
M A N N I N G

Dean Alan Hume
FOREWORD BY Addy Osmani

www.allitebooks.com

http://www.allitebooks.org

Progressive Web Apps
 www.allitebooks.com

http://www.allitebooks.org

 www.allitebooks.com

http://www.allitebooks.org

Progressive
Web Apps

DEAN ALAN HUME

FOREWORD BY ADDY OSMANI

M A N N I N G
SHELTER ISLAND
 www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Jennifer Stout
20 Baldwin Road Technical development editor: Marius Butuc
PO Box 761 Project editor: Janet Vail
Shelter Island, NY 11964 Copyeditor: Corbin Collins

Proofreader: Melody Dolab
Technical proofreader: Alexey Galiullin

Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617294587
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17
 www.allitebooks.com

www.manning.com
http://www.allitebooks.org

 In memory of Frank Hume—“Keep ‘em flying”
 www.allitebooks.com

http://www.allitebooks.org

 www.allitebooks.com

http://www.allitebooks.org

brief contents
PART 1 DEFINING PROGRESSIVE WEB APPS1

1 ■ Understanding Progressive Web Apps 3
2 ■ First steps to building a Progressive Web App 15

PART 2 FASTER WEB APPS ..29
3 ■ Caching 31
4 ■ Intercepting network requests 51

PART 3 ENGAGING WEB APPS ...65
5 ■ Look and feel 67
6 ■ Push notifications 81

PART 4 RESILIENT WEB APPLICATIONS97
7 ■ Offline browsing 99
8 ■ Building more resilient applications 111
9 ■ Keeping your data synchronized 120

PART 5 THE FUTURE OF PROGRESSIVE WEB APPS...................133
10 ■ Streaming data 135
11 ■ Progressive Web App Troubleshooting 147
12 ■ The future is looking good 157
vii

 www.allitebooks.com

http://www.allitebooks.org

 www.allitebooks.com

http://www.allitebooks.org

contents
foreword xv
preface xvi
acknowledgments xvii
about this book xix

PART 1 DEFINING PROGRESSIVE WEB APPS1

1 Understanding Progressive Web Apps 3
1.1 What’s the big deal with Progressive Web Apps? 3
1.2 PWA basics 5

Building a business case for Progressive Web Apps 6

1.3 Service Workers: The key to PWAs 8
Understanding Service Workers 8 ■ The Service Worker
lifecycle 9 ■ A basic Service Worker example 10
Security considerations 12

1.4 Performance insight: Flipkart 13
1.5 Summary 14
ix

 www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
2 First steps to building a Progressive Web App 15

2.1 Build on what you already have 15
2.2 Front-end architectural approaches to building PWAs 17

The Application Shell Architecture 17 ■ Performance benefits 19
The Application Shell Architecture in action 20

2.3 Dissecting an existing PWA step by step 21
Front-end architecture 23 ■ Caching 24 ■ Offline
browsing 25 ■ Look and feel 26 ■ The final product 26

2.4 Summary 27

PART 2 FASTER WEB APPS ..29

3 Caching 31

3.1 The basics of HTTP caching 31
3.2 The basics of caching Service Worker caching 34

Precaching during Service Worker installation 34 ■ Intercept
and cache 38 ■ Putting it all together 42

3.3 Performance comparison: before and after caching 44
3.4 Diving deeper into Service Worker caching 46

Versioning your files 46 ■ Dealing with extra query
parameters 47 ■ How much memory do you need? 48
Taking caching to the next level: Workbox 48

3.5 Summary 50

4 Intercepting network requests 51

4.1 The Fetch API 51
4.2 The fetch event 53

The Service Worker lifecycle 55

4.3 Fetch in action 57
An example using WebP images 57 ■ An example using the Save-
Data header 59

4.4 Summary 63

CONTENTS xi
PART 3 ENGAGING WEB APPS ...65

5 Look and feel 67
5.1 The web app manifest 67
5.2 Add to Home Screen 69

Customizing the icons 72 ■ Add a splash screen 73
Set the launch style and URL 74

5.3 Advanced Add to Home Screen usage 75
Cancelling the prompt 75 ■ Determining usage 76
Deferring the prompt 76

5.4 Debugging your manifest file 78
5.5 Summary 80

6 Push notifications 81
6.1 Engaging with your users 81
6.2 Engagement insight: The Weather Channel 83
6.3 Browser support 84
6.4 Your first push notification 84

Subscribing to notifications 85 ■ Sending notifications 88
Receiving and interacting with notifications 90
Unsubscribing 93

6.5 Third-party push notifications 94
6.6 Summary 95

PART 4 RESILIENT WEB APPLICATIONS97

7 Offline browsing 99
7.1 Unlocking the cache 99
7.2 Serving files while offline 100
7.3 A few gotchas to look out for 104
7.4 Cache isn’t forever 106
7.5 Offline user experience 106
7.6 Tracking offline usage 109
7.7 Summary 110

CONTENTSxii
8 Building more resilient applications 111
8.1 Network issues that modern websites face 111

Understanding lie-fi and single point of failure 112

8.2 Service Workers to the rescue 114
8.3 Using Workbox 118
8.4 Summary 119

9 Keeping your data synchronized 120
9.1 Understanding BackgroundSync 120

Getting started 121 ■ The Service Worker 124
Provide a fallback 125 ■ Testing 127

9.2 Notifying the user 128
9.3 Periodic synchronization 129
9.4 Summary 131

PART 5 THE FUTURE OF PROGRESSIVE WEB APPS.........133

10 Streaming data 135
10.1 Understanding web streams 135

What’s the big deal with web streams? 136
Readable streams 137

10.2 A basic example 138
10.3 Supercharging your page render times 140
10.4 The future of the Web Stream API 145
10.5 Summary 146

11 Progressive Web App Troubleshooting 147
11.1 Add to Homescreen 147

How do I tell how many users are using the Add to Homescreen
(A2HS) functionality on my site? 147 ■ The Add to Homescreen
banner doesn’t make sense for my website—how do I disable or hide
it? 148 ■ Help, my Add to Homescreen (A2HS) functionality
doesn’t seem to be working 149 ■ If a user has installed my web app
to their home screen, but they clear their cache in Chrome, do my site’s
cached resources get cleared too? 149 ■ I’m not sure if my
manifest.json file is working correctly—how do I test it? 149

CONTENTS xiii
11.2 Caching 150
I’m adding resources into cache with code in my Service Worker, but
the cache isn’t updating when I change the file, and why can I still see
the older version of my files even after I refresh the page? 150
How do I unit test my Service Worker code? 151 ■ How much
memory can my PWA use on a user’s device? 152 ■ My cached
resources seem to expire every so often—how do I ensure that they stay
cached permanently? 152 ■ How do I deal with query string
parameters and caching? 152

11.3 Debugging Service Worker–specific issues 153
How often does the Service Worker file update? 153 ■ My Service
Worker file is throwing an error, but I’m not sure what’s wrong—how
do I debug it? 153 ■ Help, I’ve tried everything, but for some crazy
reason my Service Worker logic never seems to execute 154 ■ I’ve
added code to handle push notifications in my Service Worker file, but
how can I test them quickly without writing server-side code? 155
I’ve built an offline web app but now I can’t see how users are using
it—how do I track usage? 155

11.4 Summary 156

12 The future is looking good 157
12.1 Introduction 157
12.2 Web Bluetooth 158
12.3 The Web Share API 159
12.4 Payment Request API 161
12.5 Hardware access 165
12.6 Hardware: the Shape Detection API 165
12.7 What’s next? 166
12.8 Summary 166

index 168

foreword
For many global brands, including Twitter and Forbes, a Progressive Web App (PWA)
is now the default way to ship a modern mobile web experience. PWAs can provide
fast, compelling journeys similar to what can be achieved with a native app—but
they’re also discoverable and accessible to everyone via the mobile web.

 Users re-engage with PWAs using features like push notifications and Add to
Homescreen, which have enabled PWAs like Lancôme to see a 16% increase in year-
on-year revenue since launching in October 2016. PWAs also support instant and
offline loading experiences on repeat visits, enabling productivity on-the-go, even with
spotty network connectivity.

 Dean Hume’s excellent Progressive Web Apps takes a practical, example-driven
approach to learning how PWAs can help you build fast, engaging sites. You’ll find
each PWA feature presented in a tidy, independent section that highlights why the fea-
ture can provide user value, how to use it, and best practices learned from PWAs that
have shipped to production.

 As an early adopter of PWAs, Dean is aware of some of the most valuable tips and
tricks for shipping a mobile site that efficiently uses these new features. I’m happy to
recommend Progressive Web Apps and hope it helps you unlock the potential for fantas-
tic user experiences on mobile.

—ADDY OSMANI, engineering manager working on PWAs at Google
xv

preface
I’ve been fortunate to have been a web developer for almost 15 years now. The web
has changed a lot since I first started out, and with each year that passes, it feels like
it’s getting better and better.

 About five years ago, I was sitting in a conference room listening to Google’s Alex
Russell talk about Service Workers and how they were the next big thing that was
going to change the web. Many people in the audience (me included) weren’t too
sure about this newfangled feature and the benefits it might bring to the web. But true
to his word, Service Workers and now Progressive Web Apps (PWAs) are here to stay
and have forever changed the web for good.

 I remember when I first started experimenting with PWAs. At first, things seemed a
little complicated, but as soon as I wrote my first working Service Worker it all seemed
to click. That “a-ha!” moment struck, and I realized how powerful these features could
really be. Ever since then, I’ve been hooked.

 I’m wholly passionate about web performance and producing fast web pages that
delight users. In fact, many years ago, I wrote a book with Manning about web perfor-
mance and ASP.NET websites (who knew, right?) For me personally, the best thing
about PWAs is that they help you build fast, resilient, and engaging web applications
that delight your users. By the time you’re finished reading this book, I hope that you
too have that “a-ha!” moment and that you’re as passionate about PWAs as I am.
xvi

acknowledgments
I want to start by thanking my wonderful wife Emily for all of the encouragement
while I was writing this book. I love bouncing ideas off of you and value your opinion.
I regularly come running to you with crazy, hairbrained ideas, and you’re always
patient enough to listen to them!

 Writing this book was a truly enjoyable experience, and I would like to say a very
special thanks to the awesome Jennifer Stout for all your help. Your cool calmness
during the editing process made it a breeze—plus it’s been fun, too! We’re like the
Han Solo and Chewbacca of the writing world (I’m Chewie). This is the third book
we’ve worked on together, and I hope there will be more to come.

 Many of the technical aspects of this book wouldn’t have been possible without the
help of Marius Butuc. Thank you, Marius, for your useful insights, technical guidance,
and all-around great advice, and it’s been great to see you as excited about this book
as I am.

 As always, a special thanks to my buddy Robin Osborne. Early morning breakfast
and inspiration wouldn’t be the same without you—thanks for the encouragement.
Two Huevos al Benny’s, please!

 I’m also extremely grateful to all the technical reviewers who helped shape and
improve this book. Addy Osmani, Jake Archibald, and Patrick Haman—thank you for
all your help. You provided feedback, gave ideas, and are just plain awesome. Thanks,
too, to technical proofreader Alexey Galiullin and all the book’s reviewers, including
Al Pezewski, Birnou Sébarte, David Krief, Devang Paliwal, Evan Wallace, Goran Ore,
xvii

ACKNOWLEDGMENTSxviii
Kamal Raj, Keith Donaldson, Ken W. Alger, Kim Lokøy, Laura Steadman, Michal
Paszkiewicz, and Ron Chloupek.

 Finally, thank you for purchasing this book! I hope that you enjoy reading it as
much as I enjoyed writing it.

about this book
Progressive Web Apps was written to help you use the amazing features of Progressive
Web Apps (PWAs) to build fast, engaging, and resilient web applications. The book
begins by focusing on the basics of PWAs and soon dives into their core features,
demonstrating how to implement them on your own websites. In the various chap-
ters, the book dissects existing PWAs that some large organizations around the
world have built and explores different tips and tricks that you can use to improve
your own PWAs.

 Progressive Web Apps is for web developers who are looking to take their web devel-
opment to the next level. Both beginners and experienced web developers will learn
what PWAs are all about and how to use their features to enhance their websites.
Although plenty of blog posts and docs about this topic exist online, this book brings
together everything in a clear, easy-to-follow format that will benefit anyone wanting
to learn more about PWAs. A prior knowledge of web development will help you while
reading through the various chapters in this book, but overall you don't need to be an
expert. As you work through this book, you’ll take a basic web application and slowly
add new PWA features to it.
xix

 www.allitebooks.com

http://www.allitebooks.org

ABOUT THIS BOOKxx
How this book is organized
This book has 11 chapters divided into five parts.

 Part 1 starts with the basics and explains everything you need to know about the
foundations of PWAs:

■ Chapter 1 discusses PWAs and builds a business case for why they’re so import-
ant to the modern web developer. The chapter also dives into Service Workers,
which play a key role in the creation of PWAs.

■ Chapter 2 takes the first steps toward building PWAs and discusses different
architectural approaches you can use when building them. Here we also dissect
an existing PWA step-by-step and see how organizations around the world are
starting to benefit from their features.

Part 2 covers using the power of Service Workers to build faster web applications:

■ Chapter 3 looks at the basics of Service Worker caching and then gets into some
of the more advanced use cases of caching on the web.

■ Chapter 4 explores the Fetch API and explains how you can tap into it to speed
up the load times of your PWAs. It also looks at two clever techniques using WebP
images and the Save-Data header to reduce the overall weight of web pages.

Part 3 covers the features that will help you create engaging PWAs:

■ Chapter 5 describes how you can use the web app manifest file to build an engag-
ing PWA. We’ll look into a feature known as Add to Homescreen and consider
some more advanced techniques for getting the most out of this great feature.

■ Chapter 6 explains what push notifications are and how to use them to truly
engage with your users. It goes through a step-by-step example that demon-
strates how you can begin implementing your own push notifications.

Part 4 covers techniques that can be used to build resilient PWAs:

■ Chapter 7 covers offline browsing and explains how to unlock the cache within
the browser to start building truly offline applications.

■ Chapter 8 talks about building PWAs that cater to situations where the user has
a troublesome network connection. You’ll learn the best techniques for build-
ing resilient web apps that work with poor or unreliable network connections.

■ Chapter 9 describes the techniques used to build offline web applications that
are able to synchronize data when they re-establish network connectivity. This
chapter looks at an API known as BackgroundSync and demonstrates how to
build PWAs that use this powerful feature.

Part 5 covers the future of PWAs and the many great, new features that are currently
available for developers to start using today:

■ Chapter 10 discusses the Web Stream API and explains why it’s so powerful.
The chapter also demonstrates how to use this API to supercharge your page
load times.

ABOUT THIS BOOK xxi
■ Chapter 11 covers some of the most common questions I’m asked and attempts
to answer them as clearly and thoroughly as possible.

■ The final chapter, chapter 12, explores the future of PWAs and a few of the
new APIs that are either in development or are currently available to experi-
ment with.

In general, developers who are entirely new to PWAs should read the first two chap-
ters for a basic understanding of their inner workings and how to correctly set up the
environment for development. From the start of the book, you create a sample appli-
cation and build on it in each chapter. That said, this book was written so that you can
flip between chapters and read out of order, picking and choosing depending on the
topics that interest you. But for a well-rounded understanding of the many great fea-
tures of PWAs, I recommend reading all the chapters.

Code conventions and downloads
The code for all numbered listings is available for download from www.manning.com/
books/progressive-web-apps and is also on GitHub at https://github.com/dean-
hume/progressive-web-apps-book.

About the author

DEAN ALAN HUME is an author, blogger, software developer,
and Google developer expert. He has written numerous articles
and given dozens of presentations, and is the author of Fast
ASP.NET Websites (Manning, 2013) and Building Great Startup
Teams (Blurb, 2017). He also contributed to the book A Career
On The Web: On the Road to Success (Smashing Magazine, 2015).
A software developer at heart, Dean is passionate about web
performance and regularly writes articles based on all things
software development on his blog deanhume.com. He collects
hobbies, including surfing, snowboarding, boxing, and partici-
pating in triathlons; currently, he’s learning to brew beer.

Book forum
Purchase of Progressive Web Apps includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum, go to https://forums.manning.com/forums/progressive-web-apps. You can
also learn more about Manning's forums and the rules of conduct at https://
forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of

https://forums.manning.com/forums/progressive-web-apps
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about
http://www.manning.com/books/progressive-web-apps
http://www.manning.com/books/progressive-web-apps
https://github.com/deanhume/progressive-web-apps-book
https://github.com/deanhume/progressive-web-apps-book
http://deanhume.com

ABOUT THIS BOOKxxii
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

About the cover
The figure on the cover of Progressive Web Apps is captioned “Habit of an Ethiopian,
in 1581.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Dif-
ferent Nations, Ancient and Modern (four volumes), London, published between 1757
and 1772. The title page states that these are hand-colored copperplate engravings,
heightened with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to
King George III.” He was an English cartographer who was the leading map supplier
of his day. He engraved and printed maps for government and other official bodies
and produced a wide range of commercial maps and atlases, especially of North
America. His work as a mapmaker sparked an interest in local dress customs of the
lands he surveyed and mapped, which are brilliantly displayed in this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late 18th century and collections such as this one were popular, introduc-
ing both the tourist as well as the armchair traveler to the inhabitants of other
countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the
uniqueness and individuality of the world’s nations some 200 years ago. Dress codes
have changed since then and the diversity by region and country, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life, or a more varied and interesting intellectual
and technical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jeffreys’ pictures.

Part 1

Defining Progressive
Web Apps

In 2015, the International Telecommunication Union estimated that about
3.2 billion people, or almost half of the world’s population, would be online by
the end of that year. Think about that number for a second. 3.2 billion people.
That’s about 32,000 football stadiums full of people! It almost seems too big to
comprehend. As these people come online they will be doing so on different
devices with different connection speeds and ever-changing conditions. As web
developers, trying to cater to all these different scenarios seems daunting to say
the least. This is where Progressive Web Apps (PWAs) come in. They provide us
as developers with the ability to build faster, more resilient, and more engaging
websites that can be accessed by billions around the world. The chapters in this
first part of the book dive straight into defining exactly what PWAs are and what
they can do.

 In chapter 1, you’ll learn about the benefits of PWAs. We’ll look at businesses
that are already harnessing the power of PWAs to improve their users’ browsing
experience. We’ll also dissect a real-world PWA and look at how companies such
as Twitter and Flipkart have built their own PWAs. A key component of PWAs is
the Service Worker, and I’ll be covering this topic in depth, as well as the lifecy-
cle that Service Workers go through when loaded in a web browser.

 Chapter 2 begins by looking at the different architectural approaches you
can use when building a PWA and how to best structure your code. We’ll look at
two different approaches: “picking and choosing vitamins” or the Application

Shell Architecture, both of which can be adapted to suit the needs of your project.
The best thing about PWAs is that you don’t have to rewrite your existing web applica-
tions to start using their features—you can add new features whenever you feel that
they’ll benefit the user and provide them with an enhanced experience. The chapter
finishes by dissecting an existing PWA, known as Twitter Lite, which was developed by
the team at Twitter.

 By the end of part 1, you should have a clear understanding of what PWAs are and
the benefits they can bring to your users. This first part of the book sets the building
blocks for the next part, where we get into coding and building a PWA from scratch.

Understanding
Progressive Web Apps
Imagine that you had the ability to build a website that worked completely offline,
offered your users near instant load times, and yet was secure and resilient to unre-
liable networks at the same time. Sounds both impossible and amazing! Believe it
or not, most modern browsers already have these features built into them—they
only need to be unlocked. When you build a website that takes advantage of these
powerful features, you have what is known as a Progressive Web App (PWA).

 In this chapter, you’ll learn what makes a web app progressive and how you can
unlock the powerful functionality that already lies within your browser. By the end
of the chapter, you’ll have a clear understanding of the benefits that PWAs bring to
users and why they are such a game-changer for the web. Finally, we’ll look at a real-
life example of a company that’s already benefitting from using a PWA.

1.1 What’s the big deal with Progressive Web Apps?
Way back during Christmas 1990, Sir Tim Berners-Lee and his team at CERN built
all the tools necessary for a working web. They created HTTP, HTML, and the world’s
first web browser, called WorldWideWeb.1 The web pages that the first browser could
run were simple plain-text pages with hyperlinks. In fact, those first web pages are
still online and available to view today.

 Fast-forward a few decades, and our browsers aren’t that different. Sure, we have
features such as CSS and JavaScript, but we still build with HTML, HTTP, and the
other blocks that Berners-Lee and his team created all those years ago. These brilliant
building blocks mean that the web has been able to grow at a remarkable rate. But

1 https://en.wikipedia.org/wiki/History_of_the_World_Wide_Web
3

https://en.wikipedia.org/wiki/History_of_the_World_Wide_Web

4 CHAPTER 1 Understanding Progressive Web Apps
the number of devices we use to access web pages has also grown remarkably over the
years. Whether on the go or sitting at their desks, your users have unparalleled access to
information at their fingertips. Our expectations for the web have never been higher.

 Although our mobile devices have become more powerful, our mobile networks
haven’t always been able to keep up with the demand. If you own a smartphone, you
know how flaky a mobile connection can be. 2G, 3G, or 4G are all great, but they often
lose connection or leave us with poor network speeds. If your business is reliant on the
web, this is a problem you need to solve.

 Historically speaking, native apps (installed on your phone) have been able to
offer a much better overall user experience—you download the app and it loads
instantly. If there’s no network connection, it’s not the end of the world. You already
have most of the resources on your device that you need to serve your customer. This
ability to offer a resilient, engaging experience has led to an explosion in the number
of native apps. There are currently over 4 million combined native apps in the Apple
App Store and the Google Play Store.2

 Historically speaking, the web hasn’t been able to offer these same great features
such as offline capabilities, instant load times, and improved reliability. This is where
PWAs are a game-changer. Major browser vendors have been working together to
improve the way we build for the web and have created a new set of features that give
web developers the ability to create fast, reliable, and engaging websites. A PWA should
be all of these things:

 Responsive
 Connectivity-independent
 Interactive with a feel like a native app’s
 Always up-to-date
 Safe
 Discoverable
 Re-engageable
 Installable
 Linkable

As web developers, this is a shift in mindset from the way we traditionally approach
building a website. It means we can start building websites that can cope with changing
network conditions or zero connectivity. It also means that we can build websites that
are more engaging for our users and offer those users a first-class browsing experience.

 At this point, you may be thinking, this is crazy! What about older browsers that
don’t support these features? One of the best things about PWAs is that they’re truly
progressive. If you build a PWA, it will still work as a normal website even if an older
browser doesn’t support it. The technologies that drive PWAs have been designed so
that it only enhances the experience if the browser is capable of supporting the features.

2 www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

5PWA basics
If your user’s device does support them, they get all the extra benefits and more
improved features. Either way, it’s a win-win situation for you and your users.

1.2 PWA basics
What exactly makes up a Progressive Web App? We’ve talked about their features and
principles, but what makes something a Progressive Web App? At their simplest, PWAs are
normal websites created with the technologies we know and love as web developers—
HTML, CSS, and JavaScript—but they go a few steps further and offer users an enhanced
experience. I like the way Alex Russell, a developer on the Google Chrome team,
describes them: “These apps aren’t packaged and deployed through stores, they’re just
websites that took all the right vitamins.”

 PWAs point to a file known as a mani-
fest file that contains information about
the website, including its icons, back-
ground screen, colors, and default orien-
tation. (In chapter 6, you’ll learn how to
make your website more engaging using
manifest files.)

 PWAs use an important new feature
known as Service Workers to let you tap
into network requests and build better
web experiences. As you progress through
this chapter, you’ll learn more about
them and the improvements they bring
to the browser. A PWA will also let you
“save” it to the home screen of your
device. It will appear exactly as a native
app would, giving you easy access to the
web app at the touch of a button (more
on this in chapter 6).

 A PWA should also be able to work
offline. Using Service Workers, you can
selectively cache parts of your site to
provide an offline experience. If you’ve
browsed most websites today without an
internet connection, you’ve probably seen
a screen that looks similar to figure 1.1.

 Users no longer need to face the
dreaded “No internet connection” screen.
Using Service Workers, you can intercept
and cache any network requests to and
from your site. Whether you’re building

Figure 1.1 The offline screen can be frustrating
if you need to access information in a hurry.

6 CHAPTER 1 Understanding Progressive Web Apps
websites for mobile, desktop, or tablet devices, you have control over how you want to
respond to requests with or without a network connection. (We’ll dive into caching in
chapter 3 and build an offline web page in chapter 8.)

 PWAs are more than a set of great new features—they’re a way to build better web-
sites. They’re also quickly becoming a set of best practices. The steps you take to build
a PWA will benefit anyone who visits your website, regardless of which device they
choose to use.

 Once you’ve unlocked the basic building blocks needed to start building PWAs,
you’ll quickly find that the more advanced examples don’t seem that advanced after
all. Once you get into the swing of building Progressive Web Apps, you’ll how easy it is.

1.2.1 Building a business case for Progressive Web Apps

As a developer, I know how exciting it can be when a new technology or set of features
comes along. The urge to dive right in and introduce the latest and greatest library or
framework into your website can often overshadow the value it brings to a business.
Believe it or not, PWAs bring real value to your users and can make a website more
engaging, resilient, and even faster.

 The best thing about a PWA is that you can start enhancing your existing web
application one feature at a time. The collection of technologies we’ll discuss
throughout this book can be applied to any existing website or even to a new web
application you may be building. Regardless of the stack you choose to develop your
website, PWAs work hand-in-hand with your solution because they’re based on HTML,
CSS, and JavaScript.

 Now that you have a basic understanding of PWAs, let’s stop for a second and imag-
ine the possibilities of what you can build. Let’s say your online business is a newspa-
per that people visit to discover more about their local area. If you know that people
regularly visit your site and read multiple pages, why not cache those pages ahead of
time for them so they can read the information completely offline? Or imagine your
web app is for a charity that has volunteers working in areas with limited or no con-
nectivity. The features of a PWA would allow you to build an offline app that lets them
collect information in the field with no network connection. As soon as they come
back to the office or to an area with connectivity, the data can sync back to the server.
PWAs are a game-changer for web developers, and I’m personally excited about the
features they’ll bring to the web.

 I mentioned that you can save a PWA to the home screen of your device. Once
saved, its icon appears on the home screen and allows your website to be accessible at
the touch of a button.

 In 2015, Flipkart, India’s largest e-commerce site, began building Flipkart Lite, a
PWA that combines the best of the web and the best of the Flipkart native app. If you
head over to flipkart.com in your browser, you’ll see exactly why this website is so suc-
cessful. The user experience is impressive: the site is fast, works offline, and is enjoy-
able to use. By building its site as a PWA, Flipkart was able to display an Add to

7PWA basics
Homescreen banner (see figure 1.2). Users that arrived via the Add to Homescreen
icon were 70% more likely to purchase on the site.3

Any new native application entering the App Store or Google Play becomes a grain of
sand on a beach. As of June 2016, two million apps live in each store at any given time.
If you’re about to develop a native app aimed at only one of them, you could easily get
lost in the many other apps. But because PWAs are websites that took the right vita-
mins, they’re easily discoverable via search engines. People can discover PWAs via
social media links or while they browse the web. Building a PWA allows you to reach
more people than you could ever achieve with native apps alone, because it’s built for
any platform capable of running a browser.

 I work in a small startup and know how expensive it can be to write an app that
works across multiple platforms including iOS, Android, and a website. With PWAs,
you only need one team of developers that understands the language of the web. It
makes hiring easier and a lot cheaper. That’s not to say you shouldn’t build a native

3 www.recode.net/2016/6/8/11883518/app-boom-over-snapchat-uber

Figure 1.2 The Add to Homescreen
functionality can be a great way to
re-engage with your users.

http://www.recode.net/2016/6/8/11883518/app-boom-over-snapchat-uber

8 CHAPTER 1 Understanding Progressive Web Apps
app, because different users will have different needs, but it does mean that if you
wanted to, you could focus on building a great experience for your users on the web
and leave it at that.

 When it comes to building for the web, a user can easily access a part of your web-
site without having to first download a huge file. A PWA with the right caching tech-
niques in place can save your users data and make functionality available to them in
an instant. As more and more users around the world come online, building for the
next billion people has never been more important. PWAs help you achieve this by
building fast, lean web applications.

 If you read software development articles on the web today, you’re familiar with
the native versus web arguments. Which is better? What are the pros and cons of each?
Native apps are great in their own right, but the truth is that PWAs aren’t only about
bringing native features to the web. They solve real problems that businesses are fac-
ing and aim to create a truly discoverable, fast, and engaging experience for users.

1.3 Service Workers: The key to PWAs
As mentioned, the key to unlocking the power of PWAs lies in Service Workers. At
their core, Service Workers are worker scripts that run in the background. Written in
JavaScript with a few lines of code, they enable a developer to intercept network
requests, handle push messages, and perform many other tasks.

 Best of all, if a user’s browser doesn’t support Service Workers, it falls back and
your website functions as a normal website. PWAs have been described as the “perfect
progressive enhancement” because of this. The phrase progressive enhancement
refers to the idea that you can build an experience that works anywhere and then
enhance the experience for devices that support more advanced features.

1.3.1 Understanding Service Workers

How does a Service Worker...work? Well, in order to make it as simple to understand
as possible, I like how Jeff Posnick of Google describes them: “Think of your web
requests as planes taking off. Service Worker is the air traffic controller that routes the
requests. It can load from the network or even off the cache.”

 As “air traffic controllers,” Service Workers give you total control of each and every
web request made from your site, which opens up the possibility for many different
use cases. In the same way that an air traffic controller might redirect a plane to
another airport, or even delay a landing, a Service Worker enables you to redirect
your requests or even stop them completely.

 Although Service Workers are written in JavaScript, they’re slightly different from
your standard JavaScript file. A Service Worker does the following:

 Runs in its own global script context
 Isn’t tied to a particular web page
 Isn’t able to modify elements in the web page—it has no DOM access
 Is HTTPS only

9Service Workers: The key to PWAs
You don’t need to be a JavaScript master to begin experimenting with Service Work-
ers. They’re event-driven, and you can pick and choose the events you want to tap
into. Once you have a basic understanding of the different events, getting started with
Service Workers is easier than you think.

 Figure 1.3 illustrates how Service Workers work.

A Service Worker is run in a worker context, which means it has no DOM access and
runs on a different thread from the main JavaScript that powers your app, so it’s not
blocking. Service Workers are designed to be fully async, and as a consequence, you
can’t access things such as synchronous XHR and localStorage. In figure 1.3, you can
see that the Service Worker sits on a different thread and is able to intercept network
requests. Remember, Service Workers are like air traffic controllers in that they give
you total control of network requests coming and going from your website. This ability
makes them extremely powerful and allows you to decide how to respond.

1.3.2 The Service Worker lifecycle

Before diving in to a coding example, let’s look at the different stages a Service Worker
goes through in its lifecycle. Imagine a basic website that uses a Service Worker under
the hood. The website is a popular blogging platform that millions of writers use every
day to share their content.

 In its simplest form, the website constantly receives requests for content, including
images and videos. To see how the Service Worker lifecycle might fit into this, let’s
pick one of these millions of interactions to and from the website every single day.

 Figure 1.4 shows the Service Worker lifecycle that will take place when a user visits
a blogging page on this website.

 Let’s walk through figure 1.4 step by step to understand how the Service Worker
lifecycle fits into this. When a user navigates to a URL for the first time, the server
returns a response for the web page. In figure 1.4, you can see that in step 1, the Ser-
vice Worker begins downloading when you call the register() function. During the
registration process, the browser will download, parse, and execute the Service Worker

Main browser thread Worker thread

Service WorkerPage
Server

Figure 1.3 Service Workers can intercept incoming and outgoing HTTP requests, giving
you total control of your website.

10 CHAPTER 1 Understanding Progressive Web Apps
(step 2). If at any point during this step there is an error, the register() promise
will reject, and the Service Worker will be discarded (JavaScript promises will be
explained shortly).

 As soon as the Service Worker successfully executes, the install event is activated
(step 3). One of the great things about Service Workers is that they’re event-based,
which means you can tap into any one of these events. We’re going to be using these
different events to implement super-fast caching techniques in chapter 3.

 Once the install step has completed, the service worker is then activated (step 4)
and in control of things within its own scope. If all these events in the lifecycle were
successful, your service worker is in place and being used.

 One way to remember the Service Worker lifecycle is to think of it as a set of traffic
lights. During the registration process, the Service Worker is at a red light because it
needs to be downloaded and parsed. Next, it is at a yellow light as it’s being executed
and it’s not quite ready to be used yet. If all the steps are successful, your Service
Worker is at a green light and ready to be used.

 When you load a page for the first time without an active Service Worker, the Ser-
vice Worker won’t handle any requests coming or going. Only after it’s been installed
and activated is it in control of its own scope. This means the logic inside the Service
Worker will only kick in if you refresh the page or navigate to another page.

1.3.3 A basic Service Worker example

I’m sure by now you’re itching to see what this might look like in code form, so let’s
get started.

1. User navigates to a URL

2. During the registration process,
the browser downloads, parses,
and executes the Service Worker

3. As soon as the Service
Worker executes, the install
event is activated

4. If succesful, the Service Worker
is now able to control clients and
handle functional events

Register

Install

Activated

Download,
parse, and

execute

Figure 1.4 The Service
Worker lifecycle

11Service Workers: The key to PWAs

 Because a Service Worker is a JavaScript file that runs in a background thread, you
reference it in an HTML web page the same way you would any JavaScript file. Imag-
ine you’ve created a Service Worker file and named it sw.js. To register it, use the code
in in the next listing listing in your HTML web page.

<html>
<head>
<title>The best website ever</title>
</head>
<body>
<script>
// Register the service worker
if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register('/sw.js').then(function(registration) {
 // Registration was successful
 console.log('ServiceWorker registration successful with scope: ',

registration.scope);
}).catch(function(err) {
 // registration failed :(
 console.log('ServiceWorker registration failed: ', err);
 });
}
</script>
</body>
</html>

Inside the script tag, you’re first checking to see if Service Workers are supported in
the browser. If they are, you register it using the navigator.serviceWorker.regis-
ter('/sw.js') function, which in turn notifies the browser that it needs to download
the Service Worker file. If the registration is successful, it begins the rest of the stages
of the Service Worker lifecycle.

 In listing 1.1, you may notice that the JavaScript code isn’t using callbacks. That’s
because Service Workers use JavaScript promises, which are a clean, readable way to
deal with callbacks. A promise represents an operation that hasn’t completed yet but
is expected to in the future. This lets asynchronous methods return values like syn-
chronous methods and makes writing JavaScript cleaner and also a lot easier to read.
Promises can do a great many things, but for now all you need to know is that if some-
thing returns a promise, you can attach .then() to the end and include callbacks
inside it for success, failure, and so on. Upcoming chapters look at JavaScript promises
more closely.

 The navigator.serviceWorker.register() function returns a promise, and if
the registration is successful you can decide how you want to proceed.

 Earlier I mentioned that Service Workers are event-driven, and one of the most
powerful features of Service Workers is that they allow you to listen out for any net-
work requests by tapping into different events. One key event is the fetch event.
When a fetch event occurs for a resource, you can decide how you want to proceed.

Listing 1.1 A basic HTML beb bage

Check to see if the
current browser
supports Service
Workers.

If it does, register
a Service Worker

file called sw.js.

Log to the console
if successful.

If something goes
wrong, catch the
error and log to
the console.

12 CHAPTER 1 Understanding Progressive Web Apps
You could alter anything on the outgoing HTTP request or the incoming HTTP
response. It’s rather simple, but extremely powerful at the same time.

 Imagine the following listing inside your Service Worker file.

self.addEventListener('fetch', function(event) {
 if (/\.jpg$/.test(event.request.url)) {
 event.respondWith(fetch('/images/unicorn.jpg’));
 }
});

In listing 1.2, you’re listening out for the fetch event, and if the HTTP request is for a
JPEG file, you’re intercepting it and forcing it to return a picture of a unicorn
instead of its original intended URL. The code will do this for each and every HTTP
request made for a JPEG file from the website. Although pictures of unicorns are
awesome, you probably wouldn’t want to do this for a real-world website; your users
might not be happy with the result. This example gives you an idea of what Service
Workers are capable of. With a few lines of code, you’ve created a powerful proxy
within the browser.

1.3.4 Security considerations

In order for a Service Worker to run on a website, it needs to be served over HTTPS.
Although that makes it a little tougher to get started using them, there’s an important
reason for this. Remember the analogy of a Service Worker being like an air traffic
controller? With great power comes great responsibility, and in the case of Service
Workers, they could be used for malicious purposes, too. If someone were able to reg-
ister a dodgy Service Worker on your web page, they would be able to hijack connec-
tions and redirect them to a malicious endpoint. In fact, the bad guys might be able
do whatever they wanted with your HTTP requests. To avoid that, you can only regis-
ter Service Workers on web pages that are served over HTTPS. This ensures that the
web page hasn’t been tampered with during its journey through the network.

 If you’re a web developer who wants to get into building Progressive Web Apps on
the side, you may be a little disheartened at this point in the book. Don’t be! Getting
SSL certificates for your website may have traditionally cost you quite a bit of money,
but believe it or not, many free solutions are available to you as a web developer today.

 First, if you’d like to test Service Workers on your own computer, you can do so
by serving pages from your localhost. They’ve been built with this feature in mind,
which makes it easier for developers to develop locally before deploying their appli-
cations live.

 If you’re ready to release your PWA to the world, there are a few free services that
you can use. Let’s Encrypt (https://letsencrypt.org) is a new Certificate Authority

Listing 1.2

Add an event listener
to the fetch event.

Check to see if
the HTTP request
URL requests a file
ending in .jpg.Try to fetch an image of a

unicorn and then respond
with it instead.

https://letsencrypt.org

13Performance insight: Flipkart
that’s free, automated, and open. You can quickly get started serving your site over
HTTPS using Let’s Encrypt. To learn more about Let’s Encrypt, head over to the Get-
ting Started page at https://letsencrypt.org/getting-started/.

 If you use GitHub for source control, as I do, you may have come across GitHub
Pages, as shown in figure 1.5. You can host directly from your GitHub repository for
basic websites without a back end.

The advantage of using GitHub Pages is that by default, your web pages are served
over HTTPS. When I first started experimenting with Service Workers, GitHub Pages
allowed me to quickly spin up a website and test out an idea in no time.

1.4 Performance insight: Flipkart
Earlier in this chapter we looked at an example of an e-commerce company called
Flipkart that decided to approach building its website as a PWA. Flipkart is India’s
largest e-commerce site, and a fast, engaging website is vital to its business success. In
emerging markets such as India, the cost of a mobile data package can be quite high,
and the mobile networks can be unreliable. For these reasons, many e-commerce
companies based in emerging markets need to build light, lean web pages that cater
for users on any network.

 In 2015, Flipkart adopted an app-only strategy and decided to temporarily shut
down its mobile website. The company found it harder and harder to provide a user

Figure 1.5 GitHub Pages allows you to host a website over SSL directly from a GitHub repository.

https://letsencrypt.org/getting-started/

14 CHAPTER 1 Understanding Progressive Web Apps
experience that was as fast and engaging as that of its mobile app. Flipkart decided to
rethink its development approach. Its developers were drawn back to the mobile web
by the introduction of features that made the mobile web run instantly, work offline,
and re-engage users—all the features of a Progressive Web App.

 Once they implemented their new PWA, they noticed immediate results. Not only
did the site load nearly instantly, but their users were able to continue browsing cate-
gory pages, reviewing previous searches, and viewing product pages while they were
offline. A key metric for Flipkart is data usage, and best of all, when comparing Flip-
kart Lite to the native app, they found that Flipkart Lite used one-third of the data.

 Building a PWA gave them even more benefits. Because the site was fast and engag-
ing, it resulted in users staying three times longer on the site and resulted in a 40%
higher engagement rate.4 Those are some pretty impressive improvements. To see the
results for yourself, head over to flipkart.com.

1.5 Summary
In terms of user experience, native applications have been able to offer a much better
experience compared to traditional websites.

 The web is evolving and there’s no reason why we can’t offer our users fast, resilient,
and engaging web apps. A PWA is capable of providing your users with exactly that.

 Service Workers are the key to unlocking the power within your browser. Think of
them as air traffic controllers that are capable of intercepting HTTP requests.

 The web has always been awesome, but there’s no reason why we can’t improve it
and pass on even greater features to our users. At the end of day, we’re building for
our users.

4 https://developers.google.com/web/showcase/2016/pdfs/flipkart.pdf

https://developers.google.com/web/showcase/2016/pdfs/flipkart.pdf

First steps to building a
Progressive Web App
In chapter 1, you learned that Progressive Web Apps (PWAs) offer a whole new set
of features that allow you to build fast, resilient, and engaging web applications. In
this chapter, we’ll look at some of the best practices for architecting your front-end
code when building a PWA. We’ll dissect a real-world PWA and look at an overview
of its features to gain insight into how you can build your own PWA.

2.1 Build on what you already have
The quote by Alex Russell in chapter 1 (about websites taking their vitamins) sums
up the features of a PWA perfectly and ties in nicely with how I felt when I first
started to experiment with Service Workers. As soon as I grasped the basic concept
of how they worked, there was a light-bulb moment in my head when I realized how
powerful they could be. As I started learning more and more about them, I started
experimenting with each new PWA feature, or “vitamin,” at a time. Learning any
new technology can often seem like climbing a mountain. But if you approach your
learning about PWAs with the mindset of learning one new feature at a time, you’ll
have the art of the PWA mastered in no time.

 You’ve undoubtedly put a lot of time and effort into your current projects. For-
tunately, building a PWA doesn’t mean you have to start all over again from scratch.
When I try to improve an existing application, I add a new “vitamin” wherever I feel
it will benefit the user and enhance their experience. I like to think of each new
PWA feature as Super Mario leveling up every time he eats a new mushroom.

 If you have an existing web application that you think would benefit from the
features of a PWA, I recommend having a look at a handy tool called Lighthouse
15

16 CHAPTER 2 First steps to building a Progressive Web App
(https://github.com/GoogleChrome/lighthouse). It provides useful performance and
audit information about your web application, as shown in figure 2.1.

You can use it as a command-line interface or, if your browser of choice is Google
Chrome, use the handy Chrome extension. If you run it while pointing to a website,
it produces something similar to figure 2.1. The tool runs an audit against your site
and produces a helpful checklist of features and performance metrics that you can
use to improve your website. If you’d like to use this handy tool and run it against

Figure 2.1 The Lighthouse tool is great for auditing and producing performance metrics of a Progressive Web App.

https://github.com/GoogleChrome/lighthouse

17Front-end architectural approaches to building PWAs
one of your existing sites, head over to github.com/GoogleChrome/lighthouse to
find out more.

 With the feedback from the Lighthouse tool, you can add new features one at a
time and slowly improve the overall experience of your website.

 At this point you may be wondering which feature you might want to add to your
existing site. Service Workers open up a whole world of possibilities, and deciding
where to start can be tricky. As we progress through the rest of this book, each chapter
will focus on a new Progressive Web App and will be written in a way that enables you
to start building with it regardless of whether you’re building for an existing website
or a brand new one.

2.2 Front-end architectural approaches to building PWAs
Among developers, there is an ongoing debate over whether it’s preferable to build a
native app or a web app. Personally, I think that you should choose based on the
needs of your users. It shouldn’t be a case of PWA versus native apps, but rather, as
developers we should always be looking to improve the user experience. As you can
imagine, I have a natural bias toward building for the web, but regardless of your pref-
erence, if you think of a PWA as a set of best practices, you’ll build better websites. For
example, if you like developing with React or Angular, you can continue to do so—
building a PWA will only enhance the web application and make it faster, more engag-
ing, and more resilient.

 Native app developers have long been able to offer their users features that web
developers could only dream of, such as the ability to operate offline and respond
regardless of network connection. But thanks to the new features that PWAs bring to
the web, we can strive to build even better websites. Many native apps are well archi-
tected, and as web developers we can learn from their architectural approaches. The
next section looks at different architectural approaches you can use in your front-end
code when it comes to building PWAs.

2.2.1 The Application Shell Architecture

Lots of great native apps are available today. The Facebook app, for example, provides
a nice experience for the user. It lets you know when you’re offline, caches your time-
line for faster access, and loads in an instant. If you haven’t used the Facebook native
app in a while, you’ll still see an empty UI shell with the header and navigation bar
instantly before any of the dynamic content has loaded.

 Using the power of Service Workers, there’s no reason you can’t provide this same
experience on the web. With intelligent Service Worker caching, you can cache the UI
shell of your website for repeat visits. The new features let you start thinking about
and building your websites differently. Whether you’re rewriting an existing applica-
tion or starting from scratch, this approach is something to consider.

 You may wonder what I mean by UI shell. I mean the minimal HTML, CSS, and
JavaScript required to power the user interface. This may be something like the header,

http://github.com/GoogleChrome/lighthouse

18 CHAPTER 2 First steps to building a Progressive Web App
footer, and navigation of a site without any dynamic content. If you can load the UI
shell and cache it, you can load the dynamic content into the page later. A great exam-
ple of this in action is Google’s Inbox, shown in figure 2.2.

You may already be familiar with Google’s Inbox, a handy web application that allows
you to organize and send emails. Under the hood it uses Service Workers to cache and
provide a super-fast experience for the user. As you can see in figure 2.2, when you
first visit the site at you’re instantly presented with the UI shell of the website. This is
great because the user gets instant feedback and the site feels fast even if you’re still
waiting for the dynamic content to load. The app gives the perception of speed even if
it still takes as long to retrieve content. The user is also notified with a “loading” indi-
cator that something is happening and the site is busy—that’s a lot better than waiting
for an empty white page to load. Once the shell has loaded, the dynamic contents of
the site are fetched and loaded using JavaScript, as shown in figure 2.3.

Figure 2.2 Google’s Inbox takes advantage of Service Workers to cache the UI shell.

19Front-end architectural approaches to building PWAs
Figure 2.3 shows the Google Inbox site once the dynamic content has been loaded
and populated in the web app. Using this same technique, you can provide instant
loading for repeat visits to your website. You could also cache your application’s UI
shell so it works offline, allowing you to get meaningful pixels on the screen even if
the user doesn’t currently have a connection.

 In chapter 3, you’ll learn how to take advantage of Service Workers to cache your
content and provide an offline experience for your users. Throughout this book,
you’ll build a PWA that will use the Application Shell Architecture. You’ll get the
chance to download and follow along with the code and build your own app using
this approach.

2.2.2 Performance benefits

It’s easy to say that a web application loads “instantly” using App Shell Architecture,
but what does that mean for a user? How fast is that? To see how quickly a PWA using

Figure 2.3 Once the UI shell is loaded, the dynamic contents of a website are fetched and added to the page.

20 CHAPTER 2 First steps to building a Progressive Web App
the App Shell Architecture loads, I used a tool called webpagetest.org to produce the
filmstrip in figure 2.4, which shows the load time before and after caching using Ser-
vice Workers.

I ran the tool against a PWA I built called Progressive Beer to show a filmstrip view of a
PWA loading over time. For the first-time user, the site takes a little longer to down-
load because they’re retrieving the assets for the first time. Once all the assets have
been downloaded, the first-time user will be able to fully interact with the site at
around four seconds.

 The repeat user who has an active Service Worker installed sees the UI shell at
around 0.5 seconds (500 milliseconds), which is loaded even though the dynamic
content hasn’t been returned from the server yet. Then the remainder of the
dynamic content is loaded and populated onto the screen. The best thing about this
approach is that even if there’s no connection, a user can still see the UI shell of the
site in about half a second—at which point you could present them with something
meaningful, such as notifying them that they’re offline or providing them with
cached content.

 Every time they revisit the site, they’ll have this enhanced experience that’s fast,
reliable, and engaging. If you’re approaching the development of a new web app,
using the Application Shell Architecture can be an efficient way to take advantage of
Service Workers.

2.2.3 The Application Shell Architecture in action

In chapter 1, we ran through the various stages of the Service Worker lifecycle. It may
not have made much sense at the time, but as we look a little deeper into how the
Application Shell Architecture works, it will. Remember that using a Service Worker,
you can tap into the different events in the Service Worker lifecycle. Figure 2.5 illus-
trates how to tap into these events.

Figure 2.4 The App Shell architecture can provide the user with meaningful pixels on the screen even
before the dynamic content has finished loading.

21Dissecting an existing PWA step by step
When the user visits the website for the first time, the Service Worker begins down-
loading and installing itself. During the installation stage, you can tap into this event
and prime the cache with all the assets required for the UI shell—the basic HTML
page and any CSS or JavaScript that may be required.

 You can now serve the “shell” of the site instantly because it’s been added to the
Service Worker cache. The HTTP request for these resources never needs to go to the
server again. As soon as the user navigates to another page, they’ll see the shell with-
out delay (see figure 2.6).

The dynamic content that will be loaded into the site can then continue as normal. As
you tap into the fetch event for these requests, you could decide at this point whether
you want to cache them or not. You may have dynamic content that frequently updates,
so it might not make sense to cache it. But your users will still receive a faster, enhanced
browsing experience. In chapter 3, we’ll dive deeper into Service Worker caching.

2.3 Dissecting an existing PWA step by step
Although it’s a relatively new concept, some amazing PWAs are already on the web
being used by millions of users every day.

Service Worker
install

Service WorkerPage Server

Figure 2.5 During the Service Worker installation step, you can fetch resources and prime the
cache for the next visit.

Cache

Service WorkerPage

Server

If it doesn’t, retrieve it
over the network

First check if the resource
exits in cache

Figure 2.6 For any HTTP requests that are made, you can check whether the resource
already exists in cache, and if it doesn’t, retrieve it via the network.

22 CHAPTER 2 First steps to building a Progressive Web App
 In chapter 3, you’ll start building your own PWA. First, let’s dissect an existing PWA
to see how some of these features work.

 In this section, we’ll look at one of my favorite PWAs, the Twitter mobile website, a
PWA that offers users an enhanced experience on their mobile devices. If you use
Twitter, it’s a great way to view your tweets on the go (see figure 2.7).

 If you navigate to twitter.com on your mobile device, you’ll be redirected to
mobile.twitter.com and shown a different site. Twitter named its PWA Twitter Lite,
because it takes up less than a megabyte of storage, and claims it can save up to 70%
on data while loading 30% faster.

Figure 2.7 Twitter’s mobile website is a PWA that takes advantage of the Application Shell Architecture.

http://twitter.com
http://mobile.twitter.com

23Dissecting an existing PWA step by step
Personally, I think it’s so good that it should be used on the desktop web too. I prefer
to use the PWA version over the native version—you can access the web app on your
desktop device by navigating directly to mobile.twitter.com.

2.3.1 Front-end architecture

Under the hood, Twitter Lite is built using an Application Shell Architecture. This
means it uses a simple HTML page for the UI shell of the site, and the main contents
of the page are dynamically injected using JavaScript. If the user’s browser supports
Service Workers, all the assets that are needed for the UI shell are cached during the
Service Worker installation.

 For repeat visitors, this means that the shell loads in an instant (see figure 2.8).
This approach will still work in browsers that don’t support Service Workers; they
won’t have the assets for the UI shell cached and will miss out on the added bonus of
super-fast performance. The web app has also been optimized for a range of different
screen sizes using responsive web design.

Figure 2.8 The App Shell Architecture instantly brings meaningful pixels to the screen. The image
on the left is what user sees first, and then the user sees the screen on the right once it’s loaded.

http://mobile.twitter.com

24 CHAPTER 2 First steps to building a Progressive Web App

led

.
ue
2.3.2 Caching

Service Worker Caching is a powerful feature that gives web developers the ability to
programmatically cache the assets you need. You can intercept HTTP requests and
responses and adjust them as you see fit, and this is the key to unlocking even better
web applications. Using a Service Worker allows you to tap into any network requests
and decide exactly how you want to respond. Building a fast and resilient PWA is easy
using Service Worker caching.

 Twitter Lite is fast. It feels good to use, and the pages that have been cached load
almost instantly. As a user, it’s the kind of experience I’d like to expect from every
website.

 At the time of writing this, Twitter Lite uses a handy library called the Service
Worker Toolbox that contains tried and tested caching techniques using Service
Workers. This toolbox provides you with a few basic helpers to get you started creating
your own Service Workers and saves you from writing repetitive code. In chapter 3,
we’ll deep-dive into caching, and without jumping too far ahead, let’s have a look at a
caching example using the Service Worker Toolbox. The Twitter PWA app is using this
technique to cache its emojis. Don’t worry if the code in the next listing doesn’t make
sense right now—we’ll dig deeper into this in the chapter 3.

toolbox.router.get("/emoji/v2/svg/:icon", function(event) {
 return caches.open('twemoji').then(function(response) {
 return response.match(event.request).then(function(response) {
 return response || fetch(event.request)
 })
 }).catch(function() {
 return fetch(event.request)
 })
 }, {
 origin: /abs.*\.twimg\.com$/
 })

In listing 2.1, the Service Worker Toolbox is looking for any incoming requests that
match the URL /emoji/v2/svg/ and come from an origin of *.twimg.com. Once it
intercepts any HTTP requests that match this route, it will store them in cache with
the name twemoji. The next time a user makes a request for the same route, they will
be presented with the cached result.

 This powerful snippet of code gives you as a developer the ability to control
exactly how and when you want to cache assets on your site. Don’t worry if that code

Listing 2.1 The Twitter Lite Service Worker code

Intercept any requests for the
path /emoji/v2/svg/:icon.

Open an
existing
cache cal
twemoji.

Check if the
current request

matches anything
in your cache.

If it does, return
that immediately
Otherwise contin
as normal.

If something goes
wrong when opening
the cache, continue
as normal.

You also only want to check
for this resource against
the twimg.com domain.

25Dissecting an existing PWA step by step
seems a little confusing at first. In chapter 3, you’ll build a page that uses this power-
ful feature.

2.3.3 Offline browsing

On my daily commute to and from work,
I catch the train. I’m lucky that the jour-
ney isn’t too long, but unfortunately the
network signal is weak in some areas and
can drop off. This means that if I’m
browsing the web on my phone, I may
lose the connection or the connection
may become flaky. It can be quite frus-
trating.

 Fortunately, Service Worker caching
saves assets to the user’s device. Using
Service Workers, you can intercept any
HTTP requests and respond directly
from the device. You don’t even need
access to the network to retrieve cached
assets.

 With this in mind, you can build
offline pages. Using Service Worker cach-
ing, you can cache individual resources
or even entire web pages—it’s up to you.
For example, if the user has no connec-
tion, Twitter Lite presents a custom offline
page, as shown in figure 2.9.

 Instead of seeing the dreaded “This
site can’t be reached” error, the user now
sees a helpful custom offline page or a
cached version of a page they’ve already
visited. The user can check whether con-
nectivity has been restored by tapping
the button provided. For the user, this is
a better web experience. In chapter 8,
you’ll master the necessary skills required
to start building your own offline pages
and provide your users with a resilient
browsing experience.

Figure 2.9 If a user has no connection, the
Twitter PWA displays a custom error page.

26 CHAPTER 2 First steps to building a Progressive Web App
2.3.4 Look and feel

Twitter Lite is fast, optimized for smaller screens, and works offline. What else is left?
Well, it needs to look and feel like an app. If you look closely at the HTML for the
home page of the web app, you might notice the following line:

<link rel="manifest" href=“/manifest.json">

This link points to a file known as a manifest file. This is a simple JSON file that fol-
lows the W3C’s Web App Manifest specification1 and gives the developer control over
different elements of the look and feel of the app. It provides information such as
name, author, icon, and description of your web app. It gives you a few other benefits
as well. First, it enables the browser to install the web application to the home screen
of a device in order to provide users with quicker access and a richer experience. Also,
by setting a brand color in the manifest file, you can customize the splash screen that’s
presented automatically by the browser. And it allows you to customize the address bar
of your browser to match your brand colors.

 Using a manifest file rounds off the look and feel of your web application and pro-
vides users with a richer experience. Twitter Lite uses a manifest file to take advantage
of many of the features that are automatically built into the browser.

 In chapter 6, we’ll explore how you can use the manifest file to enhance the look
and feel of your PWA and provide your users with an engaging browsing experience.

2.3.5 The final product

Twitter Lite is a well-rounded example of what a PWA should be. It covers most of the
features that we’ll run through in this book in order to build a fast, engaging, and reli-
able web application.

 In chapter 1, we talked about all the features of what a web app should be. Let’s
review the breakdown of the Twitter PWA so far. The app can be described by all of
the following:

 Responsive—It adjusts to smaller screen sizes.
 Connectivity-independent—It works offline due to Service Worker caching.
 App-like interactions—It’s built using the Application Shell Architecture.
 Always up-to-date—It’s updated thanks to the Service Worker update process.
 Safe—It works over HTTPS.
 Discoverable—A search engine can find it.
 Installable—It’s installable using the manifest file.
 Linkable—It can be easily shared by URL.

Whoa! That’s a big list—we get many of these things as side effects of building a PWA.

1 www.w3.org/TR/appmanifest/

http://www.w3.org/TR/appmanifest/

27Summary
2.4 Summary
The features that Progressive Web Apps bring to the web enable you as a developer to
build better websites that are faster, reliable, and more engaging for your users.

 These features are baked into the browser, which means they also play along nicely
with any libraries or frameworks that you may be familiar with. Regardless of whether
you have an existing app or would like to build a new web app from scratch, you can
tailor a PWA to your needs.

 This chapter looked into Application Shell Architecture, an approach you can use
to take advantage of Service Worker caching to provide your users with meaningful
pixels instantly.

 We dissected the Twitter PWA and discussed many of the features that are available
in your browser right now.

 Throughout the rest of this book we’ll dive into each of these features one by one,
and you’ll learn how to build a lean, mean PWA like Twitter Lite.
 www.allitebooks.com

http://www.allitebooks.org

Part 2

Faster web apps

If you’ve ever been in a hurry to get urgent information from a website, you
know how frustrating it can be to wait for a web page to load. In fact, a study by
Nielsen Norman Group found that a 10-second delay will often make users leave
a site immediately—and even if they do stay, it’s hard for them to understand
what’s going on, making it less likely that they’ll succeed in any difficult tasks. If
you’re trying to build a business that’s based online, you can easily lose your
opportunity to convert that person into a sale. That’s why it’s so important to
build web pages that are fast and work efficiently, regardless of the user’s device.

 In part 2, we’ll focus on how you can use Service Workers to improve the perfor-
mance of your Progressive Web Apps (PWAs). From caching techniques to alter-
nate image formats, Service Workers are flexible enough to suit every situation.

 Chapter 3 dives deep into Service Worker caching and helps you understand
the different caching techniques that you can apply to your web app. We’ll start
with a basic caching example and expand into different caching approaches.
Regardless of how the front end code of your site is written, using Service
Worker caching can make a big difference to your page load times. We’ll also
look at some of the gotchas associated with caching, and I’ll offer suggestions to
help you deal with them. The chapter finishes off by briefly looking at a helpful
library called Workbox that makes writing caching code easier.

 In chapter 4, we’ll talk about the Fetch API and see how you can use it to build
faster web apps. The chapter covers a few sneaky tricks you can use to squeeze the
best performance out of your site. I cover a technique for returning a lighter
image format known as WebP. We’ll also look at how you can tap into the Save-
Data header on Android devices to reduce the overall weight of a web page.

Caching
Imagine you’re on a train using your mobile phone to browse your favorite website.
Every time the train enters an area with an unreliable network, the website takes
ages to load—an all-too-familiar scene. This is where Service Worker caching comes
to the rescue. Caching ensures that your website loads as efficiently as possible for
repeat visitors.

 This chapter starts off by looking at the basics of HTTP caching and what hap-
pens under the hood when your browser navigates to a URL. We’ll also look closely
at how you can use Service Worker caching to provide your users with a faster, more
reliable website and how it works hand-in-hand with traditional HTTP caching.
You’ll learn how you can use Service Worker caching in a real-world application,
including versioning and precaching resources. Finally, you’ll discover one of my
favorite Service Worker libraries: Workbox.

3.1 The basics of HTTP caching
Modern browsers are clever. They can interpret and understand a variety of HTTP
requests and responses and are capable of storing and caching data until it’s
needed. I like to think of the browser’s ability to cache information as the sell-by
date on milk. In the same way you might keep milk in your fridge until it reaches
the expiry date, browsers can cache information about a website for a set duration
of time. After the data has expired, it will go and fetch the updated version. This
ensures that web pages load faster and use less bandwidth.

 Before we dive into Service Worker caching, let’s take a step back and see how
traditional HTTP caching works. Web developers have been able to use HTTP
31

32 CHAPTER 3 Caching
caching since the introduction of HTTP/1.0 around the early 1990s.1 HTTP caching
allows the server to send the correct HTTP headers that will instruct the browser to
cache the response for a certain amount of time.

 A web server can take advantage of the browser’s ability to cache data and use it to
improve the repeat request load time. If the user visits the same page twice within one
session, there’s often no need to serve them a fresh version of the resources if the data
hasn’t changed. This way, a web server can use the Expires header to notify the web
client that it can use the current copy of a resource until the specified “Expiry date.”
In turn, the browser can cache this resource and only check again for a new version
when it reaches the expiry date. Figure 3.1 illustrates HTTP caching.

In figure 3.1, you can see that when a browser makes a request for a resource, the
server returns the resource with a collection of HTTP headers. These headers contain
useful information that the browser can then use to understand more about the
resource. The HTTP response tells the browser what type of resource this is, how long
to cache it for, whether it’s compressed, and much more.

 HTTP caching is a fantastic way to improve the performance of your website, but it
isn’t without flaws. Using HTTP caching means that you’re relying on the server to tell
you when to cache a resource and when it expires. If you have content that has depen-
dencies, any updates can cause the expiry dates sent by the server to easily become out
of sync and affect your site.

 With great power comes great responsibility, and this is quite true for HTTP cach-
ing. When you make significant changes to HTML, you’re likely to also change the
CSS to reflect the new structure and update any JavaScript to accommodate changes
to the style and content. If you’ve ever released changes to a website but haven’t quite
got your HTTP caching right, I’m sure you’ve seen the website break because of incor-
rectly cached resources.

1 https://hpbn.co/brief-history-of-http/

Browser GET/file Server

200 OK
Content-Length: 1024
Cache-Control: max-age=120
ETag: “a4cctyx”

Figure 3.1 When a browser makes an HTTP request for a resource, the
server sends an HTTP response containing useful information about the
resource.

https://hpbn.co/brief-history-of-http/

33The basics of HTTP caching
 Figure 3.2 shows what my own personal blog looks like when I have files cached
incorrectly.

 As you can imagine, this can be quite frustrating for both the developer and the
user. In figure 3.2, you can see that the CSS styles for the page aren’t loading. That’s
because incorrect caching caused a mismatch.

Figure 3.2 When cached files become out of sync, the look and feel of your website can be affected.

34 CHAPTER 3 Caching
3.2 The basics of caching Service Worker caching
You may be wondering why you even need Service Worker caching if you have HTTP
caching. How is Service Worker caching different? Well, instead of the server telling
the browser how long to cache a resource, you are in complete control. Service
Worker caching is extremely powerful because it gives you programmatic control
over exactly how you cache your resources. As with all Progressive Web App (PWA)
features, Service Worker caching is an enhancement to HTTP caching and works
hand-in-hand with it.

 The power of Service Workers lies in their ability to intercept HTTP requests. In
this chapter, you’ll use this ability to intercept HTTP requests and responses to pro-
vide users with a lightning fast response directly from cache.

3.2.1 Precaching during Service Worker installation

Using Service Workers, you can tap into any incoming HTTP requests and decide
exactly how you want to respond. In your Service Worker, you can write logic to decide
what resources you’d like to cache, what conditions need to be met, and how long to
cache a resource for. You are in total control.

 You may be familiar with figure 3.3—we looked at this briefly in earlier chapters of
this book. When the user visits the website for the first time, the Service Worker begins
downloading and installing itself. During the installation stage, you can tap into this
event and prime the cache with all the critical assets for the web app.

Using this figure as an example, let’s see a basic caching example in order to get a bet-
ter understanding about how this work in reality. The next listing shows a simple
HTML page that registers a Service Worker file.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Hello Caching World!</title>

Listing 3.1 Simple HTML page that registers a Service Worker file

Service Worker
install

Service WorkerPage Server

Figure 3.3 During the Service Worker installation step, you can fetch resources and prime the cache
for the next visit.

35The basics of caching Service Worker caching

.

 </head>
 <body>
 <!-- Image -->

 <!-- JavaScript -->
 <script async src="/js/script.js"></script>
<script>
// Register the service worker if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register('/service-

worker.js').then(function(registration) {
 // Registration was successful
 console.log('ServiceWorker registration successful with scope: ',

registration.scope);
}).catch(function(err) {
 // registration failed :(
 console.log('ServiceWorker registration failed: ', err);
 });
}
</script>
 </body>
</html>

In listing 3.1, you see a simple web page that references an image and a JavaScript file.
The web page isn’t anything fancy, but you’ll use it to learn how to cache resources
using Service Worker caching. The code checks whether your browser supports Ser-
vice Workers; if so, it will try to register a file called service-worker.js, assuming you’re
playing along at home.

 We have our basic page ready. Next you need to create the code that will cache
your resources. The code in the following listing goes inside the Service Worker file
service-worker.js.

var cacheName = 'helloWorld';

self.addEventListener('install', event => {
 event.waitUntil(
 caches.open(cacheName)
 .then(cache => cache.addAll([
 '/js/script.js',
 '/images/hello.png'
]))
);
});

In chapter 1, we looked at the Service Worker lifecycle and the different stages it
goes through before it becomes active. One of these stages is the install event, which
happens when the browser installs and registers the Service Worker. This is the per-
fect time to add anything into cache that you think might be used at a later stage.

Listing 3.2 Code in service-worker.js

Reference to a
“hello” image

Reference to a
basic JavaScript file

Check to
see if the
current
browser
supports
Service
Workers

If error during Service Worker
registration, you can catch it

and respond appropriately

Name of the cache

Tap into the Service
Worker install event

Open a cache using the
cache name we specified

Add the JavaScript and
image into the cache

36 CHAPTER 3 Caching
For example, if you know that a specific JavaScript file might be used throughout
the site, you can decide to cache it during installation. That would mean that any
other pages referencing this JavaScript file will easily be able to retrieve it from
cache at a later stage.

 The code in listing 3.2 taps into the install event and adds the JavaScript file and
the hello image during this stage. It also references a variable called cacheName. This
is a string value that I’ve set to name the cache. You can name each cache differently
and you can even have multiple different copies of the cache because each new string
makes it unique. This will come in handy later in the chapter when we look at version-
ing and cache busting.

 In listing 3.2, you can see that once the cache has been opened, you can then
begin to add resources into it. Next you call cache.addAll() and pass in your array of
files. The event.waitUntil() method uses a JavaScript promise to know how long
installation takes and whether it succeeded.

 If all the files are successfully cached, the Service Worker will be installed. If any of
the files fails to download, the install step will fail. This is important because it
means you need to rely on all the assets being present on the server and you need to
be careful with the list of files that you decide to cache in the install step. Defining a
long list of files will increase the chances that one file may fail to cache, leading to
your Service Worker not being installed.

 Now that your cache is primed and ready to go, you’re able to start reading assets
from it. You need to add the code in the next listing to your Service Worker in order
to start listening to the fetch event.

self.addEventListener('fetch', function(event) {
 event.respondWith(
 caches.match(event.request)
 .then(function(response) {
 if (response) {
 return response;
 }
 return fetch(event.request); #E
 }
)
);
});

The code in listing 3.3 is the final piece of our Service Worker masterpiece. You start off
by adding an event listener for the fetch event. Next, you check if the incoming URL
matches anything that might exist in your current cache using the caches.match()
function. If it does, return that cached resource, but if the resource doesn’t exist in
cache, continue as normal and fetch the requested resource.

Listing 3.3 Code to add to Service Worker to start listening to the fetch event

Add an event listener
to the fetch event

Check whether incoming
request URL matches anything
that exists in the current cache

If there’s a response and
it isn’t undefined/null,
then return itElse continue as normal

and fetch the resource
as intended

37The basics of caching Service Worker caching
 If you open a browser that supports Service Workers and navigate to this newly cre-
ated page, you should notice something similar to figure 3.4.

The requested resources should now be available in the Service Worker cache. When I
refresh the page, the Service Worker will intercept the HTTP request and load the
appropriate resources instantly from cache instead of making a network request to the
server. In a few lines of code inside a Service Worker, you’ve made a site that loads
directly from cache and responds instantly for repeat visits.

NOTE Service workers only work on secure origins such as HTTPS. But when
you’re developing Service Workers on your local machine, you can use
http://localhost. Service Workers have been built this way in order to ensure
safety when deployed to live, and also for flexibility, to make it easier for
developers to work on their local machine.

Some modern browsers can see what’s inside the Service Worker cache using the
developer tools built into the browser. For example, if you open Google Chrome’s
Developer Tools and navigate to the Application tab, you’ll see something similar to
figure 3.5.

Figure 3.4 The sample code produces
a basic web page with an image and a
JavaScript file.

http://localhost

38 CHAPTER 3 Caching
Figure 3.5 shows the cache entries for both the scripts.js and hello.png files stored in
the cache named helloWorld. Now that the resources have been stored in cache, any
future requests for those resources will be instantly fetched from cache.

3.2.2 Intercept and cache

Listing 3.2 showed how you can cache important resources during the installation of a
Service Worker, which is known as precaching. This example works well when you
know exactly the resources that you want to cache, but what about resources that
might be dynamic or that you might not know about? For example, your website
might be a sports news website that needs constant updating during a match; you
won’t know about those files during Service Worker installation.

 Because Service Workers can intercept HTTP requests, this is the perfect opportu-
nity to make the HTTP request and then store the response in cache. This means that
instead you request the resource and then cache it immediately. That way, as the next
HTTP request is made for the same resource, you can instantly fetch it out of the Ser-
vice Worker cache, as shown in figure 3.6.

 The next listing updates the code you previously used to include a new resource.

Figure 3.5 Google Chrome’s Developer tools are helpful when you want to see what’s stored
in cache.

39The basics of caching Service Worker caching
<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Hello Caching World!</title>
 <link href="https://fonts.googleapis.com/css?family=Lato"

rel="stylesheet">
 <style>
 #body{ font-family: 'Lato', sans-serif; }
 </style>
</head>
 <body>
 <h1>Hello Service Worker Cache!</h1>
 <!-- JavaScript -->
 <script async src="/js/script.js"></script>
<script>
if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register('/service-

worker.js').then(function(registration) {
 console.log('ServiceWorker registration successful with scope: ',

registration.scope);
}).catch(function(err) {
 console.log('ServiceWorker registration failed: ', err);
 });
}
</script>
 </body>
</html>

In listing 3.4, the code hasn’t changed much compared to listing 3.1, except that
you’ve added a reference to web fonts in the HEAD tag. Because this is an extra
resource that may be likely to change, you can cache the resource once the HTTP

Listing 3.4 A basic web page to display Google fonts

Cache

Service WorkerPage

Server

If it doesn’t, retrieve it
over the network

First check if the resource
exits in cache

Figure 3.6 For any HTTP requests made, you can then check whether the resource
already exists in cache, and if not we retrieve it via the network.

Add a reference
to web fonts.

JavaScript file that
provides functionality
for the current page

First check whether
the browser supports
service workers.

If there is an error during the
service worker registration, you can
catch it and respond appropriately.

40 CHAPTER 3 Caching

N
o
c

request has been made. You’ll also notice that the JavaScript code used to register the
Service Worker hasn’t changed. In fact, with a few exceptions, this code is a pretty
standard way of registering your Service Worker. You’ll be using this boilerplate code
to register a Service Worker repeatedly throughout the book.

 Now that the page is complete, you’re ready to start adding some code to the Ser-
vice Worker file. The next listing shows the code you’ll be using.

var cacheName = 'helloWorld';

self.addEventListener('fetch', function(event) {
 event.respondWith(
 caches.match(event.request)
 .then(function(response) {
 if (response) {
 return response;
 }

 var requestToCache = event.request.clone();

 return fetch(requestToCache).then(
 function(response) {
 if(!response || response.status !== 200) {
 return response;
 }

 var responseToCache = response.clone();

 caches.open(cacheName)
 .then(function(cache) {
 cache.put(requestToCache, responseToCache);
 });

 return response;
 }
);
 })
);
});

Listing 3.5 seems like a lot of code. Let’s break it down and explain each section. The
code starts off by tapping into the fetch event by adding an event listener. The first
thing you want to do is check whether the requested resource already exists in cache.
If it does, you can return it at this point and go no further.

 But if the requested resource doesn’t already exist in the cache, you make the
request as originally intended. Before the code goes any further you we need to clone
the request because a request is a stream that can only be consumed once. Because
you’re consuming this once by cache and then again when you make the HTTP
request for it, you need to clone the response at this point. You then need to check

Listing 3.5 Adding code to the Service Worker file

ame
f the
ache

Add an event listener
for the fetch event to
intercept requests.

Does the current request
match anything you might
have in cache?

If it does, return it at this
point and continue no further.

Clone the request—a
request is a stream and can
only be consumed once. Try to make

the original
HTTP request
as intended.

If request fails or
server responds with
an error code, return
that error immediately

Again clone the
response because
you need to add it

into cache and
because it’s used

for the final
return response.

Open
helloWorld
cache.

Add response
into cache.

41The basics of caching Service Worker caching
the HTTP response and ensure that the server returned a successful response and
that nothing went wrong. You don’t want to cache an errored result.

 If the response was successful, you’re clone the response again. You’re probably won-
dering why you need to clone the response again, but remember that a response is a
stream that can only be consumed once. Because you want the browser to consume the
response as well as the cache consuming the response, you need to clone it so you have
two streams.

 Finally, the code then uses this response and adds it to the cache so you can use it
again next time. If the user then refreshes the page or visits another page on the site
that requires these resources, it will be fetched from cache instantly instead of via the
network.

 In figure 3.7, notice that there are new entries in the cache for the three resources
on the page. In the coding example covered earlier, you were able to dynamically add
a resource into cache as each successful HTTP response was returned. This technique
is perfect for when you might want to cache resources but aren’t quite sure how often
they may change or exactly where they might be coming from.

Figure 3.7 Using Google Chrome’s Developer tools you see that the web fonts were retrieved
from the network and then added to cache in order to ensure faster repeat requests.

42 CHAPTER 3 Caching
Service Workers give a developer total control over the code and allow you to easily
build custom caching solutions that fit your needs. In fact, the two caching techniques
covered earlier can be combined to produce even faster load times. The control is in
your hands.

 For example, let’s say you were building a new web application that used the App
Shell Architecture. You might want to precache the shell using the code in listing 3.2.
Then any further HTTP requests that are made can be cached using the intercept and
cache technique. Or perhaps you want to cache parts of an existing site that you know
don’t change often. By intercepting and caching these resources, you’ll provide your
users with improved performance in a few lines of code. Depending on your situation,
Service Worker caching can be adapted to suit your needs and make an instant differ-
ence to the experience your users receive.

3.2.3 Putting it all together

The code examples we’ve run through so far have been helpful, but it isn’t easy to
imagine them on their own. In chapter 1, we talked about the many different ways
that you could use Service Workers to build amazing web apps. One of those con-
cepts was a newspaper web app, which we can use to play with everything you’ve
learned about Service Worker caching in a real-world scenario. I’m going to call our
sample application Progressive Times. The web app is a news site where people will
regularly visit and read multiple pages, so it makes sense to cache future pages
ahead of time so they load instantly. You could even save the content so that a user
could browse while offline.

 The sample web application contains a collection of funny news facts from around
the world (figure 3.8). Believe it or not, all the stories in this news site are true and
came from credible news sources. The web app contains most of the basic elements of
a website that you can imagine, such as CSS, JavaScript, and images. To keep the sam-
ple code basic, I’ve also used a flat JSON file for each article; in real life, this would
point to a back-end endpoint to retrieve the data in a similar format. On its own, this
web app is not that impressive, but when you start to use the power of Service Workers,
you can take it to the next level.

 The web application uses the App Shell Architecture to dynamically fetch the con-
tents of each article and inject the data onto the page, as shown in figure 3.8.

 Using the App Shell Architecture also means you can use precaching to ensure
that the web app loads instantly for repeat visits. You can also assume that a visitor will
tap a link and follow through to the full contents of a news article. If you cached this
when the Service Worker was installed, it would mean that the next page would load
significantly faster for them.

 Let’s put everything you learned this far in the chapter together and see how to
add a Service Worker to the Progressive Times app that will precache important
resources and cache any other requests as they are made, as shown in the next listing.

43The basics of caching Service Worker caching
var cacheName = 'latestNews-v1';

// Cache our known resources during install
self.addEventListener('install', event => {
 event.waitUntil(
 caches.open(cacheName)
 .then(cache => cache.addAll([
 './js/main.js',
 './js/article.js',
 './images/newspaper.svg',
 './css/site.css',
 './data/latest.json',
 './data/data-1.json',
 './article.html',
 './index.html'
]))
);
});

Listing 3.6 Service Worker code to precache and Ccche resources during runtime

Figure 3.8 The Progressive Times sample application uses the App Shell Architecture.

Empty Shell without content Shell populated with content

Open the cache and
store an array of
resources to cache
during install time.

44 CHAPTER 3 Caching

ng
// Cache any new resources as they are fetched
self.addEventListener('fetch', event => {
 event.respondWith(
 caches.match(event.request, { ignoreSearch: true })
 .then(function(response) {
 if (response) {
 return response;
 }
 var requestToCache = event.request.clone();

 return fetch(requestToCache).then(
 function(response) {
 if(!response || response.status !== 200) {
 return response;
 }

 var responseToCache = response.clone();
 caches.open(cacheName)
 .then(function(cache) {
 cache.put(requestToCache, responseToCache);
 });

 return response;
 });
 })
);
});

The code in listing 3.6 is a combination of precaching during install time and storing
in cache as you fetch a resource. The web app is using an App Shell Architecture,
which means you can take advantage of Service Worker caching to request only the
data needed to populate the page. You’ve already successfully stored the assets for the
shell, so all that’s left is the dynamic news content from the server.

 If you’d like to see this web page in action, it’s available on GitHub and can be eas-
ily accessed at bit.ly/chapter-pwa-3. In fact, I’ve added all the code samples that you’ll
use throughout this book to that GitHub repo.

 Each chapter has a readme file that explains what you need to do to start building
and experimenting with the sample code in each chapter. About 90% of the chapters
are front-end code, so all you need to do is fire up your localhost and get started. It’s
also worth noting that you need to be running the code on http://localhost environ-
ment and not on file:// environment.

3.3 Performance comparison: before and after caching
At this point, I hope I’ve managed to convince you how great Service Worker caching
is. Not yet!? Okay, well, hopefully the performance improvements you’ll gain when
using caching will change your mind.

 Using our Progressive Times sample application, we can compare the difference
with and without Service Worker caching. One of my favorite ways to test the real-world
performance of a website is to use a tool called WebPagetest.org, shown in figure 3.9.

Listen for the
fetch event.

Ignore any querystri
parameters so you
don’t get any cache
misses.

If you found a successful
match, return it at this
point and go no further.

If you didn’t find
anything in cache,
make the request

Store it in cache
so we won’t need
to make that
request again

http://localhost
http://WebPagetest.org

45Performance comparison: before and after caching
WebPagetest.org is a great tool. Enter the URL of your website, and it allows you to
profile your website from any location around the world using a real-world device and
a wide range of browsers. The tests run on real devices and provide you with a helpful
breakdown and profile of the performance of your website. Best of all, it’s open
source and completely free to use.

 If I run our sample application through WebPagetest.org, it produces something
similar to figure 3.7.

 To test how our sample web application performed on a real-world device, I used
WebPagetest with a 2G mobile connection from an endpoint in Singapore. If you’ve
ever tried to access a website over a slow network connection, you’ll know how annoy-
ing it can be while you wait for the site to finish loading. As web developers, it’s
important that we test our websites as our users would use them, and that includes

Figure 3.9 WebPagetest.org is a free tool you can use to test your websites using real devices from around the
world.

http://WebPagetest.org
http://WebPagetest.org
http://WebPagetest.org

46 CHAPTER 3 Caching
using slower mobile connection speeds and low-end devices, too. Once WebpPagetest
completed profiling the web app, it produced the results shown in figure 3.10.

In the first view, the page took around 12 seconds to load. This isn’t ideal, but not
unexpected over a slow 2G connection. But if you look at the repeat view, the site
loaded in less than 0.5 seconds and made zero HTTP requests to the server. The sam-
ple application used the App Shell Architecture, and if you remember the layout,
you’ll know that any future requests will be served as quickly because the resources
needed have already been cached. If used correctly, Service Worker caching signifi-
cantly improves the overall speed of your application and enhances the browsing
experience regardless of the device or connection used.

3.4 Diving deeper into Service Worker caching
In this chapter, we’ve started to look at how Service Worker caching can be used to
improve the performance of your web application. As we progress through the rest of
this chapter, we’ll look closely at how you can version your files in order to ensure that
there are no cache mismatches, as well as to avoid some of the common gotchas you
might encounter while using Service Worker caching.

3.4.1 Versioning your files

There will be a point in time where your Service Worker cache will need updating. If
you make changes to your web application, be sure users receive the newer version of
files instead of older versions. As you can imagine, serving older files by mistake would
cause havoc on a site.

 The great thing about Service Workers is that each time you make any changes to
the Service Worker file itself, it automatically triggers the Service Worker update flow.
In chapter 1, we looked at the Service Worker lifecycle. Remember that when a user
navigates to your site, the browser tries to re-download the Service Worker in the back-
ground. If there’s even a byte’s difference in the Service Worker file compared to what
it currently has, it considers it new.

 This useful functionality gives you the perfect opportunity to update your cache
with new files. You can use two approaches when updating the cache. First, you can
update the name of the cache that you use to store against. Referring back to the code

Figure 3.10 WebPagetest.org produces useful information about the performance of your web
application by using a real device.

http://WebPagetest.org

47Diving deeper into Service Worker caching
in listing 3.2, you can see the cacheName variable with a value 'helloWorld'. If you
updated this value to 'helloWorld-2', that would automatically create a new cache
and start serving your files from that cache. The original cache would be orphaned
and no longer used.

 The second option, which I personally feel is the more bulletproof one, is to ver-
sion your files. This technique is known as cache busting and has been around for many
years. When a static file gets cached, it can be stored for long periods of time before it
ends up expiring. That can be an annoyance in the event that you make an update to
a site, but because the cached version of the file is stored in your visitors’ browsers,
they may be unable to see the changes made. Cache busting solves this problem by
using a unique file version identifier to tell the browser that a new version of the file
is available.

 For example, if you were to add a reference to a JavaScript file in the HTML, you
might want to append a hashed string onto the end of the filename, similar to this:

<script type="text/javascript" src=“/js/main-xtvbas65.js"></script>

The idea behind cache busting is that you create a completely new filename each time
you make changes to the file in order to ensure that the browser fetches the freshest
content possible. Imagine the following scenario in our newspaper web app. Let’s say
you have a file called main.js and store it in cache exactly as it is. Depending on how
your Service Worker is set up, it will retrieve this version of the file from cache every
time. If you make a change to the main.js file with new code, the Service Worker will
still intercept and return the older cached version even though you want to serve the
newer version of the file. But if you rename the file to, say, main.v2.js and update your
code to point to this new version, you can ensure that the browser will get the fresh
version every time. That way, your newspaper will always return the freshest results to
your users.

 There are many different approaches to implementing this solution, and all of
them may depend on your coding environment. Some developers prefer to generate
these hashed filenames during build time, and others may do this using code and gen-
erate the filenames on the fly. Whichever approach you use, this technique is a tried-
and-tested way to ensure that you always serve the correct files.

3.4.2 Dealing with extra query parameters

When a Service Worker checks for a cached response, it uses a request URL as the key.
By default, the request URL must exactly match the URL used to store the cached
response, including any query parameters in the search portion of the URL.

 If you make any HTTP requests for files appended with query strings that some-
times change, this might end up causing you a few issues. For example, if you make a
request for a URL that previously matched, you may find that it misses because the
query string differs slightly. To ignore query strings when you check the cache, use the
ignoreSearch attribute and set the value to true, as shown in the following listing.

48 CHAPTER 3 Caching
self.addEventListener('fetch', function(event) {
 event.respondWith(
 caches.match(event.request, {
 ignoreSearch: true
 }).then(function(response) {
 return response || fetch(event.request);
 })
);
});

The code in listing 3.7 uses the ignoreSearch option to ignore the search portion of
the URL in both the request argument and cached requests. You can extend this fur-
ther by using other ignore options such as ignoreMethod and ignoreVary. For exam-
ple, the ignoreMethod value will ignore the method of the request argument, so a
POST request can match a GET entry in the cache. The ignoreVary value will ignore
the vary header in cached responses.

3.4.3 How much memory do you need?

Whenever I talk to developers about Service Worker caching, the questions that regu-
larly arise involve memory and storage space. How much space does the Service
Worker use to cache? How will this memory usage affect my device?

 The honest answer is that it depends on your device and storage conditions. Like
all browser storage, the browser is free to throw it away if the device comes under
storage pressure. That’s not necessarily a problem because the data can then be
fetched again from the network as needed. In chapter 7, we’ll look at another type
of storage called persistent storage that can be used to store cached data on a more
permanent basis.

 Right now, older browsers are still able to store cached responses in their memory,
and the space they use isn’t different from the space that the Service Worker uses to
cache resources. The only difference is that Service Worker caching puts you in the
driving seat and allows you to programmatically create, update, and delete cached
entries, allowing you to access resources without a network connection.

3.4.4 Taking caching to the next level: Workbox

If you find yourself regularly writing code in your Service Workers that caches
resources, you might find Workbox (https://workboxjs.org/) helpful. Written by the
team at Google, it’s a library of helpers to get you started creating your own Service
Workers in no time, with built-in handlers to cover the most common network strate-
gies. In a few lines of code, you can decide whether you want to serve specific
resources solely from cache, serve resources from cache and then fall back, or perhaps
only return resources from the network and never cache. This library gives you total
control over your caching strategy. See figure 3.11.

Listing 3.7 Service Worker code to ignore query string parameters

https://workboxjs.org/

49Diving deeper into Service Worker caching
Workbox provides you with a quick and easy way to reuse common network cach-
ing strategies instead of rewriting them again and again. For example, say you
wanted to ensure that you always retrieve your CSS files from the cache but only
fall back to the network if a resource wasn’t available. Using Workbox, you register
your Service Worker the same way you have throughout this chapter. Then you
import the library into your Service Worker file and start defining routes that you
want to cache.

 In listing 3.8, the code starts off by importing the Workbox library using the
importScripts function. Service Workers have access to a global function, called
importScripts(), which lets them import scripts in the same domain into their
scope. This is a handy way to load another script into an existing script. It keeps the
code clean and means you only load the file when it’s needed.

Figure 3.11 Workbox provides a library of helpers for use in creating your own Service Workers.

50 CHAPTER 3 Caching
importScripts('workbox-sw.prod.v1.1.0.js');

const workboxSW = new self.WorkboxSW();

workboxSW.router.registerRoute(
 'https://test.org/css/(.*)',
 workboxSW.strategies.cacheFirst()
);

Once the script has been imported, you can start defining routes you want to cache.
In listing 3.8, you’re defining a route for anything that matches the ‘/css/’ path and
always serving it with a cache first approach. This means that the resources will always
be served from cache and will fall back to the network if they don’t exist. Workbox
also provides a number of other built-in caching strategies,2 such as cache only, net-
work only, network first, cache first, or fastest, which tries to find the fastest response
from either cache or the network. Each of these strategies can be applied to different
scenarios, and you can even mix and match them with different routes to achieve the
best effect.

 Workbox also provides you with functionality to precache resources. In the same
way that you precached resources during installation of the Service Worker in listing 3.2,
you can achieve this with a few lines of code using Workbox.

 Whenever I approach a new project, without a doubt my favorite library to use is
Workbox. It simplifies your code and provides you with tried-and-tested caching strat-
egies that you can implement in a few lines of code. In fact, the Twitter PWA we dis-
sected in chapter 2 uses Workbox to make the code simpler to understand and relies
on these tried-and-tested caching approaches.

3.5 Summary
HTTP caching is a fantastic way to improve the performance of your website, but it
isn’t without flaws.

 Service Worker caching is extremely powerful because it gives you programmatic
control over exactly how you cache your resources. When used hand-in-hand with
HTTP caching, you get the best of both worlds.

 Used correctly, Service Worker caching is a massive performance enhancement
and bandwidth saver.

 You can use a number of different approaches to cache resources, and each of
them can be adapted to suit the needs of your users.

 WebPagetest is a great tool for testing the performance of your web apps using
real-world devices.

 Workbox is a handy library that provides you with tried-and-tested caching tech-
niques.

Listing 3.8 Using Workbox

2 www.recode.net/2016/6/8/11883518/app-boom-over-snapchat-uber

Load the
Workbox library.

Start caching any
requests that match
the '/css' path.

http://www.recode.net/2016/6/8/11883518/app-boom-over-snapchat-uber

Intercepting
network requests
Chapter 3 looked into using Service Worker caching to dramatically speed up the
performance of your website. Instead of the user making a request to the server,
the Service Worker intercepts the request and decides to serve it from cache
instead. We also briefly touched on how to use Service Workers to transform the
requests and responses made by the client using the fetch event.

 In this chapter, we’ll dive deeper into the fetch event and you’ll learn more
about the many use cases it offers. Service Workers are the key to unlocking the
power that lies within your browser. By the end of the chapter, you’ll know how to
serve lighter, leaner web pages depending on your user’s browser or preferences.
In this section of the book, we’re focusing on the faster part of Progressive Web
Apps (PWAs), although it’s important to also ensure that your web apps are resil-
ient and engaging, too.

4.1 The Fetch API
As web developers, we often need the ability to retrieve data from the server in order
to update our applications asynchronously. Traditionally, this data is retrieved using
JavaScript and the XMLHttpRequest object. Otherwise known as AJAX, this is a devel-
oper’s dream because it allows you to update a web page without reloading the page
by making HTTP requests in the background. In our sample application, Progressive
Times, you use this code to retrieve a list of news articles.

 If you’ve ever implemented complex logic to retrieve data from the server, writ-
ing code using the XMLHttpRequest object can be quite tricky. As you start to add
more and more logic and callbacks, it can quickly become messy, as you can see in
the following listing.
51

52 CHAPTER 4 Intercepting network requests
var request;
if (window.XMLHttpRequest) {
 request = new XMLHttpRequest();
} else if (window.ActiveXObject) {
 try {
 request = new ActiveXObject('Msxml2.XMLHTTP');
 } catch (e) {
 try {
 request = new ActiveXObject('Microsoft.XMLHTTP');
 } catch (e) {}
 }
}

request.onreadystatechange = function() {
 if (this.readyState == 4 && this.status == 200) {
 doSomething(this.responseText);
 }
 };

// Open, send.
request.open('GET', '/some/url', true);
request.send();

The code in listing 4.1 seems like a lot of code to make an HTTP request. The inter-
esting thing is that the XMLHttpRequest object was originally created by the developers
of Outlook Web Access for Microsoft Exchange Server. After a number of permuta-
tions, it eventually became the standard for what we use today to make HTTP requests
in JavaScript. The example in the listing fulfills its purpose, but it isn’t as clean as it
could be. The other problem with the code in the listing is that the more complex
your logic becomes, the more complex this code will become. In the past, a number of
libraries and techniques were available to make this code simpler and easier to read,
with popular libraries such as jQuery and Zepto, including cleaner APIs.

 Fortunately, modern browser vendors have realized that this situation needed to be
updated, and this is where the Fetch API comes in. The Fetch API is a part of the Service
Worker global scope, and you can use it to make HTTP requests inside any Service
Worker. Up until now, you’ve been using the Fetch API inside your Service Worker code,
but we haven’t dived deeper into it. Let’s look at a few code examples in order to get a
better understanding of the Fetch API, beginning with the following listing.

fetch('/some/url', {
 method: 'GET'
}).then(function(response) {
 // success
}).catch(function(err) {
 // something went wrong
});

Listing 4.1 HTTP eequest using the XMLHTTPRequest object

Listing 4.2 An HTTP Request Using the Fetch API

The URL to access
using a GET request

If successful, return
the response.

If something went wrong, you
can respond appropriately.

53The fetch event
The code in listing 4.2 is a basic example of the Fetch API in action. You might also
notice that there are no callbacks and events—they’ve been replaced with the then()
method. This method is part of ES6’s new promises functionality and aims to make
your code much more readable and easier for developers to understand. A promise
represents the eventual result of an asynchronous operation, even if the value won’t
be known until the operation completes at some point in the future.

 Listing 4.2 seems easy enough to understand, but what about a POST request using
the fetch API? Check out the next listing.

fetch('/some/url', {
 method: 'POST',
 headers: {
 'auth': '1234'
 },
 body: JSON.stringify({
 name: 'dean',
 login: 'dean123',
 })
 })
 .then(function (data) {
 console.log('Request success: ', data);
 })
 .catch(function (error)
 console.log('Request failure: ', error);
 });

Say you wanted to send some user details to the server and needed to do so using a
POST request. In listing 4.3, you change the method to POST and add a body parameter
in the fetch options. Not only does using promises make your code cleaner, it also
allows you to chain code together to share logic across fetch requests.

 The Fetch API is currently available in all browsers that support Service Workers,
but if you intend to use this API on browsers that aren’t supported, you may want to
consider using a polyfill. A polyfill is a piece of code that provides you with the func-
tionality you expect from a modern browser. For example, if the latest version of Inter-
net Explorer has some functionality you need, but it doesn’t exist in an older version,
you can use a polyfill to provide similar functionality for the older browser. Think of it
as a wrapper around an API that’s used to keep the API landscape flattened. A polyfill
written by the team at GitHub (https://github.com/github/fetch) will ensure that
older browsers are able to make requests using the Fetch API. Include it in your web
page and you’ll be able to start writing code using this API.

4.2 The fetch event
A Service Worker’s ability to intercept any outgoing HTTP requests is what makes it so
powerful. Every HTTP request that falls within this service worker’s scope will trigger

Listing 4.3 An HTTP POST request using the Fetch API

The URL to access
using a POST request

Headers can be included
in the request.

The body of the
POST request

If successful, return
the response.

If something went
wrong, you can respond
appropriately.

https://github.com/github/fetch

54 CHAPTER 4 Intercepting network requests
this event—for example, HTML pages, scripts, images, CSS, and so on. This gives you
as a developer total control over how you want to handle the way the browser responds
to any of these fetches.

 In chapter 1, we looked at a basic example of the fetch event in action. Remember
the unicorn (shown in the next listing)?

self.addEventListener('fetch', function(event) {
 if (/\.jpg$/.test(event.request.url)) {
 event.respondWith(
 fetch('/images/unicorn.jpg'));
 }
});

In listing 4.4, you’re listening out for the fetch event, and if the HTTP request is for a
JPEG file, you’re intercepting it and forcing it to return a picture of a unicorn instead
of its original intended URL. The code here will do this for each and every HTTP
request made for a JPEG file from the website. For any other file types, it will ignore
them and move on.

 Although the code in listing 4.4 is a fun example, it doesn’t show you what Service
Workers are capable of. Let’s take this a step further and see how to return your own
custom HTTP response, as shown in the following listing.

self.addEventListener('fetch', function(event) {
 if (/\.jpg$/.test(event.request.url)) {
 event.respondWith(
 new Response('<p>This is a response that comes from your service

worker!</p>', {
 headers: { 'Content-Type': 'text/html' }
 });
);
 }
});

In listing 4.5, the code intercepts any HTTP requests by listening for the fetch event to
be triggered. Next it determines if the incoming request is for a JPEG file, and if it is,
it will respond with a custom HTTP response. Using Service Workers, you can build
your own custom HTTP responses, including editing their headers. This functionality
makes Service Workers extremely powerful—which is why you can understand that
they need to serve requests over HTTPS. Imagine the malicious things a hacker could
get up to with this at their fingertips.

Listing 4.4 The fetch event inside a Service Worker

Listing 4.5 Creating a custom HTTP response inside a Service Worker

Add an event listener
to the fetch event.

Check to see whether
the HTTP request URL
requests a file ending in .jpg.Try to fetch an image of

a unicorn and respond
with it instead.

Add an event listener
to the fetch event.

Check to see
whether the HTTP

request URL
requests a file
ending in .jpg.

Build a custom
Response and respond

accordingly.

55The fetch event
4.2.1 The Service Worker lifecycle

Right at the beginning of the book in chapter 1, you learned about the Service Worker
lifecycle and the role it plays when building PWAs. Let’s look closely at that diagram
again in figure 4.1.

Looking at figure 4.1, you’ll remember that when a user visits your website for the first
time, they don’t have an active Service Worker controlling the page. Only once the Ser-
vice Worker has been installed and they refresh the page, or navigate to another part of
the site, does the Service Worker become active and start intercepting requests.

 To explain this more clearly, imagine a Single Page Application (SPA) or a web
page with AJAX interactions that might take place after a page has been loaded. When
you register and install a Service Worker using the method you’ve been using in the
book up until now, any HTTP requests that take place after the page has loaded will
be missed. Only when the user reloads the page will the Service Worker become active
and start intercepting requests. This isn’t ideal because ultimately you want the Ser-
vice Worker to start working its magic as soon as possible and include these requests
that are made while the Service Worker isn’t active.

 If you want your Service Worker to start working immediately instead of waiting for
the user to navigate to another part of your site or reload the page, there’s a sneaky lit-
tle trick that you can use to activate your Service Worker immediately, shown in the
following listing.

1. User navigates to a URL

2. During the registration process,
the browser downloads, parses,
and executes the Service Worker

3. As soon as the Service
Worker executes, the install
event is activated

4. If succesful, the Service Worker
is now able to control clients and
handle functional events

Register

Install

Activated

Download,
parse, and

execute

Figure 4.1 Lifecycle of a Service Worker

56 CHAPTER 4 Intercepting network requests
self.addEventListener('install', function(event) {
 event.waitUntil(self.skipWaiting());
});

The code in listing 4.6 sits inside the install event of your Service Worker. By using
the skipWaiting() function, you’re ultimately triggering the activate event and tell-
ing the Service Worker to start working immediately without waiting for the user to
navigate or reload the page.

The skipWaiting() function forces the waiting Service Worker to become the active
Service Worker. The self.skipWaiting() function can also be used with the self
.clients.claim() function to ensure that updates to the underlying Service Worker
take effect immediately.

 The code in the next listing can be combined with the skipWaiting() function in
order to ensure that your Service Worker activates itself immediately.

self.addEventListener('activate', function(event) {
 event.waitUntil(self.clients.claim());
});

The code in listings 4.6 and 4.7 can be used together to kick-start the activation of
your Service Worker. If your site has complex AJAX requests taking place once the
page has loaded, these functions are perfect. If your site serves mostly static pages
without HTTP requests taking place once the page has loaded, you may not need to
use these functions.

Listing 4.6 Install the current Service Worker without waiting for reload

Listing 4.7 Activate a Service Worker immediately

Older version

Newer version

Using means that theskipWaiting()
new service worker activates

as soon as it’s finished installing.

Figure 4.2 self.skipWaiting() causes your Service Worker to kick out the
current active worker and activate itself as soon as it enters the waiting phase.

57Fetch in action
4.3 Fetch in action
As we’ve seen in this chapter, Service Workers offer almost unlimited control of the
network. Intercepting HTTP requests, editing HTTP responses, and crafting your own
responses are a small part of what you can do by tapping into the fetch event.

 Up until now, most of the code samples we’ve looked at haven’t been real-world
examples. In the next section, we’re going to dive in to two useful techniques you can
use to make your website faster, more engaging, and resilient.

4.3.1 An example using WebP images

Images play an important role on the web today. Imagine a world without images on
our web pages. High-quality images can make a website stand out, but unfortunately
they come with a price. Due to their large file sizes, they’re bulky to download and
result in slow page load times. If you’ve ever been on a device with a poor network
connection, you’ll know how frustrating this experience can be.

 You may be familiar with the image format WebP. Developed by the team at
Google, WebP files are 26% smaller than PNG images and around 25–34% smaller
than JPEG images. That’s a pretty decent savings, and the best thing about them is
that the image quality isn’t noticeably affected when choosing this format, as you can
see in figure 4.3.

Figure 4.3 shows a WebP image next to its equivalent JPEG image with negligible dif-
ference to image quality. By default, WebP images are supported in Chrome, Opera,
and Android, but unfortunately not by Safari, Firefox, or Internet Explorer.

Figure 4.3 WebP images are significantly smaller in file size compared to their
original format with little noticeable difference to the quality of the image.

Original image WebP image
 www.allitebooks.com

http://www.allitebooks.org

58 CHAPTER 4 Intercepting network requests
 Browsers that support WebP images notify you of that fact by passing through an
accept: image/webp header with each HTTP request. Given that you have Service
Workers at your disposal, this seems like a perfect opportunity to start intercepting
requests and returning lighter, leaner images to browsers that can render them.

 The basic web page in the following listing references an image of Brooklyn Bridge
in New York.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Brooklyn Bridge - New York City</title>
 </head>
 <body>
<h1>Brooklyn Bridge</h1>

 <script>
 // Register the service worker
 if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register('./service-

worker.js').then(function(registration) {
 // Registration was successful
console.log('ServiceWorker registration successful with scope: ',

registration.scope);
 }).catch(function(err) {
 // registration failed :(
 console.log('ServiceWorker registration failed: ', err);
 });
 }
 </script>
 </body>
</html>

That image is in JPEG format and comes in at 137 KB. If you convert it to WebP and
store it on the server, you can choose to return this for browsers that support it and
fall back to the original for those that don’t.

 The next listing shows code in your Service Worker that you can use to start inter-
cepting the HTTP request for this image.

"use strict";

// Listen to fetch events
self.addEventListener('fetch', function(event) {

 if (/\.jpg$|.png$/.test(event.request.url)) {

 var supportsWebp = false;
 if (event.request.headers.has('accept')) {
 supportsWebp = event.request.headers

Listing 4.8 A basic HTML web page including a JPEG image

Listing 4.9 Service Worker Code to Return WebP Images if the Browser Supports It

Check whether the
incoming request is
for an image of type
JPEG or PNG.

Inspect the accept header
for WebP support.

59Fetch in action
 .get('accept')
 .includes('webp');
 }

 if (supportsWebp) {
 var req = event.request.clone();

 var returnUrl = req.url.substr(0, req.url.lastIndexOf(".")) + ".webp";

 event.respondWith(
 fetch(returnUrl, {
 mode: 'no-cors'
 })
);
 }
 }
});

There’s a lot of code going on in listing 4.9. Let’s step back and break it down fur-
ther. In the first few lines, you’re adding an event listener to listen out for any fetch
events that take place. For each HTTP request that takes place, you check to see
whether the current request is for a JPEG or PNG image. If you know the current
request is for an image, you can then determine the best content to return based on
the HTTP headers that are passed through. In this case, you’re inspecting each
header and looking for the image/webp mime type. Once you know the header val-
ues, you can determine whether the browser supports WebP images and return the
corresponding WebP image.

 Once the Service Worker has activated and is ready, any requests for a JPEG or
PNG image will be returned as its WebP equivalent for any browsers that support it. If
the browser doesn’t support WebP images, it won’t advertise the support in the HTTP
request header, and the Service Worker will ignore the request and work as normal.

 The WebP equivalent comes in at 87 KB, and compared to its JPEG equivalent,
you’ve managed to save 59 KB—around 37% of the original file size. For users on a
mobile device, this could add up to a big bandwidth saver across your site.

 Service Workers open up a world of endless possibilities, and this example could
be extended to include other image formats, and even caching. You could easily add
support for Internet Explorer’s improved image format called JPEGXR. There’s no
reason why you can’t reward your users with fast web pages right now.

4.3.2 An example using the Save-Data header

I was recently travelling abroad when I urgently needed to get some information from
my airline’s website. I was on a sketchy 2G connection that took forever to load the
page and eventually I gave up completely. I was also paying a fortune for this daily ser-
vice from my mobile provider back home—so frustrating!

 4G-network coverage is rapidly accelerating worldwide, but there’s still a long way
to go. 3G networks were only launched in late 2007 in countries such as Bangladesh,
Brazil, China, India, Nigeria, Pakistan, and Russia—where almost 50% of the global

Does the browser
support WebP?

Build the
return

URL.

60 CHAPTER 4 Intercepting network requests
population is located.1 Although mobile coverage is growing, it’s crazy to think that a
500 MB data plan can cost around 17 hours’ worth of minimum wage work in India.2

 Fortunately, browser vendors such as Google Chrome, Opera, and Yandex have
realized the pain that many users face. With the latest versions of these browsers, users
can opt-in to a feature that will save them data. Once this feature is enabled, the
browser will add a new header to each HTTP request. Developers can look out for this
header and return the appropriate content to save users data. For example, if a user
has opted-in to save data, you could return lighter images, smaller videos, or even dif-
ferent markup. It’s a simple concept, but effective.

 This sounds like a perfect situation to use a Service Worker. In the next section,
you’ll build code that will intercept whether or not a user has opted-in to save data
and return a lighter version of your PWA.

 Remember the PWA you built in chapter 3? Called Progressive Times, it contains a
collection of funny news facts from around the world (figure 4.4).

1 https://gsmaintelligence.com/research/2014/12/mobile-broadband-reach-expanding-globally/453
2 http://blog.jana.com/2015/05/21/the-data-trap-affordable-smartphones-expensive-data

Figure 4.4 The Progressive Times sample application is a basic app we’ll revisit throughout the book.

https://gsmaintelligence.com/research/2014/12/mobile-broadband-reach-expanding-globally/453
http://blog.jana.com/2015/05/21/the-data-trap-affordable-smartphones-expensive-data

61Fetch in action
In the Progressive Times app, you’re using web fonts to improve the look and feel of
the app.

 These fonts are downloaded from a third-party service and come in at around 30
KB. Web fonts do enhance the look and feel of a web page, but if users are trying to
save data and money at the same time, web fonts seem unnecessary. There’s no reason
why your PWA can’t cater to users regardless of their network connection.

 Whether you’re on a desktop or mobile device, enabling this feature is a relatively
straightforward process. If you’re on a mobile device, you can enable this under the
Settings in your menu, as shown in figure 4.5.

Once the setting is enabled, each HTTP request to the server will include the Save-
Data header. If you view this using your developer tools, it might look a little some-
thing like figure 4.5.

 Once the Save-Data feature has been enabled, you can use a few different tech-
niques to return data to the user. Because each HTTP request will go to the server, you
could decide to serve different content based on the Save-Data header directly from
server-side code. But with a few lines of JavaScript and using the power of Service
Workers, you could easily intercept the HTTP requests and serve lighter content
accordingly. If you’re developing a front-end application that’s API-driven and don’t
have access to the server, this is a perfect option.

 Service Workers allow you to intercept outgoing HTTP requests, inspect them, and
act on this information. Using the Fetch API, you can easily implement a solution to
detect the Save-Data header and serve lighter content.

Figure 4.5 You can enable the Save-Data feature on your mobile device or on a phone. Note the highlighted areas
in red.

62 CHAPTER 4 Intercepting network requests
You’ll get started by creating a JavaScript file called service-worker.js and adding the
code in listing 4.10 to it.

"use strict";

this.addEventListener('fetch', function (event) {

 if(event.request.headers.get('save-data')){
 // We want to save data, so restrict icons and fonts
 if (event.request.url.includes('fonts.googleapis.com')) {
 // return nothing
 event.respondWith(new Response('', {status: 417, statusText: 'Ignore

fonts to save data.' }));
 }
 }
});

Based on the examples we’ve looked at already, the code in listing 4.10 should look
familiar. In the first few lines, you’re adding an event listener to listen out for any
fetch events that take place. For each request that takes place, you’re inspecting the
header and checking to see if the Save-Data header has been enabled. If it has been,
you then check to see if the current HTTP request is for a web font from the domain
fonts.googleapis.com. Because you’re looking to save your users unnecessary data, you
return a custom HTTP response with a 417-status code and your own custom status
text. HTTP status codes provide users with specific information from the server;3 in
the case of a 417 status code, it’s “The server cannot meet the requirements of the
Expect request-header field.”

Listing 4.10 Service Worker code to check for the save-data HTTP header

3 https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Figure 4.6 With the Save-Data feature enabled, each HTTP request will include this in the
header.

http://fonts.googleapis.com
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

63Summary
 Using this simple technique and a few lines of code, you were able to reduce the
overall download size of the page and ensure that the user saved on any unnecessary
data. You could extend this technique further and return images of a lower quality, or
other larger downloads on your site.

 You can see any of the code in this chapter in action on GitHub at http://bit.ly/
chapter-pwa-4.

4.4 Summary
The Fetch API is a new browser API that aims to make your code cleaner and easier
to read.

 The fetch event allows you to intercept any outgoing HTTP requests to and from
your browser. This functionality is extremely powerful and allows you to alter responses
or even create your own custom HTTP responses without even hitting the server.

 WebP images are 26% smaller in file size than PNG images and around 25–34%
smaller in file size than JPEG images.

 Using Service Workers, you can tap into the fetch event and intercept if the
browser supports WebP images. Using this technique, you can serve smaller images to
your users and speed up your page load times.

 Some modern browsers have an opt-in to a feature that allows users to save data. If
the feature is enabled, the browser adds a new header to each HTTP request. Using
Service Workers you can tap into the fetch event and decide if you want to return a
lighter version of your site.

http://bit.ly/chapter-pwa-4
http://bit.ly/chapter-pwa-4
http://bit.ly/chapter-pwa-4

Part 3

Engaging web apps

As many failed startups will testify, having a great web app just isn’t enough
these days. Our users expect great software that’s easily accessible. The unfortu-
nate truth is that if your software isn’t meeting their increased expectations,
they’ll seek out other options. Although it’s important to build websites that are
fast, it’s even more important to build websites that engage your users and keep
them coming back for more. This part of this book focuses on just that: building
engaging Progressive Web Apps (PWAs) using the features that are already built
into your browser.

 In chapter 5, we’ll explore a few different ways to enhance the look and feel
of your PWA, including the Add to Homescreen functionality and customiza-
tion. This chapter looks at the web manifest file and the role it plays in PWAs.
You’ll also learn about customizing your web apps icons, the splash screen, and
the different launch styles available.

 Chapter 6 focuses on one of my favorite features: web push notifications.
You’ll discover why push notifications can increase engagement with your users
and learn how to apply them to your own web app. We’ll build a working exam-
ple that sends push notifications using the sample application Progressive Times.
Finally, you’ll learn about the different types of push notifications and how you
can build interactivity into them.

 By the end of this part, you’ll know how to begin building your own PWAs
that are truly engaging and that harness the power that already lies within the
browser.

Look and feel
Up until this point in the book, we’ve focused on key features that make up a Pro-
gressive Web App (PWA). To create truly engaging applications that delight your
users, you need to focus on your PWA’s visual appeal. In this chapter, we’ll explore
a few different ways to enhance the look and feel of your PWA including the Add to
Home Screen functionality and customization, which prompts users to add your
web app to their home screen.

5.1 The web app manifest
A web app manifest file is a simple JSON file that provides useful information about
the application (such as its name, author, icon, and description) in a text file. But
more specifically, the web app manifest enables a user to install web applications to
the home screen of their device and allows you to customize the splash screen,
theme colors, and even the URL that’s opened.

 But before all that, it’s time to code! Using our sample Progressive Times appli-
cation, the following listing adds a basic web app manifest file (a manifest.json file)
to it.

{
 "name": "Progressive Times web app",
 "short_name": "Progressive Times",
 "start_url": "/index.html",
 "display": "standalone",
 "theme_color": "#FFDF00",
 "background_color": "#FFDF00",

Listing 5.1 Web app manifest file
67

68 CHAPTER 5 Look and feel
 "icons": [
 {
 "src": "homescreen.png",
 "sizes": "192x192",
 "type": "image/png"
 },
 {
 "src": "homescreen-144.png",
 "sizes": "144x144",
 "type": "image/png"
 }
]
}

The code in listing 5.1 is a basic web app manifest that tells the browser a lot about the
current website. Each field in the file plays a role and tells the browser how your PWA
will look and feel:

 name is used as the text that appears when the user is prompted to install
the app.

 short_name is used as the text that appears on the user’s home screen when the
app is installed.

 start_url determines the first page that appears when a user opens the web app
from the home screen of their device. We’ll look into this more later in the
chapter.

 Depending on the type of web application you are building, you may want to
preset how it’s first loaded. The display field represents how developers would
like their web application to appear to a user. We’ll dive deeper into why this
field is important later in the chapter.

 By using the theme_color field, you can color the address bar of the browser to
match your site’s primary colors.

 The icons field determines the icons to use when the web app is added to the
home screen on the device.

Before we break down the manifest file any further, you’ll reference it in your Progres-
sive Times app and see how it looks. To reference a manifest file, you’ll need to add a
link tag to all the pages in your web app. The code in the next listing shows a web app
manifest file that’s referenced using a link tag between the head tags of a web page.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Progressive Times</title>
 <link rel="manifest" href="/manifest.json">
 </head>

Listing 5.2 Linking to a web app manifest file in an HTML file

The web app manifest
file is referenced
between the head tags
in a web page.

69Add to Home Screen
 <body>
 ..content goes here..
 </body>
</html>

Now that the manifest file has been referenced
in your sample application, the browser is able
to determine how it should behave under cer-
tain circumstances.

 In our manifest file (the code in listing 5.1),
we told the browser to use the hex color
#FFDF00 as the theme_color throughout the
site. As you can tell from figure 5.1, the address
bar has been styled to match the color we
chose.

 Using a web app manifest to style your web
app is one piece of the puzzle—it can provide
so much more functionality. Let’s take this a
step further and look at how the web app man-
ifest file is used to provide the Add to Home
Screen functionality on your device.

5.2 Add to Home Screen
When I need quick access to an application on
the go, it’s so easy to open up my home screen
and tap an icon and it opens immediately. This
sort of behavior is the default for native apps
on your device. As web developers, if we want
to engage our users and keep them coming
back for more, we need the same functionality.
This is where the Add to Home Screen feature comes in.

 Add to Home Screen, also known as a web app install banner, is a great way to
quickly and seamlessly allow your users to add your web app to their home screens
without ever leaving the browser. In order to ensure that your users can quickly access
your website, this functionality displays a prompt asking the user whether or not they
want to add your web app to their home screen, as shown in figure 5.2. If they accept,
an icon is added to the home screen of their device that references the URL of your
application. This makes accessing your web app only a tap away.

 In chapter 1, we looked at a company in India called Flipkart and discussed how
they built a PWA called Flipkart Lite. Flipkart wanted their mobile web users to enjoy
the same, if not a better, experience than their native application users. By using the
Add to Home Screen functionality, 60% of all visits to Flipkart Lite come from people
launching the site from the home screen icon. This functionality has meant that their

Figure 5.1 The theme_color property in
the web app manifest can be used to style
your web app.

70 CHAPTER 5 Look and feel
customers convert 70% more from viewers to buyers than people who stumbled on
the site.1 These two activities alone resulted in engagement numbers that were 40%
higher than before.

 In figure 5.3, you can see the different steps that take place when a user is
prompted with the Add to Home Screen banner. When a user visits the site under the
right conditions, they will be prompted with the banner. If they accept, an icon will be
added to their home screen and will be easily accessible the next time that they wish to
visit the site.

 From a developer’s point of view, the best thing about the Add to Home Screen
functionality is that you have to write almost zero code to get the banners to appear;
the browser will do most of the heavy lifting for you.

1 https://developers.google.com/web/showcase/2016/flipkart

Figure 5.2 The Add to Home Screen
functionality is a great way to engage
with your users and keep them coming
back for more.

https://developers.google.com/web/showcase/2016/flipkart

71Add to Home Screen
Here are the criteria that need to be met before the Add to Home Screen prompt will
be shown:

 You need a manifest.json file.
 Your manifest file needs a start URL.
 You need a 144 x 144 PNG icon.
 Your site must be using a Service Worker running over HTTPS.
 The user must have visited your site at least twice, with at least five minutes

between visits.

Of those criteria, the last one is perhaps the most important. The reason that the
prompt will only appear after the user has visited the site at least twice with at least five
minutes between visits is to ensure that this feature doesn’t become annoying and
spammy. Imagine if every site that visited used this technology and the Add to Home
Screen prompt appeared on every page. It would quickly become annoying, and
browser vendors would find themselves in hot water.

 This functionality is also built into the browser, which means you have no control
over the criteria just mentioned. As we progress through this chapter, you’ll learn dif-
ferent techniques that give you fine-tuned control over when and how the prompt
appears.

Figure 5.3 With the correct code in place, your users will be prompted to add your web app to their home screen.

72 CHAPTER 5 Look and feel
5.2.1 Customizing the icons

When a user is prompted to add your web app to their home screen and they accept,
the first thing they’ll see is your icon on their home screen. This is easily added to
your manifest.json file, as shown in the next listing.

"icons": [
 {
 "src": "homescreen.png",
 "sizes": "144x144",
 "type": "image/png"
 }
]

In listing 5.3, I’ve shortened the code in the manifest file to only display the icons sec-
tion for brevity. You’re allowed to provide a list of different icons of different sizes in
the icons array that can be used in various contexts and displayed differently
depending on the device. For example, they can be used to represent the web appli-
cation among a list of other applications, or to integrate the web application with an
OS’s task switcher and/or system preferences. Figure 5.4 shows this in action.

Listing 5.3

Figure 5.4 Customizing your web app
using the manifest file means it integrates
with the operating system in order to
provide a truly app-like feel.

73Add to Home Screen
In our sample application, Progressive Times, I’ve added a manifest file and refer-
enced an icon that I want to appear when it’s installed on the home screen. You can
find all the code at bit.ly/chapter-pwa-5. Once installed, the icon should appear on
the home screen of a user’s device and look similar to figure 5.5.

5.2.2 Add a splash screen

When a user taps the icon of your web application on their home screen, they see a
temporary splash screen while the browser renders the first frame of the document.
The splash screen is designed to improve the perceived performance of the loading of
your site and can help make a user feel as if your site loaded a little bit faster than it
did. With your manifest file in place, most of this functionality comes for free.

 The following listing provides the basic code that you need.

"name": "Progressive Times web app",
"theme_color": "#FFDF00",
"background_color": "#FFDF00",

Listing 5.4 Web app manifest file using background color for the splash screen

Figure 5.5 The icon that will appear on the
home screen matches the icon in the web
app manifest file.

The name and background_color
properties are used to display the
splash screen.

74 CHAPTER 5 Look and feel
 "icons": [
 {
 "src": "homescreen.png",
 "sizes": "192x192",
 "type": "image/png"
 }
]

The splash screen is generated dynamically from
information held in the manifest file. It uses a com-
bination of the name and background_color proper-
ties, and the icon in the icons array that the browser
chooses to be most suitable based on dimensions.

 Using the code in listing 5.4, you should notice a
splash screen similar to figure 5.6.

5.2.3 Set the launch style and URL

In order to add the final cherry on top of your Add
to Home Screen functionality, you’ll need to set a
display mode and start URL. The display mode deter-
mines how you want your web app to appear on the
user’s device, and the start URL is the first page that
a user will land on when they’ve tapped the home
screen icon.

 Both of these values are defined in your manifest
file, as shown in the next listing.

 "start_url": "/index.html",
 "display": "standalone",

In listing 5.5, the start URL is used to specify the URL that loads when a user launches
the application from a device. If given as a relative URL, the base URL will be the URL
of the manifest. If you want to track how many people arrive on your website via the
home screen icon, you may want to append a tracking code in a query string, such as
/index.html?homescreen=1, to the URL too. This way, your web analytics package will
be able to determine users arriving via the home screen icon.

 You have a few different options when it comes to how you want your web app to
appear on your user’s device. For example, you can choose the display mode that best
suits your needs using the display value. A display mode represents how the web
application is being presented within the context of an OS: fullscreen, stand-
alone, minimal-ui, or browser.

Listing 5.5 Web app manifest file using display mode to set launch style

Figure 5.6 The splash screen uses
a combination of the name and
background_color properties to
style how it will look.

75Advanced Add to Home Screen usage
 Each of these display modes has the following effects on your web app:

 fullscreen—Opens the web application and takes up the entirety of the avail-
able display area.

 standalone—Opens the web application to look and feel like a standalone
native application. In this mode, the user agent will exclude standard browser
UI elements such as a URL bar, but might include other system UI elements
such as a status bar and/or system back button.

 minimal-ui—This mode is similar to fullscreen, but provides the user with access
to a minimal set of UI elements—for example, the back button, forward button,
reload button, and perhaps some way of viewing the document’s address.

 browser—Opens the web application using the standard browser built into the OS.

In your web app manifest, the display property is optional and by default it will dis-
play in normal browser mode. These different display modes open up a world of possi-
bilities for developers, so you should think about how you want your web app to
appear. For example, if your web app is a game, it might make sense to use the stand-
alone display mode in order to make the web app feel more immersive. If your web
app is an online publication, you might choose the minimal-ui or fullscreen display
mode in order to focus on the text and remove clutter. This control is in your hands,
but remember: whichever style you choose will have an influence on how your web
app is perceived, so choose wisely.

5.3 Advanced Add to Home Screen usage
The Add to Home Screen functionality allows your users to keep coming back for
more at the tap of a finger. The fact that this functionality is built into the browser
natively is great for us as developers, but it does mean that most of this functionality is
controlled by the browser.

 There may be occasions where you want to override the default settings and pro-
vide your own logic, such as cancelling or deferring the Add to Home Screen banner
altogether. Fortunately, there are ways to use code to control certain behaviors.

5.3.1 Cancelling the prompt

If for some reason you’d prefer not to show the Add to Home Screen banner, you can
cancel it completely, as shown in the next listing. Depending on which type of web
app you have, it may not make sense to show this prompt. Perhaps your site covers sen-
sitive topics or a short-lived event for which the banner might be more annoying to
the user than helpful.

window.addEventListener('beforeinstallprompt', function(e) {
 e.preventDefault();
 return false;
});

Listing 5.6 Preventing the Add to Home Screen Banner from appearing

76 CHAPTER 5 Look and feel
The code in listing 5.7 will listen for the beforeinstallprompt event and prevent the
default behavior of the banner if it’s fired. The code is straightforward and uses the
standard JavaScript preventDefault() functionality to cancel the event and returns a
false value—both of which are needed to ensure that the banner doesn’t appear.

5.3.2 Determining usage

The Add to Home Screen functionality can be helpful for your users, but it’s import-
ant to find out if it would be or not. Are your users annoyed by the banner and dismiss
it when it appears? Do they trust your application enough to add it to their device?

 By listening for the beforeinstallprompt event, you can determine whether a
user decided to add your web app to their home screen or if they dismissed it. The fol-
lowing listing shows how.

window.addEventListener('beforeinstallprompt', function(event) {
 event.userChoice.then(function(result) {

 console.log(result.outcome);

 if(result.outcome == 'dismissed') {
 // Send to analytics
 }
 else {
 // Send to analytics
 }
 });
});

In listing 5.8, I’ve added an event listener to the beforeinstallprompt event. This event
has an object called userChoice that returns a promise with the user’s decision. You
can then use the result of this promise to determine whether the user dismissed or
confirmed the prompt.

 At this point, you could decide to send this information to your Web Analytics tools
to track the usage of this functionality over time. This technique can be a useful
approach for understanding how your users interact with your Add to Home Screen
prompt.

5.3.3 Deferring the prompt

Using a combination of the code in listings 5.7 and 5.8, you can defer the Add to
Home Screen banner to appear until a later time—for example, if a user visits a site
and has met the criteria for the banner to be shown, but you’d prefer them to add
your site by allowing them to tap a custom button on your site instead. This puts the
user in control of whether or not they’d like to add your site, instead of the browser
choosing when it should show the banner.

Listing 5.7 Tracking whether a user accepted or fismissed the A2HS banner

Determine the user’s choice
- returned as a Promise

Based on the user’s choice,
decide how to proceed

77Advanced Add to Home Screen usage
 The code in the next listing is for a basic web page with a button that shows the
prompt when clicked.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Progressive Times</title>
 </head>
 <body>
 <button id="btnSave" disabled>Click this to show the prompt</button>
 </body>
<script>
 window.addEventListener('load', function() {

 var btnSave = document.getElementById('btnSave');
 var savedPrompt;

 if ('serviceWorker' in navigator) {

 navigator.serviceWorker.register('/service-
worker.js').then(function(registration) {

 // Registration was successful
 console.log('ServiceWorker registration successful with scope: ',

registration.scope);
 }).catch(function(err) {

 // Registration failed :(
 console.log('ServiceWorker registration failed: ', err);
 });
 }

 window.addEventListener('beforeinstallprompt', function(e) {

 e.preventDefault();

 btnSave.removeAttribute('disabled');

 savedPrompt = e;

 return false;
 });

 btnSave.addEventListener('click', function() {
 if (savedPrompt !== undefined) {
 savedPrompt.prompt();

 savedPrompt.userChoice.then(function(result) {

 if (result.outcome == 'dismissed') {

Listing 5.8 Basic HTML page that displays the A2HS banner when a button Is tapped

This button shows
the prompt.

Check if Service
Workers are supported
and register if they are.

Add an event listener to the
beforeinstallprompt event.

At this point
you can

enable the
button.

Stash the event in a
variable so it can be
triggered later.

Add an event listener
to the click event of
the button.User has had a

positive interaction
with our app, and

Chrome has tried to
prompt previously,

so show the prompt.

Follow what
the user has
selected.

78 CHAPTER 5 Look and feel
 console.log('User dismissed homescreen install');
 }
 else {
 console.log('User added to homescreen');
 }

 savedPrompt = null;
 });
 }
 });
 });
 </script>

</html>

There’s a lot going on in listing 5.9. Let’s break it down. The code is a simple web
page that registers a Service Worker. Remember that one of the criteria for the Add
to Home Screen functionality is that the page has an active Service Worker working
over HTTPS. Next, the code contains an event listener that’s fired when the before-
installprompt event takes place. When this event is fired, the code prevents the
banner from being shown and saves the event object in a variable named saved-
Prompt.

 Now that you have this event saved in another variable, you can allow the user to
show the Add to Home Screen prompt when they tap the button. Using the code in
listing 5.8, you’ve successfully deferred the Add to Home Screen functionality and
given the user control over when they’d like to see the prompt appear.

5.4 Debugging your manifest file
In this chapter, we’ve looked at how you can use the web app manifest file to control
the appearance of your app as well as customize the splash screen, theme colors,
and even the URL that’s opened when a user adds your app to their home screen.
The web app manifest is a simple JSON file, but due to its being text-based, making
a mistake and typing incorrect values is easy. Fortunately, you have a few different
options for debugging your web app manifest and ensuring that you have the cor-
rect values.

 Using both Google Chrome and Opera, you are able to see the different values in
a helpful visual display. If you open up either Google Chrome or Opera and fire up
the Developer Tools, you should see a tab called Applications. If you choose Manifest,
you will be presented with something similar to figure 5.7.

You no longer
need the prompt,
so clear it.

79Debugging your manifest file
The Developer Tools in both Opera and Google’s Chrome provide you with a quick and
useful way to see the different values in your web app manifest and adjust accordingly.

 If you’d prefer to parse the contents of your web app manifest file and instead find
out if there are any major issues with it, navigate to manifest-validator.appspot.com in
your browser and you’ll be able to either provide the validator with a URL or paste the
contents of a web app manifest and have it validated.

 The web app manifest validator (figure 5.8) checks the file and uses the W3C spec-
ification to determine whether it’s valid. If you’re having trouble understanding why
your web app manifest doesn’t seem right, the tool will provide you with feedback
about which character caused an issue and also suggest different reasons that could
be causing the issue.

Figure 5.7 Both Google Chrome and Opera have tools built into their Developer Tools that are helpful for
visualizing the values in your web app manifest file.

http://manifest-validator.appspot.com

80 CHAPTER 5 Look and feel
5.5 Summary
A web app manifest file is a simple JSON file that lets you control how your web app
appears to your users. It provides useful information about the application (such as its
name, author, icon, and description) in a text file.

 Add to Home Screen, also known as a web app install banner, is a great way to
quickly and seamlessly allow your users to add your web app to their home screens
without leaving the browser.

 Using the web app manifest file, you can control various settings such as the icons,
splash screen, and start URL of your web app.

 Using JavaScript code, you can control various behaviors of the Add to Home Screen
functionality, such as canceling the prompt completely or deferring it until later.

 The Developer Tools in both Opera and Google’s Chrome provide you with a
quick and useful way to see the different values in your web app manifest and adjust
accordingly.

 Using a tool like the manifest validator can be useful when debugging your web
app manifest file.

Figure 5.8 The manifest validator is a useful tool when debugging your web app manifest file.

Push notifications
You’ve released your amazing Progressive Web App (PWA) to your customers and
you’re looking for a way to keep them engaged and up-to-date on your site. Where
do you turn? Email? In-app notifications? Believe it or not, push notifications could
be the perfect solution. In this chapter, you’ll discover the basics of push notifica-
tions and why they can increase engagement with your users. You’ll build a working
example that sends push notifications using the sample application, Progressive
Times. Once you’ve run through the steps in this chapter, you’ll be able to imple-
ment your own push notifications in no time.

6.1 Engaging with your users
Most modern web apps need the ability to update and communicate with their
users on a regular basis. Communication channels such as social media, emails, and
in-app notifications are great, but they don’t always grab the attention of the user,
especially when the user navigates away from the website.

 This is where push notifications come in. They’re those helpful notifications
that appear on your device that prompt you about information that could be useful
to you. You can swipe or tap away to close them, or you can tap them and be
instantly directed to a web page with the relevant information. Traditionally, only
native applications had this amazing ability to tap into the operating system of a
device and send push notifications. This is where PWAs are a game changer. They
have the ability to receive push notifications that appear in the browser, as the
example in figure 6.1 shows.
81

82 CHAPTER 6 Push notifications
The best thing about push notifications is that the user receives them even when
they aren’t browsing your site. The experience looks and feels like a native app and
works even if the browser isn't running. This makes it a perfect way to engage with
users and draw them back to your web app even if they haven’t opened the browser
in a while. For example, if your website is a weather application, a push notification
could provide your users with useful information such as warnings about approach-
ing bad weather. You could even schedule weekly weather forecasts that can be sent
as a push notification, depending on how your users subscribe. The possibilities
are endless.

 But what about malicious websites using this technology to send spammy push
notifications? In order to send push messages to a user, the user first needs to opt in to
your messages. Whenever they visit your web app for the first time, they’re presented
with a prompt that looks similar to figure 6.2.

 Once a user has either accepted or blocked the push notification prompt, the
prompt won’t appear again. It’s important to note that that this prompt will only
appear if the site is running over HTTPS, has a registered Service Worker, and you
have written code for it.

Figure 6.1 Push notifications can be a great way to engage with your users
when they close the tab or navigate away.

83Engagement insight: The Weather Channel
6.2 Engagement insight: The Weather Channel
The Weather Channel has been forecasting since the 1980s and now serves people all
around the world across many platforms. Weather is volatile, and delivering important
data when people need it isn’t always easy, so the team was interested in improving its
mobile web experience.

 Around half of the Weather Channel’s traffic is from people accessing its site via
the web on their mobile devices. For the Weather Channel, the mobile web is also an
extremely important discovery portal in markets where users don’t have the latest
smartphones or reliable connectivity, or where there’s significant cost for download-
ing a native app.

 To scale their development quickly, the Weather Channel decided to implement
push notifications for the web before creating a full blown PWA, as shown in figure 6.3.
Within three months, they noticed impressive results. The Weather Channel saw
almost 1 million users opt in to receive web push notifications, with 52 percent com-
ing from mobile.1 The Weather Channel has a global audience, so being able to provide

1 https://developers.google.com/web/showcase/2016/pdfs/weather-channel.pdf

Figure 6.2 A user will be prompted on their device to choose whether they want to opt into receiving
push notifications.

Mobile

Desktop

https://developers.google.com/web/showcase/2016/pdfs/weather-channel.pdf

84 CHAPTER 6 Push notifications
a PWA experience with the most reliable
weather information to people across the
world in their local language has been
key in growing that user base. On a tech-
nical level, they made this efficient by
enabling support for over 60 languages
using one code base.

 The Weather Channel is one of many
organizations out there benefitting from
web push notifications. Sending your
first web push notification is also easier
than you think, so let’s get started.

6.3 Browser support
At the time of writing this book, the Push
API is supported by the major browsers
Firefox, Chrome, and Opera, with Micro-
soft’s Edge support currently in develop-
ment. Safari does have support for web
notifications, but it doesn’t use the Push
API and Service Workers. If you would
like to target Safari too, I recommend
checking out the Safari developer’s web-
site (https://developer.apple.com/noti-
fications/safari-push-notifications/) for
more information.

 All the code we’ve covered in this
chapter is based on a web push stan-
dard (www.w3.org/TR/push-api/), which
means that when you write it once, it will
work on all browsers that follow this standard.

6.4 Your first push notification
In this next section, we’re going to break down all the pieces required to start sending
and receiving notifications. Figure 6.4 shows how all the pieces fit together.

 First, the browser displays a prompt asking a user if they’d like to opt in to notifica-
tions. If they accept, you can save their subscription details on the server and use them
to send notifications later. These subscription details are unique to each user, device,
and browser, so if a user logs in to your site on multiple devices, they’ll be prompted
once per device.

 Once they’ve accepted, you can use these stored subscription details to send mes-
sages to a user later with a scheduled task that updates users with timely information.

Figure 6.3 The Weather Channel used push
notifications to increase engagement across their
web presence.

https://developer.apple.com/notifications/safari-push-notifications/
https://developer.apple.com/notifications/safari-push-notifications/
http://www.w3.org/TR/push-api/

85Your first push notification
Using the Weather Channel as an example, a scheduled task could be used to send
daily information about the weather forecast for a certain region. It could also be used
to send a tornado alert or warning about dangerous weather approaching.

 As we progress through this chapter, we’ll look at both server-side and client-side
code. Most of the coding examples in this book have been using JavaScript, which is
why I’ve chosen to use Node.js for the server-side code too. If you aren’t familiar with
Node.js, don’t worry—these code listings serve as examples, which means you can use
any server-side language you like. By the end of the chapter you’ll be sending your
own messages with ease.

 When you think about web push notifications and the moving parts involved, it all
can seem quite daunting. I’ll break each step down slowly so you can see how all the
parts of the jigsaw puzzle fit together, enabling you to subscribe a user and start send-
ing them web push notifications.

6.4.1 Subscribing to notifications

Before you can start sending notifications to a user, you need to ask their permission
by displaying a prompt. This prompt functionality is built into the browser by default,
but first you need to add a little code to ensure that this prompt is initiated. If a user
accepts the prompt, you’ll be provided with a subscription object containing informa-
tion about their subscription. But if a user denies the prompt, you won’t be able to
send them any messages, and they won’t be prompted again. This ensures that you
aren’t able to annoyingly prompt users every time they visit your site.

 The code in the following listing shows a web page that registers a Service Worker.

Service WorkerPage Server

Step 3. Send the push
notification when
required

Step 1. Send the subscription
details to the server

Step 2. Save the
subscription details

Scheduled task

Figure 6.4 Sending push notifications requires a three-step approach: prompt the user
and get their subscription details, save these details on the server, and send any
messages when required.

86 CHAPTER 6 Push notifications
<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Progressive Times</title>
 <link rel="manifest" href="/manifest.json">
 </head>
 <body>
 <script>
 var endpoint;
 var key;
 var authSecret;
var vapidPublicKey =

'BAyb_WgaR0L0pODaR7wWkxJi__tWbM1MPBymyRDFEGjtDCWeRYS9EF7yGoCHLdHJi6hikYd
g4MuYaK0XoD0qnoY';

 function urlBase64ToUint8Array(base64String) {
 const padding = '='.repeat((4 - base64String.length % 4) % 4);
 const base64 = (base64String + padding)
 .replace(/\-/g, '+')
 .replace(/_/g, '/');

 const rawData = window.atob(base64);
 const outputArray = new Uint8Array(rawData.length);

 for (let i = 0; i < rawData.length; ++i) {
 outputArray[i] = rawData.charCodeAt(i);
 }
 return outputArray;
 }

 if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register('sw.js').then(function(registration) {

 return registration.pushManager.getSubscription()
 .then(function(subscription) {

 if (subscription) {
 return;
 }

 return registration.pushManager.subscribe({
 userVisibleOnly: true,
 applicationServerKey: urlBase64ToUint8Array(vapidPublicKey)
 })
 .then(function(subscription) {

 var rawKey = subscription.getKey ?
subscription.getKey('p256dh') : '';

 key = rawKey ? btoa(String.fromCharCode.apply(null, new
Uint8Array(rawKey))) : '';

 var rawAuthSecret = subscription.getKey ?
subscription.getKey('auth') : '';

 authSecret = rawAuthSecret ?

Listing 6.1 A web page with code to subscribe a user to push notifications

A web app manifest
file is referenced in
the HEAD tag.

A public key is needed on
both the front end and

server to ensure the
message is encrypted.

Convert VAPID key
from base64 string to

Uint8 Array because
VAPID specification

requires this.

Get any
existing

subscriptions.
They already have a
subscription; you
don’t need to register
them again.

They don’t have a
subscription, so
get the prompt

to appear.
Get the key and
authSecret from the
subscription object.

87Your first push notification
 btoa(String.fromCharCode.apply(null, new
Uint8Array(rawAuthSecret))) : '';

 endpoint = subscription.endpoint;

 return fetch('./register', {
 method: 'post',
 headers: new Headers({
 'content-type': 'application/json'
 }),
 body: JSON.stringify({
 endpoint: subscription.endpoint,
 key: key,
 authSecret: authSecret,
 }),
 });
 });
 });
 }).catch(function(err) {
 // registration failed :(
 console.log('ServiceWorker registration failed: ', err);
 });
 }

 </script>
 </body>
</html>

The code in listing 6.1 seems a little tricky, so let’s step through each function. You
start off by referencing a web app manifest file in the HEAD tag of the HTML page.
Toward the bottom of the page, you have a SCRIPT tag with the code you need to start
sending web push notifications.

 In order to send push notifications, you need to use the VAPID protocol.2 VAPID is
short for Voluntary Application Server Identification. It’s a specification that defines a
handshake between your app server and the push service and allows the push service
to confirm which site is sending messages. This is important because it means that an
application server is able to include additional information about itself that can be
used to contact the operator of the application server. Having a standard like VAPID
in place is a great step forward, because it means that ultimately all browsers will con-
form to a single standard, allowing web push to work seamlessly for you as a developer,
regardless of browser.

 In listing 6.1 there’s a VAPID public key that needs to be included in the subscrip-
tion details sent to the server. Both the front-end code and the server contain this pub-
lic key. Don’t worry about this key too much for now—we’ll look at how to generate
one when we dive into the server-side code.

 Next you may notice code you’ve used frequently throughout this book. You regis-
ter the Service Worker and, if it’s successful, you can then use the registration object

2 https://tools.ietf.org/html/draft-thomson-webpush-vapid-02

Send the details
through to the server
to register the user.

https://tools.ietf.org/html/draft-thomson-webpush-vapid-02

88 CHAPTER 6 Push notifications

t
Subs
to determine whether the user has any existing subscriptions by inspecting the push-
Manager object. If the user is already subscribed on this machine, you don’t need to
send the information to the server again. Remember that each subscription object
contains a subscription ID that’s unique to a given machine. This is useful for user pri-
vacy because you won’t know anything about the user, but rather only a unique ID.

 If the user isn’t already subscribed, you prompt them to subscribe using the push-
Manager.subscribe() function, which uses the VAPID public key to identify itself.
Before you prompt the user, you need to include the VAPID public key and ensure
that it’s been converted to a UInt8Array. It needs to be sent through as a UInt8Array
because the specification only accepts this type. If a user accepts the web push prompt
in the browser, the subscribe function returns a promise containing the subscription
object. From this object, you can then extract the key and the authSecret that you
need to use to send through to the server when subscribing them.

 Finally, you use the Fetch API to POST through the endpoint on the server, the
key, and the authSecret that will be used to store the user’s details and send messages
to them at a later date.

6.4.2 Sending notifications

In order to keep the server-side code as easy to follow as possible, I’m using a Node.js
server that can receive the user’s subscription details and send push messages using
the web push protocol. The server uses Express, which is a minimalist web framework
for Node.js. If this is your first time looking at code written for a Node.js server, note
that it’s still written in JavaScript, which should hopefully make the transition easier.

 The server-side code in the next listing creates an endpoint that listens to POST
requests that are directed to '/register'. This code will be used to save the user’s sub-
scription details as well as to send them a thank-you message.

const webpush = require('web-push');
const express = require('express');
var bodyParser = require('body-parser');
const app = express();

webpush.setVapidDetails(
 'mailto:contact@deanhume.com',
'BAyb_WgaR0L0pODaR7wWkxJi__tWbM1MPBymyRDFEGjtDCWeRYS9EF7yGoCHLdHJi6hikYdg4MuY

aK0XoD0qnoY',
 'p6YVD7t8HkABoez1CvVJ5bl7BnEdKUu5bSyVjyxMBh0'
);

app.post('/register', function (req, res) {

 var endpoint = req.body.endpoint;

saveRegistrationDetails(endpoint, key, authSecret);

 const pushSubscription = {
 endpoint: req.body.endpoint,

Listing 6.2 Sending push notification from a Node.js application

Add the required
dependencies.

Set the VAPID details.

Listen to POST
requests at ‘/register’.

Save the user’s
registration details so
you can send messages
to them at a later stage.

Build
he push-
cription
object.

89Your first push notification
 keys: {
 auth: req.body.authSecret,
 p256dh: req.body.key
 }
 };

 var body = 'Thank you for registering';
 var iconUrl = 'https://example.com/images/homescreen.png';

 webpush.sendNotification(pushSubscription,
 JSON.stringify({
 msg: body,
 url: 'http://localhost:3111/',
 icon: iconUrl
 }))
 .then(result => res.sendStatus(201))
 .catch(err => { console.log(err); });
});

app.listen(3111, function () {
 console.log('Web push app listening on port 3111!')
});

Listing 6.2 starts by requiring the necessary Node.js modules. I’ve included the Web
Push library as well as Node Express.

 Before you can start sending messages, you need to set the VAPID settings.
Remember that the VAPID key is needed to define a handshake between your app
server and the push service and allows the push service to confirm which site is send-
ing messages. Think of it as a simple identification card.

 Next, you’ve created an endpoint that will listen to POST messages sent to '/regis-
ter'. In this endpoint, you can read the subscription details sent through and save
them in a database. You’ll need to store the user’s details in a database so that when
you have something to push to them, you can cycle through their details and send it
from the server. In this code sample, I haven’t included how to save the user’s sub-
scription details; you can do that using your preferred database.

 You’re now ready to start sending push messages. Using the unique subscription
details sent from the browser, the code in listing 6.2 then builds a pushSubscription
object based on them. Finally, you fire off a push notification using the webpush.send-
Notification() function with the user’s unique details. In this push message, you thank
them for registering.

 To get the code in listing 6.2 fully working, you’ll need to include a manifest.json
file in your HTML page. The code in listing 6.2 also assumes you have a basic working
understanding of Node.js. To learn about the code used in this example and see an
end-to-end working solution, check out the GitHub repo for this chapter at bit.ly/
chapter-pwa-6.

Send the web
push message.

90 CHAPTER 6 Push notifications
6.4.3 Receiving and interacting with notifications

Now that you‘ve stored the user’s unique subscription details, you can start sending push
messages to them and provide them with timely updates on important notifications.

 On the front-end code, you need to add some code to your Service Worker. The
code in the next listing shows how to listen for the push event and display a push noti-
fication accordingly.

self.addEventListener('push', function (event) {

 var payload = event.data ? JSON.parse(event.data.text()) : 'no payload';

 var title = 'Progressive Times';

 event.waitUntil(
 self.registration.showNotification(title, {
 body: payload.msg,
 url: payload.url,
 icon: payload.icon
 })
);
});

The code in listing 6.3 listens to the push event and reads the payload of the data sent
from the server. With this payload data, you can then display a notification using the
showNotification function.

 Hooray! You’ve sent your first web push notification. You should now notice this
appear in the browser. But there’s one more step. For the user to interact with the push
notification, you need to handle the click event of the notification using the code in
the following listing.

self.addEventListener('notificationclick', function (event) {

 event.notification.close();

 event.waitUntil(
 clients.matchAll({
 type: "window"
 })
 .then(function (clientList) {
 for (var i = 0; i < clientList.length; i++) {
 var client = clientList[i];
 if (client.url == '/' && 'focus' in client)
 return client.focus();
 }
 if (clients.openWindow) {
 return clients.openWindow('http://localhost:3111');
 }
 })

Listing 6.3 Receiving a push notification inside a Service Worker

Listing 6.4 Handling user interaction with the push notification

Check to see if any
payload data was

sent from the server.

Show a web push
notification using the
information provided.

Close the notification tile
once you’ve clicked on it.

Check to see if the current
window is already open
and focuses if it is.

Open the
URL once
clicked.

91Your first push notification
);
});

The code in listing 6.4 will listen for the click event of the notification tile. Once it’s
been fired, it will close the notification tile and then open the window with the given
URL. With all these pieces in place, the browser should now receive a push notifica-
tion that looks like figure 6.5.

Once you’ve completed the necessary steps required to send a push notification, add-
ing more notifications based on different events is much easier. The best part about
the code you’ve seen in this chapter is that your users are able to start to engaging
more deeply with experiences on the web even when they’ve closed the tab or navi-
gated away.

 Being able to send these messages is a great step forward for the web, but a basic
push notification only allows the user to tap the message or dismiss it entirely. In order
to take push notifications to the next level, you can use notification actions to truly
engage with your users. Using notifications actions, you can define contextual actions
that the user can invoke and interact with. These actions act as buttons and give the
user a choice based on the next action they’d like to perform. Let’s see how to add
this functionality to your existing Progressive Times web app.

 Some users receiving this notification will be on devices that have vibration func-
tionality, such as mobile phones. To enable this vibration functionality, you can add a
vibration pattern to the notification. A vibration pattern can either be an array of num-
bers or a single number that’s treated as an array of one number. The values in the
array represent times in milliseconds, with the even indices being how long to vibrate
and the odd indices being how long to pause before the next vibration. Let’s take this
even further and see how to add vibration functionality to the push notification.

self.addEventListener('push', function (event) {

 var payload = event.data ? JSON.parse(event.data.text()) : 'no payload';

 var title = 'Progressive Times';

 event.waitUntil(
 self.registration.showNotification(title, {
 body: payload.msg,

Listing 6.5 Adding notification actions and custom vibration patterns

Figure 6.5 The code in the Service
Worker listens for any push events
and displays a notification with the
data provided.

92 CHAPTER 6 Push notifications
 url: payload.url,
 icon: payload.icon,
 actions: [
 { action: 'voteup', title: 'Vote Up' },
 { action: 'votedown', title: 'Vote Down' }],
 vibrate: [300, 100, 400]
 })
);
});

The code in listing 6.5 listens for any push events that are sent from the server and
then shows a notification based on the payload information. When the showNotifica-
tion function is invoked, you’re adding an array of actions to the notification. These
actions will appear on the notification and will look similar to figure 6.6.

Next, you need to handle the click events for this notification, and the following list-
ing shows how.

self.addEventListener('notificationclick', function(event) {

 event.notification.close();

 if (event.action === 'voteup') {
 clients.openWindow('http://localhost:/voteup');
 }
 else {
 clients.openWindow('http://localhost:/votedown');
 }
}, false);

Listing 6.6 Handling notiification actions from within the Service Worker

The actions to appear
on the notification

Vibrate for 300 ms, pause
for 100 ms, then vibrate
again for 400ms.

Figure 6.6 Push notifications
can be enhanced by using
notification actions.

Close the notification
tile once the user has
clicked on it.

Determine which action
was chosen by the user.

Depending on their
choice, direct them
to the correct URL.

93Your first push notification
The code in listing 6.6 listens for the click event of the notification. Once it’s fired, you
can see the action that the user chose and direct them accordingly. The event .action
property contains the user’s choice, and you open a new browser window based on this.

 When you put all these pieces together and the message is sent, it should look like
figure 6.6. Push notifications allow your users to opt in to timely updates from sites
they love and let you re-engage them with customized, engaging content.

 Now that you have the basic tools required to start sending push notifications, your
options are endless.

6.4.4 Unsubscribing

Users can unsubscribe themselves by changing a few settings in their browser, but
there may come a time when you want to programmatically unsubscribe a user. For
example, you could add a simple button to your web page that would allow users to
unsubscribe at the tap of a button instead of digging around in their browser settings.
The code in the following listing shows this in action.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Progressive Times</title>

 <link rel="manifest" href="/manifest.json">

 <button type="button" id="unsubscribe">Unsubscribe</button>
 </head>
 <body>
 <script>
 function unsubscribe() {
if ('serviceWorker' in navigator) {
 navigator.serviceWorker.ready
 .then((serviceWorkerRegistration) => {
 serviceWorkerRegistration.pushManager.getSubscription()
 .then((subscription) => {
 if (!subscription) {
 console.log("Not subscribed, nothing to do.");
 return;
 }
 subscription.unsubscribe()
 then(function() {
 console.log("Successfully unsubscribed!.");
 })
 .catch((e) => {
 logger.error('Error thrown while unsubscribing from push

messaging', e);
 });
 });
 });
 }
}

Listing 6.7 Unsubscribing a user from push notifications

The
unsubscribe
button

Check to see
if the user
has an
existing
subscription.

If they’re subscribed,
unsubscribe them.

94 CHAPTER 6 Push notifications
document.getElementById("unsubscribe").addEventListener("click",
unsubscribe);

 </script>
 </body>
</html>

The code in listing 6.7 is a basic example that shows how you can unsubscribe a user
using a button. The listing contains code that will first check to see if the user is already
subscribed using the pushManager.getSubscription() function. If the user is subscribed,
you then unsubscribe them using the subscription.unsubscribe() function. Finally you
add an event listener to the button that will fire your unsubscribe code.

6.5 Third-party push notifications
As you can imagine, the business of sending push notifications to the many different
browsers out there can be tricky. If you’d prefer not to build your own push notifica-
tion server and instead use a SaaS product, there are many third-party solutions out
there, such as the one shown in figure 6.7.

Add an event listener
to the click event of the
unsubscribe button.

Figure 6.7 Third-party services provide enhanced functionality and are a great way to send push notifications to
many users regardless of their browser support.

95Summary
Services such as OneSignal, Roost, and Aimtell all offer a solution that can target mul-
tiple browsers and provide you with enhanced functionality. Many of these services
have created libraries to deal with all the major browsers, which means you’ll get full
coverage and engagement regardless of browser. These services also have a lot of func-
tionality built into them that allows you to schedule messages for a later date, and
some have complex reporting charts that give insight into how your users are interact-
ing with your notifications.

6.6 Summary
Push notifications are a great way to engage with your users even after they navigate
away from your site and close their browser window

 In order to send push messages to a user, they first need to opt in. This provides
the developer with unique subscription details based on the user’s device and browser.

 Once the user has opted in, it is important to save their subscription details in
order to send messages to them.

 VAPID is a specification that defines a handshake between your app server and the
push service and allows the push service to confirm which site is sending messages.

 Push notifications can be enhanced by using notification actions and even device
vibration.

 If you’d like to reach a wide range of browsers, some third-party services can deal
with this.

Part 4

Resilient web
applications

When I’m trying to access information on the go on my mobile phone,
nothing is more frustrating than not being able to get to that information I need
so desperately, especially when I know that I’ve viewed a certain web page
before. Fortunately, you can build Progressive Web Apps (PWAs) to deal with
such situations. In this part of the book, you’ll learn how to build web apps that
can work offline and deal with situations where you may be in an area with poor
or no network coverage at all.

 In chapter 7, you’ll learn how to use the power of Service Workers to build
resilient web apps that work with no connection. This chapter also covers some
of the gotchas you should look out for when building an offline web app. By the
end of the chapter, we will have a fully working example of an offline PWA using
the sample application Progressive Times.

 Chapter 8 shows you how to build PWAs that cater to situations where the
user has a network connection, but it’s slow, flaky, or prone to drop occasionally.
Dealing with temperamental network connections can be tricky, but in this chap-
ter, you’ll learn the best techniques to build resilient web apps that work with
poor or unreliable network connections.

 In chapter 9, we’ll take the offline web a step further and look at a new web
API called BackgroundSync. Most offline websites may be read only, but you may
want your users to continue working offline and sending information to the
server. The BackgroundSync API allows users to queue data that needs to be sent

to the server while the user is working offline—then as soon as they’re online again, it
sends the queued data to the server. We’ll also dive into a soon-to-be-released feature
called PeriodicSync that allows developers to schedule a sync for a predetermined time.

 By the end of part 4, you’ll have a clear understanding of how to build truly resil-
ient web apps that work completely offline.

Offline browsing
During my daily commute to work, I travel via train into central London. Even
though most of London has great cellular coverage, there are times during my
journey where the signal drops off or is so weak that I can’t connect to the web.
As a user, this experience can be extremely frustrating. In this chapter, you’ll
learn how to use the power of Service Workers to overcome this issue and build
resilient web apps that work with no connection. This chapter also covers some of
the gotchas you should look out for when building an offline web app. By the end
of the chapter, you’ll have a fully working example of an offline PWA using the
sample application, Progressive Times. We’ll also dive into how you can start
tracking the ways your users are using your web app while offline using a clever
offline tracking library.

7.1 Unlocking the cache
In chapter 3 you learned about using Service Worker caching to improve the per-
formance and load times of your web pages. Using the sample application in this
book, Progressive Times, you cached many of the resources required to achieve a
lightning fast load times.

 In this chapter, we’re going to build on the example in chapter 3 and see how to
serve offline web pages from the cache. In fact, you’ve already done most of the
hard work—you need to update your Service Worker to determine whether a user
is offline. To see how this might work, look at figure 7.1.

 Using figure 7.1, imagine the following scenario: a user is browsing the Progres-
sive Times web app. Stuck in their car without any network signal, they still try to
load the web app. Under normal circumstances, this scenario would fail and present
99

100 CHAPTER 7 Offline browsing
the user with an “offline” screen. But because Service Workers are able to intercept
HTTP requests, you can reliably determine whether anything went wrong while they
were trying to request a resource.

 In your Service Worker, you can check for any failed requests and decide to return
a cached version of the page that the user is trying to view. In fact, you’re in total con-
trol and could return anything that exists in cache. Using this simple technique, you
can build web applications that work completely offline.

 Let’s step through the different stages involved in building an offline web application.

7.2 Serving files while offline
Before you begin updating your Progressive Times application, let’s take a look at a
basic offline example. First, imagine you’ve created a simple HTML page that displays
a message letting the user know they’re offline. Using your Service Worker, you’ll
return this “offline” page when a user has no connection.

 The following listing breaks it down into smaller chunks in your Service Worker.

'use strict';

const cacheName = 'offline-cache';
const offlineUrl = 'offline-page.html';

this.addEventListener('install', event => {
 event.waitUntil(
 caches.open(cacheName).then(function(cache) {
 return cache.addAll([
 offlineUrl
]);
 })
);
});

Listing 7.1 Adding an offline page into the Service Worker cache

Main Browser Thread Worker Thread

Service WorkerPage
Server

The HTTP request
to the server fails

Figure 7.1 Using a Service Worker, you can determine whether the user is attempting
to fetch a resource while they’re offline.

Name of the
offline cache

URL for the offline
web page you’ll store
in the offline cache

Add offline web page into
the cache during Service
Worker installation

101Serving files while offline

f
re
Listing 7.1 adds an offline page that I’ve called offline-page.html into the cache
during the installation of the Service Worker. With chapter 3 fresh in your mind, the
code in listing 7.2 may look familiar—it’s similar to the caching examples we looked at
in chapter 3.

 Now that the offline page is stored in cache, you can retrieve it whenever you need
to, even if the user is offline. In the same Service Worker, the following listing adds the
logic to return the offline page if we have no connectivity.

this.addEventListener('fetch', event => {
 if (event.request.method === 'GET' &&
 event.request.headers.get('accept').includes('text/html')) {
 event.respondWith(
 fetch(event.request.url).catch(error => {
 return caches.match(offlineUrl);
 })
);
 }
 else{
 event.respondWith(fetch(event.request));
 }
});

First, you’re tapping into the fetch event and inspecting the HTTP headers to deter-
mine if the user is trying to make an HTTP GET request for an HTML web page.
You’re doing this because you only want this logic to take place if a user is trying to
navigate to another web page (see the third line in listing 7.2). If they are, you add a
catch() onto your JavaScript promise. With JavaScript promises, if any error occurs in
the promise chain, the error is then bubbled up, and you can use catch() to deter-
mine what went wrong along the chain. In this case, you’re using this catch() to deter-
mine if the HTTP request for the web page failed and the user has no connection. You
then handle this error and return an “offline” page that you cached during service
worker installation.

 If a user is trying to open the Progressive Times app without a network connection,
you want to ensure that you only show them an offline version when they’re trying to
navigate to another page. That way, if the user is trying to make a request for, say, a
JavaScript file, the code will ignore it and continue as normal.

 To test this in action, you can use a few techniques. You could unplug your network
cable, disable your Wi-Fi, or use the Developer Tools built into your browser. (For
quick feedback, the latter is my preferred solution.)

 Firefox, Chrome, and Opera can all simulate offline mode from within the
browser. In Firefox, choose File > Work Offline. Google Chrome and Opera have a
handy tool built into their Developer Tools to help you test offline functionality. Start

Listing 7.2 Serving an offline page when the user has no connectivity

Is user trying to navigate to another
page? Check for a GET request and

then see if they’re requesting a
resource of type ‘text/html’.

If the fetch
ails for any
ason, catch
this error.

Return the offline page you
cached during Service
Worker installation.

Otherwise, respond
as normal.

102 CHAPTER 7 Offline browsing
by opening the Developer Tools (found by browsing the menu) and heading to the
Network tab. From there you can check the Offline check box.

Any requests made from this point onward will be offline, even if you’re connected to
the web. This simple technique is a great way to quickly test your offline logic. Just
don’t forget to uncheck the check box when you’re done—failing to do so has left me
scratching my head trying to figure out why I was offline many times before.

 The code examples in listings 7.1 and 7.2 are useful but only return a single offline
web page. Remember that in our sample application, Progressive Times, you pre-
cached most of the pages during Service Worker installation. Let’s see how to com-
bine this technique with you code in the Progressive Times application.

 To refresh your memory, let’s take another look at the code you used chapter 3.
The next listing adds code that will fall back to a default “offline” page if the user
doesn’t have the resource stored in their cache

const cacheName = 'latestNews-v1';
const offlineUrl = 'offline-page.html';

self.addEventListener('install', event => {
 event.waitUntil(
 caches.open(cacheName)
 .then(cache => cache.addAll([
 './js/main.js',
 './js/article.js',
 './images/newspaper.svg',
 './css/site.css',
 './data/latest.json',
 './data/data-1.json',

Listing 7.3 Fall back to default offline page if a resource isn't already stored in cache

Figure 7.2 Using the Developer Tools in Opera and Chrome, you can simulate an offline connection.

URL of the
offline web page

103Serving files while offline
 './article.html',
 './index.html',
 offlineUrl
]))
);
});

self.addEventListener('fetch', event => {

 event.respondWith(caches.match(event.request).then(function (response) {
 if (response) {
 return response;
 }
 var fetchRequest = event.request.clone();

 return fetch(fetchRequest).then(function (response) {
 if (!response || response.status !== 200) {
 return response;
 }

 var responseToCache = response.clone();
 caches.open(cacheName).then(function (cache) {
 cache.put(event.request, responseToCache);
 });

 return response;
 }).catch(error => {
 if (event.request.method === 'GET' &&

event.request.headers.get('accept').includes('text/html')) {
 return caches.match(offlineUrl);
 }
 });
 }));
});

The code in listing 7.3 uses a cache-first pattern described in chapter 3. The code
starts off by adding an array of resources into cache during the Service Worker install
step. You may notice a slight difference with this code: you’re also adding your fall-
back offline web page into cache during the Service Worker install. You’re doing this
so that it’s available in cache when you need it later.

 Next, the code taps into the fetch event by adding an event listener. The first thing
you want to do is check and see if the requested resource already exists in cache. If it
does, you can return it at this point and go no further. But if the requested resource
doesn’t already exist in the cache, you make the request as originally intended and
add the response into cache for a later stage. I’ve added a catch() onto the JavaScript
promise that will get fired if the user tries to fetch the resource and it fails.

 Inside catch() you check to see if the user was trying to navigate to another page
with a GET request to fetch a resource of type text/html. If so, return the web page
you already have stored in cache.

 The code in listing 7.3 will always look in cache first and then fall back to the net-
work if it doesn’t find a resource in cache. If it can’t retrieve the next web page over

Add in the offline page during
Service Worker install.

Event listener for
the fetch event

If fetch event failed for any
reason, check if it was for
an HTML page and if user
was trying to navigate to
another page.

Return offline page you stored
in cache during the Service
Worker install step

104 CHAPTER 7 Offline browsing
the network, it will fall back to a cached offline web page. The Progressive Times web
app is now super-fast and also works offline.

 As web developers, having this functionality at our fingertips is extremely power-
ful. Using a bit of creativity, you can build powerful offline web applications. For
example, The Guardian newspaper in the U.K. displays an offline page with a cross-
word puzzle built into it.

Using The Guardian website, offline users can test their wits with a crossword puzzle. As
soon as the user has a connection again, they can resume browsing the website.

 Developers are only starting to unlock the power of the offline web. I’m excited to
see how this progresses over the next few years.

7.3 A few gotchas to look out for
Being able to build an offline experience is a great step forward for the web. But as
the saying goes, with great power comes great responsibility, and that goes for caching
and the offline web experience.

 As you read through this chapter, you may have wondered why you wouldn’t cache
the entire website during Service Worker installation. I know that when I found out I
could serve offline pages, this question crossed my mind. But there’s a fine line
between offering a great experience for the user and asking them to download tons of
content for pages that they may never visit. You don’t want to land your users with a
hefty mobile phone bill if they only visit one page of your web app.

Figure 7.3 The Guardian website lets users play a crossword puzzle while they’re offline.

105A few gotchas to look out for
 Progressive Web Apps (PWAs) give us great power but can also be abused. If you
find that your entire site could be cached in less than 500 KB, then perhaps it makes
sense to cache everything, but if your entire site is 10 MB, it probably doesn’t.

 I like the way Jake Archibald’s Offline Wikipedia (https://wiki-offline.jakearchibald
.com) example works. It’s a simple example of how a content site such as Wikipedia
could offer offline content (see figure 7.4).

When it comes to offline functionality, consider the needs and demographics of your
users. How are your users accessing your site? Do they need the entire site down-
loaded at once or can they fetch each new page as they visit? Answering these ques-
tions will help you determine your caching strategy. Only you can provide the answers
to your users’ needs.

Figure 7.4 The Offline Wikipedia demo provides users with an option to download offline
by toggling a flag.

https://wiki-offline.jakearchibald.com
https://wiki-offline.jakearchibald.com
https://wiki-offline.jakearchibald.com

106 CHAPTER 7 Offline browsing
7.4 Cache isn’t forever
When I give talks about Service Workers and the Cache API, the question that almost
always comes up is one about cache storage and what impact it has on the user’s
device. The reality is that each site has an amount of free space that’s shared between
all the other web-based storages including LocalStorage, IndexedDB, and Filesystem
on the device.

 The amount of storage available isn’t
permanent and it can differ completely
between devices and current storage
conditions. This means that the browser
is free to decide whether it needs to dis-
card the cached information in order to
make space if conditions require it.
Although this doesn’t happen often,
remember that it could be cleared, so
don’t base your entire website on being
offline forever.

 If you’re looking for a more perma-
nent storage solution, you might want to
consider using something such as Per-
sistent Storage.1 At the time of writing,
it’s still in its early stages and not yet
released officially, but the Persistence
API allows you to store your cached data
on a more permanent basis. It does
require the user to give their consent
because it means that it will take up stor-
age on their device, but it means you’ll
be able to build a more durable offline
experience.

7.5 Offline user experience
As web developers, being able to build
offline web experiences opens up a
whole new world of possibilities for the
user experience. Previously, users with-
out a network connection would have
been presented with a screen similar to
figure 7.5.

1 https://developers.google.com/web/updates/2016/06/persistent-storage

Figure 7.5 When a user has no internet
connection, this is what they’re used to seeing.

https://developers.google.com/web/updates/2016/06/persistent-storage

107Offline user experience

 The ability to display web pages without
a network connection comes with a new set
of user interface (UI) challenges. PWAs are
a relatively new technology, and the average
user may not even be aware that the web
page they’re viewing is available offline.

 Many PWAs are already employing a few
clever UI techniques to notify users that
they’re offline. Settled, an online company
in the U.K. that helps people buy and sell
homes, uses a technique in their PWA that
displays a simple notification in the bottom
of the screen, as shown in figure 7.6.

 As soon as the user comes back online,
the notification in figure 7.6 disappears,
and the user becomes aware that they are
online again.

 I also like the way Flipkart greys out their
PWA when the user is offline. Figure 7.7
shows both the online and offline versions
of the Flipkart PWA.

 Using inspiration from both the Flipkart
and Settled PWAs, let’s see how to add a
basic notification to the sample application,
Progressive Times, as shown in the follow-
ing listing.

var offlineNotification = document.getElementById('offline');

function showIndicator() {
 offlineNotification.innerHTML = 'You are currently offline.';
 offlineNotification.className = 'showOfflineNotification';
}

function hideIndicator() {
 offlineNotification.className = 'hideOfflineNotification';
}

window.addEventListener('online', hideIndicator); #C
window.addEventListener('offline', showIndicator); #D

Listing 7.4 Showing a UI notification based on a user’s connectivity

Figure 7.6 Settled’s PWA notifies users that
they’re offline with a toast notification.

This function is
used to show an
offline notification
when the user is
offline.

This function is
used to hide the
offline notification
when the user is
back online.

108 CHAPTER 7 Offline browsing
In listing 7.5, you’re adding an event listener to both the online and offline status of
the current browser window. If for any reason you lose connectivity, these events will
fire, and the appropriate function will be called. I’ve created two functions: one to
show an offline indicator when the user is offline, and one to hide the indicator when
the user comes back online. Using this simple technique, you can then give the user
feedback and let them know when they’re offline.

 This functionality that lets you determine whether a user is online or offline is built
into the browser by default. Believe it or not, browser support is also better than you
think; globally there is almost 95% support for this feature.2 To learn more about this

2 http://caniuse.com/#search=online

Online Offline

Figure 7.7 Flipkart’s PWA grays out the site to notify the user that they’re offline.

http://caniuse.com/#search=online

109Tracking offline usage
great browser feature, I recommend reading the Mozilla MDN documentation at
http://bit.ly/navigator-online.

 With this code now in place, a user will see something similar to figure 7.8 as soon
as they lose network connectivity.

The example in figure 7.8 is one of many types of options you can use to notify your
users that they’re offline.

 All the code in this chapter is available on the GitHub repo for this book at
bit.ly/chapter-pwa-7.

 Being able to provide your users with this feedback is important and helps them
trust that the web app will function when needed. In chapter 9, we’ll look closely at
Background Sync, a new web API that lets you defer actions until the user has stable
connectivity. When combined with offline functionality, it can help you build offline
web applications that ensure that whatever the user wants to send is sent.

7.6 Tracking offline usage
As the saying goes, if you can’t measure it, you can’t improve it. This is particularly rel-
evant for offline web experiences. Remember that if your users are offline, you can’t
track them with your traditional web analytics approach. The analytics requests won’t
be able to fire without a connection, and the actions your users take will be lost.

Figure 7.8 Basic UI feedback can be a useful way of letting your users know
that they’re offline.

http://bit.ly/navigator-online

110 CHAPTER 7 Offline browsing

 Fortunately, an open source project called Service Worker Helpers3 has you cov-
ered. It’s a collection of Service Worker helper libraries to help you build your PWAs
quickly and easily. One of these libraries is called Offline Google Analytics, and if
you’re currently using Google Analytics as your web analytics package, this is the
library for you. Using a bit of clever Service Worker magic, the library will queue up
any analytics requests while the user is offline, and as soon as they regain a connec-
tion, it sends the queued requests through to the analytics server.

 To start using the library, you include it in your Service Worker file using the code
in the following listing.

importScripts('../build/offline-google-analytics-import.js');

goog.offlineGoogleAnalytics.initialize();

self.addEventListener('install', () => self.skipWaiting());
self.addEventListener('activate', () => self.clients.claim());

That’s it! The library will now start queuing Google Analytics requests and only send
them when it regains connection again. Using this library is a great way to ensure that
you can track how your users use your web app while offline.

7.7 Summary
Using Service Workers, you can determine whether a user is offline while requesting a
resource. At that point, you can decide whether you want to serve them something
from the cache.

 When building an offline web application, consider your caching strategy. A cache-
first approach is great if your content doesn’t change often, but you might consider a
network-first approach for regularly changing content.

 It’s important to think about your users when building an offline experience.
Downloading too much data may end up costing them, especially if they don’t visit
your entire site.

 Service Worker cache isn’t forever. If you’re looking for something more long
term, you might want to consider using Persistent Storage.

 Consider your user experience (UX) approach when building an offline experi-
ence. Keep your users notified when they’re offline and when they’re back online.

 Using the Service Worker Helpers library, you can track your offline usage with
Google Analytics.

3 https://github.com/GoogleChrome/sw-helpers

Listing 7.5 Tracking Google Analytics requests while offline

Import the library into the
service worker global scope

Initialize the
Offline Google
Analytics
library

Have the Service Worker take
control as soon as possible

https://github.com/GoogleChrome/sw-helpers

Building more resilient
applications
As you’ve progressed through this book, you’ve learned how to build Progressive Web
Apps (PWAs) that are lightning-fast and offer the user an engaging and interactive
experience. In chapter 7, you found out how to build a PWA that caters to situations
in which the user may not have a network connection. There may also be situations
in which the user has a network connection but it’s really slow or flaky or may drop
occasionally. In this chapter, you’ll learn about the best techniques to build resilient
web apps that work with poor or unreliable network connections. By the end of this
chapter, you’ll have a clear understanding of how to build truly resilient web apps.

8.1 Network issues that modern websites face
Whether the user is in a building in New York with high-speed Wi-Fi or on safari in
South Africa with a flaky 2G connection, all modern websites face the same connec-
tivity issues. One of my favorite observations about the challenges of network con-
nections comes from a book by Ilya Grigorik, entitled High Performance Browser
Networking (O’Reilly, 2013):

Users dislike slow applications, but broken applications, due to transient network
errors, are the worst experience of all. Your mobile application must be robust in the
face of common networking failures: unreachable hosts, sudden drops in throughput
or increases in latency, or outright loss of connectivity.

He goes on to say the following:

Unlike the tethered world, you simply cannot assume that once the connection is
established, it will remain established. The user may be on the move and may enter an
area with high amounts of interference, many active users, or plain poor coverage.
111

112 CHAPTER 8 Building more resilient applications
I think these two statements perfectly explain the situation that modern web develop-
ers face. Even if you build an extremely beautiful and fast website, it will still have to
fetch resources over a network that can be prone to failure. That’s why it’s so import-
ant to build sites that are fast, engaging, and most of all reliable.

 In the next section, we’ll take a close look at two network challenges that web
developers face: lie-fi and single point of failure.

8.1.1 Understanding lie-fi and single point of failure

On my commute, as I’ve mentioned, there are many spots along the journey that have
a flaky connection. Sometimes my phone will engage in lie-fi—telling me there’s a full
strength signal, yet I can’t download anything.

 Lie-fi can result in a poor experience because the browser will persist in trying to
download resources instead of giving up when it should and using a fallback. For most
websites, lie-fi can be worse than being offline because if your site is offline, you can at
least take appropriate action. We’re going to look at a technique to help you deal with
lie-fi and respond appropriately when the user encounters poor connectivity.

 Quite often, you may add third-party scripts such as jQuery, social sharing buttons,
or tracking scripts to your website with the best of intentions, but depending on the
way these scripts are loaded, you could potentially create a front-end single point of
failure (SPOF) that can block the site. According to Wikipedia (https://en.wikipe-
dia.org/wiki/Single_point_of_failure), a SPOF is “a part of a system that, if it fails, will
stop the entire system from working.” If these third-party scripts aren’t implemented
and deployed properly, they pose a significant risk for the websites that host them.

 Think about our Progressive Times newspaper application. Before the browser can
render a page parsing the HTML markup, the web app loads web fonts using Google
Fonts to improve its look and feel. During this process, whenever the parser encoun-
ters a script or CSS file, it has to stop and execute it before it can continue parsing the
HTML. This is default behavior for the browser and it means that both CSS and Java-
Script files will block the page loading until they’ve finished downloading.

 If for any reason a third-party site referenced in the web page takes too long to
load or is down, the Progressive Times app will be affected, as shown in figure 8.1.
Unfortunately, this is completely outside of your control—the third-party servers are
maintained separately from your own and you have to hope that they will function as
expected. Well, fear not. We’ll shortly look at how you can use Service Workers to
ensure that your PWA can deal with such issues.

 Figure 8.1 shows a fully loaded web page that isn’t affected by SPOF—the site loads
in around 1.1 seconds. On the right is a blank white screen that has been affected by a
third-party SPOF and still hasn’t finished loading after almost 17 seconds. The user is
completely blocked and unable to interact with the site.

 If you ever want to test what this might look like on your own website, try web-
pagetest.org (figure 8.2). It’s free and among its many uses can be used to test SPOF.
To do so, head to WebPagetest.org, enter the URL of the page you’d like to test, and

https://en.wikipedia.org/wiki/Single_point_of_failure
https://en.wikipedia.org/wiki/Single_point_of_failure
http://webpagetest.org
http://webpagetest.org

113Network issues that modern websites face
Figure 8.1 On the left, a fully working website, and on the right a website experiencing SPOF. If a third-
party server is down or experiencing issues, your site will be affected too.

Figure 8.2 If a third-party server is down or running slowly, your site may be affected.

114 CHAPTER 8 Building more resilient applications
choose the SPOF tab. Behind the scenes, the site will search for these third-party
libraries and block their loading, allowing you to test under network conditions.

 From there, you can enter a list of third-party domains that will be “blocked” by
WebPagetest.org, allowing you to simulate how it might affect your site in real life.

8.2 Service Workers to the rescue
Fortunately, you can use the power of Service Workers to build web apps that have fall-
backs when issues such as lie-fi or SPOF occur. Remember that when using Service
Workers, you’re in complete control of the HTTP requests to and from your site. This
means you can force an HTTP request to time out if it takes too long to download or if
the user loses connectivity. Figure 8.3 shows this in action in our Progressive Times
application.

Using the diagram in figure 8.3, let’s relate this to the Progressive Times app. In the
web app, you’re loading external web fonts from Google servers. If for any reason this
HTTP request took too long to respond or the servers were down, it could delay the
loading of your web app considerably, causing a SPOF. Let’s see how to update the Pro-
gressive Times app to include code that will respond with an appropriate fallback if
you experience a failure.

 The code in the next listing may look familiar—it’s quite similar to the Service
Worker registration code you’ve been using throughout the book.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Progressive Times - Online News</title>
 </head>

Listing 8.1 Basic web page that registers a Service Worker

Main browser thread Worker thread

Service WorkerPage
Server

Cancel the request if the
3rd party server is down

or takes too long to respond

Figure 8.3 Using Service Workers, you can cancel the HTTP request if the third-party
server takes too long to respond.

115Service Workers to the rescue
 <body>
 <script>
 if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register('./service-

worker.js').then(function(registration) {
 }).catch(function(err) {
 console.log('ServiceWorker registration failed: ', err);
 });
 }
 </script>
 </body>
</html>

Now that you’ve registered your Service Worker, you need to update it slightly to
ensure that you can cater to scenarios such as lie-fi or SPOF. Ideally, you need to force
the request to time out if it takes too long to respond.

 The code in listing 8.2 contains the contents of the Service Worker file that you
registered in listing 8.1. It contains a clever technique that I learned from Patrick
Haman, a developer at Fastly. I recommend checking out his talk “Embracing the Net-
work” (https://vimeo.com/163933605) to learn more about building systems that
embrace the unpredictability of networks and defend against it all costs.

function timeout(delay) {
 return new Promise(function (resolve, reject) => {
 setTimeout(function(){
 resolve(new Response('', {
 status: 408,
 statusText: 'Request timed out.'
 }));
 }, delay);
 });
};

self.addEventListener('fetch', function(event) {
if (/googleapis/.test(event.request.url)) {
 event.respondWith(Promise.race([timeout(3000),fetch(event.request.url)]));
} else {
 event.respondWith(fetch(event.request));
}
});

Let’s break that code down into smaller chunks. First, you’re creating a function that
executes a classic JavaScript timeout function, but with a slight twist. The function has
been updated to return as a JavaScript promise. If for any reason this function does

Listing 8.2 Service Worker code that returns a 408 response on slow networks

Register the
Service Worker.

Registration
has failed.

Classic timeout function
that has been updated
to return as a promise

Execute the timeout
function using the
passed in delay (amount
in milliseconds).

If timeout occurs, return a
new Response of status code
408 and provide a message.

Only run this check for requests
to the domain googleapis.com .

Use a Promise.race
condition to fire

both the timeout
and fetch function at

the same time.

Otherwise make
the request as

expected.

https://vimeo.com/163933605
http://googleapis.com

116 CHAPTER 8 Building more resilient applications
time out, it will return a new Response object. Remember that with Service Workers,
you can build your own custom HTTP responses if required. Here you’re construct-
ing a custom HTTP response that will return a 408 HTTP status code with a custom
message. You’re going to use this HTTP response if your request takes too long
to respond.

 Next, you’re using a JavaScript Promise.race() function. This function returns
a promise that resolves or rejects as soon as one of the promises in the array resolves
or rejects, with the value or reason from that promise (check out www.prom-
isejs.org/patterns/#race). This idea behind this function is that you “race” a number
of functions against each other and wait for the first one to return. Think of each
function as a horse in a race—the fastest one (function) will win. This is perfect for
this scenario, because if the fetch request wins, you return the resource as expected.
But if the timeout function wins, you can assume that something took longer than
expected, and you should return a fallback.

 You may also notice that you’ve passed in a value of 3000 to the timeout function.
This means 3000 milliseconds, or 3 seconds. You’ll want to tweak this amount of time
slightly to match the needs of your users. If you’re looking for a guideline on that,
note that according to a study by the Nielsen Norman Group (www.nngroup.com/
articles/response-times-3-important-limits), “10 seconds is about the limit for keeping
the user’s attention.” You should definitely set your limit to less than that.

 That’s it—you’re now ready to test this in action. One of the best ways to simulate
this functionality is to use the built-in throttling functionality in the browser. Google
Chrome’s Developer Tools can simulate a slower network connection. To get started,
fire up your Developer Tools in Google Chrome and head over to the Network tab.
From there, check Disable Cache and choose an option for throttling from the drop-
down menu. I chose from the presets GPRS 50KB (figure 8.4). This is the slowest con-
nection available and in most cases should force the code to return the fallback. If you
refresh the web page and view the network requests, you’ll be able to see the Service
Worker take control of the requests.

 Using this simulation technique, the timeout function will execute, and the Ser-
vice Worker will return the custom HTTP response with a 408 status code, as shown in
figure 8.5.

 As you can see, the web fonts haven’t loaded because the logic in the Service
Worker took control and returned a custom HTTP response when the request took
too long. This may not be ideal for the aesthetic look and feel of the site, but it means
the user can continue as normal. Being able to interact with a site is a lot better than
waiting for fonts to arrive.

 Using Service Workers to reduce the unpredictability of network connectivity is a
useful way to ensure that your site is available and isn’t at the mercy of third-party serv-
ers. If you’d like to experiment with this code, check out the GitHub repository for
this book at bit.ly/chapter-pwa-8.

http://www.promisejs.org/patterns/#race
http://www.promisejs.org/patterns/#race
http://www.nngroup.com/articles/response-times-3-important-limits
http://www.nngroup.com/articles/response-times-3-important-limits
http://www.nngroup.com/articles/response-times-3-important-limits

117Service Workers to the rescue
Figure 8.4 Using the built-in network throttling in Google Chrome, you can simulate a slow response and force a
request to timeout (highlighted in red).

Figure 8.5 If the resource is blocked, the
Service Worker will return a 408 HTTP response,
meaning the fonts are missing from the page but
the page still loads as expected.

118 CHAPTER 8 Building more resilient applications
8.3 Using Workbox
In the coding example in listing 8.2, you rolled your own code that handled lie-fi and
third-party SPOF. Earlier in this book, I mentioned a helper library called Workbox, a
handy set of libraries that will help you get started building powerful PWAs in no time
(figure 8.6).

The next listing looks at the same example we used in listing 8.2, but this time using
Workbox to simplify the code a little.

importScripts('workbox-sw.prod.v1.1.0.js');

const workboxSW = new self.WorkboxSW();

workboxSW.router.registerRoute('https://fonts.googleapis.com/(.*)',
workboxSW.strategies.cacheFirst({
cacheName: 'googleapis',

Listing 8.3 Workbox with network timeout

Figure 8.6 Workbox provides you with simple helpers for use in creating your own Service Workers.

Here choose to cache everything
that matches the origin domain

“googleapis.com”.

Next, you’re choosing to cache the
resource using a cache-first strategy.

119Summary
networkTimeoutSeconds: 4
})
);

The code in listing 8.3 is a neat way to ensure that your resource will time out accord-
ingly if the network request encounters a situation where lie-fi or SPOF might occur.
Workbox uses an express style approach to routing, which means you can provide it with
regex and paths that might match a request for a resource.

 In the code in listing 8.3, you’re using a cache-first approach and retrieving all
assets that match the domain googleapis.com.

 You may also notice that the origin property is using a regex approach to check
any incoming requests. The code will check any incoming requests that match the ori-
gin googleapis.com. This code is similar to the code in listing 8.2.

 As you can see, Workbox wraps up the code neatly and keeps your functionality
concise. Another great thing about this library is that you get a lot of functionality for
very little code.

8.4 Summary
It’s important to build sites that are fast, engaging, and most of all reliable.

 Web developers today all face the same network challenges: unreachable hosts,
sudden drops in throughput or increases in latency, or outright loss of connectivity—
all of which can provide a poor experience for the user.

 Using Service Workers, you can build web apps that are resilient to flaky network
conditions and fallback.

 Lie-fi refers to when your browser behaves as if it has connectivity when, for what-
ever reason, it doesn’t.

 A single point of failure (SPOF) can occur when a third-party server goes down or
isn’t functioning as expected. This can unfortunately affect the performance of your
own site and provide a poor experience for your users.

 Using Service Workers, you can write code that will respond with an appropriate
fallback if a site experiences a network failure.

 You can use Workbox to neatly wrap up your code and provide you with network
timeout functionality.

 Webpagetest.org is a great resource for simulating SPOF as well as testing the over-
all performance of your website.

If the network request takes longer
than four seconds to respond, fall
back to the cached version.

http://googleapis.com
http://Webpagetest.org

Keeping your data
synchronized
Chapter 8 talked about building resilient Progressive Web Apps (PWAs) that can han-
dle flaky or intermittent network connections. In this chapter, we’ll take the offline
web a step further and look at a new web API called BackgroundSync. This API allows
users to queue data that needs to be sent to the server while a user is working offline,
and then as soon as they’re online again, it sends the queued data to the server. This
is useful for when you want to ensure that what your user submits to the server truly
gets sent. To give you a quick example of this on a practical level, say a user needs to
be able to edit the details of a blog post using a Content Management System (CMS).
If the CMS uses Service Workers and BackgroundSync, the user can edit the contents
of the blog post offline, and then the CMS will sync the results when the user is
online again. This functionality allows users to work on the go, regardless of whether
they’re connected to the internet.

 By the end of the chapter, you’ll know a lot about BackgroundSync and how you
can start using it in your web apps today. We’ll also dive into a soon-to-be-released
feature called Periodic Sync that allows developers to schedule a sync for a prede-
termined time.

9.1 Understanding BackgroundSync
So far, we’ve been focusing on building websites that can function when the user is
offline and dealing with situations where unreliable networks can cause failures.
This functionality is great, but until now most of these pages have been read-only—
you’re only loading web pages and displaying information. What if you wanted the
user to send something to the server while the user is offline? For example, they
may want to save something important using their web app, safe in the knowledge
120

121Understanding BackgroundSync
that when they re-establish a network connection, their important information will be
sent through to the server. BackgroundSync was built to handle that scenario.

 BackgroundSync is a new web API that lets you defer actions until the user has sta-
ble connectivity, which makes it great for ensuring that whatever the user wants to
send is sent when they regain connectivity. For example, let’s say someone using the
Progressive Times web app wants to contact the editors using the app offline. With
BackgroundSync, they can “send” a contact message while offline, and once they
regain connectivity, the Service Worker will send the message in the background. I
like to think of this feature as the outbox of an email client: messages are queued up
in the outbox, and as soon as there is a connection, they’re sent.

 This chapter runs through a simple example that shows you how to use Back-
groundSync to ensure that your requests are queued even when the user is offline.
We’re going to take a look at the Progressive Times web app and see how to update it
so that it can queue and sync offline requests.

9.1.1 Getting started

First you’ll put the BackgroundSync API into action in our Progressive Times web app.
I’ve created a new page called contact.html that allows a user to send a message to the
editors. It contains a few input fields that will be used to send data to the server, as
shown in the following listing.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Contact Page</title>
 </head>
<body>
 <div id="offline"></div>
 <!-- header -->
 <div id="header">

 <h1>Progressive Times</h1>

 <h6>Please send us any questions you may have!</h6>
 </div>
 <div id="container">
 <!-- contact form -->
 <div class="contact-form">
 <input type="text" id="name" name="name" placeholder="Your Name">

 <input type="email" id="email" name="email" placeholder="Email Address">

 <input type="text" id="subject" name="subject" placeholder="Subject">

 <input type="text" id="message" name="message" placeholder="Your Message">

Listing 9.1 An HTML contact page

The contact
form fields

122 CHAPTER 9 Keeping your data synchronized

,

 <button id="submit">Send</button>
 </div>
 </div>
 </body>
</html>

The code in listing 9.1 contains the HTML markup
for a simple page that the user will use to submit a
message on the Progressive Times web app. The
page isn’t anything fancy, but serves as a good
example of how BackgroundSync might work in
the real world, as shown in figure 9.1. You’ll
update this page so it uses BackgroundSync and
queues any requests when the user is offline.

 Before you can go any further, you need to
register the Service Worker in the HTML
markup for this page. The code in the following
listing that you’re using to register the Service
Worker may seem familiar, but this time you
need to do things slightly differently when regis-
tering a sync. Don’t worry if this doesn’t all make
sense—we’ll be digging deeper, and I’ll explain
more shortly.

<script src="./js/idb-keyval.js" ></script>
<script>
 if ('serviceWorker' in navigator && 'SyncManager' in window) {
 navigator.serviceWorker.register('./sw.js')
 .then(registration => navigator.serviceWorker.ready)
 .then(registration => {
 document.getElementById('submit').addEventListener('click', () => {

Listing 9.2 Registering a BackgroundSync

The submit button
that’s used to send
data to the server

Figure 9.1 The contact form for the
Progressive Times web application

Include the idb-
keyval script in
the page.

Check whether the current browser
supports Service Workers.

Once the Service
Worker is ready
you can use the
registration
object.

Add an event listener to the
click event of the submit.

123Understanding BackgroundSync

c

h
l.
 registration.sync.register('contact-email').then(() => {
 var payload = {
 name: document.getElementById('name').value,
 email: document.getElementById('email').value,
 subject: document.getElementById('subject').value,
 message: document.getElementById('message').value,
 };

 idbKeyval.set('sendMessage', payload);
 });
 });
 });
 }

 </script>

That code may look a little scary. Let’s break it down. At first glance, you may not have
noticed that I included a library called idb-keyval, a lightweight, easy-to-use, promise-
based store implemented with IndexedDB.1 Chapter 1 discussed how Service Workers
only have limited access to all the features of a browser—they have no access to the
DOM and can’t modify elements of a web page. But they do have access to IndexedDB
and the cache storage. That’s why you need to store the values of the POST request
when the sync is initiated, so it can be accessed by the Service Worker when the sync
event occurs. As we break down listing 9.2, why you need to choose this approach will
make sense.

Back to the code. First, you do a simple check to see if the browser supports Service
Workers. If it does, register a file called sw.js. This file contains the Service Worker
code with all the BackgroundSync magic. You’re going to create this shortly.

 Next, if the registration is successful and the Service Worker is ready, add a click
event to the button and register a sync with the tag contact-email. This is a simple
string that I’ve named to help me recognize this event. You can think of these sync
tags as simple labels for different actions. You can have as many as you want. Here’s
the line:

registration.sync.register('contact-email')

1 https://github.com/jakearchibald/idb-keyval

Understanding IndexedDB
IndexedDB is a low-level API for client-side storage of significant amounts of struc-
tured data, including files or blobs. This API uses indexes to enable high-performance
searches of this data. Although DOM storage is useful for storing smaller amounts
of data, it’s less useful for storing larger amounts of structured data. This is where
IndexedDB fits in—it’s a better solution when it comes to large amounts of data.

Register a syn
for this event
and tag it wit
contact-emai

Get the payload of data
from the page and save
to an indexedDb.

https://github.com/jakearchibald/idb-keyval

124 CHAPTER 9 Keeping your data synchronized
You’re registering a sync using the registration object and providing it with a tag to
identify it. Each sync must have a unique tag name because if you register a sync using
the same tag as a pending sync, they will combine together. If the user tries to send
seven messages while offline, they’ll only get one sync when they regain connectivity.
If you did want this to happen seven times, you need to use seven unique tag names.

 Finally, you retrieve the values from the different input fields that the user entered
on the page and save them into the IndexedDB. With these values stored safely in the
IndexedDB, you can retrieve them when the sync event takes place in the Service
Worker.

9.1.2 The Service Worker

Before BackgroundSync will function correctly, you need to update the Service
Worker code. The following listing contains the code that will respond to your newly
created sync event.

importScripts('./js/idb-keyval.js');
self.addEventListener('sync', (event) => {
 if (event.tag === 'contact-email') {
 event.waitUntil(
 idbKeyval.get('sendMessage').then(value =>
 fetch('/sendMessage/', {
 method: 'POST',
 headers: new Headers({ 'content-type': 'application/json' }),
 body: JSON.stringify(value)
 })));

 idbKeyval.delete('sendMessage');
 }
});

Listing 9.3 adds an event listener for the sync event. This event will only fire when the
browser believes that the user has connectivity.2 You may also notice that I’ve added a
check to confirm that the current event has a tag that matches the string 'contact-
email'. This tag was added to the submit button (listing 9.2) when you registered the
Service Worker for this page. If you didn’t have this tag, the sync event would fire
every time the user had connectivity and process your logic repeatedly.

 Next, you retrieve the payload values that were stored in the IndexedDB when the
user clicked the submit button. With these values, you then use the fetch API to POST
the values to the server. The last step in the logic is to clean up afterwards and remove

Listing 9.3 Responding to a sync event

2 https://github.com/WICG/BackgroundSync/blob/master/explainer.md

Add an event listener
for the sync event.

Check the tag of the current
sync to ensure that you fire
the correct code.

Get the payload values
from the IndexedDB .

Use fetch API to
POST to the server.

Pass in the payload
values that you retrieved
from the IndexedDB.

Remove the payload values
from the IndexedDB.

https://github.com/WICG/BackgroundSync/blob/master/explainer.md

125Understanding BackgroundSync
the values that are stored in the IndexedDB to ensure that you don’t have any old data
lying around.

 If all these steps were successful, the fetch request will return a successful result. If
for any reason the fetch request wasn’t successful, the BackgroundSync API will try
again. BackgroundSync has some clever retry functionality built into it to deal with a
situation where the promise might fail. Figure 9.2 illustrates the retry logic.

Like most Service Worker–based code, BackgroundSync expects a promise because it
needs to signal to the browser that the sync event is ongoing, and it needs to keep the
Service Worker active if possible. If for any reason the fetch request failed and it
received a promise that rejected, it will signal the browser that the sync failed, and this
will cause the browser to reschedule the event. This functionality is handy when you
want to ensure that what your user submits gets sent.

 Under the hood, the browser might combine syncs together to reduce the number
of times that the current device, network connection (radio), and browser need to
wake up. Although these event timings may be combined, you still get a new event per
pending sync.

9.1.3 Provide a fallback

BackgroundSync is a relatively new API, which means older browsers don’t support it.
As with most of the Service Worker code you’ve been using throughout this book, pro-
viding a fallback for BackgroundSync is straightforward.

 The next listing updates listing 9.2 slightly to provide a fallback for browsers that
don’t support BackgroundSync.

Yes

No

Sync is
requested

Retrieve values
from the

IndexedDb

POST data to
the server

Remove
value from
IndexedDb

Failed

Does the
user have

connectivity?

Figure 9.2 The retry logic
for BackgroundSync

126 CHAPTER 9 Keeping your data synchronized
<script src="/js/idb-keyval.js" ></script>
<script>
 if ('serviceWorker' in navigator && 'SyncManager' in window) {
 navigator.serviceWorker.register('./sw.js')
 .then(registration => navigator.serviceWorker.ready)

 .then(registration => {
 document.getElementById('submit').addEventListener('click', () => {

 registration.sync.register('contact-email').then(() => {

 var payload = {
 name: document.getElementById('name').value,
 email: document.getElementById('email').value,
 subject: document.getElementById('subject').value,
 message: document.getElementById('message').value,
 };

 idbKeyval.set('sendMessage', payload);

 });
 });
 });
 } else {

 document.getElementById('submit').addEventListener('click', () => {
 var payload = {
 name: document.getElementById('name').value,
 email: document.getElementById('email').value,
 subject: document.getElementById('subject').value,
 message: document.getElementById('message').value,
 };

 fetch('/sendMessage/',
 {
 method: ‘POST’,
 headers: new Headers({
 'content-type': 'application/json'
 }),
 body: JSON.stringify(payload)

 });
});
}

 </script>

The code in listing 9.4 adds some extra logic to provide a fallback for browsers that
don’t support the BackgroundSync API. First, the code is checking to see whether Ser-
vice Workers are supported and tests to see whether the current browser supports the
SyncManager feature. The SyncManager interface of the ServiceWorker API provides
an interface for registering and listing sync registrations. If the browser does support
SyncManager, you can continue and register the tag as expected. But if Service Workers

Listing 9.4 Fallback for browsers that don't support backgroundsync

Check to see whether current
browser supports Service

Workers and SyncManager.

Add an event listener to
the click event of the

submit button.

Get the values from
the input fields on
the contact form.

Use the fetch API to
post the values to
the server.

127Understanding BackgroundSync
aren’t supported or the browser doesn’t support the API, you continue and post the
request to the server as expected. With this code in place, you cover all your bases, and
it’s a win-win solution for your users: they get the bonus of BackgroundSync if their
browser supports it and normal functionality if it doesn’t.

 To test this chapter’s code for yourself, download it from the GitHub repository at
bit.ly/chapter-pwa-9. The code includes a server-side implementation used to simulate
a POST event for the contact details discussed throughout this chapter. To get started
with the PWA, you’ll need to have Node.js installed (which you’ve used in previous
chapters). If you’re not familiar with Node.js, don’t worry—these code listings serve as
mere examples, which means you can use any server-side language you like. Once you
have Node.js installed and the repository in place, you can fire up the PWA by run-
ning the following command in your terminal:

npm install && node server.js

When the application is up and running, head to http://localhost:3111/contact to
start experimenting with this page.

9.1.4 Testing

Believe it or not, testing all this is easier than you think: once you’ve visited the page
and your Service Worker is active, all you need to do is disconnect from the network
by unplugging the network cable, disabling your Wi-Fi, or changing your network con-
nection using the Developer Tools.

 When I first started testing this feature, I disabled the Wi-Fi connection on my laptop,
submitted the contact details, and then re-enabled the Wi-Fi connection (figure 9.3).

If I view the network requests while offline, no HTTP requests take place, but as soon
as I re-enable the network connection, the queued request is sent to the server and is
visible in the Network view of the Developer Tools, as shown in figure 9.4.

Figure 9.3 To test BackgroundSync, disable your network connection.

http://localhost:3111/contact

128 CHAPTER 9 Keeping your data synchronized

9.2 Notifying the user
As we’ve been discussing, the message will indeed be sent to the server when the user
regains connectivity, but unfortunately the user won’t know this has happened.
Remember, a lot of users don’t even know the web is capable of working offline, which
is why it’s important to provide feedback to users and let them know that the message
has been queued and will be sent when they are online again.

 In chapter 7, you built a simple notification that notifies the user when they’re
offline. Using a similar technique, you can let the user know that the message has
been queued and will be sent. The next listing updates your Service Worker registra-
tion code slightly to include this UI notification.

<script src="/js/idb-keyval.js" ></script>

<script>
function displayMessageNotification (notificationText){
 var messageNotification = document.getElementById('message');
 messageNotification.innerHTML = notificationText;
 messageNotification.className = 'showMessageNotification';
}

 if ('serviceWorker' in navigator && 'SyncManager' in window) {

 navigator.serviceWorker.register('./sw.js')
 .then(registration => navigator.serviceWorker.ready)

 .then(registration => {
 document.getElementById('submit').addEventListener('click', () => {

 registration.sync.register('contact-email').then(() => {

 var payload = {
 name: document.getElementById('name').value,
 email: document.getElementById('email').value,
 subject: document.getElementById('subject').value,
 message: document.getElementById('message').value,
 };

 idbKeyval.set('sendMessage', payload);
displayMessageNotification(‘Message queued’);

 });
 });
 });

Listing 9.5 Notifying the user that the message has been queued

Figure 9.4 When you lose network connection your event will be synced and will be sent to
the server when the user regains connectivity. The sync event is highlighted in red.

Function to show
the notification
and notify user of
message status

Show notification and let
user know the message is
queued to be sent

129Periodic synchronization
 } else {

 document.getElementById('submit').addEventListener('click', () => {

 var payload = {

 name: document.getElementById('name').value,
 email: document.getElementById('email').value,
 subject: document.getElementById('subject').value,
 message: document.getElementById('message').value,
 };

 fetch('/sendMessage/',
 {
 method: ‘post’,
 headers: new Headers({
 'content-type': 'application/json'
 }),
 body: JSON.stringify(payload)
 })
 .then(displayMessageNotification('Message sent'))
 .catch((err) => displayMessageNotification('Message failed'));
}

 </script>

You may notice listing 9.5 hasn’t changed much
from listing 9.3. You’ve added code to display a
message notification once the sync has been regis-
tered or, in the case of older browsers, the message
has been sent.

 I find it helpful to visualize what the code in a
listing might look like. To give you an idea, figure 9.5
shows what this notification might look like on a
mobile device.

 The notification isn’t anything fancy—just a
simple HTML element with feedback for the user.
Using this simple technique is a great way to pro-
vide your users with feedback when they submit
information to the server.

9.3 Periodic synchronization
Imagine the following scenario: a user opens up
their phone to see that they already have the lat-
est news for the Progressive Times App—which is
strange because they’re currently offline and
haven’t visited the web app today. Instead, a sync
happened in the background while they were
sleeping. New data was synced to their phone
before they even woke up and was available for
them in an instant. Very impressive!

Try to send
message using
traditional method

Show notification and
let user know the
notification was sent

Figure 9.5 Once the user has
submitted the form, update the UI to
let them know that it has been sent
successfully regardless of whether
they’re online or offline.

130 CHAPTER 9 Keeping your data synchronized
 This feature, known as PeriodicSync, allows you to schedule a sync for a predeter-
mined time. It’s simple to set up, doesn’t require any server configuration, and
allows the browser to optimize when it fires in order to be helpful and less disruptive
to the user.

 At the time of writing, PeriodicSync is still being developed (and is therefore sub-
ject to change), but it will be available in browsers shortly.3 It is powerful functionality
that’s worth sharing, which is why I wanted to include it in the book at this early stage.
The following listing gives you an idea of what this code might look like when it is
released.

navigator.serviceWorker.ready.then(function(registration) {
 registration.periodicSync.register({
 tag: 'get-latest-news',
 minPeriod: 12 * 60 * 60 * 1000,
 powerState: 'avoid-draining'
 networkState: 'avoid-cellular'
 }).then(function(periodicSyncReg) {

 // success
 }, function() {
 // failure
 })
});

This code is similar to the code in listing 9.1, except you’re registering a PeriodicSync.
Similar to BackgroundSync, you need to register the sync with a tag name in order to
identify how to respond accordingly, and much like BackgroundSync, each tag name
needs to be unique to ensure that a different action takes place.

 You’ll notice that the PeriodicSync API also accepts a value called minPeriod. This
value is used to determine the minimum time between sync events and is set in milli-
seconds. If you set the value to 0, it will allow the browser to fire the event as fre-
quently as it wants.

 Because syncs will run repeatedly, it’s important that the PeriodicSync API take
into account the battery and network state of the device it’s running on. As develop-
ers, we need to be responsible to our users and not drain their battery or generate
hefty mobile bills. Configuring properties such as powerState can avoid such events
because they can either be set to 'auto' or 'avoid-draining'. 'auto' allows syncs to
occur during battery drain, but it may be restricted if the device has battery-saving
mode enabled. 'avoid-draining' will delay syncs on battery-powered devices while
the battery isn’t charging. You can also determine the network usage of a device by
configuring the networkState property. By setting the value to 'avoid-cellular',
the browser will delay syncs while the device is connected to a cellular network.

3 https://github.com/WICG/BackgroundSync/blob/master/explainer.md#periodic-synchronization-in-design

Listing 9.6 Registering a PeriodicSync

Tag for the
sync event

Minimum time
between successful
sync events

Determines battery
requirements of the
sync; can be either ‘auto’
or ‘avoid-draining’

Determines network
requirements for the sync;

can be ‘online’ (default),
‘avoid-cellular,’ or ‘any’

https://github.com/WICG/BackgroundSync/blob/master/explainer.md#periodic-synchronization-in-design

131Summary
'online' will delay syncs if the device is online, and 'any' is similar to 'online',
except syncs may happen while the device is offline.

 It’s worth noting that PeriodicSync isn’t meant to be an exact timer. Although the
API accepts a minPeriod in milliseconds, it could mean that the sync might not fire
exactly on time. All this could be due to network connection, battery state, or the set-
tings of the current device. Due to the nature of PeriodicSync requiring device
resources, it’s highly likely that it will require opt-in permission from the user.

 This is a very exciting feature for the web. I look forward to seeing the exciting
things that developers around the world begin to build with it.

9.4 Summary
BackgroundSync is a new web API that lets you defer actions until the user has stable
connectivity. It behaves similar to the outbox on an email client—messages are queued
up in the outbox and as soon as there’s a connection, they’re sent.

 Tags are useful because they allow you to “tag” a specific event so you know how to
respond appropriately in your sync. Each sync needs to have a unique tag name.

 You can test BackgroundSync in action by disabling your connection to the net-
work; as soon as you re-connect, your queued syncs will be sent.

 Another new API called PeriodicSync allows you to schedule a sync for a predeter-
mined time; it has a number of settings that allow you to schedule how frequently to
run, which network connections it can run under, and the allowed battery states of the
device to run on.

Part 5

The future of
Progressive Web Apps

The web is constantly evolving. It seems like every time I blink, a new feature
or library is being released to the web. The growth of Progressive Web Apps
(PWAs) is firmly on the radar of browser vendors, and giving web developers
access to these new features is part of their roadmap. As a developer, it’s an excit-
ing time to be developing for the web. I’m excited to see how the next few years
unfold. In this final part of the book, we’ll look at a few of the great features that
are either in development or are due to arrive in a browser near you very soon.

 In chapter 10, we’ll dive into a new feature called the Web Streams API, which
allows you to stream content to your users. This is important because instead of
sending a huge chunk of data all at once to be processed by the browser, web
streams allow you to stream the data piece by piece, which means the browser can
process it much more efficiently. We’ll look into exactly what web streams are and
how you can use them to supercharge your page-render times.

 Chapter 11 is where I gather together some of the most common questions I
get when I speak publicly about PWAs and attempt to answer them as clearly and
thoroughly as I can.

 The final chapter in this book, chapter 12, is aimed at the future of PWAs.
This chapter looks at the amazing Web Bluetooth features that are already avail-
able in your browser. We’ll also look at other features such as the Payment
Request API, Web Share, and one of my favorites, the Shape Detection API.

 The future of PWAs is looking good!

Streaming data
In part 5 of this book, we’ll focus our attention on the future of Progressive Web
Apps (PWAs) and the many great features that are coming soon to a browser near
you. In this chapter, we’ll look at a useful feature called the Web Streams API,
which lets you stream content to your users.

 We’ll dive into what web streams are and how to use them and go through some
practical examples that you can apply to your PWAs today. You’ll start off by build-
ing a basic example using the Fetch API and then graduate to using the Web
Streams API within a Service Worker to supercharge the load times of your web
pages. If you think your web pages are fast after the earlier chapters, just wait and
see how fast they can become.

10.1 Understanding web streams
For web developers, there’s never been a more exciting time to build for the web.
Browsers are more feature-rich and devices more powerful each year. On top of
that, we have great frameworks and tooling as well as features such as Service Work-
ers that allow you to build amazing websites for your users. Using the Progressive
Times application we’ve used in the book as an example, you could build a stream-
ing video player or even use the streaming abilities of a browser to progressively
render a large web page.

 The Web Streams API lets you stream content to your users. For example, say
you want to display an image on a web page. Without streaming, the following steps
need to take place in the browser:

135

136 CHAPTER 10 Streaming data
1 Fetch the image data from the network.
2 Process the data and uncompress it into raw pixel data.
3 Render the results to the page.

All these steps are critical to displaying an image, but why should you wait for the
entire image to be downloaded before you can start these steps? What if you could
process the data piece by piece as it was downloaded instead of waiting for the entire
image to download? Without streaming, you need to wait for the entire contents of
the download to complete before you can return a response. But using streaming you
can return the results of the download and process it piece by piece, allowing you to
render something onto the screen even sooner. The great thing about this is that you
can process the result in parallel with fetching—much better.

 If you’ve been following along with the chapters of this book, you may be wonder-
ing why you even need the Web Streams API. After all, using Service Worker caching,
your web pages are faster and more reliable than ever. That’s true, but you aren’t tak-
ing advantage of the streaming capabilities built into the browser. Imagine for a sec-
ond that the resource you’re retrieving is really large and takes a while to download.
Without streaming, you’d have to wait for the entire contents of the resource to be
downloaded before you could begin rendering it. With streams you can begin reading
from the network, transforming the data, and rendering it onto the screen of your
device. Imagine if you could combine caching and streaming together—you’d get an
even better result.

 Streams also come with many other benefits, one of them being that they reduce
the amount of memory that a large resource takes up. For example, if you needed to
download a large file, process it, and keep it in memory, that could become a prob-
lem. With streaming, you can reduce the amount of memory that a large resource
takes up because you’re processing the data piece by piece; this feature, known as flow
control, plays an important role in web streams.

10.1.1 What’s the big deal with web streams?

It’s Friday night and you’re watching your favorite TV series on Netflix. Suddenly the
internet connection drops, and the film buffers for a few seconds before continuing
where it left off. This is a stream in action, and it’s using flow control to react to the
speed at which data is read from the network. Because the stream reads data piece by
piece, it can pick up where it left off.

 If that same video is being downloaded and then transformed (decoded) at 200
frames per second, and you only want to display the results of the video at 24 frames
per second, you could end up with a backlog of decoded frames, and ultimately your
device could run out of memory.

 Using flow control, you can use the decoder to detect whether you’re producing
decoded frames faster than they’re being read, which would allow you to slow down
the network stream and the rate at which you’re downloading. A perfect of example

137Understanding web streams
of this is when you watch a Netflix film and it buffers for a few seconds—that’s a
stream in action.

 Web streams also come with a few other benefits:

 Start/end aware—Streams are aware of where they start and where they end,
although a stream could be infinite, too.

 Buffering—Streams can buffer values that haven’t been read yet. Without
streams, this data would be lost.

 Chaining via piping—You can pipe streams together to form an async sequence.
 Built-in error handling—Any errors that occur will be propagated down the pipe.
 Cancellable—You can cancel a stream, and it can be passed back up the pipe.

10.1.2 Readable streams

One of the key concepts of web streams is known as a readable stream. A readable
stream represents a source of data that you can read data from. Readable streams allow
data to come out of the stream and not back in.

 Readable streams consume two types of data sources: push sources and pull
sources. As the name implies, push sources push data to you, regardless of whether or
not you’re requesting data from them. One of the great things about push sources is
that they provide a mechanism for pausing and resuming the flow of data, which is
what makes streams so powerful. Pull sources require you to request, or pull, data
from them. An example of a pull source might be a file handle that allows you to read
specific amounts of data or seek a specific location in the file. Readable streams are an
easy way to wrap both push and pull sources together in a single, easy-to-understand
interface.

 You’re going to be using readable streams closely (both push and pull) throughout
the rest of this chapter, so it’s an important concept to understand. You can get started
crafting your own readable streams using a few lines of code. The code in the next list-
ing provides a basic example of what a readable stream looks like.

var stream = new ReadableStream({
 start(controller) {},
 pull(controller) {},
 cancel(reason) {}
}, queuingStrategy);

Using listing 10.1 as a foundation for your understanding of readable streams, let’s
look a little closer. The ReadableStream class accepts an object passed to the construc-
tor that can implement any of the following methods to determine how the con-
structed stream instance will behave:

 The start(controller) is called immediately and is used to set up any under-
lying data sources, such as push or pull ones. If you return a promise from

Listing 10.1 A Readable Stream

138 CHAPTER 10 Streaming data
this function and it rejects, it will signal an error through the stream. The
pull(controller) also won’t be called until this promise fulfills.

 The pull(controller) is called when the stream’s buffer isn’t full, and it will
get called repeatedly until it is full. If you return a promise from this function
and it rejects, it will signal an error through the stream. It’s also worth mention-
ing that the pull(controller) won’t be called again until the promise from
the previous pull(controller) fulfills.

 The cancel(reason) is called when the consumer signals that they are no lon-
ger interested in the stream and is used to cancel any underlying data sources.

 A queuingStrategy is an object that determines how a stream should signal
that it’s overloaded based on the state of its internal queue. Earlier in this chap-
ter I mentioned flow control and how it can cause a network stream to notice
that it’s fetching data faster than it’s being read by the decoder and can then
slow down the download. Understanding how this works isn’t vital, but you
should know that you can control it if needed. In this chapter, we’ll use the
default queuing strategy.

As we progress, you’re going to be looking at web streams in action and have a little
fun with them.

10.2 A basic example
One of my favorite articles about the Web Streams API was written by Jake Archibald
from Google. Entitled “2016: The Year of the Web Streams,”1 it dives into web streams
and discusses how they apply to modern web applications. We’ll adapt one of the
examples in his article slightly and break it down. The example is meant as a fun
explainer of web streams and isn’t something you’d do in a real-world application.
The following listing creates a readable stream and deliberately slows down the data
being streamed to the browser, which will result in a page that renders progressively.
It’s a good introduction to the streaming capabilities of the browser. The code resides
in a Service Worker file.

self.addEventListener('fetch', event => {
 event.respondWith(htmlStream());
});

function htmlStream() {
 const html = 'html goes here....';

 const stream = new ReadableStream({
 start: controller => {
 const encoder = new TextEncoder();
 let pos = 0;
 let chunkSize = 1;

1 https://jakearchibald.com/2016/streams-ftw/

Listing 10.2 Readable stream that slows down data from the server

Tap into the fetch event and
respond with the HTML stream.

The HTML string you’re
going to return

You’re building a new
ReadableStream.

To turn the text into bytes, you
need to use a TextEncoder.

https://jakearchibald.com/2016/streams-ftw/

139A basic example
 function push() {
 if (pos >= html.length) {
 controller.close();
 return;
 }

 controller.enqueue(
 encoder.encode(html.slice(pos, pos + chunkSize))
);

 pos += chunkSize;
 setTimeout(push, 50);
 }

 push();
 }
 });

 return new Response(stream, {
 headers: {
 'Content-Type': 'text/html'
 }
 });
}

Whoa—there’s a lot going on in listing 10.2. Let’s break it down further. The code
will use an HTML string and slowly push each chunk onto a stream that’s then
passed to the browser. First, you’re tapping into the fetch event and responding with
the htmlStream() function, which is responsible for creating the streamed response.
The htmlStream() function is where the magic happens.

 Inside the htmlStream() function, you’ve created a variable that contains a string
with the HTML contents that you’re going to return to the browser (I’ve shortened it
for brevity). Next, you’re creating a new ReadableStream and calling start()to set up
the underlying data source (the HTML string in our case).

 Because you want to read the results of the stream as text, you need to use a Text-
Encoder() to encode the chunks of HTML that are passed to the browser. The push()
function is used to push data onto the stream in chunks, and you’re going to use it to
slow down the stream. At the top of the push() function, you need to perform a quick
check to see whether your current position in the stream has gone past the overall
length of the HTML string. If it has, you can close the controller and immediately exit
the function.

 If you haven’t gone past the length of the HTML string, you can then queue the
next chunk of HTML that you want to push onto the stream. Next, you move forward
one position in the HTML string. You also call a setTimeout() on the push() func-
tion, which is used to delay the next occurrence of the push() function by 50 millisec-
onds. Each time you move forward in the HTML string, the next occurrence will take
50 milliseconds to return, which gives the effect of text slowly being rendered to
the screen.

Push the
results

onto the
web

stream.

Check to see if you’ve exceeded
the length of the HTML and
close the controller.

Enqueue and encode
the next chunk of
the HTML.

Force a timeout for 50
milliseconds to slow
down the rendering.

Start pushing the
results of the stream.

Return the results of
the stream as a new
Response Object.

140 CHAPTER 10 Streaming data
 Figure 10.1 shows a visual representation of this code in action.

You can see from left to right as the page slowly begins to stream the results of the
HTML to the browser. This allows the browser to use its streaming capabilities to ren-
der the data to the page as it’s being received instead of waiting for all the data to be
downloaded. In this example, we deliberately slowed down the streaming of data in
order to show web streams in action, but in reality you wouldn’t normally do this. As
we progress through the rest of this chapter, we’ll look closely at how you can use the
power of web streams to supercharge your page render times.

 As always, all the code for this chapter is available on the book’s GitHub repository.
If you’d like to see this specific example, please head over to bit.ly/chapter-pwa-10.

10.3 Supercharging your page render times
Earlier in this book, I mentioned that the Fetch API provides a way to easily make
HTTP requests using JavaScript. The API is easy to understand and makes use of
promises to keep the code clean and readable. To refresh your memory, the following
listing looks at a basic request using the Fetch API.

fetch('http://deanhume.com', {
 method: 'GET'
}).then(function(response) {
 // success
}).catch(function(err) {
 // something went wrong
});

The code in listing 10.3 makes a GET request for a given URL and then returns the
response of the HTTP request. If for any reason something goes wrong, the promise
will reject, and you can handle the error accordingly.

 Once an HTTP request is successful, the Fetch API lets you read the response of
the HTTP request in many different formats, including text, JSON, FormData, blob,

Listing 10.3 The Fetch API

Figure 10.1 Using web streams, the rendering of the page has been deliberately slowed in order to demonstrate
the streaming capabilities of the browser.

The URL to access
using a GET request.

If successful, return
the response

If something went wrong, you
can respond appropriately.

141Supercharging your page render times
or even ArrayBuffer.2 Using the Fetch API, you can even return the body of the
response as a stream, which is perfect for our use case.

 The Progressive Times sample application has done a great job of allowing you to
use many of the great features of PWAs. It was built using the Application Shell Archi-
tecture, which allows you to load the “UI shell” of the app and then dynamically insert
the rest of the contents of the page. This approach let you take advantage of Service
Worker caching and get something immediately to the page while you waited for the
remainder of the contents to download. The only downside of the Application Shell
Architecture is that it can’t take advantage of the browser’s built-in streaming abili-
ties—because chunks of HTML are inserted into a document after the page has
loaded. That means you need to use JavaScript to retrieve and insert the main content
of the page from the server, which can delay rendering.

 Figure 10.2 outlines the basics of the Application Shell Architecture.

The downside is that by using JavaScript to populate the contents of the page, you’re
bypassing the browser’s built-in streaming parser. The more data you’re downloading
to populate the page, the more it affects the performance of your page rendering
because the browser has to wait.

 Using web streams, you can approach this slightly differently and stream the con-
tents of the page instead. Doing so would allow the browser to stream the results and
start processing and rendering the content immediately, even if it didn’t have all of it.
Figure 10.3 illustrates this idea.

 By using the power of Service Workers combined with streams, you can provide a
huge benefit in terms of web performance. In figure 10.3, you can see that using a Ser-
vice Worker stream you can fetch the different parts of the page and combine them
together in one stream. For example, you could add a header, body, and a footer
together to make the entire page. This is similar to the method you used with the

2 https://developer.mozilla.org/en-US/docs/Web/API/Response#Methods

Figure 10.2 The Application Shell Architecture uses Service Worker caching to cache the UI shell and then
dynamically fetch and insert the contents into the page after the page has loaded.

https://developer.mozilla.org/en-US/docs/Web/API/Response#Methods

142 CHAPTER 10 Streaming data
Application Shell Architecture, except that you’re streaming the whole page content
directly from the Service Worker. Content still goes through the regular HTML parser,
which means you get streaming and none of the behavioral differences you get with
manually inserting content onto the page.

 Let’s see how to update the Progressive Times web application to use web streams
and combine the content using Service Workers. We need to go through quite a lot of
code in the Service Worker. The following listing gets us started.

const cacheName = 'latestNews-v1';

self.addEventListener('install', event => {
 self.skipWaiting();

 event.waitUntil(
 caches.open(cacheName)
 .then(cache => cache.addAll([
 './js/main.js',
 './images/newspaper.svg',
 './css/site.css',

Listing 10.4 Added resources into cache during Service Worker install

Figure 10.3 Using Service Worker streams lets you fetch the contents you need and then pipe the results to the
browser as a stream, which results in instant first render.

Service Worker should start
controlling clients that weren’t
controlled by the previous Service
Worker as soon as possible.

Cache the resources
during install.

143Supercharging your page render times

 './header.html',
 '/footer.html',
 'offline-page.html'
]))
);
});

self.addEventListener('activate', event => {
 self.clients.claim();
});

That code may seem familiar; during the Service Worker installation, you’re caching a
list of important resources that you know will be requested at a later stage. I’ve also
updated the HTML pages of the Progressive Times application in order to simulate
server-side rendering—I’ve removed the Application Shell Architecture and reverted
to rendering the page as a whole HTML document.

 In listing 10.4, you may notice that both 'header.html' and 'footer.html' are
being cached during Service Worker installation. This is important because you’re
going to be combining these pieces of HTML together in your web stream, and it will
be much quicker to fetch them from the cache. Next, you’re calling self.skipWait-
ing()to force the current Service Worker to become the active one. This in turn fires
the activate event and allows the Service Worker to start controlling the page as soon
as possible.

 Now that the cache is primed, it’s time to start consuming this data, as shown in the
next listing.

function getQueryString (field, url = window.location.href) {
 const reg = new RegExp('[?&]' + field + '=([^&#]*)', 'i');
 const result = reg.exec(url);
 return result ? result[1] : null;
};

self.addEventListener('fetch', event => {
 const url = new URL(event.request.url);
 if (url.pathname.endsWith('/article.html')) {
 const articleId = getQueryString('id');
 const articleUrl = `data-${articleId}`;

 event.respondWith(streamArticle(articleUrl));
 }
});

This code is tapping into the fetch event and checking to see whether the current
URL is for an article on the Progressive Times application. If so, you need to add a lit-
tle bit of logic to determine the ID of the article so you can retrieve the correct one
from the server.

Listing 10.5 Combining HTML in a Web Stream

Cache the header and
footer HTML during Service
Worker installation.

Force the current
Service Worker to
become the active.

Get the value
from the
query string.

Tap into the
fetch event. Is the incoming

route for an
article?

Get the ID of
the article.

Build up a URL
of the article.Respond with the

streaming result.

144 CHAPTER 10 Streaming data
 With this ID, you can then build up an article URL and respond with your stream.
One final step needs to take place, and this happens in the following listing.

function streamArticle(url) {
 try {
 new ReadableStream({});
 }
 catch (e) {
 return new Response("Streams not supported");
 }
 const stream = new ReadableStream({
 start(controller) {
 const startFetch = caches.match('header.html');
 const bodyData = fetch(`data/${url}.html`)
.catch(() => new Response('Body fetch failed'));
 const endFetch = caches.match('footer.html');

 function pushStream(stream) {
 const reader = stream.getReader();
 function read() {
 return reader.read().then(result => {
 if (result.done) return;
 controller.enqueue(result.value);
 return read();
 });
 }
 return read();
 }

 startFetch
 .then(response => pushStream(response.body))
 .then(() => bodyData)
 .then(response => pushStream(response.body))
 .then(() => endFetch)
 .then(response => pushStream(response.body))
 .then(() => controller.close());
 }
 });

 return new Response(stream, {
 headers: { 'Content-Type': 'text/html' }
 })
}

The code in listing 10.6 is the cherry on top of our web stream example. The stream-
Article() function starts off by testing to see whether the current browser supports
the Web Stream API. If it doesn’t, you can throw an error and handle accordingly, but
if it does you then create a new ReadableStream.

 In listing 10.4, you primed the Service Worker cache with header.html and
footer.html. At this point, you can retrieve them from cache and at the same time use
the Fetch API to retrieve the body of the page. Using these three parts, you can stitch

Listing 10.6 Combining HTML in a web stream response

Check to see if the browser
supports the Web Stream API.

Build a new
ReadableStream.

Retrieve header.html
from cache.

Retrieve the body
of the page using
the Fetch API.

Retrieve
footer.html
from cache.

Use the pushStream function
to push the next chunk of
data onto the stream.

Start fetching the
header data and push
it onto the stream.

Fetch the body
data and push it
onto the stream.

Fetch the footer
data and push it
onto the stream.

Build a new Response
object and return the
results of the stream.

145The future of the Web Stream API
them together and pipe the data onto the stream. The great thing about streams is
that they’re primarily used for piping data from one to another. A readable stream
can be piped directly to a writable stream or it can be piped through one or more
transform streams first. A set of streams piped together in this way is referred to as a
pipe chain. In a pipe chain, the original source is the underlying source of the first
readable stream in the chain; the ultimate sink is the underlying sink of the final writ-
able stream in the chain. You can see this take place when you call startFetch() and
then push the results of the body onto the stream. It may seem a bit silly referring to
streams as “pipes” and “sinks,” but it does stick in the memory how data (like water)
can flow from one or more stream to the next.

 Finally, you create a new Response object that’s used to return the results of the
web stream. And that’s it—you’ve created a web stream that renders the contents of
your page to the browser and takes advantage of its built-in streaming capabilities.
Using Service Worker caching and streams, you’ve stitched together the page data,
meaning you can get an almost-instant first render and then beat a regular server ren-
der by piping a smaller amount of content from the network. Content goes through
the regular HTML parser, so you get streaming and none of the behavioral differ-
ences you get with manually adding content to the DOM. This is a big step forward in
terms of web performance and a great way to take advantage of the browser’s stream-
ing abilities. To view the code for this example, head over to bit.ly/chapter-10-pwa-
streaming.

10.4 The future of the Web Stream API
At the time of writing this book, the Web Stream spec is still being developed, which
means it’s still subject to change. That said, the current functionality already allows
you to do some amazing things.

 The great thing about being able to tap into the browser’s streaming abilities is
that you’ll start to get access to things in JavaScript such as the following:

 Gzip/deflate
 Audio/video codecs
 Image codecs
 The streaming HTML/XML parser

If you’re interested in staying up-to-date with web streams, I recommend keeping an eye
on the WHATWG streams document.3 The future’s looking bright for web streams.

3 https://streams.spec.whatwg.org

https://streams.spec.whatwg.org

146 CHAPTER 10 Streaming data
10.5 Summary
Web streams allow you to stream data to your users and the browser to process data
piece by piece as it’s downloaded.

 Without streaming, you need to wait for the entire contents of a download to com-
plete before you return a response. By streaming the data instead, you can return the
results of the download and process it piece by piece, allowing you to render some-
thing onto the screen even sooner.

 Flow control is an important feature of the Web Streams API because it allows you
to react to the speed at which data is read from the network.

 A readable stream represents a source of data you can read data from and contains
two different types of data sources: push and pull.

 You can build your own ReadableStream by tapping into the ReadableStream class
and passing it a configurable object.

 By combining Service Worker streams and caching, you can supercharge your
page render times and use the browser’s built-in streaming capabilities.

Progressive Web App
Troubleshooting
Whenever I give a talk about Progressive Web Apps (PWAs), there’s normally a
Q&A session at the end when the audience asks questions or proposes ideas. Often
I get asked useful questions that are worth sharing with a wider audience.

 In this chapter, I’ve put together a list of some of the questions I regularly get
asked about PWAs and Service Workers and tried to include the most accurate
answers I can. Some of these questions may seem obvious, and some not so obvious,
but I hope you find them useful.

 So here goes, in no particular order: a list of helpful tips, tricks, and gotchas
that can help you when you build your next PWA.

11.1 Add to Homescreen
The Add to Homescreen (A2HS) functionality is a great addition to the list of
amazing PWA features. Due to some of the built-in tendencies of the browser, this
functionality can be tricky to control, but there are a few things you can do that will
give you a bit more flexibility.

11.1.1 How do I tell how many users are using the Add to
Homescreen (A2HS) functionality on my site?

When the A2HS banner is shown, you can tap into the beforeinstallprompt event
to determine the choice that the user made when they were presented with the
banner. The following listing shows this in action.

147

148 CHAPTER 11 Progressive Web App Troubleshooting
window.addEventListener('beforeinstallprompt', function(event) {
 event.userChoice.then(function(result) {

 if(result.outcome == 'dismissed') {

 // They dismissed, send to analytics
 }
 else {
 // User accepted! Send to analytics
 }
 });
});

Using listing 11.1, you can determine whether the user dismissed the banner or
decided to add your web app to their home screen. Using a web analytics package, you
can track their choice and hopefully determine whether this functionality is beneficial
to your users.

 Another sneaky technique is to set the start URL in your manifest.json file to
include a query string indicating that it was opened via the home screen of a user’s
device. For example, you could update the start_url property on manifest.json, as
shown in the following listing.

{
 name: 'Progressive Beer',
 short_name: 'beer'
 start_url: 'index.html?start=a2hs'
}

This updated start URL including query string would allow your web analytics tools to
track usage and determine how many users are arriving on your PWA via the icon on
the home screen of their device.

11.1.2 The Add to Homescreen banner doesn’t make sense for my
website—how do I disable or hide it?

Using the sneaky bit of code in the next listing, you can override the default function-
ality and cause the browser to ignore the Add to Homescreen (A2HS) banner.

window.addEventListener('beforeinstallprompt', function(e) {
 e.preventDefault();
 return false;
});

Listing 11.1 Determine whether a user accepted or dismissed the A2HS banner

Listing 11.2 Tracking A2HS usage via a URL in the web app manifest file

Listing 11.3 Disabling the A2HS banner

149Add to Homescreen
Depending on the type of web app, showing this prompt may or may not make sense;
perhaps your site covers sensitive topics or a short-lived event, and a prompt may be
more annoying than helpful to the user.

11.1.3 Help, my Add to Homescreen (A2HS) functionality doesn’t seem
to be working

Okay, so you’ve correctly added a manifest.json file to your website and referenced it
in the head tag of your HTML like this

<link rel="manifest" href="manifest.json">

but for some reason you still aren’t seeing the Add to Homescreen banner appear at
the bottom of the page. There are a few things you may want to check. First, for the
A2HS banner to appear, a few criteria need to be met: your site needs to be running
over HTTPS, have a valid manifest file (with a start URL and icon) and an active Ser-
vice Worker file, and the user has to have visited your site at least twice within the last
five minutes. The reason for that last one is that if the banner appeared too many
times it could be spammy for the user. Those “install our native app” banners are bad
enough on some websites already.

11.1.4 If a user has installed my web app to their home screen, but they
clear their cache in Chrome, do my site’s cached resources get
cleared too?

Yes, because the PWA experience is powered by Chrome, the storage is currently
shared. If a user clears their Chrome cache, your PWA will clear its storage too.

 If you’d like to learn more about the improved A2HS functionality in Chrome, I
highly recommend learning more about it on the Google Developer’s website.1

11.1.5 I’m not sure if my manifest.json file is working correctly—how do
I test it?

One of my favorite tools for validating manifest files is Web Manifest Validator at man-
ifest-validator.appspot.com (figure 11.1). The web app checks the file and uses the
W3C specification to determine whether it’s valid. If you’re having trouble under-
standing why your web app manifest doesn’t seem right, the tool will provide feedback
about which character caused an issue along with other things that could be causing
the issue.

 If you struggle with creating these files and find that you make mistakes here and
there, I recommend using a manifest file generator. Bruce Lawson has created a
handy tool in which you input your details and it spits out a fully created web manifest
file for you. You can find it at brucelawson.github.io/manifest.

1 https://developers.google.com/web/updates/2017/02/improved-add-to-home-screen#will_my_installed_
sites_storage_be_cleared_if_the_user_clears_chromes_cache

https://developers.google.com/web/updates/2017/02/improved-add-to-home-screen#will_my_installed_sites_storage_be_cleared_if_the_user_clears_chromes_cache
https://developers.google.com/web/updates/2017/02/improved-add-to-home-screen#will_my_installed_sites_storage_be_cleared_if_the_user_clears_chromes_cache
https://developers.google.com/web/updates/2017/02/improved-add-to-home-screen#will_my_installed_sites_storage_be_cleared_if_the_user_clears_chromes_cache

150 CHAPTER 11 Progressive Web App Troubleshooting
11.2 Caching
There’s a saying that the two hardest things in software development are caching and
naming things. This couldn’t be truer of Service Worker caching. Getting your
resources into cache can be quite straightforward, but with incorrect logic in place,
you can quickly cache the wrong resources. This section focuses on troubleshooting
Service Worker caching issues.

11.2.1 I’m adding resources into cache with code in my Service Worker,
but the cache isn’t updating when I change the file, and why can I
still see the older version of my files even after I refresh the page?

Start by checking the Developer Tools to determine what files are being cached. If you
open up Chrome’s Developer Tools and click the Application tab, you’ll see which
files are in the cache, as shown in figure 11.2.

Figure 11.1 If you find that your web app manifest file is incorrect, using Web Manifest Validator can quickly help
you diagnose issues.

151Caching
If you need to ensure that files are always updated when you make changes, you may
want to consider versioning your files and renaming them. That way you can ensure
that each file change is guaranteed to be cached correctly. For example, using file ver-
sioning,2 you may reference a JavaScript file in your HTML like this:

<script src=”/js/main-v2.js”>

Each time the file changes, you bump the version, which results in a fresh download.
 Another technique to ensure that you always get fresh code is to delete the current

cached entries when the Service Worker activates after updating. By tapping into the
activate event during the Service Worker lifecycle, you can clear the cache. I recom-
mend checking out this code sample3 for guidance. Depending on how your PWA has
been built, you should choose the best strategy to suit your needs.

11.2.2 How do I unit test my Service Worker code?

Testing your Service Worker code can be tricky, but fear not—Matt Gaunt wrote an
excellent article on Medium about the ins and outs of testing Service Workers.4

2 https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-cach-
ing#invalidating_and_updating_cached_responses

3 https://googlechrome.github.io/samples/service-worker/custom-offline-page/
4 https://medium.com/dev-channel/testing-service-workers-318d7b016b19

Figure 11.2 The Developer Tools can show what you have stored in cache.

https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching#invalidating_and_updating_cached_responses
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching#invalidating_and_updating_cached_responses
https://googlechrome.github.io/samples/service-worker/custom-offline-page/
https://medium.com/dev-channel/testing-service-workers-318d7b016b19

152 CHAPTER 11 Progressive Web App Troubleshooting
11.2.3 How much memory can my PWA use on a user’s device?

The honest answer is that it really depends on your device and storage conditions.
Like all browser storage, the browser is free to throw it away if the device comes under
storage pressure.

 If you’d like to determine how much storage you have and how much you’ve used
up, the following listing might help.

navigator.storage.estimate("temporary").then(function(info) {
console.log(info.quota); // The total amount in bytes
console.log(info.usage); // How much data you’ve used so far in bytes
});

That code might not work on all browsers, but will definitely point you in the right
direction. There’s a great answer on Stack Overflow5 that explains this in more detail.

11.2.4 My cached resources seem to expire every so often—how do I
ensure that they stay cached permanently?

When storage space on a device is running low, the browser will automatically clear stor-
age to make more available space. Although this ensures that your user’s device runs
smoothly, it can make building a truly offline experience for the web a little tougher.

 Fear not! There is a way. If you’d like to make cache storage more persistent, you
can ask for it explicitly using a bit of code, as shown in the following listing.

if (navigator.storage && navigator.storage.persist)
 navigator.storage.persist().then(granted => {
 if (granted)
 alert("Storage will persist and not be cleared");
 else
 alert("Storage won’t persist and may be cleared");
 });

A few criteria need to be met before persistent storage is granted, and to learn more
about this great feature, I recommend reading this article.6

11.2.5 How do I deal with query string parameters and caching?

When a Service Worker checks for a cached response, it uses a request URL as the key.
By default, the request URL must exactly match the URL used to store the cached
response, including any query parameters in the search portion of the URL.

Listing 11.4 Determining PWA storage usage

5 https://stackoverflow.com/questions/35242869/what-is-the-storage-limit-for-a-service-worker

Listing 11.5 Persistent cache storage

6 https://developers.google.com/web/updates/2016/06/persistent-storage

https://stackoverflow.com/questions/35242869/what-is-the-storage-limit-for-a-service-worker
https://developers.google.com/web/updates/2016/06/persistent-storage

153Debugging Service Worker–specific issues
 For example, if you make a request for a URL with a query string and it previously
matched, you may find that it misses the next time because the query string differs
slightly. To ignore query strings when you check the cache, use the ignoreSearch
attribute and set the value to true. The following listing gives you an idea of what this
looks like in action.

self.addEventListener('fetch', function(event) {
 event.respondWith(
 caches.match(event.request, {
 ignoreSearch: true
 }).then(function(response) {
 return response || fetch(event.request);
 })
);
});

11.3 Debugging Service Worker–specific issues
Many times I’ve found myself pulling out my hair trying to figure out the different
nuances to Service Workers, only to find that the solution was simpler than it seemed.
Hopefully this section will provide the knowledge you need to debug your next Ser-
vice Worker issue.

11.3.1 How often does the Service Worker file update?

Every time you navigate to a new page that's under a Service Worker’s scope, Chrome
will make a standard HTTP request for the JavaScript resource that was passed into
the navigator.serviceWorker.register() call. By default, this HTTP request will
obey standard HTTP cache directives, but if the Service Worker file is more than 24
hours old, it will always go to the network and fetch a fresh version of your Service
Worker file. This is to ensure that developers don’t accidentally roll out a “broken” or
buggy Service Worker file that gets stuck in the browser forever—it’s like a safety
switch for your Service Worker file. For more information, see the article on Stack
Overflow7 where Google’s Jeff Posnick goes into more detail.

11.3.2 My Service Worker file is throwing an error, but I’m not sure
what’s wrong—how do I debug it?

Without a doubt, the easiest way to debug your Service Worker code is to use the
Developer Tools in your browser. In Google Chrome’s Developer Tools, in the Scripts
tab, you can set a breakpoint to help you debug the error, as shown in figure 11.3.

Listing 11.6 Ignoring query string parameters in cache

7 https://stackoverflow.com/questions/38843970/service-worker-javascript-update-frequency-every-24-
hours/38854905#38854905

https://stackoverflow.com/questions/38843970/service-worker-javascript-update-frequency-every-24-hours/38854905#38854905
https://stackoverflow.com/questions/38843970/service-worker-javascript-update-frequency-every-24-hours/38854905#38854905

154 CHAPTER 11 Progressive Web App Troubleshooting
With the breakpoint set in the Developer Tools, your code will pause when it reaches
this point and allow you to see exactly how your code logic is executing. Mastering the
Developer Tools is a great step forward in becoming a better developer. Although
many browser vendors offer tutorials for their developer tools, my personal favorite is
one about Chrome’s Developer Tools.8

11.3.3 Help, I’ve tried everything, but for some crazy reason my Service
Worker logic never seems to execute

It’s worth double-checking your Developer Tools to see if you incorrectly enabled a
setting. For example, if you enable Bypass for Network, your Service Worker logic will
be ignored and instead fetch resources via the network instead of cache, as shown in
figure 11.4.

 While you’re at it, you may want to check that you don’t have the other settings
enabled when you don’t need them. For example, Offline and Update on Reload—
I’ve been left scratching my head many times trying to figure out why my code wasn’t
working, only to discover that I’d forgotten to disable one of these settings.

8 https://developers.google.com/web/fundamentals/getting-started/codelabs/debugging-service-workers/

Figure 11.3 Debugging your Service Worker can be a much more efficient way of findings issues in your code
logic.

https://developers.google.com/web/fundamentals/getting-started/codelabs/debugging-service-workers/

155Debugging Service Worker–specific issues
11.3.4 I’ve added code to handle push notifications in my Service
Worker file, but how can I test them quickly without writing
server-side code?

If you’re looking for a quick way to simulate push events within your web app, the
Developer Tools provide a quick and easy way to simulate them in action, as shown in
figure 11.5.

11.3.5 I’ve built an offline web app but now I can’t see how users are
using it—how do I track usage?

Without a doubt, one of coolest libraries to appear lately has to be the Offline Google
Analytics package. Using a bit of clever Service Worker magic, the library will queue

Figure 11.4 If your Service Worker logic isn’t executing, consider investigating the settings in your
Developer Tools. You may have accidentally overridden something.

Figure 11.5 Use the Developer Tools in the browser to simulate push events.

156 CHAPTER 11 Progressive Web App Troubleshooting
up any analytics requests while the user is offline, and as soon as the user regains a
connection, it will then send the queued requests through to the analytics server.

 To start using the library, you need to include it in your Service Worker file using
the code in the following listing.

importScripts('../build/offline-google-analytics-import.js');

goog.offlineGoogleAnalytics.initialize();

self.addEventListener('install', () => self.skipWaiting());

self.addEventListener('activate', () => self.clients.claim());

By including this code in your Service Worker file, the library will track any actions
made by the user while offline, queue them, and then send them in order once the
user regains connectivity. Very cool stuff!

11.4 Summary
The Add to Homescreen (A2HS) functionality provides a great addition to your PWA,
but it can be tricky to control in certain instances. By tapping into the beforeinstall-
prompt event, you can control how it behaves.

 Using the Developer Tools built into your browser can be a handy way to diagnose
and debug any issues you may be having.

 If your Service Worker file is older than 24 hours, it will always go to the network
and fetch a fresh version of your Service Worker file.

 Using the Offline Google Analytics package can be a handy way of tracking your
users when they use your PWA offline.

Listing 11.7 Offline Google Analytics tracking

The future is looking good
One of the many reasons why I love developing for the web is that the landscape is
constantly evolving. Browsers are continually improving, and new features are con-
stantly being released. The future for Progressive Web Apps (PWAs) is looking
good: modern APIs allow us to access hardware and sensor APIs, Bluetooth, virtual
reality, and so much more. It’s an exciting time to be a web developer.

 This chapter explores many new APIs that are either in development or are due
to arrive in a browser near you soon. We’ll look at Web Bluetooth, the Payment
Request API, and the Share API. We’ll also briefly discuss a few new features that
are on the horizon.

12.1 Introduction
As more and more users around the world come online, a large majority of them
do so using their mobile devices. In 2015 the International Telecommunication
Union estimated about 3.2 billion people, or almost half of the world’s population,
would be online by the end of the year. Of them, about 2 billion would be from
developing countries, including 89 million from the least developed countries.1

 As a web developer, it’s exciting to know that the web is constantly evolving and
progressing. Browser vendors are making it easier for us to build fast, resilient, and
engaging web applications for our users, regardless of the devices they use. These
features enable you to reach many more people and make your web applications
accessible for anyone. But remember that not all users out there have the latest,

1 https://en.wikipedia.org/wiki/Global_Internet_usage
157

https://en.wikipedia.org/wiki/Global_Internet_usage

158 CHAPTER 12 The future is looking good
fastest devices on the market. This makes PWAs the perfect medium to reach more
people; they’re lightweight, fast, and work offline.

 We’ll look closely at new features and APIs that make it easier to build powerful
web applications that give us the ability to tap into the hardware on the devices, such
as ambient light sensors, proximity sensors, and even accelerometers. But we’ll start
with Web Bluetooth and sharing directly from the web to the other native applications
on your device.

12.2 Web Bluetooth
Imagine the ability to connect to a Bluetooth device from within the browser and
interact with the device through a PWA. For example, you could build a web app for
your car dashboard or even connect to a set of speakers. Until now, the ability to inter-
act with Bluetooth devices has only been possible for native apps. Fortunately, with
the introduction of the Web Bluetooth API, it’s now possible using your browser
(figure 12.1). The Web Bluetooth API allows web sites to communicate over the
Generic Attribute Profile (GATT)—which defines the way that two Bluetooth Low
Energy devices transfer data back and forth—with nearby user-selected Bluetooth
devices in a secure and privacy-preserving way.

 This functionality is relatively new to browsers, but many developers have already
started building amazing things using it. For example, developers have built web fit-
ness apps that can interact with heart rate monitors and a web app that can fly a Parrot
mini drone.

 Being able to interact with Bluetooth devices via the web is easier than you think. The
code in the following listing gives you a basic idea of the Web Bluetooth API in action.

Figure 12.1 Flying a mini drone using the Web Bluetooth API

159The Web Share API
navigator.bluetooth.requestDevice({
 acceptAllDevices: true,
 optionalServices: ['battery_service']
})
.then(device => { console.log (device.name); })
.catch(error => { console.log(error); });

To request access to nearby Bluetooth devices, you need to call the navigator.blue-
tooth.requestDevice() function and pass it a mandatory object that defines a set of
filters. You have to provide these filters in order to request access to specific Bluetooth
services that a device might be capable of. The filters can also be used to sort through
a list of devices by device name. After all, if you were in a room with 30 Bluetooth
devices, it could take a while to search through a list of all of them.

 Once the API has been invoked using requestDevice(), it prompts the user with a
device-chooser pop-up where the user can select the device or cancel. If the outcome
is successful, you’re returned an object with the characteristics and services of the
Bluetooth device, which you can read or write to.

 Although this has only scratched the surface of the Web Bluetooth API, you can
see how easy it can be to start building your own Bluetooth-enabled web apps. At the
time of writing this, the Web Bluetooth API hasn’t yet been fully finalized and is cur-
rently being implemented in different browsers, but the basic functionality is available
for you to start experimenting with today. To learn more about this API, I recommend
exploring a few code samples that the Google Chrome team has put together on their
GitHub repo at googlechrome.github.io/samples/web-bluetooth.

12.3 The Web Share API
If you’ve ever built a website and needed the ability to share to a social network, you’ll
know that it’s not as easy as it may seem. To add basic share functionality, you often
need to include a third-party script and become familiar with its API, and third-party
scripts can have a detrimental effect on the page load performance of your site. As
you add more sharing links, you’ll start to collect a lot of scripts.

 As a web developer, I’ve always been jealous of the ability of native developers to
tap into the sharing capabilities of a device. Sharing between native apps on your
device is so easy. There’s no reason why it shouldn’t be as easy for web developers, and
this is where the Web Share API comes in. It’s a simple API that allows websites to
invoke the native sharing capabilities of the host platform directly from the web.

 Imagine that a user reads an article on your site and thinks that it’s something they
want to share with their friends. When they tap the social sharing buttons at the bot-
tom of the screen, instead of another web page, they see a context menu that lets
them share using their device’s capabilities, as shown in figure 12.2.

Listing 12.1 Interacting with Bluetooth devices

Request access to nearby
Bluetooth devices.

Accept all devices
around you.

Define any optionalServices
in order to access the
services of a given device.

Log the details
of the device.

160 CHAPTER 12 The future is looking good
In figure 12.2, you can see that when the user taps the Share button, they’re presented
with a Share Via dialog. Based on their choice, the user can then share with their cho-
sen application.

 At the time of writing this article, the Web Share API2 is currently in trial and only
works on Android devices, but it’s available for you to start experimenting with. The
next listing shows a basic code sample that explains the Web Share API in action.

if (navigator.share) {
 navigator.share({
 title: document.title,
 url: shareUrl
 }).then(() => console.log('Successful share'))
 .catch((error) => console.log('Error sharing:', error));
}

2 https://developers.google.com/web/updates/2016/10/navigator-share

Listing 12.2 The Web Share API

Figure 12.2 The Web Share dialog allows a user to share the current web page with the native apps installed on
their device.

Check if the Web Share
API is supported.

Invoke the web
share dialog.

Title of the
document
to share

URL of the
document to share

https://developers.google.com/web/updates/2016/10/navigator-share

161Payment Request API
Let’s break down the code in listing 12.2 further.
This code resides inside a JavaScript file on your
web page. First, it checks to see if the Web Share
API is supported in the current browser by check-
ing navigator.share. Next, it invokes the share
dialog and passes through a document title and
share URL. Once the code has been executed, it
brings up the native dialog and allows the data to
be shared by a native app chosen by the user.

 Before you can start testing the functionality,
you need to ensure that the site is running over
HTTPS, because the API needs this in order for it
to function. That’s it—if you visit the page on an
Android device and tap the Share button, you
should see something like figure 12.3.

 The Web Share API is a great step forward for
web developers because it gives the user control
of how and what they want to share with their
already-installed native apps. As adoption grows,
hopefully this will mean fewer third-party scripts,
more native sharing, and ultimately a better expe-
rience for the user. Currently this feature is only
available on Android, but it would be great to see
it adopted by more operating systems. For more on this API, check out its GitHub
repository.3

12.4 Payment Request API
When I’m on my mobile device and I’m trying to make a purchase on the go, I’m
often wary of the many poor payment implementations out there. I can’t tell you how
many times I’ve dropped out of an online purchase on my phone due to tiny buttons,
hard-to-read pages, or—even worse—validation errors. Not to mention the security
worries I often get when purchasing on a new, unknown website.

 This is where the Payment Request API comes to the rescue. It’s a system that’s
meant to eliminate checkout forms by vastly improving the user workflow during the
purchase process and providing a more consistent user experience. Its goal is to act as
an intermediary between merchants, users, and payment methods. Best of all, the
information necessary for a fast checkout can be stored in the browser, so users can
confirm and pay—all with a single tap.

 If you’re on your mobile device and are trying to pay on a website that has imple-
mented the Payment Request API, you might see something similar to figure 12.4.

3 https://github.com/WICG/web-share/blob/master/docs/explainer.md

Figure 12.3 The Web Share dialog and
the available sharing applications

https://github.com/WICG/web-share/blob/master/docs/explainer.md

162 CHAPTER 12 The future is looking good

nt
The user experience (UX) shown in figure 12.4 provides a much better experience
than many e-commerce sites currently offered on mobile devices. This API provides
developers with a system that’s easy to implement and takes the headache out of build-
ing purchase flows that support multiple unique payment methods.

 The API is still constantly evolving, but to give you an idea of what a basic example
might look like, see the next listing.

if (window.PaymentRequest) {

var paymentMethods = [{
 supportedMethods: ["basic-card"],
 data: { supportedNetworks: ["visa", "mastercard"] }
}]

Listing 12.3 The Payment Request API

Figure 12.4 The Payment Request
API provides an easy-to-use UX that
can increase a website’s online sales.

Check whether the curre
browser supports the
Payment Request API.

Supported payment
methods

163Payment Request API

am

pay
var details = {
 displayItems: [
 { label: "Original donation amount", amount: { currency: "USD", value :

"65.00" } }
],
 total: { label: "Total", amount: { currency: "USD", value : "65.00" } }
}

 var request = new PaymentRequest(paymentMethods, details);

request.show().then(paymentResponse => {
 var paymentData = {
 method: paymentResponse.methodName,
 details: paymentResponse.details
 };
 return fetch('/pay', {
 method: 'POST',
 credentials: 'include',
 headers: {
 'Content-Type': 'application/json'
 },
 body: JSON.stringify(paymentData)
 }).then(res => {
 if (res.status === 200) {
 return res.json();
 } else {
 throw 'Payment Error';
 }
 }).then(res => {
 paymentResponse.complete("success");
 }, err => {
 paymentResponse.complete("fail");
 });
}).catch(err => { #J
 console.log("Something went wrong", err);
});
}

Listing 12.3 looks like a lot of code, but it’s much easier to understand when you
break it down.

 The code starts off by checking to see whether the current browser supports the
Payment Request API. Next, you define the supported payment methods such as Visa
or MasterCard in a variable named paymentMethods. Depending on which credit
cards your business supports, this would be the ideal place to include a list of payment
methods. Next, you define the information about the transaction in the details vari-
able, which includes two major components: a total, which reflects the total amount
and currency to be charged, and an optional set of displayItems that indicate how
the final amount was calculated. This parameter isn’t intended to be a line-item list
but rather a summary of the order's major components: subtotal, discounts, tax, ship-
ping costs, and so on.

Summary of the order’s
major components

Total
ount

of the
ment

Invoke the
Payment
Request
API.

Show payment
details.

Data from the
paymentResponse

The paymentResponse
resolved correctly.

Catch any errors
in the promise
chain.

164 CHAPTER 12 The future is looking good
 Now that you’ve defined the parameters of the payment, you can invoke the
PaymentRequest() by passing through the parameters you defined earlier. Next, you
activate the PaymentRequest interface by calling its show() method, which invokes a
native UI that allows the user to examine the details of the purchase, add or change
information, and pay. A JavaScript promise will resolve and be returned when the user
accepts or rejects the payment request.

 If the user accepts the payment request, you then pass the details of the transac-
tion through to server-side logic that will handle the payment. Listing 12.3 doesn’t
include the server-side part of the code because its will vary from business to business
and between the different payment methods.

 When this code is executed on a browser that supports the Payment Request API,
you should see something similar to figure 12.5.

 Although the Payment Request API is still very much a work in progress, it provides
a standardized UX flow for payments on mobile devices. Things are likely to change

Figure 12.5 The Payment Request API
eliminates checkout forms and vastly
improves user workflow during the
purchase process.

165Hardware: the Shape Detection API
with this API, but it’s exciting to see the challenge of online payments being tackled in
this way.

 For more about the Payment Request API, I recommend checking out the docu-
mentation on the Google Developers website.4 For more working examples and for a
chance to try it first-hand, I recommend taking a look at the samples on the GitHub
repository.5

12.5 Hardware access
Modern browsers are capable of some amazing things: access to hardware features
such as the user’s geolocation, device vibration, and even battery status are already
available via easy-to-access APIs. It doesn’t end there, either. More APIs are currently
being developed that will give web developers even greater access to device hardware.
Modern browser vendors are working on ways to use the hardware features of a device
to allow developers even greater access to hardware capabilities. Near Field Communi-
cation (NFC), ambient light sensors, proximity sensors, accelerometers, and even
shape detection are being targeted by some of the amazing APIs currently being
developed.

 If you’re looking to build a powerful PWA that takes advantage of the hardware on
a device, things are only going to get better. Native apps have had access to these fea-
tures for many years, so it’s great to see this kind of thing coming to the web. To give
you a taste, we’ll look at the Shape Detection API and see a basic example that allows
you to detect a barcode from a given image.

12.6 Hardware: the Shape Detection API
The Shape Detection API gives developers access to features such as face detection,
barcode detection, and even text detection.6 This is great for the web.

 To understand how you might use it in the real world, consider the following
example. Imagine you own a large shop that sells books. If you ever need to check
the price of a book without a price tag, you can walk to the register and scan the
label to check the price. But if you had a PWA on your mobile device with access to
the prices of all the books, you could walk around the store using your mobile
device and the barcode detector to quickly and easily give you the price of the
book. This is just one example, but being able to detect shapes opens up a world of
possibilities.

 The following listing shows a basic example.

4 https://developers.google.com/web/fundamentals/discovery-and-monetization/payment-request
5 https://googlechrome.github.io/samples/paymentrequest/credit-cards
6 https://wicg.github.io/shape-detection-api

https://developers.google.com/web/fundamentals/discovery-and-monetization/payment-request
https://googlechrome.github.io/samples/paymentrequest/credit-cards
https://wicg.github.io/shape-detection-api

166 CHAPTER 12 The future is looking good

es
.

var barcodeDetector = new BarcodeDetector();

barcodeDetector.detect(image)
 .then(barcodes => {
 barcodes.forEach(barcode => console.log(barcodes.rawValue))
 })
 .catch(err => {
 console.log("Looks like something went wrong:", err);
 });

The code in listing 12.4 gives you a basic idea of the BarcodeDetector in action. The
code starts off by creating a new instance of BarcodeDetector. Nextyou we invoke the
API by calling detect() and passing through an image. The image that’s passed
through needs to be of type content, CanvasImageSource, ImageData, or a
blob. If the promise resolves successfully, it will return an array of barcode objects that
you can use to extract the raw values from, or even the bounds of the image.

12.7 What’s next?
This chapter could only touch the surface of some of the great features that are com-
ing to the web. As the adoption of PWAs continues to grow, the web is only going to
get better and better.

 If you’d like to stay in the loop on the latest features coming to the web, many
great resources are available online. I keep a close eye on the web and recommend
subscribing to the following websites for regular updates on the world of PWAs:

 Mozilla Developer Network (https://developer.mozilla.org/en-US/Apps/Pro-
gressive)

 Google Developers Website for regular updates and new PWA features (https://
developers.google.com/web/updates/)

 Opera Developer Blog (https://dev.opera.com/blog)
 https://pwa.rocks on GitHub for a selection of great PWAs
 Awesome Progressive Web Apps on GitHub (https://github.com/TalAter/

awesome-progressive-web-apps)

Thank you for joining me on this journey! We’ve come a long way together. From
understanding the basic makeup of a PWA to building one that’s super-fast, works
offline, and even installs on the user’s device—you now know all this is possible from
within your browser. I hope you enjoy building your PWAs as much as I enjoyed writ-
ing this book.

12.8 Summary
The Web Bluetooth API allows websites to communicate over GATT with nearby user-
selected Bluetooth devices in a secure and privacy-preserving way.

Listing 12.4 Barcode detection using the Shape Detection API

Invoke barcode detector by
passing through an image.

Loop through
barcodes and
log their valu
to the console

https://pwa.rocks
https://developer.mozilla.org/en-US/Apps/Progressive
https://developer.mozilla.org/en-US/Apps/Progressive
https://github.com/TalAter/awesome-progressive-web-apps
https://github.com/TalAter/awesome-progressive-web-apps
https://github.com/TalAter/awesome-progressive-web-apps
https://developers.google.com/web/updates/
https://developers.google.com/web/updates/
https://developers.google.com/web/updates/
https://dev.opera.com/blog

167Summary
 The Web Share API allows websites to invoke the native sharing capabilities of the
host platform directly from the web.

 The Payment Request API is a system that aims to eliminate checkout forms by
vastly improving the user workflow during the purchase process and providing a more
consistent user experience, enabling web merchants to easily implement payment
methods.

 Modern browsers are capable of some amazing things: access to hardware features
such as the user’s geolocation, device vibration, and even battery status are already
available via easy-to-access APIs.

 You can use the Shape Detection API to detect barcodes, text, and even faces
inside images.

index
Numerics

408 status code 116
417 status code 62

A

A2HS (Add to Homescreen) functionality,
troubleshooting 147–149

clearing cached resources 149
determining quantity of users

147–148
disabling banners 148–149
hiding banners 148–149
not functioning 149
testing manifest.json files 149

accessing hardware 165
actions 91
activate event 56, 143, 151
activated service worker 10
Add to Home Screen feature 69–78

adding splash screens 73–74
cancelling prompts 75–76
customizing icons 72–73
deferring prompts 76–78
determining usage 76
setting launch styles 74–75
setting URLs 74–75

Add to Homescreen. See A2HS functionality
Application Shell Architecture 17–21
applications

building 111–119
handling network issues 111–114
Service Workers for 114–116
Workbox for 118

improving 15–17

Archibald, Jake 105
ArrayBuffer 141
avoid-cellular 130
avoid-draining 130
Awesome Progressive Web Apps 166

B

background_color property 74
BackgroundSync 120–127

overview 121–124
providing fallbacks 125–127
Service Worker with 124–125
testing 127

banners, A2HS 148–149
BarcodeDetector 165–166
beforeinstallprompt event 76–78, 147, 156
body parameter 53
browser display mode 75
browser support, for push notifications 84
browsing offline 25, 99–110

caches as temporary storage
solution 106

determining caching strategy 104–105
serving files while 100–104
tracking usage 109–110
unlocking caches 99–100
user experience 106–109

buffering streams 137

C

cache busting 36, 47
cache storage 123, 152
cache.addAll() function 36
cacheName variable 36, 47
168

INDEX 169
caches
as temporary storage solution 106
determining strategy 104–105
unlocking 99–100

caches.match() function 36
caching 24–25, 31–50

HTTP caching 31–33
performance improvements when using 44–46
permanently 152
query string parameters and 152–153
Service Worker caching 34, 42–44, 46–50

determining memory needs 48
extra query parameters 47–48
intercept and cache technique 38–42
precaching during installation 34–38
versioning files 46–47
Workbox 48–50

troubleshooting 150–153
cache not updating when changing files

151–153
memory use by PWA 152
unit testing Service Worker code 151

cancel(reason) 137–138
cancelling prompts 75–76
CanvasImageSource 166
catch() function 101, 103
Certificate Authority 12
clearing cached resources 149
click event 90–91, 93–94, 122–123, 126
CMS (Content Management System) 120
contact-email tag 123
custom error page, Twitter PWA 25
customizing icons 72–73

D

data
streaming 135–146

examples of 138–140
future of Web Stream API 145–146
page render times 140–145
web streams 135–138

synchronizing 120–131
BackgroundSync 120–127
notifying users 128–129
periodically 129–131

debugging
Service Worker 153–156

logic not executing 154
testing push notifications 155
tracking usage 155–156
update frequency of files 153

web app manifest files 78–80
deferring prompts 76–78
details variable 163

detect() method 166
Developer Tools, Google Chrome 37
developer website, Safari 84
disabling A2HS banners 148–149
display field 68
display mode 74
display property 75
displayItems 163

E

event.action property 93
event-based service worker 10
event.waitUntil() method 36
Expires header 32
express style approach 119

F

face detection 165
failures, single point of 112–114
fallbacks, providing when BackgroundSync not

supported 125–127
false value 76
feedback, UI 109
Fetch API 51–53
fetch events 53–56

in action 57–63
Save-Data headers and 59–63
WebP images and 57–59

Service Worker lifecycle 55–56
fetch request 116, 125
file versioning 151
files

cache not updating when changing
151–153

manifest.json, testing 149
Service Worker, update frequency 153
serving while offline 100–104
versioning 46–47

Filesystem 106
Flipkart 6
Flipkart Lite 69
front-end architecture 23
front-end SPOF 112
fullscreen display mode 75

G

Generic Attribute Profile 158
GET request 101, 103
GitHub 53, 161
Google Chrome’s Developer Tools 37
Google Developers Website 166
Google Fonts 112

INDEX170
Google’s Inbox 18
Grigorik, Ilya 111

H

Haman, Patrick 115
hardware, access to 165
HEAD tag 39, 86–87
head tags 68
helper libraries 110
hex color 69
hiding A2HS banners 148–149
htmlStream() function 139
HTTP caching 31–34, 50
HTTP requests 9, 114

I

icons field 68
icons, customizing 72–73
idb-keyval library 123
ignoreMethod option 48
ignoreSearch option 47–48, 153
ignoreVary option 48
image/webp mime type 59
ImageData 166
importScripts() function 49
incoming HTTP requests 9
IndexedDB 106, 123–124
install event 35–36
install step 36
installing Service Worker, precaching during

34–38
interacting with push notifications 90–93
intercept and cache technique 38–42
intercepting network requests 51–63

Fetch API 51–53
fetch events 53–56

J

JPEGXR format 59
jQuery 52

L

launch styles, setting 74–75
Lawson, Bruce 149
Let’s Encrypt 12
lie-fi 112–114
lifecycles, Service Worker 9–10, 20, 55–56
Lighthouse tool 15, 17
link tag 68
LocalStorage 9, 106
logic of Service Worker, not executing 154

M

manifest file 5
manifest validator 79–80
manifest.json files

overview 71, 89
testing 148–149

memory, determining needs for 48
minimal-ui display mode 75
minPeriod value 130
mobile websites, Twitter 22
Mozilla 109, 166

N

name field 68
name property 74
native apps 4, 7
navigator.bluetooth.requestDevice() function 159
navigator.serviceWorker.register() function 11,

153
navigator.share 161
network connections, losing 128
network requests, intercepting 51–63

Fetch API 51–53
fetch events 53–56

networks, handling issues with 111–114
lie-fi 112–114
single point of failure 112–114

networkState property 130
NFC (Near Field Communication) 165
Nielsen Norman Group 116
notification tile 90–92
notifications 81–95

browser support 84
engaging with users through 81–82
interacting with 90–93
receiving 90–93
sending 88–89
subscribing to 85–88
testing 155
third-party 94–95
unsubscribing from 93–94
when offline 128–129

O

offline browsing 25, 99–110
caches

as temporary storage solution 106
determining strategy for 104–105
unlocking 99–100

serving files while offline 100–104
tracking usage 109–110
user experience 106–109

INDEX 171
Offline Google Analytics 110
Offline Wikipedia 105
Opera Developer Blog 166
origin property 119
outgoing HTTP requests 9

P

pages, rendering 140–145
parameters, caching and 152–153
Payment Request API 157, 161–165, 167
paymentMethods variable 163
PaymentRequest() function 164
persistent storage 48
pipe chain 145
pixels 20
polyfill 53
Posnick, Jeff 8, 153
POST request 53, 88, 123, 127
powerState property 130
precaching, during Service Worker

installation 34–38
preventDefault() function 76
Progressive Times application 43, 60, 67,

99, 104, 114, 122
Progressive Web Apps. See PWAs
Promise.race() function 116
promises, JavaScript 11
prompts

cancelling 75–76
deferring 76–78

public key, VAPID 87
pull(controller) 137–138
push events 90–92
push notifications 81–95

browser support 84
engaging with users through 81–82
interacting with 90–93
receiving 90–93
sending 88–89
subscribing to 85–88
testing 155
third-party 94–95
unsubscribing from 93–94

push() function 139
pushManager object 88
pushManager.getSubscription()

function 94
pushManager.subscribe() function 88
pushSubscription object 88–89
PWAs (Progressive Web Apps) 3–14

basics of 5–8
benefits of using 3–5
building 15–27

dissecting existing PWAs 21–27

front-end architectural approaches
to 17–21

improving existing applications 15–17
building business cases for 6–8
Service Workers 8–13

example of 10–12
lifecycle of 9–10
overview 8–9
security considerations of 12–13

Q

query parameters 47–48
query string parameters, caching and

152–153
queuingStrategy 137–138

R

ReadableStream class 137, 139, 144, 146
receiving push notifications 90–93
register() function 9, 11
registration object 87
rendering pages, improving speed of 140–145
requestDevice() function 159
requests, intercepting 51–63

Fetch API 51–53
fetch events 53–56

resources, clearing cached 149
Response object 116, 144–145
retry logic, BackgroundSync 125
routing, express style approach to 119

S

Safari 84
Save-Data headers, fetch events and 59–63
screens. See splash screens
SCRIPT tag 87
security, with Service Workers 12–13
self.clients.claim() function 56
self.skipWaiting() function 56, 143
sending push notifications 88–89
Service Worker Toolbox 24
Service Workers 5, 8–13

BackgroundSync with 124–125
building applications with 114–116
caching 34, 42–44, 46–50

determining memory needs 48
extra query parameters 47–48
versioning files 46–47
Workbox 48–50

debugging 153–156
logic not executing 154
testing push notifications 155

INDEX172
Service Workers (continued)
tracking usage 155–156
update frequency of files 153

example of 10–12
intercept and cache technique 38–42
lifecycle of 9–10, 55–56
overview 8–9
precaching during installation 34–38
security considerations of 12–13
unit testing code 151

service-worker.js file 62
serving files, while offline 100–104
setTimeout() function 139
Shape Detection API 165–166
Share button, Android 161
short_name field 68
show() method 164
showNotification function 90, 92
skipWaiting() function 56
SPA (Single Page Application) 55
speed, rendering pages, improving 140
splash screens, adding 73–74
SPOF (single point of failure) 112
Stack Overflow 152–153
standalone display mode 75
start URL 74
start(controller) 137, 144
startFetch() function 145
start_url field 68
storage, caches as temporary solution 106
streamArticle() function 144
streaming data 135–146

examples of 138–140
future of Web Stream API 145–146
page render times 140–145
web streams 135–138

streams
buffering 137
readable 137–138
See also web streams

submit button 124
subscribing, to push notifications

85–88
subscription object 85–86, 88
subscription.unsubscribe() function 94
sync event 123–125, 128, 130
synchronizing data 120–131

BackgroundSync 120–127
notifying users 128–129
periodically 129–131

synchronous XHR 9
SyncManager interface 126
syncs, delaying 130

T

testing
BackgroundSync 127
manifest.json files 149
push notifications 155
Service Worker code 151

text detection 165
TextEncoder() function 139
theme_color property 68–69
then() method 11, 53
third-party push notifications 94–95
timeout function 115–116
tracking usage

for offline browsing 109–110
of A2HS 155–156

troubleshooting 147–156
A2HS 147–149

clearing cached resources 149
determining quantity of users 147–148
disabling banners 148–149
hiding banners 148–149
not functioning 149
testing manifest.json files 149

caching 150–153
memory use by PWA 152
not updating when changing files 151–153
permanently 152
query string parameters and 152–153
unit testing Service Worker code 151

debugging Service Worker 153–156
logic not executing 154
testing push notifications 155
tracking usage 155–156
update frequency of files 153

twemoji 24
Twitter Lite 22
Twitter, mobile website 22

U

UI (user interface) 107
UI shell

caching 17
loading 19

UInt8Array 88
unit testing, Service Worker code 151
unlocking caches 99–100
unsubscribing from push notifications

93–94
updating Service Worker files, frequency

of 153
URLs (universal resource locators) 74–75

INDEX 173
usage
determining 76
tracking

for offline browsing 109–110
overview 155–156

userChoice object 76
users

engaging with through push notifications 81–82
notifying when offline 128–129
of A2HS, determining quantity of 147–148
offline experience 106–109

UX (user experience) 110, 162

V

VAPID (Voluntary Application Server Identifica-
tion) protocol 87

versioning
files 46–47
overview 36

vibration pattern 91

W

web app manifest files
debugging 78–80
overview 67–69

Web App Manifest, W3C 26
web applications, enhancing 6
Web Bluetooth 158–159
web fonts 39, 41, 112
Web Manifest Validator 149–150
Web Share API 159–161
Web Share dialog 160–161
Web Stream API, future of 145–146
web streams 135–138

benefits of using 136–137
readable streams 137–138

WebP images, fetch events and 57–59
WebPagetest 44–46, 50
webpush.sendNotification() function 89
Workbox library

building applications with 118
overview 48–50

worker context 9
WorldWideWeb, history of 3

X

XMLHttpRequest object 51–52

Z

Zepto 52

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Cross-Platform Desktop Applications
Using Node, Electron, and NW.js
by Paul B. Jensen

ISBN: 9781617292842
312 pages
$49.99
May 2017

Angular Development with Typescript,
Second Edition
by Yakov Fain and Anton Moiseev

ISBN: 9781617295348
475 pages
$49.99
April 2018

Node.js in Action, Second Edition
by Alex Young, Bradley Meck, and Mike Cantelon

ISBN: 9781617292576
392 pages
$49.99
August 2017

https://www.manning.com/books/cross-platform-desktop-applications
https://www.manning.com/books/angular-development-with-typescript-second-edition
https://www.manning.com/books/node-js-in-action-second-edition
https://www.manning.com/books/cross-platform-desktop-applications
https://www.manning.com/books/angular-development-with-typescript-second-edition
https://www.manning.com/books/node-js-in-action-second-edition

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

The Responsive Web
by Matthew Carver

ISBN: 9781617291241
200 pages
$39.99
October 2014

Web Performance in Action
Building Fast Web Pages
by Jeremy L. Wagner

ISBN: 9781617293771
376 pages
$44.99
December 2016

Front-End Tooling with Gulp, Bower,
and Yeoman
by Stefan Baumgartner

ISBN: 9781617292743
240 pages
$44.99
November 2016

https://www.manning.com/books/the-responsive-web
https://www.manning.com/books/web-performance-in-action
https://www.manning.com/books/front-end-tooling-with-gulp-bower-and-yeoman
https://www.manning.com/books/the-responsive-web
https://www.manning.com/books/web-performance-in-action
https://www.manning.com/books/front-end-tooling-with-gulp-bower-and-yeoman

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Building the Web of Things
With examples in Node.js and Raspberry Pi
by Dominique D. Guinard and Vlad M. Trifa

ISBN: 9781617292682
344 pages
$34.99
June 2016

Design for the Mind
Seven Psychological Principles of Persuasive Design
by Victor S. Yocco

ISBN: 9781617292958
240 pages
$39.99
June 2016

Secrets of the JavaScript Ninja,
Second Edition
by John Resig, Bear Bibeault, and Josip Maras

ISBN: 9781617292859
464 pages
$44.99
August 2016

https://www.manning.com/books/building-the-web-of-things
https://www.manning.com/books/design-for-the-mind
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/building-the-web-of-things
https://www.manning.com/books/design-for-the-mind
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Get Programming with JavaScript
by John R. Larsen

ISBN: 9781617293108
432 pages
$39.99
August 2016

CSS in Depth
by Keith Grant

ISBN: 9781617293450
450 pages
$44.99
December 2017

D3.js in Action, Second Edition
Data visualization with JavaScript
by Elijah Meeks

ISBN: 9781617294488
384 pages
$44.99
November 2017

https://www.manning.com/books/get-programming-with-javascript
https://www.manning.com/books/css-in-depth
https://www.manning.com/books/d3js-in-action-second-edition
https://www.manning.com/books/get-programming-with-javascript
https://www.manning.com/books/css-in-depth
https://www.manning.com/books/d3js-in-action-second-edition

Dean Alan Hume

O
ffl ine websites that work. Near-instant load times.
Smooth transitions between high/low/no bandwidth.
Fantasy, right? Not with progressive web applications.

PWAs use modern browser features like push notifi cations,
smart caching, and Service Workers to manage data, minimize
server usage, and allow for unstable connections, giving you
better control and happier customers. Better still, all you need
to build PWAs are JavaScript, HTML, and the easy-to-master
techniques you’ll fi nd in this book.

Progressive Web Apps teaches you PWA design and the skills
you need to build fast, reliable websites. There are lots of
ways you can use PWA techniques, and this practical tutorial
presents interesting, standalone examples so you can jump
to the parts that interest you most. You’ll discover how Web
Service Workers vastly improve site loading, how to effectively
use push notifi cations, and how to create sites with a no-
compromise offl ine mode.

Inside, you’ll find
● Improved caching with Service Workers
● Using manifest fi les and HTML markup
● Push notifi cations
● Offl ine-fi rst web designs
● Techniques for data synchronization

Written for readers with experience developing websites using
HTML, CSS, and JavaScript.

Dean Hume is a coder, author, and Google Developer Expert.
He’s passionate about web performance and user experience.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/progressive-web-apps

$39.99 / Can $52.99 [INCLUDING eBOOK]

Progressive Web Apps

WEB DEVELOPMENT

M A N N I N G

“Takes a practical, example-
driven approach to learning

how PWAs can help you
 build fast, engaging sites.”

—From the Foreword by
Addy Osmani, Google

“A pioneering work that will
take your web app offl ine
and onto the fast lane.”

—Michal Paszkiewicz
Transport for London

“The very best resource
for understanding and

implementing progressive
web applications.”—Evan Wallace

Berkley Insurance Australia

“Thorough, methodical
coverage for novice users,

with handy insights
and many ‘aha’ moments
 for advanced users.”

—Dev Paliwal, Synapse

SEE INSERT

	Progressive Web Apps
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	How this book is organized
	Code conventions and downloads
	About the author
	Book forum
	About the cover

	Part 1—Defining Progressive Web Apps
	1 Understanding Progressive Web Apps
	1.1 What’s the big deal with Progressive Web Apps?
	1.2 PWA basics
	1.2.1 Building a business case for Progressive Web Apps

	1.3 Service Workers: The key to PWAs
	1.3.1 Understanding Service Workers
	1.3.2 The Service Worker lifecycle
	1.3.3 A basic Service Worker example
	1.3.4 Security considerations

	1.4 Performance insight: Flipkart
	1.5 Summary

	2 First steps to building a Progressive Web App
	2.1 Build on what you already have
	2.2 Front-end architectural approaches to building PWAs
	2.2.1 The Application Shell Architecture
	2.2.2 Performance benefits
	2.2.3 The Application Shell Architecture in action

	2.3 Dissecting an existing PWA step by step
	2.3.1 Front-end architecture
	2.3.2 Caching
	2.3.3 Offline browsing
	2.3.4 Look and feel
	2.3.5 The final product

	2.4 Summary

	Part 2—Faster web apps
	3 Caching
	3.1 The basics of HTTP caching
	3.2 The basics of caching Service Worker caching
	3.2.1 Precaching during Service Worker installation
	3.2.2 Intercept and cache
	3.2.3 Putting it all together

	3.3 Performance comparison: before and after caching
	3.4 Diving deeper into Service Worker caching
	3.4.1 Versioning your files
	3.4.2 Dealing with extra query parameters
	3.4.3 How much memory do you need?
	3.4.4 Taking caching to the next level: Workbox

	3.5 Summary

	4 Intercepting network requests
	4.1 The Fetch API
	4.2 The fetch event
	4.2.1 The Service Worker lifecycle

	4.3 Fetch in action
	4.3.1 An example using WebP images
	4.3.2 An example using the Save-Data header

	4.4 Summary

	Part 3—Engaging web apps
	5 Look and feel
	5.1 The web app manifest
	5.2 Add to Home Screen
	5.2.1 Customizing the icons
	5.2.2 Add a splash screen
	5.2.3 Set the launch style and URL

	5.3 Advanced Add to Home Screen usage
	5.3.1 Cancelling the prompt
	5.3.2 Determining usage
	5.3.3 Deferring the prompt

	5.4 Debugging your manifest file
	5.5 Summary

	6 Push notifications
	6.1 Engaging with your users
	6.2 Engagement insight: The Weather Channel
	6.3 Browser support
	6.4 Your first push notification
	6.4.1 Subscribing to notifications
	6.4.2 Sending notifications
	6.4.3 Receiving and interacting with notifications
	6.4.4 Unsubscribing

	6.5 Third-party push notifications
	6.6 Summary

	Part 4—Resilient web applications
	7 Offline browsing
	7.1 Unlocking the cache
	7.2 Serving files while offline
	7.3 A few gotchas to look out for
	7.4 Cache isn’t forever
	7.5 Offline user experience
	7.6 Tracking offline usage
	7.7 Summary

	8 Building more resilient applications
	8.1 Network issues that modern websites face
	8.1.1 Understanding lie-fi and single point of failure

	8.2 Service Workers to the rescue
	8.3 Using Workbox
	8.4 Summary

	9 Keeping your data synchronized
	9.1 Understanding BackgroundSync
	9.1.1 Getting started
	9.1.2 The Service Worker
	9.1.3 Provide a fallback
	9.1.4 Testing

	9.2 Notifying the user
	9.3 Periodic synchronization
	9.4 Summary

	Part 5—The future of Progressive Web Apps
	10 Streaming data
	10.1 Understanding web streams
	10.1.1 What’s the big deal with web streams?
	10.1.2 Readable streams

	10.2 A basic example
	10.3 Supercharging your page render times
	10.4 The future of the Web Stream API
	10.5 Summary

	11 Progressive Web App Troubleshooting
	11.1 Add to Homescreen
	11.1.1 How do I tell how many users are using the Add to Homescreen (A2HS) functionality on my site?
	11.1.2 The Add to Homescreen banner doesn’t make sense for my website—how do I disable or hide it?
	11.1.3 Help, my Add to Homescreen (A2HS) functionality doesn’t seem to be working
	11.1.4 If a user has installed my web app to their home screen, but they clear their cache in Chrome, do my site’s cached resources get cleared too?
	11.1.5 I’m not sure if my manifest.json file is working correctly—how do I test it?

	11.2 Caching
	11.2.1 I’m adding resources into cache with code in my Service Worker, but the cache isn’t updating when I change the file, and why can I still see the older version of my files even after I refresh the page?
	11.2.2 How do I unit test my Service Worker code?
	11.2.3 How much memory can my PWA use on a user’s device?
	11.2.4 My cached resources seem to expire every so often—how do I ensure that they stay cached permanently?
	11.2.5 How do I deal with query string parameters and caching?

	11.3 Debugging Service Worker–specific issues
	11.3.1 How often does the Service Worker file update?
	11.3.2 My Service Worker file is throwing an error, but I’m not sure what’s wrong—how do I debug it?
	11.3.3 Help, I’ve tried everything, but for some crazy reason my Service Worker logic never seems to execute
	11.3.4 I’ve added code to handle push notifications in my Service Worker file, but how can I test them quickly without writing server-side code?
	11.3.5 I’ve built an offline web app but now I can’t see how users are using it—how do I track usage?

	11.4 Summary

	12 The future is looking good
	12.1 Introduction
	12.2 Web Bluetooth
	12.3 The Web Share API
	12.4 Payment Request API
	12.5 Hardware access
	12.6 Hardware: the Shape Detection API
	12.7 What’s next?
	12.8 Summary

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Progressive Web Apps–back

