would playback controls within your Activity.

USING THE MEDIA RECORDER TO RECORD AUDIO

Most Android devices have a microphone and, in many cases, multiple microphones to ensure clear
audio input (important for legacy device uses such as “making phone calls”). The microphone is also
available to Android apps that hold the RECORD_AUDIO permission:

<uses-permission android:name="android.permission.RECORD_AUDIO"/>

NOTE For privacy reasons, the RECORD_AUDIO permission is considered a
dangerous permission. It must be requested at run time on devices running
Android 6.0 (API Level 23) or higher.

You can use the MediaRecorder class to record audio files that can be used in your own applications
or added to the Media Store.

The Media Recorder lets you specify the audio source, the output file format, and the audio encod-
ers to use when recording your file.

Much like the Media Player, the Media Recorder manages recording as a state machine. This means
that the order in which you configure and manage the Media Recorder is important. In the simplest
terms, the transitions through the state machine can be described as follows:

 1. Create a new Media Recorder.

 2. Specify the input sources to record from.

 3. Specify the output format and audio encoder.

 4. Select an output file.

 5. Prepare the Media Recorder for recording.

 6. Record.

 7. End the recording.

696 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

NOTE A more detailed and thorough description of the Media Recorder state
machine is provided at the Android developer site, at developer.android.com/
reference/android/media/MediaRecorder.html.

When you finish recording your media, call release on your Media Recorder object to free the
associated resources:

mediaRecorder.release();

Configuring the Audio Recorder
As described in the preceding section, before recording you must specify the input source, choose
the output format and audio encoder, and assign an output file—in that order.

The setAudioSource method lets you specify a MediaRecorder.AudioSource.static constant
that defines the audio source. For audio recording, this is almost always MediaRecorder
.AudioSource.MIC.

After selecting your input source, you need to select the output format using the setOutputFormat
method with a MediaRecorder.OutputFormat constant, and use the setAudioEncoder methods
with an audio encoder constant from the MediaRecorder.AudioEncoder class.

Finally, assign a file to store the recorded media using the setOutputFile method before calling
prepare.

Listing 17-13 shows how to configure a Media Recorder to record audio from the microphone and
save it to a file in your application’s external media folder (which makes it available to other apps).

LISTING 17-13: Preparing to record audio using the Media Recorder

// Configure the input sources.
mediaRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);

// Set the output format and encoder.
mediaRecorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
mediaRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);

// Specify the output file
File mediaDir = getExternalMediaDirs()[0];
File outputFile = new File(getExternalMediaDirs()[0], "myaudiorecording.3gp");
mediaRecorder.setOutputFile(outputFile.getPath());

// Prepare to record
mediaRecorder.prepare();

Using the Camera for Taking Pictures ❘ 697

WARNING The setOutputFile method must be called before prepare and
after setOutputFormat; otherwise, it will throw an IllegalStateException.

Controlling the Recording
After configuring the Media Recorder and preparing, you can begin recording at any time by calling
the start method:

mediaRecorder.start();

When you finish recording, call stop to end the playback, followed by reset and release to free
the Media Recorder resources, as shown in Listing 17-14.

LISTING 17-14: Stopping an audio recording

mediaRecorder.stop();

// Reset and release the media recorder.
mediaRecorder.reset();
mediaRecorder.release();

The resulting file can then be played with a MediaPlayer, as described earlier in this chapter.

USING THE CAMERA FOR TAKING PICTURES

With the quality and capabilities of camera hardware available on Android devices improving dra-
matically, taking full advantage of that hardware can be an important differentiator for apps using
the camera.

The following sections demonstrate the ways in which you can configure and control the camera,
and to take photos programmatically within your applications.

Using Intents to Take Pictures
The easiest way to take a picture from within your application is to fire an Intent using the
MediaStore.ACTION_IMAGE_CAPTURE action:

startActivityForResult(
 new Intent(MediaStore.ACTION_IMAGE_CAPTURE), TAKE_PICTURE);

This launches a camera application to take the photo, providing your users with the full suite of
camera functionality without you having to rewrite the native camera application yourself.

698 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

NOTE This Intent is not intended to be used as a fallback if the user denies the
CAMERA permission in your app. Users declining a permission is a clear signal
that they don’t want your app to use this feature, and you must respect that.

Once users are satisfied with the image, the result is returned to your application within the Intent
received by the onActivityResult handler.

By default, the picture taken will be returned as a thumbnail, available as a raw bitmap within the
data extra within the returned Intent.

To obtain a full image, you must specify a target URI in which to store it using the MediaStore
.EXTRA_OUTPUT extra in the launch Intent, as shown in Listing 17-15.

LISTING 17-15: Requesting a full-size picture using an Intent

// Create an output file.
File outputFile = new File(
 context.getExternalFilesDir(Environment.DIRECTORY_PICTURES),
 "test.jpg");
Uri outputUri = FileProvider.getUriForFile(context,
 BuildConfig.APPLICATION_ID + ".files", outputFile);

// Generate the Intent.
Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
intent.putExtra(MediaStore.EXTRA_OUTPUT, outputUri);

// Launch the camera app.
startActivityForResult(intent, TAKE_PICTURE);

The full-size image taken by the camera will then be saved to the specified location. No thumbnail
will be returned in the Activity result callback, and the received Intent’s data will be null.

Listing 17-16 shows how to use getParcelableExtra to extract a thumbnail where one is returned,
or to decode the saved file when a full-size image is saved.

LISTING 17-16: Receiving pictures from an Intent

@Override
protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 if (requestCode == TAKE_PICTURE) {
 // Check if the result includes a thumbnail Bitmap
 if (data != null) {
 if (data.hasExtra("data")) {
 Bitmap thumbnail = data.getParcelableExtra("data");
 imageView.setImageBitmap(thumbnail);
 }

Using the Camera for Taking Pictures ❘ 699

 } else {
 // If there is no thumbnail image data, the image
 // will have been stored in the target output URI.

 // Resize the full image to fit in our image view.
 int width = imageView.getWidth();
 int height = imageView.getHeight();

 BitmapFactory.Options factoryOptions = new
 BitmapFactory.Options();

 factoryOptions.inJustDecodeBounds = true;
 BitmapFactory.decodeFile(outputFile.getPath(),
 factoryOptions);

 int imageWidth = factoryOptions.outWidth;
 int imageHeight = factoryOptions.outHeight;

 // Determine how much to scale down the image
 int scaleFactor = Math.min(imageWidth/width,
 imageHeight/height);

 // Decode the image file into a Bitmap sized to fill the View
 factoryOptions.inJustDecodeBounds = false;
 factoryOptions.inSampleSize = scaleFactor;

 Bitmap bitmap =
 BitmapFactory.decodeFile(outputFile.getPath(),
 factoryOptions);

 imageView.setImageBitmap(bitmap);
 }
 }
}

To make photos you save available to other applications, it’s good practice to add them to the Media
Store—as described in the section “Adding Media to the Media Store.”

Controlling the Camera Directly
To access the camera hardware directly, you need to add the CAMERA permission to your application
manifest:

<uses-permission android:name="android.permission.CAMERA"/>

NOTE For privacy reasons, the CAMERA permission is considered a dangerous
permission; as such it must be requested at run time on Android 6.0 (API Level
23) and higher devices.

700 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

The CameraManager allows you to enumerate all of the connected cameras, query their characteris-
tics, and open one or more camera devices:

CameraManager cameraManager =
 (CameraManager) getSystemService(Context.CAMERA_SERVICE);

You can retrieve the list of identifiers for the currently connected camera devices using
getCameraIdList:

String[] cameraIds = cameraManager.getCameraIdList();

Android 5.0 (API Level 21) introduced the Camera2 API, which replaced the now deprecated
Camera API. For the remainder of this chapter, we will focus on the features provided within the
Camera2 API, meaning the required API Level to use these features is 21.

Camera Characteristics
Each camera device has a set of immutable properties called the characteristics of the device. These
characteristics are stored using the CameraCharacteristics class, accessible by calling the
get CameraCharacteristics method of CameraManager and passing in the camera’s identifier:

CameraCharacteristics characteristics =
 cameraManager.getCameraCharacteristics(cameraId);

The Camera Characteristics contain the capabilities of the camera device, including the direction of
the lens, auto-exposure modes, auto-focus modes, focal lengths, noise reduction modes, and the ISO
sensitivity range.

Use the LENS_FACING characteristic to determine if a given camera faces the back, front, or if the
camera is external to the device, as shown in Listing 17-17.

LISTING 17-17: Determining the direction of a camera device

int facing = characteristics.get(CameraCharacteristics.LENS_FACING);
if (facing == CameraCharacteristics.LENS_FACING_BACK) {
 // back camera
} else if (facing == CameraCharacteristics.LENS_FACING_FRONT) {
 // front camera
} else {
 // external cameraCameraCharacteristics.LENS_FACING_EXTERNAL
}

This information is extremely useful in selecting the appropriate camera and rotating any taken pic-
tures as needed (for example, the front-facing camera is mirrored).

Other Camera Characteristics include:

 ➤ SCALER_STREAM_CONFIGURATION_MAP—Returns a StreamConfigurationMap, which stores
the output formats and sizes supported by this camera that you can use to set the appropriate
preview size and image capture size.

 ➤ CONTROL_AF_AVAILABLE_MODES—Returns the auto-focus modes that are available where
CONTROL_AF_MODE_OFF means unavailable and CONTROL_AF_MODE_CONTINUOUS_PICTURE
and CONTROL_AF_MODE_CONTINUOUS_VIDEO would be appropriate for picture or video
capture, respectively.

Using the Camera for Taking Pictures ❘ 701

 ➤ SENSOR_ORIENTATION—Returns the orientation of the sensor that the output image needs to
be rotated to be upright on the device screen in its native orientation. This will always be a
multiple of 90.

You can find the full list of Camera Characteristics on the Android developer documentation:
developer.android.com/reference/android/hardware/camera2/CameraCharacteristics

.html

Opening a Connection to a Camera Device
To take a picture you must open a connection to the camera device you wish to use. Once you’ve
identified a camera to use, open a connection with the openCamera method of CameraManager, as
shown in Listing 17-18.

Opening a camera is an asynchronous operation, so openCamera also takes a CameraDevice
.StateCallback in addition to the cameraId associated with the camera you want to open.

The onOpened callback is returned when the connection is open, and you have access to a
CameraDevice ready for use. Make sure you override onError and onDisconnected to properly
handle error cases.

LISTING 17-18: Opening a camera device

CameraDevice.StateCallback cameraDeviceCallback =
 new CameraDevice.StateCallback() {

 @Override
 public void onOpened(@NonNull CameraDevice camera) {
 mCamera = camera;
 }

 @Override
 public void onDisconnected(@NonNull CameraDevice camera) {
 camera.close();
 mCamera = null;
 }

 @Override
 public void onError(@NonNull CameraDevice camera, int error) {
 // Something went wrong, tell the user
 camera.close();
 mCamera = null;
 Log.e(TAG, "Camera Error: " + error);
 }
};

try {
 cameraManager.openCamera(cameraId, cameraDeviceCallback, null);
} catch (Exception e) {
 Log.e(TAG, "Unable to open the camera", e);
}

702 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

Camera Capture Requests and the Camera Preview
Once you have an open connection to a CameraDevice, you can request image data by creating a
CameraCaptureSession.

The Android Camera2 API offers a number of different session types and configurations, including
high-speed (120fps) video recording, but the most common session type can be created using the
createCaptureSession method.

Creating a session is an expensive operation, often taking hundreds of milliseconds as the camera
hardware is powered on and configured to handle the List of Surface objects that will receive the
camera output. You must make sure each Surface is set to the appropriate size (using the values from
the SCALER_STREAM_CONFIGURATION_MAP characteristic) before creating your session.

At a minimum, you should display a preview of what’s being captured by the camera to allow users
to compose their photos. The camera preview is typically displayed on a SurfaceView within your
UI hierarchy.

NOTE Prior to Android 7.0 (API Level 24), each SurfaceView was rendered in
its own window, separately from the rest of your UI. As a result, unlike View-
derived classes it could not be moved, transformed, or animated. As an alterna-
tive for earlier platform versions, the TextureView class offers support for these
operations, but is less battery-efficient.

To display a preview, you must implement a SurfaceHolder.Callback that listens for the construc-
tion of a valid Surface (and ideally set its size with setFixedSize):

SurfaceHolder.Callback surfaceHolderCallback = new SurfaceHolder.Callback() {
 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 startCameraCaptureSession();
 }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) {}

 @Override
 public void surfaceChanged(SurfaceHolder holder, int format,
 int width, int height) {}
};

mHolder.addCallback(surfaceHolderCallback);
mHolder.setFixedSize(400, 300);

try {
 cameraManager.openCamera(cameraId, cameraDeviceCallback, null);
} catch (Exception e) {
 Log.e(TAG, "Unable to open the camera", e);
}

Using the Camera for Taking Pictures ❘ 703

Once your session is configured and you receive a callback to onConfigured, you can proceed to
display data by passing in a CaptureRequest to setRepeatingRequest, which indicates that you’d
like to repeatedly capture new frames.

The Camera Device’s createCaptureRequest method allows you to retrieve a CaptureRequest
.Builder based on a number of predefined templates. For a display preview, you’d use
CameraDevice.TEMPLATE_PREVIEW and use addTarget with the same Surface you used to create
your session:

CameraCaptureSession mCaptureSession;
CaptureRequest mPreviewCaptureRequest;

private void startCameraCaptureSession() {
 // We require both the surface and camera to be ready
 if (mCamera == null || mHolder.isCreating()) {
 return;
 }

 Surface previewSurface = mHolder.getSurface();

 // Create our preview CaptureRequest.Builder
 mPreviewCaptureRequest = mCamera.createCaptureRequest(
 CameraDevice.TEMPLATE_PREVIEW);
 mPreviewCaptureRequest.setTarget(previewSurface);

 CameraCaptureSession.StateCallback captureSessionCallback
 = new CameraCaptureSession.StateCallback() {

 @Override
 public void onConfigured(@NonNull CameraCaptureSession session) {
 mCaptureSession = session;
 try {
 mCaptureSession.setRepeatingRequest(
 mPreviewCaptureRequest.build(),
 null, // optional CaptureCallback
 null); // optional Handler
 } catch (CameraAccessException | IllegalStateException e) {
 Log.e(TAG, "Capture Session Exception", e);
 // Handle failures
 }
 }
 };

 try {
 mCamera.createCaptureSession(Arrays.asList(previewSurface),
 captureSessionCallback,
 null); // optional Handler
 } catch (CameraAccessException e) {
 Log.e(TAG, "Camera Access Exception", e);
 }
}

704 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

While the template CaptureRequest.Builder provides a set of common defaults, this is also
where you can set the auto-focus mode (CaptureRequest.CONTROL_AF_MODE) or flash mode
(CaptureRequest.CONTROL_AE_MODE_ON and CaptureRequest.FLASH_MODE) with set making
sure to only use values returned by the Camera Characteristics. Note that you will need to call
set RepeatingRequest again after changing the Capture Request values.

Taking a Picture
Displaying a camera preview is an expected feature of any camera app, but it’s normally not suf-
ficient. If you want to take the extra step and take a picture, you’ll need to pass in an additional
Surface when creating your capture session.

This Surface can be created with the help of ImageReader, which provides a Surface that can be
used with a CameraDevice.TEMPLATE_STILL_CAPTURE Capture Request and the capture method
that returns the raw bytes captured by the camera.

Listing 17-19 shows the skeleton code for taking a picture and saving the JPEG image to external
storage.

LISTING 17-19: Taking a picture

private ImageReader mImageReader;
private ImageReader.onImageAvailableListener mOnImageAvailableListener;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 SurfaceHolder.Callback surfaceHolderCallback = new SurfaceHolder.Callback() {
 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 startCameraCaptureSession();
 }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) {}

 @Override
 public void surfaceChanged(SurfaceHolder holder, int format,
 int width, int height) {}
 };

 mHolder.addCallback(surfaceHolderCallback);
 mHolder.setFixedSize(400, 300);

 int largestWidth = 400; // Read from characteristics
 int largestHeight = 300; // Read from characteristics

 mOnImageAvailableListener
 = new ImageReader.OnImageAvailableListener() {
 @Override

Using the Camera for Taking Pictures ❘ 705

 public void onImageAvailable(ImageReader reader) {
 try (Image image = reader.acquireNextImage()) {
 Image.Plane[] planes = image.getPlanes();
 if (planes.length > 0) {
 ByteBuffer buffer = planes[0].getBuffer();
 byte[] data = new byte[buffer.remaining()];
 buffer.get(data);
 saveImage(data);
 }
 }
 }
 };
 mImageReader = ImageReader.newInstance(largestWidth, largestHeight,
 ImageFormat.JPEG,
 2); // maximum number of images to return
 mImageReader.setOnImageAvailableListener(mOnImageAvailableListener,
 null); // optional Handler

 try {
 cameraManager.openCamera(cameraId, cameraDeviceCallback, null);
 } catch (Exception e) {
 Log.e(TAG, "Unable to open the camera", e);
 }
}

private void takePicture() {
 try {
 CaptureRequest.Builder takePictureBuilder = mCamera.createCaptureRequest(
 CameraDevice.TEMPLATE_STILL_CAPTURE);
 takePictureBuilder.addTarget(mImageReader.getSurface());
 mCaptureSession.capture(takePictureBuilder.build(),
 null, // CaptureCallback
 null); // optional Handler
 } catch (CameraAccessException e) {
 Log.e(TAG, "Error capturing the photo", e);
 }
}

private void saveImage(byte[] data) {
 // Save the image JPEG data to external storage
 FileOutputStream outStream = null;
 try {
 File outputFile = new File(
 getExternalFilesDir(Environment.DIRECTORY_PICTURES), "test.jpg");
 outStream = new FileOutputStream(outputFile);
 outStream.write(data);
 outStream.close();
 } catch (FileNotFoundException e) {
 Log.e(TAG, "File Not Found", e);
 } catch (IOException e) {
 Log.e(TAG, "IO Exception", e);
 }
}

706 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

Reading and Writing JPEG EXIF Image Details
The ExifInterface class provides mechanisms for you to read and modify the Exchangeable Image
File Format (EXIF) metadata stored within a JPEG file. Create a new ExifInterface instance by
passing the full filename of the target JPEG in to the constructor:

 ExifInterface exif = new ExifInterface(jpegfilename);

EXIF data is used to store a wide range of metadata on photographs, including date and time, cam-
era settings (such as make and model), and image settings (such as aperture and shutter speed), as
well as image descriptions and locations.

To read an EXIF attribute, call getAttribute on the ExifInterface object, passing in the name of
the attribute to read. The Exifinterface class includes a number of static TAG_ constants that can
be used to access common EXIF metadata. To modify an EXIF attribute, use setAttribute, pass-
ing in the name of the attribute to read and the value to set it to.

Listing 17-20 shows how to read the camera model from a file stored on the external storage, before
modifying the camera manufacturer details.

LISTING 17-20: Reading and modifying EXIF data

File file = new File(getExternalFilesDir(Environment.DIRECTORY_PICTURES),
 "test.jpg");

try {
 ExifInterface exif = new ExifInterface(file.getCanonicalPath());
 // Read the camera model
 String model = exif.getAttribute(ExifInterface.TAG_MODEL);
 Log.d(TAG, "Model: " + model);
 // Set the camera make
 exif.setAttribute(ExifInterface.TAG_MAKE, "My Phone");
 // Finally, call saveAttributes to save the updated tag data
 exif.saveAttributes();
} catch (IOException e) {
 Log.e(TAG, "IO Exception", e);
}

RECORDING VIDEO

Android offers two options for recording video within your application.

The simplest technique is to use an Intent to launch the video camera application. This option lets
you specify the output location and video recording quality, while letting another video recording
application handle the user experience and error handling. This is the best practice approach and
should be used in most circumstances, unless you are building your own replacement video recorder.

In cases where you want to replace the default video camera application, or simply need more fine-
grained control over the video capture UI or recording settings, you can use the MediaRecorder
class.

Recording Video ❘ 707

Using Intents to Record Video
The easiest, and best practice, way to initiate video recording is using the MediaStore.ACTION_
VIDEO_CAPTURE action Intent.

Starting a new Activity with this Intent launches a video recorder app that’s capable of allowing
users to start, stop, review, and retake their video. When they’re satisfied, a URI to the recorded
video is provided to your Activity as the data parameter of the returned Intent:

A video capture action Intent can contain the following three optional extras:

 ➤ MediaStore.EXTRA_OUTPUT—By default, the video recorded by the video capture action will
be stored in the default Media Store. If you want to record it elsewhere, you can specify an
alternative URI using this extra.

 ➤ MediaStore.EXTRA_VIDEO_QUALITY—The video capture action allows you to specify an
image quality using an integer value. There are currently two possible values: 0 for low
(MMS) quality videos, or 1 for high (full resolution) videos. By default, the high-resolution
mode is used.

 ➤ MediaStore.EXTRA_DURATION_LIMIT—The maximum length of the recorded video (in
seconds).

Listing 17-21 shows how to use the video capture action to record a new video.

LISTING 17-21: Recording video using an Intent

private static final int RECORD_VIDEO = 0;

private void startRecording() {
 // Generate the Intent.
 Intent intent = new Intent(MediaStore.ACTION_VIDEO_CAPTURE);

 // Launch the camera app.
 startActivityForResult(intent, RECORD_VIDEO);
}

@Override
protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 if (requestCode == RECORD_VIDEO) {
 VideoView videoView = findViewById(R.id.videoView);
 videoView.setVideoURI(data.getData());
 videoView.start();
 }
}

Using the Media Recorder to Record Video
Recording a video within your app uses the same basic framework as displaying a camera pre-
view and taking a picture. However, instead of using an ImageReader to read a single image, the

708 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

MediaRecorder class is used to record video files with audio that can be used in your own applica-
tions or added to the Media Store.

In addition to the CAMERA permission needed to access the camera, your application manifest needs
to include the RECORD_AUDIO and/or RECORD_VIDEO permissions:

<uses-permission android:name="android.permission.RECORD_AUDIO"/>
<uses-permission android:name="android.permission.RECORD_VIDEO"/>
<uses-permission android:name="android.permission.CAMERA"/>

NOTE For privacy reasons, the CAMERA, RECORD_AUDIO, and RECORD_VIDEO
permissions are both considered dangerous permissions, and as such must be
requested at run time on Android 6.0 (API Level 23) and higher devices.

The Media Recorder state machine described in the “Using the Media Recorder to Record Audio”
also applies to video recording. To add video recording, you must set the video source with
setVideoSource and set the video encoder with setVideoEncoder before setting the output file, as
shown in Listing 17-22.

LISTING 17-22: Preparing to record video using the Media Recorder

public void prepareMediaRecorder() {
 // Configure the input sources.
 mediaRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 mediaRecorder.setVideoSource(MediaRecorder.VideoSource.SURFACE);

 // Set the output format and encoder.
 mediaRecorder.setOutputFormat(MediaRecorder.OutputFormat.MPEG_4);
 mediaRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AAC);
 mediaRecorder.setVideoEncoder(MediaRecorder.VideoEncoder.H264);

 // Specify the output file
 File mediaDir = getExternalMediaDirs()[0];
 File outputFile = new File(mediaDir, "myvideorecording.mp4");
 mediaRecorder.setOutputFile(outputFile.getPath());

 // Prepare to record
 mediaRecorder.prepare();
}

Because video recording is a continuous operation, it functions very similarly to setting up the cam-
era preview, but instead of creating a CameraCaptureSession and CaptureRequest that only out-
puts to a single Surface representing the camera display, you also output to the MediaRecorder’s
Surface, which can be retrieved via getSurface.

Recording Video ❘ 709

It’s best practice to use the CameraDevice.TEMPLATE_RECORD template when you create your
CaptureRequest. Once the CaptureRequest is started with setRepeatingRequest, you can start
recording video by calling start on your MediaRecorder, as shown in Listing 17-23.

LISTING 17-23: Recording video

MediaRecorder mMediaRecorder = new MediaRecorder();
CaptureRequest.Builder mVideoRecordCaptureRequest;

void startVideoRecording() {
 // We require both the preview surface and camera to be ready
 if (mCamera == null || mHolder.isCreating()) {
 return;
 }

 Surface previewSurface = mHolder.getSurface();

 prepareMediaRecorder();

 Surface videoRecordSurface = mediaRecorder.getSurface();

 // Create our video record CaptureRequest.Builder
 mVideoRecordCaptureRequest = mCamera.createCaptureRequest(
 CameraDevice.TEMPLATE_RECORD);
 // Add both the video record Surface and the preview Surface
 mVideoRecordCaptureRequest.addTarget(videoRecordSurface);
 mVideoRecordCaptureRequest.addTarget(previewSurface);

 CameraCaptureSession.StateCallback captureSessionCallback
 = new CameraCaptureSession.StateCallback() {
 @Override
 public void onConfigured(@NonNull CameraCaptureSession session) {
 mCaptureSession = session;
 try {
 mCaptureSession.setRepeatingRequest(
 mVideoRecordCaptureRequest.build(),
 null, // optional CaptureCallback
 null); // optional Handler

 mediaRecorder.start();
 } catch (CameraAccessException | IllegalStateException e) {
 // Handle failures
 }
 }

 @Override
 public void onConfigureFailed(@NonNull CameraCaptureSession session) {
 // Handle failures
 }
 };

710 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

 try {
 mCamera.createCaptureSession(
 Arrays.asList(previewSurface, videoRecordSurface),
 captureSessionCallback,
 null); // optional Handler
 } catch (CameraAccessException e) {
 Log.e(TAG, "Camera Access Exception", e);
 }
}

When recording is stopped, you must call stop and reset on the MediaRecorder. You should then
start a new CameraCaptureSession for continuing to display the preview until a new video record-
ing is started. This ensures that the camera output is no longer sent to the Media Recorder’s Surface
and allows you to set a new output file for the next video.

When you finish recording, or previewing, all videos (typically in onStop), call release on your
MediaRecorder to free the associated resources:

mediaRecorder.release();

ADDING MEDIA TO THE MEDIA STORE

By default, media files created by your application that are stored in private application folders
will be unavailable to other applications, with the exception of the files added to the
get ExternalMediaDirs directories.

To make files in other folders visible, you need to insert them into the Media Store. Android pro-
vides two options for this. The preferred approach is to use the Media Scanner to interpret your file
and insert it automatically. Alternatively, you can manually insert a new record in the appropriate
Content Provider.

Inserting Media Using the Media Scanner
If you have recorded new media of any kind, the MediaScannerConnection class provides the
scanFile method as a simple way for you to add it to the Media Store without needing to construct
the full record for the Media Store Content Provider.

Before you can use the scanFile method to initiate a content scan on your file, you must call
connect and wait for the connection to the Media Scanner to complete. This call is asynchronous,
so you will need to implement a MediaScannerConnectionClient to notify you when the connec-
tion has been made. You can use this same class to notify you when the scan is complete, at which
point you can disconnect your Media Scanner Connection.

Listing 17-24 shows the skeleton code for creating a new MediaScannerConnectionClient that
defines a MediaScannerConnection, which is used to add a new file to the Media Store.

Adding Media to the Media Store ❘ 711

LISTING 17-24: Adding files to the Media Store using the Media Scanner

private void mediaScan(final String filePath) {

 MediaScannerConnectionClient mediaScannerClient = new
 MediaScannerConnectionClient() {

 private MediaScannerConnection msc = null;

 {
 msc = new MediaScannerConnection(
 VideoCameraActivity.this, this);
 msc.connect();
 }

 public void onMediaScannerConnected() {
 // Optionally specify a MIME Type, or
 // have the Media Scanner imply one based
 // on the filename.
 String mimeType = null;
 msc.scanFile(filePath, mimeType);
 }

 public void onScanCompleted(String path, Uri uri) {
 msc.disconnect();
 Log.d(TAG, "File Added at: " + uri.toString());
 }
 };
}

Inserting Media Manually
Rather than relying on the Media Scanner, you can add new media to the Media Store directly by
creating a new ContentValues object and inserting it into the appropriate Media Store Content
Provider yourself.

The metadata you specify here can include the title, timestamp, and geocoding information for your
new media file:

ContentValues content = new ContentValues(3);
content.put(Audio.AudioColumns.TITLE, "TheSoundandtheFury");
content.put(Audio.AudioColumns.DATE_ADDED,
 System.currentTimeMillis() / 1000);
content.put(Audio.Media.MIME_TYPE, "audio/amr");

You must also specify the absolute path of the media file being added:

content.put(MediaStore.Audio.Media.DATA, "/sdcard/myoutputfile.mp4");

712 ❘ CHAPTER 17 Audio, Video, And using the CAmerA

Get access to the application’s ContentResolver, and use it to insert this new row into the Media
Store:

ContentResolver resolver = getContentResolver();
Uri uri = resolver.insert(MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
 content);

After inserting the media file into the Media Store, you should announce its availability using a
Broadcast Intent, as follows:

sendBroadcast(new Intent(Intent.ACTION_MEDIA_SCANNER_SCAN_FILE, uri));

Communicating with Bluetooth,
NFC, and Wi-Fi Peer-to-Peer

WHAT’S IN THIS CHAPTER?

 ➤ Managing the local Bluetooth adapter

 ➤ Discovering Bluetooth client devices

 ➤ Transferring data using Bluetooth and Bluetooth LE

 ➤ Discovering Wi-Fi Direct Peer-to-Peer devices

 ➤ Transferring data using Wi-Fi Peer-to-Peer

 ➤ Scanning NFC tags

 ➤ Transferring data using Android Beam

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The code downloads for this chapter are found at www.wrox.com. The code for this chapter is
divided into the following major example:

 ➤ Snippets_ch18.zip

NETWORKING AND PEER-TO-PEER COMMUNICATION

This chapter explores Android’s hardware communications features by examining the
Bluetooth, Wi-Fi Peer-to-Peer, Near Field Communication (NFC), and Android Beam APIs.

The Android SDK includes a full Bluetooth stack, which enables you to manage and monitor
your Bluetooth settings, control discoverability, discover nearby Bluetooth devices, and use

18

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

714 ❘ CHAPTER 18 CommuniCating with Bluetooth, nFC, and wi-Fi Peer-to-Peer

Bluetooth as a proximity-based peer-to-peer transport layer for your applications using Bluetooth
and Bluetooth LE (Low Energy).

For situations requiring faster or higher-bandwidth data transfers, Wi-Fi Peer-To-Peer (or Wi-Fi
Direct) offers a solution for peer-to-peer communication between two or more devices over Wi-Fi
without the need of an intermediary access point.

Android also provides support for NFC, including reading smart tags, and using Android Beam to
communicate directly between two NFC-enabled Android devices.

TRANSFERRING DATA USING BLUETOOTH

Bluetooth is a communications protocol designed for short-range, low-bandwidth peer-to-peer
communications.

Using the Bluetooth APIs you can search for, and connect to, other Bluetooth devices within range.
By initiating a communications link using Bluetooth Sockets, you can then transmit and receive
streams of data between devices from within your applications.

NOTE At the time of writing, only encrypted communication is supported
between devices, meaning that you can form connections only between devices
that have been paired.

Managing the Local Bluetooth Device Adapter
The local Bluetooth adapter is controlled via the BluetoothAdapter class, which represents the host
Android device on which your application is running.

To access the default Bluetooth Adapter, call getDefaultAdapter, as shown in Listing 18-1. Some
Android devices feature multiple Bluetooth adapters, though it is currently only possible to access
the default device.

LISTING 18-1: Accessing the default Bluetooth Adapter

BluetoothAdapter bluetooth = BluetoothAdapter.getDefaultAdapter();

The Bluetooth Adapter offers methods for reading and setting properties of the local Bluetooth
hardware.

To read any of the local Bluetooth Adapter properties, initiate discovery, or find bonded devices, you
need to include the BLUETOOTH permission in your application manifest:

<uses-permission android:name="android.permission.BLUETOOTH"/>

Transferring Data Using Bluetooth ❘ 715

Bluetooth scans can be used to gather information about the user’s current location, so use of Bluetooth
also requires the ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION permissions to be declared in
your manifest:

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

You must also request at least one location permission at runtime, as described in Chapter 15.

To modify any of the local device properties, the BLUETOOTH_ADMIN permission is also required:

<uses-permission android:name="android.permission.BLUETOOTH_ADMIN"/>

The Bluetooth Adapter properties can be read and changed only if the Bluetooth Adapter is cur-
rently turned on—that is, if its device state is enabled.

Use the isEnabled method to confirm the device is enabled, after which you can access the
Bluetooth Adapter’s friendly name (an arbitrary string that users can set to identify a particular
device) and hardware address, using the getName and getAddress methods, respectively:

if (bluetooth.isEnabled()) {
 String address = bluetooth.getAddress();
 String name = bluetooth.getName();
}

If the device is off, these methods will return null.

If you have the BLUETOOTH_ADMIN permission, you can change the friendly name of the Bluetooth
Adapter using the setName method:

bluetooth.setName("Blackfang");

To find a more detailed description of the current Bluetooth Adapter state, use the getState
method, which will return one of the following BluetoothAdapter constants:

 ➤ STATE_TURNING_ON

 ➤ STATE_ON

 ➤ STATE_TURNING_OFF

 ➤ STATE_OFF

If Bluetooth is currently disabled, you can request the user enable it by using the
BluetoothAdapter.ACTION_REQUEST_ENABLE static constant as a startActivityForResult
action:

startActivityForResult(
 new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE), ENABLE_BLUETOOTH);

Figure 18-1 shows the resulting system dialog.

Use the result code parameter returned in the onActivity-
Result handler of your Activity to determine the success of
this request, as shown in Listing 18-2.

FIGURE 18-1

716 ❘ CHAPTER 18 CommuniCating with Bluetooth, nFC, and wi-Fi Peer-to-Peer

LISTING 18-2: Enabling Bluetooth

private BluetoothAdapter mBluetooth;
private static final int ENABLE_BLUETOOTH = 1;

private void initBluetooth() {
 if (!mBluetooth.isEnabled()) {
 // Bluetooth isn't enabled, prompt the user to turn it on.
 Intent intent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
 startActivityForResult(intent, ENABLE_BLUETOOTH);
 } else {
 // Bluetooth is enabled, initialize the UI.
 initBluetoothUI();
 }
}

protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 if (requestCode == ENABLE_BLUETOOTH)
 if (resultCode == RESULT_OK) {
 // Bluetooth has been enabled, initialize the UI.
 initBluetoothUI();
 }
}

Being Discoverable and Remote Device Discovery
The process of two devices finding each other to connect is called discovery. Before you can estab-
lish a Bluetooth Socket for communications, the local Bluetooth Adapter must bond with the remote
device. Before two devices can bond and connect, they first need to discover each other.

NOTE Although the Bluetooth protocol supports ad-hoc connections for
data transfer, this mechanism is not currently available in Android. Android
Bluetooth communication is currently supported only between bonded devices.

Making Your Device Discoverable
For another Android device to find your local Bluetooth Adapter during a discovery scan, you need
to ensure that your Bluetooth Adapter is discoverable. Discoverability is indicated by the scan mode,
found using the getScanMode method on the BluetoothAdapter object.

It will return one of the following BluetoothAdapter constants:

 ➤ SCAN_MODE_CONNECTABLE_DISCOVERABLE—Inquiry scan and page scan are both enabled,
meaning that the device is discoverable from any Bluetooth device performing a discovery scan.

 ➤ SCAN_MODE_CONNECTABLE—Page scan is enabled but inquiry scan is not. This means that
devices that have previously connected and bonded to the local device’s Bluetooth Adapter
can find it now, but new devices can’t discover it.

Transferring Data Using Bluetooth ❘ 717

 ➤ SCAN_MODE_NONE—Discoverability is turned off. No remote devices can find the local
Bluetooth Adapter.

For privacy reasons, Android devices will default to having discoverability disabled. To turn on dis-
covery, you need to obtain explicit permission from the user; you do this by starting a new Activity
using the ACTION_REQUEST_DISCOVERABLE action, as shown in Listing 18-3.

LISTING 18-3: Enabling discoverability

private static final int DISCOVERY_REQUEST = 2;

private void enable_discovery() {
 startActivityForResult(
 new Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE),
 DISCOVERY_REQUEST);
}

By default, discoverability will be enabled for 2 minutes. You can modify this setting by adding an
EXTRA_DISCOVERABLE_DURATION extra to the launch Intent, specifying the number of seconds you
want discoverability to last.

The user will be prompted by a system dialog, as shown in
Figure 18-2, to turn on discoverability for the specified duration.

To learn if the user has allowed or rejected your discovery
request, override the onActivityResult handler, as shown in
Listing 18-4. The returned resultCode parameter indicates the
duration of discoverability, or the RESULT_CANCELED constant if
the user has rejected the request.

LISTING 18-4: Monitoring discoverability request approval

@Override
protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 if (requestCode == DISCOVERY_REQUEST) {
 if (resultCode == RESULT_CANCELED) {
 Log.d(TAG, "Discovery canceled by user.");
 }
 }
}

Discovering Remote Devices
Once a device has been made discoverable, it can then be discovered by another device. To discover
a new device, initiate a discovery scan from your local Bluetooth Adapter.

FIGURE 18-2

718 ❘ CHAPTER 18 CommuniCating with Bluetooth, nFC, and wi-Fi Peer-to-Peer

NOTE The discovery process can take some time to complete (up to 12
seconds). During this time, performance of your Bluetooth Adapter communi-
cations will be seriously degraded. Use the techniques in this section to check
and monitor the discovery status of the Bluetooth Adapter, and avoid doing
high-bandwidth Bluetooth operations (including connecting to a new remote
Bluetooth Device) while discovery is in progress.

Knowledge of which Bluetooth Device’s are nearby may provide information that can be used to
determine the user’s current location. Accordingly, you must include the ACCESS_COARSE_LOCATION
permission in the application manifest and request it as a runtime permission before performing
device discovery.

You can check if the local Bluetooth Adapter is already performing a discovery scan by using the
isDiscovering method.

To initiate the discovery process, call startDiscovery on the Bluetooth Adapter:

if (mBluetooth.isEnabled() && !mBluetooth.isDiscovering())
 mBluetooth.startDiscovery();

The discovery process is asynchronous. Android broadcasts Intents to notify you of the start and
end of discovery, as well as notifying you of remote devices discovered during the scan.

You can monitor changes in the discovery process by creating Broadcast Receivers to listen for the
ACTION_DISCOVERY_STARTED and ACTION_DISCOVERY_FINISHED Broadcast Intents:

private void monitorDiscovery() {
 registerReceiver(discoveryMonitor,
 new IntentFilter(BluetoothAdapter.ACTION_DISCOVERY_STARTED));
 registerReceiver(discoveryMonitor,
 new IntentFilter(BluetoothAdapter.ACTION_DISCOVERY_FINISHED));
}

BroadcastReceiver discoveryMonitor = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 if (BluetoothAdapter.ACTION_DISCOVERY_STARTED
 .equals(intent.getAction())) {
 // Discovery has started.
 Log.d(TAG, "Discovery Started...");
 }
 else if (BluetoothAdapter.ACTION_DISCOVERY_FINISHED
 .equals(intent.getAction())) {
 // Discovery has completed.
 Log.d(TAG, "Discovery Complete.");
 }
 }
};

Discovered Bluetooth Devices are returned via Broadcast Intents using the ACTION_FOUND broadcast
action.

Transferring Data Using Bluetooth ❘ 719

As shown in Listing 18-5, each Broadcast Intent includes the name of the remote device in an
extra indexed as BluetoothDevice.EXTRA_NAME, and an immutable representation of the remote
Bluetooth Device as a BluetoothDevice Parcelable object stored under the BluetoothDevice
.EXTRA_DEVICE extra.

LISTING 18-5: Discovering remote Bluetooth Devices

private BluetoothAdapter mBluetooth;
private List<BluetoothDevice> deviceList = new ArrayList<>();

private void startDiscovery() {
 if (ContextCompat.checkSelfPermission(this,
 Manifest.permission.ACCESS_COARSE_LOCATION)
 == PackageManager.PERMISSION_GRANTED) {

 mBluetooth = BluetoothAdapter.getDefaultAdapter();

 registerReceiver(discoveryResult,
 new IntentFilter(BluetoothDevice.ACTION_FOUND));

 if (mBluetooth.isEnabled() && !mBluetooth.isDiscovering()) {
 deviceList.clear();
 mBluetooth.startDiscovery();
 }
 else
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.ACCESS_COARSE_LOCATION},
 REQUEST_ACCESS_COARSE_LOCATION);
}

BroadcastReceiver discoveryResult = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 String remoteDeviceName =
 intent.getStringExtra(BluetoothDevice.EXTRA_NAME);

 BluetoothDevice remoteDevice =
 intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);

 deviceList.add(remoteDevice);

 Log.d(TAG, "Discovered " + remoteDeviceName);
 }
};

Each BluetoothDevice object returned through the discovery broadcasts represents a remote
Bluetooth Device that has been discovered.

The discovery process consumes significant resources, so you should be sure to cancel a discovery in
progress using the cancelDiscovery method, prior to attempting to connect with any discovered
devices.

720 ❘ CHAPTER 18 CommuniCating with Bluetooth, nFC, and wi-Fi Peer-to-Peer

Bluetooth Communications
The Android Bluetooth communications APIs are wrappers around RFCOMM, the Bluetooth radio
frequency communications protocol. RFCOMM supports RS232 serial communication over the
Logical Link Control and Adaptation Protocol (L2CAP) layer.

In practice, this alphabet soup provides a mechanism for opening communication sockets between
two paired Bluetooth devices.

NOTE Before your application can communicate between devices, the devices
must be paired (bonded). If you attempt to connect two unpaired devices, the
users will be prompted to pair them before the connection is established.

You can establish an RFCOMM communication channel for bidirectional communications using
the following classes:

 ➤ BluetoothServerSocket—Used to establish a listening socket for initiating a link between
devices. To establish a handshake, one device acts as a server to listen for, and accept, incom-
ing connection requests.

 ➤ BluetoothSocket—Used to create a new client to connect to a listening Bluetooth Server
Socket. Also returned by the Bluetooth Server Socket after a connection is established. Once a
connection is established, Bluetooth Sockets are used by both the server and client to transfer
data streams.

When creating an application that uses Bluetooth as a peer-to-peer transport layer across devices,
you’ll need to implement both a Bluetooth Server Socket to listen for connections and a Bluetooth
Socket to initiate a new channel and handle communications.

When connected, the Bluetooth Server Socket returns a BluetoothSocket that can be used to send
and receive data. This server-side Bluetooth Socket is used in exactly the same way as the client
socket. The designations of server and client are relevant only to how the connection is established;
they don’t affect how data flows after that connection is made.

Opening a Bluetooth Server Socket Listener
A Bluetooth Server Socket is used to listen for incoming Bluetooth Socket connection requests from
remote Bluetooth Devices. In order for two Bluetooth Devices to be connected, one must act as a
server (listening for and accepting incoming requests) and the other as a client (initiating the request
to connect to the server). After the two are connected, the communications between the server and
host device are handled through a BluetoothSocket instance at both ends.

To have your Bluetooth Adapter act as a server, call its listenUsingRfcommWithServiceRecord
method to listen for incoming connection requests. Pass in a name to identify this server, along with
a universally unique identifier (UUID):

String name = "mybluetoothserver";
UUID uuid = UUID.randomUUID();

Transferring Data Using Bluetooth ❘ 721

final BluetoothServerSocket btserver =
 bluetooth.listenUsingRfcommWithServiceRecord(name, uuid);

The method will return a BluetoothServerSocket object—note that the client Bluetooth Socket
that is to connect to this server will need to know the server’s UUID in order to connect.

Call accept on the Server Socket, optionally passing in a timeout duration, to have it start listen-
ing for connections. The Server Socket will now block until a remote Bluetooth Socket client with a
matching UUID attempts to connect:

// Block until client connection established.
BluetoothSocket serverSocket = btserver.accept();

If a connection request is made from a remote device that is
not yet paired with the local Bluetooth Adapter, the users
on each devices will be prompted to accept a pairing request
before the accept call returns. This prompt is made via a
Notification, as shown in Figure 18-3.

If an incoming connection request is successful, accept will
return a Bluetooth Socket connected to the client device. You can use this socket to transfer data, as
shown later in this section.

WARNING Note that accept is a blocking operation, so it’s important to listen
for incoming connection requests on a background thread rather than block the
UI thread until a connection has been made.

It’s also important to note that your Bluetooth Adapter must be discoverable for remote Bluetooth
Devices to connect to it. Listing 18-6 shows some typical skeleton code that uses the ACTION_
REQUEST_DISCOVERABLE broadcast to request that the device be made discoverable, before listening
for incoming connection requests for the returned discoverability duration.

LISTING 18-6: Listening for Bluetooth Socket connection requests

private BluetoothAdapter mBluetooth;
private BluetoothSocket mBluetoothSocket;

private UUID startServerSocket() {
 UUID uuid = UUID.randomUUID();
 String name = "bluetoothserver";

 mBluetooth = BluetoothAdapter.getDefaultAdapter();
 try {
 final BluetoothServerSocket btserver =
 mBluetooth.listenUsingRfcommWithServiceRecord(name, uuid);

 Thread acceptThread = new Thread(new Runnable() {
 public void run() {
 try {

FIGURE 18-3

722 ❘ CHAPTER 18 CommuniCating with Bluetooth, nFC, and wi-Fi Peer-to-Peer

 // Block until client connection established.
 mBluetoothSocket = btserver.accept();
 // Start listening for messages.
 listenForMessages();
 } catch (IOException e) {
 Log.e(TAG, "Server connection IO Exception", e);
 }
 }
 });
 acceptThread.start();
 } catch (IOException e) {
 Log.e(TAG, "Socket listener IO Exception", e);
 }
 return uuid;
}

private void listenForMessages() {
 // TODO Listen for messages between sockets.
}

Selecting Remote Bluetooth Devices for Communications
To create a client-side Bluetooth Socket, you utilize a BluetoothDevice object that represents the
target remote server.

You can obtain a reference to a remote Bluetooth Device in a number of ways, with some important
caveats regarding the devices with which you can create a communications link.

For a Bluetooth Socket to establish a connection to a remote Bluetooth Device, the following condi-
tions must be true:

 ➤ The remote device must be discoverable.

 ➤ The remote device must be accepting connections through a Bluetooth Server Socket.

 ➤ The local and remote devices must be paired (bonded). If the devices are not paired, the users
of each device will be prompted to pair them when the connection request is initiated.

Bluetooth Device objects are proxies that represent remote devices. You can query them for the
properties of the remote devices they represent, and to initiate Bluetooth Socket connections.

You have several ways to obtain BluetoothDevices in code. In each case you should check to
ensure that the device you intend to connect to is discoverable and (optionally) determine whether
you are bonded to it. If you can’t discover the remote device, you should prompt the user to enable
discoverability on it.

You learned one technique for finding discoverable Bluetooth Devices earlier in this section. Using
the startDiscovery method and monitoring ACTION_FOUND broadcasts allows you to receive
Broadcast Intents that include a BluetoothDevice.EXTRA_DEVICE extra containing the discovered
Bluetooth Device.

LISTING 18-6 (continued)

Transferring Data Using Bluetooth ❘ 723

You can also use the getRemoteDevice method on your local Bluetooth Adapter, specifying the
hardware address of the remote Bluetooth Device you want to connect to:

BluetoothDevice device = mBluetooth.getRemoteDevice("01:23:97:35:2F:AA");

This is particularly useful when you know the hardware address of the target device, such as when
using a technology such as Android Beam to share this information between devices.

To find the set of currently paired devices, call getBondedDevices on the local Bluetooth Adapter.
You can query the returned set to find out if the target Bluetooth Device is already paired with the
local Bluetooth Adapter:

Set<BluetoothDevice> bondedDevices = mBluetooth.getBondedDevices();

if (bondedDevices.contains(knownDevice)) {
 // TODO Target device is bonded / paired with the local device.
}

Opening a Client Bluetooth Socket Connection
To initiate a communications channel with a remote device, create a Bluetooth Socket by calling
createRfcommSocketToServiceRecord on the Bluetooth Device object representing the target
remote device, passing in the UUID of the corresponding open Bluetooth Server Socket listener.

The returned Bluetooth Socket can then be used to initiate the connection with a call to connect, as
shown in Listing 18-7.

NOTE Note that connect is a blocking operation, so connection requests must
be initiated on a background thread rather than block the UI thread until a con-
nection has been made.

LISTING 18-7: Creating a client Bluetooth Socket

private BluetoothSocket mBluetoothSocket;

private void connectToServerSocket(BluetoothDevice device, UUID uuid) {
 try{
 BluetoothSocket clientSocket
 = device.createRfcommSocketToServiceRecord(uuid);

 // Block until server connection accepted.
 clientSocket.connect();

 // Add a reference to the socket used to send messages.
 mBluetoothSocket = clientSocket;

 // Start listening for messages.
 listenForMessages();
 } catch (IOException e) {
 Log.e(TAG, "Bluetooth client I/O Exception.", e);
 }
}

724 ❘ CHAPTER 18 CommuniCating with Bluetooth, nFC, and wi-Fi Peer-to-Peer

If you attempt to connect to a Bluetooth Device that has not yet been paired (bonded) with the host
device, the users will be prompted to accept a pairing request on both the server and client devices
before the connect (and accept) calls return.

Transmitting Data Using Bluetooth Sockets
After a connection has been established, you will have an open Bluetooth Socket on both the client
and the server devices. From this point onward there is no significant distinction between them; you
can send and receive data using the Bluetooth Socket on either device.

Data transfer across Bluetooth Sockets is handled via InputStream and OutputStream objects,
which you can obtain from a Bluetooth Socket using the appropriately named getInputStream and
getOutputStream methods, respectively.

Listing 18-8 shows two simple skeleton methods—the first used to send a string to a remote device
using an Output Stream, and the second to listen for incoming strings using an Input Stream. The
same technique can be used to transfer any streamable data.

LISTING 18-8: Sending and receiving strings using Bluetooth Sockets

private void sendMessage(BluetoothSocket socket, String message) {
 OutputStream outputStream;

 try {
 outputStream = socket.getOutputStream();

 // Add a stop character.
 byte[] byteArray = (message + " ").getBytes();
 byteArray[byteArray.length-1] = 0;

 outputStream.write(byteArray);
 } catch (IOException e) {
 Log.e(TAG, "Failed to send message: " + message, e);
 }
}

private boolean mListening = false;

private String listenForMessages(BluetoothSocket socket,
 StringBuilder incoming) {
 String result = "";
 mListening = true;

 int bufferSize = 1024;
 byte[] buffer = new byte[bufferSize];

 try {
 InputStream instream = socket.getInputStream();
 int bytesRead = -1;

 while (mListening) {
 bytesRead = instream.read(buffer);

Transferring Data Using Bluetooth ❘ 725

 if (bytesRead != -1) {
 while ((bytesRead == bufferSize) &&
 (buffer[bufferSize-1] != 0)) {
 result = result + new String(buffer, 0, bytesRead - 1);
 bytesRead = instream.read(buffer);
 }
 result = result + new String(buffer, 0, bytesRead - 1);
 incoming.append(result);
 }
 }
 } catch (IOException e) {
 Log.e(TAG, "Message receive failed.", e);
 }
 return result;
}

Bluetooth Profiles
In addition to the generic approach described in the previous section, the Bluetooth API also
includes profiles. Profiles provide a specialized interface for communicating between devices of spe-
cific types and purposes. The Android Bluetooth API includes support for the following profiles:

 ➤ Headset—Facilitates communication between the host device and Bluetooth headsets via the
BluetoothHeadset class.

 ➤ A2DP—The Advanced Audio Distribution Profile (A2DP) profile facilitates the streaming of
high-quality audio between devices via the BluetoothA2dp class.

 ➤ Health Device—The Bluetooth Health Device Profile (HDP) lets you communicate with
health devices such as heart-rate monitors.

To utilize a profile within your app, call getProfileProxy on your Bluetooth Adapter, passing in
a BluetoothProfile.ServiceListener implementation. When the corresponding remote device
connects, the Service Listener’s onServiceConnected handler will be triggered, providing a proxy
object that can be used to interact with the remote device:

private BluetoothAdapter mBluetooth;
private BluetoothHeadset mBluetoothHeadset;

private BluetoothProfile.ServiceListener mProfileListener =
 new BluetoothProfile.ServiceListener() {

 public void onServiceConnected(int profile, BluetoothProfile proxy) {
 if (profile == BluetoothProfile.HEADSET) {
 mBluetoothHeadset = (BluetoothHeadset) proxy;
 // TODO Utilize proxy to interact with the remote headset.
 }
 }

 public void onServiceDisconnected(int profile) {
 if (profile == BluetoothProfile.HEADSET) {
 // TODO Stop using proxy to interact with remote headset.
 mBluetoothHeadset = null;

726 ❘ CHAPTER 18 CommuniCating with Bluetooth, nFC, and wi-Fi Peer-to-Peer

 }
 }
};

private void connectHeadsetProfile () {
 // Get the default adapter
 mBluetooth = BluetoothAdapter.getDefaultAdapter();

 // Establish connection to the proxy.
 mBluetooth.getProfileProxy(this, mProfileListener,
 BluetoothProfile.HEADSET);
}

private void closeHeadsetProxy() {
 // Close proxy connection after use.
 mBluetooth.closeProfileProxy(BluetoothProfile.HEADSET, mBluetoothHeadset);
}

Once connected, you can utilize vendor-specific AT commends to control the remote device, and
correspondingly register to receive system broadcasts of vendor-specific AT commands sent by the
device.

Additional detail on how to utilize each of these profiles with different hardware implementations
are beyond the scope of this book.

Bluetooth Low Energy
Bluetooth Low Energy (BLE) is designed to provide similar functionality to regular Bluetooth, but
with significantly less power consumption. BLE is optimized for transferring small amounts of data
between nearby devices, making it ideal for interaction between an Android device and low-power
devices such as proximity sensors, heart-rate monitors, and fitness devices.

Unlike classic Bluetooth, where each device can be considered a peer, BLE connections are based
around a central device that looks for peripheral devices, and the peripherals that advertise their
existence.

As a result, peripheral devices require a central device to communicate with—they can’t communi-
cate with each other directly.

To connect your device to BLE peripherals, the BLE APIs use the same Bluetooth Adapter
described in the previous sections for classic Bluetooth communications. To search for peripherals,
use getBluetoothLeScanner to receive a BluetoothLeScanner object, and begin a scan for BLE
devices by calling startScan, passing in a ScanCallback implementation:

private void leScan() {
 mBluetooth.getBluetoothLeScanner().startScan(scanCallback);
}

// Device scan callback.
private ScanCallback scanCallback =
 new ScanCallback() {

Transferring Data Using Bluetooth ❘ 727

 @Override
 public void onScanResult(int callbackType, ScanResult result) {
 BluetoothDevice device = result.getDevice();
 }
 };

The onScanResult handler receives a ScanResult object that can be queried for the Bluetooth
Device object you’ll use to interact with the discovered remote BLE peripheral.

Once you’ve discovered peripherals, connections and communications are coordinated through the
use of Generic Attribute Profiles (GATT). The Bluetooth SIG defines many profiles for Low Energy
devices, where each profile specifies how each device works to fulfill a profile’s requirements.

As such, each GATT profile defines a specification for sending and receiving attributes between BLE
devices. Each attribute is optimized for size, and is formatted as characteristics and services.

Each characteristic is a single value with optional descriptors that describe a characteristic value
(such as by providing a description, acceptable range, or a unit of measure) that is specific to a char-
acteristic’s value.

A service is a collection of one or more characteristics that fully describe the functionality provided
by the peripheral device—for example, a “Heart Rate Monitor” service would include a “heart rate
measurement” characteristic.

A comprehensive list of existing GATT-based profiles and services is available at www.bluetooth
.com/specifications/gatt/services.

To connect to a discovered peripheral, call connectGatt passing in a BluetoothGattCallback
implementation:

BluetoothGatt mBluetoothGatt;

private void connectToGattServer(BluetoothDevice device) {
 mBluetoothGatt = device.connectGatt(this, false, mGattCallback);
}

private final BluetoothGattCallback mGattCallback =
 new BluetoothGattCallback() {
};

The returned BluetoothGatt instance can be used to execute GATT operations on the peripheral
device, while overriding the onConnectionStateChanged handler allows you to track when the con-
nection has successfully been made, at which point you can use the discoverServices method to
query the device for available GATT services:

@Override
public void onConnectionStateChange(BluetoothGatt gatt,
 int status, int newState) {
 super.onConnectionStateChange(gatt, status, newState);
 if (newState == BluetoothProfile.STATE_CONNECTED) {
 mBluetoothGatt.discoverServices();
 } else if (newState == BluetoothProfile.STATE_DISCONNECTED) {
 Log.d(TAG, "Disconnected from GATT server.");
 }
}

728 ❘ CHAPTER 18 CommuniCating with Bluetooth, nFC, and wi-Fi Peer-to-Peer

The services query is returned through the onServicesDiscovered handler:

@Override
public void onServicesDiscovered(BluetoothGatt gatt, int status) {
 super.onServicesDiscovered(gatt, status);
 for (BluetoothGattService service: gatt.getServices()) {
 Log.d(TAG, "Service: " + service.getUuid());
 for (BluetoothGattCharacteristic characteristic :
 service.getCharacteristics()) {
 Log.d(TAG, "Value: " + characteristic.getValue());
 for (BluetoothGattDescriptor descriptor :
 characteristic.getDescriptors()) {
 Log.d(TAG, descriptor.getValue().toString());
 }
 }
 }
 // TODO New services have been discovered.
}

The preceding snippet iterates over each of the characteristics for each service available on the BLE
peripheral. For most peripherals, the values for each characteristic are likely to change over time;
rather than poll each value, it’s good practice to request notification when a particular characteristic
changes using the setCharacteristicNotification method on the Bluetooth Gatt proxy object,
passing in the characteristic to be monitored:

mBluetoothGatt.setCharacteristicNotification(characteristic, enabled);

Notifications for modified values are delivered to the onCharacteristicChanged callback within
your Bluetooth Gatt Callback:

@Override
public void onCharacteristicChanged(BluetoothGatt gatt,
 BluetoothGattCharacteristic characteristic) {
 super.onCharacteristicChanged(gatt, characteristic);
 // TODO An updated value has been received for a characteristic.
}

Once your app has finished interacting with a BLE device, call close on its Bluetooth Gatt proxy
object to allow the system to recover its resources:

mBluetoothGatt.close();

TRANSFERRING DATA USING WI-FI PEER-TO-PEER

Wi-Fi Peer-to-Peer (P2P), compatible with the Wi-Fi Direct communications protocol, is designed
for medium-range, high-bandwidth peer-to-peer communications via Wi-Fi without an intermedi-
ate access point. Compared to Bluetooth, Wi-Fi Peer-to-Peer is faster, more reliable, and works over
greater distances.

Using the Wi-Fi P2P APIs, you can search for, and connect to, other Wi-Fi P2P devices within range.
By initiating a communications link using sockets, you can then transmit and receive streams of
data between supported devices (including some printers, scanners, cameras, and televisions) and

Transferring Data Using Wi-Fi Peer-to-Peer ❘ 729

between instances of your application running on different devices without needing to connect to
the same network.

As a high-bandwidth alternative to Bluetooth, Wi-Fi P2P is particularly suitable for operations such
as media sharing and live media streaming.

Initializing the Wi-Fi Peer-to-Peer Framework
To use Wi-Fi P2P, your application requires the following manifest permissions:

<uses-permission android:name="android.permission.CHANGE_NETWORK_STATE" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>
<uses-permission android:name="android.permission.CHANGE_WIFI_STATE"/>
<uses-permission android:name="android.permission.INTERNET"/>

Wi-Fi Direct connections are initiated and managed using the WifiP2pManager system service:

 wifiP2pManager =
 (WifiP2pManager)getSystemService(Context.WIFI_P2P_SERVICE);

Before you can use the Wi-Fi P2P Manager, you must create a channel to the Wi-Fi Direct frame-
work using the Wi-Fi P2P Manager’s initialize method. Pass in the current Context, the Looper
on which to receive Wi-Fi Direct events, and a ChannelListener to listen for the loss of your chan-
nel connection, as shown in Listing 18-9.

LISTING 18-9: Initializing Wi-Fi Direct

private WifiP2pManager mWifiP2pManager;
private WifiP2pManager.Channel mWifiDirectChannel;

private void initializeWiFiDirect() {
 mWifiP2pManager
 = (WifiP2pManager)getSystemService(Context.WIFI_P2P_SERVICE);

 mWifiDirectChannel = mWifiP2pManager.initialize(this, getMainLooper(),
 new WifiP2pManager.ChannelListener() {
 public void onChannelDisconnected() {
 Log.d(TAG, "Wi-Fi P2P channel disconnected.");
 }
 }
);
}

You will use the returned Wi-Fi P2P Channel whenever you interact with the Wi-Fi P2P framework,
so initializing the Wi-Fi P2P Manager is done within the onCreate handler of your Activity.

Most actions performed using the Wi-Fi P2P Manager (such as peer discovery and connection
attempts) will immediately indicate their success (or failure) using an ActionListener, as shown
in Listing 18-10. When successful, the return values associated with those actions are obtained by
receiving Broadcast Intents, as described in the following sections.

730 ❘ CHAPTER 18 CommuniCating with Bluetooth, nFC, and wi-Fi Peer-to-Peer

LISTING 18-10: Creating a Wi-Fi P2P Manager Action Listener

private ActionListener actionListener = new ActionListener() {
 public void onFailure(int reason) {
 String errorMessage = "WiFi Direct Failed: ";
 switch (reason) {
 case WifiP2pManager.BUSY :
 errorMessage += "Framework busy."; break;
 case WifiP2pManager.ERROR :
 errorMessage += "Internal error."; break;
 case WifiP2pManager.P2P_UNSUPPORTED :
 errorMessage += "Unsupported."; break;
 default:
 errorMessage += "Unknown error."; break;
 }
 Log.e(TAG, errorMessage);
 }

 public void onSuccess() {
 // Success!
 // Return values will be returned using a Broadcast Intent
 }
};

You can monitor the Wi-Fi P2P status by registering a Broadcast Receiver that receives the
WifiP2pManager.WIFI_P2P_STATE_CHANGED_ACTION action:

IntentFilter p2pEnabledFilter = new
 IntentFilter(WifiP2pManager.WIFI_P2P_STATE_CHANGED_ACTION);

registerReceiver(p2pStatusReceiver, p2pEnabledFilter);

The Intent received by the associated Broadcast Receiver, as shown in Listing 18-11, will include a
WifiP2pManager.EXTRA_WIFI_STATE extra that will be set to either WIFI_P2P_STATE_ENABLED or
WIFI_P2P_STATE_DISABLED.

LISTING 18-11: Receiving a Wi-Fi Direct status change

BroadcastReceiver p2pStatusReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 int state = intent.getIntExtra(
 WifiP2pManager.EXTRA_WIFI_STATE,
 WifiP2pManager.WIFI_P2P_STATE_DISABLED);

 switch (state) {
 case (WifiP2pManager.WIFI_P2P_STATE_ENABLED):
 // TODO Enable discovery option in the UI.
 buttonDiscover.setEnabled(true);

Transferring Data Using Wi-Fi Peer-to-Peer ❘ 731

 break;
 default:
 // TODO Disable discovery option in the UI.
 buttonDiscover.setEnabled(false);
 }
 }
};

Within the onReceive handler, you can modify your UI accordingly based on the change in state.

After creating a channel to the Wi-Fi P2P framework and enabling Wi-Fi P2P on the host and its
peer device(s), you can begin the process of discovering and connecting to peers.

Discovering Peers
To initiate a scan for peers, call the Wi-Fi P2P Manager’s discoverPeers method, passing in the
active channel and an Action Listener. Changes to the peer list will be broadcast as Intents using the
WifiP2pManager.WIFI_P2P_PEERS_CHANGED_ACTION action. Peer discovery will remain active until
a connection is established or peer discovery is cancelled.

When you receive an Intent notifying you of a change to the peer list, you can request the current list
of discovered peers using the WifiP2pManager.requestPeers method, as shown in Listing 18-12.

LISTING 18-12: Discovering Wi-Fi Direct peers

private void discoverPeers() {
 IntentFilter intentFilter
 = new IntentFilter(WifiP2pManager.WIFI_P2P_PEERS_CHANGED_ACTION);
 registerReceiver(peerDiscoveryReceiver, intentFilter);
 mWifiP2pManager.discoverPeers(mWifiDirectChannel, actionListener);
}

BroadcastReceiver peerDiscoveryReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 mWifiP2pManager.requestPeers(mWifiDirectChannel,
 new WifiP2pManager.PeerListListener() {
 public void onPeersAvailable(WifiP2pDeviceList peers) {
 // TODO Update UI with new list of peers.
 }
 });
 }
};

The requestPeers method accepts a PeerListListener whose onPeersAvailable han-
dler will execute when the peer list has been retrieved. The list of peers will be available as a
WifiP2pDeviceList, which you can then query to find the name and address of all the available
peer devices.

732 ❘ CHAPTER 18 CommuniCating with Bluetooth, nFC, and wi-Fi Peer-to-Peer

Connecting with Peers
To form a Wi-Fi P2P connection with a peer device, use the Wi-Fi P2P Manager’s connect method,
passing in the active channel, an Action Listener, and a WifiP2pConfig object that specifies the
address of a peer from our Wi-Fi P2P Device List to connect to, as shown in Listing 18-13.

LISTING 18-13: Requesting a connection to a Wi-Fi Direct peer

private void connectTo(WifiP2pDevice peerDevice) {
 WifiP2pConfig config = new WifiP2pConfig();
 config.deviceAddress = peerDevice.deviceAddress;

 mWifiP2pManager.connect(mWifiDirectChannel, config, actionListener);
}

When you attempt to establish a connection, the remote device
will be prompted to accept it. On Android devices this requires
the user to manually accept the connection request using the dia-
log shown in Figure 18-4.

If the device accepts the connection request, the successful con-
nection is broadcast on both devices using the WifiP2pManager
.WIFI_P2P_CONNECTION_CHANGED_ACTION Intent action.

The Broadcast Intent will include a NetworkInfo object parceled within the WifiP2pManager
.EXTRA_NETWORK_INFO extra. You can query the Network Info to confirm whether the change in
connection status represents a new connection or a disconnection:

NetworkInfo networkInfo
 = (NetworkInfo)intent.getParcelableExtra(WifiP2pManager.EXTRA_NETWORK_INFO);
boolean connected = networkInfo.isConnected();

In the former case, you can request further details on the connection using the WifiP2pManager
.requestConnectionInfo method, passing in the active channel and a ConnectionInfoListener,
as shown in Listing 18-14.

LISTING 18-14: Connecting to a Wi-Fi Direct peer

BroadcastReceiver connectionChangedReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 // Extract the NetworkInfo
 String extraKey = WifiP2pManager.EXTRA_NETWORK_INFO;
 NetworkInfo networkInfo =
 (NetworkInfo)intent.getParcelableExtra(extraKey);

 // Check if we're connected
 if (networkInfo.isConnected()) {

FIGURE 18-4

Transferring Data Using Wi-Fi Peer-to-Peer ❘ 733

 mWifiP2pManager.requestConnectionInfo(mWifiDirectChannel,
 new WifiP2pManager.ConnectionInfoListener() {
 public void onConnectionInfoAvailable(WifiP2pInfo info) {
 // If the connection is established
 if (info.groupFormed) {
 // If we're the server
 if (info.isGroupOwner) {
 // TODO Initiate server socket.
 }
 // If we're the client
 else if (info.groupFormed) {
 // TODO Initiate client socket.
 }
 }
 }
 });
 } else {
 Log.d(TAG, "Wi-Fi Direct Disconnected.");
 }
 }
};

The ConnectionInfoListener will fire its onConnectionInfoAvailable handler when the con-
nection details become available, passing in a WifiP2pInfo object that includes those details.

When a collection is established, a group consisting of the peers connected is formed. The initiator
of the connection will be returned as the group owner and would typically (but not necessarily) take
on the role of server for further communications.

NOTE Each P2P connection is regarded as a group, even if that connection is
exclusively between two peers.

Having established a connection, you can use standard TCP/IP sockets to transmit data between
devices.

Transferring Data Between Peers
Although the specifics of any particular data transfer implementation is beyond the scope of this
book, this section describes the basic process of transmitting data between connected devices using
Sockets.

To establish a Socket connection, one device must create a ServerSocket that listens for connec-
tion requests, and the other device must create a client Socket that makes connection requests. This
distinction is relevant only in terms of establishing the connection—after that connection is estab-
lished, the data can flow in either direction.

Create a new server-side socket using the ServerSocket class, specifying a port on which to listen
for requests. Call its accept method asynchronously, to listen for incoming requests, as shown in
Listing 18-15.

734 ❘ CHAPTER 18 CommuniCating with Bluetooth, nFC, and wi-Fi Peer-to-Peer

LISTING 18-15: Creating a server Socket

Socket mServerClient;
int port = 8666;

private void startWifiDirectServer() {
 try {
 ServerSocket serverSocket = new ServerSocket(port);
 mServerClient = serverSocket.accept();
 // TODO Once connected, use mServerClient to send messages.
 } catch (IOException e) {
 Log.e(TAG, e.getMessage(), e);
 }
}

To request a connection from the client device, create a new Socket and asynchronously use its con-
nect method, specifying the host address of the target device, a port to connect on, and a timeout
for the connection request, as shown in Listing 18-16.

LISTING 18-16: Creating a client Socket

int timeout = 10000;
int port = 8666;

private void startWifiDirectClient(String hostAddress) {
 Socket socket = new Socket();

 InetSocketAddress socketAddress
 = new InetSocketAddress(hostAddress, port);

 try {
 socket.bind(null);
 socket.connect(socketAddress, timeout);
 listenForWiFiMessages(socket);
 } catch (IOException e) {
 Log.e(TAG, "IO Exception.", e);
 }
}

Like the Server Socket call to accept, the call to connect is a blocking call that will return after the
Socket connection has been established, so both must always be called from background Threads.

After the sockets have been established, you can create Input Streams and Output Streams on either
the server- or client-side Sockets to transmit and receive data bidirectionally.

NOTE Network communications such as those described here should always
be handled on a background thread to avoid blocking the UI thread. This is
particularly the case when establishing the network connection because both the
server- and client-side logic includes blocking calls that will disrupt the UI.

Using Near Field Communication ❘ 735

USING NEAR FIELD COMMUNICATION

NFC is a contactless technology used to transmit small amounts of data across very short distances
(typically less than 4 centimeters).

NFC transfers can occur between two NFC-enabled devices, or between a device and an NFC
“tag.” Tags can range from passive tags that transmit a URL when scanned, to complex systems
such as those used in NFC payment solutions, such as Google Pay.

NFC messages in Android are handled using the NFC Data Exchange Format (NDEF).

To read, write, or broadcast NFC messages, your application requires the NFC manifest permission:

<uses-permission android:name="android.permission.NFC" />

Reading NFC Tags
When an Android device is used to scan an NFC tag, the system will decode the incoming payload
using its own tag dispatch system, which analyzes the tag, categorizes the data, and uses an Intent to
launch an application to receive the data.

For an application to receive NFC data, you need to add an Activity Intent Filter that listens for one
of the following Intent actions:

 ➤ NfcAdapter.ACTION_NDEF_DISCOVERED—The highest priority, and most specific, of the
NFC messages. Intents using this action include MIME types and/or URI data. It’s best prac-
tice to listen for this broadcast whenever possible because the extra data allows you to be
more specific in defining which tags to respond to.

 ➤ NfcAdapter.ACTION_TECH_DISCOVERED—This action is broadcast when the NFC tech-
nology is known but the tag contains no data—or contains data that can’t be mapped to a
MIME type or URI.

 ➤ NfcAdapter.ACTION_TAG_DISCOVERED—If a tag is received from an unknown technology, it
will be broadcast using this action.

Listing 18-17 shows how to register an Activity that will respond only to NFC tags that correspond
to a URI that points to my blog.

LISTING 18-17: Listening for NFC tags

<activity android:name=".BlogViewer">
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <data android:scheme="http"
 android:host="blog.radioactiveyak.com"/>
 </intent-filter>
</activity>

736 ❘ CHAPTER 18 CommuniCating with Bluetooth, nFC, and wi-Fi Peer-to-Peer

It’s good practice to make your NFC Intent Filters as specific as possible to minimize the number of
applications available to respond to a given NFC tag and provide the best, fastest user experience.

In many cases the Intent data/URI and MIME type are sufficient for your application to respond
accordingly. However, if required, the payload delivered from an NFC message is available through
extras within the Intent that started your Activity.

The NfcAdapter.EXTRA_TAG extra includes a raw Tag object that represents the scanned tag. The
NfcAdapter.EXTRA_TNDEF_MESSAGES extra contains an array of NDEF Messages, as shown in
Listing 18-18.

LISTING 18-18: Extracting NFC tag payloads

String action = getIntent().getAction();

if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(action)) {
 Parcelable[] messages
 = getIntent().getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);

 if (messages != null) {
 for (Parcelable eachMessage : messages) {
 NdefMessage message = (NdefMessage) eachMessage;
 NdefRecord[] records = message.getRecords();

 if (records != null) {
 for (NdefRecord record : records) {
 String payload = new String(record.getPayload());
 Log.d(TAG, payload);
 }
 }
 }
 }
}

Using the Foreground Dispatch System
By default, the tag dispatch system will determine which application should receive a particular tag
based on the standard process of Intent resolution. In that process, the foreground Activity has no
priority over other applications; so, if several applications are all registered to receive a tag of the
type scanned, the user will be prompted to select which to use, even if your application is in the
foreground at the time.

Using the foreground dispatch system, you can specify a particular Activity as having priority,
allowing it to become the default receiver when it is in the foreground. Foreground dispatching can
be toggled using the enable/disableForegroundDispatch methods on the NFC Adapter.

Foreground dispatching can be used only while an Activity is in the foreground, so it should be
enabled and disabled from within your onResume and onPause handlers, respectively, as shown in
Listing 18-19. The parameters to enableForegroundDispatch are described following the example.

Using Near Field Communication ❘ 737

LISTING 18-19: Enabling and disabling the foreground dispatch system

NfcAdapter mNFCAdapter;

@Override
protected void onNewIntent(Intent intent) {
 super.onNewIntent(intent);

 setIntent(intent);
 processIntent(intent);
}

@Override
public void onPause() {
 super.onPause();
 mNFCAdapter.disableForegroundDispatch(this);
}

@Override
public void onResume() {
 super.onResume();
 mNFCAdapter.enableForegroundDispatch(
 this,
 // Intent that will be used to package the Tag Intent.
 nfcPendingIntent,
 // Array of Intent Filters used to declare the Intents you
 // wish to intercept.
 intentFiltersArray,
 // Array of Tag technologies you wish to handle.
 techListsArray);
}

The Intent Filters array should declare the URIs or MIME types you want to intercept—any
received tags that don’t match these criteria will be handled using the standard tag dispatching
system. To ensure a good user experience, it’s important that you specify only the tag content your
application handles.

You can further refine the tags you receive by explicitly indicating the technologies you want to
handle—typically represented by adding the NfcF class.

Finally, the Pending Intent will be populated by the NFC Adapter to transmit the received tag
directly to your application.

Listing 18-20 shows the Pending Intent, MIME type array, and technologies array used to enable
the foreground dispatching in Listing 18-19.

LISTING 18-20: Configuring foreground dispatching parameters

private NfcAdapter mNFCAdapter;

private int NFC_REQUEST_CODE = 0;

738 ❘ CHAPTER 18 CommuniCating with Bluetooth, nFC, and wi-Fi Peer-to-Peer

private PendingIntent mNFCPendingIntent;
private IntentFilter[] mIntentFiltersArray;
private String[][] mTechListsArray;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Get the NFC Adapter.
 NfcManager nfcManager = (NfcManager)getSystemService(Context.NFC_SERVICE);
 mNFCAdapter = nfcManager.getDefaultAdapter();

 // Create the Pending Intent.
 int flags = 0;
 Intent nfcIntent = new Intent(this, getClass());
 nfcIntent.addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP);

 mNFCPendingIntent =
 PendingIntent.getActivity(this, NFC_REQUEST_CODE, nfcIntent, flags);

 // Create an Intent Filter limited to the URI or MIME type to
 // intercept TAG scans from.
 IntentFilter tagIntentFilter =
 new IntentFilter(NfcAdapter.ACTION_NDEF_DISCOVERED);
 tagIntentFilter.addDataScheme("http");
 tagIntentFilter.addDataAuthority("blog.radioactiveyak.com", null);
 mIntentFiltersArray = new IntentFilter[] { tagIntentFilter };

 // Create an array of technologies to handle.
 mTechListsArray = new String[][] {
 new String[] {
 NfcF.class.getName()
 }
 };

 // Process the Intent used to start the Activity/
 String action = getIntent().getAction();
 if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(action))
 processIntent(getIntent());
}

USING ANDROID BEAM

Android Beam provides a simple API for an application to transmit data between two Android
devices using NFC, simply by placing them back-to-back. For example, the native contacts, browser,
and YouTube applications use Android Beam to share the currently viewed contact, web page, and
video, respectively.

LISTING 18-20 (continued)

Using Android Beam ❘ 739

NOTE To beam messages, your application must be in the foreground and the
device receiving the data must not be locked.

Android Beam is initiated by tapping two NFC-enabled Android devices
together. Users are presented with a “touch to beam” UI, at which point they
can choose to “beam” the foreground application to the other device.

By enabling Android Beam within your application, you can define the payload of the beamed mes-
sage. If you don’t customize the message, the default action for your application will be to launch
it on the target device. If your application isn’t installed on the target device, the Google Play Store
will launch and display your application’s details page.

To define the message your application beams, you need to request the NFC permission in the
manifest:

<uses-permission android:name="android.permission.NFC"/>

The process to define your own custom payload is described as follows:

 1. Create an NdefMessage object that contains an NdefRecord that contains your message
payload.

 2. Assign your Ndef Message to the NFC Adapter as your Android Beam payload.

 3. Configure your application to listen for incoming Android Beam messages.

Creating Android Beam Messages
To create a new Ndef Message, create a new NdefMessage object that contains at least one
NdefRecord containing the payload you want to beam to your application on the target device.

When creating a new Ndef Record, you must specify the type of record it represents, a MIME type,
an ID, and a payload. You can use several common types of Ndef Record to transmit data using
Android Beam; note that they should always be the first record added to each beamed message.

Using the NdefRecord.TNF_MIME_MEDIA type, you can transmit an absolute URI:

NdefRecord uriRecord = new NdefRecord(
 NdefRecord.TNF_ABSOLUTE_URI,
 "http://blog.radioactiveyak.com".getBytes(Charset.forName("US-ASCII")),
 new byte[0], new byte[0]);

This is the most common Ndef Record transmitted using Android Beam because the received
Intent will be of the same form as any Intent used to start an Activity. The Intent Filter used to
decide which NFC messages a particular Activity should receive can use the scheme, host, and
pathPrefix attributes.

If you need to transmit messages that contain information that can’t be easily interpreted as a URI,
the NdefRecord.TNF_MIME_MEDIA type supports the creation of an application-specific MIME type
and the inclusion of associated payload data:

String mimeType = "application/com.professionalandroid.apps.nfcbeam";
String payload = "Not a URI";
byte[] tagId = new byte[0];

740 ❘ CHAPTER 18 CommuniCating with Bluetooth, nFC, and wi-Fi Peer-to-Peer

NdefRecord mimeRecord
 = new NdefRecord(NdefRecord.TNF_MIME_MEDIA,
 mimeType.getBytes(Charset.forName("US-ASCII")),
 tagId,
 payload.getBytes(Charset.forName("US-ASCII")));

You can find a more complete examination of the available Ndef Record types and how to use them
in the Android Developer Guide at d.android.com/guide/topics/nfc/nfc.html#creating-
records.

When constructing your Ndef Message, it’s good practice to include an Ndef Record in the form
of an Android Application Record (AAR) in addition to your payload record. This guarantees that
your application will be launched on the target device, and that if your application isn’t installed,
the Google Play Store will be launched for the user to install it.

To create an AAR Ndef Record, use the createApplicationRecord static method on the Ndef
Record class, specifying the package name of your application:

NdefRecord.createApplicationRecord("com.professionalandroid.apps.nfcbeam")

 When your Ndef Records have been created, create a new Ndef Message, passing in an array of
your Ndef Records, as shown in Listing 18-21.

LISTING 18-21: Creating an Android Beam NDEF message

String payload = "Two to beam across";
String mimeType = "application/com.professionalandroid.apps.nfcbeam";
byte[] tagId = new byte[0];

NdefMessage nfcMessage = new NdefMessage(new NdefRecord[] {
 // Create the NFC payload.
 new NdefRecord(NdefRecord.TNF_MIME_MEDIA,
 mimeType.getBytes(Charset.forName("US-ASCII")),
 tagId,
 payload.getBytes(Charset.forName("US-ASCII"))),

 // Add the AAR (Android Application Record)
 NdefRecord.createApplicationRecord("com.professionalandroid.apps.nfcbeam")
});

Assigning the Android Beam Payload
You specify your Android Beam payload using the NFC adapter. You can access the default NFC
adapter using the static getDefaultAdapter method on the NfcAdapter class:

NfcAdapter nfcAdapter = NfcAdapter.getDefaultAdapter(this);

Using Android Beam ❘ 741

You have two alternatives for specifying the NDEF Message created in Listing 18-21 as your appli-
cation’s Android Beam payload. The simplest way is to use the setNdefPushMessage method to
assign a message that should always be sent from the current Activity if Android Beam is initiated.
You would typically make this assignment once, from within your Activity’s onResume method:

nfcAdapter.setNdefPushMessage(nfcMessage, this);

A better alternative is to use the setNdefPushMessageCallback method. This handler will fire
immediately before your message is beamed, allowing you to dynamically set the payload content
based on the application’s current context—for example, which video is being watched, which web
page is being browsed, or which map coordinates are centered, as shown in Listing 18-22.

LISTING 18-22: Setting your Android Beam message dynamically

private void setBeamMessage() {
 NfcAdapter nfcAdapter = NfcAdapter.getDefaultAdapter(this);
 nfcAdapter.setNdefPushMessageCallback(
 new NfcAdapter.CreateNdefMessageCallback() {

 public NdefMessage createNdefMessage(NfcEvent event) {
 String payload = "Beam me up, Android!\n\n" +
 "Beam Time: " + System.currentTimeMillis();

 NdefMessage message = createMessage(payload);

 return message;
 }
 }, this);
}

private NdefMessage createMessage(String payload) {
 String mimeType = "application/com.professionalandroid.apps.nfcbeam";
 byte[] tagId = new byte[0];

 NdefMessage nfcMessage = new NdefMessage(new NdefRecord[] {
 // Create the NFC payload.
 new NdefRecord(NdefRecord.TNF_MIME_MEDIA,
 mimeType.getBytes(Charset.forName("US-ASCII")),
 tagId,
 payload.getBytes(Charset.forName("US-ASCII"))),

 // Add the AAR (Android Application Record)
 NdefRecord.createApplicationRecord("com.professionalandroid.apps.nfcbeam")
 });

 return nfcMessage;
}

If you set both a static message and a dynamic message using the callback handler, only the latter
will be transmitted.

742 ❘ CHAPTER 18 CommuniCating with Bluetooth, nFC, and wi-Fi Peer-to-Peer

Receiving Android Beam Messages
Android Beam messages are received much like NFC tags, as described earlier in this chapter. To
receive the payloads you packaged in Listing 18-21 and Listing 18-22, start by adding a new Intent
Filter to your Activity, as shown in Listing 18-23.

LISTING 18-23: Android Beam Intent Filter

<intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <data android:mimeType="application/com.professionalandroid.apps.nfcbeam"/>
</intent-filter>

The corresponding Activity will be launched on the recipient device when an Android Beam has
been initiated, or, if your application isn’t installed, the Google Play Store will be launched to allow
the user to download it.

The beam data will be delivered to your Activity using an Intent with the NfcAdapter.ACTION_
NDEF_DISCOVERED action and the payload available as an array of NdfMessages stored against the
NfcAdapter.EXTRA_NDEF_MESSAGES extra, as shown in Listing 18-24.

LISTING 18-24: Extracting the Android Beam payload

Parcelable[] messages
 = getIntent().getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);

if (messages != null) {
 NdefMessage message = (NdefMessage) messages[0];
 if (message != null) {
 NdefRecord record = message.getRecords()[0];

 String payload = new String(record.getPayload());
 Log.d(TAG, "Payload: " + payload);
 }
}

Typically, the payload string will be in the form of a URI, allowing you to extract and handle it as
you would the data encapsulated within an Intent to display the appropriate video, web page, or
map coordinates.

Invading the Home Screen
WHAT’S IN THIS CHAPTER?

 ➤ Creating and updating home screen Widgets

 ➤ Creating and updating collection-based home screen Widgets

 ➤ Creating Live Wallpaper

 ➤ Creating static and dynamic App Shortcuts

 ➤ Updating and removing dynamic App Shortcuts

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The code downloads for this chapter are found at www.wrox.com on the Download Code tab.
The code for this chapter is divided into the following major examples:

 ➤ Snippets_ch19.zip

 ➤ Earthquake_ch19_Part1.zip

 ➤ Earthquake_ch19_Part2.zip

CUSTOMIZING THE HOME SCREEN

Widgets, Live Wallpaper, and App Shortcuts let you add a piece of your application directly
onto the user’s device home screen. By incorporating these features into your app:

 ➤ Users get instant access to priority functionality.

 ➤ Users can see important information without needing to open an application.

 ➤ You get an entry point to your applications directly on the home screen.

19

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

744 ❘ CHAPTER 19 InvadIng the home Screen

A useful home screen Widget, Live Wallpaper, or App Shortcut
increases user engagement, can decrease the chance that an
application will be uninstalled, and increases the likelihood of its
being used.

INTRODUCING HOME SCREEN WIDGETS

Home screen Widgets, more properly AppWidgets, are visual
application components that can be added to other applications.
The most common feature of App Widgets is that they can be used
to enable users to embed an interactive piece of your application
directly within the home screen. A good App Widget provides use-
ful, concise, and timely information with minimal battery drain.

Widgets can be standalone applications, but are more commonly
a feature of a larger application—such as the Calendar and Gmail
App Widgets.

Figure 19-1 shows an example of App Widgets from some of
Google’s applications, added to the home screen.

NOTE The specific process for adding, moving, resizing, and removing App
Widgets varies based on type and version of the home screen installed on your
device. To add an App Widget to the home screen on the current Pixel and
Nexus launchers, long-press a piece of empty space and select Widgets. You will
be presented with a list of available Widgets to add to your home screen.

After adding a Widget, you can move it by long-pressing it and dragging it
around the screen. To resize a Widget, long-press and release; you’ll see small
indicators along the edges of the Widget that can be dragged to resize.

Remove Widgets by dragging them into the garbage can icon or “remove” label
at the top or bottom of the screen.

App Widgets are implemented as Broadcast Receivers. You use RemoteViews to modify the Widget
UI, which you define within a View hierarchy, that’s hosted within another application process.

A new App Widget requires three components:

 ➤ An XML layout resource to define the UI

 ➤ An XML file to describe the App Widget meta data

 ➤ A BroadcastReceiver extension to implement the Widget

FIGURE 19-1

Introducing Home Screen Widgets ❘ 745

You can create as many Widgets as you want for a single application, or you can have an application
that consists of only one Widget. It’s even possible to have an application consisting of no Widgets,
which is a particularly simple pattern to implement that we’ll leave as an exercise for the reader.

When a Widget is hosted within another application—such as the home screen—it’s run within that
parent application’s process. Widgets will wake the device from low-power sleep mode based on the
update rate, to ensure it’s up to date when it’s next visible. This can have a significant impact on battery
life, so as a developer you need to take special care when creating your Widgets to set the update rate
as low as possible, and that the code executed within the update method is lightweight and efficient.

Defining the Widget Layout
The first step in creating your Widget is to design and implement its user interface (UI) layout.

UI design guidelines exist for controlling both a Widget’s layout size and its visual styling. The
former is enforced rigidly, whereas the latter is a guide only. Visually, Widgets are often displayed
alongside other native and third-party Widgets, so it’s important that yours conform to design
standards—particularly because Widgets are most often used on the home screen. You can find
the details at the Android Developers Widget Design Guidelines site, at developer.android.com/
guide/practices/ui_guidelines/widget_design.html, and the material design Widget guide-
lines at material.io/design/platform-guidance/android-widget.html#behavior.

App Widgets fully support transparent backgrounds and allow the use of NinePatches and partially
transparent Drawable resources. It’s beyond the scope of this book to describe the Widget style
promoted by Google in detail, but note the descriptions available at the Widget UI guidelines links
provided above.

You construct your Widget’s UI as you would other visual components in Android, as described in
Chapter 5, “Building User Interfaces,” with some restrictions. Best practice is to define your Widget
layout using XML as an external layout resource, but it’s also possible to lay out your UI program-
matically within the Broadcast Receiver’s onCreate method.

For security and performance reasons, App Widget layouts are inflated in the host Activity as
RemoteViews that support a limited set of layouts and Views.

Supported layouts are limited to:

 ➤ FrameLayout

 ➤ LinearLayout

 ➤ RelativeLayout

 ➤ GridLayout

The Views they contain are restricted to the following:

 ➤ Button

 ➤ Chronometer

 ➤ ImageButton

746 ❘ CHAPTER 19 InvadIng the home Screen

 ➤ ImageView

 ➤ ProgressBar

 ➤ TextView

 ➤ ViewFlipper

In the section “Introducing Collection View Widgets” you’ll also learn how to use the following
collection-based Views within your Widget layouts:

 ➤ AdapterViewFlipper

 ➤ GridView

 ➤ ListView

 ➤ StackView

Listing 19-1 shows an XML layout resource used to define the UI of an App Widget. Note that pad-
ding is automatically added to your Widget layouts, so you shouldn’t add additional padding. Also
note that we’re setting the width and height of the layout to match_parent. You learn how to define
the minimum size of your Widget in the following section.

LISTING 19-1: App Widget XML layout resource

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <ImageView
 android:id="@+id/widget_image"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/icon"
 />
 <TextView
 android:id="@+id/widget_text"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="@string/widget_text"
 />
</LinearLayout>

Defining Your Widget Size and Other Metadata
The Android home screen is divided into a grid of cells, varying in size and number depending on
the device. It’s best practice to specify a minimum height and width for your Widget that is required
to ensure it is displayed in a good default state.

Introducing Home Screen Widgets ❘ 747

Where your minimum dimensions don’t match the exact dimensions of the home screen cells, your
Widget’s size will be rounded up to fill the cells into which it extends.

To determine the approximate minimum height and width limits required to ensure your Widget fits
within a given number of cells, you can use the following formula:

Min height or width = 70dp * (cell count) – 30dp

You specify the minimum Widget size, allocate a layout, specify the update rate, and define other
Widget settings and metadata in the Widget definition XML resource, stored in the res/xml folder
of your project.

Use the appwidget-provider tag to describe the Widget metadata using the following attributes:

 ➤ initialLayout—The layout resource to use to define the Widget’s UI layout.

 ➤ minWidth and minHeight—The minimum width and minimum height of the Widget.

 ➤ resizeMode—Setting the resize mode allows you to specify the direction in which the Widget
can be resized, using a combination of horizontal and vertical, or disabling resizing by
setting it to none. It’s best practice to support all resizing modes for your Widget.

 ➤ label—The title used by your Widget in the App Widget picker.

 ➤ updatePeriodMillis—The minimum period between Widget updates in milliseconds.
Android will wake the device to update your Widget at this rate, so you should specify at
least an hour. The App Widget Manager won’t deliver updates more frequently than once
every 30 minutes. More details on this and other update techniques are provided later in this
chapter.

 ➤ configure—You can optionally specify a fully qualified Activity to be launched when your
Widget is added to the home screen. This Activity can be used to specify Widget settings and
user preferences. Using a configuration Activity is described in the section “Creating and
Using a Widget Configuration Activity.”

 ➤ icon—By default Android will use your application’s icon when presenting your Widget
within the App Widget picker. Specify a Drawable resource to use a different icon.

 ➤ previewImage—A Drawable resource that accurately depicts how your Widget will appear
when added to the home screen. This will be displayed by the App Widget picker as a
preview.

Listing 19-2 shows the Widget definition resource file for a minimum two-cell-by-two-cell Widget
that updates once every hour, and uses the layout resource defined in the previous section.

LISTING 19-2: App Widget Provider definition

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:initialLayout="@layout/my_widget_layout"

continues

748 ❘ CHAPTER 19 InvadIng the home Screen

 android:minWidth="110dp"
 android:minHeight="110dp"
 android:label="@string/widget_label"
 android:updatePeriodMillis="360000"
 android:resizeMode="horizontal|vertical"
 android:previewImage="@drawable/widget_preview"
/>

Implementing Your Widget
Widgets are implemented as Broadcast Receivers, which specify Intent Filters that listen for the
Broadcast Intent actions AppWidget.ACTION_APPWIDGET_[UPDATE, DELETED, ENABLED, and
DISABLED] and perform the appropriate actions accordingly.

The AppWidgetProvider class encapsulates the Intent processing and provides you with event han-
dlers for each Intent action, as shown in the skeleton code in Listing 19-3.

LISTING 19-3: App Widget implementation

public class SkeletonAppWidget extends AppWidgetProvider {

 static void updateAppWidget(Context context,
 AppWidgetManager appWidgetManager,
 int appWidgetId) {

 // TODO Update indicated app widget UI.
 }

 @Override
 public void onUpdate(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 // Iterate through each widget, creating a RemoteViews object and
 // applying the modified RemoteViews to each widget.
 for (int appWidgetId : appWidgetIds)
 updateAppWidget(context, appWidgetManager, appWidgetId);
 }

 @Override
 public void onDeleted(Context context, int[] appWidgetIds) {
 // TODO Handle deletion of the widget.
 super.onDeleted(context, appWidgetIds);
 }

 @Override
 public void onDisabled(Context context) {
 // TODO Widget has been disabled.
 super.onDisabled(context);
 }

LISTING 19-2 (continued)

Introducing Home Screen Widgets ❘ 749

 @Override
 public void onEnabled(Context context) {
 // TODO Widget has been enabled.
 super.onEnabled(context);
 }
}

Like all application components, Widgets must be added to the application manifest. As they are
implemented as Broadcast Receivers, use the receiver tag and add the following two elements, as
shown in Listing 19-4:

 ➤ An Intent Filter for the android.appwidget.action.APPWIDGET_UPDATE action

 ➤ A metadata node associating the android.appwidget.provider name with the appwidget-
provider XML resource file that describes your Widget settings

LISTING 19-4: App Widget manifest node

<receiver android:name=".SkeletonAppWidget">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 <meta-data
 android:name="android.appwidget.provider"
 android:resource="@xml/widget_settings"
 />
</receiver>

Updating the Widget UI Using the App Widget Manager
and Remote Views

The RemoteViews class is used as a proxy to a View hierarchy hosted within another application’s
process. This adds a layer of security by letting you change a property or run a method on a View
while it’s running within another application—but without being able to interact with it directly.

To update the appearance of Views within your Widgets at run time, you must create and modify
Remote Views to represent them, and then apply those changes using the AppWidgetManager.
Supported modifications include changing a View’s visibility, text, or image values, and adding
Click Listeners.

Creating and Manipulating Remote Views
To create a new Remote Views object, pass the name of your application’s package, and the layout
resource you plan to manipulate, into the Remote Views constructor, as shown in Listing 19-5.

LISTING 19-5: Creating Remote Views

RemoteViews views = new RemoteViews(context.getPackageName(),
 R.layout.widget_layout);

750 ❘ CHAPTER 19 InvadIng the home Screen

Remote Views include a series of methods that provide access to many of the properties and
methods available on the Views they represent.

The most versatile of these is a collection of set methods that let you specify a target method name
to execute on a remotely hosted View. These methods support the passing of a single-value param-
eter, one for each primitive type, including Boolean, integer, byte, char, and float, as well as strings,
bitmaps, Bundles, and URI parameters:

// Set the image level for an ImageView.
views.setInt(R.id.widget_image_view, "setImageLevel", 2);
// Show the cursor of a TextView.
views.setBoolean(R.id.widget_text_view, "setCursorVisible", true);
// Assign a bitmap to an ImageButton.
views.setBitmap(R.id.widget_image_button, "setImageBitmap", myBitmap);

The modifications you apply here will not affect the running instances of your Widgets until you
apply them, as described in the following section.

A number of methods specific to certain View classes are also available, including methods to mod-
ify Text Views, Image Views, and Progress Bars:

// Update a Text View
views.setTextViewText(R.id.widget_text, "Updated Text");
views.setTextColor(R.id.widget_text, Color.BLUE);
// Update an Image View
views.setImageViewResource(R.id.widget_image, R.drawable.icon);
// Update a Progress Bar
views.setProgressBar(R.id.widget_progressbar, 100, 50, false);

You can set the visibility of any View hosted within a Remote Views layout by calling
setViewVisibility:

views.setViewVisibility(R.id.widget_text, View.INVISIBLE);

So far you have modified the Remote Views object that represents the View hierarchy within the
App Widget, but you have not applied it. For your changes to take effect, you must use the App
Widget Manager to apply your updates, as shown in the next section.

Applying Remote Views to App Widgets
To apply the changes made to Remote Views to Widgets at runtime, use the App Widget Manager’s
updateAppWidget method, passing in the identifiers of one or more Widgets to update and the
Remote View to apply:

appWidgetManager.updateAppWidget(appWidgetIds, remoteViews);

Override the onEnabled handler of your App Widget Provider to apply changes to your Widget UI
when it’s first instantiated and placed on the user’s homescreen, as shown in Listing 19-6.

Similarly, to apply scheduled updates to your Widgets override the onUpdate handler; this handler
receives the App Widget Manager, and the array of App Widget instance IDs due to be updated, as
parameters. It’s best practice to iterate over the Widget ID array, enabling you to apply different UI
values to each Widget based on its identifier and any associated configuration settings, as shown in
the pattern in Listing 19-6.

Introducing Home Screen Widgets ❘ 751

LISTING 19-6: Applying a Remote View within the App Widget Provider’s update handler

static void updateAppWidget(Context context,
 AppWidgetManager appWidgetManager,
 int appWidgetId) {

 // Create a Remote View
 RemoteViews views = new RemoteViews(context.getPackageName(),
 R.layout.widget_layout);

 // TODO Update the UI.

 // Notify the App Widget Manager to update the widget using
 // the modified remote view.
 appWidgetManager.updateAppWidget(appWidgetId, views);
}

@Override
public void onUpdate(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 // Iterate through each widget, creating a RemoteViews object and
 // applying the modified RemoteViews to each widget.
 for (int appWidgetId : appWidgetIds)
 updateAppWidget(context, appWidgetManager, appWidgetId);
}

@Override
public void onEnabled(Context context) {
 AppWidgetManager appWidgetManager =
 AppWidgetManager.getInstance(context);
 ComponentName skeletonAppWidget =
 new ComponentName(context, SkeletonAppWidget.class);
 int[] appWidgetIds =
 appWidgetManager.getAppWidgetIds(skeletonAppWidget);

 updateAppWidgets(context, appWidgetManager, appWidgetIds, pendingResult);
}

You can also update your Widgets directly from a Service, Activity, or Broadcast Receiver. To do so,
get a reference to the App Widget Manager by calling its static getInstance method, passing in the
current context:

// Get the App Widget Manager.
AppWidgetManager appWidgetManager
 = AppWidgetManager.getInstance(this);

You can then use the getAppWidgetIds method on your App Widget Manager instance to find iden-
tifiers representing each currently running instance of the specified App Widget:

// Retrieve the identifiers for each instance of your chosen widget.
ComponentName thisWidget = new ComponentName(this, SkeletonAppWidget.class);
int[] appWidgetIds = appWidgetManager.getAppWidgetIds(thisWidget);

752 ❘ CHAPTER 19 InvadIng the home Screen

To update the active Widgets, you can follow the same pattern described in Listing 19-6:

// Iterate through each widget, creating a RemoteViews object and
// applying the modified RemoteViews to each widget.
for (int appWidgetId : appWidgetIds)
 SkeletonAppWidget.updateAppWidget(this, appWidgetManager, appWidgetId);

Notice that the code used to modify the Widget UI is kept within the updateAppWidget method
of the Widget implementation. This is done to ensure any manual changes you might apply aren’t
reverted the next time the Widget is refreshed.

In all cases, it’s best practice to have the Widget handle its own UI updates based on changes to
underlying data, such as a Room database or Shared Preferences.

Adding Interactivity to Widgets
App Widgets inherit the permissions of the processes within which they run, and most home screen
apps run with full permissions, making the potential security risks significant. As a result of these
security implications, Widget interactivity is carefully controlled.

Widget interaction is generally limited to the following:

 ➤ Adding a Click Listener to one or more Views

 ➤ Changing the UI based on selection changes

 ➤ Transitioning between Views within a Collection View Widget

NOTE There is no supported technique for entering text directly into an App
Widget. If you need text input from your Widget, best practice is to add a Click
Listener to the Widget that starts an Activity to accept input.

The simplest and most powerful way to add interactivity to your Widget is by adding a Click
Listener to its Views. You do this using the setOnClickPendingIntent method on the correspond-
ing Remote Views object. Use the App Widget Manager’s updateAppWidget method to apply the
updated Remote Views to your Widgets, as you would for any UI change.

Use this method to specify a Pending Intent that will be fired when the user clicks the specified View,
as shown in Listing 19-7.

LISTING 19-7: Adding a Click Listener to an App Widget

// Create an Intent to launch an Activity
Intent intent = new Intent(context, MainActivity.class);

// Wrap it in a Pending Intent so another application
// can fire it on your behalf.
PendingIntent pendingIntent =
 PendingIntent.getActivity(context, 0, intent, 0);

Introducing Home Screen Widgets ❘ 753

// Assign the Pending Intent to be triggered when
// the assigned View is clicked.
views.setOnClickPendingIntent(R.id.widget_text, pendingIntent);

appWidgetManager.updateAppWidget(appWidgetId, views);

Pending Intents (described in more detail in Chapter 6, “Intents and Broadcast Receivers”) allow
other applications to fire an Intent on your app’s behalf. In this case, it allows the host application
to start Activities or Services, or to broadcast an Intent as though it was fired from your application
directly.

Using this technique you can add Click Listeners to one or more of the Views used within your
Widget, potentially providing support for multiple actions.

Forcing Refreshes of Your Widget Data and UI
Widgets are most commonly displayed on the home screen, so it’s important that they’re kept rel-
evant and up to date. It’s just as important to balance that relevance with your Widget’s impact on
system resources—particularly battery life. Several techniques exist for managing your Widget’s
refresh rate.

The simplest approach is to set the minimum update rate for a Widget using the updatePeriod-
Millis attribute in the Widget’s XML appwidget-provider definition. This is demonstrated in
Listing 19-8, where the Widget is updated once every hour.

LISTING 19-8: Setting the App Widget minimum update rate

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:initialLayout="@layout/widget_layout"
 android:minWidth="110dp"
 android:minHeight="110dp"
 android:label="@string/widget_label"
 android:resizeMode="horizontal|vertical"
 android:previewImage="@drawable/widget_preview"
 android:updatePeriodMillis="3600000"
/>

Setting this value will schedule a repeating Broadcast Intent that will trigger the onUpdate handler
of your Widget at the rate specified.

NOTE The host device will wake up to complete these updates, meaning they
are completed even when the device is on low-power standby. This has the
potential to be a significant resource drain, so it’s very important to consider the
implications of your update rate. In most cases the system will not broadcast a
minimum update broadcast more frequently than every 30 minutes.

754 ❘ CHAPTER 19 InvadIng the home Screen

This technique should be used to define the absolute minimum rate at which your Widget
must be updated to remain useful. Generally, the best practice approach is to use a server push—
typically initiated through Firebase Cloud Messaging, as described in Chapter 11, “Working in the
Background.” Where updates are required due to client-side changes or time-based triggers, the
update rate should be a minimum of an hour and ideally not more than once or twice a day.

App Widgets are implemented as Broadcast Receivers, so you can trigger updates and UI refreshes
by targeting them with explicit Broadcast Intents from within your application. If your Widget
requires frequent updates, you should implement an event/Intent-driven model to update it as
needed, rather than increasing the minimum polling frequency.

Listing 19-9 creates a new Broadcast Intent that explicitly targets the Widget defined earlier, while
including an action that will allow it to understand how to respond.

LISTING 19-9: Sending a Broadcast Intent to an App Widget

Intent forceWidgetUpdate = new Intent(this, SkeletonAppWidget.class);
forceWidgetUpdate.setAction(SkeletonAppWidget.FORCE_WIDGET_UPDATE);
sendBroadcast(forceWidgetUpdate);

By updating the Widget’s onReceive method handler, as shown in Listing 19-10, you can listen for
this new Broadcast Intent and use it to update your Widget.

LISTING 19-10: Updating App Widgets based on broadcast Intents

public static String FORCE_WIDGET_UPDATE =
 "com.paad.mywidget.FORCE_WIDGET_UPDATE";

@Override
public void onReceive(Context context, Intent intent) {
 super.onReceive(context, intent);

 if (FORCE_WIDGET_UPDATE.equals(intent.getAction())) {
 // TODO Update widget
 }
}

This approach is particularly useful for reacting to data updates from within your application, or a
user action such as clicking buttons on the Widget itself.

In order to refresh the data displayed in your Widget, you may need to asynchronously load data—
such as that stored in a SQL or Room database. Because App Widgets are implemented as Broadcast
Receivers, you can use the same techniques used to execute Receiver tasks asynchronously to update
your Widget.

Specifically, you can call goAsync to signal that you will be performing an asynchronous operation,
and pass the resulting Pending Result to your static update method, as shown in Listing 19-11.

Introducing Home Screen Widgets ❘ 755

LISTING 19-11: Updating an App Widget with asynchronously loaded data

@Override
public void onReceive(final Context context, final Intent intent) {
 super.onReceive(context, intent);

 // Indicate an asynchronous operation will take place.
 final PendingResult pendingResult = goAsync();

 if (FORCE_WIDGET_UPDATE.equals(intent.getAction())) {
 AppWidgetManager appWidgetManager =
 AppWidgetManager.getInstance(context);
 ComponentName skeletonAppWidget =
 new ComponentName(context, SkeletonAppWidget.class);
 int[] appWidgetIds =
 appWidgetManager.getAppWidgetIds(skeletonAppWidget);

 updateAppWidgets(context, appWidgetManager, appWidgetIds, pendingResult);
 }
}

static void updateAppWidgets(final Context context,
 final AppWidgetManager appWidgetManager,
 final int[] appWidgetIds,
 final PendingResult pendingResult) {
 // Create a thread to asynchronously load data to show in the widgets.
 Thread thread = new Thread() {
 public void run() {

 // TODO Load data from a database.
 // TODO Update the UI.

 // Update all the added widgets
 for (int appWidgetId : appWidgetIds)
 appWidgetManager.updateAppWidget(appWidgetId, views);

 if (pendingResult != null)
 pendingResult.finish();
 }
 };
 thread.start();
}

@Override
public void onUpdate(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 PendingResult pendingResult = goAsync();
 updateAppWidgets(context, appWidgetManager, appWidgetIds, pendingResult);
}

continues

756 ❘ CHAPTER 19 InvadIng the home Screen

@Override
public void onEnabled(Context context) {
 final PendingResult pendingResult = goAsync();

 AppWidgetManager appWidgetManager =
 AppWidgetManager.getInstance(context);
 ComponentName skeletonAppWidget =
 new ComponentName(context, SkeletonAppWidget.class);
 int[] appWidgetIds =
 appWidgetManager.getAppWidgetIds(skeletonAppWidget);

 updateAppWidgets(context, appWidgetManager, appWidgetIds, pendingResult);
}

Creating and Using a Widget Configuration Activity
It’s often useful to provide users with the opportunity to configure a Widget before adding it to their
home screen. Done properly, you can make it possible for users to add multiple instances of the same
Widget, each with a slightly different purpose—for example, the weather in different locations or
the contents of different e-mail inboxes.

An App Widget configuration Activity is launched immediately when a Widget is added to the
home screen. It can be any Activity within your application, provided it has an Intent Filter for the
APPWIDGET_CONFIGURE action, as shown in Listing 19-12.

LISTING 19-12: App Widget configuration Activity manifest entry

<activity
 android:name=".MyWidgetConfigurationActivity"
 android:label="@string/title_activity_my_widget_configuration">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_CONFIGURE"/>
 </intent-filter>
</activity>

To assign a configuration Activity to a Widget, you must add it to the Widget’s App Widget Provider
settings file using the configure tag. The activity must be specified by its fully qualified package
name, as shown here:

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:initialLayout="@layout/widget_layout"
 android:minWidth="110dp"
 android:minHeight="110dp"
 android:label="@string/widget_label"
 android:updatePeriodMillis="360000"
 android:resizeMode="horizontal|vertical"
 android:previewImage="@mipmap/ic_launcher"
 android:configure=
 "com.professionalandroid.apps.widgetsnippets.MyWidgetConfigurationActivity"
 />

LISTING 19-11 (continued)

Creating an Earthquake Widget ❘ 757

The Intent that launches the configuration Activity will include an EXTRA_APPWIDGET_ID extra that
provides the ID of the App Widget being configured.

Within the Activity, provide a UI to allow the user to complete the configuration and confirm. At
this stage the Activity should set result to RESULT_OK and return an Intent. The returned Intent must
include an extra that describes the ID of the Widget being configured using the EXTRA_APPWIDGET_ID
constant. This skeleton pattern is shown in Listing 19-13.

LISTING 19-13: Skeleton App Widget configuration Activity

private int appWidgetId = AppWidgetManager.INVALID_APPWIDGET_ID;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my_widget_configuration);

 Intent intent = getIntent();
 Bundle extras = intent.getExtras();
 if (extras != null) {
 appWidgetId = extras.getInt(
 AppWidgetManager.EXTRA_APPWIDGET_ID,
 AppWidgetManager.INVALID_APPWIDGET_ID);
 }

 // Set the result to canceled in case the user exits
 // the Activity without accepting the configuration
 // changes / settings. The widget will not be placed.
 setResult(RESULT_CANCELED, null);
}

private void completedConfiguration() {
 // Save the configuration settings for the Widget ID

 // Notify the Widget Manager that the configuration has completed.
 Intent result = new Intent();
 result.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);
 setResult(RESULT_OK, result);
 finish();
}

It’s your responsibility to save the configuration options selected by the user, and apply them based
on the Widget ID when updating Widgets.

CREATING AN EARTHQUAKE WIDGET

The following instructions, which extend the Earthquake example, show you how to create a new
home screen Widget to display details for the latest earthquake. The UI for this Widget is simple; we
leave it as an exercise for the reader to update it to properly conform to the Widget style guidelines.

758 ❘ CHAPTER 19 InvadIng the home Screen

When completed and added to the home screen, your Widget will appear, as shown in Figure 19-2.

FIGURE 19-2

Using a combination of the update techniques described previously, this Widget listens for broadcast
Intents that announce an update has been performed and sets the minimum update rate to ensure it
is updated at least once per day.

 1. Start by creating new String resources for when no Earthquake is being displayed:

<resources>
 [... Existing resources ...]
 <string name="widget_blank_magnitude">---</string>
 <string name="widget_blank_details">No Earthquakes</string>
</resources>

 2. Create a layout for the Widget UI as an XML resource. Save the quake_widget.xml file in
the res/layout folder. Use a Linear Layout to configure Text Views that display the quake
magnitude and location:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@color/colorPrimaryDark">
 <TextView
 android:id="@+id/widget_magnitude"

Creating an Earthquake Widget ❘ 759

 android:text="@string/widget_blank_magnitude"
 android:textColor="#FFFFFFFF"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:textSize="24sp"
 android:padding="8dp"
 android:gravity="center_vertical"
 />
 <TextView
 android:id="@+id/widget_details"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center_vertical"
 android:padding="8dp"
 android:text="@string/widget_blank_details"
 android:textColor="#FFFFFFFF"
 android:textSize="14sp"
 />
</LinearLayout>

 3. Create a stub for a new EarthquakeWidget class that extends AppWidgetProvider. You’ll
return to this class to update your Widget with the latest quake details:

public class EarthquakeWidget extends AppWidgetProvider {
}

 4. Create a new Widget definition file, quake_widget_info.xml, and place it in the res/xml
folder. Set the minimum update rate to once a day and set the Widget dimensions to two cells
wide and one cell high—110dp × 40dp. Use the Widget layout you created in Step 2 for the
initial layout:

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:initialLayout="@layout/quake_widget"
 android:minHeight="40dp"
 android:minWidth="110dp"
 android:resizeMode="horizontal|vertical"
 android:updatePeriodMillis="86400000">
</appwidget-provider>

 5. Add your Widget to the application manifest, including a reference to the Widget definition
resource you created in Step 4, and registering an Intent Filter for the App Widget update
action:

<receiver android:name=".EarthquakeWidget">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 <meta-data
 android:name="android.appwidget.provider"
 android:resource="@xml/quake_widget_info"
 />
</receiver>

760 ❘ CHAPTER 19 InvadIng the home Screen

 6. Update the EarthquakeDAO class, adding a new method to query the Earthquake database
for the newest Earthquake:

@Query("SELECT * FROM earthquake ORDER BY mDate DESC LIMIT 1")
Earthquake getLatestEarthquake();

 7. Return to the EarthquakeWidget class from Step 2, and create a static updateAppWidgets
method that will create a background thread to update Widgets using the result from Step 6.
Note that we call finish on the PendingResult parameter to notify the Receiver that the
asynchronous work is complete:

static void updateAppWidgets(final Context context,
 final AppWidgetManager appWidgetManager,
 final int[] appWidgetIds,
 final PendingResult pendingResult) {
 Thread thread = new Thread() {
 public void run() {

 Earthquake lastEarthquake
 = EarthquakeDatabaseAccessor.getInstance(context)
 .earthquakeDAO().getLatestEarthquake();

 pendingResult.finish();
 }
 };
 thread.start();
}

 8. Still within the updateAppWidget method, create a new RemoteViews object to set the text
displayed by the Widget’s Text View elements to show the magnitude and location of the
latest earthquake. Also use the setOnClickPendingIntent method to open the Earthquake
Main Activity when the widget is clicked:

static void updateAppWidgets(final Context context,
 final AppWidgetManager appWidgetManager,
 final int[] appWidgetIds,
 final PendingResult pendingResult) {
 Thread thread = new Thread() {
 public void run() {

 Earthquake lastEarthquake
 = EarthquakeDatabaseAccessor.getInstance(context)
 .earthquakeDAO().getLatestEarthquake();

 boolean lastEarthquakeExists = lastEarthquake != null;

 String lastMag = lastEarthquakeExists ?
 String.valueOf(lastEarthquake.getMagnitude()) :
 context.getString(R.string.widget_blank_magnitude);

 String details = lastEarthquakeExists ?
 lastEarthquake.getDetails() :
 context.getString(R.string.widget_blank_details);

Creating an Earthquake Widget ❘ 761

 RemoteViews views = new RemoteViews(context.getPackageName(),
 R.layout.quake_widget);

 views.setTextViewText(R.id.widget_magnitude, lastMag);
 views.setTextViewText(R.id.widget_details, details);

 // Create a Pending Intent that will open the main Activity.
 Intent intent = new Intent(context, EarthquakeMainActivity.class);
 PendingIntent pendingIntent =
 PendingIntent.getActivity(context, 0, intent, 0);

 views.setOnClickPendingIntent(R.id.widget_magnitude,
 pendingIntent);
 views.setOnClickPendingIntent(R.id.widget_details,
 pendingIntent);

 // Update all the added widgets
 for (int appWidgetId : appWidgetIds)
 appWidgetManager.updateAppWidget(appWidgetId, views);

 pendingResult.finish();
 }
 };
 thread.start();
}

 9. Override the onUpdate handler. Use the goAsync method to indicate the updates will be
handled asynchronously, and call updateAppWidgets to update each widget that requires an
update:

@Override
public void onUpdate(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 PendingResult pendingResult = goAsync();
 updateAppWidgets(context, appWidgetManager,
 appWidgetIds, pendingResult);
}

 10. Also override the onEnabled hander. This will be triggered when the first Widget is added,
and subsequently when all available Widgets for an application are enabled after having been
disabled. Call goAsync before calling updateAppWidgets, passing in all the currently placed
instances of this Widget:

@Override
public void onEnabled(Context context) {
 final PendingResult pendingResult = goAsync();

 AppWidgetManager appWidgetManager =
 AppWidgetManager.getInstance(context);
 ComponentName earthquakeWidget =
 new ComponentName(context, EarthquakeWidget.class);
 int[] appWidgetIds =

762 ❘ CHAPTER 19 InvadIng the home Screen

 appWidgetManager.getAppWidgetIds(earthquakeWidget);

 updateAppWidgets(context, appWidgetManager,
 appWidgetIds, pendingResult);
}

Your Widget is now ready to be used and will update with new earthquake details when
added to the home screen and once every 24 hours thereafter.

 11. Further enhance the Widget to update whenever the earthquake database is updated. Still
within the EarthquakeWidget class, create a new action string that will be used within an
Intent to indicate a new earthquake has been added to the database. Override the onReceive
method to add a check for this action when a new Intent is received, and use updateApp-
Widgets to update each placed Widget. Be sure to call through to the super class to ensure
that the standard Widget event handlers are still triggered:

public static final String NEW_QUAKE_BROADCAST =
 "com.paad.earthquake.NEW_QUAKE_BROADCAST";

@Override
public void onReceive(Context context, Intent intent){
 super.onReceive(context, intent);

 if (NEW_QUAKE_BROADCAST.equals(intent.getAction())) {
 PendingResult pendingResult = goAsync();

 AppWidgetManager appWidgetManager =
 AppWidgetManager.getInstance(context);
 ComponentName earthquakeWidget =
 new ComponentName(context, EarthquakeWidget.class);
 int[] appWidgetIds =
 appWidgetManager.getAppWidgetIds(earthquakeWidget);

 updateAppWidgets(context, appWidgetManager,
 appWidgetIds, pendingResult);
 }
}

 12. Within the Earthquake Update Job Service, modify the onRunJob method to broadcast an
Intent to the Earthquake Widget with the action String defined in Step 11. Note that since
API 26, a Broadcast Receiver can’t register to listen for an implicit Intent within the
manifest—so ensure the Intent explicitly targets the EarthquakeWidget class, as well as
setting the action string:

@Override
public int onRunJob(final JobParameters job) {
 // Result ArrayList of parsed earthquakes.
 ArrayList<Earthquake> earthquakes = new ArrayList<>(0);

 URL url;
 try {

 [... Download and parse the earthquake XML feed]
 [... Handle Notifications ...]

Introducing Collection View Widgets ❘ 763

 EarthquakeDatabaseAccessor
 .getInstance(getApplicationContext())
 .earthquakeDAO()
 .insertEarthquakes(earthquakes);

 // Update the Earthquake Widget
 Intent newEarthquake = new Intent(this, EarthquakeWidget.class);
 newEarthquake.setAction(EarthquakeWidget.NEW_QUAKE_BROADCAST);
 sendBroadcast(newEarthquake);

 [...Handle future scheduling ...]

 return RESULT_SUCCESS;
 }
 [... Exception Handling ...]
}

INTRODUCING COLLECTION VIEW WIDGETS

Collection View Widgets are designed to display collections of data
represented as lists, grids, or stacks using one of three supported
Views:

 ➤ ListView—A traditional scrolling list of items. Each item
in the associated collection is displayed as a row in a verti-
cal list.

 ➤ GridView—A two-dimensional scrolling grid where each
item is displayed within a cell. You can control the number
of columns, their width, and relevant spacing.

 ➤ StackView—A flip-card style View that displays its child
Views as a stack. The stack will automatically rotate
through its collection, moving the topmost item to the back
to reveal the one beneath it. Users can manually transition
between items by swiping up or down to reveal the previ-
ous or next items, respectively.

Figure 19-3 shows Widgets added to the home screen.

Each of these Views extends the Adapter View class. As a result,
the UI used to display each item in the collection is defined using
whatever layout you provide; however, the UI for each item is restricted to the same Views and lay-
outs supported by App Widgets:

 ➤ FrameLayout

 ➤ LinearLayout

 ➤ RelativeLayout

FIGURE 19-3

764 ❘ CHAPTER 19 InvadIng the home Screen

 ➤ Button

 ➤ ImageButton

 ➤ ImageView

 ➤ ProgressBar

 ➤ TextView

 ➤ ViewFlipper

Collection View Widgets can be used to display any collection of data, but they’re particularly use-
ful for creating dynamic Widgets that display data from a database.

Collection View Widgets are implemented in much the same way as regular App Widgets—using
App Widget Provider Info files to configure the Widget settings, BroadcastReceivers to define
their behavior, and RemoteViews to modify the Widgets at run time.

In addition, collection-based App Widgets require the following components:

 ➤ An additional layout resource that defines the layout for each item displayed within the
collection.

 ➤ A RemoteViewsFactory that acts as an Adapter for your Widget by populating the item
Views. It creates the Remote Views using the item layout definition and populates its ele-
ments using the underlying data you want to display.

 ➤ A RemoteViewsService that instantiates and manages the Remote Views Factory.

Using these components, you can use the Remote Views Factory to create and update each of
the Views that will represent the items in your collection. This process is described in the section
“Populating Collection View Widgets Using a Remote Views Service.”

Creating Collection View Widget Layouts
Collection View Widgets require two layout definitions—one that includes either a Stack, List, or
Grid View, and another that describes the layout to be used by each item within the stack, list, or
grid.

As with regular App Widgets, it’s best practice to define your layouts as external XML layout
resources, as shown in Listing 19-14.

LISTING 19-14: Defining the Widget layout with a Stack Widget

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <StackView
 android:id="@+id/widget_stack_view"

Introducing Collection View Widgets ❘ 765

 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />
</FrameLayout>

Listing 19-15 shows an example layout resource used to describe the UI of each card displayed by
the Stack View Widget.

LISTING 19-15: Defining the layout for each item displayed within a Stack View Widget

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="#FF555555">
 <TextView
 android:id="@+id/widget_text"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:gravity="center_horizontal"
 android:text="Place holder text"
 />
 <TextView
 android:id="@+id/widget_title_text"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_above="@id/widget_text"
 android:textSize="30sp"
 android:gravity="center"
 android:text="---"
 />
</RelativeLayout>

The Widget layout is used within the App Widget Provider Info resource as it would be for any App
Widget. The item layout is used by a Remote Views Factory to create the Views used to represent
each item in the underlying collection.

Updating Collection View Items with a Remote Views Factory
The RemoteViewsFactory creates and populates the Views that will be displayed in the Collection
View Widget—effectively binding them to the underlying data collection.

To implement your Remote Views Factory, extend the RemoteViewsFactory class.

Your implementation should mirror that of a custom Adapter that will populate the Stack, List, or
Grid View. Listing 19-16 shows a simple implementation of a Remote Views Factory that uses a
static Array List to populate its Views. Note that the Remote Views Factory doesn’t need to know
what kind of Collection View Widget will be used to display each item.

766 ❘ CHAPTER 19 InvadIng the home Screen

LISTING 19-16: Creating a Remote Views Factory

class MyRemoteViewsFactory implements RemoteViewsService.RemoteViewsFactory {

 private ArrayList<String> myWidgetText = new ArrayList<String>();
 private Context context;
 private Intent intent;
 private int widgetId;

 public MyRemoteViewsFactory(Context context, Intent intent) {
 // Optional constructor implementation.
 // Useful for getting references to the
 // Context of the calling widget
 this.context = context;
 this.intent = intent;

 widgetId = intent.getIntExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,
 AppWidgetManager.INVALID_APPWIDGET_ID);
 }

 // Set up any connections / cursors to your data source.
 // Heavy lifting, like downloading data should be
 // deferred to onDataSetChanged()or getViewAt().
 // Taking more than 20 seconds in this call will result
 // in an ANR.
 public void onCreate() {
 myWidgetText.add("The");
 myWidgetText.add("quick");
 myWidgetText.add("brown");
 myWidgetText.add("fox");
 myWidgetText.add("jumps");
 myWidgetText.add("over");
 myWidgetText.add("the");
 myWidgetText.add("lazy");
 myWidgetText.add("droid");
 }

 // Called when the underlying data collection being displayed is
 // modified. You can use the AppWidgetManager's
 // notifyAppWidgetViewDataChanged method to trigger this handler.
 public void onDataSetChanged() {
 // TODO Processing when underlying data has changed.
 }

 // Return the number of items in the collection being displayed.
 public int getCount() {
 return myWidgetText.size();
 }

 // Return true if the unique IDs provided by each item are stable --
 // that is, they don't change at run time.
 public boolean hasStableIds() {
 return false;
 }

Introducing Collection View Widgets ❘ 767

 // Return the unique ID associated with the item at a given index.
 public long getItemId(int index) {
 return index;
 }

 // The number of different view definitions. Usually 1.
 public int getViewTypeCount() {
 return 1;
 }

 // Optionally specify a "loading" view to display before onDataSetChanged
 // has been called and returned. Return null to use the default.
 public RemoteViews getLoadingView() {
 return null;
 }

 // Create and populate the View to display at the given index.
 public RemoteViews getViewAt(int index) {
 // Create a view to display at the required index.
 RemoteViews rv = new RemoteViews(context.getPackageName(),
 R.layout.widget_collection_item_layout);

 // Populate the view from the underlying data.
 rv.setTextViewText(R.id.widget_title_text,
 myWidgetText.get(index));
 rv.setTextViewText(R.id.widget_text, "View Number: " +
 String.valueOf(index));

 // Create an item-specific fill-in Intent that will populate
 // the Pending Intent template created in the App Widget Provider.
 Intent fillInIntent = new Intent();
 fillInIntent.putExtra(Intent.EXTRA_TEXT, myWidgetText.get(index));
 rv.setOnClickFillInIntent(R.id.widget_title_text, fillInIntent);

 return rv;
 }

 // Close connections, cursors, or any other persistent state you
 // created in onCreate.
 public void onDestroy() {
 myWidgetText.clear();
 }
}

Updating Collection View Items with a Remote Views Service
The Remote Views Service is used as a wrapper that instantiates and manages your Remote Views
Factory, which, in turn, is used to supply each of the Views displayed within the Collection View
Widget as described in the previous section.

To create a Remote Views Service, extend the RemoteViewsService class and override the
onGetViewFactory handler to return a new instance of a Remote Views Factory, as shown in
Listing 19-17.

768 ❘ CHAPTER 19 InvadIng the home Screen

LISTING 19-17: Creating a Remote Views Service

public class MyRemoteViewsService extends RemoteViewsService {

 @Override
 public RemoteViewsFactory onGetViewFactory(Intent intent) {
 return new MyRemoteViewsFactory(getApplicationContext(), intent);
 }

}

As with any Service, you’ll need to add your Remote Views Service to your application manifest
using a service tag. To prevent other applications from accessing your Widgets, you must specify
the android.permission.BIND_REMOTEVIEWS permission, as shown in Listing 19-18.

LISTING 19-18: Adding a Remote Views Service to the manifest

<service
 android:name=".MyRemoteViewsService"
 android:permission="android.permission.BIND_REMOTEVIEWS">
</service>

Populating Collection View Widgets Using a Remote Views
Service

With your Remote Views Factory and Remote Views Service complete, all that remains is to bind
the List, Grid, or Stack View within your App Widget Layout to the Remote Views Service. You
do this using a Remote View, typically within a static update method that’s called from within the
onUpdate and onEnabled handlers of your App Widget implementation.

Create a new Remote View instance as you would when updating the UI of a standard App Widget.
Use the setRemoteAdapter method to bind your Remote Views Service to the particular List, Grid,
or Stack View within the Widget layout.

The Remote Views Service is specified using an Intent that includes an extra value that defines the
ID of the Widget to which it is being associated:

Intent intent = new Intent(context, MyRemoteViewsService.class);
intent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);

views.setRemoteAdapter(R.id.widget_stack_view, intent);

This Intent is received by the onGetViewFactory handler within the Remote Views Service,
enabling you to pass additional parameters into the Service and the Factory it contains.

The setEmptyView method provides a means of specifying a View that should be displayed in place
of the Collection View if (and only if) the underlying data collection is empty:

views.setEmptyView(R.id.widget_stack_view, R.id.widget_empty_text);

Introducing Collection View Widgets ❘ 769

After completing the binding process, use the App Widget Manager’s updateAppWidget method to
apply the binding to the specified Widget. Listing 19-19 shows the standard pattern for binding a
Widget to a Remote Views Service.

LISTING 19-19: Binding a Remove Views Service to a Widget

static void updateAppWidget(Context context,
 AppWidgetManager appWidgetManager,
 int appWidgetId) {

 // Create a Remote View.
 RemoteViews views = new RemoteViews(context.getPackageName(),
 R.layout.widget_collection_layout);

 // Bind this widget to a Remote Views Service.
 Intent intent = new Intent(context, MyRemoteViewsService.class);
 intent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);
 views.setRemoteAdapter(R.id.widget_stack_view, intent);

 // Specify a View within the Widget layout hierarchy to display
 // when the bound collection is empty.
 views.setEmptyView(R.id.widget_stack_view, R.id.widget_empty_text);

 // TODO Customize this Widgets UI based on configuration
 // settings etc.

 // Notify the App Widget Manager to update the widget using
 // the modified remote view.
 appWidgetManager.updateAppWidget(appWidgetId, views);
}

Adding Interactivity to the Items Within a Collection View
Widget

For efficiency reasons, it’s not possible to assign a unique onClickPendingIntent to each item dis-
played as part of a Collection View Widget. Instead, use the setPendingIntentTemplate to assign
a template Intent to your Widget when updating the Remote Views, as shown in Listing 19-20.

LISTING 19-20: Adding a Click Listener to individual items within a Collection View Widget
using a Pending Intent

Intent templateIntent = new Intent(context, MainActivity.class);

templateIntent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);

PendingIntent templatePendingIntent = PendingIntent.getActivity(
 context, 0, templateIntent, PendingIntent.FLAG_UPDATE_CURRENT);

views.setPendingIntentTemplate(R.id.widget_stack_view,
 templatePendingIntent);

appWidgetManager.updateAppWidget(appWidgetId, views);

770 ❘ CHAPTER 19 InvadIng the home Screen

This Pending Intent can then be “filled-in” within the getViewAt handler of your Remote Views
Service implementation using the setOnClickFillInIntent method of your Remote Views object,
as shown in Listing 19-21.

LISTING 19-21: Filling in a Pending Intent template for each item displayed in your Collection
View Widget

// Create the item-specific fill-in Intent that will populate
// the Pending Intent template created in the App Widget Provider.
Intent fillInIntent = new Intent();
fillInIntent.putExtra(Intent.EXTRA_TEXT, myWidgetText.get(index));
rv.setOnClickFillInIntent(R.id.widget_title_text, fillInIntent);

The fill-in Intent is applied to the template Intent using the Intent.fillIn method. It copies the
contents of the fill-in Intent into the template Intent, replacing any undefined fields with those
defined by the fill-in Intent. Fields with existing data will not be overridden.

The resulting Pending Intent will be broadcast when a user clicks that particular item from within
your collection Widget.

Refreshing Your Collection View Widgets
The App Widget Manager includes the notifyAppWidgetViewDataChanged method, which allows
you to specify a Widget ID (or array of IDs) to update, along with the resource identifier for the
collection View within that Widget whose underlying data source has changed:

appWidgetManager.notifyAppWidgetViewDataChanged(appWidgetIds,
 R.id.widget_stack_view);

This will cause the onDataSetChanged handler within the associated Remote Views Factory to
be executed, followed by the meta-data calls, including getCount, before each of the Views is
re-created.

Creating an Earthquake Collection View Widget
In this example you add a second Widget to the Earthquake application. This one uses a ListView-
based Collection View Widget to display a list of the recent earthquakes.

 1. Start by creating a layout for the Collection View Widget UI as an XML resource. Save the
quake_collection_widget.xml file in the res/layout folder. Use a Frame Layout that
includes the List View for displaying the earthquakes and a Text View to display when the
collection is empty:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <ListView

Introducing Collection View Widgets ❘ 771

 android:id="@+id/widget_list_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />
 <TextView
 android:id="@+id/widget_empty_text"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:text="@string/widget_blank_details"
 />
</FrameLayout>

 2. Create a new EarthquakeListWidget class that extends AppWidgetProvider and imple-
ments the standard pattern for enabling and updating Widgets. You’ll return to this class to
bind your Widget to the Remote Views Service that will provide the Views that display each
earthquake:

public class EarthquakeListWidget extends AppWidgetProvider {

 @Override
 public void onUpdate(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 PendingResult pendingResult = goAsync();
 updateAppWidgets(context, appWidgetManager,
 appWidgetIds, pendingResult);
 }

 @Override
 public void onEnabled(Context context) {
 final PendingResult pendingResult = goAsync();

 AppWidgetManager appWidgetManager =
 AppWidgetManager.getInstance(context);
 ComponentName earthquakeListWidget =
 new ComponentName(context, EarthquakeListWidget.class);
 int[] appWidgetIds =
 appWidgetManager.getAppWidgetIds(earthquakeListWidget);

 updateAppWidgets(context, appWidgetManager,
 appWidgetIds, pendingResult);
 }

 static void updateAppWidgets(final Context context,
 final AppWidgetManager appWidgetManager,
 final int[] appWidgetIds,
 final PendingResult pendingResult) {
 Thread thread = new Thread() {
 public void run() {

 // TODO Set Widget Remote Views

772 ❘ CHAPTER 19 InvadIng the home Screen

 if (pendingResult != null)
 pendingResult.finish();
 }
 };
 thread.start();
 }
}

 3. Create a new Widget definition file, quake_list_widget_info.xml, in the res/xml folder.
Set the minimum update rate to once a day, set the Widget dimensions to two cells wide and
one cell high (110dp × 40dp), and make it resizable. Use the Widget layout you created in
Step 1 for the initial layout:

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:initialLayout="@layout/quake_collection_widget"
 android:minWidth="110dp"
 android:minHeight="40dp"
 android:updatePeriodMillis="8640000"
 android:resizeMode="vertical|horizontal"
/>

 4. Add your Widget to the application manifest, including a reference to the Widget definition
resource you created in Step 3. It should also include an Intent Filter for the App Widget
update action:

<receiver
 android:name=".EarthquakeListWidget"
 android:label="Earthquake List">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 <meta-data
 android:name="android.appwidget.provider"
 android:resource="@xml/quake_list_widget_info"
 />
</receiver>

 5. Create a new EarthquakeRemoteViewsService class that extends RemoteViewsService.
It should include an internal EarthquakeRemoteViewsFactory class that extends
RemoteViewsFactory, which should be returned from the Earthquake Remote Views
Service’s onGetViewFactory handler:

public class EarthquakeRemoteViewsService extends RemoteViewsService {

 @Override
 public RemoteViewsFactory onGetViewFactory(Intent intent) {
 return new EarthquakeRemoteViewsFactory(this);
 }

 class EarthquakeRemoteViewsFactory implements RemoteViewsFactory {

 private Context mContext;

Introducing Collection View Widgets ❘ 773

 public EarthquakeRemoteViewsFactory(Context context) {
 mContext = context;
 }

 public void onCreate() {
 }

 public void onDataSetChanged() {
 }

 public int getCount() {
 return 0;
 }

 public long getItemId(int index) {
 return index;
 }

 public RemoteViews getViewAt(int index) {
 return null;
 }

 public int getViewTypeCount() {
 return 1;
 }

 public boolean hasStableIds() {
 return true;
 }

 public RemoteViews getLoadingView() {
 return null;
 }

 public void onDestroy() {
 }
 }
}

 6. Update the onDataSetChanged handler to query the database:

private List<Earthquake> mEarthquakes;

public void onDataSetChanged() {
 mEarthquakes = EarthquakeDatabaseAccessor.getInstance(mContext)
 .earthquakeDAO().loadAllEarthquakesBlocking();
}

 7. The Earthquake Remote Views Factory supplies the Views that represent each Earthquake
in the Widget’s List View. Populate each of the method stubs to use the data from the
Earthquake List to populate the View that represent each item.

 7.1 Start by updating the getCount and getItemId methods to return the number
of Earthquakes in the List, and a unique numeric identifier associated with each
Earthquake, respectively:

774 ❘ CHAPTER 19 InvadIng the home Screen

public int getCount() {
 if (mEarthquakes == null) return 0;
 return mEarthquakes.size();
}

public long getItemId(int index) {
 if (mEarthquakes == null) return index;
 return mEarthquakes.get(index).getDate().getTime();
}

 7.2 Then update the getViewAt method. This is where the Views used to represent each
Earthquake in the List View are created and populated. Create a new Remote Views
object using the layout definition you created for the previous Earthquake Widget, and
populate it with data from the specified Earthquake:

public RemoteViews getViewAt(int index) {
 if (mEarthquakes != null) {
 // Extract the requested Earthquake.
 Earthquake earthquake = mEarthquakes.get(index);

 // Extract the values to be displayed.
 String id = earthquake.getId();
 String magnitude = String.valueOf(earthquake.getMagnitude());
 String details = earthquake.getDetails();

 // Create a new Remote Views object and use it to populate the
 // layout used to represent each earthquake in the list.
 RemoteViews rv = new RemoteViews(mContext.getPackageName(),
 R.layout.quake_widget);

 rv.setTextViewText(R.id.widget_magnitude, magnitude);
 rv.setTextViewText(R.id.widget_details, details);

 // Create a Pending Intent that will open the main Activity.
 Intent intent = new Intent(mContext, EarthquakeMainActivity.class);
 PendingIntent pendingIntent =
 PendingIntent.getActivity(mContext, 0, intent, 0);

 rv.setOnClickPendingIntent(R.id.widget_magnitude, pendingIntent);
 rv.setOnClickPendingIntent(R.id.widget_details, pendingIntent);

 return rv;
 } else {
 return null;
 }
}

 8. Add the Earthquake Remote Views Service to your application manifest, including a require-
ment for the BIND_REMOTEVIEWS permission:

<service
 android:name=".EarthquakeRemoteViewsService"
 android:permission="android.permission.BIND_REMOTEVIEWS">
</service>

Introducing Collection View Widgets ❘ 775

 9. Return to the Earthquake List Widget class and override the updateAppWidgets method to
attach the Earthquake Remote Views Service to each Widget:

static void updateAppWidgets(final Context context,
 final AppWidgetManager appWidgetManager,
 final int[] appWidgetIds,
 final PendingResult pendingResult) {
 Thread thread = new Thread() {
 public void run() {
 for (int appWidgetId: appWidgetIds) {
 // Set up the intent that starts the Earthquake
 // Remote Views Service, which will supply the views
 // shown in the List View.
 Intent intent =
 new Intent(context, EarthquakeRemoteViewsService.class);

 // Add the app widget ID to the intent extras.
 intent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,
 appWidgetId);

 // Instantiate the RemoteViews object for the App Widget layout.
 RemoteViews views
 = new RemoteViews(context.getPackageName(),
 R.layout.quake_collection_widget);

 // Set up the RemoteViews object to use a RemoteViews adapter.
 views.setRemoteAdapter(R.id.widget_list_view, intent);

 // The empty view is displayed when the collection has no items.
 views.setEmptyView(R.id.widget_list_view,
 R.id.widget_empty_text);

 // Notify the App Widget Manager to update the widget using
 // the modified remote view.
 appWidgetManager.updateAppWidget(appWidgetId, views);
 }
 if (pendingResult != null)
 pendingResult.finish();
 }
 };
 thread.start();
}

 10. As a final step, enhance the Widget to update whenever a new Earthquake is added to the
database. Within the Earthquake Update Job Service, modify the onRunJob method to broad-
cast an Intent to the new Widget:

@Override
public int onRunJob(final JobParameters job) {
 // Result ArrayList of parsed earthquakes.
 ArrayList<Earthquake> earthquakes = new ArrayList<>(0);

 URL url;
 try {

776 ❘ CHAPTER 19 InvadIng the home Screen

 [... Download and parse the earthquake XML feed]
 [... Handle Notifications ...]

 EarthquakeDatabaseAccessor
 .getInstance(getApplicationContext())
 .earthquakeDAO()
 .insertEarthquakes(earthquakes);

 // Update the Earthquake Widget
 Intent newEarthquake = new Intent(this, EarthquakeWidget.class);
 newEarthquake.setAction(EarthquakeWidget.NEW_QUAKE_BROADCAST);
 sendBroadcast(newEarthquake);

 // Update the Earthquake List Widget
 Intent newListEarthquake = new Intent(this,
 EarthquakeListWidget.class);
 newListEarthquake.setAction(EarthquakeWidget.NEW_QUAKE_BROADCAST);
 sendBroadcast(newListEarthquake);

 [...Handle future scheduling ...]

 return RESULT_SUCCESS;
 }
 [... Exception Handling ...]
}

 11. Then override the OnReceive handler within the Earthquake List Widget to listen
for the update-request Intent, and use the App Widget Manager’s notifyAppWiget-
ViewDataChanged method to trigger an update of the List View:

@Override
public void onReceive(final Context context, final Intent intent) {
 super.onReceive(context, intent);

 if (EarthquakeWidget.NEW_QUAKE_BROADCAST.equals(intent.getAction())) {
 AppWidgetManager appWidgetManager =
 AppWidgetManager.getInstance(context);
 ComponentName earthquakeListWidget =
 new ComponentName(context, EarthquakeListWidget.class);
 int[] appWidgetIds =
 appWidgetManager.getAppWidgetIds(earthquakeListWidget);

 // Notify the Earthquake List Widget that it should be refreshed.
 final PendingResult pendingResult = goAsync();
 appWidgetManager.notifyAppWidgetViewDataChanged(appWidgetIds,
 R.id.widget_list_view);
 }
}

Figure 19-4 shows the Earthquake Collection View Widget added to the home screen.

Creating Live Wallpaper ❘ 777

FIGURE 19-4

CREATING LIVE WALLPAPER

Live Wallpaper enables you to create dynamic, interactive home screen backgrounds. Live
Wallpapers use a Surface View to render a dynamic display that changes, and can be interacted
with, in real time. Your Live Wallpaper can listen for, and react to, screen touch events—letting
users engage directly with the background of their home screen.

To create a new Live Wallpaper, you need the following three components:

 ➤ An XML resource that describes the metadata associated with the Live Wallpaper—
specifically its author, description, and a thumbnail used to represent it from the Live
Wallpaper picker.

 ➤ A Wallpaper Service implementation that will wrap, instantiate, and manage your Wallpaper
Service Engine.

 ➤ A Wallpaper Service Engine implementation (returned through the Wallpaper Service) that
defines the UI and interactive behavior of your Live Wallpaper. The Wallpaper Service
Engine is where the bulk of your Live Wallpaper implementation will live.

778 ❘ CHAPTER 19 InvadIng the home Screen

Creating a Live Wallpaper Definition Resource
The Live Wallpaper resource definition is an XML file stored in the res/xml folder. Its resource
identifier is its filename without the XML extension. Use attributes within a wallpaper tag to define
the author name, description, and thumbnail to display in the Live Wallpaper gallery.

Listing 19-22 shows a sample Live Wallpaper resource definition.

LISTING 19-22: Live Wallpaper resource definition

<wallpaper xmlns:android="http://schemas.android.com/apk/res/android"
 android:author="@string/author"
 android:description="@string/description"
 android:thumbnail="@drawable/wallpapericon"
/>

Note that you must use references to string resources for the author and description attribute val-
ues. String literals are not valid.

You can also use the settingsActivity tag to specify an Activity that should be launched to con-
figure the Live Wallpaper’s settings, much like the configuration Activity used to configure App
Widget settings:

<wallpaper xmlns:android="http://schemas.android.com/apk/res/android"
 android:author="@string/author"
 android:description="@string/description"
 android:thumbnail="@drawable/wallpapericon"
 android:settingsActivity="com.paad.mylivewallpaper.WallpaperSettings"
/>

This Activity will be launched immediately before the Live Wallpaper is added to the home screen,
allowing the user to configure the Wallpaper settings.

Creating a Wallpaper Service Engine
The WallpaperService.Engine class is where you define the behavior of your Live Wallpaper. The
Wallpaper Service Engine includes a Surface View onto which you will draw your Live Wallpaper,
and handlers notifying you of touch events and home screen offset changes.

The Surface View is a specialized drawing canvas that supports updates from background threads,
making it ideal for creating smooth, dynamic, and interactive graphics.

To implement your own Wallpaper Service Engine, extend the WallpaperService.Engine class,
as shown in the skeleton code in Listing 19-23. Note that it must be implemented within the scope
of a WallpaperService class. We’ll explore the Wallpaper Service in more detail in the following
section.

Creating Live Wallpaper ❘ 779

LISTING 19-23: Wallpaper Service Engine skeleton code

public class MyWallpaperService extends WallpaperService {

 @Override
 public Engine onCreateEngine() {
 return new MyWallpaperServiceEngine();
 }

 public class MyWallpaperServiceEngine extends WallpaperService.Engine {

 private static final int FPS = 30;
 private final Handler handler = new Handler();

 @Override
 public void onCreate(SurfaceHolder surfaceHolder) {
 super.onCreate(surfaceHolder);
 // TODO Handle initialization.
 }

 @Override
 public void onOffsetsChanged(float xOffset, float yOffset,
 float xOffsetStep, float yOffsetStep,
 int xPixelOffset, int yPixelOffset) {
 super.onOffsetsChanged(xOffset, yOffset, xOffsetStep, yOffsetStep,
 xPixelOffset, yPixelOffset);
 // Triggered whenever the user swipes between multiple
 // home-screen panels.
 }

 @Override
 public void onTouchEvent(MotionEvent event) {
 super.onTouchEvent(event);
 // Triggered when the Live Wallpaper receives a touch event
 }

 @Override
 public void onSurfaceCreated(SurfaceHolder holder) {
 super.onSurfaceCreated(holder);
 // TODO Surface has been created, begin the update loop that will
 // update the Live Wallpaper.
 drawFrame();
 }

 @Override
 public void onSurfaceDestroyed(SurfaceHolder holder) {
 handler.removeCallbacks(drawSurface);
 super.onSurfaceDestroyed(holder);
 }

continues

780 ❘ CHAPTER 19 InvadIng the home Screen

 private synchronized void drawFrame() {
 final SurfaceHolder holder = getSurfaceHolder();

 if (holder != null && holder.getSurface().isValid()) {
 Canvas canvas = null;
 try {
 canvas = holder.lockCanvas();
 if (canvas != null) {
 // Draw on the Canvas!
 }
 } finally {
 if (canvas != null && holder != null)
 holder.unlockCanvasAndPost(canvas);
 }

 // Schedule the next frame
 handler.removeCallbacks(drawSurface);
 }
 handler.postDelayed(drawSurface, 1000 / FPS);
 }

 // Runnable used to allow you to schedule frame draws.
 private final Runnable drawSurface = new Runnable() {
 public void run() {
 drawFrame();
 }
 };
 }
}

You must wait for the Surface to complete its initialization—indicated by the onSurfaceCreated
handler being called—before you can begin drawing on it.

After the Surface has been created, you can begin the drawing loop that updates the Live
Wallpaper’s UI. The code in Listing 19-23 does this by scheduling a new frame to be drawn at the
completion of the drawing of the previous frame. The rate of redraws in this example is determined
by the specified frame rate.

You can also override the onTouchEvent and the onOffsetsChanged handlers to add interactivity
to your Live Wallpapers.

Creating a Wallpaper Service
While all the drawing and interaction for Live Wallpaper is handled in the Wallpaper Service
Engine, the WallpaperService class is used to instantiate, host, and manage that Engine.

Extend the WallpaperService class, and override the onCreateEngine handler to return a new
instance of your custom Wallpaper Service Engine, as shown in Listing 19-24.

LISTING 19-23 (continued)

Creating App Shortcuts ❘ 781

LISTING 19-24: Creating a Wallpaper Service

public class MyWallpaperService extends WallpaperService {

 @Override
 public Engine onCreateEngine() {
 return new MyWallpaperServiceEngine();
 }

 [... Wallpaper Engine Implementation ...]

}

After creating the Wallpaper Service, add it to your application manifest using a service tag.

A Wallpaper Service must include an Intent Filter to listen for the android.service.wallpaper
.WallpaperService action and a meta-data node that specifies android.service.wallpaper as
the name attribute and associates it with the resource file described in the previous section using a
resource attribute.

A Wallpaper Service must also include the android.permission.BIND_WALLPAPER permission.
Listing 19-35 shows how to add the Wallpaper Service from Listing 19-34 to the manifest.

LISTING 19-25: Adding a Wallpaper Service to the manifest

<service
 android:name=".MyWallpaperService"
 android:permission="android.permission.BIND_WALLPAPER">
 <intent-filter>
 <action android:name=
 "android.service.wallpaper.WallpaperService" />
 </intent-filter>
 <meta-data
 android:name="android.service.wallpaper"
 android:resource="@xml/mylivewallpaper"
 />
</service>

CREATING APP SHORTCUTS

Introduced in Android 7.1 Nougat (API Level 25), App Shortcuts allow you to create shortcuts that
link directly from the home screen or app launcher to functionality within your application.

When supported and available for a given app, App Shortcuts are revealed by long-pressing the app
icon in the launcher or home screen; they appear, as shown in Figure 19-5.

782 ❘ CHAPTER 19 InvadIng the home Screen

FIGURE 19-5

Once visible, a user can “pin” an App Shortcut directly to the home screen by long pressing, drag-
ging, and then dropping a specific shortcut.

Selecting an App Shortcut will launch its associated Intent, effectively becoming a shortcut to a task,
action, or functionality within your application. Each application can offer up to five shortcuts at
any given time, though the design guidelines strongly recommend offering only four.

By providing an easily discoverable shortcut to important app functionality, App Shortcuts are a
powerful technique for increasing user engagement. When creating shortcuts, you should focus on
exposing your app’s key functionality—particularly actions that might require complex, multiple
steps, or that are time sensitive.

For example, Google offers App Shortcuts within its own apps for sending a new text message, navi-
gating to work/home, taking a selfie, and calling a specific contact.

App Shortcuts are displayed within the launcher and home screen, alongside the icons and App
Shortcuts of the system and other third-party apps. As a result, it’s important to follow the design
guidelines to ensure the icons used by your Shortcuts are visually consistent with other Shortcuts.
You can find Google’s App Shortcut design guidelines at commondatastorage.googleapis.com/
androiddevelopers/shareables/design/app-shortcuts-design-guidelines.pdf.

Android supports two alternatives for defining App Shortcuts: static and dynamic, which are
described in the following sections.

Creating App Shortcuts ❘ 783

Static Shortcuts
Static Shortcuts are used to provide links to generic, core functionality that is always relevant—such
as composing a new message or remotely arming an alarm. As the name suggests, static Shortcuts
can’t be modified from within your app at run time. Given the limited number of App Shortcuts
available, you should ensure your static Shortcuts are always useful and relevant, and consider using
dynamic Shortcuts if that’s not the case.

Static App Shortcuts are defined as resources, stored as XML files. By convention, this resource is
named shortcuts.xml. App Shortcuts were introduced at API Level 25, so it’s good practice to
store them in the res/xml-v25 folder.

Create your App Shortcuts using the shortcuts tag as the root node, with one or more shortcut
tags, each specifying a static App Shortcut.

As shown in Listing 19-26, this includes a unique Shortcut identifier, icon, labels, a disabled mes-
sage, and the Intent to launch when the Shortcut is selected. Note that you must also specify a
category—at the time of writing only one category, conversation, was valid.

LISTING 19-26: Defining your static App Shortcuts

<?xml version="1.0" encoding="utf-8"?>
<shortcuts xmlns:android="http://schemas.android.com/apk/res/android">
 <shortcut
 android:shortcutId="orbitnuke"
 android:enabled="true"
 android:icon="@drawable/nuke_icon"
 android:shortcutShortLabel="@string/orbitnuke_shortcut_short_label"
 android:shortcutLongLabel="@string/orbitnuke_shortcut_long_label"
 android:shortcutDisabledMessage="@string/orbitnuke_shortcut_disabled">
 <intent
 android:action="android.intent.action.VIEW"
 android:targetPackage="com.professionalandroid.apps.aliens"
 android:targetClass="com.professionalandroid.apps.aliens.NukeActivity"/>
 <categories android:name="android.shortcut.conversation" />
 </shortcut>
</shortcuts>

The icon and labels are displayed by the launcher to represent each available Shortcut, as shown
previously in Figure 19-5. The short title should be approximately 10 characters, while the long title
can be up to 25 characters. The long title is displayed when there is enough space.

If a static Shortcut is pinned, and then subsequently removed from the app in a later version of your
app, any pinned instances of your static Shortcuts will remain on the desktop, but it will be auto-
matically disabled with the specified disabled message displayed.

Once you’ve defined your App Shortcuts resource, you must add them to your application by associ-
ating the App Shortcuts resource to your launch Activity using a meta-data tag with the android
.app.shortcuts name, as shown in Listing 19-27.

784 ❘ CHAPTER 19 InvadIng the home Screen

LISTING 19-27: Adding the Shortcuts Resource to the application manifest

<activity
 android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 <meta-data
 android:name="android.app.shortcuts"
 android:resource="@xml/shortcuts"
 />
</activity>

Dynamic Shortcuts
Dynamic Shortcuts can be generated, modified, and removed at run time using the
ShortcutManager system Service:

ShortcutManager shortcutManager = getSystemService(ShortcutManager.class);

You should ensure your dynamic Shortcuts represent the most likely useful piece of functionality
given the current context, such as calling a specific contact or navigating to a particular location.

To alter the list of available dynamic App Shortcuts at run time, use the following Shortcut Manager
methods:

 ➤ setDynamicShortcuts—Replace the existing List of dynamic App Shortcuts with a new
Shortcut List.

 ➤ addDynamicShortcuts—Add one or more new dynamic Shortcuts to the existing List.

 ➤ updateShortcuts—Update the dynamic Shortcuts in the existing List, based on the
identifiers of the passed in List.

 ➤ removeDynamicShortcuts—Remove the dynamic Shortcuts in the existing List, correspond-
ing to the passed-in List of identifiers.

 ➤ removeAllDynamicShortcuts—Remove all currently set dynamic App Shortcuts.

To create a new Shortcut to add or update, use the ShortcutInfo.Builder, as shown in Listing
19-28, to specify the icon, labels, and launch Intent. Note that the launch Intent must include an
action, but can use Intent resolution rather than targeting a specific Activity.

LISTING 19-28: Creating and adding dynamic App Shortcuts

ShortcutManager shortcutManager
 = (ShortcutManager) getSystemService(Context.SHORTCUT_SERVICE);
Intent navIntent = new Intent(this, MainActivity.class);
navIntent.setAction(Intent.ACTION_VIEW);

Creating App Shortcuts ❘ 785

navIntent.putExtra(DESTINATION_EXTRA, destination);

String id = "dynamicDest" + destination;

ShortcutInfo shortcut =
 new ShortcutInfo.Builder(this, id)
 .setShortLabel(destination)
 .setLongLabel("Navigate to " + destination)
 .setDisabledMessage("Navigation Shortcut Disabled")
 .setIcon(Icon.createWithResource(this, R.mipmap.ic_launcher))
 .setIntent(navIntent)
 .build();

shortcutManager.setDynamicShortcuts(Arrays.asList(shortcut));

If you pass a Shortcut to the set or add dynamic Shortcuts method
that already exists in the active list, it will be updated accordingly.

When updating dynamic Shortcuts it’s important to ensure that
the semantic meaning of the Shortcut is maintained. For example,
if your Shortcut sends a message to a specific person, it could be
updated to reflect an updated profile image for that person, but not
to send a message to a different person. If the semantic meaning
changes, you should instead remove the previous Shortcut and add
a new one with a new unique identifier.

This process is important, because while you can only have five
Shortcuts available for users to select at any given time, users can
pin Shortcuts to their desktop, as shown in Figure 19-6.

Users can add as many pinned Shortcuts to their desktops as they
want, and you can’t remove them programmatically. Once pinned,
a Shortcut will continue to look and behave as originally defined,
even if you remove it from the dynamic list at run time; however,
a call to updateShortcuts can still be used to modify a pinned
Shortcut even if it’s no longer available from the dynamic list.

While you can’t remove a pinned Shortcut for users, in circum-
stances where a previously pinned Shortcut is no longer valid—for
example, if the Shortcut’s target functionality or associated content has been removed from your
app—you can disable it using the disableShortcuts method, passing in a List of identifiers to
disable, and optionally a disables message to be displayed:

 shortcutManager.disableShortcuts(Arrays.asList("Id1", "Id2"),
 "Functionality Removed");

Tracking App Shortcut Use
The order, and in some cases availability, of your App Shortcuts can vary based on the launcher or
home screen’s prediction of which Shortcuts are most likely to be used at a given time.

FIGURE 19-6

786 ❘ CHAPTER 19 InvadIng the home Screen

These predictions are based on the usage history of each Shortcut, or the underlying functionality
they provide a shortcut to.

Use the Shortcut Manager’s reportShortcutUsed method, passing in the relevant Shortcut ID, to
indicate that the user has manually initiated an action that is also represented by a Shortcut:

shortcutManager.reportShortcutUsed("Id1");

You should make this call no matter how the action was initiated, to ensure the prediction-engine
has a full record of the usage pattern of actions for which there are shortcuts, allowing it to promote
and display the most appropriate Shortcuts at the right time.

Advanced Android
Development

WHAT’S IN THIS CHAPTER?

 ➤ Securing Android using permissions

 ➤ Authenticating with the fingerprint sensor

 ➤ Ensuring backward and forward hardware and software
compatibility

 ➤ Improving application performance using Strict Mode

 ➤ Initiating phone calls and creating a new phone dialer

 ➤ Monitoring phone state and incoming calls

 ➤ Using Intents to send SMS and MMS messages

 ➤ Using the SMS Manager to send SMS messages

 ➤ Handling incoming SMS messages

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The code downloads for this chapter are found at www.wrox.com. The code for this chapter is
divided into the following major examples:

 ➤ Snippets_ch20.zip

 ➤ Emergency_Responder.zip

20

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

788 ❘ CHAPTER 20 AdvAnced Android development

ADVANCED ANDROID

This chapter returns to some of the possibilities touched on in previous chapters and introduces
some of the more advanced options available for Android developers.

The chapter starts by taking a closer look at security—in particular, how permissions work and how
to define your own permissions and use them to secure your own applications and the data they
contain.

Next, the chapter examines how to build applications that are backward and forward compatible
across a range of hardware and software platforms, as well as investigating the use of Strict Mode
for discovering inefficiencies within your applications.

You are also introduced to Android’s telephony APIs and learn to use them to make outgoing calls,
monitor phone state, and receive broadcast Intents for incoming calls. Finally, you explore Android’s
SMS functionality, which enables you to send and receive SMS messages from within your applica-
tions. Using the Android APIs, you can create your own SMS client application to replace the native
clients available as part of the software stack. Alternatively, you can incorporate the messaging
functionality within your own applications.

PARANOID ANDROID

Much of Android’s security is supplied by its underlying Linux kernel. Application files and
resources are sandboxed to their owners, making them inaccessible by other applications. Android
uses Intents, Services, and Content Providers to let you relax these strict process boundaries, using
permissions to maintain application-level security.

You’ve already used the permission system to request access to native system services—including
location-based services, native Content Providers, and the camera—using uses-permission mani-
fest tags and runtime permission requests.

The following sections provide a more detailed look at the Linux security model and the Android
permission system. For a comprehensive view, the Android documentation provides an excellent
resource that describes the security features in depth: d.android.com/training/articles/
security-tips.html.

Linux Kernel Security
Each Android package has a unique Linux user ID assigned to it during installation. This has the
effect of sandboxing the process and the resources it creates, so that it can’t affect (or be affected by)
other applications.

Because of this kernel-level security, you need to take additional steps to communicate between
applications, or access the files and resources they contain. Content Providers, Intents, Services, and
AIDL interfaces are designed to open tunnels through which information can flow between applica-
tions. To ensure information doesn’t “leak” beyond the intended recipients, you can use Android
permissions to act as border guards at either end to control the traffic flow.

Paranoid Android ❘ 789

Re-introducing Permissions
Permissions are an application-level security mechanism that lets you restrict access to application
components. Permissions are used to prevent malicious applications from corrupting data, gaining
access to sensitive information, or making excessive (or unauthorized) use of hardware resources or
external communication channels.

As you learned in earlier chapters, many of Android’s native components have permission require-
ments. The native permission strings used by native Android Activities and Services can be found as
static constants in the android.Manifest.permission class.

To use permission-protected components, you need to add uses-permission tags to your applica-
tion manifest, specifying the permission strings your application requires.

When a package is installed, the permissions requested in its manifest are analyzed and granted (or
denied) by checks with trusted authorities and user feedback.

In Android 6.0 Marshmallow (API Level 23), an additional requirement was added for permissions
marked as dangerous—including those that guard access to potentially sensitive information such as
PII (personally identifiable information) and location data.

Dangerous permissions require explicit approval by way of runtime permission requests accepted by
the user when first accessed by your app.

Each time you attempt to access information protected by a dangerous permission, you must use the
ActivityCompat.checkSelfPermission method, passing in the appropriate permission constant
to determine if access has been granted. It will return PERMISSION_GRANTED if user permission is
granted, or PERMISSION_DENIED if the user has declined (or not yet granted) access:

int permission = ActivityCompat.checkSelfPermission(this,
 Manifest.permission.READ_CONTACTS);

if (permission==PERMISSION_GRANTED) {
 // Access the Content Provider
} else {
 // Request the permission or
 // display a dialog showing why the function is unavailable.
}

To display the system’s runtime permission request dialog, call the ActivityCompat.request-
Permission method, specifying the required permissions:

ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.READ_CONTACTS},
 CONTACTS_PERMISSION_REQUEST);

This function displays a standard Android dialog that can’t be customized. You will receive a
callback when the user has either accepted or denied your runtime request, returned to the
onRequestPermissionsResult handler:

@Override
public void onRequestPermissionsResult(int requestCode,
 @NonNull String[] permissions,
 @NonNull int[] grantResults) {

790 ❘ CHAPTER 20 AdvAnced Android development

 super.onRequestPermissionsResult(requestCode, permissions, grantResults);
 // TODO React to granted / denied permissions.
}

Declaring and Enforcing Permissions
It’s also possible for you to define your own permissions and assign them to protect your own appli-
cation components.

Before you can assign a new permission to an application component, you need to define it within
your manifest using the permission tag, as shown in the Listing 20-1.

LISTING 20-1: Declaring a new permission

<permission
 android:name="com.professionalandroid.DETONATE_DEVICE"
 android:protectionLevel="dangerous"
 android:label="Self Destruct"
 android:description="@string/detonate_description">
</permission>

Within the permission tag, you can specify the level of access that the permission will permit:

normal—Can be granted at installation time when included in a uses-permission node
within an application’s manifest

dangerous—Must be explicitly granted by the user the first time it’s used within an
application

signature—Can only be granted to an application signed with the same signing certificate

You can also supply a label, and an external resource containing the description that explains the
risks of granting this permission.

To define custom permissions for components within your application, add a permission attribute
to their manifest nodes. Permission constraints can be enforced throughout your application, most
usefully at application interface boundaries—for example:

 ➤ Activities—Add a permission to limit the ability of other applications to launch a particular
Activity.

 ➤ Broadcast Receivers—Add a permission to control which applications can send Intents to
your Receiver.

 ➤ Intents—Add a permission to control which Broadcast Receivers can receive a particular
Intent.

 ➤ Content Providers—Add a permission to limit read access and/or write operations on your
Content Providers.

 ➤ Services—Add a permission to limit the ability of other applications to start or bind to a
Service.

Paranoid Android ❘ 791

In each case, you can add a permission attribute to the application component in the manifest,
specifying a required permission string to access each component. Listing 20-2 shows a mani-
fest excerpt that requires the permission defined in Listing 20-1 to start an Activity, Service, and
Broadcast Receiver.

LISTING 20-2: Enforcing a permission requirements

<activity
 android:name=".MyActivity"
 android:label="@string/app_name"
 android:permission="com.professionalandroid.DETONATE_DEVICE">
</activity>

<service
 android:name=".MyService"
 android:permission="com.professionalandroid.DETONATE_DEVICE">
</service>

<receiver
 android:name=".MyReceiver"
 android:permission="com.professionalandroid.DETONATE_DEVICE">
</receiver>

Content Providers let you set readPermission and writePermission attributes to offer more gran-
ular control over read/write access:

<provider
 android:name=".HitListProvider"
 android:authorities="com.professionalandroid.hitlistprovider"
 android:writePermission="com.professionalandroid.ASSIGN_KILLER"
 android:readPermission="com.professionalandroid.LICENSED_TO_KILL"
/>

Enforcing Permissions when Broadcasting Intents
In addition to requiring permissions for Intents to be received by your Broadcast Receivers, you can
attach a permission requirement to each Intent you broadcast. This is good practice when broadcast-
ing Intents that contain sensitive information.

In such cases it’s best practice to require a signature permission to ensure that only applications
signed with the same signature as the host application can receive the broadcast:

<permission
 android:name="com.professionalandroid.SECRET_DATA"
 android:protectionLevel="signature"
 android:label="Secret Data Transfer"
 android:description="@string/secret_data_description">
</permission>

When calling sendBroadcast, you can supply the permission string required for a Broadcast
Receivers to receive the Intent:

sendBroadcast(myIntent, "com.professionalandroid.SECRET_DATA");

792 ❘ CHAPTER 20 AdvAnced Android development

Storing Keys in the Android Keystore
The Android Keystore system provides a container in which applications can safely store sensitive
cryptographic keys, protecting them from unauthorized access and use. The keystore is designed to
prevent the extraction of keys from application processes, and from the Android device.

As a further protection against the potential for unauthorized use of keys, apps are required to
specify the authorized uses of keys stored in the keystore including requirements for cryptography,
limited times during which a key is authorized, and requiring that a user has been recently authenti-
cated before providing access.

Access to the Android Keystore is provided via two APIs: the Keychain API and Android Keystore
Provider. The Keychain API is designed to support the storage and access of system-wide credentials,
allowing multiple applications to use the same set of credentials with user consent.

Alternatively, the Android Keystore Provider is designed for applications to store their own creden-
tials, limiting access to the app storing the key. Unlike the Keychain API, apps using the Keystore
Provider don’t require user interaction to retrieve the credentials they’ve stored.

Details for creating, storing, and retrieving keys to be stored in the Android Keystore are beyond the
scope of this book. You can find more details on these topics and the Android Keystore system at
d.android.com/training/articles/keystore.html.

Using the Fingerprint Sensor
Android 6.0 Marshmallow (API Level 23) introduced a new API to support user authentication
using on-device fingerprint scanners.

To include fingerprint authentication within your app, you must first add the USE_FINGERPRINT per-
mission to your manifest:

<uses-permission android:name="android.permission.USE_FINGERPRINT"/>

Within your application, get an instance of the FingerprintManager class using the
getSystemService method, passing in FingerPrintManager.class.

Alternatively, you can use the FingerprintManagerCompat class to provide backward-compatible
support, using its from method to retrieve an instance based on a Context:

mFingerprintManager = FingerprintManagerCompat.from(this);

Use the Fingerprint Manager to authenticate users with the authenticate method, passing in
optional Crypto Object and Cancellation Signal objects along with an Authentication Callback
implementation:

mFingerprintManager.authenticate(
 null, /* or mCryptoObject*/
 0, /* flags */
 null, /* or mCancellationSignal */
 mAuthenticationCallback,
 null);

A Cancellation Signal can be provided to support cancellation of an ongoing authentication. A
Crypto Object can be passed in, if you wish to use fingerprint authentication to mark the related

Dealing with Different Hardware and Software Availability ❘ 793

keystore key as authenticated. If a Crypto Object parameter is provided, it will be authenticated and
returned within the Authentication Result of the Authentication Callback.

The results will be returned to an implementation of the FingerprintManagerCompat
.AuthenticationCallback class using the onAuthenticationError, onAuthenticationHelp,
onAuthenticationFailed, and onAuthenticationSucceeded handlers:

FingerprintManagerCompat.AuthenticationCallback mAuthenticationCallback
 = new FingerprintManagerCompat.AuthenticationCallback() {

 @Override
 public void onAuthenticationError(int errMsgId, CharSequence errString) {
 // TODO Handle authentication error.
 Log.e(TAG, "Fingerprint authentication error: " + errString);
 }

 @Override
 public void onAuthenticationHelp(int helpMsgId, CharSequence helpString) {
 // TODO Handle authentication help.
 Log.d(TAG, "Fingerprint authentication help required: " + helpString);
 }

 @Override
 public void onAuthenticationFailed() {
 // TODO Handle authentication failure.
 Log.d(TAG, "Fingerprint authentication failed.");
 }

 @Override
 public void onAuthenticationSucceeded(
 FingerprintManagerCompat.AuthenticationResult result) {
 super.onAuthenticationSucceeded(result);
 // TODO Handle authentication success.
 Log.d(TAG, "Fingerprint authentication succeeded.");
 }
};

Your application must implement the UI for fingerprint authentication using the standard Android
fingerprint icon.

A complete example of using the Fingerprint API to authenticate a purchase flow, including the
Android fingerprint icon (ic_fp_40px.png), is available as the Fingerprint Dialog sample at
github.com/googlesamples/android-FingerprintDialog/.

DEALING WITH DIFFERENT HARDWARE AND SOFTWARE
AVAILABILITY

From smartphones and tablets to wearables and televisions, Android is now being used on an
increasingly diverse collection of hardware. Each new device potentially represents a variation in
hardware configuration or software platform. This flexibility is a significant factor in Android’s

794 ❘ CHAPTER 20 AdvAnced Android development

success, but as a result, you can’t make assumptions regarding the hardware or software available
on the device on which your app is installed and running.

To mitigate this, Android platform releases are forward compatible—meaning that in many cases
applications designed before a particular hardware or software innovation is available will still be
able to take advantage of it, without requiring changes.

Android platform releases are also backward compatible, meaning your application will continue to
work on new hardware and platform releases—again without you needing to upgrade it each time.

By combining forward and backward compatibility, your Android application will continue to work,
and even potentially take advantage of new hardware and software features, as the platform evolves.

That said, each platform release includes new APIs and platform features. Similarly, new hardware
may become available. Either advance could provide features that might improve the features and
user experience of your application.

To take advantage of these new features without losing support for hardware running earlier plat-
forms, you need to ensure your application is also backward compatible.

Similarly, the wide range of different Android device hardware platforms means that you can’t make
assumptions over what hardware might be available.

The following sections explain how to specify certain hardware as required, check for hardware
availability at run time, and build applications that are backward compatible.

Specifying Required Hardware
Application hardware requirements generally fall into two categories: hardware that is required for
your application to have utility, and hardware that is useful if it is available but isn’t strictly neces-
sary. The former accounts for applications built around a particular piece of hardware—for exam-
ple, a replacement camera application isn’t useful on a device without a camera.

To specify a particular hardware feature as a requirement to install your application, add a
uses-feature node to its manifest:

<uses-feature android:name="android.hardware.sensor.compass"/>
<uses-feature android:name="android.hardware.camera"/>

This can also be used for applications that don’t necessarily require a particular piece of hardware,
but which haven’t been designed to support certain hardware configurations—for example, a game
that requires tilt sensors or a touch screen to control.

NOTE The more hardware restrictions you place on your applications, the
smaller the potential target audience becomes, so it’s good practice to limit your
hardware restrictions to those required to support core functionality.

Dealing with Different Hardware and Software Availability ❘ 795

Confirming Hardware Availability
For hardware that would be useful but isn’t necessary, you need to query the host hardware
platform at run time to determine what hardware is available. The Package Manager includes a
hasSystemFeature method that accepts PackageManager.FEATURE_ static constants:

PackageManager pm = getPackageManager();
pm.hasSystemFeature(PackageManager.FEATURE_SENSOR_COMPASS);

The Package Manager includes a constant for every piece of optional hardware, making it possible
to customize your UI and functionality based on the hardware available.

Building Backward-Compatible Applications
Each new Android SDK release brings with it a new hardware support, APIs, bug fixes, and perfor-
mance improvements. It’s best practice to update your applications as soon as possible following a
new SDK release in order to take advantage of these new features and ensure the best possible user
experience for new Android-device owners.

At the same time, ensuring your applications are backward compatible is critical to ensure users of
devices running earlier Android platform versions can continue to use them—particularly as this is
likely to be a significantly larger share of the market than that held by brand new devices.

Many of the Android APIs—particularly convenience classes and UI classes—are distributed within
the standalone Android support and Android Architecture Components libraries or, in some cases,
the Google Play services APIs. Where features aren’t available as part of a standalone library, you’ll
need to incorporate new features using the techniques described here to support multiple platform
versions within the same package.

For each technique described, it’s important to know the API level associated with the underlying
platform.

WARNING Importing a class or attempting to call a method not available in the
underlying platform will cause a runtime exception when the enclosing class is
instantiated or the method is called.

To find this at run time, you can use the android.os.Build.VERSION.SDK_INT constant:

private static boolean nfc_beam_supported =
 android.os.Build.VERSION.SDK_INT > 14;

The easiest way to determine which API level is required for a given class or method is to progres-
sively lower your project’s build target and note which classes break the build.

796 ❘ CHAPTER 20 AdvAnced Android development

Parallel Activities
The simplest, though least efficient, alternative for ensuring backward compatibility is to create sep-
arate sets of parallel Activities, Services, and Broadcast Receivers, based on a base class compatible
with the minimum Android platform version you support.

When using explicit Intents to start Services or Activities, you can select the right set of components
at run time by checking the platform version and targeting the appropriate Services and Activities
accordingly:

private static boolean nfc_beam_supported =
 android.os.Build.VERSION.SDK_INT > 14;

Intent startActivityIntent = null;

if (nfc_beam_supported)
 startActivityIntent = new Intent(this, NFCBeamActivity.class);
else
 startActivityIntent = new Intent(this, NonNFCBeamActivity.class);

startActivity(startActivityIntent);

In the case of implicit Intents and Broadcast Receivers, you can add an android:enabled tag to
their manifest entries that refers to a Boolean resource:

<receiver
 android:name=".MediaControlReceiver"
 android:enabled="@bool/supports_remote_media_controller">
 <intent-filter>
 <action android:name="android.intent.action.MEDIA_BUTTON"/>
 </intent-filter>
</receiver>

You can then create alternative resource entries based on API level:

res/values/bool.xml
 <bool name="supports_remote_media_controller">false</bool>

res/values-v14/bool.xml
 <bool name="supports_remote_media_controller">true</bool>

Interfaces and Fragments
Interfaces are the traditional way to support multiple implementations of the same functionality. For
functionality that you want to implement differently based on newly available APIs, create an inter-
face that defines the action to be performed, and then create API level–specific implementations.

At run time, check the current platform version and instantiate the appropriate class and use its
methods:

IP2PDataXfer dataTransfer;

if (android.os.Build.VERSION.SDK_INT > 14)
 dataTransfer = new NFCBeamP2PDataXfer();
else

Optimizing UI Performance with Strict Mode ❘ 797

 dataTransfer = new NonNFCBeamP2PDataXfer();

dataTransfer.initiateP2PDataXfer();

Fragments provide a more encapsulated alternative to parallelized components. Rather than dupli-
cating Activities, use Fragments—combined with the resource hierarchy—to create a consistent UI
that’s optimized for different platform releases and hardware configurations.

Most of the UI logic for your Activities should be contained within individual Fragments rather than
the Activity itself. As a result, you need only create alternative Fragments to expose and utilize dif-
ferent functionality and inflate different versions of the same layout stored within their respective
res/layout-v[API level] folders.

Interaction between and within Fragments is usually maintained within each Fragment, so only code
related to missing APIs will need to be changed within the Activity. If each variation of a Fragment
implements the same interface definition and ID, you shouldn’t need to create multiple Activities to
support multiple layouts and Fragment definitions.

OPTIMIZING UI PERFORMANCE WITH STRICT MODE

The resource-constrained nature of mobile devices amplifies the effect of performing time-
consuming operations on the main application thread. Accessing network resources, reading or
writing files, or accessing databases while blocking the UI thread can have a dramatic impact on
the user experience, causing your application to become less smooth, more laggy, and, in the most
extreme case, unresponsive.

You learned how to move such time-consuming operations onto background threads in Chapter 11.
Strict Mode is a tool that helps you identify cases you may have missed.

Using the Strict Mode APIs, you can assign a set of policies that monitor actions within your appli-
cation and define how you should be alerted. You can define policies related to either the current
application thread or to your application’s virtual machine (VM) process. The former is perfect for
detecting slow operations being performed on the UI thread, whereas the latter helps you detect
memory and Context leaks.

To use Strict Mode, create a new ThreadPolicy class and a new VmPolicy class, using their static
builder classes with the detect methods to define the actions to monitor. The corresponding
penalty methods control how the system should react to detecting those actions.

The Thread Policy can be used to detect disk reads/writes and network access, whereas the Vm
Policy can monitor your application for Activity, SQLite, and closeable object leaks.

The penalties available to both policies include logging or application death, while the Thread Policy
also supports displaying an on-screen dialog or flashing screen border.

Both builder classes also include a detectAll method that includes all the possible monitoring
options supported by the host platform. You can also use the StrictMode.enableDefaults method
to apply the default monitoring and penalty options.

798 ❘ CHAPTER 20 AdvAnced Android development

To enable Strict Mode across your entire application, you should extend the Application class, as
shown in Listing 20-3.

LISTING 20-3: Enabling Strict Mode for an application

public class MyApplication extends Application {

 public static final boolean DEVELOPER_MODE = true;

 @Override
 public final void onCreate() {
 super.onCreate();

 if (DEVELOPER_MODE) {
 StrictMode.enableDefaults();
 }
 }
}

To enable Strict Mode (or customize its settings) for a particular Activity, Service, or other applica-
tion component, simply use the same pattern within that component’s onCreate method.

TELEPHONY AND SMS

Android includes telephony communication APIs, which enable you to monitor phone state and
phone calls, as well as to initiate calls and monitor incoming call details.

Android also offers a full suite of SMS functionality, letting you send and receive SMS messages
from within your applications. Using the Android APIs, you can create your own SMS client appli-
cation to replace the native clients available as part of the software stack. Alternatively, you can
incorporate some SMS messaging functionality within your own applications.

With the arrival of Wi-Fi-only Android devices, you can no longer assume that telephony hardware
will be available on every device on which your application may be available.

Some applications don’t make sense on devices that don’t have telephony support. An application
that provides reverse-number lookup for incoming calls or a replacement SMS client simply won’t
work on a Wi-Fi-only device.

To specify that your application requires telephony support to function, you can add a uses-
feature node to your application manifest:

<uses-feature android:name="android.hardware.telephony"
 android:required="true"/>

Telephony and SMS ❘ 799

NOTE As described in the previous section, marking telephony as a required
feature prevents your application from being found on Google Play using a
device without telephony hardware. It also prevents your application from being
installed on such devices from the Google Play website.

If you use telephony APIs but they aren’t strictly necessary for your application to be used, you can
check for the existence of telephony hardware before attempting to make use of the related APIs.

Use the Package Manager’s hasSystemFeature method, specifying the PackageManager.FEATURE_
TELEPHONY String. The Package Manager also includes constants to query the existence of CDMA-
and GSM-specific hardware.

PackageManager pm = getPackageManager();

boolean telephonySupported =
 pm.hasSystemFeature(PackageManager.FEATURE_TELEPHONY);
boolean gsmSupported =
 pm.hasSystemFeature(PackageManager.FEATURE_TELEPHONY_CDMA);
boolean cdmaSupported =
 pm.hasSystemFeature(PackageManager.FEATURE_TELEPHONY_GSM);

Telephony
The Android telephony APIs let your applications access the underlying telephone hardware stack,
making it possible to create your own dialer—or integrate call handling and phone state monitoring
into your applications.

NOTE Because of security concerns, the current Android SDK does not allow
you to create your own in-call Activity—the screen that is displayed when an
incoming call is received or an outgoing call has been placed.

Initiating Phone Calls Using Intents
Best practice for initiating phone calls is to use an Intent.ACTION_DIAL Intent, specifying the num-
ber to dial by setting the Intents data using a tel: schema:

Intent whoyougonnacall = new Intent(Intent.ACTION_DIAL,
 Uri.parse("tel:555-2368"));
startActivity(whoyougonnacall);

This will start a dialer Activity that will be pre-populated with the number you specified as the
Intent data. The default dialer Activity allows the user to change the number before explicitly
initiating the call. As a result, using the ACTION_DIAL Intent action doesn’t require any special
permissions.

800 ❘ CHAPTER 20 AdvAnced Android development

By using an Intent to announce your intention to dial a number, your application stays decoupled
from the dialer implementation used to initiate the call. For example, if users have installed a new
dialer that supports IP-based telephony, using Intents to dial a number from your application lets
users use this new dialer to place the call.

Creating a New Phone Dialer
Creating a new dialer application, potentially to replace the native phone dialer app, involves two
steps. Your app must:

 1. Intercept Intents serviced by the native dialer.

 2. Initiate and manage outgoing calls.

The native dialer application responds to Intent actions corresponding to a user pressing a hardware
call button, asking to view data using the tel: schema, or making an ACTION_DIAL request using
the tel: schema, as shown in the previous section.

To intercept these requests, include intent-filter tags on the manifest entries for your replace-
ment dialer Activity that listens for the following actions:

 ➤ Intent.ACTION_CALL_BUTTON—This action is broadcast when the device’s hardware call
button is pressed. Create an Intent Filter that listens for this action as a default action.

 ➤ Intent.ACTION_DIAL—This Intent action, described in the previous section, is used by
applications that want to initiate a phone call. The Intent Filter used to capture this action
should be both default and browsable (to support dial requests from the browser) and must
specify the tel: schema to replace existing dialer functionality (though it can support addi-
tional schemes).

 ➤ Intent.ACTION_VIEW—The view action is used by applications wanting to view a piece of
data. Ensure that the Intent Filter specifies the tel: schema to allow your new Activity to be
used to view telephone numbers.

The manifest snippet in Listing 20-4 shows an Activity with Intent Filters that will capture each of
these actions.

LISTING 20-4: Manifest entry for a replacement dialer Activity

<activity
 android:name=".MyDialerActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.CALL_BUTTON" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <action android:name="android.intent.action.DIAL" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />
 <data android:scheme="tel" />

Telephony and SMS ❘ 801

 </intent-filter>
</activity>

After your Activity has been started, it should provide a UI that allows users to enter or modify
the number to dial and to initiate the outgoing call. At that point you need to place the call—using
either the existing telephony stack or your own alternative.

The simplest technique is to use the existing telephony stack using the Intent.ACTION_CALL action.
This will initiate a call using the system in-call Activity and will let the system manage the dialing,
connection, and voice handling.

To use this action, your application must request the CALL_PHONE uses-permission:

<uses-permission android:name="android.permission.CALL_PHONE"/>

As a dangerous permission, you must also request—and check for acceptance—at runtime as shown
in Listing 20-5.

LISTING 20-5: Initiating a call using the system telephony stack

int permission = ActivityCompat.checkSelfPermission(this,
 android.Manifest.permission.CALL_PHONE);

if (permission == PackageManager.PERMISSION_GRANTED) {

 Intent whoyougonnacall = new Intent(Intent.ACTION_CALL,
 Uri.parse("tel:555-2368"));
 startActivity(whoyougonnacall);

// If permission hasn't been granted, request it.
} else {
 if (ActivityCompat.shouldShowRequestPermissionRationale(
 this, android.Manifest.permission.CALL_PHONE)) {
 // TODO Display additional rationale for the requested permission.
 }
 ActivityCompat.requestPermissions(this,
 new String[]{android.Manifest.permission.CALL_PHONE},
 CALL_PHONE_PERMISSION_REQUEST);
}

Alternatively, you can completely replace the outgoing telephony stack by implementing your own
dialing and voice-handling framework. This is the perfect alternative if you are implementing a
VOIP (voice over IP) application.

Accessing Telephony Properties and Phone State
Access to the telephony APIs is managed by the Telephony Manager, accessible using the
getSystemService method:

String srvcName = Context.TELEPHONY_SERVICE;
TelephonyManager telephonyManager =
 (TelephonyManager)getSystemService(srvcName);

802 ❘ CHAPTER 20 AdvAnced Android development

The Telephony Manager provides direct access to many of the phone properties, including device,
network, subscriber identity module (SIM), and data state details. You can also access some connec-
tivity status information, although this is usually done using the Connectivity Manager, as described
in Chapter 18, “Bluetooth, NFC, Networks, and Wi-Fi.”

Almost all Telephony Manager methods require the READ_PHONE_STATE uses-permission be included
in the application manifest:

<uses-permission android:name="android.permission.READ_PHONE_STATE"/>

The READ_PHONE_STATE permission is also marked as dangerous, so you need to check / request the
runtime user permission before you can receive phone state detail results, as shown in Listing 20-6.

Android Lollipop (API Level 22) added support for multiple telephony subscriptions (such as dual
SIM devices that support multiple active SIM cards). To access the list of active subscriptions,
use the Subscription Manager’s getActiveSubscriptionInfoList method. Note that like the
Telephony Manager, all Subscription Manager methods require the READ_PHONE_STATE permission:

SubscriptionManager subscriptionManager = (SubscriptionManager)
 getSystemService(Context.TELEPHONY_SUBSCRIPTION_SERVICE);

List<SubscriptionInfo> subscriptionInfos
 = subscriptionManager.getActiveSubscriptionInfoList();

By default, the Telephony Manager methods will return properties related to the default sub-
scriber. Android Nougat (API Level 24) introduced the createForSubscriptionId method to the
Telephone Manager, which returns a new Telephony Manager corresponding to the specified sub-
scription Id:

for (SubscriptionInfo subscriptionInfo : subscriptionInfos) {
 int id = subscriptionInfo.getSubscriptionId();
 TelephonyManager manager = telephonyManager.createForSubscriptionId(subId);
 [... Query properties ...]
}

Once you have a Telephony Manager, you can obtain the phone type (GSM CDMA, or SIP), unique
ID (IMEI or MEID), software version, and the phone’s phone number as shown in Listing 20-6.

LISTING 20-6: Accessing phone-type and the device’s phone number

String phoneTypeStr = "unknown";

int phoneType = telephonyManager.getPhoneType();
switch (phoneType) {
 case (TelephonyManager.PHONE_TYPE_CDMA):
 phoneTypeStr = "CDMA";
 break;
 case (TelephonyManager.PHONE_TYPE_GSM) :
 phoneTypeStr = "GSM";
 break;
 case (TelephonyManager.PHONE_TYPE_SIP):
 phoneTypeStr = "SIP";
 break;

Telephony and SMS ❘ 803

 case (TelephonyManager.PHONE_TYPE_NONE):
 phoneTypeStr = "None";
 break;
 default: break;
}

Log.d(TAG, phoneTypeStr);

// -- These require READ_PHONE_STATE uses-permission --
int permission = ActivityCompat.checkSelfPermission(this,
 android.Manifest.permission.READ_PHONE_STATE);

if (permission == PackageManager.PERMISSION_GRANTED) {
 // Read the IMEI for GSM or MEID for CDMA
 String deviceId = telephonyManager.getDeviceId();
 // Read the software version on the phone (note -- not the SDK version)
 String softwareVersion = telephonyManager.getDeviceSoftwareVersion();
 // Get the phone's number (if available)
 String phoneNumber = telephonyManager.getLine1Number();
// If permission hasn't been granted, request it.
} else {
 if (ActivityCompat.shouldShowRequestPermissionRationale(
 this, android.Manifest.permission.READ_PHONE_STATE)) {
 // TODO Display additional rationale for the requested permission.
 }

 ActivityCompat.requestPermissions(this,
 new String[]{android.Manifest.permission.READ_PHONE_STATE},
 PHONE_STATE_PERMISSION_REQUEST);
}

When your device is connected to a network, you can use the Telephony Manager to read the
Mobile Country Code and Mobile Network Code (MCC+MNC), the country ISO code, the net-
work operator name, and the type of network you’re connected to using the getNetworkOperator,
getNetworkCountryIso, getNetworkOperatorName, and getNetworkType methods.

These commands work only when you are connected to a mobile network and can be unreliable if it
is a CDMA network. Use the getPhoneType method to determine which phone type is being used.

Monitoring Changes in Phone State Using the Phone State Listener
The Android telephony APIs let you monitor changes to phone state and associated details such as
incoming phone numbers. Changes to the phone state are monitored using the PhoneStateListener
class, with some state changes also broadcast as Intents.

To monitor and manage phone state, your application must specify the READ_PHONE_STATE uses-
permission, including runtime permission checks as described in the previous section.

Create a new class that extends the abstract Phone State Listener class to monitor, and respond to,
phone state change events, including call state (ringing, off hook, and so on), cell location changes,
voice-mail and call-forwarding status, phone service changes, and changes in mobile signal strength.

804 ❘ CHAPTER 20 AdvAnced Android development

NOTE Your Phone State Listener will receive phone state change notifications
only while your application is running.

Within your Phone State Listener implementation, override the event handlers of the events you
want to react to. Each handler receives parameters that indicate the new phone state, such as the
current cell location, call state, or signal strength:

PhoneStateListener phoneStateListener = new PhoneStateListener() {
 public void onCallForwardingIndicatorChanged(boolean cfi){}
 public void onCallStateChanged(int state, String incomingNumber){}
 public void onCellInfoChanged(List<CellInfo> cellInfo){}
 public void onCellLocationChanged(CellLocation location){}
 public void onDataActivity(int direction){}
 public void onDataConnectionStateChanged(int state, int networkType){}
 public void onMessageWaitingIndicatorChanged(boolean mwi){}
 public void onServiceStateChanged(ServiceState serviceState){}
 public void onSignalStrengthsChanged(SignalStrength signalStrength) {}
};

After creating your own Phone State Listener, register it with the Telephony Manager using a bit-
mask to indicate the events you want to listen for:

telephonyManager.listen(phoneStateListener,
 PhoneStateListener.LISTEN_CALL_FORWARDING_INDICATOR|
 PhoneStateListener.LISTEN_CALL_STATE |
 PhoneStateListener.LISTEN_CELL_LOCATION |
 PhoneStateListener.LISTEN_DATA_ACTIVITY |
 PhoneStateListener.LISTEN_DATA_CONNECTION_STATE |
 PhoneStateListener.LISTEN_MESSAGE_WAITING_INDICATOR |
 PhoneStateListener.LISTEN_SERVICE_STATE |
 PhoneStateListener.LISTEN_SIGNAL_STRENGTHS);

To unregister a listener, call listen and pass in PhoneStateListener.LISTEN_NONE as the bitmask
parameter:

telephonyManager.listen(phoneStateListener,
 PhoneStateListener.LISTEN_NONE);

For example, if you want your application to respond to incoming phone calls, you can override the
onCallStateChanged method in your Phone State Listener implementation, and register it to receive
notifications when the call state changes:

PhoneStateListener callStateListener = new PhoneStateListener() {
 public void onCallStateChanged(int state, String incomingNumber) {
 String callStateStr = "Unknown";

 switch (state) {
 case TelephonyManager.CALL_STATE_IDLE :
 callStateStr = "Idle"; break;
 case TelephonyManager.CALL_STATE_OFFHOOK :

Telephony and SMS ❘ 805

 callStateStr = "Offhook (In Call)"; break;
 case TelephonyManager.CALL_STATE_RINGING :
 callStateStr = "Ringing. Incoming number is: "
 + incomingNumber;
 break;
 default : break;
 }

 Toast.makeText(MyActivity.this,
 callStateStr, Toast.LENGTH_LONG).show();
 }
};

telephonyManager.listen(callStateListener,
 PhoneStateListener.LISTEN_CALL_STATE);

The onCallStateChanged handler receives the phone number associated with incoming calls, and
the state parameter represents the current call state as one of the following three values:

 ➤ TelephonyManager.CALL_STATE_IDLE—When the phone is neither ringing nor in a call

 ➤ TelephonyManager.CALL_STATE_RINGING—When the phone is ringing

 ➤ TelephonyManager.CALL_STATE_OFFHOOK—When the phone is currently in a call

Note that as soon as the state changes to CALL_STATE_RINGING, the system will display the incom-
ing call screen or notification, asking users if they want to answer the call.

Using Intent Receivers to Monitor Incoming Phone Calls
The Phone State Listener in the previous section is only active while your Activity is running. If you
wish to monitor all incoming calls, you can use an Intent Receiver.

When the phone state changes as a result of an incoming, accepted, or terminated phone call, the
Telephony Manager will broadcast an ACTION_PHONE_STATE_CHANGED Intent.

By registering a manifest Intent Receiver that listens for this Broadcast Intent, as shown in the
snippet below, you can listen for incoming phone calls at any time, even if your application isn’t
running. Note that your application needs to request the READ_PHONE_STATE permission in the man-
ifest, and again at runtime, before it can receive the phone state Broadcast Intent.

<receiver android:name="PhoneStateChangedReceiver">
 <intent-filter>
 <action android:name="android.intent.action.PHONE_STATE"/>
 </intent-filter>
</receiver>

The Phone State Changed Broadcast Intent includes up to two extras. All such broadcasts will
include the EXTRA_STATE extra, whose value will be one of the TelephonyManager.CALL_STATE_
actions described earlier to indicate the new phone state. If the state is ringing, the Broadcast Intent
will also include the EXTRA_INCOMING_NUMBER extra, whose value represents the incoming call
number.

806 ❘ CHAPTER 20 AdvAnced Android development

The following skeleton code can be used to extract the current phone state and incoming call num-
ber where it exists:

public class PhoneStateChangedReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 String phoneState = intent.getStringExtra(TelephonyManager.EXTRA_STATE);
 if (phoneState.equals(TelephonyManager.EXTRA_STATE_RINGING)) {
 String phoneNumber =
 intent.getStringExtra(TelephonyManager.EXTRA_INCOMING_NUMBER);
 Toast.makeText(context,
 "Incoming Call From: " + phoneNumber,
 Toast.LENGTH_LONG).show();
 }
 }
}

NOTE Before your Broadcast Receiver can receive the phone state change
Intent, the user must first explicitly accept the runtime phone state permission.
Until they do so, your Receiver will not receive the related broadcasts.

Sending and Receiving SMS Messages
SMS technology is designed to send short text messages between mobile phones via the carrier net-
work. It provides support for sending both text messages (designed to be read by people) and data
messages (meant to be consumed by applications). Multimedia messaging service (MMS) messages
allow users to send and receive messages that include multimedia attachments such as photos, vid-
eos, and audio.

Android introduced properly supported APIs for SMS messaging in Android 4.4 KitKat (API
Level 19).

Because SMS and MMS are mature mobile technologies, there’s a lot of information out there that
describes the technical details of how an SMS or MMS message is constructed and transmitted over
the air. Rather than rehash that information here, the following sections focus on the practicalities
of sending and receiving text messages from within Android applications.

Android provides support for sending both SMS messages using a messaging application installed on
the device with the SEND and SEND_TO Broadcast Intents.

Android also supports full SMS functionality within your applications through the SmsManager
class. Using the SMS Manager, you can replace the native SMS application to send text messages
and react to incoming texts.

Android 5.0 Lollipop (API Level 22) added support for multiple telephony subscriptions (such as
dual SIM devices that support multiple active SIM cards). As a result, you can choose which cell
subscription to use when sending SMS messages. Refer to the earlier section, “Accessing Telephony
Properties and Phone State” for details on determining the available subscriptions.

Telephony and SMS ❘ 807

Sending SMS Messages Using Intents
It’s best practice to use an Intent to send SMS (and MMS) messages using another application—typi-
cally the native SMS application—rather than implementing a full SMS client yourself.

To do so, call startActivity with an Intent.ACTION_SENDTO action Intent, specifying a target
number using sms: schema notation as the Intent data. Include the message you want to send within
the Intent payload using an sms_body extra:

Intent smsIntent = new Intent(Intent.ACTION_SENDTO,
 Uri.parse("sms:55512345"));
smsIntent.putExtra("sms_body", "Press send to send me");
startActivity(smsIntent);

The currently selected default SMS app will receive this Intent and display a pre-populated Activity
that will allow you to send the message you specify to the contact you indicated.

Creating a New Default SMS App to Send and Receive SMS Messages
On each Android device, only one app can be the default SMS App at any given time. Users can
modify the default SMS app from the system settings, as shown in Figure 20-1.

FIGURE 20-1

Only the current default SMS app receives the SMS_DELIVER_ACTION Intent when a new SMS mes-
sage arrives, the WAP_PUSH_DELIVER_ACTION Intent when a new MMS arrives, and has the ability to
write new SMS messages to the SMS Content Provider.

It’s also possible to for your app to send and receive SMS messages, and read the SMS Content
Provider without being selected as the default SMS app as described in later sections. Note that in

808 ❘ CHAPTER 20 AdvAnced Android development

that case, the default SMS app (and any other app listening for the broadcast) will also still receive
each message.

If you wish to create a new default SMS app, you must provide the same functionality as provided
by the bundled SMS application. Specifically, that includes the following Manifest entries and asso-
ciated components:

 ➤ A Broadcast Receiver with an Intent Filter for the android.provider.Telephony.SMS_
DELIVER action, and which requires the BROADCAST_SMS permission. This Receiver will be
triggered whenever a new SMS message is received:

<receiver android:name=".MySmsReceiver"
 android:permission="android.permission.BROADCAST_SMS">
 <intent-filter>
 <action android:name="android.provider.Telephony.SMS_DELIVER"/>
 </intent-filter>
</receiver>

 ➤ A Broadcast Receiver with an Intent Filter for the android.provider.Telephony.WAP_
PUSH_DELIVER action along with the MIME type application/vnd.wap.mms-message, and
which requires the BROADCAST_WAP_PUSH permission. This Receiver will be triggered when-
ever a new MMS message is received:

<receiver android:name=".MyMmsReceiver"
 android:permission="android.permission.BROADCAST_WAP_PUSH">
 <intent-filter>
 <action android:name="android.provider.Telephony.WAP_PUSH_DELIVER" />
 <data android:mimeType="application/vnd.wap.mms-message" />
 </intent-filter>
</receiver>

 ➤ An Activity that allows users to send SMS and MMS messages, which includes an Intent
Filter for the android.intent.action.SEND and android.intent.action.SENDTO
actions, supporting the schemes sms:, smsto:, mms:, and mmsto:. Your Activity should lis-
ten for Intents of this form and fulfill any requests from other apps using the form described
in the earlier section, “Sending SMS Messages Using Intents”:

<activity android:name=".MySendSmsActivity" >
 <intent-filter>
 <action android:name="android.intent.action.SEND" />
 <action android:name="android.intent.action.SENDTO" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />
 <data android:scheme="sms" />
 <data android:scheme="smsto" />
 <data android:scheme="mms" />
 <data android:scheme="mmsto" />
 </intent-filter>
</activity>

 ➤ A Service that includes an Intent Filter for the android.intent.action.RESPOND_VIA_
MESSAGE action that supports the schemes, sms:, smsto:, mms:, and mmsto:, and which
requires the SEND_RESPOND_VIA_MESSAGE permission. This Service implementation should

Telephony and SMS ❘ 809

allow users to send SMS messages in response to incoming phone calls. The received Intent
data contains a URI where the scheme describes the transport type, and the path contains the
recipient’s phone number (Eg. smsto:3055551234). The message text is stored in the EXTRA_
TEXT extra, and the message subject in EXTRA_SUBJECT.

<service android:name=".MySmsResponseService"
 android:permission=
 "android.permission.SEND_RESPOND_VIA_MESSAGE"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.RESPOND_VIA_MESSAGE" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="sms" />
 <data android:scheme="smsto" />
 <data android:scheme="mms" />
 <data android:scheme="mmsto" />
 </intent-filter>
</service>

If your app is not set to the default SSM app, its functionality may be limited. You can check if
your app is the default SMS app using the Telephony.Sms.getDefaultSmsPackage method, which
returns the package name of the current default SMS app.

String myPackageName = getPackageName();
boolean isDefault =
 Telephony.Sms.getDefaultSmsPackage(this).equals(myPackageName);

You can display a system dialog to prompt the user to select your app as the default SMS app using
the Telephony.Sms.Intents.ACTION_CHANGE_DEFAULT Intent, including an extra with the Sms
.Intents.EXTRA_PACKAGE_NAME key and your package name as the string value:

Intent intent = new Intent(Telephony.Sms.Intents.ACTION_CHANGE_DEFAULT);
intent.putExtra(Telephony.Sms.Intents.EXTRA_PACKAGE_NAME, myPackageName);
startActivity(intent);

The following sections describe how to send and receive SMS messages; note that much of this
functionality is available to apps that don’t provide the full suite of functionality provided by an
SMS app.

Sending SMS Messages
SMS messaging in Android is handled by the SmsManager class. You can get a reference to the SMS
Manager using the static SmsManager.getDefault method:

SmsManager smsManager = SmsManager.getDefault();

To send SMS messages, your application must specify the SEND_SMS and READ_PHONE_STATE uses-
permission in your manifest:

<uses-permission android:name="android.permission.SEND_SMS"/>
<uses-permission android:name="android.permission.READ_PHONE_STATE"/>

Note that the SEND_SMS is a dangerous permission, so you must also perform a runtime permission
check before attempting to send an SMS message.

810 ❘ CHAPTER 20 AdvAnced Android development

To send a text message, use sendTextMessage from the SMS Manager, passing in the address
(phone number) of your recipient and the text message you want to send:

// Check runtime permissions.
int send_sms_permission = ActivityCompat.checkSelfPermission(this,
 Manifest.permission.SEND_SMS);
int phone_state_permission = ActivityCompat.checkSelfPermission(this,
 Manifest.permission.READ_PHONE_STATE);

if (send_sms_permission == PackageManager.PERMISSION_GRANTED &&
 phone_state_permission == PackageManager.PERMISSION_GRANTED) {

 // Send the SMS Message
 SmsManager smsManager = SmsManager.getDefault();

 String sendTo = "5551234";
 String myMessage = "Android supports programmatic SMS messaging!";

 smsManager.sendTextMessage(sendTo, null, myMessage, null, null);

} else {
 if (ActivityCompat.shouldShowRequestPermissionRationale(
 this, Manifest.permission.SEND_SMS)) {
 // TODO Display additional rationale for the requested permission.
 }

 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.SEND_SMS,
 Manifest.permission.READ_PHONE_STATE},
 SMS_RECEIVE_PERMISSION_REQUEST);
}

If your app is set to be the default SMS app, you must also write all sent messages to the SMS
Content Provider:

ContentValues values = new ContentValues();

values.put(Telephony.Sms.ADDRESS, sendTo);
values.put(Telephony.Sms.BODY, myMessage);
values.put(Telephony.Sms.READ, 1);
values.put(Telephony.Sms.DATE, sentTime);
values.put(Telephony.Sms.TYPE, Telephony.Sms.MESSAGE_TYPE_SENT);

getContentResolver().insert(Telephony.Sms.Sent.CONTENT_URI, values);

Note that this requires the WRITE_SMS and READ_SMS manifest and runtime permissions:

<uses-permission android:name="android.permission.WRITE_SMS"/>
<uses-permission android:name="android.permission.READ_SMS"/>

Alternatively, if your app is not currently selected as the default SMS app, Android will automati-
cally write any messages sent using the SMS Manager to the SMS Provider.

Telephony and SMS ❘ 811

When sending an SMS using sendTextMessage, the second parameter can be used to specify the
SMS service center to use. If you enter null, the default service center for the device’s carrier will
be used.

NOTE The Android debugging bridge supports sending SMS messages among
multiple emulator instances. To send an SMS from one emulator to another,
specify the port number of the target emulator as the “to” address when sending
a new message. Android will route your message to the target emulator instance,
where it will be received as a normal SMS.

The final two parameters let you specify Intents to track the transmission and successful delivery of
your messages by implementing and registering Broadcast Receivers that listen for the actions you
specify when creating the corresponding Pending Intents.

The first Pending Intent parameter is fired when the message is either successfully sent or fails
to send. The result code for the Broadcast Receiver that receives this Intent will be one of the
following:

 ➤ Activity.RESULT_OK—To indicate a successful transmission

 ➤ SmsManager.RESULT_ERROR_GENERIC_FAILURE—To indicate a nonspecific failure

 ➤ SmsManager.RESULT_ERROR_RADIO_OFF—To indicate the phone radio is turned off

 ➤ SmsManager.RESULT_ERROR_NULL_PDU—To indicate a PDU (protocol description unit)
failure

 ➤ SmsManager.RESULT_ERROR_NO_SERVICE—To indicate that no cellular service is currently
available

The second Pending Intent parameter is fired only after the recipient receives your SMS message.

The following code snippet shows the typical pattern for sending an SMS and monitoring the suc-
cess of its transmission and delivery. Note that if your app is the default SMS app, you should also
add the message to the SMS Provider when it is first created, and modify its entry to reflect the suc-
cess or failure of transmission:

String SENT_SMS_ACTION = "com.professionalandroid.SENT_SMS_ACTION";
String DELIVERED_SMS_ACTION = " com.professionalandroid.DELIVERED_SMS_ACTION";

// Create the sentIntent parameter
Intent sentIntent = new Intent(SENT_SMS_ACTION);
PendingIntent sentPI = PendingIntent.getBroadcast(getApplicationContext(),
 0,
 sentIntent,

PendingIntent.FLAG_UPDATE_CURRENT);

812 ❘ CHAPTER 20 AdvAnced Android development

// Create the deliveryIntent parameter
Intent deliveryIntent = new Intent(DELIVERED_SMS_ACTION);
PendingIntent deliverPI =
 PendingIntent.getBroadcast(getApplicationContext(),
 0,
 deliveryIntent,
 PendingIntent.FLAG_UPDATE_CURRENT);

// Register the Broadcast Receivers
registerReceiver(new BroadcastReceiver() {
 @Override
 public void onReceive(Context _context, Intent _intent)
 {
 String resultText = "UNKNOWN";

 switch (getResultCode()) {
 case Activity.RESULT_OK:
 resultText = "Transmission successful"; break;
 case SmsManager.RESULT_ERROR_GENERIC_FAILURE:
 resultText = "Transmission failed"; break;
 case SmsManager.RESULT_ERROR_RADIO_OFF:
 resultText = "Transmission failed: Radio is off";
 break;
 case SmsManager.RESULT_ERROR_NULL_PDU:
 resultText = "Transmission Failed: No PDU specified";
 break;
 case SmsManager.RESULT_ERROR_NO_SERVICE:
 resultText = "Transmission Failed: No service";
 break;
 }
 Toast.makeText(_context, resultText,
 Toast.LENGTH_LONG).show();
 }
 },
 new IntentFilter(SENT_SMS_ACTION));

registerReceiver(new BroadcastReceiver() {
 @Override
 public void onReceive(Context _context, Intent _intent)
 {
 Toast.makeText(_context, "SMS Delivered",
 Toast.LENGTH_LONG).show();
 }
 },
 new IntentFilter(DELIVERED_SMS_ACTION));

// Send the message
SmsManager smsManager = SmsManager.getDefault();
String sendTo = "5551234";
String myMessage = "Android supports programmatic SMS messaging!";

smsManager.sendTextMessage(sendTo, null, myMessage, sentPI, deliverPI);

Telephony and SMS ❘ 813

The maximum length of each SMS text message can vary by carrier, but are typically limited to 160
characters. As a result longer messages need to be broken into a series of smaller parts. The SMS
Manager includes the divideMessage method, which accepts a string as an input and breaks it into
an Array List of messages, wherein each is less than the maximum allowable size.

You can then use the sendMultipartTextMessage method on the SMS Manager to transmit the
array of messages:

ArrayList<String> messageArray = smsManager.divideMessage(myMessage);
ArrayList<PendingIntent> sentIntents = new ArrayList<PendingIntent>();
for (int i = 0; i < messageArray.size(); i++)
 sentIntents.add(sentPI);

smsManager.sendMultipartTextMessage(sendTo,
 null,
 messageArray,
 sentIntents, null);

The sentIntent and deliveryIntent parameters in the sendMultipartTextMessage method are
Array Lists that can be used to specify different Pending Intents to fire for each message part.

To send multimedia MMS messages, use the SMS Manager’s sendMultimediaMessage method,
passing in multimedia to transmit. A fully worked example of sending multimedia MMS messages is
beyond the scope of this book, but is available an Android API demo at: android.googlesource
.com/platform/development/+/69291d6/samples/ApiDemos/src/com/example/android/

apis/os/MmsMessagingDemo.java.

Handling Incoming SMS Messages
For an application to listen for any SMS Broadcast Intents, it needs to specify the RECEIVE_SMS
manifest and runtime permission:

<uses-permission
 android:name="android.permission.RECEIVE_SMS"
/>

The RECEIVE_SMS permission is marked dangerous, so your app must also request this permission at
runtime, otherwise the SMS Broadcast Intents will not be received:

ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.RECEIVE_SMS},
 SMS_RECEIVE_PERMISSION_REQUEST);

When a device receives a new SMS message, the default SMS app will receive a new Broadcast Intent
with the android.provider.Telephony.SMS_DELIVER action. If your app should still receive SMS
messages when it isn’t the default SMS app—for example if you’re listening for confirmation SMS
messages—you can listen for an android.provider.Telephony. SMS_RECEIVED_ACTION Intent.

Both broadcast Intents include the incoming SMS details. To extract the array of SmsMessage
objects packaged within the SMS Intent bundle, use the getMessagesFromIntent method:

Bundle bundle = intent.getExtras();
if (bundle != null)
 SmsMessage[] messages = getMessagesFromIntent(intent);

814 ❘ CHAPTER 20 AdvAnced Android development

Each SmsMessage contains the SMS message details, including the originating address (phone num-
ber), timestamp, and the message body, which can be extracted using the getOriginatingAddress,
getTimestampMillis, and getMessageBody methods, respectively:

SmsMessage[] messages = getMessagesFromIntent(intent);

for (SmsMessage message : messages) {
 String msg = message.getMessageBody();
 long when = message.getTimestampMillis();
 String from = message.getOriginatingAddress();
}

As with outgoing messages, any messages you receive while your app is the default SMS app must be
written to the SMS Provider:

ContentValues values = new ContentValues();

values.put(Telephony.Sms.ADDRESS, message.getOriginatingAddress());
values.put(Telephony.Sms.BODY, message.getMessageBody());
values.put(Telephony.SMS.DATE, message.getTimestampMillis);
values.put(Telephony.Sms.READ, 0);
values.put(Telephony.Sms.TYPE, Telephony.Sms.MESSAGE_TYPE_INBOX);

context.getApplicationContext().getContentResolver()
 .insert(Telephony.Sms.Sent.CONTENT_URI, values);

Once created, remember to register your SMS Broadcast Receiver using the appropriate Intent
Filter—either SMS_DELIVER if your app should function as a default SMS app, or SMS_RECEIVED if
not:

<receiver android:name=".MySMSReceiver">
 <intent-filter>
 <action android:name="android.provider.Telephony.SMS_RECEIVED"/>
 </intent-filter>
</receiver>

Emergency Responder SMS Example
In this example, you’ll create an SMS application that turns an Android phone into an emergency
response beacon. The robustness of SMS network infrastructure makes SMS an excellent option for
applications like this, where reliability is critical.

 1. Start by creating a new EmergencyResponder project that features a backward-compatible
blank EmergencyResponderMainActivity Activity. Set the minimum API to 19 (the first
Android release to fully support SMS APIs).

 2. Add permissions for sending and receiving incoming SMS messages and making phone calls,
to the manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.professionalandroid.apps.emergencyresponder">

Telephony and SMS ❘ 815

 <uses-permission android:name="android.permission.RECEIVE_SMS"/>
 <uses-permission android:name="android.permission.SEND_SMS"/>
 <uses-permission android:name="android.permission.READ_PHONE_STATE"/>

 [... Application Node ...]
</manifest>

 3. Update the res/values/strings.xml resource to include the text to display within the all
clear and request help buttons, as well as their associated default response messages. You
should also define an incoming message text that the application will use to detect requests
for a status response:

<resources>
 <string name="app_name">EmergencyResponder</string>
 <string name="allClearButtonText">Signal All Clear</string>
 <string name="maydayButtonText">Request Help</string>
 <string name="allClearText">I am safe and well. Worry not!</string>
 <string name="maydayText">Tell my mother I love her.</string>
 <string name="querystring">are you OK?</string>
 <string name="querylistprompt">People who want to know if you\'re
ok</string>
</resources>

 4. Add the Recycler View to the dependencies node within the app module build.gradle file:

dependencies {
 [... Existing dependencies ...]
 implementation 'com.android.support:recyclerview-v7:27.1.1'
}

 5. Modify the main_activity_responder_activity.xml layout resource. Include a
RecyclerView to display the list of people requesting a status update, and a series of Buttons
that will allow the user to send response SMS messages. The specific layout doesn’t matter,
provided you include each of the Buttons and the Recycler View using the specified IDs:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 <TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="18dp"
 android:layout_marginEnd="8dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="16dp"
 android:text="@string/querylistprompt"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintHorizontal_bias="0.063"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintStart_toStartOf="parent"

816 ❘ CHAPTER 20 AdvAnced Android development

 app:layout_constraintTop_toTopOf="parent"/>

 <Button
 android:id="@+id/okButton"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginBottom="8dp"
 android:layout_marginEnd="8dp"
 android:layout_marginStart="8dp"
 android:text="@string/allClearButtonText"
 app:layout_constraintBottom_toTopOf="@+id/notOkButton"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintHorizontal_bias="0.6"
 app:layout_constraintStart_toStartOf="parent"/>

 <Button
 android:id="@+id/notOkButton"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginBottom="8dp"
 android:layout_marginEnd="8dp"
 android:layout_marginStart="8dp"
 android:text="@string/maydayButtonText"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintHorizontal_bias="0.53"
 app:layout_constraintStart_toStartOf="parent"/>

 <android.support.v7.widget.RecyclerView
 android:id="@+id/requesterRecyclerListView"
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:layout_marginBottom="8dp"
 android:layout_marginEnd="8dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 app:layout_constraintBottom_toTopOf="@+id/okButton"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/textView"/>

</android.support.constraint.ConstraintLayout>

At this point, the GUI will be complete, so starting the application should show you the
screen in Figure 20-2.

Telephony and SMS ❘ 817

FIGURE 20-2

 6. Create a new Array List of Strings within the Activity to store the phone numbers of the
incoming requests for your status, and create a new ReentrantLock object to support
thread-safe handling of the Array List. Take this opportunity to get Click Listeners for each
Button; both response Buttons should call the respond method.

public class EmergencyResponderMainActivity extends AppCompatActivity {

 ReentrantLock lock;
 ArrayList<String> requesters = new ArrayList<String>();

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_emergency_responder_main);

 lock = new ReentrantLock();
 wireUpButtons();
 }

818 ❘ CHAPTER 20 AdvAnced Android development

 private void wireUpButtons() {
 Button okButton = findViewById(R.id.okButton);
 okButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 respond(true);
 }
 });

 Button notOkButton = findViewById(R.id.notOkButton);
 notOkButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 respond(false);
 }
 });
 }

 public void respond(boolean ok) {}
}

 7. Create a new list_item_requester.xml layout resource in the res/layout folder. This
will be used to display each person who requests your status, within the Recycler View. You
can use a simple TextView with the Android framework’s list item text appearance:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <TextView
 android:id="@+id/list_item_requester"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?attr/textAppearanceListItem"/>
</FrameLayout>

 8. Create a new RequesterRecyclerViewAdapter class that extends RecyclerView.Adapter,
and within it create a new ViewHolder class that extends RecyclerView.ViewHolder. The
Adapter should store a list of phone numbers requesting your status, and the View Holder
should bind those numbers to the Recycler View List Item layout defined in Step 7:

public class RequesterRecyclerViewAdapter extends
 RecyclerView.Adapter<RequesterRecyclerViewAdapter.ViewHolder> {

 private List<String> mNumbers;

 public RequesterRecyclerViewAdapter(List<String> numbers) {
 mNumbers = numbers;
 }

 @Override
 public ViewHolder onCreateViewHolder(ViewGroup parent, int viewType) {
 View view = LayoutInflater.from(parent.getContext())

Telephony and SMS ❘ 819

 .inflate(R.layout.list_item_requester,
 parent, false);
 return new ViewHolder(view);
 }

 @Override
 public void onBindViewHolder(final ViewHolder holder, int position) {
 holder.number = mNumbers.get(position);
 holder.numberView.setText(mNumbers.get(position));
 }

 @Override
 public int getItemCount() {
 if (mNumbers != null)
 return mNumbers.size();
 return 0;
 }

 public class ViewHolder extends RecyclerView.ViewHolder {
 public final TextView numberView;
 public String number;

 public ViewHolder(View view) {
 super(view);
 numberView = view.findViewById(R.id.list_item_requester);
 }

 @Override
 public String toString() {
 return number;
 }
 }
}

 9. Return to the Activity and update onCreate to get a reference to the Recycler View, and
assign the Adapter from Step 8 to it. Take this opportunity to request runtime permission for
receiving and sending SMS messages:

private static final int SMS_RECEIVE_PERMISSION_REQUEST = 1;

private RequesterRecyclerViewAdapter mRequesterAdapter =
 new RequesterRecyclerViewAdapter(requesters);

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_emergency_responder_main);

 lock = new ReentrantLock();
 wireUpButtons();

 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.RECEIVE_SMS,

820 ❘ CHAPTER 20 AdvAnced Android development

 Manifest.permission.SEND_SMS,
 Manifest.permission.READ_PHONE_STATE},
 SMS_RECEIVE_PERMISSION_REQUEST);

 RecyclerView recyclerView =
 findViewById(R.id.requesterRecyclerListView);

 // Set the Recycler View adapter
 recyclerView.setLayoutManager(new LinearLayoutManager(this));
 recyclerView.setAdapter(mRequesterAdapter);
}

 10. Within your Activity, create a new Broadcast Receiver that will listen for incoming SMS mes-
sages. The receiver should listen for incoming SMS messages and call the requestReceived
method when it sees SMS messages containing the incoming request String you defined in
Step 3:

BroadcastReceiver emergencyResponseRequestReceiver =
 new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 if (intent.getAction()
 .equals(Telephony.Sms.Intents.SMS_RECEIVED_ACTION)) {
 String queryString = getString(R.string.querystring)
 .toLowerCase();

 Bundle bundle = intent.getExtras();
 if (bundle != null) {
 SmsMessage[] messages = getMessagesFromIntent(intent);

 for (SmsMessage message : messages) {
 if (message.getMessageBody()
 .toLowerCase().contains(queryString))
 requestReceived(message.getOriginatingAddress());
 }
 }
 }
 }
 };

public void requestReceived(String from) {}

 11. Override the Activity’s onResume and onPause methods to register and unregister the
Broadcast Receiver created in Step 10 when the Activity resumes and pauses, respectively:

@Override
public void onResume() {
 super.onResume();
 IntentFilter filter =
 new IntentFilter(Telephony.Sms.Intents.SMS_RECEIVED_ACTION);
 registerReceiver(emergencyResponseRequestReceiver, filter);
}

@Override
public void onPause() {

Telephony and SMS ❘ 821

 super.onPause();
 unregisterReceiver(emergencyResponseRequestReceiver);
}

 12. Update the requestReceived method stub so that it adds the originating number of each
status request’s SMS to the Array List:

public void requestReceived(String from) {
 if (!requesters.contains(from)) {
 lock.lock();
 requesters.add(from);
 mRequesterAdapter.notifyDataSetChanged();
 lock.unlock();
 }
}

 13. The Emergency Responder Activity should now be listening for status request SMS messages
and adding them to the List View as they arrive. Start the application and send SMS messages
to the device or emulator on which it’s running. When they’ve arrived, they should be dis-
played as shown in Figure 20-3. Note that the default SMS app will also receive these incom-
ing messages and will likely display a corresponding Notification.

FIGURE 20-3

 14. Update the Activity to let users respond to these status requests. Start by completing the
respond method stub you created in Step 6. It should iterate over the Array List of status
requesters and send a new SMS message to each. The SMS message text should be based
on the response strings you defined as resources in Step 3. Send the SMS using the
sendResponse method (which you’ll complete in the next step):

822 ❘ CHAPTER 20 AdvAnced Android development

public void respond(boolean ok) {
 String okString = getString(R.string.allClearText);
 String notOkString = getString(R.string.maydayText);
 String outString = ok ? okString : notOkString;

 ArrayList<String> requestersCopy =
 (ArrayList<String>)requesters.clone();

 for (String to : requestersCopy)
 sendResponse(to, outString);
}

private void sendResponse(String to, String response) {}

 15. Complete the sendResponse method to handle sending of each response SMS. Start by
removing each potential recipient from the “requesters” Array List before sending the SMS:

public void sendResponse(String to, String response) {
 // Check runtime permissions.
 int send_sms_permission = ActivityCompat.checkSelfPermission(this,
 Manifest.permission.SEND_SMS);
 int phone_state_permission = ActivityCompat.checkSelfPermission(this,
 Manifest.permission.READ_PHONE_STATE);

 if (send_sms_permission == PackageManager.PERMISSION_GRANTED &&
 phone_state_permission == PackageManager.PERMISSION_GRANTED) {

 // Remove the target from the list of people we
 // need to respond to.
 lock.lock();
 requesters.remove(to);
 mRequesterAdapter.notifyDataSetChanged();
 lock.unlock();

 // Send the message
 SmsManager sms = SmsManager.getDefault();
 sms.sendTextMessage(to, null, response, null, null);

 } else {
 if (ActivityCompat.shouldShowRequestPermissionRationale(
 this, Manifest.permission.SEND_SMS)) {
 // TODO Display additional rationale for the requested permission.
 }

 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.SEND_SMS,
 Manifest.permission.READ_PHONE_STATE},
 SMS_RECEIVE_PERMISSION_REQUEST);
 }
}

 16. In emergencies it’s important that messages get out. Improve the robustness of the applica-
tion by including auto-retry functionality. Monitor the success of your SMS messaging so
that you can resend a message if it isn’t successfully sent.

Telephony and SMS ❘ 823

 16.1 Start by creating a new public static String in the Activity to be used within Broadcast
Intents to indicate the SMS has been sent.

public static final String SENT_SMS =
 "com.professionalandroid.emergencyresponder.SMS_SENT";

 16.2 Update the sendResponse method to include a new PendingIntent that broadcasts
the action created in the previous step when the SMS transmission has completed. The
packaged Intent should include the intended recipient’s number as an extra.

public void sendResponse(String to, String response) {
 // Check runtime permissions.
 int send_sms_permission = ActivityCompat.checkSelfPermission(this,
 Manifest.permission.SEND_SMS);
 int phone_state_permission = ActivityCompat.checkSelfPermission(this,
 Manifest.permission.READ_PHONE_STATE);

 if (send_sms_permission == PackageManager.PERMISSION_GRANTED &&
 phone_state_permission == PackageManager.PERMISSION_GRANTED) {

 // Remove the target from the list of people we
 // need to respond to.
 lock.lock();
 requesters.remove(to);
 mRequesterAdapter.notifyDataSetChanged();
 lock.unlock();

 Intent intent = new Intent(SENT_SMS);
 intent.putExtra("recipient", to);
 PendingIntent sentPI =
 PendingIntent.getBroadcast(getApplicationContext(),
 0, intent, 0);

 // Send the message
 SmsManager sms = SmsManager.getDefault();
 sms.sendTextMessage(to, null, response, sentPI, null);

 } else {
 if (ActivityCompat.shouldShowRequestPermissionRationale(
 this, Manifest.permission.SEND_SMS)) {
 // TODO Display additional rationale for the requested permission.
 }

 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.SEND_SMS,
 Manifest.permission.READ_PHONE_STATE},
 SMS_RECEIVE_PERMISSION_REQUEST);
 }
}

 16.3 Implement a new Broadcast Receiver to listen for this Broadcast Intent. Override its
onReceive handler to confirm that the SMS was successfully delivered; if it wasn’t, put
the intended recipient back onto the requester Array List.

824 ❘ CHAPTER 20 AdvAnced Android development

private BroadcastReceiver attemptedSendReceiver
 = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 if (intent.getAction().equals(SENT_SMS)) {
 if (getResultCode() != Activity.RESULT_OK) {
 String recipient = intent.getStringExtra("recipient");
 requestReceived(recipient);
 }
 }
 }
};

 16.4 Finally, register and unregister the new Broadcast Receiver by updating the onResume
and onPause handlers of the Activity:

@Override
public void onResume() {
 super.onResume();
 IntentFilter filter =
 new IntentFilter(Telephony.Sms.Intents.SMS_RECEIVED_ACTION);
 registerReceiver(emergencyResponseRequestReceiver, filter);

 IntentFilter attemptedDeliveryFilter = new IntentFilter(SENT_SMS);
 registerReceiver(attemptedSendReceiver, attemptedDeliveryFilter);
}

@Override
public void onPause() {
 super.onPause();
 unregisterReceiver(emergencyResponseRequestReceiver);
 unregisterReceiver(attemptedSendReceiver);
}

The purpose of this example is to demonstrate the process of listening for SMS messages, and send-
ing them from within your application. Keen-eyed observers should have noticed several areas where
it could be improved:

 ➤ The list of people requesting a response needs to be persisted to a database.

 ➤ The Broadcast Receiver would be better registered within the manifest to allow the applica-
tion to respond to incoming SMS messages even when it isn’t running.

 ➤ The parsing of the incoming SMS messages should be moved into Job Scheduler or Work
Manager, and executed on a background thread, as should sending the response SMS
messages.

 ➤ Adding the ability to send your current location using the location based services APIs would
make the app much more useful in an emergency.

 The implementation of these improvements is left as an exercise for the reader.

Releasing, Distributing, and
Monitoring Applications

WHAT’S IN THIS CHAPTER?

 ➤ Preparing your application for release

 ➤ Creating a signing certificate and signing your release builds

 ➤ Managing your release certificates with Google Play

 ➤ Creating a Google Play Store listing

 ➤ Publishing on the Google Play Store

 ➤ Using Alpha, Beta, and staged rollout releases

 ➤ Using Google Play to monitor application metrics, app vitals, user
acquisition, and user feedback

 ➤ Understanding monetization and promotion strategies

 ➤ Optimizing your app using Firebase Analytics and Firebase
Performance Monitoring

Having created a compelling new Android application, the next step is to share it with the
world. In this final chapter, you learn how to prepare your app for release, and how to create
and use a signing certificate to sign your applications before you distribute them.

You’ll be introduced to the Google Play Store, learn how to create a developer profile, and how
to create your application listing. You’ll also learn how to use the Alpha and Beta release chan-
nels to test your app, before using staged rollouts to ensure updates are rolled out in a way to
minimize the risk of distributing an update with critical bugs.

21

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

826 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

The Google Play Store includes a number of tools to monitor your apps in production. You’ll learn
how to use the statistics, vitals, user acquisition, and user feedback pages to better understand how
your app is performing on real devices for real users.

An introduction to the options for marketing, monetizing, and promoting your app will help ensure
you have a successful launch.

Finally, an introduction to Firebase, and a deep dive into Firebase Analytics and Firebase
Performance Monitoring will help you gain critical insight into the demographics of your users and
the performance of your app in real-world scenarios.

PREPARING FOR RELEASE

Before building and publishing the production release of your application, you should take several
steps to prepare your application for distribution.

These preparation steps apply to all applications, irrespective of how they are distributed, and can
generally be divided into two halves: preparing support material related to publishing your applica-
tion, and preparing your code for a release build.

Preparing Release Support Material
Start by reviewing your application’s launcher icon, and ensure it meets the recommended icon
guidelines available at material.io/guidelines/style/icons.html.

Your icon should promote your brand and help users discover your app, both within app listings on
Google Play and within the app launcher on Android devices.

The first impression of your app for potential users is through the app icon, so its quality is often
considered a strong signal for the quality of your app. Great app icons are simple, unique, and
memorable. They use a color scheme that’s consistent with your brand and avoid including text—
particularly the application name.

Once your app is installed, its launcher icon will be used in many situations, so ensure it looks good
on a wide variety of backgrounds and has a unique silhouette to make it easier to identify.

Within your project, include density-specific icons for all generalized screen densities, from low-
through to xxx-high-density to ensure they look good and crisp across all possible devices.

NOTE It’s best practice to place your launcher icons in the res/mipmap folders
rather than the res/drawable folders to ensure the system has access to higher
resolutions than the device’s current density. You can find more details on creat-
ing resources for different screen densities in Chapter 4, “Defining the Android
Manifest and Gradle Build Files, and Externalizing Resources.”

Preparing for Release ❘ 827

In addition to the application resources, Google Play requires a high-resolution (512x512 pixel)
variation of your launcher icon for use in application listings.

You should also consider preparing an End User License Agreement (EULA) to help protect
you, your organization, and your intellectual property, and a Privacy Policy to describe your
commitment to protecting user privacy and providing a safe and secure environment for your
users. You can find more details regarding privacy and security at play.google.com/about/
privacy-security-deception.

Finally, prepare promotional and marketing materials to publicize your app. At a minimum this will
include an application name, summary, and description that will be used to describe your app on
distribution platforms including the Google Play Store.

It’s important to provide high-quality, descriptive titles and application descriptions without spell-
ing or grammatical errors to make it easy for users to find your application and make an informed
choice on its suitability. Similar to your application icon, the quality of your descriptions are a
strong signal for the quality of your application.

You should also create representative screen captures for each supported device type—such as
phone, tablet, and TV—and videos to help describe and promote your app. More details on the par-
ticular promotional material required by Google Play are described later in this chapter.

Preparing Your Code for a Release Build
The following recommendations are optional, but they are considered good coding practice to
ensure high-quality release builds prior to distribution:

 ➤ Choose a good package name—Once deployed your app’s package name cannot be changed,
so take care to select a package name that will be suitable for the lifetime of your applica-
tion. Be sure not to use other companies’ names or trademarks, and use language that reflects
quality and professionalism.

 ➤ Deactivate logging—To improve efficiency, remove all calls to Log and debug tracing calls
such as startMethodTracing and stopMethodTracing.

 ➤ Disable debugging—Remove, or set to false, the android:debuggable attribute in your
application manifest. If your app uses a Web View to display paid-for content or is using
JavaScript interfaces, use the Web View’s setWebContentsDebuggingEnabled method to
disable debugging. This is important because enabled debugging will allow users to inject
scripts and extract content using Chrome DevTools.

 ➤ Review project code folder contents—Check the jni/ and src/ directories to ensure they
contain only source files associated with your application, and that the lib/ directory
contains only third-party or private library files. The src/ directory should not contain any
.jar files.

828 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

 ➤ Review project resource folder contents—Double-check for any private or proprietary data
files that aren’t required for deployment, review all the resource folders for files that you are
no longer using, and check for asset and static files that should be updated or removed prior
to release.

 ➤ Review your manifest file—Verify that your application manifest and Gradle build files are
configured to define the correct app version, installation requirements, and permissions, as
described in the following section.

UPDATING APPLICATION METADATA IN YOUR APPLICATION
MANIFEST

Prior to publishing your application, it’s important to review your application’s metadata, as defined
within your application manifest and Gradle build files and described in more detail in Chapter 4.

In this section we will review some of the nodes unique to production builds and application
distribution.

Reviewing Application Installation Restrictions
Review the uses-permission nodes within the application manifest. Ensure that only permissions
that are relevant and required for your application to function are included. The required permis-
sions will be displayed to users at installation time, so including over-broad or unnecessary permis-
sion requirements risks users choosing not to install your application.

Also within the application manifest, review the uses-feature nodes. As described in Chapter 4,
these nodes are used to specify hardware and/or software features that are strictly required for your
application to function.

The inclusion of any uses-feature nodes will prevent your application from being installed on any
devices that do not support a specified feature. For example, an application that includes the follow-
ing snippet can’t be installed on any Android device that doesn’t include NFC support (such as an
Android TV):

<uses-feature android:name="android.hardware.nfc" />

Use this node only if you want to prevent your app being installed on devices that don’t include cer-
tain features. If your app can use particular hardware, but that hardware is not a strict requirement,
check the host device for support at runtime rather than including a uses-feature node.

Within the Gradle app module, set your app’s configuration settings to define the minimum and
target SDK versions:

defaultConfig {
 applicationId "com.professionalandroid.apps.earthquake"
 minSdkVersion 16
 targetSdkVersion 27
 versionCode 1
 versionName "1.0"
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
}

Updating Application Metadata in Your Application Manifest ❘ 829

Note that it’s possible to define different values for minimum and target SDKs using different build
flavors within your Gradle builds:

defaultConfig {
 applicationId "com.professionalandroid.apps.earthquake"
 minSdkVersion 16
 targetSdkVersion 27
 versionCode 1
 versionName "1.0"
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
}

flavorDimensions "apilevel"

productFlavors {
 legacy {
 applicationId "com.professionalandroid.apps.earthquake.legacy"
 minSdkVersion 14
 targetSdkVersion 15
 versionName "1.0 - Legacy"
 }
}

This allows you to generate multiple SDKs with different requirements. More details on creating and
using build flavors are available in Chapter 4.

The minimum SDK value defines the lowest version of the Android framework onto which your
application can be installed. The Android OS enforces system version compatibility, meaning that it
will reject any attempt to install an app whose minimum SDK is higher than the current operating
system.

The target SDK value indicates the Android platform version against which you did your develop-
ment and testing. This is used by the system to determine which (if any) forward- or backward-
compatibility changes to apply to support your app. It’s considered good practice to always target
the latest platform release after you’ve tested your app on it.

Also within the Gradle build file, review the dependencies node to ensure that only relevant,
required dependencies are included:

dependencies {
 implementation 'com.android.support:recyclerview-v7:27.1.1'
 implementation fileTree(dir: 'libs', include: ['*.jar'])
 implementation 'com.android.support:appcompat-v7:27.1.1'
 implementation 'com.android.support:support-v4:27.1.1'
 implementation 'com.android.support.constraint:constraint-layout:1.1.2'
 testImplementation 'junit:junit:4.12'
 androidTestImplementation 'com.android.support.test:runner:1.0.2'
 androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.2'
}

830 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

Application Versioning
Versioning is an important consideration when deploying your application, critical in ensuring an
orderly app upgrade and maintenance strategy.

An orderly versioning system ensures users will find information specific to their app version, and
publishing services such as Google Play can properly determine compatibility, and establish upgrade/
downgrade relationships. On each device, the Android system uses your app’s version information to
enforce protection against downgrades.

Your application version is defined within your Gradle build file using two values:

versionCode—An integer defining the current version number, which increases with each
new released version. It’s used by Google Play and the Android OS to determine whether
one version of your app is more recent than another. Typically your first release will be num-
bered 1, and with each subsequent release the version code is monotonically increased. Note
that the highest allowed version code value is 2,100,000,000.

versionName—A string displayed to users as the visible version number. As a string, you
can choose to describe the app version as a <major>.<minor>.<point> string, or as any other
type of absolute or relative version identifier. The version name has no purpose other than
to be displayed to users.

You can define both version code and name in the defaultconfig, and override either value within
a product flavor block:

defaultConfig {
 applicationId "com.professionalandroid.apps.earthquake"
 minSdkVersion 16
 targetSdkVersion 27
 versionCode 1
 versionName "1.0"
 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
}

flavorDimensions "apilevel"

productFlavors {
 bleedingedge {
 }
 legacy {
 applicationId "com.professionalandroid.apps.earthquake.legacy"
 versionName "1.0 - Legacy"
 }
}

SIGNING PRODUCTION BUILDS OF YOUR APPLICATION

Android applications are distributed as Android package files (.APK). To be installed on a device or
emulator, Android packages need to be signed.

Signing Production Builds of Your Application ❘ 831

During development, your applications will be signed using a debug key that is automatically gener-
ated by Android Studio. Before distributing your application beyond your testing environment, you
must compile it as a release build and sign it using a private release key—typically using a self-signed
certificate.

To apply an upgrade to an installed application, it must be signed with the same key, so you must
always sign an application using the same release key.

The importance of maintaining the security of your signing certificate can’t be overstated. Android
uses this certificate as the means of identifying the authenticity of application updates, and applying
inter-process security boundaries between installed applications.

Using a stolen key, a third party could sign and distribute applications that maliciously replace your
authentic applications.

Similarly, your key is the only way you can upgrade your applications. If you lose your certificate,
it is impossible to perform a seamless update on a device or from within Google Play. In the latter
case, you would need to create a new listing, losing all the reviews, ratings, and comments associ-
ated with your previous package, as well as making it impossible to provide updates to the existing
users of your application.

NOTE If you plan to distribute your applications exclusively through Google
Play, you can take advantage of Google Play App Signing—an optional program
described later in this chapter—that exists to help you securely manage your
signing key.

When using Google Play App Signing, Google Play creates, stores, and applies a
private release key for your app. You will still create a private key and use it to
sign your app as described in this section, however this will become an upload
key—used only to identify you as the uploader—that will be removed by Google
Play and replaced with the managed private key before being distributed to end
users.

In addition to the security advantages of using Google to secure your release key,
the upload key can be reset by Google, minimizing the risk associated with losing
your local signing key.

The Android guidelines suggest that you sign all your applications using the same certificate,
because applications signed with the same certificate can be configured to run in the same process,
and signature-based permissions can be used to expose functionality between trusted applications
signed with the same certificate.

The JDK includes the Keytool and Jarsigner command-line tools necessary to create a new
keystore/signing certificate, and to sign your APK, respectively. Alternatively, you can use dialogs
within Android Studio as described in the next section.

832 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

Creating a Keystore and Signing Key with Android Studio
To create a new keystore, and a release or upload signing key for your app, within Android Studio
navigate to the Build ➪ Generate Signed APK menu item. The resulting dialog will prompt you to
either select a new keystore or create one, as shown in Figure 21-1.

FIGURE 21-1

Click the Create New button and enter a filename and location for your keystore along with a pass-
word to secure it. You should then create a new key, or signing certificate, by filling in the dialog
shown in Figure 21-2.

FIGURE 21-2

Signing Production Builds of Your Application ❘ 833

Applications published on Google Play require a certificate with a validity period ending after
October 22, 2033. More generally, your certificate will be used through the lifetime of your applica-
tion and is necessary to perform upgrades, so you should ensure your signing certificate will outlast
your application.

The security of your keystore is extremely important, so be sure to use a strong password to secure
it and ensure it is backed up securely.

Obtaining API Keys Based on Your Private Release Key
To prevent unauthorized use and quota theft many third-party libraries—including Google Play
services—require you to generate an API key based on the release key used to sign your application.

These API keys will typically require your app’s unique package name, and the SHA-1 signing-
certificate fingerprint from your release key.

If you are using your own release key, you can obtain its SHA-1 fingerprint using the following
command-line command, where mystore.keystore represents the full path to your keystore as
defined in the previous section:

keytool -list -v -keystore mystore.keystore

If you are managing your key using Google Play App Signing, as described later in this chapter, you
won’t have local access to your app’s final signing certificate. However, you can obtain the SHA-1,
SHA-256, or MD5 fingerprints on the Google Play Console at play.google.com/apps/publish/
by selecting your app and navigating to the App Signing tab, as shown in Figure 21-3.

FIGURE 21-3

The Google Play console and Google Play App Signing are covered in more detail later in this chap-
ter in the section, “Distributing Applications on Google Play.”

834 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

Building and Signing a Production Release
Once you have prepared your project for release, updated its metadata, and created a keystore and
private signing key, you’re ready to build and sign your app for upload and distribution.

A release build contains the same components as a debug build, but it’s also optimized using
zipalign and signed with your release certificate. To build your release APK, you can use a simple
Android Studio wizard by selecting the Build ➪ Generate Signed APK menu item.

In the resulting dialog, select your keystore, provide a password, and select a signing key and associ-
ated password, as shown in Figure 21-4.

FIGURE 21-4

Click Next to continue to the final wizard dialog shown in Figure 21-5.

FIGURE 21-5

Select an output location for the final signed APK and select “release” from the build-type drop-
down. If you have defined different product flavors, select the flavors to build.

Distributing Your Application on the Google Play Store ❘ 835

Note that you can choose to apply either of two APK signature schemes. Historically, all Android
APKs are signed using v1 (JAR signature); however, Android 7.0 introduced v2 (full APK signature),
which offers faster app install times and more protection against unauthorized alterations. Google
Play requires at least v1 signing, and it’s generally recommended
to also use the v2 signature schema if doing so doesn’t cause any
issues when building your app.

Click Finish and your application will be built, zipaligned, and
signed. The indicator shown in Figure 21-6 will notify you of
completion, and offers a shortcut to the location of the resulting
APK.

It’s also possible to configure the Gradle build files to perform the same actions performed by the
wizard when called from the command line. For more details about using the Gradle build files,
refer to d.android.com/studio/build/build-variants.html#signing.

DISTRIBUTING YOUR APPLICATION ON THE GOOGLE PLAY
STORE

One of the advantages of Android’s open ecosystem is the freedom to publish and distribute your
applications however, and wherever, you choose. The most common and popular distribution chan-
nel is Google Play; however, you are free to distribute your applications using alternative markets,
your own website, e-mail, social media, or any other distribution channel.

When distributing your application, it’s important to note that application package names are used
as unique identifiers for each application. As a result, each application—including variations that
you plan to distribute separately—must each have a unique package name. Also note that the file-
name of your APK does not have to be unique—it will be discarded during the installation process
(only the package name is used).

Introducing the Google Play Store
The Google Play Store is the largest and most popular Android application distribution platform.
At the time of writing this book, it has been reported that in excess of 2.7 million applications are
available, with more than 80 billion application downloads from users in over 145 countries.

The Google Play Store is a marketplace—that is, Google Play acts as a mechanism for you to sell
and distribute your application rather than as a merchant reselling it on your behalf. That means far
fewer controls restricting what you distribute and how you choose to promote, monetize, and dis-
tribute it. Those restrictions are detailed within the Google Play Developer Distribution Agreement
(DDA) (play.google.com/about/developer-distribution-agreement.html) and the Google
Play Developer Program Policies (DPP) (play.google.com/about/developer-content-policy/).

Applications that are suspected of breaching the DDA or DPP are reviewed, and if found to have
breached those agreements and policies, are suspended and the developer notified. In extreme cases
of malware, the Google Play Store can remotely uninstall malicious applications from devices.

FIGURE 21-6

836 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

WARNING Before publishing your applications, it’s important to carefully
review the DDA and DPP to ensure your application is compliant. Applications
that are in breach of these policies will be suspended, and multiple infringements
can result in the suspension or banning of your developer account.

If your application isn’t eligible to be distributed through Google Play, you can
still distribute it using an alternative distribution platform or mechanism.

Google Play provides all the tools and mechanisms required to handle application distribution,
updates, sales (domestic and international), and promotion. Once listed, your application will begin
to appear in search results and category lists, as well as potentially within promotional categories.

The full scope of features provided by the Google Play Store is beyond the scope of this book, how-
ever we will cover the core functionality that enables you to publish your application.

Getting Started with the Google Play Store
To publish on the Google Play Store, create a developer account at play.google.com/apps/
publish/signup, as shown in Figure 21-7.

FIGURE 21-7

Distributing Your Application on the Google Play Store ❘ 837

NOTE Your Android Developer Profile will be associated with whichever
Google account (if any) you are currently signed in to. It’s common that multiple
people will need access to this account, particularly if you’re distributing appli-
cations on behalf of a company.

It’s good practice to create a new Google account specifically for your Android
Developer Profile rather than using your personal Google account.

Ensure you’re signed in with the Google account you wish to associate with this developer account,
and review and accept the developer distribution agreement before completing the registration pro-
cess by paying a US $25.00 fee.

You’ll then have the opportunity to complete your developer profile. Provide a “Developer Name”—
typically your company name—that will be used within Google Play to identify the developer of
your applications. Note that it is not a requirement that the developer name used here represent the
company or individual who actually wrote the code—it simply identifies the company or individual
distributing it.

You should also provide contact details in the form of a physical address, e-mail address, website,
and phone number. Note that by providing your e-mail or postal address information, you confirm
that you consent to Google publicly displaying or disclosing that information in connection with
your apps. Here again, it’s good practice to create an email account specifically for app feedback
purposes, rather than sharing your personal email account.

Creating an Application on the Google Play Store
After creating your Android Developer Profile, you are ready to create a new application, upload
your APK as an app release, and complete your store listing.

Before you begin the process of uploading and distributing your new application, you should thor-
oughly test the release version on at least one target handset device and one target tablet device.

When you’re ready to distribute, start by creating a new app listing on Google Play. Click the Create
Application button on the main “All applications” tab, as shown in Figure 21-8.

In the resulting dialog, select the default language, provide your application’s title as shown in
Figure 21-9, and click Create.

With your app created, you can now complete the store listing details and upload APKs to be used
as App Releases, as described in the following sections.

838 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

You will create a new App Release each time you wish to distribute an updated APK, while the app
listing will contain all the details necessary to promote your app on Google Play. It’s important
that you supply all the possible content and assets—even those that may be listed as optional. Each
asset is used throughout Google Play, including the website, Google Play Store clients, and promo-
tional campaigns. Not including some assets may prevent your application from being featured or
promoted.

FIGURE 21-8

FIGURE 21-9

Uploading a New App Release APK
To upload your APK, select the App Releases option on the sidebar to display the App Releases view,
as shown in Figure 21-10. You can choose to publish your application to Alpha, Beta, or Production.

Distributing Your Application on the Google Play Store ❘ 839

FIGURE 21-10

The Alpha and Beta channels allow you to make the app available to a small group of testers prior
to making your app generally available to all users, as described in detail in the “Publishing Your
Application” section.

Click the “Manage [channel]” button for the release channel you wish to publish, and click the
Create Release button.

You will then have the opportunity to enroll in Google Play App Signing, upload an APK, provide a
release name, and complete the release notes.

The first section at the top of the page displays your Google Play App Signing selection—allowing
you to enroll, as described in the following section, “Managing Your Private Release Key using
Google Play App Signing.”

The next section is where you select or upload your signed release package, as shown in
Figure 21-11.

FIGURE 21-11

840 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

NOTE The package name (not the filename) must be unique. Google Play
uses application package names as unique identifiers and will not allow you to
upload a duplicate package name.

You must then enter a Release Name and a description of what’s new in this release, as shown in
Figure 21-12.

FIGURE 21-12

The release notes will be displayed with your application on Google Play, while the release name
is an internal codename that will only ever be shown to you within the Google Play management
console.

Note that it’s not yet possible to publish your APK. You must first complete the mandatory store list-
ing details, content rating, and pricing/distribution details as described in the following sections.

Distributing Your Application on the Google Play Store ❘ 841

Managing Your Private Release Key Using Google Play App Signing
Google Play App Signing is an optional program that exists to help you securely manage your sign-
ing key using the same secure infrastructure Google uses to store its own keys.

When you opt-in to Google Play App Signing, rather than signing each app with your key directly
you sign your app with an upload key. Should you lose your upload key, you can request a copy from
Google—decreasing the risk of losing your key.

When you upload new apps signed with your upload key to the Play Console, Google verifies and
removes the upload key signature before re-signing the app with the original app signing key.

WARNING Once you’ve enrolled your app in Google Play App Signing, with-
drawal is not supported. To preserve the security of your app signing keys, we
don’t have the ability to remove keys from the secure server. However, opt-in is
app-specific, meaning you can choose not to opt-in for future applications.

You can opt-in to Google Play App Signing when creating a new app release, by clicking the
Continue button, as shown in Figure 21-13.

FIGURE 21-13

Alternatively, you can reuse the same Google Play–managed key as your other applications by click-
ing Reuse Signing Key, as shown in Figure 21-14. The Android guidelines suggest that you sign all
your applications using the same certificate.

842 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

If you have an existing application being distributed on Google Play, it’s possible to opt-in to Google
Play App Signing by uploading your existing signing certificate.

Creating a New Application Listing
With your signed APK uploaded, you must prepare your Google Play Store listing. Click the “Store
listing” option on the sidebar to display the store listing options, the first of which is shown in
Figure 21-15.

Begin by providing a high-quality, descriptive title and description to make it easier for users to
discover your application and make an informed choice on its suitability. Don’t engage in keyword
stuffing or other SEO spam in your title or description, as doing so will likely result in your applica-
tion being suspended. Refer to play.google.com/about/storelisting-promotional/metadata/
for more details on Google Play’s metadata policy.

Within this section you can also provide video and graphic assets to be used within your applica-
tion’s listing. That includes a link to a promotional video on YouTube, multiple representative
screen shots for phone, tablet (7 and 10 inch), TV, and Wear devices, as well as specialized graph-
ics used within Google Play including a high-res application icon, feature and promo graphics, a
TV banner, and 360 degree stereoscopic banner for Daydream. You can find full details on the
graphic assets and how they are used within Google Play at support.google.com/googleplay/
android-developer/answer/1078870.

FIGURE 21-14

The application type allows you to indicate if your application is an “app” or a “game,” while the
category drop-down allows you to specify which category your application should be displayed in
within Google Play.

Each application must also receive a content rating, which will be used to inform consumers about
the age appropriateness of your app, block or filter your content in certain territories or to specific
users where legally required, and to evaluate your app’s eligibility for special developer programs.

To determine your app’s content rating, click the “Content rating” link—either on the “Store listing”
page, or via the left navigation bar. This will display the content rating questionnaire, the start of
which is shown in Figure 21-16.

Distributing Your Application on the Google Play Store ❘ 843

FIGURE 21-15

FIGURE 21-16

844 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

You must complete the questionnaire for each app, and whenever you distribute an update that
changes the app content or features in a way that would affect your responses to the questionnaire.

WARNING It’s important to provide accurate responses to the content rating
questionnaire because misrepresentation of your app’s content may result in
removal or suspension from Google Play.

Finally, you can supply application-specific contact details for users of your applications, as shown
in Figure 21-17.

FIGURE 21-17

These details will be published alongside your application’s listing in Google Play, so the e-mail
and phone number provided should point to a managed support queue rather than to your personal
e-mail address.

Specifying Pricing and Distribution
Click “Pricing & distribution” on the left navigation to select the countries and devices you wish to
distribute to, as well as the cost (if any) to consumers who wish to use your app.

Start by determining if your app will be free or paid. Details on creating a merchant account and
configuring your app for paid distribution is beyond the scope of this book; you can find details at
support.google.com/googleplay/android-developer/#topic=3452890.

You can then select from which counties your app should be made available, including (in some
cases) which carrier networks within those countries, as shown in Figure 21-18.

Distributing Your Application on the Google Play Store ❘ 845

The Google Play Store allows you to opt-in to a number of special programs designed to distrib-
ute your app to specific groups including “Designed for Families”—a program for apps and games
designed specifically for kids and family audiences and “Google for Education.” The “Pricing & dis-
tribution” page provides details on the available programs and their requirements.

Similarly, you can submit your app for review for inclusion in special device categories, includ-
ing Android Wear, Android TV, Android Auto, and Daydream. These device types require apps
to adhere to specific app quality and distribution guidelines (linked to from the Store listing page)
before the apps are made available for download to those devices.

FIGURE 21-18

Finally, you must confirm your app conforms to the Android Content
Guidelines and acknowledge that your app may be subject to United
States export laws.

When you have completed the “Pricing & distribution” section, be
sure to click “Save Draft” button.

Publishing Your Application
When you have completed the creation of your store listing, defined
the pricing and distribution, and uploaded your APK, you are ready
to push your application to production and make it available to cus-
tomers. This process is commonly known as release management.

Your application is ready for publishing when all the gray ticks in
the left navigation of the Google Play console have turned green, as
shown in Figure 21-19. FIGURE 21-19

846 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

When all issues have been resolved, navigate to “App releases” in the left navigation and select the
release channel you wish to publish to. To make your application generally available, use the pro-
duction channel. The Alpha and Beta channels are described in more detail in the following section.

Click the Review button to confirm that the release details are correct, and click the “Start rollout
to production” button to make your app available to users.

You will later use the same process to distribute updates to your application; however, for updates you
also have the ability to specify a proportion of your existing users who should receive the update—a
process known as staged rollouts, which is described in more detail in the following sections.

Using the Alpha and Beta Channels
Publishing your application to production makes it available for download by any customer in a
country you have selected for distribution, who’s using a supported device.

No matter how thoroughly you test your app prior to release, there’s no substitute for the testing
performed by having real users download and try your application. With a potential audience in
the billions, it’s good practice to use the Alpha and Beta release channels to make your application
available to small, targeted groups to get early feedback and detect potential issues before making
your app available to everyone.

This is particularly important because the ratings and reviews provided by your first users can have
a dramatic impact on the overall success and popularity of your application. Users of Alpha or Beta
releases can’t submit public reviews and are aware of, and accustomed to, potential issues in “pre-
release” apps. As a result they are likely to provide you with constructive feedback to improve your
app prior to general release.

As shown in Figure 21-20, Google Play offers two pre-release channels: Alpha and Beta. There is no
functional difference between them, but by convention an Alpha will be used first, and will gener-
ally be available to a smaller group than the Beta.

FIGURE 21-20

Either channel allows you to select between an open or closed pre-release. An open Beta (or Alpha)
is visible on the Google Play Store, and is available as a download, or update, for anyone who wants
to join—though you can restrict the total number of users who can enroll.

Distributing Your Application on the Google Play Store ❘ 847

Alternatively, a closed Beta (or Alpha) isn’t visible in the Google Play Store, except to a restricted
group of known users that you specify. You can define this group by e-mail addresses, or select the
Alpha / Beta Testing Using Google Groups or Google+ Communities option to supply a correspond-
ing URL; in the latter case, members of the Google Group or Google+ community will have access
to the closed Beta (or Alpha). This option is a hybrid of open and closed, and while the listing won’t
be visible in Google Play for all users, it’s possible to configure both Groups and Communities to
allow people to join.

In all cases, you must specify a feedback channel that customers can use to provide constructive
feedback during the Alpha/Beta testing period.

Once enabled and published, you’ll be provided with an opt-in link that you can share with your
testers to enable them to join your testing program. Figure 21-21 shows the Manage Testers dialog
for a closed Beta.

FIGURE 21-21

It’s good practice to run a closed Alpha with a known group of testers, followed by an open Beta to
solicit feedback, prior to publishing to production. Note that if you run an open Alpha you can’t run
a Beta test simultaneously.

After Alpha or Beta users follow your opt-in link, they will receive an explanation of what it means
to be a tester and a link to opt-in

In addition to the link or e-mail address you provide for feedback, open Alpha or Beta tests allow
your testers to provide you with private feedback through the Google Play Store.

The testing process assumes that new APKs will progress from Alpha, to Beta, and finally produc-
tion; accordingly, your Alpha test APK should have the highest version code.

848 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

To join your Alpha or Beta test channel, potential users need a Google or G Suite account. Note that it
may take a few hours for the link to your Alpha or Beta app to propagate across Google’s servers and
become available for testers to use. The same is true for new APKs distributed through these channels.

Staged Rollouts
Alpha and Beta testing allows you to get feedback from a select group of real users prior to a pro-
duction release. When you’re ready to push to production, you should consider a staged rollout—
making the update available to a percentage of your existing and new users—to further minimize
the chance of introducing significant bugs or crashes.

While the first production version of your application must be made available to all potential users
at the same time, updates can be applied in stages, defined as a percentage of the total audience of
existing and newly added users.

You can specify the percentage of users to receive the new APK in the “Manage production releases”
form.

The target percentage is achieved from a random selection of new and existing users, meaning you
can’t target specific users, devices, countries, or OS versions.

If you detect potential issues with a release, you can pause the rollout. While it’s not possible to
revert to a previous release, if you perform a staged rollout for a new—updated—APK, it will first
be offered to the users who received the previous update.

Once you’re happy with the results from a given percentage of users, you can increase the staged
rollout percentage from the “Manage production releases” page. To minimize risk, it’s generally
good practice to begin very small, targeting 1–2 percent of users, and gradually increasing that per-
centage over time—carefully monitoring feedback, analytics, and crash reports.

If your app update requires changes to the store listing, it’s good practice to update your store listing
only when your release has been rolled out to 100 percent of users.

Monitoring Your Application in Production
Once your applications are published, your “All applications” page will list each application, along
with the number of active users and installations, average rating and total number of ratings, the
last update date, and each app’s status, as shown in Figure 21-22.

FIGURE 21-22

Distributing Your Application on the Google Play Store ❘ 849

Using the left navigation you can select the following pages to learn more about how your app is
behaving in production. Each page is described in more detail within this section:

 ➤ Statistics—Provides access to a detailed breakdown of your application’s installation statis-
tics, including a graph-based timeline of the application’s installs, ratings, and crashes.

 ➤ Android vitals—Provides technical performance details and anonymous error reports and
stack traces received from users who have opted in to automatically share usage and diagnos-
tics data.

 ➤ User acquisition—Provides a detailed breakdown of the acquisition channels used by custom-
ers installing your application from Google Play.

 ➤ User feedback—Provides rating trends and access to, and dynamic analysis of, user reviews.

Application Metrics with Google Play Statistics
The Google Play Statistics page allows you to generate reports that offer a detailed breakdown of
your application’s installation statistics, including daily updated values for installs, uninstalls, and
upgrades, average and cumulative average ratings, and the number of crashes and freezes.

These metrics can be measured across a number of dimensions to provide analytical insight into
your users, including breakdowns based on:

 ➤ The app version

 ➤ Android platform release

 ➤ Hardware device

 ➤ Country and language

 ➤ Carrier

These reports can be downloaded or displayed as a timeline graph, as shown in Figure 21-23.

FIGURE 21-23

850 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

This information can be extremely useful for deciding where to allocate your resources, which
versions of the Android platform you want to support, and in which countries your application is
underperforming.

Monitoring Your Application with Android Vitals
The Android Vitals page provides insights into app technical performance in terms of stability,
battery, and render times, and anonymous error logging and stack traces collected from Android
devices whose users have opted in to automatically share usage and diagnostics data.

The Overview page allows you to view time series graphs for daily rates of freezes, crashes, slow
rendering, frozen frames, stuck wake locks, and excessive wakeups. These metrics can be measured
across app version, device, or Android OS version.

The “ANRs & crashes” page shows you a summary of ANR (Application Not Responding) freezes
and crashes, as shown in Figure 21-24.

FIGURE 21-24

You can drill down into freezes/crashes to get further details on each error, as shown in
Figure 21-25. Each error is described in terms of the exception at the head of the stack, along with
the class that threw it and the number/frequency of reports that match those criteria.

Distributing Your Application on the Google Play Store ❘ 851

FIGURE 21-25

The same page displays a line graph displaying the frequency of reports for this error between a
specified date range, along with the distribution of devices on which the errors occurred, and the
full stack trace for each error.

These error reports are invaluable for debugging your application in the wild. With hundreds of dif-
ferent Android devices being used in dozens of countries and languages, it’s impossible to test every
variation. These error reports make it possible for you to determine which edge cases you’ve missed
and rectify them as quickly as possible.

User Acquisition Reports
The “User acquisition” page allows you to generate reports that provide insight into how users find
and interact with your Google Play Store listing. By clicking the Retained Installers tab, you can
see the unique users who visited your app’s store listing, then installed your app and kept your app
installed for at least 30 days.

If your application offers in-app purchases or subscriptions, you can select the Buyers tab to generate
reports on how your acquisition channels perform in terms of converting users to buyers and repeat
buyers, split by country.

It’s possible to compare buyer data between acquisition channels or between countries, to investigate
which channels/countries attract the highest value users.

Analyzing User Feedback
The User Feedback page allows you to analyze your app’s ratings and reviews.

The Ratings page displays your current average rating, the total number of ratings (and reviews),
and a histogram of user ratings by number of stars given, as shown in Figure 21-26.

FIGURE 21-26

852 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

A time series graph displays the trend in your app on a daily, weekly, or monthly basis either per
period or cumulatively. You can also drill-down across a number of dimensions, including break-
downs based on:

 ➤ The app version

 ➤ Android platform release

 ➤ Hardware device

 ➤ Country and language

 ➤ Carrier

The Reviews page provides direct access to all user-provided reviews and allows you to compose
replies. Each review includes contextual information about the device and user, including:

 ➤ Application version code

 ➤ Application version name

 ➤ Hardware device

 ➤ Hardware device manufacturer

 ➤ Device Type (phone, tablet, and so on)

 ➤ Language

 ➤ CPU make and model

 ➤ Native platform

 ➤ Device RAM

 ➤ Device screen size and density

 ➤ OpenGL ES version

 ➤ Android OS version.

You can search for specific text, or filter reviews based on the preceding criteria.

The Reviews Analysis page provides analytical insight into reader comments. The Updated Ratings
section allows you to track ratings and reviews that have been changed, making it possible to see the
impact of your replies or app updates.

The Benchmarks section shows your app’s ratings for a pre-determined set of topics for apps within
the same category on the Google Play Store, and allows you to compare your ratings with similar
apps in the same category.

Finally, the Topics section shows ratings for a dynamic set of words mentioned in your app’s reviews
in English, Spanish, and Japanese.

An Introduction to Monetizing Applications ❘ 853

Note that while direct feedback from users is invaluable, such feedback can be unreliable and con-
tradictory. It’s good practice to also use app analytics to reconcile user comments with statistical
analysis.

AN INTRODUCTION TO MONETIZING APPLICATIONS

As an open ecosystem, Android enables you to monetize your applications using whatever mecha-
nism you choose. If you choose to distribute and monetize your applications using Google Play, four
options typically are available:

 ➤ Paid applications—Charge users an upfront fee before they download and install your
application.

 ➤ Free applications with In-App Billing (IAB)—Make the download and installation of the
application free, but charge within the application for virtual goods, upgrades, and other
value-adds.

 ➤ Free applications with Subscriptions—Make the download and installation of the application
free, but charge within the application for a subscription to virtual goods, content, and other
value-adds.

 ➤ Advertising-supported applications—Make the download and installation of the application
free, and monetize it by displaying advertising.

If you choose to charge for your applications on Google Play, either through upfront charges or IAB/
subscriptions, the revenue is split between you and Google Play in the form of a transaction fee. At
the time of writing this book, that revenue split is set at 70 percent for the developer.

To use either approach, you must first create a Google Checkout Merchant Account—you can do
this from your Android publisher account. Your application listings will then include the option to
set a price for the application and the items sold using IAB.

In each case you are the application distributor and merchant of record, so you are responsible for
any legal or taxation obligations associated with the sale of your application, subject to the terms
described in the DDA.

You can also monetize your application using in-app advertising. The specific process required to set
up advertising within your application will vary depending on the ads provider you choose.

It’s beyond the scope of this book to describe the setup process for any particular advertising API;
however, the general process could be described as follows:

 1. Create a publisher account.

 2. Download and install the associated ads SDK.

 3. Update your Fragment or Activity layouts to include an ad banner.

854 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

It’s important to ensure that any ads included within your application are as unobtrusive as possible
and don’t detract significantly from the user experience of your application. It’s also important to
ensure that your user interaction model doesn’t encourage accidental clicks on the ad banner.

In many cases, developers have chosen to offer a paid alternative (either using upfront payment or
IAB) to allow users to eliminate ad banners from their applications.

APPLICATION MARKETING, PROMOTION, AND DISTRIBUTION
STRATEGIES

The first step in effectively marketing and promoting your application is ensuring that you provide
the full set of high-quality assets for your Google Play Store listing.

Several promotional opportunities are available within Google Play; however, with more than
2.7 million other applications available, it’s important that you consider alternative avenues for
marketing and promotion rather than simply launching your application and crossing your fingers.

While your marketing and promotion strategies will vary widely depending on your goals and bud-
get, the following list details some of the most effective techniques to consider:

 ➤ Offline cross promotion—If you have a significant offline presence (such as stores or
branches), or a large media presence (such as within newspapers, magazines, or on TV), cross
promoting your application through those channels can be a particularly effective way to
increase awareness and help to ensure users trust the download. Traditional advertising tech-
niques such as TV and newspaper advertisements can be extremely effective in raising aware-
ness of your application.

 ➤ Online cross promotion—If you have a significant web presence, promoting your application
through direct links to Google Play can be an effective way to drive downloads. If your appli-
cation provides a better user experience than your mobile website, you can detect browser
visitors from Android devices and direct them to Google Play to download your native app.

 ➤ Third-party promotion—Distributing a promotional video on YouTube and leveraging social
networks, blogs, press releases, and online review sites can help provide positive word of
mouth.

 ➤ Online advertising—Online advertising using in-app ad networks (such as AdMob) or tradi-
tional search-based advertising (such as Google AdWords) can drive significant impressions
and downloads for your application.

Application Launch Strategies
Ratings and reviews can have a significant impact on your application’s ranking in category lists and
within Google Play search results. As a result, it can be difficult to recover from a poor launch. The
following list describes some of the strategies you can use to ensure a successful launch:

 ➤ Use closed Alphas, open Betas, and Staged Rollouts—Make your application available to
small, targeted groups to get early feedback and detect potential issues before making your
app available to everyone. Users of Alpha or Beta releases can’t submit public reviews and

Application Marketing, Promotion, and Distribution Strategies ❘ 855

are aware of, and accustomed to, potential issues in “pre-release” apps. As a result they are
likely to provide you with constructive feedback to improve your app prior to general release.

 ➤ Iterate on features not quality—A poorly implemented but feature-rich application will
receive worse reviews than a well-polished application that doesn’t do everything. If you are
using an agile approach of releasing early and often, ensure each release is of the same high
quality, adding new features as part of each release. Similarly, each release should be more
polished and stable than the last.

 ➤ Create high-quality Google Play assets—The first impression your application makes is
through its appearance in Google Play. Maximize the likelihood of that impression resulting
in an installation by creating assets that represent the quality of your application.

 ➤ Be honest and descriptive—Disappointed users who find your application is not as it was
described are likely to uninstall it, rate it poorly, and leave negative comments.

Internationalization
At the time of writing, Google Play was available in more than 190 countries. While the exact
breakdown varies by application category, in most cases more than 50 percent of application instal-
lations are downloaded from countries outside the United States on devices whose language is set to
non-English.

Japan and South Korea represent the two largest consumers of applications outside the United
States, while on a per-capita basis South Korea, Taiwan, and Hong Kong represent the most vora-
cious consumers of Android applications.

Externalizing all your application’s string (and where appropriate, image) resources, as described in
Chapter 4, makes it easy to localize your applications by providing alternative translated resources.

In addition to the application itself, Google Play provides support for adding local language titles
and descriptions for your applications, as shown in Figure 21-27.

FIGURE 21-27

856 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

While nonnative speakers may be able to use your applications, there is a very good chance that
they’ll search and browse Google Play using their native language. To maximize the discoverabil-
ity of your application, it’s good practice to invest in creating translations for at least the title and
description of your application.

NOTE The process of providing fully localized translations for your application
can be expensive and time-consuming, so it’s often useful to use the Android
Developer Console statistics to prioritize the languages to localize for.

Anecdotally, it has been found by many developers that bad translations are con-
sidered worse than no translation.

USING FIREBASE TO MONITOR YOUR APPLICATION

Google’s Firebase SDK includes a variety of tools that can help you monitor your application after
launch to ensure you’re providing the best possible user experience, including:

 ➤ Firebase Analytics—Analyze users and user behavior to better understand who is using your
application and how they are using it.

 ➤ Firebase Performance Monitoring—Provides tools to monitor app performance and diagnose
performance issues.

 ➤ Firebase Crash Reporting—Allows you to receive detailed reports from app crashes, and to
use the Firebase Crash dashboard to monitor your app’s overall health.

 ➤ Firebase Test Lab—Provides physical and virtual devices you can use to run tests that simu-
late actual usage environments.

The Firebase SDK interacts with the Google Play services application, and requires the Google Play
services SDK to be installed. You can find more information on Google Play services, and how to
install the SDK, in Chapter 15, “Location, Contextual Awareness, and Mapping.”

NOTE Due to Firebase’s dependency on the Google Play Store, if you plan
to release via other distribution channels you may need to include alternative
implementations for functionality that depend on Google Play services.

Adding Firebase to Your Application
To add any of the Firebase monitoring tools described in this section, you must first install the
Firebase SDK, which requires Android 4.0 Ice Cream Sandwich (API Level 14) and Google Play
services version 10.2.6 or higher.

Android Studio includes a Firebase Assistant to simplify adding Firebase components to your app.
To use it, select Tools ➪ Firebase to display the assistant window.

Using Firebase to Monitor Your Application ❘ 857

Selecting any Firebase tool you wish to add to your application, such as Analytics, will display a
wizard that allows you to “Connect to Firebase.”

If this is the first time you’ve added a Firebase component to an app in Android Studio, you’ll be
prompted to select a Google account to connect to, and a series of permissions to accept.

Once you’re signed into Firebase, return to Android Studio and you’ll see a dialog that allows you to
create a new Firebase project, or select an existing one to use for your app.

With your app connected, you can return to the wizard. The next step adds the relevant Firebase
tool to your project, by adding Firebase Gradle build script dependency to your project-level build.
gradle file, adding the Firebase plug-in for Gradle, and a dependency for the Firebase tool to your
build.gradle file.

Using Firebase Analytics
Mobile application analytics packages, such as Firebase Analytics, are effective tools for better
understanding who is using your application and how they are using it. Understanding this informa-
tion can help you make objective decisions on where to focus your development resources.

While the statistics provided by the Google Play Console (described earlier in this chapter) offer
valuable insight into your users’ language, country, and handsets, using detailed analytics can pro-
vide a much richer source of information, from which you can discover bugs, prioritize your feature
list, and decide where best to allocate your development resources.

NOTE There are no restrictions on which analytics packages you can use within
your Android applications. Although this section describes the process for con-
figuring and using Firebase Analytics specifically, the same general process is
applicable for most alternatives.

If you’re using the Firebase wizard in Android Studio, following the steps described in the previ-
ous section will add Firebase to your application and apply the necessary changes to you app
module Gradle build file. Note that Firebase Analytics requires only the Firebase-core library as a
dependency:

compile 'com.google.firebase:firebase-core:10.0.1'

To start tracking app analytics, open the launch Activity and declare the com.google.firebase.
analytics.FirebaseAnalytics object as a member variable, and initialize it within the onCreate
handler:

private FirebaseAnalytics mFirebaseAnalytics;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Obtain the FirebaseAnalytics instance.
 mFirebaseAnalytics = FirebaseAnalytics.getInstance(this);
}

858 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

Once you’ve added and initialized the Firebase SDK, you will automatically begin receiving a num-
ber of user properties and events.

NOTE To ensure user privacy, minimum thresholds are applied to all data when
viewed in the Firebase Analytics console to prevent viewing reports that could be
used to infer the demographics of individual users.

The user properties available include your users’ age, gender, country, language, and interests; the
device category, brand, model, and OS version; the store from which the app was installed; the cur-
rent app version; if the user is new or established; and when the user first opened the app.

The automatically recorded events include the first time the app is launched after installation, the
completion of any in-app purchases, user engagement, session starts, app updates, app removal, OS
updates, exceptions, and app data resets.

You can learn more about the automatically collected user properties and events here: support
.google.com/firebase/answer/6317485.

You can also use the FirebaseAnalytics instance to log predefined or custom events using
the logEvent method. Pass in the type of event that occurred using a static constant from the
FirebaseAnalytics.Event class, or a custom event, and a Bundle that uses FirebaseAnalytics
.Param constants to provide the relevant parameters for that type:

Bundle bundle = new Bundle();
bundle.putString(FirebaseAnalytics.Param.SEARCH_TERM, searchTermString);

mFirebaseAnalytics.logEvent(FirebaseAnalytics.Event.SEARCH, bundle);

Standard event types include joining a group, logging in, presenting an offer, searching, selecting
content, sharing, signing up, spending virtual currency, and beginning and ending a tutorial.

A full list of the predefined events appropriate for all apps, and links to event types for apps in the
retail/e-commerce; jobs, education, local deals, and real estate; travel; and games categories are
available at support.google.com/firebase/answer/6317498? ref_topic=6317484.

You can see the corresponding predefined parameters at firebase.google.com/docs/reference/
android/com/google/firebase/analytics/FirebaseAnalytics.Param.

Alternatively, you can generate custom events with custom parameters:

Bundle bundle = new Bundle();
bundle.putString(MISSILE_NAME, name);
bundle.putInt(MISSILE_RANGE, range);

mFirebaseAnalytics.logEvent(LAUNCHED_MISSILE, bundle);

Integrating analytics into your app is critical to understanding the way your application is being
used, and will help you to optimize your workflows in the same way you would a website. As such,
it can be useful to log events that move users from one Activity to another.

Using Firebase to Monitor Your Application ❘ 859

Taken one step further, you can record any action—which options were changed, which menu items
or Action Bar actions were selected, which popup menus were displayed, if a Widget was added, and
which buttons were pressed. Using this information, you can determine exactly how your applica-
tion is being used, allowing you to better understand how well the assumptions you made during
design match actual usage.

When building games, you can use the same process to gain insight into players’ progress though the
game. You can track how far people progress before quitting, identify levels that are more difficult
(or easier) than you expected, and then modify your game accordingly.

Perhaps most usefully, if your app has a commerce component—such as purchasing goods or book-
ing hotels—you can track the paths that led to successful purchases and bookings.

To view and analyze the analytics recorded from your application, navigate to the Firebase console
at console.firebase.google.com. Select your app, and then choose the Analytics option from the
left menu to be presented with the Analytics dashboard shown in part in Figure 21-28.

If you upgrade your Firebase account to the paid “Blaze” plan it’s possible to link your Firebase ana-
lytics to Google BigQuery, a serverless, petabyte-scale data warehousing and analytics engine. Using
BigQuery you can use SQL queries to access your raw, unsampled event data along with all of your
parameters and user properties.

Once your Firebase app is linked to a BigQuery project, your event data will be exported to the
selected BigQuery dataset each day. You can then query, export, or join your analytics dataset with
data from external sources to perform custom analysis.

To join Firebase Analytics to BigQuery, click the cog icon from the left navigation of the Firebase
console and click Project Settings. Then click the Account Linking tab followed by the Upgrade
Project and Link on the BigQuery card, and then follow the instructions to create a BigQuery
dataset.

FIGURE 21-28

860 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

BigQuery provides 10Gb of free storage and 1Tb of free queries each month, and doesn’t charge for
ingesting data. You can find more information on BigQuery and its pricing model at cloud.google
.com/bigquery/pricing.

Firebase Performance Monitoring
Firebase Performance Monitoring (FPM) enables you to gain insight into the performance charac-
teristics of your apps. Performance issues are a significant factor in the user experience, but to fix
performance issues it’s first necessary to understand where and when those issues arise for real users
in real-world usage environments.

Firebase Performance Monitoring works by reporting traces—reports of performance data captured
between two points in time. This includes a number of automatic traces including app startup time,
background time, and foreground time, as well as any custom traces you define.

At the time of writing, Firebase Performance Monitoring is in Beta, and is not available within the
Android Studio Firebase assistant. Use the technique described in the previous section to connect
your app to Firebase, and then use the following steps to add Performance Monitoring to your app.

Within the project-level Gradle build file, ensure jcenter() is included in the buildscript reposi-
tories, and add the com.google.firebase:firebase-plugins classpath to the buildscript
dependencies:

buildscript {
 repositories {
 google()
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:2.3.3'
 classpath 'com.google.gms:google-services:3.0.0'
 classpath ('com.google.firebase:firebase-plugins:1.1.5') {
 exclude group: 'com.google.guava', module: 'guava-jdk5'
 }
 }
}

Open the app-level Gradle build file and apply the com.google.firebase.firebase-perf plug-in:

apply plugin: 'com.android.application'
apply plugin: 'com.google.firebase.firebase-perf'

Finally, add the com.google.firebase:firebase-perf dependency:

dependencies {
 implementation 'com.google.firebase:firebase-core:11.8.0'
 implementation 'com.google.firebase:firebase-perf:11.8.0'
}

Using Firebase to Monitor Your Application ❘ 861

Once installed, Firebase Performance Monitoring automatically collects traces that measure:

Application startup—The time between when the user opens the app and when the app is
responsive.

Time in foreground—The time between when the first foreground Activity calls onResume
until the last foreground Activity calls onStop.

Time in background—The time between the last foreground Activity calls onStop until the
next Activity to reach the foreground calls onResume.

Firebase Performance Metrics will also produce a report on all HTTP/S network requests that cap-
tures the response time, payload size, and success rate of each request.

In addition to the automated tracing and monitoring, it’s also possible to create your own custom
traces, allowing you to measure performance metrics in specific areas of your app.

The simplest way to trace the performance of a given method is to use the @AddTrace annotation,
providing a string to identify the resulting trace:

@AddTrace(name = "onReticulateSplinesTrace", enabled = true)
protected void reticulateSplines() {
 // TODO Method implementation
}

This will result in a trace that begins when the method is called, and stops when the method
completes.

Alternatively, you can create a custom trace, which allows you to specify traces that include coun-
ters, and which span across multiple methods. You can have multiple custom traces in your app,
potentially running concurrently.

To create a custom trace, create a new Trace object by calling the static getInstance method
on the FirebasePerformance class to return the FirebasePerformance instance, then call
newTrace—specifying a string identifier—to create a new Trace object:

Trace splineTrace =
 FirebasePerformance.getInstance().newTrace("spline_trace");

To begin the trace, call start on the Trace object:

splineTrace.start();

While the trace is running, you can add counters for performance-related events using the incre-
mentCounter method, specifying a string identifier:

if (cacheExpired) {
 splineTrace.incrementCounter("item_cache_expired");
} else {
 splineTrace.incrementCounter("item_cache_hit");
}

862 ❘ CHAPTER 21 Releasing, DistRibuting, anD MonitoRing applications

When the process you’re tracing completes, stop the trace by calling its stop method:

splineTrace.stop();

To view the results of Firebase Performance Monitoring, navigate to your app within the Firebase
Developer Console, and click the Performance option from the Stability section within the left navi-
gation. The performance page shows each of the tracked performance metrics, all of which can be
broken down by dimensions including app version, country, device, and OS version.

863

INDEX

A

AAPT (Android Asset Packaging Tool), 49
AccelerateDecelerateInterpolator, 512
acceleration

changes, 640–642
GForceMeter, 642–645
linear, 639
x-axis, 640
y-axis, 641
z-axis, 641

accelerometers, 639–640
orientation calculation and, 647–649

Accessibility APIs, 168–169
ACTION_DELETE Activity Intent, 184
ACTION_DIAL Activity Intent, 185
ACTION_EDIT Activity Intent, 185
ACTION_INSERT Activity Intent, 185
ACTION_INSTALL_TTS_DATA, 503
ACTION_PICK Activity Intent, 185
ACTION_SEARCH Activity Intent, 185
ACTION_SEND Activity Intent, 185
ACTION_SENDTO Activity Intent, 185
ACTION_VIEW Activity Intent, 185
ACTION_WEB_SEARCH Activity Intent,

185
Activities, 30, 58, 61, 64–71, 246

ACTION_INSTALL_TTS_DATA, 503
creating, 62–63
Earthquake Monitor settings,

261–267
Fragments, callback interfaces, 85–86
Intents and

Intent Filters, defining, 186–194
Intent Receivers, 187

Intent resolution, 179, 187–188
Intents and, 178

launching
Intents and, 178–185
platform-native actions, 184–185

layouts, Fragments and, 82–83
lifetimes, 66–67

active, 68
full, 67
visible, 67–68

LRU list, 64–65
manifest file, 100
Maps API, 585

camera position, 590–592
configuring, 589
Key, 586
map-based, 586–588

menus, 468–469
results, 181–184
skeleton code, 62
stacks, 64–65
starting, explicitly, 179
states

active, 65
event handlers, 69–71
inactive, 66
paused, 65
stopped, 66

sub-Activities
launching, 182
results, 182–183
results handling, 183–184

toolbars, 472–473
scrolling, 473–476

transactions, shared, 451–452

Professional Android®, Fourth Edition. Reto Meier and Ian Lake.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

864

Activity class – Android Studio

UIs
assigning, 132
saving, 246

widget configuration, 756–757
Activity class, 30, 58

AppCompatActivity class, 63–64
UIs, 62–63

Activity Intents
ACTION_DELETE, 184
ACTION_DIAL, 185
ACTION_EDIT, 185
ACTION_INSERT, 185
ACTION_PICK, 185
ACTION_SEARCH, 185
ACTION_SEND, 185
ACTION_SENDTO, 185
ACTION_VIEW, 185
ACTION_WEB_SEARCH, 185

Activity Manager, 11
responsiveness and, 44

Activity Recognition APIs, 620, 662–664
ActivityCompat class, 340
Adapter, 146–149
Adapter View class, 763–764
ADB (Android Debug Bridge), 48, 54
ADT (Android Development Tools), 17
AIDL (Android Interface Definition

Language), 427
Alarm Manager, 378

canceling alarms, 423–424
creating alarms, 423–424
setting alarms, 423–424

alarms, 422–423
canceling, 423–424
Clock, 424
creating, 423–424
setting, 423–424

Amazon Web Services, 243
Android

development platform, 3
history, 2–3
launch, 1–2

Android Media Store, 342–344
Android Project Wizard, 16

Android Run Time, 15
Android SDK. See SDK (software

development kit)
Android Studio

ADB (Android Debug Bridge), 54
Android Project Wizard, 16
Android Virtual Device manager, 16
APK Analyzer, 48, 54–55
autocomplete, 51
AVD Manager, 48
build performance, 49
Canary, 20
coding, 16
console outputs, 17
debugging, 17

cold swap, 50
hot swap, 50
warm swap, 50

editors, 16
Emulator, 14, 17, 51–52
Espresso, 56
frameworks, 16
GitHub, 16
Gradle, 48, 56
IDE, 16
installation

Linux, 17
MacOS, 17
Windows, 17

Instant Run, 50
Lint, 48, 55
Live Templates, 51
logging, 17
memory requirements, 16
Monkey, 55
Monkey Runner, 55
OpenJDK, 14, 17–18
operating systems supported, 15–16
postfix code completion, 51
Profiler, 14, 17, 48, 52–53
project building automation, 16
SDK Manager, 48
searches, 50
statistic analysis, 16

865

Android Vitals – applications

Subversion, 16
testing, 16
updates, 19–20
Vector Asset Studio, 48
version control, 16

Android Vitals, 850–851
animations

AccelerateDecelerateInterpolator, 512
AnimatorInflator.loadAnimator method,

512
AnimatorSet class, 513
attributes, 116–117
Fragment Transactions, 84
frame animations, 114, 118
property animations, 114, 115–116,

510–513
animation listeners, 513
sets, 513

Vector Drawables, 442–445
view animations, 114, 116–118

AnimatorInflator.loadAnimator method, 512
AnimatorSet class, 513
ANR dialog box, 44–45
anti-aliasing, 520
API keys, 833
APIs (application programming interfaces), 15

Accessibility, 168–169
Activity Recognition, 662–664
Beam, 713
Fragment, 58
Geofencing, 560
Google Machine Learning APIs, 243
JobScheduler, 385–386
libraries, 2
Recognition API, 620
Strict Mode, 797–798

APK (Android Package Files), 830–831
uploading new, 838–840

APK Analyzer, 48, 54–55
app bar, 452–455

Earthquake Viewer, 477–470
menu actions, resources, 467–468

App Shortcuts, 781–782
Dynamic Shortcuts, 784–785

Static Shortcuts, 783–784
tracking use, 785–786

App Widgets, 744
AppCompat API, 464–465

themes
applying, 465–466
creating, 465–466
overlays, 466

AppCompatActivity class, 30, 63–64
Application class, 61
application layer, software stack, 9
applications

Activities, 58
architecture, 11
Broadcast Receivers, 59
Content Providers, 59
debugging, 29–30
development, 1–2
distribution

Google Play App signing,
841–842

Google Play Store, 835–845
monetizing, 853–854
monitoring, 848–853
new listing, 842–844
pricing, 844–845
user acquisition reports, 851
user feedback, 851

Earthquake Viewer, See Earthquake Viewer
framework, 4

software stack, 9, 10
immersive, 508–509
Intents, 58–59
internationalization, 855–856
Internet, native, 212–213
launch strategies, 854–855
life cycle, 59–61
lifecycle, processes, 60–61
manifest file, 99–100
marketing, 854
monetizing, 853–854
Notifications, 59
preinstalled, 4–5
promotion, 854

866

AppWidgetProvider class – background Threads

publishing, 845–848
staged rollouts, 848

releasing
API keys, 833
building production release, 834–835
installation restrictions, 828–829
preparation, 826–828
signing production release, 834–835
versioning, 830

running, 29–30
Services, 58

AppWidgetProvider class, 748–749
Architecture Components, Work

Manager, 385
ART (Android Run Time), 4, 7–8, 10–11,

59–61
NDK (native development kit), 10

Async Tasks, 379–380
in Broadcast Receiver, 382–383
creating, 380–381
executing, 381–382
manual creation, 383–384
Runnables, 383–384
running, 381–382

asynchronous queries, Loaders, 333–336
Asynchrous Tasks, 215–216
AsyncTask class, 215–216, 379–383

executeOnExecutor method, 382
audio, 666–667. See also Media Player

background playback, 686–688
focus

changes, 675–676
requesting, 674–675

foreground service, 691–692
manifest file, 97

authorities tag, 321
Auto Backup, 254–256
autocomplete, 51
AVD (Android Virtual Device) Manager, 16,

48, 51
AVDs (Android Virtual Devices), 15

creating, 24–26
Awareness API, 542, 609–610

best practices, 617–618

Fences, 613
adding, 615–616
BeaconFence, 613
combining, 615
DetectedActivityFence, 613
HeadphoneFence, 613
LocationFence, 614
removing, 616–617
TimeFence, 614
trigger intent, 616
update requests, 615

GoogleApiClient, 610–611
Snapshots, 612–613

B

back stack, Fragments and, 83–84
background tasks, 378

alarms, 422–423
canceling, 423–424
Clock, 424
creating, 423–424
setting, 423–424

audio playback, 686–688
battery and, 378
FCM (Firebase Cloud Messaging), 417–418
network operations, 214–218
Notification Manager, 401

actions, 411–413
creating notifications, 403–407
Earthquake Viewer, 414–417
multiple notification groups, 413–414
Notification Channels, 402–403
priorities, 407–410

scheduling, 385–386
Job Dispatcher, 391–393
Job Scheduler, 388–391
Work Manager, 393–396

Services, 424–425
bound Services, 425–427

background Threads, 379
Async Tasks, 379–380

in Broadcast Receiver, 382–383
creating tasks, 380–381

867

backward compatibility – Canvas

executing tasks, 381–382
manual thread creation, 383–385

Java, 379
backward compatibility, 22–23, 88–89, 795

background tasks, 378
fragments, 796–797
interfaces, 796–797
parallel activities, 796

bandwidth, 213
barometer, 654–655

weather station, 655–659
battery, 206–207

background tasks and, 378
design and, 42
downloading and, 241–242

Beam, 738–739
messages, 739–740

receiving, 742
Ndef message, 739–740
Ndef Record, 739–740
payload assignment, 740–741

Beam APIs, 713
Behaviors, Views, Coordinator Layout,

473–474
binding, runtime, 179–180
BLE (Bluetooth Low Energy), 726

characteristics, 727
services, 727

Bluetooth, 713
BLE (Bluetooth Low Energy), 726–727
BLUETOOTH_ADMIN permission, 715
device discovery, 716–719
enabling, 716
getBluetoothLeScanner, 726
local adapter, 714–716
manifest file, 97
profiles, 725–726
remote devices, selecting, 722–723

Bluetooth Adapter
access, 714–715
friendly name, 715
getState method, 715
properties, 715

Bluetooth LE, 714

Bluetooth Server Socket, 720–722
connection, opening, 723–724
data transfer, 724–725

Bluetooth stack, 713–714
BluetoothAdapter class, 714–716
body sensors, 623, 659–662
bottom navigation bar, 482–485
broadcast Intents, 178
Broadcast Receivers, 178, 202–203. See also

Receivers
asynchronous tasks, 382–383
docking, 205–206
Local Broadcast Manager, 207–208
location updates, 559–560
permissions, 791
registering

in application manifest, 204
in code, 203–204

builds, performance, 49
Bundles, 246, 247

instance-state Bundles, 246
Button control, 143

C

Calendar
Intents and, entry creation, 352–354
queries, 351–352

Call Log, 341–342
callbacks, Fragments, 85–86
camera

Camera Characteristics, 700–701
capture requests, 702–704
device connections, 701
direct control, 699–705
Intents and, 697–699
manifest file, 97
picture taking, 704–705
previews, 702–704

CameraManager, 700
CancellationSignal parameter,

322–323
Canvas

controls, 164–165

868

Canvas class – Color Drawables

drawing best practices, 520–521
painter’s algorithm, 164

Canvas class, 514–515
cards, display, 456–460
Cast, 682–686
Cast Application Framework, 682–684
CDD (Compatibility Definition Document), 4
CheckBox control, 144
checkLocationSettings method, 560–561
CHECK_VOICE_DATA_PASS, 503
classes

Activity, 30, 58
ActivityCompat, 340
AnimatorSet, 513
AppCompatActivity, 30, 63–64
Application, 61
AppWidgetProvider, 748–749
AsyncTask, 215–216
BluetoothAdapter class, 714–716
CameraCharacteristics, 700–701
Canvas, 514–515
ClearableEditText, 160
ClipData, 539
Criteria, 573
Cursor, 300
Environment, 270–271
Fragment, 73–74
Geocoder, 580–581
GoogleApiAvailability, 546
Handler, 379
HandlerThread, 379
JobService, 392
LayerDrawable, 537
layouts, 132

ConstraintLayout, 133, 138–139
FrameLayout, 133
LinearLayout, 133, 136–137
RelativeLayout, 133, 137

LocationManager, 572–573
MaskFilter, 518
MediaPlayer, 667–668
Message, 384
NavigationView, 486–487
Object Animator, 510–513

PreferenceFragment, 256–257
R, 119–120
RecognizerIntent, 505–506
Resources, 119–120
RotateDrawable, 536
ScaleDrawable, 536
Sensor, 620–621
SmsManager, 809–810
SQLiteQueryBuilder, 322–323
SurfaceView, 162
TextToSpeech.Engine, 503–504
ThreadPolicy, 797
TimeInterpolator, 512
TypeEvaluator, 511
View, 131
ViewGroup, 131
VmPolicy, 797

ClearableEditText class, 160
clipboard

copying to, 539
pasting data, 539–540

ClipData class, 539
Clock, 424
cloud computing, Google Cloud Platform,

243
Cloud Messaging (Firebase), 378
code

postfix code completion, 51
resources in, 119
skeleton code, 62

Collection View Widgets
Earthquake Viewer, 770–777
GridView, 763
interactivity, 769–770
item updates, 767–768
layout creation, 764–765
ListView, 763
populating, 768–769
refreshing, 770
StackView, 763
updating, 765–767

color, 111
material design and, 447–448

Color Drawables, 439

869

Color Filters – databases

Color Filters, 518
communication software, manifest file, 98
Compass View, 521–530

device orientation and, 650–654
compatibility, backward-compatibility, 795

fragments, 796–797
interfaces, 796–797
parallel activities, 796

composite Drawables, 536–539
compound controls, 159–161

as layout, 161–162
console outputs, 17
Constraint Layouts, 138–139
ConstraintLayout class, 133
Contacts, 344–348

Intents API, 349
accessing contacts, 349–350
inserting contacts, 350–351
modifying contacts, 350–351

content display, cards, 456–460
Content Providers, 11, 59, 318

authorities, 321
Calendar, 351–354
Call Log, 341–342
Contacts, 344–351
Content Resolvers and, queries, 330–336
creating, 319–320
databases, creating, 320–321
deleting content, 337
file access, 338–339
file sharing, 327–328
inserting content, 336–337
Media Store, 342–344
permissions

adding requirements, 328–330
dangerous protection level, 329
normal protection level, 329
restricted, accessing, 339–340

queries
Content Resolvers and, 330–336
implementing, 322–325

reading files, 338–339
reasons to use, 318
registering, 321

transactions, 325–327
updating content, 337–338
URI address, publishing, 321–322
values, extracting, 332
writing files, 338–339

Content Resolver, 322–323
delete method, 337
insert method, 336–337
notifyChange method, 325–327
queries, 330–336
update method, 337–338

controls, 131
compound controls, 159–161

as layouts, 161–162
Views

Button, 143
CheckBox, 144
EditText, 143
ImageButton, 143
ImageView, 143
ProgressBar, 143
RadioButton, 144
RecyclerView, 143
TextView, 143
Toolbar, 143
VideoView, 144
ViewPager, 144

Coordinator Layout, Behaviors and Views,
473–474

copying, to clipboard, 539
Criteria class, 573
CTS (Compatibility Test Suite), 4
Cursor class, 300

D

data authority, 188
Data Binding, 150

earthquake viewer, 153–155
enabling, 151–152
variables, 152–153

data connectivity, changes, 206–207
databases

Auto Backup, 254–256

870

datasets, transitions – devices

Firebase Realtime Database, 309
access rules, 311–313
adding data, 313–314
adding to app, 309–311
defining, 311–313
deleting data, 314
modifying data, 314
queries, 314–315

LiveData, 292–294
Room

data access object, 284
defining, 284–286
entity, 284
interactions, 291–292
queries, 290–291
RoomDatabase class, 284

SQLite, 298–299
content values, 300
contracts, 300
cursors, 300
input validation, 299
queries, 305–307
SQL injection, 299
SQLite Open Helper, 301–305
values from cursors, 307–308

datasets, transitions, 148–149
debugging, 17

cold swap, 50
device configuration, 26–29
Hello World, 29–30
hot swap, 50
USB, 28–29
warm swap, 50

deceleration, 640–642
delete method, 337
density-independent design, 130–131
design, 130

density-independent, 130–131
hardware and, 39–40

battery life, 42
form factors, 40–41
latency, 41–42
processors, 40
screens, 40–41

speed, 41–42
storage capacity, 40

material design, 445–452
screens, 434–445

development
accessibility, 47–48
environment considerations, 43
framework, ART, 7–8
freshness, 46
hardware considerations, 39–40

battery life, 42
form factors, 40–41
latency, 41–42
processors, 40
screens, 40–41
speed, 41–42
storage capacity, 40

performance, 44
platform, 3

open source, 3
reasons for, 6–7
responsiveness, 44–45
seamlessness, 47
security, 46–47

device hardware UI, manifest file, 97
device management software,

manifest file, 98
device movement sensors, 622–623
device orientation, 637–639

accelerometer, 647–649
Compass View, 650–654
gyroscope and, 647–649
magnetometer and, 647–649
reference frame, 645

azimuth, 646
pitch, 646
remapping, 649–650
roll, 646

rotation vector sensors, 646–647
device-independent UIs, layouts, 136–139
devices

configuration
for debugging, 26–29
for testing, 26–29

871

Dialogs, initiation – dynamic sensors

debugging, configuring for, 26–29
docking, Broadcast Receivers and, 205–206
testing, configuring for, 26–29

Dialogs, initiation, 497–498
dimensions, 111–112
directories, public, scoped directory access,

270–274
discovery, Bluetooth devices

discovering devices, 717–719
making discoverable, 716–717

display
cards, 456–460
resolution independence

density-independent pixels, 435
pixel density resource qualifiers,

435–436
scalable graphics

Color Drawables, 439
NinePatch Drawbles, 445
Shape Drawables, 439–440
Vector Drawables, 441–445

screen sizes, 436
scalable layouts, 437–439

distributing applications
Google Play Store, 835–837

App signing, 841–842
application creation, 837–845
new listing, 842–844
pricing, 844–845

monitoring, 848–853
divideMessage method, 813
Do Not Disturb, 410
doInBackground event handler, 381
Download Manager

canceling downloads, 238
file download, 233–235
location specification, 237
notifications, 235–237
queries, 238–240
removing downloads, 238

downloads, battery saving and, 241–242
dp (density-independent pixels), 131
draw method, 514–515
Draw9patch, 49

Drawables, 112–113, 434
Color Drawables, 439
composite, 536–539
Layer, 537
Level List, 538–539
NinePatch Drawables, 445
RotateDrawable class, 536
ScaleDrawable class, 536
Shape Drawables, 439–440
State List, 537–538
transformative, 536–537
Vector Drawables, 131, 441–445

drawArc method, 514
drawARGB method, 514
drawBitmap method, 514
drawBitmapMesh method, 514
drawCircle method, 514
drawColor method, 514
Drawer Layout, 487–488
drawing

best practices, 520–521
Canvas class, 514–515
Color Filters, 518
Compass View, 521–530
drawLine method, 514
drawOval method, 514
drawPaint method, 515
drawPath method, 515
drawPicture method, 515
drawRect method, 515
drawRGB method, 514
drawRoundRect method, 515
drawText method, 515
drawTextOnPath method, 515
drawVertices method, 515
MaskFilter class, 518
Path Effects, 519
shaders, 516

gradient, 517
tile modes, 517

transfer mode, 519
translucency, 515–516

Dx, 49
dynamic sensors, 624–625

872

Earthquake Viewer – Firebase

E

Earthquake Viewer, 87–94
app bar, 477–470
Collection View Widgets, 770–777
Data Binding, 153–155
data persistence, Room, 294–298
Internet connection, 220–227
Job Dispatcher, 396–400
layout, 149–150
mapping, 605–609
material design and, 455–461
Notification Manager, 414–417
Search View, 366–376
settings, Activities, 261–267
tabs, 492–496
widgets, creating, 757–763

Eclipse, ADT (Android Development Tools), 17
editors, 16
EditText control, 143
emergency responder SMS example, 814–824
Emulator, 8, 14, 17, 51–52

location-based functionality, 548–549
Environment class, 270–271
Environmental Sensors, 621–622

barometer, 654–655
weather station, 655–659

Espresso, 56
EULA (End User License Agreement), 827
evaluate method, 511
event handlers

doInBackground, 381
Fragment life cycle, 75–77
memory trim, 72
onActivityResult, 181–184, 503
onPostExecute, 381
onPreExecute, 381
onProgressUpdate, 381
state, 69–71
Views, 167–168

exercise sensors, 623
EXIF (Exchangeable Image File Format), 706
ExoPlayer, video playback, 672–674
external storage, application specific,

268–270

F

FABs (Floating Action Buttons), 434
Earthquake Viewer, 460–461

FCM (Firebase Cloud Messaging)
data, receiving, 421–422
notifications, 417–418

metadata, 420
receiving in foreground, 420–421
to a topic, 420

remote triggers, 418–420
File Provider

creating files, 274
receiving files, 275
sharing files, 275

file-management tools, 267–268
files

Auto Backup, 254–256
external storage, 268–270
internal storage, 268
local, 246
saving, 246
sharing

Content Providers, 327–328
File Provider, 274–275

Storage Access Framework, 275–276
directory access, 277–278
file creation, 278
persistent access, 277
temporary access, 276–277

filters
Intent Filters, defining, 186–194
Match filter, 200
Transform filter, 200

fingerprint, manifest file, 97
Fingerprint Manager, 792–793
Firebase, 9

adding, 856–857
analytics, 857–860
Cloud Messaging, 378
FPM (Firebase Performance Monitoring),

860–862
Job Dispatcher (See Job Dispatcher)

scheduling jobs, 391–393
Notifications, 378

873

Firebase Test Lab – Google Play

Firebase Test Lab, 16
folders

mipmap, 108
res, 32, 108–118

foreground dispatch system, NFC and,
736–738

foreground services, audio, 691–692
form factors, design and, 40–41
FPM (Firebase Performance Monitoring),

860–862
Fragment API, 58, 247
Fragment class, 73–74
Fragment Manager, 11

Activities
adding fragments, 79–84
dynamic layouts, 82–83

adding Fragments, 81
back stack and, 83–84
configuration, 81–82
finding Fragments, 82
Fragment Transactions, 80

animating, 84
back stack, 83–84

hiding Fragments, 83
removing Fragments, 81
replacing Fragments, 81

Fragment Pager Adapter, 480–481
Fragments, 73, 246

Activities, callback interfaces, 85–86
attaching, 77
creating, 73–74, 78
destroying, 78
detaching, 77
headless, 251–252
life cycle, 74

event handlers, 75–77
events, 77–78

menus, 469
selections, 470

skeleton code, 73–74
states, 78
UIs (user interfaces), 73–74, 78

lack, 86–87
frame animations, 114, 118

FrameLayout class, 133
functions, Cursor class, 300
Fused Location, 571

G

gamepad, manifest file, 97
GATT (Generic Attribute Profiles), 727
GCM (Google Cloud Messaging), 418
Geocoder, 580–581

forward geocoding, 582–583
reverse geocoding, 581–582
WhereAmIActivity, 583–585

Geofencing API, 560, 567–571
getDefaultAdapter, 714–715
getDefaultSensor method, 623–624
getDynamicSensor, 625
getItemAt method, 540
getLastKnownLocation, 574–575
getLastLocation method, 549–550
getPrimaryClipDescription method, 539
getRotationMatrixFromVector method,

646–647
getSettingsClient method, 560–561
getSystemService, 620
getType method, 324
GForceMeter, 642–645
GitHub, sample projects, 34
Google Cloud Platform Compute

services, 243
Google Cloud Platform Storage and

BigQuery, 243
Google Machine Learning APIs, 243
Google Maps API, 542
Google Play, 9

Android Vitals, 851
application publishing, 15
metrics, 849–850
services, 542–543

adding, 543–545
availability, 545–546

services SDK, 452–543
user acquisition reports, 851
user feedback, 851

874

GoogleApiAvailability class – Intents

GoogleApiAvailability class, 546
Gradle, 48, 56

build.gradle file (module level), 101,
102–103

buildTypes block, 104
defaultConfig block, 103–104
dependencies block, 107
flavorDimensions block, 105–107
productFlavors block, 105–107
splits block, 107

build.gradle file (project level), 101
buildscript node, 102

settings.gradle file, 101
graphics, scalable

Color Drawables, 439
NinePatch Drawables, 445
Shape Drawables, 439–440
Vector Drawables, 441–445

gyroscope, orientation and, 647–649

H

HAL (Hardware Abstraction Layer), 9, 10
Handler class, 379
HandlerThread class, 379

Looper class, 383
hardware

availability, 793–794
confirming, 795

design and, 39–40
battery life, 42
form factors, 40–41
latency, 41–42
processors, 40
screens, 40–41
speed, 41–42
storage capacity, 40

requirements, 794
resources, 122–126

Hardware sensors, 621
HCI (human computer interaction),

130
headless Fragments, 251–252
heart rate monitor, 661–662

Hello World
layout resource, 32
MainActivity.java file, 30
onCreate method, 31
Views, 31–32

helper classes, SQLite, 300
home screen, Widgets, 744–745
Hprof-conv, 49
hyperlinks, 198

Linkify class, 198–200

I

IDE (integrated development
environment), 14

Android Studio, 16
ImageButton control, 143
ImageView control, 143
immersive applications, 508–509
implicit Intents, runtime binding and,

179–180
Import Sample Wizard, 34
inflate method, 160–161
infrared, manifest file, 97
insert method, 336–337
installation, Android Studio

Linux, 17
MacOS, 17
Windows, 17

instance-state Bundles, 246
Instant Run, 50
IntelliJ IDEA, 16
Intent Filters

defining, 186–194
plug-ins and, 194–198

Intent Receivers, 187
Intent resolution, 179, 187–188
Intents, 11, 58–59

Activities, launching, 178–185
Activity Intents

ACTION_DELETE, 184
ACTION_DIAL, 185
ACTION_EDIT, 185
ACTION_INSERT, 185

875

Intents API – Kotlin

ACTION_PICK, 185
ACTION_SEARCH, 185
ACTION_SEND, 185
ACTION_SENDTO, 185
ACTION_VIEW, 185
ACTION_WEB_SEARCH, 185

Broadcast Intents, 178, 200–201
Broadcast Receivers, 202–203

registering in application manifest, 204
registering in code, 203–204

device state changes, 205–207
implicit, runtime binding and, 179–180
manifest Receivers, 202, 204–205
Pending Intents, 208–210
pictures, 697–699
resolving, 180–181
telephony

phone call initiation, 799–800
receivers monitoring calls, 805–806

uses, 178
video recording, 707

Intents API
Calendar entries, 352–354
Contacts, 349

accessing contacts, 349–350
inserting contacts, 350–351
modifying contacts, 350–351

interactive controls
buttons, 534–535
device keys, 534–535
D-pad, 534–535
OnKeyListener method, 535
OnTouchListener, 534
touch screen, 530–531

movement tracking, 533–534
touch events, 531–533

internal storage, application specific, 268
internationalization, 855–856
Internet resources

bandwidth, 213
battery, drain reduction, 213
connecting to, 213–214
data streams, opening, 213–214
Earthquake Viewer and, 220–227
latency, 213

mobile, 212
native apps, 212–213
native features, 213
offline availability, 213
UX, 213
Wi-Fi, 212

Internet services, 242
interruptions, 496

Dialog initiation, 497–498
Snackbars, 499–500

isGooglePlayServicesAvailable method,
546

J

Jarsigner, 831
Java

MIDlets, 3
Threading, 379

JDK (Java Development Kit), 14
OpenJDK, 14, 16

Job Dispatcher, 378
Earthquake Viewer, 396–400
onStartJob method, 392
onStopJob method, 392
scheduling jobs, 391–393

Job Scheduler, 378, 385–386
Job Services, creating, 386–388
scheduling jobs, 388–391

Job Services, 386–388
JobService class, 392
JPEG EXIF, 706
JSON, parsing, 228–233
JVM (Java Virtual Machine), 3

K

Keychain API, 792
keylines, material design and, 448–449
Keystore, 792

creating, 832–833
Keytool, 831
Kotlin, 7, 14

projects, creating, 35–36
transition, 15

876

L2CAP (Logical Link Control and Adaption Protocol) – location, manifest file

L

L2CAP (Logical Link Control and Adaption
Protocol), 720

languages, resources, 122–126
latency, design and, 41–42
launch strategies, 855
Layer Drawables, 537
Layout Manager

Adapters, 146–149
GridLayoutManager, 144
LinearLayoutManager, 144
StaggeredGridLayoutManager, 144

layouts
attributes, 134
classes, 132

ConstraintLayout, 133, 138–139
FrameLayout, 133
LinearLayout, 133, 136–137
RelativeLayout, 133, 137

in code, 33
compound controls as, 161–162
Constraint, 138–139
Data Binding and, 150

enabling, 151–152
variables, 152–153

defining, 134–135
device-independent UIs, 136–139
dimensions, 111–112
Earthquake Viewer, 149–150
Linear, 136–137
Lint tool and, 142–143
nesting, 140–141
optimizing, 139–143
redundant, 140–141
Relative, 137
resources, 121
UIs (user interfaces), 113–114
views, number of, 141–142
Views and, 132
Widgets, 745–746

FrameLayout, 745
GridLayout, 745
LinearLayout, 745
RelativeLayout, 745

LBS (location-based services), 542
best practices, 577–580
Location Providers, 571

Level List Drawables, 538–539
libraries

API libraries, 2
core libraries, 10
native, 9
open source, 4
Preference Support Library, 256–257
software stack, 10
support, 9
Support Library, 36–38

linear acceleration, 639
Linear Layouts, 136–137
LinearLayout class, 133, 136–137
Linkify, 198

Match Filter, 200
strings, 199
Transform Filter, 200
types, 198–199

Lint, 48, 55
layouts, 142–143

Linux
Android Studio, installation, 17
kernel, 10
operating system kernel, 4
security, 788

Live Data, 216, 249
queries, result change monitoring,

292–294
Live Templates, 51
Live Wallpaper, 777

definition resource, 778
service engine, 778–780

Loaders/Loader Manager
cancelling, 335–336
initializing, 335–336
queries, 333–334

callbacks, 334–335
restarting, 335–336

Local Broadcast Manager, 207–208
local files, 246
location, manifest file, 98

877

Location Manager – Message class

Location Manager, 571, 572
location changes, 575–577

Location Providers, 571, 572
getLastKnownLocation, 574–575
setting, 572–574

Location Services, 542
best practices, 566–567
coarse accuracy, 547
fine accuracy, 547
last known location, 549–551
library, 546–547
Location Callback, 555–560
location settings, 560–563
OnSuccessListener method, 550
testing location functionality, 548–549

LocationManager class, 572–573
Logcat, 49
logging, 17
LRU (least-recently used) list, 71–73

M

MacOS, Android Studio, installation, 17
magnetometer, orientation and, 647–649
MainActivity.java file, 30
manifest file, 96–97

application node, 99–100
permission node, 99
supports-gl-texture node, 99
supports-screens node, 99
uses-feature node, 97–99
uses-permission node, 99

Maps API
camera position, 590–592
configuring, 589
Earthquake Viewer, 605–609
interactive markers, 596–599
My Location layer, 596
overlays, 602
shapes, 599–602

MaskFilter class, 518
Match Filter, 200
material design, 446

app bar, 452–455

color and, 447–448
Earthquake Viewer, 455–461
keylines and, 448–449

Media Browser, 688–690
service lifecycle, 690–691

Media Controller, 681
Media Player, 667–668

audio, 666–667
background playback, 686–688
foreground service, 691–692
manifest file, 97

streaming, 667–669
video, 669–672

Media Recorder, 695
configuration, 696–697
controlling recording, 697
recording video, 707–710

Media Router APIs, Cast, 682–686
Media Session APIs, 666

Media Controller and, 681
metadata, 680–681
playback, 678–680

media software, manifest file, 98
Media Store, 342–344

adding media
manual, 711–712
Media Scanner, 710–711

Media Style Notifications, 666, 693–695
MediaButtonReceiver, 694–695
MediaPlayer class, 667–668
memory

application termination, 71–73
trimming, 71–73

menus
actions

providers, 470–471
views, 470–471

Activities, 468–469
app bar, resources, 467–468
Fragments, 469
selections, 470
Toolbar, 476–477
updates, dynamic, 469

Message class, 384

878

metadata, manifest file – NavigationView class

metadata, manifest file, 96–100
methods

AnimatorInflator.loadAnimator, 512
checkLocationSettings, 560–561
delete, 337
divideMessage, 813
draw, 514–515
drawArc, 514
drawARGB, 514
drawBitmap, 514
drawBitmapMesh, 514
drawCircle, 514
drawColor, 514
drawLine, 514
drawOval, 514
drawPaint, 515
drawPath, 515
drawPicture, 515
drawRect, 515
drawRGB, 514
drawRoundRect, 515
drawText, 515
drawTextOnPath, 515
drawVertices, 515
evaluate, 511
executeOnExecutor, 382
getDefaultSensor, 623–624
getItemAt, 540
getLastLocation, 549–550
getPrimaryClipDescription, 539
getSettingsClient check, 560–561
getType, 324
inflate, 160–161
insert, 336–337
isGooglePlayServicesAvailable, 546
notifyChange, 325–327
ofObject, 511
onCrerate, 31–32, 320–321
onDraw, 164–165
OnKeyListener, 535
onMeasure, 165–166
onStartJob, 392
onStopJob, 392
OnSuccessListener, 550

openFileHelper, 327–328
requestLocationUpdates, 555–560
requestPermissions, 547–548
sendMultipartTextMessage, 813
setAudioSource, 696
setDuration, 511
setInterpolator, 512
setLanguage, 504
setPitch, 504
setRepeatCount, 511
setRepeatMode, 511
setSpeechRate, 504
setSystemVisibility, 508–509
speak, 504
startActivity, 179
startActivityForResult, 182
update, 337–338

metrics, Google Play Store, 849–850
MIDlets (Java), 3
MIME types, Content Provider, 324–325
mipmap resource folder, 108
MipMaps, 113
MMS (multimedia messaging service), 806
mobile Internet, 212
monetizing applications, 853–854
Monkey, 49, 55
Monkey Runner, 49, 55
movement sensors, 637–638
Mutable Live Data, 249
My Location layer, 596

interaction markers, 596–599

N

native Internet apps, 212–213
native libraries, 9
navigation

drawer, 485–491
patterns

bottom navigation bar, 482–485
combining, 491–492
tabs, 479–482

without touch screen, 502–503
NavigationView class, 486–487

879

NDK (native development kit) – OpenGL

NDK (native development kit), 10
nesting, layouts, 140–141
New Project Wizard, 20–24
NFC, manifest file, 98
NFC (Near Field Communication),

713, 714
extracting tag payload, 736
foreground dispatch system, 736–738
NfcAdapter.ACTION_NDEF_

DISCOVERED, 735
NfcAdapter.ACTION_TAG_

DISCOVERED, 735
NfcAdapter.ACTION_TECH_

DISCOVERED, 735
reading tags, 735–736

NinePatch Drawables, 445
Notification Builder

actions, 411
notification dismissal, 405–406
notification styles, 406
notification taps, 405
priority system, 408

Notification Manager, 11, 401
actions, 411–412

direct reply, 412–413
multiple notifications, 413–414

Do Not Disturb, 410
Earthquake Viewer, 414–417
Notification Channels, 402–403

creating notifications, 403–407
Notification dismissal, 405–406
Notification styles, 407
Notification taps, 405
priorities, 407–408

light, 408–410
sound, 408–410
vibration, 408–410

Notifications, 59
actions, 411–413
creating, 403–405

Notification dismissal, 405–406
Notification styles, 406–407
Notification taps, 405

Do Not Disturb, 410

FCM (Firebase Cloud Messaging), 417–418
receiving data, 421–422
remote triggers, 418–421

Firebase, 378
media style, 693–695
multiple groups, 413–414
priorities, 407–408

Do Not Disturb, 410
light, 408–410
sound, 408–410
vibration, 408–410

notifyChange method, 325–327

O

Object Animator class, 510–513
Observers, 249
ofObject method, 511
On Shared Preferences Listeners, 254
onActivityResult event handler, 181–184,

503–504
onCancelListener handler, 324
onCreate method, 31–32, 320–321
onDraw method, 164–165
OnInitListener, 503–504
onKeyDown event handler, 167
OnKeyListener method, 535
onKeyUp event handler, 167
onMeasure method, 165–166
onPostExecute event handler, 381
onPreExecute event handler, 381
onProgressUpdate event handler, 381
onSensorChanged, 631
onStartJob method, 392
onStopJob method, 392
OnSuccessListener method, 550
onTouchEvent event handler, 167
OnTouchListener, 534
onTrimMemory handler, 71–73
open source development platform, 3
open source libraries, 4
open source operating system, 3
openFileHelper method, 327–328
OpenGL, 4

880

OpenGL ES hardware, manifest file – projects

OpenGL ES hardware, manifest file, 98
OpenJDK, 14, 16, 17–18
operating system

Linux kernel, 4
open source, 3

OperationCanceledException, 324
orientation sensors, 622–623, 637–639
ORM (object-relational mapping), 282–283
OS (operating system), 14

P

Package Manager, Activities, launching, 181
Paint

anti-aliasing and, 520
Color Filters, 518
Compass View, 521–530
MaskFilter class, 518
Path Effects, 519
shaders, 516

gradient, 517
tile modes, 517

transfer mode, 519
translucency, 515–516

painter’s algorithm, 164
parameters, CancellationSignal, 322–323
parsing

JSON, 228–233
XML, Pull Parser, 219–220

pasting clipboard data, 539–540
Path Effects, 519
Pending Intents, 208–210
permissions

Content Providers
adding requirements, 328–330
dangerous protection level, 329
normal protection level, 329
restricted, 339–340

dangerous, 789
declaring, 790–791
enforcing, 791
Fingerprint Manager, 792–793
Keystore, 792
manifest file, 99

RECORD_AUDIO, 506
runtime, 789
URI-based, 278–279

Phone State Listener, 803–805
pixels

dp (density-independent pixels), 131
sp (scalable pixel), 131

platforms, 6
plug-ins, Intent Filters, 194–198
postfix code completion, 51
Preference Fragments, 260–261
Preference Screens

Preference Fragment, 260–261
Preference Support Library, 256–257
XML layout, 257–258

element types, 258–259
Intents, 259
system availability, 259–260

Preference Support Library, 256–257
PreferenceFragment class, 256–257
preferences

saving, 246
Shared Preferences, 246

Auto Backup, 254–256
creating, 252–253
retrieving, 253–254
On Shared Preferences

Listeners, 254
preinstalled applications, 4–5
processes

active, 60
background processes, 61
Services, background, 61
visible, 61

processors, design and, 40
production builds, signing, 830–835
Profiler, 14, 17, 48, 52–53
ProgressBar control, 143
ProGuard, 49
projects

automation, 16
backward compatibility, 22–23
creating, 20–24
folder, res, 32

881

property animations – Resources class

Kotlin, 35–36
sample, 34

property animations, 114, 115–116, 510–513
animation listeners, 513
sets, 513

public directories, scoped directory access,
270–274

publishing applications, 845–848
staged rollouts, 848

Pull Parser (XML), 219–220

Q

queries
asynchronous, Loaders and, 333–336
cancelling, 333
Content Revolver, 330–336
Live Data and, 290–291
Room database, 290–291

R

R class, 119–120
RadioButton control, 144
RDBMS (relational database management

system), SQLite, 298
Receivers, 59
RecognizerIntent class, 505–506

EXTRA_MAXRESULTS, 506
EXTRA_PROMPT, 506

RECORD_AUDIO permission, 506
recording video, 706

Intents and, 707
Media Recorder, 707–710

RecyclerView control, 143, 144
Adapters, 146–147

redundant layers, 140–141
Relative Layouts, 137
RelativeLayout class, 133
release management, 845–848
release signing key, 832–833
releasing applications

API keys, 833
building production releases, 834–835

code preparation, 827–828
installation restrictions, 828–829
signing production release, 834–835
support material preparation, 826–827
versioning, 820

RemoteViews, 744
Widgets

applying, 750–752
creating, 749–750
interactivity, 752–753

RemoteViews Service
Collection View items update,

767–768
Collection View populating, 768–769

requestLocationUpdates method, 555–560
requestPermissions method, 547–548
requestTriggerSensor, 630
res folder, 32, 108–118
resolution, pixels

density-independent, 435
resource qualifiers, 435–436

Resource Manager, 11
resources

animations, 114–118
application termination, 71–73
in code, 119–120
colors, 111
creating, 108–118
dimensions, 111–112
drawables, 112–113
externalizing, 107–127
hardware, 122–126
languages, 122–126
layouts, 113–114, 121
MipMaps, 113
referencing, 120–121
runtime configuration, 126–127
strings, 110–111
styles, 112, 122
system resources, 121–122
themes, 112
values, 109–110

qualifiers, 123–124
Resources class, 119–120

882

RFCOMM – SensorEvent parameter

RFCOMM
Bluetooth and, 720
communication channel, 720

Room, 282–283
DAOs (Data Access Objects), 288–289

deleting entities, 289–290
updating entities, 289

databases
data access object, 284
defining, 284–286
entity, 284
interactions, 291–292
queries, 290–291
RoomDatabase class, 284

earthquake data persistence, 294–298
objects, type converters, 286–287
persistence library, adding, 283–284

RotateDrawable class, 536
rotation vector sensors, 646–647
Rubin, Andy, 1–2
run time, 4
runtime

binding, 179–180
configuration, resources, 126–127

S

SaaS (Software as a Service), 242
sample projects, 34
scalable graphics

Color Drawables, 439
NinePatch Drawables, 445
Shape Drawables, 439–440
Vector Drawables, 441–445

ScaleDrawable class, 536
scheduling, background tasks, 385–386

Job Dispatcher, 391–393
Job Scheduler, 388–391
Work Manager, 393–396

scoped directory access, 270–274
screens

background tasks and, 378
design and, 40–41, 434–445
manifest file, 99
sizes, scalable layouts, 437

types, layouts and, 437–439
scrolling toolbar, 473–476
SDK (software development kit), 4

API libraries, 8
AVD (Android Virtual Device), 8
development tools, 8
documentation, 8
features, 5–6
online support, 8
sample code, 8
updates, 19–20

SDK Manager, 14, 48
SDK Platforms, 18
SDK Tools, 18

SDK Platforms, 18
SDK Tools, 18

Google Play services, 543–545
search, speech recognition, 507
Search View, 354

metadata, defining, 354–355
results Activity, 355–357
search suggestions, 362–366
Search View widget, 360–362
searching Content Provider, 357–360

searches, 50
Content Providers, 357–360
Earthquake Viewer, 366–376
metadata, 354–355
search results Activity, 355–357
Search View widget, 360–362
suggestions, 362–366

security, 46–47, 788
Linux, 788

sendMultipartTextMessage method,
813

sendTextMessage, 810–811
Sensor class, 620–621
Sensor Listener, acceleration, 641
Sensor Manager, 620

accelerometer, 640–641
dynamic sensors, 624–625
getDefaultSensor method, 623–624
results monitoring, 627–632

Sensor objects, 620–621
SensorEvent parameter, 628

883

SensorEventCallback – simple values

SensorEventCallback, 630–631
SensorEventListener, 627–629
Sensors

best practices, 637
body, 623
body sensors, 659–662
capabilities, 625–626
device movement, 622–623
discovery, 623–625
Environmental, 621–622
exercise, 623
Hardware, 621
identifying, 623–625
manifest file, 98
movement, 637–638
non-wakeup, 627
onSensorChanged, 631
orientation, 622–623, 637–639
reporting modes, 626
requestTriggerSensor, 630
return values, 632–635
testing

emulator and, 635–637
Virtual Device and, 635–637

Trigger Event Listener, 629–630
Virtual, 621
wakeup, 627

Sensor.TYPE_ACCELEROMETER, 622
Sensor.TYPE_AMBIENT_TEMPERATURE,

621
Sensor.TYPE_GEOMAGNETIC_

ROTATION_VECTOR, 622
Sensor.TYPE_GRAVITY, 621
Sensor.TYPE_GYROSCOPE, 622
Sensor.TYPE_HEART_BEAT, 623
Sensor.TYPE_HEART_RATE, 623
Sensor.TYPE_LIGHT, 621
Sensor.TYPE_LINEAR_ACCELERATION,

622
Sensor.TYPE_LOW_LATENCY_OFFBODY_

DETECT, 623
Sensor.TYPE_MAGNETIC_FIELD, 621
Sensor.TYPE_MOTION_DETECT, 622
Sensor.TYPE_POSE_6DOF, 622

Sensor.TYPE_PRESSURE, 621
Sensor.TYPE_PROXIMITY, 622
Sensor.TYPE_RELATIVE_HUMIDITY, 622
Sensor.TYPE_ROTATION_VECTOR, 622
Sensor.TYPE_SIGNIFICANT_MOTION,

623
Sensor.TYPE_STATIONERY_DETECT, 623
Sensor.TYPE_STEP_COUNTER, 623
Sensor.TYPE_STEP_DETECTOR, 623
Services, 58, 424–425

AIDL (Android Interface Definition
Language), 427

bound Services, 425
onBind method, 425–426
Service Connection, 426

foreground Services, 431–432
started Services, 427–428

creating, 428
foreground Services, 431–432
restart behavior, 429–431
self-terminating, 431
starting/stopping, 428–429

Vibrator, 508
SessionManagerListener, 685
setAudioSource method, 696
setDuration method, 511
setInterpolator method, 512
setLanguage method, 504
setPitch method, 504
setRepeatCount method, 511
setRepeatMode method, 511
setSpeechRate method, 504
setSystemVisibility method, 508–509
SettingsClient, 560–561
Shape Drawables, 439–440
Shared Preferences, 246

Auto Backup, 254–256
creating, 252–253
retrieving, 253–254
On Shared Preferences Listeners, 254

sharing files, Content Providers,
327–328

signing certificates, 832–833
simple values, 109–110

884

skeleton code – Support Library

skeleton code, 62
Fragments, 73–74

SMS, 788, 798, 806
app creation, 807–809
emergency responder example, 814–824
incoming messages, 813–814
Intents, sending messages, 807
RECEIVE_SMS permission, 813
sending messages, 809–813
sendMultipartTextMessage method, 813

SMS_DELIVER_ACTION, 807
SmsManager class, 809–810
software, availability, 793–794
software stack, 8–9

application framework, 9, 10
HAL (Hardware Abstraction Layer),

9, 10
libraries, 10
Linux Kernel, 10
native libraries, 9

sp (scalable pixel), 131
speak methods, 504
speech recognition

RecognizerIntent class, 505–506
RECORD_AUDIO, 506
searches, 507
voice input and, 506–507

speech synthesis, 503
speed, design and, 41–42
SQLite, 4

cursors, value extraction, 307–308
databases, 298–299

content values, 300
contracts, 300
creating, 303
cursors, 300
helper classes, 300
input validation, 299
opening, 303
queries, 305–307
SQL injection, 299
SQLite Open Helper, 301–303
values from cursors, 307–308

queries, 305–307

rows
deleting, 305
inserting, 304
updating, 305

versus SQL, 299
SQLite Open Helper, implementing, 301–302
SQLite3, 49
SQLiteQueryBuilder class, 322–323
startActivity method, 179
startActivityForResult method, 182
started Services, 427–428

creating, 428
foreground Services, 431–432
restart behavior, 429–431
self-terminating, 431
starting/stopping, 428–429

State List Drawables, 537–538
states, saving, 246
storage

application specific, 268–270
external, files, 268–270
internal, files, 268
Room, 282–283

database definition, 284–286
database interactions, 287–292
persistence library, 283–284
type converters, 286–287

Storage Access Framework, 246, 275–276
directory access, 277–278
file creation, 278
persistent file access, 277
temporary file access, 276–277

storage capacity, design and, 40
streaming

Media Player, 667–669
network protocols, 667
pausing, 676–677
volume, 677–678

Strict Mode APIs, 797–798
strings, 110–111

Linkify, 199
styles, 112
support libraries, 9
Support Library, 36–38

885

SurfaceView class – upload signing key

SurfaceView class, 162
system resources, 121–122
SYSTEM_UI_FLAG_IMMERSIVE flag, 509
SYSTEM_UI_FLAG_IMMERSIVE_

STICKY flag, 509

T

Tabs
Earthquake Viewer, 492–496
navigation patterns, 479–482

telephony, 798
dialer application, 800–801
Intent.ACTION_CALL_BUTTON, 800
Intent.ACTION_DIAL, 800
Intent.ACTION_VIEW, 800
Intents

phone call initiation, 799–800
receivers monitoring calls, 805–806

manifest file, 98
phone state, 801–803

change monitoring, 803–805
properties, 801–803

Telephony Manager, 801–802
READ_PHONE_STATE, 802

templates, Live Templates, 51
testing, device configuration, 26–29
TextToSpeech.Engine class, 503–504
textual descriptions of views, 503
textures, manifest file, 99
TextView control, 143

extending, 156–157
themes, 112

AppCompat API
applying, 465–466
creating, 465–466
overlays, 466

ThreadPolicy class, 797
Threads, 214–216, 379

Java, 379
Message class, 384

TimeInterpolator class, 512
T-Mobile G1, 6
Toast messages, 498–499

toolbar
Activities, 472–473

scrolling, 473–476
menus, 476–477
Toolbar control, 143

touchscreen
manifest file, 98
navigation without, 502–503

transactions, Content Providers, 325–327
transfer mode, 519
Transform Filter, 200
translucency, 515–516
Trigger Event Listener, 629–630
TTS (text-to-speech), 503–505

setLanguage method, 504
setPitch method, 504
setSpeechRate method, 504
speak method, 504
speech recognition, 505–506

searches, 507
voice input, 506–507

TypeEvaluator class, 511

U

UIs (user interfaces), 130–131, 464
Activities

assigning, 132
saving, 246

Activity class, 62–63
AppCompat API, 464–465

theme creation, 465–466
theme overlays, 466

device-independent, layouts, 136–139
Fragments, 73–74, 78

lack, 86–87
layouts, 113–114
Preference Screens, 256
Strict Mode APIs, 797–798
View Groups, 131–132
Views, 131–132
XML and, 32–33

update method, 337–338
upload signing key, 832–833

886

URI-based permissions – volume

URI-based permissions, 278–279
UriMatcher, 322
URIs, UriMatcher, 322
USB (universal serial bus)

debugging, 28–29
manifest file, 98

user interface framework, 4
UX (user experience), 130, 502

navigation, without touch screen,
502–503

V

values, simple values, 109–110
variables, Data Binding, 152–153
Vector Asset Studio, 48

Vector Drawables, 442
Vector Drawables, 131, 434, 441–445
vibration control, 508
Vibrator Service, 508
video, 666–667. See also Media Player

ExoPlayer, 672–674
Media Player, 669–672
recording, 706

Intents and, 707
Media Recorder, 707–710

VideoView control, 144
view animations, 114, 116–118
View class, 131

creating, 162–164
View Groups, 131

compound controls, 159–161
View Holder, 91–92

Adapter and, 146
View Models, 216–218, 248–249
View Pager, 480–481
ViewModels, 249–251
ViewPager control, 144
Views, 11, 31–32, 131, 246

accessibility, 168–169
Adapter View class, 763–764
attributes, custom, 157–159
Behaviors, Coordinator Layout and,

473–474

Compass View, 169–175
controls

Button, 143
CheckBox, 144
custom, 176
drawing, 164–165
EditText, 143
ImageButton, 143
ImageView, 143
ProgressBar, 143
RadioButton, 144
RecyclerView, 143
sizing, 165–167
TextView, 143
Toolbar, 143
VideoView, 144
ViewPager, 144

creating, 155
custom, 162–175
enhancing, 513–514
event handling, 167–168
hierarchy, Fragments, 73–74
layouts and, 132

number of, 141–142
measurements, 166–167
SurfaceView class, 162
TextView, extending, 156–157
Widgets

Button, 745
Chronometer, 745
ImageButton, 745
ImageView, 746
ProgressBar, 746
TextView, 746
ViewFlipper, 746

views, textual descriptions, 503
Virtual Device, Sensor testing, 635–637
Virtual Device Configuration dialog box,

24–26
Virtual sensors, 621
VmPolicy class, 797
voice input, speech recognition and,

506–507
volume, 677–678

887

wakeup sensors – XML (eXtensible Markup Language) menus, defining

W

wakeup sensors, 627
Wallpaper Service, 780–781
weather station, 655–659
WebKit, 4
WhereAmIActivity, 551–555

geocoding, 583–585
location updates, 563–566
Map Fragments and, 592–596
markers, 602–605
shapes, 602–605

Widgets, 131, 744–745
AppWidgetProvider class, 748–749
Collection View Widgets

Earthquake Viewer, 770–777
GridView, 763
item updates, 767–768
layout creation, 764–765
ListView, 763
refreshing, 770
StackView, 763
updating, 765–767

configuration Activity, 756–757
Earthquake Viewer, 757–763
implementing, 748–749
layout

defining, 745–746
FrameLayout, 745
GridLayout, 745
LinearLayout, 745
RelativeLayout, 745

metadata, 747
providers, 747–748
refreshing, 753–756
RemoteViews, 744

applying, 750–752
creating, 749–750
interactivity, 752–753

size, defining, 746–748
views

Button, 745
Chronometer, 745
ImageButton, 745
ImageView, 746
ProgressBar, 746
TextView, 746
ViewFlipper, 746

XML layout resource, 746
Wi-Fi, 212

manifest file, 98
Wi-Fi Peer-to-Peer, 713, 714, 728–729

connecting with peers, 732–733
data transfers, 733–734
discovery, 731
framework initialization, 729–731
onPeersAvailable, 731–732
PeerListListener, 731–732
requestPeers method, 731–732
ServerSocket class, 733–734
WifiP2pConfig, 732
WifiP2pDeviceList, 731–732

Window Manager, responsiveness and, 44
Windows, Android Studio, installation, 17
wizards

Import Sample Wizard, 34
New Project Wizard, 20–24

Work Manager, 385
scheduling background tasks, 393–396

X‑Y ‑Z

XML (eXtensible Markup Language)
menus, defining, 467–468
Preference Screens, 257–260
Pull Parser, 219–220
simple values, 109–110
UIs and, 32–33

